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Abstract

The book is dedicated to the 70th anniversary of Eugene Georgievich Morozov, a
Russian observational oceanographer. His field of interests includes internal waves,
ocean circulation, deep ocean currents, and Arctic oceanography. The book
includes description of the most important features obtained from the observational
studies of internal waves and especially tidal internal waves in the Global Ocean,
augmented with their theoretical, numerical, and laboratory modeling. The book
also includes contributions on physics of surface waves and their interaction with
internal waves. There are also chapters with detailed discussions of the processes of
interaction between internal waves and deep currents in the ocean, particularly
currents of Antarctic Bottom water in abyssal fractures. The oceanic circulation and
processes in fjords, including those that occur under ice as well as ice properties are
also discussed in this book.

ix



Part I
Personal Reminiscences



Honorary Note. Evgeny Georgievich
Morozov: A Life at Sea as a Devoted
Ocean Observer

Manuel G. Velarde, Roman Yu. Tarakanov and Alexey V. Marchenko

On March 15, 1946, Eugene G. Morozov, an outstanding field oceanographer, was
born in Moscow. He is Doctor of Sciences in Physics and Mathematics. Since 1993
he is Head of the Hydrological Processes Laboratory at the Shirshov Institute of
Oceanology (Russian Academy of Sciences) in Moscow. He has been President
(2011–2015) of the International Association for the Physical Sciences of the Ocean
(IAPSO, in 1999 he was elected member of the IAPSO Executive Committee). He
is Laureate of the Shirshov Medal (2016). He was also a member of the executive
committees of the International Union of Geodesy and Geophysics (IUGG) and
Scientific Council for Oceanic Research (SCOR). He is the Chairman of the
Oceanographic Section at the Russian National Geophysical Committee, which is a
Russian link to the IUGG. Dr. Morozov is member of the editorial boards of four
journals: Izvestia Atmospheric and Oceanic Physics, Russian Journal of Earth
Sciences, Oceanological Researches, and Fundamental and Applied Hydrophysics.

He married in 1971 to Elena A. Morozova who is a scientist in laser physics.
They have two sons: Nicolay (1977, a computer programmer) and Victor (1979,
also a field oceanographer).

In the 1970s, a new generation of oceanographers began to work at the Shirshov
Institute of Oceanology. Like Eugene, they were graduates from the Department of
the Ocean Dynamics of the Moscow Institute of Physics and Technology. This
department headed by the outstanding Russian theoretician in hydromechanics

M. G. Velarde (✉)
Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
e-mail: mgvelarde@pluri.ucm.es

R. Yu.Tarakanov
Shirshov Institute of Oceanoloy, Russian Academy of Sciences, Moscow, Russia
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Department of Arctic Technology, University Center in Svalbard, Longyearbyen, Norway
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Professor S. S. Voit (1920–1987) brought to science many talented
explorers-researchers in the field of geophysical hydromechanics. Five decades
later, those graduates became leading scientists in several laboratories of the
Institute. Former students that started their work at the Institute gained experience
from the previous generations of oceanographers in the conditions of the real ocean.
They became acquainted with the knowledge of experienced scientists and tried to
find new interesting scientific problems. At first glance it seems easy as there are
quite many open problems yet to be solved by young physical oceanographers.
They appear clear when participating in oceanographic cruises so to get in touch
with the World Ocean. Its endless surface embraces a whole set of hydrophysical
phenomena: waves, currents, eddies, ocean level fluctuations, and the interaction
with the atmosphere.

Eugene started his marine activity in 1967 by participating in a coastal expe-
dition on the Black Sea. His first oceanic expedition was in 1969 exploring the
western boundary currents in the Atlantic. He published his first paper in 1971. His
supervisors were Professors V. G. Kort, S. S. Voit, and Yu. A. Ivanov.

During his life at sea Eugene conducted research on many large scale currents in
the World Ocean: the Gulf Stream, the Antarctic Circumpolar Current, the Kur-
oshio, the California Current, the subsurface undercurrents in the Indian (Tareev
Current) and Atlantic (Lomonosov Current) oceans and the Falkland Current. He
also studied mesoscale eddies and rings of the jet currents. Morozov has also been
an Arctic oceanographer. He has explored the Barents and Kara seas. Further he has
investigated oceanographic processes near glaciers that descend into the sea (col-
laboration with A. V. Marchenko).

Eugene has focused on exploring and understanding internal waves and ocean
circulation. One major result of his research was establishing the fact that the main
source of internal tide generation is interaction between the barotropic tide and
submarine ridges. Previously it was considered that the significant generation
occurs over continental slopes. He constructed a chart of internal tide amplitudes in
the World Ocean. He demonstrated that approximately a quarter of the barotropic
energy dissipation is spent in the generation of internal tides over submarine ridges.
Other studies (some in collaboration with M. G. Velarde, Yu. A. Ivanov, E.
N. Pelinovsky, S. V. Nikitin, and A. V. Marchenko) led to understanding internal
waves in straits like the Strait of Gibraltar, the Kara Gates Strait, the Bab el Mandeb
Strait, the Drake Passage, and also in the open ocean. In his most recent long-lasting
oceanographic activity he has explored the flows in the abyssal channels of the
Atlantic: Vema Channel, Romanche and Chain fracture zones, Kane Gap, Vema
Fracture Zone, and others (collaboration with W. Zenk and R. Tarakanov). Under
his expeditionary scientific leadership, four deep underwater cataracts in the frac-
tures of the Mid-Atlantic Ridge were found.

Since 1969, Eugene made 47 voyages in the ocean including 34 in the Atlantic,
4 in the Indian, 4 in the Pacific, 4 in the Southern and one in the Arctic Ocean. The
expeditions on oceanographic ships became his beloved work. Routes of his
expeditions in the Global Ocean are shown in the attached figure/World Ocean
chart (Fig. 1). He was the chief scientist in 15 trans-Atlantic expeditions. He also

4 M. G. Velarde et al.



participated in 15 coastal expeditions. These expeditions included underwater scuba
diving in shallow waters, work on zodiacs and other small boats, work on ice,
driving snow mobiles, research near glaciers descending to the fjords.

The following items are worth highlighting: 1969–1972: the western boundary
currents in the Atlantic, 1973–1974: the subsurface equatorial undercurrent in the
Indian Ocean, 1974: his first expedition to the Pacific Ocean, 1975: his first polar
research in the Norwegian Sea and 1976: research of deep brines in the depressions
of the Red Sea. During 1977–1978 he participated in two expeditions of the joint
USSR-USA POLYMODE Experiment. He was a member of the
USSR POLYMODE delegation to the USA in 1977 and 1978. In 1981: voyage to
the typhoon region of the Pacific Ocean, 1982–1983: expedition in the Southern
Ocean south of New Zealand, close to the Antarctic continent, 1985: the Soviet
large-scale oceanographic program Mesopolygon (mesoscale eddy investigation
experiment), in which 76 moorings were deployed simultaneously in the Atlantic,
1986: voyage through the East Pacific. In 1987 he was with the greatest Soviet
oceanographic field experiment named Megapolygon (large scale study of the eddy
field) with synchronous deploying of 173 moorings in the Northwest Pacific. In
1989 the exploration of the Gulf Stream rings with participation in the research on
long-distance sound propagation in the deep acoustic waveguide in the Atlantic. In
1990 observation of the atmosphere-ocean interaction in the region of the Great
Newfoundland Bank. In the 1990s, there was a break in field oceanography
activities due to the dramatic financial position of science in the former USSR.
Nevertheless, in 1995 he participated in the World Ocean Circulation Experiment
working with T. Joyce at the Woods Hole Oceanographic Institution as an expert on
the WOCE data quality evaluation of the CTD data collected in the WOCE
expeditions. In 1999 the field oceanographic explorations of the Shirshov Institute
of Oceanology resumed and then he participated in a number of voyages repeating
some of the WOCE hydrographic sections in the Atlantic. In 2003 the Russian
scientists resumed their oceanographic explorations in the Drake Passage. Since
that time Dr. Morozov was the chief scientist in two oceanographic research studies

Fig. 1 Expedition routes followed by Eugene G. Morozov in the Global Ocean
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in the Drake Passage. In 2004, Dr. Morozov made a voyage as a scientist in the
Baltic and North seas on the tall sail ship “Kruzenshtern”. In 2007 was a voyage in
the Kara Sea. In the period 2002–2017 there were annual voyages to study
Antarctic Bottom Water flows in the deep channels and fracture zones of the
Atlantic. During these voyages he visited Antarctica. The results of his studies were
published in several leading journals of the profession and in seven research frontier
book: Oceanic Internal Waves, Nauka, Moscow, 1985; Surface and Internal Waves
in the Artic Seas, Gidrometeoizdat, Leningrad, 2002 (editor); Waves in Geophys-
ical Fluids, Springer, Berlin, 2006 (chapter); Abyssal Channels in the Atlantica
Ocean, Water Structure and Flows, Springer, Berlin, 2010; A Touch of the Ocean,
Nauka, Moscow, 2013 (editor); Without Bounds. A Scientific Canvas of Nonlin-
earity and Complex Dynamics, Springer, Berlin, 2013 (coeditor and author of a
chapter); Oceanic Internal Waves: Observations, Analysis and Modeling. A Global
View, Springer, Berlin, 2018.

Many colleagues from several countries have fruitfully collaborated with
Eugene G. Morozov. Among them are M. G. Velarde (Spain, collaboration started
in 1998), W. Zenk (Germany), G. Weatherly (USA), L. Maas, H. van Haren, and T.
Gerkema (Holland), A. V. Marchenko (Norway), V. Vlasenko (UK), G. Nagy, and
D. Severov (Uruguay) and I. Ansorge (South Africa).

Life at sea is the kind of experience very few are capable to endure for a long
period in life. Piling up different periods, all together Eugene spent 10 years of his
life at sea. Deploying buoys, recovering them a year or more later (with the frus-
tration of a number of them being lost or significantly deteriorated), and obtaining
reliable and valuable field data (data collecting, processing and analysis) not always
leads to standard scientific publications. Sure they permit to produce useful tech-
nical reports and monographs. Eugene has coauthored over two hundred research
papers and he is coauthor or scientific coordinator of six leading research mono-
graph books, one of them mentioned above.

Eugene has made numerous scientific presentations to the Assemblies of IUGG
and IAPSO, the European Geosciences Union and Asia Oceania Geosciences
Society as well as presentations at research institutions in the USA, Canada, Brazil,
Argentina, Uruguay, Chile, Japan, China, Australia, New Zealand, South Africa,
Madagascar, Spain, Germany, the Netherlands, France, Norway, Sweden, the
United Kingdom, Austria and Italy. He convened several symposia of International
scientific assemblies.

Last but not least, Eugene has been active in yachting sports. During his sport
activity he won several prizes for winning racing competitions on the yachts of Finn
single handed Olympic class in the Moscow yachting competitions. It has been
contended that the Finn is the most physical and tactical single hander sailboat in
the world.

We wish, for our outstanding colleague and friend Evgeny Georgievich Moro-
zov, many years of enjoyment of life, family and Science. In addition, this will be
for the future benefit of the scientists of the World Ocean.

6 M. G. Velarde et al.



Gallery: An Ocean Scientist and His Life
at Sea

Manuel G. Velarde, Roman Yu. Tarakanov
and Alexey V. Marchenko

Eugene G. Morozov 2017
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1953: Just before entering the elementary school

1968: Before graduating from the Moscow Institute of Physics and Technology

1969: Moscow, on the way to yachting racing. Yachting sport strongly influenced his
decision to change specialty from gas dynamics (rockets) to hydrodynamics

(oceanography)

1974: Colombo, Sri Lanka. Press conference onboard the R/V “Vityaz” together with
his supervisor V. G. Kort (both standing)

8 M. G. Velarde et al.



1975: Norwegian Sea. International cooperation. Among the USSR and USA scientists
before the POLYMODE experiment

1977: Together with Yu. Ivanov, his supervisor on internal wave research with
New York in the background

2002: Antarctica, Cuberville Island

2002: Work in the Vema Channel. E. Morozov is operating the winch, and S. Pisarev is
holding the rosette

Gallery: An Ocean Scientist and His Life at Sea 9



2004: Sail ship Kruzenstern; at the yardarm end

2005: Underwater reasearch in the shallow tropical waters. Scuba diving was part of
research in the shelf regions

2005: Antarctica, Bransfield Strait. Together with R. Tarakanov

2002: Drake passage, shooting an XBT sensor

10 M. G. Velarde et al.



2007: Perugia, Italy. SCOR/IAPSO work group on mixing

2009: Around SBE carousel; T. Demidova and V. Liapidevskii (front row),
R. Tarakanov (left), E. Morozov (center)

2009: Crossing the equator in the Atlantic, Eugene is playing the role of Neptunus

2009: Spitsbergen, steering a zodiac together with A. Marchenko

Gallery: An Ocean Scientist and His Life at Sea 11



2011: Arctic research of the interaction between oceanic water and glacier fresh water

2013: Five IAPSO presidents E. Morozov, L. Mysak, S. Imawaki, P. Rizzoli,
R. Muench

2014: Scientists and crew onboard cruise 38 of the oceanographic ship « Akademik
Sergey Vavilov»

2015: IAPSO Assembly in Prague. T. McDougal, H. Bryden, D. Smythe-Wright,
T. Yamagata, W. Munk, E. Morozov, L. Mysak

12 M. G. Velarde et al.



2017: Together with Manuel G. Velarde

2017: Together with his son Nicol and grandsons Yaroslav (6) and Maxim (10)

2017: Together with his wife Elena, son Victor, and granddaughter Zoya

Gallery: An Ocean Scientist and His Life at Sea 13



New Steps of the Modern Oceanography:
Reminiscences of My Work with Evgeny
Georgievich Morozov

Victor G. Neiman

Eugene G. Morozov knows not only how to perform field measurements in the
most interesting locations, but also how to process and analyze these measurements
applying all his expertise and knowledge of physics and mathematics. As a result,
just right after each expedition, a draft of a scientific paper has been ready. The
spectrum of the scientific coverage of his publications includes almost all aspects of
the hydrological regime of the ocean. However, the main part of his publications is
dedicated to his continuous interest and scientific passion: the internal tides. When
we hear his presentations about the new results in this field of oceanography his
colleagues and I feel involved in his scientific enthusiasm. Eventually, it led to a
paper together with Eugene on internal waves (published in Doklady Earth Sciences
in 2000), despite the fact that I was already an elderly scientist who has been
studying oceanic currents during all my life. The title of the paper was “Energy
decay of internal tidal waves generated near submarine ridges”. The analysis in this
paper was related to the fact that internal tides generated over large-scale under-
water slopes can propagate over more than 1000 km before their energy decreases
by one order of magnitude. Thus, this research clarified the spatiotemporal char-
acteristics of the dissipation of internal tides, which appeared important for the
correct estimates of the energy balance of the oceanic circulation needed for the
global climate estimates. Not more than three years passed since this publication,
and I was again involved be Eugene and his colleagues in the research of internal
tides in the western region of the Arctic Ocean. This work was published in 2003
also in Doklady Earth Sciences under the title “Internal tidal waves in the Barents
Sea”. In this case my professional interest to the thermodynamic regime of the
Barents Sea was not occasional. Not long before this publication we had finished a
research on estimating the response of the Barents Sea to the El Niño events, which

V. G. Neiman (✉)
Shirshov Institute of Oceanology, Russian Academy of Sciences,
Moscow, Russia
e-mail: vneiman2007@yandex.ru
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also influences the hydrodynamics of the ocean. The research performed by Eugene
Morozov with his colleagues in the Barents Sea showed the existence of internal
waves with extremely high amplitudes in the region, which were caused by the
interaction of the barotropic tide with the bottom topography. This was a mani-
festation of the specific hydrophysical peculiarity of the polar ocean region, which
does not require a steep bottom slope for the generation of strong internal tides as at
low latitudes. Another research in the Arctic seas was based both on the numerical
modeling and field data from the moorings in the Kara Gates Strait. The amplitudes
of internal tides in this strait are as high as 50 m, while the depth of the sea is only
230 m. The physical properties of internal tides in the Kara Gates Strait are similar
to the well known internal waves in the Strait of Gibraltar also analyzed by Eugene.

Our joint research on some regional problem of internal waves is only part of his
fundamental long-term research of this important oceanographic problem. I am
proud to use this opportunity and report of my participation in this scientific
research together with Eugene. His personal contribution to the solution of the
problem of internal tide generation is recognized in the world community of
oceanographers. He was the first to show that the main cause of the generation of
internal tides is the interaction between the currents of the barotropic tide and
bottom topography, which are the regions of the major dissipation of the barotropic
tide energy. He is close to the implementation of his long wish to publish a
monograph on his researches of internal tides. In the end of 2017, he is planning to
submit a manuscript of the book to the Springer publishers. Knowing his careful-
ness and professionalism I think that this monograph would become quite useful to
the oceanographers, especially to those who study waves in the ocean.

Without doubts I agreed to the suggestion of Eugene to consult the analysis of
new oceanographic data in the Southern Ocean and propagation of Antarctic
Bottom Water. Fortunately, my scientific background included the knowledge of
the processes around Antarctica, which I gathered during the Russian Antarctic
expeditions in the 1950–1970s. In 2006, we published a paper together with Eugene
on the spreading of Antarctic Bottom Water in the equatorial Romanche Fracture
Zone. One of the deepest depressions of the Atlantic Ocean exceeding 7400 m is
located in this region. We tested a hypothesis how Antarctic Bottom Water formed
in the Weddell Sea conserves the climatic signal of the surface waters after prop-
agating a distance over 10,000 km. In 1967, during the first cruise of the RV
“Akademik Kurchatov”, I participated in the hydrophysical measurements in the
Romanche Fracture Zone. Almost in 40 years after this cruise, in 2005 in cruise 19
of the R/V “Akademik Ioffe” Eugene carried out similar measurements on a new
level. After we analyzed these observations including the historical data of six other
expeditions, in which the instruments were lowered in the Romanche Fracture Zone
from 1948 to 1972, we found that the climate signal exists in the deep waters as a
positive temperature trend in the thermal structure of Antarctic Bottom Water. The
trend was not high, only a mere thousand fraction of Celsius degree per year.
Certainly, it would be very exciting to attribute the deep water temperature trend to
the recent global climate change. However, currently we do not even try to spec-
ulate on this theme understanding that such an approach needs much more
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observations in the Atlantic Ocean deep. There I just asked myself, who among us
could be able to organize it? I found nobody but Eugene.

In 2010, appeared his book “Abyssal Channels in the Atlantic Ocean: Water
Structure and Flows”. In this research monograph, the authors presented the unique
experimental results of Antarctic Bottom Water transport from the Southern
Hemisphere to the north through a series of deep channels in submarine ridges. The
data collected in many expeditions allowed him to trace the pathway of Antarctic
Bottom Water, from the Antarctic Weddell Sea to the North Atlantic. One can
hardly imagine all the difficulties he had to overtake to organize these expeditions
including finances, logistics, technical, and weather conditions that were on the way
to his goal. For example, the choice of the locations of stations in individual
fractures was sometimes similar to finding a needle in a haystack. Deployments of
moorings in narrow fractures at strictly specified points also required mental and
physical efforts of the scientists and crew. However, everything was done, and the
moorings were recovered. The book on the flows in the abyssal channels for many
years will be a complete description of the flows of the bottom water and Antarctic
influence in these specific regions of the ocean.

No doubt that the success of Eugene’s work on this logistically difficult problem
of Antarctic water spreading was provided by his organizing talent and a unique
ability to find the solution of the problems in any situation, even when other people
could not do this. He always keeps the scientific line formulated in the 19th century
by the first Russian oceanographer admiral S.O. Makarov: “We write what we see;
we do not write what we do not see”. In other words, Eugene in his personal
publications or in the publications with coauthors never allowed presenting the
desired result as the real one. He knows that facts but not fantasies are the scientific
basis. Everything, which is not supported by facts, cannot be trusted.

The time when Eugene entered our oceanographic science became the period of
one of the active and fruitful missions of scientists to study the features of the
World Ocean that demand the multidisciplinary organizing research work. Eugene
has selected professionalism, timeliness, and accuracy as the necessary qualities of
his work. He always concentrates on the main features of research. His work at the
Institute facilitated the appearance of new significant scientific ideas among
the colleagues. Owing to his initiative the modern approaches and technologies of
the scientific research were practically implemented. These qualities of Eugene
were recognized within the Shirshov Institute and well beyond it. For instance, in
2011, he was elected President of the International Association for the Physical
Sciences of the Ocean (IAPSO). We hope that his energy will help the promotion
and progress of the new ideas that will help humanity in the research and under-
standing of the World Ocean.
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Fifty Years of Collaboration with Evgeny
Georgievich Morozov

Boris N. Filyushkin

I met Eugene for the first time in the summer of 1967. He was a student of the
Moscow Institute of Physics and Technology on a marine practice in the Black Sea
(Gelendzhik). We were conducting an experiment on the spatiotemporal variability
of internal waves over the shelf of Blue Bay and in the open sea. Three moorings
with temperature recorders were installed on the shelf. In 1970, he started his work at
the Shirshov Institute of Oceanology. The data collected in 1967 on the shelf became
the basis for his first publication together with his supervisor Yu. A. Ivanov.

It happened that the first acquaintance with internal waves during his marine
practice became his dominating activity for many future years. In 1975, he
defended his Ph.D. Thesis on internal waves. In 1985, he published a book on
internal waves, and in 1989, he defended his doctoral dissertation on internal
waves. In 1995, he published in the Deep-Sea Research Journal his well-known
paper “Semidiurnal internal wave global field”. In this research he used the
available data in many regions of the ocean and a model to show the main role of
submarine ridges in the generation of internal tides in the ocean. He studied the
internal tides in many geographical regions: the Gibraltar, Bab-el-Mandeb, and
Kara Gates straits. In 2008, he began his field studies of internal waves under ice in
the fjords of Spitsbergen.

The next stage of his scientific activity became the research of the bottom
currents in the Atlantic and propagation of Antarctic Bottom Water in the abyssal
channels of the Atlantic. This program started in 2002 and has been continuing until
present. A total of 18 expedition cruises to the North and South Atlantic has been
made since then within this program. The measurements were conducted in the
regions of the abyssal channels: the Vema Channel (31° S), Romanche Fracture
Zone (equator), Vema Fracture Zone (11° N), Kane Gap (9° N), and many others.
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High level of his professionalism and experience as a field oceanographer made
possible to perform unique observations in the deep narrow channels in these
regions. The peculiarity of these experiments is that the temperature, salinity, and
velocity profiles must be measured at depths of 4000–5000 m with an accuracy of
positioning not exceeding 100 m, while the slopes of the channels are very
steep. Sometimes the width of the channel at the bottom was as narrow as 200 m
and the instruments were safely lowered almost to the bottom. The profiles stopped
at a distance of 2–5 m over the seafloor.

He conducted these measurements together with his colleagues from the Institute
of Oceanology and with the scientists from Germany and the Netherlands. His
researches became fundamental in our understanding of Antarctic Bottom Water
spreading in the Atlantic.

It is well known among oceanographers that the personality of a scientist is fully
revealed in long expeditions at sea. We spent almost a year with Eugene in three
long expeditions onboard the research ships in 1970, 1984, and 1989. We became
good friends. Eugene is a very sociable and communicative person. At the same
time, he is a very strict person with respect to himself and those people who work
with him. He showed his professional qualities during the field works in the ocean
on the deck and in the laboratory. He is a good manager of field works and
professional specialist in operation.

His targeted wish to gain the planned result allowed him to make contributions
to the solution of two important oceanographic problems. His authority is known by
many oceanographers around the world.

This note is a contribution of the chronology of his activity in oceanography.
Eugene is full of new plans. He is working to realize them. I am sure that new
interesting studies and publications will appear.

In all his life and scientific activity he was always aimed at the specific result,
which should be gained without any deviations aside.

In conclusion I would like to use the English saying: “I wish to have such a
neighbour!”
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Internal Undular Bores in the Coastal Ocean

Roger Grimshaw and Chunxin Yuan

Variable-Coefficient Korteweg-de Vries Equation

Large amplitude internal wave trains are commonly observed in the coastal ocean,

see the reviews by [9, 10, 15, 19, 20, 25] and the book by [27]. Since these are long

nonlinear waves it is now widely accepted that the basic paradigm for these waves

is based on the Korteweg-de Vries (KdV) equation, first derived in this context by

[2, 3] and subsequently by many others, see the aforementioned references. In the

usual physical variables to describe internal waves in the coastal ocean the KdV

equation is

𝜂t + c𝜂x + 𝜇𝜂𝜂x + 𝜆𝜂xxx = 0 . (1)

Here 𝜂(x, t) is the amplitude of the modal function 𝜙(z), defined by

{
𝜌0(c − u0)2𝜙z

}
z + 𝜌0N2

𝜙 = 0 , for − h < z < 0 , (2)

𝜙 = 0 at z = −h , (c − u0)2𝜙z = g𝜙 at z = 0 . (3)

This also serves to define the phase speed c. Here 𝜌0(z) is the background density

field, stably stratified so that 𝜌N2 = −g𝜌0z > 0, u0(z) is a background horizontal cur-

rent and h is the undisturbed fluid depth. This modal system in general has an infinite

set of solutions, ordered by the phase speeds, so that the lowest (zero) mode is the

barotropic mode with the fastest speed c ≈
√
gh, followed by the first internal mode

with a much slower speed, and so on. The coefficients 𝜇, 𝜆 are given by

I𝜇 = 3
0

∫
−h

𝜌0
(
c − u0

)2
𝜙
3
z dz , (4)
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I𝜆 =
0

∫
−h

𝜌0
(
c − u0

)2
𝜙
2 dz , (5)

I = 2
0

∫
−h

𝜌0
(
c − u0

)
𝜙
2
z dz . (6)

The KdV equation (1) is integrable, and the outcome of a localised initial condition is

a finite set of rank-ordered solitary waves and some small-amplitude dispersing radi-

ation, see [1, 29]. However, here we are concerned with the undular bore solution,

which can be found as the outcome of a step initial condition by using the Whitham

modulation equations, see [18], or more generally is a representation of the devel-

opment of a solitary wave train from a broad initial condition. Such internal undular

bores are also generated by transcritical flow over topography, see [9, 11, 13].

When the depth h, and background current u0, density 𝜌0 vary slowly in the hor-

izontal direction with x, the KdV equation (1) is replaced by a variable-coefficient

KdV (vKdV) equation. first derived in the Boussinesq approximation in the absence

of a background current by [26], and then in the general case by [8], see also [14,

15, 30]. It has the same form as (1) with two extra terms,

𝜂t + c𝜂x +
cQx

2Q
𝜂 + 𝜇𝜂𝜂x + 𝜆𝜂xxx + 𝜎𝜂 = 0 , (7)

Q = c2I , I𝜎 = −

𝜂0

∫
−h

𝜙𝜙zF0zdz , F0 = 𝜌0(u0u0x + w0u0z) + p0x . (8)

Here the modal equation depends also on x parametrically, that is 𝜙 = 𝜙(z ∶ x), c =
c(x), and hence the coefficients 𝜇, 𝜆,Q also depend (slowly) on x. The coefficient Q
ensures conservation of wave action flux Q𝜂2 at the linear long wave order, and 𝜎

arises due to the presence of a body force in the basic horizontal momentum equation,

needed in general whenever the basic density field and basic current vary in the

horizontal direction. In (8) p0 is the basic pressure, such that p0z = −g𝜌0, and w0 is

the basic vertical velocity such that u0x + w0z = 0.

It is convenient to transform this to the “spatial” evolution form, asymptotically

equivalent to (7)

X =
x

∫
x0

dx
c

− t , T =
x

∫
x0

dx
c
, (9)

𝜂T +
QT

2Q
𝜂 + 𝜈𝜂𝜂X + 𝛿𝜂XXX + 𝜎𝜂 = 0 , (10)
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𝜈 = 𝜇

c
, 𝛿 = 𝜆

c3
. (11)

A further simplification is to absorb the factor Q,

U = Q1∕2
𝜂 , UT + 𝜈

Q1∕2UUX + 𝛿UXXX + 𝜎U = 0 . (12)

Next a further transformation yields the canonical form with only one variable coef-

ficient,

U
𝜏
+ 𝛼UUX + UXXX = 0 , (13)

where U = RA , R = exp (−
𝜏

∫
0

𝛽 d𝜏′) ,

𝜏 =
T

∫
0

𝛿 dT , 𝛼 = R𝜈
𝛿Q1∕2 , 𝛽 = 𝜎

𝛿
. (14)

The coefficients R, 𝛼, 𝛽 vary with 𝜏. Equation (13) is the vKdV equation of interest,

especially useful when there is a polarity change, that is the nonlinear coefficient 𝜇

and hence 𝛼 change sign. It has two conservation laws

U
𝜏
+ {𝛼U

2

2
+ UXX}X = 0 , (15)

{U
2

2
}
𝜏
+ {𝛼U

3

3
+ UUXX −

U2
X

2
}X = 0 . (16)

In the conservative case when 𝛽 = 0,R = 1, these represent conservation of mass

and wave action flux respectively.

There is now a considerable literature on the application of the variable-coefficient

KdV equation (7), or the transformed equation (13), to model the propagation of

internal solitary waves propagating over variable topography, see the reviews by [14,

15]. However, observations of oceanic internal solitary waves rarely show instances

of isolated internal solitary waves, which instead usually occur in a wave train resem-

bling an internal undular bore. While it is the case that the leading waves in these

wave trains can each be well approximated as a solitary wave, it is desirable to con-

sider the dynamics of an internal undular bore as a whole, and so take account of pos-

sible interactions between the waves in the wave train. Hence, recently [16] used the

variable-coefficient KdV equation (13) to simulate the behaviour of internal undular

bores propagating over variable topography. The same model was used by [17] to

model tsunami waves propagating up a slope. In both cases a special emphasis was

placed on the front of the undular bore which can each be represented by a simplified

model as a solitary wave train. In this article we review and supplement the results
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obtained by [16] for internal undular bores. In section “Solitary Wave Train” we

present the modulation equations for a solitary wave train, and describe briefly how

these may be used when waves propagate in a region where 𝛼 = 𝛼(𝜏) varies. Then

in section “Numerical Simulations of a Process Model” we discuss how a solitary

wave train behaves when there is a change of polarity, that is, there is a critical point

where 𝛼 changes sign. We conclude in section “Discussion”.

Solitary Wave Train

The equations for the asymptotic description of a solitary wave train were initially

developed by [7]. They can also be obtained from the Whitham equations for a modu-

lated periodic wave train by taking the solitary wave limit, see [5, 16]. That approach

is summarised in the Appendix, and here we just present the outcome.

U = a sech
2(𝛾𝜃;m)} + d , 𝜃 = k(X − V𝜏) , V − 𝛼d = 𝛼a

3
= 4𝛾2k2 , (17)

with three parameters, the amplitude a, the pedestal d and the wavenumber k, to be

determined. The pedestal d satisfies

d
𝜏
+ 𝛼ddX = 0 , (18)

and so can be regarded as a known quantity. The equation for conservation of waves

(30) provides one equation for k

k
𝜏
+ (kV)X = 0 . (19)

and the third equation is (37), that is

{ a
2

k𝛾
}
𝜏
+ V{ a

2

k𝛾
}X + a2

k𝛾
𝛼dX = 0 , (20)

The pair (19, 20) form a nonlinear hyperbolic system for a solitary wave train, and

can be solved explicitly. The wavenumber k can be eliminated from (19) and (20) to

yield

A
𝜏
+ (𝛼d + 𝛼a

3
)AX +A 𝛼dX = 0 , A = {a

3

𝛼
}1∕2 . (21)

This is now an equation for the amplitude a alone, and is readily solved using char-

acteristics. Then, with a, d and hence V also known, the wavenumber k can be found

from (19) which is a linear hyperbolic equation for k.

Formally the modulation equations for a single solitary wave can be found by

considering modulations in 𝜏 alone. Then (18) shows that d is a constant which can

be set to zero without loss of generality. Next, it follows from (19, 21) that k,A are
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constants, and the latter yields the well-known adiabatic expression a3 ∝ 𝛼. How-

ever, this requires taking the limit k → 0 which is inconsistent with the assumption

that the width scale of the wave should be much less than that of the variable medium

defined here by the variation in 𝛼. Instead, as is now well-known, see the reviews by

[10, 14, 15], a multi-scale asymptotic expansion for the solitary wave should be

used, which confirms the adiabatic expression a3 ∝ 𝛼 due to conservation of wave

action flux, but also reveals that the deforming solitary wave is accompanied by a

trailing shelf needed to conserve the total mass. Assuming here that 𝛼 > 0, so that

the solitary wave is one of elevation, the trailing shelf has an amplitude at the soli-

tary wave location proportional to 𝛼
−8∕3

𝛼
𝜏

and hence is an elevation or depression

shelf according as 𝛼 is increasing or decreasing, 𝛼
𝜏
> 0 or 𝛼

𝜏
< 0. An analogous

result holds when 𝛼 < 0. The essential difference between the solitary wave and the

solitary wave train is that in the latter, the mass is represented by the independent

parameter d, whereas the solitary wave has only one parameter, say the amplitude a
whose variation is already determined, while the solitary wave mass is 2a∕𝛾 and is

then not a constant and varies as |𝛼|−1∕3.

Of special interest is the case when there is a change of polarity, that is, there

is a critical point 𝜏 = 𝜏c where 𝛼 changes sign, say from 𝛼 > 0 to 𝛼 < 0, implying

that solitary waves are waves of elevation for 𝜏 < 𝜏c and waves of depression for

𝜏 > 𝜏c. The behaviour of a single solitary wave as it passes through this critical point

is now well understood, see the reviews by [10, 14, 15] and the recent study by

[16]. As the solitary wave approaches the critical point, its amplitude decreases as

𝛼
1∕3

but at the same time the amplitude of the trailing shelf of depression grows as

𝛼
−8∕3

. Close to the critical point, when the solitary wave and the trailing shelf have

comparable amplitudes, the adiabatic behaviour breaks down. The whole structure

passes through the critical point and in 𝜏 > 𝜏c generates a depression rarefaction

wave connected to the original zero level by an undular bore of elevation waves. The

modulation theory for a solitary wave train presented above can be used to describe

both processes before and after the critical point.

When 𝛼 is a constant, taken here as positive without loss of generality, a full rep-

resentation of an undular bore can be found by seeking a similarity solution of the

Whitham modulation equations (30, 31, 32), where the modulus m depends only on

X∕𝛼U0𝜏, see [6, 18, 29] and the review by [4]. This describes an expanding wave

train connecting a zero level at the front where m → 1 to a mean level U0 > 0 at the

rear where m → 0. At the front the leading wave is a solitary wave of amplitude 2U0
and at the rear the waves are linear sinusoidal waves. However, in a variable medium,

when as here 𝛼 = 𝛼(𝜏), although the Whitham modulation equations are again avail-

able, see the Appendix, it would seem that no such simple wave solution is available

to describe the evolution of an undular bore. A recent study by [5] of a water wave

undular bore propagating up a slope (that is 𝛼 > 0 increases) demonstrated that the

deformation at the front of the undular bore is essentially non-adiabatic. Briefly, it

is argued that if the undular bore retains its structure as a single-phase wave train,

then the jump U0 is preserved, and so then the leading solitary wave would have a

constant amplitude 2U0. But this is inconsistent with the result that the leading soli-

tary wave amplitude should behave as 𝛼
1∕3

. The resolution of this inconsistency is
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the formation of a solitary wave train ahead of the undular bore. This solitary wave

train can be described by the reduced set of modulation equations (18, 19, 21), and

there is a region where the rear of the solitary wave train interacts with the undular

bore, forming a two-phase wave interaction. The rear part of the undular bore retains

its shape, where pertinently we note that in the similarity solution for the constant

coefficient case, 𝛼 occurs only in the variable x∕𝛼U0𝜏, implying that the effect of a

variable 𝛼 is in some sense equivalent to adjusting the time scale. This leading soli-

tary wave train can be described by a similarity solution of the modulation equations

(18, 19, 21),

d = 0 , a = 3𝛼1∕3X
𝜒

, Xm(𝜏) < X < XM(𝜏) , 𝜒 =
𝜏

∫
0

𝛼
4∕3(𝜏′) d𝜏′ . (22)

At the head X = XM(𝜏) of the wave train, the amplitude is aM = 3𝛼1∕3XM∕𝜒 , while

at the rear X = Xm(𝜏) > 0 of the wave train, the amplitude is am = 3𝛼1∕3Xm∕𝜒 . The

speed of each solitary wave is V = 𝛼a∕3 (17) which yields the asymptotic position

of each wave as X = C𝜒 where C is a “constant” which depends on the initial posi-

tion of each solitary wave. This must be matched to the following undular bore to

determine XM,m(𝜏), and the details of that are described by [5]. But note that if it

is assumed that the leading wave in the following undular bore has amplitude 2U0
then we may expect that am ≈ 2U0 and aM ≈ 2U0𝛼

1∕3
, assuming that initially 𝛼 = 1.

The dynamics of an undular bore as it passes through a critical point was examined

recently by [16]. Before the critical point, the behaviour of the leading solitary wave

train can again be described by the modulation theory as above, where now 𝛼 > 0
decreases towards zero. The behaviour after the critical point is described below.

Numerical Simulations of a Process Model

Numerical simulation of an internal undular bore propagating up a slope were

reported by [16] using the transformed vKdv equation (13). Here we review and

supplement those results. For the numerical simulation we use a pseudo-spectral

method where the nonlinear term is evaluated in physical space.

We consider a process model to detect interesting dynamics, and choose the coef-

ficient 𝛼 in the transformed equation (13) to model internal waves propagating up a

slope, in two cases, one when the nonlinear coefficient 𝛼 increases, and one when it

decreases with change of sign, causing a polarity change. Note there is no loss of gen-

erality in choosing the initial value of 𝛼 > 0, as otherwise one one can make the trans-

formation U → −U. Thus we set 𝛼 = 𝛼(𝜏) varying monotonically from 𝛼 = 1, 𝜏 = 0
to some constant value 𝛼 = 𝛼a, 𝜏 ≥ 𝜏a. Then there are two cases, either 𝛼a > 1, or

𝛼a < 0 (a change of polarity). Specifically the coefficient 𝛼 is given by
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𝛼 = 1 + (𝛼a − 1) tanh (K𝜏) , (23)

where K, 𝜏a,K𝜏a ≥ 1 are chosen so that 𝛼 varies smoothly and slowly from 1 at 𝜏 = 0
to 𝛼a at 𝜏 = 𝜏a. There are two cases, either 𝛼a > 1 for propagation up a slope, or

𝛼a < 0 for propagation up a slope and through a critical point of polarity change.

The initial condition U(X, 0) = Uic(X) is either (1) a KdV solitary wave or (2) a

modulated cnoidal wave representation of an undular bore in the constant coefficient

KdV equation evolving from a step of height U0 > 0 at time 𝜏 = −𝜏1, as developed

by [6, 18, 29] and subsequently used by many authors.

(1) ∶ Uic(X) = U0 sech
2(𝜅X) , U0 = 12𝜅2

, (24)

(2) ∶ Uic(X) = U0 ENV(X){2mcn
2(𝜅(X − V𝜏1);m) + 1 − m} , (25)

−U0𝜏1 < X <
2U0𝜏1
3

, V =
U0
3
{1 + m} , U0 = 6𝜅2k2 ,

X =
U0𝜏1
3

{1 + m − 2m(1 − m)K(m)
E(m) − (1 − m)K(m)

} .

In case (1) the evolving solitary wave has a time scale of (𝜅V)−1 where the speed

V = 4𝜅2
, and so to be slowly varying we choose K ≪ 𝜅V = 4𝜅3

. In case (2) the

initial undular bore occupies a domain of length Lub = 5U0𝜏1∕3 and we choose 𝜏1 so

that Lub ≫ 1. The envelope ENV(X) is chosen to be very close to a box of height 1,

and of very long length L > Lub, occupying a domain to contain the initial undular

bore. The front end of the box is placed precisely at the front end of the undular bore

X = 2U0𝜏1∕3, but the rear end is chosen far away from the rear end of the bore. As it

evolves in the constant coefficient KdV equation (that is 𝛼 = 1) the leading wave is

a solitary wave of amplitude 2U0 and so we again choose K so that K ≪ 4𝜅3
where

here U0 = 6𝜅2k2. Note that the wavelength 2𝜋∕k is a free parameter.

A numerical simulation of (13) using the solitary wave initial condition for

the case when 𝛼 increases is shown in Fig. 1. As expected, this exhibits adiabatic

behaviour with the amplitude increasing from the initial value U0 = 4 to U0𝛼
−1∕3
a =

4.58 at 𝜏 = 𝜏a. At same time a trailing shelf of very small amplitude can be seen.

Then in Fig. 2 we show a case with the same solitary wave initial condition, but with

a polarity change in which 𝛼 varies from 𝛼 = 1 to 𝛼 = −1. As the solitary wave of

elevation approaches the critical point, its amplitude decreases as U = U0𝛼
1∕3

but

at the same time the amplitude of the trailing shelf of depression grows as 𝛼
−8∕3

.

Close to the critical point, when the solitary wave and the trailing shelf have com-

parable amplitudes, the adiabatic behaviour breaks down, and the whole structure

passes through the critical point into the region 𝜏 > 𝜏c, generating a depression rar-

efaction wave connected to the original zero level by an undular bore of elevation

waves. The waves in the undular bore section have a shorter length scale than the rar-

efaction wave, giving the appearance of a solitary wave train of depression solitary

waves riding on an elevation pedestal. These solitary waves ride down the pedestal,
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Fig. 1 A simulation of the

vKdV equation (13) when

𝛼(𝜏) varies from 1 to 1.5 as

specified by (23) for the

solitary wave initial

condition (24) with U0 = 4
and K = 0.03, 𝜏a = 100
(K𝜏a = 3); the top panel is at

𝛼 = 1, the middle panel is at

𝛼 = 1.25 and the bottom

panel is at 𝛼 = 1.5
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and at 𝜏 = 𝜏a the leading solitary wave has reached the zero level at the head of

the rarefaction wave. In this region where 𝛼 < 0, the solitary wave train equations

(18, 21) have a similarity solution

d =
X − X0

𝜂
, 𝜂 =

𝜏

∫
𝜏c

𝛼(𝜏′) d𝜏′ , X < X0 , (26)

A = −1
𝜂
{
3(X − X0)

𝜂𝜉
}3∕2 , 𝜉 =

𝜂

∫
−∞

|𝛼(𝜂′)|1∕3 d𝜂′

|𝜂′|5∕3
, A = {a

3

𝛼
}1∕2 . (27)

Note that here 𝛼 < 0 and so 𝜂 < 0, ensuring that the rarefaction wave d > 0 in

X < X0. The determination of X0 requires a detailed matching with the solution at

the critical point, beyond the scope of this present review. The rarefaction wave

(26) can only extend to a point X − X0 = −Lr(𝜂) where Lr(𝜂) is likewise undeter-

mined. But the mass of the rarefaction wave is then −L2r (𝜂)∕2𝜂 and this can be

approximately equated to the initial solitary wave mass 2U0∕𝜅 = 2(12U0)1∕2 (24),

thus giving an approximate expression for Lr(𝜂). The expression (27) for the soli-

tary wave amplitude a holds on the domain −Lr(𝜂) < X − X0 < −Ls(𝜂) where the

upper bound Ls(𝜂) determines the amplitude of the leading solitary wave, that is

as = −3|𝛼|1∕3Ls∕|𝜂|5∕3𝜉. The values of as,Ls are undetermined and requires match-

ing with the solution at the critical point, beyond the scope of this review article.

However, an approximate estimate can be based on the assumption that since the

emerging solitary wave train is the leading edge of an undular bore resolving the

jump at the rear of the rarefaction wave, and then as = 2Lr∕𝜂, where in turn Lr is esti-

mated from conservation of mass, as above. Note that when 𝛼 < 0 is a constant, then

as 𝜏 → ∞, 𝜂 ∼ 𝛼𝜏, 𝜉 ∼ 3∕2|𝛼|1∕3𝜏2∕3 and then a ∼ −2(X − X0)∕𝛼𝜏, whose envelope

is a rarefaction wave. The outcome from the numerical simulation in Fig. 2 shows

qualitative agreement with all the above features. For the parameters in this simu-

lation U0 = 4, and so the initial mass is 13.86, which yields a value Lr ≈ 5.26|𝜂1∕2|
and then as ≈ 10.52|𝜂|−1∕2; at 𝜏 = 𝜏a = 100, 𝜂 = −62 (26), and then as ≈ 1.34, in

good agreement with the numerical simulation.

Next we examine how an undular bore behaves when propagating on a slope. As

for the case of a solitary wave, there are two main situations, one where the nonlinear

coefficient 𝛼 increases, and the other where 𝛼 decreases and changes sign at a critical

point. In the first case, which is similar to the study by [5] of a surface wave train prop-

agating up a slope, we expect from the discussion in section “Solitary Wave Train”

that the leading waves in the undular bore will form a solitary wave train ahead of the

undular bore, with amplitudes deforming adiabatically as 𝛼
1∕3

. A typical numerical

simulation of (13) using the undular bore initial condition (25) is shown in Fig. 3.

First, note that the effect of the front end of the enclosing envelope ENV(X), which

of numerical necessity is a smoothed out version of a rapid change, is to truncate

the amplitudes of the leading waves in the initial undular bore. Without the envelope
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Fig. 2 A simulation of the

vKdV equation (13) when

𝛼(𝜏) varies from 1 to −1 as

specified by (23) for the

solitary wave initial

condition (24) with U0 = 4
and K = 0.03, 𝜏a = 100
(K𝜏a = 3); the top panel is at

𝛼 = 1, the middle panel is at

𝛼 = 0 and the bottom panel

is at 𝛼 = −1
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Fig. 3 A simulation of the

vKdV equation (13) when

𝛼(𝜏) varies from 1 to 1.5 as

specified by (23) for the

undular bore initial condition

(25) with U0 = 6, 𝜏1 = 5 and

K = 0.3, 𝜏a = 10 (K𝜏a = 3);

the top panel is at 𝛼 = 1, the

middle panel is at 𝛼 = 1.25
and the bottom panel is at

𝛼 = 1.5
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the leading wave would have an amplitude of 2U0 = 12 in this simulation, whereas

we see that instead the largest wave in the undular bore has an amplitude of about

10. Nevertheless, when taking this complication onto account, we see the formation

ahead of the undular bore of two solitary wave trains, and each has the expected

linear profile (22). At the end of the simulation at 𝜏− = 𝜏a the leading wave has

an amplitude about 12, consistent with the asymptotic estimate 10𝛼1∕3
a = 11.45. We

interpret the presence of two wave solitary wave trains as due to the truncation at

the initial front causing some ambiguity about the which is the leading wave. But

we note that the leading wave in the second solitary wave train has an amplitude of

about 11, consistent with an asymptotic estimate of 9.5𝛼a1∕3 where we see that 9.5
is the amplitude of the second highest wave in the initial undular bore.

In the second case, when 𝛼 decreases to zero and changes sign after a critical

point, we show a typical numerical simulation of (13) with the initial condition (25)

in Fig. 4. As for the previous case the truncation at the head of the undular bore

does have an effect. Nevertheless, up to the critical point (middle panel) we see sim-

ilar behaviour to that shown in Fig. 3 except that now the amplitudes in the emerg-

ing solitary wave trains decrease. After the critical point, the leading wave in these

emerging solitary wave trains has deformed in a manner similar to that described

above in Fig. 2 for a single solitary wave passing through a critical point. We can

clearly see the formation of an elevation rarefaction wave, and some still quite small

solitary waves of depression riding on this pedestal. On the other hand the rear of the

undular bore essentially retains its shape, and shows little evidence of any change in

amplitude. Essentially it is behaving as a linear wave. A more detailed analysis of

this and the previous case in Fig. 3 can be found in [16]. Hence the essential dynam-

ics as described above on section “Numerical Simulations of a Process Model” is

not changed when expressed in terms of the original physical variables, although in

particular the amplitude magnitudes may be altered significantly.

Discussion

Our purpose in this brief review article is to show how the variable-coefficient

Korteweg-de Vries equation (7) can be used to model the propagation of internal

undular bores over the continental slope. As we noted in the Introduction there have

been many studies on the application of the variable-coefficient KdV equation (7),

or the transformed equation (13). to model the propagation of internal solitary waves

propagating over variable topography, see the reviews by [14, 15]. However, since

observations of oceanic internal solitary waves often show that they occur as part of

a wave train, it is desirable to consider the dynamics of an internal undular bore as a

whole. This was undertaken recently by [16] who used the variable-coefficient KdV

equation (13) to simulate the behaviour of internal undular bores propagating over

variable topography, and in this article we have reviewed this application in a briefer

and less detailed manner.
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Fig. 4 A simulation of the

vKdV equation (13) when

𝛼(𝜏) varies from 1 to −1 as

specified by (23) for the

undular bore initial condition

(25) with U0 = 6, 𝜏1 = 5 and

K = 0.3, 𝜏a = 10 (K𝜏a = 3);

the top panel is at 𝛼 = 1, the

middle panel is at 𝛼 = 0 and

the bottom panel is at 𝛼 = −1
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It is important to note that the theory and modelling is developed for the trans-

formed equation (13) which has only one variable coefficient, namely 𝛼, rather than

for the original equation (7) which has five variable coefficients, namely c,Q, 𝜇.𝜆, 𝜎.

The back transformation from (13) to (7) involves only amplitude factors and chang-

ing the time and space scales, see the sequence of equations (9, 10, 11, 12). Hence

the essential dynamics is not changed when expressed in the physical variables.

Although, importantly the amplitudes may be significantly altered during the back

transformation, the polarity of the waves is not changed. We have focussed on two

principal scenarios. In the first there is no polarity change, that is, the coefficient 𝛼

does not change sign. Then as the undular bore propagates in the variable medium,

the leading waves separate and form a solitary wave train, with subsequent adia-

batic behaviour. In the second case there is a polarity change, that is the coefficient

𝛼 changes at a critical point. The passage of the undular bore through the critical

point does involve some non-adiabatic behaviour, which leads after the critical point

to the formation of a rarefaction wave of the same polarity as the original waves in

the undular bore, and the formation of a solitary wave train of the opposite polarity

riding on the pedestal formed by the rarefaction wave. Application of simulations of

the transformed equation (13) to actual oceanic situations seem to be quite rare, but

we note the recent study by [23].

Acknowledgements RG was supported by the Leverhulme Trust through the award of a Lever-

hulme Emeritus Fellowship.

Appendix

Here we summarise the derivation of the equations (18, 19, 20) presented in [16].

When the coefficient 𝛼 in (12) is a constant the KdV equation supports a periodic

travelling wave, U(X − V𝜏), the well-known cnoidal wave,

U = a {b(m) + cn
2(𝛾𝜃;m)} + d , 𝜃 = k(X − V𝜏) , (28)

V − 𝛼d = 𝛼a
3

{
2 − m
m

− 3E(m)
mK(m)

}
= 4𝛾2k2

{
2 − m − 3E(m)

K(m)

}
. (29)

Here cn(x;m) is the Jacobian elliptic function of modulus m, 0 < m < 1, and K(m)
and E(m) are the elliptic integrals of the first and second kind, The expression (28)

has period 2𝜋 in 𝜃 so that 𝛾 = K(m)∕𝜋, while the spatial period is 2𝜋∕k. The (trough-

to-crest) amplitude is a and the mean value over one period is d. It is a three-

parameter family with parameters k,m, d say. As the modulus m → 1, this becomes

a solitary wave, since then b → 0 and cn(x) → sech(x), while 𝛾 → ∞, k → 0 with

𝛾k = Γ fixed. As m → 0, b → −1∕2, 𝛾 → 1∕2, cn(x) → cos (x), and it reduces to a

sinusoidal wave (a∕2) cos (𝜃) of small amplitude a ∼ m and wavenumber k.
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The Whitham modulation theory allows this cnoidal wave to vary slowly with

𝜏,X, that is the wavenumber k, modulus m and mean level d vary slowly with

𝜏,X. The Whitham modulation equations describing this variation can be obtained

by averaging conservation laws, the original Whitham method, see [28, 29] or by

exploiting the integrability of the constant-coefficient KdV equation, see [21] for

instance. Because here we are concerned with the case when 𝛼 = 𝛼(𝜏) varies slowly

with 𝜏, and so the variable-coefficient KdV equation (13) is not integrable, we will

use the original Whitham method, readily adapted to this present case. A similar

strategy was used by [24] for a frictionally perturbed KdV equation. An alternative

method developed by [22] for a perturbed KdV equation is not available here because

to use it one must make a change of variable in (13)Ũ = 𝛼U to generate a KdV equa-

tion forŨ with a perturbation term of the form 𝛼
𝜏
Ũ∕𝛼. But as one of our concerns is

with the situation when 𝛼 passes through zero, this approach cannot be used here.

As three modulation equations are needed, we supplement (15, 16) with the equa-

tion for conservation of waves,

k
𝜏
+ (kV)X = 0 . (30)

The remaining two modulation equations are obtained by inserting the cnoidal wave

solution into the conservation laws (15, 16) and averaging over the phase 𝜃. The

outcomes are

d
𝜏
+ 𝛼MX = 0 , M = <

U2

2
> , (31)

M
𝜏
+ PX = 0 , P = <

𝛼U3

3
−

3U2
X

2
> , (32)

where the <⋯> denotes a 2𝜋-average over 𝜃. The expression M is given by

M = d2
2

+ a2
2
{C4 − b2} ,

C4 =
1

3m2K(m)
{3m2K(m) − 5mK(m) + 4mE(m) + 2K(m) − 2E(m)} , (33)

while that for P is given by

P = 𝛼{−2d3
3

+ 2dM + a3{−2b3
3

+ (1 − m)b
2m

+ (b + 1 − 2m
2m

)C4 +
5
6
C6} ,

C6 =
1

15m3K(m)
{15m3K(m) − 34m2K(m) + 23m2E(m)

+27mK(m) − 23mE(m) − 8K(m) + 8E(m)} . (34)
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Here the notation C4,C6 denote <cn4>,<cn6> respectively, and like b = −C2 =
−<cn2> depend on the modulus m only.

To obtain the modulation equations for a solitary wave train, we take the limit

m → 1 and then b ∼ −1∕K(m), C4 ∼ 2∕3K(m), and C6 ∼ 8∕15K(m). To leading

order M ∼ d2∕2 and P ∼ 𝛼d3∕3 and then both equations (31, 32) reduce to the same

equation for d alone,

d
𝜏
+ 𝛼ddX = 0 , (35)

and so d can be regarded as a known quantity. At the same time, the cnoidal wave

expression (28) reduces to

U = a sech
2(𝛾𝜃;m)} + d , 𝜃 = k(X − V𝜏) , V − 𝛼d = 𝛼a

3
= 12𝛾2k2 , (36)

with two parameters still to be determined. The equation for conservation of waves

(30) provides one equation for k and the second equation is

{ a
2

k𝛾
}
𝜏
+ V{ a

2

k𝛾
}X + a2

k𝛾
𝛼dX = 0 , (37)

This can be obtained by a more careful consideration of the limit m → 1 in the mod-

ulation equations (31, 32) by retaining the terms in 1∕K(m), or more directly by

averaging the wave action conservation law (16) directly for a solitary wave, see [7]

and the discussion in [5].
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Calculating FRAM’s Dead Water

John Grue

Dedicated to Eugene G. Morozov on his 70th Birthday

The internal wave (dead water) resistance on the Polar ship FRAM is obtained by

two methods. The first is empirical, based on the original observations (Nansen,

F.: Farthest North, Westminster: Archibald Constable and Company, 2 Whitehall

Gardens, 1897. Vol. 1). The second is a strongly nonlinear interfacial method in

three dimensions. The intersection between the empirical and theoretical resistances

determines accurately the ship speed which is investigated varying the depth of the

pycnocline, a quantity that was not measured by Nansen. A reduction to a fifth of

the usual speed of the FRAM because of the dead water, as observed by Nansen,

corresponds to a mid-depth of the pycnocline of slightly less than 4 m while FRAM’s

draught was 5 m. The wave wake at Froude number slightly above 0.5 is calculated

by the nonlinear method. The linear ship wake and dead water resistance are found

to be invalid.

Introduction

This paper concerns the dead water problem—the drag force due to the internal wave

wake of a ship moving along the surface of a stratified fluid. The body may also be

submerged. The phenomenon was first described by Nansen [1] during the Polar

Expedition in 1893-96. The observations were later presented with more details by
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Ekman [2]. Our purpose is to calculate as exactly as possible the internal wave (dead

water) resistance, the wave wake and speed of the FRAM, for the conditions in the

field. The computations illustrate and enhance the accuracy of the observations.

We first derive from the empirical descriptions of Nansen [1] and Ekman [2] the

dead water resistance on FRAM. Then we compute by a strongly nonlinear inter-

facial model the same resistance on a model vessel of FRAM’s dimensions. The

intersection between the empirical and computed resistance curves provides a rather

accurate estimate of the ship speed. This is then studied as function of the depth of the

pycnocline, a quantity that was not measured when the phenomenon was observed.

The wave wake at the small range of ship speeds is evaluated.

Ship internal wave wakes have commonly been analysed by linear theory assum-

ing a source, pressure or thin-ship representation [3–6]. The dead water resistance

due to the internal wave wake on a semi-submerged slender prolate spheroid was

calculated in the linear regime comparing to experiments [7, 8]. Nonlinear mod-

els of the dead water problem have been requested because of the poor comparison

between field measurements and linear theory [9]. The same lack was expressed in

relation to two-dimensional model tank experiments [10].

Strongly nonlinear analysis and calculations have recently been developed for the

dead water problem by Grue [11] and Grue et al. [12]. The main point is that the

internal wave wake becomes rather prominent when the ship draught, here denoted

by b0, is comparable to the mid-depth of the pycnocline, here denoted by h0, i.e.

b0∕h0 ∼ 1. In the subcritical range, the nonlinear dead water resistance deviates from

the linear theory by a large amount, when the Froude number Fr defined in (2) is less

than 0.85. The differences are essential also for 0.85 < Fr < 0.95. They are found to

be minor at the critical speed. However, at Fr = 1 the nonlinear and linear wave fields

differ fundamentally [11]. At large supercritical speeds there are essential differences

between nonlinear and linear representation of the wave wake and the dead water

resistance, where the nonlinear calculations for a large cargo ship cruising along

a stratified subarctic fjord compared very well to a set of field observations, while

the linear predictions were inferior [12]. Recent three-dimensional experiments with

a bluff body in a moderately wide tank support the nonlinear calculations of the

colossal internal wave resistance at the small Froude numbers [13].

The present nonlinear calculations very well represent the wave wake and internal

wave resistance at the very small subcritical Froude numbers in question. The linear

calculations exhibit rather the contrary where an observed asymmetry of the interfa-

cial elevation at the ship is not found. Further, the linear wave wake has a vanishingly

small amplitude. The dead water resistance is almost zero.

The paper is organised as follows: section “Nansen’s Observations of the Dead

Water” describes Nansen’s observations of the dead water. The dead water resis-

tance is calculated from the observations. The nonlinear interfacial method is out-

lined in section “Nonlinear Interfacial Model”, and the internal wave resistance force

obtained in section “Dead Water Resistance”. The intersection between the empiri-

cal and computed resistance as function of the Froude number is then discussed. This
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provides a rather accurate estimate of the ship speed in the observations. The wave

wake at the small actual range of ship speeds is evaluated. Section “Conclusion”

provides a conclusion.

Nansen’s Observations of the Dead Water

The nonlinear calculations in section “Nonlinear Interfacial Model” and section

“Dead Water Resistance” are directly fitted to the original observations made dur-

ing the FRAM expedition while passing north of Sibiria. The observations of the

dead water were described in Nansen [1, pp. 172–177]. Regarding the wave wake as

observed by the view of the ocean surface, Nansen noted:

Dead water manifests itself in the form of larger or smaller ripples or waves stretching across

the wake, the one behind the other, arising sometimes as far forward as almost amidships.

The dead water wave wake corresponding to the observations is computed and visu-

alised in Fig. 5 below. Regarding the speed of the FRAM, Nansen noted:

Our speed was reduced to about a fifth part of what it would otherwise have been.

The descriptions in Ekman [2, pp. 9–11] provide more details and corrections of

the original observations. The observations given in the two publications are sum-

marised in Table 1.

The most important among the observations include:

1. The engine was working at full pressure without and with dead water;

2. The speed reduction to a fifth part;

3. The speed of the FRAM without dead water, of 4.5 or 5 knots;

4. Salt water at the level of the bottom cock, at 4 m depth.

The informations 1., 2., 3. are used to calculate, from the observational data, the

dead water resistance on Fram, see section “Calculating the Dead Water Resistance

from the Observations”. These calculations are cross-compared to the nonlinear

interfacial calculations of the deadwater resistance on a model of FRAM, see section

“Calculations”. The actual speed the FRAM had in the observations is subsequently

calculated for comparison to the observational data.

The information 4. is used as an estimate of the mid-depth of the pycnocline in

the observations. This depth is also used for the interface at rest in the interfacial

model, where the upper layer depth is put to h0 = 4 m. This enables an estimate of

the internal wave reference speed (layer depths and densities, see Fig. 2):

c0 =
( g′h0
𝜌0∕𝜌1 + h0∕h1

)1∕2
≃ 1.02ms

−1
, (1)

where the densities corresponding to the field observations are 𝜌0 = 1.0 kg dm
−3

and

𝜌1 = 1.028 kg dm
−3

, g′ = g𝛥𝜌∕𝜌1, and g the acceleration of gravity. For comparison,
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Table 1 Observations in Nansen [1, pp. 172–177] and Ekman [2, pp. 9–11]

Nansen [1] Ekman [2]

Position Open water off Taimur Island The sound between the isle of

Taimur and Almqvist Islands

Speed reduction A fifth part Same (Ekman p. 11)

Speed in dead water 1.5 or 1 knot (Ekman p. 10)
a

Speed without dead water 4.5 knots or perhaps 5 knots

(Ekman p. 10)
a

Speed in dead water 1 knot (Ekman p. 11)

Top layer Drinking water Fresh (drinking water)

Fresh water layer thickness No measurement

Level of bottom cock in engine

room

4 m
b,c

Water quality at the at bottom

cock

Far too salt to be used in the

boiler

Perfect salt water

Ocean water, density 1.03 kg dm
−3

(Ekman p. 43)
d

a
The engine was working at full pressure without and in dead water.

b
The ship was in motion, thus the pycnocline at the rear of the ship was uplifted.

c
The draught of FRAM was 5 m or more at that position.

d
In the present calculations we use the more refined value of 1.028 kg/dm

3
of the density of the

ocean water

an upper layer depth of h0 = 5m gives a reference speed of c0 ≃ 1.14ms
−1

. An upper

layer depth of h0 = 3 m gives a reference speed of c0 ≃ 0.88 ms
−1

. In all calculations

the layer depth ratio is put to h0∕h1 = 1∕18. Equation (1) is used to define the Froude

number by (U the ship speed)

Fr = U∕c0. (2)

Calculating the Dead Water Resistance from the Observations

The mean work (W) of FRAM’s engine balancing the combined loss from the fric-

tional and dead water drag is mathematised by Newman [14, p. 28]:

W = DU = 1
2
𝜌0U3

1SCF1
= 1

2
𝜌0U3

2S(CF2
+ Cdw), (3)

where D denotes the total drag force without and with the effect of the dead water, U1
is the speed of the FRAM without dead water, U2 the speed of the FRAM in dead

water, CF1
the frictional resistance coefficient at the speed U1, CF2

the frictional

resistance coefficient at the speed U2, Cdw the dead water resistance coefficient at

the speed U2, S the wetted surface area of the ship, and 𝜌0 the water density of the

upper layer. Obtaining the drag force by D = 1
2
𝜌U2(CF + C

ship waves
) is a classical
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Table 2 Speed U of FRAM, Reynolds number Re = Ul0∕𝜈, frictional resistance coefficient CF
obtained by the I.T.T.C. and A.T.T.C. lines

U Re CF (I.T.T.C.) CF (A.T.T.C.)

5 knots 4.2 × 107 0.237 × 10−2 0.236 × 10−2

1 knots 0.84 × 107 0.309 × 10−2 0.302 × 10−2

convention. The balance (3) is obtained since the engine of FRAM was working at

full speed, without and with the dead water. The dead water resistance coefficient

may be obtained by

Cdw = (U1∕U2)3 CF1
− CF2

, (4)

expressing Cdw by CF1
times the inverse speed reduction ratio cubed minus CF2

.

The frictional resistance coefficients CF1,2
are obtained from the I.T.T.C. (Interna-

tional Towing Tank Conference) and A.T.T.C. (American Towing Tank Conference)

empirical curves [14, Fig. 2.12]. The I.T.T.C. line is given by CF = 0.075∕(log10 Re−
2)2 and the A.T.T.C. line by 0.242∕

√
CF = log10(Re × CF). Both curves depend on

the Reynolds number Re = Ul0∕𝜈, where U is the ship speed, l0 = 30 m the ship

length of FRAM and 𝜈 = 1.79 ⋅ 10−6 m
2
s
−1

the kinematic viscosity of the water at

0
◦
C. Values of Re and CF for the actual ship speeds are given in Table 2 where the

average values of the I.T.T.C. and A.T.T.C. lines are used in the calculations.

0.5 0.52 0.54 0.56 0.58 0.6
0

0.05

0.1

0.15

0.2

Cdw

(b0/h0)2

U2/c0 = Fr

U1 = 5 knots

U1 = 4.5 knots

b0
h0

= 5
4

b0
h0

= 1

Fig. 1 Dead water resistance coefficient Cdw∕(b0∕h0)2 vs. U2∕c0 = Fr. Equation (4) with U1 = 5
knots (dotted line) and U1 = 4.5 knots (dash-dotted line). Nonlinear interfacial calculations with

b0∕h0 = 1 (∙ with solid line) and b0∕h0 = 5∕4 (∇ with solid line)
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Figure 1 plots the resistance coefficient (4) as function of the speed U2 in the dead

water, for the two different ship speeds U1 without dead water, of 5 knots or 4.5 knots,

corresponding to the range given in Ekman [2]. The dead water resistance coefficient

is divided by the ratio between the ship draught and upper layer depth squared, i.e.

(b0∕h0)2. While the draught of the FRAM was b0 = 5 m, the mid depth of the

pycnocline was most possibly located at h0 = 4 m depth (or somewhat shallower).

In the calculations below we find it convenient to calculate the dead water resistance

coefficient divided by (b0∕h0)2 where the nonlinear interfacial calculations in section

“Nonlinear Interfacial Model” and section “Dead Water Resistance” are obtained

for the range 0.8 ≤ b0∕h1 ≤ 1 of the nondimensional draught and where values for

the actual draught of b0∕h0 = 5∕4 are obtained by extrapolation. The level of the

pycnocline is further elaborated on in section “Upper Layer Depth. Draught of Ship

Model” below.

Nonlinear Interfacial Model

The interaction between the ship moving at forward speed U and the stratified sea is

here modelled assuming a two-layer fluid, with the pycnocline replaced by an inter-

face. This is a good approximation when the internal wavelength is great compared

to the pycnocline thickness [15]. The two-layer model favourably compares with a

three-layer model regarding the wave speeds and wave patterns in the dead water

problem [12]. The Froude number of the surface waves based on the ship length, of

U∕
√

gl0 ≪ 1, justifies the rigid lid condition at the upper boundary of the fluid layer.

A definition sketch is found in Fig. 2. Let 𝐱 = (x1, x2) denote horizontal coordi-

nates in the plane that coincides with the interface at rest, y the vertical coordinate

and t time. Following Grue [11] the nonlinear interfacial model asssumes an upper

layer of density 𝜌0, thickness h0 at rest and is referred to as fluid 0. Below is a lower

fluid 1 of density 𝜌1 and depth h1. Incompressible and irrotational motion in each of

the layers are assumed. The motion is governed by the Laplacian potentials 𝜙0 and

𝜙1 in the two layers, where index 0 refers to layer 0 and index 1 to layer 1.

ρ0, h0

ρ1, h1

→ x1
↑
yb0

−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−

Fig. 2 Two-layer model. Ship geometry of draught b0 in the upper layer. Layer depths at rest h0
(upper) and h1 (lower). Corresponding densities 𝜌0 and 𝜌1
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The kinematic boundary condition at the ship, at position y = h0+𝛽(𝐱, t), is given

by 𝜕𝛽∕𝜕t + WF = 0, where F denotes the upper boundary of the upper fluid 0. The

shape 𝛽(𝐱, t) of the vessel is defined in (18) below. The normal velocity WF = 𝐔⋅∇H𝛽

is connected to the fluid motion by

WF =
𝜕𝜙0
𝜕n

√
1 + |∇H𝛽|2 = −

𝜕𝜙0
𝜕y

+ ∇H𝛽 ⋅ ∇H𝜙0 at y = h0 + 𝛽. (5)

Here ∇H = (𝜕∕𝜕x1, 𝜕∕𝜕x2) denotes horizontal gradient. The normal vector points

into fluid 0. The potential evaluated at the position of the ship hull is introduced by

𝜙0F(𝐱, t) = 𝜙(𝐱, y = h0 + 𝛽(𝐱, t), t).
Let the interface be denoted by I and its motion described by the elevation

y = 𝜂(x1, x2, t). Values of the potentials along I are introduced by 𝜙0I(𝐱, t) =
𝜙0(𝐱, y = 𝜂, t) and 𝜙1I(𝐱, t) = 𝜙1(𝐱, y = 𝜂, t) at I. Scaled normal velocities along

I are introduced by

WI =
𝜕𝜙0
𝜕n

√
1 + |∇H𝜂|2 and VI =

𝜕𝜙1
𝜕n

√
1 + |∇H𝜂|2 at I, (6)

for the upper and lower fluid, respectively, where n points into the upper fluid 0.

Solution of the Laplace Equation

Following Grue [11] the solution of the Laplacian potentials 𝜙0 and 𝜙1 is expressed

by a set of integral equations. The velocities WI , VI along I and potential 𝜙0F along

F are obtained using the method of successive approximations, where WI = W (1)
I +

W (2)
I +W (3)

I + ..., VI = V (1)
I +V (2)

I +V (3)
I + ..., 𝜙0F = 𝜙

(1)
0F +𝜙

(2)
0F +𝜙

(3)
0F + .... The leading,

linear approximation of the set of equations is obtained by the triple (W (1)
I , V (1)

I ,

𝜙

(1)
0F). The quadratic approximation, obtained by (W (1)

I +W (2)
I ,V (1)

I +V (2)
I , 𝜙

(1)
0F +𝜙

(2)
0F),

includes the leading coupling between the variables 𝜙0 and 𝜕𝜙0∕𝜕n, and 𝜙1 and

𝜕𝜙1∕𝜕n, as well as the excursions 𝜂 along I and 𝛽 along F, where 𝛽 is prescribed.

The cubic approximation is obtained similarly.

The quadratic and cubic contributions have been compared to reference solutions

in the two-dimensional case. The comparison documents that the expansions con-

verge very rapidly. Thus, for 𝜂∕h0 ∼ 1, |W (3)
I |∕|W (1)

I +W (2)
I +W (3)

I | ≃ |W (3)
I |∕|WI| ≪

1, |V (3)
I |∕|V (1)

I + V (2)
I + V (3)

I | ≃ |V (3)
I |∕|VI| ≪ 1. This means that W (1)

I + W (2)
I and

V (1)
I + V (2)

I represent the full nonlinearity in the calculations for elevations up to

𝜂∕h0 ∼ 1.

The linear and quadratic contributions are obtained by use of Fourier transform

[11]:
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 (W (1)
I ) = −kT0 (𝜙0I) −

 (WF)
C0

, (7)

 (W (2)
I ) = kT0 (𝜂W (1)

I ) − i𝐤 ⋅  (𝜂∇H𝜙0I) +
i𝐤 ⋅  (𝛽∇H𝜙0F)

C0
, (8)

 (V (1)
I ) = kT1 (𝜙1I), (9)

 (V (2)
I ) = −kT1(𝜂V (1)

I ) − i𝐤 ⋅  (𝜂∇H𝜙1I), (10)

 (𝜙(1)
0F) =

 (𝜙0I)
C0

−
T0  (WF)

k
, (11)

 (𝜙(2)
0F) = −

 (𝜂W (1)
I )

C0
+

T0 i𝐤
k

⋅  (𝛽∇H𝜙0F) −  (𝛽WF). (12)

Here,  denotes Fourier transform, −1
inverse transform, 𝐤 = (k1, k2) wavenumber

vector in Fourier space and k = |𝐤|. Further, T0 = tanh(kh0), T1 = tanh(kh1) and

C0 = cosh(kh0). In (8) and (12) 𝜙0F = 𝜙

(1)
0F + 𝜙

(2)
0F .

Time-Integration

The interfacial motion is expressed by the difference and sum potentials along the

interface:

𝛹 (𝐱, t) = 𝜙1I(𝐱, t) − 𝜇𝜙0I(𝐱, t), Φ(𝐱, t) = 𝜙1I(𝐱, t) + 𝜙0I(𝐱, t), at I, (13)

where 𝜇 = 𝜌0∕𝜌1 denotes the density ratio. Note that the jump condition in the

former of the equations in (13) accounts for interactions between the density jump

and ambient pressure fields. The interfacial elevation and jump in potential along I
are integrated forward in time using the kinematic and dynamic boundary conditions

at the interface, giving

𝜂t = VI = WI , 𝛹t + g′𝜂 = 2, at I. (14)

The r.h.s. of the latter equation in (14) is:

2 = −
|∇H𝜙1I|2 − 𝜇|∇H𝜙0I|2 − (1 − 𝜇)W2

I

2 + 2|∇H𝜂|2

−
−2WI∇H𝜂 ⋅ ∇H(𝜙1I − 𝜇𝜙0I) + |∇H𝜂 × ∇H𝜙1I|2 − 𝜇|∇H𝜂 × ∇H𝜙0I|2

2 + 2|∇H𝜂|2
, (15)

and is evaluated in the nonlinear calculations. In the linear calculations, 2 is put

to zero. An RK4-scheme is used for the time integration of the Fourier transformed

versions of (14).
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Dead Water Resistance

The pressure force on the ship along the motion direction due to the internal wave

wake is given by F1 = ∫F −pn1dS, where integration is over the wetted body surface

and the pressure obtained by the Bernoulli equation, p = −𝜌0(𝜕𝜙0∕𝜕t + 1
2
|∇𝜙0|2 +

gy) + const. The time dependent force is obtained by use of Gauss’ theorem and the

transport theorem [11]:

F1 = −𝜌0
d
dt ∫F

𝜕𝜙0F

𝜕x1
𝛽 d𝐱 − 𝜌0U

∫F

𝜕𝜙0
𝜕x1

𝜕𝛽

𝜕x1
d𝐱 +

𝜌0
2 ∫F

|∇𝜙0|2 𝜕𝛽
𝜕x1

d𝐱. (16)

The internal wave dead water resistance coefficient is defined by

Cdw =
F1

1
2
𝜌0SU2

, (17)

where S denotes the wetted surface area of the ship.

Upper Layer Depth. Draught of Ship Model

The ratio between the ship draught b0 and the upper layer depth h0 is an important

parameter of the dead water resistance where a value of b0∕h0 close to unity produces

a strong wave wake and force. A large ship volume relative to h30 is another important

nonlinearity parameter in the dead water problem [12].

Returning to Nansen [1], regarding the level and vertical extent of the pycnocline,

the water was described as salt at the level of the bottom cock of the engine room, at

4 m depth. This is shallower than the draught of FRAM’s keel of 5 m. The stratifi-

cation of the sea was not measured. We note: First, the FRAM was in motion during

the observations, where the pycnocline at the subcritical speed becomes uplifted at

the rear of the ship. Second, the pycnocline in the observations eventually had some

vertical extension.

The averaged depth of the pycnocline at rest might have been at 4 m, shallower,

or at 5 m. In the present two-layer calculations we shall assume that the depth of the

interface is at h0 = 4 m. We include calculations from [11] using h0 = 5 m.

The FRAM has a length of l0 = 30 m and a width of w0 = 11 m which in

nondimensional terms become: l0∕h0 = 7.5 and w0∕h0 = 2.75, respectively (h0 =
4 m). The layer depth ratio in the calculations is put to h1∕h0 = 18 and the density

ratio put to 𝜌0∕𝜌1 = 𝜇 = 1− 𝜖 with 𝜖 → 0. The shape of the model ship is given by

𝛽(x1, x2) = −b0
(
(1 − (2x1∕l0)2 − (2x2∕w0)2

)
. (18)
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Fig. 3 Calculated (∙) and extrapolated (− − −) Cdw∕(b0∕h0)2 vs. b0∕h0 for 0.525 < Fr < 0.575,

h0 = 4 m. Numerical vessel given in (18) with l0∕h0 = 7.5, w0∕h0 = 2.75

Calculations

The calculations are obtained for horizontal domains of length of L1 = 240h0, width

of L2 = 100h0, and of corresponding resolution of 720 by 400 computational points.

The upper layer depth and reference length is h0 = 4 m. The time simulations lasting

for 300 h0∕c0 have a gentle ramp-up phase of 100 h0∕c0. The time step is 0.05 h0∕c0.

The resistance force attains a steady value.

The coefficient Cdw∕(b0∕h0)2 is obtained for nondimensional ship draughts of

b0∕h0 between 0.8 and 1, see Fig. 3. Values for the actual draught of FRAM of 5 m

(b0∕h0 = 5∕4) are obtained by linear extrapolation. The calculations with a reference

depth of h0 = 4 m are compared to the similar calculations with h0 = 5 m in [11]

for Froude numbers in the range 0.5 < Fr < 1.1 where the important differences

are observed for the small subcritical speeds of Fr < 0.8, see Fig. 4. The dead water

resistance coefficients in the linear calculations are much smaller than the nonlinear

counterpart when Fr < 0.9.

Comparison to the Observations

Returning to the main questions in this paper, what were the conditions of the dead

water observations regarding

1. the speed;

2. the mid-level of the pycnocline;

3. the wave wake?

Regarding the ship speed this appears at the intersection between the sets of resis-

tance coefficients, the first derived from the observations, the second from the non-

linear interfacial calculations where both are shown in Fig. 1. If we may assume
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Fig. 4 Dead water resistance coefficient Cdw∕(b0∕h0)2 vs. Fr and b0∕h0, for h0 = 4 m, b0∕h0 = 1
(∙, 𝛥, solid line), h0 = 5 m, b0∕h0 = 1 (+, dash-dotted line). Linear calculations for h0 = 5 m,

b0∕h0 = 1 (×)

that i) the extrapolations of the nonlinear calculations are valid for b0∕h0 = 5∕4
(h0 = 4 m), and ii) the speed of FRAM without dead water was 5 knots, Fig. 1

estimates the Froude number to be Fr ≃ 0.54 corresponding to 0.55 ms
−1

(1.1

knots). If FRAM’s speed without the dead water was 4.5 knots the corresponding

estimate gives Fr ≃ 0.53 corresponding to 0.54 ms
−1

(1.08 knots). In the first case

the speed reduction is 1/4.5 and in the second case, of 1/4, where the former is closer

to Nansen’s [1] original estimate (of 1/5) compared to the other. The results in Fig. 1

indicate that a mid-level of the pycnocline at rest of 4 m is reasonable estimate, cor-

responding to the depth of the bottom cock of the FRAM. For comparison, the non-

linear resistance coefficients with a deeper upper layer level of h0 = 5 m gives an

intersection at Fr ≃ 0.605 for U1 = 5 knots, obtaining U2 ≃ 1.4 knots and a corre-

sponding speed reduction factor of 1∕3.6. Similarly, assuming an upper layer depth

of ∼3 m moves the theoretical curves to the left in Fig. 1 obtaining the intersection at

a still smaller Froude number, of approx. 0.5, giving a ship speed U2 of 0.88 knots.

The speed reduction factor then becomes 1/5.7 and is larger compared to Nansen’s

original estimate.

Regarding the wave wake this is calculated for the two low subcritical speeds of

Fr = 0.55 and 0.525, see Fig. 5. The nonlinear interfacial elevation of−0.5 < 𝜂∕h0 <
0.5 exhibits an important asymmetry below the ship along the speed direction giving

rise to the strong resistance force. The corresponding linear elevations are a factor

of 1/10 smaller with −0.05 < 𝜂∕h0 < 0.05. The linear elevation below the ship is

symmetrical giving a force that is zero.



52 J. Grue

x1/h0

x 2
/h

0

−50 −40 −30 −20 −10 0 10

−25

−20

−15

−10

−5

x1/h0

x 2
/h

0

−50 −40 −30 −20 −10 0 10

−25

−20

−15

−10

−5

x1/h0

x 2
/h

0

−50 −40 −30 −20 −10 0 10

−25

−20

−15

−10

−5

0

−0.5

0

0.5

−0.5

0

0.5

−0.05

0

0.05

(a)

(b)

(c)

Fig. 5 Nonlinear interfacial elevation 𝜂∕h0 (grey scale). Ship draught b0∕h0 = 1. a) Fr = 0.55, b)

Fr = 0.525, c) same as b) but linear calculation. h0 = 4 m

Conclusion

The dead water resistance on the Polar ship FRAM is by two different methods anal-

ysed for the conditions fitting to the original observations. The empirical method

based on the observational data obtains the resistance as a decaying function of the

ship speed in the dead water, while the theoretical resistance increases with the low

subcritical Froude number. The intersection between the empirical and computed

resistances determines accurately the ship speed. This is investigated as function of

the mid-depth of pycnocline where the latter was an unknown parameter in the obser-

vations of Nansen [1]. The speed reduction of FRAM in the dead water, to one fifth
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of its usual speed, is perhaps one of the most accurate measures of the observations.

This speed reduction is found to occur for a mid-depth of the pycnocline of slightly

less than 4 m. Calculations illustrate the internal wave wake of a model of FRAM

moving at Fr = 0.525 and 0.55. Linear theory is incapable of obtaining the internal

wave wake and resistance force at the very small Froude numbers.
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Internal Solitary Waves in a Layered Weakly
Stratified Flow

Nikolay Makarenko, Janna Maltseva, Roman Tarakanov
and Kseniya Ivanova

Introduction

Internal waves play a significant role in the energy transformation and mass transport

in the oceanic stratified flows [9]. In many cases, large-amplitude waves are gener-

ated due to the interaction of internal tides with irregular bottom topography near

underwater ridges [16]. Our contribution has been inspired by recent field observa-

tions [24] related to extremely long series of internal waves and Kelvin–Helmholtz

billows in the equatorial Romanche Fracture Zone of the Mid-Atlantic Ridge. We

consider a theoretical model intended to describe internal solitary waves in a two-

layer fluid flow with the density depending exponentially on the thickness of both

layers. This model generalizes the non-linear models early suggested by [2, 15, 19]

for a system with constant densities in both layers, as well as the latest “2.5-layer”

models considered by [11–13, 25]. The method of derivation involves the analysis

of the non-linear Dubreil-Jacotin—Long equation that results from the stationary

Euler equations of stratified fluid. Long-wave scaling procedure uses a small Boussi-

nesq parameter which characterizes gentle slope of the density profile in the layers

and small density jump at their interface. This asymptotic procedure combines the

approaches, applied formerly to pure two-fluid system, with perturbation technique
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developed in [1, 10] for continuous stratification. The parametric range of solitary

wave is considered in the framework of the constructed mathematical model. It is

demonstrated that these wave regimes can exist close to the parametric domain of

the Kelvin–Helmholtz instability. Such a marginal stability of long internal waves

could explain the formation mechanism of very long billow trains, which intensify

mixing of the abyssal waters.

Basic Equations

We consider 2D motion of inviscid two-layered fluid, which is weakly stratified due

to gravity in each layer. It is assumed that the flow is confined between the flat bottom

y = −h1 and the rigid lid y = h2 (see Fig. 1).

The layers are separated by the interface y = 𝜂(x, t) with the equilibrium level

y = 0. The fully nonlinear Euler equations describing the flow are

𝜌(ut + uux + vuy) + px = 0,
𝜌(vt + uvx + vvy) + py = −𝜌g,
𝜌t + u𝜌x + v𝜌y = 0, ux + vy = 0,

(1)

where 𝜌 is the fluid density, u and v are the velocity components, p is the pressure and

g is the gravity acceleration. Non-disturbed parallel flow has no vertical velocity and

elevation (i.e. v = 0, 𝜂 = 0), but the horizontal velocity u = u0(y) may be piecewise

constant,

u0(y) =
{

u1 (−h1 < y < 0),
u2 (0 < y < h2).

(2)

In this stationary case, fluid density 𝜌 = 𝜌0(y) and the pressure p = p0(y) should

be coupled by the hydrostatic equation dp0∕dy = g𝜌0. We consider the upstream

density profile depending exponentially on height,

𝜌0(y) =
{

𝜌1 exp (−N2
1y∕g) (−h1 < y < 0),

𝜌2 exp (−N2
2y∕g) (0 < y < h2),

(3)

Fig. 1 Scheme of the flow
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where Nj = const is the Brunt—Väisälä frequency in j-th layer, and constants 𝜌1 and

𝜌2 are such that 𝜌2 < 𝜌1. The special case Nj = 0 is related to the ordinary two-fluid

system with a piecewise constant density 𝜌 = 𝜌j in j-th layer, but we specify Nj ≠ 0
for the wave model to be constructed.

Further, we consider a steady non-uniform flow, hence we have 𝜂t = 0 and ut =
vt = 𝜌t = 0 in Eq. (1). We introduce the stream function 𝜓 by standard formulae

u = 𝜓y, v = −𝜓x, so the mass conservation implies the following dependence

𝜌 = 𝜌(𝜓), and the pressure p can be found from the Bernoulli equation

1
2
(𝜓2

x + 𝜓
2
y ) +

1
𝜌(𝜓)

p + gy = b(𝜓). (4)

We are seeking solitary-wave solutions, we require that fluid velocity (u, v) to attain

the upstream velocity (uj, 0) as x → −∞. In this case, kinematic boundary conditions

at the bottom, at the interface and at the lid take the form

𝜓 = −u1h1 (y = −h1), 𝜓 = 0 (y = 𝜂), 𝜓 = u2h2 (y = h2), (5)

respectively.

It is known [26] that stationary system (1) can be reduced to the non-linear

Dubreil-Jacotin—Long (DJL) equation for stream function:

𝜌(𝜓) (𝜓xx + 𝜓yy) + 𝜌
′(𝜓)

(
gy + 1

2
𝜓

2
x + 1

2
𝜓

2
y

)
= H′(𝜓). (6)

Here, function H(𝜓) = 𝜌(𝜓)b(𝜓) involves the Bernoulli function b(𝜓) and the den-

sity function 𝜌(𝜓), so that H is specified by the upstream condition. More exactly,

the density function is determined by relation 𝜌(𝜓) = 𝜌0(𝜓∕uj) in j-th layer, and the

Bernoulli function is defined by the formula

b(𝜓) =

⎧⎪⎪⎨⎪⎪⎩

1
2

u21 + g
𝜓

u1
+

g2

N2
1

(
1 − e

N2
1𝜓

gu1

)
, −h1 < y < 𝜂(x),

1
2

u22 + g
𝜓

u2
+

g2

N2
2

(
1 − e

N2
2𝜓

gu2

)
, 𝜂(x) < y < h2.

As a consequence, we can rewrite the DJL equation (6) as follows:

𝜓xx + 𝜓yy =
N2

j

guj

{
g
(

y − 𝜓

uj

)
+ 1

2

(
𝜓

2
x + 𝜓

2
y − u2j

)}
, (7)

where j = 1 should be taken in the lower layer, and j = 2 in the upper layer. Similarly

non-linear terms also appear in the boundary condition

[𝜌(𝜓)(𝜓2
x + 𝜓

2
y + 2gy − 2b(𝜓)] = 0, y = 𝜂(x), (8)
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where square brackets denote the discontinuity jump at the interface. According to

Eq. (4), condition (8) provides the continuity of pressure p everywhere in the flow

domain. Hence, we take into account all the nonlinearities from the exact Euler equa-

tions (1). Finally, we reformulate boundary condition (8) on the basis of conservation

of the total horizontal momentum in a steady two-layer flow,

h2

∫
−h1

(p + 𝜌 u2) dy = const.

Excluding the pressure p from this relation under the Bernoulli equation (4) leads to

the integral relation

𝜌1

𝜂(x)

∫
−h1

e−
N2
1𝜓

gu1

[
(𝜓2

y − 𝜓
2
x + u21 + 2g

(
𝜓

u1
− y

)
−

2g2

N2
1

(
e

N2
1𝜓

gu1 − 1

)]
dy+ (9)

+ 𝜌2

h2

∫
𝜂(x)

e−
N2
2𝜓

gu2

[
(𝜓2

y − 𝜓
2
x + u22 + 2g

(
𝜓

u2
− y

)
−

2g2

N2
2

(
e

N2
1𝜓

gu2 − 1

)]
dy = C,

where, the constant C depends on parameters of upstream flow as follows:

C = 2𝜌1g

[(
e

N2
1 h1
g − 1

)(
u21
N2
1

+
g2

N4
1

)
−

gh1
N2
1

]
+

+2𝜌2g

[(
1 − e−

N2
2 h2
g

)(
u22
N2
2

+
g2

N4
2

)
−

gh2
N2
2

]
.

Indeed, it is not obvious that combersome integral relation (9) is equivalent to bound-

ary condition (8), which is rather simple. However, this equivalence can be checked

immediately by differentiating the relation (9) with respect to variable x, so the inte-

grals become to be evaluated explicitly due to Eq. (7). We note in this context that

Eq. (9) is used instead of (8) and produces more effectively the model differential

equation for the function 𝜂(x) describing strongly nonlinear waves.

Non-dimensional Formulation

Now we introduce scaled independent variables x, y and scaled unknown func-

tions 𝜂, 𝜓 in order to reformulate the Eqs. (5), (7) and (9) in a dimensionless form.



Internal Solitary Waves in a Layered Weakly Stratified Flow 59

Namely, the ratio h1∕𝜋 is used as an appropriate length scale for x, y, 𝜂, and normal-

ized volume discharges ujhj∕𝜋 serve as the units for the stream function𝜓 considered

separately in lower- (j = 1) or upper layer (j = 2). The value 𝜋 is introduced here

only due to the specific form of trigonometric modal functions, which are typical for

the exponential density distribution (3). Scaling procedure with this density profile

uses the Boussinesq parameters 𝜎1, 𝜎2 and 𝜇 defined by the formulae

𝜎j =
N2

j hj

𝜋g
(j = 1, 2), 𝜇 =

𝜌1 − 𝜌2
𝜌2

. (10)

Here, constants 𝜎j characterize the slope of density profile in continuously stratified

layers, and the parameter 𝜇 determines the density jump at the interface.

Following [22], we introduce densimetric (or internal) Froude number

Fj =
uj√
gjhj

(j = 1, 2)

which presents scaled fluid velocity uj in j-th layer, defined with reduced gravity

acceleration gj = (𝜌1 − 𝜌2)g∕𝜌j. In addition to the Froude numbers Fj, it is also

convenient to use the pair of the Long’s numbers 𝜆j given by the following formula:

𝜆j =
Njhj

𝜋uj
(j = 1, 2).

The Long’s numbers 𝜆j are coupled with the Boussinesq parameters 𝜎1, 𝜎2, 𝜇 and

the Froude numbers Fj by the following relations

𝜆
2
1 =

𝜋𝜎1(1 + 𝜇)
𝜇F2

1

, 𝜆
2
2 =

𝜋𝜎2

𝜇F2
2

.

Finally, we introduce the ratio of undisturbed thicknesses of the layers r = h1∕h2. By

that notation, the bottom is located at y = −𝜋, and relation y = 𝜋∕r defines the rigid

lid. Thus, we obtain the equations for scaled stream function 𝜓 and wave elevation

𝜂 as follows:

𝜓xx + 𝜓yy + 𝜆
2
1 (𝜓 − y) = 1

2
𝜎1

(
𝜓

2
x + 𝜓

2
y − 1

)
(−𝜋 < y < 𝜂(x)) (11)

𝜓xx + 𝜓yy + 𝜆
2
2 r2 (𝜓 − ry) = 1

2
𝜎2

(
𝜓

2
x + 𝜓

2
y − r2

)
(𝜂(x) < y < 𝜋∕r). (12)

The kinematic boundary conditions (5) can be rewritten now as follows:

𝜓(x,−𝜋) = −𝜋, 𝜓(x, 𝜂(x)) = 0, 𝜓(x, 𝜋∕r) = 𝜋, (13)
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and the dimensionless version of the integral relation (9) takes the form

𝜂

∫
−𝜋

e−𝜎1𝜓
{

𝜇F2
1

2

(
𝜓

2
y − 𝜓

2
x + 1

)
+ 1 + 𝜇

𝜋

(
𝜓 − y − e𝜎1𝜓 − 1

𝜎1

)}
dy+ (14)

+
𝜋∕r

∫
𝜂

e−𝜎2𝜓
{

𝜇F2
2

2r3

(
𝜓

2
y − 𝜓

2
x + r2

)
+ 1

𝜋r

(
𝜓 − ry − e𝜎2𝜓 − 1

𝜎2

)}
dy = C

with constant

C = 𝜋𝜇

(
F2
1 +

F2
2

r2

)
+ (1 + 𝜇)

e𝜎1𝜋 − 1 − 𝜎1𝜋

𝜋(𝜆21 + 𝜎
2
1)

+
1 − 𝜎2𝜋 − e−𝜎2𝜋

𝜋r2(𝜆22 + 𝜎
2
2)

.

Constant C is chosen here so that the upstream horizontal flow is described by the

solution 𝜂 = 0 and 𝜓 = y (−𝜋 < y < 0), 𝜓 = ry (0 < y < 𝜋∕r).

The Non-linear Long-Wave Model

The Boussinesq parameters 𝜎1, 𝜎2 and 𝜇 are small in the case of extremely weak

stratification in the abyssal water. We assume here that these parameter are of the

same order, so we can use a single small parameter 𝜎 by setting

𝜎 = 𝜎1 = 𝜎2 = 𝜇. (15)

In accordance with this hypothesis, the derivation procedure of non-linear long-wave

model should involve slow horizontal variable 𝜉 =
√
𝜎 x, as it was demonstrated by

[1] in the case of weak linear stratification. We expand the stream function into power

series with respect to 𝜎 as

𝜓 = 𝜓
(0)(𝜉, y) + 𝜎 𝜓

(1)(𝜉, y) +⋯ (16)

where the leading-order term 𝜓
(0)

defines the hydrostatic mode, and coefficient 𝜓
(1)

provides the correction due to non-linear dispersion. All these coefficients 𝜓
(k)

can

be uniquely determined from equations (11) and (12) (with fixed Long’s numbers 𝜆1
and 𝜆2) under kinematic boundary condition (13). Thus, we obtain

𝜓
(0) = y − 𝜂

sin 𝛼1(y)
sin 𝛼1(𝜂)

(−𝜋 < y < 𝜂),

and
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𝜓
(0) = ry − r𝜂

sin 𝛼2(y)
sin 𝛼2(𝜂)

(𝜂 < y < 𝜋∕r),

where is denoted

𝛼1(y) = 𝜆1(𝜋 + y), 𝛼2(y) = 𝜆2(𝜋 − ry).

The dispersive term 𝜓
(1)

is much more complicated, it has the form

𝜓
(1) =

𝜂(𝜂−y)
2

sin 𝛼1(y)
sin 𝛼1(𝜂)

+

+
sin 𝛼1(y)
2𝜆1

(
𝜂

sin 𝛼1(𝜂)

)
𝜉𝜉

{
(𝜋 + 𝜂) cot 𝛼1(𝜂) − (𝜋 + y) cot 𝛼1(y)

}
+

+ 𝜂
2

6

{
sin 𝜆1(y−𝜂)−sin 𝛼1(y)

sin3𝛼1(𝜂)
+

1+ sin2 𝛼1(y)
sin2𝛼1(𝜂)

−
sin 𝛼1(y)
sin 𝛼1(𝜂)

}

in lower layer, and

𝜓
(1) =

r2𝜂(𝜂−y)
2

sin 𝛼2(y)
sin 𝛼2(𝜂)

+

+
sin 𝛼2(y)
2𝜆2

(
𝜂

sin 𝛼2(𝜂)

)
𝜉𝜉

{
(y − 𝜋∕r) cot 𝛼2(y) − (𝜂 − 𝜋∕r) cot 𝛼2(𝜂)

}
+

+ r2𝜂2

6

{
sin 𝜆2r(𝜂−y)−sin 𝛼2(y)

sin3𝛼2(𝜂)
+

1+ sin2 𝛼2(y)
sin2𝛼2(𝜂)

−
sin 𝛼2(y)
sin 𝛼2(𝜂)

}

in the upper layer. Now we substitute power expansion (16) of function 𝜓 into inte-

gral relation (14) and truncate the terms with powers higher than the first degree of

𝜎. Hence, system (11)–(14) reduces to the first-order ordinary differential equation

for the wave elevation 𝜂(x) having the following form

(
d𝜂
dx

)2

= 𝜂
2 D(𝜂;F1,F2)

Q(𝜂;F1,F2)
. (17)

Here, function D is given by the formula

D(𝜂;F1,F2) =
√
𝜋F1 cot 𝛼1(𝜂) +

√
𝜋F2 cot 𝛼2(𝜂) +

1
3
(1 − r)𝜂 − 1

where 𝛼1 and 𝛼2 should be taken as
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𝛼1(𝜂) =
𝜋 + 𝜂√
𝜋F1

, 𝛼2(𝜂) =
𝜋 − r𝜂√
𝜋F2

since we have at the leading order in 𝜎 the relations 𝜆j = 1∕
√
𝜋Fj (j = 1, 2) resulted

under the condition (15). Denominator Q in (17) has the following form

2Q(𝜂;F1,F2) =

=
(
𝜋F2

1 − 2
√
𝜋F1𝜂 cot 𝛼1(𝜂) + 𝜂

2 cot2 𝛼1(𝜂)
)(

𝜂 + 𝜋

sin2 𝛼1(𝜂)
−
√
𝜋F1 cot 𝛼1(𝜂)

)
+

+
(
𝜋F2

2

r2
− 2

√
𝜋F2

r
𝜂 cot 𝛼2(𝜂) + 𝜂

2 cot2 𝛼2(𝜂)
)(

𝜋 − r𝜂
sin2 𝛼2(𝜂)

−
√
𝜋F2 cot 𝛼2(𝜂)

)
.

Small-amplitude waves can be modelled by simplified weakly nonlinear version of

the Eq. (17) which is written as

(
d𝜂
dx

)2

= 𝜂
2 D0 + D1 𝜂 + D2 𝜂

2

Q(0;F1,F2)
(18)

where the coefficients D0 and D1 are

D0 = D(0;F1,F2) =
√
𝜋F1 cot

√
𝜋

F1
+
√
𝜋F2 cot

√
𝜋

F2
− 1,

D1 = D′
𝜂
(0;F1,F2) = − cot2

√
𝜋

F1
+ r cot2

√
𝜋

F2
+ 2

3
(r − 1),

and the explicit form of coefficient D2 is not important here.

Solitary Waves

Solitary-wave solutions of Eq. (17) are given in the implicit form by the following

formula

x = ±
𝜂

∫
a

√
Q(s;F1,F2)
D(s;F1,F2)

ds
s

(19)

where parameter a determines non-dimensional amplitude of the wave. Parametric

range of solitary waves is formed by the domain on the (F1,F2)-plane where radical

function Q∕D is ensured to be non-negative. It is easy to check that Q(0;F1,F2) > 0,
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so function Q(s;F1,F2) is positive in the vicinity of point s = 0. Therefore, function

D plays determining role here. This function depends on F1 and F2 and can change

the sign even at small s, where the leading-order coefficient D0 from formula (18)

dominates. As a consequence, the map of solitary-wave regimes is formed by the

Froude numbers (F1,F2) so that inequality D0(F1,F2) > 0 is true (see Fig. 2). Indeed,

this inequality defines the range of non-linear waves, which are supercritical with

respect to the phase speed of linear harmonic wave-packets.

Figure 3 compares the profiles of solitary waves calculated by formula (19) for

two different pairs of Froude numbers (F1,F2) = (1.43, 1.18)—red line, (F1,F2) =
(1.64, 0.97)—blue line (corresponding colored points are marked on the spectrum
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map (Fig. 2)). These symmetric waves have almost the same amplitude but one of

them seems to be extremely broad. Such a broadening occurs when the coefficient

D1 from (18) nearly vanishes, so the higher-order nonlinearity becomes important.

This is the same effect as the balance of quadratic and cubic nonlinearities in the

weakly nonlinear KdV–mKdV—Gardner model [6, 7, 20]. Broadening of internal

waves was investigated theoretically by [8, 14, 23], and studied experimentally by

[5].

In addition to the other features, internal Froude numbers F1 and F2 also char-

acterize the magnitude of velocity jump at the interface in the upstream flow. The

shear u1 ≠ u2 between the layers can trigger the develop of the Kelvin–Helmholtz

instability which provides non-stationary formation of billow trains [3, 21]. Constant

two-layer flow is linearly stable under long-wave perturbations if the inequality

|u1 − u2| <
√

g(𝜌1 − 𝜌2)(𝜌1h2 + 𝜌2h1)
𝜌1𝜌2

is true, and this flow is unstable in the opposite case. Exactly the same bound for

a variable difference |u1 − u2| and variable layer thicknesses h1, h2 follows from

the non-linear stability criteria predicted by the shallow water theory [4, 19]. As a

consequence, we have the stability domain

|√rF1 − F2| <
√
1 + r

shown for r = 1 on the Fig. 2 as an inclined strip confined between shadowed trian-

gles in the quarter-plane (F1,F2). Figures 4 and 5 demonstrate fragments of quasi-

steady shear flow recorded on a 350 m mooring station located at a depth of 4720 m

at the entrance to the Romanche Fracture Zone [24]. Trains of internal waves modu-

lated by tide propagate here along with the sharp temperature gradient near isotherm

0.85 ◦
C, which separates the lower layer of cold Antarctic Bottom Water (AABW)

from the overlying warmer water. Owing to this fact, the moored CTD/LADCP data

indicate permanently marginal stability of the flow with the Richardson number

0.25 < Ri < 1. Tidal amplification of the shear triggers the formation of small-scale

overturns which create long trains of the Kelvin–Helmholtz billows. Bold curves in

Figs. 4 and 5 show overlapped profiles of solitary waves calculated by the solution

(19). The solitary wave shown on Fig. 4 is relatively short, and the flow is apparently

non-symmetric due to intense breaking, which localizes the sharp wave-crest down-

stream. In contrast, Fig. 5 demonstrates a long series of weaker overturns, which are

distributed uniformly along with gently sloped wave top. It is interesting that similar

overturning near the middle part of the broad solitary wave was observed in labora-

tory experiments [5].
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Conclusion

In this contribution we have considered the problem on stable internal waves at

the interface between the exponentially stratified fluid layers. An ordinary differen-

tial equation describing large amplitude solitary waves has been obtained using the

long-wave scaling procedure. Parametric range of the solitary waves is characterized

including extreme regimes such as broad plateau-shape solitary waves. It is demon-

strated that these solitary wave regimes can be affected by the Kelvin–Helmholtz

instability generated due to the velocity shear at the interface.
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Surface Manifestations of Internal Waves
Induced by a Subsurface Buoyant Jet
(Experiment and Theory)

Valerii G. Bondur, Yuliya I. Troitskaya, Ekaterina V. Ezhova, Vasiliy
I. Kazakov, Alexandr A. Kandaurov, Daniil A. Sergeev
and Irina A. Soustova

Introduction

Wastewater disposal from submerged outfalls is one of the major sources of pol-
lution in coastal waters [4, 6, 8, 9, 33]. The discharge stresses and transforms
coastal ecosystems and influences the quality of life in the coastal zone, making the
monitoring of such systems an important issue. One of the prominent methods for
the monitoring of submerged collectors is remote sensing [3, 7, 4, 6, 8, 9, 33].
Understanding dynamics of effluents in a stratified ocean is relevant for the eval-
uation of the efficiency of remote methods. Currently, physical mechanisms of
surface manifestations of wastewaters are not well understood. In addition to the
direct outcome of disposed wastewaters to the surface, surface deformation by
buoyant vortices or internal waves has been discussed in [5, 3, 7, 4, 6, 8, 9, 33],
while another mechanism due to the complex interaction between turbulence,
internal waves, tidal currents, and bottom topography has been proposed in [7]. The
aim of this contribution is to summarize the results of recent investigations of
vertical buoyant plumes in stratified fluids, and modeling wastewater effluents,
focusing on the generation of internal waves and their surface manifestations.

Particular attention is given to the major series of experiments performed in the
Large Thermally Stratified Tank (LTST) of the Institute of Applied Physics of the
Russian Academy of Sciences (IAP RAS), Nizhny Novgorod, Russia, in 2007–
2012 [10, 21, 39]. A safe regime of wastewater disposal should minimize the load
on the ambient coastal waters, which means that the wastewaters should be diluted
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most efficiently and trapped in the water column. A typical diffuser of a modern
outfall system contains several outlet nozzles allowing generally positively buoyant
effluent to be discharged horizontally into the denser oceanic waters [34]. The
effluent forms turbulent buoyant plumes rising towards the surface. More effective
dilution is achieved by placing the outlet nozzles at a considerable distance from
each other to avoid plume coalescence, since turbulent entrainment by separate
plumes is more effective (e.g., [16]. In addition, stratification of coastal waters is
characterized by the seasonal pycnocline, and outfall constructions are designed so
that wastewater plumes are arrested by the pycnocline (Fig. 1). Note that this type
of stratification has been reproduced in all the experiments in the LTST.

The outcome of the plume to the surface or its trapping by the ambient fluid
depends on the plume parameters as well as on the peculiarities of the stratification.
This problem has been extensively investigated employing classical
Morton-Taylor-Turner theory [36] and laboratory experiments [25, 34], while
recently more complicated “escaping” criteria have been formulated in [17, 18].
Laboratory experiments most often have been performed with two-layer fluids
separated by a pycnocline, while “escaping” criteria have been formulated for
arbitrary stratification.

However, almost all investigations regarding jets and plumes in a stratified fluid
leave aside an interesting feature pertaining to fountains, it is a dynamical flow.
A wastewater plume propagating towards the surface effectively entrains sur-
rounding fluid and the density of the plume fluid becomes close to that of the
ambient fluid. Thus, a plume in the pycnocline is negatively buoyant and almost
vertical, in other words, a fountain is formed. Oscillations of the plume top near the
mean penetration height were first mentioned by Turner [38]. In the experimental
studies [27, 40], the oscillations of submerged fountains observed in both turbulent,
[26] and laminar regimes [40] are described. A comprehensive work on the
oscillations of turbulent fountains in a homogeneous fluid has been reported in [14,
28]. These authors have developed a classification of fountains based on the Froude
number at the outlet, Fr = U/√(g’R), where U is the fountain velocity at the inflow,
R is the source radius, and g’ is reduced gravity. It has been shown that weak
fountains characterized by the Froude numbers of order one display vigorous
vertical oscillations with an amplitude up to 50% of its total mean height. Similar to

Fig. 1 Schematic of sewage
disposal from submerged
collectors
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the above-mentioned work [10] our experimental data reported here demonstrate
that the buoyant plume top oscillates near the plume mean penetration height. In a
stratified fluid, these oscillations may lead to the generation of internal waves.
A similar phenomenon has been described by Karlikov and Trushina in Karlikov
[31, 32], where the jet impinging on the air-water interface generates surface waves.

The mechanisms of plume oscillations are discussed in section “Generation of
Internal Waves by Turbulent Buoyant Plumes”. We give an overview of the lab-
oratory experiments and numerical works devoted to this problem and summarize
the results of the theoretical analysis by [10] and by Ezhova and Troitskaya [21].
Section “Structure and Energetics of Internal Waves” presents the results regarding
the structure and energetics of internal waves generated by the plumes from the
collector, including experimental data from LTST, results of numerical simulations,
and a theoretical description. Finally, Surface Manifestations of Internal Waves
focuses on the surface manifestations of internal waves (IW).

Generation of Internal Waves by Turbulent Buoyant
Plumes

Oscillations of fountains in a stratified fluid, i.e. in a system similar to a plume
interacting with a pycnocline are able to generate internal waves. This effect has
been first demonstrated experimentally in the experiments modelling wastewater
outfalls by Troitskaya et al. [39], Bondur et al. [10] (note that the Froude number of
a fountain in the pycnocline is of the first order of magnitude).

The flow from the collector of the disposal system has been modelled in the
LTST. The overall LTST dimensions are as follows: 20 m long, 4 m wide, and 2 m
deep [2]. The density stratification in the LTST is generated by means of liquid
heating and cooling by heat exchangers installed along the lateral boundaries of the
tank. The results on the formation of nonuniform vertical distribution of tempera-
ture in the LTST [10] were performed in two series of experiments in the LTST
with different thermocline depth. The distance from the middle of the thermocline
to the surface was 40–50 cm in one series of experiments (standard stratification)
and 13–15 cm in the other series (shallow thermocline). In the series of experiments
with a shallow thermocline, horizontal velocity at the surface was measured by
Particle Tracking Velocimetry (PTV). The experimental setup is shown in Fig. 2.
A collector was modeled by a metallic pipe, blocked at one end, with 5 holes on its
lateral surface. The pipe was located horizontally across the tank in the middle of it
at depth H from the surface. The axes of the holes were oriented horizontally. The
free end of the pipe was connected by a hose to a reservoir filled with alcohol
solution.

The temperature oscillations in the thermocline were measured using an antenna
of 13 temperature sensors (thermistors). The antenna was fixed on a special portable
track and could be placed at different distances from the collector model. The
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profiles of the horizontal flow under the thermocline were measured by a
three-component Doppler velocity profiler.

Internal waves with a pronounced spectral peak at the frequency close to the
maximum buoyancy frequency were detected in a wide range of the outflow
parameters (outflow velocity varied from 40 to 200 cm/s). Later, this effect was
observed in the numerical simulations by Ezhova et al. [20, 21] part 1, 2. Note, that
[10] measured internal waves in the experiments modelling discharge from sub-
merged wastewater outfalls. This means that IW were generated by several identical
oscillating plumes not interacting or weakly interacting with each other (the dis-
tance between the nozzle outlets was approximately twice as large as the plume
diameter at the inflow of the jet to the pycnocline). Later in the works by Ezhova
et al. [20, 21], part 1, 2 the authors considered a single oscillating jet with the
similar parameters as a separate plume at the pycnocline, but did not reveal the
difference in the frequencies of generated IW (see Fig. 3 for the illustration of IW
and their spectra).

Fig. 2 Experimental setup in the LTST. [1] reservoir with alcohol solution (density 0.93 g/cm3),
[2] ultrasound three-component Doppler velocity profiler, the collector model (pipe with 5 holes of
3 mm diameter), [3] array of 13 thermistors. Depth H = 160 cm in the experiments with standard
stratification, H = 120 cm in the experiments with a shallow thermocline. In the experiments with
a shallow thermocline: [5] area of the measurements of surface velocities, [7] camera
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The mechanism of IW generation by a turbulent plume has been proposed by
Troitskaya et al. [39], while a detailed theoretical analysis can be found in Bondur
et al. [10] and Ezhova et al. [20, 21] part 1, 2. To explain the observed phenomenon
a hypothesis of self-sustained oscillations was suggested. The amplitude of the
self-sustained oscillations is known to be described by the Landau equation
[20, 28]:

Fig. 3 Top panel: Cross section of isotherm oscillations at an outflow velocity of 150 cm/s.
Bottom panel: Spectra of isotherms in the thermocline region at an outflow velocity of 150 cm/s.
Different curves correspond to different depths
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da
dt

= a μ R−Rcð Þ− ν aj j2
� �

where R is a control parameter, Rc is its critical value, ν is a parameter of nonlinear
decay. Amplitude of steady state oscillations «a» satisfies the following equation:

R−Rcð Þ− ν

μ
aj j2

� �
a=0.

Experimentally measured dependence of parameter R proves the excitation of a
globally unstable mode on a jet (Fig. 4) [21].

The analysis shows that IW can be generated as a result of self-sustained
oscillations of a plume in the pycnocline. Self-sustained oscillations develop in a
system characterized by absolute instability. It is well-known that free shear flows
are convectively unstable. It has been shown in [29] that the type of instability can
change to absolute if the hydrodynamic flow is lighter than the surrounding fluid or
due to the presence of a counterflow. Thus, a plume in the pycnocline can be
absolutely unstable due to the counterflow.

Linear stability analysis of the fountain in the pycnocline was performed in [10,
21]. The earlier analysis was based on the experiment in a small stratified tank using
Particle Image Velocimetry [10]. This experiment was intended to demonstrate the
effect, while the parameters did not provide scale modeling of wastewater outfall.
Assuming the flow in the pycnocline locally quasi-parallel, the authors performed a
theoretical linear stability analysis assuming that the mean velocity profiles in the
subsequent cross-sections present the basis flow (Fig. 5).

They have demonstrated that there is a region of absolute instability, while
self-sustained oscillations can develop in the plume. Moreover, theoretically esti-
mated frequencies of an absolutely unstable axisymmetric mode showed good
correspondence with experimentally measured frequency of plume oscillations and

Fig. 4 Isotherm
displacement variance in the
thermocline versus discharge
rate: a in the upper part of the
thermocline (isotherms 13–
19 °C) and b in the lower part
of the thermocline (isotherms
9–12 °C). Notations 1 and 2
correspond to two series of
experiments
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with the range of theoretically calculated frequencies (see Fig. 6 displaying a
spectrum of plume oscillations and the range of frequencies obtained from the linear
stability analysis).

The results of more complicated experiments in the LTST are described in [20].
The experiments were set up to model a turbulent fountain interacting with a
thermocline with the parameters similar to those of a modeled wastewater plume
(Fig. 7). The fountain was formed by a turbulent vertical jet providing vertical
velocity profiles at the inflow of the jet to the thermocline similar to those in the
experiments modeling wastewater plumes.

Fig. 5 Vector velocity field of turbulent buoyant plume (left) and vertical velocity profiles in
cross “Introduction”, “Generation of Internal Waves by Turbulent Buoyant Plumes” and
“Structure and Energetics of Internal Waves” (right)

Fig. 6 Spectrum of
oscillations of the upper
boundary of the jet. The
marked area corresponds to
the calculated limits of
variations of the possible
frequency of self-sustained
oscillations
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A camera was located in a waterproof box to record plume oscillations simul-
taneously with IW measurements. This allowed us to compare spectra of the plume
oscillations and IW and confirm that IW were generated by the plume oscillations
(Fig. 8). The structure of plume oscillations has been investigated in detail; it was
concluded that IW are generated at a frequency corresponding to an axisymmetric

Fig. 7 Experimental setup in
the LTST for investigating the
mechanism of internal wave
generation by axisymmetric
turbulent jets

Fig. 8 Spectra of the jet
oscillations (dashed line) and
internal waves (solid line).
The straight dashed line
corresponds to the maximum
buoyancy frequency; the thin
solid curve is the frequency
dependence of the excitation
coefficient of the lowest
internal wave mode
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unstable mode. Furthermore, velocity in the plume was measured by the PIV and a
theoretical linear stability analysis was performed.

Note that the procedure of measuring mean velocity profiles was different in the
experiments by Bondur et al. [10], Ezhova et al. [20]. Linear stability analysis
requires a basic flow. In the first case, the authors averaged the instantaneous
profiles in the reference frame moving with the plume, while in the second case the
standard averaging procedure was applied in a fixed reference frame. The average
profiles in these reference frames are different. The velocity profiles in a reference
frame moving with the plume resemble “top hat” profiles (see Fig. 5), while the
standard procedure in a fixed reference frame leads to the Gaussian-shaped profiles
(Fig. 9). In the latter case, unstable axisymmetic mode cannot develop in the
quasi-parallel framework, because the necessary condition of instability is not
satisfied for this mode. However, the analysis accounting that the flow is not
parallel shows that the axisymmetric mode is unstable even in the case of the
Gaussian-shaped profiles; addition of a counterflow causes absolute instability
similar to the previous case. Theoretically predicted frequencies of an axisymmetric
mode are close to those experimentally measured and to the frequencies of IW.

Additional confirmation of self-sustained regimes of oscillating fountains in
two-layer stratified fluid was obtained in the numerical simulations by Druzhinin
and Troitskaya [19]. The authors demonstrated that laminar fountains oscillate in a
two-layer stratification, emitting internal waves in the form of concentric circles at
small Froude numbers replaced by spirally propagating internal waves at larger
Froude numbers. The result was explained in the framework of the mode compe-
tition (competition of modes developing on the fountain in the pycnocline).

Finally, we comment on the influence of stratification on the generation of
internal waves. Ansong and Sutherland [1] did not find correlation between the
frequency of plume oscillations and internal waves in the experiments with the

Fig. 9 Profiles of the average vertical (left) and radial (right) jet velocity in self-similar
coordinates [20]
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vertical turbulent plumes at the stratification consisting of a linearly stratified layer
over a homogeneous layer. Ezhova et al. [24] performed a numerical experiment
with a turbulent jet at the stratification with a pycnocline of a finite thickness. Two
different pycnocline thicknesses have been considered, one is a narrow pycnocline
as compared to the plume diameter in the pycnocline and another one is a wider
pycnocline equal to the plume diameter. The frequencies of jet oscillations in
different pycnoclines were remarkably similar, while the IW frequencies depended
on the ambient stratification. However, peaks in the spectra of IW coincided with
the spectra of plume oscillations (when the peaks in the spectra of jet oscillations
were lower than the maximum buoyancy frequency). Another numerical investi-
gation by Ezhova et al. (submitted) considers buoyant plumes in a stratified fluid
with the complex stratification: weakly linear with a pycnocline of a finite width,
modeling subglacial discharge in the Greenland fjords. Plume oscillations at
complicated stratifications result in noisier spectra. The peaks can be still detected
when the stratification resembles two layers separated by a pycnocline, while the
measurements at stratifications more similar to that reported by Ansong and
Sutherland (1990) show correspondence with their results.

Structure and Energetics of Internal Waves

The structure of internal waves generated by the vertical turbulent plumes in a
two-layer stratification with a pycnocline of finite thickness were investigated in
detail by Bondur et al. [11, 12]. The work describes the results of laboratory scale
modeling of submerged wastewater outfalls in the LTST (see Fig. 7) and the cor-
responding theoretical analysis. Experimental measurements were performed using
an antenna of thermistors located at a significant distance from the collector model
in the thermocline (approximately a dozen of plume diameters measured at the
inflow of the plume to the pycnocline) (Fig. 10).

The antenna was located vertically in the thermocline, thus measuring temper-
ature at several fixed points in the vertical direction (see the description of the
experiment in section “Introduction”). The isotherms corresponding to different
fixed temperatures were retrieved from the collected data and the spectra of iso-
therm displacements from the equilibrium depth were assumed as the spectra of IW.
As mentioned in in section, “Genaration of Internal Waves by Turbulent Buoyant
Plumes” all spectra, regardless the outflow velocity, have a pronounced peak close
to 0.6–0.7 N_max, where N_max is the maximal buoyancy frequency (Figs. 11).

The vertical buoyant plume penetrates through the pycnocline, then bounces
back and propagates horizontally as a gravity current at the level of the neutral
buoyancy. The velocity of the gravity current in the thermocline was measured in
the above mentioned experiments by a three-component Doppler velocity profiler.
These measurements allowed us to develop a theoretical model of internal waves
based on the mean temperature profile with the account for the horizontal flow in
the thermocline. The velocities of these horizontal flows are comparable with the
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Fig. 10 Average flow
characteristics: operating
profile of stratification
(rhombs), and its
approximation (dashed and
dotted line); profile of the
mean jet velocity (solid line)
and its approximation (dotted
line): the rms profiles

Fig. 11 Vertical profiles of
the first and second modes in
the presence of a horizontal
flow under the thermocline
(solid line) and in stationary
stratified liquid (dotted line)
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phase velocities of internal waves; hence, they should be taken into account in the
theoretical model. The model, described in detail in Bondur et al. [11, 12] is based
on the Taylor-Goldstein equations

Fig. 12 Rates of
disturbances at the basin
surface as measured by the
PTV method for the following
rates of liquid outflow from
the collector model: 40 cm/s
a, 40 cm/s b, 100 cm/s c,
150 cm/s (d)

Fig. 13 Graph of the
dependence of the modulation
coefficient of short waves M
(k) on the wavenumber for the
following parameters of
internal waves at the surface:
ω/q = 9.6 cm/s, u* = 18 cm/
s, = 0.6 cm/s (solid line),
and = 0.3 cm/s (dashed line)
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∂
2y
∂
2z

− k2y+
N2

ðU0 − cÞ2 y−
U00

0

ðU0 − cÞ y=0, ð3Þ

where ψ is the stream function, N(z) is the profile of the buoyancy frequency, U0(z)
is the velocity profile of a gravity current, k is the wavenumber, ω is the wave
frequency, c is the phase velocity.

The eigenvalue problem for this equation was solved numerically for the
experimentally measured profiles of velocity and temperature (see Fig. 11). Dis-
persion curves for the two basic modes and the modal structure (vertical profile of
internal waves) at the generation frequency were calculated. The results of mod-
eling explain the measured vertical structure of internal waves with two peaks
located in the thermocline and in the horizontal flow.

In the absence of a gravity current in the thermocline, two basic modes of
internal waves at the generation frequency of IW (0.6–0.7 Nmax) can be described
as follows. Figure 11 demonstrates two fundamental modes of IW for the dis-
placement of liquid particles from the equilibrium ξ, which can be defined using the
stream function:

w= − ∂
2Ψ
∂x = − ikΨ = ikðU0 − cÞξ

y= − ðU0 − cÞξ , ð4Þ

where w is the vertical velocity.
The first mode has one maximum located in the centre of the pycnocline, while

the second mode has two maxima with opposite phases. In the presence of a gravity
current in the thermocline, the peak of the first mode is displaced towards the
gravity current, while the second mode has a pronounced peak in the current while
the second peak located in the thermocline is significantly reduced. Thus, the
combination of these two modes allows us to explain the properties of the exper-
imental profile of isotherm displacements. However, though a satisfactory agree-
ment has been achieved, the minimum between the peaks is usually better
pronounced in the experimental profiles than it was predicted by the theoretical
model in Bondur et al. [12].

Inclusion of the turbulent viscosity associated with the shear flow and a
dependence on the vertical coordinate in the modal analysis, similarly to [35] might
result in a better agreement with the experimental data. Furthermore, [23] have
recently estimated the energetics of internal waves based on the numerical exper-
iments modeling a vertical turbulent jet in a stratified fluid. They have calculated the
energy flux of internal waves at a distance of ∼5 and ∼6.25 diameters from the jet
(measured at the inflow to the thermocline) and compared it to the jet energy flux at
the inflow to the thermocline. The estimates have been obtained for two stratifi-
cations including a relatively thin thermocline as compared to the jet diameter and a
thermocline thickness of the same order as the jet diameter. The calculations
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showed that approximately 5% of the jet energy is spent to generate IW in a thin
thermocline (assuming the IW decay with the radial distance from the jet, this
estimate can be somewhat increased), while only 2–3% of the jet energy flux is
transported away from the jet by IW in the thick thermocline.

The difference in the energy fluxes can be explained as follows. The amplitudes
of jet oscillations are similar in the thin and thick thermoclines. However, the
temperature gradient in the thick thermocline is weaker and thus, the maximal
buoyancy frequency is lower. One of the spectral peaks of plume oscillations is
higher than the maximal buoyancy frequency and the waves at this frequency
cannot propagate. Moreover, numerical simulations by [23] revealed a horizontal
counterflow in the upper thermocline attributed to the turbulent entrainment by the
jet top in the thick thermocline. This counterflow results in the transfer of the part of
IW energy towards the plume, thus decreasing the total energy flux transferred
away from the jet by IW.

Another interesting feature that has been revealed by [23] is that the ratio of the
energy flux of IW to the jet at the inflow to the thermocline remains approximately
constant in the simulations in the thin thermocline and almost does not depend on
the control parameter, which in this case is the Froude number. This effect can be
explained considering simplified energy conservation similar to the estimates made
by [15] for fountains. Note that Burridge and Hunt considered a different type of
oscillations, namely the vortices appearing on the inclined surface formed by the
top of the fountain, and their propagation as interfacial waves. Here, we consider
internal waves generated by the vertical oscillations of a jet top as a whole.

A thin thermocline can be treated similar to the interface between two fluids of
different temperatures, so as a first approximation to the dispersion relation we take
w=

ffiffiffiffiffiffi
g0k

p
, where g′ is reduced gravity. Note that it can be deduced from the dis-

persion curves calculated in the presence of a horizontal current and without it [12]
that the dispersion curves for the first mode of IW at the generation frequency are
close to each other. Thus, an estimate for the group velocity is cgr ∼

ffiffiffiffiffiffi
g0λ

p
, where λ

is the wavelength. The estimates of the oscillation frequency from [20] is ω∼ 0.4
U/D, where U is the jet velocity at the inflow to the thermocline and D is the jet
diameter. Thus, an estimate for the wavelength is λ∼ g′D2 ̸U2. The energy flux of
internal waves at distance R from the jet centre can be estimated as Fiw ∼ cgrA2g0R
[37]. We obtain the following estimate for the ratio of IW energy flux to the jet
energy flux in the thermocline

Eiw ∼ cgrA2g0R ̸U3D2

The amplitude of IW is proportional to the jet penetration height h, while
h ∼ Fr2 [23]. Thus, one obtains from these simple estimates that E does not depend
on Fr which is consistent with the numerical results in [23].

Note, that the dependence of IW amplitudes A2 on the outflow velocity U,
presented in [10] was approximated by a linear function similarly to the dependence
of the jet oscillations amplitude A2 on the control parameter. However, the results
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of numerical simulations and our estimates reported here suggest that it is pro-
portional to Up4, where Up is the jet velocity at the inflow to the thermocline. This
might provide a better approximation of the experimental data by [10].

Surface Manifestations of Internal Waves

Surface manifestations of internal waves were investigated both experimentally and
theoretically by [13]. The experimental part consists of two series of experiments in
the LTST with different arrangement of the measuring equipment. The experiments
were performed at the stratification with a shallow thermocline in order to make the
surface currents caused by internal waves detectable. The horizontal velocities at
the water surface were measured by a modified Particle Tracking Velocimetry
technique (PTV), see [13] for details. The measured velocities are shown in Fig. 12.

As a first step, the time before the signal detected by the PTV at a sufficient
distance from the source (a collector model) was compared to the theoretically
estimated time of the signal arriving to the measurement area. The latter time was
derived from the theoretical group velocity of internal waves at the generation
frequency. The velocity has been obtained, as described in section “Generation of
Internal Waves by Turbulent Buoyant Plumes”, from the dispersion relation fol-
lowing from the solution of the eigenvalue problem for the Taylor-Goldstein
equation (with measured profiles of buoyancy and mean horizontal velocity in the
thermocline). Theoretically predicted times for different outflow velocities corre-
spond to the experimentally measured times, thus confirming that a signal detected
at the surface could have been related to internal waves.

As a second step, theoretically predicted amplitudes of the horizontal velocity at
the surface were compared to the experimentally measured velocities. Theoretical
estimates were as before based on the solution of the eigenvalue problem for the
Taylor-Goldstein equation. The authors used the vertical profile of the stream
function to calculate the displacements of the liquid particles from the equilibrium
due to IW at the frequency of generation [3]. The theoretical estimates of surface
velocities were calculated on the basis of these considerations:

uðz, tÞ= ðc−U0Þ ∂ξ
∂z

− ξ
∂U0

∂z
. ð5Þ

The theoretically predicted velocities significantly exceeded the experimentally
measured data. This discrepancy was explained by the presence of surfactant film in
the LTST. The films were taken into account in the theoretical analysis, and an
agreement between the measured and theoretical velocities was obtained for the
experimentally measured elasticity coefficients.

The third step of the analysis included a theoretical estimate of the hydrody-
namic contrasts, which surface currents can induce in the spectra of surface wind
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waves due to IW, thus providing a mechanism for internal waves to be manifested
at the surface. Hydrodynamic contrast was defined as M(k) = N1/N0, where N0 is
the spectral action density of an undisturbed surface wave spectrum, and N1 cor-
responds to the perturbations in the spectral action density due to the horizontal
surface currents induced by IW. Bondur et al. [11] solved the spectral action
balance equation [30], using the estimates of IW parameters for the field conditions
(since the authors performed scale modeling of a submerged collector, it allowed us
to use the data from the laboratory experiments to get the estimates for the field
conditions employing similarity coefficients). The wind speed taken for the esti-
mates was 5 m/s. The estimated phase velocities of IW were rather low as com-
pared to the group velocity of the surface waves at this wind speed, while the
synchronism condition was not satisfied. According to the estimates, the hydro-
dynamic contrasts reached 7% (Fig. 13), which could be detected by the application
of the special methods to the optical satellite images. Ermakov and Salashin [24]
reported that hydrodynamic contrasts can be increased 7–8 times for the bound
waves (harmonics of the free waves); thus, the estimates of the hydrodynamic
contrasts for such waves can increase up to ∼60%.

Taking into account the presence of the free waves, the probability of finding a
bound wave is 50% at the wind speed 5 m/s, thus, the final estimate of hydrody-
namic contrasts for bound waves is 25%. These contrasts can be detected by remote
sensing.

Conclusions

In this contribution, we summarized the main results of the work on internal waves
generated by vertical turbulent plumes in stratified fluids, including the mechanisms
of IW generation, the structure of IW, and their surface manifestations.

The majority of results were obtained on the basis of modeling of submerged
wastewater outfalls in the ocean, and thus, they are applicable for the monitoring of
the coastal zone. The other potential implications include buoyant plumes generated
by subglacial discharge in the Greenland fjords [22]. Fresh water from the surface
of the marine-terminated glaciers can percolate through the channels inside the
glacier and come out at the base of the glacier forming a buoyant plume. Those
turbulent plumes propagating along the ice face can significantly increase the rates
of glacier melting, and account for their presence could improve the predictions of
the melt rates. However, the locations of the plumes are difficult to identify. The IW
in this case could serve as an indication of the submerged plume. The proper
analysis, however, should include the sediment load in such a flow, and more
important, the presence of an ice wall.

The challenges related to this topic can be formulated as follows:
More complicated stratifications have to be considered in order to understand the

effect of stratification on the internal waves generated by the vertical oscillations of
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a turbulent plume/jet in the pycnocline. Transition from two-layers separated by the
pycnocline to the linear stratification of the upper layer and a homogeneous lower
layer is of special interest, since in the linear stratification the generation of IW by
buoyant plumes has not been identified [1].

The origin of the vortex structures forming at the surface of the plume top and
their role in the entrainment processes has to be clarified. These vortex structures
have been mentioned by Burridge and Hunt [15] and can be seen in the instanta-
neous temperature visualizations of the jet top in the thermocline in [23]. These
structures can serve as an additional source of internal waves in the thin pycnoclines
providing sufficiently high buoyancy frequencies.

The further investigations of the mechanisms of plume oscillations are needed,
since linear stability analysis is not fully justified for a turbulent flow. Application
of the modern numerical techniques to the vertical turbulent jets and plumes in a
stratified fluid could provide a deeper insight in the structure of the flows and
confirm/discard the present conclusions pertaining self-sustained oscillations.
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Large Internal Solitary Waves in Shallow
Waters

Valery Liapidevskii and Nikolay Gavrilov

Introduction

Nonlinear internal waves generated by internal tides play the important role in the

energy transfer in shelf zones of seas. In coastal zones, shoreward propagation of

surface and internal waves generally leads to breaking. The turbulence, generated by

breaking and mixing processes at the wave fronts, induces the very effective mecha-

nism of energy dissipation and momentum exchange, leading to intensive sediments

suspension and transport in the shelf zone. Such high-energetic mechanisms of the

shelf ventilation can effectively intensify the biological and hydrological processes

in coastal waters. In particular, they can redistribute the waste waters and influence

the water quality in near shore area. The run up of internal waves in near shore waters

is very similar to the run up of surface long waves, but the process of internal wave

breaking and dissipation is not quite understood. The main difference between inter-

nal and surface waves is that large internal waves can propagate for a long distance

without breaking. In contrast to the energy dissipation mechanism for surface soli-

tary waves in a homogeneous fluid, the energy dissipation in internal waves is closely

connected with the entrainment and mixing in stratified shear flows. Very often, the

wave fronts take the form of solitary wave trains with the large ratio of the wave

amplitude to the upper layer depth [14]. Propagating to shore, they transform into

the large amplitude internal waves of elevation. The large amplitude internal waves

can be identified by their ability to carry trapped fluid horizontally for long distances

[4, 15, 22, 24, 26, 27]. The transition from wave-like motion to the separate moving
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soliton-like waves (“solibores”) containing trapped dense core is the common feature

of the run-up process of internal waves. It can be observed in any shelf zone with high

internal wave activity as well as in laboratory experiments. Breaking of internal soli-

tary waves is closely connected with shear-induced instability at interfaces, which is

an object of recent intense investigations in laboratory and field observations [1, 6,

16, 20, 23].

In the paper the multi-layer shallow water model describing the nonstationary

interaction and decaying of large internal solitary waves is presented. The equations

are the direct extension of the Green–Naghdi equations developed for open channel

flows of multi-layer stratified fluids. It is shown that the two- and three-layer shal-

low water equations taking into account the dispersion effects, can describe large

amplitude internal wave evolution for different types of flows (intrusions, bottom

and subsurface internal waves in field and laboratory conditions).

Laboratory Experiments

Here we describe briefly the laboratory experiments performed in the Lavrentyev

Institute of Hydrodynamics, which will be used in next sections to validate the

mathematical models. More detailed description of the experiments can be found in

[7–11].

Experiments were carried out in a test tank of length 3.2 m, width 0.2 m and

depth 0.35 m, the walls of the test tank were made of Perspex. The test tank was

divided by a vertical removable wall in two parts as it is shown in Fig. 1. The geo-

metrical set-up of the experiments is clear from the sketches shown in the figure.

Figure 1a illustrates the experiments on the symmetric solitary wave evolution along

the interface. It shows the special installation (inclined bottom and lid in the flume)

to provide the shoaling of symmetric solitary waves of the second mode over a shelf

(𝛼 = 𝛽) or the shoaling of the subsurface waves of depression (𝛼 > 0, 𝛽 = 0). Var-

ious applications of solitary wave dynamics revealed in laboratory experiments to

the shoaling of large internal waves in a shelf zone have been discussed in [11, 12].

Here we focus our attention mostly on the special features of internal solitary wave

propagation over the flat bottom (𝛼 = 𝛽 = 0). Figure 1b sketches the nonsymmetric

solitary wave generation in the lock-exchange problem.

The experimental setup is shown in Fig. 2. For visualization of the flow pattern

LIF-technique (Laser Induced Fluorescence) is used. The method is based on the

fact that at low concentrations of fluorescein its luminosity during laser irradiation

is directly proportional to the concentration. This allows not only to get qualitative

information (for example, about mixing processes), but also quantitative information

about the density of the liquid in any part of the investigated area. To create the light

sheet, the diode-pumped solid-state laser “Mozart” is used, it provides a powerful

continuous radiation at a wavelength of 532 nm. By changing thermostat temperature

the radiation power could be varied from a few mW up to 5 W. The control system

allows to change the width of the sheet and the direction of the light, also the mirror



Large Internal Solitary Waves in Shallow Waters 89

Fig. 1 Sketch of the lock problem: a symmetric solitary wave at the interface; b nonsymmetric

solitary wave generation

vibration frequency can be varied in a wide range of parameters. In combination with

laser power control it allows to get a uniform illumination of investigated area.

A weak solution of sugar or NaCl in water was used to create the stratification.

Gravity current propagation was recorded with a digital video camera. Often in the

field and laboratory experiments, the fixed probes are used. In this study new method

is developed, that permits to transform the spatial pattern of the flow (Fig. 3a),

obtained by video and photo records, to the temporal pattern, which could be fixed

by stationary probes. This new method can be described as follows: a narrow strips,

which consist of few pixels, are cut from each photo so that in new file containing all

such fragments we record a temporary flow pattern (Fig. 3b). It allows to compare

field data on large amplitude internal wave evolution in a coastal zone with labora-

tory experiments.



90 V. Liapidevskii and N. Gavrilov

Fig. 2 Experimental setup

Another type of the flow visualization is portrayed in Fig. 4, where we show

photographs of the generated solitary waves against the background of the lumi-

nous screen with a grid of inclined lines imposed on it. The optical inhomogeneities

visualizing the perturbation propagation are distinctly seen. In high density gradient

regions, we observed the characteristic distortion of lines, whereas the optical trans-

parency of the fluid changes in the mixing areas [5]. In addition, dense fluid, which

propagates along the interface in the form of a symmetric solitary wave, is slightly

tinted with an ink solution for visualizing the mass transfer processes. The external

wave boundaries are determined by the break and change in thickness of the inclined

lines.

Bottom friction has no effect on the propagation of subsurface internal waves in

oceans. But in laboratory experiments the bottom friction effects are replaced by

the surface tension effect and the free surface can be considered as a rigid lid in

experiments on large amplitude internal wave propagation. To avoid the bottom and

surface effects on large amplitude waves, the series of laboratory experiments were

conducted for short intrusions at the interface of two miscible fluids of different

densities (Fig. 1a). The tank geometry was symmetric relative to the plane y = H1
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Fig. 3 Bottom solitary

wave in the laboratory

experiment [12]: a spatial

patterns; b temporal patterns.

The solid lines represent the

results of calculations by the

model ULM with the

parameters: h0 =
0.3 cm, 𝜂0 = 0.8 cm, 𝜁0 =
6.9 cm, b = 5 cm∕s2, b̄ =
0.5b,Fr = 0.476

Fig. 4 Snapshot of a

symmetric solitary wave of

the second mode propagating

from left to right at the

interface. The solution of

(14) for

Frs = 0.48, h0 = 0.15 is

shown by solid curves
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with the ordinate y chosen in the vertical direction. So the bottom and the lid of the

tank had the same angles of inclination to the horizon. The length of the compartment

with the mixed fluid of density �̄� = 0.5(𝜌− + 𝜌
+) was chosen so that the only one

solitary wave at the interface was produced. It was also symmetric relative to the

undisturbed interface. Due to the flow symmetry, the corresponding component of

the Reynolds stress at y = H1 vanished. The velocities generated in the homogeneous

layers by the intrusion were small enough and the friction at the bottom could be

neglected too, but the friction between the surrounding fluid and the intrusion should

be included in the mathematical model to describe properly the decay rate of solitary

waves propagating along the interface. We do not specify in the paper all details of

the experiments on the decay of symmetric solitary waves. Some approaches to the

problem are discussed in [7] and is illustrated below.

When the symmetry of the experiment is broken (Fig. 1b), the interfacial intrusion

starts to generate intense trailing waves of the first mode and loses its energy rather

Fig. 5 Generation of intense internal waves of the first mode by the short intrusion at the interface:

background is the experimental form of the intrusion generated in the lock problem with h0 =
5∕12H, b̄ = 5∕12b; thick lines are the results of nonstationary calculations by the basic model (BM)

Fig. 6 Nonsymmetric solitary wave of the second mode generated in the lock problem with special

choice of stratification shown in Fig. 1b (h0 = H∕3, b̄ = b∕3): internal solid lines are constructed

by the exact solution of SM and correspond to the boundaries of the dark (colored) fluid carried

by the wave along the pycnocline, outer solid lines represent the steady-state solutions of the basic

model (BM)
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quickly (Fig. 5). Nevertheless, for special choice of stratification the nonsymmetric

solitary wave can be generated, which is able to propagate along the channel keeping

its permanent form (Fig. 6). Solid lines shown in Figs. 3, 4, 5 and 6 represent the

solutions of the mathematical model developed in next sections.

Mathematical Models

Basic Model

As a basic model for simulation of nonlinear internal waves, we consider the three–

layer shallow water equations for large amplitude, weakly nonhydrostatic long waves

introduced in [19]. The model is a version of multi-layer strongly nonlinear equations

derived in [2] with the following simplifications:

1. Boussinesq approximation |𝜌 − 𝜌0| ≪ 𝜌0 is used, where 𝜌, 𝜌0 are the density and

reference density, correspondingly [14].

2. The pressure distribution in the intermediate layer is supposed to be hydrostatic.

The first condition is well justified due to small density variation in the ocean.

The second one will be used in two cases:

(i) to describe large amplitude internal waves of the first mode with relative small

thickness of the interlayer

(ii) to simulate interface solitary waves of the second mode, in which wave velocity

and particle velocity differ only slightly.

In dimensional variables the governing equations take the form

ht + (hu)x = 0, 𝜂t + (𝜂v)x = 0, 𝜁t + (𝜁w)x = 0,

ut + (1
2
u2 + b(h + z) + b̄𝜂 + p)x +

𝛽
−

3h
(h2

d21h
dt2

)x = f −,

vt + (1
2
v2 + b̄(h + 𝜂 + z) + p)x = f̄ ,

wt + (1
2
w2 + p)x +

𝛽
+

3𝜁
(𝜁2

d22𝜁
dt2

)x = f +,

d1
dt

= 𝜕

𝜕t
+ u 𝜕

𝜕x
,

d2
dt

= 𝜕

𝜕t
+ w 𝜕

𝜕x
,

b = (𝜌− − 𝜌
+)g∕𝜌+, b̄ = (�̄� − 𝜌

+)g∕𝜌+. (1)

Here g is the gravity acceleration, p is the modified pressure, 𝜌
+
, �̄�, 𝜌

−
are the densi-

ties, 𝜁, 𝜂, h are the thicknesses, w, v, u are the mean horizontal velocities in the upper,

intermediate and lower layers, correspondingly. The function z = z(x) describes the

bottom profile. We suppose that the bottom changes very smoothly, so we don’t
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include in (1) the terms containing the first and the second derivatives of the function

z [13, 25]. The friction terms f ± and f̄ will be discussed later.

In Boussinesq approximation we also have

h + 𝜂 + 𝜁 + z = H ≡ const. (2)

In view of (1) the total flow rate

Q = Q(t) = hu + 𝜂v + 𝜁w (3)

can be found from boundary conditions. Finally, Eqs. (1)–(3) with b ≡ const, b̄ ≡

const after excluding pressure p represent the closed system of equations for unknown

variables h, 𝜁 , u,w.

The small shallow water parameter 𝛽 = (H∕L)2, where H is the channel depth and

L is a typical wave length, in dimensional variables is taken equal to one, so the coef-

ficients 𝛽
±

in (1) are chosen equal to 1 or 0 depending on the model consideration.

Below we will use the following notations

∙ Basic Model (BM) for 𝛽
+ = 𝛽

− = 1.

∙ Upper Layer Model (ULM) for 𝛽
+ = 1, 𝛽− = 0.

∙ Bottom Layer Model (BLM) for 𝛽
+ = 0, 𝛽− = 1.

∙ Hydrostatic Model (HM) for 𝛽
+ = 𝛽

− = 0.

Remark 1 Without Boussinesq approximation and for 𝜂 ≡ 0 BM coincides with the

strong nonlinear two-layer model derived in [3].

Remark 2 The special cases of (1)–(3), namely, ULM and BLM, in which one of

the outer layers is hydrostatic, can be applied effectively to large amplitude internal

waves of elevation or depression, since in corresponding layers the mean particle

velocity approaches the wave velocity and the second derivative in the pressure term

vanishes.

Remark 3 Hydrostatic Model (HM) represents well-known three-layer shallow

water equations in Boussinesq approximation [17].

Symmetric Model (SM)

Consider flows symmetric about the central line y = H1 = H∕2 with �̄� = (𝜌+ +
𝜌
−)∕2, 𝜁 ≡ h,w ≡ u (Fig. 1a). In this case, it is sufficient to consider flows only in

low part of the channel (0 < y < H1) and use the two-layer flow scheme. The gov-

erning equations for SM take the form

ht + (hu)x = 0,

ut + uux + b̄hx + px +
1
3h

(h2
d21h
dt2

)x = f −,

vt + vvx + px = f̄ ,
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hu + (H1 − h)v = Q1(t). (4)

Note that SM describes an important class of symmetric intrusions at the interface

and, in particular, the symmetric solitary waves [7].

Travelling Waves

For the models BM, ULM, BLM, SM we construct travelling waves, i.e., solutions of

Eqs. (1)–(3) or Eq. (4), which depend on the variable 𝜉 = x − Dt(D ≡ const). Such

solutions exist for nondissipative models over a flat bottom (f ± = 0, f̄ = 0, z ≡ 0).

All considered models are invariant under the Galilean transformation, therefore we

can consider steady-state solutions as a representatives of travelling waves.

Steady-State Solutions of (1)–(3)

The following relations can easily be drawn for steady-state solutions of (1)–(3)

hu = Q−
, 𝜂v = Q̄, 𝜁w = Q+

,

1
2
v2 + b̄(h + 𝜂) + p = J̄, h + 𝜂 + 𝜁 = H (5)

and two more integrals can be derived after some calculations

1
2
u2 + bh + b̄𝜂 + p − 𝛽

−

3
u(h2u′)′ − 𝛽

−

6
h2(u′)2 = J−,

1
2
w2 + p − 𝛽

+

3
w(𝜁2w′)′ − 𝛽

+

6
𝜁
2(w′)2 = J+. (6)

We express the unknown variables h, 𝜂, 𝜁 , p, v as functions of u and w and reduce

(1)–(3) to the system of ordinary differential equations

𝛽
−

3
h2uu′′ = 1

2
u2 + bh + b̄𝜂 + p + 𝛽

−

2
h2(u′)2 − J−,

𝛽
+

3
𝜁
2ww′′ = 1

2
w2 + p + 𝛽

+

3
𝜁
2(w′)2 − J+, (7)

where

h = Q−∕u, 𝜁 = Q+∕w, 𝜂 = H − h − 𝜁, v = Q̄∕𝜂,

p = J̄ − 1
2
v2 − b̄(h + 𝜂).
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By choosing the corresponding values 𝛽
±

, Eq. (7) describe steady-state flows for all

mentioned above models BM, ULM, BLM and HM.

Solitary Waves

Consider the special class of solutions for ULM, BLM, SM, which satisfy for |x| →
∞ the following conditions

h → h0, 𝜁 → 𝜁0, u → u0, w → u0,
h′ → 0, h′′ → 0, 𝜁

′ → 0, 𝜁
′′ → 0 (8)

(here and below, the prime denotes differentiation with respect to the variable x).

Solutions of the problem (7)–(8) describe solitary waves moving with the velocity

u0 in the laboratory system of coordinates.

Solitary Waves in SM

For SM the solitary waves have been investigated in [7, 8]. The soliton-like solution

for SM can be found in quadratures. To see that we rewrite (7) for SM in dimension-

less variables

h∗ = h∕H1, u∗ = u∕
√

b̄H1, p∗ = p∕b̄H1,

t∗ = t
√

b̄∕H1, x∗ = x∕H1, Frs = u0∕
√

b̄H1.

(“star” is omitted below).

The governing equations for (7)–(8) take the form

hu = h0Frs, (1 − h)v = (1 − h0)Frs,
1
2
v2 + p = 1

2
Fr2s + p0,

1
2
u2 + h + p + 1

3
hu2h′′ − 1

6
u2(h′)2 = 1

2
Fr2s + h0 + p0. (9)

Equation (9) can be reduced to ODE [9]

(h′)2 = G(h) =
3(h − h0)2(Fr2s − h + h2)

Fr2s h
2
0(1 − h)

. (10)

It follows from (10) that the solitary waves exist for
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Fr2s − h + h2 > 0.

Therefore, the admissible intervals for h are

0 < h0 ≤ h ≤ h−, h+ ≤ h ≤ h0 < 1, (11)

where

h± =
1 ±

√

1 − 4Fr2s
2

. (12)

Naturally, the necessary condition for solitary wave existence reads

Frs ≤
1
2
. (13)

The profile of the symmetric solitary wave can be found from quadratures

x = x±(h) = ±
h

∫

hm

ds
√
G(s).

(14)

Here hm = h+ for a wave of depression and hm = h− for a wave of elevation. The solu-

tion of (14) for Frs = 0.48, h0 = 0.15 is shown by solid curves in Fig. 4 (in dimen-

sional variables).

Remark 4 It is important to underline that solutions (14) can be effectively applied to

large amplitude internal wave simulation for different scales of flow not only at inter-

faces (the second mode symmetric waves), but also to subsurface waves of depression

and to bottom waves of elevation.

Solitary Waves in BLM and ULM

In similar manner, solitary wave solutions for BLM and ULM may be represented in

quadratures. Consider (7) with 𝛽
− = 1, 𝛽+ = 0. The governing equations describing

the long subsurface waves of depression (BLM) take the form

1
2
u2 + bh + b̄𝜂 + p − 1

3
h2uu′′ + 1

2
h2(u′)2 = 1

2
u20 + bh0 + b̄𝜂0 + p0 = J−,

1
2
w2 + p = 1

2
u20 + p0 = J+,

1
2
v2 + b̄(h + 𝜂) + p = 1

2
u20 + b̄(h0 + 𝜂0) + p0 = J̄,

hu = h0u0 = Q−
, 𝜁w = 𝜁0u0 = Q+

, 𝜂v = 𝜂0u0 = Q̄, h + 𝜂 + 𝜁 = H. (15)
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In view of (15) we have

P(𝜂, 𝜁 ) = Q̄2

2𝜂2
− (Q+)2

2𝜁2
+ b̄(H − 𝜁 ) = J̄ − J+ = b̄(h0 + 𝜂0)

or

𝜂
2 = Q̄2

2(J̄ − J+) + (Q+)2∕𝜁2 − 2b̄(H − 𝜁 )
. (16)

It follows from (16)

𝜂 = 𝜂(𝜁 ), h = h(𝜁 ) = H − 𝜁 − 𝜂(𝜁 ). (17)

We may find dependencies 𝜁 = 𝜁1(h), 𝜂 = 𝜂1(h) from (17) and rewrite (15) in the

form

hh′′ − 1
2
(h′)2 = 3

u2
(J− − 1

2
u2 − bh − b̄𝜂 + 1

2
w2 − J+) = 𝛷(h). (18)

Finally, (18) reduces to ODE

(h−1∕2h′)′ = h−3∕2𝛷(h)

or

(h′)2 = 2h𝛹 (h) (19)

with

𝛹 (h) =
h

∫

h0

𝛷(s)
s2

ds. (20)

The wave profile h = h(x) is calculated from (19), (20). Other unknown variables

may be found from (17)–(19). For given dimensionless parameters b̄∕b, h0∕H, 𝜂0∕H
solitary waves represent the one-parameter family depending on the Froude number

Fr =
u0

√
bH

. (21)

Remark 5 For ULM (𝛽
− = 0, 𝛽+ = 1) describing the bottom waves of elevation, the

one-parameter family of solitary waves may be constructed in a similar way or just

by “inversion” solutions of BLM relative to the midline of the channel.

Nonsymmetric Solitary Waves

In contrast to the models ULM, BLM, SM considered above, the solitary waves for

BM can be found only for special values of the dimensionless parameters b̄∕b, h0∕H,
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𝜂0∕H and Fr. The particular case of BM corresponding to the symmetric solitary

waves of the second mode (SM) is considered in section “Solitary Waves in SM”.

An interesting example of a nonsymmetric solitary wave was found experimen-

tally for special initial data in the lock problem shown in Fig. 1b, namely, for

h0 = H∕3, b̄ = b∕3, 𝜂0 ≪ H. The length of the left compartment has been chosen

so that the only one wave moving on the right was generated. The experimental

photo is shown in Fig. 6. From the symmetry consideration of the flow in the regions

0 ≤ y ≤ h0 and h0 ≤ y ≤ H, it may be concluded that the intrusion from the com-

partment (the wave core with dark fluid) consist of the wave of elevation and two

waves of depression. Such waves have been found as solutions of SM for the case

𝜂0 ≪ H in [11] (Fig. 4).

Here we consider the case 𝜂0 > 0. To construct a soliton-like solution, we must

start with the data h = h0, 𝜁 = 𝜁0, u = u0,w = u0, u′ = 0,w′ = 0 for x → −∞ and use

the asymptotics

U⃗(x) = U⃗0 + Ûexp(𝜆x), 𝜆 > 0, (22)

where U⃗(x) = (h, 𝜁 , u,w)Tr. Omitting the standard calculations connecting with the

linearization of (7), we have

𝜆 =
√

3
2A

(
√
B2 − 4AC − B), (23)

where

A = h20𝜁
2
0u

4
0,

B = h20u
2
0(b̄𝜁0 − (1 + 𝜁0∕h0)u20) + 𝜁

2
0u

2
0((b − b̄)h0 − u20) − h0𝜁20u

4
0∕𝜂0,

C = ((b − b̄)h0 − u20)(b̄𝜁0 − (1 + 𝜁0∕h0)u20) − h0u20(b̄𝜁0 − u20)∕𝜂0. (24)

The asymptotics (22)–(24) is developed for arbitrary value of the Froude number

Fr = u20∕
√
bH and the initial layer parameters h0∕H, 𝜁0∕H, b̄∕b, but the steady-state

solutions of (7) satisfying (2) would represent solitary waves with (8) only for special

combinations of the initial layer parameters. In the next section the example of the

nonsymmetric solitary wave will be considered.

Model Validation and Nonstationary Calculations

Consider first steady-state solutions of the developed models and their application

to experimental data, then nonstationary solutions of (1) will be discussed.



100 V. Liapidevskii and N. Gavrilov

Internal Solitary Waves in Laboratory and Field Experiments

Internal Waves of Depression

The constructed solutions for ULM and BLM can be compared with numerous lab-

oratory and field experimental data. We consider first the laboratory experiments on

internal solitary waves of depression performed in [6]. These results are the most

appropriate to the three-layer flow scheme of BLM, since the thickness of the inter-

mediate layer was controlled in experiments. Solitary wave profiles calculated by

(19) are shown in Fig. 7 together with the experimental data from [6] (Fig. 3c, d).

Analogously to the laboratory experiments described above in section “Laboratory

Experiments”, the solitary waves of depression were generated by removing the

vertical gate between two stratified fluids at rest (the lock-exchange problem). The

dimensional parameters determining the waves are h0 = 30 cm, 𝜂0 = 5.5 cm, 𝜁0 =
5 cm, b = 20cm∕s2, b̄ = 1

2
b, Fr = 0.485 (Fig. 7a) and h0 = 29.5 cm, 𝜂0 = 5.5 cm,

𝜁0 = 1.5 cm, b = 20 cm∕s2, b̄ = 1
2
b, Fr = 0.462 (Fig. 7b) (the runs No. 1 and No.

24 in [6]). Solid black lines on Fig. 7 are the results of calculations, solid white lines

are the experimentally found positions of pycnocline between the layers, the back-

grounds are photos of the experiment.

In oceans and seas the density stratification is rather complicated. Nevertheless,

we may apply the three-layer shallow water models for large internal waves in shelf

zones. In Fig. 8a the time-dependence of isopycnal deformation during the subsur-

face solitary wave passage in the shelf zone of the South China sea is shown [20]

(Fig. 3e). Thick black lines are the result of calculation by BLM with the following

dimensional data: h0 = 395m, 𝜂0 = 100m, 𝜁0 = 30m, b = 4 × 10−2m∕s2, b̄ = 0.3b,

Fr = 0.447. The total depth is 525 m.

Internal Waves of Elevation

As was mentioned above, UBL is developed for large internal waves of elevation. In

laboratory experiments it can be used for calculations as the spatial patterns so the

temporal patterns of bottom internal waves (Fig. 3a and b). The solid black lines are

the results of calculations by ULM with the parameters: h0 = 0.3 cm, 𝜂0 = 0.8 cm,

𝜁0 = 6.9 cm, b = 5 cm∕s2, b̄ = 0.5b, Fr = 0.476. UBL also can be applied for field

data taken from [18] (Fig. 8b). The measurements of the vertical temperature dis-

tribution were performed 09.09.2011 in nearshore waters of the Sea of Japan at the

depth 18 m. In Fig. 8b the contour plot of temperature (thin lines) is shown together

with the calculations by ULM (thick lines). The upper layer was practically homo-

geneous with the temperature 18 ◦C. The “bolus” of cold water with the temperature

10–12
◦C in the wave core passed through the bottom measurement station in 5 min.

The wave amplitude reached half of the total depth. The ULM parameters of the wave

are: h0 = 0.9m, 𝜂0 = 2m, 𝜁0 = 15.1m, b = 1.2 × 10−2 m∕s2, b̄ = 0.3b, Fr = 0.47.
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Fig. 7 Solitary wave profiles calculated by (19) (black solid lines) together with the experimental

data from [6]: a h0 = 30 cm, 𝜂0 = 5.5 cm, 𝜁0 = 5 cm, b = 20 cm∕s2, b̄ = 1
2
b, Fr = 0.485 (Run 1); b

h0 = 29.5 cm, 𝜂0 = 5.5 cm, 𝜁0 = 1.5 cm, b = 20 cm∕s2, b̄ = b∕2, Fr = 0.462 (Run 24). White solid

lines are experimental boundaries of pycnocline

Nonsymmetric Solitary Waves

An interesting example of the short intrusion spreading as the nonsymmetric internal

solitary wave is shown in Fig. 6. The wave carries colored fluid from the left com-

partment after removing the vertical wall in the lock-exchange problem depicted in

Fig. 1b. The boundaries of the trapped core practically coincide with the solution of

(7) with vanishing interface thickness out of the wave. This rather simple solution

(internal solid lines in Fig. 6) has been described in [11]. Note that the mean fluid

velocity in the core is constant and equal to the wave velocity. Therefore, the wave

profile in such wave may be found in explicit form [9].

Let us consider further the steady-state solution of (7)–(8) with the asymptotics

(22)–(24). For the dimensional parameters H = 12 cm, 𝜂0 = 0.4 cm, h0 = H∕3 −
𝜂0∕2, 𝜁0 = 2H∕3 − 𝜂0∕2, b = 5 cm∕s2, b̄ = b∕3, which correspond to experimental

data, the numerical solution represent the solitary wave (outer solid lines in Fig. 6).

It is demonstrated experimentally [11] that such wave keeps its form for a long
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Fig. 8 Solitary waves in field data: a time-dependence of isopycnal deformation during the subsur-

face solitary wave passage in the shelf zone of the South China sea [20]. Thick black lines are the

result of calculation by BLM (h0 = 395m, 𝜂0 = 100m, 𝜁0 = 30m, b = 4 × 10−2m∕s2, b̄ = 0.3b,

Fr = 0.447); b bottom solitary wave in the Sea of Japan at the depth 18 m. The contour plot of tem-

perature (thin lines) is shown together with the calculations by ULM (thick lines). The ULM param-

eters of the wave are: h0 = 0.9m, 𝜂0 = 2m, 𝜁0 = 15.1m, b = 1.2 × 10−2 m∕s2, b̄ = 0.3b, Fr = 0.47

distance as it moves along the pycnocline in the flume. If the governing parameters

in the lock problem is changed, the intrusion stops to be soliton-like and it starts to

generate nonstationary internal waves of the first mode (see section “Nonsymmetric

Solitary Waves”).

Non-stationary Problem

Let us return to the basic model (1). For numerical realization of Eq. (1) it is con-

venient to rewrite the system in the form of conservation laws. Analogously to [12],

Eq. (1) can be written as follows

ht + (hu)x = 0, 𝜁t + (𝜂w)x = 0,

Kt + (Ku − 1
2
u2 + b(h + z) + b̄𝜂 + p − 𝛽

−

2
h2u2x)x = f −,

Rt + (Rw − 1
2
w2 + p − 𝛽

+

2
𝜁
2w2

x)x = f +. (25)
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Here

K = u − 𝛽
−

3h
(h3ux)x, R = w − 𝛽

+

3𝜁
(𝜁3wx)x,

𝜂 = H − h − 𝜁, v = Q(t) − hu − 𝜁w
𝜂

. (26)

We apply Eqs. (25)–(26) for numerical calculations of nonstationary problems, con-

cerning the propagation of large amplitude internal waves in the frame of mod-

els BM, ULM, BLM, SM. In all cases we consider wave generation inside of the

channel (the lock problem etc.), so we apply the “wall condition” at the left and

right boundaries of the calculation domain (Q ≡ 0). The variables h, 𝜁 ,K,R are

considered as dependent variables, describing the time evolution of the flow, and

the velocities u = u(t, x) and w = w(t, x) can be restored for given h, 𝜁 , hx, 𝜁x,K and

R from the linear system of ODE (26). This numerical scheme have been devel-

oped in [21] for open channel flows and applied in [9, 11] for internal wave cal-

culations. The numerical scheme is formally a version of Godunov’s scheme, in

which the fluxes through the lateral boundaries of the meshes are calculated by a

Riemann solver. To find the appropriate time step for SM or USM, BSM, BM mod-

els we consider the equilibrium system without dispersion (𝛽
± = 0), which coin-

cides with common two or three-layer shallow water equations, correspondingly.

In all calculations presented in the paper the boundary conditions are u = 0,w = 0
at the side walls of the simulating domain. As the initial conditions, we use the

exact solution (10) for SM or the step-wise functions h = h0(x), 𝜁 = 𝜁0(x) together

with u = u0(x) ≡ 0,w = w0(x) ≡ 0,K = K0(x) ≡ 0,R = R0(x) ≡ 0. The topography

y = z(x) is also included, when the problem on the solitary wave shoaling is

considered.

Decay of Solitary Waves

In real stratified fluids solitary waves do not propagate at a constant velocity. Friction

and entrainment of an ambient fluid result in the wave deceleration. Experiments on

the symmetric solitary wave propagation along the pycnocline together with numer-

ical calculations by SM have demonstrated the ability of the two-layer flow scheme

to simulate the dissipation processes in the flow [7, 9]. It was shown that the main

input in the energy dissipation of solitary waves was given by the interfacial friction

term in (4)

f − = −
ci(u − v)|u − v|

h
, f̄ =

ci(u − v)|u − v|
H1 − h

(27)

and the bottom friction could be neglected. The friction coefficient ci = 10−2 was

chosen considerably larger then the usual value of the bottom friction coefficient cb ∼
4 × 10−3 for turbulent flows, because the mechanisms of the bottom and interlayer



104 V. Liapidevskii and N. Gavrilov

Fig. 9 Decay of the symmetric solitary wave. Bold points and bold line represent the experimental

positions of wave crests. Thin solid lines show the calculated wave profiles through the fixed time

interval (4 s). The exact solution (10), (14) withH1 = 5 cm, h0 = 3.65 cm, b̄ = 2.5 cm∕s2,Fr = 0.48
was used as initial data

friction are quite different. If the bottom friction in turbulent flows is a rather classic

problem, the dissipation due to instability generation at the interfaces caused by the

large internal wave propagation is the object of intensive investigations in the last

decades [1, 6].

The results of the numerical calculation of the solitary wave propagation in a flat

horizontal channel is shown in Fig. 9 (the model SM). The exact solution (10), (14)

with H1 = 5 cm, h0 = 3.65 cm, b̄ = 2.5 cm∕s2, Fr = 0.48 was used as initial data.

The calculated wave profiles are plotted through the fixed time interval Δt = 4 s

(thin lines). The bold points in Fig. 9 together with the bold line passing through

them are the positions of the solitary wave crests found from experiments [9]. One

can see from Fig. 9 that the mathematical model (4), (27) with the friction coefficient

ci = 10−2 describes the decay of the solitary wave along the channel. It is important

to note that a solitary wave lost its initial symmetry during propagation due to friction

effects and the shedding rate of mass from the wave is closely related to the friction

rate.

Shoaling Solitary Waves

In the section we compare the ability of the two- and three-layer models (SM and

BM) to simulate the shoaling subsurface solitary waves up to the moment of an

internal bore formation. Transformation of the internal solitary wave of depression

in continuously stratified fluid over a slope is shown in Fig. 10. The 2D nonlinear

numerical model with continuous vertical stratification and turbulent exchange has

been developed in [28]. The model contains a number of parameters and have been

applied to different types of stratified flows. The calculated wave profiles at different

positions over the slope are taken from Fig. 2a and b in [28]. The thin lines show the
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Fig. 10 Shoaling internal

wave over a slope

(tan 𝛼 = 0.05). The wave

moves to the right.

Comparison of numerical

results from [28] (thin lines,

Fig. 2a and b) with the

numerical solutions by the

basic model (BM). The outer

thick curves show the

boundaries of the layers in

BM and the internal thick

curve shows the interface in

the two-layer flow described

by SM [10]. Corresponding

wave parameters are given in

the text

deformation of the density level with the density contour interval of 0.5 kg∕m3
. The

comparison with calculations by the two-layer model SM has been performed in [10]

(Fig. 7). In both cases the calculations have started with soliton-like initial profile of

the wave. In Fig. 10 we combine these calculations with calculations by the three-

layer model BM. Note that for BM calculations the initial solitary wave profile is

constructed by the steady-state solution of BLM (19)–(20). The initial stratification

for the three-layer scheme of flow is chosen as follows: H = 300m, h0 = 230m,

𝜂0 = 30m, b = 6 × 10−2 m∕s2, b̄ = 0.25b, Fr = 0.495. The wave moves to the right

over the slope (zx ≡ 0.05). The outer thick curves show the boundaries of the layers

in BM and the internal thick curve shows the interface in the two-layer flow described

by SM. We may draw two main conclusions from Fig. 10:

1. the models derived above may be applied to simulate large internal waves in

continuously stratified fluids too;

2. shoaling large internal waves can be described adequately by the models SM,

BLM, which don’t take into account nonhydrostatic effects in the upper layer.

Nonsymmetric Solitary Waves

In section “Nonsymmetric Solitary Waves” the steady-state solution of BM describ-

ing a nonsymmetric solitary wave of the second mode was constructed and compared

with the experiment (Fig. 6). To investigate the stability of the solution, we must

calculate the corresponding nonstationary problem. In Fig. 11 the result of the non-

symmetric wave evolution calculated by the three-layer model (BM) is shown. As

the initial data for calculations, the wave of permanent form shown in Fig. 6 is cho-

sen. It may be concluded from Fig. 11 that after passing more then ten initial lengths
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Fig. 11 Evolution of the

nonsymmetric solitary wave

shown in Fig. 6. The wave

profile (solid lines) is

calculated by the three-layer

model (BM). The dark

(colored) domain is the fluid

carried by the wave along the

pycnocline in the experiment

the wave keeps its symmetry, though the amplitude of the wave slightly decreases.

Moreover, the calculated wave boundaries correspond to the boundaries of the dark

(colored) fluid carried by the wave along the pycnocline in the corresponding exper-

iment taken from [11] (Fig. 4b) and sketched in Fig. 1b.

In the same experiment shown in Fig. 1b, but with the initial depth h0 slightly

changed, the wave symmetry breaks. In Fig. 5 the experimental form of the intru-

sion generated in the lock problem shown in Fig. 1b is presented together with the

numerical calculations by the model BM. The only distinction from the previous

case of the symmetric wave is that the initial depth of the lower layer was taken

h0 = 5∕12H instead of h0 = 4 cm and, correspondingly, b̄ = 5b∕12. We can see that

the wave lost its permanent form and it is generating the trailing waves of the first

mode. It may be concluded also from Fig. 5 that BM reproduces well the main fea-

tures of the nonstationary wave interaction.

Conclusions

In the paper the hierarchy of multi-layer shallow water equations describing large

internal wave dynamics is developed. The main feature of considered models is that

the nonhydrostatic effects are taken into account, but not in all layers. Such models

allow us to find analytically soliton-like solutions representing internal waves of the

first and the second modes. Laboratory experiments as well as the field data pre-

sented in the paper show that the shallow water approximation is adequate for large

internal waves, which amplitude is comparable with the total depth of the channel.

The three-layer shallow water equations (1) with the intermediate hydrostatic layer is

chosen as the basic model (BM). The equations in the outer layers contain the addi-

tional nonhydrostatic pressure terms analogous to that in Green-Naghdi equations

developed for open channel flows. In fact, Eq. (1) are a variant of multi-layer equa-

tions derived in [2]. The basic model can be applied effectively to simulate intrusions

propagating along the interfaces (Fig. 5). Moreover, it may be used for simulation of
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shoaling internal waves and solibore formation (Fig. 10). The steady-state solution

of BM describes also the nonsymmetric solitary wave of the second mode shown in

Fig. 6.

The submodels ULM, BLM, SM of the basic model BM allow us to find the

soliton-like waves in two- or three-layer stratified fluids. One-parameter family of

solitary solutions for ULM, BLM or for SM depends on the Froude number Fr or

Frs, correspondingly. It is worth to note that BM doesn’t have such solutions for

arbitrary initial flow parameters.

Decay of internal waves due to breaking and entrainment processes is very impor-

tant for wave dynamics. It is shown for the symmetric solitary waves of the second

mode that the decay of internal waves can be simulated by the corresponding fric-

tion terms (27) (Fig. 9). Nevertheless, future development of the multi-layer shallow

water approach must include the modelling of mixing and entrainment processes at

the interfaces.
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Internal Gravity Waves in Horizontally
Inhomogeneous Ocean

Vitaly V. Bulatov and Yury V. Vladimirov

Introduction

The dynamics of wave motion in the ocean is currently of great interest because
they are important in geophysics and oceanology. As a rule, theoretical analysis of
these phenomena is based on the asymptotic methods, because the study of
unperturbed hydrodynamic equations leads to asymptotic expansions (ansatzs,
which is a German term for a type of solutions). These expansions permit solving
the problems of perturbed equations, which can be used to describe the effects of
nonlinearity, inhomogeneity, and non-stationary behavior of the real ocean. To
obtain a detailed description of a wide range of physical phenomena related to wave
dynamics of the stratified horizontally inhomogeneous unsteady ocean, it is nec-
essary to start from the sufficiently developed mathematical models, which are
usually quite complicated, nonlinear, and multi-parametric. They can be investi-
gated completely only using efficient numerical methods. However, there are sev-
eral cases, in which a preliminary qualitative concept of the phenomena under study
can be obtained on the basis of simper asymptotic models and analytic methods for
studying these models. These models then enter a set of “blocks” used to construct
the complete pattern of wave dynamics, which permits discovering the correlation
between different wave phenomena and their relationship. Sometimes, despite the
seeming simplicity of the model assumptions, a successive choice of the solution
form allows one to obtain physically interesting results [1, 2, 5, 14].

The propagation of internal gravity waves (IGW) in the ocean is strongly
affected by the horizontal inhomogeneity and unsteady behavior of the basic
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hydrophysical parameters. In this contribution, we generalize a method of geo-
metrical optics, i.e., the space-time ray method, which permits solving the problem
of mathematical modeling of IGW dynamics in the horizontally inhomogeneous
and vertically stratified ocean. The ray representations agree well with the intuitive
and empirical concepts of IGW propagation in the real ocean. This method is
sufficiently universal, and in many cases, this is the only possible method for
approximate calculations of wave fields in the ocean. The most typical horizontal
inhomogeneities of the real ocean are the variations in the bottom topography of the
ocean, horizontal inhomogeneities of the density field, and unsteady ocean currents.
An exact analytic solution can be obtained, for example, using the method of
separation of variables only if the density distribution and the bottom topography
can be described by sufficiently simple model functions. If the bottom topography
and the ocean stratification are arbitrary, then one can construct only the asymptotic
representations of the solution or solve the problem numerically. But the numerical
solution does not permit obtaining and analyzing the qualitative characteristics of
the wave field at large distances, which is necessary, for example, when solving the
IGW detection problem by remote methods including, for example, radar imaging
[8, 10, 12, 13, 15].

The mathematical modeling of IGW wave dynamics in the horizontally inho-
mogeneous and vertically stratified ocean is possible on the basis of a modified
version of the space-time ray method (a method of geometrical optics). The specific
form of asymptotic representations can be determined by solving the problems,
which describe the IGW dynamics in the vertically stratified, horizontally homo-
geneous, and steady-state ocean. As a rule, when studying the evolution of IGW
packets in the ocean with slowly varying and unsteady parameters, it is assumed
that this wave packet is locally harmonic. In contrast to the majority of works, in
which this problem has been studied, the proposed modified method of geometrical
optics allows one to describe the structure of wave packets near singular surfaces
such as caustics and wave fronts [3, 4, 6, 7].

The term “geometrical optics” has different meanings in the scientific literature.
The geometrical optics understood in the narrow (or ray) sense deals only with the
methods for constructing images by using the rays, while the geometrical optics
understood in the wider (or wave) sense is a method for obtaining approximate
descriptions of wave fields. In the wave interpretation, which is used in this paper,
the rays, as a rule, form only the geometric skeleton, on which the wave filed
is “sewn on”. According to the two previous interpretations of the geometrical
optics, two periods in its development exist. The first ray period was ideologically
completed by Hamilton’s fundamental works, which significantly influenced the
development of the classical mechanics. The construction of rays underlies the
instrumental optics, which is mainly oriented to design various optical devices. The
contemporary wave period originates from the Debye’s works, which decisively
influenced the formation of ray concepts in the wave theory [5].

The asymptotic representation of the solutions of wave packet propagation in the
ocean with horizontally inhomogeneous density and numerical computations at the
typical oceanic parameters testify that the horizontal inhomogeneity significantly
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affects the real IGW dynamics in the ocean. All results of wave dynamics modeling
presented in this contribution can be used for arbitrary density distributions and
other parameters of the stratified ocean. It is necessary to consider them in the
context of consistency with the available data of IGW full-scale measurements in
the ocean. Such methods for analyzing the wave fields are important not only
because they are illustrative, universal, and efficient in various problems, but also
because they can serve as a semi-empirical basis for the other approximate methods
in the theory of wave packet propagation in the ocean.

The waves in media with slowly varying parameters have been studied in many
publications, while the amount of works dealing with the problem of studying IGW
in the media with variable parameters is quite rare (mainly because of significant
mathematical difficulties encountered in these problems). In the first section of this
paper, we present the basics of the space-time ray method (a method of geometrical
optics) with regard to the special characteristics of IGW, which permits studying the
wave dynamics in the horizontally inhomogeneous and vertically stratified ocean.
In the second section, we discuss the problems of IGW propagation in the stratified
ocean of variable depth.

IGW Fields in the Horizontally Inhomogeneous Ocean

Our analysis starts from a linear system of hydrodynamic equations [8, 10, 13, 15]

ρ0
∂u1
∂t = − ∂p

∂x , ρ0
∂u2
∂t = − ∂p

∂y , ρ0 ∂w
∂t = − ∂p

∂z + gρ,
∂u1
∂x + ∂u2

∂y + ∂w
∂z =0, ∂ρ

∂t + u1
∂ρ0
∂x + u2

∂ρ0
∂y +w ∂ρ0

∂z =0.
ð1:1Þ

Here (u1, u2, w) are components of the IGW velocity vector; p and ρ are per-
turbations of the pressure and density; g is the acceleration of gravity (the z axis is
directed downwards). Using the Boussinesq approximation, which means that the
unperturbed density ρ0ðz, x, yÞ in the first three equations in system (1.1) is assumed
to be constant, we reduce system (1.1) to the form:

∂
4w

∂z2∂t2 +Δ ∂
2w
∂t2 + g

ρ0
Δðu1 ∂ρ0

∂x + u2
∂ρ0
∂y +w ∂ρ0

∂z Þ=0,
∂

∂t ðΔu1 + ∂
2w

∂z∂xÞ=0, ∂

∂t ðΔu2 + ∂
2w

∂z∂yÞ=0, Δ= ∂
2

∂x2 +
∂
2

∂y2 .
ð1:2Þ

We use the “rigid lid” condition at the surface and zero velocity at the bottom:
W =0, (z = 0, −H), where H is the ocean depth as the boundary conditions. We
assume that, in the media with horizontally inhomogeneous density field, the
steady-state flows due to this field can be neglected. Indeed, it follows from the
hydrodynamic equations that if the unperturbed density is a function of horizontal
coordinates, then the existence of the steady-state density distribution ρ0ðz, x, yÞ
implies the existence of steady-state flows. These flows are rather slow, and they
can be neglected in the first approximation. Therefore, it is usually assumed that
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ρ0ðz, x, yÞ is the background density field formed under the action of mass forces
and non-adiabatic sources, and this field is given a priori, for example, by exper-
imental data [2, 5].

Now we consider harmonic waves (u1, u2, w) = exp ðiω tÞðU1,U2,WÞ. System
(2) cannot be solved by the method of separation of variables, and therefore it is
necessary to use asymptotic methods. The scales of horizontal variations in the
ocean parameters can be greater than the scales of vertical variability [8, 10, 13, 15].
Further we introduce the dimensionless variables: x* = x ̸L, y* = y ̸L, z* = z ̸h,
where L is the characteristic scale of horizontal variations of density ρ0 and h is the
characteristic scale of vertical variations in ρ0 (for example, the width of the
thermocline). In the dimensionless coordinates, system (1.2) becomes (hereinafter,
the asterisk in the indices is omitted)

−ω 2ð∂2W
∂z2 + ε2 ΔWÞ+ ε2 g1

ρ0
ðεU1

∂ρ0
∂x + εU2

∂ρ0
∂y +W ∂ρ0

∂z Þ=0,

εΔU1 + ∂
2W
∂z∂x =0, εΔU2 + ∂

2W
∂z∂y =0, ε= h

L < <1, g1 =
g
h .

ð1:3Þ

We seek for the asymptotic solution of (1.3) in the form typical for the method of
geometrical optics [7].

Vðz, x, yÞ= ∑
∞

m=0
ðiεÞmVmðz, x, yÞ expðSðx, yÞ ̸iεÞ,

Vðz, x, yÞ= ðU1ðz, x, yÞ,U2ðz, x, yÞ,Wðz, x, yÞÞ,

where function Sðx, yÞ and vector function Vm, m = 0, 1…, are sought. As a rule,
below, we determine only the leading term of this asymptotic expansion for the
vertical velocity component W0ðz, x, yÞ. We obtain the following from the two last
equations in (1.3)

U10 = −
i∂S ̸∂x
∇Sj j2

∂W0

∂z
, U20 = −

i∂S ̸∂y
∇Sj j2

∂W0

∂z
, ∇Sj j= ∂S

∂x

� �2

+
∂S
∂y

� �2

.

Equating the terms of order O(1), we obtain the equation for function W0ðz, x, yÞ.
This equation is written as

∂
2W0ðz, x, yÞ

∂z2
+ ∇Sj j2 N2ðz, x, yÞ

ω2 − 1
� �

W0ðz, x, yÞ=0,

W0ð0, x, yÞ=W0ð−H, x, yÞ=0,
ð1:4Þ

where N2ðz, x, yÞ= g1
ρ0

∂ρ0
∂z is the Brunt–Väisälä frequency depending on the vertical

and horizontal coordinates. It is well known that the basic boundary-value vertical
spectral problem for internal waves (1.4) has countably many eigenfunctions W0n

and eigenvalues Knðx, y,ωÞ≡ ∇Snj j. Functions W0nðz, x, yÞ and Knðx, y,ωÞ are
assumed to be known; index n is omitted because we assume that all calculations
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are carried out for a separate wave mode. We use the eikonal equation
∂S ̸∂xð Þ2 + ∂S ̸∂yð Þ2 =K2ðx, yÞ to determine function Sðx, yÞ. In the plane case, the
initial conditions for eikonal S are posed on line L: x0ðαÞ, y0ðαÞ, Sðx, yÞjL = S0ðαÞ.
To solve the eikonal equation, we construct the rays, i.e., the characteristics of this
equation, which have the following form

dx
dσ

=
p

Kðx, yÞ ,
dp
dσ

=
∂Kðx, yÞ

∂x
,

dy
dσ

=
q

Kðx, yÞ ,
dq
dσ

=
∂Kðx, yÞ

∂y
, ð1:5Þ

where p= ∂S ̸∂x, q= ∂S ̸∂y, dσ is the ray length element. The initial conditions of
p0 and q0 for solution (1.5) are determined by solving the following system

p0
∂x0
∂α

+ q0
∂y0
∂α

=
∂S0
∂α

, p20 + q20 =K2 x0ðαÞ, y0ðαÞð Þ

whose solution and the initial conditions x0ðαÞ, y0ðαÞ, p0ðαÞ, q0ðαÞ determine the
ray x= xðσ, αÞ, y= yðσ, αÞ. After the rays are constructed, eikonal S can be deter-
mined by integrating along the ray: S= S0ðαÞ+

R σ
0 K xðσ, αÞ, yðσ, αÞð Þdσ. Eigen-

function W0ðz, x, yÞ is calculated up to multiplication by arbitrary function A0ðx, yÞ:
W0ðz, x, yÞ=A0ðx, yÞ f0ðz, x, yÞ, where f0ðz, x, yÞ is the solution of the basic vertical
spectral problem with normalization

RH
0 ðN2ðz, x, yÞ−ω2Þf 20 ðz, x, yÞdz=1. Then,

after rather cumbersome analytic calculations, we obtain the conservation law along

the eikonal characteristics: d
dσ ln A2

0ðx, yÞIðx, yÞ
K2ðx, yÞ

� �
=0, where Iðx, yÞ is the geometric

divergence of the rays (characteristics). We note that the wave energy flux is
proportional to A2

0K
− 1R, where R is the width of an elementary ray tube; therefore,

the quantity equal to the wave energy divided by the modulus of the wave vector is
preserved in this case.

The long-range IGW fields in the real ocean are, as a rule, non-harmonic wave
packets. Indeed, at a far distance form perturbation sources, the complete wave field
is a sum of separate wave modes whose asymptotics, depending on the stratifica-
tion, depth, and other parameters of the ocean, can be expressed in terms of the Airy
function or the Fresnel integrals. Therefore, to study the problem of wave packet
evolution in a horizontally smoothly inhomogeneous and unsteady stratified med-
ium, it is necessary to use another ansatz [2, 5, 7].

We introduce slow variables x* = ε x, y* = ε y, t* = ε t (since z is not assumed
to be a slow variable, we omit the asterisk in the index), where ε= λ ̸L≪ 1 is a
small parameter characterizing the smoothness of the medium variations along the
horizontal line (λ is the characteristic wave length, and L is the scale of horizontal
inhomogeneity). Then system (1.2) for determining the velocity components
ðU1,U2,WÞ in these slow variables becomes
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∂
4W

∂z2∂t2 + ε2 ∂
2W
∂t2 + g

ρ0
ΔðεU1

∂ρ0
∂x + εU2

∂ρ0
∂y +W ∂ρ0

∂z Þ=0,

εΔU1 + ∂
2W
∂z∂x =0, εΔU2 + ∂

2W
∂z∂y =0.

ð1:6Þ

Further we consider the superposition of harmonic waves (in slow variables

x, y, t) W =
R
ω ∑

∞

m=0
ði εÞmWmðω, z, x, yÞ exp i

ε ω t− Smðω, x, yÞ½ �� �
dω, where func-

tions Smðω, x, yÞ are assumed to be odd with respect to ω and min
ω

∂S ̸∂ω is attained

at ω=0 (for all x and y). We substitute this representation into (1.6) and see that
function Wmðω, z, x, yÞ for ω=0 has a pole of order m. Therefore, the model
integrals, or phase functions RmðσÞ, for some terms of the asymptotic series are
expressions RmðσÞ= 1

2 π

R∞
−∞ i ̸ωð Þm− 1 exp i ðω3 ̸3− σωÞð Þdω, where the contour of

integration bypasses point ω=0 from above, which ensures the exponential decay
of functions RmðσÞ for σ≫ 1. Functions RmðσÞ have the following property
dRmðσÞ
dσ =Rm− 1ðσÞ, where R0ðσÞ=Ai′ðσÞ, R1ðσÞ=AiðσÞ, R2ðσÞ=

R σ
−∞ AiðuÞdu, etc.

Obviously, starting from the corresponding properties of the Airy integrals, we can
conclude that functions RmðσÞ are related as R− 1ðσÞ+ σR1ðσÞ=0,
R− 3ðσÞ+2R0ðσÞ− σ2R1ðσÞ=0. For the model integrals RmðσÞ describing the
long-range IGW fields in the deep ocean, one can use the following expressions
R0ðσÞ=Re

R∞
0 exp − itσ− it2 ̸2ð Þ dt≡ReΦðσÞ; in this case, functions Rm ðσÞ sat-

isfy the recurrence relations R− 3 ðσÞ− 2iR− 1 ðσÞ− iσR− 2ðσÞ=0 and
R− 1ðσÞ+ iσR0 ðσÞ=0 [2, 5, 7]. It follows from the above and the structure of the
first term of the uniform asymptotics (Airy or Fresnel wave) in a stratified and
horizontally homogeneous medium that the solution of system (1.6) can be sought
in the following form (index n is omitted for a separate wave mode)

W = ε0W0ðz, x, y, tÞR0ðσÞ+ εaW1ðz, x, y, tÞR1ðσÞ+ ε2aW2ðz, x, y, tÞR2ðσÞ+⋯,
U= ε1− aU0ðz, x, y, tÞR1ðσÞ+ εU1ðz, x, y, tÞR2ðσÞ+ ε1+ aU2ðz, x, y, tÞR3ðσÞ+⋯,

where U is the vector of IGW horizontal velocity and the phase function argument
σ= Sðx, y, tÞ ̸að Þaε− a is assumed to be of the order of unity. This expansion agrees
well with the general approach of the method of geometrical optics and the
space-time ray method. Its generalization is used to study the dynamics of IGW
fields in the horizontally inhomogeneous stratified ocean.

We also note that this structure of the solution implies that, in a horizontally
inhomogeneous medium, the solution depends on both the “fast” (vertical coordi-
nate) and “slow” (horizontal coordinates) variables. As a rule, the solution is sought
in “slow” variables, and the structure elements depending on “fast” variables are
obtained as integrals of some functions slowly varying along the space-time rays.
This choice of the solution permits describing the uniform asymptotics of IGW
fields propagating in the stratified ocean with slowly varying parameters, which is
true both near and far from the wave fronts of a separate wave mode. If it is
necessary to describe the behavior of the field only near the wave front, then one
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can use one of the methods of the geometrical optics, i.e., the “traveling wave”
method, and the weakly dispersion approximation in the form of the corresponding
local asymptotics to seek the representation of the phase function argument σ in the
form σ= αðt, x, yÞðSðt, x, yÞ− ε tÞε− a; here function Sðt, x, yÞ describes the wave
front position. It is found by solving the eikonal equation ∇2S= c− 2ðx, y, tÞ, where
cðt, x, yÞ is the maximal IGW group velocity of the corresponding wave mode, i.e.,
the first term in the expansion of the dispersion curve at zero. Function αðt, x, yÞ (the
second term of the dispersion curve expansion) describes the space-time evolution
of the pulse width of non-harmonic Airy or Fresnel waves and can be found from
some conservation laws along the eikonal equation characteristics whose specific
form is determined by the physical conditions of the problems under study.

Further we compare the analytic results with the results of the analysis of
measurements of IGW variability in a real medium with horizontally varying
characteristics, namely, in the Northwest Pacific, according to the data recorded by
moorings in the “Megapolygon” experiment in the Northwest Pacific. The mea-
surements of the currents and the temperature recorded by the “Megapoly-
gon” moorings allowed us to study the variability of tidal internal waves over the
area of 460 × 520 km. The length of the tidal internal wave was calculated by
integration of the basic IGW spectral equation with the real depth distribution of the
Vaisala-Brunt frequency and with zero boundary conditions at the ocean surface
and the ocean floor taking into account the Earth’s rotation. The wave length of the
first mode in the “Megapolygon” area is equal approximately to 130 km, the wave
length near the Emperor Ridge is greater (167 km), and it is equal to 156 km at a
distance of 2000 km to the east. The wave propagation direction is also very stable
and varies from 240° to 300°, which corresponds to the actual wave propagation to
the west and northwest from the Emperor Ridge. Some diffraction of tidal internal
waves was observed in the “Megapolygon” study site, i.e., the direction of wave
propagation varied from the northwest in the southeast of the site and to the west in
its northwest part [5].

Let us consider the amplitude variations of the internal tide in the course of its
propagation to the west and to the east from the Emperor Ridge. The IGW
amplitudes were calculated from the deviations of the temperature values measured
on moorings; then, the values were divided by the average vertical gradient of
temperature. Figure 1 illustrates the variations in the tidal internal wave amplitude
versus distance. The calculations show that the IGW amplitude decreases

Fig. 1 The tidal IGW
amplitude A versus the
distance to the Emperor
Seamounts
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approximately by 10% at the distance equal to the length of the tidal internal wave
(130–150 km) [11].

We can also estimate the influence of different factors, including the horizontal
inhomogeneity of density, on the IGW decay. In the framework of the theory
discussed above, we consider the evolution of IGW frequency ω corresponding to
the semidiurnal period T= 12 h, which also admits slow variations in the stratifi-
cation along the wave propagation path. The real geometry of the experiment
allows us to assume that the problem under study is two-dimensional, which means
that the stratification depends only on two variables: depth z and distance x along
the wave propagation path.

Now we consider the case of constant depth H and stratification N linearly
depending only on x: NðxÞ=N1 + ðN2 −N1Þ x ̸L, where L is the distance between
the two observation points, x= x1 = 0 is the initial point, x= x1 = L is the end point,
and N1, 2 =Nðx1, 2Þ. We consider only the first mode η1ðz, xÞ of the amplitude of the
vertical displacement of particles and omit its index. We seek the amplitude ηðz, xÞ
in the form ηðz, xÞ=AðxÞ f ðz, xÞ, where f ðz, xÞ is the normalized eigenfunction of
the standard boundary-value problem for the equation of internal waves with the
normalization

RH
0 ðN2ðxÞ−ω2Þ f 2ðz, xÞ dz=1, which has the form

f ðz, xÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
HðN2ðxÞ−ω2Þ

q
sinðπ z ̸HÞ. Amplitude A(x) depending only on x is deter-

mined from the conservation law: A2ðx1Þ
k2ðx1Þ daðx1Þ=

A2ðx2Þ
k2ðx2Þ daðx2Þ, where kðxÞ is the

absolute value of the horizontal wave vector, and daðxÞ is the width of an ele-
mentary wave tube. Since the problem is two-dimensional, the width of the ray tube
does not vary along the ray and the conservation law is simpler: AðxÞ ̸kðxÞ= const.
Since we consider small values of ω, the velocity of wave propagation is close to
the maximum group velocity cðxÞ=NðxÞH ̸π; hence, the wave number is equal to
kðxÞ=ωπ ̸NðxÞH and the corresponding wave length is equal to
λðxÞ=2NðxÞH ̸ω. Then, under the assumption that the observation points are at the
same depth, it follows from the conservation law ðA1, 2 =Aðx1, 2ÞÞ that A1N1 =A2N2

or A2 =A1λ1 ̸λ2. Then the total amplitude attains the following values

W1, 2 =A1, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

H ðN2
1, 2 −ω2Þ

q
, which implies W2 =W1

N1
N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2

1 −ω2Þ
ðN2

2 −ω2Þ

r
or W2 =W1λ

2
1 ̸λ22,

because ω≪N, i.e., the amplitude of the internal gravity wave is inversely pro-
portional to the squared wave length. The wave travel time τ along the horizontal
ray is determined from the equation of characteristics dx

dt = cðxÞ, where
cðxÞ= ðN1 + axÞH ̸π and a= ðN2 −N1Þ ̸L. Integrating this equation, we obtain the

wave travel time τ= π
aH ln

N2
N1

� �
= T L

ðλ2 − λ1Þ ln
λ2
λ1

� �
. The available data of full-scale

tests give the following values of the basic parameters of the problem: λ1 = 167 km,
λ2 = 156 km, L= 2000 km. The wave attenuation coefficient without the wave
length variations taken into account, which describes the amplitude decrease versus
wave length denoted by β, gives the value of β: β=0.2167 ̸2000 = 0.874 with regard
to relation W2 ̸W2 = 0.2≡ βt ̸T = βL ̸λ derived from the observation results. The
attenuation with regard to the wave length variations along the ray, W2 ̸W1 = βτ ̸T ,
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with the theoretically calculated time of the wave travel time τ gives the following
value β=0.878. Thus, these estimates allow us to conclude that the influence of the
density field inhomogeneities, which is taken into account in the above-described
method for asymptotic representation of the wave fields, is one of the factors
determining the scales of the space attenuation of IGW fields observed in field
measurements.

Fields of IGW in the Ocean of Variable Depth

We consider one of the problems of IGW propagating in the stratified ocean of
variable depth. In the framework of the linear theory, we study the non-viscous
incompressible inhomogeneous medium with unperturbed density ρ0ðzÞ, which is
bounded by surface z=0 and ocean floor z= γ y (the z axis is directed upwards, γ is
the ocean floor slope). At point x= x0, y= y0, z= z0 at the slope, there is a point
mass source of power Q depending on time as expð− iω tÞ. The system of hydro-
dynamic equations for small perturbations of density ρ*, pressure p*, and velocity
components ðu1, u2,wÞ is written as [2–6]

ρ0
∂u1
∂t = − ∂p*

∂x , ρ0
∂u2
∂t = − ∂p*

∂y , ρ0
∂w
∂t = − ∂p*

∂z + gρ*
∂u1
∂x + ∂u2

∂y + ∂w
∂z =Q expð− iω tÞδðx− x0Þδðy− y0Þδðz− z0Þ,

∂ρ*
∂t +w ∂ρ0

∂z =0,

ð2:1Þ

where g is the acceleration of gravity. As the boundary conditions we pose the
“rigid lid” condition at the ocean surface and zero mass flux at the ocean bottom

w=0 at z=0, w+ u2 γ=0 at z= − γ y ð2:2Þ

Under the assumption that the time-dependence of all solutions is harmonic
ðp*, ρ*, u1, u2,wÞ= expð− iω tÞðp, ρ,U1,U2,WÞ, we obtain the following system of
equations with boundary conditions (2.2)

iωρ0U1 =
∂p
∂x , iωρ0U2 =

∂p
∂y , iωρ0W = − c2∂p

∂z ,
∂U1
∂x + ∂U2

∂y + ∂W
∂z =Q δðx− x0Þδðy− y0Þδðz− z0Þ, iωρ= W∂ ρ0

∂z ,
ð2:3Þ

where c2 =ω2 ̸ðN2 −ω2Þ and N2ðzÞ= − g
ρ0

∂ρ0
∂z is the Brunt-Väisälä frequency which

is assumed constant: NðzÞ=N = const. These assumptions can be used to study the
IGW fields in many regions of the World Ocean [12]. In the Boussinesq approx-
imation, system (2.3) reduces to a single equation, for example, for pressure per-
turbations p with the corresponding boundary conditions
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∂
2p
∂z2

−
1
c2

∂
2p
∂y2

+
∂
2p
∂x2

� �
= − iωQρ0δðx− x0Þδðy− y0Þδðz− z0Þ ̸c2, ð2:4Þ

∂p
∂z

=0 at z=0,
∂p
∂z

−
γ
c2

∂p
∂y

=0 at z= − γ y. ð2:5Þ

Since the variations in ρ0ðzÞ are relatively small in the ocean, the value of ρ0 in
the right-hand side of (2.4) is understood, for example, as the value of the sea water
density at the surface, i.e., we set ρ0 = ρ0ð0Þ= const. Solution pðx, y, zÞ must tend to
zero as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
→∞. After function pðx, y, zÞ is determined, velocity com-

ponents ðU1,U2,WÞ can be found from the first three equations of system (2.3), and
density ρ is determined from the fifth equation in this system.

We change the variables as

y= rchφ, z= − crshφ, r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − z2 ̸c2

p
,φ=

1
2
ln
cy− z
cy+ z

ð2:6Þ

We perform the Fourier transform with respect to variable x (without loss of
generality, we can set x0 = 0). Since the absolute value of the Jacobian of transition
from the coordinates ðy, zÞ to ðr,φÞ is equal to cr, problem (2.4), (2.5) implies the
following plane boundary-value problem for the Fourier transform Pðr,φ, lÞ of
function pðr,φ, xÞ

∂
2P
∂r2

+
∂P
r∂r

−
1
r2
∂
2P
∂φ2 − l2P=

q
r
δðr− r0Þδðφ−φ0Þ, ð2:7Þ

∂P
∂φ

=0 at φ=0;
∂P
∂φ

=0 at φ=φr, ð2:8Þ

r0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y20 − z20 ̸c2

q
, φ0 =

1
2
ln
c y0 − z0
c y0 + z0

, φr =
1
2
ln
c+ γ

c− γ
, q= iωQρ0 ̸c. ð2:9Þ

The solution of three-dimensional boundary-value problem (2.4), (2.5) with
respect to variables ðr,φ, xÞ is obtained from the solution of the plane problem
(2.7), (2.8) by using the inverse Fourier transform

pðr,φ, xÞ= 1
2π

Z+∞

−∞

Pðr,φ, lÞ expðilxÞdl. ð2:10Þ

We assume that the ocean floor slope γ is less than c or, in the trigonometric
terminology, we assume that the ocean bottom slope is subcritical (the critical slope
is γ = c) [3–6].

The homogeneous Eq. (2.7) with zero right part has real solutions
Pðr,φ, lÞ=KiμðlrÞ cosðμφÞ decreasing at infinity, where μ is an arbitrary real
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number and KiμðlrÞ is the Macdonald function with imaginary index satisfying the
modified parametric Bessel equation LKiμðlrÞ=0, where

L= r2 ∂
2

∂r2 + r ∂

r∂r + ðμ2 − r2l2Þ. We note that function KiμðlrÞ is real if the values of μ
are real and argument lr is positive. Hence, we write the delta function δðr− r0Þ
using a pair of direct and inverse Kantorovich-Lebedev transformations [5, 6]

FðμÞ=
Z+∞

0

KiμðxÞ f ðxÞx dx, f ðxÞ= 2
π2

Z+∞

0

shðπμÞKiμðxÞFðμÞμdμ .

This implies the expansion of the delta function (completeness condition) in the
form

δðr− r0Þ= 2
r π2

Z+∞

0

shðπμÞKi μðlrÞKi μðlr0Þμdμ: ð2:11Þ

We seek the solution of problem (2.7) in the form

Pðr,φ, lÞ= 2q
π2

Z+∞

0

shðπμÞKiμðlrÞKiμðlr0ÞΦμðμÞμdμ, ð2:12Þ

where the function of the angular variable ΦμðφÞ is still unknown. Substituting
(2.11) and (2.12) into (2.7), we obtain the boundary-value problem for determining
this function

d2ΦμðφÞ
dφ2 + μ2ΦμðφÞ= − δðr− r0Þ,

dΦμð0Þ
dφ = dΦμðφrÞ

dφ =0.
ð2:13Þ

It follows from (2.13) that ΦμðφÞ is the angular Green function of the form

ΦμðφÞ= −
1

μ2φr
−

2
φr

∑
∞

n=1

cosðφμnÞ cosðφ0μnÞ
μ2 − μ2n

, μn =2π n ̸ ln
c+ γ
c− γ

� �
, n≥ 1.

ð2:14Þ

In the expression for Pðr,φ, lÞ in (2.12), we consider a single wave mode ðn≥ 1Þ

Pnðr,φ, lÞ= −
4q cosðφμnÞ cosðφ0μnÞ

φrπ2

Z+∞

0

shðπμÞKi μðlrÞKiμðlr0Þμdμ
μ2 − μ2n

. ð2:15Þ
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Here, the integral is understood in the sense of the principal value. Formula
(2.15) can also be used for n=0 if we set μ0 = 0 and decrease the coefficient of the
integral by a factor of two. First, we consider the case r> r0. To deform the contour
of integration over μ in expression (15), we use formula KνðtÞ= πðI− νðtÞ−
IνðtÞÞ ̸ð2 sinðπμÞÞ which, in this case with ν= iμ for function Kiμðlr0Þ, becomes

Kiμðlr0Þ= − πIm ðIiμðlr0ÞÞ ̸shðπμÞ; ð2:16Þ

because functions IiμðxÞ and Iiμð− xÞ are complex conjugate function. The inter-
grand in (2.15) is even with respect to μ; hence, we can use (2.16) to obtain

Pnðr,φ, lÞ= 2q cosðφμnÞ cosðφ0μnÞ
πφr

Im
Z+∞

−∞

KiμðlrÞIiμðlr0Þμdμ
μ2 − μ2n

. ð2:17Þ

Now the contour of integration in (2.17) can be closed in the lower half-plane.
To verify this, we use the asymptotic expansions of KiμðxÞ and IiμðxÞ for μ= − iν as
ν→∞: KνðlrÞ≈

ffiffiffiffiffiffiffiffiffiffi
π ̸2ν

p
2ν ̸elrð Þν, Iνðlr0Þ≈

ffiffiffiffiffiffiffiffiffiffi
π ̸2ν

p
2ν ̸er0lð Þν ̸2

ffiffiffi
2

p
. Then we can

obtain KνðlrÞIνðlr0Þ≈ π exp ð− ν ðln r− ln r0ÞÞ ̸4ν
ffiffiffi
2

p
. This implies that the inte-

grand is exponentially small in the lower half-plane for r> r0. Then, taking into
account the residues at points μ=±μn, we have

Pnðr,φ, lÞ= −
2q cosðφμnÞ cosðφ0μnÞ

φr
ReðKiμnðlrÞIiμnðlr0ÞÞ: ð2:18Þ

In the case r< r0, we represent function KiμðlrÞ in the form (2.16) and closing
the contour of integration in the lower half-plane we obtain expression (2.18),
where it is necessary to interchange r and r0. These expressions can be written as a
single expression if we introduce notations r− =minðr, r0Þ, r+ =maxðr, r0Þ

Pnðr,φ, lÞ= −
2q cosðφμnÞ cosðφ0μn)

φr
ReðKiμnðlr+ ÞIiμnðlr− ÞÞ. ð2:19Þ

In the case n=0, we similarly have

P0ðr,φ, lÞ= −
q
φr

Re ðK0ðlr+ ÞI0ðlr− ÞÞ: ð2:20Þ

Now we calculate the inverse Fourier transform (2.10) for the n-th mode ðn≥ 0Þ
with regard to the fact that the steady-state standing wave is an odd function of
variable x; as a result, we obtain pnðr,φ, xÞ= 1

π

R +∞
−∞ Pnðr,φ, lÞ cosðlxÞdl. This

integral can be expressed in the terms of the hypergeometric function
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pnðr,φ, xÞ= − qεn cosðφμnÞ cosðφ0μnÞffiffiffiffiffiffiffiffiffiffiffiπr r0φr
p ReZ,

Z = Γðiμn +1 ̸2Þ
Γðiμn +1Þ ðτ ̸2Þiμn +1 ̸2 F iμn +1 ̸2

2 , iμn +3 ̸2
2 , iμn +1, τ2

� �
,

ð2:21Þ

where ΓðzÞ is the gamma function, Fðα, β, γ, zÞ is the hypergeometric function,
τ=2r r0 ̸ðr2 + r20 + x2Þ, εn =1 ̸2 for n=0, and εn =1 for n≥ 1. The complete
solution is obtained as a sum of all modes: pðr,φ, xÞ= ∑∞

n=0
pnðr,φ, xÞ, where r

and φ are determined from (2.6), and r0, φ0, φr are determined from (2.9). We note
that small values of τ correspond to the far field distance from the perturbation
source, i.e., to the large values of r and x; a separate mode pnðr,φ, xÞ can be
approximated by the expansion of the hypergeometric function in a series for
0≤ z<1

Fðα, β, γ, zÞ=1+
αβ
γ
z+

αðα+1Þβðβ+1Þ
γðγ+1Þ2! z2 +⋯, ð2:22Þ

where, α= iμn +1 ̸2
2 , β= iμn +3 ̸2

2 , and γ= iμn +1. However, as the mode number n
increases at fixed z, it is required to take even greater number of terms in expansion
(2.22) (the number of terms is m≈ μnz), which hampers the calculation of wave
modes with large numbers. For the further summation of the series (2.22), we use
the WKB asymptotics of the hypergeometric function in (2.21)

Fðτ2Þ ≈ exp −
iμn
2

ln
τ2

4
+ ln

1+
ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p

1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p
 ! !

̸
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
41− τ2

p
. ð2:23Þ

We use the asymptotics of the gamma function in (2.21) for large values of
μn:

Γði μn +1 ̸2Þ
Γði μn +1Þ ≈ expð− i π ̸4Þ ̸ ffiffiffiffiffiμnp

. Finally, we obtain the following expression for

the WKB asymptotics of a separate wave mode at large μn

pnðr,φ, xÞ≈−
q
ffiffiffi
τ

p
cosðφμnÞ cosðφ0μnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μnπ r r0

p
φr

cos
μn
2
ln
1+

ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p

1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p + π ̸4

 !
. ð2:24Þ

It is interesting to note that if we formally set μn →∞ in expansion (2.22), let
z→ 0 in the WKB asymptotics (2.23) for FðzÞ, and take into account that
zμn ≈Oð1Þ, then, in both cases, we obtain the same value equal to exp ð− izμn ̸4Þ.
Thus, expansion (2.22) and WKB asymptotics (2.23) are mutually consistent, i.e.,
there is a domain of z, μn, where these expressions coincide. It follows from (2.24)
that the amplitude of the n-th mode decreases as ððx2 + y2ÞnÞ− 1 ̸2 for large x, y.
Expanding the phase in (2.24) for small τ, we see that, for large y, the half-wave
length along axis y increases as πy ̸ μn, and along axis x, as πx ̸ 2μn. The numerical
calculations with the real parameters of the ocean show that the exact and
asymptotic solutions agree well, except for the immediate vicinity of the
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perturbation source, where the argument of the hypergeometric function tends to
unity, which follows from the construction of the asymptotic solution. We note that
expression (2.24) formally requires that μn →∞, but already for the first mode
n=1, asymptotic formula (2.24) gives a qualitatively true description of the exact
solutions. The asymptotics of the zero mode can be calculated from (2.21) by
setting μn =0. Then, taking into account that F 1

4 ,
3
4 , 1, τ

2
� �

= 2
π
ffiffiffiffiffiffiffi
1+ τ

p K 2τ
1+ τ

� �
,

where KðxÞ= R π ̸2
0 ð1− ðx sin φÞ2Þ− 1 ̸2dφ is an elliptic integral of the first kind, we

obtain the following expression

p0ðr,φ, xÞ≈−
q
ffiffiffi
τ

p

π
ffiffiffiffiffiffiffiffiffiffi
1+ τ

p ffiffiffiffiffiffiffiffiffiffi
2r r0

p
φr

K
2τ

1+ τ

� �
. ð2:25Þ

We use the asymptotics of KðxÞ as x→ 1 with the leading term
KðxÞ≈ ln 4− lnð1− xÞ ̸2 and finally obtain the expression for the asymptotics of
the zero mode

p0ðr,φ, xÞ≈−
q
ffiffiffi
τ

p

π
ffiffiffiffiffiffiffiffiffiffi
1+ τ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r r0φr

p ln
1− τ
1+ τ

� �
̸2

� �
: ð2:26Þ

We note that the exact and asymptotic solutions coincide completely near the
perturbation source. There is difference between them at far distances from the
source. This is related to the fact that the asymptotics of the elliptic integral works
well as the argument tends to unity. Nevertheless, in the far region, the asymptotics
qualitatively true describes the exact solution with an error at most equal to a few
percent. The obtained asymptotic representations of the solutions for separate wave
modes, including the zero mode, permit calculating the complete wave field. The
sum of asymptotics (2.24) of infinitely many wave modes ðn=1, 2, . . . .Þ is
expressed in terms of semi-logarithmic function
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ð2:27Þ

The complete wave field is the real part of expression (2.27) and the zero mode
(2.25). The semi-logarithmic function in (2.27) becomes infinite at the points, at
which the condition πð±φ±φ0 +AðτÞÞ ̸φ0 = 2πm,m=0, 1, 2, . . . is satisfied. The
locus of points ðx, y, zÞ satisfying this condition determines a system of rays if one
of the variables is fixed. On planes ðy, zÞ and ðx, zÞ, these solutions determine a pair
of ascending rays and a pair of descending rays, which are radiated from the source
and then reflect from the sloping ocean floor. Figure 2 presents the shadow picture
of the complete wave field (level lines) on plane ðy, zÞ for x=40 m; the other
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computational parameters are typical for the real ocean parameters: N =0.001 s− 1,
ω=0.004 s− 1, γ=0.2, c=0.44, ρ0 = 1000 kg ̸m− 3, Q=1600m3 ̸s, y0 = 500m,
z0 = − 4m.

These results clearly illustrate the ray structure of the constructed solutions, in
particular, the set of incident and reflected rays; moreover, the cotangent of the
angle between the incident ray and the vertical is approximately equal to 0.44,
which agrees well with the ray theory. Indeed, according to this theory, the
direction of group velocity Θ and the energy propagation direction are determined
by expression ctg2Θ= c2 =ω2 ̸ðN2 −ω2Þ2 [8, 10, 13, 15]. The solutions are sin-
gular on the rays, because the model of ideal medium is used. The main contri-
bution to the singularity is given by infinitely many short-wave modes with large
numbers. In reality, to obtain the complete wave field, it is necessary to consider
finitely many modes. This number is approximately determined by the Stokes
characteristic scale D=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν0 ̸N

p
, where ν0 is the kinematic viscosity and N is the

Brunt-Väisälä frequency. Obviously, the wave modes with large numbers whose
wave length is less that D do not contribute to the solution.

For comparison with the analytic results, in Fig. 3, we show the results of
numerical simulation of the complete system of hydrodynamic equations, which
describes the evolution of nonlinear wave perturbations over uneven ocean floor
(Bay of Biscay, more than 60 wave modes were summed) [9].

The results show that the ray structure of the solution (Fig. 2) is clearly identified
and, as the estimates show, the amplitude-phase structure of the wave fields is quite
well described by asymptotic formulas (2.27).

Figure 4 illustrates the results of full-scale measurements of the amplitude
structures of the tidal IGW in the same region of the World Ocean [9]. These
full-scale data show that the wave patterns with profound ray structure can actually
be observed in the real ocean, especially, when the IGW evolution over uneven
ocean floor is investigated. In particular, the analytic, numerical, and full-scale data

Fig. 2 Amplitude structure of IGW (pressure) in stratified ocean with non-uniform depth:
analytical results
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Fig. 3 Amplitude structure of IGW (velocity, m/s−1) in stratified ocean with non-uniform depth:
numerical simulation

Fig. 4 Amplitude structure of IGW (velocity, m/s−1) in stratified ocean with non-uniform depth:
measurements results
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show that the width of wave beams decreases as the shore is approached. Formally,
in the linear statement, the width of the reflected IGW beam can be arbitrarily small
for appropriate relations between the medium parameters (stratification, the ocean
floor slope angle); hence, a significant local intensification of waves occurs near the
ocean shore. It is clear that in the real ocean, the wave field energy remains finite in
such spatial domains due to the action of nonlinear mechanisms of dissipation and
turbulent mixing [1].

Conclusions

Thus, in the first section of the paper, a general method for calculating IGW fields in
the horizontally inhomogeneous ocean is outlined, namely,

• for an arbitrary distribution of the Brunt-Väisälä frequency, the basic vertical
spectral IGW problem is solved and the corresponding normalized eigenfunc-
tions and eigenvalues are determined;

• the characteristic systems with appropriate initial conditions are solved
numerically;

• after the characteristics (rays) are calculated, the eikonal (phase value) of the
phase functions is determined by numerical integration along these rays;

• the geometric divergence of the ray tubes is determined, for example, by
numerical differentiation of closely located characteristics;

• the IGW amplitude is calculated from the equations of the corresponding con-
servation laws along the rays (characteristics), in which the right parts of the
relations are determined by using the locality principle, i.e., it is assumed that
the ocean parameters remain horizontally unchanged over specific spatial
intervals. Thus, it is assumed that the ocean is horizontally homogeneous on
these space-time scales, and its density arbitrarily depends on the vertical
coordinate.

The solutions obtained in the second section of the paper are exact and exhibit
typical ray pattern of the IGW fields in the stratified ocean of variable depth
obtained without using the mathematical methods of geometrical optics.

The universal character of the proposed asymptotic methods of modeling IGW
fields in the ocean allows us to efficiently calculate the wave fields and, in addition,
analyze qualitatively the solutions. This opens wide opportunities for investigating
the wave fields in general, which is also important for formulating correct state-
ments of mathematical models of wave dynamics and for obtaining express eval-
uations in the field measurements of internal waves.
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High-Resolution Observations of Internal
Wave Turbulence in the Deep Ocean

Hans van Haren

Introduction

The dynamics of the ocean resembles that of the atmosphere in many respects. Both
are basically driven by the heating of the sun and adjusted by the rotation of the
Earth [1]. One crucial difference is that the atmosphere is cooled at a higher
geopotential level than where it is heated, while the ocean is heated at its top. As
warm air/water is generally less dense than cold air/water, the heating generates
natural vertical turbulent convective motions in the atmosphere, as an effective heat
engine [2], while the ocean is merely a heat transporter as its heat engine is very
ineffective [3]. Thus, a large amount of potential energy is stored in the ocean, but it
requires a mechanical energy source to transport the heat downward against the
stable stratification. Although the stable stratification in the ocean interior is 1000
times less than the density difference between air and water across the ocean
surface, vertical diapycnal exchange is considered weak. The weak exchange may
seriously affect life in the ocean and the replenishment of nutrients to the photic
zone, for example.

However, the turbulent exchange is not blocked but hampered. This is because
the density stratification may support destabilizing shear to the point of marginal
stability (e.g., [4]) and mechanical energy in the form of waves, just like at the
ocean surface. With the 1000 times weaker stratification in the interior, ‘internal
waves’ may grow to attain 100 m large amplitudes that go barely unnoticed at the
surface. Although linear, sinusoidal waves transport momentum but not matter,
nonlinear waves can break and generate irreversible turbulent diapycnal mixing. It
is the paradox of Munk and Wunsch [3] that demonstrates the importance of the
relatively small amount of kinetic energy put into internal waves that is crucial to
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maintain the ocean stratification via turbulence exchange, i.e. to govern the 25,000
times larger potential energy input by the sun.

Sea floor topography is important in both the generation (e.g., [5–7]) and the
breaking of internal waves (e.g., [8, 9]). Not only the topography around ocean basin’s
edges act as source/sink of internal waves but especially also the topography found in
ridges, mountain ranges and seamounts distributed over the ocean floor. There ismore
underwater topography than on land. Themainmechanical source interactingwith the
topography is the tidalmotion,which carries about 70%of the internal wave energy on
average [3]. Another prominent source is related with the rotation of the Earth and the
geostrophic response to sudden changes, e.g., by the passage of atmospheric distur-
bances or by the collapse of fronts: Inertial motions [1, 10]. Although the general
aspect ratio of large-scale vertical:horizontal ocean current components is 1:1000, or
perhaps 1:100, an encounter with topography forces a relatively large vertical motion
that sets the, initially flat and horizontal, layers of constant density into oscillatory
movements. The thus generated internal waves can propagate in full three-dimensions
3D spatially. After interactions with waves at other frequencies, or currents, or
topography, the dominant process still being unknown, the initially linear waves
become nonlinear and break whereby dissipating their energy. The associated tur-
bulence not only affects the ocean stratification but also the marine geology and
chemistry, by resuspending sediment and redistributing suspended material, and
marine biology by the redistribution of nutrients and oxygen.

As internal waves can propagate freely when their frequencies are between the
inertial frequency f, of horizontal oscillatory motion with short vertical scale thus an
important shear ‘source’, and the buoyancy frequency N, the natural frequency of
vertical oscillatory motion governed by the stratification, they are rather slow waves
compared to surface waves. Internal wave periods vary between about a day and
hours (in the deep ocean) to minutes (in generally stronger stratified waters of
shallow seas and near the ocean surface). Such a slow motion is associated with
linear waves that go up and down regularly. Faster motions are found beyond the
buoyancy scales where the transitions to turbulence are found. When turbulence is
mainly induced by wave-breaking, fronts of deformed internal waves pass instru-
mentation fixed in space within minutes.

The wave-breaking is a complex process in which the two main mechanisms to
stratified turbulence co-exist. Vertical current shear across thin interfaces leads to
overturning of Kelvin Helmholtz billows or instabilities KHI (e.g., [11]). The
wave-overturning leads to ‘free’ buoyancy driven convection turbulence of
Rayleigh-Taylor instabilities of a collapse of unstable (‘cold’) fluid overlying less
dense (‘warm’) water [12]. Both mechanisms relate in a complex manner, e.g., a
convection column [13] leads to shear instabilities along its fringes [14] and
shear-induced overturning leads to convection in its core [15]. In the ocean these
processes are most developed above sloping bottom topography.

Although some topography-internal wave interaction processes are well
described, such as internal hydraulic jumps or lee-wave formation over seamounts
and ridges [16, 17] and frequent overturning from internal wave breaking over
slopes steeper ‘supercritical’ than the internal tide slope (e.g., [18, 19], Sarkar 2016,
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pers. comm.), others are puzzling. While laboratory experiments over uniform
slopes suggest wave breaking on ‘critical’ bottom slopes that match the angle of
internal wave propagation [20, 21], wave-breaking in the ocean is also observed
away from critical slopes of the major internal wave frequency, mostly tides, e.g.
[22]. Examples of the latter wave breaking is also observed to occur in areas where
near-horizontal inertial motions are the dominant carrier wave like in the
Mediterranean, or sub-inertial motions like in the Faeroe-Shetland Channel [23], or
trapped waves like along the Rockall Bank. This suggests a sloshing motion
importance for the generation of nonlinear waves leading to breaking [19].

Even if the precise process leading to nonlinear wave formation is unknown, or
not known for every particular topographic region, the importance of internal wave
breaking upon topography associates with the importance of ‘boundary mixing’ for
the maintenance of ocean stratification, as suggested by Munk [24] and Munk and
Wunsch [3]. Assuming a layer of 100 m of enhanced turbulence over topography in
an ocean of average depth of 3,000 m, Armi [25] suggested a turbulent diffusivity
of Kz = 3 × 10−3 m2 s−1 sufficient to maintain the necessary heat flux in the ocean
interior. This was debated by Garrett [26] as a boundary layer in the classic sense of
Ekman [27], even over sloping bottoms [28], is homogeneous and thus very
inefficient in its mixing, unless a complex restratification mechanism is invoked.
The debate was based on steady flows having time scales much longer than the
inertial period, or actually t ≫ 1/f. Microstructure profiler observations by, e.g.,
[29, 30] to within 0.3 m from the bottom above sloping topography in shallow seas
and [31] in the deep ocean showed that the turbulent flux (∝turbulence dissipation
rate) does increase towards the bottom and, indirectly, evidences effective mixing or
a mechanism to restratify the sloping ‘bottom boundary layer’. Detailed moored
temperature sensor measurements (e.g., [32]) indicate that internal wave breaking
dominates bottom friction in turbulence generation over sloping topography. It is
also the key mechanism in rapidly restratifying the near-bottom area, by trans-
porting the mixed waters into the interior and by pushing the stratification to within
a meter or so from the bottom on time scales of the order of the inertial time scale,
or shorter. They alternate with sudden upslope propagating frontal bores [23, 33]
reaching up to 100 m above and actually touching the bottom thereby creating large
sediment resuspension resembling a desert dust storm. In essence, a bottom
boundary layer is not observed over sloping topography, at least not in the classic
sense.

A challenge to this view is the requirement of a near-bottom reduction of the
heat flux in order to have an upslope motion close to the bottom balancing the
interior downward turbulent heat transport [34]. Whilst the concept is well-posed, it
remains to be established how close to the bottom the heat flux should be reduced
for the mechanism to work. Perhaps, the adoption of the theorem of Prandtl that the
length-scales of the largest turbulent overturns can never be larger than the distance
to the bottom in a mixing length theory may not be adequate for flows with more
than one characteristic velocity [35]. Prandtl did not consider wave breaking over
sloping topography, but frictional shear-driven turbulent overturning over a solid
boundary.
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A method has yet to be found to properly parameterize such wave-breaking
motions, in the context of the large-scale ocean circulation. One of the unknowns is to
relate to the proper scaling of topography. As the term ‘rough topography’ [9, 31] is
somewhat imprecise in quantification, it would be better to consider the slope angle, in
relation with the internal wave angles for given stratification, and the length scales of
the slope-determination in association with the internal wave length scales. Apart
from suchmodeling constraints, an encouraging recent tracer-release experiment near
theMid-Atlantic Ridge integrated over yearlong periods showed upslopemotions that
can only be balanced by diffusivities of about Kz = 5 × 10−3 m2 s−1 (Ledwell 2017,
pers. comm.). It will be shown in this paper that such values are within a factor of two
similar to those determined from high-resolution temperature sensors moored in
various deep-ocean topographic regions. Under conditions of very high Reynolds
numbers in the ocean that are not achieved in laboratories and a tight
temperature-density relationship, such observations prove adequate in quantifying
internal wave turbulence because of many 1-Hz yearlong sampled realizations of true
vertical profiles under very little mooring motion.

Instrumentation and Data

Quantifying Internal Wave Turbulent Mixing:
Lowered Instruments

Most turbulence measurements in the ocean have been performed using free-falling
(few free-ascending) microstructure profilers, either loosely tethered to the ship or
freely operating. These profilers carry shear probes and fast-response temperature
(sometimes also conductivity) sensors that more or less resolve the Kolmogorov
scales of smallest turbulence dissipation overturns that are about 0.1–0.01 s in time
and 0.001–0.01 m in space, under ocean conditions. For statistical reasons, the raw
several 100 Hz sampled data are divided in blocks of a few seconds long to give
estimates of turbulence dissipation rate and eddy diffusivity. The disadvantages of this
instrumentation are its relatively slow vertical speed of about 0.7 m s−1, its 1D pro-
filing of essentially 3D physical processes and its costs: a full ocean depth apparatus
requires financing over 0.5 million US dollars and not many exist in the community.

A simpler but more commonly useable method was proposed by Thorpe [36] to
infer turbulence estimates from standard oceanographic Conductivity Temperature
Depth CTD data. This shipborne equipment also collects vertical (1D) profiles of
ocean quantities at a slightly higher speed of just under 1 m s−1 while sampling at a
rate of 24 Hz for modern equipment. The turbulence estimation method is by
reordering vertical density profiles into statically stable ones and keeping track of the
displacements. Thus after some averaging to reduce noise the larger
energy-containing turbulent eddies are resolved but not the (Kolmogorov) dissipation
scales. In essence this is not a problem, provided some assumptions are made.
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The first assumption is that the overturning displacements d are related to the
Ozmidov scales LO of largest overturns in stratified turbulence. As indicated by
Thorpe [36], after suitable (rms) averaging this is true to within a constant ratio of
c1 = LO/drms = 0.8. This value was empirically established by Dillon [37] as being
a mean in a distribution of about one order of magnitude wide. The distribution
reflects the various stages of turbulence development and the two principal tur-
bulence processes of shear-induction and convection. Recently, the overturning
method was challenged from numerical simulations showing that convection leads
to an underestimate of the Ozmidov scale using the displacements. But, the high
Reynolds number (104–106) turbulence in the stratified ocean is a mix of
shear-induction and convection rendering the average ratio very close to 1 [38] and
confirming Dillon’s observations. The second assumption is to use a constant value
m1 = 0.2 for the mixing efficiency [39, 40]. As with the Ozmidov/Overturning
scale ratio, this constant is a mean from a distribution of about one order of
magnitude wide and thus requires some suitable vertical, horizontal and/or time
averaging. The third assumption was not necessary to make for Thorpe [36] as he
designed the method for use in lakes: It involves salinity and ship’s motions. The
disadvantages of using the overturning method in the ocean are the ship’s motion
by surface waves that are only partially compensated by a heave compensator and
the contribution of salinity to density variations. Both require corrections to the raw
data that approach the order of magnitude of turbulent overturns (e.g., [41–44]).

Quantifying Internal Wave Turbulent Mixing:
Moored Instruments

Instead of lowering instruments from a ship one can use Eulerian moored instru-
mentation fixed in space under water and have the flow go past it. Under the
assumption that one can separate via ‘Reynolds decomposition’ the turbulent
fluctuations from the ‘mean flow’, one may directly estimate the turbulent
momentum and/or heat (mass) fluxes with suitable current and temperature (con-
ductivity) measurement devices. Although stand-alone instrumentation is heavily
limited by sufficient power supply, this method is reasonably successful for esti-
mating momentum fluxes in shallow seas by a moored acoustic point source
measurement device like the Nortek Vector in shallow seas almost resolving the
dissipation scales (e.g., [45]). Resolving larger scales, moored acoustic profiling
instrumentation, especially operating in pulse-coherent mode, estimates statistically
significant momentum fluxes above ‘flat’ shallow sea floors with dominant tidal
friction (e.g., [46, 47]) and sloping topography [30]. However, the method has
seldom produced significant results from the deep ocean [48], possibly due to the
lack of sufficient scatterers. Few attempts have been made to actually estimate heat
(mass) fluxes, above sloping topography [48, 30]. It appeared difficult to match the
acoustic current measurements in slanted beams with data from a chain of
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temperature ‘T’-sensors along its central axis. More principally, the Reynolds
decomposition requirement of a spectral gap between mean flow and turbulence is
not found in the ocean. The method was thus also found inadequate for the deep
ocean.

Quantifying Internal Wave Turbulent Mixing:
Moored High-Resolution T-sensors

As an alternative, NIOZ developed high-resolution T-sensors to be moored with
relatively many and supported by some current and pressure measurements. Initially
T-sensors were connected via cables to a central data logger and power supply unit
[22]. After considerable connection problems it was decided to work with stand-alone
self-contained sensors [49]. The high-resolution <0.1 mK and high precision <0.5
mK sensors have a response time of 0.25 s in water and standard sample at a rate of
1 Hz (adjustable) for a duration of one year on oneAA-battery. Typically, 100 sensors
are taped to a plastic-coated steel cable of several 100 m long. This offers great
flexibility and sensors have been taped at intervals between 0.04 and 16 m depending
on the required configuration for study. This is adequate to resolve most of the
stratified turbulence and internal wave overturning scales asmeanOzmidov scales are
between 0.1 and a few 10’s ofmeters while large-scale internal wave amplitudes reach
100 m. The steel cable is used to synchronize the sensor clocks so that a profile of up to
600 m long (tested) ismeasuredwithin 0.02 s. Such a snapshot over this vertical range
is not achievable using 0.7–1.0 m s−1 free-falling or lowered profilers. The large
number of sensors in a profile is also adequate to correct for sensor drift, which
amounts about 1 mK/mo after aging. For an averaging period longer than the buoy-
ancy period, but commonly taken longer than the inertial period to be sure, turbulent
overturns cannot last and the mean ocean profile is statically stably stratified. Any
remaining unstable deviations are thus instrumental (or salinity driven, see below) and
need to be corrected. This is achieved by forcing the mean observed profile to a
smooth, stable profile using a constant correction per sensor. In practice, an averaging
period of 2–7 days is chosen for this local correction and repeated for different times in
the (up to yearlong) record.

Considerable effort is put in improving the mooring design by minimizing its
motions to obtain almost truly Eulerian measurements with negligible artifacts in the
frequency range of interest. At NIOZ it is preferred to have all buoyancy near the top
so that recovery after successful release of the bottom weight is smooth without
entanglement of cables. As large-scale ocean currents are almost horizontally, the
associated drag forces by any object obstructing the flow are nearly perpendicular to
gravity (negative buoyancy). A balance of forces is thus impossible and the mooring
will inevitably be deflected by a non-zero flow. We impose the criterion that the
vertical deflection may never exceed half the distance between any of the instru-
ments along the mooring line, so typically <0.5 m for a mooring with a string of 1-m
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separated T-sensors. This is achieved by using thin cables of 0.005 or 0.006 m
diameter that have breaking strengths >20,000 N. These cables are tensioned by up
to 5,000 N using a weight of >500 kg and net buoyancy of 300 kg where currents
reach 0.3–0.4 m s−1. Mooring design is verified using Richard Dewey’s software
(University of Victoria, BC, Canada). The mooring motion is always monitored by
mounting at least one current meter and pressure and tilt sensors.

The sensors are calibrated at NIOZ using a thermostatic bath with constant
temperature levels to within ±10−4 °C of their preset values. The calibrated and
drift-corrected data are transferred to Conservative (∼potential) Temperature (Θ)
values using the gsw-software described in [50]. As the ocean density is also
determined by salinity besides temperature, several shipborne SeaBird-911
CTD-profiles are obtained near the mooring. The CTD-data are also used to
establish the local temperature-density relationship for use of the moored T-sensor
data as tracer for potential density anomaly variations δσx, referenced to the
pressure level x/1000 dbar of the mooring (see for an example Fig. 1).

When the linear relationship is reasonably tight (relative error of about 1–10%),
the constant gradient α = δσx/δΘ indicates an apparent local thermal expansion

Fig. 1 Conservative temperature-density anomaly relationship, referenced to 2,000 dbar from
CTD-data obtained between 1,900 and 2,300 m near a T-sensor mooring on a slope of Mount
Josephine NE Atlantic Ocean. The slope of the linear best-fit denotes the local apparent expansion
coefficient
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coefficient. If this relationship is not tight a relatively large or dominant contribution
results of salinity to density variations, as around Mediterranean outflow of rela-
tively warm and salty waters into a cooler and fresher Atlantic environment and in
polar near-surface regions where the cold waters lead to ambient low thermal
expansion coefficients, with added ice melt. This leads to intrusions of apparent
overturns that can last longer than the buoyancy period. If intrusions are thus
detectable they may qualitatively demonstrate turbulent motions, but quantitative
turbulent information is no longer obtainable [51]. In contrast, the above relation-
ship is always tight for data from lakes, where temperature exclusively dominates
density variations, with the notion that the natural thermal expansion coefficient
changes sign at about 4 °C.

With a tight temperature-density relationship, turbulence dissipation rate ε =
c1
2d2N3 and vertical eddy diffusivity Kz = m1c1

2d2N are estimated from the T-sensor
data using the method of Thorpe [36]. Here, N is computed from the reordered
profiles. Figure 2 demonstrates the post-processing of splitting original 1 Hz profiles

Fig. 2 Detailed time-depth series example showing the split of observed moored T-sensor data
into stably reordered profiles and the necessary displacements following the reordering. Forty-five
minutes of data from an arbitrary 100-m tall overturn observed above Mount Josephine (the local
water depth is at the level of the x-axis). a Original 1-Hz sampled temperature data using 100
independent sensors at 1 m vertical intervals starting at 6 m from the bottom. b Data from
a. transferred to conservative temperature ‘CT’ and reordered to stable 1-Hz profiles.
c Displacements between original CT-data and data from b
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into reordered stable profiles and displacements. The 3D appearance (Fig. 2a) so well
captured by 17th century clouds and landscape painters is completely absent in the flat
2D image (Fig. 2b) from which the turbulent displacements (Fig. 2c) are removed.
The raw turbulence parameter estimates for every sensor and every (1 s) profile are
averaged over depth, hereafter indicated by <…>, and time, indicated by […].

Thorpe [9, 36] proposed to average over individual turbulent overturns, but as
smaller overturns exist in larger ones that even may exceed the range of moored
sensors (cf., Fig. 2), it was decided to average over the full vertical range of
T-sensors when it is equal to or less than 100 m [32]. Commonly, about 5% of the
T-sensors show electronic or calibration problems and their data are linearly
interpolated between neighboring sensors. This affects the turbulence parameter
estimates by less than 10%, well within the standard error in the estimates due to the
procedure.

Observations

In the examples given in this section, areas are avoided where the temperature-
density relationship is not tight. Although the locally established apparent thermal
expansion coefficients vary considerably for different regions between 0.05 and
0.3 kg m−3 °C−1 and their ‘tightness’ between 1 and 10% of the mean value, the
standard errors in turbulence parameters are always about a factor of two. This is
equivalent to errors in microstructure profiler data after considerable and careful
post-processing (Oakey 1991, pers. comm.). The factor of two error is confirmed by
comparing moored T-sensor overturn estimates above a seamount slope with nearby
shipborne lowered ADCP/CTD data estimates using Gregg [52]’s shear-scaling [32].

In the Open Ocean Far Away from Topography

The stratified open ocean interior is permanently in motion, not merely by surface
waves but especially also by internal waves with typical amplitudes of several tens
of meters (e.g., [53–55]). The weakly turbulent motions are smooth, albeit not
perfectly sinusoidal in shape, and have relatively large vertical coherent scales with
near-zero phase difference over the range of thermistors (‘local vertical mode-1’), at
both tidal and near-buoyancy frequencies. Amplitudes vary continuously for
motions within any particular finite frequency band; evidence of intermittency. Due
to straining, the thickness of strongly stratified layers drops below 1 m, while
weakly stratified layers can exceed tens of meters. In the Canary Basin [55], the
mean Ozmidov scale <LO> ≈ 0.4 m (obtained from high-resolution shipborne
CTD-data). The mean interior turbulence parameters are estimated as [<ε>] ≈ 10−9

m2 s−3 and [<Kz>] ≈ 2 × 10−5 m2 s−1, which is equivalent to values estimated for
other, upper 2000 m, open ocean regions [52] and for, e.g., the summer stratified
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North Sea [4]. Such values are still 100 times larger than molecular diffusivity
values and sufficient to explain, at least for shallow seas, the gradual warming of the
near-bottom waters and the flux of nutrients into the photic zone to entirely support
the late-summer phytoplankton bloom. This was found to be due to the stratification
being marginally stable, with gradient Richardson number Ri = N2/|S|2 values of
about Ri = 0.5, where the shear magnitude |S| was composed of a quasi-permanent
large inertial/tidal shear across largest stratification added with occasional
small-scale internal wave shear. These turbulence values are also typical for a
saturated internal wave field allowing for sparsely distributed turbulence [56],
similar to surface wave white capping of a puff here and a puff there. However,
according to Munk [24] they are insufficient to maintain the ocean stratification.

Above Sloping Topography

When internal waves reach underwater topography like seamounts or ridges, the
smooth motions turn into more irregular motions up to highly nonlinear and vig-
orous turbulent overturning, see for example Fig. 3. Although bottom slopes are on
average just a few per cent and typical internal tide generating horizontal currents
are 0.1 m s−1, the impact of such currents and slopes is spectacular in their pro-
duction of wave breaking. Turbulent overturning ranges from 10 to 100 m vertical
scales (Figs. 2a and 3a).

Fig. 3 One tidal period of temperature observations using 101 temperature sensors above Great
Meteor Seamount NE Atlantic Ocean, sampled at a rate of 1 Hz at 0.5 m vertical intervals, starting
at 0.5 m from the bottom. a Time-depth image shows a tidal wave well exceeding the 50 m range of
sensors. b Time series of the logarithm of turbulence dissipation rate inferred from the data in (a)
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Especially the transition from warming to cooling phase of the large-scale carrier
wave, associated with an upslope moving frontal bore, provides large turbulence
peaking at ε = 10−5 − 10−4 m2 s−3 and Kz = 10−1 − 100 m2 s−1 (Fig. 3b). The
reordered stable stratification is characterized by very thin layering down to the
lowest vertical resolution, in this case Δz = 0.5 m and much smaller than <LO> ≈
20 m. The layering approaches the bottom to within a meter just prior to a frontal
passage by large interior overturns associated with relatively strong (0.1 m s−1)
downward motions [32]. The large convective overturns preceding the front are not
so efficient in their mixing (m1 ≈ 0.05), but the near-bottom stratified layer forming
the frontal bore is more efficient (m1 ≈ 0.3 ≤ 0.36) than average [57]. The
downdraught seems part of sharpening the turbulent bore moving up the slope.

The frontal bore itself is basically the only large overturn extending from the
bottom upward, thus being important for sediment resuspension governed by
0.1 m s−1 upward vertical current speeds [23]. Secondary instabilities are observed
along its fringe, contributing to effective mixing [58]. Although turbulence asso-
ciated with upslope propagating bores is always large, the intensity and precise
extent vary every cycle of the carrier wave. The variations depend on the exact
direction of bore propagation with respect to the main bottom-slope direction, the
more upslope the stronger turbulent, and on the timing of arrival which varies over
about 10% of the carrier wave period [59]. This variation in arrival time was
attributed to variations in the background stratification which modify the paths of
internal waves, and apparently also large-scale sub-inertial motions. Behind the
front the trailing near-N waves also turn-over due to internal wave shear across the
sharp interface, but in rapidly decreasing magnitude.

Averaged over time of a two-week period and over depth over the range of
T-sensors gives [< ε>] = 3 ± 2 × 10−7 m2 s−3, [< Kz >] = 6 ± 4 × 10−3 m2

s−1 for [< N>] = 5 ± 3 × 10−3 s−1 above steep ‘supercritical’ slopes larger than
the average internal tidal slope [32, 60]. These turbulence values are more than two
orders of magnitude larger than estimated from ocean interior observations. Above
less steep slopes, values are smaller, but even above slopes well less than the
internal tide slope values are still about one order of magnitude larger than ocean
interior values [60]. In the vertical above a supercritical slope, the latter low values
are not observed up to 400 m above the bottom (Fig. 4) possibly due to the large
extent of tidal motions that have top-trough excursions exceeding 100 m [61].
These observations tend to support microstructure profiler observations of the
decrease of turbulence intensity to ocean interior values over a range of some
1000 m above sloping topography [31].

Interfacial Shear Instability Observations

Although near sloping bottoms moored high-resolution T-sensors show largest
turbulent overturning commonly in the form of frontal bores around the transition
between warming and cooling phases of the large-scale carrier wave, time series of
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vertically averaged turbulence parameters show a variation over four orders of
magnitude (Fig. 3b; e.g., [32]). This is typical for ocean turbulence and is also
observed in vertical microstructure profiles (e.g., [39, 52, 31]). Apparent spiky
variations over two orders of magnitude are not instrumental noise but indicative of
individual overturns. Typical examples are trains of shear-induced KHI.

Trains of 5–10 KHI-overturns of about 5 m high are observed during the
warming phase of the carrier wave, when the large-scale shear irregularly coincides
with small-scale shear of internal waves near the local buoyancy frequency, see for
example Fig. 5. The average <LO> ≈ 1.8 m and some overturn-billows are
short-lived O(101 − 102 s). A more prominent train of 275 KHI-overturns in one
day has been observed in the deep ocean around 4,500 m [62]. There at the entrance
of the equatorial Romanche Fracture Zone of the Mid-Atlantic Ridge the tidal flow
interacts with the large-scale flow driven by Antarctic Bottom Water plunging

Fig. 4 Four-day detail of temperature and inferred turbulence measurements above a
super-critical slope for internal tides of Mount Josephine. a Conservative temperature
time-depth series. b–d Full depth profiles of logarithms of time-averaged parameter values. One
month averages are indicated by thick-dashed lines, four day (Fig. 4a) averages by thick-solid lines
and 3 h averages by thin-solid lines. b Turbulence dissipation rate. c Vertical turbulence
diffusivity. d Buoyancy frequency. After [61]
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underneath North-Atlantic Bottom Water on its trajectory from the (south) western
to the (north) eastern Atlantic Basin. When the tidal phase is in the direction of the
large-scale flow, KHI have a vertical extent of 10–20 m. Half a tidal period later
when the phase is directed against the large-scale flow KHI exceed 100 m
vertically.

In all these KHI observed in the deep ocean, the roll-up stage of initial KH
billows seems to be limited to half a turn, resembling half a Rankine vortex [44],
before collapse. This is somewhat different than found in laboratory experiments
(e.g., [63]) and numerical modelling (e.g., [15, 64]). As a rare exception,
near-surface ocean optic [65] and acoustic observations [66] show a roll-up.
Although the lack of deep-ocean observations of multiple scale billow roll-up is
presently unknown, it may have to do with the large Reynolds numbers associated
with the turbulent environment above sloping topography, causing a rapid collapse
of the billows.

Some Temperature Statistics

The largest overturns observed have a vertical length scale of about 100 m [62] and
a time scale of just less than the buoyancy period [32]. The latter is commensurate
the expectation that the buoyancy frequency is a natural scale separator between
irreversible turbulent overturning and internal wave motions. As for the interpre-
tation of (moored) temperature observations as a tracer for density variations, this
information is useful to help distinguishing between genuine turbulent overturning
and partially salinity compensated intrusions. The difference in shapes of apparent
and turbulent temperature instabilities is also used for distinction.

A further distinction and determination is obtained from temperature scalar
statistics [18]. In particular are we interested in the distinction between passive
scalar, shear-dominated turbulence and active scalar, convection dominated

Fig. 5 Twenty minutes and 20 m detailed example of the downslope propagating, warming phase
of the internal tide observed using NIOZ3 T-sensors at 0.5 m vertical intervals near the top of
Great Meteor Seamount
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turbulence. The analysis confirms the differences sketched above between upslope
cooling phase and downslope warming phase of the carrier wave. The former is
consistent with passive scalar statistics but for the bottom half of a 100 m tall
T-sensor array, while in the upper half also evidence is found of active scalar
statistics. Likewise, the downslope phase is not exclusively dominated by passive
scalar statistics. These observations confirm the notion that shear- and convection
turbulence co-exist in the ocean, at least above sloping topography. In general
strong intermittency is found during the downslope phase, while a clear inertial
subrange of −5/3 spectral slope is observed during the upslope phase in particular
in the lower 50 m above the bottom (cf., Fig. 6).

From extended statistics using nearly 500 sensors in a small-scale 3D mooring
array of five lines 100 m long and 4 m apart horizontally, the inertial subrange is
observed superposed by larger variability than expected from chi-squared statistics
[67]. The observations suggest localized patches that are more coherent than their
spectral surroundings (Fig. 6), and which are not found in open-ocean spectra. They
may be due to intermittency, to convection in a shear-dominated environment, or to
an interaction between turbulence and small-scale thin-layer internal wave motions:
The precise mechanism is not known as the pattern is not yet resolved, except that
their energy levels are found to be proportional to the tidal energy level as their
peaks fall along a −2 spectral slope to within the 95% statistical significance level.

Fig. 6 Temperature variance spectrum, an average of 442 near-raw periodograms for the Kaiser
window tapered time series of a four-day turbulent period observed by independent T-sensors at a
small-scale 3D (five line) mooring array above a super-critical slope of Mount Josephine. The data
are sub-sampled at 0.5 Hz for computational reasons. Besides inertial (f) and semidiurnal lunar
tidal (M2) frequencies several buoyancy frequencies are indicated including four-day large-scale
mean N and the maximum small-scale Ns,max. The number −5/3 indicates the spectral slope σ−5/3

for frequency σ, −2 the spectral slope σ−2. The 95% significance level is indicated by the small
vertical bar and by the width of the two −2 slopes. After [67]
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Whatever, the 3D mooring reveals the transition from squashed stratified turbulence
having an aspect ratio of ≤ 0.5 near the large-scale buoyancy frequency to fully
developed turbulence of aspect ratio equal to 1 before coherence is lost around a
frequency of about twice the maximum (resolved) small-scale buoyancy frequency.

Discussion and Conclusions

Turbulence values are high in the lower 100 m above sloping topography (e.g., [8,
32]). They are 100–1000 times larger than observed in the open ocean, away from
boundaries (e.g., [52, 31). Considering the rapid restratification process by the
(sloshing or propagating) carrier waves, the turbulent mixing is found to be effective.
Thus, the interplay between the large-scale internal waves and the small-scale waves
near the buoyancy frequency acts to create both the diapycnal turbulent mixing and
the isopycnal transport of the mixed waters into the interior. The T-string observed
high mean turbulent diffusivity values O(10−3 − 10−2) m2 s−1 are confirmed by
various other Mid-Atlantic Ridge shipborne data (e.g., [68]) and Jim Ledwell’s
recent Mid-Atlantic Ridge tracer release experiments: These diffusivities are
(observed to be) required to balance a near-bottom upslope motion.

Following Armi’s [25] suggestion that about 3% of the ocean is occupied by
such 100 m tall layer of large turbulence, the high mean turbulent diffusivities
observed over sloping topography will yield an overall mean ocean-basin-interior
diffusivity of Kz ≈ 1–3 × 10−4 m2 s−1, sufficient to maintain the ocean stratifi-
cation [3, 24]. Above particular steep seamount slopes of Mount Josephine (NE
Atlantic Ocean) that are supercritical for internal tides, the local large-scale carrier
wave, high local diffusivity values suggest a relatively narrow range of only 450 m
depth interval sufficient to supply this overall ocean-basin-interior diffusivity if the
turbulence observed over these particular slopes is extrapolated to other ocean
topography [18]. This large turbulence above tidally supercritical slopes is con-
firmed by numerical modelling of Winters [19] and Sarkar (2016, pers. comm.). It
supports earlier conjectures (e.g., [24, 25]) for the importance of sloping boundary
mixing.

Previous and present data suggest that such mixing is quite universal, inde-
pendent of forcing (carrier wave) mechanism (frequency), but strongly dependent
on slope with respect to that of the carrier wave. The turbulence above sloping
topography well (>300 m) below the summits of seamounts is determined by slope
steepness and nonlinear wave evolution, but not by bottom-friction, and not nec-
essarily by ‘critical’ internal tide reflection, internal hydraulic jumps or lee-wave
generation. Lee-waves are estimated to carry about one-tenth of the energy of
internal tides, although this may vary for certain locations [69]. Tides are not the
only forcing mechanism, as turbulent overturns are also observed in seas like the
Baltic and the Mediterranean Sea where tides are weak. Bottom slopes need not be
‘critical’ for sediment resuspension as suggested for the occurrence of intermediate
nepheloid layers [70]: Vigorous bore-like motions have also been observed at a
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variety of [tidally] non-critical slopes for sub-inertial motions (e.g., [23, 33]).
Near-inertial shear, the largest internal wave shear outside internal tidal generation
areas, is important for (high-frequency) internal wave breaking away from the
bottom, in case shear-induced mixing is the dominant turbulence generation pro-
cess. Thus, most internal wave—turbulence transitions seem associated with non-
linear deformation of internal wave motions near local buoyancy frequencies.

The ocean interior is a much smoother linear-wave-like environment, but it too is
in permanent motion rather than quiescent. This ocean in permanent motion is
driven by surprisingly weak kinetic energy forcing of about 20% of the total energy
presently used by mankind, about 500 times less than the heat flux transported in
the ocean [3] and 25,000 times less than the solar energy received by the ocean.
Man can maximally retrieve about 3% van the kinetic tidal energy or maximum
0.6% of his present-day demand with the notion that the present-day technology is
not economically viable. In the hypothetical case that man were able to efficiently
extract more tidal energy he would destroy the ocean stratification and with it ocean
life, not only in the deep ocean but especially also in tidal inlets of nursery areas
where currents are largest.

Of all the power of 100-m breaking waves above deep-ocean topography, while
highly important for redistribution of sediment and for life e.g. by replenishing
nutrients to cold-water coral mounds (e.g., [71]), which are found at depths where
mineralization is relatively large as inferred from the seasonal oxygen minimum
layer coinciding with nutrient maxima (e.g., [72]), very little is sensed at the sur-
face. Therefore, in order to learn more about internal wave-turbulence processes it
is mandatory to continue studying their characteristics in the deep sea and ocean,
above sloping topography but especially also their extend into the interiors. Future
instrumentation development should be directed to a truly four-dimensional, 3-D
spatial plus temporal, resolution of the internal wave-turbulence motions to
understand their intrinsic properties. Typical turn-over scales generated by KHI and
frontal bores are between 1 and 100 m, whereas typical internal wave lengths are
100–1000 m. A small array with T-sensors a few meters apart would be useful to
study internal wave—turbulence resolving the short spatial scales. A larger cubic
hectometer array with T-sensors O(10 m) apart would be useful to study the sta-
tistical properties and internal wave propagation and will yield new insight in
internal wave development. After all, deep-ocean sloping topography generates
great surf!
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Deep-Ocean Tides in the South-West Indian
Ocean: Comparing Deep-Sea Pressure
to Satellite Data

Leo R. M. Maas, Borja Aguiar-González and Leandro Ponsoni

Introduction

Tides have been known to humanity for thousands of years [6]. This knowledge was

based on coastal observations of sea surface elevation and associated currents. It was

not until the seventeenth century that tides were perceived as very long surface grav-

ity waves that propagate not only along ocean boundaries but that also cross oceans

[19]. Observations on the coherent nature of tides, over scales of many hundreds of

kilometers or more, started in the nineteenth century [42]. These observations were

fraught with surprise, as the tidal field in the North Sea turned out to be much more

complex than expected. Its spatial amplitude and phase pattern could be rational-

ized only by anticipating the existence of amphidromic points: phase singularities at

nodal points where the sea surface elevation field vanishes, and around which crest

and troughs rotate [42]. Later, the appearance of amphidromes was recognized to be

a generic feature in rotating fluids, owing their existence to the Coriolis force that

acts transverse to the current. Amphidromic points are now a standard property in the
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description of tidal patterns, both in the world oceans as well as in coastal regions.

In fact, phase singularities, such as amphidromes, have been found in other settings

too: e.g. in the inertial wave patterns that appear in homogeneous-density fluids con-

tained in uniformly-rotating, fully-enclosed cubes [4, 5, 18, 21, 27], as well as in

other branches of physics, like quantum mechanics [3].

In theoretical models, the simplest version of an amphidrome is obtained in a

tidal channel when two counter-propagating Kelvin waves form nodal points [29,

38]. Amphidromes also appear in semi-analytical models of rotationally-modified

surface gravity waves, both in half-infinite channels and in rectangular basins [32,

33, 38], as well as in numerical models of more realistically-shaped basins [15],

although they are then mixed with Poincaré waves.

Due to the advent of satellite altimetry, however, spatial patterns of combined

Kelvin and Poincaré waves could be directly observed in whole-field measurements

of the Ocean [7], albeit at three kilometer resolution along and still more crudely

across the satellite track. It revealed that on the open ocean, tides are of small-

amplitude, a few decimeter at most, in line with the strength of the tidal forcing.

Amplification is restricted to coastal regions, first of all due to the exponential char-

acter of Kelvin waves, induced by the Coriolis force, but occurring especially when

a bay co-oscillates, as when in resonance with a basin mode [10].

Away from the equator, open ocean tides combine propagating, coastally-trapped

Kelvin waves with Poincaré waves. Together these display amphidromic points that

are traversed mostly in cyclonic (anti-clockwise) sense in the Northern Hemisphere,

and vice versa in the Southern Hemisphere. However, at times, ocean tides instead

display sloshing, and are then dominated by standing Poincaré waves that show a

behaviour complementary to that of Kelvin waves, exhibiting off-coastal elevation

maxima, betrayed by near-uniform phases. One example for the semidiurnal M2 tide

is seen in Fig. 1 in the Mozambique Channel. It has a maximum and nearly uniform

phase in the narrows. A more striking example, though, can be found in the central

Indian Ocean, where the tidal maximum at 75
◦

E, 19
◦

S lies close to a phase saddle

point at 71
◦

E, 9.6
◦

S, the point where two 260-degrees-phase-lines cross each other

(see star in Fig. 1). The uniformity in phase near this local tidal maximum implies

that over a large area the semidiurnal tide simply rises and sinks in unison. Notice the

4 amphidromes surrounding this mid Indian Ocean maximum, some lying actually

on land (like on Sri Lanka and Madagascar).

The altimetry-derived barotropic tides are based on the Oregon State University

Tidal Inversion Software (OTIS) [12]. In this work, we use the TPX08-ATLAS prod-

uct, which is provided for 9 tidal constituents (M2, S2, N2, K2, K1, O1, P1, Q1

and M4), with a horizontal resolution of 1/30
◦

(http://volkov.oce.orst.edu/tides), see

Table 1, although we will not consider M4 tides here.

What will be relevant for the present study is the behaviour of the tide in the

Mozambique Channel, as well as along a transect at 23
◦

S, east of Madagascar,

where our instruments are located. Taking a cursory look at these two regions, Fig. 1

shows that we may expect quite different behaviour. In the Mozambique Channel,

the semidiurnal M2 tide—usually the strongest tidal component—has a standing

character, testified by its near-uniform phase, and an amplified tidal elevation which

http://volkov.oce.orst.edu/tides
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Fig. 1 M2 semidiurnal tidal map obtained from altimetry assimilated by OTIS showing amplitude

(color, in cm) and phase with respect to Greenwich Mean Time (GMT) (lines, in
◦
). Tides propagate

around amphidromes in the direction of increasing phase. Notice tidal maximum and nearly uniform

phase, both in the central Indian Ocean as well as in the Mozambique Channel

Table 1 List of tidal constituents with their corresponding period. Admittance for

Mozambique Channel (MC) and East Madagascar (EM) is discussed in section

“Coherent Surface and Internal Tides”

Tidal constituent Period

(h)

Admittance

MC

Admittance

EM

Q1 26.87 1.32 0.47

O1 25.82 1.20 0.28

P1 24.07 0.96 0.25

K1 23.93 0.92 0.26

N2 12.66 4.22 0.61

M2 12.42 5.07 0.51

S2 12 5.88 0.89

K2 11.97 5.85 0.80
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reaches a magnitude of about 1.2 m. This betrays a local resonant phenomenon. In

stark contrast, East of Madagascar, the M2 tide is close to the nodal point situated

on Madagascar. Its surface elevation amplitude is diminished to 10 cm and it shows

large phase differences along the coast.

Altimeter observations are assimilated into ocean tide models [37]. These models

benefit from the additional constraints provided by the presence of ‘sea truth’ in the

form of deep-ocean tidal observations of pressure. Such contact measurements are

useful because altimeter observations do not fully cover the ocean surface. Deforma-

tions in the tidal potential, especially near coasts, as well as the presence of coherent

yet weak internal tides cause inaccuracies in the determination of surface tidal ampli-

tudes and phases.

For this reason, an effort has previously been put into comparing altimetry-

derived tidal elevations to directly-measured tides [34], for which Bottom-Pressure

Records (BPRs) have been used. The latter are insensitive to mooring line motions,

and may thus provide reliable estimates of the surface tides. However, it turns out

that long-term BPRs at depths in excess of 500 m are rare. There appear to be only

about 80 deep-ocean pressure records that are at least 100 km apart and that last

longer than one year [34]. In the South-West Indian Ocean there are none. Previ-

ous shelf and deep-sea bottom pressure measurements [24, 41] have also been used

to investigate high-frequency contributions by linear and nonlinear (nonhydrostatic)

internal waves, that fall outside the scope of the present investigation.

In the present chapter, we will determine tidal amplitudes and phases of BPRs

at moorings deployed at depths in excess of 500 m along two transects in the

South-West Indian Ocean, on either side of Madagascar. This region, described in

section “Measurement Sites and Instrumentation”, is not covered in the previous set

of deep-ocean pressure measurements. Altimetry-derived tidal constants for this area

are therefore possibly influenced by the presence of the Madagascar and Mozam-

bique coasts and shelves.

The pressure recorders are situated at both a suite of ‘bottom locations’ (for the

purpose of this study defined to be within 75 m from the bottom) as well as at ‘mid-

depth’ sensors within the water column, typically positioned at 500 m below the

surface or deeper. Details on these instruments are given in section “Measurement

Sites and Instrumentation”.

In section “Time Series of Pressure Measurements”, all long-term pressure obser-

vations are converted to equivalent sea surface displacements and are subjected

to a harmonic analysis, yielding tidal amplitudes and phases. Prior to performing

the Harmonic Analysis, events showing blow-down of instruments, especially of

those deployed far above the bottom, have been eliminated. In section “Coherent

Surface and Internal Tides”, the harmonic amplitudes and phases derived from BPRs

are compared to each other and to altimetry-derived tidal constants. Subsequently,

section “Deep Versus Mid-depth Pressure-Measurements of Tides” compares tidal

constants derived from BPRs to those obtained from pressure recorders within the

water column. In general, within the water column, surface tides explain less of the

observed variance in the pressure time series. Part of the tidal variability is due to

internal tides. Away from the bottom, amplitudes and phases of the coherent internal
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tide—the internal tide that stays phase-locked to the surface tide over the analysed

period—can be estimated by subtracting the surface tidal amplitudes and phases,

found at BPRs along the same mooring. Incoherent internal tides change amplitude

and phase due to changing environmental conditions (stratification and mean-flow

structure). Low frequency features as eddies and currents, apart from being respon-

sible for blow-down of mid-water column instruments, also make the determination

of long-period tides difficult, which can therefore not be reliably extracted. It is for

this reason that we here focus on the eight most prominent diurnal and semidiurnal

tidal components only. Conclusions are drawn in section “Conclusions”.

Measurement Sites and Instrumentation

The data we use come from two transects in the South-West Indian Ocean:

(1) the narrowest part of the Mozambique Channel (MC), studied in several ‘Long-

term Ocean Climate Observations’ (LOCO) projects, [36, 40], and

(2) East of Madagascar (EM), at 23
◦

S, studied in the ‘INdian ATlantic EXchange

in present and past climate’ (INATEX) project [30, 31].

Fig. 2 a Bathymetric map (in meters depth) and geographical locations (red dots) of the mooring

sites in the narrows of the Mozambique Channel (lmc5, lmctrap, lmc5a, lmc6, lmc8) and off South-

East Madagascar (EMC1–EMC5). Detail of the mooring array in b the Mozambique Channel and

c South-East Madagascar
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Red dots in Fig. 2a indicate mooring locations in these two regions. Instruments on

the moorings provide long-term records of velocity, pressure and hydrographic data.

Previous analysis of MC data concerned long-term velocity and temperature records

(instruments not shown in Fig. 2b). These were dominated by low-frequency vari-

ations due to the yearly, southward passage of four to seven MC-wide eddies [40].

These eddies seem to match the width of the Channel in size but are most pronounced

on the Western side and could as well be interpreted as cross-channel propagating

Rossby waves [13]. The velocity records also showed evidence of the persistent pres-

ence of highly intermittent internal tides with currents ranging from a few up to 10

cm/s [23].

East of Madagascar, the dominant motion is marked by a western boundary cur-

rent, the East Madagascar Current (EMC). This along-coastal, southward-directed

mean-flow eventually feeds the Agulhas Currents further south. At 23
◦

S a steady

train of westward propagating cyclones and anticyclones drive the EMC’s main band

of variability [31].

Here, we focus on data from pressure recording instruments, carried by SBE37-

SM MicroCATs in the Mozambique Channel and by upward-looking Acoustic

Doppler Current Profilers (ADCPs—RDI Workhorse Long Ranger 75 kHz) off East-

ern Madagascar. The positions of these instruments on the mooring lines are indi-

cated in Fig. 2b and c and in Tables 2 and 3.

Tidal amplitudes and phases are obtained from observed pressure time series

with T_TIDE, a Harmonic Analysis package [28]. Using a least-squares method, this

package determines amplitudes and phases for a given number of tidal constituents

whose frequencies are known from celestial mechanics. Here we pay attention to

the restricted set of frequencies listed in Table 1. We exclude the very long period

tides (such as the Solar Semi-Annual, SSA, and monthly, MSM), as well as higher

harmonics, such as M4, and will concentrate on the most prominent diurnal and

semidiurnal frequencies, such as M2.

To eliminate the influence of low-frequency phenomena and associated blow-

downs the pressure data were handled in the following way: (1) The mean pres-

sure is subtracted. (2) Resulting pressures are divided by the product of density, 𝜌,

and acceleration of gravity, g, yielding an equivalent surface ‘displacement’ time

series, where a positive surface elevation is presented as a negative displacement.

(3) The resulting displacement series was detrended. (4) A High-Pass (HP) filter

was applied. (5) Blow-down events were eliminated to avoid estimating artificially

large tidal amplitudes. (6) The resulting (gappy) time series was subjected to Har-

monic Analysis, using T_TIDE applied to periods of one year length, attributing its

resulting amplitudes and phases to its centre time. (7) To see the slow evolution of

harmonic amplitudes and phases, this harmonic analysis was performed over subse-

quent one year periods, stepping forward by one day at a time, over a period of 9 to

21 months (a procedure that we call Moving T_TIDE, or MT_TIDE).

In step (2) an ‘equivalent surface displacement’ is defined for the following rea-

son. While we measure pressure, both near the bottom, as well as within the water

column, which varies due to hydrostatic effects (weight of fluid column) and non-

hydrostatic effects (vertical accelerations), subtracting the mean pressure, its time-
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Table 2 Summary of MicroCATs deployed in the narrows of the Mozambique Channel during

LOCO 4, LOCO 5 and LOCO 6, and used in this study. See Fig. 2 for details of the instrument

mooring design and location

Moor. site

Depth (m)

Position LOCO

period

Instrument

depth (m)

Meters

above

bottom

Total days Dates

mm/dd/yy

lmc5

1992 m

16◦ 38.86 S

40◦ 36.82 E

LOCO 4 617 1375 647 01/31/08–

11/08/09

LOCO 4 1020 972 613 01/31/08–

10/05/09

LOCO 4 1520 472 647 01/31/08–

11/08/09

LOCO 4 1966 26 647 01/31/08–

11/08/09

lmctrap

2241 m

16◦ 42.40 S

40◦ 51.06 E

LOCO 5 2200 41 775 12/20/09–

02/03/12

lmc5a

2402 m

16◦ 45.64 S

41◦ 3.76 E

LOCO 6 1520 882 863 02/06/12–

06/18/14

LOCO 6 1975 427 863 02/06/12–

06/18/14

LOCO 4 2375 27 220 01/31/08–

09/07/08

lmc6

2691 m

16◦ 52.26 S

41◦ 28.72 E

LOCO 6 985 1706 863 02/06/12–

06/18/14

LOCO 6 1960 731 863 02/06/12–

06/18/14

LOCO 6 2650 41 863 02/06/12–

06/18/14

lmc8

2199 m

17◦ 6.24 S

42◦ 28.7 E

LOCO 4 625 1574 689 01/31/08–

12/20/09

LOCO 4 1025 1174 689 01/31/08–

12/20/09

LOCO 4 2125 74 689 01/31/08–

12/20/09

varying part may increase due to (1) suppression of the mooring’s buoys and instru-

ments, (2) surface elevations, or (3) isopycnal uplifts (internal waves). We eliminate

suppression-related pressure increases, and divide the demeaned pressure by 𝜌g, so

as to be able to interpret it as surface displacement where, recall a positive ‘dis-

placement’ corresponds to a free surface depression. However, these time-varying

pressure perturbations may also be due to internal waves (isopycnal displacements).

Thus, a given pressure perturbation, interpreted as an equivalent surface elevation

(or surface displacement), could also be interpreted as an isopycnal displacement,

but, due to the much weaker density contrast, of much larger vertical extent.
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Table 3 Summary of the ADCPs deployed off South-East Madagascar during the INATEX

project. See Fig. 2 for details

Mooring site Position Inst. mean

depth (m)

Local depth

(m)

Total days Dates

mm/dd/yy

EMC1 22◦ 41.879 S

48◦ 1.006 E

500 504 909 10/06/10–

04/02/13

EMC2 22◦ 43.484 S

48◦ 8.013 E

500 1603 924 10/06/10–

04/17/13

EMC3 22◦ 46.950 S

48◦ 22.860 E

2600 2654 924 10/06/10–

04/17/13

EMC4 22
◦ 48.689 S

48
◦ 30.827 E

500 3799 924 10/06/10–

04/17/13

EMC5 22
◦ 55.483 S

49
◦ 0.435 E

500 3959 924 10/05/10–

04/16/13
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Fig. 3 Time series of pressure, converted to displacement, at lmc5 (at an average depth of 617 m),

showing a demeaned and detrended time series of vertical displacements, b High-Passed filtered

data excluding blow-downs, c residual field, not captured by Harmonic Analysis, d tidally back-

predicted field (yellow) superimposed on HP filtered data (blue) and now also covering the gaps.

Notice larger scale in (a)
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Fig. 4 Time series of equivalent surface displacement as measured by pressure recorders on Micro-

CATs during a–h LOCO 4, i LOCO 5, j–n LOCO 6. Time is given in months/year, denoted as

mm/yy; November 2009 is e.g. indicated as 11/09. Notice differences in vertical scales and sam-

pling periods. Labels indicate the site name, mean instrument depth and its height in meters-above-

bottom (mab). Data in grey are identified as periods affected by blow-down and are, therefore,

replaced by NaNs. Further details in Table 2

As High-Pass filter we use a fourth-order Butterworth filter with zero-phase

response and cut-off frequency c−1 × 𝜔c, where 𝜔c = 0.83 cpd, corresponding to

a period of 29.07 h. The band width parameter, c = 1.25, was chosen to be narrow

enough to capture closely the lowest frequency of interest, 𝜔c, while being wide

enough to avoid filter ‘ringing’ [1].

An example, illustrating steps (2)–(6), is shown in Fig. 3. Note that the resid-

ual signal (red curve) still contains (near) tidal variations, also during periods when
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Fig. 4 (continued)

blow-downs do not occur. These come from the spectral cusps, unambiguously rep-

resenting incoherent internal tides.

In the MC case we visually inspected all time-series, see Fig. 4. We compare

neighbouring instruments to elucidate whether the disruption of the ‘string of pearls’

was actually due to a blow-down event or to some other phenomenon. We were par-

ticularly cautious in not removing those phenomena since they introduce natural vari-

ability we do not want to remove from our time-series. See for example panel (f) in

Fig. 4. Compare events at mooring lmc8 during July and August of 2008 (not marked

as NaN) with those during February and March of 2009 (marked as NaN). At first

sight one could say both disruptions of the ‘string of pearls’ are due to a blow-down

event, but taking a closer look one realises they are not. The marked events involve
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a low-frequency, deep and noticeable excursion while during the non-marked events

large-amplitude waves are of high-frequency.

In the EM data, blow-downs were removed by replacing downward displacements

in excess of 10 m by NaNs.

Whether large tidal expressions during blow-downs are artificial, resulting from

drag forces on buoys exerted by tidal currents superimposed on low-frequency, eddy-

related currents, or genuine, expressing internal tides trapped within eddies [2, 17],

is not clear and will not be settled here. We note, that HP-filtering also filters out

the slow (large-scale) atmospheric pressure contribution to the BPRs. But, as [34]

noticed, BPRs may still contain atmospheric tides that would not show up in alti-

metric measurements, and can be one of the causes for discrepancies between the

two.

Time Series of Pressure Measurements

Mozambique Channel

At moorings located along the MC transect in Fig. 2b, Fig. 4 shows time series of both

bottom as well as mid-water column pressure recorders. Panels a-h are from LOCO

4 (periods listed in Table 2), panel i from LOCO 5, and panels j-n from LOCO 6. We

combine measurements from different LOCO periods to account for the best spatial

and temporal coverage of instrumentation across the channel (both along the sea bot-

tom and throughout the water column). The ‘string of pearls’, visible in all records,

represents the spring-neap tidal cycle, produced by superposition of the two domi-

nating surface tidal components, M2 and S2. This supports the notion that amplitude

and phase of this tidal interference pattern is about the same for each of these records.

Analysis of semidiurnal and diurnal tidal amplitudes and phases, discussed below,

will confirm this in more detail.

Most instruments higher up in the water column frequently suffer from large ver-

tical excursions, sometimes reaching apparent displacements of thirty meter or more

(see Fig. 4, panels a–c and j–m). Interestingly, despite the long duration of these

events (typically lasting a week or longer) these excursions decrease in size with

depth. This is odd, as their long duration suggests them to be due to large scale

features that should, if these were of a barotropic nature as the surface tide, pene-

trate throughout the whole water column. The weakening of these vertical displace-

ments with depth suggests these events are instead due to frequent blow-down of

buoys, caused by drag forces due to eddy and tide-related currents, that we aim to

eliminate. The buoys apparently often fail to keep their mooring lines from pointing

straight upwards. During previous observational periods in MC, tilt sensors indeed

revealed tilts of over 30
◦

that were moreover tidally modulated with another 5
◦

[23].

Even BPRs sometimes suffer from vertical displacements of 6 m or more that are

obviously not produced by surface elevations (see Fig. 4d).
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Recall that the displacements defined above, present scaled pressure perturba-

tions that can have different origins. BPRs, however, are not (or very marginally)

subject to blow-downs and the interpretation of pressure variations as being due to

surface tidal displacements is unambiguous, although we need to remember that an

upward sea surface elevation corresponds to a negative displacement. As Fig. 4f–

h show, blow-downs seem to be nearly absent at all depths on the most Eastern

mooring, lmc8. Together with the bottom-pressure records from two other periods

Table 4 Mean and standard deviation of the variance of the total HP-filtered signal, the tidal signal,

and the percent variance explained by the tides predicted from harmonic analyses of MC pressure

sensor measurements. Values were computed by averaging all estimates from MT_TIDE. The stan-

dard deviation for each estimate is also indicated. Notice that the BPR at lmc5a lasts only seven

months making it impossible to establish the evolution of its amplitude and phase. Recall that the

mean and trend were removed before the harmonic analysis

Mooring site –

Instrument depth (m)

Meters above bottom

(mab)

Total Var. (m
2
) Tidal Var. (m

2
) Tidal Var. (%)

lmc5 – 617 m

(1375 mab)

1.4369 ± 0.3655 1.1491 ± 0.1711 81.9529

lmc5 – 1020 m

(972 mab)

1.2545 ± 0.2763 1.0681 ± 0.1425 86.5204

lmc5 – 1520 m

(472 mab)

1.0815 ± 0.1708 0.9809 ± 0.0986 91.4791

lmc5 – 1966 m

(26 mab)

0.8823 ± 0.0100 0.8744 ± 0.0097 99.1022

lmctrap – 2200 m

(41 mab)

0.7923 ± 0.0106 0.7710 ± 0.0166 97.3134

lmc5a – 1520 m

(882 mab)

1.2189 ± 0.2256 1.0639 ± 0.1546 88.3847

lmc5a – 1975 m

(427 mab)

1.0412 ± 0.1270 0.9825 ± 0.1076 94.6039

lmc5a – 2375 m

(27 mab)

0.8669 0.8604 99.2438

lmc6 – 985 m

(1706 mab)

1.5220 ± 0.1595 1.0794 ± 0.1243 70.8571

lmc6 – 1960 m (731

mab)

1.2055 ± 0.0929 1.0133 ± 0.0802 84.0482

lmc6 – 2650 m (41

mab)

0.9243 ± 0.0165 0.9160 ± 0.0132 99.1108

lmc8 – 625 m (1574

mab)

0.9321 ± 0.0546 0.8158 ± 0.0239 87.7736

lmc8 – 1025 m (1174

mab)

0.9160 ± 0.0474 0.8206 ± 0.0224 89.7537

lmc8 – 2125 m (74

mab)

0.8293 ± 0.0073 0.8236 ± 0.0076 99.3154
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(panels d, e, i and n) these measurements confirm the dominance of surface tides

in the time-varying pressure field. At other locations, however, mid-water column

pressure signals frequently suffer from severe blow-down. This is a common feature

for pressure measurements within the water column, and for this reason often only

BPRs are used in the validation of altimetry-derived harmonic constants [34]. In

section “Coherent Surface and Internal Tides”, we will therefore first look at BPRs,

but, since we also want to analyse pressure records higher up in the water column

(section “Deep Versus Mid-depth Pressure-Measurements of Tides”), we subject all

our measurements to the following procedure.

The amplitudes and phases resulting from MT_TIDE are assigned to the central

time within each one-year time interval. Those of the most important semidiurnal and

diurnal components are discussed in the next sections. The tidal variance estimate,

obtained by averaging the variance of subsequent T_TIDE analyses, and its relative

contribution to the total HP-variance, are shown in Table 4. The total and tidal vari-

ance are all O (1 m
2
). For all moorings, a weak increase of the total HP-variance with

height above the bottom is noticed. Except for the most Eastern mooring, lmc8, the

tidal variance also increases with height above the bottom. This may be related to

the stronger presence of coherent internal tides higher up in the water column, while

being weaker or absent in the bottom boundary layer. Yet, the relative contribution

of the tides to the total variance always decreases towards the surface. This may be

attributed to the stronger (oceanic and atmospheric) mesoscale activity near the sur-

face, introducing more phenomena influencing the pressure variability. Note that the

tidal variance in Table 4 that T_TIDE computes for each one year period is based on

many more (High-Passed) tidal components than those listed in Table 1, including

higher harmonics, the so-called shallow water tides [28]. But in the following we

will focus on just the major eight (semi)diurnal components.

East Madagascar

East of Madagascar, tides are much weaker than in the Mozambique Channel, at

least near the bottom where they measure free surface displacements of O(10 cm)

for the main tidal component, M2. Figure 5a, c show BPR (black line), tidal back-

prediction (grey) and residual (red) at moorings EMC1 and EMC3, respectively (see

Table 3). Notice that at these two instruments the total apparent surface displacement

is restricted to about 1 m. The other three instruments in Fig. 5b, d, e, all far above

the bottom, indicate unrealistically large vertical excursions that are a hundred times

larger (notice the difference in scale). These are obviously due to mooring motions,

resulting in occasional blow-down.

Harmonic Analysis of the BPRs at moorings EMC1 and EMC3 shows that the

tides give a modest, yet genuinely tidal contribution of O(8–32%) to the total vari-

ance (Table 5). Indeed, this estimate of tidal variance looks reliable in Fig. 5, when

comparing the tidal string of pearls (grey) to the variance carried by the residual

(red). As to the question why these values are so low (compared to those in MC),
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Fig. 5 EM time series (sampled from Oct/2010 to Apr/2013) converted to displacements (black

line). Grey and yellow lines in panels a and c represent the tidal prediction and residual time series,

respectively

Table 5 As Table 4 for the EM time series

Mooring site Total Var. (cm
2
) Tidal Var. (cm

2
) % Tide

EMC1 0.048 ± 0.007 0.015 ± 0.002 31.97 ± 1.16

EMC2 1.372 ± 0.369 0.298 ± 0.090 21.80 ± 3.15

EMC3 0.083 ± 0.001 0.007 ± 0.001 8.54 ± 0.78

EMC4 1.103 ± 0.441 0.299 ± 0.136 26.58 ± 1.95

EMC5 2.317 ± 1.062 0.370 ± 0.205 15.47 ± 3.01

we are still guessing. Fourier spectra, show that after removal of the coherent tides

there are still energetic peaks present in the cusps, surrounding the main tidal peaks.

But, inspection of time series of BPRs clearly shows that EMC3 has many more

supra-tidal oscillations than EMC1, which are corroborated by a higher level of the

HF part of the Fourier spectrum (not shown). Whether this reflects the presence of

shorter period surface waves, possibly related to the hill at which EMC3 is situated

(see Fig. 2c), higher instrumental noise, internal waves, or has some other cause is

not clear.
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For the other instruments, tidal variance contributes a similar amount to the total

variance, O(15–25%), but this does not necessarily represent surface or coherent

internal tides. As testified by the much larger relative standard deviations in Table 5

of all variance estimates at EMC2, 4 and 5 when compared to those of the BPRs at

EMC1 and 3, intermittent internal tides overshadow the surface and coherent inter-

nal tides. We will come back to this in section “Deep Versus Mid-depth Pressure-

Measurements of Tides”.

Coherent Surface and Internal Tides

Harmonic amplitudes and phases of surface tides should not depend on the particular

observational time window from which they are determined (provided the observa-

tional period is long enough). By definition also the coherent internal tides have

stable amplitudes and phases, albeit differing from those associated with the surface

tide. Amplitude and phase stability can be used as a criterion to distinguish genuine

from ‘false’ tidal signals (i.e. pressure variations due to tidal-current induced depres-

sion of instruments), or on a more positive note, can be used to separate the combined

surface and coherent internal tides from incoherent internal tides. The moving ver-

sion of the harmonic analysis performed by T_TIDE (MT_TIDE) allows us to make

this separation.

Mozambique Channel Harmonic Constants

The results of running MT_TIDE for the Mozambique Channel pressure records

are presented in Figs. 6 and 7 for semidiurnal and diurnal frequencies, respectively.

The fluctuations in, especially amplitude, that occur for pressure records within

the water column will be discussed in section “Deep Versus Mid-depth Pressure-

Measurements of Tides”, although it should be noticed here that tidal amplitudes are

not necessarily always larger higher up in the water column, compared to the very

stable bottom amplitudes. See for instance in Fig. 6 the M2 amplitude at lmc8. Phases

are very stable at nearly all locations, amplitudes only near the bottom. It is signifi-

cant that the least stable estimates and the largest M2 tidal amplitudes are found at

the mid-channel mooring lmc5, especially at the pressure sensors that are highest

above the bottom. At the three ‘bottom’ locations (less than 75 m away from the bot-

tom), M2 amplitudes are around 113 cm. Phase differences are generally small. For

M2 the phase centers around 37
◦
. For the second most important component, S2,

the amplitude is about 60 cm, and its phase about 79
◦
. The other two semidiurnal

components, N2 and K2, both reach amplitudes of O (17 cm).

Diurnal components (Fig. 7) also have quite stable amplitudes and phases. Ampli-

tudes of O (2–7 cm) are smaller than those of the semidiurnal tides. The spreading

in phase estimates is often larger than that of the semidiurnal components. Table 6
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Fig. 7 Same as Fig. 6 for diurnal tidal constituents
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◦
) of semidiurnal tidal constituents during LOCO 6
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Fig. 9 As Fig. 8 for the diurnal frequencies

summarizes the MT_TIDE average amplitudes, phases and standard deviations of

these eight tidal components.

Similar amplitudes and phases during the LOCO 6 period are shown in Figs. 8

and 9. The single BPR that was present in this period, 41 m above the bottom, at

lmc6 (red curves), again has very stable tidal amplitudes and phases, in line with

those obtained for the LOCO 4 period.
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Fig. 10 Amplitudes (left, cm) and phases (right,
◦
) of semidiurnal tidal constituents in EM,

obtained from MT_TIDE. Labels indicate the site name and mean depth

East Madagascar Harmonic Constants

The slow-time evolution of semidiurnal amplitudes and phases for the East Mada-

gascar moorings, after standard HP-filtering and blow-down removal, is shown for

the four major semidiurnal frequencies in Fig. 10. These panels show that: (1) tidal

amplitudes of O (10 cm) and phases are very stable at near-bottom instruments

(EMC1 and EMC3), represented by a single average value (Table 7) together with a

variance estimate (Table 5), (2) M2 tidal amplitudes at ‘mid-depth’ (EMC2, 4 and

5) are very high, O (50–100 cm), (3) tidal amplitudes at mid-depth depend on the

precise computational interval for which T_TIDE is run—the time around which

the one-year time series is centred, (4) for bottom instruments—representative of

barotropic tides—phases of all semidiurnal components are nearly the same (approx-

imately 250
◦
), (5) compared to the phase of these BPRs, mid-depth pressure series

are often roughly in anti-phase (on average, about 160
◦

phase difference).

Similar observations can be made for the diurnal components, Fig. 11. Phases of

bottom instruments (EMC1 and 3, black and blue lines respectively) are again stable

despite very small O (1 cm) amplitudes, albeit now showing differences from one

diurnal component to the next. Mid-depth instruments at EMC2, 4 and 5 still have

very large amplitudes, but phases sometimes change rapidly. Phase changes of 180
◦

(such as that for O1 in September 2012), are likely indicative of the passage of a node

of an internal tide’s vertical elevation field, that separates rising drom depressing

isopycnal surfaces.
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Fig. 11 Same as Fig. 10 for diurnal frequencies

Long-term averages, obtained from MT_TIDE, are shown in Table 7. They show

the stability of the BPR-derived tidal amplitudes at EMC1 and 3: a signal-to-noise

ratio (SNR), defined by the ratio of standard deviation to amplitude, of O (10%).

This contrasts with the SNR for mid water column pressure records at EMC2, 4

and 5, which is O (30–50%). Of course, they also show that bottom pressure fluc-

tuations, converted to surface displacement, have smaller amplitudes than those

within the water column, were they again point at the presence of internal tides (see

section “Deep Versus Mid-depth Pressure-Measurements of Tides”).

Bottom-Pressure Versus Altimetry Derived Tides

The first and third rows of Fig. 12 display diurnal and semidiurnal tidal amplitudes,

A, and phases, 𝜙, from Table 6 of the five BPRs in MC. These are the amplitude

and phases of an equivalent surface elevation field computed from the BPRs which

are here presented in terms of the real and imaginary components A(cos𝜙, sin𝜙) of

the complex vectors A exp(i𝜙). Similar ‘harmonic vectors’, obtained from satellite

altimetry (OTIS), are shown in the second and fourth rows.

The comparison between BPRs and altimetry (OTIS) vectors in the Mozam-

bique Channel, where tides are large, is excellent, especially for the semidiurnal

components (last two rows). The difference vectors are O (5%) in magnitude com-

pared to those of the BPRs, for which reason, in section “Deep Versus Mid-depth
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Fig. 12 Polar plots showing horizontal variation of amplitudes (cm) and phases (
◦
) of diurnal

(top two rows) and semidiurnal tidal constituents (bottom two rows) in MC as seen from bottom

instruments and satellite altimeter (OTIS) data. The legend indicates the site name and mean depth.

Notice differences in scale

Pressure-Measurements of Tides”, BPR-derived harmonic vectors have been sub-

tracted from those higher up in the water column. We subtract these BPR signals

because, as they agree with altimetric tides, we can take them as representative of

surface tides. Therefore, its subtraction from harmonic signals obtained from pres-

sure records higher up in the water column leads to the signal of coherent internal

tides. Semidiurnal tides appear spatially synchronised, and thus appear as standing

waves. The diurnal components (first two rows) show more variations at the bottom.

Those derived from altimetry (OTIS) show a clear and consistent eastward phase

increase (from lmc5 towards lmc8), and also a slight increase in amplitude. By con-

trast, the BPRs show in general a slight westward phase propagation, although some-

what more erratic. Especially the bottom pressure recorder at lmctrap behaves, as we

shall see later, somewhat differently for most frequencies. Comparing to harmonic
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Fig. 13 Amplitudes (cm) and phases (
◦
) of diurnal (top row) and semidiurnal (third row) tidal

constituents at sites EMC1 and EMC3 as seen from BPRs and OTIS data. Amplitudes (cm) and

phases (
◦
) of diurnal and semidiurnal tidal constituents within the water column, at sites EMC2,

EMC4 and EMC5 (second and fourth rows). The legend indicates the site name, mean depth and

meters-above-bottom. Note that here polar plots share the same scale only within the same row

vectors at lmctrap during other LOCO periods (and using other pressure sensors—

not shown), however, confirms the amplitudes and phases found at lmctrap during

LOCO 5, although all seem to differ from those obtained at other MC locations. This

may bear perhaps evidence of a relatively strong coherent internal diurnal tide that

varies over shorter spatial scales than the forcing.

On the transect East of Madagascar, differences of the BPR-derived semidiurnal

tides with the altimetric vectors, shown in the third row of Fig. 13, are larger than in

MC, possibly because the background, low-frequency fields are relatively stronger

and hence the determination of tidal amplitudes and phases less accurate. At EMC1,

the OTIS magnitude of the M2 tide differs by O (50%) of that in bottom pressure.

The spatial uniformity of the altimetry-derived harmonic constants in EM, that was
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mentioned above, may however have been artificial, due to the extrapolation applied

to altimetry-derived tidal constants on approach of the shoreline. Coastal proximity

inhibits direct satellite altimeter measurements of surface elevations. BPRs show a

decrease of surface tidal amplitude with increasing distance to the coast (compare

EMC1 to EMC3) of the largest two semidiurnal frequencies (M2 and S2). This is in

line with their presence as a Kelvin wave, trapped along the East Madagascar slope,

which is expected to propagate northwards.

East of Madagascar, surface diurnal tides shown by BPRs in the first row of

Fig. 13 reach amplitudes of O (1–3 cm) and compare well with altimetry derived

(OTIS) harmonic vectors. The harmonic vectors at the other, mid-water column pres-

sure sensors, however, are all much larger than those at the bottom, indicating their

presence as a strong coherent diurnal internal tide that will be further discussed in

section “Deep Versus Mid-depth Pressure-Measurements of Tides”.

Credo of Smoothness

In the open ocean and in coastal regions, tides represent the response to body or

boundary forces, respectively. In the open ocean, tides are due to the gravitational

attraction by sun and moon, modulated by the motion of these celestial bodies,

together with the motion and rotation of the earth [29]. Coastal regions (and inland

seas and lakes) are too small to be able to respond to tidal forces directly. Coastal

tides result due to the tides present at their ocean boundaries, via co-oscillation [10,

14]. Of course, the nature of this response does not only depend on the strength with

which tides are present in the tidal potential or at the sea’s boundary. Tidal response

also depends on geometrical aspects of ocean or coastal basins, which may lead to

tidal amplification when resonating with a basin’s eigenfrequency, or to its suppres-

sion due to choking when in anti-resonance [20, 39]. Viewing the ocean or coastal

response to tidal forcing as being determined mainly by the proximity of any of the

tidal frequencies to any of the eigenfrequencies of these fluid basins, a certain simi-

larity in the spatial distribution of tides of nearly similar frequency should not come

as a surprise. This view was epitomized in the catchy phrase ‘credo of smoothness’

[26] and is clearly born out in the tidal altimetry fields, both for the semidiurnal and

diurnal frequency bands, see Figs. 14 and 15.

At each tidal frequency, the response of the ocean to tidal forcing is given by

an amplitude ratio and a phase difference between its locally observed elevation

amplitude and Greenwich phase with those present in the tidal potential. Viewing the

response of the ocean to tidal forcing as that of an oddly-shaped, damped mechanical

resonator, one expects to see grossly similar features for slightly differing tidal fre-

quencies, frictional effects smoothing out any sharp changes. During passage of such

a resonance, 180 degree phase changes may still occur, but not abruptly. Looking at



Deep-Ocean Tides in the South-West Indian Ocean . . . 171

(a) (b)

(d)(c)

Fig. 14 Spatial amplitude (cm) and phase (
◦
) pattern in the South-West Indian Ocean determined

from OTIS by means of satellite altimetry data for semidiurnal tidal components. Mooring locations

are indicated by dots

the altimetry-derived amplitudes and phases, Figs. 14 and 15, it is indeed striking

to see the resemblance of the amplitude and phase distributions of the four semidi-

urnal tidal frequencies considered. The pressure observations, presented here, fully

support these findings, except that they show that in the vicinity of Madagascar, a

Kelvin wave enhancement may take place that may not be directly visible in the

altimetry-derived East Madagascar amplitude fields.

By contrast, the tide in the Mozambique Channel is nearly uniform in phase,

and suggests a local, geometry-induced resonance. Satellite altimetry (Fig. 1) indeed

shows the M2-phase to become uniform a little North of the Mozambique Channel

transect, at a phase of about 30
◦
.

A time series of observed sea surface elevation, 𝜁 (t), can be written as a sum,

𝜁 =
∑

j Zj sin(Ωjt + 𝜙j), of contributions at tidal frequency, Ωj, of amplitude Zj and

phase 𝜙j. The ability of a particular geographical region to resonate can be measured

by computing the admittance, i.e. the ratio of the observed free surface tidal ampli-

tudes, Zj, at a certain location, to their amplitudes, Z̄j, as present in the tidal potential.

Here we ignore the phase shift involved and evaluate this amplitude ratio only. The

tidal potential, W, is for over 98% captured by the first non-vanishing, second-degree

term, W2 [29]. In the equations of motion, this potential is usually expressed as an
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(a)

(c)

(b)

(d)

Fig. 15 Same as Fig. 14 for diurnal tidal components

equilibrium sea level, towards which the ocean tends, 𝜁 ≡ W2∕g. This equilibrium

tide is a nonlinear function of space and time, determined by declinations and rota-

tion rates of Earth and celestial body, and their distance. It can likewise be expanded

in a Fourier series and, at a certain geographical location, is expressed as the sum

over tidal frequencies of a product of functions of latitude 𝜃, Gi(𝜃), of diurnal (i = 1)
and semidiurnal (i = 2) origin, the Doodson constant—an overall amplitude factor—

a tidal potential coefficient,Cj, and a trigonometric function of time t and phase angle

𝜒j (dependent on the location’s longitude and orbital parameters of moon and sun):

𝜁 =
∑

j
Z̄j sin(Ωjt + 𝜒j), where Z̄j ≡ CjGiD∕g.

Here, the Doodson constant, D = 3GMR2∕4d3, where G denotes the universal

gravitational constant, M the mass of the celestial body, R the radius of the earth, and

d the distance of the centre of the Earth to the center of the

gravitating body. For the moon, the Doodson constant, divided by gravitational

acceleration (g), yields D∕g = 26.75 cm. The latitude functions of diurnal and

semidiurnal tides are given by G1 = sin(2𝜃) and G2 = cos2 𝜃, respectively. Since

the Mozambique Channel and East Madagascar transects have fairly uniform tidal
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amplitudes each, we take their average values as observed tidal amplitudes, Zj, in

computing their admittance, Zj∕Z̄j. The tidal potential coefficients, Cj, of the eight

tidal frequencies Ωj: (Q1, O1, P1, K1, N2, M2, S2, K2), are given by [29] and

read Cj = (0.072, 0.377, 0.176, 0.530, 0.174, 0.908, 0.423, 0.115). With these coef-

ficients, along the transects in the Mozambique Channel (𝜃 ≈ 16.75◦ S) and East

of Madagascar (𝜃 ≈ 22.90◦ S), the admittance of these tidal components, Zj∕Z̄j, has

been determined, shown in the second and third column of Table 1, respectively.

Admittances indeed vary fairly smoothly, particularly in the Mozambique Channel

where semidiurnal amplitudes are all resonantly amplified, peaking with an amplifi-

cation factor of about 5.9, at a frequency in between S2 and K2.

The response at the diurnal frequencies in the Mozambique Channel is about the

same as in the tidal potential (admittance close to 1), albeit picking up at frequencies

below the lowest diurnal frequency considered here, Q1.

The tides derived from BPRs along the transect East of Madagascar are all

suppressed compared to their presence in the tidal potential. The semidiurnal com-

ponents are weak because of the proximity of an amphidromic point close to the tran-

sect; the diurnal components vary at a larger scale, and amplify towards the equator.

Deep Versus Mid-depth Pressure-Measurements of Tides

BPRs of tides show harmonic constants to be very stable. This is surprising as inter-

nal tides might well be present at the bottom too. These could lead to a modulation of

tidal amplitudes and phases. Consider e.g. a two-layer ocean with upper and lower

layer depths h1 and h2 and corresponding densities 𝜌1 and 𝜌2, respectively. Then

the hydrostatic pressure at the bottom is given by a stationary part 𝜌1gh1 + 𝜌2gh2
and a variable part due to elevations of free surface, 𝜁 , or interface, 𝜂, given by

g𝜌1𝜁 + g(𝜌2 − 𝜌1)𝜂. Expressed as elevation, by dividing by g𝜌1, this perturbation

pressure reads 𝜁 + 𝛿𝜂. It shows that pressure perturbations due to large interface

elevations 𝜂 ≫ 𝜁 might still be moderate due to weakness of the density contrast,

𝛿 ≡ 𝜌2∕𝜌1 − 1 ≪ 1. When the ocean is continuously-stratified, higher internal modal

structures may appear within the sea. The net pressure perturbation at the bottom

due to internal displacements can then be less than those within the water column

as isopycnal elevations at one depth can be compensated by depressions at another.

Judging from the near-bottom stability of the tides, internal tides are weak at the

bottom either for the above reason, or because their presence is precluded by the

presence of a thick bottom boundary layer at the top of which internal waves reflect,

higher up in the water column.

Observations from pressure recorders, mounted higher in the water column do

show the presence of internal tides. In fact, they often dominate the pressure signal,

especially East of Madagascar, see the second and fourth row of Fig. 13, showing

amplitudes at intermediate depths four times those found at the bottom. Mooring

lmc8, on the East side of Mozambique Channel, is exceptional in showing hardly any
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Fig. 16 Buoyancy-squared

profiles obtained from

CARS09 for Mozambique

Channel (lmc5 and lmc8)

and East of Madagascar

(EMC1 and EMC3)
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modulation of the harmonic constants, to the effect that the ‘string of pearls’—the

spring-neap tidal cycle—is retrieved also at mid-depth levels (see Fig. 4f–h). Other

sites in the Mozambique Channel, further to the West, are more strongly affected by

eddies, internal tides and blow-down of instruments. These mask the barotropic sig-

nal within the water column, and make the surface tide visible and reliably detectable

near the sea bottom only.

Stratification

The ocean is a stratified medium, and so is the region on either side of Madagascar.

Buoyancy frequency squared (N2
) profiles, were extracted for the regions of interest

from the CSIRO Atlas of Regional Seas (CARS2009). This merges data from both

research vessel instrument profiles and autonomous profiling (e.g., Argo floats), and

is distributed on a 1/2
◦

degree horizontal grid. For every grid point, the product

also provides a correction for the annual cycle which allows users to create profiles

for any date/season of the year. Figure 16 shows four typical N2
-profiles on either

side of Madagascar. Both regions are characterised by a strong, shallow (seasonal)

pycnocline (with a sharp maximum at a depth of about 50m, especially at EMC1).

EM displayed also a deeper, second permanent pycnocline, at 850 m depth. Both



Deep-Ocean Tides in the South-West Indian Ocean . . . 175

density profiles are stably-stratified down to the bottom, thus allowing for internal

tides to propagate.

Mozambique Channel Coherent Internal Tides

Internal tides are ubiquitous [25], and in the Indian Ocean reach vertical amplitudes

of 80 m or more, especially near Mascarene Ridge, close to the Seychelles (Fig. 2),

to the North-East of Madagascar [16, 25]. There, internal tides take the shape of

solitons, having large vertical isopycnal excursions of O (100 m), that find marked

surface expressions [9]. In Mozambique Channel, internal solitons have also been

observed south of our transect, near Sofala bank at 20.5
◦

S where tides are stronger

than in the MC narrows [8]. The clear patterns of waves in their satellite observations

have been attributed to horizontally-propagating solitons, trapped to the pycnocline,

that were generated either at the shelf edge or by upward-propagating internal wave

beams impinging on the seasonal pycnocline from below. The latter beam itself was

identified as the bottom reflection of a previously downward-propagating internal

wave beam that was also produced at the shelf edge.

Along our Mozambique Channel transect, indications of mainly incoherent tides

were extracted from ADCP and current meter records during the Agulhas Current

Source EXperiment (ACSEX), a precursor of the LOCO projects used in the present

study [23]. That study shows the internal tides to be quite intermittent. Their spa-

tial structure, however, seems to accord with internal tides taking the shape of rel-

atively broad beams, O (100 km) wide, also found in their numerical model. These

beams follow nearly parabolic paths owing to the decrease in buoyancy frequency

with increasing depth and corresponding steepening of internal wave paths, seen in

Fig. 16.

In the present study, BPR-derived harmonic amplitudes and phases are the only

ones that can confidently be attributed to surface tides. The magnitude of the coherent

internal tides, displayed in Fig. 17, were obtained by subtracting these BPR-derived

surface tidal harmonic vectors. As the semidiurnal surface tide is much larger, O

(113 cm), than the coherent internal tide, having ‘equivalent surface displacements’

O (8 cm), only the surface tidal harmonic vector directions are shown in this figure

(black sticks), their magnitudes, Asurf , being listed in each panel’s legend. Recall

that the apparently small magnitudes of the coherent internal tidal vectors represent

a pressure perturbation, here expressed as an equivalent surface displacement, that

can also be interpreted as a much larger internal, isopycnal displacement. The latter

will magnify the surface displacement, crudely speaking by a factor 𝛿
−1

. For 𝛿 of

O (10−3), this brings us back to an estimated internal isopycnal displacement of

O (80 m), as reported above for solitary wave displacements in the region.

One outstanding feature is the coherency of the surface tide along the Chan-

nel cross-section (different rows), a feature already addressed in section “Coherent

Surface and Internal Tides”. As mentioned, the coherent internal tides in Figs. 17

and 18 (coloured vectors) are obtained by subtracting at each level the surface tide
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Fig. 17 Vertical variation of MC amplitudes (cm) and phases (
◦
) of displacements by semidiurnal

tidal constituents at sites arranged in rows from West (lmc5, top row), via the Middle (lmc5a and

lmc6) to East (lmc8, bottom row). Coloured bars represent coherent internal tides. Black bar gives

direction of surface tide (as measured at bottom). Amplitude of the surface tide, Asurf , is given in the

legend (see Table 6 for further details). From left to right, columns represent tidal constituents N2,

M2, S2 and K2, respectively. Here polar plots share the same scale only within the same column,

i.e. tidal constituent

(Table 6) from the original harmonic vectors, i.e. the MT_TIDE average of the

curves shown in Figs. 6 and 7. The existence of similar long-term, phase-locked

internal tides were for instance observed near Hawaii [35]. The phase differences

with depth that one obtains along a mooring in the vertical show direct evidence

of oblique—beam-wise—internal tide propagation. In continuously-stratified fluids,

upward phase propagation of internal waves (such as seen for M2 at lmc5) cor-

responds to downward energy propagation. Notice that at other locations (e.g. at

lmc6) for M2, the phase decreases from the bottom upwards. Hence it displays a

downward phase and upward energy propagation. Apparently, part of the multiply-

reflected internal tidal beam is captured. Phase equality over depth (such as for all
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Fig. 18 As Fig. 17 for diurnal frequencies, from left to right: Q1, O1, P1 and K1, respectively,

except that surface tidal amplitude (Asurf , black bar) here corresponds to bar length

frequencies at lmc5a and lmc8) implies either dominance of the surface tide or a

horizontally-propagating, coherent internal tide. However, one has to keep in mind

the very small aspect ratio of MC, and the ocean in general, so that low-frequency

internal tides propagate at very small angles to the horizontal. Phase differences of

baroclinic tides that occur in transverse channel direction (seen along columns in

Figs. 17 and 18) are indicative of their shorter length scales.

Looking at the coloured vectors in Fig. 17, one notices the overall variability in

amplitude and phase of the internal tide harmonic vectors, although it seems they

are strongest in the center of the Mozambique Channel, near lmc5, lmc5a and lmc6.

It is also remarkable that the coherent internal K2 tide seems to be at least as strong

as the coherent internal M2 tide, despite the free surface K2 tide being seven times

weaker than the surface M2 tide.
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Figure 18 shows the diurnal surface (black vectors) and internal tides (coloured).

In this case, since amplitudes of the surface and internal tides lie in the same range,

the surface tide’s vector length corresponds its magnitude.

A remarkable property of these observations is that diurnal baroclinic tidal ver-

tical displacements always seem stronger and sometimes much stronger than those

produced by the surface tide, see e.g. in Fig. 18 the amplitude increases with increas-

ing height above the bottom at lmc5 and lmc5a for frequencies Q1 and P1. This

requires an amplification mechanism. This may be because internal tides, forced by

cross-isobath surface tidal motions near the shelf edges of the adjacent coasts are

focused near the center of the Mozambique Channel. At the shelf edge, its ampli-

tude will be set by the local surface tide, which, due to a reduced shelf depth, will

be stronger than over the deep-sea, hence leading to stronger internal tides. Another

reason for elevated amplitude levels of internal tides may be that once internal tides

propagate beam-wise into the abyss, they reflect from sloping bottoms, at which point

they will often be focused, leading to amplification of their energy density.

It is also remarkable that nearly all diurnal internal tide vectors are co-aligned

with one another. This means they are in phase, with vectors increasing in magnitude

higher up in the water column. This suggests them to be propagating horizontally,

varying in magnitude along the vertical.

East Madagascar Coherent Internal Tides

For EM moorings we do not have collocated bottom and mid-depth instruments.

Therefore, estimates from mid-depth instruments might contain the signal of both

surface and internal tides. In Fig. 13, the harmonic vectors within the water column,

at EMC2, 4 and 5, however, dwarf those at EMC1 and 3, related to the surface tide at

the bottom. Evidently coherent internal tides are remarkably strong on the transect

East of Madagascar. Looking at the semidiurnal components (lowest two rows), curi-

ously, tidal phases within the water column are generally in opposition to those of the

surface tide (as measured by BPRs). Even though moorings are up to 100 km apart,

for the M2-tide the phase relationship within the water column is very tight. Sub-

tracting the surface M2 tide (measured at EMC3 or OTIS) by eye from the harmonic

vectors within the water column, leads to equivalent surface displacements due to

internal tides of O (50 cm). With the conversion employed in section “Mozambique

Channel Coherent Internal Tides” this would suggest isopycnal displacements of

O(500 m)! Such large magnitude is suspicious and should be treated with caution.

It is quite unexpected because of the weakness of the surface tide along the EM

transect and surroundings. Near sloping topography, surface and coherent internal

tides are not necessarily scale separated [22, 43]. This suggests the internal tide to

have a barotropic length scale, such as for a forced internal tide. For S2 there appear

some horizontal phase differences, suggesting the S2 coherent internal tide to have

a propagating character.
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Incoherent Internal Tides

So far we have discussed the surface tides (based on BPRs, section “Bottom-Pressure

Versus Altimetry Derived Tides”) and the coherent internal tides (which are long-

period averages from MT_TIDE). For this, in MC we first subtracted the surface

tide (section “Mozambique Channel Coherent Internal Tides”), while in EM the sur-

face tide is much smaller than the coherent internal tide so that the long-period

average immediately give an estimate for the coherent internal tides (section “East

Madagascar Coherent Internal Tides”). Figures 6, 7, 8, 9, 10 and 11, however, also

show large variations of tidal amplitudes and phases around their averages. These

represent incoherent internal tides. These can, crudely speaking, be of comparable

magnitude as the coherent internal tide. The large, mid-water column tidal ampli-

tudes in e.g. Fig. 8 display gradual as well as sudden changes. The sudden jumps

might be related to large-scale (blow-down) events, despite the applied filters. The

data gaps that have been replacing these events, that enter or leave the analysed one-

year time interval, may still have a disruptive effect. We notice that such jumps do not

occur for the bottom instrument. The mid water-column pressure records at lmc5a

are remarkable in showing correlating drops in M2, S2, K2 and P1 amplitudes, tak-

ing place from February to July 2013. This drop below the average levels given in

Table 6 suggests that internal tides at instrument levels more than 425 m above the

bottom have a significant presence during these periods. Notice that such internal tide

variations also showed up in the mid water column pressure records of Figs. 6 and 7.

N2, M2 and S2 amplitudes, as well as K2 phases, suggest the internal tides at lmc5a

to be often anti-correlated with those at lmc6, their values fluctuating around those

representative of the surface tide. This change in internal tide amplitude on relatively

nearby moorings suggests that internal tidal beams change path due to variations in

mean density and flow fields.

Conclusions

New bottom pressure records for the South-West Indian Ocean have been presented.

These can be reliably interpreted as providing measurements of the surface tides

and compare in general well with the satellite altimetry derived tides. As such, these

BPRs might be useful in future world-wide assimilation of deep pressure data in

numerical models of ocean tides when combined with altimetric data. According to

Ray’s [34] separation criteria, the moorings may not be separated well enough (by

about 100 km) to be treated as independent, so that MC and EM transects may deliver

two independent data points only. At the same time, spatial variations in BPRs in the

vicinity of the coast may be realistic, and may prompt the development of a better

resolution in near-coastal altimetry measurements.

Pressure measurements within the water column regularly suffer from blow-down

of moorings by eddy, buoyancy, tidal and wind-driven flows. Blow-down leads to
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virtual excursions much in excess of those realistically possible. These affect also

the estimates of (internal) tides, due to tidal currents amplifying this blow-down—

an unwanted effect—or due to trapping of internal tides within eddies, which we

have not been able to unravel here. Accordingly, we simply eliminated blow-down

events. In future work, one could compute actual instrument displacements using

observed currents along the moorings, combined with a knowledge on the shape of

the mooring line, the weights of instruments and cable, and the buoy’s shape, size

and buoyancy [11].

The reason to nevertheless study mid water-column pressure is the presence of

both coherent as well as incoherent (i.e. intermittent) internal tides [23]. Intermit-

tency is due to the varying paths taken by internal tides from generation sites (near

shelf edges and other bottom irregularities, at critically sloping bathymetry) to mea-

surement locations. These paths vary due to slow changes in density and velocity

fields, associated with low-frequency motions.

Performing harmonic analysis (T_TIDE) over consecutive overlapping intervals

we obtained multiple estimates of harmonic amplitudes and phases (MT_TIDE).

The coherent surface and internal tidal constants are independent of the measure-

ment period and are thus represented by the average of MT_TIDE. The variable part

defines the incoherent internal tide. This allows separation of the coherent and inco-

herent tides (determined by their robustness and variance, respectively) in a manner

that may be more reliable than the error band provided by T_TIDE from a single

(year long) time series [28].

Both the coherent as well as incoherent tides are fairly strong, especially when

the equivalent surface displacement is reconverted into isopycnal displacement. The

latter can attain excursions of tens to hundreds of meters. The phase variation of

the coherent and incoherent internal tides along a mooring line is usually weak. The

amplitude variations are stronger. Horizontal variations are, obviously much larger,

clearly displaying an internal tidal length scale that is much shorter than that of the

corresponding surface tide.
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Internal Tides West of the Iberian
Peninsula

Eugene G. Morozov and Manuel G. Velarde

Introduction

Semidiurnal internal tides exist almost everywhere in the ocean. It is generally
accepted that internal tides are generated due to the interaction of the barotropic tide
with the slopes of bottom topography. The largest amplitudes are usually found
near underwater ridges and continental slopes [1, 2]. Tidal currents flow over the
slopes of the bottom topography and obtain a vertical component, which induces
periodic vertical displacements of the isopycnals. Hence, internal waves with tidal
periods are generated that propagate from the areas of uneven bottom topography to
the open ocean. As a result, the energy of the barotropic tide is converted into the
energy of the internal tide. The maximum fluxes of energy lost by the barotropic
tide are found in the regions of submarine ridges and continental slopes such as the
South China Sea, the Mascarene Ridge, the Aleutian and Hawaii islands [3, 4].
Extremely strong internal tides are generated in the straits when the currents of the
barotropic tide flow over the sills that cross the straits [5–8].

The maximum amplitudes of the internal tides are found in the regions with
shallow ridge crests or shelves adjacent to deep waters if the inclination of the
slopes is close to the inclination of the characteristic curves of the equation for
internal waves [9]. In this contribution, we analyze internal tides generated over the
Atlantic continental slope of the Iberian Peninsula.

Moored measurements with thermistor chains were carried out on the shelf break
west of Portugal at 41° N [10]. The authors recorded high-frequency internal waves
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generated by the internal tide with an amplitude of 45 m. The estimated energy
fluxes were 2 kW m−1. Note for comparison that the energy fluxes associated with
the strongest internal tides in the South China Sea are as high as 40 kW m−1 [11].

Very strong internal tides are generated over the continental slope on the
northern coast of Biscay Bay [12]. Our analysis is based on the archived moored
measurements gathered in the Iberian Basin during many expeditions within dif-
ferent oceanographic programs. We use the clusters of moorings as an antenna to
estimate the direction of the internal tides and their wavelength. The method of
calculation is based on the calculation of the spatiotemporal spectrum. A line of
moorings normal to the slope can be helpful to estimate the decay of internal tides.
Solitary moorings distributed over large regions can be used to evaluate the geo-
graphical distribution of the internal tide energy.

Analysis of the internal tides in the Strait of Gibraltar was carried out in [5]. The
flow in the strait is characterized by a two-layer system of opposite currents
resulting from the difference in sea level and water density (salinity and tempera-
ture) between the Atlantic Ocean and the Mediterranean Sea. The flow changes its
direction approximately at a depth of 100 m. The barotropic tidal wave with mean
velocities in the range 70–80 cm/s propagates through the strait. The barotropic tide
generates an internal tidal wave, when the tidal currents flow over the Camarinal
Sill located in the middle of the Strait of Gibraltar. Extreme tidal internal waves
(with an amplitude reaching 160 m) are observed only over the Camarinal Sill. The
vertical displacement of the 13 C isotherm ranges from 100 to 300 m. When the
internal tide wave reaches the western part of the Strait of Gibraltar, its amplitude in
the open ocean decreases to 30 m, which is comparable with the amplitudes of
internal tides generated on the continental slopes of Iberia and Africa.

The wavelength of the internal tide propagating to the east ranges from 90 to
140 km, while the wavelength of the internal tide propagating to the west ranges
from 45 to 60 km. The wavelength of the internal tide propagating in the eastern
direction is greater and the difference is not surprising because the depths east of the
Camarinal Sill are greater than in the western part of the Strait.

The Data

Many moorings were deployed in the region in the last 30 years. During the World
Ocean Circulation Experiment (WOCE), two lines of moorings were deployed in
1993–1994 on the continental slope of the Iberian Peninsula as part of the Mul-
tidisciplinary Oceanographic Research in the Eastern Boundary of the North
Atlantic project (MORENA).

The lines included three moorings ACM-27 (along 42° 16′ N) and four ACM-28
moorings along 41° 00′ N from 9° 30′ W to 11° 00′ W (Fig. 1). These measure-
ments were intended to study the processes on the continental slope.

In 1988, the oceanographers onboard the Russian R/V “Vityaz” studied the
spreading of Mediterranean Water from the Strait of Gibraltar to the Atlantic Ocean
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and formation of the Mediterranean lenses. During the cruise, 19 moorings were
deployed for a period of 15 days each west of the Strait of Gibraltar to study the
formation of Mediterranean lenses of high salinity. The locations of moorings are
shown in Fig. 1.

Moored measurements west of the Iberian Peninsula were carried out in 1996–
1999 within the OMEX Program (Ocean Margin Exchange Project; mooring
numbers 6988–6993 and 7016–7042). Several moorings were deployed on the
continental slope: 42° 39′ N, 9° 42′ W; 42° 37′ N, 10° 02′ W; 39° 37′ N, 9° 44′ W;
41° 22′ N; 9° 18′ W; 38° 13′ N, 9° 47′ W; 38° 24′ N, 9° 46′ W.

The experiments in the 1970–1980s were aimed to study mesoscale eddies of the
open ocean, which were discovered in the beginning of the 1970s. The researchers
tried to investigate the dynamic properties of the oceanic eddies with a horizontal
size of 200–300 km. The energy of such eddies is comparable with the energy of
quasi-stationary currents. In 1984–1985, moored measurements were carried out on
a cluster of five moorings located close to 41° 30′ N, 15° 00′ W. The depths of
measurements were 1500 and 2600 m. The data were downloaded from the open

Fig. 1 Bottom topography (meters) west of the Iberian Peninsula. Depth contour lines are shown
at depths of 500, 1000, 2000, 3000, 4000, and 5000 m. Locations of moorings are shown with
black symbols. The following experiments are indicated with different symbols: WOCE ACM-27,
ACM 28 (squares, the moorings used to calculate the energy decay of the internal tide are
indicated with white dots in the middle); “Vityaz-88” (black dots), the moorings used to calculate
spatiotemporal spectrum are indicated with white dots in the middle); OMEX experiment
(triangles); moorings in 1984–1985 used to calculate the spatiotemporal spectrum (pentagon stars);
two other moorings in 1984–1985 (circle with a cross), and a standalone mooring in 1980–1981
(diamond). Land is shown with gray color
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access CMDAC database at the Oregon State University (CMDAC numbers are
acc00739–acc00747). Figure 1 shows the locations of moorings.

Other archived data were also used in our research. These experiments were also
aimed to study mesoscale eddies. Two moorings were deployed in 1978–1979 at
41° 00′ N, 24° W. The measurements were made at 2300, 3300, and 4000 m.
The CMDAC numbers are acc00705–acc00707. A mooring was deployed in 1980–
1981 at 41° 45′ N, 22° 00′ W. The measurements were made at 600, 1500, 3000,
and 3790 m. The CMDAC numbers are acc00522–acc00525.

We used the archived data of these measurements west of the Iberian Peninsula
to study the properties of internal tide whose spatial scales (100–200 km) are close
to the scales of mesoscale eddies (200–300 km). The available data with a time
sampling of one hour are quite applicable to study internal tides with periods of
12 h.

Spatiotemporal Spectrum

We used the method developed for seismological problems and applied by Barber to
the ocean waves to estimate the wavelength and direction of the internal tides [13].
We assume that the sensors are located randomly over the observational sites. The
method is based on the calculation of the cross spectra for each pair of the possible
combinations of sensors with further convolution at the frequency of the waves
under study. The spectra are calculated using the Fourier transformation of the
correlation function as described by Blackman and Tukey [14]. The amplitude
and phase cross-characteristics of the oscillation are used to calculate the spa-
tiotemporal spectra at the wave frequency and estimate the components of the
horizontal wave number.

The method basically accounts for the statistical phase difference between each
pair of the wave sensors. In our case we used the temperature sensors, which
indicate the vertical motion induced by internal waves assuming that the vertical
gradients of temperature are significant. It is important that the distance between the
moorings should be comparable with the wavelength of the oscillations under
study. Otherwise uncertainty appears in the interpretation of the phase differences if
the distance between the sensors is too large. If the distance between the sensors is
two small and the span of the array of sensors is smaller than the wavelength due to
a limited number of sensors it is impossible to resolve the wavelength correctly.

If moored temperature measurements at the same depth at several points in the
ocean are available, we can calculate cross spectra of fluctuations P and
Q (co-spectrum and quadratic spectrum). Next, we perform a transformation at the
M2 semidiurnal tidal frequency f0 to determine the distribution of mutual spectral
energy at this frequency with respect to wavenumbers kx and ky.

So far we do not have a continuous spectrum of distances, but instead, we have a
finite set of definite distances corresponding to the distances between the moored
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stations, the calculation of a spatiotemporal spectrum at f0 frequency was carried out
using the following formula:

Eðkx, ky, f0Þ=2 ∑
n− 1

i=1
∑
n

j= i+1
½Pijðf0Þ cos 2πðkxxij + kyyijÞ−Qijðf0Þ sin 2πðkxxij + kyyijÞ�,

where k2x + k2y = k2 is the spatial wave number, while the wavelength L is: L=1 ̸k; i,
j are the sequential numbers of the sensors, n is the total number of the sensors; Pij

and Qij are the real and imaginary parts of the cross spectrum between the sensors
with numbers i and j; xij =Xi −Xj and yij = Yi −Yj are the projections of the dis-
tances between the sensors on the horizontal axes x and y.

Usually, the number of sensors is small. Each sensor is installed on a mooring.
The number of moorings deployed in the study sites rarely exceeds 10. Hence, the
shape of the spectral peak is not a delta-function but has a finite width. Usually, the
spatiotemporal spectra of internal tides with semidiurnal frequency (or possibly,
other frequencies) are presented as contour lines of percentage normalized by the
maximum value.

Analysis

We studied internal tides in the region west of the Iberian Peninsula on the basis of
moored temperature and velocity measurements. The moorings deployed in the
region allowed us to analyze the properties of internal tides.

Two lines of WOCE moorings in 1993–1994 on the continental slope of the
Iberian Peninsula extending to the deep basin along 42° 16′ N and along 41° 00′ N
allowed us to determine the decay of internal tide amplitude with the distance from
the continental slope. A scheme of the region, bottom topography, and locations of
moorings along the line normal to the continental slope are shown in Fig. 1.
Locations of the instruments related to the continental slope are shown in Fig. 2.

The eastern mooring of the ACM 28 line was located at a distance of 60 km
from the shore on the continental slope at a depth of 1300 m. The line of moorings
extended to the depths of 4200 m. The length of the line of moorings was 150 km.
All moorings returned the temperature data at 700–800 m. Intense internal tides
were recorded on all of the moorings. The mean peak to peak temperature variations
on different moorings were 0.25–0.50 °C, which corresponds to the amplitude of
internal tides within 38–78 m. The amplitudes of semidiurnal internal tides were
decreasing from 78 m over the continental slope to 38 m in the deep basin over a
distance of 150 km. A graph of the variations of internal tide amplitudes at 700–
800 m is shown in Fig. 2.

The locations of instruments over the background of depth are shown in the top
panel of Fig. 2. The amplitudes of internal tides are shown in the bottom panel. One
can see a decrease in the amplitudes up to the depths of 4200 m as the distance from
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the continental slope increases. The decrease in the amplitude is almost linear. The
rate of decay is generally close to the estimates in [15, 16].

We also calculated energy decay of the internal tide with the distance from the
continental slope. The energy densities of the internal tides averaged over a wave
period were calculated as in [16]:

ETW zð Þ=0.25ρ u2IT zð Þ+ v2IT zð Þ+N2 zð Þς2IT zð Þ
� �

,

where the amplitudes of the semidiurnal internal tidal components are uIT, vIT (zonal
and meridional currents) and ςIT (vertical displacements); N is the Brunt-Väisälä
frequency calculated from the vertical profiles of CTD data in the region. Tidal
components and vertical displacements associated with the internal tide were cal-
culated after band filtering of the velocity and temperature data from moorings.
Then the temperature fluctuations were divided by the mean vertical temperature
gradient. In both regions, the energy decay is approximately the same.

Energy decay versus normalized distance is shown in Fig. 3. Similarly to the
energy decay studied in [16] the energy decay west of the continental slope of
Iberia is governed by a power law approximately proportional to e−2. A similar
decay was found for the energy decay of internal tide propagating to the southeast
from the Mozambique coast (Fig. 3).

Fig. 2 Scheme of the moorings with current and temperature measurements over the bottom
topography on the section along 41° N (top panel); Peak-to peak amplitudes of the semidiurnal
internal tide versus western longitude (bottom panel)
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The moorings deployed in 1998 from the Russian R/V “Vityaz” close to the
Strait of Gibraltar were organized in several clusters. The goal of the experiment
was to study the formation of the Mediterranean lenses of the saline water flowing
from the strait as the lower current. The horizontal scales of the clusters were
selected to analyze the Mediterranean intrathermocline lenses (Meddies). These
scales are close to the scales of internal tides, thus these measurements allowed us
to estimate the amplitude, wavelength, and direction of the internal tides. The
amplitudes were within 30–40 m. On a mooring cluster (33° N, 11° W), in which
the moorings operated synchronously for 15 days, it was possible to estimate the
direction and wavelength of the semidiurnal internal tides. We expected that the
waves would propagate from the continental slope in the region of Morocco, but the
wave arrived in the direction to the south-southwest (200) from the southwestern
coast of the Iberian Peninsula. The wavelength was 100 km (Fig. 4).

The moored measurements in 1984–1985 in the middle of the Iberian Basin (41°
30′ N, 15° 00′ W) at depths of 2600–2700 m on five moorings over the ocean
depths of 5300–5500 m resulted in the mean amplitude of the semidiurnal internal
tide equal to 30–40 m, while at a depth of 1500–1600 m the amplitudes were 40–
50 m.

The spatiotemporal spectrum based on the data at 2600 m using the Barber’s
method [13] is shown in Fig. 5. The wavelength of the semidiurnal internal tides
was estimated at 105 km. The waves propagated from the northeast from a region
of shallower depths less than 850 m. A bank exists here at 42° 30′ N, 12° 00′ W.

Fig. 3 Energy density of the
semidiurnal internal tides (J/
m3) versus distance from the
continental slope of the
Iberian Peninsula (solid line).
The horizontal axis shows the
distance from the slope in the
direction normal to the slope
normalized by the wavelength
of the first mode (145 km).
A similar decay of the internal
tide energy versus distance
near the Mascarene Ridge in
the Indian Ocean is shown
with a dashed line [16] and
southeast of Mozambique
(dashed-dotted line). The dots
on the graphs indicate the
energy values based on the
measured velocities and
temperature on moorings
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The moored measurements along the continental slope of the Iberian Peninsula
in 1996–1999 within the OMEX Program allowed us to estimate the amplitudes of
internal tides. The mean amplitude at depths of 600–1000 m was estimated at 30–
40 m.

The amplitude of internal tides at a depth of 600 m measured on a standalone
mooring in the middle of the Iberian Basin at point 41° 45′ N, 21° 57′ W in 1980–
1981, was estimated at 30 m.

Conclusions

We analyzed the moored measurements in the Iberian Basin west of the Iberian
Peninsula. The data were collected from many sources. All measurements confirm
the generation of internal tides over continental slopes due to the interaction of the

Fig. 4 Spatiotemporal spectrum at the semidiurnal frequency based on the data of six moorings
shown in Fig. 1 (depth 1000 m) as black dots with a white circle in the middle (“Vityaz-88”). The
contour lines on the spatiotemporal spectrum correspond to 90, 80, and 70% of the main
maximum. The arrow shows the wave vector corresponding to a wavelength of 100 km
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barotropic tide with the sloping bottom topography. The amplitudes (peak to peak
displacements) of internal tides over the continental slope are sometimes as high as
almost 80 m. They decrease in the open ocean to 30 m.
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Asymmetric Baroclinic Response
to Tidal Forcing Along the Main Sill
of the Strait of Gibraltar Inferred
from Mooring Observations

Jesús García-Lafuente, Simone Sammartino,
José C. Sánchez-Garrido and Cristina Naranjo

Introduction

The Atlas of Internal Waves [1] highlights the Strait of Gibraltar as a region where
short-period, large-amplitude internal wave trains progressing into the Mediter-
ranean Sea occur regularly throughout the year. Indeed they are renowned and
paradigmatic features of this area that have been known since long ago by fisher-
men and sailors navigating the Strait. They identified the tidal origin of the phe-
nomenon that happens phase-locked with the barotropic tide (sea level oscillation)
and exhibits intensity quite well related to the spring-neap tidal cycle. Pioneer field
experiments carried out during the 1960s supported this empirical knowledge by
suggesting that the flow in the Strait does not move as a continuous or
smoothly-varying current, but as tidal-induced pulses [2, 3]. However, the severe
technical difficulties caused by the strong currents of the region, the safety
restrictions associated with the heavy maritime traffic, and the harsh meteorology,
prevented the acquisition of reliable in situ observations until the late 1960s [4].

The basic theory of internal wave generation and propagation involves the
combination of water stratification, bathymetry, and transcritical flows. These
conditions are often met in coastal regions such as continental shelves, inlets, fjords
and straits, where these waves are more frequently observed [1]. Wherever strati-
fication, seabed irregularities or currents are enhanced, the generated internal wave
train will also be. Equally important is the angle of incidence of the flow with the
isobaths, normal incidence being the most favorable situation. The Strait of
Gibraltar has a year-round notable stratification (compared with the seasonal
stratification in other places of the ocean) due to the encounter of Mediterranean
and Atlantic waters. At the same time, the presence of the protruding sill of
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Camarinal (CS, see Fig. 1), that intercepts the Mediterranean outflow, and the
intense tidal currents [5–9] make this spot to gather optimal conditions for the
occurrence of this spectacular phenomenon, as it has been widely recognized
among the oceanographic community. This promoted the accomplishment of the
Gibraltar Experiment during the 1980s.

This international cooperative program provided further experimental evidences
of the small-scale structure of the internal waves and a theoretical frame to interpret
their life cycle. The generation was explained within the internal hydraulic theory of
the exchange through the Strait [10–12]. The comprehensive dataset collected
during the experiment suggested that the internal wave train was the time evolution
of a hydraulic jump regularly released on the west slope of CS that progresses
towards the Mediterranean Sea [11]. The phenomenon is triggered by the flooding
of the hydraulic control formed over CS [10, 11, 13], which occurs by the end of the
flood tide when tidal currents weaken [7, 11]. All this happens shortly before
the local high water due to the standing wave nature of the tide in the area [14]. The
spring-neap modulation of semidiurnal currents and the importance of diurnal tidal
currents [7], bring about fortnightly and diurnal variability on the flooding of the

Fig. 1 a Map of the Strait of Gibraltar and approaches sketching the path of the two main
Mediterranean water masses entering the strait. Camarinal Sill is indicated by the acronym CS.
b Detailed shaded bathymetry of CS area from [30] with indication of the accurate position of the
two deployed mooring lines (CSN and CSS, see also up and bottom insets). The two depressions at
the east (LB for Levante Basin) and west (PB for Poniente Basin) of CS mentioned in the text are
also indicated. c Detailed cross-section of CS showing the position of both mooring lines (which
are not to scale)
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hydraulic control and the subsequent internal bore release, as well as on the very
intensity of the bore, which can even not be released [15].

The time evolution of the internal wave train has been addressed in Vlasenko
et al. [16] using a simplified numerical model, whereas the generation mechanism
was investigated in detail in Sánchez-Garrido et al. [13] by means of a high-spatial
resolution numerical model implemented in a domain of very accurate topography.
The model reproduces the generation and eastward propagation of the wave train
very satisfactorily (Fig. 2a–e). Interestingly, it also indicates the formation of a
smaller hydraulic jump to the east of CS during the ebb tide (Fig. 2f), when the
Atlantic water reaches deeper over CS, and the westward propagation of weaker
internal wave packets when the jump decays. However, these features occur much
less regularly than its west-of-CS counterpart described previously and, therefore,

Fig. 2 Contours of salinity in an along-strait section of the Strait of Gibraltar that intersects CS,
which is taken as the axis origin, at six selected times of the tidal cycle (see insets). They
correspond to a situation of strong tidal forcing (spring tide) and have been adapted from
Sánchez-Garrido et al. [13]. The arrows indicate the direction of the barotropic tidal current, their
size attempting to represent its instantaneous strength
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have little observational support, the Gibraltar Experiment dataset showing some
hints of them [11].

The great asymmetry of the occurrence of eastwards versus westwards pro-
gressing wave trains lies in the background flow mean state. Figure 3 sketches two
possible states, the first one (left panels) with a motionless stratified water column
over a rough topography (sill), the second one (right panels) with a steady baro-
clinic exchange. When strong enough oscillating tidal currents are superimposed to
the background state, the flow-topography interaction gives rise to the formation of
symmetric hydraulic jumps in the first case, but not in the second one. When the
jumps decay, they in turn originate wave trains progressing away from the sill in

Fig. 3 Simplified sketch of the formation of hydraulic jumps and internal waves in a stratified
(two-layer) flow over marked bathymetry (sill, deep grey shade). Panels a and b show the
background situation in cases of no flow and steady baroclinic exchange, respectively. Panels
c and d illustrate the result of (the same) barotropic tidal forcing on both background states when
tidal currents point to the left. They lead to the eventual formation of hydraulic jumps (HJ)
downstream of the sill, with the jump corresponding to the baroclinic mean exchange (panel d)
showing greater amplitude. Panels e and f do the same for tidal currents pointing to the right.
Again, an asymmetry appears with the jump formed in the no-flow background state (panel
e) being larger than the counterpart of the mean baroclinic exchange (panel f). In both cases, the
asymmetry arises from the different background states, which enhances (reduces) the total deep
current when tidal currents point to the left (right) under steady baroclinic exchange. The
short-wave packets propagating on the interface would represent the internal waves generated
during the previous tidal cycle. These wave packets have similar probability of occurrence in either
direction in the no-flow background state (panels c and e) but not in the baroclinic mean exchange
(panels d and f) where the right-going waves are formed much more frequently
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either direction with similar regularity in the first case, but obviously not in the
second one.

Curiously, examples of both situations are met in the Mediterranean Sea: the
Messina and Gibraltar straits. The Messina strait, roughly sketched in Fig. 3a, falls
in the first class. It sustains strong tidal currents due to the different phase of the tide
between the Tyrrhenian and Ionian seas [17]. In summer-autumn, when the sea-
sonal thermocline is formed and the water column becomes stratified, internal wave
packets moving northwards or southwards are regularly observed, with nearly equal
rate of occurrence [1, 18]. On the contrary, the baroclinic background state sketched
in Fig. 3b, which applies to Gibraltar with the Mediterranean Sea to the right,
overwhelmingly breaks the balance toward the side of west-of-CS (left-of-sill in
Fig. 3) formed jump and subsequent eastwards propagation of internal waves.
Additionally, the year-round stratification in Gibraltar, driven by salinity rather than
temperature differences, also results in a fairly even distribution of the observed
wave packets over the year that contrasts with the summer-autumn concentration in
Messina [1].

The formation of hydraulic jumps east of CS is reproduced by the numerical
model of Sánchez-Garrido et al. [13], despite its apparent uncommonness (Fig. 2f).
The west-going wave packets resulting from the decay of the east-of-CS jump are
likewise elusive to observe, the few reported cases being offered by Alpers et al.
[18] or Morozov et al. [9]. Interestingly, the former authors associated the events
with the seasonal thermocline rather than with the permanent pycnocline between
Atlantic and Mediterranean waters, which is the interface the east-going internal
wave packets are linked to.

Even when the understanding of the whole process is very satisfactory,
small-scale details (O(1 km)) of the formation processes of the hydraulic jumps on
either side of CS, their flooding and subsequent release of internal bores, their
cross-strait spatial structure, etc., are not so well known, let alone from an exper-
imental point of view. This work addresses some of these issues from an obser-
vational approach, taking advantage of a field experiment primarily designed to
investigate the cross-strait structure of the Mediterranean outflow in CS at subin-
ertial time-scales [19]. Next section shows the detailed bathymetry of the CS area
and the essential topographic features, section “Data and Data Processing” presents
the data and data-processing, section “General Description” analyzes the data and
section “Discussion and Conclusions” discusses and summarizes the conclusions
drawn from this study.

A Close-Up to the Bathymetry of Camarinal Sill

Figure 1b displays an updated and detailed bathymetry of CS. The topography is
very uneven with marked sub-kilometric features that steer the deep water flow. Of
special interest is the presence of two larger-scale channels in the section, denoted by
Camarinal North and Camarinal South Channels (CSN and CSS, hereinafter, Fig. 1),
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through which the densest Mediterranean waters must flow. CSN channel is shal-
lower (thalweg at −300 m, see inset in Fig. 1b), narrower (∼2 km at 200 m-depth
isobaths), has a smooth U-shaped form and favors the evacuation of waters flowing
along the northern half of the Strait, whereas CSS has a more V-like profile, is
slightly deeper (thalweg at −310 m, Fig. 1) and broader (∼4.5 km at −200 m). The
thalwegs distance is ∼5 km. The ratio of cross-areas (CSN/CSS) below 200 m depth
is 1:2 approximately, which suggests similar fractions of the outflow across each
channel. The Mediterranean waters flowing through them have slightly different
characteristics due to the tendency of the relatively warm and salty Levantine
Intermediate water (LIW) to flow closer to the Spanish shore and the Western
Mediterranean Deep water (WMDW), colder and fresher, to flow attached to the
Moroccan coast [20–22], see sketch in Fig. 1a. Therefore, LIW and WMDW will
flow in greater proportion across CSN and CSS, respectively (see Fig. 4 in Gar-
cía-Lafuente et al. [19]).

Of particular interest are the closed depressions at either side of CS (LB and PB
in Fig. 1b), which display erosive features. Quite probably, they have been carved
out by strong flows that have had to pour down from the top of the sills of
Camarinal in the flood (PB) and ebb (LB) tides, that is, by the supercritical flows
associated with the alternating formation of hydraulic jumps at either side of CS.
The asymmetry imposed by the background baroclinic exchange, which reinforces
flood and weakens ebb tidal currents in the deeper layer, would accordingly explain

Fig. 4 a Temperature and salinity observed in CSN. b Same as a for CSS. In both panels, spikes
are almost exclusively observed during spring tides and are more alike every two semidiurnal
periods, that is, every 24 h approximately (see text). c Smoothed contours of the high-frequency
variance of the ADCP velocity field (VHF z, tð Þ, see text) at CSN. d Same as c for CSS. e Sea level
in Tarifa (see Fig. 1 for location). The blue rectangle indicates the portion of the series displayed in
Fig. 5
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the dissimilarities in extension and depth of each depression, the western one
(PB) being noticeably greater than the eastern one (LB). Therefore, the little
intuitive presence of LB to the east of CS would actually be an indirect proof of
east-going supercritical flow downhill of CS, which is a hypothesis on the focus of
the present study.

Data and Data Processing

Two twin mooring lines equipped with a Conductivity-Temperature (CT) probe and
an upward-looking Acoustic Doppler Current Profiler (ADCP) located at 10 and
12 m above the seafloor, respectively, were deployed at the thalwegs of CSN and
CSS channels in bottom depths of 306 and 310 m, respectively (Fig. 1b, c).
The ADCP observations spanned the period 9th of June to 25th of September 2013,
and operated at a sampling interval of 4 min. The instruments were configured to
sample 40 vertical bins, each one 6 m thick, so that the velocity profile does not
reach the sea surface. However, it samples the Mediterranean water layer whose
upper boundary (interface) was estimated from in situ salinity observations at a
time-averaged depth of 120 m in CSN and 134 m in CSS by Bryden et al. [5], that
is, ∼180 m above the seafloor at the mooring sites. The CT observations were
collected every 2 min, starting on the 9th June as well, but they finished earlier due
to battery run out (on 24th and 27th of August at CSN and CSS, respectively). In
both cases, the sampling rate was enough to have several samples within the time
scale of tens of minutes typical of the internal waves [15].

Figure 4a, b show sudden and remarkable spike-shaped changes on the time
series of temperature and salinity that happen quite regularly during the spring
phase of the fortnightly cycle (see Fig. 4e). These series are, therefore, good
indicators of the occurrence of intense hydraulic features over CS. Velocity series,
however, are no so straightforward indicators because the high frequency velocity
fluctuations associated with the internal waves are superposed to very strong tidal
flows that make the former appear noise-like.

In order to extract more useful indicators of the high frequency processes from
the ADCP observations, the velocity profiles have been high-pass filtered with a
filter of 2 cph cut-off frequency. The three components of the high-passed velocity
have been combined to compute the variable VHF z, tð Þ= 1

2∑
3
i=1 ui z, tð Þ2, where

ui z, tð Þ is the i-th component of the velocity at instant t and depth z. Since the
variable is rather noisy in time and space, moving average operators with windows
width of 45 min in time (11 data) and 30 m in space (5 depth-levels) have been
applied to VHF z, tð Þ in order to smooth out the noise. These operations are equiv-
alent to calculating the variance of the series within the established time and depth
windows. The result of this procedure can be seen in Fig. 4c, d, which display the
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expected spring-neap tidal modulation in both CSN and CSS sites, more neatly in
the latter.

Finally, the location of the interface between Atlantic and Mediterranean waters
is relevant in this study. A proxy for this interface is the surface of maximum
vertical shear of the horizontal velocity [5, 23, 24], which has been estimated from
the low-passed along-strait velocity, using a 5 cph cut-off frequency filter, and the
same moving average window of 5 vertical bins in the vertical. The time-averaged
locations of the interface so computed have been found at 110 (36) m and 153
(52) m at CSN and CSS respectively (bracketed values indicate the standard
deviation), in good agreement with those provided by Bryden et al. [5]. A good deal
of the interface variability is tidally-induced with semidiurnal oscillations of several
tens of meters centered at M2 frequency.

General Description

The spikes in Fig. 4a, b indicate the arrival to the bottom of CS of Mediterranean
water mixed up with fresher and warmer overlying Atlantic water (the CT probes
are hardly 10 m above the seafloor). As mixing depends on the strength of the tidal
currents, the good matching between the periods of spikes appearance and spring
tide is not surprising at all. Likewise, the diurnal inequality in the internal
hydraulics of the strait driven by the important diurnal tidal currents [7, 9, 15] is
also mirrored by the spike size, which are larger every two peaks. The size is greater
in CSS (notice the different scale in Fig. 4a, b), surely as a result of the stronger
currents across this channel. More importantly, the shape of the spikes differs
noticeably from one site to the other, a fact that is better appreciated in Fig. 5.

Figure 4c and d display the footprint on the velocity series of the
high-frequency motions associated with the internal hydraulics. Again, the contour
intensity follows the spring-neap cycle, a fact that is particularly evident in the case
of CSS. The cycle is less apparent in CSN, yet identifiable, because the variability
tends to concentrate in the uppermost part of the water column, contrary to what
happens in CSS where a mid-depth maximum is weakly suggested (see also
Fig. 8b).

A quick inspection of Fig. 5, which enlarges the series inside the rectangle of
Fig. 4, confirms the above mentioned features, but it also reveals new ones of
interest. First, the temperature and salinity peaks always occur during the falling
tide that coincides with the ebb current due to the standing-wave nature of the tidal
wave in the strait [14]. The direction of the ebb current is to the east and, if strong
enough (a situation met in spring tides), reverses the deep Mediterranean layer that
momentarily will flow towards the Mediterranean Sea (Fig. 6b). A second note-
worthy feature is the regular semidiurnal periodicity of the high frequency currents
in CSS (Fig. 5b), with the expected greater similarity every two semidiurnal cycles
due to the diurnal inequality. The pattern is not as clear in CSN (Fig. 5a),
although it is still detectable. The contours, however, are now found during the
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Fig. 5 Zoom of the fragment of the series indicated by the blue rectangle in Fig. 4, which
coincides with a period of spring tides. With small variations, this period is representative of
spring-tide conditions during all events recorded in the field experiment. Panels a and b present
contours of the variance of the high-frequency velocity (VHF z, tð Þ, see text) along with the salinity
(blue lines) at CSN and CSS, respectively. Sea level in Tarifa (green line, no units) is superposed
in both panels for reference. Dates in the time axis are in the format ddMMMhh. The black
rectangle marks the fragment zoomed in Fig. 8

Fig. 6 a Salinity and temperature at CSN and CSS during a short fragment of the series displayed
in Fig. 5. b Along-strait velocity at two selected depths (see legend). The along-strait axis is 5° and
20° anticlockwise from east in CSN and CSS, respectively, these values coming from the
vertically-averaged orientation of the M2 tidal ellipses obtained from the harmonic analysis of the
velocity profiles [31]. c Sea level at Tarifa. Numbers inside squares refer to features discussed in
the text
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rising tide when the associated flood (westward) tidal currents enhance the velocity
in the Mediterranean layer.

These features linked to the ebb and flood tides are addressed separately in the
following sections. The discussion is just limited to spring tide situations, which is
when the energetic high-frequency motions we are interested in are observed. Data
within the spring tide period marked by the rectangle in Fig. 4 will be used in the
analysis, for it is representative of all other spring tide cycles.

Ebb Tide

Shortly before the slack tide corresponding to high water, the water column above
CS consists mainly of the Mediterranean water that has been flowing westwards
during the previous flood tide (Fig. 2c is a good reference for this situation).
Accordingly, the salinity registered by the CT probes at CSN and CSS is at their
maxima (labels (1) in Fig. 6), suggesting that it is at these moments when the less
mixed, purer Mediterranean waters are flowing out at those depths. A similar result
is inferred from temperature data, which are at their minima. At that moment the
observations illustrate the known cross-strait distribution of Mediterranean water
masses in CS, with colder WMDW flowing preferably through CSS and warmer
LIW doing it over CSN [25, 26]. The total current in the lower part of the water
column still points westwards, whereas it has already reversed (or it is about to) in
the upper column (labels (1), Fig. 6).

About 3 h after the high water, the ebb tide becomes maximum and so does the
eastward current in the upper layer (labels (2), Fig. 6). The Atlantic water transport
into the Mediterranean Sea also reaches a maximum, which in turn implies a
thickening of the Atlantic layer that deepens the interface [23, 27]. In CSN, the
deepening is perceived as a sudden increase of temperature and decrease of salinity,
which are not detected in CSS (labels (2), Fig. 6). The ebb current is strong enough
to reverse the flow in the lower Mediterranean layer, which now moves to the
Mediterranean Sea. Under these circumstances, the establishment of hydraulic
control and the eventual formation of a weak hydraulic jump east-of-CS, such as the
one sketched in Fig. 3f or illustrated in Fig. 2f, emerges as a realistic possibility, in
which case these peaks should be caused by processes related to the evolution and
fate of this jump. During neap tides, the reduced mixing along with the diminished
tidal transports prevent the mixed water to reach so deep and it is barely detected by
the CT probes, which measure rather constant values of temperature and salinity
(Fig. 4a, b).

During the following 2 h approximately (from labels (2) to (3) in Fig. 6) the
thermo-haline properties of water registered at CSN keep on differing from pure
Mediterranean water. After the mentioned sudden change, both variables display
irregular high frequency fluctuations and, occasionally, gradual changes towards
characteristics ofmoremixed-with-Atlantic water. The pattern has strong dependence
on the diurnal inequality, since it is only distinctly displayed every two tidal cycles.
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These high frequency temperature and salinity oscillations appear to be correlated to
the perturbations of the current, which are visible at shallower depths in CSN (labels
(2)–(3) in Fig. 6, see also Fig. 5a). The correlation suggests certain proximity of the
instruments to the deeper part of the interfacial layer, whose small-scale vertical
oscillationswould leave correlated high-frequency signatures in all series. This period
comes to an end around lowwater, when the ebb tide ceases and theflood cycle begins.
Salinity and temperature series in CSN show another sudden change that brings the
observed values back to the expected for Mediterranean waters (labels (3) in Fig. 6).
This change is greater than the previous one (cf. labels (2) in Fig. 6), it happens more
regularly and it is usually accompanied by a pulse of current that affects the whole
water column in the variance series (see labels (1) in Fig. 5a and also labels (4) in
Fig. 8a later on).We reason that these features are caused by thewestward progression
of an internal bore and the tied in internal wave packet that follows the release of the
hydraulic jump formed east-of-CS.

The situation in CSS appears somewhat different. Here, the deepening of the
interface during the ebb cycle does not reach the CT probe for as long as in CSN,
and salinity and temperature fluctuations just consist of a single peak up to four
times greater than those observed in CSN (Fig. 6a). It requires larger fraction of
Atlantic water in the mixed water sampled by the CSS probe than by the CSN
probe, which can only be explained if the interface goes deeper in the former site,
although this deep excursion lasts shorter in the latter.

The peak at CSS occurs during the last hour of the ebb cycle and shortly before
than the already mentioned second peak in CSN is detected (label (3) in Fig. 6).
Actually, a lagged cross-correlation between the salinity (or temperature) series at
both sites indicates that the second peak in CSN lags the sharp peak in CSS
by ∼ 50 min. Despite being so noticeable in temperature or salinity, the process
that causes these fluctuations in CSS does not leave such a clear signature in the
series of high-frequency velocity as it does in CSN (see labels (1) in Fig. 5a).
Instead of affecting the whole water column, as it is the case in CSN, peaks in CSS
only leave a weak visible signature in the lower layer velocity consisting of short
reversals (less than half an hour, see labels (4) in Fig. 6b) of the total current, which
is about starting flowing westward. And the reversal does not even happen on a
regular basis, but rather occasionally.

Flood Tide

The flood tide cycle begins after the occurrence of the sharp temperature and
salinity spikes, which signpost the end of the ebb. During this cycle and under
spring tide conditions, the east-going flow in CS reverses and the whole water
column moves westwards (Fig. 6b). Following the progressive acceleration of the
Mediterranean water flow, the interfacial layer rises up to even a few meters from
the free surface. In fact, it is not unusual to detect cold sea surface signatures in the
eastern approaches of CS in remote sensed images during the flood tide (see Fig. 7,

Asymmetric Baroclinic Response to Tidal Forcing … 203



for instance). Its origin is caused by the uplift of the interface upstream of the sill, in
this case to the east, forced by the marked increase of the outflow of Mediterranean
waters during this phase of the tidal cycle. As a result, most of the water column
over CS consists of Mediterranean water that leaves a rather flat signal in CSN and
CSS temperature and salinity records (Fig. 6a).

During this tidal phase, a hydraulic jump on the westwern side of CS is regularly
formed [10, 11, 13], whose subsequent release when the current slackens originates
the well-known large amplitude internal wave train that progresses into the
Mediterranean Sea. Such an energetic process must leave recognizable footprints in
CS velocity observations, regardless of whether or not it leaves any in temperature
and/or salinity. The enhanced high-frequency variability of the ADCP series during
this tidal phase confirms the expectations, especially in CSS where the contrast with
the little variability registered during the ebb tide is striking (Fig. 5b). The
high-frequency variability in CSN is less organized with a pattern that remains
partially concealed by the noise. Most of the relevant information comes, thus, from
CSS where the following description focuses.

Figure 8 shows a three-day zoom to highlight some relevant features, some of them
quite obvious as thementioned ebb-flooddissimilarity or, again, thediurnal inequality.

Fig. 7 Sea surface temperature from L4 SST three-hourly satellite observations by Météo-France-
IFREMER (distributed by CMEMS-Copernicus) during the flood tide on 20th of July 2016. The
image is a 3 h mean around the time indicated by the red circle in the inset, which displays the sea
level in Tarifa
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Scrutinizing in more detail, when the flood begins after the low water, the
high-frequency variance field increases, depicting a maximum located at great depth
(labels (1),Fig. 8) thatgraduallymovesupwards [labels (2)] as theflood tideprogresses
(arrow in Fig. 8). And it occurs regardless of the semidiurnal cycle. Interestingly, the
upper bound of the high-frequency variance stripes (labels (1)–(2) in Fig. 8) coincides
with the depth of the maximum vertical shear of horizontal velocity that we have
identified with the interface, which ascends as the volume of Mediterranean water,
forced to overflow CS by the flood tide, increases. The fact that both features appear
coupled to each other in their upward displacement suggests that the latter is linked to
the establishment of the critical section over CSS and the consequent formation of the
hydraulic jump on the lee side (westward in this case) of the sill.

By the end of the flood, shortly before the high water, the hydraulic control in
CS is flooded [11, 13], the hydraulic jump develops into a propagating internal bore
that in turn evolves in the well-known internal wave packets as the accumulated
potential energy is partially converted into kinetic energy (see the successive
snapshots in Fig. 2). Temperature and salinity in CSN and CSS are blind to this
process as the interface during the flood tide is located well above the position of

Fig. 8 Zoom of the fragment of the series inside the black rectangle in Fig. 5. Numbers refer to
features discussed in the text

Asymmetric Baroclinic Response to Tidal Forcing … 205



the CT probes. Velocity records, on the other hand, exhibit a sharp pulse involving
the whole water column in the high-frequency series at CSS (labels (3) in Fig. 8)
with greater amplitude at middle depths. The pulse can be also identified in the total
current, which is waning now, by a sudden westward increase of the deep layer
velocity of up to 70 cm s−1 and short duration (labels (5) in Fig. 6b). It almost
certainly corresponds with the passing of the bore over the sill. Therefore, the
velocity observations in CSS would be suitable not only to follow the formation and
subsequent evolution of the hydraulic control and associated west-of-CS hydraulic
jump but also to detect its further release and eastwards propagation. Intriguingly,
the velocity series at CSN are rather insensitive to these processes, the
high-frequency contribution appearing somewhat blurred even though it tends to
increase its energy during the flood tide too (Figs. 5a, 8a). It appears as if the
east-of-CS hydraulic processes are better seen in CSN while the west-of-CS ones
leave clearer signatures in CSS.

Discussion and Conclusions

The temperature, salinity and velocity data collected at CSN and CSS sites in the
sill of the Strait of Gibraltar have proven to be useful to observe and follow the
successive hydraulic states that take place in this particular environment along
the tidal cycle. The data illustrate the different periodicities in the occurrence and
strength of the internal features (Fig. 4), the most obvious one being the fortnightly
cycle, which is fairly intuitive, but also a diurnal inequality arising from the rela-
tively important diurnal tidal currents [7]. Being interested in high-energy internal
processes, a specific spring-tide period has been chosen as representative in order to
carry out an in-depth analysis (Fig. 5) that can be extended to all others cycles.

In addition to the alikeness of the data recorded in either site, the analysis has
also highlighted differences in the observed patterns. In general terms, it could be
said that CSN is better suited to observe internal processes associated with
hydraulic transitions occurring over and on the eastern side of the main sill (i.e. the
east-of-CS hydraulic jumps) while CSS is more sensitive to the processes taking
place over and on the west side, which are the most representative and, conse-
quently, the most addressed in the literature. The bottom topography tends to
support this differentiation in the sense that the configuration of the closed
depression east of CS (LB in Fig. 1b) seems to be more the erosion outcome of
eventual strong eastward deep flow through CSN rather than through CSS, whereas
the erosion of the western depression (PB in Fig. 1b) suggests a more efficient
contribution from the flow through CSS, even though it appears to be contributed
by both channels.

An obvious physical process that has influence on the cross-strait flow structure
is the Earth’s rotation. It gives rise to a semi-geostrophic flow (across-strait geos-
trophic balance) that holds even at tidal frequencies [5–7], with the interface being
shallower in the north side for the mean exchange. However, the interface slope
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responds to the tidally-induced fluctuations of the total flow, which modify its
position and can even change its sign. Actually, during the ebb tide the whole water
column may be flowing eastwards, particularly in spring tides (Fig. 6), which
reduces the interface slope due to the cross-strait geostrophy. At the same time, the
interface sinks to make room for the large volume of Atlantic water displaced
towards the Mediterranean during this tidal cycle. Both processes act jointly to
bring mixed water deeper in CSN than in CSS and explain why it reaches the CSN
probe earlier and quits it later (labels (2) and (3), respectively, in Fig. 6). It is only
by the end of the ebb tide, when the interface is at its maximum depth, that CSS
probe registers the mixed water.

This description would suggest a gradual change rather than the pronounced
temperature and salinity peaks that echo the arrival of this water at CSS, profusely
shown in the figures of the paper. The drawback is overcome by letting the internal
hydraulics act out. The peaks at this site have been related in section “Ebb Tide” to
the sudden arrival of the internal bore released when the east-of-CS hydraulic jump
decays, a circumstance that happens by the end of the ebb tide when the thickness
of the Atlantic layer is maximum. If this jump is formed over the eastern rim of the
sill elevation (see Fig. 1b), the bore will take a little longer to get to CSN than to
CSS, since the former is ∼2.5 km farther from the rim than the latter. Converted
into time, it means 40–45 min for a typical first baroclinic mode speed of 1 ms−1,
CSS leading CSN in satisfactory agreement with the delay inferred from
cross-correlating the series of temperature (or salinity) at both sites discussed in
section “Ebb Tide”. The former analysis relies on a cross-strait orientation of the
jump and on its simultaneous decay throughout its extension, which appear as
reasonable assumptions. Notice that the interpretation of temperature and salinity
peaks at CSS in terms of the passing of internal bores is further supported by the
short-living deep current reversals observed in CSS (labels (4) in Fig. 6) that
accompanies the occurrence of the spikes.

The considerably more studied hydraulic jump formed westwards of CS during
the flood tide [10, 11, 13] leaves clearer signatures at CSS than at CSN, but only in
the velocity profiles and not in the temperature or salinity series. The profiles reveal
high-frequency fluctuations that shoal along with the interface in CSS (Fig. 8b).
This uplift of the interface is a distinctive upstream response of hydraulically
controlled flows, in which the interface upstream of the control section (the sill crest
in this case) must shoal in order to accommodate larger (tidal) volume transport
(e.g., [28]; Sect. 1.8). Such a response during the flood tide is therefore indicative of
the recovery of hydraulic control over the sill that prevents the propagation of
internal disturbances from the Atlantic to the Mediterranean.

The enhancement of the high-frequency velocity fluctuations at CSS can be due
to either the presence of shear instabilities or to the trace of a transient upstream
internal hydraulic jump evident in the high-resolution non-hydrostatic numerical
model of Sánchez-Garrido et al. [13] (see Fig. 2a). We put forward the latter as their
origin. This secondary jump would be associated with a second control section
arising east of the sill as a result of the shoaling of the interface there and the
concomitant reduction of the phase speed of internal disturbances. This control
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section is usually referred to as “approach control” in the literature of internal
hydraulics ([28, 29], Sect. 5), and would be formed over the very sill a short
distance upstream of the crest of CS (Fig. 2a). Moreover, the associated upstream
jump is much more apparent in CSS as revealed by the referred model simulation
and satellite images (see Fig. 1 of Sánchez Garrido et al. [13] for a nice illustration
of the situation).

It is hypothesized here that the high-frequency stripes of marked variance that
shift upwards with the interface (Fig. 8b) are connected to the growing of this
second jump. When the flood current weakens and the hydraulic controls are lost,
the released internal bores eventually merge together and move eastwards as a
unique feature (Fig. 2b, c). However, within this scenario, it appears that only the
very energetic bore released by the main jump is specifically noticed at CSS, its
footprint being the sudden westward pulse of the deep already mentioned (labels
(5) in Fig. 6b). Similar traces are not seen so clearly in CSN, where the signal is
much more blurred, though still weakly discernible, and concentrates in the upper
water column in CSN (Figs. 5a and 8a).
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Mode 2 Internal Waves in the Ocean:
Evidences from Observations

Andrey N. Serebryany

Introduction

Until recently, it was believed that the higher modes of internal waves predicted by
the theory are not very common in the real ocean. Indeed, it was reported about
ubiquitous observations in the ocean of internal waves of the first mode, while
observations of internal waves of higher modes in the ocean were rare. In recent
years, the situation changed and reports began to appear about the observations of
internal waves of mode 2. In this relation we mention the South China Sea where
extensive internal wave studies have been conducted in the past decade, which have
revealed the frequent occurrence of the second mode in intense internal waves,
especially in winter. In this contribution, we present experimental evidences of
internal wave mode 2 from our observations that we have performed in various
regions of the ocean. In particular, we will consider examples from the observations
over the Mascarene Ridge, in the Luzon Strait, and on the Black Sea shelf.

Mode 2 Waves Over the Mascarene Ridge

Oceanic ridges are special places in the ocean from the point of view of internal
waves: internal waves of maximum amplitudes are observed over submarine ridges
[1, 2]. A classic example of such location is the Mascarene Ridge in the Indian
Ocean, where many measurements of internal waves were conducted [3, 4]. During
the research cruise of the R/V “Academician Nikolai Andreyev” in November–
December 1990 we collected the data on the generation of large-amplitude internal
waves of mode 2 in this region [3].
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The measurement site over the Mascarene Ridge was in the region that
encompasses the southern part of the Saya de Malya bank and the northern part of
the Nazareth bank (Fig. 1). In this region, there is a strong alternating current,
which consists of two main components: a quasi-constant mean flow directed from
the east to the west and an alternating tidal current. The velocity of the
quasi-constant flow reached 1 m/s, and the amplitude of the current of the semid-
iurnal tide was 0.5 m/s. In the course of the work, a region with intense internal
waves above the underwater sill was discovered.

The observations of internal waves were carried out using line temperature
sensors by means of towing of the line sensor in the upper thermocline. During the
ship drift, a series of rapid vertical soundings (“yo-yo”) of the CTD profiler were
also conducted.

The measurement cycle over the bank included continuous measurements over
several runs oriented across the underwater sill (Fig. 1). The towing was carried out
at a ship speed of 7.5–8.5 knots; the lower end of the line sensor was located at a
depth of 100–106 m. The sensor then covered the interval of the well-pronounced
subsurface thermocline. A record of the line sensor during the passage above the sill
is shown in Fig. 2.

Fig. 1 Bottom topography in
the measurement site and the
track of the vessel during
towing. Letters C and B
denote the locations of
internal waves of large
amplitudes (C is related to the
solitary wave mode 2, B is
related to the train of
soliton-like waves)
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During the first run of towing, when we approached the shallow part of the sill
on the western side (left side in Fig. 1) we encountered a solitary elevation of a
thermocline with a height of 79 m and a horizontal scale of about 3.8 km. This
solitary wave was above the western slope of the sill over the depths of 700–900 m.
A train of intense short-period waves (soliton-like) with characteristic heights of
about 20 m was recorded in the subsequent section of the run after the passage of
the solitary wave. Since the towed line sensor covered the upper part of the ther-
mocline, it recorded a solitary elevation of the thermocline. In the lower part of the
thermocline this wave disturbance was a solitary depression. This wave patter was
clarified by the measurements from the drifting ship above the sill. On subsequent
tacks we several times crossed the wave formations (solitary disturbance and a
packet of short waves) encountered on the first tack, which allowed us to follow
their evolution and understand the generation mechanism.

The vertical structure of the waves is clearly seen in Fig. 3. The structure was
recorded using fast vertical casts with a CTD probe in the upper 200-m layer of the
ocean, conducted every 5 min during the drift. The vertical cross sections relative to
the low-frequency waves (Fig. 2, B and C) demonstrate the nature of oscillations of
the second mode with the transition of the sign of vertical displacements below a
depth of 100 m. The short-period waves in the train are of the similar nature, i.e.
they show anti-phase oscillations in the upper and lower layers.

The numeric modeling carried out in the region of the Mascarene Ridge [5]
confirmed the formation of a solitary disturbance in the form of an internal wave of
the second mode on the western side of a submarine sill.

The collected data allow us to present the pattern of the internal wave field and
its evolution in the form of a scenario, which to our opinion in general coincides
with the known mechanism of the formation of lee waves. A significant wave

Fig. 2 A solitary elevation (C) and train of short-period waves (B) recorded by the towed line
sensor on the opposite tacks above the sill. The log record is shown in dotted lines. Arrows show
the ship’s heading
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perturbation in the thermocline (solitary internal wave of mode 2) is formed on the
western (leeward) side of the sill when the directions of the tidal current and the
quasi-constant flow coincide. At the moment of weakening of the tidal current
directed to the west, the solitary wave disturbance begins to move to the east
towards the quasistationary mean flow. It moves to the shallow part of the sill,
where it transforms and decays into a train of short internal waves resembling
solitons. Then, the short-period internal waves remain within the bank and even-
tually collapse here failing to overcome a sufficiently strong counterflow.

Thus, in the central part of the ridge we detected intense internal waves: a single
perturbation of the second mode in the form of a hydraulic internal jump formed by
the current behind the underwater sill and the region above the sill occupied by
short internal soliton-like waves. The process of transformation of a solitary dis-
turbance propagating over a shallow bank during the ebb phase was investigated
with its decay into the soliton-like waves. We emphasize especially that the short
internal waves generated by a solitary wave also retained the features of belonging
to the oscillations of the second mode. It should also be noted that these facts
represented the first observation of the internal hydraulic jump of the second mode
in the ocean.

Mode 2 Waves in the Luzon Strait

Over the past 15 years, regular studies of internal waves in the South China Sea,
which is the World Ocean region with the largest internal waves (height more than
100 m) have been carried out [6, 7]. These studies revealed frequent occurrence of

Fig. 3 Temperature section (isotherms) of a solitary disturbance of mode 2 (C) and a region of
short-period waves (B), measured by “yo-yo” soundings during the drift above the sill
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the second mode in intense internal waves of the South China Sea, especially in
winter [8]. Internal waves of the second mode have been recorded here many times
over the continental slope and on the shelf using autonomous moored stations
equipped with vertical chains of thermistors and current meters [8, 9].

In 2006, while conducting studies on the underwater ambient noise associated
with internal waves in the Luzon Strait, we encountered there a large-amplitude
solitary wave of the second mode [10]. The measurements were carried out from the
R/V “Ocean Researcher 1”, which was drifting. The vessel recorded a wave of
mode 2 at the point with coordinates 21.112°N, 119.999°E north-west of the
underwater ridge Heng Chun on May 23 at 11:40 local time. The passage of the
wave was accompanied by sea surface manifestations in the form of a solitary band
of choppy surface waves, clearly seen on the radar screen (Fig. 4). The wave
propagated to the northwest (318°N) with a speed of about 3 m/s. The wave
parameters were recorded using radar images, 150 kHz ADCP, as well as an EK
500 echo sounder at a frequency of 38 MHz. Figure 5 shows a sonar record, in
which one can see manifestation of the wave. The wave was of the “convex type”
of mode 2 with an amplitude of about 50 m. The propagation of the internal wave
was accompanied by an increase in the underwater acoustic noise recorded by
omnidirected hydrophone. After the observations, the ship moved to the eastern part
of the Luson Strait and until the end of the cruise we no longer recorded any the
solitary internal waves. At the same time, numerous cases of packets of short-period
internal waves were observed.

Fig. 4 Ship radar image of
the solitary wave taken at
11:42 on May 23, 2006. The
radius of circle is 1 mile. Rip
band width is close to 1300 m
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We conclude on the basis of observations that the waves of the second mode (at
least some of them) observed over the continental slope and the shelf of the South
China Sea are long-living waves. They were generated as waves of mode 2 in the
Luzon Strait, and then they crossed the entire northwestern part of the sea.

Mode 2 Waves in the Black Sea

In 2011, the internal inertial waves of mode 2 were for the first time recorded on the
Black Sea shelf [11]. Observations were carried out from the stationary oceano-
graphic platform of the Marine Hydrophysical Institute from 9 to 18 July. The depth
of the sea at the place of observations (shelf of the southern coast of Crimea) is
30 m. During the entire measurement period the weather was calm. There was a
gradual warming of the water column temperature, which was accompanied by a
monotonous depression of the thermocline. Thus, in the beginning of the mea-
surements, the thermocline was at a depth of 7–8 m, and by the end its location was
at the bottom at a depth of 25–26 m. In the first few days of measurements, the
thermocline performed oscillations with a period close to 17 h (which corresponds
to the local inertial period). On July 14, the thermocline displacements changed
when its position was in the middle of the water column. Subsequently,
quasi-inertial oscillations were recorded in antiphase, which was characterized as a
manifestation of inertial internal waves of the second mode. Figure 6 illustrates the

Fig. 5 Acoustic 38-kHz record visualizing the solitary internal wave based on the measurements
with the EK 500 echosounder in the Luzon Strait experiment on May 23, 2006. The existence of
the second-mode-type of the 50-m wave in the upper 600-m layer of the sea is evident. The
horizontal line shows the time interval, within which the rips appeared
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characteristic manifestations of internal waves of the inertial period of mode 1 and
mode 2. The records show time sections of temperature in depth, performed
according to hourly CTD soundings. During the passage of the internal wave of
mode 1 (Fig. 6a), 17-h vertical displacements of the entire water column are clear
seen, while the sharpened troughs of long waves are visible, which indicates their
nonlinearity. The range of oscillations of the thermocline was 15–20 m. During the
observations in 2011, five cycles of similar synchronous oscillations of the ther-
mocline were recorded. Subsequently, the character of the inertial oscillations
changed to oscillations in the antiphase. The most pronounced character of these
oscillations was observed on July 16–17, which is illustrated in Fig. 6. It is seen
from the figure that during the 17-h period the water layers rise from a depth of
16 m to a depth of 7–8 m, after which they again occupy the initial position. At the
same time, the layers of the water column are displaced down from 16 m to a depth

Fig. 6 Manifestation of internal inertial waves of mode 1 (top panel) and mode 2 (bottom panel).
The 17-h temperature oscillations of the water column were recorded on July 9–10 (mode 1) and
July 16–17 (mode 2). In addition, temperature profiles made at specific hours are shown (marked
by vertical lines in the sections)

Mode 2 Internal Waves in the Ocean: Evidences from Observations 217



of 21 m. Such motions can be attributed to internal wave mode 2 of the convex
type. The amplitude of these waves was as high as 7 m.

Conclusions

We presented experimental evidences of the existence of internal wave mode 2 in
different regions of the ocean on the basis of our observations. In addition to the
geographical prevalence of this phenomenon, these examples demonstrated the
variety of types of internal waves of mode 2. We observed a tide-generated solitary
wave of large amplitude near the underwater ridge in the Indian Ocean. Near the
underwater ridge in the Luzon Strait, we observed a 50-m solitary wave of mode 2.
Its generation was associated with the tidal currents. In the shelf zone of the
non-tidal Black Sea, internal inertial waves of both mode 1 and mode 2 were
recorded. Thus, we have demonstrated the occurrence of mode 2 internal waves in
the real oceanic conditions, although we must recognize that mode 1 is a more
widespread phenomenon in the field of oceanic internal waves.
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Abyssal Mixing in the Laboratory

T. Dauxois, E. Ermanyuk, C. Brouzet, S. Joubaud and I. Sibgatullin

Motivation

The continuous energy input to the ocean interior comes from the interaction of

global tides with the bottom topography yielding a global rate of energy conversion

to internal tides of the order of 1TW [1, 2]. The subsequent mechanical energy cas-

cade to small-scale internal-wave motion and mixing is a subject of active debate

in view of the important role played by abyssal mixing in existing models of ocean

dynamics. The oceanographic data support the important role of internal waves in

mixing, at least locally: increased rates of diapycnal mixing are reported [3] in the

bulk of abyssal regions over rough topography in contrast to regions with smooth

bottom topography. A question remains: how does energy injected through internal

waves at large vertical scales induce the mixing of the fluid?

Using laboratory experiments and numerical simulations, we suggest the energy

cascade in internal wave attractors as a novel laboratory model of a natural cas-

cade. We show that energy transfer from global to small scales in attractors operates

via a hierarchy of triadic resonant interactions producing a complex internal wave
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field with a rich multi-peak discrete frequency spectrum embedded into a contin-

uous spectrum of weaker magnitude. Convincing evidences of a wave turbulence

framework [4] for internal waves are also provided. Spontaneous summation of the

wave-field components produces moreover a statistically significant amount of extreme

overturning events which eventually lead to a well-measurable mixing. This suggests

that such a set-up is appropriate to study abyssal mixing in the laboratory.

Let us consider a stratified fluid with an initially constant buoyancy frequency

N = [(−g∕�̄�)(d𝜌∕dz)]1∕2, where 𝜌(z) is the density distribution over the vertical coor-

dinate z, �̄�, and g the gravity acceleration. The dispersion relation for linear internal

gravity waves is given by

𝜃 = ±arcsin𝛺, (1)

where 𝜃 is the slope of the wave beam to the horizontal, and 𝛺 (resp. 𝜔 = 𝛺N) the

non-dimensional (resp. dimensional) frequency of oscillations. This anisotropic dis-

persion relation requires preservation of the slope of the internal wave beam upon

reflection at a rigid boundary. As we will recall below, in the case of a sloping bound-

ary, this property gives a purely geometric reason for a strong variation of the width

of internal wave beams (focusing or defocusing) upon reflection. Internal wave focus-

ing provides a necessary condition for large shear and overturning, as well as shear

and bottom layer instabilities at slopes.

In a confined fluid domain, focusing usually prevails, leading to a concentra-

tion of wave energy on a closed loop, the internal wave attractor [5]. At the level

of linear mechanisms, the width of the attractor branches is set by the competition

between geometric focusing and viscous broadening. (see [6] for a precise and inter-

esting of this question). High concentration of energy at attractors make them prone

to triadic resonance instability which sets in as the energy injected into the system

increases [7]. Note that the particular case for which both secondary waves have a

frequency equal to half of the forcing frequency is of special interest in the oceano-

graphic context where viscosity is negligible. In that case, the appropriate name is

parametric subharmonic instability and abbreviated as PSI. By abuse of language,

some authors have sometimes extended the use of the name PSI to cases for which

secondary waves are not corresponding to half of the forcing frequency. For the sake

of terminological consistency, we propose to abbreviate triadic resonance instability

using the acronym TRI.

The onset of instability is similar to the classic concept of triadic resonance, which

is best studied for the idealized case, with monochromatic in time and space carrier

wave as a basic state which feeds two secondary waves via nonlinear resonant interac-

tions. The resonance occurs when temporal 𝛺1 +𝛺2 = 𝛺0 and spatial 𝐤𝟏 + 𝐤𝟐 = 𝐤𝟎
conditions are satisfied (k is the wave vector while subscripts 0, 1 and 2 refer to the

primary, and two secondary waves, respectively). In a wave attractor, the wave beams

serve as a primary wave, and the resonance conditions are satisfied with a good accu-

racy [7], providing a consistent physical framework for the short-term behavior of

the instability.

The usual theory for the TRI does not take into account the finite width of the

experimental beam. Qualitatively, the subharmonic waves can serve as an energy
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sink for the primary wave if they do not leave the primary beam before they can

extract substantial energy [8]. The group velocity of the primary wave is aligned

with the beam, but the group velocity of the secondary waves is definitely not, and

these secondary waves eventually leave the primary wave beam. This is a direct

consequence of the dispersion relation (1), which relates the direction of propagation

to the frequency: a different frequency, smaller for subharmonic waves, will lead to

a shallower angle. The generalization to wave beams with a finite width is presented

in detail in a recent review [9].

The Internal Wave Attractor to Enhance the Nonlinearities

In this section, we present the concept of internal wave attractor that is a key element

to provide large amplitude internal wave beams produced thanks to the focusing

properties of internal wave reflections.

Reflection of Internal Waves: A Focusing Mechanism

The dispersion relation of internal waves is very specific and leads to a very unusual

reflection on a sloping boundary that has interesting properties, central for our objec-

tive as it will be immediately clear. To be more specific, let us consider an inviscid

linearly stratified fluid of constant buoyancy frequency N and a sloping boundary,

tilted with an angle 𝛼 with respect to the vertical, as shown in Fig. 1. Note that, if

this configuration does not seem natural for the reflection of internal waves on the

topography at the bottom of the ocean, it corresponds by symmetry to a case with

negative values of 𝛼, but is simpler for an experimental realization.

As the pulsation of the wave is conserved during the reflection, both the incident

and reflected waves propagate with the same angle 𝜃, according to the dispersion

relation (1). It is worth to note that this is very different from the reflection in optics or

acoustics where the electromagnetic or sound waves conserve the angle with respect

to the normal to the sloping boundary, refereed usually as the classical Descartes

reflection. For internal waves, this is the angle with the gravity that is conserved.

This difference is illustrated in Fig. 1a. The reflected ray for optics or acoustics is the

dashed arrow while the one for internal waves is the solid arrow.

This non-Descartes reflection is even more intriguing, and therefore interesting,

when one considers a beam, and not only a ray. This is shown in Fig. 1b. The width

of the reflected beam is thus reduced and one gets an energy focusing for these inter-

nal waves. It is important to emphasize that this phenomenon being a direct con-

sequence of the linear dispersion relation, one has identified here a linear transfer

toward smaller scales.
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Note that for the two specific cases of a wall being vertical or horizontal (𝛼 = 0 or

𝜋∕2), the reflection of an internal wave is similar to a classical Descartes reflection,

without any focusing effect.

The Focusing Parameter

It is of course possible to get more quantitative results. The linear theory of internal

wave reflection has been developed first by Phillips [10] and is based on a well-known

incident wave reflecting at a sloping boundary. Let assume that the incident wave is

bi-dimensional (in the vertical plane) and can be described by the stream function

𝜓

i
(x, z, t) = 𝜓0,i exp

[
i
(
𝜔

i
t − 𝐤

i
⋅ 𝐫

)]
. (2)

The index i refers to the incident wave field, while 𝜔

i
and 𝐤

i
are the pulsation and

wave vector of the incident wave and satisfy the dispersion relation (1). With u and w
the horizontal and vertical velocity fields, the kinetic energy density is defined as
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1
2
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(
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)
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When the incident wave hits the sloping boundary, a reflected wave is generated and

can be expressed as follows

𝜓
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(x, z, t) = 𝜓0,r exp
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Fig. 1 aReflection of an incident ray on the sloping boundary inclined with an angle 𝛼 with respect

to the vertical. In optics or acoustics, the reflected ray is along the dashed arrow, while for internal

waves, the reflected ray is along the solid arrow. b Reflection of an incident internal wave beam on

a sloping boundary for internal waves. The slope coordinates (xs, zs) are shown on both panels
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where the index r refers to the reflected wave field. Its kinetic energy density corre-

sponds to Ec,r =
1
2
�̄�k2

r
|𝜓0,r|2. The complete wave field is therefore 𝜓 = 𝜓

i
+ 𝜓

r
.

As the flow does not penetrate the sloping boundary, the total stream function

field must vanish at the boundary defined by x = −z tan 𝛼. In order to simplify

the boundary condition, one usually defines the coordinates attached to the slope

(xs, zs), as shown in Fig. 1. The velocity fields in the slope coordinate system are

(us,ws) = (−𝜕𝜓∕𝜕zs, 𝜕𝜓∕𝜕xs) and the wave number is noted 𝐤s = (kxs , kzs ). The non-

penetration condition can be expressed as us = 0 at xs = 0 and for all zs and time t.
On the total stream function field, this becomes

kzs,i𝜓0,i exp
[
i
(
𝜔

i
t − 𝐤s,i ⋅ 𝐫s

)]
+ kzs,r𝜓0,r exp

[
i
(
𝜔

r
t − 𝐤s,r ⋅ 𝐫s

)]
= 0, (5)

at xs = 0 and for all zs and time t. This leads to 𝜔

i
= 𝜔

r
≡ 𝜔, kzs,i = kzs,r and 𝜓0,i =

𝜓0,r ≡ 𝜓0. Thus, the frequency and the wave vector component parallel to the sloping

boundary are conserved during the reflection. The normal component of the wave

vector can be determined using geometrical construction and the dispersion relation:

one gets kxs,i = kzs,i tan(𝜃 − 𝛼) and kxs,r = kzs,r tan(𝜃 + 𝛼). Thus, the ratio between the

norms of the two wave vectors is given by

k
r

k
i

=
||||
cos(𝜃 − 𝛼)
cos(𝜃 + 𝛼)

||||
≡ 𝛾. (6)

This defines the focusing parameter 𝛾 . Equation (6) confirms immediately that there

is neither focusing, nor defocusing when the wall is vertical (𝛼 = 0) or horizontal

(𝛼 = 𝜋∕2): both cases lead indeed to 𝛾 = 1. One recovers indeed the case of the

Descartes reflection, since keeping the angle with respect to the gravity for the inter-

nal waves, does correspond to keep the angle with respect to the normal of the wall

(that is orthogonal or parallel to the gravity!).

However as soon as one considers a sloping boundary (𝛼 ≠ 0) or (𝛼 ≠ 𝜋∕2), the

focusing parameter is different from unity: it is for example greater than 1 in Fig. 1.

The width of the reflected beam is thus reduced by the factor 𝛾 . This is a focusing

reflection, the energy in the incident beam being concentrated. Indeed, Eq. (6) leads

to Ec,r = 𝛾

2Ec,i showing that the energy density is increased by a factor 𝛾
2
> 1.

Interestingly, this parameter diverges when 𝜃 + 𝛼 tends to 90◦. This corresponds

to the case where the waves have a propagation angle very close to the slope of the

wall. This situation is called critical reflection. Indeed, it is critical because 𝛾 diverges

and thus, the wave length of the reflected wave tends to 0: nonlinear and dissipation

effects cannot be overlooked and should be treated carefully. Using a weakly non-

linear theory, it has been shown [11] how to heal this singularity using matched

asymptotic expansion. This is however not the case under study in the remainder of

this work.
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Fig. 2 Convergence towards the same attractor of two rays starting from two different points in the

same geometry. The small arrows on the left vertical wall indicate the two positions where the rays

start, while the large arrows show the direction of propagation of the periodic ray on the attractor.

The two horizontal dashed lines show that the two attractors reached are exactly identical

An Internal Wave Billiard

If one considers now a closed basin as illustrated in Fig. 2, one realizes that the above

focusing mechanism will lead to an extremely efficient focusing phenomenon. After

the first reflection on the sloping wall, the beam depicted in Fig. 1b will reflect on

the surface, then on the left vertical wall, and then on the bottom horizontal sur-

face. These three Descartes-like reflections (𝛼 = 0 or 𝜋∕2) do not change neither the

energy density nor the norms of the two wave vectors. However the following reflec-

tion on the sloping wall will again reduce the beam by a similar factor: it is straight-

forward to understand that after a few loops the beam will be extremely narrow, and

indeed its width will inevitably vanish in the limit of infinitely many reflections,

leading to a single ray bouncing on the walls.

Internal wave ray tracing in different closed basin shapes has been essentially

studied by Leo Maas over the last twenty years. This can be viewed as an internal

wave billiard [12]. The classical billiard studies the trajectories in a closed domain

of a particle reflecting elastically and following the standard Descartes reflection. It

can exhibit periodic motion, motion along an invariant curve or chaos [13].

In a trapezoidal domain, different attractors have been identified and carefully

studied [5]. They are labelled using two indices: the number of reflections at the

surface (or at the bottom) and the number of reflections on the vertical side wall (or

on the slope). Figure 2 presents an attractor with only one reflection on the surface

and on the vertical wall: a (1,1) attractor as the one we will use in the remainder of

the paper.

However, the internal attractor is not the goal of our study, but rather the tool

to drive strong instabilities within the fluid. As we have understood from the above

discussion, already within the linear regime, such a wave attractor has an extremely

efficient focusing power and nonlinearity will come into play, leading to triadic res-

onance instabilities that will drive efficiently the wave turbulence.
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Experimental and Numerical Set-Up

We have combined numerical and experimental approaches to study the dynamics of

stable and unstable internal wave attractors. The problem is considered in a classic

trapezoidal set-up filled with a uniformly stratified fluid. Energy is injected into the

system at global scale by the small-amplitude motion of a vertical wall.

Experimental Set-Up

The experimental set-up [7, 16] is sketched in Fig. 3. Experiments are conducted in a

rectangular test tank of size 80 × 17 × 42.5 cm
3

filled with uniformly stratified fluid

using the conventional double-bucket technique. Salt is used as a stratifying agent.

The density profile is measured prior and after experiments by a conductivity probe

attached to a vertical traverse mechanism. The value of the buoyancy frequency N is

evaluated from the measured density profile. The trapezoidal fluid domain of length L
(measured along the bottom) and depth H is delimited by a sliding sloping wall,

inclined at the angle 𝛼. The wall is slowly inserted into the fluid after the end of the

filling procedure. The input forcing is introduced into the system by an internal wave

generator [18, 19]. The time-dependent vertical profile of the generator is prescribed

in the form

𝜁 (z, t) = a sin(𝜔0t) cos(𝜋z∕H), (7)

where a and𝜔0 are the amplitude and frequency of oscillations, respectively. In a hor-

izontally semi-infinite domain, the motion of the generator would generate the first

vertical mode of internal waves. The profile given in Eq. (7) is reproduced in discrete

Fig. 3 The wave generator is on the left and the inclined slope on the right. A typical PIV snapshot

showing the magnitude of the experimental two-dimensional velocity field obtained after 15 periods

T0 = 2𝜋∕(N𝛺0) of forcing is presented. Dashed lines show the billiard geometric prediction of the

attractor
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form by the horizontal motion of a stack of 47 plates. The whole-field velocity mea-

surements are performed via the standard Particle Image Velocimetry (PIV) tech-

nique. To achieve this, the fluid is seeded with light-reflecting hollow glass spheres

of size 8 µm and density 1100 kg/m
3
. The sedimentation velocity of such particles

is found to be very low, with negligible effect on results of velocity measurements.

The longitudinal (x, y = 0, z) mid-plane of the test section is illuminated by a vertical

laser sheet coming through the side of the tank. The PIV acquisition leads to 2 veloc-

ity fields per second. This sampling rate is found to provide a sufficient resolution of

the significant frequency components of the signal and the mesh of measurements is

also found to be sufficient to resolve the small-scale details of the wave field.

Numerical Computations

Numerical computations were performed with a spectral element method [14, 15],

using the modified open code nek5000. The geometry of the numerical set-up closely

reproduces the experimental one. The full system of equations being solved con-

sists of the Navier-Stokes equation in the Boussinesq approximation, the conti-

nuity equation and the equation for the transport of salt. Typical meshes used in

calculations consist of 50 thousands to half-million elements, with 8 to 10-order

polynomial decomposition within each element. Time discretization was 10−4 to

10−5 of the external forcing period. Comparisons of experimental and numerical

results present a beautiful agreement, not only qualitative but also quantitative [16].

Fig. 4 Visualization of the three dimensional effects in the internal wave attractor. Snapshot of the

instantaneous magnitude of the velocity field (u2 + w2)1∕2 produced by the 3D numerical simula-

tions based on the spectral element method for a = 2.4 mm. The snapshot corresponds to a contour

plot (level 0.25 cm/s) of the amplitude of the velocity field (u2 + w2)1∕2 at t = 50T0. The inset

presents a zoom to emphasize an example in which the flow field is dependent of the transverse

direction



Abyssal Mixing in the Laboratory 229

Figure 4 reveals the onset of TRI in the attractor. The numerical simulations clearly

emphasize the importance of boundary layers close to the walls, and thus the impor-

tance of the three-dimensionality to recover experimental laboratory results quanti-

tatively, nevertheless 2D simulations are fully sufficient for qualitative agreement.

We checked [7, 16], that the temporal and spatial resonance conditions of TRI are

satisfied experimentally and numerically.

Comparison

We have carefully compared the results obtained experimentally and numerically.

Two examples are shown in Figs. 5 and 6, respectively for a stable and an unsta-

ble attractor. In both cases, the wave frequency is 𝛺0 = 0.62 ± 0.01. Note that in the

calculation, a piecewise linear approximation of the experimental density profile has

been taken, with the lower layer of depth H′ = 30.8 cm and buoyancy frequency N,

and the upper layer of depth 𝛿 = 1.8 cm with a density gradient 8 times smaller. The

total depth of the fluid is therefore H = H′ + 𝛿 = 32.6 cm. The comparison empha-

sizes how precise are the two approaches, especially if one notes that the shade scale

is the same in both panels.

More detailed comparisons can be found in [16, 17], where we showed that

the results of three-dimensional calculations are in excellent qualitative and quan-

titative agreement with the experimental data, including the spatial and temporal

parameters of the secondary waves produced by triadic resonance instability. Fur-

ther, we explored experimentally and numerically the effect of lateral walls on sec-

ondary currents and spanwise distribution of velocity amplitudes in the wave beams.
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Fig. 5 Experimental (a) and numerical (b) snapshots of the horizontal density gradient at t =
50 T0 for a stable attractor. The amplitude of the wave maker is a = 2 mm for the experiment and

a = 1.8 mm for the simulation
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Fig. 6 Experimental (a) and numerical (b) snapshots of the horizontal density gradient at t = 50 T0
for an unstable attractor. The amplitude of the wave maker is a = 2.5 mm for the experiment and

a = 2.4 mm for the numerical simulation

Finally, we tested the assumption of a bidimensional flow and estimated the error

made in synthetic schlieren measurements due to this assumption.

The Energy Cascade Revealed by the Time-Frequency
Diagram and the Bicoherence Plot

Using laboratory experiments and numerical simulations, we have shown that the

internal wave attractor set-up, sketched in Fig. 3, provides an excellent energy cas-

cade, emphasizing how internal wave attractors can be a novel laboratory model of

a natural cascade [20].

Indeed, the internal wave attractor is the first step: the focalisation mechanism

enhances the development of the triadic instability within the beams of the attractor.

While the attractor is still visible, branches are progressively deformed by triadic

resonance instability, leading to the presence of secondary waves.

An example of an experimental velocity field is shown in Fig. 7 at a late stage.

The attractor is still visible, but branches are deformed by the presence of secondary

waves. As it will be clear below, the internal wave frequency spectrum which was ini-

tially a Dirac function has been progressively enriched to give rise to a very complex

spectrum, through a cascade of central interest.

Once the instability is well-developed, secondary waves are acting as primary

waves for higher-order triadic interactions. If the focalisation is strong enough, this

mechanism will of course repeat through the instability of the secondary waves. This

is what is revealed by the time frequency diagram shown in Fig. 8a. Initially, only a

signal around 𝛺0 = 0.61 is present, but almost immediately one distinguishes two

secondary waves 𝛺1 = 0.36 and 𝛺2 = 0.25 whose sum gives 𝛺0. However, again

𝛺1 and 𝛺2 are destabilized and this mechanism is pursued.
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Fig. 7 Magnitude of the experimental two-dimensional velocity field at t = 400T0 for a = 5 mm.

Dashed lines show the billiard geometric prediction of the attractor, which is fully recovered when

considering small forcing amplitude or at an earlier time when considering larger forcing
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Fig. 8 Time-frequency diagram (a) and its associated bicoherence (b) of the PIV signal measured

in a 5 × 5 cm
2

square centered around the most energetic branch of the attractor, after the focusing

reflection
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To detect the frequency triplets, we use the bispectrum analysis which mea-

sures the extent of statistical dependence among three spectral components (𝛺k,

𝛺i, 𝛺j) satisfying the relationship 𝛺k = 𝛺i +𝛺j, with the quantity M(𝛺i, 𝛺j) =
F(𝛺i)F(𝛺j)F∗(𝛺i +𝛺j), where F is the Fourier transform and ∗ denotes the com-

plex conjugate. In practice, the bispectrum is usually normalized and considered in

form of bicoherence which is 0 for triplets with random phases and 1 for triplets

with perfect phase coupling. The bicoherence is shown in Fig. 8b. In addition to

the strong peak (0.61, 0.61) corresponding to the forcing frequency (therefore to

self-correlation), the possible triplets satisfying the definition of triadic resonance

at 𝛺k = 𝛺0 can be found on the line with slope −1 connecting the points (0, 0.61)
and (0.61, 0). This emphasizes that the mechanism at play is triadic. Other peaks

are also visible corresponding to other choices of 𝛺k revealing that the instability

mechanism is repeated and leads to a cascade.

Thanks to this beautiful representation, it can therefore be attested that the energy

transfer from global to small scales in attractors operates via a hierarchy of triadic

interactions producing a complex internal wave field with a rich multi-peak discrete

frequency spectrum embedded in a continuous spectrum of weaker magnitude.

The bicoherence demonstration of the cascade is closely related to the bispectrum

shown in Fig. 8b. Both axis represent frequencies, and the color on the bispectrum

diagram is proportional to the product of the amplitudes. From this picture it can be

also be easily seen that the amplitude of the daughter waves tend to lie on the antidi-

agonals. On very long time intervals the picture shown in Fig. 8b can be changed

significantly due to slow evolution of the nonlinear interactions to a completely new

regime.

A Route Towards Wave Turbulence

It is important to emphasize that the final stage is non-trivial since these phenomena

are beyond the domain of pure wave-wave interactions: it corresponds to a regime

usually called wave turbulence [4]. A similar situation takes place for surface waves,

where the flourishing literature gives a fully consistent description of energy cas-

cades between components of wave spectra, only in the case of weakly nonlinear

processes, while experimental reality deals with cascades significantly “contami-

nated” by effects of a finite size fluid domain, wave breaking, wave cusps, nonlinear

dispersion, viscous damping of wave-field components, etc. The very specific dis-

persion relation for internal waves introduces additional complications. For instance,

in rotating fluids, which have a dispersion relation analogous to stratified fluids, the

usefulness of the formalism of wave turbulence as a basis for the studies in rotating

turbulence has been reported for experiments only recently [21]. The three dimen-

sional structure of wave attractor and transition to wave turbulence in a rotating annu-

lar frustum was recently described in [22]. For internal waves, the question is still

fully open, from both experimental and numerical points of view.
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Fig. 9 Energy spectra presented as a function of the non-dimensional frequency 𝛺 and of the

slope of the wave beam 𝜃. The dashed lines correspond to the dispersion relation 𝛺 = ± sin 𝜃 =
±kx∕

√
k2x + k2z . Integration across different wavenumbers ranges from 0.22 to 1 rad⋅cm

−1
, i.e. wave

lengths 28.5–6.3 cm

The presence of wave turbulence-like phenomena is illustrated in Fig. 9 using

the energy spectra experimentally obtained for large scales as a diagnostic tool [21].

Horizontal and vertical velocity fields u(x, z, t) andw(x, z, t) are obtained with 2D PIV

measurements in the entire trapezoidal domain. A two dimensional Fourier transform

for space and a one dimensional Fourier transform for time of these fields leads to

û(kx, kz, 𝛺) and ŵ(kx, kz, 𝛺). One can thus define the 2D energy spectrum by

E(kx, kz, 𝛺) =
|û(kx, kz, 𝛺)|2 + |ŵ(kx, kz, 𝛺)|2

2ST
, (8)

where S is the area of the PIV measurement and T its duration.

In the dispersion relation for internal waves, 𝛺 = ± sin 𝜃, the wave vector 𝐤 and

its components do not appear directly but they are linked with the angle 𝜃 by sin 𝜃 =
±kx∕

√
k2x + k2z . To compute the energy spectrum as a function of variable 𝜃, one can

interpolate the energy spectrum E(kx, kz, 𝛺) to get E(k, 𝜃, 𝛺), where k is the norm

of the wave vector. Then, one can integrate over the entire range of wave vectors

[kmin, kmax] as follows

E(𝜃,𝛺) =

kmax

∫

kmin

E(k, 𝜃, 𝛺) k dk, (9)



234 T. Dauxois et al.

or on any range of wave vectors between kmin and kmax. Note that the accessible range

of wave vectors [kmin, kmax] is set by the experimental PIV mesh. The integration in

Eq. (9) has been done in Fig. 9 with an integration range which represents 84% of

the energy in the entire range [kmin, kmax]. The linear dispersion relation is seen to

attract the maxima of the energy spectra. Above results are convincing signatures of

a discrete wave turbulence framework for internal waves in this intermediate forcing

amplitude regime.

If we repeat the same experiment with a larger amplitude, we have indications

that the system is beyond the wave turbulence-like regime and has reached a mixing

regime. Indeed, short-scale perturbations in particular clearly escape any relation to

linear wave dynamics. This is expected to be due to overturnings, natural precursors

to mixing.

Mixing Inferred from Vorticity Distribution

An important issue is whether or not sufficiently energetic internal wave motion can

produce an irreversible energy contribution to mixing. Figure 10a presents the com-

parison between density profiles measured before and after experiments: while no

modification of the density (within experimental error) can be observed for the inter-

mediate amplitude forcing that leads to wave turbulence regime described in the

previous section, one gets a clear evidence of mixing in case of a larger forcing

amplitude.

Further, differences between the regimes corresponding to low and high mixing

are clearly seen in statistics of extreme events. This statistics is obtained by the calcu-

lation of probability density functions (PDF). Since we are interested in small-scale

events destabilizing the stratification, we take the horizontal y-component of vor-

ticity 𝜉(x, z, t) = 𝜕u∕𝜕z − 𝜕w∕𝜕x measured in the vertical midplane of the test tank

as a relevant quantity and consider the PDF of the dimensionless quantity 𝜉∕N. In

Fig. 10b, we present the vorticity PDFs corresponding to different wave regimes in

the attractor. In a stable attractor (see dash-dotted curve), extreme events are com-

pletely absent and the wave motion is concentrated within the relatively narrow

branches of the attractor while the rest of the fluid is quiescent. Accordingly, the

PDF has a sharp peak at zero vorticity and is fully localized between well-defined

maximum and minimum values of vorticity. For larger forcing amplitudes (dashed

and solid curves), the development of TRI increases the probability of extreme events

due to summation of primary and secondary wave components.

The occurrence of local overturning events can be viewed as a competition

between stratification and vorticity. In a two-dimensional flow, a relevant stabil-

ity parameter is a version of the Richardson number, which can be introduced as

Ri
𝜉

= N2∕𝜉2. For a horizontal stratified shear flow this parameter reduces to the con-

ventional gradient Richardson number Ri = N2∕(du∕dz)2, where du∕dz is the veloc-

ity shear. Flows with large Ri are generally stable, and the turbulence is suppressed

by the stratification. The classic Miles-Howard necessary condition for instability
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requires that Ri < 1∕4 somewhere in the flow. If this condition is satisfied, the desta-

bilizing effect of shear overcomes the effect of stratification, and some mixing occurs

as a result of overturning. The threshold value |𝜉∕N| = 2 is marked on the plot of

vorticity PDFs. It can be seen that data corresponding to large forcing amplitudes

have “tails” extending into the domains |𝜉∕N| > 2. The area under the tails repre-

sents the probability of event of strength |𝜉∕N| > 2. In the larger forcing case (solid

curve), this probability is an order of magnitude greater than in intermediate one

(dashed curve), in qualitative agreement with the much higher mixing that has been

reported.

Conclusion

The paramount importance of a cascade of mechanical energy in the dynamics of

the ocean comes from the fact that the ocean is not a classic heat engine: mechanical

forcing is needed to drive the meridional heat flux and deep-water renewal. The clo-

sure of the meridional circulation critically depends on the cascade of mechanical

energy in the abyss and its contribution to mixing.

In the present work, tackling this question with a physicist approach,
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Fig. 10 a Ratio between the density profiles measured after and before the experiments for cases

with intermediate (dashed) and large (solid) forcing amplitudes. b Experimental probability density

functions of the vorticity, calculated on the grid from experimental images for low (dotted), interme-

diate (dashed) and large (solid) forcing amplitudes. Figures 8 and 9 correspond to the intermediate

forcing amplitude
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∙ We propose a unique self-consistent experimental (and also numerical) set-up

that models a cascade of triadic interactions transferring energy from large-scale

monochromatic input to multi-scale internal wave motion.

∙ We provide explicit evidences of a wave turbulence framework for internal waves,

with a clear transition to a cascade of small-scale overturning events.

∙ We show how beyond the wave turbulence, this original set-up can induce mixing

that can be inferred from the calculation of the potential energy or directly by

measuring the stratification.

We take advantage of elaborate and recent signal processing tools (Hilbert trans-

forms, time-frequency analysis, bicoherence, . . . ) to analyze experimental and numer-

ical data. The observed model cascade employs wave attractors, whose significance

is realized for stratified and/or rotating fluids (i.e. for a very broad class of celestial

bodies) and for magnetized materials, attesting cross-disciplinary importance of the

present study for a broad scientific community.

Confinement of the fluid domain and focusing of wave energy at an attractor play

an important role in the cascade. However, these conditions are not very restrictive.

Under natural conditions internal waves can travel thousands of kilometers which

means that quite large bodies of water (for instance, seas) can be considered as con-

fined domains. Also, since attractors can occur in laterally open domains [23], the

mechanism of the triadic wave cascade and the bulk mixing described in the present

paper is likely to occur in domains with multi-ridge topography as described in [3].

Physical systems supporting wave attractors are strong sources of natural wave

turbulence and provide an “internal wave mixing box” that can give useful insights,

in the laboratory, on abyssal mixing.
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Rogue Waves in the Ocean, the Role
of Modulational Instability, and Abrupt
Changes of Environmental Conditions
that Can Provoke Non Equilibrium Wave
Dynamics

Karsten Trulsen

Dedicated to Eugene G. Morozov on his 70th Birthday

Introduction

Rogue or freak waves are waves that are unexpectedly large in comparison with ambi-

ent waves. The term “freak wave” was apparently introduced by Draper [16] who

discussed ship accidents that could have been provoked by such waves. Mallory [32]

discussed serious consequences of extreme waves on ship traffic in the Agulhas cur-

rent off South Africa. With the advent of offshore oil and gas exploration, well doc-

umented observations of freak waves accumulated (e.g. Sand et al. [48]). The “New

Year” wave at Draupner in the North Sea 1/1–1995 is one of the best documented

observations of a rogue wave [8, 25]. Later the even more extreme Andrea wave at

Ekofisk in the North Sea 9/11–2007 was also well documented [7, 15, 31].

This is a good opportunity to give praise to the policy of openness demonstrated

by the Norwegian oil company Statoil giving academic researchers unrestricted

access to the Draupner “New Year” wave dataset. Few measured time series have

been published more often, or inspired more wave research, than the one shown in

Fig. 1.

There is currently no consensus on how to define rogue or freak waves. Common

criteria are H∕Hs > 2 or 𝜂c∕Hs > 1.25 where H is the zero-crossing wave height, 𝜂c
is the crest height, and Hs is the significant wave height defined as four times the

standard deviation of the surface elevation typically calculated from a 20 min time

series [17, 24].
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Fig. 1 Twenty minute wave elevation time series measured by a downward pointing radar at 16/11–

E in the Norwegian sector of the North Sea on 1/1–1995. First axis is time in seconds, second axis

is elevation in meters. Data courtesy of J. I. Dalane and O. T. Gudmestad of Statoil

The existence of rogue waves in the ocean is nowadays well accepted and they

are recognized as a threat and a challenge for human activity offshore [6, 17, 27].

Indeed, recently a large wave killed one person and injured several others in the

COSL Innovator accident at Troll in the Norwegian Sea 30/12–2015 [61].

Most attention to rogue wave generation has so far been given to random events

within Gaussian seas, including linear refraction due to currents or bathymetries, ran-

dom events within slightly non-Gaussian seas due to static nonlinearities or dynamic

nonlinear evolution in equilibrium wave fields, and modulational instabilities which

are nonlinear instabilities of perturbations around steady states. While such mecha-

nisms can indeed produce freak waves, and such criteria are nowadays used as warn-

ing criteria in operational forecasting, validation performed by e.g. the Norwegian

Meteorological Institute has shown that some improvements are still necessary for

the warning criteria to be fully satisfactory [6].

The purpose of the present paper is to point out a possible future direction for

rogue wave research that might provide some of the desired improvements. There is

indeed a different path to rogue wave formation, one that has received little attention

so far and is not accounted for in the above practices and criteria, namely the dynamic

evolution of non-equilibrium wave fields, where the lack of equilibrium is not due

to a small perturbation away from a steady state.

Recent laboratory experiments [47, 58] and numerical computations [22, 60]

have shown that non-equilibrium evolution of wave fields can produce surpris-

ingly rough wave conditions. We anticipate that wave fields that are brought out of
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equilibrium due to rapidly varying meteorological conditions, or significantly non-

uniform environments such as currents or bathymetries [36], or possibly the sudden

appearance of a ship in a wave field [34, 35], can be a significant source of rogue

waves.

The paper is organized as follows: section “Common Theories for Rogue Waves”

gives a summary of common theories on which current rogue wave warning crite-

ria are typically based, section “Case Study on Rogue Waves Through Common

Theories: The Prestige Accident” presents a case study for the involvement of

rogue waves in the Prestige oil tanker accident based on the common theories, section

“Rogue Waves in Non Equilibrium Wave Fields” points out an alternative type of

mechanism for rogue wave generation typically not included in todays warning cri-

teria, and “Conclusions” provides a conclusion.

Common Theories for Rogue Waves

Within linear wave theory (LWT) there are several mechanisms that can provoke

large waves, e.g. spatio-temporal focusing of waves, refraction over uneven depth

and refraction over non-uniform currents. Within LWT, employing the principle of

superposition and the Central Limit Theorem from probability theory, it is antici-

pated that the resulting distribution of surface elevation is Gaussian (e.g. Pierson,

[46]).

Rogue waves are known to occur more often than anticipated from LWT, this

enhanced occurrence is generally accepted to be due to nonlinearity. There are sev-

eral known nonlinear mechanisms that can be responsible for this.

Second-order corrections to deep-water waves, static or bound wave nonlinear

corrections in general, are known to provoke small deviation from Gaussian statis-

tics. These corrections were derived for uniform waves by Stokes [50], for deep-

water irregular gravity waves by Tick [53] and Longuet-Higgins [29] and further by

Masuda et al. [33]. Static nonlinear corrections to linear wave theory form the basis

for Tayfun-distributions [52].

Starting with the observation that steady uniform waves are unstable to small

perturbations, the Benjamin–Feir instability [3, 4], or more general modulational

instability (MI) was soon recognized as a mechanism that could initiate the genera-

tion of extreme waves. It was soon recognized that the cubic nonlinear Schrödinger

(NLS) equation [5, 13, 23, 64] is the simplest nonlinear model that accounts for

this instability mechanism. The MI occurs if the ratio between the steepness of the

uniform wave and the spectral bandwidth of the perturbation is above a threshold.

Soon after the first well-documented observations of rogue waves in the ocean,

e.g. the Draupner wave, it was suggested that the generation of such waves in

the ocean could be explained by weakly nonlinear and narrow-banded models, in

particular by the nonlinear Schrödinger (NLS) equation. Trulsen and Dysthe [56]

argued that it would be an advantage to use a broader-bandwidth modification of the
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modified nonlinear Schrödinger (MNLS) equation of Dysthe [18] for better repre-

sentation of realistic bandwidths [55, 57].

Breather solutions [19, 28, 30, 44, 45] are long-time and long-distance solu-

tions of the NLS equation, starting from an infinitesimal perturbation of a uniform

wave train, resulting in extreme waves localized in space and time, occurring once

or repeatedly in space and/or in time. Breather solutions have recently been studied

in laboratory experiments [9–11].

Related to the discovery of modulational instability of uniform wave trains, it was

also recognized that steady homogeneous wave fields are unstable to small inho-

mogeneous perturbations [1, 2, 12]. This instability occurs if the ratio between the

steepness and the spectral bandwidth of the wave field is above a threshold.

The Benjamin–Feir index (BFI), coined by Janssen [26], previously suggested

by Onoratoet al. [37, 39] under a different name, is precisely the ratio between the

steepness and the spectral bandwidth of the wave field. It has been suggested as an

indicator to predict increased probability of rogue waves. The BFI has been shown

to be useful as an indicator for extreme waves in unidirectional seas [40, 41] easily

reproduced in long and narrow laboratory tanks. However, the BFI has been found

to be less useful in directional seas in simulations [21, 38] and in laboratory tests

[42, 43] as well as an operational forecasting criterion [6].

A different path from swell and wind-sea interaction to freak wave generation was

suggested by Tamura et al. [51] who speculated that the nonlinear coupling between

swell and wind-sea could generate a narrow spectrum. Some ship accidents indeed

seem to have occurred in conditions of narrowing wave spectra [51, 62, 63]. It has

indeed been observed that the directional spread sometimes has been reduced ahead

of increased rogue wave occurrences at sea [54].

Recently, researchers have started suspecting that MI is not the correct or the

only path to explain real world ocean rogue waves, the waves being in general too

broad-banded and short-crested for the BFI to be useful (e.g. Fedele et al. [20]).

Case Study on Rogue Waves Through Common Theories:
The Prestige Accident

Freak waves are sometimes the subject of great controversies. There is for example

still no consensus on the cause of the Prestige oil tanker initial accident on 13/11–

2002, which subsequently led to a major environmental disaster after the sinking

of the ship on 19/11–2002. The magnitude of the environmental disaster provoked

heated debate in mass media and in court regarding the likelihood that the initial

accident could have been caused by a rogue wave (see Trulsen [59]).

In the recent study of Trulsen et al. [59] newly computed hindcast spectra for

every hour during the day of the accident were used as input data for four different

nonlinear models capable of computing the phase-resolved sea surface, allowing to

estimate statistical parameters that characterize the conditions for rogue waves. All
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four models coincided that the wave conditions encountered by the tanker Prestige at

the moment of the accident were slightly more extreme than those of a Gaussian sea

state, and slightly less extreme than those of a Tayfun sea state. This study strongly

suggests that the probability of a rogue wave hitting the oil tanker was neither greater

than nor smaller than usual.

Rogue Waves in Non Equilibrium Wave Fields

Practical experience with the common theories for rogue waves, e.g. application of

the BFI as a warning criterion, suggests that some improvements may still be neces-

sary for the warning criteria to be fully satisfactory [6]. We here point out that there

is indeed another path to the formation of rogue waves.

It is often observed that numerical simulation of nonlinear wave evolution, ini-

tialized with artificial initial conditions, can need some evolution time or distance

before the wave fields become well-behaved. During the initial transient evolution

extreme events are often seen to occur. Some effort has been made to suppress this

behavior, e.g. by Dommermuth [14], although the “problem” is typically dealt with

simply letting the numerical simulations run over sufficient time or distance before

the results are used. On the other hand, a very interesting situation would arise if this

“initial” strange behavior was the result of a sudden change of physical environment

rather than artificial initialization of a numerical integration.

Recently it has been observed that irregular wave fields that propagate from

deeper waters into shallower waters can have significant amplification of kurtosis and

freak wave statistics some distance inside the transition to the shallower depth. This

behavior was first discovered in an experimental dataset from MARIN in The Nether-

lands by Trulsen et al. [58], subsequently is was studied numerically by Sergeeva et

al. [49], Zeng and Trulsen [65], Gramstad et al. [22] and Viotti and Dias [60]. This

is a nonlinear effect that is neither explained by MI nor by linear refraction.

Recently Raustøl [47] carried out fine-resolution experiments and measured that

the kurtosis could be amplified to a value of 6, occurring at a location approximately

one wavelength on the inside of the depth transition to shallower water. She also

identified thresholds for water depths when this amplifying behavior took place. It

is interesting to note that this extreme amplification of kurtosis took place precisely

in a wave field that was not modulationally unstable.

It is common to treat a sea state as being statistically stationary when in fact it

varies. Meteorological forecasting services typically give forecasts for every three

hours. In Trulsen et al. [59] the Prestige accident was studied with hindcasts every

hour, making the assumption that the sea state was constant during each of the one-

hour intervals. In the case that the sea state varied dramatically within the one-hour

intervals, the nonlinear phase-resolving simulations of Trulsen et al. [59] could be

rendered invalid. An insufficient amount of work has been done to identify what

happens if the meteorological conditions and sea state change sufficiently fast that

the wave field is not in an equilibrium state. Indeed, Tamura et al. [51] suggested that
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sea states can vary in time in such a way that the occurrence of rogue waves may be

affected.

The presence of a ship in a wave field is known to locally affect the wave field

near the ship. If the ship appears suddenly into an already established wave field,

it may also represent a perturbation that brings the wave field temporarily out of

equilibrium [34, 35].

Indeed, in the recent review of Onorato and Suret [36] it is speculated that a

change of ambient conditions can bring a wave field out of equilibrium, thus provok-

ing amplification of kurtosis before the wave field is brought back to equilibrium.

Conclusions

Rogue waves are known to occur more frequently than expected from linear wave

theory, more frequently than expected within Gaussian seas. The common nonlinear

theories for rogue waves explain such deviation by weakly nonlinear effects on top of

equilibrium linear sea states, or as the effect of modulational instability due to unsta-

ble perturbations of steady states. The degree of modulational instability of a steady

sea state is sometimes assessed by the so-called Benjamin–Feir Index (BFI). There is

however a different mechanism for rogue wave generation, viz. nonlinear dynamics

of wave fields that are not in an equilibrium state. This mechanism is not indicated by

the value of BFI, since the modulational instability is not relevant in the absence of a

steady state. We have recently performed experiments at the Department of Mathe-

matics at the University of Oslo revealing that a substantial amplification of kurtosis

can occur in non-equilibrium wave fields that are not modulationally unstable.
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Simulation of Standing and Propagating Sea
Waves with Three-Dimensional ARMA
Model

Ivan Gankevich and Alexander Degtyarev

Introduction

Studying behaviour of a ship at sea is often based on some model of external

excitations—any disturbance that displaces the vessel from equilibrium—major

component of which is wind waves. Currently, the most popular sea wave simu-

lation models are based on the linear expansion of a stochastic moving surface as

a system of independent random variables. Such models were studied by St. Denis

and Pearson [1], Rosenblatt [2], Sveshnikov [3], and Longuet-Higgins [4]. The most

popular model is that of Longuet-Higgins (LH), which approximates propagating

sea waves as a superposition of elementary harmonic waves with random phases 𝜀n
and random amplitudes cn:

𝜁 (x, y, t) =
∑

n
cn cos(unx + vny − 𝜔nt + 𝜀n), (1)

where the wave number (un, vn) is continuously distributed on the (u, v) plane, i.e.

the unit area du × dv contains an infinite number of wave numbers. The frequency

𝜔n associated with wave numbers (un, vn) is given by a dispersion relation

𝜔n = 𝜔(un, vn).

The phase 𝜀n are jointly independent random variables uniformly distributed in the

interval [0, 2𝜋].
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Longuet-Higgins showed that under the above conditions, the function 𝜁 (x, y, t)
is a three-dimensional steady-state homogeneous ergodic Gaussian field, defined by

2E
𝜁
(u, v)dudv =

∑

n
c2n,

where E
𝜁
(u, v) is two-dimensional spectral density of wave energy.

Formula (1) is derived from equation of continuity and equation of motion for

incompressible inviscid fluid. For ocean waves incompressibility and isotropy of a

fluid is assumed; since the motion of ocean waves is due to gravitational forces,

irrotational motion of the fluid is assumed which let us introduce the velocity

potential 𝜙. Under these assumptions the equation of continuity reduces to Laplace

equation:

𝛥𝜙 =
𝜕
2
𝜙x

𝜕x2
+

𝜕
2
𝜙y

𝜕y2
+

𝜕
2
𝜙z

𝜕z2
= 0.

The Laplace equation is linear and its solution can be found using Fourier trans-

forms. Thus, for plane waves a well-known solution is given in the form of a definite

integral [5]:

𝜙(x, z, t) =
∞

∫
0

ekz [A(k, t) cos kx + B(k, t) sin kx] dk.

A similar, but slightly more complicated solution is obtained for the three-

dimensional case. The constants A and B are determined from the boundary condi-

tions on the surface. In the linear formulation the equation of the wave profile (which

is derived from linearised kinematic boundary condition and equation of motion, see

section “Determining Wave Pressures for Discretely Given Wavy Surface”) is

𝜁 (x, t) = −1
g
𝜕𝜙(x, 0, t)

𝜕t
(2)

=
∞

∫
0

[
𝜕A(k, t)

𝜕t
cos kx + 𝜕B(k, t)

𝜕t
sin kx

]
dk

=
∞

∫
0

Ct(k, t) cos (kx + 𝜀(k, t)) .

If we set cn = Ct(kn, t)dk, then wave model (1) may be associated with an approxi-

mation of integral (2).

Although, LH model is based on simple linear wave theory and has straightfor-

ward computational algorithm, it has some serious shortcomings.
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∙ LH model is designed to represent a stationary Gaussian field. Normal distribution

of the simulated process (1) is a consequence of the central limit theorem: its

application to the analysis of storm or shallow water waves represents a significant

challenge.

∙ LH model is periodic and need a large set of frequencies to perform long-term

simulation.

∙ In the numerical implementation of the LH model, it appears that convergence rate

of (1) is slow. This leads to a skewed simulated wave energy spectrum and skewed

cumulative distribution functions of various wave parameters (heights, lengths,

etc.). This problem becomes especially significant when simulating complex sea

waves that have a wide spectrum with multiple peaks.

The latter point becomes particularly critical in long-term numerical simulation.

In a time domain computation of the responses of a vessel in a random seaway, the

repeated evaluation of the apparently simple Eq. (1) at hundreds of points on the hull

for thousands of time steps becomes a major factor determining the execution speed

of the code [6]. So, finding a less computationally intensive method for modelling

ocean waves has the potential to increase performance of long-term simulation.

Related Work

Ocean Wave Modelling

Another approach to simulating sea waves involves representing stochastic mov-

ing surface as a linear transformation of white noise with memory, which allows to

model stationary ergodic Gaussian random process with given correlation character-

istics [7]. The first attempts to model two-dimensional disturbances were undertaken

in [8], which resulted in the development of the resonance theory of wind waves,

and the formal mathematical framework was developed in [9, 10]—the authors built

a one-dimensional model of ocean waves based on autoregressive-moving average

(ARMA) model.

One-dimensional ARMA model does not have some of the LH model deficien-

cies: it is both computationally efficient and requires less number of coefficients to

converge. In [11] ARMA model is used to generate time series spectrum of which is

compatible with Pierson–Moskowitz (PM) approximation of ocean wave spectrum.

The authors carry out experiments for one-dimensional AR, MA and ARMA mod-

els. They mention excellent agreement between target and initial spectra and higher

performance of ARMA model compared to models based on summing large num-

ber of harmonic components with random phases. They also mention that in order

to reach agreement between target and initial spectrum MA model require lesser

number of coefficients than AR model. In [12] the authors generalise ARMA model

coefficients determination formulae for multi-variate case.
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AR model was successfully applied to predict evolution of propagating wave pro-

files based on instantaneous wave recordings. In [13] AR model is used to predict

swell waves to control wave-energy converters (WEC) in real-time. In order to make

WEC more efficient its internal oscillator frequency should match the one of ocean

waves. The authors treat wave elevation as time series and compare performance

of AR model, neural networks and cyclical models in forecasting time series future

values. AR model gives the most accurate prediction of low-frequency swell waves

for up to two typical wave periods. It is an example of successful application of AR

process to ocean wave modelling.

The feature that distinguishes present work with respect to afore-mentioned ones

is the study of three-dimensional (2D in space and 1D in time) ARMA model, which

is mostly a different problem.

1. Yule–Walker system of equations, which are used to determine AR coefficients,

has complex block-block structure.

2. Optimal model order (in a sense that target spectrum agrees with initial) is deter-

mined manually.

3. Instead of PM spectrum, analytic formulae for standing and propagating waves

ACF are used as the model input.

4. Three-dimensional wavy surface should be compatible with real ocean surface

not only in terms of spectral characteristics, but also in the shape of wave profiles.

So, model verification includes distributions of various parameters of generated

waves (lengths, heights, periods etc.).

Multi-dimensionality of investigated model not only complexifies the task, but also

allows to carry out visual validation of generated wavy surface. It is the opportunity

to visualise output of the programme that allowed to ensure that generated surface is

compatible with real ocean surface, and is not abstract multi-dimensional stochastic

process that is real only statistically.

Pressure Field Determination Formulae

Small Amplitude Waves Theory

In [14–16] the authors propose a solution for inverse problem of hydrodynamics of

potential flow within the framework of small-amplitude wave theory (under assump-

tion that wave length is much larger than height: 𝜆 ≫ h). In that case inverse problem

is linear and reduces to Laplace equation with mixed boundary conditions, and equa-

tion of motion is solely used to determine pressures for calculated velocity potential

derivatives. The assumption of small amplitudes means the slow decay of wind wave

coherence function, i.e. small change of local wave number in time and space com-

pared to the wavy surface elevation (z coordinate). This assumption allows to calcu-

late elevation z derivative as 𝜁z = k𝜁 , where k is wave number. In two-dimensional

case the solution is written explicitly as
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𝜕𝜙

𝜕x
||||x,t

= − 1√
1 + 𝛼

2
e−I(x)

x

∫
0

𝜕�̇�∕𝜕z + 𝛼�̇�

√
1 + 𝛼

2
eI(x)dx, (3)

I(x) =
x

∫
0

𝜕𝛼∕𝜕z
1 + 𝛼

2 dx,

where 𝛼 is wave slope. In three-dimensional case solution is written in the form of

elliptic partial differential equation (PDE):

𝜕
2
𝜙

𝜕x2
(
1 + 𝛼

2
x
)
+ 𝜕

2
𝜙

𝜕y2
(
1 + 𝛼

2
y

)
+ 2𝛼x𝛼y

𝜕
2
𝜙

𝜕x𝜕y
+

(
𝜕𝛼x

𝜕z
+ 𝛼x

𝜕𝛼x

𝜕x
+ 𝛼y

𝜕𝛼x

𝜕y

)
𝜕𝜙

𝜕x
+

(
𝜕𝛼y

𝜕z
+ 𝛼x

𝜕𝛼y

𝜕x
+ 𝛼y

𝜕𝛼y

𝜕y

)
𝜕𝜙

𝜕y
+

𝜕�̇�

𝜕z
+ 𝛼x�̇�x + 𝛼y�̇�y = 0.

The authors suggest transforming this equation to finite differences and solve it

numerically.

As will be shown in section “Evaluation and Discussion” that (3) diverges when

attempted to calculate velocity field for large amplitude waves, and this is the reason

that it can not be used together with ARMA model, that generates arbitrary amplitude

waves.

Linearisation of Boundary Condition

LH model allows to derive an explicit formula for velocity field by linearising kine-

matic boundary condition. Velocity potential formula is written as

𝜙(x, y, z, t) =
∑

n

cng
𝜔n

e
√

u2n+v2nz sin(unx + vny − 𝜔nt + 𝜀n).

This formula is differentiated to obtain velocity potential derivatives, which are

plugged to dynamic boundary condition to obtain pressures.

Three-Dimensional ARMA Process as a Sea Wave
Simulation Model

ARMA ocean simulation model defines wavy surface as three-dimensional (two

dimensions in space and one in time) autoregressive moving average process: every
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surface point is represented as a weighted sum of previous in time and space points

plus weighted sum of previous in time and space normally distributed random

impulses. The governing equation for 3-D ARMA process is

𝜁i =
N∑

j=𝟎
𝛷j𝜁i−j +

M∑

j=𝟎
𝛩j𝜀i−j, (4)

where 𝜁—wave elevation, 𝛷—AR process coefficients, 𝛩—MA process coeffi-

cients, 𝜀—white noise with Gaussian distribution, N—AR process order, M—MA

process order, and 𝛷𝟎 ≡ 0, 𝛩𝟎 ≡ 0. Here arrows denote multi-component indices

with a component for each dimension. In general, any scalar quantity can be a com-

ponent (temperature, salinity, concentration of some substance in water etc.). Equa-

tion parameters are AR and MA process coefficients and order.

Any ARMA process can be uniquely represented as either MA or AR process of

infinite order [10], and the parameters of the spectral representation are defined by

the rule of division of power series (in a rational factorized form [9]):

S(𝜔) = 𝛥𝜎
2

𝜋

∏
m
(1 − zme−im𝜔𝛥)(1 − zmeim𝜔𝛥)

∏
n
(1 − pne−in𝜔𝛥)(1 − pnein𝜔𝛥)

,

where zm and pn are the zeros of numerator (MA), and denominator (AR), respec-

tively, which form a pair of mutually conjugate numbers. If some of the zeros are

located near the unit circle, then the spectral density will have pronounced dips.

Autoregressive (AR) Process

AR process is ARMA process with only one random impulse instead of their

weighted sum:

𝜁i =
N∑

j=𝟎
𝛷j𝜁i−j + 𝜀i,j,k. (5)

The coefficients 𝛷 are calculated from auto-covariate function (ACF) via three-

dimensional Yule–Walker (YW) equations, which are obtained after multiplying

both parts of the previous equation by 𝜁i−k and computing the expected value.

Generic form of YW equations is

𝛾k =
N∑

j=𝟎
𝛷j 𝛾k−j + 𝜎

2
𝜀
𝛿k, 𝛿k =

{
1, if k = 0
0, if k ≠ 0,

(6)
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where 𝛾—ACF of process 𝜁 , 𝜎
2
𝜀
—white noise variance. Matrix form of three-

dimensional YW equations, which is used in the present work, is

𝛤

⎡
⎢
⎢
⎢⎣

𝛷𝟎
𝛷0,0,1
⋮
𝛷N

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

𝛾0,0,0 − 𝜎
2
𝜀

𝛾0,0,1
⋮
𝛾N

⎤
⎥
⎥
⎥⎦
, 𝛤 =

⎡
⎢
⎢
⎢⎣

𝛤0 𝛤1 ⋯ 𝛤N1
𝛤1 𝛤0 ⋱ ⋮
⋮ ⋱ ⋱ 𝛤1

𝛤N1
⋯ 𝛤1 𝛤0

⎤
⎥
⎥
⎥⎦
,

where N =
(
p1, p2, p3

)
and

𝛤i =

⎡
⎢
⎢
⎢
⎢⎣

𝛤
0
i 𝛤

1
i ⋯ 𝛤

N2
i

𝛤
1
i 𝛤

0
i ⋱ ⋮

⋮ ⋱ ⋱ 𝛤
1
i

𝛤
N2
i ⋯ 𝛤

1
i 𝛤

0
i

⎤
⎥
⎥
⎥
⎥⎦

𝛤
j
i =

⎡
⎢
⎢
⎢⎣

𝛾i,j,0 𝛾i,j,1 ⋯ 𝛾i,j,N3
𝛾i,j,1 𝛾i,j,0 ⋱ x ⋮
⋮ ⋱ ⋱ 𝛾i,j,1

𝛾i,j,N3
⋯ 𝛾i,j,1 𝛾i,j,0

⎤
⎥
⎥
⎥⎦
,

Since 𝛷𝟎 ≡ 0, the first row and column of 𝛤 can be eliminated. Matrix 𝛤 is block-

toeplitz, positive definite and symmetric, hence the system is efficiently solved by

Cholesky decomposition, which is particularly suitable for these types of matrices.

After solving this system of equations white noise variance is estimated from (6)

by plugging k = 𝟎:

𝜎
2
𝜀
= 𝜎

2
𝜁
−

N∑

j=𝟎
𝛷j 𝛾j.

Moving Average (MA) Process

MA process is ARMA process with 𝛷 ≡ 0:

𝜁i =
M∑

j=𝟎
𝛩j𝜀i−j. (7)

MA coefficients𝛩 are defined implicitly via the following non-linear system of equa-

tions:

𝛾i =

[ M∑

j=i
𝛩j𝛩j−i

]
𝜎
2
𝜀
.

The system is solved numerically by fixed-point iteration method via the following

formulae

𝛩i = −
𝛾𝟎

𝜎
2
𝜀

+
M∑

j=i
𝛩j𝛩j−i.
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Here coefficients 𝛩 are calculated from back to front: from i = M to i = 𝟎. White

noise variance is estimated by

𝜎
2
𝜀
=

𝛾𝟎

1 +
∑M

j=𝟎 𝛩
2
j

.

Authors of [7] suggest using Newton–Raphson method to solve this equation with

higher precision, however, this method does not work in three dimensions. Using

slower method does not have dramatic effect on the overall programme performance,

because the number of coefficients is small and most of the time is spent generating

wavy surface.

Mixed Autoregressive Moving Average (ARMA) Process

Generally speaking, ARMA process is obtained by plugging MA generated wavy

surface as random impulse to AR process, however, in order to get the process with

desired ACF one should re-compute AR coefficients before plugging. There are sev-

eral approaches to “mix” AR and MA processes.

∙ The approach proposed in [7] which involves dividing ACF into MA and AR part

along each dimension is not applicable here, because in three dimensions such

division is not possible: there always be parts of the ACF that are not taken into

account by AR and MA process.

∙ The alternative approach is to use the same (undivided) ACF for both AR and

MA processes but use different process order, however, then realisation charac-

teristics (mean, variance etc.) become skewed: these are characteristics of the two

overlapped processes.

For the first approach there is a formula to re-compute ACF for AR process, but there

is no such formula for the second approach. So, the best solution for now is to simply

use AR and MA process exclusively for different types of waves.

Process Selection Criteria for Different Wave Profiles

One problem of ARMA model application to ocean wave generation is that for dif-

ferent types of wave profiles different processes must be used: standing waves are

modelled by AR process, and propagating waves by MA process. This statement

comes from practice: if one tries to use the processes the other way round, the result-

ing realisation either diverges or does not correspond to real ocean waves. So, the

best way to apply ARMA model to ocean wave generation is to use AR process for

standing waves and MA process for progressive waves.
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The other problem is inability to automatically determine optimal number of coef-

ficients for three-dimensional AR and MA processes. For one-dimensional processes

this can be achieved via iterative methods [7], but they diverge in three-dimensional

case.

The final problem, which is discussed in section “Mixed Autoregressive

Moving Average (ARMA) Process”, is inability to “mix” AR and MA process in

three dimensions.

In practice some statements made for AR and MA processes in [7] should be

flipped for three-dimensional case. For example, the authors say that ACF of MA pro-

cess cuts at q and ACF of AR process decays to nought infinitely, but in practice mak-

ing ACF of 3-dimensional MA process not decay results in it being non-invertible

and producing realisation that does not look like real ocean waves, whereas doing

the same for ACF of AR process results in stationary process and adequate realisa-

tion. Also, the authors say that one should allocate the first q points of ACF to MA

process (as it often needed to describe the peaks in ACF) and leave the rest points

to AR process, but in practice in case of ACF of a propagating wave AR process is

stationary only for the first time slice of the ACF, and the rest is left to MA process.

To summarise, the only established scenario of applying ARMA model to ocean

wave generation is to use AR process for standing waves and MA process for propa-

gating waves. With a new formulae for 3 dimensions a single mixed ARMA process

might increase model precision, which is one of the objectives of the future research.

The Shape of ACF for Different Types of Waves

Analytic Method of Finding the ACF

The straightforward way to find ACF for a given ocean wave profile is to apply

Wiener–Khinchin theorem. According to this theorem the autocorrelation K of a

function 𝜁 is given by the Fourier transform of the absolute square of the function:

K(t) = F
{
|𝜁 (t)|2

}
. (8)

When 𝜁 is replaced with actual wave profile, this formula gives you analytic formula

for the corresponding ACF.

For three-dimensional wave profile (2D in space and 1D in time) analytic for-

mula is a polynomial of high order and is best obtained via symbolic computation

programme. Then for practical usage it can be approximated by superposition of

exponentially decaying cosines (which is how ACF of a stationary ARMA process

looks like [7]).

Empirical Method of Finding the ACF

However, for three-dimensional case there exists simpler empirical method which

does not require sophisticated software to determine shape of the ACF. It is known
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that ACF represented by exponentially decaying cosines satisfies first order Stokes’

equations for gravity waves [17]. So, if the shape of the wave profile is the only

concern in the simulation, then one can simply multiply it by a decaying exponent to

get appropriate ACF. This ACF does not reflect other wave profile parameters, such

as wave height and period, but opens possibility to simulate waves of a particular

non-analytic shape by “drawing” their profile, then multiplying it by an exponent

and using the resulting function as ACF. So, this empirical method is imprecise but

offers simpler alternative to Wiener–Khinchin theorem approach; it is mainly useful

to test ARMA model.

Standing Wave ACF

For three-dimensional plain standing wave the profile is given by

𝜁 (t, x, y) = A sin(kxx + kyy) sin(𝜎t). (9)

Find ACF via analytic method. Multiplying the formula by a decaying exponent

(because Fourier transform is defined for a function f that f ⟶
x→±∞

0) yields

𝜁 (t, x, y) = A exp
[
−𝛼(|t| + |x| + |y|)

]
sin(kxx + kyy) sin(𝜎t). (10)

Then, apply 3D Fourier transform to the both sides of the equation via symbolic

computation programme, fit the resulting polynomial to the following approxima-

tion:

K(t, x, y) = 𝛾 exp
[
−𝛼(|t| + |x| + |y|)

]
cos 𝛽t cos

[
𝛽x + 𝛽y

]
. (11)

So, after applying Wiener–Khinchin theorem we get initial formula but with cosines

instead of sines. This difference is important because the value of ACF at (0, 0, 0)
equals to the ARMA process variance, and if one used sines the value would be

wrong.

If one tries to replicate the same formula via empirical method, the usual way is

to adapt (10) to match (11). This can be done either by changing the phase of the

sine, or by substituting sine with cosine to move the maximum of the function to the

origin of coordinates.

Propagating Wave ACF

Three-dimensional profile of plain propagating wave is given by

𝜁 (t, x, y) = A cos(𝜎t + kxx + kyy). (12)

For the analytic method repeating steps from the previous two paragraphs yields

K(t, x, y) = 𝛾 exp
[
−𝛼(|t| + |x| + |y|)

]
cos

[
𝛽(t + x + y)

]
. (13)
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For the empirical method the wave profile is simply multiplied by a decaying expo-

nent without need to adapt the maximum value of ACF (as it is required for standing

wave).

Comparison of Studied Methods

To summarise, the analytic method of finding ocean wave’s ACF reduces to the fol-

lowing steps.

∙ Make wave profile decay when approaching ±∞ by multiplying it by a decaying

exponent.

∙ Apply Fourier transform to the absolute square of the resulting equation using

symbolic computation programme.

∙ Fit the resulting polynomial to the appropriate ACF approximation.

Two examples in this section showed that in case of standing and propagating

waves their decaying profiles resemble the corresponding ACFs with the exception

that the ACF’s maximum should be moved to the origin to preserve simulated pro-

cess variance. Empirical method of finding ACF reduces to the following steps.

∙ Make wave profile decay when approaching ±∞ by multiplying it by a decaying

exponent.

∙ Move maximum value of the resulting function to the origin by using trigonomet-

ric identities to shift the phase.

Evaluation and Discussion

In [18–20] for AR model the following items were verified experimentally:

∙ probability distributions of different wave characteristics (wave heights, lengths,

crests, periods, slopes, three-dimensionality),

∙ dispersion relation,

∙ retention of integral characteristics for mixed wave sea state.

In this work we repeat probability distribution tests for three-dimensional AR and

MA model.

In [9] the authors show that several ocean wave characteristics (listed in Table 1)

have Weibull distribution, and wavy surface elevation has Gaussian distribution. In

order to verify that distributions corresponding to generated realisation are correct,

quantile-quantile plots are used (plots where analytic quantile values are used for

OX axis and estimated quantile values for OY axis). If the estimated distribution

matches analytic then the graph has the form of the straight line. Tails of the graph

may diverge from the straight line, because they can not be reliably estimated from

the finite-size realisation. Different methods of extracting waves from realisation pro-

duce variations in quantile function tails, it is probably impractical to extract every

possible wave from realisation since they may (and often) overlap.
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Table 1 Values of Weibull shape parameter for different wave characteristics

Characteristic Weibull shape (k)

Wave height 2

Wave length 2.3

Crest length 2.3

Wave period 3

Wave slope 2.5

Three-dimensionality 2.5

Verification was performed for standing and propagating waves. The correspond-

ing ACFs and quantile-quantile plots of wave characteristics distributions are shown

in Figs. 1, 2 and 3.

Graph tails in Fig. 1 deviate from original distribution for individual wave charac-

teristics, because every wave have to be extracted from the resulting wavy surface to

measure its length, period and height. There is no algorithm that guarantees correct

extraction of all waves, because they may overlap each other. Weibull distribution

right tail represents infrequently occurring waves, so it deviates more than left tail.

Degree of correspondence for standing waves (Fig. 2) is lower for height and

length, is roughly the same for surface elevation and is higher for wave period distri-

bution tails. Lower correspondence degree for length and height may be attributed to

the fact that Weibull distributions were obtained empirically for ocean waves which

are typically propagating, and distributions may be different for standings waves.

Higher correspondence degree for wave periods is attributed to the fact that wave

Fig. 1 Quantile-quantile

plots for propagating waves
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Fig. 2 Quantile-quantile

plots for standing waves
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periods of standing waves are extracted more precisely as the waves do not move

outside simulated wavy surface region. The same correspondence degree for wave

elevation is obtained, because this is the characteristic of the wavy surface (and cor-

responding AR or MA process) and is not affected by the type of waves.

ARMA model, owing to its non-physical nature, does not have the notion of ocean

wave; it simulates wavy surface as a whole instead. Motions of individual waves and

their shape are often rough, and the total number of waves can not be determined

precisely. However, integral characteristics of wavy surface match the ones of real

ocean waves.

Theoretically, ocean waves themselves can be chosen as ACFs, the only pre-

processing step is to make them decay exponentially. This may allow to generate

waves of arbitrary profiles, and is one of the directions of future work.

Determining Wave Pressures for Discretely Given Wavy
Surface

Analytic solutions to boundary problems in classical equations are often used to

study different properties of the solution, and for that purpose general solution for-

mula is too difficult to study, as it contains integrals of unknown functions. Fourier

method is one of the methods to find analytic solutions to a PDE. It is based on

application of Fourier transform to each part of PDE, which reduces the equation to
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Fig. 3 Time slices of ACF

for standing (left column)

and propagating waves (right

column)
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algebraic, and the solution is written as inverse Fourier transform of some function

(which may contain Fourier transforms of other functions). Since, it is not possible

to write analytic forms of these Fourier transforms in all cases, unique solutions are

found and their behaviour is studied in different domains instead. At the same time,

computing discrete Fourier transforms on the computer is possible for any discretely

defined function and efficient when using FFT algorithms. These algorithms use

symmetry of complex exponentials to decrease asymptotic complexity from O(n2)
to O(n log2 n). So, even if general solution contains Fourier transforms of unknown

functions, they still can be computed numerically, and FFT family of algorithms

makes this approach efficient.

Alternative approach to solve a PDE is to reduce it to difference equations,

which are solved by constructing various numerical schemes. This approach leads

to approximate solution, and asymptotic complexity of corresponding algorithms

is comparable to that of FFT. For example, stationary elliptic PDE transforms to

implicit numerical scheme which is solved by iterative method on each step of which

a tridiagonal or five-diagonal system of algebraic equations is solved via Thomas

algorithm. Asymptotic complexity of this approach is O(nm), where n—number of

wavy surface grid points, m—number of iterations. Despite their wide spread, itera-

tive algorithms are inefficient on parallel computer architectures; in particular, their

mapping to co-processors may involve copying data in and out of the co-processor

in each iteration, which negatively affects their performance. At the same time, high

number of Fourier transforms in the solution is an advantage, rather than a disad-

vantage. First, solutions obtained by Fourier method are explicit, hence their imple-

mentations scales with the large number of parallel computer cores. Second, there

are implementations of FFT optimised for different processor architectures as well

as co-processors (GPU, MIC) which makes it easy to get high performance on any

computing platform. These advantages substantiate the choice of Fourier method to

obtain explicit analytic solution to the problem of determining pressures under wavy

ocean surface.

The problem of finding pressure field under wavy sea surface represents inverse

problem of hydrodynamics for incompressible inviscid fluid. System of equations

for it in general case is written as [5]

∇2
𝜙 = 0,

𝜙t +
1
2
|𝝊|2 + g𝜁 = −

p
𝜌

, at z = 𝜁 (x, y, t), (14)

D𝜁 = ∇𝜙 ⋅ n, at z = 𝜁 (x, y, t),

where 𝜙—velocity potential, 𝜁—elevation (z coordinate) of wavy surface, p—wave

pressure, 𝜌—fluid density, 𝝊 = (𝜙x, 𝜙y, 𝜙z)—velocity vector, g—acceleration of grav-

ity, and D—substantial (Lagrange) derivative. The first equation is called continuity

(Laplace) equation, the second one is the conservation of momentum law (the so

called dynamic boundary condition); the third one is kinematic boundary condition

for free wavy surface, which states that rate of change of wavy surface elevation (D𝜁 )
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equals to the change of velocity potential derivative along the wavy surface normal

(∇𝜙 ⋅ n).

Inverse problem of hydrodynamics consists in solving this system of equations

for 𝜙. In this formulation dynamic boundary condition becomes an explicit formula

to determine pressure field using velocity potential derivatives obtained from the

remaining equations. So, from mathematical point of view inverse problem of hydro-

dynamics reduces to Laplace equation with mixed boundary condition—Robin prob-

lem.

Two-Dimensional Case

Formula for Infinite Depth Fluid

Two-dimensional Laplace equation with Robin boundary condition is written as

𝜙xx + 𝜙zz = 0, (15)

𝜁t + 𝜁x𝜙x =
𝜁x√
1 + 𝜁

2
x

𝜙x −
1√

1 + 𝜁
2
x

𝜙z, at z = 𝜁 (x, t).

Use Fourier method to solve this problem. Applying Fourier transform to both sides

of the equation yields

−4𝜋2 (u2 + v2
)
Fu,v{𝜙(x, z)} = 0,

hence v = ±iu. Hereinafter we use the following symmetric form of Fourier trans-

form:

Fu,v{f (x, y)} =
∞

∬
−∞

f (x, y)e−2𝜋i(xu+yv)dxdy.

We seek solution in the form of inverse Fourier transform 𝜙(x, z) = F−1
x,z {E(u, v)}.

Plugging
1 v = iu into the formula yields

𝜙(x, z) = F−1
x
{

e2𝜋uzE(u)
}
. (16)

In order to make substitution z = 𝜁 (x, t) not interfere with Fourier transforms, we

rewrite (16) as a convolution:

𝜙(x, z) = D1 (x, z) ∗ F−1
x {E(u)} ,

where D1 (x, z)—a function, form of which is defined in section “Velocity Potential

Computation” and which satisfies equationFu
{
D1 (x, z)

}
= e2𝜋uz

. Plugging formula

1v = −iu is not applicable because velocity potential must go to nought when depth goes to infinity.
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𝜙 into the boundary condition yields

𝜁t = (if (x) − 1)
[
D1 (x, z) ∗ F−1

x {2𝜋uE(u)}
]
,

where f (x) = 𝜁x∕
√

1 + 𝜁
2
x − 𝜁x. Applying Fourier transform to both sides of this

equation yields formula for coefficients E:

E(u) = 1
2𝜋u

Fu

{
𝜁t∕

(
if (x) − 1∕

√
1 + 𝜁

2
x

)}

Fu
{
D1 (x, z)

}

Finally, substituting z for 𝜁 (x, t) and plugging resulting equation into (16) yields for-

mula for 𝜙(x, z):

𝜙(x, z) = F−1
x

⎧
⎪
⎨
⎪⎩

e2𝜋uz

2𝜋u

Fu

{
𝜁t∕

(
if (x) − 1∕

√
1 + 𝜁

2
x

)}

Fu
{
D1 (x, 𝜁 (x, t))

}
⎫
⎪
⎬
⎪⎭

. (17)

Multiplier e2𝜋uz∕(2𝜋u) makes a graph of a function to which Fourier transform

is applied asymmetric with respect to OY axis. This makes it difficult to apply FFT

which expects periodic function with nought on both ends of the interval. Using

numerical integration instead of FFT is not faster than solving the initial system of

equations with numerical schemes. This problem is alleviated by using formula (19)

for finite depth fluid with wittingly large depth h. This formula is derived in the

following section.

Formula for Finite Depth Fluid

On the sea bottom vertical fluid velocity component equals nought: 𝜙z = 0 on z =
−h, where h—water depth. In this case equation v = −iu, which came from Laplace

equation, can not be neglected, hence the solution is sought in the following form:

𝜙(x, z) = F−1
x
{(

C1e2𝜋uz + C2e−2𝜋uz)E(u)
}
. (18)

Plugging 𝜙 into the boundary condition on the sea bottom yields

C1e−2𝜋uh − C2e2𝜋uh = 0,

hence C1 =
1
2
Ce2𝜋uh

and C2 = −1
2
Ce−2𝜋uh

. Constant C may take arbitrary value here,

because after plugging it becomes part of unknown coefficients E(u). Plugging for-

mulae for C1 and C2 into (18) yields

𝜙(x, z) = F−1
x {cosh (2𝜋u(z + h))E(u)} .
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Plugging 𝜙 into the boundary condition on the free surface yields

𝜁t = f (x)F−1
x {2𝜋iu cosh (2𝜋u(z + h))E(u)} − 1√

1 + 𝜁
2
x

F−1
x {2𝜋u sinh (2𝜋u(z + h))E(u)} .

Here sinh and cosh give similar results near free surface, and since this is the

main area of interest in practical applications, we assume that cosh (2𝜋u(z + h)) ≈
sinh (2𝜋u(z + h)). Performing analogous to the previous section transformations

yields final formula for 𝜙(x, z):

𝜙(x, z, t) = F−1
x

⎧
⎪
⎨
⎪⎩

cosh (2𝜋u(z + h))
2𝜋u

Fu

{
𝜁t∕

(
if (x) − 1∕

√
1 + 𝜁

2
x

)}

Fu
{
D2 (x, 𝜁 (x, t))

}
⎫
⎪
⎬
⎪⎭

, (19)

where D2 (x, z)—a function, form of which is defined in section “Velocity Potential

Computation” and which satisfies equation Fu
{
D2 (x, z)

}
= cosh (2𝜋uz).

Reducing to the Formulae from Linear Wave Theory

Check the validity of derived formulae by substituting 𝜁 (x, t) with known analytic

formula for plain waves. Symbolic computation of Fourier transforms in this section

were performed in Mathematica [21]. In the framework of linear wave theory assume

that waves have small amplitude compared to their lengths, which allows us to sim-

plify initial system of Eq. (15) to

𝜙xx + 𝜙zz = 0,
𝜁t = −𝜙z at z = 𝜁 (x, t),

solution to which is written as

𝜙(x, z, t) = −F−1
x

{
e2𝜋uz

2𝜋u
Fu

{
𝜁t
}}

.

Propagating wave profile is defined as 𝜁 (x, t) = A cos(2𝜋(kx − t)). Plugging this for-

mula into (17) yields 𝜙(x, z, t) = −A
k
sin(2𝜋(kx − t)) cosh (2𝜋kz). In order to reduce

it to the formula from linear wave theory, rewrite hyperbolic sine in exponential

form, discard the term containing e−2𝜋kz
as contradicting condition 𝜙 ⟶

z→−∞
0. Tak-

ing real part of the resulting formula yields 𝜙(x, z, t) = A
k
e2𝜋kz sin(2𝜋(kx − t)), which

corresponds to the known formula from linear wave theory. Similarly, under small-

amplitude waves assumption the formula for finite depth fluid (19) is reduced to

𝜙(x, z, t) = −F−1
x

{
cosh (2𝜋u(z + h))
2𝜋u cosh (2𝜋uh)

Fu
{
𝜁t
}}

.

Substituting 𝜁 (x, t) with propagating plain wave profile formula yields
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𝜙(x, z, t) = A
k
cosh (2𝜋k(z + h))

cosh (2𝜋kh)
sin(2𝜋(kx − t)), (20)

which corresponds to the formula from linear wave theory for finite depth fluid.

Different forms of Laplace equation solutions, in which decaying exponent is

written with either “+” or “−” signs, may cause incompatibilities between formulae

from linear wave theory and formulae derived in this work, where sinh is used instead

of cosh. Equality
cosh(2𝜋k(z+h))
cosh(2𝜋kh)

≈ sinh(2𝜋k(z+h))
sinh(2𝜋kh)

becomes strict on the free surface, and

difference between left-hand and right-hand sides increases when approaching sea

bottom (for sufficiently large depth difference near free surface is negligible). So, for

sufficiently large depth any function (cosh or sinh) may be used for velocity potential

computation near free surface.

Reducing (17) and (19) to the known formulae from linear wave theory shows,

that formula for infinite depth (17) is not suitable to compute velocity potentials with

Fourier method, because it does not have symmetry, which is required for Fourier

transform. However, formula for finite depth can be used instead by setting h to some

characteristic water depth. For standing wave reducing to linear wave theory formu-

lae is made under the same assumptions.

Three-Dimensional Case

Three-dimensional version of (14) is written as

𝜙xx + 𝜙yy + 𝜙zz = 0, (21)

𝜁t + 𝜁x𝜙x + 𝜁y𝜙y =
𝜁x√

1 + 𝜁
2
x + 𝜁

2
y

𝜙x +
𝜁y

√
1 + 𝜁

2
x + 𝜁

2
y

𝜙y −
1√

1 + 𝜁
2
x + 𝜁

2
y

𝜙z, at z = 𝜁(x, y, t).

Again, use Fourier method to solve it. Applying Fourier transform to both sides of

Laplace equation yields

−4𝜋2 (u2 + v2 + w2)Fu,v,w{𝜙(x, y, z)} = 0,

hence w = ±i
√

u2 + v2. We seek solution in the form of inverse Fourier trans-

form 𝜙(x, y, z) = F−1
x,y,z{E(u, v,w)}. Plugging w = i

√
u2 + v2 = i|k| into the formula

yields

𝜙(x, y, z) = F−1
x,y
{(

C1e2𝜋|k|z − C2e−2𝜋|k|z
)

E(u, v)
}
.

Plugging 𝜙 into the boundary condition on the sea bottom (analogous to two-

dimensional case) yields

𝜙(x, y, z) = F−1
x,y {cosh (2𝜋|k|(z + h))E(u, v)} . (22)
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Plugging 𝜙 into the boundary condition on the free surface yields

𝜁t = if1(x, y)F−1
x,y {2𝜋u cosh (2𝜋|k|(z + h))E(u, v)}

+ if2(x, y)F−1
x,y {2𝜋v cosh (2𝜋|k|(z + h))E(u, v)}

− 1√
1 + 𝜁

2
x + 𝜁

2
y

F−1
x,y {2𝜋|k| sinh (2𝜋|k|(z + h))E(u, v)}

where f1(x, y) = 𝜁x∕
√
1 + 𝜁

2
x + 𝜁

2
y − 𝜁x and f2(x, y) = 𝜁y∕

√
1 + 𝜁

2
x + 𝜁

2
y − 𝜁y.

Like in section “Two-Dimensional Case” we assume that cosh (2𝜋u(z + h)) ≈
sinh (2𝜋u(z + h)) near free surface, but in three-dimensional case this is not enough

to solve the problem. In order to get analytic formula for coefficients E we need to

assume, that all Fourier transforms in the equation have radially symmetric kernels,

i.e. replace u and v with |k|. There are two points supporting this assumption. First,

in numerical implementation integration is done over positive wave numbers, so the

sign of u and v does not affect the solution. Second, the rate growth of cosh term of

the integral kernel is much higher than the one of u or |k|, so the substitution has

small effect on the magnitude of the solution. Despite these two points, a use of more

mathematically rigorous approach would be preferable.

Making the replacement, applying Fourier transform to both sides of the equation

and plugging the result into (22) yields formula for 𝜙:

𝜙(x, y, z, t)

= F−1
x,y

⎧
⎪
⎨
⎪⎩

cosh (2𝜋|k|(z + h))
2𝜋|k|

Fu,v

{
𝜁t∕

(
if1(x, y) + if2(x, y) − 1∕

√
1 + 𝜁

2
x + 𝜁

2
y

)}

Fu,v
{
D3 (x, y, 𝜁 (x, y))

}
⎫
⎪
⎬
⎪⎭

,

(23)

where Fu,v
{
D3 (x, y, z)

}
= cosh (2𝜋|k|z).

Evaluation and Discussion

Comparing obtained generic formulae (17) and (19) to the known formulae from

linear wave theory allows to see the difference between velocity fields for both large

and small amplitude waves. In general analytic formula for velocity potential in not

known, even for plain waves, so comparison is done numerically. Taking into account

conclusions of section “Two-Dimensional Case”, only finite depth formulae are com-

pared.

The Difference with Linear Wave Theory Formulae

In order to obtain velocity potential fields, ocean wavy surface was generated by

AR model with varying wave amplitude. In numerical implementation wave num-
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Fig. 4 Velocity potential field of propagating wave 𝜁(x, y, t) = cos(2𝜋x − t∕2). Field produced by

formula (19) (top) and linear wave theory formula (bottom)

bers in Fourier transforms were chosen on the interval from 0 to the maximal wave

number determined numerically from the obtained wavy surface. Experiments were

conducted for waves of both small and large amplitudes.
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The experiment showed that velocity potential fields produced by formula (19)

for finite depth fluid and formula (20) from linear wave theory are qualitatively dif-

ferent (Fig. 4). First, velocity potential contours have sinusoidal shape, which is dif-

ferent from oval shape described by linear wave theory. Second, velocity potential

decays more rapidly than in linear wave theory as getting closer to the bottom, and

the region where the majority of wave energy is concentrated is closer to the wave

crest. Similar numerical experiment, in which all terms of (19) that are neglected in

the framework of linear wave theory are eliminated, shows no difference (as much

as machine precision allows) in resulting velocity potential fields.

The Difference with Small-Amplitude Wave Theory
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Fig. 5 Comparison of velocity field on the ocean wavy surface obtained by generic formula

(u1) and formula for small-amplitude waves (u2). Velocity field for realisations containing small-

amplitude (top) and large-amplitude (bottom) waves
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The experiment, in which velocity fields produced numerically by different formulae

were compared, shows that velocity fields produced by formulae (19) and (3) corre-

spond to each other for small-amplitude waves. Two ocean wavy surface realisations

were made by AR model: one containing small-amplitude waves, other containing

large-amplitude waves. Integration in formula (19) was done over wave numbers

range extracted from the generated wavy surface. For small-amplitude waves both

formulae showed comparable results (the difference in the velocity is attributed to

the stochastic nature of AR model), whereas for large-amplitude waves stable veloc-

ity field was produced only by formula (19) (Fig. 5). So, generic formula (19) gives

satisfactory results without restriction on wave amplitudes.

High-Performance Software Implementation
for Heterogeneous Platforms

White Noise Generation

In order to eliminate periodicity from generated wavy surface, it is imperative to

use PRNG with sufficiently large period to generate white noise. Parallel Mersenne

Twister [22] with a period of 219937 − 1 is used as a generator in this work. It allows to

produce aperiodic ocean wavy surface realisations in any practical usage scenarios.

There is no guarantee that multiple Mersenne Twisters executed in parallel threads

with distinct initial states produce uncorrelated pseudo-random number sequences,

however, algorithm of dynamic creation of Mersenne Twisters [23] may be used

to provide such a guarantee. The essence of the algorithm is to find matrices of

initial generator states, that give maximally uncorrelated pseudo-random number

sequences when Mersenne Twisters are executed in parallel with these initial states.

Since finding such initial states consumes considerable amount of processor time,

vector of initial states is created preliminary with knowingly larger number of par-

allel threads and saved to a file, which is then read before starting white noise gen-

eration.

Wavy Surface Generation

In ARMA model value of wavy surface elevation at a particular point depends on pre-

vious in space and time points, as a result the so called ramp-up interval (see Fig. 6),

in which realisation does not correspond to specified ACF, forms at the beginning

of the realisation. There are several solutions to this problem which depend on the

simulation context.

If the realisation is used in the context of ship stability simulation without manoeu-

vring, ramp-up interval will not affect results of the simulation, because it is located
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x y

z

Ramp-up interval

Fig. 6 Ramp-up interval at the beginning of the OX axis of the realisation

on the border (too far away from the studied marine object). If ship stability with

manoeuvring is studied, then the interval may be simply discarded from the realisa-

tion (the size of the interval approximately equals the number of AR coefficients in

each dimension). However, this may lead to a loss of a very large number of points,

because discarding is done for each dimension. Alternative approach is to generate

ocean wavy surface on ramp-up interval with LH model and generate the rest of the

realisation with ARMA model.

Algorithm of wavy surface generation is data-parallel: the realisation is divided

into equal parts along the time axis each of which is generated independently, how-

ever, in the beginning of each realisation there is ramp-up interval. To eliminate it

for MA process, overlap-add method [24–26] (a popular method in signal process-

ing) is used. The essence of the method is to add another interval, size of which

is equal to the ramp-up interval size, to the end of each part. Then wavy surface is

generated in each point of each part (including points from the added interval), the

interval at the end of part N is superimposed on the ramp-up interval at the begin-

ning of the part N + 1, and values in corresponding points are added. To eliminate

the ramp-up interval for AR process, the realisation is divided into part along each

dimension, and each part is computed only when all dependent parts are ready. For

that purpose, an array of current part states is maintained in the programme, and all

the parts are put into a queue. A parallel thread acquires a shared lock, finds the first

part in the queue, for which all dependent parts have “completed” state, removes this

part for the queue, frees the lock and generates the part. After that a thread updates

the state of the part, and repeats the same steps until the queue becomes empty. This

algorithm eliminates all ramp-up intervals except the one at the beginning of the

realisation, and the size of the parts should be sufficiently small to balance the load

on all processor cores.
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Table 2 Formulae for computing D1 (x, z) and D2 (x, z) from section “Two-Dimensional Case”,

that use normalisation to eliminate uncertainty from definition of Dirac delta function of complex

argument

Function Without normalisation Normalised

D1 (x, z) 𝛿(x + iz) 1
2h
sech

(
𝜋(x−i(h+z))

2h

)

D2 (x, z)
1
2
[𝛿(x − iz) + 𝛿(x + iz)] 1

4h

[
sech

(
𝜋(x−i(h+z))

2h

)

+ sech

(
𝜋(x+i(h+z))

2h

)]

Velocity Potential Computation

In solutions (17) and (19) to two-dimensional problem there are functions D1 (x, z) =
F−1

x
{

e2𝜋uz}
and D2 (x, z) = F−1

x {cosh (2𝜋uz)} which has multiple analytic repre-

sentations and are difficult to compute. Each function is a Fourier transform of lin-

ear combination of exponents which reduces to poorly defined Dirac delta function

of a complex argument (see Table 2). The usual way of handling this type of func-

tions is to write them as multiplication of Dirac delta functions of real and imag-

inary part, however, this approach does not work here, because applying inverse

Fourier transform to this representation does not produce exponent, which severely

warp resulting velocity field. In order to get unique analytic definition, normalisation

factor 1∕ cosh (2𝜋uh) (which is also included in the formula for E(u)) may be used.

Despite the fact that normalisation allows to obtain adequate velocity potential field,

numerical experiments show that there is little difference between this field and the

one produced by formulae, in which terms with 𝜁 are omitted. As a result, we do not

use normalisation factors in the formula.

Evaluation

ARMA model does not require highly optimised software implementation to be

efficient, its performance is high even without use of co-processors; there are two

main causes of that. First, ARMA model itself does not use transcendental functions

(sines, cosines and exponents) as opposed to LH model. All calculations, except

model coefficients, are done via polynomials, which can be efficiently computed on

modern processors using a series of fused multiply-add (FMA) instructions. Second,

pressure computation is done via explicit analytic formula using nested FFTs. Since

two-dimensional FFT of the same size is repeatedly applied to every time slice, its

coefficients (complex exponents) are pre-computed for all slices, and computations

are performed with only a few transcendental functions. In case of MA model, per-

formance is also increased by doing convolution with FFT. So, high performance of

ARMA model is due to scarce use of transcendental functions and heavy use of FFT,
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Table 3 A list of mathematical libraries used in ARMA model implementation

Library What it is used for

DCMT [23] Parallel PRNG

Blitz [27, 28] Multidimensional arrays

GSL [29] PDF, CDF, FFT computation checking process

stationarity

LAPACK, GotoBLAS [30, 31] Finding AR coefficients

GL, GLUT [32] Three-dimensional visualisation

CGAL [33] Wave numbers triangulation

not to mention that high convergence rate and non-existence of periodicity allows to

use far fewer coefficients compared to LH model.

ARMA implementation uses several libraries of reusable mathematical functions

and numerical algorithms (listed in Table 3), and was implemented using OpenMP

and OpenCL parallel programming technologies, that allow to use the most efficient

implementation for a particular algorithm.

For the purpose of evaluation we use simplified version of (23):

𝜙(x, y, z, t) = F−1
x,y

{
cosh (2𝜋|k|(z + h))
2𝜋|k| cosh (2𝜋|k|h)Fu,v

{
𝜁t
}}

= F−1
x,y
{

g1(u, v)Fu,v
{

g2(x, y)
}}

. (24)

This formula is particularly suitable for computation on GPUs:

∙ it contains transcendental mathematical functions (hyperbolic cosines and com-

plex exponents);

∙ it is computed over large four-dimensional (t, x, y, z) region;

∙ it is analytic with no information dependencies between individual data points in

t and z dimensions.

Since standing sea wave generator does not allow efficient GPU implementation due

to autoregressive dependencies between wavy surface points, only velocity poten-

tial solver was rewritten in OpenCL and its performance was compared to existing

OpenMP implementation.

For each implementation the overall performance of the solver for a particular

time instant was measured. Velocity field was computed for one t point, for 128 z
points below wavy surface and for each x and y point of four-dimensional (t, x, y, z)
grid. The only parameter that was varied between subsequent programme runs is the

size of the grid along x dimension. A total of 10 runs were performed and an average

time of each stage was computed.

A different FFT library was used for each version of the solver. For OpenMP

version FFT routines from GNU Scientific Library (GSL) [29] were used, and for

OpenCL version clFFT library [34] was used instead. There are two major differ-

ences in the routines from these libraries.
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∙ The order of frequencies in Fourier transforms is different and clFFT library

requires reordering the result of (24) whereas GSL does not.

∙ Discontinuity at (x, y) = (0, 0) of velocity potential field grid is handled automat-

ically by clFFT library, whereas GSL library produce skewed values at this point.

For GSL library an additional interpolation from neighbouring points was used to

smooth velocity potential field at these points. We have not spotted other differences

in FFT implementations that have impact on the overall performance.

In the course of the numerical experiments we have measured how much time

each solver’s implementation spends in each computation stage to explain how effi-

cient data copying between host and device is in OpenCL implementation, and how

one implementation corresponds to the other in terms of performance.

Results

The experiments showed that GPU implementation outperforms CPU implementa-

tion by a factor of 10–15 (Fig. 7), however, distribution of time between computation

stages is different for each implementation (Fig. 8). The major time consumer in CPU

implementation is computation of g1, whereas in GPU implementation its running

time is comparable to computation of g2. GPU computes g1 much faster than CPU

due to a large amount of modules for transcendental mathematical function compu-

tation. In both implementations g2 is computed on CPU, but for GPU implementa-

tion the result is duplicated for each z grid point in order to perform multiplication

of all XYZ planes along z dimension in single OpenCL kernel, and, subsequently

copied to GPU memory which severely hinders overall stage performance. Copy-

ing the resulting velocity potential field between CPU and GPU consumes ≈20% of

velocity potential solver execution time.

Fig. 7 Performance

comparison of CPU

(OpenMP) and GPU

(OpenCL) versions of

velocity potential solver
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Fig. 8 Performance breakdown for GPU (OpenCL) and CPU (OpenMP) versions of velocity

potential solver

Conclusion

Three-dimensional ARMA ocean simulation model coupled with analytic formula

for determining pressures under wavy sea surface is computationally efficient of per-

forming long-term ship behaviour simulations on the computer. Possible applications

of the approach include studying ship behaviour in storm and shallow water waves.

Its validity was visually and statistically verified in a number of experiments: dis-

tribution of characteristics of waves, produced by ARMA model, match the ones

of real ocean waves, and velocity potential field, produced by the analytic formula

correspond to the one produced by the formula for small-amplitude waves, and the

formula itself reduces to the known one from linear wave theory.

Numerical experiments showed that wavy surface generation is efficient on CPU

as it involves no transcendental mathematical functions, and velocity potential field

computation is efficient on GPU due to heavy use of Fourier transforms. The use

of dynamically generated Mersenne Twister PRNGs allows to produce uncorrelated

sequences of pseudo-random numbers with no practical limitation on the realisa-

tion period, which in turn allows to perform long simulation sessions on parallel

machines.
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The future work is to make ARMA mathematical apparatus and its numerical

implementation a base of virtual testbed for marine objects dynamics studies.
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Perturbation Theory for the Compound
Soliton of the Gardner’s Equation;
Their Interaction and Evolution
in a Media with Variable Parameters

Irina A. Soustova, Konstantin A. Gorshkov, Alexey V. Ermoshkin,
Lev A. Ostrovsky and Yuliya I. Troitskaya

Introduction

The results of studying the interaction and propagation of compound solitons in the
media with variable parameters are reported. Such solitons are encountered in the
systems, in which the waves in the form of kinks (field jumps) may exist in addition
to the solitary waves. These solitons are referred to as compound as they may be
represented as an ensemble of interacting kinks which makes possible reduced
description of their evolution to the evolution of kinks. This approach, in contrast to
the traditional one [3], when the solitons are considered as an integral formation,
permits studying non-quasi-stationary processes related to the interaction of com-
pound solitons of strongly differing sizes and velocities, as well as to their prop-
agation in the media with variable parameters. Some of these processes will be
considered below within the framework of the Gardner equation with variable
coefficients

Φt +ΦðαðtÞ− μðtÞΦÞΦx + βΦxxx =0 ð1Þ

This equation is frequently used for describing internal waves in the shelf region
of the oceans and seas. Hence, the presented examples are of practical interest [4,
14, 16, 15, 17–19].

This contribution is a brief review of the results of an approximate description of
the evolution and interaction of composite solitons obtained by the authors in 2001–
2016. As one of the applications of the theory, the features of the evolution of
intense internal waves in the shelf zone of the ocean are analyzed.
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Basic Points of the Approximate Approach

Equation (1) with constant coefficients α, β, and μ>0, has a family of soliton
solutions:

Φs x, tð Þ=Φ+
D
2

th λ x− vt+Δð Þ− th λ x− vt−Δð Þ½ �, ð2Þ

which depend on an arbitrary pedestal Φ x, tð Þ and on one more parameter, namely,

dimensional variable λΔ= r; D=Φm th 2r, λ= 1
2

ffiffiffiffiffiffiffiffiffiffi
vm − v0

β

q
th 2r, Δ= r

ffiffiffiffiffiffiffiffiffiffi
β

vm − v0

q
cth2r,

v− v0ð Þ
vm − v0ð Þ = th22r, Φm = α

μ − 2Φ, vm = α2

6μ +
Φ
3 α− μΦ
� �

, and v0 =Φ α− μΦ
� �

. Soliton

amplitude A=max Φs −Φ
� �

and width L at HWFM (12A level) is also expressed
through parameter r= λΔ: A=Φm 1− ch− 12rð Þ, chλL=2+ ch2r.

Besides soliton solutions, Eq. (1) has a one-parameter family of kink solutions

Φ+
k x, tð Þ=Φ+

Φm

2
1±thλm x− vmtð Þ½ �, ð3Þ

where λm = 1
2Φm

ffiffiffiffi
μ
6β

q
.

Soliton solution (2) may be written in the exact form as a combination of kink
solutions with re-normalized (due to kink interaction)
parameters:Φm →D, λm → λ, vm → v:

Φs x, tð Þ=Φ+
k +Φ−

k − ðΦ+DÞ ð4Þ

Parameter r is equal to the ratio of the distance between the kinks (2Δ) and the
characteristic scale of field jumps in the kinks λ− 1

m

� �
. At r≪ 1, the soliton ampli-

tudes are small due to the strong overlapping of the kinks. Their velocity is close to
minimal v0 and the size does not depend on 2Δ; it is determined only by the λ− 1

m
scale. In general, such solitons are close to the KdV solitons and have no obvious
signs of a compound structure. At r≫ 1, the soliton amplitude and velocity are
close to the maximum possible values of Φm, vm. The soliton shape tends to a
rectangle and size L, which almost coincides with the distance between the kinks
2Δ, hence the composite structure of the solitary wave becomes apparent. The
structure of expression (4) is typical for the solutions obtained by the method of
matched asymptotic expansions. The general solution consists of the sum of
solutions in internal regions with fast field variation Φ+

k +Φ−
k (soliton field jumps

≈ thλm x− vmtð Þ½ �) after deduction of their total asymptotic behavior that is a solution
in the external regions with slow field variation (in this case, they are constant
values ðΦ+DÞ). Expression (4) gives a correct description of the general structure
of the field. This representation will be used below for describing
quasi-nonstationary processes. Construction of the solutions by the method of
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matched asymptotic expansions implies finding local corrections near each kink and
their subsequent matching in the regions between the kinks.

Compound Soliton Interaction

Let us consider the interaction of N compound solitons of the Gardner equation
(parameters of the equation are assumed to be constant) with arbitrary ratio of their
sizes. The basic expression for describing their evolution is a superposition of 2N
kinks of alternating polarity (3) after deduction of their total asymptotic behavior:

Φ 0ð Þ
Ns x, tð Þ= 1

2
∑
2N

i=1
− 1ð Þi+1tanh λm x−Vmt− Si ε t, ε xð Þ½ � ð5Þ

where Si are kink center coordinates. The procedure of matching the first correc-
tions yields equations for Siðx, tÞ= SiðηÞ, η= x− 3t:

dSi
dt

� �
= − 4 e− Si+1 − Sið Þ − e Si− 1 − Sið Þ

h i
ð6Þ

and corrects the general solution for field distribution (5) [5]:

Φð0Þ
Ni

+Φð1Þ
Ni

x, tð Þ= 1
4
∑
2N

i=1
ð− 1Þi+1 1−

∂Si
∂x

� �
th
1
2
ðξ− SiÞ ð7Þ

Exactly integrable system (6), the Langmuir chain equation, describes the elastic
collision of N solitons without changing their number and parameters. Only phase
shifts of the solitary waves appear. The compound character of the Gardner
equation solitons manifests itself in the asynchronous motion of fronts and decays
of each solitary wave at the stage of their closest convergence. When the kinks
belonging to two different solitons are temporally combined as a result of soliton
collision (Fig. 1), a narrow soliton transforms to an identical soliton of the opposite
polarity moving on the crest of a wide soliton from its front to decay.

The collision process finishes by the inverse transformation of the narrow soliton
to the soliton of initial polarity close to the decay of the wide solitary wave.
Approximate description (5–7) is quite close to the exact one in a wide range of
relative soliton velocities (up to Si̇ − Si± ̸V ̇m ∼ 1 ̸2). It is interesting that the exact
N-soliton solution, similarly to the approximate solution, may be represented as a
superposition of quasi-kinks presented by form (7) [5, 6].

It is important that approximate description of N-soliton interactions may also be
constructed for strongly nonlinear models used for describing intense internal
waves (IIW), for example, the Miyta model [7, 8] for a two-layer liquid:
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η1, 2t + η1, 2u1, 2
� �

x =0;

ρ1, 2ðu1, 2t + u1, 2u1, 2x + gξxÞ= − px +
1

3η1, 2
η31, 2

∂

∂t
+ u1, 2

∂

∂x

� �2

ξ

 !
x

,
ð8Þ

where η1, 2 = h1, 2 ∓ ξ, h1, 2 are the perturbed and unperturbed thicknesses of
the upper and lower liquid layers, ξ is the vertical shift of the interface, u1, 2 are the
average (over the vertical coordinate) values of the horizontal velocities of the
liquid in the layers, ρ1, 2 are the liquid densities, g is acceleration of gravity, and p is
pressure. The family of stationary solutions of system (8) is qualitatively similar to
the family of solitary waves of the Gardner equation (Fig. 2).

However, the asymptotic forms of the kinks of model (8) have different speed of
field decay (exponents) at x→±∝, whereas the asymptotic forms of kinks of the
Gardner equation are identical. Nonsymmetry of soliton field jumps affects sig-
nificantly the process of soliton collisions and changes the form of the equations for
kink coordinates:

dSi
dt

= I τ, ρð Þ− 2
M0e−Λ0 Si − Si− 1ð Þ +Mme−Λm Si+1 − Sið Þ, i− odd

Mme−Λm Si − Si− 1ð Þ +M0e−Λ0 Si+1 − Sið Þ, i− even

( )
ð9Þ

Equations (9) may be reduced to the integrable Langmuir chain system men-
tioned above, so that the interaction of the solitons of Eq. (8) persists to be elastic

Fig. 1 Interaction of two solitons. Solid line shows exact solution. Dashed line shows an
approximate solution
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and the solitary wave number and parameters remain unchanged after the interac-
tion. However, anomalies appear in the dependence of the soliton phase shifts on
their parameters that may be easily understood using an example of two-soliton
interaction (Fig. 3) [7].

Fig. 2 The family of stationary solutions of system (8) (left panel) and Gardner equation (right
panel)

Fig. 3 Concurrent interaction of two solitons, one of which is close to the limiting soliton
(CC-model)
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One can see that the narrow soliton of reverse polarity arising behind the front of
the wide soliton has a different amplitude and a different velocity (this is impor-
tant!). During the motion on the crest of the wide soliton it acquires an additional
phase shift which increases as the size of the wide soliton increases as well as the
difference in velocities increases. Clearly, such singularity does not appear when the
velocities of solitons have opposite polarities and coincide for slow solitons. This
case is realized for the solitons of the Gardner equation. Thus, the proposed
approach permits the distributed problem to be reduced to a system of ordinary
differential equations and even the wave nature of the interacting structures (finite
velocity of perturbation propagation, deformation of the shape, phase shifts, etc.)
can be taken into account. The developed theory was used for describing the
propagation of a train of solitons of strongly nonlinear internal waves (IIW) ob-
served during the COPE experiment [14] (Fig. 4).

Compound Soliton Evolution in the Media with Variable
Parameters

The proposed approach is especially efficient for investigating the evolution of
compound solitons in the situations critical for quasi-stationary description, when
the predicted increase of the solitary wave scales becomes unrestricted over finite
space-time intervals. Such situations are revealed from the analysis of the
quasi-stationary Gardner equation when coefficients α tð Þ, μ tð Þ>0, β tð Þ vary slowly
in time compared to the soliton duration L ̸vð Þ. In this case, the basic equation

Fig. 4 Soliton distribution at the initial point (8 km offshore (left panel) and at the end point
(20 km offshore (right panel). Dashed are related to the approximate model, and solid curve shows
numerical computations [14]
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defining the solitary wave evolution follows from the law of conservation of the

total soliton wave pulse
R+∞

−∞
Φ2

s x, tð Þdx=P0 = const; for Φ=0 it has the following

form:

2r− th2r=P0 α− 2μ3β− 1
�� ��12 ð10Þ

The left-hand side of (10) as a function of r is increasing monotonically
throughout the 0 < r< +∞ range, therefore the soliton scale increases without
restriction when the combination of the coefficients in the right-hand side of (10)
tends either to zero or to infinity. As the developed approach greatly relies on the
composite character of solitons, we will further address the

r→∞, ð α− 2μ3β− 1
�� ��12Þ→∞ limit. In a typical situation corresponding to this limit

in the case of IWs, the α(t) function has a point αðtcrÞ=0 which in real conditions
corresponds to symmetric position of the thermocline. Such a problem was solved
numerically in [9] using linear function α tð Þ=1+ εt. In this work, this problem is
solved analytically in a more general formulation.

An approximate description is constructed in conformity with the compound
structure of the solitons of Eq. (1). Solutions are sought independently in relatively
narrow regions of kinks and in more extended regions between them, and then they
are matched. The scales of medium parameters variation ≈Δð Þ are assumed to be
much greater than the scales of the soliton field jumps ≈λ− 1

m

� �
, but remain small or

comparable with the distances and intervals between them. The small parameter of
the problem is of the order of ðλmΔÞ− 1 (Fig. 5).

The above scale ratio permits us to assume that the evolution of field jumps is
quasi-stationary and the fields outside the kinks vary slowly; they are described by
the basic Eq. (1) at μ=1 in the dispersion-free approximation (simple wave
equation):

Φt +ΦðαðtÞ−ΦÞΦx =0 ð11Þ

1~ 1m exε λ − Λ <<Fig. 5 Structure of a
compound soliton of the
Gardner equation
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The quasi-stationary character of kinks allows us to connect the slowly varying
fields Φ±ðx, tÞ (Fig. 5) from the regions adjoining the kink trajectory xk(t) (from
x > xk(t) and x < xk(t))

Φ+ ðxk, tÞ= αðtÞ−Φ− ðxk, t Þ ð12Þ

Kink trajectory xk(t) is defined by the stationary equation for its velocity:

dxk
dt

=
α2

6
+

Φ
3

αðtÞ−Φð Þ ð13Þ

As was stated in [9], the characteristic velocities of slowly varying perturbations
from the regions x> xk tð Þ and x< xk tð Þ near the kink are identical and are always
smaller than the kink velocity. It follows from this that kink trajectory xk tð Þ from (8)
with the values of the field Φ+

k on this trajectory is the initial data line for finding
field Φðx, tÞ in the region x< xk tð Þ from Eq. (6). The quality of the characteristic
velocities allows us to use the field value Φ+

k in (13) as well as Φ−
k . As a result,

Eq. (11) with conditions (12, 13) form a closed system for successive finding of
slowly varying fields in all regions between the kinks, starting from the region
before the kink corresponding to the quasi-soliton front. We will illustrate this
algorithm for the case, when there are no perturbations before the soliton and the
values of field are Φf xf ðtÞ, t

� �
=ΦkðxkðtÞ= xf ðtÞ, tÞ and front coordinate xf tð Þ are

found immediately from (12)–(14).

ΦΦ xΦ, tð Þ= αðtÞ, xf tð Þ=
Z t

0

vm t′
� �

dt′ + xf 0ð Þ=1 ̸6
Z t

0

α2 t′
� �

dt′ + xf 0ð Þ. ð14Þ

Initial data line (14) permits obtaining a solution describing field distribution in
the implicit form at x< xk tð Þ, i.e., on the quasi-soliton crest:

x− xf ðtf ðΦÞ=Φ AðtÞ−Aðtf ðΦÞÞ� �
− ððΦÞÞ2 t− tf ðΦÞ� �

, ð15Þ

where A(t) is the antiderivative of the function αðtÞ, and tΦðΦÞ is the function
inverse to αðtÞ. Since the field near the quasi-soliton decay from the crest is
described by the family of characteristics (13), then assuming
x= xcðtÞ,ΦðxcðtÞ, tÞ=Φ+

c ðtÞ in (13) and using (15) we obtain a system of equations
for determining the magnitudes of these quantities. Functions xcðtÞ, Φ+

c ðtÞ obtained
from this system form the initial data line for finding field Φðx, tÞ for x< xcðtÞ in
form (15) with the substitution xf → xcðtðΦcÞ, tf → tcðΦÞ. Solutions may be
obtained in the analytical form for a rather wide class of power functions
αðtÞ= ð1− εtÞδ, however, the general pattern of the evolution is rather illustrative
and reduces to the following. The perturbations arising near the front with velocities
smaller than the velocity of the front move along the quasi-soliton crest in the
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direction of its decay without changing their magnitude: the value of field Φ+
c (t) is

equal to the value of the field near the front at a certain preceding moment of time
(t− τ). For a monotonically decreasing function αðtÞ, the field along the
quasi-soliton crest decreases monotonically from its decay to the front. Such a
character of the field persists up to the moment t= tcr, when α tcrð Þ=0; hence,
Φf (tcr) = 0. The field near the decay Φ+

c (tcr) remains finite, and the field jump
becomes symmetric (Φ+

c (tcr) = −Φ−
c (tcr)) and remains finite. while the size of the

quasi-soliton is LðtÞ= xf ðtÞ− xcðtÞ due to the finiteness of the front and decay
speeds at all stages of the process. For decreasing function αðtÞ, the decay velocity
is always Φ+

c Φ+
c − α

� �
̸3 smaller than the front velocity, so that

LðtÞ= Lð0Þ+1 ̸3
Rt
0
Φ+

c ðΦ+
c − αÞdt increases monotonically in the 0< t< tcr

interval, and the decay velocity in the neighborhood of α=0 is always negative
(xċðtcrÞ= − ðΦ+

c ðtcrÞÞ2 ̸3).
The regions near the quasi-soliton front and behind its decay remain problematic

for approximate description. As α→ 0, the kink evolution at the front becomes
non-quasi-stationary due to its growing scale λ− 1

m ≈ α− 1
� �

. However, in view of the
relative smallness of the field values and of the size of the front-line region prac-
tically all the quasi-soliton crest is described correctly within the framework of the
proposed approach. In the region behind the decay the approximate approach gives
correct values of field Φ−

c , but it does not adequately describe the field evolution as
a whole in this region for all δ. Already at δ = 1 intense steeping and pronounced
field profile ambiguities appear (Fig. 6).

Modeling of IIW Evolution in the Vicinity of the Critical
Point Based on the Results of the Experiment; Radar
Portraits of IIWs in the Shelf Zone

The example considered above is relevant to for studying the IIW evolution in the
shelf zone of the oceans, where the Gardner Eq. (1) also holds true for the vertical
shift function A ∼ F related to of the interface between two liquids. In the
approximation of a two-layer liquid immobile, the nonlinearity and dispersion
coefficients of the Gardner equation have the form [4]:

Fig. 6 Structure of
quasi-soliton field at moment
tcr . Dashed line is the
approximate method, solid
line depicts numerical
simulation of the Gardner
equation [11]
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c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΔρ
ρ

h1h2
h1 + h2

s
, β=

h1h2
c26

, α=
3
2

h1 − h2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δρgc

p
h1h2

,

μ= − 3
16gΔρch2

1h
2
2

ðh21 + h22 + 6h1h2Þ, Φ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δρgc

p
A, Δρ is the density jump

between the upper layer having thickness h1 and is lower layer of thickness h2. In
the case typical of the shelf zone, the change in coefficients is due to the change in

depth and coefficients of the Gardner equation are functions of the variable τ=
Rx

dx
c

that is a “ray” coordinate.
According to [18], a solitary wave was observed on the shelf of the Kamchatka

Peninsula with the following parameters: propagation velocity 0.51 m/s, soliton
amplitude 10 m (leading height 14 m), soliton width 500 m (17 min), linear
propagation velocity c = (0.24 – 0.35) m/s, thermocline position h1 = 14.5 m; the
depth of the ocean varied linearly with coefficient 0.017. Below, we will present the
calculated coefficients of the Gardner equation and values of the limiting soliton
amplitude for the given hydrological parameters (Fig. 7). One can see that the
coefficient of quadratic nonlinearity changes its sign at a distance of 1 km from the
shore; the coefficient of cubic nonlinearity is significantly non-zero. Comparison of
the results of observations [18] with the results of calculations using the approxi-
mate model [10] shows complete qualitative coincidence of the basic feature of
transformation of the leading and rear fronts of the solitary wave.

Remote sensing of intense internal waves in the shelf zone, as shown in [14], can
be carried out using a radar installed on the shore. Unfortunately, in [18], the remote
sensing data are not available, but it is possible to numerically simulate the man-
ifestation of an evolving soliton of intense internal waves approaching the critical
point at the sea surface and in the radar images.

Information about the inhomogeneous flow at the sea surface induced by intense
internal waves is needed to calculate surface manifestations of IIW solitons. In the
approximation of two-layer stratification, under the conditions of the “rigid lid” at
the surface and the shallow water approximation we can find from the mass

Fig. 7 Coefficients of the dimensionless Gardner equation and quasi-stationary amplitude of
limiting soliton front

288 I. A. Soustova et al.



conservation law ∂t h1 + ηð Þ+ ∂x h1 + ηð ÞU½ �=0, the relationship between the IIW
soliton amplitude A(x,t) and the velocity field at the surface Uðx, tÞ [12]:

Uðx, tÞ= c
Aðx, tÞ ̸h1

1 +Aðx, tÞ ̸h1
ð16Þ

The surface flow velocity was calculated for the parameters of the experiment
described above. The results of the calculations are presented in Fig. 8.

The transformation of surface waves in the field of an inhomogeneous flow
induced by the IIW soliton propagating on the shelf was modeled on the basis of the
kinetic equation for spectral density of the wave action of surface waves in the
relaxation approximation:

∂N
∂ t

+ r ⃗̇
∂N
∂r ⃗

+ k ⃗̇
∂N

∂k ⃗
= αN −

αN2

N0
, ð17Þ

where N r ⃗, k,⃗ t
� 	

=W r ⃗, k,⃗ t
� 	

̸
ffiffiffiffiffiffiffiffi
g k ⃗
��� ���r

is the spectral density of the wave action of

surface waves represented through the spatial spectrum of elevations W r ⃗, k,⃗ t
� 	

for

which the JONSWAP expression was used [1]. The Hughes [13] increment was
used for the wind wave growth rate α in Eq. (17).

The spatial distribution of flow velocity at the surface is shown in Fig. 9. The
wind speed in the numerical experiment was 5 m/s, with an angle of 30° to the
direction of IIW soliton propagation. It is the case of concurrent wave propagation
relative to the flow moving with the speed of the soliton. In this case a definite
range of wind wave spectrum falls into synchronism with the IW, i.e., it remains in
the field of inhomogeneous flow for a long time, during which the effect is accu-
mulated. The group velocity of wind waves should coincide with the velocity of IW
soliton to meet the condition of synchronism. The variability of the spectral density

Fig. 8 Calculated surface flow velocities in the IIW field at different stages of the evolution
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of wind wave spatial spectrum above the region of IIW soliton propagating on the
shelf is shown in Fig. 9 for different moments of time corresponding to Fig. 8. It is
clearly seen that the region of wave numbers close to k = 10 rad/m is subjected to
the maximum transformations by the field of inhomogeneous soliton flows.

The results of modeling the wind wave spectra transformation in the field of
inhomogeneous flows of IIW soliton and the empirico-theoretical model of radio
wave scattering by the rough water surface at sliding test angles described in [2]
were used to obtain a radar panorama of the sea surface during sounding the field
with horizontal polarization imaging at an angle of incidence of 88°, which is
typical for coastal radars. The theoretical radar panoramas of the sea surface above
the IIW region at different stages of soliton evolution are presented in Fig. 10. The
images correspond to the following values of nonlinearity coefficient: α = 1,
α = 0.62, α = 0.24, and α = 0, the latter being the critical point for the IIW soliton.
Analysis of radar images leads to the conclusion that the waves and radar contrasts
become weaker over the concurrent flow that is observed at the beginning of IIW
soliton propagation, but when a counter flow appears a negative “tail” appears in
the region of wave and radar contrast enhancement (it is shown in Fig. 8 for
α = 0.24 and α = 0).

Fig. 9 Transformation of wind wave spectrum above the region of IIW soliton during its
propagation on the shelf: α = 1 (a), α = 0.62 (b), α = 0.24 (c), and α = 0 (d). The color palette
illustrates spectral density variability
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Our calculations demonstrate high radar contrasts of the considered phe-
nomenon: manifestations of IIW soliton at the sea surface during its propagation on
the shelf. The quantitative calculations were made under the assumption charac-
terizing the cascade mechanism: the energy transfer from the longwave region of
the wind wave spectrum to short waves. It should be noted that the radar panoramas
may be used for reconstructing the basic IIW soliton parameters: propagation
velocity, distribution of the flow sign over the radar contrast, spatial size of the IIW
soliton. These parameters together make radar imaging an efficient tool for IIW
diagnostics on the shelf.

Conclusion

In this contribution we tried to briefly outline the main features and possibilities of
an approximate analytical description of the non-quasistationary evolution of
solitons. As an example of the application of the method, the features of the
evolution of IIW in the vicinity of the critical points of the shelf zone of the ocean

Fig. 10 Theoretical radar panoramas of the sea surface above the IIW soliton region at different
stages: α = 1 (a), α = 0.62 (b), α = 0.24 (c), α = 0 (d). The color palette shows radar contrast in
dB
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are studied, where the depths of the upper and lower layers of the fluid with
different densities are compared. The qualitative and quantitative coincidence with
the results of the real IIW observation experiment on the shelf of the Kamchatka
Peninsula is demonstrated. It is important that the analytical approach developed
here allows rapid assessment of the amplitude and structure of the IIW at any
arbitrary time with known hydrology and topography parameters of the surveyed
region. The possibility of detecting the features of an IIW at critical points by radar
images (recorded when sounding by the ship or shore radar) is demonstrated.
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Part III
Scientific Contributions:

Ocean Circulation



Geostrophic Adjustment Beyond
the Traditional Approximation

Gregory M. Reznik

Introduction

In this contribution we discuss geostrophic adjustment in rotating fluid when the
angular speed of rotation Ω does not coincide in direction with the acceleration due
to gravity; the traditional and hydrostatic approximations are not used. Gyroscopic
waves (GW) are most susceptible to the “non-traditional” terms in equations of
motion and play an important role in our consideration. The GWs exist owing to
rotation (e.g., [18]); no stratification or gravity are necessary, although both of these
factors strongly affect the structure and properties of these waves. In a “pure” form
the GWs occur in a barotropic fluid layer of constant depth bounded by two rigid
lids and rotating as a whole at a constant angular speed whose direction can be
different from the gravity (see Fig. 1).

Under the traditional approximation (TA) when the horizontal component of the
angular speed Ω is neglected, the GWs in the barotropic layer are sub-inertial, i.e.
their frequencies σ do not exceed the vertical component of twice the angular speed
of rotation f =2Ω sinφ0 (see Fig. 1) i.e. σ ≤ f ; without the TA both sub-inertial and
super-inertial GWs with σ ≥ f are possible [4, 13]. In stably stratified fluid under the
TA the sub-inertial GWs exist together with the super-inertial internal waves only if
the minimal buoyancy frequency is Nmin < f [11]. In strongly stratified fluid, i.e. at
Nmin > f , only super-inertial internal waves are possible. However, without the TA
sub-inertial waves (so called internal inertio-gravity waves) occur even in the
strongly stratified fluid [6, 7, 13]. Like the GWs these waves cannot exist without
rotation.

The paper is organized as follows. In section “Barotropic Model” we examine
the geostrophic adjustment of a barotropic fluid layer where GWs are the only
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possible wave motion. The adjustment of stratified fluid where GWs co-exist with
internal waves is considered in section “Stably-Neutrally Stratified Fluid” using the
model of stably-neutrally stratified (SNS) fluid. The fluid consists of a stratified
upper layer with N > f and a homogeneous lower layer, the density and other fields
are continuous at the interface between the layers. The configuration is of practical
interest since recent observations indicate that, at least in some parts of the World
Ocean, there exist practically homogeneous or very weakly stratified (i.e. at N ≤ f )
near bottom layers several hundred meters thick [26, 27].

Both sections “Barotropic Model” and “Stably-Neutrally Stratified Fluid” are
organized similarly. In subsections “Governing Equations” the governing equations
with boundary and initial conditions are presented. In subsections “Linear Gyro-
scopic Waves” and “Linear Wave Modes” linear waves are discussed. The linear
invariants, geostrophic modes and linear adjustment are examined in subsec-
tions “Geostrophic Mode and Linear Adjustment” and “Invariants of Motion and
Geostrophic Mode”. In subsections “Non-dimensional Equations and Asymptotic
Solution” and “Non-dimensional Equations and the Lowest-Order Solution”
non-dimensional equations, an asymptotic procedure for finding the solution, and the
lowest-order solution are given. The slowly evolving components of motion (quasi-
geostrophic (QG) flow and inertial oscillations) are described in subsections “Slow
Evolution” and “Slow Evolution of the QG Component and Inertial Oscillations”.
Final section “Summary and Discussion” contains a discussion and conclusions.

Barotropic Model

Governing Equations

The equations of motion for the barotropic fluid layer represented in Fig. 1 can be
written in the form:

ut + ðu ⋅ ∇Þu+2Ω× u= −∇p ̸ρ0, ∇ ⋅ u=0. ð1a; bÞ

Fig. 1 Schematic
representation of the
barotropic fluid layer of
constant depth H rotating at
the angular speed Ω
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Here u= ðu, v,wÞ where u, v, w are the velocity components associated with the
x, y, z axes, respectively, the z-axis is directed upward parallel to gravity (origin at
the upper surface); ρ0 is the fluid density; p the deviation of pressure from the
hydrostatic one; 2Ω= eyfs + ezf where ex, ey, ez are the unit vectors along corre-
sponding axes and f =2Ω sin φ0, fs =2Ω cos φ0.

The velocity field obeys the no-flux conditions at the surface and bottom:

wjz=0, −H =0, ð2Þ

and the initial conditions

ðu, v,wÞt=0 = ðuI , vI ,wIÞðx, y, zÞ; wI = −
Zz

−H

ð∂xuI + ∂yvIÞdz. ð3a; bÞ

Equations (1a, b) represent the so-called non-traditional f-plane approximation;
in this case φ0 is the reference latitude around which the west-east, south-north, and
vertical Cartesian coordinates x, y, z are introduced (see Fig. 1). The ratio
q= fs ̸f = cotφ0 is assumed to be of the order of unity,

q=Oð1Þ, ð4Þ

which corresponds to the mid-latitudes.

Linear Gyroscopic Waves

In the absence of the free surface, beta-effect, and stratification the only
wave-generating mechanism is rotation, i.e. only the gyroscopic waves are possible
here. Linearized Eq. (1a, b) can be reduced to one equation for the vertical velocity
Miropol’sky [19]:

ð∂tt + f 2Þwzz +∇2
hwtt +2ffswyz + f 2s wyy =0, wjz=0, −H =0 ð5a; bÞ

where ∇2
h = ∂

2
x + ∂

2
y . Any solution to problem (5a, b) can be represented as a

superposition of the wave solutions

wn =WnðzÞ exp½iðkx+ ly− σntÞ�, ð6Þ

where k, l are the horizontal wavenumbers κ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + l2

p� �
and amplitude Wn has

the form (see [21] for details):
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Wn = eianz sin bnz, n=1, 2, . . . . ð7Þ

Here n is the number of vertical mode equal to the number of zeros ofWnðzÞ, and

an = −
ffsl

f 2 − σ2n
, bn =

σnκ

f 2 − σ2n
�� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 − σ2n + f 2̄s

q
=

nπ
H

, f s̄ = fs
lj j
κ
. ð8a; b; cÞ

The dispersion relation σn = σnðk, lÞ consists of the sub-inertial branch σsubn :

σsubn = f 2 −
1

2ð1+ b2̄nÞ
½ðf 2 − f 2̄s Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ40 + 4b2̄nf 2f

2̄
s

q( )1 ̸2

, ð9aÞ

and the super-inertial branch σsupn :

σsupn = f 2 +
1

2ð1+ b2̄nÞ
½− ðf 2 − f 2̄s Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ40 + 4b2̄nf 2f

2̄
s

q( )1 ̸2

, ð9bÞ

where σ0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 + f 2̄s

q
. The branches are presented in Fig. 2.

In the long-wave approximation κH≪ 1 both the sub- and super-inertial fre-
quencies (9a, 9b) are close to the inertial frequency f; in this case

σsubn = f −
fsH
2nπ

lj j+ fOðb ̄− 2
n Þ, σsupn = f +

fsH
2nπ

lj j+ fOðb ̄− 2
n Þ. ð10a; bÞ

Fig. 2 Dispersion relation
for the barotropic gyroscopic
waves
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The long-wave asymptotics (10a, b) are universal in the sense that they also
remain valid in the stratified fluid [7]. We emphasize that the gyroscopic waves are
close to the inertial oscillations if L≫H; it is not the case for the surface and
internal gravity waves, which are nearly inertial if L≫ LR where L, LR are the
horizontal and Rossby scales, respectively. Reznik [20] showed that this property of
the GWs is also valid in the stratified fluid. Usually LR ≫H, therefore the presence
of the GWs results in the existence of inertial oscillations with shorter horizontal
scales L≤LR.

Using the scales L, H, and f − 1 as the time scale, we write (5a, b) in the
non-dimensional form:

ð∂tt +1Þwzz +2δqwyz + δ2ð∇2
hwtt + q2wyyÞ=0, wjz=0, − 1 = 0, ð11a; bÞ

where δ=H ̸L≪ 1. The smallness of δ allows a solution to (11a, b) to be sought in
the following asymptotic form:

w=w0ðx, y, z, t,T1, . . .Þ+ δw1ðx, y, z, t,T1, . . .Þ+ . . . , ð12Þ

where Tn = δnt, n=1, 2, . . . are the slow times.
Substitution of (12) into (11a, b) gives in the lowest order:

ð∂tt +1Þw0zz =0, wjz=0, − 1 = 0, ð13a; bÞ

Whence we have:

w0 =W0ðx, y, z, T1, . . .Þe− it + c.c.; ð14Þ

c.c. denotes complex-conjugate value. Thus, the lowest order solution is inertial
oscillations modulated by the arbitrary amplitudeW0ðx, y, z,T1, . . .Þ, which depends
on the coordinates and slow time.

The dependence is determined from the first-order equation:

ð∂tt +1Þw1zz = − 2∂tT1w0zz − 2qw0yz. ð15Þ

The correction w1 is bounded in the “fast” time t if the right-hand side of (15) is
zero whence one obtains:

∂T1W0zz + iqW0yz =0. ð16Þ

Equation (16) should be solved under the boundary and initial conditions

W0jz=0, − 1 = 0, W0jT1 = 0 =WI =
1
2
wIðx, y, zÞ. ð17a; bÞ
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Representing the derivative W0z as the Fourier series

W0z = ∑
n=∞

n= −∞
Ŵnðx, y,T1Þei2nπz, ð18Þ

and substituting (18) into (16) one obtains:

ŴnT1 +
q

2nπ
Ŵny =0, Ŵn = Ŵn x, y−

q
2nπ

T1
� �

. ð19a; bÞ

Thus, amplitude W0 is given by the formula:

W0 =
i
2π

∑
n=∞

n= −∞

1
n
Ŵn x, y−

q
2nπ

T1
� �

1− ei2nπz
� �

. ð20Þ

Solution (20) describes an along-meridional (along the y-axis) dispersive
spreading of the perturbation: each vertical mode with number n travels along the y-
axis at the group velocity q ̸2nπ that, obviously, agrees with the asymptotics (10a, b).
The group velocity does not depend on the horizontal wavenumbers k, l; therefore, the
modes Ŵnð1− ei2nπzÞ ̸n in the series (20) uniformly translate one after another con-
serving their shapes (see Fig. 3).

With increasing n the group velocity decreases, i.e. at a fixed point x, y the
velocity field has a tendency to become more and more small-scale in the vertical
direction. Under the TA (q = 0) the meridional dispersion at time T1 ∼ 1 disap-
pears, in this case the inertial oscillations disperse in all allowable directions on the
longer time T2 ∼ 1.

Geostrophic Mode and Linear Adjustment

Geostrophic adjustment is a particular case of the more general wave adjustment
[23] which takes place in a physical system possessing in the linear approximation
linear invariants and linear wave solutions harmonically depending on time. In the
linear approximation Eq. (1a, b) take the form:

Fig. 3 Schematic representation of dispersion spreading of horizontally localized initial field
(solid circle); n denotes the number of corresponding vertical mode (dashed circles)
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ut − fv+ fsw= − px ̸ρ0, vt + fu= − py ̸ρ0, ð21a; bÞ

wt − fsu= − pz ̸ρ0, ux + vy +wz =0. ð21c; dÞ

To derive the linear invariant we introduce the new variables:

x′ = x, y′ = y− qz, z′ = z. ð22Þ

Coordinates (22) are not orthogonal; the planes y′ = y− qz= const are parallel to
the angular speed Ω (see Fig. 4). We emphasize that only the coordinates are
transformed, the velocity components are determined by the geometry of the
boundaries as before. In the coordinates (22), Eq. (21a, b, 21c, d) are written as

ut − fv+ fsw= − px′ ̸ρ0, vt + fu= − py′ ̸ρ0, ð23a; bÞ

wt − fsu= − ðpz′ − qpy′Þ ̸ρ0, ux′ + vy′ +wz′ − qwy′ =0. ð23c; dÞ

Excluding p from (23a, b) and using the continuity Eq. (23d) one obtains the
following equation for the vertical vorticity:

ðvx′ − uy′Þt = fwz′ . ð24Þ

Transformation (22) does not change the no-flux condition (2), i.e.

wjz′ =0, −H =0, ð25Þ

Fig. 4 Coordinates (22) and schematic representation of linear geostrophic adjustment of an
initial perturbation (thick long-dashed lines) to a z′-independent vortex state (thick dot-dashed
lines) oriented along Ω
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therefore, the following conservation integral is obtained from (24):

Z0

−H

ðvx′ − uy′Þdz′ =Ω ̄ðz′Þ
I ðx′, y′Þ. ð26Þ

The r.h.s. part of (26) is determined by the initial conditions (3a, b):

Ωð̄z′Þ
I ðx′, y′Þ=

Z0

−H

ΩðzÞ
I ðx′, y′ + qz′, z′Þdz′, ð27Þ

where ΩðzÞ
I is the initial vertical vorticity:

ΩðzÞ
I =ΩðzÞ

I ðx, y, zÞ= ∂xvI − ∂yuI . ð28Þ

The gyroscopic wave (6) is a solution to the system (23a, b, 23c, d) with the
boundary condition (25) therefore the invariant (26) also exists for the wave. One
can readily see, however, that for the wave solution harmonically depending on
time with frequency σ >0, the invariant is zero (see [23] for details), i.e.

Z0

−H

ðvx̃′ − uỹ′Þdz′ =0, ð29Þ

where the tilde denotes the wave solution.
This property of waves allows the solution to linear problem (21a, b, 21c, d),

(22), (3a, b) to be represented as a sum of a stationary component ūðrÞ, p ̄ðrÞ with
nonzero conservation integral (26) and a wave component ũðr, tÞ, p ̃ðr, tÞ with the
zero invariant:

ðu, pÞ= ðū, p ̄Þ+ ðũ, p ̃Þ. ð30Þ

The stationary component obeys the equations:

− fv ̄+ fsw̄= − px̄′ ̸ρ0, fū= − p ̄y′ ̸ρ0, ð31a; bÞ

fsu ̄= ðpz̄′ − qp ̄y′Þ ̸ρ0, ux̄′ + vȳ′ + w̄z′ − qw̄y′ =0; ð31c; dÞ

and the no-flux conditions (25). The component is a geostrophic mode [8] which
does not depend on the depth z on the planes parallel to the angular speed Ω:
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u ̄= −
1
f ρ0

pȳ′ v ̄=
1
f ρ0

px̄′ , w̄=0, pz̄′ =0. ð32Þ

The geostrophic mode is characterized by a columnar motion; the column axes
are directed along the rotation speed Ω so that the motion is parallel to the rigid
boundaries and the vertical velocity is zero (see Fig. 4). Geostrophic pressure p ̄ is
found from (26), (32):

∇2
hp ̄=

f ρ0
H

Ω ̄ðz′Þ
I ðx′, y′Þ. ð33Þ

The wave component of solution obeys Eq. (21a, b, 21c, d):

ut̃ − fv ̃+ fsw̃= − px̃ ̸ρ0, v ̃t + fu ̃= − p ̃y ̸ρ0, ð34a; bÞ

w̃t − fsu ̃= − pz̃ ̸ρ0, u ̃x + vỹ + w̃z =0, ð34c; dÞ

with boundary conditions (2) and initial conditions

ðuĨ , vĨÞ= ðuI − u ̄, vI − v ̄Þ. ð35Þ

In addition, the conservation integral (26) for the wave component is zero, i.e.
(29) is valid. Solution to the problem (34a, b, 34c, d) to (35), (29), (2) is a
superposition of the gyroscopic waves considered in subsection “Linear Gyro-
scopic Waves”. The waves are dispersive, therefore for localized initial conditions
(when uI , vI → 0 as r=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
→∞) the wave solution ũ, p ̃ decays with

increasing time at a fixed point of space and the full solution (30) tends to the
geostrophic mode (32), (33). In other words, any localized initial state tends with
time to a geostrophically balanced localized vortex with axis parallel to Ω (see
Fig. 4). This tendency to columnar motion seems to be very persistent and is
observed, for example, in laboratory experiments with turbulence in rotating tanks
(see, e.g. [5, 25], and references therein).

Typical time Tw of the wave adjustment can be defined as Tw =L ̸cg where L is
the typical horizontal scale of initial perturbation and cg is the typical group velocity
of radiated waves. It readily follows from the dispersion relations (9a, 9b), (10a, b)
that for the large and moderate scales L≥H the group velocity cg =OðfHÞ and for
the small scales L≪H in the super-inertial (sub-inertial) range cg =OðfL3 ̸H2Þ
(cg =OðfL2 ̸HÞ), i.e.

Tw =
L
H
f − 1 for δ=

H
L
≤ 1, ð36aÞ

Tw ≥
H
L
f − 1 for δ=

H
L
≫ 1. ð36bÞ
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Thus, the typical time of the wave adjustment is of the order of the inertial time
f − 1 for perturbations of moderate scales with L∼H and greatly exceeds this time in
the large-scale (L ≫ H) and short-scale (L ≪ H) domains.

Nonlinear adjustment at small Rossby number Ro=U ̸fL≪ 1 (U is the hori-
zontal velocity scale) results in a slow (as compared to the inertial time f − 1)
evolution of the geostrophic component on the advective time Ta =Oð1 ̸Rof Þ.
Scenario of the adjustment depends on the relationship between the typical flow
velocity U and group velocity cg of fast waves (see Reznik [23] for more detail). In
the case Tw ≪ Ta, group velocity cg greatly exceeds the flow velocity U, i.e. the
waves rapidly run away from the initial perturbation and do not interact effectively
with the geostrophic mode. The residual flow left behind, after all the waves have
been propagated away, slowly changes on the advective time and is close to the
geostrophic balance. This scenario is realized for perturbations with moderate scale
L∼H since in this case, Tw =Oðf − 1Þ≪ Ta =OðRo− 1f − 1Þ. For large- and
small-scale perturbations, time Tw ≫ f − 1, therefore in these scale domains the
waves can effectively interact with the geostrophic mode if Tw ≥Ta and, therefore,
cg ≤U. In the rest of paper we examine nonlinear evolution of large-scale pertur-
bations with L≫H assuming that the advective time Ta and the wave time Tw from
(36a) are of the same order. The assumption means that group velocity cg is of the
order of the flow velocity U:

cg =OðfHÞ∼U. ð37Þ

Non-dimensional Equations and Asymptotic Solution

We now write the system (1a, b) in coordinates (22) and then in non-dimensional
form using the scales L,H, f − 1, U and the scales of vertical velocity W = ðH ̸LÞU
and of pressure P= ρ0fUL (the primes are omitted):

ut +Roðuux + vuy +wuz − δqwuyÞ− v+ δqw= − px, ð38aÞ

vt +Roðuvx + vvy +wvz − δqwvyÞ+ u= − py, ð38bÞ

δ2wt + δ2Roðuwx + vwy +wwz − δqwwyÞ− δqu= − pz + δqpy, ð38cÞ

ux + vy +wz − δqwy =0; ð38dÞ

in the boundary and initial conditions (2), (3a, b) the depth H is replaced by 1 and
x, y, z in (2), (3a, b)—by the variables (22). In terms of the small Rossby number
Ro=U ̸fL and parameter δ=H ̸L condition (37) means that
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Ro= δ≪ 1. ð39Þ

Solution to the problem (38a, 38b, 38c, 38d), (2), (3a, b) is represented in the
form of multiple timescale asymptotic expansions analogous to (12):

ðu, v,w, pÞ= ðu0, v0,w0, p0Þðx, y, z, t,T1, . . .Þ+ δðu1, v1,w1, p1Þ+ . . . . ð40Þ

Details of the calculation of successive terms in (40) can be found in Reznik
[21]; here we present only the results. On times T1 ∼ 1 within to small terms the
motion is split in a unique way into slow and fast components:

ðu, v,w, pÞ= ðu ̄, v ̄, 0, p ̄Þ+ ðu ̃, v ̃, w̃, 0Þ; ðu ̄, v ̄Þ=
Z0

− 1

ðu, vÞdz,
Z0

− 1

ðu ̃, v ̃Þdz=0.

ð41a; b; cÞ

The slow component ðu ̄, v ̄, 0, p ̄Þ is not influenced by the fast one ðu ̃, v ̃, w̃, 0Þ and
does not depend on the fluid depth; it is quasigeostrophic (QG) and obeys the QG
potential vorticity equation coinciding here with 2D fluid dynamics equation:

u ̄= u ̄ðx, y,T1Þ= −ψ y, v ̄= v ̄ðx, y, T1Þ=ψ x,
∂∇2

hΔψ
∂T1

+ Jðψ ,∇2
hψÞ=0;

ð42a; b; cÞ

ψ =ψðx, y,T1Þ is the QG streamfunction.
The fast component ðu ̃, v ̃, w̃, 0Þ consists of long gyroscopic waves; it is a packet

of inertial oscillations modulated by amplitude depending on coordinates and the
slow time:

u ̃+ iv ̃=Aðx, y, z,T1Þe− it , w̃= −
1
2
e− it

Zz

− 1

sðAÞdz+ c.c., s = ∂x − i∂y. ð43a; b; cÞ

Amplitude A obeys the equation with coefficients depending on ψ , i.e. the fast
component is coupled to the slow one:

∂A
∂T1

+ Jðψ ,AÞ+ i
2
∇2

hψA+ iq
Zz

− 1

Adz+
Z0

− 1

zAdz

0
@

1
A

y

=0,
Z0

− 1

Adz=0. ð44a; bÞ

The term proportional q in (44a) is due to the “non-traditional” terms in the
equations of motion related to the horizontal component of Ω.
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Slow Evolution

Under the TA, i.e. for q=0, Eq. (44a) is substantially simplified, especially if the
QG streamfunction ψ is axisymmetric and, therefore, it does not depend on time as
follows from (42c), i.e. ψ =ψðrÞ. In this case, the solution to (44a, b) has the form:

A= exp −
i
2
∇2

hψT1

� 	
AI r, θ− ψ ′

r
T1

� �
, ð45Þ

where the prime means differentiation with respect to r and AIðr, θÞ is the initial
amplitude in (43a) written in polar coordinates. The exponential factor in (45) shifts
the inertial frequency f to the so-called effective inertial frequency f +∇2

hψ ̸2 [17].
Factor AIð. . .Þ describes advection of the inertial oscillations by the QG flow, the
radial gradients of the amplitude becoming sharp due to the differential rotation. In
accordance with (45) the inertial oscillations are trapped by the QG vortex, (45)
displaying no asymmetry between cyclonic and anticyclonic vortices in their
“trapping ability” (cf. [17]). This lack of asymmetry is related to the lack of dis-
persion of the long gyroscopic waves here: under the TA the dispersion becomes
significant on longer times T2 ∼ 1. It is seen from (45) that the magnitude Aj j
behaves exactly as a passive scalar in the steady QG flow. For q=0 the same is
valid for any ψ since by virtue of (44a) we have:

Aj jT1 + Jðψ , Aj jÞ=0, ð46Þ

Equation (46) means that under the TA the inertial oscillations are trapped by the
QG velocity field u ̄, v ̄.

At q≠ 0 the “non-traditional” term in (44a) changes the situation. In the absence
of the slow component, i.e. for ψ =0, (44a, b) is similar to (16) in section “Linear
Gyroscopic Waves” (one can readily see this by differentiating (44a) with respect to
z, setting ψ =0 and applying operator (43c) to the resulting equation). Therefore,
the non-traditional term in (44a) produces a tendency for the meridional (along the
y-axis) propagation of the inertial oscillations. To analyze the general case ψ ≠ 0,
q≠ 0 we represent the solution to (44a, b) in the form analogous to (18):

A= ∑
n=∞

n= −∞
Ânðx, y,T1, . . .Þei2nπz. ð47Þ

The equation for the Fourier amplitude An̂ is written as

ÂnT1 + Jðψ , ÂnÞ+ i
2
∇2

hψAn̂ +
q

2nπ
Âny =0. ð48Þ
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The equation for the module Ân
�� �� analogous to (46) simply follows from (48):

A ̂n
�� ��

T1
+ Jðψ n̄, Ân

�� ��Þ=0. ð49Þ

Here ψ n̄ is the sum of ψ and a superimposed constant meridional flow q
2nπ x:

ψ n̄ =ψ +
q

2nπ
x. ð50Þ

Thus, the field An̂
�� �� behaves as a passive scalar in the velocity field un̄ = −ψ n̄y,

vn̄ =ψ n̄x. Let the QG component ψ contain intense vortices with closed streamlines,
in this case the streamline field (50) consists of the closed streamlines related to the
vortices, and unclosed ones, each of the unclosed streamlines tending to the straight
line ψ ̄n = q

2nπ x= const as y→±∞. If the QG flow is time-independent then the
module Ân

�� �� is trapped in the domains with the closed streamlines and travels away
from the initial disturbance location along the unclosed streamlines. The “propa-
gation ability” depends on the mutual strength of the field ψ and the superimposed
flow q

2nπ x and decreases with increasing n. In the case of time-dependent QG flow
the situation is more complicated since Lagrangian trajectories do not coincide with
the streamlines. However, one can assume that the time-dependent ψ , at least, does
not reduce the “propagation ability” of the inertial oscillations since in this case the
Lagrangian trajectory can escape from the closed streamlines (e.g., [1]).

An analog of Eq. (44a) in stratified fluid was derived by Young and Ben Jelloul
[28], and analyzed by Balmforth et al. [2], Balmforth and Young [3], Klein and
Llewellyn-Smith [14], Klein et al. [15]; the QG flow in these works was assumed to
be prescribed. In the context of geostrophic adjustment an analog of (44a, b) was
derived by Reznik et al. [24] (for barotropic shallow water with free surface) and by
Zeitlin et al. [29] (for stratified fluid). In all these works, the TA was used and the
inertial oscillations were the long gravity (surface or internal) waves with horizontal
scales greatly exceeding the corresponding Rossby scales.

It readily follows from (42c) and (44a, b) that

∂

∂T1

Z
dxdydz Aj j2 = 0,

∂

∂T1

Z
dxdyð∇ψÞ2 = 0, ð51a; bÞ

i.e. on times t∼ 1 ̸δ both the fast and the slow components conserve their total
energies. However, energy transfer between the inertial oscillations and QG flow is
possible on longer times t∼ 1 ̸δ2. This follows from the “refined” QG equation
valid on times of the order of 1 ̸δ2 [21]:

∇2
hψT1 + Jðψ ,∇2

hψÞ+ δ½Gðψ ,AÞ+ qHðAÞ�=0, ð52Þ
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where

Gðψ ,AÞ= 1
2

MðψÞ Aj j2
� �

xy
−

1
2
M ψ xy Aj j2
� �

, ð53aÞ

HðAÞ= −
i
4
s

Z0

− 1

dzA
Zz

− 1

s*ðA*Þdz
2
4

3
5
y

+c.c., ð53bÞ

operator M= ∂xx − ∂yy, a ̄=
R 0
− 1 adz, and the asterisk denotes the complex

conjugation.
If all fields decay at infinity, then we haveZ

ψGðψ ,AÞdxdy=0, ð54Þ

therefore, energy E ̄ of the QG component changes in time as

∂TE ̄= δq
Z

ψHðAÞdxdy, E ̄=
1
2

Z
ð∇hψÞ2dxdy. ð55a; bÞ

For q≠ 0 the right-hand side of (55a), is, generally, non-zero whence the
important conclusion follows that without the TA a transfer of energy between the
QG component and inertial oscillations can exist.

Stably-Neutrally Stratified Fluid

Governing Equations

We consider a stably-neutrally stratified fluid of constant depth H, bounded by two
rigid lids and rotating as a whole at a constant angular speed Ω, which, generally, is
not parallel to gravity (directed along the z-axis in Fig. 5). The fluid density ρ, being
continuous, depends on z in the upper layer of depth h1 − η and is constant in the
lower layer of depth h2 + η where h1, h2 =H − h1 are constant mean depths of the

Fig. 5 Schematic
representation of rotating
stably-neutrally stratified fluid
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layers, and η= ηðx, y, tÞ is the perturbation of interface between the layers (see
Fig. 5). Obviously, the condition Nmin < f of coexistence of internal and gyroscopic
waves is satisfied here.

Density ρ and pressure p in the layers are given by the formulae:

ρ= ρsðzÞ+ ρ′, 0≥ z≥ − h1 + η
ρ0 = const, − h1 + η≥ z≥ −H



; ð56aÞ

p=
g
R0
z
ρsdz+ p′, 0≥ z≥ − h1 + η

− gρ0ðz+ h1Þ+ g
R0
h1

ρsdz+ p′, − h1 + η≥ z≥ −H

8>>><
>>>:

, ð56bÞ

where ρs = ρsðzÞ is the upper layer density at the rest state, the equilibrium density is
continuous, i.e. ρsð− h1Þ= ρ0; ρ

′, p′ are the variations of density and pressure from
their hydrostatic profiles.

Motion of the fluid obeys the following equations:

ut +u ⋅ ∇u+2Ω× u+ ezgρ ̸ρ0 = −∇p′ ̸ρ0, ð57aÞ

ρt + u ⋅ ∇ρ− ρ0N
2w ̸g=0, ∇ ⋅ u=0 ð57b; cÞ

in the domain 0≥ z≥ − h1 + η, and

ut + u ⋅ ∇u+2Ω× u= −∇p′ ̸ρ0, ∇ ⋅ u=0 ð58a; bÞ

in the domain − h1 + η≥ z≥ −H. Here, g is the acceleration due to gravity and
N2 = − g∂zρs ̸ρ0. The prime in density variations is omitted and (assuming the
variations are small) the density is replaced by the constant value ρ0 where it is not
differentiated.

The no-flux conditions at the rigid surface and bottom and the initial conditions
coincide with (2) and (3a, b). Conditions at the interface z= − h1 + η are discussed
in detail in Reznik [22]. We are interested in a regime when the density and velocity
fields are continuous at the interface at the initial moment and remain continuous all
the time. The continuity of fields prevents possible Kelvin-Helmholtz instability and
makes it possible to study the “buffer” zone between the stably stratified and
homogeneous domains, in which a non-stationary boundary layer can arise [20].
The density is conserved in the fluid elements so they cannot intersect the interface,
which, therefore, is a material surface, at which the conditions

ðρs + ρÞz= − h1 + η = ρ0, wjz= − h1 + η = ηt + uηx + vηy ð59a; bÞ

should be satisfied. The continuity of all fields means that in addition to (59a, b) the
horizontal velocity and pressure are also continuous at z= − h1 + η:
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½u�z= − h1 + η =0, ½v�z= − h1 + η =0, ½p�z= − h1 + η =0; ð59c; d; eÞ

here and below ½a�z= z0 = ajz= z0 + 0 − ajz= z0 − 0.
If the buoyancy frequency N (z) is not zero at z= − h1, i.e.

Nð− h1Þ≠ 0, ð60Þ

then the interface is a weak discontinuity [16], since the physical fields here are
continuous but their gradients are discontinuous. In some calculations below we
will use the simplest configuration with weak discontinuity when the background
upper layer density profile ρsðzÞ linearly depends on z, and N is a constant, i.e.

ρs = −
ρ0
g
N2ðz+ h1Þ+ ρ0. ð61Þ

Linear Wave Modes

The linearized version of (56a, 56b), (57a, 57b, c) can be reduced to two equations
for the vertical velocity w (e.g., Miropol’sky [19]; cf. (5a)):

ð∂tt + f 2Þw+
zz +∇2

hw
+
tt +2ffsw+

yz + f 2s w
+
yy +N2∇2

hw
+ = 0, ð62aÞ

ð∂tt + f 2Þw−
zz +∇2

hw
−
tt +2ffsw−

yz + f 2s w
−
yy =0. ð62bÞ

The boundary conditions for (62a, 62b) follow from (59a, 59c, d, e) and the
continuity Eq. (57c), (58b):

w+ jz=0 =w− jz= −H =0, ½w�= ½wz�=0. ð63a; bÞ

Here and below, superscripts + and − denote quantities in the upper and lower
layers, respectively; ½a�= a+ jz= − h1 − a− jz= − h1 .

The wave solutions

w± =W±ðzÞ exp½iðkx+ ly− σtÞ�+ c.c, σ >0; ð64Þ

to (62a, 62b), (63a, b) were examined in detail in Reznik [20]. The wave spectrum
consists of gyroscopic, internal, and internal inertio-gravity waves with non-zero
frequency. Here we are interested in the physically important case when the
stratification is strong, f ̸N0 ≪ 1 (N0 is the characteristic buoyancy frequency), and
the waves are long,
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H≪ L≤ LR. ð65Þ

Here LR =HN0 ̸f is the Rossby scale. Neglecting small terms in (62a, 62b) gives
the following approximate equations:

ð∂tt + f 2Þw+
zz +N2∇2

hw
+ = 0, ð∂tt + f 2Þw−

zz =0. ð66a; bÞ

The wave spectrum of system (66a, b), (63a, b) consists of super-inertial internal
waves (64) with σ > f and inertial oscillations with σ = f . Amplitudes W±(z) of the
internal wave obey the equations

W +
zz + b2W + = 0, W −

zz =0, b2 =
κ2N2

σ2 − f 2
, ð67a; b; cÞ

where κ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + l2

p
. In the case (61) of constant N, the solution to (67a, b) satisfying

(63a,b) is readily found:

W +
n = − sin bnz ̸ sin bnh1, W −

n = ðz+HÞ ̸h2; n= 1, 2, . . . ð68Þ

Here bn = sn ̸h1, where sn is the n-th root of the equation

s cot s= − h1 ̸h2. ð69Þ

The corresponding dispersion relation has the form:

σn = σiwn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 + κ2h21N2 ̸s2n

q
. ð70Þ

In accordance with (68) the vertical mode amplitude oscillates in the upper
stratified layer and depends linearly on depth in the lower one.

For the inertial oscillations with σ = f it follows from (66a, b) that

w+ = 0, w− =Asðx, y, zÞ sin ft+Acðx, y, zÞ cos ft; ð71Þ

here the amplitudes As, c are arbitrary functions obeying the conditions:

As, cjz= − h1 = ∂zAs, cjz= − h1 =As, cjz= −H =0. ð72Þ

Thus, the inertial oscillations here are confined to the homogeneous lower layer
and do not penetrate into the upper one.

The non-hydrostatic and “non-traditional” terms neglected in (62a, 62b) to
derive (66a, b) are of no importance for the internal waves but they affect the
inertial oscillations (71) (see [20] for more details). The terms transform the
oscillations into sub-inertial long gyroscopic waves of “standard” form (64) with
the approximate dispersion relation:
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σn = σgwn = f −
fsh2
2nπ

lj j, n=1, 2, . . . ð73Þ

coinciding with the dispersion relation of sub-inertial long gyroscopic waves in
barotropic fluid of depth h2 (cf. (10a)). In these waves the vertical mode amplitudes
Wn oscillate in the lower layer and decay exponentially in the upper one with
increasing distance from the interface. As follows from (70) and (73), in the scale
range (65) the internal waves are strongly dispersive, whereas the gyroscopic ones
are characterized by weak dispersion.

Invariants of Motion and Geostrophic Mode

We now write the linearized problem (57a, 57b, c), (58a, b) in terms of the variables
(22) (cf. (23a, b, 23c, d)):

u±t − fv± + fsw± = − p±x′ , v
±
t + fu± = − p±y′ , ð74a; bÞ

w±
t − fsu± + gρ± ̸ρ0 = − p±z′ + qp±y′ , ρ

+
t − ðρ0N2 ̸gÞw+ = 0, ð74c; dÞ

u±x′ + v±y′ +w±
z′ − qw±

y′ =0. ð74eÞ

Here and below, ρ− =0, p± = p′± ̸ρ0.
Elimination of the pressure p± from (74a, b) gives the vorticity equation:

v±x′ − u±y′
� �

t
− fw±

z′ =0. ð75Þ

It follows from (75) and (74d) that in the stratified layer the potential vorticity
(PV) Π + conserves:

Π + = v+x′ − u+
y′ − ðfg ̸ρ0Þðρ+ ̸N2Þz′ =Π +

I ðx′, y′, z′Þ. ð76Þ

To find an analogous invariant in the homogeneous layer we use the boundary
condition at interface (59b), which in the linear approximation can be written as

wjz′ = − h1 = ηt. ð77Þ

Integration of (75) over z′ from −H to − h1 taking into account (77) and (2)
gives the PV in the homogeneous layer (cf. (26)):
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Π − =
1
h2

Z− h1

−H

ðv−x′ − u−
y′ Þdz′ −

f
h2

η=Π −
I ðx′, y′Þ. ð78Þ

The values of Π±
I of the invariants are determined by the initial fields (3a, b).

The third invariant is the surface density ρ+ jz′ =0; in view of (74d) and the
no-flux condition (2) we have:

ρ+ jz′ =0 = ρ+
I

��
z′ =0. ð79Þ

The solution to the problem (74a, b, 74c, d, 74e) is represented as a sum of a
stationary geostrophic mode ðug, ρg, pgÞ with non-zero invariants Π±, ρ+ jz′ =0 and
an ageostrophic wave part ðua, ρa, paÞ consisting of the harmonic waves (64) with
non-zero frequencies and the zero invariants. One can readily show, using the
bottom no-flux condition from (2), that in the stationary solution the vertical
velocity is zero and the lower layer motion does not depend on z′:

u±g = − ð1 ̸f Þ∂y′p±g , v±g = ð1 ̸f Þ∂x′p±g , w±
g =0, ð80a; b; cÞ

ρ±g = − ðρ0 ̸gÞ∂z′p±g , ∂z′p
−
g =0. ð80d; eÞ

The geostrophic pressure p±g is determined using (76), (78):

∇′2
h p

+
g + f 2ð∂z′p+

g ̸N2Þz′ = fΠ +
I ðx′, y′, z′Þ, ð81aÞ

∇′2
h p

−
g − ðf 2 ̸h2Þηg = fΠ −

I ðx′, y′Þ, ð81bÞ

where ∇′2
h = ∂x′x′ + ∂y′y′ . The boundary condition at the surface z′ =0 follows from

(79) and (80d):

∂z′p
+
g

���
z′ =0

= − ðg ̸ρ0Þρ+
I

��
z′ =0. ð82aÞ

The boundary condition for p+
g at the interface is discussed in Reznik [22] and

can be written in the form suitable both for the continuous (N2ð− h1Þ=0) and
discontinuous (N2ð− h1Þ≠ 0) buoyancy frequency profiles:

lim
z′ → − h1

∂z′p
+
g ̸N2

� �
z′
− ∂z′p

+
g ̸ðh2N2Þ

� �
=

1
f
ðΠ +

I −Π −
I Þz′ = − h1 . ð82bÞ

Knowing p+
g one can determine p−

g by continuity of pressure, p−
g = p+

g

���
z= − h1

,

and then ηg from (81b).
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It is seen from (80a, b, c, 80d, e) that the motion in the geostrophic mode occurs
in the planes parallel to the rigid boundaries; the motion in the homogeneous layer
is columnar with columns elongated parallel to the angular rotation speed Ω. In the
upper stratified layer the motion is more complicated; its structure is not columnar
and depends on the initial horizontal velocity and density.

Under the TA (when q=0) the geostrophicmode is described by (80a, b, c, 80d, e),
(81a, 81b) with x, y, z instead of x′, y′, z′. This means that the non-traditional terms are
of importance in QG dynamics if the dominating horizontal scale L of initial per-
turbation is smaller or of the order of the fluid depth:

L≤H. ð83Þ

For long-wave perturbation with

L≫H ð84Þ

the contribution of the term qz in (22) is small, i.e. the non-traditional terms have a
weak effect on the long-wave geostrophic mode.

The ageostrophic wave component ðua, ρa, paÞ obeys the same Eq. (74a, b, 74c, d,
74e) but the invariants (76), (78) and the surface density ρaðx′, y′, 0Þ are zero. The
wave component is a superposition of harmonicwaves considered inReznik [20]. The
waves are dispersive, therefore for localized initial conditions (when uI , vI → 0 as
r=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
→∞) the wave part decays with increasing time at a fixed point of space

and the full solution tends to the above stationary geostrophic mode. Thus, in the
lower barotropic layer any localized initial state tends with time to a geostrophically
balanced vortex state with axis parallel to Ω, exactly as in the purely barotropic case
(see subsection “Geostrophic Mode and Linear Adjustment”).

Similar to the barotropic case, the nonlinear adjustment at small Rossby number
Ro results in a slow evolution of the geostrophic component on the advective time
Ta =Oð1 ̸Rof Þ. In the rest of the paper, we examine the nonlinear evolution of
large-scale perturbations with H≪ L≤ LR. As was shown in subsection “Linear
Wave Modes”, in this range the wave spectrum consists of internal waves and the
gyroscopic ones, which are close to inertial oscillations. In view of (70) and (73) the
corresponding group velocities ciwg and cgwg of the internal and gyroscopic waves are
OðfLRÞ and OðfHÞ, respectively. For L in the range (65) and small Rossby number
this means that the group velocity of internal waves greatly exceeds both the flow
velocity U and the group velocity of gyroscopic waves, and the internal waves only
weakly interact with the slow geostrophic component. At the same time, the
interaction between the gyroscopic waves and geostrophic flow is much more
effective, especially if cgwg ≤U. In what follows we assume that the group velocity
cgwg is of the order of the flow velocity U (cf. (37)):
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cgwg =OðfHÞ∼U. ð85Þ

Non-dimensional Equations and the Lowest-Order Solution

Non-dimensional Equations

To write system (57a, 57b, c), (58a, b), (59a, b, 59c, d, e) in non-dimensional form
we use the scales from subsection “Non-dimensional Equations and Asymptotic
Solution” with L= LR, and the scales of density variations and interface perturba-
tions R= ρ0RoðN2

0H ̸gÞ and Z =RoH. In the vector form the non-dimensional
equations are written as:

ût +Roû ⋅ ∇ ̂û+2Ω̂× û+ ezρ ̸δ= − ∇̂p, ð86aÞ

ρt +Roû ⋅ ∇̂ρ−N2w=0, ∇ ̂ ⋅ û=0 ð86b; cÞ

in the domain 0≥ z≥ − h1 +Roη; and

ut̂ +Roû ⋅ ∇̂û+2Ω ̂× u ̂= − ∇̂p, ∇̂ ⋅ u ̂=0 ð87a; bÞ

in the domain − h1 +Roη≥ z≥ − 1. Here u ̂= ðu, v, δwÞ, ∇̂= ð∂x, ∂y, ∂z ̸δÞ,
2Ω ̂= eyq+ ez, δ=H ̸L= f ̸N0; here and below the notations for non-dimensional
h1, h2 and N remain unchanged. In the boundary and initial conditions (2), (59a, b,
59c, d, e) and (3a, b), written in non-dimensional form the depth H is replaced by 1
and the interface surface becomes z= − h1 +Roη.

We are interested in the case when the motion is large-scale and the rotation is
fast i.e. both the aspect ratio δ and the Rossby number Ro are small parameters.
Condition (85) means that (cf. (39))

δ=Ro≪ 1. ð88Þ

Similar to section “Barotropic Model” the solution is represented in the
asymptotic form (cf. (40)):

ðu, v,w, p, ρÞ= ðu0, v0,w0, p0, ρ0Þðx, y, z, t,T1, . . .Þ+ δðu1, v1,w1, p1, ρ1Þ+⋯ ð89Þ

Substitution of (89) into (86a, 86b, c), (87a, b) gives in the lowest order:

∂tu±0 − v±0 = − ∂xp±0 , ∂tv
±
0 + u±0 = − ∂yp±0 , ρ

±
0 = − ∂zp±0 ð90a; b; cÞ

∂tρ
±
0 −N2

±w
±
0 = 0, ∂xu±0 + ∂yv±0 + ∂zw±

0 = 0; ð90d; eÞ
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w+
0

��
z=0 =w−

0

��
z= − 1 = 0, ð91aÞ

w±
0

��
z= − h1

= ∂tη0, ½u0, v0, p0�=0, ð91b; cÞ

ðu±0 , v±0 , ρ±0 Þt=0 = ðu±I , v±I , ρ±I Þðx, y, zÞ. ð91dÞ

Geostrophic Component

System (90a, b, c, 90d, e), up to constant coefficients, is a simplification of system
(74a, b, 74c, d, 74e) at fs = q=0 and the analysis in subsection “Invariants of
Motion and Geostrophic Mode” is directly applied to (90a, b, c, 90d, e). The
invariants (76), (78), and (79) are now non-dimensional and take the form:

Π + = ∂xv+0 − ∂yu+
0 − ðρ+

0 ̸N2Þz =Π +
I ðx, y, zÞ, ð92aÞ

Π − =
1
h2

Z− h1

− 1

ð∂xv−0 − ∂yu−
0 Þdz− η0

h2
=Π −

I ðx, yÞ, ð92bÞ

ρ+
0

��
z=0 = ρ+

I ðx, y, 0Þ. ð92cÞ

Exactly as in subsection “Invariants of Motion and Geostrophic Mode” the
lowest-order solution is represented as the sum of a geostrophic part (coinciding
with (80a, b, c, 80d, e) mutatis mutandis) and an ageostrophic component with the
zero invariants (92a, 92b, 92c). For simplicity of notations the geostrophic and
ageostrophic components will be denoted here by the subscripts “g” and “a”
(without the subscript “0”). The quasi-geostrophic PV (81a, 81b) take the form:

Π + =∇2
hp

+
g + ð∂zp+

g ̸N2Þz =Π +
I ðx, y, zÞ, ð93aÞ

Π − =∇2
hp

−
g − ηg ̸h2 =Π −

I ðx, yÞ. ð93bÞ

Equations (93a, 93b) should be solved with the non-dimensional boundary
conditions

∂zp+
g

���
z=0

= − ρ+
g

���
z=0

= − ρ+
I ðx, y, 0Þ, ð94aÞ

lim
z→ − h1

∂zp+
g ̸N2

� �
z
− ∂zp+

g ̸ðh2N2Þ
� �

=Π + jz= − h1 −Π − , ð94bÞ

which follow from (82a, 82b).
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Ageostrophic Component

The ageostrophic components in the layers obey Eq. (90a, b, c, 90d, e) i.e.:

∂tu±a − v±a = − ∂xp±a , ∂tv
±
a + u±a = − ∂yp±a , ρ

±
a = − ∂zp±a , ð95a; b; cÞ

∂tρ
±
a −N2

±w
±
a =0, ∂xu±a + ∂yv±a + ∂zw±

a =0, ρ−
a =0. ð95d; e; fÞ

The boundary conditions for the ageostrophic quantities are the same as (91a,
91b, c) and the initial state is determined after calculating the geostrophic fields (see
subsection “Geostrophic Component”):

ðua, va, ρaÞt=0 = ðuaI , vaI , ρaIÞ= ðuI − ug, vI − vg, ρI − ρgÞ. ð96Þ

In addition, the ageostrophic fields are imposed by the restrictions that the PV in
the layers are zero:

∂xv+a − ∂yu+
a − ðρ+

a ̸N2Þz =0,
1
h2

Z− h1

− 1

ð∂xv−a − ∂yu−
a Þdz− ηa

h2
= 0, ð97a; bÞ

and the agestrophic density at z = 0 is zero in view of (94a):

ρ+
a

��
z=0 = 0. ð98Þ

Some Properties of the Ageostrophic Solution

We now discuss some general properties of the ageostrophic component. Using
(95a, b, c, 95d, e, f), (97a, b), and (98) one can show that the vertically integrated
ageostrophic horizontal velocities and pressure are zero:

Z0

− 1

ðua, va, paÞdz=0. ð99Þ

The lower layer pressure p−
a does not depend on z, therefore:

p−
a = −

1
h2

Z0

− h1

p+
a dz. ð100Þ
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Continuity of the pressure at the interface z= − h1 gives the relation:

p+
a

��
z= − h1

+
1
h2

Z0

− h1

p+
a dz=0. ð101Þ

It readily follows from (95a, b) and (101) that

∂tu ̂+a − v ̂+a =0, ∂tv ̂+a + u ̂+a =0, ð102Þ

where

ðu ̂+a , v ̂+a Þ= ðu+
a , v+a Þ��z= − h1

+
1
h2

Z0

− h1

ðu+
a , v+a Þdz. ð103Þ

Solution to (102) is readily written:

u ̂+a + iv ̂+a = ðu ̂+aI + iv ̂+aI Þe− it. ð104Þ

An important issue is that the upper stratified layer does not contain the inertial
oscillations ∼ sin t, cos t i.e.

u+
as = v+as = u+

ac = v+ac =0; ð105Þ

and similarly for other fields [22]. Here,

gs, c = lim
T →∞

2
T

ZT
0

ðsin t, cos tÞgðtÞdt. ð106Þ

In view of (105) the integral in (103) also does not contain the inertial oscilla-
tions; therefore, as readily follows from (103), (104), the horizontal velocities at the
interface ðu+

a , v+a Þ��z= − h1
contain the inertial oscillations (104), i.e. (105) is valid at

z> − h1 and is not valid at z= − h1. Such a solution structure is typical for a
boundary layer, see also Reznik [20] when at large times the velocity u+

a (for
example) is represented in the form

u+
a =Cs½x, y, ðz+ h1Þt� sin t+Cc½x, y, ðz+ h1Þt� cos t. ð107Þ

in a close vicinity of the interface at z= − h1.
If functions Cs, c tend to zero as t→∞ at any fixed z> − h1, but, for example,

Csðx, y, 0Þ≠ 0, then u+
as =0 at z> − h1 and u+

as =Csðx, y, 0Þ≠ 0 at z= − h1. We note
that in the particular case
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u ̂+aI = v ̂+aI =0, ð108Þ

relations (105) are valid everywhere in the upper layer z≥ − h1 and the boundary
layer in the vicinity of interface does not arise. We emphasize that details of the
buoyancy frequency profile N(z) are unimportant in the above consideration
therefore one can expect the boundary layer to exist for any upper layer stratifi-
cation, i.e. for both smooth and discontinuous profiles of N(z).

Motion in the Stratified Upper Layer

In the upper layer, Eq. (95a, b, c, 95d, e, f) can be reduced to one equation for the
vertical velocity (e.g., Miropol’sky, [19]:

ð∂tt +1Þ∂zzw+
a +N2∇2

hw
+
a =0, ð109Þ

which should be solved under the initial conditions:

ðw+
a , ∂tw+

a Þt=0 = ðw+
I , ẇ+

I Þðx, y, zÞ, ð110aÞ

the no-flux boundary condition:

w+
a

��
z=0 = 0, ð110bÞ

and the boundary condition at z= − h1, which simply follows from (103), (95e):

m(w+
a Þ��z= − h1

= − ð∂xu ̂+a + ∂yv ̂+a Þ, ð110cÞ

where m= ∂z − 1 ̸h2. The initial fields w+
I and ẇ+

I can be expressed in terms of the
initial fields u+

aI , v
+
aI , ρ

+
aI [20]. Using (104), (102) one can represent (110c) in the

form:

m(w+
a Þ��z= − h1

= ½m(w+
I Þ cos t+m(ẇ+

I Þ sin t�z= − h1 . ð111Þ

It is convenient to represent all variables in (109) to (111) in the form of
Fourier-integrals, for example

w+
a =

1
2π

Z
w̃+
a ðk, l, z, tÞeiðkx+ lyÞdkdl; ð112Þ

and similarly for the other values. Here and below, the tilde denotes the
Fourier-amplitude of the corresponding variable. The amplitude w̃+

a = w̃+
a ðk, l, z, tÞ
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is sought as an expansion in the vertical modes, which here are the eigenfunctions
of the problem:

Wzz + b2N2W =0, W jz=0 = 0, m(WÞjz= − h1 = 0. ð113Þ

Eigenfunctions Wn, eigenvalues bn, and the corresponding wave frequencies σn
are readily found in the case N = const (cf. (68)–(70)):

Wn = sin bnz, bn = sn ̸h1, σn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ κ2 ̸b2n

q
, n=1, 2, . . . ð114Þ

here sn is the n-th root of (69).
Amplitude w̃+

a can be written as (see Reznik [22] for details):

w̃+
a = ∑

∞

n=1
½w̃+

In cos σnt+ ðw̃̇+
In ̸σnÞ sin σnt�WnðzÞ. ð115Þ

We see that the upper layer ageostrophic component is the superposition of long
super-inertial internal waves ∼ exp½iðkx+ ly− σntÞ� considered in subsection
“Linear Wave Modes”. The function w+

a does not contain the inertial oscillations
(cf. subsection “Some Properties of the Ageostrophic Solution”) and at the interface
any finite partial sum of the series (115) satisfies boundary conditions (111) with
zero r.h.s. This means that in the very close vicinity of the interface z= − h1 the
wave modes with very large numbers n play an important role. Since
bn →∞, σn → 1 for n→∞, vertical scales and frequencies of these modes are close
to zero and to the inertial frequency, respectively. Joint effect of these modes forms
the near interface boundary layer considered below in subsection “Boundary
Layer”.

Motion in the Homogeneous Lower Layer

It readily follows from (95a, b, c, 95f) that in the lower layer:

∂zð∂tu−
a − v−a Þ=0, ∂zð∂tv−a + u−

a Þ=0, ð116a; bÞ

whence

U −
a =U −

aI ðx, y, zÞe− it +Uðx, y, tÞ. ð117Þ

Here, U = u ̄+ iv ̄ is still unknown depth-independent complex velocity and

U −
a = u−

a + iv−a , U −
aI = u−

aI + iv−aI . ð118a; bÞ

Integrating (117) over z from –1 to − h1 and using (99), (105) one finds:
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U = −
e− it

h2

Z− h1

− 1

U −
aI dz+U, U = −

1
h2

Z0

− h1

U +
a dz, Us, c =0. ð119a; b; cÞ

The “non-inertial” depth-independent velocity Uðx, y, tÞ is induced by the
upper-layer internal waves and can be calculated from known vertical velocity w+

a ,
which is given by (112), (115).

In view of (117), (119a, b, c) the horizontal velocity U −
a can be written as:

U −
a =Aðx, y, zÞe− it +U, A=AI =U −

aI −
1
h2

Z− h1

− 1

U −
aI dz. ð120a; bÞ

The velocity components are given by the formulae:

ðu−
a , v−a Þ= 1

2
,
− i
2

� 	
Aðx, y, zÞe− it + c.c. + ðu, vÞðx, y, tÞ, ð121aÞ

w−
a = −

1
2
e− it

Zz

− 1

sðAÞdz+ c.c.− ðz+1Þðux + vyÞ, s = ∂x − i∂y. ð121bÞ

It follows from (120b) that

Z− h1

− 1

Adz=0. ð122Þ

Thus, in the homogeneous layer the ageostrophic motion is the sum of inertial
oscillations and a field induced by super-inertial internal waves. Condition (122)
provides non-penetration of the inertial signal into the stratified layer in the vertical
velocity field. If the amplitude of inertial oscillations AI in (120a, b) is zero at the
interface z= − h1:

AIðx, y, − h1Þ=0, ð123Þ

then, non-penetration is also provided for the horizontal velocity. One can readily
show that (123) is equivalent to the condition (108) of absence of the boundary
layer. Obviously, (123) and, therefore, (108) are satisfied only for particular initial
velocity fields; if this is not the case a non-stationary boundary layer develops near
the interface.
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Boundary Layer

We now consider the case of general initial conditions when (123) is not valid and
the inertial signal in the horizontal velocity is non-zero at the interface z= − h1. As
discussed above, in this case the solution in the domain z≥ − h1 has a boundary
layer structure in the vicinity of the interface at large times. Representation (115),
(112) of the solution is poorly suitable for description of such regimes since any
finite partial sum of the series (115) obeys boundary condition (111) with the zero
r.h.s.

To describe the boundary layer dynamics we introduce two new variables:

w̄s =
1
t

Z t

0

w+
a sin tdt, w̄c =

1
t

Z t

0

w+
a cos tdt ð124Þ

(cf. [9, 10, 12]). The meaning of the variables is that the impact of not
near-inertial harmonics to w̄s, c becomes negligible at large times t≫ 1 as seen from
(115).

From (109), (110b), and (111) we find:

ðtw̄Þzztt +2iðtw̄Þzzt + t∇2
hw̄= ∂zzð−w+

I + iẇ+
I Þ, w̄= w̄s + iw̄c; ð125a; bÞ

w̄jz=0 = 0, m(w̄Þjz= − h1 = 0.5m(ẇ+
I + iw+

I Þz= − h1 . ð126a; bÞ

Boundary condition (126b) is written up to small terms of the order of 1/t. When
writing (125a, b) we assume for simplicity N to be constant i.e. N =1.

Outside the boundary layers w̄z ∼ 1, therefore an approximate solution w̄0 sat-
isfying (125a) in this domain at large t is determined as

w̄0 = Sðx, y, zÞ ̸t, ∇2
hS= ∂zzð−w+

I + iẇ+
I Þ=R ð127a; bÞ

Obviously, w̄0 satisfies neither (126a) (since, generally, Rjz=0 ≠ 0) nor (126b),
therefore in the vicinities of the boundaries z=0, − h1, narrow boundary layers arise,
in which ∂z ≫ 1. In the boundary layer near the interface the leading order solution is
sought in the form w̄= w̄b = tαŵbðx, y, ξÞ where ξ= ðz+ h1Þtβ is the boundary layer
stretched coordinate. Parameters α and β are determined as follows. First, in virtue of
(126b), ∂zw̄b = tα+ β

∂ξŵb ∼ 1, and, second, maxima of the terms with derivatives with
respect to z that were neglected outside the boundary layer, and the third term on the l.
h.s. of (125a) should be of the same order, i.e. t2β− 1 ∼ 1. As a result, we have
β= − α=1 ̸2 i.e. in the boundary layer

w̄= w̄b =
1ffiffi
t

p ŵbðx, y, ξÞ, ξ= ðz+ h1Þ
ffiffi
t

p
. ð128Þ
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Substituting (128) into (125a) and neglecting small terms we have:

ξ∂ξξξŵb +3∂ξξŵb − i∇2
hŵb =0. ð129Þ

In terms of the Fourier amplitude w̃̂b (see (112)) (129) is rewritten as:

ξ∂ξξξw̃̂b +3∂ξξw̃̂b + iκ2w̃̂b =0. ð130Þ

For the boundary layer to exist the solution w̃̂0 to (130) satisfying the conditions

w̃̂0 → 0 as ξ→∞; ∂ξw̃̂0
��
ξ=0 = 1, ð131a; bÞ

must exist. Analysis in Reznik [22] confirms possibility of such a solution. The
corresponding Fourier amplitude w̃̄ is given by:

w̃̄b =Cðk, lÞw̃̂0ðk, l, ξÞ ̸
ffiffi
t

p
, C=0.5m(ẇ+

I + iw+
I Þz= − h1 . ð132a; bÞ

The boundary layer near the surface z=0 is similar to that near the interface
[22].

Slow Evolution of the QG Component and Inertial
Oscillations

The lowest-order solution constructed in subsection “Non-dimensional Equations
and the Lowest-Order Solution” is the sum of a time-independent geostrophic
component, lower-layer inertial oscillations, and dispersive internal waves; the
non-stationary boundary layers are the result of the joint impact of the internal
waves with very short vertical lengths. To derive the solution of the lowest-order
system (90a, b, c, 90d, e), (91a, 91b, c, 91d) depending on slow times one should
“allow” parameters related to the initial fields to depend on the slow times. The
geostrophic part of the solution is determined by the PV Π± in the layers (see (93a,
93b)) directly related to the initial fields uI , vI , ρI . In what follows we assume that:

Π± =Π±ðx, y, z, T1,T2, . . .Þ, Π±ðx, y, z, 0, 0, . . .Þ=Π±
I . ð133a; bÞ

Similarly, for the internal waves the initial fields ðw+
I , ẇ+

I Þðx, y, zÞ are replaced
by the functions ðw+

s , ẇ+
s Þðx, y, z, T1, T2, . . .Þ with

ðw+
s , ẇ+

s Þðx, y, z, 0, 0, . . .Þ= ðw+
I , ẇ+

I Þðx, y, zÞ. ð134Þ
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Finally, in the formulae (121a, 121b), (122) describing the lower layer inertial
oscillations we put:

A=Aðx, y, z,T1,T2, . . .Þ, Aðx, y, z, 0, 0, . . .Þ=AIðx, y, zÞ. ð135a; bÞ

Slow evolution of the fields (133a, b) to (135a, b) is determined from condition
of boundedness of higher approximations. In the rest of the paper we discuss
dependence on the slow time T1, which is obtained from analyses of the first
approximation. The calculations are rather cumbersome and details can be found in
Reznik [22]; here we represent only the results.

Assuming all fields to decay at infinity as r=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
→∞ one can show that

contribution of the dispersive internal waves tends to zero with increasing time and
the resulting flow is a sum of a slowly changing QG component and inertial
oscillations confined to the homogeneous layer. The QG part is governed by the
pair of coupled equations of conservation PV in the layers:

Π±
T1 + Jðp±g ,Π±Þ=0; ð136Þ

Π + =∇2
hp

+
g + ð∂zp+

g ̸N2Þz, Π − =∇2
hp

−
g − ηg ̸h2. ð137a; bÞ

The QG lower layer pressure p−
g is related to p+

g by the continuity at the
interface:

p−
g = p+

g

���
z= − h1

. ð138Þ

Boundary condition (94a) for p+
g at z=0 can be used only to calculate the initial

geostrophic pressure; on times t∼ 1 ̸δ one should take into account the slow
evolution of density, which is unknown in advance. The correct condition is

∂zT1p
+
g + Jðp+

g , ∂zp+
g Þ=0 at z=0 ð139Þ

(see [22].)
The complete set of equations describing the slow evolution of the QG com-

ponent on times t∼ 1 ̸δ includes PV-Eq. (136), (137a, b), the boundary conditions
(139), (94b), (138), and the initial conditions (133b).

The equation governing slow evolution of the inertial oscillation amplitude is
very similar to the corresponding Eq. (44a) of the barotropic model:

AT1 + Jðp−
g ,AÞ+ i

2
∇2

hp
−
g A+ iq

Zz

− 1

Adz+
1
h2

Z− h1

− 1

zAdz

0
@

1
A

y

=0. ð140Þ

In addition to (140), amplitude A should satisfy condition (122), which prevents
the inertial signal from penetration into the stratified upper layer.
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Discussion of the Slow Evolution

The algorithm for calculation of the QG component is as follows. Knowing p+
g ðT1Þ

one determines from (137a, b) the PVs Π + ðT1Þ, Π − ðT1Þ, then from (136), (139)

the fields Π + ðT1 +ΔTÞ, Π − ðT1 +ΔTÞ, ∂zp+
g ðT1 +ΔTÞ

���
z=0

. Knowing Π + , Π − at

the step T1 +ΔT one can calculate the right-hand side in the boundary condition
(94b), and determine the field p+

g ðT1 +ΔTÞ from (137a) and the “new” boundary
conditions for p+

g at z=0, − h1.
The QG component conserves its energy; it can be shown [22] that:

E=E + +E − = const, ð141aÞ

E + =
1
2

Z
dxdy

Z0

− h1

dz ð∇hp+
g Þ2 + ð∂zp+

g Þ2
N2

" #
, E − =

h2
2

Z
dxdyð∇hp−

g Þ2.

ð141b; cÞ

Here, E is the full QG energy, E + and E − are the energies of the upper and
lower layers, respectively.

Let the QG motion in the lower layer be absent at some time T1 =TI , i.e.

p−
g = p+

g

���
z= − h1

= 0. ð142Þ

Generally, for times T1 >TI the QG pressure p−
g becomes non-zero i.e. the QG

energy transfers into the lower layer. To show this we assume that (142) is satisfied
at all times. In this case the quantities Π + jz= − h1 , Π

− do not depend on time by
virtue of (136), and we have from (93a) an additional boundary condition for p+

g at
z= − h1:

lim
z→ − h1

ð∂zp+
g ̸N2Þz =Π +

I

��
z= − h1

. ð143Þ

Obviously, the problem (136) for Π + , (142), (143), (94b) and (139) is
overdetermined and hence (142) cannot be valid at all times.

Equation (140) for the amplitude of inertial oscillations almost exactly coincides
with the corresponding equation for the barotropic case (44a). The last term in (140)
arises due to the non-zero horizontal component of the Earth’s rotation. Under the TA
q=0 and the inertial oscillations are trapped by theQGcomponent as in the barotropic
case (see subsection “Slow Evolution”). The “non-traditional” term results in a
meridional dispersion of the inertial oscillations and in doing so it provides an
effective energy radiation from the initial perturbation domain (see sec-
tion “Barotropic Model”).
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Similarly to the barotropic case the slow QG component does not depend on the
fast ageostrophic waves on times ∼ 1 ̸δ, whereas evolution of the inertial oscilla-
tions depends on the geostrophic streamfunction p−

g . At the same time, it follows
from (140) and (122) that

∂

∂T1

Z
dxdy

Z− h1

− 1

dz Aj j2= 0, ð144Þ

i.e., the total energy of inertial oscillations is conserved along with that of the QG
component. We note, however, that the conservation takes place on times ∼ 1 ̸δ,
on longer times the “non-traditional” terms in the equations of motion can, in
principle, give rise to energy exchange between the components as it takes place in
the barotropic fluid (see section “Barotropic Model”). If this is the case, the energy
of QG motion in the lower layer can be transferred to the inertial oscillations. Of
course, the mechanism of dissipation of QG energy in a homogeneous layer is
highly speculative and it would be useful to verify it numerically using a
non-hydrostatic model without the TA.

It was shown in subsection “Non-dimensional Equations and the Lowest-Order
Solution” that condition (122) forbids the inertial signal in the vertical velocity field
to penetrate into the stratified layer. Equation (140) “supports” limitation (122): it is
readily to show integrating (140) over z from –1 to −h1 that if (122) is satisfied at
some moment T0 then it is valid for all times T > T0. If the initial conditions do not
satisfy (108) and, therefore, (123), then the analogous screening in horizontal
velocity is provided by a non-stationary boundary layer developing in the upper
layer near the interface. Generally, condition (123) is not supported by (140)
because of the “non-traditional” term in (140), i.e., the quantity Ajz= − h1 ceases to
be zero even if (123) is satisfied at some moment. This means that without the TA
the near interface boundary layer develops at any initial conditions.

Summary and Discussion

We have examined geostrophic adjustment in a rotating fluid of constant depth
confined between two rigid lids. The angular speed of rotation Ω does not coincide
in direction with the gravity; the traditional and hydrostatic approximations are not
used. Two models were considered: the barotropic one and the SNS fluid consisting
of a stratified upper layer with N≫ f and a homogeneous lower layer, the density
and other fields being continuous at the interface between the layers. In both the
cases, the wave spectra contain the gyroscopic waves which exist due to rotation
and are susceptible to the non-traditional terms in equations of motion.

Geostrophic adjustment is a particular case of more general wave adjustment
[23], which takes place in a physical system possessing in the linear approximation
linear invariants and linear wave solutions harmonically depending on time. In our
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models, the linear invariants are potential vorticities written in special
non-orthogonal coordinates related to the vector Ω; the invariants are determined by
the initial conditions in a unique way. The steady state related to the invariants is a
geostrophic mode, which is a geostrophically balanced motion parallel to the layer
boundaries. In the barotropic fluid, the motion is columnar, the columns are parallel
to Ω. In the SNS fluid, the same is valid in the homogeneous layer; in the stratified
layer, in the general case, the geostrophic mode is not columnar. The non-traditional
terms are of importance in the QG dynamics if the dominating horizontal scale L of
the initial perturbation is smaller or of the order of the fluid depth, L≤H, for the
long-wave perturbation with L≫H, the contribution of the terms is small.

In the barotropic model the gyroscopic waves are the only possible wave
motions; in the SNS fluid the wave spectrum consists of internal and gyroscopic
waves (see [20] for details). All the waves are dispersive; therefore, in the process
of linear geostrophic adjustment the motion tends to the geostrophic mode with
increasing time.

Using multiple-time-scale perturbation theory we studied the non-linear adjust-
ment in the long-wave approximation H≪ L≤ LR and small Rossby numbers Ro. In
the barotropic case, LR =∞; in the SNS fluid, LR =HN0 ̸f . In this scale range, the
gyroscopic waves are close to weakly dispersive inertial oscillations (confined to the
lower layer in the SNS fluid). The internal waves in the SNS fluid are strongly
dispersive and penetrate into the homogeneous lower layer down to the bottom.

The general scenario of the adjustment is similar to the one with gravity waves (cf.
[24, 29]): an arbitrary perturbation is split in a unique way into slow and fast com-
ponents evolving with characteristic time scales ðRof Þ− 1 and f − 1, respectively. In
both cases the slow component is close to the geostrophic balance and is not influ-
enced by the fast one on times t∼ ðfRoÞ− 1. In the barotropic model the slow com-
ponent does not depend on depth and is described by the 2D fluid dynamics equation
for the geostrophic streamfunction. In the SNS fluid, the slow component is governed
by two coupled nonlinear equations of conservation of QG potential vorticity in the
upper and lower layers. The upper and lower layer QG flows are not independent: if at
some moment the QG motion in the lower homogeneous layer vanishes, then at
subsequent times the QG energy is transferred from the upper layer to the lower one.

The fast component consists of the inertial oscillations modulated by the
amplitude depending on coordinates and the slow time, and (in the SNS fluid)
the internal waves. The inertial oscillations are long gyroscopic waves; the
depth-integrated horizontal flow induced by the oscillations is zero. Typical group
speed of the internal waves greatly exceeds the typical horizontal slow velocity U;
at the same time, the group speed of the inertial oscillation is of the order of U. As a
result, in the course of non-linear geostrophic adjustment the internal waves decay
because of dispersion, and the residual flow consists of the QG slow component and
inertial oscillations.

At times t∼ ðfRoÞ− 1 the energy of inertial oscillations is conserved but they are
coupled to the slow component: their amplitude obeys an equation with coefficients
depending on the geostrophic streamfunction. Under the TA the inertial oscillations
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are trapped by the QG component; dispersion of the inertial oscillations packet
occurs on times t∼ ðfRo2Þ− 1. Without the TA the “non-traditional” terms in the
amplitude equation result in a meridional dispersion of the inertial oscillations on
much shorter times t∼ ðfRoÞ− 1 and in doing so the terms provide an effective
energy radiation from the initial perturbation domain.

Another feasible effect of the “non-traditional” terms is energy exchange
between the slow QG component and inertial oscillations in the homogeneous layer
at times Oðf − 1Ro− 2Þ. The possibility of such exchange was demonstrated in the
barotropic case. In the case of SNS fluid, one can speculate that the QG energy is
transferred from the stratified layer to the homogeneous one and then to the fast
inertial oscillations. It would be useful to elucidate the existence and efficiency of
this mechanism using a non-hydrostatic numerical model without the TA.

Inertial oscillations with horizontal scale L≤ LR cannot exist in the stratified
upper layer. To prevent their penetration from the lower layer to the upper one, a
non-stationary boundary layer develops in the upper layer near the interface at large
times. The boundary layer is a result of joint impact of internal modes with large
vertical wavenumbers whose frequencies are close to the inertial frequency f. Thus
the near interface domain is characterized by large vertical gradients of the hori-
zontal velocities that can result in strong mixing and instability here.

In geostrophic adjustment with gravity waves (surface or internal) the inertial
oscillations arise only if the dominating scale L of the initial perturbation exceeds
the corresponding Rossby scale LR, i.e., L≫LR (cf. [24, 29]). In the presence of
gyroscopic waves the “shorter” inertial oscillations with the scales H≪L≤LR are
possible. The significant vertical velocities of the near-inertial oscillations observed
by van Haren and Millot [27] in the practically barotropic deep Western Mediter-
ranean Sea can be related to this property of the gyroscopic waves. We note that
some other regions of the deep ocean are also characterized by very weak strati-
fication, as for example, the Canada Basin in the Arctic Ocean [26], or the Pacific
Ocean near 179° E [6].
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Evolution of an Intrathermocline Lens
over the Lofoten Basin

Boris N. Filyushkin, Mikhail A. Sokolovskiy
and Konstantin V. Lebedev

Introduction

Systematic oceanographic surveys conducted by the Arctic and Antarctic Research
Institute during the period 1970–1990 in the region of the Lofoten Basin (LB) of the
Norwegian Sea proved the existence of a quasistationary anticyclonic vortex
(AV) [2]. Six consecutive oceanographic surveys occupied in 1987–1988 have
shown the existence of a synoptic-scale (diameter was about 60 km) vortex (a lens)
and instrumentally confirmed its anti-cyclonic character. At the same time, during a
year, the AV have been drifting almost along a closed cyclonic orbit (with a
horizontal latitude scale about 130 km) while its core was still located in the
deepest part of the LB (the isobath 3200 m) [6, 7] and Fig. 1 of this contribution.

The development of the Argo project in the first years of the 21st century in
addition to the neutral buoyancy floats observations started in the beginning of the
1990s, provides opportunities for studying the structure and circulation of water in
the LB. New observations confirmed the existence of a quasi-permanent AV and
the fact that the cyclonic circulation dominates in the depth range 600–1000 m
within the deepest part of the LB [5, 12, 14, 22]. Detailed measurements performed
by the RAFOS floats and Doppler current velocity meters revealed a complex
pattern of the formation and existence of a large number of mesoscale vortices that
differ in their lifetime and scale. At the same time, the number of vortices in the LB
fluctuated throughout the year [19]. Similar results were also obtained from satellite
observations of variations in the sea surface height (SSH) and the sea surface
temperature [8, 15, 23]. In these publications, satellite images based on weekly
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altimeter data have shown the location of mesoscale long-lived vortices of different
rotation signs that moved along the cyclonic orbit. At specific stages of the motion,
they merged with an anticyclonic vortex located at the center of the deepest part of
the LB (3200 m) at 69° 30′ N, 3° E [15]. Currently, the daily data show that the
previously recorded long-living vortices represented a cluster of separate
short-living eddies, and they better demonstrate the mean eddy drift [16].

The Lofoten Basin is the main reservoir of heat in the Polar seas (PS) [1, 2, 15, 23].
However, the heat content of the central AV is less than the total heat content of the
entire LB waters. This means that warm Atlantic waters should submerge [2, 8] in the
upper layers in the center of the deepest part of the LB, and at the same time, a deep
topographic cyclonic water rotation should exist [5, 14, 15, 22]. In addition, the
deepest part of the LB is located between two frontal zones: in the northwest, the front
is located along the Mona Ridge, and in the southeast, the front is represented by the
Norwegian Current. Physical regularities of water exchange between the North
Atlantic and the Arctic Ocean in 1958–2009 were analyzed on the basis of numerical
experiments with eddy-permitting model of the ocean circulation with a resolution of
0.25° both along the longitude and latitude; they have shown that transversal
oscillations of the Norwegian Current front were responsible for the formation of
intermediate dense waters [11]. In this region, the zone of the vortex formation
moving inside the LB has been noted [14, 15, 17].

A detailed review of the theoretical models by different authors describing the
merging, regeneration, and stability of vortices is given in Bashmachnikov et al. [4].

In the introductory part of this contribution, the annual mean values of tem-
perature, salinity, density, and ocean currents at the sea surface and depths up to
1500 m have been calculated for the whole region of the PS using the Argo model
utilizing the Argo floats observations over the period 2005–2014. These observa-
tions showed the existence of the AV over the entire region of the LB with the

Fig. 1 Map of the LB bottom topography. The dashed line shows the trajectory of the
anticyclonic vortex (lens) and the dots represent the lens location at the times of measurements [7].
The area with the depths deeper than 3200 is shown in gray color
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prevailing surface currents from 7–10 cm/s at the outer boundaries and up to
1–2 cm/s at the center of the LB; the current velocities decrease significantly with
depth. At the same time, observations confirm the existence of a mesoscale lens at
medium depths of 250–700 m over the deepest part of the LB. The evolution of the
intratermocline lens, originally located in the central part of the LB depending on
different types of velocity fields and the topographic effect are investigated using
the contour dynamics method within the frames of the three-layer model.

Observation Materials and Methods

Temperature and salinity data measured by the Argo floats covering the 10-year
period from 2005 to 2014 [3] were used to study the hydrological structure and
water dynamics in the LB. The studied area includes the North Atlantic (NA) and
the Polar Seas (PS) of the Arctic Ocean (AO) from 55° to 80° N and from 30° W to
15° E. In this area about 17,600 temperature and salinity profiles from 125 Argo
floats have been collected during 10 years of observations. In the LB area (68°–73°
N and 5° W–12° E) there are 3273 profiles measured by 73 Argo floats. Seasonal
mean data in addition to the 10-year annual mean fields were calculated in this
region using 835 Argo profiles in winter, 679 in spring, 891 in summer, and 868 in
autumn.

We used the AMIGO method ([10], see also http://argo.ocean.ru) for the data
processing. Spatial resolution of data in the calculated database is one degree by
longitude and latitude, the time resolution is one month. During the processing of
the Argo profiles, we used the method of the variational interpolation of mea-
surements onto a regular grid, followed by a model hydrodynamic adjustment of the
fields. Such a procedure minimizes the errors when transferring irregularly located
measurements into the regular grid; hence, the solution passes as close to the data as
possible. At the final stage, using the ocean general circulation model in the
diagnostic and hydrodynamic adjustment mode, we calculated the balanced
monthly means and climatological temperature, salinity, density, and velocity fields
based on the Argo data [10].

Taking into account that the one-degree calculation grid is rough for detecting
and tracking the motion of mesoscale vortices with an average radius of about
37 km [15], we made an attempt to describe the structure and dynamics of the PS
waters on the basis of the materials described above. The annual mean temperature,
salinity, density, and flow velocity fields in this region were constructed at the
depths from the sea-surface (associated with the 30 m level) to 1500 m depth. The
maps and vertical sections of these characteristics in the central part of the LB,
limited on the map by the isobath 3200 m, have clearly shown the existence of the
AV at depths of 200–800 m. The vortex center is located at the point with coor-
dinates 69.5° N, 3.5° E, which agrees with the results by Alekseev et al. [1], Ivanov
and Korablev [6, 7], Köhl et al. [8], and Raj et al. [15].
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Figure 2a shows a map of the annual mean velocity vectors in 1° squares at a
depth of 30 m in the entire PS region. According to these data, two jets of the main
transit currents are distinguished, transporting the warm and salty waters of the
Atlantic Ocean to the AO. The eastern jet NwAC (Norwegian Atlantic Current)
transports Atlantic waters from the area of the Faroe-Shetland Strait and follows
along the Norway shore, round the Voring Plato from the east. Further, it flows to
the north towards the Fram Strait, forming the Spitsbergen Current and a branch of
the warm current in the Barents Sea. The western branch of NwAC enters the
Norwegian Sea east of Iceland and flowing over the Norwegian Basin from the
southeast, passes along the LB from the south and northwest, and then leaves
the LB towards the Fram Strait. The Norwegian Coastal Current (NCC) is also
clearly pronounced. This scheme of the location of the main jets completely
coincides with the studies by Orvik and Niiler [13], Köhl et al. [8], Raj et al. [15],
Rossby et al. [18], and Volkov et al. [24].

The maps in Fig. 2 show the current behavior in each layer of the model con-
sidered below: surface layer 0–255 m, intermediate layer 255–650 m, and deep
layer up to 3000 m. The current velocity in the deepest layer is shown in the two
lower panels.

Let us consider in detail the nature of the velocity field in the region adjacent to
the LB. A large-scale anticyclonic vortex is observed in the water column from the
surface and up to 1500 m above the entire area of the basin, shown on the map

Fig. 2 Annual mean velocity vectors in 1° squares of the AMIGO model at depths: a 30 m,
b 400 m, c 1000 m, and d 1500 m. On panel (a), the jets of the main transit currents are marked by
red lines, namely: eastern and western jets of the NwAC (Norwegian Atlantic Current) and the jet
of NCC (Norwegian Coastal Current). The scales of the velocity vectors are different on different
maps
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within the isobath of 3000 m. Note that the western and northern parts of this vortex
are formed by the western NwAC jet. In the northern part, there are two currents: a
jet of the Atlantic waters directed northward and confined to the Mona Ridge, as
well as a jet along the edge of the LB, which weakens when moving eastward. The
structure of the AV in the LB is asymmetric: the velocities at its northern periphery
at the 30 m level are 6–12 cm/s, 4–7 cm/s at 400 m, and 1–3 cm/s at 1000 m; the
velocities at its southern periphery are 3–6 cm/s, 3–5 cm/s, and 0–1 cm/s,
respectively, and in the center they range from 1–2 cm/s to zero. This means that a
circular current exists in the 0–1500 m layer along the perimeter of the isobath
3000 m, which is better pronounced in its northern part. The velocities are weak
(0–1 cm/s) in its central part. This current is located within the boundaries of the
isobath 3200 m. Therefore, after analyzing these materials, it is possible to assume
that an intrathermocline lens exists at the depths of 250–700 m within the LB with
an average long-term position of its center at 69.5° N, 3.5° E. The lens forced by the
topographic beta-effect drifts along a cyclonic trajectory. A similar result, according
to the hydrological observations, was obtained by Alekseev et al. [1], in which the
authors proposed to consider the scales of 60 and 130 km for describing the AV
and LB.

Although the Argo observations give us a clear pattern of currents in the LB as
part of the general circulation in the PS, they cannot serve as a basis for explaining
the mechanisms of formation and displacement of vortices. In this relation, it is
extremely important to conduct model studies within the framework of an adequate
mathematical model, using estimates of the natural space and time scales. Below,
we investigate the evolution of an intrathermocline lens in the central part of LB for
different types of current fields using the three-layer version of the Contour
Dynamics Method.

Numerical Model and Simulation

Let us consider a model basin to explain the mechanism of the impact of the
underwater depression on the behavior of the anticyclonic intrathermocline lens.
We model the motion in the form of a set of two circular cylinders with displaced
centers and with vertical walls which coincide with the 3000 and 3200 m isobaths.

Let the outer circle radius be equal to 132 km and the internal to 60 km; the
height difference on each circle is 200 m, and their centers are in coordinates
X1 ; Y1ð Þ and X2 ; Y2ð Þ, respectively. We will use a quasi-geostrophic three-layer
ocean model [20] with a piecewise-constant densities of ρ1, ρ2, ρ3 between
0–250 m, 250–655 m, and 655–3000 m, respectively, and Δρ1 = ρ2 − ρ1 =
0.00018 g cm− 3, Δρ2 = ρ3 − ρ2 = 0.00015 g cm− 3. These values are typical for this
water basin [4]. We assume that the vertical and horizontal scales are H = 3 km
and L = 40 km, respectively; for the dimensionless layer thicknesses and radii of
cylinders we get h1 = 0.0833, h2 = 0.1383, h3 = 0.7784, and R1 = 3.3, R2 = 1.5.
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We will also assume that the unperturbed external field consists of a combination of
a homogeneous flow with horizontal velocities U, V , and a large-scale quasista-
tionary anticyclonic vortex with characteristic azimuthal velocity A.

Taking into account the above assumptions, one can write the analytical
expressions for stream functions ψ i of the horizontal motion in the layers [20, 21]:

ψ iðx, yÞ= −U y+V x+A x2 + y2
� �

− ∑
2

j=1
σjTji, i=1, 2, 3; ð1Þ
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Figure 3 shows examples of fields ψ i when X1 ; Y1ð Þ= ð0; 0Þ and
X2 ; Y2ð Þ= ð− 1.5; − 1.5Þ. Panels “a”, “b”, “c” represent phase portraits in the
upper, middle and lower layers, respectively, in the particular case A=0 when the
depression is surrounded by the barotropic northeast stream. Cyclonic relative
vorticity is generated owing to the conservation of the potential vortex in the
vicinity of the depression [9]. Even at a considerable distance from the depression
the flow remarkably twists counterclockwise, and a quasi-barotropic topographic
cyclone with a small predominance of capture in the lower layer is formed in the
western part of the depression.

Figure 4 depicts stream function ψ2 in the middle layer, in the case A<0. Panels
a–d demonstrate the effect of an external anticyclonic vortex on the field function
behavior of horizontal velocities. Here, four phase portraits are given for the case of
the current type [1] and A= − 0.005, − 0.01, − 0.02 − 0.04, which correspond to
the azimuthal velocity values v= − 0.9, − 1.8, − 3.6, 7.2 cm s− 1 on the circular
isobath 3000 m. It can be seen that the presence of an external large-scale anti-
cyclone, contributes to the reduction of the area of the cyclonic Taylor column until
it disappears completely (panel “d”), when it fills the space above the depression
almost completely suppressing the topographic effect. At moderate values of the

Fig. 3 Phase portraits are shown as thin black lines for the barotropic external flow [1] over a
cylindrical stepwise depression when U =V = 10 cm/s and A=0. The section of the external
cylinder is green, and the internal cylinder section is blue. Thick lines show separatices, which
divide the areas of capture (with closed trajectories) and the areas with running flows of two types
on the opposite sides of separatrices. Panels a, b, c are related to the upper, middle and lower
layers, respectively

Fig. 4 The same as in Fig. 3, but for the middle layer: a A= − 0.005, b A= − 0.01, c A= − 0.02,
d A= − 0.04
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intensity of the anticyclone (panels “a” and “b”), one can speak about the quali-
tative agreement with Fig. 2, identifying the bundle of isolines, located to the right
from the separatrix loop, with the eastern stream NwAC, and the one to the left with
the west side. The same can be said about the phase portraits in Fig. 3.

The resulting velocity distributions will now be used as “external fields” for the
anticyclonic lens, localized in the pycnocline [6, 7, 23]. Hereinafter, we will con-
sider processes that take place only in the corresponding middle layer.

Without resting on the problem of the anticyclonic lens in the vicinity of a
topographic vortex (these questions are discussed in detail in Ivanov and Korablev
[6, 7]), we consider several versions of the different behavior of the lens depending
on its initial location.

Let us consider separately cases (I) without taking into account the vortex
(A=0), and (II) taking into account the effect of anticyclonic rotation on the
external flow (A<0).

Case (I). At the initial time moment, we assume that the lens has a circular shape
with dimensionless radius rlens =0.6, which corresponds to 60 km, and represents a
vortex patch belonging to the middle layer, which is a region with a constant value
of potential vorticity (PV). In this case, the initial PV value determines the time
scale. Assuming the azimuthal velocity at the outer edge of the lens to be 20 cm/s,
we will choose PV such that the rotation period of its liquid particles is equal to
20 days. This period will correspond to a unit of dimensionless time in numerical
experiments.

In the presence of a lens, the phase portrait is constructed taking into account its
effect on the current function field using the Contour Dynamics Method developed
for the three-layer rotating liquid [20].

In the first experiment, shown in Fig. 5, the initial position of the lens center
coincides with the stationary elliptic point inside the cyclonic topographic vortex,
which is located inside the separatrix loop of the current function for the middle

Fig. 5 Stream function field of the middle layer ψ2 in the vicinity of the submerged depression in
the case of the lens presence. The center of the lens is located at a “motionless” point of the
separatrix loop in “a” and “b” panels (a 20-day interval corresponds to the unit of dimensionless
time). Panel “c” shows the initial parts of the trajectory of fluid particles, placed both inside the
lens and at its vicinity. In all panels, a thick yellow line represents the lens contour. Trajectories of
fluid particles and markers (round as the initial position, and square as the last calculated position)
are shown in by magenta color in panel “c”
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layer. Assuming the selected external parameters, this point has coordinates
(−1.3098; −0.3511). Panel “a” shows that, in this case, the lens does not virtually
affect the kinematic characteristics of the flow outside the topographic vortex.
Changes are observed only in the inner part of the separatrix loop. Panel “b” shows
that the position of the lens can be considered almost quasistationary. Indeed, when
t=10, i.e., more than 6 months after the beginning of motion, the lens center
remains in its initial position. Of course, the lens does not retain a circular shape,
since the external field is not axisymmetric, but the position of its center stably
holds almost the same place. Panel “c” shows the behavior of several liquid par-
ticles inside and outside the lens. Three of the four selected material points are
initially located at the latitude of the lens center and move as follows: (1) the
particle inside the lens rotates along a closed circular path in the anticyclonic
direction, (2) the particle between the lens and the boundary of the separatrix loop
rotates along the cyclonic path, remaining inside the topographic cyclone, (3) the
particle located outside the separatrix loop is carried away by the current beyond the
depression. Finally, the particle, initially located north of the lens boundary, moves
along a hole-shaped path reminding the configuration of the corresponding isoline
of the current function.

This experiment suggests that the region of the capture of an anticyclonic lens by
a cyclonic topographic vortex cannot only be confined to a motionless elliptic point
but may have finite dimensions.

The next series of calculations presented in Fig. 6, confirms and concretizes the
latter assumption. In this figure, the lenses themselves are not shown; it gives only
the trajectories of their centers. In panel “a”, at the initial time, this center is placed
at the hyperbolic point of the separatrix of the current function field with coordi-
nates (−4.4001, 3.3899). Theoretically, this singular point is the place of attraction
of the trajectories, and the calculation does, in fact, show that the center of the lens
remains in place for quite a long time. But since the coordinates of the hyperbolic
point are calculated approximately, then, because of the instability of the equilib-
rium position, the lens begins to move along a trajectory passing in a very close
neighborhood of the separatrix. After a nearly complete tour along the loop, the lens
is again slowing down in the vicinity of the hyperbolic point, but then it breaks off

Fig. 6 Trajectories (yellow lines) of the lenses’ centers are initially localized in the hyperbolic
point of the unperturbed separatrix and in its vicinity. Red markers depict initial positions of the
lenses’ centers: (−4.4001; 3.3899) in panel “a”; (−4.2; 3.2) in panel “b”; (−4.0; 3.0) in panel “c”
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from the closed part of the trajectory and is carried away by a stream along one of
the separatrix “whiskers”.

A small displacement of the initial position of the lens center inside the sepa-
ratrix loop (Fig. 6b, where the initial coordinates of the center are indicated in the
caption) leads to the fact that now the lens makes three revolutions inside the loop
along an insignificantly untwisting spiral, and then, like the previous case, is carried
away by flow beyond the depression. Finally, if the displacement of the initial
position of the lens center toward the center of the topographic vortex becomes
larger (Fig. 6c), the lens is completely captured by the topography. At the end of the
calculation time interval, the lens performed 10 complete cycles. This series of
calculations shows that the region of the lens capture by the depression occupies
almost the entire separatrix loop of the current function except for a small neigh-
borhood near the hyperbolic singular point. It is important to note that the capture
can take place even in the case when the lens is originally located outside the
depression (the figure in panel “c” shows this clearly). Thus, the trajectory of the
lens center in panel “c” can be approximately taken as the outer contour of the cross
section (in the middle layer) of the Taylor column [7, 9, 25], which limits the region
of the initial positions of the lens centers that do not leave the vicinity of the
depression.

The unperturbed separatrix of the phase portrait of the middle layer is shown in
all three panels of Fig. 6. However, it is obvious that the presence of a lens (if it is
not initially placed at a stationary elliptic point, as in Fig. 5) substantially alters the
entire structure of the flow and the configuration of the separatrices in particular.

Figure 7 shows how a lens affected by an “external field” changes the field of the
current function over the depression and at its vicinity. Here, we show a sequence
of instantaneous lens configurations in the case presented in Fig. 6a, when, at the
initial moment, the lens center was located at the hyperbolic point of the unper-
turbed separatrix. In all panels, the stationary unperturbed separatrix is depicted by
a grey solid line. It is not related to the real non-stationary velocity field and is only
a marker curve that tracks the motion of the lens center. The first panel shows that
already at t=0, two separatrices begin their formation (red and black solid lines) in
the current function field. Note that, theoretically, at this stationary point they
should merge, but as mentioned above, the coordinates of the hyperbolic point are
calculated with an error, and therefore two separatrices have a small relative dis-
placement (the black line has a self-intersection point located to the southwest of the
lens center, and red one to the northeast). This experiment also gives an opportunity
to demonstrate the uneven motion of the lens along its trajectory. Indeed, since the
starting position is connected with a stationary point of the phase portrait, at the
initial stage of the movement, the lens moves very slowly (the second panel cor-
responds to time t=8). Then the motion accelerates, and the maximum velocity of
the lens along the trajectory occurs at the maximum distance from the initial
position. In the course of the lens re-approach to the hyperbolic point of the
unperturbed separatrix, its motion slows down again (see indicated times at the
panels). Note that a similar effect appeared in the calculations by Köhl et al. [8]
(see Fig. 11).
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It is easy to see that at each time moment the black separatrix loop is associated
with the local position of the lens, and the red separatrix loop is associated with the
bottom relief. It should be noted that the first of them decreases (and even disap-
pears in the interval 9.2–9.4) in the vicinity of the maximum velocities of the lens
motion. This can be explained by the weakening of the local anticyclonic swirl of
the flow due to the increased influence of the topographic cyclone. The demon-
stration of the controlling role of the unperturbed separatrix during all stages of the
lens motion, despite the complex nature of the evolving field of horizontal veloc-
ities is an important result of this and previous experiments.

Case (II). Let now the external flow, in addition, have a general anticyclonic
rotation (A<0).

Figure 8 shows the behavior of the captured lens against the background of
instant phase portraits at A= − 0.01. In this case, the hyperbolic self-intersection

Fig. 7 Time scans of the sequence of the lens instantaneous positions at its initial location at the
hyperbolic point of the unperturbed separatrix (gray solid lines) at the indicated moments of the
dimensionless time. Two separatrices are forming in the field of the current function represented by
black and red solid lines
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point of the separatrix has coordinates (−2.899, 0.905), and the initial position of
the lens center is inside the loop at the point (−2.70, 0.63). It is seen that under such
conditions the lens remains trapped, and its center describes a closed trajectory
inside the separatrix loop. This figure shows the calculations results over an
interval, slightly longer than one period. As in the experiment shown in Fig. 7, the
rotation is not uniform: it slows down along the trajectory near the hyperbolic
singular point and accelerates in the course of motion away from this point along
the trajectory. The most significant changes in the volume of the loop are observed
on the red separatrix associated with the bottom relief. It decreases, and can even
completely disappear (moments 60, 70, and 80), when the anticyclonic lens passes
over the deepest part of the basin and, thus, partially neutralizes the cyclonic twist
induced by the depression that prevents the formation of a region of closed
trajectories.

We note an interesting side effect: a periodic occurrence of a meandering jet at
time intervals when the black and red separatrices are separated by a specific
distance (intervals 3–5 and 9–12). For example, at t=12, fluid particles in this
stream, located between the “whiskers” of the black and red separatrices, approach
the depression from the southwest; over the depression, they round one of the loops,
pass between two loops, round the second loop, and finally leave the vicinity of the
depression in the northeastern direction. When the separatrices are close to each

Fig. 8 The same as in Fig. 7, but taking into account a large-scale anticyclonic vortex in the local
area of the depression at v= − 1.8 cm s− 1, in the case when the initial position of the lens is
located inside the loop of the unperturbed separatrix in the vicinity of the hyperbolic point
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other (t=0 and t=15), the jet vanishes, and the flow rounds the region of the
hugged loops, like one solid body.

Figures 4 and 8 show that, despite the external anticyclonic rotation, a cyclonic
Taylor column can be formed over the depression during a specific interval of the
anticyclone intensity. This column is capable to capture and twist
counter-clockwise passive liquid particles as well as vortices inside it. This gives an
explanation to the seemingly strange cyclonic direction of the observed lens motion
in the works by Ivanov and Korablev [6, 7]. In the case where the initial location of
the lens center is outside the Taylor column, the lens leaves the vicinity of the LB.

Conclusions

The formation, drift, and destruction of mesoscale vortices within the LB occur
against a background of the large-scale processes in the study site. Hence, the PS is
a buffer zone of the water exchange between the North Atlantic and the Arctic
Ocean [11]. The complex character of their interaction determines the seasonal and
multi-year variability of the hydrological regime and dynamics of the PS and, in
particular, the LB. Raj et al. [15] note the inter-annual and seasonal variability of
the number of observed vortices in the investigated basin and their relationship to
these external processes. It should be kept in mind that it is almost impossible
to recreate in the model experiment the complete similarity with the real ocean
conditions. However, such modeling, in spite of some assumptions, allows us to
trace all the stages of the influence of the external parameters on the behavior of the
intrathermocline lens. In this contribution based on the results of various experi-
mental observations, the existence of a quasi-permanent intratermocline lens in the
vicinity of the deep part of the LB is postulated as a fact. Within the framework of
the numerical model, we model various scenarios of the lens motion, which can
take place in the ocean. In particular, it is clearly shown that (1) the lens not
captured by the quasi-stationary Taylor column leaves the LB region, (2) the lens
located in the vicinity of the hyperbolic point can remain for a long time in the
quasistatic state, (3) the lens belonging to the inner part of the Taylor column,
which is associated with the separatrix loop of the stream function, performs closed
periodic rotations in the cyclonic direction. The latter can occur even in presence of
a large-scale anticyclonic vortex of moderate intensity. The model conclusions
about the behavior of the quasi-constant anticyclonic vortex in the LB coincide with
the main observed results. They also give an idea of the physical processes that
determine the various conditions of its cyclonic drift depending on the variability of
the velocity field characteristics and the topographic effect.
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The Global Atmosphere Oscillations
in the Context of the Recent Climate
Change

Victor G. Neiman, Vladimir I. Byshev, Yury A. Romanov
and Ilya V. Serykh

Introduction

It is commonly accepted [1–4] that variability of the Earth’s climate is characterized
by a wide range of oscillations. Despite their origin, all those variations may be
classified into two types. The first of them is presented by resonance perturbations
at the frequencies corresponding to the external forcing. The second one combines
local fluctuations of both inertial and auto-oscillation origin.

An assessment of the regional current climate change is usually based on the
indices of various oscillations, such as the North Atlantic, North Pacific, Arctic,
Southern, etc. [5]. These oscillations are indicative of some features of the internal
dynamics of the climate system. Physical background of frequency-amplitude
characteristics of the oscillations may signify the existence of the global scale
atmospheric variations, whose dynamic structure includes all known regional
indices.

Therefore the problem arises of acquiring a better understanding of the global
atmospheric oscillations related to the structure of the current climate variability.
The goal of our study is to elaborate appropriate indices suitable for prompt and
adequate detecting of this phenomenon. An attempt to find an answer to some of
these questions is undertaken in this contribution.
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The Data and Methods

The analysis of the spatial structure of the anomalies of the hydro-meteorological
characteristics appearing under the influence of the global atmospheric oscillations
was carried out on the basis of the average monthly fields of the atmospheric
pressure P at the sea level (HadSLP2 database) and the surface temperature
T (CRUTEM4 database) both prepared with a resolution of 5° × 5° by the British
Met Office Hadley Center for Climate Science for the period of 1900–2012 [6, 7].
As it was shown in [8], the deformation fields of P and T reflecting the draw effect
of the interannual GAO involve the time period of the corresponding impacts of El
Niño—La Niña as well. Taking this fact into account, the assessment of P and
T anomalies caused by the interannual GAO has been performed by formula (1). It
is important, however, to mention that large-scale anomalies within T and P global
fields caused by the GAO were found to appear well before the ENSO events onset
[8]. The latter (El Niño and La Niña) coincide in time with the GAO extreme phase
states. Therefore, our calculation of the GAO amplitude values was performed
using the sets of the global fields of T and P coinciding in time with the culminating
periods of El Niño and La Niña. In turn, these periods were well marked by the
commonly accepted appropriate indices [9].

XHðφ, λ, z0Þ= 1
NEL

∑
NEL

i=1
δXELðφ, λ, z0, tiÞ− 1

NLA
∑
NLA

j=1
δXLAðφ, λ, z0, tjÞ ð1Þ

With the goal in mind to perform independent control of the reliability of our
method we calculated the difference between the mean fields separately for each
half-century: 1900–1949 and 1950–1999. The first period included nine El Niño
and six La Niña events, the second included 10 and 5 events, respectively. We
summarized the results of these calculations for the second half of the 20th century
in Fig. 1, which was found similar to the one in the first period.

The GAO manifestations in the hydro-meteorological fields on inter-decadal
time scale (Fig. 2) was estimated by formula (2) as the difference between the mean
fields of two consecutive climate phases: 1975–1999 and 1950–1974 [10, 11].

XLðφ, λ, z0Þ= 1
N1

∑
N1

i=1
Xðφ, λ, z0, tiÞ −

1
N2

∑
N2

j=1
Xðφ, λ, z0, tjÞ ð2Þ

Notations in formulas (1, 2) are: X (φ, λ, z0, t) is the field of sea level pressure
P (φ, λ, z0, t) or the surface temperature T (φ, λ, z0, t); NEL, NLA, and N1, N2 are time
samples (average monthly number of X, or anomalies δX) of global fields, compiled
in conjunction with the temporary episodes of El Niño and La Niña in the first case,
and with the phases of climate, respectively; φ, λ, z0, t are the latitude, longitude,
level, and time, respectively; δX are the anomalies of the atmospheric pressure and
surface temperature after removing its seasonal variation. Subscripts H and L in the
characteristics of X are attributed to the high frequency (inter-annual) and low
frequency (inter-decadal) GAO.

350 V. G. Neiman et al.



Discussion

The initial discussion on the interannual GAO [8] showed this phenomenon in the
form of an anomalous structure of the planetary pressure field, as presented in
Fig. 1 (top panel), which contains the corresponding modes of all known regional
atmospheric pressure oscillations. The key element of this structure was a
large-scale positive anomaly in the equatorial-tropical region surrounded by a low
pressure belt along its outer boundary. Figure 1 shows that this anomaly spreads
from the West Atlantic to the Date Line and extends in the latitudinal direction
between 30° S and 30° N. The width of the low pressure belts just over the northern
and southern boundaries of the positive anomaly is as high as 2000–3000 km. In

Fig. 1 Average thermo-baric structure of the interannual GAO in 1950–1999. The GAO
amplitude in the fields of atmospheric pressure anomalies at the sea level (top panel) and
near-surface air temperature (bottom panel)
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the northern polar region and in the major part of the southern polar zone, the
positive pressure anomalies dominate again.

Comparison of Figs. 1 and 2 shows the similarity and fundamental differences of
the GAO structural features on the two time scales. In both cases, the GAO is
characterized by positive atmospheric pressure anomalies in the equatorial-tropical
region with its core in the Indian Ocean.

Though the inter-decadal GAO appears less intense in the terms of its anomalies,
it occupies a greater latitudinal belt. Moreover, the interannual GAO is character-
ized by a positive anomaly along its entire outer boundary, which in its turn is
adjacent to the region of low atmospheric pressure. Zones of high pressure are
sometimes observed at higher latitudes of both hemispheres. Otherwise in the
second case, low atmospheric pressure characterizes the whole area beyond the
central positive anomaly.

Fig. 2 The amplitude of the global atmospheric oscillation on inter-decadal time scale in the fields
of the atmospheric pressure anomalies at the sea level (top panel) and surface air temperature
(bottom panel)
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Figure 2 (top panel), as already mentioned, shows a map of the mean difference
of the surface atmospheric pressure between two consequent climate scenarios,
namely the relatively warmer (1975–1999) and the cooler (1950–1974) periods. As
one can see in this case, the pressure distribution in the tropical zone of the Pacific
Ocean is similar to the distribution characteristic of the El Niño events (Fig. 1). In
both cases, the region of the positive anomalies of the atmospheric pressure is
surrounded by the zones of negative anomalies. However, in the case of the
interannual GAO at the polar latitudes, the negative anomalies are replaced with the
positive ones, and in the case of the inter-decadal GAO they remain negative up to
the Pole.

The difference in the temperature distribution in the tropical Pacific (Fig. 2,
bottom panel) is similar to the distribution shown in Fig. 1, i.e., the presence of
positive T anomalies in the eastern zone. Therefore, in many studies [3, 12–15]
these changes in the pressure and temperature are called the inter-decadal oscilla-
tions like El Niño. However, Fig. 2 (top panel) shows that changes in the pressure
considered here are global but not limited to the tropical Pacific. Therefore, it is
more correct to call them inter-decadal global oscillations, what we do and offer.

If we consider the properties of the respective thermal perturbations, the most
significant positive temperature anomaly (Fig. 1) occurs, as expected, in the eastern
tropical Pacific under the influence of the El Niño events induced by the GAO.
A smaller positive anomaly is observed in the northern part of the Pacific, including
the territory of Alaska and the Chukchi Peninsula.

An extensive negative temperature anomaly covers the mid-latitudes of the
Pacific, Northeast Asia, the southern and northeastern parts of the North American
continent. The main distinguishing feature of the spatial distribution of temperature
anomalies generated by the inter-decadal GAO (Fig. 2) is presented by a four-core
structure of the positive anomaly in the northwest of North America and in the
northeast of the Eurasian continent, as well as by the negative anomalies in the
North Pacific and Atlantic oceans. There are grounds to believe that this pattern
reflects qualitatively the phase redistribution of heat forced by the GAO in the
ocean-atmosphere-continent system.

The interannual GAO is obviously related to the seasonal cycle of the atmo-
spheric processes, and its appearance coincides with the periods of the equilibrium
state of the climate system [8]. This condition occurs whenever the Sun is above the
Earth’s equator (radiation equilibrium), and the system of the global monsoon
circulation becomes unstable after its change to the interphase mode. The initial
moment of the GAO as shown in [16] is linked directly to the atmospheric pressure
increase in the equatorial-tropical region of the Atlantic and Indian oceans (thermal
tide) where negative sea surface temperature anomalies were reported to exist in
this period.

We suggest that the inter-decadal GAO (Fig. 2) appears as a shift in the
dynamics of the climate system, which is followed by a change of the climate
scenario either on the regional or even the global scale. According to our estimates
[17], this process is related immediately to the intensification of the heat flux from
the oceans to the atmosphere, which is succeeded by the climate warming on land.
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Since the ocean accumulates heat, the continents should experience extremes of the
climate severity.

Taking the previous discussion into account, we propose to consider an idea of
the inter-decadal GAO as an inhibitor of the global climate phase variability, which
manifests itself in the form of successive turnover of the climatic events or even in
the change of the climate scenario [11]. This is a mechanism how climatic effect of
each of the two GAO modes may be revealed according to their specific time scale.
It is appropriate to make a nontrivial conclusion [8] that the high-frequency (in-
terannual) mode of the GAO plays a role of the trigger mechanism for the Paci-
fic ENSO events. Independent verification of this important result has fully proved
its correctness. This can be shown by the example of the GAO generated field of the
near-surface air temperature anomalies (Fig. 1), which appears explicitly under the
El Niño forcing. This assumption is also supported by the comparison of time
functions of the GAO and ENSO indices (Fig. 3), which are generally similar. We
note that the El Niño—Southern Oscillation (ENSO) index was calculated here as
the monthly average anomaly of the sea surface temperature (°C) in the area [18] of
Niño-3 (5° S–5° N, 160° W–90° W).

The pattern of the sea surface pressure anomaly field formed under the influence
of the global atmospheric oscillations is the goal of this analysis. An actual insight
into the phenomenon can help us to plot the phase pattern of the GAO evolution in
greater detail. But now we would pay attention only to the fact that the field of

Fig. 3 Time evolution of the GAO index (blue line is related to the left scale) and ENSO index
(red curve, right scale). Thin lines show annual smoothing; bold curves show the data after 7-year
running smoothing
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pressure anomalies corresponding to the inter-decadal GAO is apparently quite
stable, perhaps on the scale of a few decades.

As a preliminary study, the main elements of the interannual GAO may be
considered timely in conjunction with the well defined phases of the ENSO vari-
ability, for which the GAO is the background or the primary process, as it has been
already mentioned. In other words, in such cases it is appropriate to use the
common ENSO (El Niño and La Niña) indices as the markers of the GAO. Further,
by the analogy with the various regional oscillations, which are identified by their
conventional indices, an appropriate index for the GAO that assesses the charac-
teristic deformation of the planetary atmospheric pressure fields in the
equatorial-tropical region (30° S–30° N, 60° W–180°) could be described by the
formula:

I1 tð Þ∼P0ðz0, tÞ=
Zφ2

φ1

Zλ1

λ1

δP*ðφ, λ, z0, tÞdφdλ ð3Þ

The evolution of two climatic indices shown in Fig. 3 makes it possible to
analyze the intensity of the ENSO events on the interannual time scale in the period
under study. In particular, on the basis of these backgrounds one can easily dis-
tinguish 15 events of El Niño and the same number of La Niña events. This follows
directly from the main positive and negative extremes (T > +0.5 °C; T < −0.5 °C)
on the average annual temperature curve (thin red line). The less significant positive
extremes on that line are likely related to the weaker events named El Niño-Modoki
[19]. Taking these extremes into account we find that the average occurrence
interval of the El Niño was about 3.7 years, which is consistent with the existing
concept about the temporal characteristic of the phenomenon [20]. This is also
related to the La Niña events with the minus sign responding to the negative
temperature anomaly drawn by the phenomenon.

The clearly seen peaks of intense ENSO index indicate two outstanding El Niño
events of 1982–1983 and 1997–1998, which are remarkable due to their absolute
intensity over the past century. In addition, it should be mentioned that this graph
also shows the period from the mid-1970s until the beginning of the 20th century
marked by the more frequent and intense El Niño events.

Let us focus attention on the comparable change of the interannual GAO index
(thin blue line). The time evolution of this index corresponds to the temperature
curve, which is reflecting the ENSO signal. Such a correspondence indicates clearly
the existence of the abovementioned correlation between the GAO and El Niño
processes.

Both our estimates [16] and the independent study results [12] show that a
sequence of the considered events with a system of their causal relationship is the
following. The global hydrometeorological anomalies, or in our terminology the
GAO signals, appear long prior to the onset of the ENSO events in the Pacific
region. A closer look at Fig. 3 may reveal the presence of the positive intermediate
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phase shift between some extremes of the ENSO and GAO indices. This evidence
strongly supports our hypothesis that the interannual GAO anticipates the occur-
rence of the El Niño acting as its trigger mechanism.

Figure 3 shows that along with the general similarity of the two indices behavior
they have, at least, one significant difference, namely, the number of extreme points
of the interannual GAO index exceeds the corresponding marks of the ENSO. This
could generally mean that the frequency parameters of the GAO and ENSO may
vary. In such case, the situation is not excluded when the GAO occurs more often
than the ENSO events. However, in any case, as it is clearly seen in Fig. 3, the
signals of all actual ENSO events, distinguished by its index, certainly correspond
to the specific phase of the interannual GAO. Therefore, all events like El Niño and
La Niña should not be considered separately just as anomalous regional features in
the dynamics of the regional Pacific climate system only, although, this approach is
sometimes applied to these phenomena. Nevertheless, according to the previous
discussion, it is not correct to consider these effects beyond the concept of the GAO.
The fact based on the GAO analysis indicates that the signals of the ENSO and
other regional climatic disturbances should not be interpreted otherwise than the
factors of the lower, secondary level.

The bold lines in Fig. 3 provide essential information on the properties and
characteristics of the inter-decadal GAO. First of all, smooth transformation of the
data on the ENSO and GAO indexes, which were converted into the curves of
almost the same form, is worth noting. On this occasion we would assume that such
a result is an actual verification of the adequacy of our understanding of the climate
variability based on the correlations between the signals in the fields of completely
different hydrometeorological characteristics, such as temperature and atmospheric
pressure. These fields indirectly represented here by the corresponding indices of
the GAO and ENSO are distinguished from the quasi-cyclical fluctuations with an
average estimated period of 16 years.

The traces of incompletely filtered interannual GAO (blue curves) and ENSO
(red lines) signals are revealed over the background of the lower frequency fluc-
tuations. The fact that the smoothed ENSO index is similar to the inter-decadal
GAO signal provides evidence that these events are caused by correlated physical
processes. Thus, as it is shown in Fig. 3, the smoothed curves represent, according
to our definition, nothing but the actual inter-decadal GAO. It is clear that the
oscillation frequency characteristics require a further clarification due to the lack of
statistical reliability of its current assessment. Incidentally, we note that even
lower-frequency harmonics of such type of oscillations in the range of periods
about 35–50 years were revealed in our study of the climate change in the North
Atlantic region [11].
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Conclusions

It is well known that during El Niño notable changes in the atmospheric and
oceanic processes appear in different parts of the Earth. In some places they occur
synchronously with the El Niño phenomenon, in the other regions they appear with
a certain time shift. In general, these phenomena are defined as a remote response to
the El Niño events.

We note that, in addition to El Niño, researchers use a very large number of
different regional atmospheric oscillations such as the North Atlantic, Arctic,
Antarctic, East Pacific and many others. Many of these oscillations contain the
modes, which are synchronized with the events of El Niño [21]. The causes of the
possible changes in the weather regime in different parts of the Earth during
the events of El Niño can be understood in general even from the analysis of the
peculiarities of appropriate global atmospheric pressure field, like the one shown in
Fig. 1. Let us consider here just one example. From this figure it may be clarified, in
particular, that cooling of the Barents Sea region during El Niño occurs due to the
development of anomalously cold easterly winds that bring chill and prevent
the spread of the warm currents from the west. Many scientists studying the remote
atmosphere regime changes during El Niño use to apply the paradigm of the
El Niño remote response. They believe that the key cause of these changes is the
event of El Niño whose impact is more or less manifested very far from the source
of the signal.

Anticipated physical mechanisms of the El Niño signal transmission over long
distances were assumed in many papers [13, 22–24]. In almost all of the cases the
opinion of the authors is based on the concept of the atmospheric or oceanic
“bridges” suggested for the fast propagating Rossby and Kelvin waves. Actually,
some changes associated with El Niño in the atmosphere and ocean, but mainly
within the Pacific could be explained on the basis of these waves [25]. We are not
familiar with the works, in which transmission mechanisms of El Niño signal to
more remote areas were considered. Neither we know the publications, which
explain how under the influence of the regional El Niño signal in the field of the
atmospheric pressure anomalies the clearly manifested structures covering the entire
globe, i.e. of the scale significantly larger than the scale of the El Niño are
immediately formed.

Thus, it is reasonable to propose a change in the paradigm of the Global
Response of El Niño on the paradigm of El Niño occurrence as one of the mani-
festations of the real Global Oscillation. We understand the latter as the global
structure in the field of the atmospheric pressure anomalies shown, in particular, in
Fig. 1 (top panel). The indications of the atmospheric process anomalies shown in
Fig. 1 should be reversed in the opposite phase of this Global process revealed
in this paper. The event of La Niña usually appears in the Pacific region at this
phase of the GAO.

The true causes of the recent global fluctuations in the dynamics of the climate
system are not yet clear. We believe that it has, relatively speaking, a tidal character.
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We consider that the Chandler wobble [26] with a period of 14 months and its
overtones can trigger this disturbance. However, the final determination of the
nature of this phenomenon is a task for the future research.

We adhere to the concept that the simplest explanation is the most correct. The
main advantage in adopting the new paradigm is a significant simplification of the
answers to many questions related to the problem of long-term effects. In particular,
there is no need to invent anything regarding telecommunication mechanisms in the
atmosphere. Under the new approach, all the features of the atmospheric circulation
that occur on the Earth during El Niño, including the origin of the El Niño phe-
nomenon, are explained by the existence of the global atmospheric oscillations.
This approach is inter alia the most essential for the already mentioned synchro-
nization of many regional oscillations with the events of El Niño.

It was shown in [27] that the global occurrences of the sea surface atmospheric
pressure anomaly differences along with the events of El Niño and La Niña, as
shown in Fig. 1 (top panel) are statistically significant. The significance of the
major part of these differences is at the 90% significance level. This testifies
objectively that the Global Oscillation shown in Fig. 1 can be considered statisti-
cally a very real phenomenon. Some papers devoted to the study of the El Niño
event, have similar results [20, 28]. The main difference here is in the setting of
priorities. Most of the researchers preferred to assume the El Niño event as the
primary; they interpreted the characteristic changes that occur simultaneously in
the remote areas of the Earth as the global response to these events. We believe that
the interannual Global Atmosphere Oscillation is the primary one, whereas the
El Niño event is a part of the GAO and one of its most notable consequences. We
want to emphasize that one of the main arguments among the others in favor of our
hypothesis is its simplicity and actuality in explaining many environmental changes
remotely accompanying the El Niño events.

Thus, we attempted to suggest a conceptual description of the multi-scale global
atmospheric oscillations, some distinct signs of which were implicitly detected in a
number of previous studies. The principal result of this work is the finding that
interannual and inter-decadal global atmospheric oscillations (GAO) are the main
governing causes of the actual short-period variability in the current climate. First of
all, the interannual GAO acts as a trigger mechanism for the El Niño events,
anticipating their occurrence of the anomalous temperature, atmospheric pressure
and wind conditions in the Indo-Pacific region. The crucial role of the inter-decadal
GAO is related to the fact that this shift in the climate system dynamics may lead to
a climate scenario transition both on the regional and, perhaps, on the global scale.
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Influence of the Current Field
Non-stationarity and the
Non-simultaneity of Hydrographic
Measurements on ADCP-based
Transport Estimates

R. Yu. Tarakanov

Introduction

The horizontal absolute geostrophic velocities in the entire water column are
determined by the following equations:

uðzÞ= −
g
f
dζ
dy

+
g
f ρ0

Z0

z

dρðzÞ
dy

dz, ð1aÞ

vðzÞ= g
f
dζ
dx

−
g
f ρ0

Z0

z

dρðzÞ
dx

dz; ð1bÞ

here u, v are the zonal and meridional components of the current velocity, ζ is the
elevation of the ocean surface relative to the geopotential surface, ρ is the density
in situ, ρ0 is the mean density of the ocean, g is the acceleration due to gravity, f is
the Coriolis parameter, the z-axis is directed upwards. The first term in (1a, 1b) is
the absolute geostrophic current velocity at the ocean surface. Hereinafter, we shall
consider this variable as the barotropic component of the absolute geostrophic
current. The second term in (1a, 1b) is depth-dependent (baroclinic) geostrophic
velocity profile with zero value at the ocean surface. The dependence of this profile
on the horizontal density gradient determines the simplicity of calculating the
baroclinic current component from the data of temperature, salinity (conductivity)
and pressure, and consequently water density at the stations of transoceanic
hydrographic sections or surveys. The barotropic components of the geostrophic

R. Yu.Tarakanov (✉)
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
e-mail: rtarakanov@gmail.com

© Springer International Publishing AG, part of Springer Nature 2018
M. G. Velarde et al. (eds.), The Ocean in Motion, Springer Oceanography,
https://doi.org/10.1007/978-3-319-71934-4_23

361



currents in the practice of research are estimated on the basis of the satellite
altimetry data [9] using the data of current velocity at stations measured using
Lowered Acoustic Doppler Profiler (LADCP) [1, 2, 5, 6, 10, 11, 13] or by Ship-
board Acoustic Doppler Current Profiler (SADCP) [12].

The estimation of the correctness of the absolute geostrophic current calculation
if the barotropic component determined on the basis of the ADCP data can be
divided into two tasks:

1. Estimation of the accuracy of the absolute geostrophic current approximation at
the segments of the section (survey) based on the measured profiles at the
stations corresponding to these segments.

2. Estimation of the distortion of the field of geostrophic currents associated with
the combination of non-stationarity of this field and non-simultaneity of the
measurements over a section (survey). This task can, in turn, be divided into
two more tasks:
2a. Estimation of the distortion of the baroclinic current component;
2b. Estimation of the distortion of the barotropic current component.

In this contribution, we will consider the latter of the above mentioned tasks
applied to particular hydrographic sections in relation to the barotropic component
of the current and the barotropic transport by the current. Here, we consider that the
measured current profiles accurately approximate the real geostrophic current with
respect to the determination of its barotropic component. We assume that the
current (its barotropic and baroclinic components) is considered as the normal
component of the actual current to the sections. In such a formulation of the task, its
solution does not require the involvement of field data in the entire ocean column,
but can be reduced to the investigation of the Sea Level Anomaly (SLA) at the
ocean surface, which is measured by modern satellite altimeters. Note that the
isolines of the level surface (absolute dynamic topography) determined by the first
term in Eq. (1a, 1b) represent the streamlines of the absolute geostrophic currents at
the ocean surface. The SLA at a particular location in the ocean is the instantaneous
deviation of the level from the mean value over the time period of observations.

The structure description of applied data is essential for the theoretical justification
of this study. Hence, first, we provide the information about these data (sec-
tion “Data”), and then describe the method of the data analysis (section “Method of
Processing”). Section “Error Estimates” describes the error sources and gives quan-
titative estimates of the errors of calculations of the barotropic component of the
current and barotropic transport. In section “Discussion”, we analyze the results of
calculations performed according to the method described in section “Method of
Processing”. Section “Conclusions” summarizes the conclusions.
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Data

This contribution is mainly based on the daily data (digital maps) of the SLA
(DT-Global-MSLA-Upd product) with a grid of 1◦ ̸4× 1◦ ̸4, which is produced by
the French CLS (Collected Localization Satellites) agency using satellite altimetry
observations. The data are available in the Internet (DT Global-MADT-Upd pro-
duct, http://www.aviso.altimetry.fr). Each daily map corresponds to 00:00 GMT. In
addition to these data, the data on the Formal Mapping Error (FME) and Absolute
Dynamic Topography (ADT) (DT-Global-MADT-Upd product) published by the
CLS agency with the same resolution were also used. The FME characterizes the
accuracy of satellite measurements and the mathematical self-evaluation of
the procedure for interpolating data from satellite tracks onto the ocean surface in
space and time. The ADT data are the sum of the SLA and the mean ADT version
of CNES-CLS13 produced by the CLS Space Oceanography Division and dis-
tributed by AVISO, with support from CNES (http://www.aviso.altimetry.fr/) [15].
The data on ADT, SLA, and FME are given in centimeters.

The analysis was carried out for the tracks of a number of hydrographic sections
occupied from one continental slope to the other in the era of the altimetric
observations of the ocean surface. These are quasi-zonal sections AR05 and A05 in
the North Atlantic, the tracks of which pass nominally along 60° N and 25° N,
sections P02 along 30° N in the Pacific, as well as sections carried out in the
Southern Hemisphere, nominally along 30° S: A10 in the Atlantic, I05 in the
Indian, and P06 in the Pacific. In the Southern Ocean the following tracks of
quasi-meridional sections in different sectors of the ocean were analyzed: SR01,
A21 and a series of the Russian sections in the Drake Passage, SR02 and I06 in the
region south of Africa, I09, SR03, P11A south of Australia, and P19 in the
southeastern sector of the Pacific Ocean. More detailed information about these
sections and their locations are given in Table 1 and Fig. 1. The WOCE and
CLIVAR data are available at https://cchdo.ucsd.edu.

The bottom relief along the hydrographic section lines was determined from the
data of the digital array of the bottom topography [17], V.18.1 (http://topex.ucsd.
edu/cgi-bin/get_data.cgi). The resolution of the array is 1/cosφ of angular minutes
by latitude and 1 minute by longitude; φ is the latitude.

Method of Processing

The nonstationarity of the current field in combination with the non-simultaneity of
measurements over the section leads to a distorted pattern of the field of currents
recovered from these data. The ADCP-measurements of instantaneous velocity
profiles at the ocean surface at specific points are actually equivalent to the mea-
suring of instantaneous sea level gradients at these points. The level difference thus
accumulated along the line of the section differs from the real one because of the
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Table 1 Information about the sections in the World Ocean (see Fig. 1) studied in this
contribution

Section R/V Dates Measurement
durations
(days)

Number
of
stations

Typical distance
between stations in
the open sea (miles)

Drake_2003 RV
“Akademik
Sergey
Vavilov”

11–
15.12.2003

5 25 20

Drake_2007 RV
“Akademik
Ioffe”

13–
19.11.2007

9 53 10

Drake_2010
Jan

RV
“Akademik
Ioffe”

02–
10.01.2010

9 54 10

Drake_2010
Oct

RV
“Akademik
Sergey
Vavilov”

05–
12.11.2010

8 47 10

Drake_2011 RV
“Akademik
Ioffe”

28.10–
04.11.2011

8 45 10

A21 1999 RRS “James
Clark Ross”

18–
26.03.1999

9 43 15

SR01 1993 RRS “James
Clark Ross”

21–
26.11.1993

5 30 20

SR01 1994 RRS “James
Clark Ross”

16–
21.11.1994

6 27 20

SR01 1996 RRS “James
Clark Ross”

15–
20.11.1996

6 29 20

SR01 1998 RRS “James
Clark Ross”

30.12.1997–
07.01.1998

9 50 10

SR01 2013 RRS “James
Clark Ross”

19–
27.03.2013

8 30 20

SR01 2015 RRS “James
Clark Ross”

13–
18.03.2015

5 30 20

SR01 2016 RRS “James
Clark Ross”

06–
11.01.2016

6 28 20

SR02 2001 RV
“PolarStern”

20.12.2000–
11.01.2001

22 64 30–60

I06 2008 RV “Roger
Revelle”

05.02–
08.03.2008

32 92 30

I09 1995 RV “Knorr” 01–
18.01.1995

17 61 30

I09 2004 RV “Aurora
Australis”

24.12.2004–
15.01.2005

22 68 30

I09 2012 RV “Aurora
Australis”

20.01–
10.02.2012

21 70 30

(continued)
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Table 1 (continued)

Section R/V Dates Measurement
durations
(days)

Number
of
stations

Typical distance
between stations in
the open sea (miles)

SR03 1994 RV “Aurora
Australis”

02–
16.01.1994

14 57 30

SR03 1995 RV “Aurora
Australis”

18.07–
01.08.1995

15 54 30

SR03 1996 RV “Aurora
Australis”

30.08–
21.09.1996

22 57 30

SR03 2001 RV “Aurora
Australis”

29.10–
28.11.2001

30 61 30

SR03 2008 RV “Aurora
Australis”

28.03–
15.04.2008

18 59 30

SR03 2011 RV “Aurora
Australis”

04–
18.01.2011

14 54 30

P11A 1993 RV “Aurora
Australis”

04–
30.04.1993

26 62 30

P19 1993 RV “Knorr” 10.01–
01.03.1993

61 51 30

AR05 1997 RV
“Professor
Shtokman”

14–
23.10.1997

9 27 60

AR05 2002 RV
“Akademik
Mstislav
Keldysh”

17–
27.08.2002

10 39 30

AR05 2003 RV
“Akademik
Ioffe”

27.06–
07.07.2003

10 47 15–30

AR05 2004 RV
“Akademik
Ioffe”

20–
28.06.2004

8 38 30

AR05 2005 RV
“Akademik
Ioffe”

23–
30.06.2005

9 38 30

AR05 2006 RV
“Akademik
Ioffe”

03–
12.07.2006

10 53 20

AR05 2007 RV
“Akademik
Ioffe”

30.06–
12.07.2007

12 80 10

A05 1998 RV “Ronald
H. Brown”

24.01–
23.02.1998

31 130 30–45

A05 2004 RV
“Discovery”

05.04–
09.05.2004

35 123 40–45

A05 2010 RV
“Discovery”

07.01–
15.02.2010

40 134 30–45

(continued)
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current field variation during this time. The accumulation of distortion of the bar-
otropic component of the current and the barotropic transport corresponding to it
can be, in principle, estimated from the satellite altimetry. A distortion constituent
of the barotropic transport, which is not taken into account using these data, also
exists. This constituent is related to the displacement of isohypses (streamlines of
the geostrophic current at the ocean surface) relative to the isobaths. Due to this
displacement during the execution of the section, the instantaneous barotropic
transport varies within certain limits. It is clear that, depending on the restriction on
the total transport across the section, this variability should be completely or par-
tially compensated by a change in the instantaneous baroclinic transport. The latter
cannot be accounted directly from the satellite altimetry data. Note that the

Table 1 (continued)

Section R/V Dates Measurement
durations
(days)

Number
of
stations

Typical distance
between stations in
the open sea (miles)

A05 2011 RV
“Sarmiento
de Gamboa”

28.01–
14.03.2011

45 167 30

A05 2015 RV
“Discovery”

10.12.2015–
20.01.2016

42 134 40

A10 1993 RV
“Meteor”

30.12.1992–
28.01.1993

30 111 27–45

A10 2003 RV “Mirai” 07.11–
02.12.2003

25 111 30–45

A10 2011 RV “Ronald
H. Brown”

28.09–
29.10.2011

32 120 25–40

I05 2002 RV
“Charles
Darwin”

04.03–
14.04.2002

41 133 20–50

I05 2009 RV “Roger
Revelle”

24.03–
12.05.2009

49 189 30

P02 1994 RV
“Shoyo”

08.01–
10.02.1994

33 63 60–140

P02 2004 RV
“Melville”

16.06–
27.08.2004

72 187 30–35

P02 2013 RV
“Melville”

22.03–
01.06.2013

71 159 30–60

P06 2003 RV “Mirai” 03.08–
12.10.2003

70 235 30–40

P06 2009 RV
“Melville”

22.11.2009–
09.02.2010

80 250 30–40
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barotropic transport over the section may appear beyond the variability range of its
instantaneous values. This fact indicates that the total transport derived from the
barotropic transport deviation differs from the real values by unknown quantity,
which requires an assessment of the baroclinic transport variability.

In order to estimate quantitatively the distortions of the barotropic component of
the current, let us consider the level of the ocean surface ζ along the section line as a
function of two variables: time t and distance along section x; the positive direction
along the x axis corresponds to the direction of the section:

ζ= ζ x, tð Þ. ð2Þ

The total differential of this function, dζ is written as:

dζ=
∂ζ

∂x

� �
t
dx+

∂ζ

∂t

� �
x
dt. ð3Þ

We perform a transition from continuous function ζ to its approximation over the
section by the finite differences. Then, the total differential can be written as:

Δζ= ζ xi+1, ti+1ð Þ− ζ xi, tið Þ, ð4Þ

where the subscript corresponds to the station number. In this approach, each
station is assigned a single point in time and a single point in the ocean. However,
in the practice, the measurements at each station take a certain time interval and, in
addition, the drift of the vessel takes place during the station. The resulting vari-
ability of the level can be interpreted as a variation (determination error) of the
mentioned parameter at the station. This problem will be considered separately in
section “Error Estimates”.

In the representation of the level difference (and hence of the barotropic com-
ponent of the current) between the stations according to formula (4), there is an
exact physical correspondence in time between the ocean level and the CTD pro-
files measured at these points. In this case, from the point of view of the contri-
bution of the baroclinic and barotropic components of the current to the total
transport for a given pair of stations, we also obtain an exact physical relation
between these components. We note that because of the nonstationarity of the
current field and the fact that the measurements at different stations are made at
different moments of time, the calculated profiles of absolute geostrophic velocities
do not exist in reality, i.e. they are virtual. A similar method for calculating absolute
geostrophic currents was used in [9].

We add and subtract ζ xi+0.5, tið Þ and ζ xi+0.5, ti+1ð Þ on the right side of formula
(4), which are the values of the level in the middle of the space between the i-th and
i + 1-st stations at the i-th and i + 1-st time moments, respectively. We obtain

368 R. Yu. Tarakanov



ζ xi+1, ti+1ð Þ− ζ xi, tið Þ≡
≡ ζ xi+1, ti+1ð Þ− ζ xi+0.5, ti+1ð Þð Þ+ ζ xi+0.5, ti+1ð Þ− ζ xi+0.5, tið Þð Þ+ ζ xi+0.5, tið Þ− ζ xi, tið Þð Þ.

ð5Þ

Summing over all the spaces between the stations (from the 1-st to the n-th), we
get:

ζ xn, tnð Þ− ζ x1, t1ð Þ≡ ∑
i=1, n− 1

ζ xi+1, ti+1ð Þ− ζ xi, tið Þð Þ≡ ∑Δζ= ∑Δζx + ∑Δζt, ð6Þ

where

∑Δζx = ζ x1.5, t1ð Þ− ζ x1, t1ð Þð Þ+ ∑
i=2, n− 1

ζ xi+0.5, tið Þ− ζ xi− 0.5, tið Þð Þ+ ζ xn, tnð Þ− ζ xn− 0.5, tnð Þð Þ,

ð6aÞ

∑Δζt = ∑
i=1, n− 1

ζ xi+0.5, ti+1ð Þ− ζ xi+0.5, tið Þð Þ. ð6bÞ

Here, ∑Δζx is the sum of the level differences at the intervals between adjacent
interstation midpoints at fixed time moments, ∑Δζt is the sum of the level devi-
ations in time in the middle of the spaces between stations, and n is the number of
stations. In the sketch shown in Fig. 2 explaining formula (6), the bold line shows
the ocean level curve consisting of Δζx and Δζt, the dashed line is the curve formed
of Δζ. In the sum over the entire section, these two curves give the same level
difference.

The Δζx value at the i-th interval of the section approximates the barotropic
component of the geostrophic current at fixed time corresponding to the moment of
the i-th station. In the physical sense, this component is absolutely similar to the
barotropic component of the geostrophic current measured using ADCP. Thus, the
level deviation in time in the middle of the spaces between stations determines the
physical difference between the calculations of the barotropic component of
the absolute geostrophic current from the satellite altimetry and ADCP data.

In practice, it is not possible to determine the barotropic component of the
current directly from the ADCP velocity measurements at one station, since the
measured baroclinic profile contains unknown non-geostrophic components (e.g.,
purely drift current, inertial oscillations). In addition, the measurements in the upper
several tens of meters are usually obtained with a very large error or these data are
not available in the case of shipboard ADCP. Therefore, the barotropic component
based on the ADCP measurements is determined for the baroclinic geostrophic
profile calculated from the CTD data from two neighboring adjacent stations, which
usually consists of the following procedure [1, 6, 11, 13]. Initially, the measured
velocity profiles of two neighboring stations are averaged at each level up to the
greatest common depth of the CTD and ADCP measurements at these stations.
Then, the depth averaged values of the velocity for this averaged profile ⟨uadcp⟩ and
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of the baroclinic geostrophic profile ⟨uctd⟩ are calculated, and the difference
between these average values ⟨uadcp⟩− ⟨uctd⟩ is calculated. Finally, the absolute
geostrophic velocity at each depth (including the barotropic component, as the
value at the ocean surface) is defined as the sum of the baroclinic geostrophic
velocity and the mentioned difference. With regard to the described procedure, it is
necessary to note the following:

1. The procedure is based on the assumption of an averaged geostrophic character
of the ADCP measurements, i.e. it is assumed that non-geostrophic perturbations
in the velocity profile are reduced to zero when averaging over the entire profile.

2. The calculation of the average arithmetic profile from the ADCP measurements
at two stations does not change the essence of the physical difference between
the determination of the barotropic component from the altimetry and the ADCP
data and does not change the quantitative differences between these definitions
in the entire section.

3. Similarly to the case of the determination of the barotropic component from the
altimetry data the resulting profile of the absolute geostrophic velocity does not
actually exist because of the non-simultaneity of measurements at stations.

Let us consider from the point of view of estimating the total transport through a
hydrographic section the two methods described above for calculating the baro-
tropic component of the absolute geostrophic current, i.e. by means of the total
differential Δζ (calculation from the altimetry data) and using Δζx (analog of the
ADCP measurements). Suppose that such a section is occupied from shore to shore
in the ocean with a flat bottom and vertical walls. To simplify the discussion, we fix
level ζ in time and the vertical density profiles at the ends of the section, and
assume that g and f are constant over the entire section. Then, due to the linearity of
the geostrophic relationships (1a, 1b), the total transport not only through the
section line, but through any trajectory connecting the points of the beginning and
the end of the section in time and space of the ocean, will be the same, i.e. it will not
depend on the intermediate vertical density distributions along such a trajectory,
and on the configuration of level ζ and its time variability. Besides, the barotropic
and baroclinic transports will also be constant separately. The condition of such
constancy is satisfied by the method of calculating the level over a particular section
using total differential Δζ. The calculation using Δζx will differ from it by∑Δζt by
virtue of (6), which depends, in principle, on time and trajectory. Temporal vari-
ability of the level at the ends of the section, i.e. the refusal to fix ζ at these points,
as well as the dependence of g and f on latitude, does not change the essence of the
described difference. Thus, to estimate the transport across the section the recovery
of the ocean level using total differential Δζ is physically correct, since in this case,
exact correspondence in time is gained between the ocean level and the CTD profile
at the stations. In this sense, the value of ∑Δζt is a constituent of the distortion of
the barotropic component of the current, which can be taken into account and
estimated using the satellite altimetry data.
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The real ocean is not flat and the walls are not vertical. In this case, the
instantaneous barotropic transport across the section line changes with time due to
the displacement of the level isolines (stream lines of the absolute geostrophic
velocity at the ocean surface) relative to the isobaths. When calculating in finite
differences, the transport also depends on the particular scheme of the section
splitting into segments. Instantaneous barotropic transport calculated from the level
values in the middle of the spaces between stations, i.e. the transport approximating
ADCP measurements, can be written as:

Qadcp tð Þ= ∑
i=1, n

qadcp xi, tð Þ≡ ζ xn, tð Þ− ζ xn− 0.5, tð Þð Þ gnhn̄fn
+ ζ x1.5, tð Þ− ζ x1, tð Þð Þ g1h1̄f1

+

+ ∑
i=2, n− 1

ζ xi+0.5, tð Þ− ζ xi− 0.5, tð Þð Þ gihīfi

,

ð7Þ

where gi, fi are the acceleration due to gravity and the Coriolis parameter at the
point of the i-th station, hī is the depth averaged over the interval of the section
corresponding to the i-th station (over the i-th interval between the interstation
midpoints of the spaces), qadcp xi, tð Þ is the barotropic transport in this interval of the
section. The sign of the transport summation by stations is determined in (7)
conventionally. For example, for quasi-zonal sections, it is convenient to choose the
positive direction to the left of the direction of the section if it runs from west to
east. Then, the positive transport values correspond to the flow to the north, the
negative transport values correspond to the flow to the south. For example, in the
case of quasi-meridional sections it is convenient to select the positive direction to
the left of the ship motion along the section from west to east. Then, the positive
values correspond to the easterly flow, the negative values correspond to the
westerly flow.

The barotropic transport across a particular section calculated according to the
same scheme consists of elements qadcp xi, tið Þ corresponding to the moments of the
execution time of the stations:

Qadcp = ∑
i=1, n

qadcp xi, tið Þ≡ ζ xn, tnð Þ− ζ xn− 0.5, tnð Þð Þ gnhn̄fn
+ ζ x1.5, t1ð Þ− ζ x1, t1ð Þð Þ g1h1̄f1

+

+ ∑
i=2, n− 1

ζ xi+0.5, tið Þ− ζ xi− 0.5, tið Þð Þ gihīfi

.

ð8Þ

The total barotropic transport (i.e. determined by the total differential of the
ocean level) is represented in the following form:

Qalt =Qadcp +Qt, ð9Þ
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where

Qt = ∑
i=1, n− 1

ζ xi+0.5, ti+1ð Þ− ζ xi+0.5, tið Þð Þ gi+0.5hī+0.5

fi+0.5
; ð10Þ

here gi, fi are the acceleration due to gravity and the Coriolis parameter in the
middle of the space between the i-th and i + 1-st stations, hī+0.5 is the depth
averaged over the mentioned space. Variable Qt represents the total deviation of the
transport in time along the section in the middle of the spaces between the stations
and it is the component of the distortion of the barotropic flow that can be taken into
account and estimated using the altimetry data.

If we subtract the transport across the section from instantaneous barotropic
transport Qadcp tð Þ, we obtain an anomaly of the barotropic transport approximating
the ADCP measurements at the stations:

ΔQadcp tð Þ= ∑
i=1, n

Δqadcp xi, tð Þ≡ Δζ xn, tð Þ−Δζ xn− 0.5, tð Þð Þ gnhn̄fn
+

+ Δζ x1.5, tð Þ−Δζ x1, tð Þð Þ g1h1̄f1
+ ∑

i=2, n− 1
Δζ xi+0.5, tð Þ−Δζ xi− 0.5, tð Þð Þ gihīfi

,

ð11Þ

where Δζ xi±0.5, tð Þ= ζ xi±0.5, tð Þ− ζ xi±0.5, tið Þ. It is important that the value of
ΔQadcp tð Þ does not depend on the mean dynamic topography of the ocean and like
the deviation in time Qt over spaces between stations can be calculated on the basis
of the SLA satellite data. To proceed to the discrete distribution of the barotropic
transport in time it is necessary to replace t by tj in formula (11).

Two-dimensional distribution Δq xi, tj
� �

per unit length (top panel) and distribu-
tion ΔQadcp tj

� �
(bottom panel) for the section carried out in the Drake Passage in

October 2010 are shown in Fig. 3 as an example; time counts tj correspond to the
moments of the stations. The points on curve ΔQadcp tj

� �
are the sum of elements

Δq xi, tj
� �

for fixed tj. Diagonal elements Δq xi, tið Þ (i.e., when i = j) are zero. The
range of values ΔQadcp tj

� �
determines the variability of the barotropic transport

approximating the ADCP measurements during the time of the section. An example
in Fig. 3 also shows that the barotropic transport over the section can appear beyond
the variability of the instantaneous barotropic transport during the time of the section.

Instantaneous barotropic currents calculated from the level values at stations can
be written as:

Q′

alt tð Þ= ∑
i=1, n− 1

qalt xi+0.5, tð Þ≡ ∑
i=1, n− 1

ζ xi+1, tð Þ− ζ xi, tð Þð Þ gi+0.5hī+0.5

fi+0.5
. ð12Þ
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Fig. 3 Two-dimensional distribution Δq xi, tj
� �

(see formula (11)) in Sv (1 Sv = 106 m3s−1) per
unit length (top panel) and anomaly distribution of the barotropic transport ΔQadcp tj

� �
approximating the ADCP measurements at the stations (bottom panel) for the section in the
Drake Passage in October 2010
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In this scheme, the total barotropic transport over the section is written as:

Q′

alt = ∑
i=1, n− 1

qalt xi+0.5, ti+0.5ð Þ≡ ∑
i=1, n− 1

ζ xi+1, ti+1ð Þ− ζ xi, tið Þð Þ gi+0.5hī+0.5

fi+0.5
;

ð13Þ

the barotropic current, approximating ADCP measurements:

Q′

adcp =Q′

alt −Qt, ð14Þ

here Qt, as in the first scheme, is calculated from formula (10); the anomaly of the
total barotropic transport is:

ΔQ′

alt tð Þ= ∑
i=1, n− 1

Δqalt xi+0.5, tð Þ≡ ∑
i=1, n− 1

Δζ xi+1, tð Þ−Δζ xi, tð Þð Þ gi+0.5hī+0.5

fi+0.5
,

ð15Þ

where Δζ xi, tð Þ= ζ xi, tð Þ− ζ xi, tið Þ. The value of ΔQ′

alt tð Þ does not depend on the
mean dynamic topography of the ocean. The range of values ΔQ′

alt tð Þ determines
the variability of the total barotropic transport during the time of the section.

The anomalies of the total barotropic ΔQ′

alt tð Þ, and the barotropic transports
ΔQadcp tð Þ approximating the ADCP-measurements are related as:

ΔQadcp tð Þ=ΔQ′

alt tð Þ+Qt +ΔQ−ΔQ tð Þ, ð16Þ

where variables

ΔQ=Q′

alt tð Þ−Qadcp −Qt, ð17Þ

and

ΔQ tð Þ=Q′

alt tð Þ−Qadcp tð Þ ð18Þ

determine the quantitative difference between two finite difference schemes of the
representation of the section track in the course of measurements over the section
and for the instantaneous values of the transport in time, respectively. In this sense,
they are important characteristics in estimating the accuracy of the calculation.
Separately, these variables depend on the mean dynamic topography.

According to the previous theoretical justification, the calculations of the baro-
tropic component of the current, barotropic transport, their temporal variability and
values characterizing the accuracy of calculations over individual sections presented
in Table 1 were performed. The data on SLA and ADT were interpolated linearly in
space along the tracks of the sections according to two schemes: to the points of the
stations and to the midpoints of the spaces between stations, and also in time for the
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moments of the position of the measuring equipment at the bottom. The validity of
exactly this choice of points and moments of stations is considered in section “Error
Estimates” to estimate the errors. The calculation of the transport deviation Qt due to
the current non-stationarity and the non-simultaneity of hydrographic measurements
was performed at the midpoints of the spaces between the stations. The bottom relief
along the tracks of the sections necessary for estimating the transports was calculated
by linear interpolation from the nodes of the digital data array to the section line over
steps of approximately 0.1 km, so that thewhole number of spaces between the station
points would be located between the station points. The results of all the calculations
are shown in Table 2 and in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15.

Error Estimates

Before proceeding to the analysis of the results of calculations it is necessary to
estimate their accuracy. It has two constituents: the accuracy of the data and the
accuracy of the calculation procedure.

The basis for estimating the calculation error based on the digital level maps of
the ocean surface is the FME (Formal Mapping Error), δζ. The distributions of
this error over the sections are shown in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and
15. If we interpret it as the root-mean-square deviation of the level at a point, then
the error in calculating the level difference between two points is defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δζ21 + δζ22

q
. In the ocean with a flat bottom and depth h, the error of the barotropic

transport along any trajectory connecting these points (provided that g and f are
constants) is defined as:

δQ=
gh
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δζ21 + δζ22

q
; ð19Þ

if we constrict the trajectory to a point, we obtain formally the variation of the
transport at this point:

δQ=
ffiffiffi
2

p gh
f
δζ. ð20Þ

The error of the barotropic transport over the section in the real ocean in finite
differences can be represented as follows:

⟨δQ⟩=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑j=1,m 2 gjhj

fj
δζj

� �2
wj

∑j=1,m wj

vuuut ; ð21Þ

376 R. Yu. Tarakanov



T
ab

le
2

E
st
im

at
es

of
th
e
le
ve
l
de
vi
at
io
n,

tr
an
sp
or
t,
an
d
er
ro
rs

in
ca
lc
ul
at
io
ns

ov
er

th
e
in
ve
st
ig
at
ed

se
ct
io
ns

(s
ee

T
ab
le

1)

Se
ct
io
n

FB
T
E
⟨δ
Q
⟩

(S
v)
,

se
e
(2
1)

D
ev
ia
tio

n
∑

Δ
ζ t

(c
m
),

se
e
(6
b)

D
ev
ia
tio

n
Q

t
(S
v)
,

se
e
(1
0)

b

R
an
ge

Δ
Q

ad
cp

tðÞ
(S
v)
,

se
e
(1
1)

c

R
an
ge

Δ
Q

0 al
t
tðÞ

(S
v)
,

se
e
(1
5)

c

D
is
cr
ep
an
cy

Δ
Q

(S
v)
,

se
e
(1
7)
;

SL
A
(A

D
T
)

R
an
ge

Δ
Q
−
Δ
Q

tðÞ
(S
v)
,

se
e
(1
8)

R
an
ge

Q
ad
cp
−
Q̄

ad
cp

(S
v)
,

se
e
(2
5)

D
ra
ke
_2

00
3

10
.0

0.
94

2.
4

−
2.
6
to

1.
1

−
4.
8
to

−
1.
5

−
1.
9(
−
2.
3)

−
0.
2
to

0.
2

0.
3

D
ra
ke
_2

00
7

9.
0

−
1.
39

−
3.
3

−
3.
3
to

−
1.
5

−
0.
1
to

1.
8

−
0.
1(
−
0.
1)

0.
1
to

0.
2

−
0.
3

D
ra
ke
_2

01
0

Ja
n

11
.0

3.
92

11
.8

−
0.
4
to

5.
4

−
12

.2
to

−
6.
4

0.
0(
0.
0)

0.
0
to

0.
0

0.
5

D
ra
ke
_2

01
0

O
ct

12
.4

−
3.
34

−
10

.4
−
13

.7
to

−
8.
0

−
3.
3
to

2.
6

−
0.
3(
−
0.
2)

−
0.
3
to

−
0.
1

0.
0

D
ra
ke
_2

01
1

11
.5

1.
32

4.
2

−
7.
9
to

1.
2

−
11

.9
to

−
2.
9

−
0.
1(
−
0.
1)

−
0.
3
to

−
0.
1

−
0.
6

A
21

19
99

9.
1

−
0.
42

−
2.
1

−
11

.2
to

−
4.
5

−
9.
0
to

−
2.
6

2.
1(
0.
0)

0.
0
to

0.
2

−
0.
1

SR
01

19
93

23
.2

2.
69

7.
1

0.
5
to

18
.1

−
6.
7
to

12
.5

0.
0(
0.
1)

−
1.
5
to

0.
1

0.
6

SR
01

19
94

19
.2

0.
8

2.
0

−
5.
2
to

−
1.
0

−
7.
3
to

−
3.
2

0.
0(
0.
0)

−
0.
1
to

0.
5

−
0.
5

SR
01

19
96

19
.9

−
3.
91

−
11

.3
−
11

.9
to

5.
8

−
1.
5
to

18
.8

0.
3(
0.
4)

−
1.
7
to

0.
9

−
1.
7

SR
01

19
98

14
.4

−
1.
25

−
3.
2

1.
1
to

6.
4

4.
4
to

9.
6

0.
9(
1.
1)

0.
0
to

0.
1

−
2.
3

SR
01

20
13

14
.3

1.
26

3.
1

2.
7
to

8.
3

−
0.
9
to

4.
1

3.
8(
3.
8)

0.
3
to

1.
2

−
2.
2

SR
01

20
15

14
.9

−
1.
08

−
3.
4

−
8.
6
to

−
6.
8

−
6.
1
to

−
2.
8

0.
3(
0.
3)

−
0.
6
to

0.
8

0.
7

SR
01

20
16

13
.0

0.
79

2.
3

−
2.
9
to

12
.9

−
5.
1
to

12
.5

−
3.
7(
−
2.
3)

−
1.
9
to

0.
1

1.
6

SR
02

20
01

18
.9

−
7.
95

−
34

.6
−
36

.1
to

37
.0

−
2.
6
to

45
.6

19
.2
(1
5.
1)

−
1.
8
to

26
.2

−
3.
1

I0
6
20

08
26

.6
−
6.
41

−
24

.0
−
23

.7
to

21
.1

2.
1
to

40
.6

2.
9(
3.
9)

−
3.
0
to

4.
6

2.
8

I0
9
19

95
16

.6
0.
33

1.
9

−
19

.6
to

4.
3

−
25

.0
to

2.
5

0.
4(
0.
0)

−
0.
6
to

1.
2

−
0.
3

I0
9
20

04
13

.0
−
0.
01

−
1.
4

−
10

.4
to

15
.1

−
10

.6
to

16
.3

−
0.
4(
−
0.
1)

−
1.
2
to

1.
5

−
0.
2

I0
9
20

12
12

.8
5.
25

17
.8

−
3.
8
to

25
.3

−
21

.0
to

4.
7

1.
6(
1.
6)

−
1.
0
to

2.
9

−
2.
2

SR
03

19
94

23
.0

−
0.
01

0.
1

2.
9
to

15
.4

3.
0
to

17
.6

2.
0(
1.
5)

−
2.
3
to

0.
0

−
0.
8
(c
on

tin
ue
d)

Influence of the Current Field Non-stationarity … 377



T
ab

le
2

(c
on

tin
ue
d)

Se
ct
io
n

FB
T
E
⟨δ
Q
⟩

(S
v)
,

se
e
(2
1)

D
ev
ia
tio

n
∑

Δ
ζ t

(c
m
),

se
e
(6
b)

D
ev
ia
tio

n
Q

t
(S
v)
,

se
e
(1
0)

b

R
an
ge

Δ
Q

ad
cp

tðÞ
(S
v)
,

se
e
(1
1)

c

R
an
ge

Δ
Q

0 al
t
tðÞ

(S
v)
,

se
e
(1
5)

c

D
is
cr
ep
an
cy

Δ
Q

(S
v)
,

se
e
(1
7)
;

SL
A
(A

D
T
)

R
an
ge

Δ
Q
−
Δ
Q

tðÞ
(S
v)
,

se
e
(1
8)

R
an
ge

Q
ad
cp
−
Q̄

ad
cp

(S
v)
,

se
e
(2
5)

SR
03

19
95

a
17

.5
−
0.
86

−
2.
8

−
5.
7
to

1.
4

−
3.
7
to

4.
8

0.
5(
0.
7)

−
0.
2
to

0.
7

2.
7

SR
03

19
96

a
16

.4
−
2.
38

−
8.
6

−
4.
9
to

11
.3

5.
6
to

16
.9

−
5.
5(
−
4.
9)

−
2.
9
to

3.
0

3.
5

SR
03

20
01

11
.6

0.
22

1.
3

−
15

.3
to

5.
2

−
5.
2
to

11
.0

0.
6(
0.
6)

−
1.
3
to

3.
0

−
1.
8

SR
03

20
08

11
.9

3.
15

10
.3

−
0.
5
to

16
.1

−
8.
5
to

3.
5

4.
5(
4.
1)

−
2.
3
to

2.
3

−
3.
3

SR
03

20
11

12
.5

−
3.
17

−
10

.0
−
14

.4
to

−
5.
8

−
4.
5
to

5.
2

−
1.
7(
−
2.
1)

−
1.
2
to

0.
8

0.
3

P1
1A

19
93

16
.3

−
13

.5
3

−
47

.3
−
59

.2
to

−
27

.2
−
9.
0
to

21
.2

2.
6(
2.
4)

−
2.
8
to

1.
8

−
2.
6

P1
9
19

93
12

.5
−
3.
97

−
17

.1
−
12

.8
to

1.
3

1.
2
to

18
.0

1.
7(
2.
0)

−
0.
4
to

3.
0

−
1.
3

A
R
05

19
97

4.
3

−
0.
08

0.
2

−
4.
0
to

3.
5

−
3.
0
to

0.
7

2.
2(
3.
0)

−
1.
2
to

2.
5

−
0.
1

A
R
05

20
02

3.
4

−
0.
99

−
1.
6

−
4.
0
to

0.
3

−
2.
8
to

3.
2

−
0.
5(
−
1.
6)

−
1.
3
to

0.
4

0.
7

A
R
05

20
03

2.
9

−
0.
41

−
0.
9

−
4.
3
to

2.
1

−
3.
4
to

2.
8

−
0.
7(
−
1.
4)

−
0.
1
to

0.
2

2.
4

A
R
05

20
04

2.
9

0.
25

0.
5

0.
2
to

3.
1

−
0.
6
to

3.
3

−
1.
7(
−
2.
1)

−
0.
8
to

0.
4

3.
6

A
R
05

20
05

3.
0

−
0.
21

−
1.
1

−
6.
6
to

3.
2

−
6.
9
to

−
0.
3

2.
6(
0.
9)

0.
2
to

4.
6

1.
2

A
R
05

20
06

3.
5

−
0.
56

−
1.
2

−
9.
7
to

2.
3

−
8.
5
to

3.
9

−
1.
9(
−
2.
3)

−
0.
6
to

0.
1

0.
3

A
R
05

20
07

3.
6

0.
87

1.
3

−
7.
3
to

5.
6

−
8.
5
to

4.
6

0.
0(
−
0.
2)

−
0.
3
to

0.
2

0.
2

A
05

19
98

13
.2

2.
32

21
.8

5.
5
to

20
.0

−
14

.7
to

1.
7

−
5.
1(
−
4.
2)

−
5.
0
to

1.
3

3.
7

A
05

20
04

8.
9

0.
54

5.
6

10
.0

to
28

.5
3.
3
to

21
.9

−
1.
5(
−
0.
5)

−
1.
8
to

3.
3

2.
0

A
05

20
10

10
.0

−
6.
65

−
47

.2
−
31

.8
to

8.
8

14
.1

to
60

.5
−
2.
3(
−
1.
9)

−
3.
5
to

2.
1

1.
3

A
05

20
11

9.
6

1.
53

12
.3

−
18

.2
to

18
.9

−
31

.4
to

5.
4

−
0.
1(
0.
6)

−
0.
9
to

2.
2

−
0.
3

A
05

20
15

9.
3

−
5.
13

−
39

.3
−
6.
0
to

36
.8

23
.1

to
64

.9
9.
1(
9.
5)

9.
6
to

15
.0

2.
9

A
10

19
93

14
.9

0.
68

4.
5

−
30

.8
to

11
.8

−
22

.5
to

25
.1

2.
3(
1.
9)

0.
3
to

6.
3

−
2.
4

A
10

20
03

9.
1

−
1.
46

−
8.
7

−
21

.3
to

34
.0

−
13

.2
to

43
.3

3.
6(
3.
2)

−
1.
6
to

0.
6

1.
4
(c
on

tin
ue
d)

378 R. Yu. Tarakanov



T
ab

le
2

(c
on

tin
ue
d)

Se
ct
io
n

FB
T
E
⟨δ
Q
⟩

(S
v)
,

se
e
(2
1)

D
ev
ia
tio

n
∑

Δ
ζ t

(c
m
),

se
e
(6
b)

D
ev
ia
tio

n
Q

t
(S
v)
,

se
e
(1
0)

b

R
an
ge

Δ
Q

ad
cp

tðÞ
(S
v)
,

se
e
(1
1)

c

R
an
ge

Δ
Q

0 al
t
tðÞ

(S
v)
,

se
e
(1
5)

c

D
is
cr
ep
an
cy

Δ
Q

(S
v)
,

se
e
(1
7)
;

SL
A
(A

D
T
)

R
an
ge

Δ
Q
−
Δ
Q

tðÞ
(S
v)
,

se
e
(1
8)

R
an
ge

Q
ad
cp
−
Q̄

ad
cp

(S
v)
,

se
e
(2
5)

A
10

20
11

10
.0

2.
86

16
.6

−
14

.9
to

43
.2

−
30

.2
to

29
.2

−
2.
0(
−
2.
6)

−
3.
3
to

0.
8

−
0.
3

I0
5
20

02
11

.7
1.
42

5.
7

−
67

.0
to

85
.2

−
60

.2
to

89
.4

0.
1(
−
1.
9)

−
15

.3
to

18
.1

−
9.
5

I0
5
20

09
10

.9
3.
55

15
.6

−
18

4.
2
to

16
6.
7

−
20

1.
3
to

15
0.
4

−
0.
5(
0.
4)

12
.8

to
20

.5
−
3.
4

P0
2
19

94
33

.7
−
4.
79

−
32

.6
−
45

.1
to

57
.7

−
44

.1
to

89
.1

8.
6(
−
21

.4
)

−
33

.0
to

31
.8

−
28

.1
P0

2
20

04
14

.5
15

.8
2

88
.0

−
33

1.
1
to

15
3.
2

−
41

6.
4
to

64
.0

−
0.
5(
−
1.
9)

−
3.
6
to

14
.8

−
5.
3

P0
2
20

13
16

.9
−
7.
37

−
43

.2
−
24

9.
5
to

−
57

.9
−
19

1.
2
to

−
0.
1

−
13

.8
(−

14
.5
)

−
23

.8
to

−
3.
3

−
2.
0

P0
6
20

03
8.
2

3.
69

13
.6

11
.4

to
29

3.
7

−
7.
8
to

27
6.
4

1.
8(
2.
4)

−
1.
6
to

11
.1

−
5.
7

P0
6
20

09
9.
4

−
5.
32

−
37

.1
−
12

8.
4
to

23
4.
4

−
85

.4
to

28
2.
0

−
3.
2(
−
2.
9)

−
12

.6
to

4.
1

−
4.
6

a T
he

es
tim

at
es

fo
rt
he

SR
02

se
ct
io
ns

in
19

95
an
d
19

96
ar
e
gi
ve
n
fo
rt
he

en
tir
e
se
ct
io
n,
ex
ce
pt

fo
ra

sm
al
ls
ou

th
er
n
se
gm

en
t,
en
cl
os
ed

in
th
e
da
ta
by

an
ic
e
m
as
k

b B
ol
d
fa
ce

in
th
is
co
lu
m
n
in
di
ca
te
s
th
e
tr
an
sp
or
t
de
vi
at
io
ns

gr
ea
te
r
th
an

FB
T
E

c B
ol
d
fa
ce

in
th
is
co
lu
m
n
co
rr
es
po

nd
s
to

th
e
ra
ng

es
of

th
e
tr
an
sp
or
t
va
ri
ab
ili
ty

th
at

do
no

t
cr
os
s
th
e
ze
ro

lin
e

Influence of the Current Field Non-stationarity … 379



Fig. 4 Depth distributions (lower parts of the figures), Formal Mapping Errors (heavy black
curves), and the cumulative deviations of the barotropic transports at the midpoints between
stations Qt (red curves) over the Russian sections in the Drake Passage: a 2003, b 2007, c January
2010, d October–November 2010, e 2011. Transport cumulation is from south to north. In Fig. 4d,
the segment of the section with the magnitude of the absolute value of Qt greater the Formal Error
of the Barotropic Transport ⟨δQ⟩ calculated for this segment is shaded; the duration of
measurements in this section is also indicated. The position of the sections is shown in the inset in
Fig. 1, information about them is given in Table 1
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Fig. 5 The same as in Fig. 4 for quasi-meridian sections in the Drake Passage: a A21 in 1999,
b SR01 in 1993, c SR01 in 1994, d SR01 in 1996, e SR01 in 1998, f SR01 in 2013, g SR01 in
2015, h SR01 in 2016. The locations of the sections are shown in Fig. 1; information about them is
given in Table 1
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Fig. 6 The same as in Fig. 5, but for sections south of Africa: a SR02 in 2001, b I06 in 2008

Fig. 7 The same as in Fig. 5, but for sections I09 south of the southwestern tip of Australia:
a 1995, b 2004, c 2012
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Fig. 8 The same as in Fig. 5, but for SR03 sections from Tasmania to Antarctica: a 1994, b 1995,
c 1996, d 2001, e 2008, f 2011

Fig. 9 The same as in Fig. 5, but for sections in the South Pacific: a P11A in 1993, b P19 in 1993
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Fig. 10 The same as in Fig. 5, but for quasi-zonal AR05 sections in the subarctic area of the
Atlantic: a 1997, b 2002, c 2003, d 2004, e 2005, f 2006, g 2007
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Fig. 11 The same as in Fig. 10, but for sections A05 in the North Atlantic: a 1998, b 2004,
c 2010, d 2011, e 2015
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Fig. 12 The same as in Fig. 10, but for sections A10 in the South Atlantic: a 1993, b 2003,
c 2011

Fig. 13 The same as in Fig. 10, but for sections I05 in the southern Indian Ocean: a 2002, b 2009
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the weight coefficients wj must satisfy the condition for the dependence of the
transport error only on the values of δζ at the ends of the section in the ocean with
the bottom slope compensating for the latitudinal variation of the Coriolis param-
eter. Therefore, they must be proportional to the depth at the ends of the section,
while at the remaining points they must be proportional to the sum of the variation
of the depth and the mentioned change in the section segments corresponding to
these points. The account for the latitudinal variation of the Coriolis parameter can
be important for the tracks of quasi-meridional sections at low latitudes. Since the
step of the section partitioning we used in calculating the bottom relief along the
section is much smaller than the resolution of the initial array of the bottom

Fig. 14 The same as in Fig. 10, but for sections P02 in the North Pacific: a 1994, b 2004, c 2013

Fig. 15 The same as in Fig. 10, but for sections P06 in the South Pacific: a 2003, b 2009
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topography and, even more, it is smaller than the resolution of the satellite altimetry
data used in this version of the calculation scheme we accept the following schemes
of calculation for this version:

w1 = g1h1 ̸f1j j,
wm = gmhm ̸fmj j,
wj =

gj
fj

hj+ 1 − hj− 1

2 − hj
fj+1 − fj− 1

fj

� �			 			 for j=2,m− 1;
ð22Þ

here, square brackets denote the absolute value of the magnitude.
Estimates of the error of the barotropic transport calculated on the basis of the

data from the formal mapping error over all the sections studied are given in
Table 2. Hereinafter, for simplicity, this error will be called the Formal Error of
the Barotropic Transport (FBTE).

The inaccuracy in the determination of the ocean level, due to the duration
of the measurements and the drift of the vessel at the station, should also be
considered as an error of the data. It can be interpreted, as well as the FME, as the
root-mean-square deviation with respect to some average level value during the
station execution time. Then, their total error at the station is represented as:

δζ′ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

∑
k=1, l

⟨ζ⟩− ζkð Þ2 + δζkð Þ2
� �s

, ð23Þ

where ⟨ζ⟩= 1
l ∑k=1, l ζk is the ocean surface level averaged over the station time,

the summation is carried out over all time points from the beginning to the end of
the station. Considering that the time of the station is usually much shorter than a
day, i.e. than the time step of the digital maps formula (23) can be simplified to
evaluate δζ′:

δζ′ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζa − ζb

2

� �2

+
δζað Þ2 + δζbð Þ2

2

s
, ð24Þ

where ζa, δζa, and ζb, δζb are the values of the level and the FME, respectively, at
the beginning and at the end of the station. Note that the value of δζ′ when taking
into account the vessel drift depends on the mean dynamic topography and it does
not depend on the topography if we do not take the ship’s drift into account. It is the
total error that can be used instead of the FBTE ⟨δQ⟩.

The example in Fig. 16 shows the distributions of the FME δζ and the absolute
value of the level change ζa − ζbj j at the stations with and without taking into
account the vessel’s drift over the section across the Drake Passage in October
2010. The calculation was made both from the SLA and ADT data. As can be seen
from Fig. 16, the level change without taking into account the vessel’s drift is more
than one order of magnitude smaller than the FME. It is expected that the largest
changes in the level appeared during the calculation based on the ADT data taking
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into account the vessel drift. They are as large as 2 cm, which corresponds to a
2-mile drift of the vessel at the station. However, even these errors appeared two
and a half times smaller than the FME at these points, which corresponds to a
contribution to the total error given by formula (22) of only about 2%.

The previous example of the section across the Drake Passage shows that the
existence of the time period of measurements and the drift of the ship at the stations
do not lead to any significant additive to the FME over the entire section, although
the local effect may be significant. Another conclusion follows from this fact: the
choice of the station point in time (the beginning, the position of the measuring
equipment at the bottom, and the end of the station) is not important for estimating
the barotropic transport over the entire section based on the satellite altimetry data.

One more error in the data that affects the accuracy of estimating the transport in
the sections is the error of the digital array of the bottom topography. Since the
magnitude of the barotropic transport error depends on the depth over the section,
the error of the digital bottom topography array, which is a percentage of the depth
and obviously does not make a significant additional contribution to their total
error.

As already noted in section “Method of Processing”, the values of ΔQ, and
ΔQ−ΔQ tð Þ determined by formulas (17) and (18), characterize the quantita-
tive difference between the estimates of barotropic transports in two
finite-difference schemes for representing the section: with the calculation of the
sea level at the points of the stations and the midpoints of the spaces between them.
We note that when the distance between the stations tends to zero, discrepancy ΔQ

Fig. 16 Distribution of errors over the Russian section in the Drake Passage in October–
November 2010. Black color shows the Formal Mapping Error. The color curves correspond to the
errors related to the duration of measurements and drift of the vessel at the stations: red curve is
calculated from the data of the Absolute Dynamic Topography taking into account the drift of the
vessel, purple is the same, but according to the Sea Level Anomaly, blue is the same, but without
taking into account the drift of the vessel
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corresponding to the calculation over the section length and time-dependent dis-
crepancy ΔQ−ΔQ tð Þ also tends to zero.

Over most of the sections studied, with a typical distance between stations less
than 30 miles, the absolute value of discrepancy ΔQ was several times smaller than
the FBTE ⟨δQ⟩ (Table 2). We noted above that the specified distance, depending on
the latitude range of a particular section from Table 1, is 2–3 steps of a
quarter-degree grid of altimetry data. However, there are examples when the values
of ΔQ and ⟨δQ⟩ are comparable (sections SR02 in 2001, A05 in 2015, P02 in 1994,
and P02 in 2013), which implies insufficient resolution of these sections with the
occupied stations. The characteristic distance between stations over section SR02
was 60 miles in its northern part, while the distance between stations over the P02
(1994) section was 90 miles. These are the maximum values among all the sections.
The characteristic distance between stations in the open ocean over the sections
A05 (2015) and P02 (2013) was 40 miles. A wide range of values ΔQ−ΔQ tð Þ also
indicates lack of resolution of the sections by the stations. This criterion adds
sections I05 in 2002 (up to 50 miles between stations), P02 in 2004 (30–35 miles),
P06 in 2003 (30–35 miles) and P06 in 2009 (30–35 miles). We note that almost
zero errors were estimated over the lines of the Russian sections in the Drake
Passage with a resolution of 10 miles.

Calculation of transport deviationQt due to the non-stationarity of the current field
and the non-simultaneity of hydrographic measurements does not depend on the type
of the finite-difference scheme of the partition of the section (see formula (10)).
Therefore, discrepancy ΔQ has nothing to do with the estimates of the accuracy of
this value. In order to obtain such an estimate, it is possible to virtually increase the
number of stations over a section, gradually reducing the time intervals and the
distance between stations to a value smaller than the grid step of the altimetric data.
Then, the values of Qt are calculated for these versions of the partition of the section
by formula (10). Their discrepancy with the estimate of Qt at the original resolution
characterizes the unknown error due to the difference between the horizontal
resolution of the maps and distance between the stations over the section.
Figure 17 shows the examples of the cumulative (from the northern end for the
meridional, and from the eastern end for the zonal sections) values of Qt discrepancy
over several sections for two-, four-, and eightfold subdivision of sections by stations.
These examples show that the calculation error ofQt over the lines of the real sections
is much smaller than the FBTE. Even over the P02 section (1994), with the worst
station resolution, their ratio was one to four (8 Sv vs. 34 Sv; 1 Sv = 106 m3 s−1). In
most cases, the calculation error of Qt did not exceed several tenths of a Sverdrup.

As already indicated in section “Method of Processing”, the averaging of the
ADCP data to the center of the space between the stations (when estimating the
barotropic component of the current) does not involve quantitative differences in the
calculation of the level surface. However, when estimating the transport across a
section, this procedure leads to the following discrepancy:
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Fig. 17 Cumulative distributions of the ΔQt difference between the initial and increased
resolution of the sections by the stations: a SR01 in 2016, b SR02 in 2001, c SR03 in 2008,
d AR05 in 2005, e A05 in 2015, f A10 in 2011, g I05 in 2002, h P02 in 1994, i P02 in 2004, j P06
in 2009. Blue, green, and red curves are for double, fourfold, and eightfold increase in resolution
respectively
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Qadcp − Q̄adcp =
1
2

∑
i=1, n− 1

hī+0.75 xi+1 − xi+0.5ð Þ− hī+0.25 xi+0.5 − xið Þð Þ ui+1 − uið Þ;

ð25Þ

here, Qādcp is the transport based on the averaged data, xi and ui are the distances
from the beginning of the section and the barotropic component of the measured
velocity at the point of the i-th station, respectively, xi+0.5 is the distance from the
beginning of the section to the midpoint point between the i-th and i + 1-st stations,
hī+0.25 is the average depth between the i-th and i + 0.5-th points of the section. As
the distance between the stations tends to zero, this discrepancy also tends to zero.
Although it characterizes the accuracy of the calculation procedure from the ADCP
data, it can be easily simulated by the altimetry data. Velocity values can be either
interpolated over the section line from the digital maps of velocity at the ocean
surface or calculated using the ADT data over the section line, for example, at the
midpoints of the spaces between stations. Table 2 shows the estimates of the dis-
crepancy for the second method of calculating the velocity. The values of the
discrepancy over sections with a spatial resolution between stations less than 30
miles are usually substantially smaller than the FBTE. These values are comparable
on the sections with a coarser resolution. The exception is only valid for a few
AR05 sections where the formal error is very small.

Summarizing the discussion in this section, it can be argued that the FBTE is the
main component of the error in estimating the barotropic transports over hydro-
graphic sections from satellite altimetry. The remaining components in most cases
are smaller. An exception may be the sections, where the distance between stations
is much larger than the linear quarter-degree step of the grid of the altimetric data.

Discussion

As already noted above, the non-stationarity of the current field and the
non-simultaneity of hydrographic measurements in calculating the barotropic
transport across the hydrographic section from the ADCP measurements are
manifested in two phenomena: in the transport deviation Qt based on the satellite
altimetry data, which can be taken into account using the altimetry data, and in the
unaccountable temporal variability of the barotropic transport due to the displace-
ment of the streamlines of the geostrophic currents with respect to isobaths.

Total transport deviation Qt over 12 of the 49 sections studied in the World
Ocean (Table 1), was greater than the estimate of the FBTE ⟨δQ⟩ (Table 2). Among
them are the following quasi-meridional sections: January 2010 in the Drake Pas-
sage, SR02 south of Africa, I09 in 2012 from the southwestern tip of Australia to
Antarctica, P11A south of Australia, P19 in 1993 in the Southeast Pacific;
quasi-zonal sections: A05 in 1998, 2010, 2011, and 2015 in the North Atlantic, A10
in 2011 in the South Atlantic, I05 in 2009 in the Southern Indian Ocean, P02 in
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2004 and 2011 in the North Pacific, P06 in 2003 and 2009 in the South Pacific. It is
expected that in most of these cases there was a long duration of measurements over
the sections (more than 20 days). However, there is an example of faster mea-
surements (9 days) in January 2010 in the Drake Passage. There are also several
examples of “rapid” sections, when deviation Qt was smaller, but comparable to the
error ⟨δQ⟩: the October 2010 section in the Drake Passage (8 days), SR03 in 2008
(18 days) and 2011 (14 days) the south of Australia (Table 2).

Figures 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 show the distributions of
cumulative deviations Qt over the 49 sections studied here (Table 1). The accu-
mulation of the deviation occurs from north to south for quasi-meridional, and from
east to west for quasi-zonal sections. Configurations of level deviations ∑Δζt are
almost similar to these distributions. The coefficient of similarity between them can
be estimated from Table 2. In addition, the intervals of the sections with sharp local
deviation Qt, which are not less than the FBTE ⟨δQ⟩, are highlighted in some of
Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15. These sharp deviations can be
associated both with a significant time pause in the measurements and a rapid
change in the current field in short time intervals.

Segments with sharp deviation Qt are found in the western parts of the oceans
over quasi-zonal sections: A05 in 2010 and 2015 close to the continental slope of
North America in the North Atlantic (Fig. 11c, e); P02 in 2004 and 2013 crossing
the Kuroshio zone and the Kuroshio Recirculation in the North Pacific (Fig. 14b, c),
P06 in 2009 crossing the retroflection of the East Australian Current in the South
Pacific (Fig. 15b). In the latter case, significant deviation Qt compared with ⟨δQ⟩
was accumulated just in 3 days. It should be noted that in the P02 section in 2004 a
deviation of 57 Sv, which occurred only in 5 days, is comparable to the total
transport of the Kuroshio estimated at 52–57 Sv [7, 14]. Two segments with a
significant sharp deviation are located in the western part of section A10 in 2011
(Fig. 11d).

In the Southern Ocean, the segments of sections Drake_2010 in October 2010
(Fig. 4d), and P11A in 1993 (Fig. 9a) with sharp deviations Qt corresponded to the
northern periphery of the Antarctic Circumpolar Current (ACC). Of particular note
is the P11A section south of Australia, where about 47 Sv were accumulated just in
5 days, which is more than a quarter of the average total transport over this section
in the Southern Ocean, consisting of the transport of the ACC (173 Sv according to
[3], transport compensating the flow of water from the Pacific into the Indian Ocean
through the Indonesian Straits (14–18 Sv) (e.g., [4, 18]), and transport compen-
sating the flow from the Pacific to the Arctic Ocean through the Bering Strait
(0.8 Sv) [16]. A sharp jump of Qt in the northern part of section P19 (Fig. 14c) is
associated with a long time break in the measurements.

The above examples show that the non-stationarity of the current field in
combination with non-simultaneous measurements at stations of a hydrographic
section can lead to significant distortions in the transport estimates over the sections
based on the ADCP measurements, i.e. “instantaneous” measurements of the
velocity of currents at stations. Often, the accumulation of these distortions along
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the line of the section takes place in small time intervals of several days and it is
localized in relatively small parts of this section, where the largest non-stationarity
has been noted. Thus, in the analysis of the real field data in the ocean, the estimates
of such distortions are absolutely necessary both with respect to the calculation of
the total transport across the section, and with respect to the investigation of the
structure of this transport. This conclusion concerns even such “fast” measurements
as sections in the Drake Passage, the duration of which is less than 10 days.

As can be seen from Table 2, the range of variability of the instantaneous
barotropic transports (the range of barotropic transport anomaly values in Table 2)
over most sections is significant compared with the FBTE ⟨δQ⟩; the exception is
related to almost all “quick” sections in the Drake Passage (except for SR01 in
2016) and four SR03 sections south of Australia (1994, 1995, 1996, and 2011).
These facts of such significance indicate that the estimation of the variability of the
barotropic transport caused by the displacement of streamlines at the ocean surface
relative to the isobaths is essential in the analysis of the field data, even over “fast”
sections. For example, the duration of the above mentioned SR01 section in 2016
was only 6 days.

The range of instantaneous barotropic transport variability should be interpreted
depending on the restrictions on the total transport across the section. Under the
conditions of constant total transport across the section line, the oscillations of its
baroclinic and barotropic components must completely compensate each other. It is
exactly the case that is observed over the lines of the transoceanic quasi-zonal
sections crossing the Atlantic, Indian, and Pacific oceans. In the Atlantic Ocean,
instantaneous total transport corresponds to the inflow of the Pacific waters through
the Bering Strait; in the Indian Ocean this is the inflow through the Indonesian
straits (over the sections from Africa to Australia); in the Pacific Ocean this is a
combination of the outflow through the Indonesian straits depending on the location
of the section. Thus, the range of the barotropic transport anomaly values ΔQ′

alt tð Þ
in Table 2 for the corresponding sections also gives an indirect estimate of the
oscillations of baroclinic transports.

The time variability of the total transport over the quasi-meridian sections
crossing the Southern Ocean exists, due to the variability of the transport of the
ACC, as a result of which exact compensation of the oscillations of the instantaneous
barotropic transport by the baroclinic apparently does not occur. At the same time,
the measurements in the Drake Passage [8] show a high degree of anticorrelation
between the barotropic and baroclinic transports in the Southern Ocean. Under these
conditions, the range of the barotropic transport anomaly values ΔQ′

alt tð Þ in Table 2
represents an indirect combined estimate of fluctuations in the baroclinic transport
and the variability of the total transport. We also note that no exact compensation
occurs over the lines of the sections not ending at the continental slope.

The account for Qt allows us to complete the total transport, determined from the
data of the instant ADCP measurements over a section, to such a total transport that
has exact physical correspondence between its baroclinic and barotropic compo-
nents. This is caused by the gained exact time correspondence between the ocean
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level and the CTD profile at the stations. However, the total transport obtained
using the suggested method does not have to tend to a strictly defined value (in the
case of quasi-zonal sections across the Atlantic, Indian, and Pacific oceans) or to
some range of temporal variability (in the case of quasi-meridional sections in the
Southern Ocean). The same is related to the barotropic and baroclinic components
separately. An illustration of this statement is that quite often the total barotropic
transport over the section exceeds the variability of its instantaneous values. In
Table 2, this corresponds to the range of values ΔQ′

alt tð Þ that do not cross the zero
line. The total transport obtained in this manner is only an approximation to the real
values. The same conclusion is related to the total transport recovered from the
ADT data at stations. To obtain a final estimate of the total transport across the
section or the range of its variability, depending on the restrictions on the total
transport, it is necessary to study the variability of the baroclinic transport com-
ponent during the section time period based on analysis of the measurements in the
ocean depth.

Conclusions

1. The main error component in the estimates of the barotropic transports over
oceanic sections from the satellite altimetry data is caused by the Formal
Mapping Error.

2. The non-stationarity of the current field in combination with non-simultaneous
measurements at stations of a hydrographic section can lead to significant (i.e.,
exceeding the error in calculating the barotropic transport, based on the Formal
Mapping Error) distortions of the transport estimations over the sections based
on the ADCP measurements of velocity. Thus, the estimates of these
non-stationarity and non-simultaneity are absolutely necessary in the analysis of
the field data in the ocean, both with respect to the calculation of the total
transport across the section, and with respect to the investigation of the structure
of this transport.

3. The account for the deviation of the barotropic transport caused by the
non-stationarity of the current field and non-simultaneity of hydrographic
measurements allows us to add an increment to the total transport, determined
from the instant ADCP measurements over a section, only up to some
approximation of the real total transport. To obtain a final estimate of the total
transport across the hydrographic section, it is necessary to study the variability
of the baroclinic current component on the basis of the analysis of the mea-
surements in the ocean column.
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Satellite Remote Sensing of Submesoscale
Eddies in the Russian Seas

Andrey G. Kostianoy, Anna I. Ginzburg, Olga Yu. Lavrova
and Marina I. Mityagina

Introduction

Numerous field measurements (especially large in number since the 1970s when the
Soviet experiment POLYGON-70, the American experiment MODE, and the
Soviet-American experiment POLYMODE were performed) and satellite imagery
showed that the oceans are full of eddies of different formation mechanisms and
different spatial and temporal characteristics. Among the inhabitants of the eddy
zoo [32]: frontal eddies of large-scale currents, open sea eddies, topographic eddies,
eddies generated under atmospheric influence, intrathermocline lenses, dipoles,
tripoles, etc. (see, for example, [4, 12, 17, 26, 27]). Their diameters vary in the wide
range from a few kilometers to over 200 km and lifetimes from a few days to tens
of months and even years (in case of intrathermocline lenses). Eddies with a hor-
izontal scale D of order of the Rossby internal radius of deformation Rd relate to
mesoscale (synoptic in Russian literature) ones. These geostrophic or
quasi-geostrophic eddies with anticyclonic or cyclonic rotation (clockwise or
counter-clockwise in the Northern Hemisphere, respectively) are the most studied to
date both with in-situ measurements and with satellite observations. They are a
powerful mechanism of horizontal (due to the involvement of the surrounding
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waters on the eddy periphery) and vertical (due to upwelling/downwelling motions
of the water at the eddy center) mixing in the ocean.

Observations (photographs in sunglitter areas on the sea surface) of American
space oceanographers from the spacecrafts, especially during shuttle mission 41-G,
US (1984), have shown that submesoscale (D less than Rd) eddies exist throughout
the ocean [23, 29–31]. They have a spiral form, rotate in the cyclonic direction and
are observed in the ocean beyond six degrees north and south latitude [31]. Such
eddies are also found on the radar images in different regions of the ocean/seas (e.g.,
[2, 10, 20]).

It is assumed that submesoscale flows are characterized by a larger Rossby
number (Ro of O(1)) and higher (on order of magnitude) vertical velocity than the
mesoscale, which determines their important role in the vertical exchange between
surface and deeper layers of the ocean/sea [35]. However, to date, information on
the mechanisms of their generation, life history and vertical structure is clearly
insufficient. In-situ measurements in the eddies’ areas are practically absent because
of their small time of life and small spatial sizes. Therefore, the accumulation of
satellite observations of submesoscale vortices in various oceans/seas together with
related information on hydrophysical and meteorological conditions is extremely
important.

In this paper, observations of submesoscale eddies in the Russian seas (the
Black, Caspian, Baltic, and White) are discussed and assumptions are made about
possible mechanisms of their formation.

Manifestation of Eddies on the Sea Surface and Data Used

Submesoscale eddies rarely appear in satellite visible band and infrared (IR) images
acquired by sensors MODIS Aqua/Terra and AVHRR because of the weak thermal
or optical contrasts of the structures relative the surrounding water and insufficient
spatial resolution of the sensors (1 km). However, sometimes they were detected in
satellite optical images with high spatial resolution (meters–tens of meters): for
example, in optical images of the QuickBird sensor (resolution of 0.6–2.44 m) [18]
or the Landsat-5 Thematic Mapper (TM) sensor (resolution of 30 m) [20].

The main source of information on submesoscale eddies are satellite radar
images [10, 11, 13–15, 20, 21]. The advantage of the latter images is the all-weather
survey (independence from time of day, and cloudiness) and high spatial resolution
(10 to 100 m) in a swath from 100 to 500 km. The best conditions for eddies to be
manifested in radar images (RI), wind speed range 2–5 m/s and the presence of
surface films of surface-active substances (oil films, films of biogenic origin during
the phytoplankton bloom), which smooth the sea surface due to the suppression of
small-scale component of sea waves. These films can be found virtually everywhere
on the vast sea surface, mostly in warm seasons, they are very sensitive to surface
currents and typically form the shape of a local circulation pattern. A manifestation
of eddies on the sea surface is due to the involvement of the slick strips in the eddy
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movement. At high wind speeds, only contours of the eddy or its center can be
drawn on RI due to shear-wave mechanism (the interaction of waves and currents);
in this case it is often not possible to determine eddy size and direction of rotation.
The manifestation of eddies in radar imagery can be also due to the young, not solid
ice.

For the purposes of illustration we shall use in this paper a few visible band
images (from the QuickBird and the Landsat-5 TM sensors) as well as satellite radar
images obtained from the ASAR Envisat, SAR ERS-2, and Sentinel-1.

Submesoscale Eddies in the Russian Seas

The Black Sea

The semi-enclosed Black Sea is characterized by intense mesoscale dynamics.
Typical elements of the circulation are mesoscale (∼20–100 km) eddies, vortex
dipoles, jets, the lifetime of which reaches several months (Rd in the open Black Sea
is equal to 15–20 km, in the shelf zone near Gelendzhik it is 8 km [37]). The main
results of the study of mesoscale dynamics of the Black Sea and its connection with
the large-scale water circulation (the Rim Current propagating cyclonically),
dependence on the wind forcing and topography of the continental slope, horizontal
and vertical exchange in the active layer of the Black Sea are presented in numerous
works (e.g., [6, 7, 20, 24, 33, 36]).

Satellite high-resolution images reveal submesoscale eddies both in the coastal
zone and in the deep area of the Black Sea. A set of visible images of the QuickBird
satellite, which was exhibited in the programme “Google Earth” in 2009 [18],
demonstrate the variety of eddies with sizes of 1–10 km in the coastal zone, which
appear due to the presence of water with high content of suspended matter and
surfactants (see Figs. 1, 2, 3, 4, 5 and 6), the dates of these images were not
specified).

Anticyclonic eddy with a diameter of about 7 km is clearly manifested in the
region of the villages of Khosta and Kudepsta in Fig. 1. Source of suspended matter
is the outflow of the rivers Mzymta and Psou located to the southeast of this point.
The formation of this eddy may be caused by the instability of the coastal north-
westward current associated with local features of the shoreline.

A cyclonic eddy with a diameter of 4 km is seen in Fig. 2, in the area of the
Bakalskaya Spit (north-western coast of Crimea). This eddy is manifested in the
field of suspended matter, the source of which may be only local resuspension of
waters near the sandy spit under the action of wind waves. It could be formed by
rounding the spit with a coastal current.

A cyclonic eddy with a diameter of 2 km is observed at a distance of 5 km from
the coast in the area of a northern suburb of Sochi (village of Mamay, Fig. 3). In
this case, a spiral vortex is manifested due to the presence on the sea surface of a
large amount of surfactant. This cyclone could be a result of short-term wind
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Fig. 1 Anticyclonic eddy (AC) offshore of Khosta and Kudepsta (the northeastern Black Sea)

Fig. 2 Cyclonic eddy
(C) westward of the
Bakalskaya Spit (Crimea)
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forcing at the sea surface directed to the south-southeastward, i.e. against the main
northward stream of the Rim Current.

A vortex dipole with a horizontal size of about 2 km (the width of the “cap”) has
been observed in the region of the village of Myskhako in the field of surfactants
(Fig. 4). The dipole is oriented from the northeast to southwest; it is probably also
caused by the corresponding local wind burst. A source of a number of surfactants

Fig. 3 Cyclonic eddy (C) offshore of Sochi City (the northeastern Black Sea)

Fig. 4 Vortex dipole
offshore of Myskhako (the
north-eastern Black Sea)
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in this area are the waste water of the village of Myskhako, as well as contaminated
surface waters that flowed from Tsemess Bay and the port of Novorossiysk.

In Fig. 5 a small volume of river water of the river Mzymta with high content of
suspended matter propagates perpendicular to the shore at a distance of 1 km from
the mouth and terminates with a cyclonic eddy in a south-easterly direction, against
the usual direction (northwestward) of the coastal water flow. It should be noted that
the river plume can form a dipole or a cyclone/anticyclone at its terminal depending
on the direction of wind and/or coastal current. This process has been observed in
the coastal zone of Adler village. Formation of such eddies is conditioned directly
by the river flow transferring the local momentum to the surface layer of the sea.

Two anticyclonic eddies with diameters of 2 and 1 km are seen in Fig. 6 off the
coast in the region of the village of Shakhe in the field of suspended matter. The

Fig. 5 Cyclonic eddy (C) offshore of the Mzymta River mouth (the northeastern Black Sea)
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larger eddy is located opposite to the mouth of the Shakhe River and may be caused
by the river outflow. The smaller eddy can be formed be shear instability of the
coastal current.

Submesoscale eddies with a diameter of 2–8 km, both cyclones and anticyclones,
are often observed on a narrow (2–10 km) Caucasian shelf in the area of Gelendzhik,
north of Cape Idokopas. The generation of anticyclonic eddies in this region is
conditioned by two mechanisms: (i) shear (barotropic) instability of the Rim Current
propagating over the upper part of the continental slope, and (ii) the separation of the
water flow from the shore due to the extension of the shelf more than 2 times west of
Cape Idokopas [37]. Observation of such anticyclone in September 2008 (IR data
from the NOAA satellites with 1 km spatial resolution, hydrological measurement,
and ADCP-survey) during a few days showed that this eddy formed first as sub-
mesoscale one with a radius of 3 km and then turned into a mesoscale eddy with a
radius of 10 km when moving northwestward. Estimates of the Rossby number
resulted in the values of 1.3 and 0.4, respectively [37]. Periodic formation of anti-
cyclonic eddies behind Cape Idokopas was repeatedly observed on MERIS-Envisat
satellite images (resolution of 250 m, see [3]).

Fig. 6 Two anticyclonic (A) eddies offshore of Shakhe (the northeastern Black Sea)
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Generation of submesoscale cyclonic eddies occurs, in particular, in the cases of
southeastward currents on the shelf associated with the passage of coastal mesos-
cale anticyclonic eddies that results in the cyclonic shear between the eddy and the
shore [20, 37]. Examples of manifestation of submesoscale cyclonic eddies in the
region of Gelendzhik Bay are presented in Fig. 7. Survey of velocity field with
ADCP towed behind the vessel in the area of a submesoscale cyclone near
Gelendzhik in September 2012 showed that the velocity of the orbital motion in the
eddy core reached 50 cm/s; active dynamics was observed only in the upper 15–
20 m layer, i.e. above the thermocline. The eddy core was characterized by
increased concentration of phytoplankton due to the upward motions (upwelling) in
its center [38].

Submesoscale eddies in the coastal zone (cyclones, anticyclones and vortex
dipoles) can also be associated with coastal upwelling [7, 20]. They are manifested
well in the regions of river outflows with increased concentration of surface-active
substances. Dense packing of interconnected vortex structures in the Danube Delta
region is shown in Fig. 8 (see also Fig. 5.23a in [20]).

Submesoscale eddies are formed in the open part of the sea as well. One of the
obvious mechanisms for the occurrence of such short-living entities is the shear
instability on the periphery (front) of mesoscale anticyclones (see Fig. 2a in [36];
Fig. 6.13 in [20]). It is not excluded that similar situations follow intense wind
forcing. An example of radar image with solitary cyclonic eddy about 8 km in
diameter north of Cape Sinop is given in Fig. 2.4 in [14]. Dense packing of multiple
spiral vortices 2.5–10 km in diameter in the deep eastern part of the Black Sea in
the absence of any front (velocity shear) is presented in Fig. 9 (Fig. 2 in [21]).
Another example of four spiral cyclonic vortices with diameters of about 15 km,

Fig. 7 Examples of submesoscale cyclonic eddies detected in SAR imagery of the northeastern
Black Sea offshore of Gelendzhik: a part of an Envisat ASAR image of August 3, 2006, 19:13
UTC, showing a cyclonic eddy with a diameter of 3.5 km; b part of an Envisat ASAR image of
June 26, 2006, 07:32 UTC, showing a cyclonic eddy with a diameter of 5.3 km; c part of a
TerraSAR-X image of September 13, 2012, 15:15 UTC, showing two cyclonic eddy with
diameters of 5 km (A) and 3.5 km (B)
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one interconnected pair of which was located within about 20 km of the shoreline
and another pair at a distance about 50 km from the shore northeast of the Bosporus
Strait, was given in a number of publications (see [31]; Fig. 1 in [23]; Fig. 6.15 in
[20]). The comment to this picture (picture in the sunglitter on September 18, 1992)
by Robert Stevenson [31] is interesting: “This spiral-eddy field was in that location
throughout the mission and was caught in several photos over three days, although
individual eddies could not be identified one day to the next. There is no expla-
nation for the absence of eddies in the waters east and northeast from the Black Sea
mouth of the Bosporous”. It follows from this comment that the eddy pattern was
local, it appeared spontaneously, its time scale was a few days, and the lifetime of
individual vortices did not exceed a day. Mechanism or mechanisms of generation
of eddy fields in such cases are unknown. Heterogeneity of atmospheric flow (wind)
or convection in the surface layer of the ocean were mentioned as the hypothetical
mechanisms of formation of solitary spiral eddies, group/fields of such eddies in the
open sea [5, 9, 20].

Fig. 8 Dense packing of eddies offshore of the Danube Delta (the northwestern Black Sea). Part
of an Envisat ASAR image of August 29, 2009, 08:14 UTC
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The Caspian Sea

Large-scale circulation of the enclosed Caspian Sea is well studied on the basis of
hydrological measurements and modeling, whereas the representation of the
mesoscale dynamics of the sea in the warm season (period of less cloud cover) is
provided mainly by satellite images in the visible and IR bands [20]. Mesoscale
eddies in the Middle and Southern Caspian have a wide range of spatial scales from
about 10 km to about 80 km (Rd in the open Caspian Sea is equal to 17–22 km, in
the shelf zone it is 3–8 km [1]). The greatest number of submesoscale eddies are
found along the western coast of the Middle Caspian and to the south of the
Absheron Peninsula, which is connected, apparently, with a high concentration of
the surface films due to river runoff and petroleum products [14]. Examples of
submesoscale eddies manifestation south of the Absheron Peninsula and in the
souteastern part of the sea are given in Figs. 10 and 11, respectively. Vortex dipole
in the Northern Caspian (south of the Volga River Delta) manifested on the ERS-2
SAR image is shown in Fig. 13 in [10].

Fig. 9 Manifestation of submesoscale eddies in a radar image of the sea surface during autumn
phytoplankton bloom in the eastern part of the Black Sea. A part of a Sentinel-1A image of
October 26, 2014, 03:24 UTC
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The Baltic Sea

In the semi-enclosed and shallow Baltic Sea there are no intense permanent cur-
rents. Drift currents caused by wind are variable in direction and velocity, which
usually do not exceed 10–15 cm/s. This sea is characterized by intense mesoscale
and submesoscale dynamics [8, 14–16, 19–21, 34]. The typical size of subme-
soscale eddies in the Baltic is 2.5 km [14] (Rd is 7–10 km in the open sea and 1–
6 km in the shelf zone [25]). Examples of manifestation of submesoscale eddies in
the Baltic can be found in [8, 16, 20]. Some mechanisms of the formation of
submesoscale vortices in the sea are obvious: they are river runoff, frontal instability
(vortices at the boundary of mesoscale eddies), vortices at the terminals of filaments
in the upwelling zones. However, the mechanism of generation of closely packed
eddy fields of the type shown in Figs. 12 and 13 is still unclear.

Fig. 10 Submesoscale eddies south of Absheron peninsula (the Southwestern Caspian Sea,
Landsat-5, 02.06.2010)
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Fig. 12 Eddy field to the west and north of the Sambia Peninsula (ASAR Envisat, April 25, 2009,
09:11 UTC)

Fig. 11 Submesoscale eddies in the Southeastern Caspian Sea (ASAR Envisat, 19.10.2010)
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Figure 12 demonstrates an example of co-existing of submesoscale and
mesoscale eddies. The mesoscale dipole A1–C1 with an eddy diameter of about 10–
12 km is seen in the lower left corner of the image. Anticyclone A2 with diameter
of about 10 km forms a package of three dipoles with cyclones of a lesser size (3–
5 km). The diameters of counterparts of numerous submesoscale dipoles in Figs. 12
and 13 are 2–5 km.

Note that both images were acquired practically at the same time but in different
areas: to the west and north of the Sambia Peninsula (Fig. 12) and in the area
limited to 55°45′ −56°40′N, 18°30′ −20°55′E (Fig. 13). Obviously, the cause of
these eddy fields was the same. It is likely that they were caused by heterogeneities
of the atmospheric effects.

Another type of submesoscale eddies in the Baltic Sea is vortex streets of the
Karman’s street type (see, for example, Fig. 14). Such a vortex street was recorded
in the Bering Strait behind Fairway Rock on the ERS-1 SAR image (see Fig. 5 in
[10]). However, in the case of the vortex street in Fig. 14, no rocks or islands that
might explain its formation exist. Various orientations of streets observed by the
authors in this area (north of the Gulf of Gdansk, near 55°30′N) allows us to
suggest that their appearance is related to different wind directions in different
situations.

Fig. 13 Submesoscale eddy field west of Latvian coast (ASAR Envisat, April 25, 2009, 09:09
UTC)
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The White Sea

The White Sea is one of the smallest inner seas of Russia with complex topography
and intense tidal currents. Radar images and field measurements have shown that
submesoscale eddies were observed throughout the waters of the sea, the greatest
number of them were recorded near the fronts and in the areas of sharp increase in
depth [28, 39]. Characteristic diameters of these eddies are 2–8 km (Rd varied in the
range of 1–8 km with the lowest values in the shelf areas with intense tidal mixing
and the maximum values in the deep ones [39]. Preferential direction of rotation of
the vortices is cyclonic. Short-lived intrapycnocline eddies are also observed in the
same phase of tide over the irregularities of bottom relief.

Conclusions

Satellite remote sensing has shown that submesoscale eddies are a common element
of the dynamics of the inner Russian seas. They have short lifetime (a day or a few
days) and small dimensions (a few kilometers); hence, the main tool for their

Fig. 14 Vortex street in the Southeastern Baltic Sea (ASAR Envisat, May 17, 2008, 20:16 UTC)
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observation is satellite information with high spatial resolution. Such eddies as well
as mesoscale ones provide to a great extent the horizontal mixing in the open sea and
shelf/open sea water exchange, the latter is particularly important for inland seas
with a high level of contamination by river discharges, city and tourist resort wastes,
etc. Besides, submesoscale eddies can play an important role in the vertical exchange
between the surface and deeper layers of the sea/ocean [35]. Measurements with
ADCP in a cyclonic submesoscale eddy area in the Black Sea showed that active
eddy motions were observed only in the upper 15–20-m layer [38]. Thus, we can put
forward an assumption that stratification may be important for their formation.

The mechanisms of generation of submesoscale eddies in the coastal zones of
seas are: wind momentum; shear instability of coastal currents; river runoff;
interaction of vortices and dissipation; the interaction of flows with small-scale
features of the shoreline (headlands, spits) or irregularities of the bottom topogra-
phy. In the deep sea, the possible generation mechanisms are: frontal instability,
including instability at the boundaries of mesoscale structures (eddies, filaments of
upwelling). Less obvious mechanisms of formation of submesoscale eddies or fields
of such eddies are in the regions where fronts or velocity shear are absent (examples
of radar images of such eddy fields in the Black, Caspian, and Baltic seas are
presented in Figs. 8, 9, 10, 11, 12, 13). It was suggested in literature that their
formation may be a result of the atmospheric effects [5, 20] or convection [5, 9]. We
hope that further observations of remote sensing data jointly with the hydromete-
orological data will help to clarify this problem.
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Ship-Based Monitoring of the Northern
North Atlantic Ocean by the Shirshov
Institute of Oceanology. The Main Results

Artem Sarafanov, Anastasia Falina, Alexey Sokov,
Vyacheslav Zapotylko and Sergey Gladyshev

Introduction

The Meridional overturning circulation (MOC) in the North Atlantic is one of the
main drivers of the widely known global oceanic “conveyor belt”, an important
element of the Earth’s climate system (e.g., [1]). Warm upper-ocean waters trans-
ported northward by the North Atlantic Current release heat to the atmosphere, gain
density due to cooling, and eventually sink in the subpolar North Atlantic and
adjacent Arctic seas thereby generating the return southward flow of colder waters
at depths (Fig. 1) [2, 3]. Temporal variability of the large-scale circulation and
associated heat transport in the subpolar North Atlantic is one of the principal
factors behind the high-latitude climate anomalies in the Northern Hemisphere.

Progress in understanding the causes of the ongoing climate change and fore-
casting climate variability in the Arctic and over the European part of Russia for the
next decades require reliable observation-based estimates of the variability of the
North Atlantic circulation and the Atlantic–Arctic heat and freshwater fluxes, as
well as elucidation of the underlying mechanisms. In a number of recent studies,
radical changes in the thermohaline regime and large-scale circulation in the
Atlantic Ocean have been suggested to occur under global warming. For example,
the long-term freshening of the subpolar North Atlantic deep waters since the
mid-1960s [9] has been (cautiously) attributed to climate change-related factors [10,
11]. Hypothetically, under global warming, an increased evaporation in the tropics
and increased precipitation at high latitudes, coupled with an intensified melting of
Arctic ice, lead to the upper-ocean freshening in the regions of deep water for-
mation and, hence, to the deep water freshening in the Atlantic Ocean. At the same
time, milder winters along with the upper-ocean freshening lead to a decrease in the
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deep water production rates, which results in slowing of the Atlantic MOC (e.g.,
[11, 12]

To better understand the past and present changes in the ocean-atmosphere
dynamical system, as well as their causes and consequences, data on the full-depth
oceanic variability are needed. An indispensable effective tool for assessing the
large-scale circulation and thermohaline changes in the deep ocean and investi-
gating mechanisms governing these changes are repeated full-depth transoceanic
observations.

Since 1997, the Shirshov Institute of Oceanology has carried out the long-term
monitoring of the North Atlantic circulation and water mass properties along the
59.5° N hydrographic section between Cape Farewell (Greenland) and Scotland
(Fig. 1). Since 2002, the section has been repeated yearly on board the Russian
research vessels, providing high precision data on temperature, salinity, oxygen and
nutrients concentrations, and current velocities in the entire water column—“from
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shore to shore”, from the sea surface to the bottom. Based on the unique data set
thus collected, a number of fundamental findings have been achieved. Below, we
briefly summarize the main subjects and results of our research.

The 59.5° N transatlantic section (Fig. 1) was designed for monitoring the
large-scale circulation and thermohaline/chemical properties of oceanic waters at
the northern periphery of the North Atlantic, the region where the warm
upper-ocean waters are transformed by deep convection and mixing into the colder
intermediate and deep waters, the Labrador Sea Water (LSW), Iceland Scotland
Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW) (Fig. 1)
transported southward in the lower limb of the Atlantic MOC. Hydrographic data
collected at 59.5° N along with those obtained within the framework of the kindred
projects, primarily the French OVIDE (http://www.ifremer.fr/lpo/ovide), and his-
torical data sets have been used for studying the dense water production [13, 14],
decadal temperature and salinity changes in the intermediate–deep water column
[15–17], causes of these changes [17, 18], the mean state [8] and long-term vari-
ability of the large-scale circulation in the region [19–21].

Deep Convection in the Irminger Sea

The oxygen data collected in 1997 in the northern North Atlantic in several sections
ending nearby the southern tip of Greenland provided the observation-based sup-
port for the hypothesis [22] that winter convection in the Irminger Sea may pen-
etrate deep into the LSW layer (1000–2000 m), thus causing local renewal of this
water mass. A separate lateral maximum of oxygen concentrations in the deep LSW
layer was detected east of Cape Farewell (59.5° N, 36–40° W): the concentrations
increased (by ∼0.1 ml/l) from the Labrador Sea eastern edge toward the Irminger
Sea (Fig. 2) rather than the reverse, as would be expected if LSW observed in the
Irminger Sea interior in 1997 were solely of advective origin [13].

Reversal of the Deep-Water Freshening

The LSW and Nordic Seas overflow-derived deep waters, ISOW and DSOW,
freshened in the northern North Atlantic during the last three–four decades of the
20th century [9]. Between the 1960s and 1990s, the water column in the region
freshened on average by about 0.03 [10].

The long-term freshening reversed in the mid-1990s [15–17]. The salinification
(and warming) of the intermediate and deep waters since the mid-1990s (Fig. 3) was
muchmore intense than the preceding freshening. Over nearly a decade (1997–2006),
temperature/salinity in the intermediate–deep water column (σ0 ≥ 27.45, depths >
500–1000 m) at 59.5° N increased by ∼0.3 °C/0.03–0.04 [16].
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In the Irminger Sea, the long-term freshening in the deep water column
(σ0 > 27.80, depths >∼ 2000 m) reversed in the early 2000s [17]. The observed
freshening reversal was a lagged consequence of the persistent ISOW salinification

Fig. 2 Oxygen concentrations (ml/l) in the water column (lower panel) as observed in March–
October 1997 in four hydrographic sections (upper panel) ending nearby the southern tip of
Greenland. A separate oxygen maximum in the (LSW) layer (1000–2000 m) in the Irminger Sea at
59.5° N strongly implies local convective renewal of LSW before 1997.
Adapted from [13]

Fig. 3 Warming and salinification in the northern North Atlantic between the mid-1990s and
mid-2000s, as observed at 59.5° N. The figure shows the 2006–1997 temperature (°C, left) and
salinity (right) differences on isobaric surfaces in the Irminger Sea and Iceland Basin.
Adapted from [15]
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that occurred upstream, in the Iceland Basin, after 1996 due to salinification of the
Northeast Atlantic waters entrained into the overflow.

It was demonstrated [17] that the entrainment salinity increase was associated
with the North Atlantic Oscillation (NAO)-induced weakening and contraction of
the Subpolar Gyre and corresponding northwestward advance of subtropical waters
that followed the NAO decline in the mid-1990s and continued through the
mid-2000s. Remarkably, the deep water freshening reversal was not related to
changes in the overflow water salinity.

Deep-Ocean Salinity Changes and the NAO

Close relationship between the thermohaline properties of the northern North
Atlantic intermediate and deep waters and the winter NAO index on a decadal time
scale (r2 ≈ 0.65, 1950s–2000s, Fig. 4b, c) was revealed [18] from the
observation-based salinity time series for LSW in the Labrador Sea [23] and ISOW
in the Iceland Basin [15, 24]. Persistent NAO decline (amplification) leads to
warming and salinification (cooling and freshening) in the intermediate–deep water
column.

An explanation for the close link between the NAO and the coherent decadal
changes in the intermediate and deep water properties in the region was proposed
[18]. The two factors dominate this link (Fig. 4d): (i) intensity of convection in the
Labrador Sea controlling injection of relatively cold fresh waters into the inter-
mediate layer and (ii) zonal extent of the Subpolar Gyre that regulates the relative
contributions of cold fresh subpolar waters and warm saline subtropical waters to
the entrainment into the Norwegian Sea overflow south of the Iceland–Scotland
Ridge and to the Atlantic inflow to the Nordic Seas. These factors act in phase
leading to the observed coherent thermohaline changes in the intermediate–deep
water column.

Due to weakening of the surface forcing associated with the NAO transition into
neutral to low phase (1950s to mid-1960s, mid-1990s to mid-2000s), convection in
the Labrador Sea weakens diminishing cold fresh water penetration into the
intermediate layer. This results in warming and salinification at the intermediate
depths in the Subpolar Gyre. Concurrently, the Subpolar Gyre contracts allowing
northward advance of warm saline upper-ocean and intermediate subtropical waters
in the northeastern North Atlantic. Northward progression of subtropical waters
increases temperature and salinity at the upper intermediate levels and, corre-
spondingly, increases temperature and salinity of the Northeast Atlantic waters
entrained into the Iceland–Scotland overflow along its pathway to the deep Iceland
Basin. As a result, temperature and salinity at the deep levels increase. The contrary
changes: intensification of deep convection in the Labrador Sea and expansion of
the Subpolar Gyre, caused by amplifying surface forcing (mid-1960s to mid-1990s)
lead to cooling and freshening at the intermediate–deep levels. Additionally, under
high-NAO conditions, deep convection may occur in the Irminger Sea potentially
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contributing to cooling and freshening at the intermediate (LSW) levels. The two
regimes of convection and large-scale circulation corresponding to stronger (early
1990s) and weaker (mid-1960s, mid-2000s) NAO-related atmospheric forcing are
schematically visualized in Fig. 5.

Fig. 4 Coherence of the decadal salinity changes (1950s–2000s) of the intermediate (LSW) and
deep (ISOW) waters in the northern North Atlantic and their link to the North Atlantic oscillation
(NAO) index. a Schematic representation of the LSW and ISOW pathways and locations of the
Icelandic Low (L) and Azores High (H) centers constituting the NAO dipole pattern. The red
dotted line indicates the 59.5° N transatlantic section. b Salinity time series for LSW in the
Labrador Sea [23] and ISOW in the Iceland Basin [15, 24] overlaid by the third order polynomial
fits. c Time series of the winter NAO index, after [25], overlaid by 7-year running mean and third
order polynomial fit. d Mechanism of the NAO effect on the decadal changes in temperature
(T) and salinity (S) of the northern North Atlantic intermediate and deep waters. Positive/negative
links shown with the dark/light grey arrows mean that changes in ‘causative’ and ‘consequential’
characteristics have the same/opposite sign(s). The overall effect of the NAO on T and S of the
water column is negative: persistent NAO decline leads to warming and salinification of the water
masses and vice versa, as shown in (b) and (c).
Adapted from [18]
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Deep-Ocean Salinity Changes and Climate Change

There are increasing concerns that in the warmer climate, the MOC may substan-
tially decline due to a decrease in the convective activity in the northern North
Atlantic and Nordic Seas (e.g., [26]). The long-term freshening in the Nordic Seas
and freshening of the northern North Atlantic deep waters in the 1960s–1990s have
been considered as a likely indicator or precursor of the dramatic change in the
MOC (e.g., [11]). The freshening has been attributed to a combination of factors
potentially associated with the global warming: the increasing ice melt and net
precipitation at high latitudes (e.g., [10]). A probable causality between the climate
change and the decreasing North Atlantic deep water salinity has supported the
concerns and unfavorable predictions, thus ‘warming up’ the reasonable scientific
debate on climate change and overblown speculations in media.

Despite the long-term increase in freshwater input to the Arctic, freshening in the
northern North Atlantic had reversed in the mid-1990s, as we demonstrated above.
This reversal forces us to revise the hypotheses on the mechanisms behind the
deep-water thermohaline anomalies. It seems doubtful that the persistent global
temperature growth may lead to the opposite decadal trends (positive-then-negative-
then-positive, Fig. 4) in the deep water salinity.

Our results [16–18] suggest that natural atmospheric variability over the North
Atlantic plays the major role in the deep-water thermohaline variability on a decadal
time scale. There are no reasons to associate the deep-water freshening in the
1960s–1990s with climate change, unless the 3-decade-long surface forcing
amplification is evidently shown to be a consequence of the latter. Having said that,

Fig. 5 Schematic representation of the upper-ocean circulation and convection intensity in the
northern North Atlantic under high (left) and low (right) NAO conditions. Blue (magenta) solid
arrows indicate the upper-ocean flows with higher fraction of colder fresher subpolar (warmer
saltier subtropical) waters. The main pathways of the Nordic overflow-derived deep waters are
shown with the dotted curves. “C” and “E” symbols are used to denote, respectively, the deep
convection sites and the domain, where the Atlantic waters are entrained into ISOW. Larger
(smaller) circles indicate stronger (weaker) convection. SPG and STG are the subpolar and
subtropical gyres, respectively.
Adapted from [18]
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the net 1950s–2000s trends in the water mass salinities are negative implying that
the global factors (e.g., probable intensification of hydrological cycle [10]) may act
on longer time scales.

Decadal Variability of the Deep Western Boundary Current
at Cape Farewell

Recent decadal changes in the Deep Western Boundary Current (DWBC) transport
southeast of Cape Farewell were assessed from the hydrographic data (1991–2007,
Fig. 6a), direct velocity measurements (2002–2006) and satellite altimetry
(1992–2007). Following the approach used in earlier studies (e.g., [27]), we first
determined that the DWBC (σ0 > 27.80) baroclinic transport (TBC) referenced to
1000 m depth increased by ∼2 Sv between the mid-1990s (1994–1997) and 2000s
(2000–2007) (Fig. 6b) [19]. In the next step, we quantified velocity changes at the
reference level (1000 m) by combining estimates of the hydrography-derived
velocity changes in the water column and the altimetry-derived velocity changes at
the sea surface [20]. The inferred increase in the southward velocity at 1000 m
above the DWBC in 1994–2007 indicates that the increase in the DWBC absolute
transport was larger but very close to the 2 Sv increase in the DWBC TBC. This
result along with the observed coherence of the DWBC absolute and baroclinic
transport changes between individual observations [20] imply that the DWBC
absolute transport variability in the region is well represented by its baroclinic
component on the decadal and shorter time scales.

The historical record of the DWBCTBC (1955–2007, Fig. 6c) updated after Bacon
[27] shows distinct decadal variability (±2–2.5 Sv) with the transport minima in the
1950s andmid-1990s, maximum in the early 1980s andmoderate-to-high transport in
the 2000s. TheDWBCTBC decadal variability is consistent with the general pattern of
the recent decadal hydrographic and circulation changes in the northern North
Atlantic. The DWBC TBC anomalies negatively correlate (R = –0.80, 1955–2007)
with the thickness anomalies of LSW at its origin implying a close link between the
DWBC transport southeast of Cape Farewell andLSWproduction in the Labrador Sea
(Fig. 6d). During the recent three decades (late 1970s–late 2000s), the DWBC TBC

changes were also in-phase with the changes in the strength and zonal extent of the
Subpolar Gyre [20]. In particular, the Gyre weakening at shallow levels in the
mid-1990s–mid-2000swas accompanied by theDWBC strengthening in the Irminger
Sea [19–21]. The results imply that the decadal changes in (i) LSW production,
(ii) SPG strength, and (iii) DWBC transport in the Irminger Sea are linked, repre-
senting a complex coherent oceanic response to the decadal variability of the surface
forcing.
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Mean State of the Full-Depth Circulation in the 2000s

The mean state of the full-depth summer circulation in the Atlantic Ocean in the
region in between Cape Farewell (Greenland), Scotland and the Greenland-Scotland
Ridge (Fig. 1) was assessed by combining 2002–2008 yearly hydrographic mea-
surements at 59.5° N, mean dynamic topography, satellite altimetry data, and
available estimates of the Atlantic–Nordic Seas exchange [8]. The mean absolute
transports by the upper-ocean, mid-depth and deep currents and the MOC
(MOCσ = 16.5 ± 2.2 Sv, at σ0 = 27.55) at 59.5° N were quantified in the density

Fig. 6 The deep western boundary current (DWBC) transport variability and its link to the
convection intensity in the Labrador Sea. a Locations of the hydrographic sections (1991–2007)
and schematic of the deep water circulation in the Irminger Sea. b The DWBC transport anomalies
at Cape Farewell in 1991–2007, 1 Sv = 106 m3 s−1. The 1994–1997 and 2000–2007 mean
anomalies and the 1994–2007 linear trend are shown. c Anomalies of the DWBC transport at Cape
Farewell and LSW thickness in the Labrador Sea in the 1950s–2000s. d Correlation coefficient
(R2) for the two time series shown in (c) at the 0–5-year lag, the LSW thickness leads. The
correlation maximum is achieved at the 1–3-year lag. The DWBC transport anomalies in the
southern Irminger Sea are foregone by the convection intensity anomalies in the Labrador Sea.
Adapted from [19]
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space. Inter-basin and diapycnal volume fluxes in between the 59.5° N section and
the Greenland-Scotland Ridge were then estimated from a box model.

The estimated meridional and diapycnal volume fluxes contributing to the MOC
are schematically visualized in Fig. 7. The dominant components of the meridional
exchange across 59.5° N are the North Atlantic Current (NAC, 15.5 ± 0.8 Sv,
σ0 < 27.55) east of the Reykjanes Ridge, the northward Irminger Current (IC,
12.0 ± 3.0 Sv) and southward Western Boundary Current (WBC, 32.1 ± 5.9 Sv) in
the Irminger Sea and the deep water export from the northern Iceland Basin (3.7 ±
0.8 Sv, σ0 > 27.80). About 60% (12.7 ± 1.4 Sv) of waters carried in the MOCσ
upper limb (σ0 < 27.55) by the NAC/IC across 59.5° N (21.1 ± 1.0 Sv) recirculates
westwards south of the Greenland-Scotland Ridge and feeds the WBC; 80%
(10.2 ± 1.7 Sv) of the recirculating NAC/IC-derived upper-ocean waters gains
density of σ0 > 27.55 and contributes to the MOCσ lower limb. Accordingly, the
contribution of light-to-dense water conversion south of the Greenland-Scotland
Ridge (∼10 Sv) to the MOCσ lower limb at 59.5° N is one and a half times larger
than the contribution of dense water production in the Nordic Seas (∼6 Sv).

Fig. 7 Schematic diagram of the meridional overturning circulation (MOC) at the northern
periphery of the Atlantic Ocean, northeast of Cape Farewell. The dotted lines refer to the σ0
isopycnals 27.55 and 27.80. The arrows denote the integral meridional and diapycnal volume
fluxes. Where the signs are specified, the positive (negative) transports are northward (southward).
The NAC and EGIC transports in the upper layer (σ0 < 27.55) at 59.5° N are the throughputs
accounting for the recirculations. The East Greenland/Irminger Current (EGIC) refers to the upper
part of the western boundary current. Other abbreviations are explained in the legend to Fig. 1.
Adapted from [8]

424 A. Sarafanov et al.



Cascading of Dense Shelf Waters in the Irminger Sea

Based on the hydrographic data collected at 59.5° N, 64.3° N and 65–66° N in the
western Irminger Sea in the 1990s–2000s, an observational evidence for the
deep-reaching cascading of dense shelf waters south of the Denmark Strait was
found [14]. The data collected in the northwestern Irminger Sea (65–66° N) indicate
that the East Greenland Current ∼200 km south of the Denmark Strait occasionally
carries shelf waters as dense as the overflow-derived deep waters transported by the
DWBC (σ0 > 27.80). Hydrographic traces of cascading of dense shelf waters down
the East Greenland slope were found from repeat measurements at 64.3° N, where
the densest fresh plumes were observed within the DWBC (σ0 > 27.80) (Fig. 8).
Using the data collected at 59.5° N, we showed that the fresh ‘signals’ originating
from the shelf can be traced in the DWBC as far downstream as the latitude of Cape
Farewell, where the anomalously fresh oxygenated plumes are repeatedly observed
in the ISOW and DSOW density classes.

The results of our analysis along with the results from earlier studies (e.g.,
[28, 29]) indicate that shelf water cascading in the northern Irminger Sea is an
intermittent process occurring in all seasons of the year. This implies that, despite
the apparent short duration of a particular cascading event, the cumulative contri-
bution of such events to the thermohaline variability and southward export of the

Fig. 8 Salinity observed in
the northwestern Irminger Sea
at 64.3° N in February 1998.
The σ0 isopycnals 27.55,
27.70, 27.80 and 27.88 are
plotted as the thick black
lines; the station locations are
marked with the ticks on the
top axis. The plot shows fresh
dense waters descending
(cascading) down the
continental slope of
Greenland down to the LSW
layer (27.70 < σ0 < 27.80)
and the layer of the Nordic
Seas overflow-derived deep
waters (σ0 > 27.80).
Adapted from [14]
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deep waters in the WBC can be considerable. Our tentative estimate based on the
data from two synoptic surveys at ∼59.5° N suggests that the transient contribution
of a cascading event in the northern Irminger Sea to the DWBC transport at Cape
Farewell can be as large as ∼25%.
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Thermohaline Structure and Salt
Fingering in the Lomonosov Equatorial
Undercurrent as Observed in April 2017

Tatiana A. Demidova

Introduction

Current velocity measurements using the OS-75 shipboard ADCP operating at a
frequency of 76.8 kHz manufactured by the RDI-Teledyne Co. (sADCP) have been
carried out on the route of the R/V “Akademik Sergey Vavilov” since 2014 in the
equatorial zone of the central and western Atlantic over the sections across the
Lomonosov Equatorial Undercurrent (EUC). In the (boreal) spring, the ship crossed
the equator from south to north, and in autumn it crossed the equator from north to
south. In 2014–2017, we carried out six crossings and some of them were
accompanied by CTD casts. The main task of this research was the study of the
EUC velocity field and thermohaline subsurface structure. It included estimates of
velocities and spatial location of the undercurrent and its fronts relative to the
equator and depth, estimates of water transport, observations of thermohaline
stratification and its stability, and estimates of vertical mixing. Results of studies in
2015–2016 are briefly discussed in [5, 6]. In this contribution, we consider the
results of measurements in April 2017. We discuss the properties of the EUC
velocity field and focus on the analysis of the thermohaline stratification structure in
the subsurface layer down to the depths of 600–800 m from the data of CTD-casts
at three stations with a goal of finding convectively unstable layers favorable for salt
fingering vertical mixing.

Vertical mixing related to the equatorial undercurrents was considered and
discussed since the discovery of the subsurface flows, for example in [16, 17, 22].
Many studies report about the role of vertical mixing owing to the turbulence and
velocity shear in the undercurrents, for example in [12–14, 23, 24]. In 1973, [14]
determined that while considering vertical mixing it is important to present the
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counter-current flow as a jet of salty water moving in the background environment.
At the same time, the mixing occurring below its core should be considered as
processes developing more or less continuously due to the turbulence and other
mechanisms.

In a flow similar to the EUC with vertical density gradients and mean vertical
shears, stability may be expressed as the ratio of the buoyancy effects of the density
change and the vertical shear arising due to the inertial effects caused by the motion
of this flow [14]. This ratio is usually expressed as the Richardson number. The
effects of the contribution of the buoyancy are given in terms of the local
Brunt-Väisälä frequency, which characterizes the static (thermohaline) stability.
The dynamic stability is defined by the mean vertical shear. This approach to
determination of stability and the mixing ability is widely used in the publications
on vertical mixing. At the same time, gravitationally stable salinity-temperature
stratification of the ocean water column may actually be unstable due to the double
diffusion convection that occurs owing to the fact that the molecular diffusivity of
heat is much greater than the diffusivity of salt [10, 11, 29, 31].

We keep the latter in mind and emphasize that the vertical thermohaline field
across the Lomonosov undercurrent is characterized by extremely high gradients of
salinity. They arise owing to the existence of the high-gradient upper halocline with
salinity in the core over 36.7 psu, while under the halocline (and above it) there is
water of relatively low salinity: 34.5–35.5 psu. The occurrence of inversion and
steps of different scales confirms the assumption of the unstable character of water
under the upper sharp halocline-thermocline. Thus, owing to continuous delivery of
high salinity water by the flow of EUC, the especially favorable conditions for
development of the convective instability and processes of convective mixing in the
form of double diffusion may exist.

As the convective mixing is caused by the local decrease in density with depth, it
propagates vertically and develops regardless the layers move or not. Therefore,
realizing inevitable influence of the turbulence and shear effects on the vertical
mixing in the case of a rapid flow, as well as the influence of internal waves, we
allocate and address a question of the convective instability leading to the vertical
convective diffusion in the form of salt fingers.

Some aspects of convective mixing in the equatorial undercurrents were
addressed in some early publications (for example, [24]). However, to the author’s
knowledge, the first comprehensive study of the equatorial convective mixing in the
Atlantic EUC started in [4]. The authors used the data from the western equatorial
Atlantic in 2010 and considered the mixing process along the countercurrent flow
axis from its sources at 43° W in the west up to 32° W in the east. They have shown
evidence that along this distance the double-diffusive mixing in the form of salt
fingers took place; and its intensity varied with longitude. They emphasize the
importance of “the combination of horizontal advection and vertical instability” in
intense “sequence of downward-convective events” probably occurring there.

In this research we follow [4] and contribute to the deep studying of fine ther-
mohaline structures and vertical convective mixing processes in the thermocline
equatorial undercurrent area on the basis of our shipboard sADCP and CTD-cast
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measurements across the EUC. We focus on the detailed discussion of vertical
thermohaline stratification of the section and on detecting favorable conditions for
the development of double diffusion and salt fingering. In order to reveal such
conditions we calculated the thermohaline stability parameters of the subsurface
water. The results provided us with a reliable pattern of spatial distribution of
convectively unstable intervals that were closely related in depth to thin
high-gradient parts of the stepwise structures of the fields. Such unstable layers that
are capable to maintain and promote vertical mixing, redistributing salt and heat
downward from the EUC core, were located within the thermocline layer, which
resists mixing.

The contribution is organized as follows. In section “Data and Methods”, we
discuss the data used for the estimates and analysis. Then, in section “Results and
Discussion”, we consider the results of sADCP describing the circulation features
of the EUC and the results of CTD casts discussing the horizontal and vertical
structure of the thermohaline field across the EUC as well as relation between
thermohaline and velocity fields. In section “Conclusions”, we consider briefly the
criteria of vertical stability stratification types and then we discuss the computed
profiles of the density ratio Rρ and vertical stability parameter Eθ, S, defined from the
CTD casts. In the end, some important conclusions of the study are given.

Data and Methods

In this study, we analyze the direct high-resolution velocity current measurements
and CTD casts on April 14, 2017 in the region of the Lomonosov EUC. The CTD
stations were located in the core of the Lomonosov EUC along 33° W at latitudes
0° 30′ S (station 2698), 0° (equatorial station 2699), and 0° 30′ N (station 2700).

The data of the shipboard sADCP were processed using the software package of
the manufacturing company. The velocities that did not satisfy the reliability criteria
were discarded. The declared accuracy of velocity measurements in the
high-resolution mode was 2–3 cm/s. The measurements were carried out at a speed
of the ship of 6–10 knots. The depth range of profiling was from 22 m to 600–
800 m with a depth resolution of 10 m. We focused special attention on the
accuracy of the data and methods of data acquisition. In this study, 15 min averaged
velocities were used.

The sADCP measurements were combined with the CTD/LADCP casts to a
depth of 1500 m using the SBE 19 plus profiler and lowered Sentinel 300 kHz
LADCP. The accuracy of the temperature sensor was 0.002 °C while the salinity
was measured with an accuracy to 0.003 psu. Unfortunately, due to the conditions
of measurements and data processing, the upper boundary of the reliable LADCP
data was at a depth of ∼100 m. This restriction is unacceptable for the analysis of
the velocity measurements. Therefore, in this work we used only the ship-mounted
sADCP to plot the profiles and velocity sections up to the depths of 600–800 m.
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Results and Discussion

The Equatorial Subsurface Circulation

On April 14, 2017, the EUC was located between 2.2° S and 2.4° N. It is likely that
at the equator, the subsurface current rose to the surface in a band limited at both
sides by 1.5° latitudes (Fig. 1). High eastward velocities reaching 80 cm/s at a level

Fig. 1 The Lomonosov EUC on April 14, 2017. Section of zonal velocity across the equator at
33° W based on the shipboard sADCP data. The pink tones are related to the eastward velocities
and the blue tones are related to the westward velocities

Fig. 2 Sections of the zonal velocity, temperature, salinity, and potential density anomaly down
to a depth of 500 m over the equatorial section on April 14, 2017. The zonal velocity was averaged
over the entire run time of the casts. These sections illustrate vertical inhomogeneity of the
thermohaline structure and velocity field
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of 22 m indicate that this current occupied the entire upper layer up to the surface.
The maximum eastward speeds exceeding 120 cm/s were found at depths of 62–
82 m at a distance of 30–40 miles north of the equator between latitudes 0.51–0.86°
N (the maximum velocity equal to 127 cm/s was measured at a depth of 62 m). The
velocities over 50–80 cm/s within boundaries of the core were found to a depth of
150 m, while less intense eastward velocities reached a depth of 250 m. Below this
depth, the eastward flow changed to the westward one, which is the Equatorial
Intermediate Current (EIC).

High velocities in the core of the current are characteristic of the EUC in the
spring period due to its seasonal variations [2, 21]; however, the velocities recorded
in our expedition are among the highest reported in the publications. Such velocities
were sometimes reported based on the data of moorings, for example, by Koles-
nikov et al. [18] as well as by Katz [15] and [30] or during the PIRATA experiment
by [1]. Short time averaging (15 min) used in our study compared with the most
publications known to the author could cause a slight increase in the velocity
values.

Our measurements indicate that the meridional transport was poorly developed.
The general background on the section (not shown here) was formed by the
northward flows, while the southward flows were seen as small patches. The
velocities of the meridional flows of both directions seldom exceeded 20 cm/s. The
weak influence of the meridional component on the resulting direction of the
current in the EUC core of 150 m thick is reflected in almost strictly eastward
direction of the EUC.

The westward EIC is developed immediately under the Lomonosov Current
below the depths of 250–300 m. This current is limited from below by the maxi-
mum depths of our observations (650–700 m). It divides the eastward Northern and
Southern Intermediate Counter-Currents (NICC and SICC) located almost sym-
metrically relative to the equator at latitudes of 2–3° N and 1.5–2.5° S, respectively,
with the cores at a depth of about 500 m. The northern branch, the NICC, is more

Fig. 3 Vertical thermohaline structure. Salinity, potential temperature, potential density anomaly,
and mean zonal velocity component (sADCP) on April 14, 2017. Station 2698 (a), 0.5° S, Station
2699, 0° (b), Station 2700, 0.5° N (c)
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intense: the velocities in the core were up to 40 cm/s, while the velocities in the
Southern branch of the intermediate counter-current (SICC) did not reach 20 cm/s.

Analysis of CTD-Casts and sADCP Profiles

Vertical distribution of thermohaline parameters is based on the data of CTD-casts
at points 0° 30′ S, 0°, and 0° 30′ N (stations 2698–2700). The velocity profiles were
measured by the sADCP profiling. Sections of temperature, salinity, density, and
zonal velocity are shown in Fig. 2 for better visualization and interpretation of these
fields. Profiles of the thermohaline parameters and profiles of the zonal velocity
averaged over the entire run time of the casts are shown in Fig. 3.

The sections in Fig. 2 show condensation of contour lines of potential temper-
ature and potential density anomaly (hereinafter, density for short) in the upper part
of the section (below the uppermost mixed layer) down to a depth of 120–140 m
and their sparseness below that level. Condensation of the isohalines is observed at
depths from 40 to 60 m and from 90 to 130 m. A local sparseness between the two
intervals is related to the salinity (and velocity) core. The condensation of isotherms
and isopycnals above 120–140 m reflects the development of a sharp, high-gradient
upper part of the thermo-pycnocline at all stations. The sharp upper halocline occurs
lower than this layer below the salinity maximum at a depth of 60–70 m.

Sparseness of all isolines is especially clearly pronounced in the central part of
the main thermocline at depths of 200–500 m. It demonstrates the existence of
moderate gradients of temperature, salinity, and density in this range of depths.
Over some intervals, the gradients are weaker than the background gradients. One
can see an example of almost homogeneous layers of temperature, salinity, and
potential density in the interval 310–365 m at station 2698 south of the equator
(Fig. 3a). Similar decrease in the density gradient weaker than the background
values may reflect the development of intense processes of vertical transport.

One can also see in Fig. 2 the formation of elevations and depressions in the
isopycnal structure. The most pronounced features are isopycnal depressions in the
northern part of the section at depths above 150 m in the north and at a depth of
∼300 m at the equator. The upper depression is associated with the corresponding
decrease in depths of isotherms and isohalines and also with the lower boundary of
the undercurrent core. The isopycnal depression at a depth of ∼300 m corresponds
to the depressions and elevations in the structure of isotherms and isohalines. The
existence of the depressions of isotherms and isohalines between 150 and 300 m
leads to the local warming and salinity increase in the range of these depths as well
as below them. Note that the boundary between the eastward EUC flow and the
westward SIC flow is exactly in the depth interval of the lower isopycnal depres-
sion. The maximum isopycnal depression at the equator corresponds to the similar
but sharper depression of the isotachs (contour lines of equal velocity).

Strong Lomonosov undercurrent transports water of high salinity in the sub-
surface layers of the equatorial zone. It forms a subsurface maximum of salinity
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whose depth position coincides, in general, with the maximum velocities in the core
of the current. This is well seen over the sections and on the profiles in Fig. 3.
Profiles of velocity and salinity are relatively well correlated.

Intervals of high gradient velocity below the velocity maximum are located in
the upper part of the main thermocline. The structure of the velocity profiles here is
similar to the corresponding upper sharp thermo-halocline.

According to the CTD data, high salinity of surface water exceeding 36.0–36.2
psu was observed at the equator (Fig. 3). These high salinities in the surface layer
were caused by the clearly seen shallow location of the EUC core and its exposure
to the surface. A high temperature mixed layer (∼28 °C) was observed near the
surface within the first 40 m at all CTD stations. It was almost homogeneous south
of the equator and less mixed at the equator and north of it.

In the same depth interval, a quasi-homogeneous layer with minimum salinity
was formed by a surface intrusion of fresher water, probably of the Amazonian
origin [28]. At the equatorial station 2699, this surface intrusion is characterized by
the salinity minimum at a depth of 40 m within the homogeneous mixed layer. It is
accompanied only with weak distortions of the temperature layer structure. Its
traces were seen at stations 2698 and 2700.

The upper high-gradient thermocline is located immediately below the small
transition zone under the quasi-homogeneous temperature layer (starting from 70 m
at station 2698, from 60 m at station 2699, and from 40 m at station 2700). It is
extended down to a depth of 140 m south of the equator and to a depth of 130 m at
the equator and north of it.

As seen in Fig. 3, the beginning of a high-gradient thermocline approximately
corresponds to the maxima of salinity and velocity at the equator. The beginning of
the sharp thermocline is displaced downwards approximately by 20 m from the
maximum of speed and salinity depth at the southern station and upwards from
these maxima by 20 m at the northern station.

Salinity increases down from a depth of 40 m to the maximum values at a depth
of 63–66 m that is approximately the same as the depth of the velocity maximum.
At the southern station, the depth interval of high salinity values just below its
maximum is complicated by a sharp local minimum 10–15 m thick at a depth of
∼76 m (Fig. 3). The traces of it are seen as intrusions at the equator and at the
northern station. This local decrease in salinity is probably caused by the local
reduction of speed in the current core. The temperature field is weakly influenced
by these structural inhomogeneities of the velocity and salinity fields: only small
steps in the sharp-gradient thermocline are noted at each of the three stations.

Owing to this local complication, the upper high-gradient halocline at the three
stations begins deeper than the levels of the salinity and speed maxima and much
deeper than the upper level of the high-gradient thermocline: approximately at a
depth of 95 m.

Thermohaline Structure and Salt Fingering … 435



Vertical Inhomogeneities of Profiles

Several inversions of temperature and salinity and intrusion inhomogeneities (due
to the isopycnal advection) were recorded in the upper part of the section. Stepwise
structures (due to the vertical structure forming processes) of various scales from a
few to several tens of meters are the characteristic features of the vertical structure
of the thermohaline field below the upper high-gradient thermo-halocline and down
to approximately 500 m, which is the transition region to the intermediate salinity
minimum.

The steps consist of thin high-gradient layers (“sheets”) separated by thick
low-gradient layers. The vertical gradients in high-gradient layers exceed 10–100
times and greater the corresponding mean gradients. Such fine structures are clearly
pronounced on the vertical profiles at the southern station 2698. These steps are
clearly seen both in the temperature and salinity fields, but owing to the fact that
they compensate each other they are less manifested in the density field (Fig. 3).
From south to north, the number of steps decreases and the vertical size (the
thickness of well-mixed layers) increases while the salinity (and temperature)
gradients decrease.

Similar structures are also seen on the vertical profiles of velocity but here they
are smoother. The latter can be related to a lower depth resolution of the velocity
profile compared with the temperature and salinity profiles (the vertical steps of the
profiles are 10 and 2 m, respectively). Well-correlated vertical structure of both
thermohaline parameters and velocity is typical for the sections across the EUC,
which was already noticed in the early publications.

The existence of intense stepwise structures on the profiles provides the first
preliminary evidence about intense processes of mixing in the stratified water
column. Below we will address a question of the reality of the significant contri-
bution of convective mixing below the EUC core.

Thermohaline Stratification and Vertical Stability

In this paragraph, we consider the criteria of the types of stratification and vertical
stability and then present and discuss the computed profiles of the density ratio Rρ

and vertical stability parameter Eθ, S, computed from the CTD casts. We focus here
on the joint analysis of the thermohaline field structure and the computed param-
eters with the purpose of detecting conditions, favorable for the development of
double diffusion and salt fingering.

Depending on the background stratification, the effects of double-diffusion
instability are manifested in the modes of salt fingers and interleaving (or diffusion)
convections. Salt fingers occur in steadily stratified layers when both temperature
and salinity decrease with depth. When T and S, on the contrary, increase down-
wards, the convection in the mode of interleaving occurs [7, 8, 20].
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Under the conditions when the stabilizing contribution to a density gradient is
provided by the gradients of temperature and salinity, any disturbances decay over
time owing to the stable state. The other situation is observed when one of the
components (temperature or salinity) has the vertical gradient that destabilizes the
density gradient. In such a case, the potential energy of the unstable component,
which is released owing to the double diffusion, leads to continuing intensification
of any (even initially small) disturbances of the thermohaline fields over time.
Those disturbances manifest themselves in the form of thin and fine structures of
the fields.

Intense development of stepwise structures in the thermocline below the core
borders of the EUC, revealed from our measurements, gave us additional grounds
for deeper consideration of the question about the reality of the double diffusion
convective mixing during the time period of our experiments. The detection and
identification of intervals of probable double diffusion in the form of salt fingers
was provided with the use of diagnosis of the types of stratification and thermo-
haline instability. The vertical thermohaline stability parameter and the density ratio
were computed from the CTD casts, and the relationship of both parameters were
considered.

Double diffusion condition criteria. It was found from numerous experiments,
that the intensity of formation of the elements of temperature and salinity fine
structure is determined by the background of the vertical distributions of these
parameters. This fact became the basis for parameterization of the fine structure of
the thermohaline fields. Following [3, 9] we will consider, as the qualitative criteria,
the interrelation between the density ratio Rρ and vertical stability parameter Eθ, S

taking into account the background gradients and their signs.
In the upper layer of the ocean (neglecting adiabatic effects), the density ratio

following from the linearized equation of state is written as:

Rρ = α
dθ
dz

̸β
dS
dz

,

where

dθ
dz and

dS
dz are the gradients of potential temperature and salinity, respectively, and

α= − 1
ρ
dρ
dT and β= 1

ρ
dρ
dS are thermal expansion and saline contraction coefficients,

respectively, ρ is the density and z is the vertical coordinate (pressure or depth).
Thus, density ratio Rρ characterizes the relative contribution of changes in

temperature and salinity to the density gradient and to the vertical stratification
stability. In other words, it defines the relation of the stabilizing and destabilizing
factors of stratification and serves as a useful indicator of the relative intensity of
double diffusion processes.
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Under the same conditions of the upper layer, parameter Eθ, S is written as

Eθ, S ≡ −
1
ρ

dρ
dz

≡
1
g

N2 = α
dT
dz

+ β
dS
dz

= ð− η+ ςÞ,

where N is the Brunt-Väisälä frequency. It represents the vertical thermohaline
stability for adiabatic conditions needed for the qualitative assessment of the stability
of seawater stratification. Along with the buoyancy frequency, Eθ, S is a measure of
the tendency of a water particle to move vertically relative to its surroundings. There
is a correspondingly more complicated expression for the stability when the adia-
batic effects are taken into account, which is usually necessary at great depths.

The first term of the stability parameter ET = − η= α dT
dz expresses the tempera-

ture contribution to stability (temperature stability), and the other term ES = ξ= β dS
dz

shows the salinity contribution (salinity stability). Such a division allows one to
reveal the relative influence of salinity and temperature on the formation of the total
thermohaline stability Eθ, S. Here we can note that the density ratio may be con-
sidered as the ratio of the temperature component of vertical thermohaline stability
to the salinity stability component.

According to the definitions given above, the type of stability of the background
stratification in the real ocean environment is determined by the sign and value of
parameter Eθ, S:

Eθ, S = ð− η+ ξÞ> 0 is related to the positive, or hydrostatically stable stratification
(stable equilibrium of water);

Eθ, S = ð− η+ ξÞ< 0 is related to the negative, or hydrostatically unstable stratifi-
cation (unstable equilibrium);

Eθ, S = ð− η+ ξÞ= 0 is related to the neutral, adiabatic equilibrium stratification.
The range of variation of parameters of stability Eθ, S and density ratio Rρ is

generally very wide:

−∞<Eθ, S,ET ,ES,Rρ <∞.

At the same time it is shown, for example by Fedorov [8] that formation of the
fine structure due to the effects of double diffusion convection is possible only at
positive background density ratio and stability, i.e. Rρ > 0 and Eθ, S = ðET +ESÞ> 0,
although separately both ET , and ES may be negative. At Rρ < 0 and/or Eθ, S < 0 the
influence of the effects of double diffusion convection is excluded.

The question of the values of the density ratio Rρ necessary for the development
of salt fingers was investigated in many laboratory and numerical experiments, for
example, in already mentioned above [8, 19, 26]. There are some observations of
the fingers at great numbers of Rρ, up to Rρ = 10 [26]. However the limitations
1<Rρ < 2 are now accepted as the condition of their formation with an assumption
that most efficiently the fingers develop and transfer mass against the density
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gradient at 1<Rρ < 1.5. The reason for the upper limit ðRρ <2Þ follows from the
conclusions of [27] that the finger growth rate depends on the local buoyancy
period and should be shorter than this period, which happens only when Rρ is
smaller than 2. The intensity and speed of their formation increase as Rρ decreases.
Recently, it was found [25], that at Rρ → 1, the behavior of the salt finger system
becomes transient and the growth rate of salt fingers becomes very high.

The criteria for evaluation of the type of the stratification as well as of the fine
structure formation occurring in the stratified water medium are based on the
interrelations of the vertical stability of stratification and the density ratio [3, 9]. We
used these criteria, and added to them, when appropriate, the limiting restrictions on
Rρ for salt fingering development.

1. Complete, or absolute, stability: ΔT< 0, ΔS> 0, Eθ, S >0,
ðET > 0,ES > 0Þ,Rρ < 0. Stratification is convectively stable. The effects of
double-diffusion convection are excluded.

2. Convectively unstable stratification (in the form of salt fingers): ΔT< 0, ΔS< 0,
Eθ, S >0, ðET > 0,ES < 0Þ,Rρ > 1.
At Rρ > 1 stratification is convectively unstable due to double diffusion.
At 0<Rρ < 1 the stratification is hydrostatically unstable.

3. Convectively unstable stratification (in the form of interleaving convection):
ΔT> 0, ΔS> 0,
Eθ, S >0, ðET < 0,ES > 0Þ,Rρ > 1.
At Rρ > 1 stratification is convectively unstable due to double diffusion.
At 0<Rρ < 1 the stratification is hydrostatically unstable.

4. Absolute instability: ΔT> 0, ΔS< 0, Eθ, S <0, ðET < 0,ES < 0Þ,Rρ < 0.

With the use of the limitative restrictions for salt fingering development, the
conditions in the brackets are redundant. With our goal of showing the reality of salt
fingering convection, evaluation of intensity and types of the vertical thermohaline
structure included an assessment of the character of ΔT and ΔS background profiles
and separate intervals, estimates of parameters of stability Eθ, S and Rρ and their
relationship. In the vertical interval satisfying the second criteria, the restrictive
conditions for intense development of salt fingers 1<Rρ < 2 were applied. Such
approach was used for detecting and identifying vertical intervals of favorable
conditions for salt fingering development. Computed profiles of the density ratio
and of the vertical stability together with thermohaline profiles in the pressure field
are considered below.

Vertical Distribution of the Stability Parameters

The stability parameters based on the CTD data were first computed using vertical
averaging of 1, 3, 5, 10, and 20 dbar. It turned out that a step of 3 db provided the
relatively high vertical resolution at satisfactory stability of the profiles. It provides
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a possibility to consider stepwise structures of the same vertical scale and larger,
and the profiles with such averaging have been further analyzed.

Profiles of thermohaline stability Eθ, S and Rρ together with the profiles of
potential temperature θ and salinity S are shown in Fig. 4.

We can locate four distinct intervals at each station on the basis of the vertical
profiles of the thermohaline stability parameter Eθ, S, (Fig. 4).

(1) The uppermost interval 20–40 m thick includes the surface quasi-homogeneous
mixed layer with local surface low-salinity intrusion. It corresponds to the
minimal vertical stability whose values depend on the degree of mixing. In the
mixed layer at stations 2698 and 2700, the minimum stability is almost the
same: ∼270 × 10−8 m−1. At the equatorial station 2699, the thermohaline
stability is negative: −325 × 10−8 m−1 at the vertical averaging equal to 5 db
(and –590 × 10−8 m−1 if the step is 1 db). This corresponds to the upper mixed
layer resulting from an intrusion of low saline water mentioned above.

(2) In the interval of depths of the upper pycnocline and in the thermocline that
started from the transient zone below the mixed layer down to 100–110 m, high
numbers of the stability are within the interval of the salinity and velocity core.
The maximum values of stability reach 5000 × 10−8 m−1 and greater within
the interval of positive salinity gradients. A complicated distribution of Eθ, S

with the maxima alternating relative minima is bound to the intrusion com-
plications of the salinity core.

(3) The third interval includes the main pycnocline below the EUC salinity and
velocity core. The maxima and minima of stability alternate from low negative
and first positive units (10−8 m−1) to 500 × 10−8 m−1. These “oscillations” of
stability exactly correspond (Fig. 5) to the well developed stepwise fine
structure of salinity and temperature profiles, which is also reflected on the

Fig. 4 Profiles of stability Eθ, S, density ratio Rρ, θ, and S at station 2698 (a), station 2699 (b),
station 2700 (c). Vertical averaging is 3 m. The gray color highlights positive and negative values
of Rρ
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profile of density (Fig. 3). The minima are within the well-mixed portions of
steps and maxima are related to the high-gradient portions.

(4) The fourth, lowest interval with the minimum mean values of stability is the
transition region to the intermediate water salinity minimum. It is characterized
by the lowest gradients of thermohaline parameters. The mean values of Eθ, S do
not exceed the first tens of units, while in the range of depths of 550–700 m the
minimum values equal to zero or even minimal negative values are observed.
This provides evidence about the neutral and weakly negative stability in some
depth intervals in the transition region to the intermediate salinity minimum.

Combining these observations with vertical distribution of the density ratio Rρ,
and taking into account the T and S gradients (Figs. 4 and 5), we can now define the
types of stratifications and select the possible double diffusion convective intervals
applying the criteria considered above. The main fact is that clear stepwise struc-
tures occur only in the main thermocline at the interval of “oscillating” Eθ, S where
Rρ ≤ 2 or slightly higher than 2. This provides us with the initial information about
the intervals, in which salt fingering is most possible. Therefore, we start with a
brief discussion of some important phenomena within the first two intervals
including the core of the EUC. We consider in more detail the depth interval of the
main thermo-halocline below the undercurrent core borders (deeper than 120 m).

As seen from Fig. 4, in the uppermost interval, negative thermohaline stability at
9 m at the equatorial station 2699 related to the low negative density ratio
(Eθ, S = − 347m− 1 and Rρ = − 1.35), which appears due to the decrease in salinity,
is characteristic of the absolute instability ðΔT> 0,ΔS< 0,Eθ, S <0,Rρ < 0Þ. Effects
of double-diffusion convection are excluded.

Fig. 5 Intervals of manifestation of possible double diffusion convection in the form of salt
fingers on the profiles of Rρ related to high-gradient steps on the T and S profiles and peaks of Eθ, S.
Intervals of possible fingering are limited with brown lines. Brown dots denote the minimum Rρ =
within each selected interval. (The profiles are limited with depths below the salinity maximum.
Vertical averaging is 3 db. a Station 2698, b station 2699, c station 2700
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In the two upper intervals down to the bottom boundary of the sharp upper
thermo-halocline, there are two (stations 2698 and 2699) to three (station 2700)
intervals with the negative density ratio related to the positive stability parameter as
well as to positive ΔS and negative ΔT gradients. At the equator (station 2699)
there is a distinct interval with Rρ < 0 at the depths of the salinity maximum (60–
85 m) and at the northern station 2700, at depths from ∼40 to 65 m. The corre-
sponding positive values of Eθ, S are extremely high here. Such combination of
parameters ΔT< 0, ΔS> 0, Eθ, S >0,Rρ < 0 determines absolute, convectively
stable stratification. The effects of double-diffusion convection are excluded. The
same conclusion is related to station 2698, where the effect is less pronounced.

There are several thin intervals, where Rρ is positive and Eθ, S >0, and ΔT< 0,
ΔS< 0 (60–80 m at station 2698; 30, 55, and 65 m at station 2699; and 15, 30, 60,
and 80 m at station 2700). These conditions define convectively unstable stratifi-
cation, but owing to the fact that Rρ is too high (∼4–8) the probability of the
development of the salt fingering double diffusion is very low within the intervals.

Now we address the depths of the main thermo-halocline below its sharp upper
part (deeper than 120 m) with the development of stepwise structures and oscil-
lating thermohaline stability Eθ, S (Fig. 5).

As seen from Fig. 5, the peaks of Eθ, S “oscillations” that exactly correspond
(Fig. 5) to the thin, well-developed high-gradient portions (“sheets”) of the stepwise
structures over the salinity, temperature, and density profiles are also associated
with the low positive values of density ratio 1<Rρ <2, while some of them are
within 1 <Rρ <1.5.

Pronounced examples of such thin intervals with peaks of positive stability and
low density ratio, related to the “sheets” of the steps can be found at the depths
shown in Table 1.

We can conclude that these minimum positive values 1 <Rρ <2 and <1.5 are
found against the background of stable stratification Eθ, S > 0, when both temper-
ature and salinity decrease downwards with sharp negative gradients; hence, such
intervals meet the strict conditions of the development of convective instability and
double diffusion convection of the salt finger type. The intervals of possible fin-
gering are from 4 to 14 m thick. The most intense manifestation of the process
occurs at the southern station 2698 and at the equator (station 2699). At the northern
station 2700, the manifestation of fingering is least expressed. We show in Table 1
the depths of possible fingering at this station but only the interval 4 m thick
between 155 and 159 m with Rρ =1.62 may be regarded here as reliable.

It is important to note that the approximate coincidence of the most clearly
pronounced fingering intervals at depths of 300 and 375 m at stations 2698 and
2699 located 30 miles apart may show the possible great horizontal scales of such
processes.

In the rest part of the main thermocline within 100–600 m, as was shown above
and seen from Fig. 5, there are thick intervals of well-mixed portions of steps
related to low positive to low negative values of stability Eθ, S (intervals close to 212
and 219 m at station 2698 are examples of slightly negative Eθ, S). This implies
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intervals of the neutral stability to the slight instability. The density ratio at such
intervals varies from high negative to high positive numbers. The variations in Rρ at
minimal to negative Eθ, S and minimal T and S gradients only indicate the small
local changes in the conditions of well mixed layers, and some incidental intervals
with 1<Rρ <2 are not related here to the double diffusion convection as the whole
situation does not meet the second criteria. Neutral to unstable background strati-
fication excludes the development of double diffusion convection in such
well-mixed depth intervals in spite of some occurrence of low positive density ratio
within them.

Thus, we found thin vertical intervals with conditions favorable for the devel-
opment of double diffusive convection in the form of salt fingers below the EUC
core boundary. These intervals 4–14 m thick are located within the high-gradient
portions of the stepwise structures of the thermohaline profiles across the
Lomonosov EUC. Occurrence of such intervals is the evidence of a high probability
of the salt fingering processes that has to be an effective mechanism of the redis-
tribution of salt (and heat) from the high saline core of the EUC down to a depth of
400–500 m and obviously into the deeper layers. The manifestation of favorable
conditions for salt fingering processes is strongest at the southern station 2698 and
decreases from south to north over our section. At the same time, as mentioned
above, there are some indications of a large horizontal latitudinal scale of the
detected “salt-fingering” intervals.

The results of the analysis are very important as we found spatial distribution of
thin convectively unstable layers able to induce and maintain vertical mixing and

Table 1 Depth intervals of possible salt finger convection, related values of Eθ, S at the peaks and
minimum density ratio Rρ

Station Depth (m) Vertical thermohaline stability
Eθ, S (10−8 m−1)

Min density ratio Rρ

2698 164–172 478 1.48
2698 234–238 446 2.0
2698 260–270 500 1.65
2698 294–303 742 1.55
2698 371–379 673 1.41
2699 175–181 572 1.75
2699 210–224 331 1.11/1.64
2699 303–312 812 1.46
2699 371–378 379 1.6
2699 518–424 408 1.66
2700 155–159 1096 1.62
2700 236 580 2.0
2700 311 246 2.14
2700 435 437 2.2
2700 469 331 2.2
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redistribution of salt and heat down from the EUC core within the thermo-halocline,
which, on the contrary, resists any mixing.

The fact of the reality of salt-fingering convection as a consequence of the
propagation of the high salinity flow of EUC, which occurred in the thermocline
below its core along the section at 33o W on April, 2017 agrees with the results in
[4] along the EUC axis based on the data in 2010.

Conclusions

Our study showed that in the region of the Lomonosov EUC that transports water of
very high salinity, the vertical structure of the thermohaline field below the
boundaries of the current core (approximately between the depths of 150 and
500 m) is characterized by vertical inhomogeneities of the stepwise type. The
estimates of the vertical water stratification types there showed “oscillating”
numbers of thermohaline stability Eθ, s with alternating thick intervals of the min-
imal positive to negative values (neutral to unstable stratification) and thin “peak”
intervals of positive stability. The high-gradient portions (“sheets”) of the steps with
negative T and S gradients were related to these peaks of higher stable stratification
and low values of density ratio 1 <R≤ 2. Such intervals 3–4 to 10–15 m thick meet
the strict criteria of the development of double diffusion convection of the salt finger
type and provide evidence of the high probability of the development of vertical
convective mixing. It implies that in the course of the propagation of the
high-salinity current the fingering mechanism is responsible for the redistribution of
salt and heat from the core of the EUC to the deeper layers of the water column. The
manifestation of salt fingering effects is strongest at the southern station and
decreases from south to north of our section. Some indications of large horizontal
scale of the fingering processes are found.

Thus, as a result, we obtained clear evidence of numerous thin, convectively
unstable layers able to induce and maintain vertical mixing and redistribution of salt
and heat downward from the EUC core, within the main thermo-halocline that
resists any mixing. Our assessment of the spatial distribution of such unstable
intervals relative to depth and latitude with some evidence of their large horizontal
scale is also very important.

Here, we need to emphasize that convective mixing of the salt fingering type is a
part of the overall vertical mixing in the area, which also includes other convective
forms as well as the processes of the dynamic mechanisms of mixing, related to
turbulence, internal waves, and intense vertical shear. The importance of such types
of mixing at the depth intervals above and below the boundaries of the EUC cores
in the Atlantic and Pacific oceans is shown in [12–14, 20, 22–24, 27], etc. At the
same time, it was also found that the existence of a shear current not only does not
impede the existence of salt fingers, but it is even an additional mechanism of
facilitating conditions for their formation [27]. Thus, the convective instability in
the form of salt-fingering double diffusion in the region of the Lomonosov EUC
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may develop together with the dynamic vertical shear mixing and other dynamic
mechanisms. The problem of the influence and relative contribution of these factors
to the overall vertical mixing in the EUC region from our data requires further
detailed research.
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Numerical Realization of Hybrid Data
Assimilation Algorithm in Ensemble
Experiments with the MPIESM Coupled
Model

Konstantin P. Belyaev, Ingo Kirchner, Andrey A. Kuleshov
and Natalia P. Tuchkova

Introduction

The results of numerical experiments dedicated to the data assimilation technology
and their applications to the computations of different parameters in the World
Ocean are presented in this contribution. The last decade witnesses a huge interest
to the climate research both in quality and quantity, which stems from the numerical
model developments, methods of data storage, control, and climate predictions.
This might be also explained as consequences of the increase in the computer
power, data transforming, and processing, parallel technology developments,
on-line result visualization, and many other achievements of science.

The new global project such as the Tropical Oceans Global Atmosphere (TOGA,
URL: http://isccp.giss.nasa.gov/projects/togacoare.html), Pilot Research Array in
the Tropical Atlantic (PIRATA, URL: http://www.pmel.noaa.gov), World Ocean
Circulation Experiment (WOCE, URL: https://www.nodc.noaa.gov/woce), Argo
(URL: http://www.argo.ucsd.edu), Archiving, Validating and Interpolating Satellite
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Oceanography Data (AVISO, URL: http://www.aviso.oceanobs.com), and others
are underway. The data from oceanic floats and moorings are gathered and collected
permanently. However, the problem of data assimilation in the ocean and seas did
not only lose its actuality and scientific significance, but became even more needed
and practically actual. The new technology of oil and gas extraction on the sea shelf
leads to the extreme importance of 3D oceanic parameter prediction in these zones.
The large platform transportation on sea routes leads to the actuality of the wind and
wave forecasts in the open ocean and oceanic shore zones. The recreation areas
development and their protection from dangerous external forcing as well as the
protection from anthropogenic influence bring new problems to be solved by the
researchers in the pollution spreading, forecasting, and decrease of the environment
contamination. All these problems cannot be solved without data assimilation
methods and their application in the numerical state-of-the-art models.

The development of adequate mathematical models of dynamics and environ-
ment variability is a very important and actual problem, the solution of which will
be even more needed in the near future. Numerical modeling is necessary not only
as a mathematical object but its conjunction with the field data would help to correct
and improve the model.

In the Earth modeling history it is possible to indicate the models by Bryan [4],
two-layer model by Moiseev [11], which for first time could predict the phe-
nomenon of the Nuclear Winter. The specific works have been also developed in
the Siberian Branch of the Russian Academy of Science in Novosibirsk, under the
leadership of Marchuk and Sarkisyan [10]. The last years of 20th century and the
beginning of 21st century are known for an increased interest to the coupled
ocean-atmosphere models and in general the Earth System Models, see, for
example, the works by Kirtman and Shukla [9], in which a very complex Earth
dynamics, including the ocean dynamics, atmosphere dynamics, vegetation and
forest moisture exchange, river flows, and other process are mathematically
described and solved numerically using the modern state-of-the-art clusters,
supercomputers, and networks.

In general, in the beginning of the 1970s, the principal important step was made
in the mathematical modeling of the ocean, atmosphere, and their interaction, as
well as on the synoptic, seasonal, and long-term variability of the natural param-
eters. However, the modern state-of-the art models do not guarantee the best
forecasting and understanding of the complex natural processes and phenomena.
The problems remain, which are not yet able to be described or predicted ade-
quately. For example, the quasi-biannual oscillation in the North Atlantic, the
dipole in the Equatorial Atlantic, Antarctic circumpolar waves, and several other
events are not modeled and correctly predicted numerically. The cause of the
observed Global Warming is not also quite clear. The oscillation and migration of
energetic-active domains, where the ocean-atmosphere interaction processes are
several times more intense than in the other regions of the World Ocean do not have
any adequate explanation.

These and other problems in modeling of the climate variability processes as
well as the processes of smaller scales, for example, weather prediction, have
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numerous causes. They may be related to the fact that the physical processes which
lie in the basis of the models are poorly known. In addition, the processes of subgrid
description are not resolved correctly. The lack of the input data or their poor
quality may also cause wrong prediction. However, the main cause is not adequate
knowledge of the physical processes in full details. In other words, the basic
equations, which are applied for modeling are not completely correct and describe
the reality only partially. Therefore, the further progress in the computer power and
facilities as well as in the development of the mathematical algorithms, and increase
in the model resolution would not necessary lead to the better prediction and
analysis of the natural phenomena. In relation to the aforementioned ideas it is
necessary to highlight that the development and further progress in the observa-
tional database will need improvements in testing and validation of the models and
correction of the model outputs towards the observations.

Eventually, one may come to a conclusion that, in order to improve substantially
the knowledge and understanding of the climate and other geophysical processes
and their predictability it is necessary to combine the mathematical models and field
data. This combination makes possible improving the modeling quality and
enriching and restoring the existing database.

The problem of the optimal combination of the data and models is known in
geophysics as the data assimilation (DA) problem. This is a non-trivial scientific
problem because the extreme solutions such as mere replacement of all the model
values with the observed data without changing the other values or simply ignoring
the observations, while the model values remain unchanged are obviously not
optimal. Indeed, if we only replace the model values by observations, the model
output field will be totally unbalanced and on next time-step it will lead to large
false fluxes, which may completely destroy the model. On the contrary, leaving the
model values unchanged and ignoring the observations may result in a completely
wrong output, which would appear far from reality.

In meteorology and oceanography, the DA-problems have been ongoing during
several decades. Originally these problems came into consideration in the end of
1960s. Apparently, one of the first results was reported by Gandin [6]. He proposed
the objective analysis method to correct the model output based on the linear
interpolation ideas. This idea turned out very fruitful and this method became
widely used [7]. Further, the DA-methods became an important part of the
numerical weather prediction. However, there is a big gap between the theoretical
sophisticated approaches and their practical realizations in the numerical algo-
rithms. Even a very well-developed theoretical idea faces serious difficulties to be
implemented in practice. Due to this and other causes the DA-problems remain
actual.

The DA-methods are divided into two big groups; namely the variational and
dynamical-stochastic methods. The first group is referred, for example, in [15], its
modern realizations are known as a 4D-var scheme. The second group of methods
is mostly represented in literature as the Kalman-filter approach, for example, in [5].
There are, also, several hybrid schemes, combining both approaches [1, 12].

Numerical Realization of Hybrid Data Assimilation Algorithm … 449



In this study, the original hybrid scheme of the DA-method and several versions
of its application are presented and discussed. The coupled Max Plank Institute
Earth System model (MPIESM), developed at the Max Plank Institute for Meteo-
rology in Hamburg [8, 13] is considered the main tool for the implementation of the
DA-scheme.

Data Assimilation Method

The DA method presented earlier in [2, 3] is briefly described here. In a certain grid
domain, we consider a given mathematical model of the ocean circulation that is
integrated at a specific level [0, T]. We denote by X the state vector of the ocean,
which includes its potential temperature (θ), salinity (S), and sea surface height
(SSH). Further, we designate by Y the vector of the observed parameters. The
theory of the data assimilation operates with two vectors of the ocean parameters,
namely, the ones before and after data assimilation (the background and analysis
states) Xb,Xa, respectively). They are interconnected by

Xa =Xb +KðY −HXbÞ. ð1Þ

In formula (1), matrix K is the Kalman gain. Matrix H defines an operator
projecting the model space onto the observation space. In fact, this operator nullifies
the unobserved components of the vector and performs the linear interpolation of
the observed components into the observation points.

In the classical theory [5], the Kalman gain matrix is determined by the formula

K =BH′ðHBH′ +RÞ− 1, ð2Þ

where B, R are given matrices, symbol ′ stands for transposition of a vector or
matrix.

Formula (1) can be expanded in the case when all parameters depend on time.
Let the time-discretization tn+1 = tn +Δ t, n = 0, 1, … with time-step Δ t be
introduced where tn+1 is the moment of the computation and assimilation.
Therefore, all parameters Xb,Xa, K etc. are supplied by subindex n, which corre-
sponds to the assimilation moment.

A new method to determine the gain matrix is proposed, theoretically justified,
and verified by the authors [2, 3]. When the results of calculations are corrected, the
method makes possible a better account for the dynamics of the model using the
classical Kalman filter. The optimal gain matrix K is found according to the formula

K = σ− 1ðΛ−CÞðHΛÞ′Q− 1, ð3Þ
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where σ− 1 = ðHΛÞ′Q− 1HΛ, Q = EðY −HXbÞðY −HXbÞ′ +R is the covariance
matrix of the model errors plus the covariance matrix of the instrumental errors R,
symbol E stands as usual for the mathematical expectation (average with respect to
ensemble), vectors Λ and C at each step of the model computations are calculated
by formulae

Λn+1 =
Xb, n+1 −Xa, n

Δt
, Cn+1 =

Yn+1 −HXa, n

Δt
.

The physical sense of parameters Λ and C is the following: Λ means the model
trend per time-unit, while C defines the observed trend. Scalar σ is the normalizing
factor.

Selection of Observation Parameters

The studied assimilation scheme depends on two outside-of-the model determined
parameters, namely vector C and covariance matrix Q. According to their definition
vector C is set at each grid point and at each time step for all considered model
variables. Its mathematical and physical sense is clear; this vector defines the
observational trend, the value which becomes a benchmark under model trend
approximation. In order to define this value one can use several schemes. For the
directly observed variables it is possible to choose the time-difference of those
variables per time interval previously interpolated onto the model grid. For unob-
served model variables, such as model velocities, heat content, etc., which however,
participate in the model assimilation procedure, it is possible to calculate these
values through ensemble experiments, following the Monte Carlo scheme. The
similar scheme is applied in the Kalman-filter algorithm to obtain background
covariance matrix B in formula (2). Finally, vector C may be defined as a
time-average of all model outputs over time-interval ½0, tn� at any current time
moment tn. Certainly, this time moment should be far enough from the model start,
albeit its precise value is not entirely clear. It is possible to prove that under some
reasonable conditions the time-average will coincide with the ensemble average
(weak ergodic theorem). However, the detailed consideration of the problem how to
optimally define vector C is out of the scope of this study.

Different methods can be applied to obtain covariance matrix Q. As it follows
from this relation, matrix Q is constructed from both observations and model output
at moment tn. This matrix is calculated in the observational phase-space, i.e. at
observational points. For the given time-moment there may be insufficient amount
of observations to define this matrix reliably. However, the existing databases,
which collect data over many years, normally contain a sufficient amount of data to
make all estimations with the necessary accuracy. Therefore, to determine this
matrix it is sufficient to select the needed sample of observations, interpolate them
at the considered points, and calculate the matrix according to its formula. Another
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scheme to calculate this matrix is the Monte-Carlo method, which is widely used in
the Kalman-filter theory [5]. The issue to calculate this matrix optimally is also
beyond the consideration of the current work.

Numerical Experiments and their Results

The numerical experiments with the MPIESM model in conjunction with the DA
scheme (1)–(3) have been performed.

The ocean block is the MPIOM model (version 1.2) with a resolution of
256 × 220 × 40 grid points, by longitude, latitude, and vertical direction,
respectively. The resolution is not uniform, it is fine in the high latitude domain and
in the upper ocean levels; it is coarse in the Southern Ocean and in the deep layers.
In the Arctic zone, the horizontal grid mesh is about 30 km. In the ocean model
block, ice dynamics and confluence module are developed specially. A full
description is presented in the model manual, which can be found in [8, 13]. The
atmosphere block represents the ECHAM6 model. Its resolution is T63L47 (the
spectrum model with 63 basis eigenfunctions and 47 vertical levels), which regards
to approximately 240 km of the spatial grid distance. The ocean-atmosphere
interaction is realized through the OASIS block.

Initialization of the model has been forced from climate Atlas NCEP (URL:
http://www.cpc.ncep.noaa.gov/products/precip/atlas_2/cont_data.html), and the
spin up run has been performed to establish the constant energy regime of the
currents in the ocean from 1850 to 2010. The date 01.01.2010 was set up as the
initial date for the further DA experiments.

Several numerical experiments have been carried out with the DA, in which the
model result has been corrected by formulae (1) and (3), while the observed data of
the sea level were taken from AVISO data. Vector C for the sea level has been set
up as interpolation onto the model grid points of the observed sea level minus
model sea level at the previous time-step. For other model variables the values were
taken as time average of the corresponding variables minus their model value on the
previous time step. Covariance matrix Q has been defined from the ensemble
experiments with Nens =50 ensemble terms and has been calculated as

Q=N − 1
ens ∑

Nens

l=1
ðYl −HXÞðYl −HXÞ′ +R,

where Yl is the model calculation of the sea level from the ensemble statistics with
ensemble number l; Xb is the current model output at the given time-moment.
Matrix R was chosen as the diagonal matrix with equal values on the diagonal
0.01 m, as it was recommended in [14].

The experiments have been executed as follows: starting from modeled 2010, the
model has been integrated without assimilation (free run) until 2012, then during
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3 years (2012–2014) the model has been integrated with the correction each
3 months according to formulae (1) and (3), then again it has been integrated free
until 2016. The observations were included at the end of each 3-month period;
previously they have been smoothed with 11-point filter along the track. In parallel,
the reference experiment, i.e. integration without correction has been performed
over the entire period 2010–2016.

Analysis of the computed geophysical fields is presented below. The sea level is
the integral variable, which means that its variability stems from the integral
variability of many other variables both in the atmosphere and in the ocean, such as
wind stress, thermal expansion, precipitation, and many others. This leads to the
fact that the assimilation of the sea level implies the changing of many other
variables; hence, it will affect the entire system forming the sea level. These pro-
cesses are very complex; however, one can see the model output of all character-
istics after a specific period of model integration. Among the output parameters the
sea level fields were the direct output, but we also analyzed the ice thickness and ice
concentration. Special attention was focused on the Arctic zone of Russia.

Figure 1 demonstrates the sea level difference (analysis minus reference) after
assimilation on 31.12.2011. The main perturbations were found in the domain
where the main satellite tracks pass.

Figures 2 and 3 show the ice thickness characteristics. Figure 2 demonstrates the
difference between the reference and analysis in the middle of the DA experiments,
i.e. on 30.06.2013.

It is seen from Fig. 2 that the ice thickness after assimilation substantially
decreases practically everywhere in the Arctic including the Arctic zone of Russia
except for a relatively narrow strip north of Canada. These results are confirmed by

Fig. 1 The difference in the sea level after and before assimilation on 31.12.2011
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independent observations. For example, in the Kara Sea, the observed values of ice
concentration are approximately 72–75% while the model analysis of ice concen-
tration yields about 70%, but the model reference experiment yields in more than
80%.

Fig. 2 The difference in the ice thickness (reference minus analysis on 30.06.2013)

Fig. 3 Computed values of ice compactness (conventional units from 0 to 1) after 18 months of
integration
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The results of calculating of the ice compactness presented in Fig. 3 with the
data assimilation correspond well to the observed tendencies. The decrease in the
ice thickness in the Arctic indicates the warming of sea temperature at the Polar
latitudes and agrees with the observations.

Figure 4 shows the pronounced difference of time-variability of average ice
thickness both reference (solid line) and analysis (dashed line). One can see that the
reference results overestimates the forecast of ice thickness, but both curves
maintain a general tendency, which agrees with the observations during the period
2010–2014. After halting the assimilation, the analysis curve returns to the model
reference one.

The results of numerical experiments bring us to the conclusions that the model
climate fields after assimilation agree with the natural tendencies. In the future
experiments we plan to increase the number of observations and improve the
comparison based on the assimilation methods and strategy.

The second series of experiments has been carried out with the
temperature-salinity profiles downloaded from the WOCE data. This was the
WOCE section A06, the chief scientist was Christian Colin from the Office de la
Recherche Scientifique et Technique Outre-Mer (ORSTOM, France). The WOCE
section was occupied along 8° N and continued along the 10° E meridian. The dates
of the cruise on R/V “L’Atalante’ were from January 2, 1993 to March 19, 1993.

The data from the Conductivity-Temperature-Depth (CTD) instrument have
been collected from the sea surface to the bottom and include temperature and
salinity profiles. Before assimilation all data passed the quality control, the badly
recorded data have been discarded. A total of about 700 temperature and salinity
records have been included into the assimilation procedure. It is reasonable to note

Fig. 4 Time-variability of the average ice thickness in the Arctic in 2010–2014. Reference
experiment is shown with the solid line, analysis is shown with a dashed line
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that only the DA validation and feasibility is presented using this set of observa-
tions, their full analysis is not conducted in this study.

The same assimilation technique as in the previous series of experiments has
been used. The initial fields, spin up run, and all forces were the same. To create
vector C the similar procedure has been applied, namely, for the observed values
temperature and salinity at each level independently, C was calculated as the dif-
ference between the observed values at the observational time-step minus the model
values at the previous time-step at each grid point. For non-observed values, vector
C was set up as the model time-average values during the entire spin up run minus

Fig. 5 The DA impact (assimilation minus reference) at a depth of 6 m. a Temperature, b salinity
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the model values at the time step preceding to assimilation. The procedure of the
definition of covariance matrix Q was the following: ensemble statistics from the
spin up run was taken at the observational points and calculation was done
according to its formula. Matrix R for temperature was set at 0.1 for salinity 0.01 on
the diagonal and zero at the other positions.

Figure 5 demonstrates the difference between the model and reference experi-
ments after and before assimilation at the sea surface for temperature (Fig. 5a) and
salinity (Fig. 5b). It is seen that the main difference in both figures is concentrated
in the Guinea Gulf, where the pattern has an ellipsoidal shape in the southern
direction. The difference is mostly negative for temperature except two pronounced
spots in the western part of the gulf, which appeared due to the occurrence of the
local eddies with negative vorticity. This means that the model mostly overesti-
mates the reality. It is reasonable that salinity pattern has an opposite structure,
since the total density energy balance must be conserved. The difference along track
in Fig. 5a is weakly manifested, and almost disappears in Fig. 5b. This can be
explained due to the relatively weak observed difference at these points and due to
the fact that the covariance mostly facilitates the propagation of the signal along the
track because of the equatorial current.

Figure 6 presents the potential temperature field after assimilation near the sea
bottom (3500 m depth). Since the potential temperature at these levels is sub-
stantially less then temperature in situ (up to 0.7 °C), it becomes smaller than 1 °C
after assimilation (observed temperature is about 1.5 °C). The corrected zone
propagates along the equator and enlarges south of the Guinea Gulf. The contrast
between the assimilated and non-assimilated zone is very well pronounced, which
may be not be physically reasonable. However, one may note that this effect occurs

Fig. 6 Corrected potential temperature field near the sea bottom (3500 m)

Numerical Realization of Hybrid Data Assimilation Algorithm … 457



mostly because of the significant difference between the potential and in situ
temperature and due to the fact that the grid resolution at the sea bottom is large
enough.

Conclusions

We emphasize the importance and significance of the DA strategy in the climate
research. By changing the initial conditions and setting them up with the DA
methods and different set of data it is possible to investigate the sensitivity of the
model and also the influence of the different regions on the initial data perturba-
tions. It allows us to make the long- and medium range forecasts of different
parameters. It is important to note, that in these experiments it is necessary to keep
the balance between the input variables and conserve the integral mass and energy.
The data assimilation method is developed exactly for these purposes.

Acknowledgements This work was supported by the Russian Science Foundation: numerical
calculations were supported by project 14-11-00434.

References

1. Belyaev, K., Meyers, S., & O’Brien, J. J. (2000). Application of the Fokker-Planck equation
to data assimilation into hydrodynamical models. Journal of Mathematical Sciences, 99(4),
1393–1402.

2. Belyaev, K. P., Kuleshov, A. A., Tuchkova, N. P., & Tanajura, C. A. S. (2016). A correction
method for dynamic model calculations using observational data and its application in
oceanography. Mathematical Models and Computer Simulations, 8(4), 391–400.

3. Belyaev, K. P., Kuleshov, A. A., & Tanajura, C. A. S. (2016). An application of a data
assimilation method based on the diffusion stochastic process theory using altimetry data
in Atlantic. Russian Journal of Numerical Analysis and Mathematical Modelling, 31(3),
137–148.

4. Bryan, K. (1969). A numerical method for the study of the World Ocean. Journal of
Computational Physics, 3, 347–376.

5. Evensen, G. (2003). The ensemble Kalman filter: Theoretical formulation and practical
implementation. Ocean Dynamics, 53, 343–367.

6. Gandin, L. S. (1963). An objective analysis of hydrometeorologycal fields. Leningrad:
Gidrometizdat (in Russian).

7. Ghil, M., & Malnotte-Rizzoli, P. (1991). Data assimilation in meteorology and oceanography.
Advances in Geophysics, 33, 141–266.

8. Haak, H. (2004). Simulation of low-frequency climate variability in the north atlantic ocean
and the arctic, V.1. Max Planck Institute for Meteorology.

9. Kirtman, B., & Shukla, J. (2002). Interactive coupled ensemble: A new coupling strategy for
CGCMs. Geophysics Research Letters, 29(10), 245–272.

10. Marchuk, G. I., & Sarkisayn, A. S. (1988). Mathematical modeling of ocean circulation.
Moscow, Nauka (in Russian).

458 K. P. Belyaev et al.



11. Moiseev, N. N., Alexandrov, V. V., & Tarko, A. M. (1985). A man and biosphere. In The
system experiments with models. Moscow, Nauka (in Russian).

12. Tanajura, C. A. S., & Belyaev, K. (2009). A sequential data assimilation method based on the
properties of diffusion-type process. Applied Mathematical Modelling, 33, 2165–2174.

13. Wetzel, P., Haak, H., Jungclaus, J., & Maier-Reimer, E. (2004). The Max-Planck-institute
global ocean/sea-ice model. Model MPI-OM Technical report. http://www.mpimet.mpg.de/
fileadmin/models/.

14. Xie, J., Counillon, F., Zhu, J., & Bertino, L. (2011). An eddy-resolving tidal -driven model
in China south sea assimilation along track satellite data using EnOI. Ocean Science, 7,
609–627.

15. Zalesny, V. B., & Rusakov, A. S. (2007). Numerical algorithm of data assimilation based on
splitting and adjoint equation methods. Russian Journal of Numerical Analysis and
Mathematical Modelling, 22(2), 199–219.

Numerical Realization of Hybrid Data Assimilation Algorithm … 459

http://www.mpimet.mpg.de/fileadmin/models/
http://www.mpimet.mpg.de/fileadmin/models/


Sea of Azov Waters in the Black Sea:
Do They Enhance Wind-Driven Flows
on the Shelf?

Peter O. Zavialov, Alexander S. Izhitskiy and Roman O. Sedakov

Introduction

The region of this study is shown in Fig. 1. The principal factor determining the
regime of this part of the Crimean shelf of the Black Sea is its proximity to the
Kerch Strait connecting the Black Sea and the Sea of Azov. Shallow and brackish,
the latter is largely controlled by continental discharges from several rivers, of
which the biggest are the Don and the Kuban. The transformed continental runoffs
drain to the Black Sea through the Kerch Strait (or, more precisely, through the
upper layer of the strait, while in the lower layer, typically, there exist less intense
flow of the opposite sign). On long-term average, the annual discharge from the
Kerch Strait is estimated at 75 km3, and the return flow totals to about 50% of this
volume [4, 5]. These numbers constitute significant components of the Black Sea
water budget even at the entire basin scales, not to mention the shelf immediately
adjacent to the strait.

It can be seen in many satellite scenes of the region how turbid sediment car-
rying waters of the Sea of Azov propagate mainly westward as a surface-trapped
low salinity plume along the Crimean coast (see example in Fig. 2). This flow
affects significantly the oceanographic regime and the ecological state of the area, as
it transports nutrients but also pollutants [8, 9], given that the Kerch Strait and the
Sea of Azov proper are subject to very strong anthropogenic loads. In many cases,
the Sea of Azov plume can be traced for over 100 km in a relatively narrow
(≈10 km) stripe stretching westward along the shore up to Feodosia Bay and even
farther west. In contrast with the area of the Kerch Strait, the part of the Black Sea
shelf west of the strait has been relatively poorly explored in the past, only a
handful of research cruises took place there (e.g., [6, 7]).
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Fig. 1 Map of the study region and bathymetry. The blue star indicates the location of the
mooring station, and the blue bullets show CTD stations referred to in the text

Fig. 2 LANDSAT visible band satellite image of the study region (January 13, 2015), cleary
showing high turbidity, low salinity water originating from the Kerch Strait and propagating
westward along the coast of Crimea
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In May 2015, the Shirshov Institute of Oceanology conducted a field survey in
the area. By means of direct measurements at a mooring station deployed at a depth
of 22 m on the shelf just west of the strait outlet, it was observed that the
cross-shore components of the current velocity in the surface and the bottom layers
were strongly anti-correlated during the periods of stratifications, and completely
uncorrelated during the periods when stratification relaxed. This suggests that the
buoyant discharges from the Kerch Strait may enhance wind-driven currents on the
eastern Crimean shelf. If so, this may represent an important mechanism respon-
sible for cross-shelf exchanges in the region.

Browsing through the literature, we encountered some reports on the influence of
stratification generated by continental discharges on the one hand and the
wind-driven cross-shelf flows on the other. For example, as argued by [2], both
observations and numerical modeling of the Pearl River plume in the South China
Sea shelf showed that the enhancement of stratification by the plume thins the
surface frictional layer and enhances the cross-shelf circulation in the upper water
column so that the surface Ekman current and compensating flow beneath the
plume are indeed amplified. Some related issues were discussed in early papers
dedicated to the theory of upwellings (e.g., [1, 3]). However, to our knowledge, the
ability of a buoyant Sea of Azov plume to enhance the upwelling-downwelling type
wind-driven cross-shelf circulations in the Black Sea has not been investigated.

In what follows, we first describe the observational evidence that gave moti-
vation to this paper. Then, we present two simple, semi-analytical 2D models of
wind-driven flow on the Crimean shelf, aimed to simulate the effect of damping
vertical mixing on the cross-shelf transport. One model represents the two-layered
stratification and the other one the continuous stratification with eddy viscosity
linearly decreasing downwards.

Observations

The map of field measurements on May 18–24, 2015, was shown above in Fig. 1.
The mooring station indicated by the blue star was deployed at a depth of 22 m and
functioned during 6 days. It was equipped with acoustic Nortek Aquadopp current
meter at a depth of 5 m and mechanical Sea Horse tilt current meter at the bottom,
and had also temperature sensors at the same depths. All data were recorded as
1 min averages.

The CTD profiling by SBE19plus instrument conducted on May 20, 2015, at
four stations situated along a north-to-south transect from the Cape Chauda as
indicated in Fig. 1, gives an idea of the vertical distributions of thermohaline fields
(Fig. 3). It exhibits a pronounced two-layer stratification, with a warm (up to 16 °C)
and relatively fresh (below 17.8 psu), 10–15 m thick upper layer formed by
admixture of Sea of Azov water above the colder (below 13 °C) and saltier (up to
18.2 psu) Black Sea water. Between the two layers, there was a steep picnocline.
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Wind speed and direction were recorded for most of the observation period as
3 h averages at a meteorological station in the city of Kerch at the western bank of
the strait (Fig. 4, top panel). The wind record shows moderate westerly winds on
May 17–19. During this period, the cross-shore component of the wind exhibited
significant diurnal variability, changing from onshore during the first half of the day
to offshore afterwards. On May 20, the wind regime changed, and more constant
northeasterly winds prevailed since then. We will see from what follows that this
variability generated certain response in sea currents.

The data from the mooring station are presented in Fig. 4. In the central panel,
the blue and red curves represent water temperature at 5 m and 21.5 m, respec-
tively. The difference between them is a good proxy for stratification. It can be seen
that during much of the observation period, the stratification was well manifested,
with the temperature difference attaining values up to 4 °C. This stratification,
however, relaxed fully on the last two days of the measurements. This relaxation
occurred because the warm Sea of Azov plume occupied the entire water column,
and the temperature at the bottom increased and matched the temperature at the
surface.

Fig. 3 Vertical distributions of temperature and salinity based on CTD profiling along the
north-to-south transect from the Chauda Cape; May 21, 2015
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The lower panel in Fig. 4 exhibits the cross-shore component of the current
velocity (which in this case coincides with the north-to-south component) at the
depths of 5 and 21.5 m. It can be seen even visually that during the period of
stratification, the cross-shelf currents in the two layers are anti-correlated and
respond to wind variability in the upwelling/downwelling pattern: when the wind is
onshore, the surface current is onshore and the bottom current offshore, and vice
versa. The cross-shore currents respond to the cross-shore, and not the along-shore,
wind stress component, which means that the mooring was located too close to the
coast for the Coriolis force to interfere with the direct wind drag, and we deal with
non-Ekman upwelling/downwelling circulation.

The correlation coefficient between the flows at the surface and at the bottom at
different periods is shown as numbers in the bottom panel of Fig. 4, it reaches
−0.74 when stratification is the highest. On the other hand, the correlation vanishes
as soon as the stratification relaxes. We hypothesize, therefore, that stratification
generated by discharge through the Kerch Strait may intensify wind-driven
cross-shelf exchanges. In an attempt to verify and quantify this effect, in the next
section we make use of idealized mathematical models.

Fig. 4 Data from the thermistors and current meters at the mooring station. Top panel:
temperature in the surface layer (5 m depth, blue curve) and the bottom layer (21.5 m depth, red
curve). Central panel: temperature difference between the surface layer and the bottom layer
(original in red and detrended in blue). Bottom panel: cross-shore velocity component at 5 m
(red) and 21.5 m (blue). Numbers indicate correlation coefficient between the two series for
selected time periods whose limits are shown by vertical lines
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Simple Mathematical Models

It is our objective to reproduce and quantify the effect of the flow intensification by
means of the simplest models possible. We will consider the stationary state,
2-dimensional setting (i.e., conditions uniform in along-shore direction), and no
Coriolis force as commented above. On the other hand, we retain the “real” bottom
topography in the cross-shore direction.

Model 1: Density is uniform, eddy viscosity linearly decreases with depth

Schematic illustrating settings and notation for this model is shown in Fig. 5.
Assuming the balance between pressure gradient and vertical friction, the
momentum equation in this case reads:

g
∂h
∂x

=
∂

∂z
μ 1+ κzð Þ ∂u

∂z

where g is gravity acceleration, h is the elevation of the sea surface with respect to
the equilibrium level, x is the cross-shore coordinate, z is the vertical coordinate, μ
is eddy viscosity at the surface, κ is the constant decrement describing linear
decrease of eddy viscosity with depth, u is the horizontal (cross-shore) velocity.

This equation should be complemented with the continuity equation

∂w
∂z

= −
∂u
∂x

and the boundary conditions:

ρμ
∂u
∂z

����
z = 0

= τ,

Fig. 5 Schematic illustrating settings and notation for Model 1
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u Dð Þ=0,

w Dð Þ=0,

w 0ð Þ
u 0ð Þ =h′ xð Þ.

The boundary conditions, where, τ is the wind stress module and ρ is water
density, represent the balance of frictional stresses at the surface, the no-motion
conditions at the bottom, and the no normal flow condition at the surface. Here-
inafter, the prime designates the derivative with respect to x.

The momentum equations can be integrated straightforwardly with respect to z
even analytically, but all coefficients in the respective expressions are unknown
functions of x. We use the boundary conditions to determine these functions and
arrive at equations that, for a specific bathymetry D xð Þ, can only be solved
numerically. After simple but rather cumbersome calculations, we obtain the fol-
lowing solution:

u x, zð Þ= S xð Þ
k2

1+ kz− ln 1+ kzð Þ½ �+ A
μk

ln 1+ kzð Þ+B xð Þ,

w x, zð Þ= S′

k3
1 + kzð Þln 1+ kzð Þ− S′

2k
z2 + f xð Þ− 2S′

k2

� �
z−

S′

k3
+C xð Þ,

h xð Þ= μ

g

Z x

0
Sdx,

where

A=
τ

ρ
,

B xð Þ= −
τ

ρμk
ln 1+ kDð Þ− S

k2
1 + kD− ln 1+ kDð Þf g,

C xð Þ= −
S′

k3
1 + kDð Þln 1+ kDð Þ+ S′

2k
D2 − f xð Þ− 2S′

k2

� �
D+

S′

k3
,

f xð Þ= − S′

k2
+

S′D+D′S
k

−
1
k2

S′ln 1+ kDð Þ+ SkD′

1+ kD

� �
+

τ

ρμ

D′

1+ kDð Þ ,

and function S(x) is a solution of the following equation:
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S′ = −
S2 kμ

g ln 1+ kDð Þ− kDð Þ
n o

− S k2DD′ + k2DD′

1+ kD − τk2
gρ ln 1+ kDð Þ

h i
+ k3τDD′

ρμ 1+ kDð Þ
1+ kDð Þln 1+ kDð Þ+ k2D2

2 − kD 1+ ln 1+ kDð Þð Þ .

We obtain S(x) by integrating the latter equation numerically, starting from the
coast where we set S(0) = 0 and then obtain all other unknown functions, which
fully determine the solutions for u(x, z), w(x, z), and h(x).

An example of the solution is graphically shown in Fig. 6. This example clearly
showing downwelling-type circulation uses real bathymetry and corresponds to
moderate onshore wind stress at 0.01 N/m2. The coefficient μ is 10−4 m2/s, and the
decrement k is 10−3.

We then used Model 1 to investigate the influence of stratification on cross-shelf
transport determined as the vertical integral of u from the bottom upwards to the
depth where the velocity changes sign (of course, the transport integrated over the
entire water column equals to zero). In the model experiments, we varied decrement
k and analyzed how the transport changed. The larger is k, the more stratified is the
column and mixing in its lower portion supressed. The results are shown in Fig. 7.
It can be seen that the enhancement of stratification with respect to μ can indeed
significantly increase the transport, for example, the increase of the parameter k by
50% results in 10% increase of the transport at av wind speed of 3 m/s and 30%
increase of the transport at wind speed 10 m/s. The relations shown in Fig. 7 seem

Fig. 6 Example of solution of Model 1 with real bathymetry and constant, moderate onshore (i.e.,
downwelling) wind stress at 0.01 N/m2. The μ coefficient is 10−4 m2/s, and the decrement k is
10−3. The velocity scale is such that the average velocity module is about 0.06 m/s
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linear, but in fact they are not, for example, in an experiment with extremely strong
wind (τ=0.8 N/m2, not shown here) the dependence was strongly nonlinear.

Model 2: Two layers of constant density and eddy viscosity, ρ1 < ρ2, μ1 ≥ μ2

Schematic illustrating settings and notation for this model is shown in Fig. 8. Now
we deal with two layers, each characterized by constant density (that of the upper
layer lower) and eddy viscosity (that of the upper layer higher). The notation used is
similar to that of Model 1, except that subscripts 1 and 2 refer to the variables
pertaining to the upper and the lower levels, and the depth of the interface between
them is ζ xð Þ.

Fig. 7 Dependencies of the normalized cross-shore volume transport on the normalized
decrement k for two different values of the wind speed. Q0 is the volume transport at
k = k0 = 10−3 and μ= μ0 = 10−4 m2/s, in further experiments with increased k the values of μ
were adjusted to keep the vertically averaged eddy viscosity constant

Fig. 8 Schematic illustrating the setup and notation for Model 2
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The momentum equations for the two layers now read

μ1
∂
2u1
∂z2

= g
∂h
∂x

,

ρ2μ2
∂
2u2
∂z2

= gρ1
∂h
∂x

− gðρ2 − ρ1Þ
∂ξ

∂x
.

The continuity equations take the form

∂w1

∂z
= −

∂u1
∂x

,

∂w2

∂z
= −

∂u2
∂x

.

In this case, there are also as many as 6 boundary conditions:

ρ1μ1
∂u1
∂z

����
z=0

= τ,

u2 Dð Þ=0,

w2 Dð Þ=0,

w1 ξð Þ
u1 ξð Þ = ξ′ xð Þ,

w2 ξð Þ
u2 ξð Þ = ξ′ xð Þ,

ρ1μ1
∂u1
∂z

����
z= ξ

= ρ2μ2
∂u2
∂z

����
z= ξ

.

The solution for Model 2 is given by the following formulas:

u1 x, zð Þ= S1 xð Þ
2

z2 +A1z+B1 xð Þ,

u2 x, zð Þ= S2 xð Þ
2

z2 +A2z+B2 xð Þ,

w1 x, zð Þ= −
S′1 xð Þ
6

z3 −
A′

1 xð Þ
2

z2 −B′

1 xð Þz+C1 xð Þ,
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w2 x, zð Þ= −
S′2 xð Þ
6

z3 −
A′

2 xð Þ
2

z2 −B′

2 xð Þz+C2 xð Þ.

S1 xð Þ≡ g
μ1

∂h
∂x

,

S2 xð Þ ≡ ρ1
ρ2

μ1
μ2

S1 −
g
μ2

Δρ
ρ2

∂ξ

∂x
,Δρ = ρ2 − ρ1,

A1 =
τ

ρ1μ1
,

A2 xð Þ= ρ1
ρ2

μ1
μ2

½S1ξ+A1�− S2ξ,

B2 xð Þ= −
S2
2
D2 −A2D,

C1 xð Þ= μ1
g
S1B1,

C2 xð Þ= S′2
6
D3 +

A′

2

2
D2 +B′

2D,

where functions S1 xð Þ andB1 xð Þ are solutions of the following equations:

S
0
1 −

rD3

3
+

rD2

2
ξ−

rξ3

6

� �
+ S1½ξ+2D2D′r−

ξξ2

2
+

ξ′D2

2
r�+F =0, where

F =
2
3
αξ3ξ′′ + α D2 −

ξ2

2

� �
ξ′
	 
2

+D′r
τ

ρ1μ1
D− ξð Þ− αξ′′ξ2D− αξ′ξ2D′ −

α
2
ξ′′ξD2

− 3DD′αξ′ξ−
2
3
αD3ξ′′ − 2D2αD

′ξ′ −
α
2

ξ′
	 
2ξ2 − ξ′

r τ
μ1ρ1

D+ ξð Þ−Dα ξ′
	 
2 ξ+

D
2

� �
,

r =
ρ1
ρ2

μ1
μ2

,

α=
g
μ2

Δρ
ρ2

,

and

ξB′

1 =
μ1
g
S1B1 −

S′1
6
ξ3 − ξ′

1
2
S1ξ2 +A1ξ+B1

� �
.

An example of the solution is shown in Fig. 9. This particular experiment used
real bathymetry, constant onshore (i.e., downwelling) wind stress at 0.1 N/m2, and
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prescribed gently shallowing seaward interface between the two layers at a depth of
about 10 m. Coefficients μ1 and μ2 are 3 × 10−3 m2/s and 3 × 10−4 m2/s,
respectively.

The velocity field demonstrates two vertical cells forming downwelling in the
upper layer and upwelling in the lower level. In terms of momentum budget, this
complex pattern can be explained as follows. Near the surface, the current follows
the wind stress. The frictional drag weakens with the depth, and at some depth
within the upper layer the balance between barotropic pressure gradient and friction
implies the reversal of the flow. Beneath the interface, the current is initially driven
by shear stress with the upper layer and baroropic pressure gradient, but, as the
depth increases further, the baroclinic pressure gradient eventually prevails, and the
balance implies another reversal of the current at some depth within the lower layer.

How does the total cross-shelf transport in such two-layered system depend on
stratification? The outcome from model experiments is shown in Fig. 10 presenting
the normalized total transport (defined as above for Model 1) as function of the ratio
μ1
μ2
. The higher is the ratio, the more pronounced is the stratification of the water

column generated by the Sea of Azov “plume”. It can be seen from Fig. 10 that an
increase of the ratio leads to significant enhancement of the vertically integrated
transport which is almost linear with respect to the ratio and also increases with μ1.

Fig. 9 Example of solution of Model 2 with real bathymetry and constant onshore (i.e.,
downwelling) wind stress at 0.1 N/m2. Coefficients μ1and μ2 are 3 × 10−3 m2/s and 3 × 10−4

m2/s, respectively. The velocity scale is such that the average velocity module for this image is
about 0.21 m/s
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Conclusions

In the field survey conducted in May 2015 on the eastern shelf of the Crimea
Peninsula in the Black Sea, it was observed that stratification of the water column
was largely controlled by wind-driven dynamics of buoyant surface plume origi-
nating from the discharges of the Sea of Azov water through the Kerch Strait.
Further, it was observed that the cross-shore components of the current velocity in
the surface and bottom layers were strongly anti-correlated during the periods of
stratification, but completely uncorrelated during the periods when stratification
relaxed. This suggests that the buoyant discharges from the Kerch Strait may
enhance wind-driven currents responsible for cross-shelf exchanges. To verify this
hypothesis, we developed two idealized semi-analytical 2D models of wind-driven
flow on the Crimean shelf, aimed to simulate the effect of damping vertical mixing
on the cross-shelf transport. One model represented the two-layered stratification,
and the other one continuous stratification with turbulent viscosity linearly
decreasing downwards. Both models demonstrated that, indeed, the
plume-generated stratification may significantly enhance both the cross-shelf wind
drift in the upper layer and the compensating flow in the bottom layer. This effect
can contribute significantly to the efficiency of cross-shelf exchanges in the study

Fig. 10 Dependencies of the normalized cross-shore volume transport on the ratio μ1
μ2
for Model 2
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region. To accurately quantify this mechanism, further studies based on more
extensive observations and perhaps less idealized modeling are needed.
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Bottom Water Flows in the Vema Channel
and over the Santos Plateau Based
on the Field and Numerical Experiments

Dmitry I. Frey, Vladimir V. Fomin, Roman Yu. Tarakanov,
Nikolay A. Diansky and Nikolay I. Makarenko

Introduction

Antarctic Bottom Water (AABW) occupies the bottom layer of oceanic basins of
the whole Atlantic. According to the classical definition by Wüst, the upper
boundary of this water mass is the isotherm of potential temperature θ = 2 °C [21].
This water is formed at a few locations around the Antarctic slope in the
autumn-winter period as a result of cooling and ice formation [17]. In the Atlantic
part of the Southern Ocean, it is formed mainly in the Weddell Sea. When AABW
reaches the ocean floor it propagates to the north flowing from one basin to another.
The final points of its propagation are the East Azores Ridge (37° N) in the
Northeast Atlantic and the deep basin east of the Newfoundland Bank in the
Northwest Atlantic. The water exchange between these deep basins occurs through
the abyssal channels in the bottom topography [15]. The mean velocities of the
northward propagation of AABW are less than 1 cm/s; however, when AABW
flows through the narrow abyssal channels the current strongly accelerates. Direct
measurements of the velocities in these channels make possible calculations of the
transport of the northward AABW spreading, which is important because the flows
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of the coldest bottom waters influence the heat balance of the ocean and the Earth’s
climate as a whole.

The major part of the Antarctic waters from the Weddell Sea spreads to the north
in the western part of the Atlantic Ocean. The further propagation to the East
Atlantic occurs through numerous fracture zones of the Mid-Atlantic Ridge. Hence,
almost all Antarctic waters propagate through the Argentine and Brazil basins in the
southwestern part of the Atlantic. The zonally aligned Rio Grande Rise and Santos
Plateau separate these deep basins from each other and prevent the free propagation
of bottom water to the north. The key passages for AABW here are the Vema and
Hunter channels and also the small channels on the Santos Plateau. The Vema
Channel was formed due to the long-term erosion of the bottom by the abyssal
currents [7]. Now it is the deepest pathway for Antarctic waters. The Hunter
Channel and Santos Plateau are much shallower. Therefore, the coldest part of
AABW propagates through the Vema Channel; however, the flow over the wide
Santos Plateau makes a significant contribution to the total AABW transport [8, 18].

The most well studied part of the Vema Channel is the Vema Sill at 31° 12′–31°
14′ S. A bathymetric survey of the southern part of the channel was performed in
1993 with a multi-beam echo-sounder [22]. More than 20 CTD sections across the
channel have been occupied in this region since the 1970s. Several hydrographic
sections were occupied at the Vema Extension at 26° 40′ S [14, 16, 19]. The
measurements of velocities in the channel were performed using the Lowered
Acoustic Doppler Current Profiler (LADCP) and on a few moorings deployed in
1991–1992 and 2001–2003. The transport of Antarctic waters through the channel
is estimated at 1.3–5.3 Sv [15]. In contrast to the Vema Channel, the bottom
currents over the Santos Plateau are less studied. Velocities in this region were
measured on several moorings deployed across the southern boundary of the Brazil
Basin in 1991 [8] and in the northern part of the plateau in 2003 [15]. These
measurements show strong variability of the bottom currents. Existing estimates of
AABW transport over the Santos Plateau range from −1.5 to 2 Sv [13, 18] indi-
cating that water transport here is possible in both directions.

As for numerical modeling, only one work to our knowledge was dedicated to
the simulation of the bottom currents in the Vema Channel [9]. The authors used a
two-dimensional version of the sigma-coordinate Princeton Ocean Model for
simulating the cross-channel distribution of the thermohaline properties. It was
shown that the bottom friction causes the cross-channel Ekman flux and modifies
the lateral structure of the flow. That work does not describe the flow in the
longitudinal direction. Existing three-dimensional global models of the ocean do
not have sufficient lateral resolution for the simulation of the currents in narrow
abyssal channels. In addition, the vertical resolution of these models in the bottom
layers is not satisfactory for studying the lower part of the ocean circulation.

The goal of this paper is to study the variability of the bottom currents along
abyssal channels in the Southwest Atlantic using regional three-dimensional model
of the oceanic circulation with high resolution near the bottom. The data of direct
measurements collected using the LADCP instrument were used for verification of
the simulated velocity fields. These measurements were made at a few locations
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along the Vema Channel (33° 34′, 32° 17′, 31° 12′, 28° 55′, 26° 40′ S) in 2009,
2010, 2014, and 2017. We also report about our new hydrographic measurements
performed over the Santos Plateau in the spring and autumn seasons of 2016.

Data and Methods

We used both experimental and simulated velocity data to analyze the bottom
currents in the region. The hydrographic data were measured at a few locations
along the Vema Channel and over the Santos Plateau (Fig. 1). The historical
CTD-stations are also shown in Fig. 1. The locations of our stations have been
chosen on the basis of the existing bathymetry data. We performed echo-sounder
surveys around the stations to obtain precise data of the local seabed topography.
All experiments were made from the research vessel “Akademik Sergey Vavilov”
of the Russian Academy of Sciences; the measurements were performed almost to
the bottom (usually 5 m above the seabed).

Profiles of temperature, salinity, and current velocities were measured by the
CTD (SBE 19 plus) and LADCP (RDI WorkHorse Sentinel 300 kHz) profilers. The
CTD-data were processed using standard programming package (SBE Data Pro-
cessing, version 7.23), the LADCP data were processed using programming package

Fig. 1 The bottom topography of the study site based on the GEBCO 2014 data. White circles
indicate historical stations; gray diamonds denote our stations with LADCP velocity measurements
used in this work
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LDEO Software (version IX.10), developed by M. Visbeck. This package is an
implementation of the velocity inversion method [20]. The results of processing
were corrected by subtracting the tidal velocities. The barotropic tide was calculated
from the data of the satellite observations using the method described in [5]. Usually,
the velocities of the bottom currents exceed the tidal velocities by one order of
magnitude. However, this correction is not negligible for some slow currents over
the Santos Plateau. The accuracy of velocity measurements is 2 cm/s, CTD tem-
perature measurements is 0.003 °C, CTD salinity measurements is 0.005 PSU.

The simulation of the near-bottom dynamics was performed using the Institute of
Numerical Mathematics Ocean Model (INMOM). The INMOM is a σ-coordinate
ocean circulation model based on the primitive equations of ocean hydrothermo-
dynamics with the Boussinesq and hydrostatic approximations [4]. Dimensionless
variable σ is used in the model as the vertical coordinate:

σ =
z− ζðx, y, tÞ

ðHðx, yÞ− ζðx, y, tÞ ,

where z is the ordinary vertical coordinate in meters measured from the unperturbed
sea surface towards the center of the Earth, H(x,y) is the depth at the given point,
ζðx, y, tÞ is the sea surface height (x,y) are the longitude and latitude, respectively.
The use of a σ-coordinate model for studying bottom currents is important because
the lower layers in the σ-coordinates exactly follow the bottom topography [6].
The INMOM has been well tested in the different regions of the World Ocean
including the Atlantic in the frame of the Coordinated Ocean-ice Reference
Experiments (CORE) international program [3] and in the eddy resolving regime [1].

In this work we used a regional version of the INMOM developed for the
Southwest Atlantic. We selected a rectangular domain between 37.0° and 22.8° S
and between 45.2° and 29.0° W, which completely covers the Santos Plateau, the
Rio Grande Rise, and parts of the Argentine and Brazil basins. The grid domain
contains 814 by 764 nodes in the horizontal plane, the spatial resolution is 0.02°.
The vertical direction is divided into 33 σ-levels not uniformly distributed over the
depth. The best resolution was at the bottom; at the ocean point with a depth of
4850 m, the 10 deepest levels were specified in the bottom layers from 4400 to
4850 m with a step of 50 m. The model time step was 3 min.

The bottom topography was constructed from the data of Smith and Sandwell
digital atlas with an initial resolution of 30′. The original data were corrected using
the multi-beam echo sounder survey [22], interpolated to the model domain and
smoothed using the Tukey filter. The data from the climatological Levitus Atlas [2,
12] were used to construct the initial conditions for temperature and salinity. These
monthly data include the mean climatic fields of temperature and salinity in the
World Ocean with a spatial resolution of 0.25°. The Levitus data were also specified
in a buffer zone with a width of 10 boundary points at the liquid boundaries [10].
The atmospheric forcing was taken into account by specifying the fluxes of heat,
freshwater, and momentum at the boundary. The surface turbulent fluxes were
calculated using the bulk formulas. The atmospheric surface characteristics

478 D. I. Frey et al.



including air temperature, humidity, and wind velocity at a height of 10 m, pre-
cipitation, incident short- and long-wave radiation, and atmospheric pressure were
taken from the CORE database [11]. At the ocean surface, the relaxation to the
climate salinity and temperature data from the Levitus Atlas was performed with a
time scale of about 1 month.

We calculated three-dimensional fields of the horizontal velocities, potential
temperature, salinity at σ-levels, and sea surface height. In this work we analyze
mainly the velocity fields. For the analysis, we interpolated the results from the
σ-levels to the ocean depth. The total duration of the simulations was 45 days.
During the first 30 days, the model was spun up in the diagnosis regime using
“frozen” temperature and salinity fields. Then, the simulation was continued for
15 days in the adjustment regime. This method allows us to calculate the ocean
dynamics on the basis of the known temperature and salinity data.

Vema Channel

The Vema Channel is the main pathway for the coldest bottom waters transported to
the tropical Atlantic. The depths of the channel exceed 4600 m against the back-
ground depths of 4200 m. The shallowest point of the Vema Channel is the Vema
Sill at 31° 12′ S. The maximum depth of this sill is approximately 4614 m, and the
width of the channel here is 18 km. The Vema Channel is the best region for
investigating the bottom gravitational currents in a deep narrow channel. The
transport of AABW in this channel is the highest among all abyssal channels in the
Atlantic. The length of the channel (700 km) and relatively constant width
(15–20 km) in the southern part of the channel allows us to study AABW flow far
away from its inflow from the Argentine Basin. The local bottom relief in the
channel is not as rough as in the fracture zones of the Mid-Atlantic Ridge. The
Vema Channel is located relatively far from the equator; therefore, it is possible to
investigate the influence of the Coriolis force on the bottom current. Regular
measurements here have been performed since 1970s, which is helpful for studying
long-term variability of the bottom water properties.

Current velocities in the southern part of the Vema Channel calculated from our
measurements and numerical simulations are shown in Fig. 2. Since the depths of a
significant part of the channel are 4650–4700 m, the data were presented at a depth
of 4600 m. We measured the velocities in this region at three zonal sections of the
channel at 33° 34′, 32° 17′, and 31° 12′ S. Stations 1708 and 1709 (Fig. 2, left panel)
were occupied far away from the inflow of the bottom water to the channel. The
bottom velocities here were directed to the south and did not exceed 5–10 cm/s.
The numerical simulation shows significant velocities in the channel north of 33° S.
The bottom velocities based on experimental observations and numerical modeling
were 10–15 cm/s at 32° 17′ S and 25–30 cm/s at 31° 12′ S. According to the model
simulations, velocities up to 30 cm/s are observed in the Vema Channel over its
entire length. The minimum potential temperature of the bottom waters varies from
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−0.11 to −0.13 °C (Fig. 1a). The increase of the temperature in this part of the
channel is approximately 0.01 °C/100 km. Due to the bottom friction, the core of
cold water displaces to the east (in this channel) or to the right relative to the flow
direction [9]. The observed difference in the bottom temperatures between the
eastern and western walls of the channel is 0.02 °C both over the sections at 32° 17′
and 31° 12′ S.

Two branches of the current are observed in the middle part of the channel
(Fig. 3a). The northern jet is located in the deepest part of the channel with depths of
approximately 4700 m; it is the main passage for the coldest waters. The additional
southern jet with velocities up to 20–25 cm/s is observed at depths of 4300–4400 on
the southern slope of the channel. The lengths of the jets are 200 km and the
maximum distance between them is 50 km. The existence of the southern jet was
confirmed by the direct measurements at one station (2535) at 28° 55.3′ S, 38° 00.5′
W. The depth of the ocean at the place of measurements was 4384 m, the minimum
potential temperature was −0.09 °C, the current with a velocity of 15 cm/s was
directed to the southeast.

Calculated velocities near the exit from the Vema Channel to the Brazil Basin are
shown in Fig. 3b. The mean velocities in the center of the flow are up to 30 cm/s,
which is close to the velocities measured at stations 2436–2438 (25 cm/s directed to
the east and northeast). After the outflow from the Vema Channel, the bottom current
turns to the north and propagates along the western boundary of the Brazil Basin

Fig. 2 Inflow of the bottom waters from the Argentine Basin to the Vema Channel. Measured
(left panel) and simulated (right panel) velocities are shown at a depth of 4600 m. The numbers of
stations and the lowest measured potential temperatures are shown in the left panel
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gradually slowing down. The minimum potential temperature observed at stations
2436–2438 was −0.08 °C. Hence, the difference between the minimum temperature
at the beginning and at the end of the Vema Channel is 0.05 °C. In 2003, we
performed CTD-measurements along the channel, and the corresponding difference
was 0.04 °C. Therefore, the mean gradient of the bottom temperature in the channel
is less than 0.01 °C/100 km.

Currents over the Santos Plateau

The Santos Plateau is located to the west of the Vema Channel at 28–32° S and
40–44° W. The depths of the major part of the plateau are approximately 4 km.
According to the measurements, the potential temperature isotherm θ = 2 °C is
located at a depth of 3300–3400 m; hence, the Antarctic Bottom Water layer above
the plateau is 600–700 m thick. Numerous small channels are located along the
southern and eastern edges of the plateau. The mean depths of these channels
relative to the surrounding plateau are 200–300 m.

In April–May and October–November 2016, we carried out two expeditions
onboard the R/V “Akademik Sergey Vavilov” studying the bottom currents over
the Santos Plateau. Twenty one stations with CTD and LADCP measurements were
occupied in the small channels over the plateau. The locations of these stations,
bottom potential temperatures, and maximum velocities in the bottom layer are
shown in Fig. 4a. A section of seven stations was occupied across the zonally

Fig. 3 Calculated velocities at a depth of 4300 m in the middle part of the channel (a) and in the
region of its outflow to the Brazil Basin (b). White diamonds show our stations with current
measurements. The station numbers are indicated
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oriented channel in the northwestern part of the plateau. The maximum depth of the
channel is 4200 m, the potential temperature at this point was 0.18 °C. The main
flow with velocities up to 20 cm/s was directed to the southwest, but a counter-
current with easterly velocities of 10 cm/s was found near the northern slope of the
channel. Potential temperatures at the bottom in the southeastern part of the plateau
varied from 0.26 to 0.31 °C. An inflow with velocities of 5–10 cm/s through two
small channels with the maximum depths of 3886 and 4026 m was found.

We simulated three-dimensional velocity fields using the INMOM model in the
region from 37.0° to 22.8° S and from 45.2° to 29.0° W, which completely includes
the Santos Plateau. Sigma-levels allow us to study bottom dynamics in arbitrary
depth range. We specified 10 vertical levels in the bottom layer of the Vema
Channel approximately from 4400 to 4850 m with a step of 50 m, while similar 10
levels over the plateau are at depths from 3630 to 4000 m with a step of 37 m
(exact values depend on the ocean depth). The calculated velocity fields were
interpolated to a depth of 3800 m for the analysis of the currents over the Santos
Plateau (Fig. 4b). The velocities over the major part of the plateau are insignifi-
cantly low and do not exceed 5 cm/s. A strong southward current was found in the
southwestern part of the plateau. The bottom waters propagate along the western
slope of the plateau with velocities of 20 cm/s. We occupied four stations along this
current in October 2016 at 30° 35′ S, 31° 20′ S, and 31° 29′ S. The presence of the
southward current was confirmed by the direct LADCP measurements; the bottom

Fig. 4 Bottom currents over the Santos Plateau based on LADCP-observations (a) and numerical
modeling (b). White circles denote our stations occupied in 2016. The numbers of stations and the
lowest measured potential temperatures are shown in the left panel
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velocities at these stations varied from 15 to 30 cm/s. The bottom potential tem-
peratures ranged from 0.18 to 0.33 °C. The current turns to the east at 32° 00′–32°
30′ S and flows along the northern boundary of the Argentine Basin. Part of these
waters can flow back to the Vema Channel.

The measurements in the southwestern part of the plateau at 31° 20′ S, 43° 22′W
were performed twice in April and October 2016 (stations 2579 and 2680). Sig-
nificant variations in the potential temperature, salinity, and velocities in the bottom
layer were observed at this point (Fig. 5). The minimum potential temperature at the
bottom in April was 0.02 °C; the velocities of the northerly current were up to
18 cm/s. In October, the current with the same velocities (15–20 cm/s) was directed
to the south. The minimum recorded potential temperature was 0.33 °C, which was
by 0.31 °C warmer than in April. The AABW upper boundary is located at a depth
of 3320 m; the differences were observed only in the AABW layer (Fig. 5a). The
properties of North Atlantic Deep Water layer above the AABW based on these two
measurements were the same. The differences in temperature show that the inflow of
cold Antarctic water occurs through the southwestern part of the plateau, where this
water mixes with the relatively warm upper layers. When this water flows from the
plateau to the south, its temperature is higher.

Fig. 5 Profiles of potential temperature and velocity at two stations at 31° 20′ S, 43° 22′ W
measured in April (station 2579) and October (station 2680) 2016
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Conclusions

We studied bottom water flows between the Argentine and Brazil basins on the
basis of a three-dimensional regional model with high spatial resolution in the
bottom layers and our field CTD and LADCP measurements in this region. From
this point of view, we considered two main passages for AABW in this region: the
deep and narrow Vema Channel and the relatively shallow and wide Santos Plateau.
The main results of this work are as follows.

1. A steady northward bottom water flow is observed in the southern part of the
Vema Channel north of 33° S. According to our measurements, the velocities
were 10–15 cm/s at the beginning of the channel (32° 17′ S) and 25–30 cm/s in
its middle part (31° 12′ S). The increase in the bottom temperature along the
channel was of the order of 0.01°/100 km. The core of cold waters is displaced
to the east at any section across the channel; the difference between the bottom
temperatures near the eastern and western walls of the channel was 0.02 °C.

2. Numerical modeling revealed two branches of the current in the middle part of
the channel. The major jet was located in the deepest part of the channel; the
additional jet was found at depths of 4300–4400 on the southeastern slope. The
lengths of the jets were 200 km and the maximum distance between them was
50 km. After the outflow from the Vema Channel, the bottom current turns to
the north and propagates along the western boundary of the Brazil Basin.

3. A strong unsteady current was found in the southwestern part of the Santos
Plateau. The bottom velocities here vary from 30 cm/s to the south up to 20 cm/s
to the north. According to our CTD-measurements, the corresponding difference
in the bottom temperatures was 0.31 °C. At 32°–32° 30′ S, the current turns to
the east and propagates along the northern slope of the Argentine Basin.
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Modeling Study of the Antarctic
Circumpolar Current Variability Based
on Argo Data

Konstantin V. Lebedev

Introduction

The Antarctic Circumpolar Current (ACC) is the largest ocean current with a mean
transport reaching 173 Sv (1 Sv = 106 m3 s−1) according to recent research [5]. We
also note the previous estimations of the mean ACC transport 134 ± 11 Sv in [24,
23]. There are also “instantaneous” estimates of the ACC transports in the Drake
Passage based on the instrumental measurements over sections: 96, 152, and
184 Sv [3], 124 Sv [7], 147 Sv [10], 186 Sv [11], 127 Sv [12], and 156 Sv [19].
The ACC flows eastward around Antarctica connecting the southern parts of the
Pacific, Atlantic, and Indian oceans. It is one of the major components of the global
climate system. Accurate estimates of the ACC transport are very important to
understand the Southern Ocean impact on the climate change. Due to the low
amount of the oceanographic data and sustained observations in the Sothern Ocean,
currently there is no consensus between the scientists about the amount of water
transported by the current.

The development of the Argo project in the first years of the 21st century (the
Argo array is part of the Global Climate Observing System/Global Ocean
Observing System) designed to collect the data in the upper 2000 m of the ocean
provides unique opportunities for continuous monitoring of the state of the
Southern Ocean. Argo floats operate in the following manner. A typical float drifts
for about 10 days at a given depth, then descends to a depth of 2000 m and rises to
the surface measuring temperature and salinity. Battery power maintains the
instrument for 3–4 years. In addition to temperature and salinity, such drifting floats
also make it possible to obtain data on currents at the drift depth and at the ocean
surface.

K. V. Lebedev (✉)
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
e-mail: KLebedev@ocean.ru

© Springer International Publishing AG, part of Springer Nature 2018
M. G. Velarde et al. (eds.), The Ocean in Motion, Springer Oceanography,
https://doi.org/10.1007/978-3-319-71934-4_30

487



In November 2007, the Argo program reached a coverage of 3000 simultane-
ously operating floats (one float in a 3° square) planned during the development of
the program (measurements with the Argo floats cover the majority of the Global
Ocean since 2005). Currently, 4000 Argo floats autonomously profile the upper
2000 m water column of the ocean from Antarctica to Spitsbergen with a 10-day
interval. Constantly increasing number of measurements (World Ocean temperature
and salinity database increases by 12,000 profiles every month) makes it possible to
reconstruct and study the Southern Ocean dynamics and variability.

The Argo-Based Model for Investigation of the Global Ocean (AMIGO) was
recently developed at the Shirshov Institute of Oceanology. It consists of a block for
variational interpolation of Argo profiles to a regular grid and a block for model
hydrodynamic adjustment of variationaly interpolated fields. It makes possible to
obtain a full set of oceanographic characteristics: temperature, salinity, and current
velocity from irregularly located Argo measurements [15]. The AMIGO technique
was used for the calculation of the North Atlantic circulation [17] and estimates of
the transports by oceanic currents [15, 21]. The analysis of model simulations and
their comparison with the drifter data showed that irregularly distributed temperature
and salinity data measured by the Argo floats variationaly interpolated on a regular
grid restore realistic velocity fields [17, 21]; the AMIGO thermo-hydrodynamic
information can be successfully used as the initial conditions in the ocean global
circulation models [17].

In this paper we analyze the AMIGO simulations results in the Southern Ocean
covering a 10-year period from 2005 to 2014. The spatial resolution of the data is 1°
by latitude and longitude, and the temporal resolution is one month. The data are
represented as monthly mean, seasonal, and annual means and climatological fields
and are freely available at the Shirshov Institute web site: http://argo.ocean.ru/.

Data and Methods

The AMIGO dataset is used to study the variability of large-scale circulation in the
Southern Ocean. The AMIGO is a new end-user oriented dataset compiled at the
Shirshov Institute of Oceanology based on the Argo measurements [2] and satellite
altimetry [6]. The most prominent features of this new method of Argo data pro-
cessing are the application of variational interpolation of irregularly located Argo
measurements to a regular grid [13, 16] followed by model hydrodynamic
adjustment of the obtained fields with the concurrent use of satellite altimetry to
verify solutions when selecting the model parameters [15].

The principle of the variational interpolation technique is to minimize the misfit
between the interpolated fields defined on a regular grid and the irregularly dis-
tributed data, so that the optimal solution passes as close to the data as possible. The
method of hydrodynamic adjustment [8, 9, 14] makes it possible to obtain
hydrodynamically balanced oceanographic data using the ocean general circulation

488 K. V. Lebedev

http://argo.ocean.ru/


model in the diagnostic and hydrodynamic adjustment modes. The new method of
Argo data processing makes it possible to obtain a full set of oceanographic
characteristics: temperature, salinity, and current velocity using irregularly located
Argo measurements.

The simulations were performed for the entire globe limited in the north by
85.5° N using 1° grid spacing both by longitude and latitude. At the depths
exceeding 2000 m, in which the Argo data are lacking, the temperature and salinity
data were taken from the WOA09 database [1, 18]. The constant temperature and
salinity values from the Argo data for the corresponding month (year, season)
derived using the variational technique described above were specified as the
boundary conditions at the ocean surface. The constant wind stress in the corre-
sponding month (year, season) was specified from the ECMWF ERA-Interim
reanalysis data [4].

Results

Maps of the mean salinity and currents of the Southern Ocean are shown in Figs. 1,
2 and 3 for the Atlantic (Fig. 1), Indian (Fig. 2), and Pacific (Fig. 3) sectors at a
depth of 200 m. The ACC location can be traced along the salinity minimum. The
Subantarctic Front (SAF), which is the northern border of the ACC, is clearly
visible in the salinity and velocity fields. East of the Drake Passage, the front turns
northward following the South American continental shelf, then crosses the
Argentine Basin (60°–10° W) and the Mid-Atlantic Ridge (Fig. 1). Between 60°
and 80° E, the SAF is constrained along the northern edge of the Kerguelen Pla-
teau, then gradually turns southward along the Southeast Indian Ridge between 80°
and 140° E (Fig. 2). Around 170° E (Campbell Plateau) the SAF turns sharply
southward and northward again, follows the Pacific Antarctic Ridge (170°–230° E)

Fig. 1 Annual mean velocities and salinity field in the Atlantic sector of the Southern Ocean at
200 m. The salinity color scale is shown on the right
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and sharply turns northward at 240° E (Fig. 3). Between 240° and 300° E, the SAF
crosses the Bellingshausen Basin and enters the Drake Passage.

In order to monitor the ACC variability we selected seven key sections, which
separate the Southern Ocean into the Atlantic, Indian, and Pacific sectors: the Drake
Passage at 66° W, African section at 21° E, West-Australian section at 117° E,
East-Australian section at 149° E, and three zonal sections in the Atlantic, Indian,
and Pacific oceans at 35° S.

The mean ACC transport over a period of 2005–2014 through the Drake Passage
based on the AMIGO data is diagnosed as 162 ± 5 Sv. This value is between the
recent estimates of the mean ACC transport in the Drake Passage (144 Sv
according to Cunningham et al. [3]; 173 Sv according to Donohue et al. [5]). The
mean heat transport calculated relative to 0 °C is 1.69 ± 0.07 PW with an ampli-
tude of seasonal variations equal to 0.07 PW; the mean salt flux is 5.73 ± 0.17
Tg s−1. The maximum value of mass transport was diagnosed in May 2006 as

Fig. 2 Annual mean velocities and salinity field in the Indian sector of the Southern Ocean at
200 m. The salinity color scale is shown on the right

Fig. 3 Annual mean velocities and salinity field in the Pacific sector of the Southern Ocean at
200 m. The salinity color scale is shown on the right
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173 Sv, the minimum value (149 Sv) was found in July 2007. The mean inflow of
mass and salt through the Atlantic sector northern boundary are 0.6 ± 0.6 Sv and
0.02 ± 0.02 Tg s−1, respectively. The mean heat flux through the Atlantic sector
northern boundary (0.29 ± 0.19 PW) is directed to the Atlantic Ocean. The mean
volume southward transport through the Atlantic Ocean is in a good agreement with
the accepted climatology value of 0.83 Sv water transport from the Pacific to the
Arctic Ocean based on the direct velocity measurements in the Bering Strait [20].

The mean mass, heat, and salt transports through the African section south of
Cape Town were calculated as 162.6 ± 5 Sv, 1.19 ± 0.13 PW, and 5.75 ± 0.18
Tg s−1, respectively. The mean inflow of mass, heat, and salt through the Indian
sector northern boundary were 15.4 ± 3 Sv, 1.17 ± 0.28 PW, and 0.56 ± 0.11
Tg s−1, respectively. The maximum value of mass transport was diagnosed in July
2010 as 24 Sv, the minimum value of 8 Sv was found in January 2014. The mean
inflow from the Indian Ocean to the Southern Ocean is consistent with the multiyear
mean value of 15 Sv transport through the Indonesian Throughflow (ITF) from the
Pacific Ocean to the Indian Ocean determined from full-depth velocity measure-
ments from January 2003 to December 2006 [22]. The mean transports through the
West-Australian section were diagnosed as 178 ± 6 Sv, 2.04 ± 0.12 PW, and
6.30 ± 0.22 Tg s−1, with well pronounced seasonal variations with the amplitudes
of 5 Sv, 0.1 PW, and 0.2 Tg s−1, respectively. The maximum value of mass
transport was diagnosed in July 2010 as 194 Sv, the minimum value of 165 Sv was
found in January 2010.

The mean mass, heat, and salt transports through the East-Australian section are
diagnosed as 178 ± 6 Sv, 2.55 ± 0.13 PW, and 6.30 ± 0.22 Tg s−1, respectively.
The mean outflow through the Pacific sector northern boundary is 16.0 ± 3 Sv,
with the maximum value of 24.8 Sv in July 2010 and the minimum value of 8.4 Sv
in January 2014. The mean heat and salt fluxes through the northern boundary are
0.45 ± 0.39 PW and 0.56 ± 0.12 Tg s−1, respectively. Seasonal variations are
very strong with the boreal summer maxima and boreal winter minima. The flow
through the Pacific sector northern boundary could be presented as the inflow
between Australia and New Zealand (9.6 ± 5 Sv, 0.30 ± 0.22 PW, and
0.34 ± 0.18 Tg s−1) and outflow between New Zealand and South America
(25.6 ± 4 Sv, 0.75 ± 0.27 PW, and 0.90 ± 0.15 Tg s−1). As a result, the mean
transport through the section between New Zealand and Antarctica at 168° E
increases by 9.6 Sv and is diagnosed as 187.6 ± 7 Sv, the values of heat and salt
fluxes through this section are calculated as 2.55 ± 0.12 PW and 6.64 ± 0.24
Tg s−1, respectively.

The Southern Ocean heat budget is negative except for the Australian region.
The heat losses were diagnosed as 0.2 PW in the Atlantic sector, 0.3 PW in the
Indian sector, and 0.4 PW in the Pacific sector. The net Southern Ocean heat loss is
0.4 PW due to 0.5 PW heat gain in the region south of Australia.
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Conclusions

The mean transports estimated here based on the AMIGO dataset appeared close to
those reported in [20, 22] from the computations based on direct velocity mea-
surements. Our findings can be viewed as the further quantification of the ACC
characteristics obtained using an alternative approach based on the newly devel-
oped method utilizing constantly increasing data flow from autonomous Argo
profiling floats. The major results are as follows.

1. The mean ACC transport over a period of 2005–2014 through the Drake Pas-
sage based on the AMIGO data is diagnosed as 162 ± 5 Sv. The transport
through the African section is calculated as 162.6 ± 5 Sv. The net mean flow of
178 ± 6 Sv is diagnosed between Australia and Antarctica; the mean transport
through the section between New Zealand and Antarctica is found as
187.6 ± 7 Sv.

2. The maximum values of transports are diagnosed as 173 Sv in the Drake Pas-
sage (May 2006), 194 Sv through the section between Australia and Antarctica
(July 2010), and 24.8 Sv from the Southern ocean to the Pacific Ocean (July
2010).

3. The minimum values of transports are found as 149 Sv in the Drake Passage
(July 2007), 165 Sv through the section between Australia and Antarctica
(January 2010), and 8.4 Sv from the Southern Ocean to the Pacific Ocean
(January 2014).

Acknowledgements This work was supported by the Russian Science Foundation (project no.
16-17-10149).

References

1. Antonov, J. I., Seidov, D., Boyer, T. P., et al. (2010). World Ocean Atlas 2009, Vol. 2:
Salinity. In S. Levitus (Ed.), NOAA Atlas NESDIS 69 Ser. Washington, D.C.: US Government
Printing Office.

2. Argo. (2000). Argo float data and metadata from Global Data Assembly Center (Argo
GDAC). SEANOE. http://doi.org/10.17882/42182.

3. Cunningham, S. A., Alderson, S. G., King, B. A., & Brandon, M. A. (2003). Transport and
variability of the Antarctic Circumpolar Current in Drake Passage. Journal Geophysical
Research, 108(C5), 8084. https://doi.org/10.1029/2001JC001147.

4. Dee, D. P., Uppala, S. M., Simmons, A. J., et al. (2011). The ERA-Interim reanalysis:
Configuration and performance of the data assimilation system. Quarterly Journal of the
Royal Meteorological Society, 137, 553–597.

5. Donohue, K. A., Tracey, K. L., Watts, D. R., et al. (2016). Mean Antarctic Circumpolar
Current transport measured in Drake Passage. Geophysical Reseach Letters, 43, 11760–
11767. https://doi.org/10.1002/2016GL070319.

492 K. V. Lebedev

http://doi.org/10.17882/42182
http://dx.doi.org/10.1029/2001JC001147
http://dx.doi.org/10.1002/2016GL070319


6. Ducet, N., Le Traon, P. Y., & Reverdin, G. (2000). Global high-resolution mapping of ocean
circulation from TOPEX/Poseidon and ERS-1 and -2. Journal Geophysical Research, 105
(C8), 19477–19498.

7. Gladyshev, S. V., Koshlyakov, M. N., & Tarakanov, R. Yu. (2008). Currents in the Drake
Passage based on observations in 2007. Oceanology, 48(6), 759–770.

8. Ivanov, Yu. A, Lebedev, K. V., & Sarkisyan, A. S. (1997). Generalized hydrodynamic
adjustment method (GHDAM). Izvestiya Atmospheric and Oceanic Physics, 33(6), 752–757.

9. Ivanov, Yu. A, & Lebedev, K. V. (2000). Integral average monthly characteristics of the
World Ocean climate. Izvestiya Atmospheric and Oceanic Physics, 36(2), 244–252.

10. Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Yu., & Fedorov, D. A. (2011). Currents
in the Western Drake Passage according to the observations in January of 2010. Oceanology,
51(2), 187–198.

11. Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Yu., & Fedorov, D. A. (2012). Currents
in the Drake Passage based on the observations in November of 2010. Oceanology, 52(3),
299–308.

12. Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Yu., & Fedorov, D. A. (2013). Currents
in the Drake Passage by the observations in October–November of 2011. Oceanology, 53(1),
1–12.

13. Kurnosova, M. O., & Lebedev, K. V. (2014). Study of transport variations in the Kuroshio
extension system at 35° N, 147° E based on the data of Argo floats and satellite altimetry.
Doklady Earth Science, 458(1), 1154–1157.

14. Lebedev, K. V. (1999). Average annual climate of the ocean. Part 2: Integral characteristics of
the World Ocean climate (mass, heat, and salt transports). Izvestiya Atmospheric and Oceanic
Physics, 35(1), 87–96.

15. Lebedev, K. V. (2016). An argo-based model for investigation of the Global Ocean
(AMIGO). Oceanology, 56(2), 172–181.

16. Lebedev, K. V., DeCarlo, S., Hacker, P. W., et al. (2010). Argo Products at the Asia-Pacific
Data-Research Center. Eos Trans. AGU, 91(26). Ocean Science Meeting Suppl., Abstract
IT25A-01.

17. Lebedev, K. V., Sarkisyan, A. S., & Nikitin, O. P. (2016). Comparative analysis of the North
Atlantic surface circulation reproduced by three different methods. Izvestiya Atmospheric and
Oceanic Physics, 52(4), 410–417.

18. Locarnini, R. A., Mishonov, A. V., Antonov, J. I., et al. (2010). World Ocean Atlas 2009,
Vol. 1: Temperature. In S. Levitus (Ed.), NOAA Atlas NESDIS 68 Ser. Washington, D.C.: US
Government Printing Office.

19. Morozov, E. G., Tarakanov, R. Yu., Ansorge, I., & Swart, S. (2014). Jets and Transport of the
Antarctic Circumpolar Current in the Drake Passage. Fundamentalnaya i Prikladnaya
Gidrofizika, 7(3), 23–28.

20. Roach, A. T., Aagaard, K., Pease, C. H., et al. (1995). Direct measurements of transport and
water properties through the Bering Strait. Journal Geophysical Research, 100(C9), 18443–
18457.

21. Sarkisyan, A. S., Nikitin, O. P., & Lebedev, K. V. (2016). Physical characteristics of the Gulf
Stream as an indicator of the quality of large-scale circulation modeling. Doklady Earth
Science, 471(2), 1288–1291.

22. Sprintall, J., Wijffels, S. E., Molcard, R., & Jaya, I. (2009). Direct estimates of the Indonesian
through flow entering the Indian Ocean: 2004–2006. Journal Geophysical Research, 114,
C07001. https://doi.org/10.1029/2008JC005257.

23. Whitworth, T. (1983). Monitoring the Transport of the Antarctic Circumpolar Current at
Drake Passage. Journal of Physical Oceanography, 13(11), 2045–2057

24. Whitworth, T., & Peterson, R. G. (1985). Volume transport of the Antarctic circumpolar
current from bottom pressure measurements. Journal of Physical Oceanography, 15(6),
810–816.

Modeling Study of the Antarctic Circumpolar … 493

http://dx.doi.org/10.1029/2008JC005257


Tareev Equatorial Undercurrent
in the Indian Ocean

Albert K. Ambrosimov, Dmitry I. Frey and Sergey M. Shapovalov

Introduction

In February 2017, in cruise 42 of the R/V “Akademik Boris Petrov”, measurements
of the currents at two meridional sections in the equatorial zone of the Indian Ocean
were performed using a lowered ADCP instrument. The aim of the work was to
study the distribution of velocities in the upper 700-m layer of the ocean, including
the subsurface Tareev undercurrent, named after the Soviet oceanographer Boris
Tareev [1]. For the first time this current was discovered in 1960 during the First
International Indian Ocean Expedition during cruise 31 of the R/V “Vityaz”. Here
we cannot agree with Schott and McCreary [7], who noted that this undercurrent
was first documented by Taft [9]. We would like to send the mentioned authors to
the publication of Ovchinnikov [4], which describes the discovery of this equatorial
undercurrent.

Subsequently, the study of the Tareev current in the system of the equatorial
currents of the Indian Ocean was carried out in numerous expeditions. A rather
complete summary of the results collected during 30 years is presented in the
monograph by Neiman et al. [3]. We also note two later reviews [7, 8].

The previous studies show that one of the determining factors in the formation of
the circulation in the upper layer in the equatorial zone of the Indian Ocean is the
periodic change in the monsoon winds that affect the currents of this region. Rel-
atively stable southeastern trade winds are observed south of 10° S; north of this
latitude there is a strong variability of winds associated with the monsoon peri-
odicity. As distinguished from the tropical parts of the Atlantic and Pacific Oceans,
there is a deficiency of stable eastern winds along the equator during the year.
Equatorial winds have an eastern component only at the end of winter/early spring.
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This is the cause of another phenomenon in the Indian Ocean: the eastern equatorial
undercurrent (Tareev Current) exists only during a part of the year, usually in
February–June, when the winds have an eastern component, and only when
anomalous east winds arise this undercurrent may appear in the other seasons.

According to the observations made over the cross-equatorial sections in the
region of 55° E in 1975 and 1976 [2], the existence of an equatorial counterflow
(Tareev Current) was confirmed during the boreal spring. Significant meandering of
the flow with a deviation of more than 100 km to the south from the equator has
been recorded.

The measurements made with the ADCP over several equatorial sections in the
50–60° E longitude band [6] and moored ADCP in the equatorial zone [5] also
revealed significant temporal and spatial variability of the equatorial undercurrent.

The Data and Measurements

In this contribution, we analyze the results of measurements over two meridional
sections using two DVS-750 Doppler current meters. All measurements were
carried out in the lowering and lifting mode from the ship maintaining stable
position using the GPS control system. Taking into account the specific properties
of these devices, the measurements were carried out according to the following
procedure. Both meters were installed on the SBE-32 water sampling system, one
with down-looking sonic transmitter and another with the up-looking one. The time
sampling of the current speed measurement was 1 s, the depth of lowering was
700 m. The SBE-32 system was stopped for one minute at specific depths (700,
500, 300, 250, 200, 150, 100, and 50 m) to accumulate statistically valid signal.
This allowed us to collect the data from each device with a high resolution in the
range of up to 5 m. The measurements at the 68° E section were carried out on
February 15–18, 2017, from 3° N to 3° S. Thirty three stations were occupied here.
Thirty two additional stations more were occupied over the section along 65° E on
February 18–23, 2017, from 3° S to 3.75° N. The distances between the stations
were 10–15 miles. The stations were occupied under the northeastern wind with a
wind speed not exceeding 12 m/s.

Thus, 65 vertical profiles of the current speed to a depth of 700 m were collected
at the sections. The data of measurements for the analysis in this paper were used up
to a depth of 300 m.

Analysis

According to the data of measurements, two sections of the distribution of the zonal
component of velocity were plotted. They are shown in the Fig. 1.
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Figure 1 shows that the uppermost layer is occupied by a western direction
stream, which is more developed at 68° E and noticeably weaker at 65° E. At the
same time, in the northern and southern parts of the 65° E section this current
penetrates to a depth of 30 m (in the south) and up to 80 m in the north and almost
completely disappears at the equator. This current fairly stably occupies the entire
upper 30-m layer along the 68° E section. The maximum speeds here exceed
40 cm/s.

Under the westward stream, the equatorial eastward countercurrent (Tareev
Current) is clearly pronounced. Here we see the opposite situation. At 65° E, the
core of the current in the form of a powerful jet of the eastern direction is located
between 2.2° S and 1° N with the maximum speeds almost at the equator. In the
region of the core, the current occupies the depths from the surface to 150 m. The
velocities in the current exceed 60 cm/s at a depth of about 50 m. The width of
the stream in the meridional direction is about 350 km. In the northern part of the

Fig. 1. Zonal current components of velocity in the upper 300 m over the cross equator sections
at 65° E (a) and 68° E (b), measured by two up-looking and down-looking DVS-750 showing the
eastward Equatorial Undercurrent from February 15 to 23, 2017. The red tones are related to the
eastern direction
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section, the velocities of the eastern jets are reduced to 10–20 cm/s. Note that the
eastward flow extends over this section to a maximum observation depth of 700 m
with velocities up to 30 cm/s.

At 68° E, the Tareev Current is slightly weaker and deeper. The core of the
current disintegrates into separate jets, the depth of which ranges from 50 to 100 m,
and the speed in the jets becomes lower than 50 cm/s. In general, there is a devi-
ation of the core and individual stream jets to the north. In the southern part of the
section, the Tareev Current begins to weaken south of 2° S, where the velocity falls
to 20 cm/s. Nevertheless, the current can be seen up to the end of the section. At the
northern stations of the section, the speed of the undercurrent is still quite high,
thus, we can assume that it extends noticeably north of 3° N. The width of the
current in the meridional direction over this section is more than 700 km. Below,
the jets of the stream of the eastern direction are weaker and interspersed by the
counter flows, the number of which considerably increases below 300 m (not
shown in the figure).

Thus, we can formulate the following conclusions:

(1) A strong surface eastward current with velocities exceeding 40 cm/s was
observed in the equatorial region of the Indian Ocean in the winter season of the
Northern Hemisphere in February 2017. During the entire observation period,
the northeastern winds with speeds of 5–12 m/s dominated.

(2) A thin surface westward current was observed over the meridional section
along 68° E from 3° N to 3° S at all stations at depths from 0 to 50 m. Below
them, the eastward equatorial undercurrent (Tareev Current) was recorded at
depths of 50–150 m with velocities ranging from 20 to 50 cm/s. At the
southern end of the section, the currents were much weaker.

(3) The Tareev Current is clearly observed over the 65° E meridional section from
2.5° S to 1° N. The undercurrent core is located in the equatorial region within
one degree in the meridional span. At the ends of the section the flow weakens
and it is masked by the vortex perturbations.

(4) The width of the Tareev equatorial current, according to our measurements, was
more than 700 km over the section along 68° E and about 350 km over the
65° E section.

Thus, we can conclude that in February 2017 subsurface equatorial undercurrent
exists during the time of the development of the western surface current generated
by the northeastern summer monsoon in the equatorial zone of the Indian Ocean.
The development of this flow spans from east to west and, ultimately, transforms to
the flow of the eastern direction, existing during the winter monsoon as a subsurface
undercurrent.
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The Bering Sea Regional Data
Assimilation System: From Climate
Variability to Short Term Hindcasting

Gleb G. Panteleev, Max Yaremchuk, Vladimir Luchin
and Oceana Francis

Introduction

In the last decades, 4d variational (4dVar) data assimilation (DA) has become the
most acknowledged tool for advanced hindcasting and forecasting of the ocean
circulation. Starting from DA systems constrained by simple dynamics (e.g., [1,
16]), the 4dVar approach [9] has gradually evolved into advanced DA systems
based on state-of-the-art ocean models (MIT, ROMS) and is now routinely applied
toward reconstructing the circulation in the Arctic, Pacific, or World Ocean (e.g., [5,
15]). These state-of-the-art DA systems involve the assimilation of a variety of
observations from satellites, surface and Argo drifters and climatological obser-
vations from oceanographic databases. Assimilation of these publicly accessible,
near real-time observations is natural since the major goal of the “global” DA
systems is to provide hindcasting of the global circulation and/or analysis of
observed climate changes on a global scale.

Meanwhile, due to the low flexibility of the global DA systems in assimilating
regional data on smaller scales, the regional DA systems have been under extensive
development within the last decade (e.g. [6, 8]). These DA systems routinely
assimilate alongtrack satellite altimetry (Jason-1, Jason-2, CryoSat), hourly SSTs
from GOES, and surface currents from HFRs and provide regional updates and
3-day forecasts of the ocean state. It is necessary to note, that all the regional
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systems were developed in the domains where TS observations were routinely
collected year-round for a long period of time. This allows for reliable estimation of
the background state, which is one of the key components of any DA system (e.g.
[32]). There are, however, many regions where the temporal and spatial distribution
of the observations is irregular and/or sparse in time and space. A prominent
example is the Bering/Chukchi Sea basin which becomes increasingly important
due to the rapid growth of the sea traffic and emerging prospects for development of
oil and mining industries on the shelves.

In this contribution, we discuss the key components of the regional Bering
Sea DA system developed by the authors in recent years [21, 22, 25] and present
results of the analysis of the Bering Sea circulation on different scales.

The Regional 4dVar Data Assimilation System

The dynamic components, which synthesize diverse oceanographic data within a
single framework are the Semi-Implicit Ocean Model (SIOM) and its adjoint
configured to optimize the SIOM trajectory with respect to observations.
The SIOM is a modification of the C-grid, z-coordinate Ocean Global Circulation
Model (OGCM) developed at the Laboratoire d’Oceanographie Dynamique et de
Climatologie [12]. The model was specifically designed for operating within the
regional 4dVar framework controlled by fluxes at the open model boundaries and
sea surface. The model is semi-implicit both in barotropic and baroclinic modes,
permitting simulations with relatively large time steps of approximately 0.1 day
[17, 20–22]. The tangent linear model was obtained by direct differentiation of the
forward model code. The adjoint code of the model was built analytically by
transposition of the operator of the tangent linear model, linearized in the vicinity
of the given solution of the forward model [32]. The spatial structure of the
background error covariances is modeled by the quadratic polynomials of the
Laplacian operator [34, 35].

The SIOM 4dVar DA system supports assimilation of diverse oceanographic
data such as: (a) In situ, Temperature and salinity observations from the database of
the Far Eastern Branch of the Russian Academy of Science; (b) Historical velocity
observations from moorings and sea surface drifters, and satellite-tracked drifter
trajectories (Fig. 1b); (c) Estimates of the mean transport through the Bering Strait.
Mean climatological estimates of 0.9 ± 0.2 Sv and corresponding seasonal trans-
port are taken from [31]; (d) Atmospheric forcing data (momentum, heat and salt
fluxes) for assimilation are taken from the National Center for Environmental
Prediction (NCEP); (e) The SSH anomalies from the AVISO database at http://
www.aviso.altimetry.fr. All observations are supplied with corresponding spatially
varying covariances.
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Climatological Seasonal States of the Bering Sea

In oceanography, the volume of the in situ observations is usually insufficient to
control all the model degrees of freedom, resulting in an ill-conditioned inverse
problem. A reliable climatological evolution of the sea state is one of the best
options for specifying the background state needed for regularization of the
ill-conditioned inverse problem. Conventionally, the gridded climatological TS
distributions are derived from historical observations using an optimal interpolation
(OI) technique (e.g. [11]), which does not take into account the dynamical con-
straints and often leads to oversmoothing. On the contrary, the 4dVar DA obtains
climatological states through the quasi-stationary variational DA approach [30].
Dynamical constraints of the model naturally introduce inhomogeneous advective
smoothing in the regions of strong currents. This process allows for the derivation
of a high resolution climatological state where all variables are dynamically bal-
anced, which is not the case for “conventional” oceanographic Atlases derived
through optimal interpolation algorithms.

This 4dVar approach was applied for the Bering Sea (BS) with a goal of obtaining
the climatological annual mean and four seasonal states. The model was configured
for the domain shown in Fig. 1a in a non-eddy-resolving mode on a relatively coarse
(∼18 km) regular z-coordinate grid with meridional and zonal resolutions of 0.16°
and 0.3°, respectively, and a time step of 4 h. Vertically, the grid has 34 levels with
unequal spacing ranging from 5 m near the surface to 500 m in the deeper layers. All
data sets, outlined in section “The Regional 4dVar Data Assimilation System”, were
used to constrain the model solution. As a result, the annual mean climatological and
four seasonal states were obtained. They are available at http://people.iarc.uaf.edu/
∼gleb/nprb_aleutian_passes/bering_sea_atlas_register.php.

Fig. 1 a Spatial distribution of the historical temperature data in the Bering Sea. The model
domain is shown by the rectangle. Contour lines mark the coastline and 1000 and 3000 m
isobaths. Arrows show the schematic of the Bering Sea circulation according to Stabeno et al. [28]
including the Bering Slope Current (BSC), the Aleutian North Slope Current (ANSC), and the
Kamchatka Current (KC). b The multiyear mean surface drifter velocities averaged over the model
grid cells. Gray shading shows the rms variance (cm/s) of the drifter velocity in each grid cell

The Bering Sea Regional Data Assimilation System … 503

http://people.iarc.uaf.edu/%7egleb/nprb_aleutian_passes/bering_sea_atlas_register.php
http://people.iarc.uaf.edu/%7egleb/nprb_aleutian_passes/bering_sea_atlas_register.php


Figure 2a–d presents the reconstructed mean summer state of the Bering Sea.
The structure of the reconstructed circulation (Fig. 2a, b) is in good agreement with
the schematic of the Bering Sea circulation provided by Stabeno et al. [28]. The
circulation pattern reveals an intense (30–50 cm/s) Alaska Stream, a somewhat
weaker (10–20 cm/s) Aleutian North Slope Current flowing along the southern and
northern flanks of the Aleutian Arc and a cyclonic circulation in the deep part of the
Bering Sea that includes a relatively weak (5–15 cm/s) Bering Slope Current and
more pronounced (30–40 cm/s) Kamchatka Current along the eastern and western
Bering Sea shelves, respectively. According to Fig. 2a, b, a significant portion of
the inflow through the Near Strait forms a cyclonic gyre in the south-western part of
the Bering Sea and then merges with the Kamchatka Current. The other portion
of the Kamchatka Strait outflow comes from the Bering Slope Current that origi-
nates from multiple inflows through the eastern Aleutian Passes. The Alaskan
Stream is the most intense current in the region. It flows along the southern flank of
the Aleutian Arc and feeds the flows through the Aleutian Passes [29]. The Bering
Slope Current splits into two branches near the point 57° N, 180° E. This is in a
good qualitative agreement with the flow pattern described by Stabeno et al. [28],

Fig. 2 Optimized maps of velocities at 25 m (a) and 1000 m (b) and temperature (c) and salinity
(d) in summer. Red arrows denote mean velocities at 1000 m estimated from Argo floats parked at
1000 m [33]
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but additionally, provides a statistically reliable quantification of the transport. The
mean relative mismatch between the reconstructed surface velocities (Fig. 2a) and
assimilated drifter velocities is 0.67.

Figure 2b provides a comparison of the optimized velocity field at 1000 m with
independent (not assimilated) velocity data derived from the Argo floats. The
average speed of the Argo floats is 4.6 cm/s, which is close to the mean optimized
velocity amplitude of 3.7 cm/s. This 25% difference can be considered to be in
reasonable agreement with the observations since a significant fraction of the
ARGO drifters are involved in transient eddy motions resulting in higher Lagran-
gian mean velocities compared to the Eulerian mean speed estimates.

Figure 2c, d shows the summer TS distributions in the BS. In comparison with
the optimal interpolation results (e.g., https://www.nodc.noaa.gov/OC5/
PACIFIC2009/), the reconstructed fields are less smoothed, especially in the
Northern Bering Sea (NBS) and along the Aleutian Arc. These are signatures of the
strong topographically controlled flows through the Bering and Anadyr Straits and
through the island system of the Aleutian Arc. The most important advantage of
these TS distributions is that they are dynamically balanced with corresponding
velocity fields (Fig. 2a, b), which allows for identifying finer structures of regional
circulation while simultaneously providing estimates of climatological mass, heat
and salt transports.

Except for the summer season, Pacific water masses entering the Bering Sea
within the upper subsurface layer are characterized by higher temperature and
salinity than the water mass residing in the Bering Sea at the same depth (Fig. 2c,
d). The major cause of such temperature/salinity signal is due to the relatively high
heat and salt content of the Pacific Water compared to the Bering Sea Water, as well
as intense vertical and lateral mixing in the Aleutian Passes.

In the summer season, the warmest and least salty subsurface layer waters are
formed in the nearshore regions of Bristol Bay, Norton Sound, and the Gulf of
Karaginski. The presence of warm and relatively fresh salty waters in these areas is
a consequence of strong stratification observed after the melting of the sea-ice cover
and relatively weak winds, which are not able to mix the upper warm layer with the
waters underneath. A somewhat colder and saltier upper subsurface layer water is
present in the summer in several regions of the Bering Sea (e.g. in the central and
eastern parts of the Aleutian Arc, and in the Chirikov Basin, Fig. 2c, d). Due to
intense tidal and non-periodical currents in these regions, surface waters are mixed
with the underlying cold waters formed in the winter and fall.

The optimized estimates of the mean volume transport through the major
Aleutian Passes are found to be 2.5–7 times larger than those in the dynamical
method [28]. This discrepancy is likely due to significant underestimation of the
barotropic velocity component in the Aleutian Straits by the dynamical method.
The latter suggestion is well supported by recent velocity observations in several
Aleutian Passes, which reveal significant northward flow at a 100–200 m depth
[29], indicating the importance of the regional barotropic flow in the overall Bering
Sea volume balance.
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Another important advantage of the 4dVar DA in the reconstructed climato-
logical state of the Bering Sea is obtaining the dynamically balanced Sea Surface
Height (SSH), which can formally be treated as MDOT, or the “difference between
a time-averaged SSH and geoid”. The importance of the MDOT availability is
closely connected to the possibility of retrieving absolute SSH from the satellite
altimetry anomalies observed by various satellite platforms (e.g. TOPEX/Poseidon,
Jason-1/2, Earth Resources Satellite (ERS)-1/2, Envisat, Saral, etc.). Therefore, a
number of research groups have developed methods to combine various data with
altimetry to obtain more accurate estimates of the global MDOT [13, 18, 26]. For
various reasons, all of these products have substantial deficiencies in the Bering
Sea.

Figure 3 compares 4dVar MDOT and three other MDOT products in the region.
Since the optimized surface velocities below the Ekman layer are in approximate
geostrophic balance with the MDOT (optimized SSH field), the reconstructed
MDOT contours (Fig. 3a) are conveniently interpreted as streamlines of the mean
geostrophic currents at the surface. The circulation pattern reveals the following
major structures: (a) an intense (30–40 cm/s) Alaskan Stream south of the Alaska
Peninsula; (b) a somewhat weaker (10–20 cm/s) Aleutian North Slope Current
embracing the southern and northern flanks of the Aleutian Arc; (c) the 30–40 cm/s

Fig. 3 The mean dynamic topographies of the Bering Sea a this study, b by Rio et al. [26], c by
Rio et al. [27], and d by merging the EGM08 geoid model with altimeter data. Black rectangles in
Fig. 3a show the drifter validation regions. White rectangles show the domain of high resolution
SIOM DAS for the Amukta Pass and part of the Eastern Bering Sea shelf discussed below
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strong Kamchatka Current to the west; and (d) a relatively weak (5–15 cm/s)
cyclonic circulation occupying the deep part of the Bering Sea (Figs. 2a and 3a).
According to Fig. 3a, a significant portion of this cyclonic gyre originates in the
Near Strait with the rest coming from the inflow through other Aleutian passages.
The circulation shown in Fig. 3a is in good qualitative agreement with the results of
Stabeno et al. [29] who describes a gradual leakage of the Alaskan Stream though
the passages in the Aleutian Arc.

The mean relative mismatch between the reconstructed surface velocities and
assimilated drifter velocities (Fig. 1a) is 8.2 cm/s. It is unlikely that a better
agreement could be obtained between the climatological velocity with mean
amplitude of approximately 10 cm/s and the highly variable surface currents
derived from the drifter trajectories affected by eddies and small-scale variations of
the wind stress.

The derived MDOT were validated using the standard AVISO methodology:
three regions well-covered by drifters were selected, gridded AVISO SSH
anomalies from www.aviso.oceanobs.com were added to each MDOT, and the
resulting geostrophic currents were compared with the currents deduced from
drifter trajectories for the three regions shown by black rectangles in Fig. 3. The
validation has shown that 4Dvar MDOT significantly (10–35%) outperforms all
other MDOT products [22].

Obtaining a high resolution regional MDOT and its posterior errors is a
prominent feature delivered by the 4dVar analysis of the climatological observa-
tions. In the next sections, we show how the derived MDOT benefits the analyses of
decadal variability and hindcasts of the BS circulation at interannual time scales.

4dVar Analysis of the Circulation in the Aleutian Passes

This section provides another illustration that a realistic MDOT is a key component
of a regional data assimilation system. In application to the regions with compli-
cated topography, such as Aleutian Passes, MDOT inaccuracies may result in
significant underestimation of the volume transports. To illustrate this, the 4dVar
DA system was configured at a 6 km resolution with a domain around the Amukta
Pass shown by the smaller white rectangle in Fig. 3a. A larger rectangle shows the
domain of a similar experiment conducted in the central part of the Eastern Bering
Sea shelf (see [23]).

Amukta Pass is one of the most important pathways for the inflow of the Pacific
Water into the Bering Sea. Two assimilation experiments have been conducted in
the domain: In the first experiment, the circulation for the period between January
10 and February 5, 2002 was reconstructed by assimilating AVISO sea level
anomalies referenced to the 4dVar MDOT (Fig. 3a) in combination with the NCEP
sea surface heat, salt and momentum fluxes. Climatological (winter) temperature/
salinity in the Amukta Pass distributions were utilized as a first guess. The second

The Bering Sea Regional Data Assimilation System … 507



experiment had an identical configuration except that the 4Dvar MDOT was
replaced by the RIO05 MDOT (Fig. 3c).

The mean circulation patterns on January 10–20 and January 25–February 5
derived in the first experiment are shown in Fig. 4a, b. The Amukta Pass northward
transports in these two periods were 6.1 Sv and 3.5 Sv, respectively. A very intense
northward current on January 10–20 and January 25-February 5 agrees well with
the large positive anomalies of 7 Sv and 4 Sv in the Amukta transport observed by
Stabeno et al. [29], who used records from four bottom-mounted ADCPs deployed
in the region for 2 years [29]. Note that resolution of the gridded climatological
MDOT (∼18 km) and AVISO sea level anomaly (1/3° × 1/3°) are not sufficient
enough to resolve the complicated geometry of the Amukta Pass. Therefore, better
agreement with observation may be expected, if higher resolution climatological
MDOT and/or AVISO products were available.

On the contrary, Fig. 4c demonstrates a much weaker circulation around the
Amukta Pass which was derived by assimilating AVISO sea level anomalies ref-
erenced to the RIO05 MDOT shown in Fig. 3c. The respective transport averaged
over the period of January 25-February 5, 2002 is close to 1.6 Sv, which is 2.5
times smaller than 4 Sv observed by Stabeno et al. [29]. These experiments indicate
that RIO05 significantly underestimates the MDOT gradient in the region of the

Fig. 4 Circulation in Amukta Pass on January 15 (a) and February 1 (b), 2002, derived by
assimilation of the AVISO sea level anomaly data referenced to the MDOT shown in Fig. 3a.
Panel (c) shows the circulation in the Amukta Pass on February 1, 2002, derived by assimilation of
the AVISO sea level anomaly referenced to Fig. 3c (RIO05)
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Aleutian Passes. In the context of the Bering Sea large-scale dynamics, accurate
MDOT appears to be especially important since the processes of the ventilation of
the deep and shallow parts of the BS occurs through the few relatively narrow
Aleutian Passes. These ventilation processes are one of the key mechanisms con-
trolling the BS ecosystem and, therefore, should be reconstructed with increased
accuracy.

In relation to ecosystem dynamics, the vast shelf of the Eastern Bering Sea
(EBS) represents the major hub located on the crossroads of the pathways between
the Pacific and Arctic Oceans. Extreme complexity of the advective and mixing
processes in the shallow waters of EBS shape the seasonal ecosystem parameters
and require accurate treatment in terms of observational and dynamical consistency.

Eastern Bering Sea: Regional Ocean in Motion

The Eastern Bering Sea (EBS) plays an important role in United States’ fisheries,
dynamics of the immense populations of marine birds and mammals, and subsis-
tence activities of native communities. Therefore, this region has been permanently
studied in the last decades. The most comprehensive studies were conducted in
2007–2010 in the framework of the Bering Sea Integrated Ecosystem Research
Program (BSIERP). Typically, 2–3 hydrophysical (CTD) surveys per year were
conducted and 3 mooring arrays were supported during 2007–2010 (Fig. 5). Note,
however, that each CTD survey usually lasts for 2–3 weeks, providing only a
“snapshot” of a limited area of the EBS, while during the rest of the year, there is no
reliable information about the hydrophysical state. At the same time, moorings
provide continuous time series in a few locations lacking adequate spatial coverage.
Obviously, these data cannot adequately describe the circulation in the entire EBS,
if considered, without additional dynamical constraints. The 4dVar DA provides a
good guide on how to combine observations from different sources for recon-
structing the non-stationary state of the ocean in motion.

Nested 4dVar system. The BSIERP observations and other sources of data provide
an excellent opportunity to improve our understanding of changes in the physical
forcing of the Bering ecosystem in its response to the climate change. But due to ice
coverage in the winter, a relatively large regions of the EBS including the key
passages through the Anadyr and Bering Straits were not covered by these studies.
In view of the necessity to adequately resolve the Bering and Anadyr Straits, a
nested SIOM 4dVar DA system was developed. The nested DA system utilized as a
first guess, the momentum, heat and salt fluxes from Bering Ecosystem Study Ice
Ocean Modeling and Assimilation System (BESTMAS) [10, 36].

The nested models were configured in the domains shown in Fig. 5 with a res-
olution of 7 km for the fine model grid, ω, embedded into a coarser (15–20 km) grid,
Ω (Fig. 1). In the vertical, the coarse (fine) resolution model had 35(15) unevenly
spaced levels with 5 (2.5) m near-surface spacing, which increased to 500(25) m at
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the bottom. Trajectories of both models were controlled by the initial/boundary
conditions and surface fluxes. The details and validation of the novel two-way nested
DA iterative algorithm were discussed in Panteleev et al. [25]. It was shown that the
nested DA approach allows for a much better reconstruction of the flow through the
Bering Strait and a significant reduction of the model-data observation misfits in
comparison with the BESTMAS data assimilative solution. In the entire range of the
velocity observations from moorings, 4dVar velocities demonstrate a much better
linear fit to the data compared to the one characterizing the BESTMAS solution [25].

The two-way nested 4dVar scheme allowed us to achieve much better consis-
tency between the optimal solutions within the nested domains. As a result, a
significantly better fit was obtained to SSH data, constraining circulation in a coarse
resolution domain, and to higher resolution velocity data controlling the Bering
Strait throughflow.

Fig. 5 Model domain and assimilated observations. The boundaries of the coarse (17 km) and
fine (7 km) resolution grids are shown by the black and gray rectangles, respectively. Small circles
show hydrographic stations, and mooring locations from different observational experiments are
shown as white circles, squares, and diamonds
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The major sources of data needed for model forcing and assimilation are shown
in Fig. 5 and include velocity observations from three mooring arrays; multiple
CTD surveys. In addition, we assimilate the gridded SSH anomalies from the
AVISO data set referenced to the regional MDOT and background information
from the reconstructed seasonal climatologies of the Bering Sea (Section “The
Regional 4dVar Data Assimilation System”).

The optimized evolution of the EBS state was obtained by assimilating the above
described data over 49 4-week time windows spanning the period of January 1,
2007 to October 3, 2010. On the average, 300 × 4 = 1200 iterations were required
to achieve the nested 4dVar convergence of a single 4-week problem.

Mass, heat and freshwater transports. The 4dVar-optimized weekly averaged
fluxes are shown in Fig. 6 in the Bering and Anadyr Straits. Because mass is
conserved, and the surface heat/freshwater fluxes in the Northern Bering Sea can be
neglected, the difference between the curves gives an insight on the partitioning of
the respective Bering Strait transports between the Anadyr and Spanberg inflows.
The heat and freshwater transports in Fig. 10 were obtained relative to −1.9 °C and
34.8 psu, respectively.

An interesting feature in Fig. 6 are the events when the Bering Strait fluxes were
much larger than the advective heat/freshwater transports entering the Chirikov
Basin through the Anadyr Strait (e.g., September, November 2007, August–
September 2010). Near-surface circulation and wind stress patterns (Fig. 7a, c)

Fig. 6 Evolution of the weekly averaged mass, heat, and freshwater fluxes through the Bering
(thick gray line) and Anadyr Straits (solid black line). Annual mean values of the fluxes are shown
in the upper right corners of the respective boxes. The units are, respectively, 106 m3/s, 1020 J, and
103 m3/s
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indicate that these anomalies were caused by strong southeasterly winds over the
EBS shelf, which raise the sea level along the Alaskan coast and enhance transport
of the warm and fresh waters through the Spanberg Strait.

Wind stress patterns in Fig. 7a, c indicate that intensification of the northward
current along the Alaskan coast was forced by atmospheric lows over the central
Bering Sea. Such cyclones are quite a common phenomena in late fall/winter and
are known to cause intensification of the Kamchatka Current [7]. However, since
EBS is mostly ice covered in winter, these winds have little effect on the heat
transport, but may cause a noticeable increase in the freshwater transport (lower
panels in Fig. 6). In summer, strong southeasterly winds associated with cyclones
over the BS basin are less common, although a certain increase in the summer storm
activity has been documented [14] over the last decade. These storms may con-
tribute significantly to the observed decrease of the ice cover in the Chukchi Sea.
Winter storms have a larger impact on the deep mixing in the central BS and
freshwater flux through the Bering Strait.

Another interesting phenomena in Fig. 6 are the anomalous (southward) trans-
port events through the Bering Strait. Most of them occur in fall-winter and have a
typical duration of 1–2 weeks. The exception is a 28-day southward transport
observed in November 2009. Comparison with the wind forcing has shown that all
the negative transport anomalies in September–November 2008–2010 are associ-
ated with the southward winds. This phenomenon has been documented by
Coachman [4] and appears to be a typical feature for the freezing and (to a lesser
extent) melting seasons. It is also remarkable that in 2007–2010, the reversing of
the Bering Strait throughflow mostly occurred synchronously with the Anadyr
Current, when the contribution of the Spanberg Strait volume transport becomes
negligible. Analysis of the optimized circulation shows that forcing by the north-
easterly winds completely blocks the Spanberg Strait throughflow causing dramatic
structural changes in the SSH and circulation patterns. Northwesterly wind surge
tends to change the sign of the large-scale SSH gradient in the southern EBS (cf.
Fig. 7a–c) and completely reverse the flow field in the Bering Strait along the
Alaskan and Siberian coastlines. Prolonged flow reversals, such as the one observed

Fig. 7 Velocity at 25 m depth (black arrows), wind stress (white arrows), and SSH (shading, cm),
at 0.00 UTC on September 10, 2007, November 7, 2009, and September 2, 2010. Thick arrows in
the middle of the plot show velocities observed on the moorings
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in November 2009, may have a significant impact on the EBS ecosystem by
affecting the residence times and displacing the cold pool (e.g. [3]) boundary which
is advected by the general southward flow clearly seen in Fig. 7b on a larger scale.

Water pathways and residence times. Analysis of trajectories of the Lagrangian
particles is a convenient approach to study the regional ecosystems (e.g. [2, 19]). It
could be also useful in the analysis of water mass pathways and their transformation
rates (e.g. [22]). In the analysis described below, we focus on two important sub-
regions: the Unimak Strait (the easternmost passage from the open Pacific into the
EBS) and the BSC source region properly located north of Unalaska Island.
Lagrangian particles were released in each region once a week during 3.5 years.
Trajectories of the fastest and slowest particles from these releases are shown in
Fig. 8a. It is noteworthy that the largest residence times τ (up to 40 months) were
observed exclusively for the particles released in the Unimak Pass while the
smallest residence times (8–10 months) were documented for the particles released
north of Unalaska Island, where the North Alaskan Slope Current meets the EBS
continental slope. The residence time distributions in both regions (Fig. 8b) are
quite different in shape. The Unalaska release region is characterized by a double
peak structure. A more detailed analysis shows that the fastest particles, corre-
sponding to the first peak at τ = 10 months were mostly released in the fall season
(October-November), when the BSC is spun up by the storm activity [24]. The
majority of Unalaska released particles reach the Arctic Ocean in 11–15 months as
they travel with the BSC of normal strength. The near-exponential tail of the
distribution (τ ∼ 16–35 months) is formed by the particles carried by mesoscale
eddies across the continental slope into the EBS shelf.

In contrast to the Unalaska particles, particles released at Unimak Pass are
characterized by much more homogeneous distribution over the residence times
(thin line in Fig. 8b). This could be explained by the low probability of their capture
by the core of the BSC. As a consequence, most of these particles start their travel

Fig. 8 a Trajectories of the particles reaching the Bering Strait and released in the Unimak Pass
(white rectangle) and north of the Unalaska Island (dark gray). b EBS residence time distribution
of the particles released in the Unimak Pass (thin line) and north of Unalaska Island
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history in the EBS shelf environment which is characterized by much weaker and
less organized currents. Trajectories of the Unimak Pass particles with the largest
residence times (τ ∼ 35–40 months) shown in Fig. 8b first wander around the
southern EBS shelf west of the Pribilof Islands, and then slowly proceed north
following the Spanberg Strait pathway to the Arctic Ocean. Only a small fraction of
these particles join the Anadyr Current far downstream, and they are never engaged
in the eddy-induced exchange with the BSC. The same property characterizes the
fastest particles populating the left peak (τ < 11 months) of the Unalaska distri-
bution in Fig. 8b. These particles strictly follow the main stream of the BSC and
Anadyr Current.

Summary

We presented a systematic approach for developing a regional DAS as applied to
the Bering Sea. The method is based on applying the 4dVar technique to both
climatological and instantaneous data with the ultimate goal of reconstructing
dynamically and statistically consistent states at various temporal and spatial scales:
from large-scale interannual circulation to eddy resolving transient current systems.
The backbone of the system are dynamically balanced seasonal climatological
states and the corresponding MDOT of the Bering Sea, which distinguishes the
developed Bering Sea DAS from other regional systems developed in the last
decade, such as for the Oregon Coast by Kurapov et al. [8], and for the Hawaiian
Islands by Janekovich et al. [6].

The developed seasonal climatologies of the Bering Sea include dynamically
consistent temperature, salinity, velocity, and sea surface height fields for each
season (winter, fall, spring and summer) and the corresponding fields for the cli-
matological mean state of the Bering Sea. These climatologies have sufficiently fine
resolution to allow accurate specification of the dynamically balanced background
state for any subregion of the Bering Sea. An important by-product is the
high-resolution regional MDOT, whose accuracy and quality significantly outper-
forms the other MDOTs derived from various global reanalyses.

Combining the developed Bering Sea MDOT with instantaneous satellite
altimetry data provided an important observational constraint on the regional
dynamics in the entire Bering Sea. The 4dVar assimilation of satellite altimetry
anomalies referenced to the 4Dvar MDOT provides much better estimates of the
transport through the Aleutian Passes. These flows control the supply of nutrients to
the Bering Sea, affect the stability of the Aleutian North Slope Current and the
process of eddy formation along the Aleutian Arc, which is an important compo-
nent of local ecosystem dynamics.

The seasonal climatologies were also used to constrain a more detailed and
comprehensive study of the EBS circulation in 2007–2010 by means of the nested
4dVar DAS developed by Panteleev et al. [25]. Comparison with the
BESTMASS DA system of Lindsay and Zhang [10] has shown that the new DAS
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provides a more realistic EBS circulation and Bering Strait throughflow both in
terms of model-data misfits and general dynamical consistency. This allows for a
more accurate analysis of the property exchange processes between the Pacific
Ocean and the Bering Sea, including residence times, pathways and the transfor-
mation rates of various water masses on their way to the Arctic Ocean.

The wealth of new information on the Bering Sea dynamics delivered by the
developed DAS illustrates the importance of regional DA systems for further
improvement in understanding and forecasting environmental conditions in the
marginal seas and nearshore areas. Our experience shows that 4dVar reconstruction
of the dynamically consistent regional climatologies is of particular importance for
the reanalysis of the local data sets. In turn, the improved accuracy of the hindcasts
would inevitably result in better forecasting of the regional environmental condi-
tions that are extremely important in many applications.
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Monitoring Strong Tidal Currents
in Straits and Nearshore Regions

Alexei Sentchev, Max Yaremchuk and Maxime Thiébaut

Introduction

Open-ocean currents flow in complex patterns affected by wind, water density
gradients, topography of the ocean floor, and the Earth’s rotation. These large scale
and relatively slow evolving forcing terms create water motions that are relatively
persistent in magnitude and direction. In contrast, near-shore currents exhibit much
stronger magnitude and variability both in space and time. Near the boundaries, in
shallow water regions, and in narrow straits, flow dynamics is increasingly com-
plex: tides and tidal currents are amplified, stratification effects are more pro-
nounced, wind driven flows can contribute to extremely large variation of the sea
level, while frictional effects in strong currents result in complex turbulent motions.

The strongest currents that can be experienced in coastal regions have tidal
origin. Near the coast, tidal dynamics can be considerably modified by the shallow
water and the coastline, and tidal current speed attains values of several meters per
second that open ocean currents never reach. Regions of such high-tidal current
speeds are sparse, and are typically the result of topographic flow amplification.
A fast moving tide passing through a constriction can result in a tidal race (ex-
tremely strong current). It can also give rise to the formation of waves, eddies, and
hazardous currents. In extreme cases, such as in Skookumchuck Narrows in British
Columbia, through which tides can travel at more than 17 knots, very large
whirlpools develop, which can be extremely hazardous to navigation. In other
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coastal areas, located in their majority along the UK and French coast, not so large
but still impressive current speeds (more than 10 knots) are encountered.

Coastal ocean hydrodynamic models, routinely used for SSH and currents
forecasting, are not always capable of resolving local bathymetric features and
complex physics governing a fast moving tide. In such situations, monitoring of
coastal currents by a bottom-based or towed current recording system remains a real
but not unique opportunity. In turn, in situ observations by bottom-mounted
Acoustic Doppler Current Profiler (ADCP) in strong tidal flows are very difficult to
perform because they require highly qualified staff, boats, specific equipment, and if
the survey is successfully conducted, the acquired data do not allow to characterize
the spatial variability of the flow neither its long-term variation.

Underway velocity measurements by towed or vessel-mounted ADCP is another
efficient tool for tidal flow characterization in nearshore areas. In the early studies
[8, 32], velocity profiles were sampled with sufficient frequency while the vessel
steamed around a circuit allowing to resolve the vertical structure of the tidal
current and its spatial irregularities. Using broadband ADCP surveys
Goddijn-Murphy et al. [9], Polagye and Thomson [18] documented fine scale
velocity variations caused by tidal flow interaction with land and islands. However,
the rapid change of the tidal flow during surveying period tends to induce errors in
the velocity map interpretation. Goddijn-Murphy et al. [9] showed that the accuracy
in reconstruction of the full 4-dimensional tidal flow can be significantly increased
by merging observed velocities with the dynamical constraints provided by
numerical models. More recently, Sentchev and Yaremchuk [25] used the optimal
4-dimensional interpolation technique for reconstructing space-time evolution of
the velocity field derived from towed ADCP surveys in the Boulogne harbour
(English Channel). This approach, which combines underway velocity measure-
ments and modelling, offers a real opportunity for short-term monitoring of the
strong nearshore circulation.

Another technique of coastal flow monitoring involves remote sensing of surface
currents by High Frequency Radars (HFR). Although application of the HF radars
in oceanography has more than 30-year history [17, 19, 26], its efficiency for
monitoring powerful coastal flows, jets and tidal generated transient eddies was
demonstrated only recently (c.f. [22]). A new interest for tidal current monitoring in
straits and narrows is motivated by the growing development of the tidal energy
conversion by in-stream devices. The UK was a pioneer in this field by installing
the first commercial 1.2 MW tidal turbine in the Strangford Loch, a narrow strait
connecting the inland tidal basin to the Irish Sea. In France, the Sabella Co.
installed its first of three 0.5 MW tidal turbines in the Fromveur Strait (W. Brit-
tany). Other projects aim to install tidal stream conversion systems at various sites
in France (Alderney Race) or in Scotland (Pentland Firth). In this context, long term
monitoring of strong tidal flows at these sites is of primary importance for engi-
neering applications and assessing the tidal stream potential.

In this chapter we give an overview of the two prospective techniques for
monitoring strong currents in the nearshore regions with high tidal stream potential:
the remote sensing by HFRs, and underway measurements by a towed ADCP. In
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the next section, we first consider the basic principles of HFR-based observations of
surface currents and then describe application of the method for assessment of
spatial and temporal variability of the tidal flows at two sites where powerful tidal
currents dominate local circulation: off the western coast of France and in the Strait
of Dover. In section “Measurements of Tidal Currents with a Towed ADCP Sys-
tem”, we briefly describe a compact ADCP towing system and demonstrate its
application in two regions (the Solent and Dover Strait) in the English Channel. In
section “Summary”, we summarize the results and discuss the prospects of using
the techniques, in particular, for applications related to tidal energy conversion.

Monitoring Surface Currents with HF Radars

Basic principle High Frequency radars operate in a frequency band 5–45 MHz.
A part of the electromagnetic energy transmitted at these frequencies is trapped in
the “surface-wave” mode and remains bound to the sea surface, following the Earth
curvature. Moreover, in this frequency band, the electromagnetic waves have
wavelengths that are commensurate with wind-driven gravity waves on the ocean
surface. The ocean waves whose wavelengths are exactly half as long as those of
the broadcast radio waves are responsible for the resonant backscatter, an example
of a phenomenon known as Bragg scattering. Crombie (1955) first observed that the
peak energy of HF radio waves reflected from the sea surface occupies a narrow
frequency range near the frequencies ± fb, called the Bragg frequency; fb represents
the Doppler shift of the backscattered signal above and below the HFR frequency, it
is defined as fb = g/πλ, where λ is the radar wavelength, g is the acceleration of
gravity. These two Bragg peaks in the power spectrum are produced by the coherent
scattering of the HFR waves by the Bragg sea surface waves travelling radially
toward and away from the radar.

In an important early study, Stewart and Joy [26] observed that there are often
small frequency differences between the observed Doppler shift of the backscat-
tered HFR waves and the Doppler shift predicted from the surface gravity waves
moving over still water. Using radar-tracked surface drogues to directly measure
ocean currents, they showed that the observed differences resulted from surface
ocean currents and that the current speed toward or away from the radar could be
estimated. In particular, radial velocity vr of the surface current (a projection of the
current velocity vector on the radar beam) can be retrieved from the Doppler shift
Δf of the observed Bragg peaks, compared to their theoretical values, by using the
Doppler formula vr = Δf/2λ.

These principles are the basis for the mapping of surface currents by oceano-
graphic HFRs. Since then, many validation studies comparing HF radar-derived
surface currents with in situ observations have contributed to the growing accep-
tance and use of HFRs for measuring surface currents (e.g., [4, 16, 21, 23]). Stewart
and Joy [26] assumed that a HF radar samples vertically integrated current velocity.
Earlier work by Kirby and Chen [12] and more recent studies [21, 23] allowed us to
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validate this assumption experimentally and conclude that the HFR-derived velocity
corresponds to exponentially weighted velocity profile and that the equivalent
velocity value is found at the effective depth z = λ/8π. The effective depth is of the
order of 0.75 m for 16 MHz and 2.3 m for 5 MHz radar.

Mapping the surface velocity field Individual radar samples the surface velocity
over a large area which can extend up to 200 km offshore (5 MHz long-range
radar). This area is divided into a number of directional beams and each beam
contains a large number of bins (range cells). A good quality Doppler signal
requires each range cell to be larger than at least 150 Bragg wavelengths. For this
reason, the bin size becomes larger as the radar frequency decreases. A HFR cannot
unambiguously identify the arrival directions of backscattered signals. Currently,
HFR systems for mapping surface currents may be classified into two types,
beam-forming (BF) and direction-finding (DF), based on the method used to
determine arrival directions.

Beam-forming radars use a linear array of antenna elements that are steered by
adjusting the amplitudes and phases of received signals (e.g., [27]). An early beam-
forming (BF) radar, used extensively for mapping surface currents, was the ocean
surface current radar (OSCR) [20] with an azimuthal resolution of 10°. More
recently, the Wellen radar (WERA) was developed by Gürgel et al. [10] using
beam-forming configurations with up to 16 antenna elements offering an azimuthal
resolution of ∼3–4°. Such an array often occupies more than 150 m of coastline
which is not always practical.

To achieve smaller footprints, direction-finding (DF) configurations are used.
These radars compare the phases and amplitudes of radio signals received by
closely spaced antenna elements coupled with various direction-finding inversion
algorithms. The most common direction-finding radar is the CODAR SeaSonde [1].
Both algorithms (DF and BF) can be used to identify the arrival direction by
linear-array antenna WERA system. The azimuthal resolution produced by each
method can play a crucial role in analysis of surface circulation patterns in the
regions, where high horizontal velocity gradients are expected. Figure 1 provides
an example of such a difference in spatial structure of current velocity sampled by
12.4 MHz WERA system around the Ushant Island, off the western Brittany coast
of France, by using both DF and BF algorithms. The DF allows small-scale
structures of tidal currents to be better resolved. On the contrary, DF radars often
produce coverage gaps (cf. eastern and southern margin of the radar coverage area
in Fig. 1).

A single HFR measures projection of the current velocity vector on the beam
direction. Therefore, velocity measurements by at least two distant radars are
required for reconstruction of the vector velocity map. At a point of the beam
intersection of two radars, the east–west (u) and north–south (v) components of the
surface current vector may be found by solving a system of two equations involving
measured radial velocities and known beam angles. If a point on the sea surface is
in the coverage area of three or more radars, then u and v can be obtained from a
least-squares solution of the corresponding system of linear equations. These are the
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methods of local reconstruction of the velocity field. More sophisticated global
interpolation methods use linear combinations of radial velocities at all measure-
ment points in conjunction with additional kinematic and/or dynamical constraints
to reconstruct the entire velocity field (e.g., [11, 33, 34]).

The Open-boundary Mode Analysis (OMA) method of Kaplan and Lekien [11]
performs an expansion of the interpolated velocity field in the eigenfunctions of the
2D Laplacian operator in the interior of the domain with the additional control at the
open boundaries by the eigenfunctions of the 1D Lapalcian.

Yaremchuk and Sentchev [33] proposed a more general and versatile 2D vari-
ational method of interpolation (2dVar) based on the direct minimization of the cost
function with respect to the interpolated velocity field v(x). Apart from attracting
v to the available observations, the cost function penalizes high-frequency com-
ponents of the curl and divergence of v(x). This feature can help to overcome some
limitations related to a lack of data. Additional smoothness of the interpolated field
is enforced by penalizing the squared Laplacian of velocity, thus providing the
algorithm with flexibility and efficient noise control. Kinematic constraints (zero
flux on rigid boundary) incorporated into 2dVar, appear particularly useful in
regions complicated topography. Yaremchuk and Sentchev [34] also developed a
gap-filling technique for HFR observations based on the EOF analysis of the
observational errors. In the subsequent presentation, the 2dVar interpolation scheme
developed by the authors was used for the reconstructing the velocity fields.

HFR observations in the English Channel In this section, we describe applications
of the long-term monitoring technique by HFRs in two regions where implemen-
tation of traditional in situ observational platforms is difficult due to extremely
strong tidal currents or due to busy shipping traffic, economic and environmental
constraints.

Fig. 1 Radial velocities of surface currents retrieved by the DF (a) and BF (b) algorithms from
HF radar measurements off the W. Brittany coast
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The first region is located in the Dover Strait off the Opal coast of France, where
tidal amplitude can be as high as 9 m and currents can reach 3 m/s. The site is
relatively shallow water with depth less than 50 m. In the middle of the Strait, there
are sandbanks oriented alongshore (Fig. 2). Currents are predominantly semidiurnal
with a pronounced fortnightly modulation due to the interference of the M2, S2, and
N2 tidal constituents. In May–June 2003, two Very High Frequency radars (VHFR)
were deployed for a 35-day period to monitor tidal currents. Radar sites were
located on the Cape Gris Nez and in Wimereux, 12 km southward (Fig. 2). The
radars were operating at frequencies 45 MHz and 47.8 MHz, and measured
velocities over a distance up to 25 km offshore at 600 m radial and 10° azimuthal
resolution, with time discretization of 20 min. The radial velocities measured by the
two radars were interpolated on a regular grid with 1 km spacing by variational
method with the gap filling capability. As a result, one month long sequence of
current velocity maps was generated and used for assessing tidal circulation in the
French sector of the Dover Strait [24].

The second study site is located at the entrance to the English Channel, off the
western Brittany coast of France, and has larger extension (Fig. 2). The bottom
topography is complicated by the group of small islands, islets, and rocks of the
Molène archipelago separated from the mainland by more than 15 km wide strait.
The larger Ushant Island is separated from the Molène Islands by the 2 km wide
and 60 m deep Fromveur Strait. Tidal currents in the strait are very strong with
velocities often exceeding 4 m/s.

Two high-frequency Wellen Radars (WERA) operating at 12.4 MHz have been
permanently operating on the W. Brittany coast since July 2006. Individual radar
sites are located at Cape Garchine (site G), and Cape Brezellec (site B) (Fig. 2). The
HFRs were configured to measure velocity in the surface layer 1 m thick at 1.5 km
radial and 2° azimuthal resolutions, with a temporal resolution of 20 min. Radial
velocities were interpolated on regular 1 km grid using 2dVar interpolation tech-
nique. The accuracy of the radar-derived velocities has been estimated by SHOM

Fig. 2 Left: The English Channel (left) and areas covered by HFR (gray rectangles) and towed
ADCP (red rectangles) velocity observations. Middle: HFR coverage zone (gray dashed line) off
the Opal coast of France. The HFR sites are shown by black dots. The navigation routes of vessels
and fishing areas are shown by brown and blue shading respectively. Contour interval of the
bathymetry is 10 m (grey solid lines). Right: Study area off the W. Brittany coast (in the Iroise
Sea) with radar coverage zone (grey shading) and radar sites (grey circles). Contour interval of the
bathymetry is 50 m (black solid lines)
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(Oceanographic Division of the French Navy) through a comparison with surface
drifters and ADCP current measurements for a period of 7 months. In the majority
of situations, the discrepancy in velocity measured by different instruments did not
exceed 0.15 m/s. A detailed description of the experimental settings, the methods of
HFR data processing in the Iroise Sea can be found in Sentchev et al. [22].

Tidal current dynamics off the W. Brittany coast Velocity time series derived from
HF radar measurements during the period 04/2007–09/2008 were used for assessing
tidal circulation around Ushant Island and estimating the major properties of the
flow. The maximum sustained velocity represents the maximum current observed.
Tidal flow asymmetry accounts for the asymmetry of velocity magnitude during the
tidal cycle. This imbalance between the strength of flood and ebb current speeds is
quantified as: a= ⟨V⟩flood ̸⟨V⟩ebb, where brackets denote time averaging of velocity
values on flood and ebb flow respectively. The principal component analysis
(PCA) [31] technique was applied to determine the principal direction of the flow
during the ebb and flood tide phases. The direction asymmetry Δθ shows deviation
of the flow from a straight line (dominant direction). This metric is defined as:
Δθ = |θflood − θebb − 180°|. Current velocity spectrum was also estimated. It can
help to explain the interaction between the principal tidal constituents resulting in a
strong distortion of the velocity curve.

Spatial variability of tidal currents is quantified by assessing the axes of the tidal
current ellipses derived from the PCA (Fig. 3). The length and orientation of
ellipse’s axis provide information about the tidal current strength and direction of
flood and ebb flow and indicate the regions with the most powerful flow. The
maximum and time averaged current velocity distribution shows significant spatial
variations in the range from 0.75 to 4 m/s for the maximum velocity (Fig. 3, colour
shading) and from 0.5 to 2 m/s for the mean spring tide velocity (Fig. 3, white

Fig. 3 Left panel: Radar derived current velocities of the flood (red) and ebb (blue) flow during
spring tide conditions. Time average and maximum surface current velocity during the study
period are shown by white contours and color shading respectively. Black circles mark location of
grid points where the maximum velocities are observed (locations A and B). Right panel: Current
velocity asymmetry a. B, Bn, Bs mark locations used for the analysis of current velocities
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contours). The strongest currents are identified in two areas: west of Ushant Island
and in the Fromveur Strait (locations A and B in Fig. 3). Bathymetry gradients and
the presence of islands cause flow acceleration, tend to tighten the streamlines and
provide the maximum velocities in these two sectors.

Figure 3 also shows a significant (up to 90°) misalignment in the current
direction during flood (red) and ebb tide (blue arrows) in the eastern and southern
sectors of Ushant Island. Such a deviation of the flow during a tidal cycle is known
as direction asymmetry. Sentchev et al. [22] documented the presence of transient
eddies in these areas which might explain such a large difference in the direction of
the ebb and flood flow. In the north-western sector of the domain, Δθ ranges from
0° to 10°, indicating that ebb and flood flows are mostly aligned.

Another interesting feature of the tidal dynamics around Ushant Island is the
velocity asymmetry a. The asymmetry varies in a wide range, from 0.5 to 2.5, and
shows a large spatial pattern with a > 1 in the west and a < 1 in the south (Fig. 3).
The strongest variation of asymmetry is observed in the Fromveur Strait. Here, the
asymmetry attains 2.5 in the onshore sector, indicating that flood flow velocities are
by far larger than the ebb flow velocities. The asymmetry decreases toward the
centre of the strait (point B in Fig. 3), where the tidal flow reaches a balance
(a = 1). Abrupt changes in the flow regime occur at very short distance in the strait.
The asymmetry values reveal very strong variation, from 1.9 to 0.8, between two
locations, Bn and Bs, separated by only 2.5 km at either side of the centre of strait
(location B). This gives flood flow velocities up to 2 m/s larger than ebb flow
velocities in Bn, and ebb flow velocities larger by ∼1 m/s in Bs. Such a strong
asymmetry variation, to the best of our knowledge, has never been documented
elsewhere.

Different properties of the tidal flow in nearshore environment can explain
asymmetry variations. Non-linear interactions between the principal semi-diurnal
constituents yield overtides and compound tides. It was established, that the phase
difference between semidiurnal and quarter-diurnal tidal constituents governs the
tidal flow asymmetry. In particular, the following relationship can be used to
diagnoze tidal asymmetry: γ = 2ΦM2 −ΦM4, where ΦM2 andΦM4 are the phases of
the M2 and M4 tidal current constituents [6]. Tidal current curve is symmetric when
γ = 90°, 270°. Maximum asymmetry is achieved at γ = 0°, 180°.

Harmonic analysis of velocity time series in the Fromveur Strait revealed the
presence of overtides and compound tides in the spectra. In the central point of the
strait (point B), the value of γ was ∼270°, thus indicating that the velocity curve is
balanced here (a ≈ 1). On the contrary, in the onshore and offshore sectors of the
Strait, the value of γ is close to 215° and 200° respectively, thus providing extreme
asymmetry values and a large imbalance of the current flow [29]. Non-linear
interactions between the principal semi-diurnal constituents generate residual cur-
rents which also contribute to tidal flow asymmetry.

Tidal currents in the Dover Strait The spatial variability of tidal currents in the
southern sector of the Dover Strait are quantified using parameters of synthesized
tidal current ellipses (Fig. 4) derived from the PCA. Spring tide period (May 16,

526 A. Sentchev et al.



2003) was selected to illustrate the location and magnitude of the strongest currents
observed. The ellipse orientation shows that the tidal currents are controlled by the
topography, producing alignment of the semi-major axes along the depth contours.
Anisotropy in current velocity field with a relatively high ellipticity is observed
over the sandbanks, in the middle and in the southern part of the study domain. Two
distinct zones with opposite sign of current vector rotation are clearly identified
(black and white ellipses). They are separated by a line roughly following the 30-m
isobath. This suggests that tidal currents are alternatively divergent or convergent
during the current reversal. The time averaged current velocity distribution shows
low spatial variations with values ranging from 0.5 to 1 m/s, with the highest
velocity observed off the Cape Gris Nez. The maximum current speed observed by
the radars does not exceed 2 m/s in the study site. The current asymmetry a ex-
ceeded unity in almost entire domain, indicating the flood flow dominance (Fig. 4).
The maximum current asymmetry (a = 1.6) is observed 6 km west of the Cape Gris
Nez, indicating the effect of the cape on the spatial distribution of phase and
amplitude of the principal (M2) tidal constituent and its higher order harmonics
(M4, MS4).

Measurements of Tidal Currents with a Towed ADCP
System

Although HFRs provide an efficient tool for long-term monitoring of tidal currents
on a larger scale, their spatial resolution could be insufficient for many practical
applications, such as identifying precise location of free-stream tidal turbines at tidal
energy sites. Much higher spatial resolution can be provided by ship-borne ADCP

Fig. 4 Left panel: Mean surface current velocity (m/s) during the study period (color) and during
the spring tide period in May 2003 (white contours). Shown also tidal current ellipses derived from
PCA on May 16, 2003 (every third ellipse is shown). Black white ellipses denote
counter-clockwise and clockwise rotating currents. Right panel: Current velocity asymmetry a
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observations. In contrast to the bottom-mounted or moored ADCPs, this method of
surveying does not require deployment of numerous instruments to obtain adequate
spatial resolution and it is not vulnerable to harsh environmental conditions and
extreme tidal velocities. Extensive ADCP surveys demonstrated that tidal currents
are characterized by significant variations at the scales of a few hundred meters [9,
14], and thus, require a very high resolution surveying during multiple tidal cycles.
At the same time, finite speed of the surveying vessel imposes certain limitations on
the accuracy of reconstruction of the 4-dimensional velocity field. To resolve the
issue, observed velocities should be constrained by the relationships governing tidal
dynamics.

This approach was pursued by Goddijn-Murphy et al. [9], who synthesized
vessel mounted ADCP transects in the Pentland Firth (Scotland) with the output of
the Orkney 2D tidal Model (ORKM) and obtained snapshots of the currents during
different tidal phases. Recently, Sentchev and Yaremchuk [25] proposed a 4D
optimal interpolation (OI) technique for processing underway velocity measure-
ments. The method employs statistics of a tidal model to infer the velocity error
covariances required by the interpolation algorithm.

In this section, we discuss the results of high resolution current mapping with a
towed ADCP at two sites in the English Channel characterized by strong tidal
currents. They are of certain interest for industrial companies developing energy
conversion systems, and thus require extended assessment of the local
hydrodynamics.

Methodology High resolution current mapping is performed using an experimental
platform carrying a broadband ADCP (1200 kHz or 600 kHz Teledyne RDI
WorkHorse Sentinel) towed by a light boat (Fig. 5). The distance from the boat is
controlled by an adjustable side fin allowing to keep the platform at a side of the
boat and thus to avoid contamination of the observed velocities by the wake. Two
additional rear fins installed on the hulls assure stability of the forward propulsion.
The ADCP is set to operate at a pinging rate of 1 Hz providing one velocity profile
per second with an accuracy of 0.05 m/s. The velocities are sampled with 0.5 m
vertical resolution; the first bin centred at 0.75 m. Bottom tracking enables to
correct for boat’s movement and the recorded velocities form a current vector in the
fixed frame relative to the bottom.

The boat speed typically varies within 2–4 m/s during a survey. The recorded
ADCP data are merged with high resolution GPS data. The geolocalisation system
GENEQ SXblue, mounted on the side of the platform (Fig. 5) and operating at
1 Hz, provides positioning accuracy of 40–80 cm at towing speeds of 2–4 m/s. The
above described system, called Koursk, was used for high resolution current
mapping at two perspective sites of marine renewable energy in the English
Channel: in the Solent and off the Dover harbour.

Assessment of tidal dynamics in the Solent and off the Dover harbor Tidal
motions in the Solent (Fig. 5, right panel) are very complex and well known for the
unusual phenomena such as the “Double High Water”, the “Young Flood Stand”,
and the short duration of the ebb tide. These peculiarities result from a deformation
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Fig. 5 Left panel: The experimental towing platform Koursk with ADCP profiler (in the centre),
high precision GPS with GPS antenna and data acquisition module. Right panel: The Solent and
the area covered by towed ADCP surveys in the West Solent (red rectangle)

of the tidal wave travelling through the Solent, generation of overtides and com-
pound tides [3].

A total of five towed and one fixed point ADCP surveys were performed in July
and October 2015 to assess the circulation in the West Solent in an area of
approximately 3.5 km2 at 100 m horizontal resolution (Fig. 6). Each survey lasted
1–1.5 h and covered different stages of a tidal cycle. The transects were oriented
roughly in the south-north direction and separated by approximately 500 m. Fig-
ure 6 (left top panel) shows an example of the surface current velocities recorded
by the system during the spring flood tide, one hour before High Water (HW) in
Southampton. Significant spatial variations of velocity are observed with a local
current intensification in the southwestern and northeastern sectors with steeper
bottom topography. The highest current speed, ranging from 2.5 to 3 m/s, was
recorded there both on ebb and flood tide. High resolution mapping allowed
identifying small scale features of tidal circulation. These include a slacking current
in the vicinity of the Yarmouth harbour and in the shallow northern sector, and a
transient anticyclonic eddy, 0.5 km in diameter in the southern part of the surveyed
zone. The eddy is generated during the flood flow by bottom friction in the vicinity
the Sconce Point, which induces negative vorticity downstream.

The towed ADCP survey made possible assessing current variations with depth.
Velocity distribution on a cross-section in the western part of the study area on
flood flow shows the location of the tidal jet (Fig. 6, bottom panel). Large hori-
zontal gradients of current speed are observed in the southern part of the west-
ernmost cross-section. Velocity profiles appear rather homogeneous throughout the
water column with the exception of the relatively thin boundary layer where the
vertical velocity shear is large.

Typical flood tide velocities south of the Dover Harbor are shown in Fig. 6 (top
right panel). A total of five towed ADCP surveys were performed during three days
in July and September 2014 here. The current speed is higher all over the domain
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during flood tide than during ebb tide, but the flow pattern looks similar. As can be
expected, tidal currents are generally constrained by shoreline, port dykes, and
bathymetry contours. Highest velocities are found in the vicinity of the breakwater,
and then gradually decrease seaward. A small size cyclonic vorticity feature is
identified in the northeastern part of the domain. It indicates the presence of a large
recirculation area with relatively weak currents east of the breakwater.

4D interpolation of the underway velocity measurements Uncertainties in spatial
patterns of the tidal flow reconstructed under the assumption of instantaneous
observations can be significant since evolutions of tidal currents at time scales of a
few hours are often comparable to the surveying period. To avoid distortion of the
results caused by temporal variation of the tidal flow during the survey, very short
(20–30 min) transects are repeatedly made, usually around the peak tidal flow (e.g.,
[5]). This time limitation prevents continuous studies of larger domains, which
require surveying times comparable with the characteristic time scale of the velocity
field (T ∼ 2–4 h).

Fig. 6 Surface layer velocities in the West Solent during spring flood tide on 16-10-2015, one
hour before HW in Southampton (top left) and off the port of Dover during mean flood tide on
5-7-2014, 2.5 h after LW in Dover (top right). Current vectors derived from underway ADCP
velocity measurements, 30-s averaged, are shown in red. Bottom panel: Current speed over the
cross-section in the West Solent during ebb tide on 1-9-2014. Cross-section location is given in red
in the insert
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In this section we present 4D optimal interpolation technique, in both space and
time, allowing retrieving the entire evolution of tidal currents from the survey data.
The technique employs tight space-time correlations in the tidal flow field that can
be accurately simulated by the existing state-of-the-art numerical models. A brief
description of the method and its application to assessing tidal circulation in a
limited size area (Boulogne Harbour) are given below. The harbour is located in the
French sector of the Dover Strait, in the vicinity of the area covered by the HFR
observations (Fig. 2).

A straightforward method of statistically consistent spatial interpolation of a
vector field is the well-known optimal interpolation (OI) pioneered by Gandin [7].
Since then, the approach was widely adopted in geosciences (e.g., [2, 30]). The OI
technique can be easily extended to include time dimension by using the space-time
correlation functions. In this approach, the optimal correction to the evolution of a
background vector field um(x, t) defined on a regular (model) grid is represented by
a linear combination of the weighted differences between the background trajectory
and the observed velocities. The weights ai are chosen so as to minimise the mean
square difference between observations ui

* and the background field values um,
interpolated into the space-time locations of the observations by the (linear) oper-
ator Hi, projecting gridded velocity values onto the i-th observation point from the
apexes of the enveloping grid cell:

Ju = ⟨ um + ∑
i
aiðHium − u*i Þ

� �2
⟩ → minðaiÞ ð1Þ

Here, angular brackets denote the statistical (ensemble) average, and summation
is made over all (distributed in space and time) velocity values measured during the
survey period. Given the space-time covariance matrices of the model B = ⟨um(x,
t) um(x′, t′)⟩ and observations Rij = ⟨ui

*uj
*⟩, and assuming that observation errors

are not correlated with the model (background) errors, the OI interpolation formula
takes the form:

uopt = um + ∑
ij
B HT

j ðHiBHT
j +RijÞ− 1ðHi um − u*i Þ ð2Þ

In order to apply Eq. (2) for interpolating the surveyed velocities, um(x, t) and
B are specified using the output statistics from the regional model MARS-3D [13]
configured for high resolution simulations in the surveyed area [25].

The result of interpolation allows accurate tracking of the motion of the
anti-cyclonic eddy derived from underway velocity measurements by towed ADCP
within the Boulogne harbor on March 27, 2012 (Fig. 7a). Figure 7 also shows two
snapshots of the velocity field: 20 min after the beginning of the survey, at
HW − 1.2 h, and at the end of the survey, at HW + 0.5 h. As it can be seen, the
optimal interpolation enables relatively accurate assessment of the circulation pat-
tern: at the beginning of the period (Fig. 7b), the eddy center was located just south
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of the harbor entrance, 300 m east of the western seawall. In the northern part, the
water inflow is observed with mean velocities ranging from 0.5 to 1 m/s. Later, at
HW + 0.5 h, the eddy migrated northeastward and expanded in size to occupy the
entire area of the harbor (Fig. 7c). The background color in Fig. 7 indicates the
difference in the velocity magnitude between the space-time interpolated currents
and the respective currents of the background model run um(x, t). Most of the
data-induced changes are observed in the northern part of the harbor with the major
difference (≈0.30 m/s) at the periphery of the eddy, showing significant modifi-
cations of the circulation pattern provided by the interpolation.

Summary

Currents of several meters per second can never be experienced in the open ocean
but could be encountered in straits and nearshore regions due to the interaction of
tidal waves with topography. Although regions of such extreme currents are sparse,
in situ observations of local flows are very difficult to perform due to extreme
environmental conditions. Static velocity measurements performed by either
bottom-mounted or moored ADCPs do not allow to adequately characterize neither
the spatial structure of the flow nor its long-term variation. In this chapter, we
presented two complimentary flow monitoring techniques that could be suitable for
continuous observations of the extreme currents.

The first type of reported observations was provided by two HFR networks
operated along the French coast, in the western and eastern sectors of the English
Channel. The HFR-derived velocities of surface currents were analyzed by means
of various numerical and statistical techniques. In particular, processing long-term
HFR observations in the W. Brittany provided maps of surface currents in

Fig. 7 a Observed (red) and modelled (gray) surface velocity fields during the towed ADCP
surveys in Boulogne Harbour on March 27, 2012 1200–1400 GMT. Evolution of the anticyclonic
eddy from HW − 1.2 h (b) to HW + 0.5 h (c). Red arrows show 30-s averaged ADCP velocities
recorded along the track for the respective tidal stages. Blue arrows show interpolated velocities.
Background shading shows the difference between the survey velocities interpolated in space and
time and model velocities at mid-time of the survey

532 A. Sentchev et al.



unprecedented detail due to the application of the DF technique in conjunction with
variational 2dVar interpolation. The approach was essential for accurate assessment
of circulation around the islands and in the straits were high horizontal velocity
gradients occur.

Our analysis revealed velocities exceeding 4 m/s and a pronounced asymmetry
between the flood and ebb flow varying in a wide range, 0.5–2.5, around Ushant
Island. The strongest variation of asymmetry was found in the Fromveur Strait.
Neill et al. [15] investigated spatial variation of asymmetry around the Orkney
Islands, where strong tidal currents occur, and documented the values ranging from
0.7 to 1.3. Four times larger asymmetry variation has been found around Ushant
Island, which, to the best of our knowledge, has never been documented at any
other place in the World Ocean.

HFR velocity monitoring in the Strait of Dover documented the strongest cur-
rents (up to 2.5 m/s at spring tide) occurring west of the Cape Gris Nez. This highly
energetic area (power density ∼1 kW/m2), located outside the northward navigation
routes and fishing zone, appears suitable for testing energy conversion devices there
[28].

Although HFR-based observations present an adequate tool for monitoring
extreme currents at larger scale, their spatial resolution is often insufficient for the
task of accurate deployment of tidal turbines. In that respect, the presented high
resolution current mapping system Koursk can be seen as complementary to other
coastal observing systems, such as HFRs and moored ADCP arrays. The system
was successfully tested in several sites (the Solent, ports of Dover and Boulogne)
demonstrating a good combination of accuracy, portability and low cost of sur-
veying. The system is equipped with an interpolation algorithm, which allows
reconstructing space-time evolution of the velocity field for surveys whose duration
is comparable or larger than the time scale of tidal variability (1–2 h).

Application of the technique in Boulogne Harbor demonstrated significant (30–
60%) reduction of the model-data misfit for the velocity field obtained as a result of
space-time optimal interpolation. Although the method was applied to recover
surface circulation, it can be extended for assessment of the full 4D tidal flow
dynamics using the data recorded throughout the entire water column. We believe
that the proposed current mapping system may advance understanding and
assessing coastal circulation in tidal environments, especially when used in com-
bination with moored ADCP and/or HFR observations. The data acquired by HFRs
and towed ADCP, combined with the presented methodologies of their processing
could improve the efficiency of ongoing tidal energy conversion projects in France
and UK. The HFR data can be also used for numerical model validation and for
data assimilation in numerical models, which may improve their forecast capability.
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Analytical Solutions Describing Zonal
and Circular Wind Drift of Sea Ice
with Elastic-Plastic Rheology

Aleksey Marchenko

Introduction

Modelling of large scale dynamics of drifting ice is based on the consideration of
ice rheology at scales of several tens kilometres and greater. Since experiments are
not possible over such scales, the rheological properties are formulated using
intuitive ideas, results of field measurements, and analysis of satellite data. A model
with elastic-plastic rheology was considered in AIDJEX project (e.g., [1]), and a
model with viscous-plastic rheology was formulated by Hibler [2]. Both of the
models use normal flow rule with closed yield curve transforming in self-similar
manner depending on the ice thickness and compactness. In the elastic-plastic
model, the ice is considered as an isotropic elastic continuum when the stresses are
inside the yield curve. In the viscous-plastic model the ice is modelled as a linear
compressible viscous continuum when the stresses are inside the yield curve.

A comprehensive review of sea ice rheological models is performed by Lep-
paranta [6]. He also analysed analytical steady-state solutions describing ice drift
along the coastal boundaries of rectilinear and circular shapes within the
viscous-plastic model of Hibler [2]. The ice thickness, compactness profiles, and
drift velocity were analysed depending on the wind direction and distance to the
shoreline. Axially symmetric solutions describing the drift of floating ice with
elastic-plastic rheology were investigated by Schwaegler and Pritchard [11]
numerically for the validation of rheological characteristics of drifting ice in the
Arctic and for the investigation of quasi-steady-state response of an axisymmetric
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ice model driven by a prescribed atmospheric high-pressure system. They deter-
mined that the quasi-steady-state response of ice disk with a diameter of 1000 km is
established within 6 h of the initial air stress application, regardless of the initial
conditions.

Formation of the zones with “solid body” motion is a common property of the
elastic-plastic solutions. In plasticity theory, the motion of a continuum is per-
formed as a combination of motions of solid blocks separated by shear plastic zones
or slip lines (e.g., [10]). Korsnes [4] considered elements of rigid motion of ice floes
using the ERS-1 SAR data. Sharp discontinuities separating the regions of uniform
ice motion in the Arctic drift sea ice were investigated by Kwok [5]. The analysis
was performed using the high-resolution deformation fields of the Arctic ice cover
produced by RADARSAT Geophysical Processor System. Goldstein et al. [3] used
RADARSAT images to record solid body motion of ice bands in Bay of Bothnia.

Marchenko [8] investigated analytically steady-state drift of elastic-plastic ice
forced by the drag of sea current unlimited in the longitudinal direction and
localized in the transversal direction. It was shows that the solution consists of the
elastic kernel moving with constant velocity in the direction of the sea current and
plastic boundary zones located at different sides of the elastic kernel. Ice velocity
inside the plastic zones is parallel to the sea current, it equals to the velocity of the
elastic kernel along the contact lines and tends to zero at the periphery of the plastic
zones. Circular drift of elastic-plastic ice caused by the drag force of wind vortex
was investigated by Marchenko [9] analytically. Circular wind vortex is approxi-
mated by the polynomial function of the polar radius. It was shown that the drag
force from cyclonic or anticyclonic wind vortex influences circular drift of ice
consisting of the solid body rotation of the elastic kernel and plastic shear zone in
the form of a ring surrounding the elastic kernel. Outside the plastic ring, the ice is
not moving. Solutions with the elastic kernel and plastic ring exist when the
maximum wind speed is greater than the critical speed. If the wind speed is below
the critical value the ice stresses are in the elastic range. It was found that the width
of the plastic ring decreases as the maximum wind speed becomes close to the
critical value.

The main goal of this contribution consists in the further analysis of the ana-
lytical solutions of sea ice dynamics model based on AIDJEX elastic-plastic rhe-
ology taking into account sea surface tilt and wind velocity component transversal
to ice drift direction. In the second section, we consider examples of ice drift
features appearing under the influence of wind on the ice near shore line of linear
shape, and under the influence of cyclonic wind on the ice. In the third section, the
model equations are formulated. In the fourth section, the characteristics of plastic
shear zones in drift ice are investigated in the plane and axially symmetric cases. In
the fifth section, zonal wind drift of ice cover near rectilinear shoreline is investi-
gated. In the sixth section, circular wind drift of ice cover is investigated. The main
results of the paper are discussed and conclusions are formulated in the last section.
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Ice Drift Features in the Zonal and Circular Drift of Sea Ice

Images of MYD09Q1 with a 250-m resolution in an 8-day gridded level provided
by Google Earth Engine (https://explorer.earthengine.google.com/#workspace) are
used to consider selected features of the ice drift in the Fram Strait, near the east
coast of Edgøya (Spitsbergen), and near the north coast of Alaska. Figure 1 shows
long linear faults extended over about 500 km along the direction of the ice drift in
the Fram Strait. Dominant winds (https://earth.nullschool.net/) on April 22–30,
2016, were directed along the shoreline. The faults separate ice strips, which width
is about 50 km and smaller.

Similar faults approaching the steady ice are recognized near the east coast of
Edgøya (Fig. 2). Dominant winds on May 25–June 2, 2015, were from the
north-northeast (https://earth.nullschool.net/). Winds of onshore directions influ-
ence ice compression and ice rubble build up in the shear zone. Visual observation
performed from the board of the RV “Lance” showed that the ice rubble extended
along the shore line over several tens of kilometres and the width of the ice rubble
exceeded 10 km. The free board of the rubble reached 3–4 m and the external
boundary of the rubble consisted of linear segments of almost vertical ice walls
(Fig. 3). More detailed description of the ice rubble characteristics is given in
(Marchenko and Marchenko 2017).

Ice faults of circular shape are observed in the spring season near the northern
coast of Alaska. Analysis of the local winds (https://earth.nullschool.net/) shows

Fig. 1 Formation of longitudinal shear zones in drift ice in the Fram Strait; April 22–30, 2016
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that these faults are formed when local cyclone is in the region (Fig. 4). The faults
are not perfectly of the round shape, but their fragments have circular or elliptic
shapes. The radius of the faults is estimated at approximately 500 km. The centres
of the circles or ellipses are around the centre of the cyclone. Figure 5 shows the
development of the circular faults over 49 days from the end of March to the
beginning of May, 2016. It shows stability and spatial localization of the faults.

Model Equations

One dimensional steady motion of solid drift ice with 100% surface concentration is
considered in the plane and axially symmetric cases. The motion can be caused by
ice stresses, wind and sea surface tilt. It is assumed that ice velocity is perpendicular
to the spatial direction where the ice characteristics (thickness, stresses, and
velocity) and the drag forces are changed. It means that pure shear motion of drift
ice is considered. In this case the equation of mass balance is satisfied. The
momentum balance equations are written as follows:

dσxx
dx

= ρihð− fvy + gηxÞ−Fx,
dσxy
dx

= −Fy, ð1Þ

dσrr
dr

+
σrr − σθθ

r
= ρihðfvθ + gηrÞ−Fr,

dσrθ
dr

+
2σrθ
r

= −Fθ. ð2Þ

Fig. 2 Formation of shear zone near the east coast of Edgøya; May 25–June 2, 2015 (a). Wind
field near Spitsbergen on May 30, 2015 (b)
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Equations (1) and (2) describe the momentum balance of the drift ice in the cases
of steady plane and axially symmetric drift. Here, σxx, σyy, and σxy are the com-
ponents of ice stresses in the Cartesian coordinates x and y; σrr , σθθ, and σrθ are the
components of ice stresses in polar coordinates r and θ; vy and vθ are the y-
component and angular component of ice drift velocity, ρi and h are the density and
the thickness of the ice cover, f is the Coriolis parameter; ηx and ηr are the sea
surface tilts in the Cartesian and polar coordinates, Fx, y and Fr, θ are the components
of the drag forces applied to the ice by wind and water. It is assumed that sea
surface tilts in y and θ-directions are small. Therefore, they are not included in
Eqs. (1) and (2).

The Coriolis parameter is greater than zero f >0 in the Northern Hemisphere. It
is assumed that in the Northern Hemisphere positive direction of the y-axis is

Fig. 3 Research Vessel “Lance” near the shear zone at the east coast of Edgøya; May 2, 2016
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associated with the direction to the north, positive direction of the x-axis is asso-
ciated with the direction to the east, and polar angle θ increases in the clockwise
direction.

Elastic-plastic model of the ice cover is considered. The yield surface (YC) is
specified by the equation

fYðσI , σII , hÞ=0, ð3Þ

where 2σI = σ1 + σ2, 2σII = σ1 − σ2, σ1, and σ2 are the maximal and minimal
principal stresses, − σI is the pressure, and σII is the maximal shear stress.

Normal flow rule is satisfied when the stresses belong to the YC:

eI = λ
∂fY
∂σI

, eII = λ
∂fY
∂σII

, λ ≥ 0, ð4Þ

where eI = e1 + e2, eII = e1 − e2, and e1 and e2 are the maximal and minimal prin-
cipal strain rates.

The YC shown in Fig. 6 has a shape of the closed curve located in the region of
positive pressure (σI <0). The YC is characterized by two rheological constants (P*

and γ). It is described by the following formula [7]:

γσ2II = σ2I 1+
σI
P*h

� �
, P* = 5 kPa, γ =3, ð5Þ

Point Os with horizontal tangent line has coordinates σI ̸h= − 2P* ̸3 and
σII ̸h= − 2P* ̸ð3 ffiffiffiffiffi

3γ
p Þ (Fig. 6). According to the normal flow rule (4), plastic

Fig. 4 Circular fault in drift ice near the north coast of Alaska; March 29–April 6, 2016 (a).
Cyclonic wind field. Green points correspond to the contour of the circular fault (b)
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deformations are accompanied by tension (eI >0) when σI ̸h> − 2P* ̸3, and by
compression (eI <0) when σI ̸h< − 2P* ̸3.

Pure shear plastic deformations occur when the ice stresses divided by the ice
thickness σI ̸h and σII ̸h equal to the coordinates of point Os (Fig. 6). Slip lines
analysis shows that the angle between the slip lines is equal to 90° in the case of
pure shear deformations (e.g., [12]). In the case of plane motion the slip lines are

Fig. 5 Development of the circular faults in drift ice near the Alaska coast in 2016
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parallel to the coordinate axes x and y. In the axially symmetric case the slip lines
are parallel to the coordinate lines r (radial lines) and θ (concentric circles). Since
normal stresses are the same on the slip lines passing through the same point then

σxx = σyy, σrr = σθθ. ð6Þ

Therefore, in the plane case σI = σxx = σyy and σII = jσxyj, and in the axially
symmetric case σI = σrr = σθθ and σII = jσrθj.

Drag force (F) is equal to a sum of wind (Fa) and water (Fw) drag forces

F=Fa +Fw, Fa = ρaCaVaVa, Fw = − ρwCwvv, ð7Þ

where Va = ðVax,VayÞ and v= ð0, vyÞ are related to the plane motion, Va = ðVar,VaθÞ
and v= ð0, vθÞ to the axially symmetric motion, Va = jVaj and v= jvj, ρa and ρw are
the air and water densities, Ca and Cw are the air-ice and water-ice drag coefficients.
Representative values of physical constants are given in Table 1.

Ice Drift Induced by Shear Stresses

Equations (1) and (2) in the case when the wind velocity and sea surface tilt are
absent are written as follows:

-5 -4 -3 -2 -1 0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

/ , aPkhIσ

/ , aPkhIIσ

O
s

Fig. 6 Yield curve of solid ice cover

Table 1 Representative numerical values of physical constants

ρi (kg/m
3) ρw (kg/m3) ρa (kg/m3) Cw Ca f (s−1)

920 1020 1.27 0.005 0.002 1.454 × 10−4
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2P*

3
dh
dx

= ρifhvy,
2P*

3
ffiffiffiffiffi
3γ

p dh
dx

= δρwCwv2y , ð8Þ

−
2P*

3
dh
dr

= ρifhvθ,
2P*

3
ffiffiffiffiffi
3γ

p dh
dr

+
2h
r

� �
= − δρwCwv2θ, ð9Þ

where δ=±1 specifies ice drift direction.
Length scale L is constructed from the coefficients of Eqs. (8) and (9) according

to the formula:

L2 =
2

ffiffiffiffiffi
3γ

p
ρwCwP*

3ðρif Þ2
. ð10Þ

Using representative values given in Table 1 and rheological constants given by
(5) we find that L≈ 1.7 km.

It follows from Eq. (8) that:

h=
h0

1− δðx− x0Þh0 ̸L2
, vy =

δρifhffiffiffiffiffi
3γ

p
ρwCw

, ð11Þ

where h0 is the ice thickness at x= x0. Assuming x0 = 0 we find that h → ∞ when
x → L2 ̸h. This situation is not realistic because L2 ̸h is very large; e.g., L2/
h = 2890 km when h = 1 m.

Equation (9) are transformed to the form

dh
dr

= −
3δh2

2L2
1− δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

8δL2

hr

r" #
, vθ =

δρifh
2

ffiffiffiffiffi
3γ

p
ρwCw

1− δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

8δL2

hr

r" #
. ð12Þ

In the real situation, 8L2 ̸ðhrÞ> >1. In this case, Eq. (12) describe only anti-
cyclonic motion with δ= − 1. They are approximated as follows

dh
dr

=
3h
L

ffiffiffiffiffi
2h
r

r
, vθ = −

ρifL
ffiffiffiffiffi
2h

pffiffiffiffiffi
3γ

p
ρwCw

. ð13Þ

Solution of (13) has the following form:

h=
h0

1− 3
ffiffiffiffiffiffiffi
2h0

p ð ffiffi
r

p
− ffiffiffiffi

r0
p Þ ̸L

� �2 . ð14Þ

In the above considered examples, the ice motion is initiated by shear stresses at
the periphery and by rotational momentum in the origin in the case of the axially
symmetric motion. Ice thickness increases in the direction of the Coriolis force. The
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constructed solutions do not reflect any real situations but can explain some features
of more realistic solutions describing the wind drift of ice.

Wind Induced Zonal Ice Drift

The steady solution describing wind induced steady ice drift consists of ice strips
ES and PS related to the elastic and plastic states, respectively (Fig. 7a). Both of the
strips move in the y-direction. The ES is extended from x=0 to x=Δx, and the PS
is extended to the region x>Δx. Drift speed vy of the ES is constant, and drift speed
of the PS decreases with approaching shoreline (Fig. 7b). Ice thickness h is constant
within the ES and increases with the approaching shoreline within the PS: h= hðxÞ,
x>Δx (Fig. 7b). The ice stresses inside the PS are associated with the coordinates
of point Os in Fig. 6. The friction force at the shoreline is in a balance with the drag
forces applied to the ice by the water and air. It is assumed that there are no stresses
at the ice edge.

The boundary conditions at line x=Δx state that the stresses, ice thickness, and
ice velocity are continuous over the line separating the elastic and plastic strips.
They are specified by the formulas:

σxx = −
2
3
hP*, σxy = −

2
3

ffiffiffiffiffi
3γ

p δhP*, lim
x → Δx− 0

h= lim
x → Δx+0

h, lim
x → Δx− 0

vy = lim
x → Δx+0

vy,

ð15Þ

where δ=1 corresponds to the ice drift to the “north”, and δ= − 1 corresponds to
ice drift to the “south”. In the case of ice drift to the “north”, the Coriolis force
influences ice pressure on the shoreline. In the case of the ice drift to the “south”,
the Coriolis force is directed offshore.

Fig. 7 Configuration of the elastic and plastic regions in steady solutions describing zonal ice
drift (a). Schematic of ice drift velocity and ice thickness profiles over the elastic and plastic ice
strips (b)
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Since the ice motion is caused by the wind it is assumed that

vyVay ≥ 0. ð16Þ

The drift velocity vy and the ES width Δx are calculated from the momentum
balance integrated over the ES width

2
3
hP* = ρihfvy + ρaCaVaVax − ρighηx

	 

Δx, ð17Þ

2
3

ffiffiffiffiffi
3γ

p hP* = ρaCaVajVayj− ρwCwv2y
� �

Δx. ð18Þ

It follows from Eq. (17) that there is the only solution describing the ice drift to
the “north” when Vax =0 and ηx =0. The ES width is found as a root of Eq. (18)
solved with respect to Δx after the substitution of vy from Eq. (17). Locations of the
roots are shown by thin lines in Fig. 8 on plane ðΔx, ηxÞ for different values of the
wind speed and direction. The bold lines are described by equations:

S=
2
3
hP*

Δx
− ρaCaVaVax + ρighηx =0. ð19Þ

Fig. 8 The ES widths versus the sea surface tilts are shown with thin lines. Thick lines show
locations of roots of Eq. (19). Colors of the lines correspond to different angles of the wind
direction. Wind speeds are Va =10 m ̸s (a) and Va =20 m ̸s (b). The coordinate axes in the inset
and figures are similar
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Regions where S>0 and S<0 are located respectively to the left and to the right
from the bold line in Fig. 8. They are related to ice drifts to the “north” and to the
“south” respectively. Figure 8 show the existence of the roots of Eq. (19) in both
regions S>0 and S<0 when ϕ< π ̸2. The angle of wind direction ϕ is specified in
Fig. 8a.

It follows from Eqs. (17) and (18) that:

vy =
δρihf

2
ffiffiffiffiffi
3γ

p
ρwCw

ffiffiffiffiffiffiffiffiffiffiffi
1+Δ

p
− δ

� �
, Δ=

4
ffiffiffiffiffi
3γ

p
ρwCw ρaCaVað

ffiffiffiffiffi
3γ

p jVayj−VaxÞ+ ρighηx
	 


ρihfð Þ2 .

ð20Þ

Simple estimates show that Δ>60 when h ≤ 1m, Va >5 m ̸s, ϕ ∈ ð0.5, π ̸2Þ
and jηxj<2×10− 6. In this case,

ffiffiffiffiffiffiffiffiffiffiffi
1+Δ

p
≈Δ, and the drift velocity and the ES

width are approximated with the formulas

vy =
δρihf

ffiffiffiffi
Δ

p

2
ffiffiffiffiffi
3γ

p
ρwCw

, Δx=
2hP*

δh2P* ̸L2 + 3ρaCaVaVax − 3ρighηx
. ð21Þ

It follows from Eq. (1) that inside the PS the ice thickness changes according to
the equation

2P*

3
dh
dx

= ρihfvy + ρaCaVaVax − ρighηx, ð22Þ

where vy is determined by formula (20).
Further, the analysis of the ice drift to the “north” (δ=1) is performed with more

details. Blue and pink lines in Fig. 10 are described respectively by the equations

Δ=0, Δx=0. ð23Þ

The regions, in which conditions Δ>0,Δx>0 are satisfied, are located between
blue and pink lines shown on the plane ðϕ, ηxÞ in Fig. 9. The lines are constructed
with different values of the wind speed Va shown in the figures. The effect of ice
thickness is visible from the comparison of Fig. 9a (h=0.5 m) and Fig. 9b
(h=1 m). Vertical distances between blue and pink lines constructed with the same
values of Va and ϕ decrease proportionally to the ice thickness. The distances reach
maximum when ϕ≈ π ̸2, i.e. when the wind is parallel to the y-axis, and tend to
zero when ϕ → π and ϕ → 0. In the case of the onshore winds with ϕ ∈ ð0.3, π ̸2Þ
conditions Δ>0,Δx>0 are satisfied with the positive and negative sea surface tilts.
In the case when onshore wind is almost perpendicular to the shoreline and
ϕ ∈ ð0, 0.3Þ these conditions are satisfied only when the sea surface tilt is positive.
In the case of offshore winds with ϕ ∈ ðπ ̸2, πÞ the conditions Δ>0,Δx>0 are
satisfied only when the sea surface tilt is negative.
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Fig. 9 Blue and pink lines are described by the Eq. (23). Ice thickness h=0.5 m (a) and h=1 m
(b). Wind speed is shown in the figures

Fig. 10 Drift velocity of ES versus sea surface tilt. Thick and thin lines are constructed with wind
speeds Va =20 m ̸s and Va =10 m ̸s. Ice thickness h=0.5 m (a) and h=1 m (b). Angles of the
wind direction ϕ are shown with different colours

Fig. 11 The ES width versus sea surface tilt. Thick and thin lines are constructed with wind
speeds Va =20 m ̸s and Va =10 m ̸s. Ice thickness h=0.5 m (a) and h=1 m (b). Angles of the
wind direction ϕ are shown with different colours
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The ES speed vy depends only on the rheological constant γ and doesn’t depend
on P*. The ES width Δx depends on both rheological constants. The ES speed vy
and width Δx are shown respectively in Fig. 10 and Fig. 11 versus sea surface tilt.
They are calculated with different values of the onshore wind speed and wind
direction. The ES speed vy decreases with the decrease of the wind speed and sea
surface tilt. The ice thickness increase influences the decrease of the ice ES speed.
The ES width increases with the increase of the sea surface tilt and ice thickness and
decreases with the increase of the wind speed. The maximum values of the ES
speed and width are reached when the wind is parallel to the ice edge.

Profiles of the ice thickness and ice drift velocity over the 20 km distance inside
the PS are shown in Fig. 12a. The ice thickness inside the ES is h=0.5 m, the wind
speed is Va =20 m ̸s, the angle of wind direction is ϕ= π ̸6. Thin and thick lines
correspond to sea surface tilts ηx =0 and ηx = − 2× 10− 6. Figure 12b shows the ice
thickness at a distance of 20 km from the boundary between the ES and PS versus
the angle of wind direction ϕ. Two sets of the dependencies are constructed with
wind speed Va =10 m ̸s and Va =20 m ̸s. Each of the sets includes dependencies
calculated with sea surface tilts ηx = − n× 10− 6, n=0, 1, 2, 3. Arrows corresponds
to the increase of the sea surface tilt.

Wind Induced Circular Ice Drift

Circular ice drift is caused by localised circular wind field or wind gyre. Steady
axially symmetric solutions describing circular ice drift consist of the elastic kernel
(EK) if the ice rotates as a solid body with angular velocity ωek, and plastic ring
(PR), if the ice is in the pure plastic shear state. There is a shoreline or steady ice in
the elastic state outside the PR. The EK is extended from r=0 to r=Rek , and the

Fig. 12 Ice thickness (bold lines) and velocity (thin lines) profiles inside the PS (a). Ice thickness
at a distance of 20 km from the boundary between the ES and PS versus the angle of wind
direction (b)
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PR is located by r ∈ ðRek ,RpÞ (Fig. 13a). The ice stresses inside the PR are
associated with coordinates of point Os in Fig. 6.

The boundary conditions at line r=Rek state that the stresses, ice thickness, and
ice velocity are continuous over the line separating the elastic kernel and the plastic
ice ring. They are specified by the formulas

σrr = −
2
3
hP*, σrθ = −

2
3

ffiffiffiffiffi
3γ

p δhP*, lim
r → Rek − 0

h= lim
r → Rek +0

h,

lim
r → Rek − 0

vθ = lim
r → Rek +0

vθ,
ð24Þ

where δ=1 corresponds to the anticyclonic ice drift in the clockwise direction, and
δ= − 1 corresponds to the cyclonic ice drift in the counter clockwise direction. In
the case of the cyclonic ice drift the Coriolis force is directed from the origin. In the
case of the anticyclonic ice drift the Coriolis force is directed to the origin.

Since the ice motion is caused by the wind it is assumed that

vθVaθ ≥ 0. ð25Þ

Further, it is assumed that Var =0 and Va = jVaθj. The radial and shear stresses
are determined by the formula [9]

σrr = −
2
3
P*h+

1
2
ρihfωekðr2 −R2

ekÞ+ ρighηrðr−RekÞ, ð26Þ

σrθ = − δρaCar − 2
Zr

0

V2
a r

2dr+ δρwCwω
2
ekr

3 ̸5. ð27Þ

It follows from the second boundary condition (24) that:

Fig. 13 Configuration of elastic and plastic regions in steady solutions describing circular ice drift
(a). Schematic of dimensionless profile of wind velocity (b)
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G=
2

3
ffiffiffiffiffi
3γ

p hP* − ρaCaR− 2
ek

ZRek

0

V2
a r

2dr+ ρwCwω
2
ekR

3
ek ̸5= 0. ð28Þ

It follows from Eq. (2) that inside the PS the ice thickness changes according to
the equation

2
3
P* dh

dr
= − ρihðfωr+ gηrÞ, ð29Þ

where the angular velocity of ice ω inside the PR is determined by the formulas

ωr=
ρihf

2
ffiffiffiffiffi
3γ

p
ρwCw

1±
ffiffiffiffiffiffiffiffiffiffiffi
1+Δ

p� �
, Δ=

4
ffiffiffiffiffi
3γ

p
ρwCwð

ffiffiffiffiffi
3γ

p
ρaCaV2

a + ρighηr − 4P*h ̸3rÞ
ðρihf Þ2

.

ð30Þ

It follows from the last boundary condition (24) that:

ωekRek =
ρihf

2
ffiffiffiffiffi
3γ

p
ρwCw

1±
ffiffiffiffiffiffiffiffiffiffiffi
1+Δ

p� ����
r=Rek

. ð31Þ

Formula (31) gives the values of the ice drift velocity vek =ωekRek at the
periphery of the EK. Positive and negative roots existing at Δ>0 correspond to the
anticyclonic and cyclonic ice drifts. In the case when Δ ∈ ð− 1, 0Þ both of the roots
are positive and correspond to the anticyclonic ice drift. Condition (28) is used for
the calculation of the EK radius Rek. We substitute the values of vek determined by
formula (31) into condition (28) and get equations G+ = 0 and G− = 0 for the
calculation of Rek . Subscripts “±” correspond to the signs “±” in formula (31).

Analysis of solutions describing circular ice drift is performed with wind
velocity specified by formula Va =Vmaxva, where Vmax is the maximal wind speed
within the wind gyre. The dimensionless wind velocity va shown in Fig. 13b is
determined by the formula

va =4
r2

λ2
1−

r2

λ2

� �
r ∈ ð0, LÞ; va =0, va =0, ð32Þ

where λ is the radius of the wind gyre. Numerical simulations were performed at
λ=200 km.

The roots of equations G+ = 0 and G− = 0 are shown in Fig. 14a with the bold
and thin black lines, respectively for three values of sea surface tilt ηr =0 and
ηr =±2×10− 6. One can see that the EK radii in the anticyclonic drift are greater
than the EK radii in the cyclonic drift when the maximal wind speeds are the same.
The increase of the sea surface tilt from the negative to positive values influences
the increase of the EK radii. The tips of black lines in Fig. 14a are in the vicinity of
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the blue lines described by equation Δ = 0. Enlarged Fig. 14b constructed with the
zero tilt angle shows that this line crosses both the thin and thick black lines. The
thin and thick black lines are connected at the point where Δ = −1. The points of
both black lines located in the region Δ ∈ ð− 1, 0Þ correspond to the anticyclonic
ice drift.

Each of the thick black lines in Fig. 14 has a point where Vmax reaches mini-
mum. This value is equal to the critical wind velocity, below which ice stresses in
the steady-state solution are inside the YC. In the example considered here with the
wind field specified by formula (32) and λ=200 km, the critical wind speed is
below 3.3 m/s.

Fig. 14 a Thick and thin black lines show locations of the EK radii calculated from equations
G+ = 0 and G− =0 versus the maximal wind speed. Blue thin lines are described by equation
Δ=0. b Enlarged picture around the tip of the line 2

Fig. 15 Dependencies of the EK drift velocities on the maximal wind speed (a) and absolute
values of the EK drift velocities from sea surface tilt (b) are shown with thick lines. Dependencies
of the EK radii on the maximal wind speed (a) and sea surface tilt (b) are shown with thin lines.
Blues and pink colors correspond to the anticyclonic and cyclonic ice drift
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The EK drift velocities and radii are shown in Fig. 15a versus the maximal wind
velocity and in Fig. 15b versus the sea surface tilt. Blue and pink colors correspond
to anticyclonic ice drift and cyclonic ice drift. The absolute values of the EK drift
velocity increase proportionally to the maximal wind speed. Ice drift speeds |vek| in
the anticyclonic gyre are slightly higher than the drift speeds in the cyclonic gyre.
The EK radii Rek in the anticyclonic gyres are also slightly greater than the EK radii
in the cyclonic gyres. The EK radii decrease with the increase of the maximal wind
speed. The EK radii are slightly greater than the value of the r-coordinate where the
absolute wind velocity is maximal. The EK radii and ice drift speeds |vek|
insignificantly increase as the sea surface tilt increases.

Conclusions

Analytical solutions describing steady-state wind drift of sea ice with elastic-plastic
rheology are constructed and analyzed. Solutions describing zonal ice drift consist
of the elastic ice strip with the solid body motion and the plastic ice strip where pure
shear drift are realized. There is the only solution describing the ice drift to the
“north” when the wind is parallel to the shoreline and the shoreline is on the
“eastern” side of the drift ice. If the wind has onshore component then there
are solutions describing both zonal ice drifts in the “northern” and “southern”
directions. Depending on the sea surface tilt and onshore wind component the width
of the elastic strip changes from 1 to 100 km. The drift speed of the elastic strip is
below 45 cm/s, when the wind speed is 20 m/s, and below 25 cm/s, when the wind
speed is 10 cm/s. The mean thickness of the ice rubble in the shear zone of 20 km
width exceeds 6 m when the speed of onshore wind is 20 m/s.

The analytical solutions describing circular wind drift of ice are investigated in
the case when velocity profile of the wind gyre is described by the polynomial
function considered in [9]. The solutions describing cyclonic and anticyclonic drift
are constructed taking into account sea surface tilt. The solutions consist of elastic
circular kernel with the solid body rotation and plastic shear zone of the ring shape.
The solutions are localized in the region of the wind gyre. Solutions with the plastic
shear zone exist when the maximal wind velocity is greater than the critical value.
The general property of the solutions is the increase of the elastic kernel radius, and
the decrease of the shear zone width with the decrease of the maximal wind
velocity. It is shown that cyclonic and anticyclonic solutions with the plastic shear
zone exist both when the maximal wind velocity is greater than the critical value.
The influence of the sea surface tilt on the characteristics of the ice drift is much
smaller than the influence of the wind velocity. The maximal drift speed at the
periphery of the elastic kernel is below 45 cm/s, when the maximal wind speed is
20 m/s, and below 25 cm/s when the maximal wind speed is 10 cm/s.

The comments for the future analysis are as follows. Rheological constants
P* = 5 kPa and γ =3 give reasonable characteristics of the constructed solutions.
More detailed comparison of analytical solutions and observed features of ice drift
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may give local corrections of these values. From the analysis of the zonal ice drift it
follows that the influence of radial component of wind velocity on the properties of
solutions describing circular ice drift can be significant.
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Arctic Ocean Modeling: The Consistent
Physics on the Path to the High Spatial
Resolution

Nikolay G. Iakovlev

Introduction

The Arctic Ocean (AO) is one of the less explored regions of the World because of
its geographical location. The keen interest to the AO (and to the Arctic in general)
is due both to the purely academic problems: the observed structural changes of the
climate system, the polar system stability, the nature of the Polar Amplification
[25], and the practical issues of navigation and petroleum/gas production on the
shelf. The ongoing structural changes in the polar climate system make the sta-
tistical approaches, based on historical data, irrelevant. Despite the impressive
progress, the observational net is still too sparse, especially in the deep ocean under
ice. That is why the role of numerical models, based on the “first principles”, is
important in solving the problems of the AO state analysis and forecast.

Multiyear experience of the AO modeling in the frame of the AOMIP (Arctic
Ocean Modeling Intercomparison Project, now—FAMOS, The Forum for Arctic
Ocean Modeling and Observational Synthesis, http://www.whoi.edu/projects/
famos/, [23]) shows, that many of the problems formulated 17 years ago are still
on the agenda. For example, the first coordinated experiment, carried out in 1999,
showed that not all the modern models were able to simulate the observed salinity
structures, and only a few models reproduced the “classical” cyclonic circulation
scheme in the Atlantic water layer at the depths of 300–500 m [24]. Now, thanks to
the cooperation between modelers and field oceanographers, both models and
circulation schemes are refined.
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On the other hand, the recent modeling experience shows that the model ability
to reproduce observed phenomena depends on the spatial resolution, while it is
possibly controlled not by the resolution only [1]. It may be treated as the mani-
festation of the complex nonlinear physics of the ocean and sea ice, which should
be investigated more carefully.

Hydrostatic and Non-hydrostatic Ocean Dynamics

In order to look into the causes of the faults in the AO modeling it is worth recalling
the basics of the modern large-scale ocean models. Traditionally hydrostatic,
Boussinesq, and incompressibility (divu ⃗=0) approximations are used. Apart of
them, the special form of equations is used in the so-called “shallow water
approximation” in the z-coordinate system, when “horizontal” motions at the sur-
face normal to the sum of the local gravity+centrifugal acceleration (we denote
them by index h) and “vertical” ones in the direction of this sum, are specified. The
initial system of equations appears to be specified on the manifold called “cylinder
over sphere”. A series of simplifications has to be performed to ensure analogs of
energy and angular momentum conservation laws.

The common approach is to use the Boussinesq approximation with the constant
reference density ρc. It may be done if the pressure in the state equation will be
redefined p → p0 = ρcgz: otherwise, the energy will be imbalanced [10]. Moreover,
if the deviations of density e and pressure p′ from the reference values ρc, p0 are
defined, then the system of equations of the ocean hydro thermodynamics (in the
terms of potential temperature θ and salinity S) is written as (vector k ⃗ is directed
upwards, f is the Coriolis parameter):

Dv⃗h
Dt + fk ⃗× vh⃗ + 1

ρc
∇h⃗p′ =F ⃗,

εnh Dw
Dt +

gρ′

ρc
+ 1

ρc

∂p′

∂z

h i
= εnhFw,

∇⃗h ⋅ vh⃗ + ∂w
∂z =0,

ρ′ = ρ θ, S, p0ð Þ− ρc, p0ðzÞ= ρcgz,
p′ = p− p0,
Dθ
Dt =Qθ,
DS
Dt =QS.

The form of the equation for vertical velocity w differs from the usual used in the
large-scale modeling, and “non-hydrostatic” parameter εnh is introduced. Often in
large-scale ocean modeling it is assumed that vertical accelerations are much
smaller than the reduced gravity acceleration gρ′

ρc
, and turbulent viscosity is negli-

gible. In this case εnh =0, one gets the hydrostatic approach (but it is better to say
almost quasi-static, because the vertical velocity is not equal to zero). The typical

560 N. G. Iakovlev



values in the ocean are ρ′

ρc
=Oð10− 3Þ; hence, usually, this approach is valid in the

major part of the World Ocean. The quasi-static equation is written in square
brackets. Sometimes confusion arises because usually primes in density ρ′ and
pressure p′ are omitted, and it looks like the vertical acceleration should be com-
pared with the gravity acceleration, but not with the reduced gravity one.

One of the possible sources of modeling errors in this approach is inaccurate
approximation of the processes associated with relatively high frequency vertical
motions, say with the internal waves. This is important in winter, when the
Brunt-Väisälä frequency is small and much less then the internal wave frequency.
Note, that on the Siberian shelf in the Kara Sea, near the river estuary, even the
annual-mean Brunt-Väisälä frequency exceeds 0.05 s−1, and should be even greater
in summer, hence actually quasi-static approximation is valid even for very fine
horizontal model resolution.

Traditionally the limit of the quasi-static approximation is also associated with
the ratio of vertical scale H to horizontal scale L; it is commonly assumed that this
limit is about 0.01. It means that a horizontal resolution of 1 km is the limit to
describe the upper layer processes with a vertical scale of 10 m. Our modeling
experience shows that this criterion is too rough and the H/L limit may be increased
up to 0.1 in the case of strong steady stratification mentioned above. It means that
the AO is a very complicated region for high resolution modeling, because various
regimes exist there, which should be taken into account in the same frame.

The other problem is associated with the unstable vertical motions like con-
vection, which is extremely important in the high-latitude regions where cooling
occurs from above. Usually vertical convection caused by static instability is
parameterized with the assumption that convective plumes have horizontal diam-
eters of the order of 100 m, and there are sufficiently many plumes on the model
characteristic horizontal scale to be taken into account statistically. In the case when
the model grid is fine enough (the size of an individual plume) one may expect that
the hydrostatic approximation will be incorrect.

And, the last but not the least source of uncertainty is the choice of turbulent
viscosity/diffusion terms F ⃗,Qθ,QS, which are process dependent. Here, we mention
some of such processes.

Mesoscale Eddies

A small diameter of quasi-geostrophic eddies is a characteristic feature of the Arctic
Ocean, which may be measured by the Rossby deformation radius. In the deep
Canada Basin the baroclinic Rossby deformation radius (Ri, n = NH

fn , N is the
Brunt-Väisälä frequency, H is the ocean depth, n is the vertical mode [9] is about
10 km for the first mode and 5 km for the second one [21], it is even smaller on the
Siberian shelf. This contrasts with the mid-latitudes of the World Ocean, where
these scales are about 50–100 km, and a model resolution of 15 km is quite enough
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to reproduce the eddy induced transport of temperature and salinity, and other
tracers correctly [7].

It is quite possible that namely the small Rossby radius (eddy effective diameter)
is the cause of the fact that refining of the model resolution over some interval will
not lead to the expected improvement in the transport of heat and salt (or other
conservative tracers) by narrow jets [1]. If the model resolution is about 5 km, the
model spectrum is truncated on the scale of the individual eddy, thus the energy and
enstrophy fluxes are treated incorrectly. Thus, an increase in the resolution from 20
to 5 km may lead to even worse results, because the jets are disintegrated into the
chains of eddies with poorly approximated dynamics. Finally, on the climate time
scales, it leads to the wrong reproduction of the mean large-scale state of the ocean.

In the case of low resolution, when the statistical approach for an ensemble of
eddies is valid, some of parameterizations of the so-called “eddy transport of scalar”
were developed [4, 27]. The eddy transport of the scalar τ may be associated with
the additional velocity uG⃗M , and may be defined as “skew diffusion” with the
anti-symmetric tensor of diffusion coefficients κGM and KGM :

uG⃗Mτ= − κGMKGM∇!τ,

KGM =

0 0 − Sx
0 0 − Sy
Sx Sy 0

0
B@

1
CA.

Here Sx, Sy are tangents of the iso-neutral surface slope with respect to the
horizontal plane. Coefficient κGM is usually specified as function of density [27] and
some length scale, which may be associated with the Rossby radius. Under the AO
conditions with the small Rossby radius this effect seems to be small, but actually as
far as the background transports are relatively low, the eddy transport is important
on the large (climatic) time scales, being responsible for the large-scale thermo-
haline features formation. Indeed, this parameterization proved to be helpful in the
case of modeling the transport of Atlantic water in the Central Arctic [6] in the case
of the low horizontal resolution.

We keep the above mentioned in mind, and expect that the eddy induced
transport parameterization will be consistent down to the horizontal resolution of
about 20 km. Working with the higher resolution we will get into the zone, in
which the eddies will be taken into account twice: explicitly and by parameteri-
zation (see Fig. 1). A sufficient resolution would be 1 km in the most areas of the
AO, but at this resolution we should expect problems with the adequate description
of the submesoscale eddies, which we will discuss below.
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Submesoscale Eddies

Recent observations in the upper layer of the Canada Basin [26] show that there are
small eddies with the sizes of about 2–4 km and orbital velocities up to 20 cm/s so
that the Rossby number is Ro= U

fL =Oð1Þ, where U, L are characteristic scales of
velocity and length. These numbers obviously differ from the ones in the case of
mesoscale eddies, in which the Rossby number is in the range 0.1–0.01. Such
eddies are classified as “submesoscale” ones; it was established that they are
responsible for the re-stratification of the upper layer during winter. An important
feature of these eddies is the relatively high vertical velocity W ∼ 10−4–10−3 ⋅ U ∼
1–10 meters per day, in contrast with the mesoscale eddies with the vertical
velocities about W ∼ 10−4–10−3 ⋅ U ∼ 1–10 meters per day.

It is interesting that the very existence of the ocean submesoscale eddies was
found mainly due to the numerical modeling and ocean biochemistry satellite
remote sensing development [12].

The features of the submesoscale eddies, their role in the large-scale temperature
and salinity structures and the possibility of using the existing parameterizations [3]
remain absolutely uninvestigated in the Arctic Ocean.

Fig. 1 The scales, typical for the ocean at mid-latitudes and in the Arctic Ocean. The resolutions
appropriate to describe submesoscale eddies are depicted by captures in ovals. Note the “gray
zone” between meso- and submesoscale eddy diameters in the Arctic Ocean, which roughly
coincides with the transition zone from the hydrostatic to non-hydrostatic regimes
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It is important for us to know that the spatial scales of the observed subme-
soscale eddies at high latitudes are close to the mesoscale eddies (2 and 5 km,
respectively). Hence, these two processes cannot be separated and treated inde-
pendently, by some specific parameterizations valid for each single process, as it is
used at mid-latitudes (see the “gray zone” depicted on Fig. 1).

This fact exhibits the fundamental problem for the AO modeling with the hor-
izontal resolution of about 1 km. From the physical point of view it will be
attractive to model submesoscale eddies explicitly with the model resolution of the
order of the first hundreds of meters, but in this case we will get in the non-
hydrostatic regime and should use another numerical model, not to mention the
growing computational cost.

Internal Waves and Tides

The tidal force in the AO is small and the tides are generated by the incident waves,
mainly from the Atlantic. The M2 semidiurnal tide generates the internal tide of the
same frequency over the slopes of the bottom topography. Singularity exists in the
equation for the normal modes of vertical velocity w [9]:

d2w
dz2

+
N2ðzÞ
g

dw
dz

+
N2ðzÞ−ω2

ω2 − f 2
k2w=0,

where k is the wave vector and ω is the frequency. The propagation of the internal
tide in the form of free wave is bounded by the critical latitude. It means that intense
vertical mixing due to the M2 internal tide collapse may occur at the critical latitude
∼75° N. This collapse may be enhanced by the bottom topography as well. The-
oretical and modeling aspects of non-hydrostatic nature of the ocean dynamics over
steep slopes in the straits were examined in [28].

The other source of internal waves is the decay of mesoscale and submesoscale
eddies. Internal waves may be produced directly by mesoscale eddies, along with
the submesoscale eddies in the same spatial-temporal scales range [12].

Moving sea ice may also generate internal waves in the AO, especially in
summer, when the fresh and warm upper layer exists. These internal waves change
air-ocean drag, and their instability leads to enhanced turbulent mixing at the mixed
layer [11].

As indicated in [2] who analyzed observations over the Yermak Plateau, the
“Dissipation of near-inertial wave energy in the upper ocean is of crucial impor-
tance in the Arctic Ocean and must be properly accounted for. If sufficiently ele-
vated, the dissipation can play a significant role in irreversible vertical mixing in the
Arctic Ocean, in the cold halocline layer in particular.” The mixing should be
parameterized and taken into account in the terms of F ⃗, Qθ, QS. Thus, mixing (say,
in the popular K-profile parameterization scheme [8]) is specified by background
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viscosity and diffusivity with constant coefficients 1 cm2 s−1 and 0.1 cm2 s−1,
respectively. The AO modeling experience shows that these coefficients should be
at least 10 times smaller in the most parts of the Central Arctic to maintain the
observed vertical stratification. This conclusion agrees with the theoretical
assumptions that the internal waves are generally weak in the central parts of the
AO under the pack ice, but it seems to be oversimplified taking into account the
recent observational data.

The important research of internal waves both theoretical and observational in
the World Ocean [15] and especially in the high-latitude regions were carried out by
E.G. Morozov and his coauthors. In a series of papers [13, 14, 16–19] they showed
the importance of internal waves not only for the Arctic Ocean mixing, but also for
the sea ice formation [20].

The understanding of the role of internal waves in large-scale or climatic Arctic
Ocean state formation is still beyond the scope of ocean climate modeling, but it is
likely that it will be demanded soon, as the spatial resolution of the models will be
fine enough and the requirements to the accuracy will rise due to the improvements
in the observing systems in the AO. One may detect that in the models of the
general atmosphere circulation and weather forecast there are comprehensive
parameterizations employed for a long time both for orographic [22] and
non-orographic internal waves (induced by vertical shift of the wind or by con-
vection [5]), which proved to be important for the mean stratosphere wind for-
mation. The experience of ocean modeling shows that it lags behind the atmosphere
modeling approximately by 15–20 years, therefore, now we at the very moment to
take comprehensive parameterizations of internal waves into account in the ocean
models as well. The obvious problem for the parameterization of the internal waves
and tides in the AO is that their lengths are close to the scales of mesoscale and
submesoscale eddies; hence we again get into the “gray zone” in Fig. 1 and should
be aware of double describing the processes.

Summary

Numerical modeling in the Arctic Ocean exhibited an impressive progress in the
last 20 years. It happened mostly with the assistance of the ocean general circu-
lation models based on the “traditional” approximations of incompressibility,
Boussinesq, and hydrostatics. These models were designed initially for the condi-
tions of low- and mid-latitudes, in which the horizontal scale of mesoscale eddies is
large, and the vertical stratification is generally stable. The progress was provided
mainly by the evolution of the program codes towards higher horizontal resolution.
Now, at the resolution of the order of a few kilometers accessible even for the
global setups, the revolution is at hand. The bunch of mutually interacting processes
like mesoscale and submesoscale eddies, internal waves and vertical convection, all
approximately of the same horizontal scale, demand the new approaches to model
formulation, new parameterizations, and new numerical design. This work may be
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done only by means of the close cooperation between theoretical and observational
oceanographers, numerical mathematicians and computer programmers.

In this contribution we did not discuss the problems of sea ice modeling, as well
as the non-homogeneous air-ice and ice-ocean boundary layers, which also arise on
the way to the very fine horizontal and vertical resolution. All the modern
large-scale sea ice models, despite the adopted sea ice rheology, are based on the
assumption of the “sufficiently large” number of floes on the scale of the model
mesh to use the granular media mechanics achievements. This assumption, obvi-
ously, becomes wrong for the model resolution of about 1 km, having in mind that
the mean floe diameter in the central parts of the AO of about 300 m. The correct
formulation of the ocean model in the case of ice ridges with the depths keels up to
25 m is also a challenge.
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Numerical Modeling of Internal Wave
Generation at High Latitudes

Oxana E. Kurkina, Tatiana G. Talipova, Efim N. Pelinovsky
and Andrey A. Kurkin

Introduction

It is well known from the theory of linear waves in the ocean that the propagation of
very long tidal internal waves ceases near the critical latitudes [1]. The critical
latitude existing due to the Earth’s rotation is determined as the latitude φ where the
tidal frequency ω is equal to the local inertial frequency f = 2ΩEsinφ, where
ΩE = 0.00007292 1/s is the frequency of the Earth’s rotation. The linear theory of
the baroclinic tide predicts that baroclinic waves of frequency ω cannot propagate
as free waves to the north of this critical latitude [1]. This latitude for the semid-
iurnal tidal period M2 = 12.4 h is 75° N, and only about 30° for the diurnal tidal
period. Nevertheless, observations show the existence of short internal waves
(IWs) of very large amplitudes and strong baroclinic fluxes here [2–6].

A significant contribution to the study of IWs in the Arctic basin has been done by
the Russian scientist Eugene Morozov [7–12]. We reproduce briefly the description
of internal waves in the Barents Sea based on the papers [5, 9]. Special measure-
ments of IWs with distributed temperature sensors were carried out from drifting ice
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in 1983 in the Saint Anna Trough and in 1986–1989 in the Franz Victoria Trough.
The latitude of the measurements was 80°–81° N and the depths were in the range
200–500 m. In addition to the other phenomena, very short and localized semidi-
urnal IWs were found. Their lengths were within 2–6 km. They propagated from the
slope of the trough and their amplitudes reached 40 m. When the measuring
instruments drifted from the slopes of the trough to a distance of 20–40 km toward
flat bottom regions, the amplitude of these waves significantly decreased. Under
certain stipulations, these semidiurnal waves were classified as internal tides.

The possibility of the generation of internal tidal waves by the topography north
of the critical latitude was demonstrated in [13] on the basis of a fully nonlinear
non-hydrostatic model. These waves are generated and trapped by the barotropic
tidal flow at the lee side of a sill. Such waves are called unsteady lee waves. Their
amplitudes depend on the amplitude of the tidal currents and the steepness of the
bottom topography. Dramatically high, up to 500 m, internal lee waves were
observed in the Luzon Strait and South China Sea [14]. Nonlinear generations of
IWs near the critical latitude and north of it were first modeled in the Barents Sea
conditions (near Bear Island) in [9, 15]. Propagation of short nonlinear IWs with
amplitudes of about 20 m was shown.

The goal of this study is to explain the nature of large-amplitude baroclinic
motions observed over the critical latitude in the Franz Victoria Trough, Barents
Sea in the framework of the fully nonlinear Euler equations for stratified water, and
to forecast dangerous underwater events in this region. Some preliminary results of
internal wave modeling in this region were reported in [16]. The numerical model
based on 2D Euler equations is described in section “Numerical Model”. The
results of numerical simulations are presented in section “Numerical Modelling”.
The results are summarized in section “Summary”.

Numerical Model

The numerical model developed by Lamb [17] is applied to study the generation
and propagation of IWs in the Barents Sea. The model equations are
two-dimensional (vertical section) fully nonlinear Euler equations on a rotating
f-plane with the Boussinesq approximation. The coordinates are defined as follows:
x-axis is along the section, y is perpendicular to the section, and z is the vertical
axis. The equations of the model are

V
!

t + V
!∇

� �
V
!− f V

!
× k
!

= −∇P− k
!

ρ g,

ρt + V
!∇ρ=0,

∇V
!

=0,

where V ⃗ u, v,wð Þ is the 3D velocity vector, but all variables are functions of x, z, and
t, ∇ is the 2D gradient operator in the vertical plane (x, z), subscript t denotes the
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time derivative, ρ is the density, P is the pressure, g is the gravitational acceleration,

f = 1.425 × 10−4 1/s is the Coriolis parameter at a latitude of 78.5° and k
⇀

is the unit
vector along the z-direction.

The equations are transformed to the terrain-following coordinate system
(sigma-coordinates). Thus, it possible to increase the vertical resolution over the
shallow regions. The equations are solved over a domain bounded below by the
topography and a rigid lid above. The flow is forced by the semidiurnal barotropic
tidal inflow at the left boundary of the form VT sin(ωM2t), where ωM2 is the M2 tidal
frequency with period T = 12.4 h. At the right boundary an outflow condition is
used. The water column is initially at rest wit a horizontally uniform density ρ0(z).
The horizontal grid size is 90 m and the vertical sigma-coordinate resolution
consists of 80 grid points. The time step is tied to the Courant-Friedrichs-Levy
condition and varies from 2 to 5 s.

The modeling efforts were performed over a cross-section in the Barents Sea
close to the Franz Victoria Trough (Fig. 1). The entire wave path is located north of
the critical latitude (74.5° N). The bathymetry along this cross-section was taken
from the GEBCO database (solid lines in Fig. 2). Its 8-sin fit is used for a better
description of the basin depth, H(x) in the middle portion of the domain is

HðxÞ= ∑
8

m=1
am sinðbmx+φmÞ½ �, ð1Þ

Fig. 1 Bottom topography of the study site with the cross-section between 34.11° E, 77.57° N
and 28.61° E, 80.58° N
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where am, bm and φm are the fit coefficients. Bottom profile, H(x) is shown by the
dotted line in Fig. 2. The double humped sills along the modeling path are similar
to the double ridge structure in the Luzon Strait where tidally generated IWs were
observed [14].

The typical vertical density profile in this region is taken from the GDEM
climatology for July. It is approximated by the bi-exponential function

ρ0ðzÞ= ρ0̃ + q1 expðr1zÞ+ q2 expðr2zÞ,

with ρ0̃ = 1000 (kg m−3), q1 = 27.90 (kg m−3), r1 = 2.022 × 10−6 (m−1),
q2 = −1.363 (kg m−3), r2 = −0.03054 (m−1), and the buoyancy frequency N(z)
(Fig. 3) is then calculated.

The study site is characterized by strong tidal currents and underwater mountain
ridges. A map of the mean tidal fluxes in the Arctic Ocean (with 8 tidal compo-
nents) calculated with the help of the Arctic Ocean Tidal Inverse Model (AOTIM)
is presented in [18]. Four major tidal components M2, S2, K1, and O1 contain up to
79, 10, 5 and 1% of the total (8-components) potential energy of the tide, respec-
tively. Thus, the semidiurnal tide M2 dominates in the tidal velocities in this region
of the Arctic Ocean.

The mean values of the tidal flux of the M2 barotropic tide over the shelf of the
Barents Sea are 20–60 m2/s. The maximal velocities can exceed these values of the
mean velocities as much as twice. The barotropic tidal wave in our model numerical
experiments is represented only by the semidiurnal tide M2. As the mean tidal
current in the study site is about 0.5 m/s, the maximal barotropic tidal velocity can
reach 1 m/s, and we use this value for VT to set up the model.

Fig. 2 Profile of the bottom
topography along the section
(solid line denotes the
GEBCO data, the dotted line
is the F8 approximation)
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Numerical Modelling

The calculated normalized density perturbation fields (ρ − ρ0(z))/ρ0̃ and “baro-
clinic” u − ubt horizontal velocity values are shown in Fig. 4 for various tidal
phases. Linear barotropic tidal velocity is given by relations: ubt = VT sin(ωM2 t)
H(x0)/H(x). Vlasenko et al. [19] mentioned that full periodicity of the process is
formed after 2–3 tidal periods TM2 ; therefore, the snapshots for t ∈ [3 TM2 ; 4 TM2 ]
are shown.

Time moment 3TM2 corresponds to the end of the ebb phase and the beginning of
the flood phase. The velocity of the tide at 3TM2 is zero and there are large per-
turbations of density (and corresponding displacements of isopycnals) over the left
(western) side of the largest hill. Intense IWs are generated over the slopes of the
highest central hill (located between 200 and 300 km, while the crest is at 230 km).
Their amplitudes decrease when they propagate out of this zone. After a quarter of
the tidal period, at t = 3.25 TM2 , the tidal flood phase starts; the velocities reach the
maxima, and the wave generation intensifies at the right lee slope of the central hill.
At time moment t = 3.5 TM2 , the phase of the flood finishes, and the barotropic tidal
velocities vanish; the IWs are developed well on the right side of the central hill.
When the ebb phase is maximal (at t = 3.75 TM2 ), the zone of generation is also
shifted to the other (left) lee side of the hill, and the waves gain the largest
amplitude at t = 4 TM2 when the velocity of the barotropic tide vanishes again.

The density perturbation shown in the left column in Fig. 4 perfectly illustrates
the phenomena of upwelling and dowelling caused by the interaction of the baro-
tropic tidal flow with the bottom topography. The difference between densities of

Fig. 3 Typical vertical mean profile of the potential density anomaly (1026–1028 kg/m3)
ρ0(z) (a); Brunt–Väisälä frequency (b) in the study site taken from the GDEM climatology for July

Numerical Modeling of Internal Wave Generation at High Latitudes 573



displaced and surrounding (unperturbed) water masses can reach 0.5 kg/m3, which
may correspond to a temperature difference of 5 °C (in the case of fixed salinity).

The baroclinic horizontal velocity zero contours (white lines in the right column
in Fig. 4) let one roughly estimate the vertical mode composition of the wave field
by counting the number of zeros by the vertical at each point along horizontal
coordinate x. The number of modes in the solution increases due to the influence of
nonlinearity in the shallower regions of the section.

Thus, the presented IWs are mainly unsteady lee waves that are generated by the
tide and ebb currents over the lee slope of the hill with the phase shift of about a
quarter of the tidal period between the maximal tide velocity and maximal isopy-
cnal displacement. The wave velocities are evident at time moments 3 TM2 , 3.5 TM2 ,
and 4 TM2 , when the tidal current is zero. Their values do not exceed 0.4 m/s. The
process is well illustrated in the Hovmuller plot (or x–t diagram) for the dis-
placement of the isopycnal located at a depth of 70 m in the undisturbed state
(Fig. 5). The more intense IWs with amplitudes of 50 m and total heights
(crest-to-trough height) of about 80 m appear regularly in the band of about 40 km
wide and the central position approximately at 230 km. Their lengths may be
evaluated as 6–12 km using the displacements in Fig. 6.

Fig. 4 Snapshots of the normalized density perturbation (ρ − ρ0(z))/ρ ̃0 (left panel) and
perturbation of horizontal velocity u − ubt (m/s), zero contour is shown by white line (right
panel) as the reference. The middle panel shows the phase of the barotropic tide
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The typical frequencies/periods of the modeled waves can be estimated from
their amplitude spectrum shown in Fig. 7. The most pronounced components of the
wave field are localized in space by the semidiurnal baroclinic motions of the period
TM2 , and waves with multiple frequencies ω = 2 ωM2 , 3 ωM2 , etc. The amplitudes of
the spectral peaks of the second and third harmonics are of the order of half of the
first harmonic amplitude. The higher harmonics are still visible, but their spectral
peaks are much lower and narrower.

Within the context of the linear non-hydrostatic model (e.g., [20]) the oscillatory
flow over an uneven bottom produces resonant baroclinic motions of frequency ω,
when condition α ≤ γ is satisfied for inclination α of the characteristic lines of the
hyperbolic wave equation

α2ðzÞ= ω2 − f 2

N2ðzÞ−ω2

and slope γ of the bottom relief γ = dH/dx. We analyzed this condition for
ω = 2ωM2 in our model setup (H(x) given by (1) and N(z) shown in Fig. 3) and
selected intervals of horizontal coordinate x, where α ≤ γ. These ‘supercritical’
regions, where the motion is essentially baroclinic in the entire water column, and
radiated waves can propagate, creating wave “beams” are marked by red circles on
the bottom profile in Fig. 8. Though we solve a nonlinear problem, it is clearly seen
that the regions selected with the use of linear criterion α ≤ γ, perfectly correlate
with the locations of the strongest density perturbations shown in the left column in
Fig. 4. Rotation suppresses the generation of IWs at high latitudes; therefore, the
amplitude of radiated waves rapidly decreases.

Vlasenko et al. [19] suggest another classification of the processes of IW gen-
eration based on the magnitude of the Froude number Fr = umax/c. Here, umax is the
maximal velocity of the barotropic tidal flow in the x-cross-section (umax = VTH
(x0)/H(x)) and c is the phase speed of the long lowest-mode IWs. In the

Fig. 5 Contour plot in the
space-time domain for the
displacement (m) of the
isopycnal located at a depth of
70 m in the undisturbed state
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‘supercritical’ regime Fr > 1, the generation of strong nonlinear internal lee waves
by tide is possible at any latitude, whereas there is no IW generation when Fr ≪ 1
in the region north of the critical latitude. Therefore, the waves shown in Figs. 4, 5,
and 6 can be interpreted as internal lee waves.

Fig. 6 Displacement of the 70 m isopycnal surface at different time moments
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The spatial variation of the Froude number along the study section is shown in
Fig. 9 together with the other characteristic quantities: linear phase speed of IWs
and maximal tidal velocity in the study site. The zone of Fr > 1 is located between
points at 225 and 237 km. The most intense IWs appeared in the numerical runs
exactly within this interval.

It is interesting to note that such a complex fully nonlinear process of the
barotropic tide interaction with the bottom topography generates almost symmetric
(from the point of view of horizontal direction) field of total (barotropic and
baroclinic) near-bottom velocity (see Fig. 10), because the supercritical zones are
located over almost symmetrical flanks of the underwater hill (Fig. 8).

Internal wave records are rather irregular, and the waves of large amplitude
appear and disappear over a finite time; their number is also highly variable.
Therefore, the methods of mathematical statistics can be applied to them, deter-
mining the frequency of the occurrence of flow velocities with a value greater than
the specified one. In the case of a random ergodic process this quantity is known as
1 − P(u), where P(u) is the probability of occurrence of the current velocity values
in the range 0–u. Doing so, we separately calculate the positive and negative values
of the flow velocity (that is, the different directions of the flow). The variability of
this characteristic is shown in Fig. 11. It is clearly seen that the share of high

Fig. 7 Contour plot in the space—normalized frequency domain for a single-sided amplitude
spectrum (m) of the isopycnal located at a depth of 70 m in the undisturbed state

Fig. 8 Supercritical regions
(red points) of the sea bottom
for wave frequency 2ωM2

according to the linear
nonhydrostatic theory
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Fig. 10 Contour plot in the
space-time domain of the total
horizontal velocity near the
bottom

Fig. 9 The Froude number and auxiliary characteristic parameters versus distance along the
section

Fig. 11 Frequency of
occurrence of large flow
velocity values along the x-
axis
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velocities (about 5–10% of all waves) varies in space in the amplitude range 0.5–1.5
m/s, and the frequency of occurrence of flow velocities of different signs is
approximately the same at every spatial point.

Summary

The problem of generation of small-scale intense internal waves in the Arctic
regions north of the so-called critical latitude is discussed. It is well known, that
baroclinic waves at such latitudes cannot propagate as free waves. However, due to
the nonlinear generation of higher harmonics, which can propagate, highly non-
linear small-scale internal waves are excited. This process has been studied in the
regions of the Franz-Victoria Trough in the Barents Sea and in the Arctic Ocean,
where such waves, generated by the interaction of the barotropic tidal flow with
uneven bottom, were observed several times (with the participation of Professor
Eugene Morozov). The adapted numerical model of K. G. Lamb, solving the
two-dimensional Euler equations on the rotating Earth, is used for calculations.
Modeling results confirmed that, similarly to the in situ records, 40 m-amplitude
waves are generated in this region and their wavelengths (6–12 km) also agree with
the observations. These waves conserved significant amplitudes of isopycnal dis-
placements at a distance of about 20 km from the zone of generation. They appear
twice per the semidiurnal tide period and conserve their state for about 6.2 h, slowly
propagating out of the peak of the underwater hill. More intense waves were
generated in the ebb phase and when the ebb velocity vanished. The largest
observed height between the crest and trough (about 80 m) appeared at the end of
the ebb phase each 12.4 h period. The time evolution of the horizontal velocity field
is also modeled, and significant values of flow velocities are obtained, the maximal
value is 1.5 times greater than the amplitude of the barotropic tidal flow at the time
moments of the maximal tide. A spectrum of isopycnal displacement corresponding
to undisturbed density at 70 m depth reveals significant values to the fifth harmonic.
The amplitudes of spectral peaks of the second and third harmonics are half of the
order of the first harmonic amplitude. The zones of internal wave generation over
the flanks of the hills are found using two methods, and both give similar results.
The frequency of the appearance of large peak values in the velocity field is also
calculated. In particular, the fraction of large velocities in the range 0.5–1.5 m/s
(approximately 5–10% of all waves) varies in space significantly growing in the
supercritical regions. The frequency of the occurrence of the flow velocities of
different signs is approximately the same at each spatial point.
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Internal Wave Frequency Spectrum
in the Amundsen Basin of the Arctic
Ocean Inferred from Ice Tethered CTD
Instruments

Sergey V. Pisarev

Introduction

Reduction of the extent (area of the ocean with at least 15% of sea ice), average age,
and thickness of the drifting sea ice are the widely known manifestations of the
natural processes, which have received the title “warming of the Arctic”. Changes
in the characteristics of ice are most pronounced in the summer period, but they are
also significant in winter. The change in the characteristics of the drifting sea ice in
the Arctic, despite a set of other consequences must apparently cause an increase in
the energy of internal waves in the Arctic Ocean. The fact is that the existence of
the drifting ice is considered among the two main causes explaining the well known
low energy of internal waves in the high-latitude Arctic Ocean when compared with
the ice-free ocean [1–3]. The current understanding is that internal wave energy is
reduced in the ice-covered basins by (among other causes) the dissipation of
internal wave energy in the surface boundary layer immediately below the ice [4,
5].

Recent findings demonstrate the sensitivity of the Arctic Ocean circulation to the
background deep-ocean mixing. Results using a large-scale coupled ice-ocean
model [6] suggest the appropriate model background mixing in the Arctic Ocean is
one order of magnitude lower than in the ice-free oceans. Direct measurements of
oceanic mixing are difficult, but decades of research suggest that deep background
mixing is a consequence of the dissipation of internal wave energy. The exact
nature of this relationship is an open question, but it makes it possible to infer
mixing from relatively simple observations of internal wave energy. Consequently,
if the ice cover is reduced, we may see increased internal wave energy, mixing, and
heat flux in the deep ocean because less internal wave energy would be lost in the

S. V. Pisarev (✉)
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
e-mail: pisarev@ocean.ru

© Springer International Publishing AG, part of Springer Nature 2018
M. G. Velarde et al. (eds.), The Ocean in Motion, Springer Oceanography,
https://doi.org/10.1007/978-3-319-71934-4_37

581



under-ice boundary layer. This would tend to result in the increased heat flux to the
Arctic sea ice from the warmest Arctic Ocean water masses: Atlantic and Summer
Pacific; hence, a positive climate feedback appears that would melt more ice.

To estimate the energy of internal waves of the Arctic in the years, in which the
extent of ice clearly decreased and the records of low extent followed one by one, a
series of measurements with the use of ice tethered CTD (Conductivity-
Temperature-Depth) instruments has been carried out in April of 2007, 2009,
2010, and 2012. The estimates are compared in this research with the estimates of
the same type, in the measurements in the 1960s–1980s when the extent of sea ice
was definitely larger (Fig. 1) than the so-called climatic norm defined as the average
extent in 1981–2010.

Data

The measurements of temperature-salinity (TS) variability at 3 levels within the 60–
120 m of the water column as well as vertical TS profiles in the upper 500 m were
carried out in the Russian seasonal drifting ice camp in the central Arctic Ocean in
2007, 2009, 2010, and 2012. Observations of the basic meteorological parameters
and ice drift accompanied the measurements of the TS characteristic.

All measurements were carried out in April (the winter Arctic season) when the
ice camp drifted through the northern part of the Amundsen Basin over the flat
oceanic bottom with depths of ∼4300 m. The directions of the drifts were in
accordance with the Transpolar Drift in 2007, 2009, 2012: from north to

Fig. 1 Arctic Ocean monthly April sea ice extent in 1979–2017 shows a decline of 2.6% per
decade.
Credit National Snow and Ice Data Center
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south-southwest. On the contrary, in 2010, the drift was in unusual direction for this
region to the southeast (Fig. 2). In all cases, the drift was determined mainly by the
wind. The median drift speed varied from year to year within 7–13 cm/s. The
maximum values of the drift velocity (40 cm/s) occurred very rarely and for a short
time.

Three SBE37 CTD instruments were used to get T and S time series, while the
SBE25 profilers were used to measure vertical TS profiles. The SBE37 instruments
were vertically distributed over a distance of 25 m between the instruments within
the halocline or thermocline. Variability of T or S at specific depths was trans-
formed into vertical displacements of “water particles” using the vertical gradient in
the neighborhood of the level of measurements. (It was assumed, that the calculated
vertical displacements in the range of frequencies from inertial to buoyancy, are
determined by internal waves.) The gradient for the central instrument among the
three SBE37 at every time moment of measurements was determined using the
values of the upper and lower instruments and from the vertical TS profiles at the
nearest time. The vertical soundings were made with irregular time interval but the
TS observations at fixed levels were carried out with a constant time interval, which
was 1 min in 2010 and 2012, and 3 min in 2007 and 2009.

The distance between the hole in the ice floe, through which the CTD instru-
ments were deployed at three levels, and the hole for vertical soundings varied from
50 to 150 m in different years. While the “moored” T and S variations were
transformed into displacements, it was assumed, that there was no horizontal dif-
ference in the magnitude of the vertical gradient determined at distances up to
150 m.

Any characteristic, either T or S (or both) were used for the calculation of the
vertical displacements. The main criterion for choosing a particular characteristic

Fig. 2 Maps showing the positions of the ice camp drift (digits 1–4 and black spots on the left
map and symbols according to the legend on the right map) together with the bottom relief during
the measurements of internal waves in April of 2007, 2009, 2010, and 2012. Numbers 5–18 on the
left map correspond to the coordinates of field measurements in 1966–1989. The frequency spectra
of internal waves were determined from these data. The estimates of the energy of internal waves
based on the field measurements 1–18 are summarized in Table 1
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was the presence of a linear gradient on the vertical profiles within the water layer
10 m above and below the level that was under the consideration. Part of mea-
surements at the levels was not transformed to vertical displacements and was not
used in the calculation of frequency spectra. It happened in the cases when there
were such reorganizations of the structure of vertical gradients on consecutive
vertical profiles, which eventually formed a nonlinear gradient in the neighborhood
of these levels. It should be noted that only about 2% of the records at the levels
were subjected to such rejection since the measurements were made within the
northern part of the Amundsen Basin where the horizontal TS fields are compar-
atively uniform because of their location far from the frontal zones or others causes
of abrupt changes in the halocline or thermocline.

Some 2009, the data are presented here as an example to demonstrate the results
of field observations and their post-processing preceding the calculation of the
frequency spectra of internal waves (Figs. 3, 4 and 5). It follows from Fig. 5 that
there was no linear gradient in the 50–110 m layer of T profiles, thus the S profile
was chosen as the indicator of the vertical motions. The gradient of S was not very
linear also; hence, one gradient was used with a decrease of S according to the
indications of the middle SBE37 instrument (upward motion of the water particle),
and the other with increasing S (downward motion). The vertical profiles of
buoyancy frequency in 2009 (Fig. 5) show, that the sampling period 3 min, used
for the SBE37, did not allow measuring internal waves with a frequency of 20 cycle
per hour (cph), the existence of which is possible in a narrow waveguide, but
provided the resolution of waves with the maximum frequencies up to 10 cph.

Fig. 3 Eight vertical profiles of T (left column) and S (central column) measured in the internal
wave experiment in 2009. Vertical profiles of buoyancy frequency calculated using low-pass
filtering from the TS profiles (right column). The top panel demonstrates the full range profiles,
while the bottom panel presents the upper part of the profiles, where the measurements at 3 levels
(horizontal dotted lines) were carried out
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It follows from Fig. 4 that the SBE37 instruments were not at the same level, but
were subjected to vertical motions. These motions were explained by the deviation
from the vertical position of the wire with fixed instruments when an increase in the
drift speed of the ice floe occurred (Fig. 5). Despite the relatively small magnitude,
the vertical movements, associated with the instrument’s own oscillations, were
algebraically subtracted from those vertical motions that were calculated using
changes in the salinity and vertical salinity gradients to calculate resulting vertical
displacements of “water particles”.

It should be noted that the amplitude of internal waves increased significantly
(Fig. 4) shortly after the drift increased (Fig. 5). Without discussing in detail the
possible mechanisms for such an ocean response to increase in the wind and drift, it
should be noted, that if we estimate the energy of internal waves only on the basis
of measurements before April 13 or only after this date, the two estimates will differ
by one order of magnitude.

Fig. 4 Vertical displacements from starting position in April 2009 based on the depth of the
central SBE37 (black thick line), “water particle” (gray thin line) and “water particle” after
low-pass filtering (black thin line)

Fig. 5 Ice camp drift speed in April 2009 determined from irregular GPS observations of the
geographical coordinates (circles)
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Frequency Spectra

An observed spectrum of vertical displacement (gray line in Fig. 4) during the
period from April 6, 2009 19:30 UTC to April 22, 2009 8:36 UTC is shown in
Fig. 6. The Garrett-Munk (GM) model spectrum is plotted in Fig. 6 for comparison.
The GM spectrum is a good representation of the internal wave field at lower
latitudes away from irregularities of bottom relief or ocean surface. The GM model
provides the statistical description of the “typical” internal wave observation
because it is empirically derived.

According to Desaubies’ formulation of the GM model presented by Munk in
1981 [7]; links in [1], the GM spectra of vertical displacement are given by

S w, zð Þ= 2
π
r

f
N zð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 − f 2ð Þp

w3

where

S(w, z) is the spectral density in m2/cph;
w, N(z), f are the current, local buoyancy, and local inertial

frequencies in cph;
r = Eb2N0 = 320 m2/cph is one of the two parameters of the GM model in

Desaubies’ formulation.

Both GM spectra, and hence the total energy, are scaled by parameter r;

E = 6.3 × 10−5 is the nondimensional energy level;
b = 1300 m is the vertical depth scale of N;
N0 = 3 cph is the buoyancy frequency scale.

The local values of N and f are used to scale the level of the GM spectra plotted
in Fig. 6. The values of N at ∼80 m were taken from Fig. 2 and found to be near 7
cph. At high frequency, w≫ f , the frequency dependence of the GM spectra of
vertical displacement is w− 2.

Our observed spectrum (Fig. 6) demonstrates both specific particularities of such
spectra in the Arctic that was for the first time reported in the second half of the
1980s [1, 2]. The total internal wave energy is lower when comparing with GM
while the observed spectral slope is substantially less steeper with the frequency
dependence close to w− 1 at high frequencies and near w− 1.5 at 0.5f ≥w> f The
observed spectra of 2007, 2010, 2012 (not shown here) have the same form as in
2009, although at a lower level, especially at the frequencies greater than 1 cph.

With the goal in mind to compare our data with the historical Arctic internal
wave spectra, a quantitative measure of the spectral levels observed in 2007–2012
was calculated by fitting the GM spectrum shape to the observed spectra and
adjusting parameter r so that the model variance equaled the variance of the data
over the frequency band 0.25–1.5 cph (far from the inertial and buoyancy fre-
quencies). The best-fit value for r is 70 m2 cph for the 2009 spectrum (Fig. 6). The
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same type of adjustment was performed for the other observed spectra: the best fits
for parameter r were 40, 45, and 35 m2 cph in 2007, 2010, and 2012, respectively.
If we compare the levels of the spectra of the Arctic internal waves measured in
1966–1989 and 2007–2012, it is easy to see that there is no trend in the spectral
level (Table 1, Fig. 2). Indeed, because of the causes that are not completely clear
yet, the spectra levels determined on the basis of relatively short measurements in
different years can differ by one order of magnitude even at close geographic
coordinates and under similar meteorological and ice conditions. Bearing this in
mind, however, it can be argued that until 2012 there has been clearly no increase in
the energy of internal waves in the Arctic.

The same conclusion about the absence of a trend in the energy of internal waves
was recently obtained on the basis of another type of measurement [10]. Internal
wave energy was estimated from expendable current probes (XCP) shear variance
and CTD derived buoyancy frequency. A total of 43 vertical profiles of the currents
were used to characterize internal wave energy in April of 2007, 2008, 2010, and
2012, while five vertical profiles were used in the summer of 2007. These data were
compared with 11 profiles measured during the MIZEX 83 experiment in June–July
1983, 20 profiles from the Polarstern 87 cruise in July–August 1987 and 40 profiles
of the AIWEX experiment in March–April 1987. At least one vertical current
profile in 2007, 2010, and 2012 was measured on the same ice floe, on which our
observations of internal waves were performed.

Fig. 6 Spectrum of the
vertical displacement at a
depth of ∼80 m (solid line).
Vertical displacement was
inferred from salinity by
means of dividing by the
current vertical salinity
gradients. The GM spectrum
is shown for comparison
(dashed line). The 95%
confidence limits are
indicated bellow
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Summary and Conclusions

Four series of internal wave measurements were carried out in April 2007, 2009,
2010, and 2012 to determine whether internal wave energy and, hence, deep-ocean
mixing has increased with the decline of the Arctic sea ice when the Russian

Table 1 Parameter r of the GM model adjusted for the recent and historical measurements of the
frequency spectra of internal waves in the Arctic (T is the water temperature, S is salinity, V is
horizontal velocity)

Number
in Fig. 2

Experiment Data
type

Duration
(days)

Instrument
depth (m)

Bottom
depth
(m)

References r (m2cph)

1 SPIW 2007 TS 7.9 75 4300 This
article

40

2 SPIW 2009 S 15.6 80 4300 This
article

70

3 SPIW 2010 S 5.5 80 4300 This
article

45

4 SPIW 2012 TS 11.9 75–110 4300 This
article

35

5 SPIW 1983
slope

T 5 100 450 [8] 143

6 SPIW 1983
flat bottom

T 3 100 500 [8] 5

7 SPIW 1985 T 4 80 300–
400

[3] 38

8 SPIW 1986 T 6 80 370–
460

[3] 140, 160

9 SPIW 1988 T 14 80 220–
550

[9] 15–42

10 SPIW 1989 T 15 80 310–
450

[9] 3–55

12 Fram -3,
1981

T 4 50–160 800 [1] 40–85

13 T-3 1966 T 4 60 3000 [1] 2, 5
14 T-3 1972 V, T 70 40–60,

200–250
3500 [1] 10, 90

15 LOREX
1981

V 35 1240, 1415 1500 [1] 51

16 MIZEX-83 T 7 15–65 500–
1000

[1] 41

17 MIZEX-84 T <1 0–100 1680–
2220

[1] 8

18 AIWEX
1985

T 15 250 3700 [1] 23
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seasonal ice camp drifted through the northern part of the Amundsen Basin of the
Arctic Ocean. The measurements of temperature-salinity (TS) variability were
performed at 3 levels within the 60–120 m of the water column as well as vertical
TS profiles were measured in the upper 500 m. Observations of the basic meteo-
rological parameters and ice drift accompanied the measurements of the TS char-
acteristic. The total duration of the collected internal wave data was more than
40 days. The results of the recent experiments were compared with 14 previous
measurements of the same type that had a total duration of about 180 days. They
were carried out in the Arctic Ocean in 1966–1989. The comparison of the data
processing performed using the same method by adjusting parameter r of the GM76
model [7] reveal no trend evident over the 40 year period in spite of the drastic
decline of the sea ice.

The observed absence of any trend in the energy of internal waves can be
explained on the basis of two considerations. First, the existing ideas about the
strong dissipation of energy of internal waves just in the layer under ice as an
important mechanism that determines the well-known low energy of these waves in
the Arctic are not entirely true. In this case, the only cause for the low energy and
the specific form of the spectrum of internal waves in the Arctic remains: this is the
impossibility of the existence of the M2 tidal semidiurnal internal waves north of
75° N due to inertial frequency limitation. The importance of the absence of tidal
internal waves is evidenced by the fact that the regions of the Arctic, in which the
shape of relatively high internal wave spectral level (for the Arctic) corresponds to
the GM spectrum (see experiments 5–10 in Table 1), are only those regions, in
which the forced waves of tidal periods exist [9]. The second possible cause is that,
instead of ice, highly freshened layers of water are formed at the surface. Hence
internal waves dissipate within these layers as a result of a not yet determined
mechanism.
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Experimental Studies of Sea and Model
Ice Fracture Mechanics

Marina Karulina, Alexey Marchenko, Alexandr Sakharov,
Evgeny Karulin and Peter Chistyakov

Introduction

The water motion in the Arctic Ocean is strongly influenced by the ice cover. The
modern state of the economical development in the Arctic seas requires our
knowledge of the ice properties because of the need for navigation in the ice and
especially in the construction of icebreakers. Development of oil and gas industry
and widening of the engineering constructions in the open sea (oil platforms) and in
the shallow coastal regions (bridges) needs the knowledge of the ice properties to
protect these constructions from the ice forcing. This contribution is related to the
field and laboratory research of the ice properties at the present day of technology
and fracture mechanics.

In the terms of fracture mechanics the natural sea ice is a complex material
whose behavior under load is not always predictable with confidence. It applies
both to the qualitative description of ice fracture mechanism (failure pattern) and to
the quantitative estimate of the breaking load. Sea ice is a complex structural
material in view of its specific structure, inhomogeneity and considerable depen-
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dence of its strength on external factors, primarily temperature, salinity, porosity as
well as time history of ice cover formation [1–6].

One of the interesting tests in ice failure mechanism studies is loading of floating
ice beams with fixed ends. The force is applied at mid-length of an ice beam and
normally to its upper or side surface. Such tests provide good insights because the
ice beam behavior under load is governed by the relationships of various ice
strength parameters (flexural, compressive, crushing or shear strength) and the
beam geometry.

The first systematic loading tests on beams with fixed ends were carried out by
Sodhi [7]. These tests were combined with the other experiments, which were
primarily intended for appraisal of ice sheet bearing capacity. The tests were
conducted in an ice basin with freshwater columnar ice. The ice sheet was made by
seeding ice nuclei over water surface at 0 °C, after that the ice cover was grown to
the specified thickness at an ambient temperature of −25 °C. The set-up of Sodhi
tests with vertical loading of clamped ice beams is shown in Fig. 1. Ice thickness
ranged from 66 to 145 mm, the ice beam length-to-thickness ratio was in the range
of 7<L ̸h<44, while the width-to-thickness ratio was in the range 2<w ̸h<5.
The test results were used to obtain the relationship between the flexural and
compressive ice strength.

In 2013–2014, the authors of this contribution conducted systematic loading
tests on ice beams with fixed ends in sea ice near the Svalbard archipelago coast and
in fresh-water ice of its inland lake. There are no published data on any earlier
experiments of similar kind conducted in full-scale ice. The tests were conducted as
part of the international SAMCoT project (Sustainable Arctic Marine and Coastal
Technology). Unlike the above mentioned Sodhi experiment, the clamped ice
beams were mainly loaded horizontally (Fig. 2) so that the visual patterns of crack
initiation and propagation were obtained. The geometry of full-scale ice beams was
outside the range of Sodhi tests: relative beam length was approximately

Fig. 1 Test set-up: vertical loading of the ice beam with clamped ends (Sodhi tests)
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4< L ̸h<15, while the width-to-height ratio was 1<w ̸h<2. Some test data and
results of analysis for sea- and fresh-water ice were published earlier by the authors
in Marchenko et al. [8] and in Sakharov et al. [9]. Marchenko et al. [8] give the first
ever description of various beam failure scenarios, while the Sodhi experiment
examined only one failure scenario typical for relatively long beams. The failure
processes of floating fixed-end ice beams are described and analysed in Sakharov
et al. [9], where it is shown how geometrical dimensions of beams influence the
failure pattern in case of seawater and freshwater ice.

Following a series of full-scale loading tests on ice beams with fixed ends, which
showed a range of various failure patterns, it was decided to carry out similar tests
in the model ice in the ice basin and compare the model test results with the field
data.

Physical modeling of structure/ice interaction processes in ice model basins is a
potential tool for studying ice loads on engineering structures. Preparation of model
ice is itself a challenging experimental task [10–14]. Currently there is no tech-
nology so far to prepare ideal environment for such experiments, i.e. model ice that
would provide ice failure patterns identical to the full scale field conditions. The
point is that it is not feasible to simultaneously meet similarity the criteria for
different physical and mechanical parameters of ice: flexural strength, compressive
strength, crushing strength, shear strength, elasticity modulus.

The goal of this study is to compare failure patterns of the natural sea ice and two
model ice types both qualitatively and quantitatively. These investigations are based
on the tests of floating fixed-end ice beams loaded at the middle; this study con-
siders horizontal load applied normally to the beam side (Fig. 2). The tests were
carried out on sea ice and in model ice of two types: fine granule (FG) and columnar
ice. All tests were video filmed, and the video records were synchronized with the
force records for further detailed analysis of the processes to relate these to specific
load values.

Fig. 2 Test setup for horizontal loading of floating ice beam with clamped ends
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Model Ice Preparation

The tests on model ice were performed in the Ice basin of the Krylov State Research
Centre in St. Petersburg, Russia, with dimensions 35.0 m × 6.0 m × 1.8 m.1

Two types of model ice were used in the tests: (1) FG model ice with the granular
structure, and (2) columnar model ice with a thin top layer of granular structure and
main layer of the columnar structure. These model ice types reveal various
behaviors under identical loading. The ice basin of the Krylov Centre is capable to
generate both types of model ice to suit best specific experimental purposes.

The procedure for preparation of fine granule (FG) ice is as follows: a service
carriage is running forward and back in a cold room (ambient air temperature is
about −20 °C) spraying droplets of brine freezing in the air, which are settling as
fine grains layer by layer on the water surface. The spraying is continued until the
required ice thickness is reached. The advantage of the FG model ice is that the
flexural bending strength of ice can be reproduced in a rather wide range with a
close elasticity modulus to flexural strength ratio, which is characteristic of the
natural sea ice. Among shortcomings of this method are low values of crushing and
compression strength of the model ice (lower than that required according to the
similarity criterion) as well as the absence of brittle fracture in some loading
conditions.

Unlike the FG ice, the columnar ice is prepared by seeding ice crystals on the
water surface to form crystallization nuclei with further growth of vertical columnar
crystals at low air temperature. As a rule, this type of model ice is characterized by
relatively high compressive strength, which allows brittle failure of ice, but often
the ratio between the flexural and compressive strengths and modulus of ice elas-
ticity are different from the full scale field values and, therefore, ice failure patterns
do not reproduce the actual processes.

Description of the Test Procedure and the Equipment

In both full-scale and model ice tests two parallel cuts were made in the ice cover to
obtain an ice beam with fixed ends (Fig. 2). The distance between these cuts w is
roughly equal to the ice thickness, while the beam length in different tests varied
approximately from 2 to 8 ice thickness. A horizontal force was applied at the
mid-length of the ice beam normally to the beam side. Vertical indenters were used
in these experiments: in the full scale tests it was a semi-cylinder indenter with a
diameter of 0.15 m, while in the ice basin it was a cylinder indenter of 0.02 m
diameter. The indenters were high enough to ensure that the load was applied across
the entire ice thickness by the horizontal displacement of the vertical indenter.

1The basin has been demounted in 2014.

594 M. Karulina et al.



In the full-scale experiments the indenter was driven by two horizontal hydraulic
cylinders of the maximal force about 300 kN equipped with a displacement sensor
and a load cell. The measurement system was controlled by a field computer
providing data sampling with a frequency of 100 Hz. The rig is shown in Fig. 3,
and its detailed description is given in [15].

In the model ice tests the indenter was driven by a towing carriage travelling at a
constant speed with the indenter rigidly connected to the carriage via a
dynamometer (Fig. 4). The towing carriage speed was 0.005 m/s.

Tests Matrix and Tests Conditions

Table 1 contains the matrix of tests. The scope of work included variation of the
beam length to the thickness ratio for all ice types under consideration.

The flexural strength and Young modulus of the sea ice were determined using
cantilever beam bending tests when breaking force and the beam vertical

Fig. 3 The rig for tests on sea ice (in the air and submerged into the water before the tests)

Fig. 4 Loading of the ice
beam with fixed ends by a
vertical cylinder indenter in
the ice basin (FG ice)
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displacement were measured. Model ice flexural strength was also determined using
cantilever beams. The displacement of infinite ice plate under the weight of spec-
ified mass was measured for the determination of the Young modulus. The mean
values of the ice properties are given in Table 2. Effective strain rate during
indentation tests is calculated as ε ̇=U ̸2D, where U is the horizontal velocity of the
indenter, D is the indenter diameter.

The stress intensity factor K1c was found using the method described in the
KSRI reports [16, 17]. A cantilever beam with a cut in the root section was loaded
by a horizontal force applied to the beam end (Figs. 5 and 6). The force P that broke
the beam was recorded. The stress intensity factor was found from relation

KI c =
2PL

ffiffi

π
p

hiðW − aÞ1.5, where L is the beam length, W is its width, a is the length of a cut

in the beam root.
The stress intensity factor was not determined for the sea ice by the described

procedure. In accordance with the data from various sources [2, 6] KIc for the
one-year sea ice is within 115–200 kPa m0.5.

The sea ice salinity and temperature averaged through the ice thickness were
6.0 ppt and −4 °C, respectively. The temperature and salinity profiles across the
model ice thickness were not determined. The mean salinity of the model ice was
5.0 ppt.

Table 1 Tests matrix

Ice type Beam# Thickness
h (m)

Length
L (m)

Width
W (m)

W/
h

L/
h

Sea ice Sea1_L 0.530 4.050 0.500 0.9 7.6
Sea2_M 0.550 3.000 0.500 0.9 4.6
Sea3_S 0.420 1.600 0.500 1.2 3.8

Model ice/FG fine
granule

FG1 0.050 0.345 0.050 1.0 6.9
FG2 0.050 0.260 0.050 1.0 5.2
FG3 0.050 0.180 0.050 1.0 3.6

Model ice/columnar Col3 0.053 0.355 0.045 0.8 6.7
Col4 0.053 0.260 0.045 0.8 4.9
Col5 0.053 0.100 0.060 1.1 1.9
Col6 0.053 0.175 0.052 1.0 3.3

Table 2 Ice properties (mean values)

Ice type Flexural
strength
(kPa)

Indentation
pressure (kPa)

Indentation
strain rate (1/s)

Young
Modulus
(MPa)

Stress intensity
factor (kPa m0.5)

Sea ice 345.0 4000 3.5E−03 1200 115–200

Model ice FG
fine granule

15.6 55.0 1.25E−01 16.2 0.18

Model ice
columnar

26.6 528.8 1.25E−01 24.0 5.84
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The ice properties of various ice types under consideration are given in Table 2.
The above mentioned parameters determined for each type of the ice enabled us

to find a relationship between the ice beam failure pattern, its geometry, and ice
strength characteristics.

Fig. 5 Diagram for
estimating the stress
intensity factor

Fig. 6 An ice sample
prepared for measuring the
stress intensity factor before
the test
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Ice Failure Modes

Ice beams loaded as described above in the set up (Fig. 2) are characterized by
different failure patterns, the main of them are considered below.

Crushing on indenter. The first phase of the ice beam loading is penetration of the
indenter and local fracture (crushing) of ice in the indenter contact area. Figure 4
shows this process during the tests in model ice of the FG type. The crushing force
is estimated from

Find = pind ⋅A ð1Þ

where pind is the ice pressure averaged over the ice/indenter contact area, A is the
nominal contact area calculated as product of the ice thickness and the indenter
diameter. Table 2 gives the pressure on indenter based on indentation tests in the
infinite ice field for each ice type.

Flexural cracks. When the ice beam is loaded, flexural cracks may occur due to the
tensile forces at the mid-length and root sections of the beam (Fig. 7a). The process
of flexural cracking is described by Sodhi [7] for vertical loading of the beam with
fixed ends, and by Sakharov et al. [9] for the horizontal loading of the beam. For

a) flexural failure

b) shear failure (two 
cracks)

c) shear and flexural 
cracks

Fig. 7 Various failure types during the tests
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estimation of the force causing flexural cracks according to the test shown in
Fig. 7a, a formula from the beam bending theory can be applied [18]:

Ff =
4σf hw2

3L
ð2Þ

where σf is the flexural strength of ice.
Table 2 gives the ice strength found from cantilever beam tests with vertical

loading for each ice type. In formula (2) the flexural strength corresponds to the
horizontal loading of beams.

Ice compression and crushing. Propagation of flexural ice cracks across the entire
width is prevented by compression areas formed at mid-length and root sections as
can be seen in Fig. 7a. Based on the analysis of the vertical loading tests with
fixed-end ice beams, Sodhi [7] suggested a formula for estimating the maximum
bearing strength of a beam with compression areas:

Fc =
4β 1− βð Þσcwh2

L
ð3Þ

where σc is ice compression strength. Parameter β characterizes the length of the
compression area across the beam width. Sodhi [7] estimated β ≅ 1 ̸3 based on the
tests of vertical loading beams with fixed ends. Formula (3) is applied in the
analysis of ice compression strength in the case of horizontal loading of beams
using corresponding replacement of the beam width with ice thickness and of the
ice thickness with ice width. Parameter β for each test was determined using photo-
and video records.

Diagonal shear cracks. When tangential stresses in some sections of the beam
reach their ultimate values (ice shear strength limit) the ice beam is subject to shear
failure across these sections and a block of ice is pressed out. In the tests discussed
here, different shear cracking patterns are observed: two diagonal cracks propa-
gating from the mid-length section of the beam to the fixed end corners (Fig. 7b);
one formed diagonal crack combined with flexural crack in the corner (Fig. 7c); and
diagonal cracks not reaching the fixed end corner. The force giving rise to cracking
as in the tests shown in Fig. 6b can be estimated from:

Fshear =2τswh ð4Þ

where τs is the ice shear strength.
Not all types of ice failure modes mentioned above are represented or identified

in each individual test. Combinations of these ice failure modes are possible.
Prevalence of one or another failure process at each time moment is determined by
the ratio of ice strength limits (compression, crushing, tensile, shear) as well as
beam proportions: failure occurs when the limit in one mode is exceeded.
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Therefore, diverse behaviour of the beam under load can be expected for different
ice types, as well as different influence of beam dimensions on failure patterns.

It should be noted that both sea and model ice have non-homogeneous structure
and non-uniform properties across the ice thickness. In this study the influence of
this factor on the results is not analyzed. Since this study is using averaged integral
characteristics (referred to the total ice thickness), we can expect that if the effect
due to ice non-uniformities across thickness is taken into account, it might some-
what change the quantitative estimates, but the conclusions will remain principally
the same.

The Test Results

Sea Ice

The tests in the sea ice have generally confirmed the conclusions made in the earlier
study [9]. In the test with loading relatively long beams (Lh =7.6 and L

h =5.5), the
flexural cracking in the mid-length and root sections of the beam were observed
(according to the scheme in Fig. 2a), then the load level was governed by the ice
compression process. Figure 8 shows a typical time history of force for a relatively
long beam L

h =7.6. Local peaks on initial stage of the beam loading correspond to
the formation of flexural cracks.

In the tests with the sea ice, parameters β were measured (Figs. 9 and 10); they
appeared equal ca. 0.5 for the beam with L

h =7.6, and 0.4 for the beam with L
h =5.5.

Fig. 8 Time history of loading force for the beam #Sea1_L, L
h =7.6 (Table 1)
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These values differ from the value β≅ 1 ̸3, which was determined by Sodhi [7]
from similar laboratory tests with longer beams.

In the tests with loading of a short beam (Lh =3.8), the flexural cracking and
diagonal cracking due to the shear processes were identified. Video record of the
test and force time history (Fig. 11a) shows that flexural and diagonal cracks were
formed practically simultaneously: two corresponding peak forces are approxi-
mately equal to 144 kN. Then, a small shelf can be seen in the force record with a
value of 139 kN when governing force is the ice compression. The beam view after
failure is shown in Fig. 11b.

From the force record and using formula (4) the sea ice shear strength can be
estimated as τ≅ 0.343 MPa.

View of flexural crack in one 
of the fixed end of the beam  

View of flexural crack in the middle

Fig. 9 Fracture pattern after the test. Beam #Sea1_L, L
h =7.6 (Table 1)

Fig. 10 Fracture pattern after
the test. Beam #Sea2_L,
L
h =5.5 (Table 1)
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FG Model Ice

Tests of the FG model ice beams with length ratios of 3.6≤ L
h ≤ 6.9 have revealed

two characteristic features of their failure patterns:

(1) ice crushing under indenter forcing in the initial phase of loading;
(2) absence of diagonal cracks and shear.

The first feature is related to lower crushing strength of the model ice as com-
pared to the required value according to the similitude law. In the case of relatively
long beams the indenter penetration (until flexural cracking) lasted almost 0.5 s; the
tests with a shorter beam (Lh =3.6) showed a vivid penetration pattern during 2.5 s,
as can be seen from the load time history (Fig. 12) and the force record (Fig. 13).

In all cases, the failure pattern involved flexural cracking at mid-length and root
sections of the beams followed by compression at further deformation of beams. All
the failure processes are illustrated in Fig. 14, in which broken beam #FG2 is
shown.

Values of parameter β are based on the visual data (photos and video records).
The values are β≅ 0.4 for the relatively long beam (Lh =6.9Þ and β≅ 0.5 for the
other two beams.

The ice strength values given in Table 4 show that:

• the ice flexural strength under horizontal loading of the beam is much smaller
than the one under vertical bending of the beam;

• the ice compressive strength is too low, and the ratio of compression strength to
flexural strength is close to unity.

Time history of force View of the broken beam after the test. The 
cracks due to shear propagate from the 
middle to corners in the fixed ends

Fig. 11 Results of the test on sea ice. Beam #Sea3_S; L
h =3.8 (Table 1)
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Columnar Model Ice

The tests of the columnar model ice beams have shown three typical patterns of the
beam failure depending on the relative lengths of the beams: failure pattern of long
beam (Lh =6.7Þ featured flexural cracks (Fig. 15a); medium length beams (Lh =4.9
and L

h =3.3) showed a combination of cracking types: flexural crack at a fixed end

Initial stage of penetration of 
indenter 

Time moment: 15.5 sec

Indentation process
Time moment: 17.7 s 

Flexural cracks in mid-section 
and in cornes 

Time moment: 18.1 s

Fig. 12 Loading and failure of beam #FG3

Fig. 13 Time history of force. Beam #FG3
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and diagonal shear crack (Fig. 15b); short beam (Lh =1.9) failed after diagonal shear
cracking (Fig. 15c).

In comparison with the processes observed in sea ice tests, it can be noted that
compression at beam deformation after initiation of the flexural cracks played a
significantly less important role. It is explained by the fact that the model ice in these
tests was strongly non-uniform across its thickness, i.e. the failure processes were
mainly governed by fracturing of the hard surface layer of small thickness. At
cracking (flexural or shear) the surface layer was not only fractured but also flaked,
and a softer underlayer started to take the load. From the force records of beam tests
with #Col3 (Lh =6.7) and #Col4 (Lh =4.9) shown in Fig. 16 it can be seen that
compression forces are much less than the forces causing ice failure due to bending
or shear.

a) Beam #Col3

b) Beam #Col6

c) Beam #Col5

Fig. 15 Failure patterns of columnar model ice

Fig. 14 View of broken beam #FG2 after the test
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Analysis of the Tests Data

The forces measured in the experiments with reference and various types of ice
beam failure are given in Table 3. The table presents only those force values that
were identified in the joint analysis of force records and videos of the ice beam
loading and failure processes. Table 4 contains the estimates of ice strength
parameters using formulas (1)–(4). It can be noted that not all parameters are
determined in each test because the formulas were used only when the ice beam
failure pattern matched the scenario behind the formula.

Beam #Col3 (ℎ = 6.7) Beam #Col4 (ℎ = 4.9) 
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Fig. 16 Examples of force records during the beam tests in columnar model ice

Table 3 Failure forces

Ice type Beam# Find
(N)

Ff (N) Fc (N) Fshear
(N)

Failure modes

Sea ice Sea1_L 15300 133660 Flexural cracks in middle and in
roots, compressionSea2_M 29500 158810

Sea3_S 143800 139000 144000 Diagonal shear cracks

Model ice/
FG fine
granule

FG1 0.72 0.55 Crushing on indenter, flexural
cracks in middle and in roots,
compression

FG2 0.65 0.91 0.95

FG3 1.05 1.12 1.19

Model ice/
columnar

Col3 54.0 37.0 Flexural cracks in middle and in
roots, compression

Col4 97.0 37.0 97.0 Flexural crack at fixed end and
diagonal shear crack

Col6 179.0 230.0 230.0 Flexural crack at fixed end and
diagonal shear crack

Col5 240.0 260.0 Diagonal shear cracking
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In view of the above-mentioned specifics of columnar ice modeling, the flexural
and shear strength values given in Table 4 should be referred to the upper con-
solidated layer, while the compressive strength should be referred to the lower
layer.

It is interesting to compare the data in Table 4 with the ice strength properties
obtained by conventional methods (Table 2). Both tables give flexural ice strength
parameters and indenter pressures, though not at all tests.

We emphasize the following results:

• The sea ice flexural strength values are quite close both under the vertical
loading of a cantilever ice beam and under horizontal loading of a clamped
beam despite different test procedures applied. The tests performed by the
authors to find the flexural strength of seawater ice in the horizontal plane using
cantilever ice beams have not revealed any major differences.

• It was found in the tests with fine-grained ice that the ice flexural strength in the
horizontal plane decreases substantially (almost 10 times) as compared with the
vertical flexural strength, while the model columnar ice feature a substantial
(almost 4 times) increase in this parameter. It should be taken into account that
different test procedures were applied during vertical and horizontal bending of
ice beams, and conclusions should reasonably be drawn from the data obtained
by similar test procedures. However, this issue was beyond the scope of the
study.

• Lower indenter pressures for the model ice presented in Table 4 as compared
with Table 2 are generally explained by the differences in the boundary con-
ditions: free boundaries in the case of indenter penetration into an ice beam and
without such boundaries in the case of boundless ice sheet.

Table 4 Strength parameters of ice (according to beam tests with fixed ends)

Ice type Beam# pind
formula (1)
(kPa)

σf
formula
(2) (kPa)

σc
formula
(3) (kPa)

τs formula
(4) (kPa)

σc
σf

Sea ice Sea1_L 351 4085 11.6
Sea2_M 483 3609 7.5
Sea3_S 343

Model ice/FG
fine granule

FG1 1.5 1.6 1.1
FG2 0.7 1.4 2.0 1.4
FG3 1.1 1.2 1.7 1.4

Model ice/
columnar

Col3 134 122 0.9
Col4 176 140 0.8
Col6 169 42
Col5 226 41
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• Compressive strength of sea ice is in the range of 3.6–4.1 MPa and practically
coincides with the indenter pressure (4.0 MPa) given in Table 2. It should be
noted that in the clamped ice beam case we have constrained compression rather
than uniaxial compression.

• The last column of the table contains compressive/flexural strength ratios found
from formulas (3) and (2), respectively. It is seen that in the sea ice this strength
ratio is close to 10, while in the model ice it is about 1.

Ice Failure Diagrams

Failure modes of various ice types observed during the tests are presented as the
plots of conventional strength parameters versus relative beam lengths (Figs. 17, 18
and 19). The conventional strength parameter is defined as the ratio of the failure

(governing) force applied to the beam cross-section area— F
wh where F is the

indentation force (Find), bending (Ff), compression (Fc), or shear (Fshear) forces. The
same beam is subject to more than one failure mode because these failure processes
occur at different moments of time. The conventional strength parameter allows
comparison of failure patterns for various ice types, and the failure forces can be
compared without a link to the absolute dimensions of the beams and the failure
mode.

Fig. 17 Beam failure diagram in sea ice
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The failure diagrams show that the studied ice types demonstrate various
behavior during the test under consideration and variations in the beam length. It
can be seen that:

• Ice crushing under indenter forcing in the initial stage of the beam loading is
almost not distinguished from the force record in the sea ice; it can be identified
in the model columnar ice at some tests and it clearly appears in the model
fine-granule ice (FG type).

Fig. 18 The beam failure diagram in the model ice of FG type

Fig. 19 The beam failure diagram in model ice of columnar type
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• Flexural cracks were observed in all ice types under study.
• In the natural sea ice case, the maximum load was produced by compression

process, while in the model ice this process was not so well pronounced.
• Diagonal shear cracks were observed during the beam tests in the natural sea ice

and in the columnar model ice.
• As the relative length of the beams (Lh) decreased to values 3–4, the growth of the

failure force was observed: in the sea ice it was due to compression, in the model
ice due to bending.

• In the shorter beams of the sea ice we can expect shear failure: the shear force as
given in formula (4) is independent of the relative ice length; it is governed by
the shear strength of ice and cross-sectional area, i.e. remains constant (Fig. 17).
The same is valid for the model columnar ice beams (Fig. 19). In the
fine-grained ice case, the ice crushing under indenter forcing is growing as the
relative beam length is reduced, and this force becomes the governing factor of
the ice beam failure.

Conclusions

Our investigations have shown that the test on loading of floating ice beam with
fixed ends is representative in the terms of study of the ice failure mechanisms at
various relations of its strength parameters (crushing, compressive, flexural, shear
strength). The ice types used for the described tests (sea ice, model ice of the FG
type, and columnar model ice) have different relationships of the strength param-
eters, primarily, the ratio of the ice flexural strength to crushing strength. This, in
turn, causes various ice failure patterns when loading geometrically similar beams.

The tests in the Ice Basin were performed only with two model ice sheets (one of
the FG type and one of the columnar type), which were prepared according to the
technology used in the Krylov Centre. It is interesting to spread the number of the
ice sheets, as well to carry out the similar tests of ice beams with fixed ends in the
other Ice Basins with their specific technology of model ice preparation.

In the current analysis the effects of indentation rate, the Young modulus, and ice
inhomogeneity as functions of ice thickness were not considered. Additional tests
are required to study these factors.
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Seasonal Freezing of a Subwater
Ground Layer at the Laptev Sea Shelf

Peter V. Bogorodskii, Andrey V. Pnyushkov and Vasilii Yu. Kustov

Introduction

Fast ice is a regular congelation ice, formed when initial forms of drifting ice (e.g.,
frazil and grease ice, slash, and shuga) are frozen in shallow coastal waters, where
the natural roughness of the coast contributes to their cohesion to a shore. Regular
ice observations at polar stations suggest that the formation of fast ice occurs when
sea ice thickness reaches 5–10 cm, usually within 10–15 days after the onset of
steady ice formation. At the initial stages, fast ice appears at the coastline in the
form of ice shores [26]. At shallow depths (<2–3 m), the layer of water beneath
the ice can freeze completely and the newly formed ice begins to directly affect the
physical and mechanical properties of bottom sediments, including freezing of
porous water there and the appearance of frozen rocks [3, 13, 30].

Fast (immobile) ice along the continental and insular coasts of the Laptev Sea
represents a characteristic feature of the Arctic ice landscape and belongs to the
most developed ice types in the Siberian shelf seas. The nearly wholly fast ice in the
Laptev Sea is formed in the southern and southeastern parts of the sea, covering
about 40% of the sea area at the end of ice development season: i.e., April–May
[11]. Such a large area covered with fast ice suggests that the southeastern Laptev
Sea has the widest fast ice extent in the Arctic Ocean [22]. Interannual changes in
fast ice edge position in the Laptev Sea are less dependent on fluctuations of
hydrometeorological conditions (as was evident, for example, from low correlations
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with the atmospheric air temperature and pressure time series), compared to the
other Arctic seas [11] and, to a high degree, are controlled by the intensity and
redistribution of river runoff [8].

Studies of Laptev Sea fast ice began almost simultaneously with the establishing
of the polar station network in the Arctic in the 1930s, and continue through the
present time. The bibliography of relevant papers, focused primarily on phe-
nomenological descriptions and features of the fast ice regime in the Laptev Sea, is
a list hundreds long. Since the late 1970s, a substantial portion of these studies has
been devoted to mathematical modeling of fast ice. Among recent studies, we
should mention a paper by [29], who examined the annual evolution of fast ice in
the Laptev Sea. Despite imperfect reproduction of the atmospheric precipitations in
the reanalysis model used in the performed simulations as forcing, the authors
estimated fast ice growth rates by applying different values for heat fluxes from the
sea to the bottom of the ice and the surface albedo. The authors came to the obvious
conclusion about the substantial effect of these parameters on the rates of ice
thickness changes.

The freezing of bottom sediments in the Laptev Sea has been much less studied
than water layer freezing in the coastal areas of the sea. Despite the urgency for
understanding of sediment layer freezing/melting processes, in particular, for
quantifying the rates and volume of methane release from the eastern Arctic seas
(see [23, 24] for details), and numerous applied (engineering) aspects of this
problem [3], our knowledge of under-sea ground thermodynamics is still frag-
mentary. For example, until recently only spatial distributions of various types of
deposits, concurrent with general information about their thermo-physical proper-
ties were available in the Laptev Sea [15]. The situation was improved by the
implementation of international projects on the study of underwater permafrost by
drilling from immobile ice [10, 18, 21]. Up to now, the most detailed studies of
bottom sediments at the Laptev Sea shelf have been around the River Lena delta
and the western part of the Buor-Khaya Bay, near the Tiksi township [5, 6]. These
studies suggest that bottom soils can stay both in a cooled state (without inclusions
of ice) and partly or completely frozen. In addition, they have analyzed the first
reliable data on the composition, cryogenic structure, and thermophysical properties
of samples of frozen and thawed soils and their changes to depths exceeding 50 m.

Despite the availability of experimental data, mathematical models of heat and
salt transfer in bottom soils are rare; the available ones, as a rule, do not describe the
interactions and feedbacks of the energy and mass transfers in the boundary layers
of the sea, atmosphere, and bottom [9]. In addition, there is no common view about
the mechanisms playing a role in bottom sediment freezing [30]. For instance, it is
believed that this bottom freezing begins only after the complete freezing of the
overlying water column, notwithstanding reported evidence for the opposite point
[13] for discussion.

In this contribution, we describe the fast ice formation and seasonal freezing of
the sub-water ground layer in the Tiksi Gulf (a coastal part of the Buor-Khaya Bay)
during the winter of 2014–2015 based on joint analysis of experimental data,
theoretical studies, and modeling. For assessment of the effects of fast ice growth on
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seasonal freezing of bottom sediments, a one-dimensional thermodynamic model is
proposed. This model represents contacting layers of air, snow, ice, water, and soil
as a single system connected by thermal interactions, fundamentally distinguishing
it from analogs developed for the individual media. The paper is organized as
follows. We first describe the utilized model and basic data sets used for simulations
and validation of the model. We then describe the results of simulations and con-
clude with a general discussion and summary of results (Fig. 1).

Observational Data

For model simulations and further validation of model results, we utilized standard
(3-h) meteorological and ice observations performed at the Tiksi polar station. The
collected data set includes regular measurements of sea ice; they snow thicknesses
with daily (for thin < 0.2-m ice) and ten-day (for thick > 1-m ice) temporal res-
olutions according Nastavlenie po gidrometeorologicheskim stanciyam i postam
[16]. Recognizing the natural heterogeneities of fast ice and snow cover, the
average error of these measurements can be estimated as 0.5 cm.

Meteorological and ice observations at the Tiksi station were accompanied by
temperature measurements within the freezing water layer, carried out at a distance
of 0.5 km from the coast at a depth of about 3 m, from December 10, 2014 through
June 10, 2015, with an hourly time interval. For this purpose, a GP5W-Shell
thermistor chain consisting of ten sensors was deployed in water through a hole in
the young ice (Fig. 2a). The distance between thermal sensors was ∼0.5 m. To
minimize the effect of penetrating solar radiation on the thermistors, the dark
sections of the instrumental cable were protected with a foil tape. According to the

Fig. 1 Maps showing
locations of standard
meteorological observations
(1), sea ice thickness and
snow depth measurements
(2), and the thermistor chain
(3) in the Tiksi Gulf in 2014–
2015
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manufacturer, the accuracy of temperature registration with the GP5W-Shell ther-
mistors is ±0.25 °C, in a temperature range from −10 to +30 °C.

Model Description

The freezing of water and sub-water sediment layers in the Gulf of Tiksi was
studied by employing the modified one-dimensional thermodynamic model origi-
nally proposed by Bogorodskii and Pnyushkov [4] to describe ground freezing over
the Laptev Sea shelf. The applied model simulates the heat and salt transfer
accompanied by phase transitions in a system consisting of a semi-infinite layer of
initially thawed saline bottom soil (subscript “th”) underlying the layer of sea water
(subscript “w”). The formation of ice (subscript “i”) in the water layer is described
by the classical Stefan problem, in which phase transitions are localized at the
ice-water interface (hi). In addition to the atmospheric heat fluxes used in this model
as forcing, the model takes into account snow (subscript “s”) accumulation, derived
from meteorological observations collected at the Tiksi weather station. The
freezing (crystallization) of the bottom sediment layer occurs within an extended
area (two-phase or mushy zone; subscript “m”), the liquid phase of which shows

Fig. 2 a Schematics of the thermistor chain installed in growing fast ice in the Gulf of Tiksi in
2014–2015, and b piecewise linear temperature profile TðzÞ in the simulated “ice-water-ground”
system. Numbers indicate a data logger (1), a wooden pole (2), an anchor (3), and thermistor
sensors (T1–T10)

614 P. V. Bogorodskii et al.



crystallization in the temperature spectrum: the range determined by the local
condition of liquidus (see [2, 25, 27, 28] for details).

The model assumes a two-layer structure for freezing soils, consisting of a
two-phase (partially frozen) zone and an underlying, completely thawed layer
(Fig. 2b). The layers of fast ice and water are considered a monophase, meaning
there is no liquid water in the ice layer, and vice versa. In addition, ice does not
exist in the thawed ground layer. It is assumed that the freezing soil is a porous
medium, saturated only with ice and sea water; the ice skeleton (subscript “g”) is
incompressible and immobile, and all dissolved salt formed during freezing is
rejected in the volume of unfrozen liquid. The properties of sea and pore ice are
considered the same, and the heat fluxes in all layers of the system are stationary. In
the mushy zone, phase composition is determined by the thermodynamic equilib-
rium (liquidus condition) of ice and an unhardened solution. This solution is
characterized by water fraction ν, whose value at the interface between the mushy
and thawed zones changes discontinuously.

The propagation of heat in the snow − hs ≤ z≤ 0ð Þ, ice − hs ≤ z≤ 0ð Þ, and
thawed soil h< z< h2ð Þ layers are described by the equations of heat transfer:

ρCð Þs, i, th
∂T
∂t

=
∂

∂z
ks, i, th

∂T
∂z

� �
. ð1Þ

In the two-phase zone h < z< h2ð Þ, the heat and mass transfer equations can be
written as:

∂

∂t
ρCð ÞmT

� �
+mρiL

∂ν

∂t
=

∂

∂z
km

∂ T
∂z

� �
, ð2aÞ

∂

∂t
ðνSÞ=D

∂

∂z
ν
∂S
∂z

� �
, z ∈ h, h2ð Þ,T = Teq − αS. ð2b; cÞ

where ρCð Þm = ð1−mÞ ρCð Þg +mν ρCð Þw +m ð1− νÞ ρCð Þi, ρCð Þth = ð1−mÞ
ρCð Þg +m ρCð Þw, km = ð1−mÞkg +mν kw +mð1− νÞki; kth = ð1−mÞkg +mkw, T is
temperature, S is salinity, C is specific heat, ρ is density, k is the heat conduction
coefficient, L is the latent heat of fusion of ice, D is salt diffusivity, and m is
porosity.

The sub-ice water layer h1 < z< hð Þ is supposed to be homogeneous due to
convective mixing with temperatures equal to the freezing point, which decreases
with ice growth due to salt rejection.

T ≡Θ=Teq − αS, S= S0 h− h1, 0ð Þ ̸ h− h1ðtÞð Þ, z ∈ h1, hð Þ, ð3a; bÞ

where Θ is the freezing point of seawater, α and Teq are constants, and subscript “0”
indicates the initial time t=0.

At the upper interface of the system (subscript “b”), the boundary conditions
describe total heat fluxes to the atmosphere:
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ks
∂ T
∂ z

=EH, z= hb, ð4Þ

where EH =H + LE+R is the thermal flux through the ice cover; H and LE are the
vertical turbulent fluxes of sensible and latent heat, respectively; and R is the
longwave radiation balance (the shortwave radiation is neglected). H and LE are
calculated using bulk aerodynamic equations widely used to estimate energy
exchange between the sea and the atmosphere in the presence of ice [14]. The
calculation of R was performed according to the Ångström’s equation, linearized
with respect to Tb −Tað Þ, where the subscript “a” indicates air.

At the interface between snow and ice (index “0”), we assume continuity for
temperatures and heat fluxes:

T − =T + ≡ T0, ki
∂ T +

∂ z
− ks

∂ T −

∂ z
=0, z=0, ð5a; bÞ

where the negative and positive signs denote upper and lower sides of the interface.
At the moving interface between the water and ice phases (subscript “1”), and at

z= h , we use temperature continuity and thermodynamic equilibrium (liquidus)
conditions, alongside the classical Stefan condition for prescribing sea ice growth:

T − =T + = Teq − αS ≡ T1, z ∈ h1, h2ð Þ, ð6aÞ

ρiL
dh1

d t
= ki

∂ T −

∂ z
, t>0 ð6bÞ

Similarly, the Stefan and the continuity for temperatures and water fraction
conditions, together with liquidus condition, were implemented at the interface
between the two-phase and thawed zones (z= h2ðtÞ, subscript “2”):

m 1− ν3ð ÞρiL
dh2

dt
= km

∂T
∂z

� �−

−Qth, ð7aÞ

ν− = ν2, ν+ = 1, T − = T + ≡ θ=Teq − αS0, t>0 ð7bÞ

where θ is the sea water freezing temperature, and Qth is the geothermal heat flux.
Diffusion of salt is neglected here.

We use the following initial conditions for the model:

t=0: Tðz, 0Þ=T0, Sðz, 0Þ= S0, z ∈ ½0, h�,

ν= ν∞ =1, h1, 0 = 0, h2, 0 = h, T = T0, S= S0, z ∈ ½h,∞Þ,

The equivalent water content νeq, which serves as a measure of the thermody-
namic state of the two-phase zone [12], can be estimated by integrating (2b) within
the mushy layer over time.
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νeq =2 θ ν2 ̸ Θ+ θð Þ, ð8Þ

In this case, the lower boundary moisture ν2 is a free model parameter, pre-
scribed a priori.

We summarize major model parameters used in the simulations in Table 1. The
water content of the frozen and thawed zones interface was set to 0.1.

Ice Temperature Observations

In this section, we describe 2014–2015 ice/water temperature observations col-
lected by the deployed thermistor chain (Fig. 2 for location), to provide insight into
the evolution of ice thermal characteristics during the ice growth period. Atmo-
spheric conditions in the winter of 2014–2015 were close to their climatic averages
for the southern Laptev Sea, but characterized by substantial temporal (synoptic)
variability (Fig. 3). According to the air temperature record, steady negative tem-
peratures over the Gulf of Tiksi were observed from mid-October 2014 through the
end of May 2015 (i.e., across ∼230 days). Taking into account the delayed start of
ice formation after establishing negative air temperatures, in this study we use the

Table 1 Thermophysical properties of the system [14, 17, 25]

Property Units Snow Ice Water Ground

ρ Density kg/m3 910 1000 1300
k Thermal conductivity W/(мК) 0.31 2.23 0.58 2
L Latent heat J/kg 3.33 × 105

c Specific heat J/(kgК) 2000 4190 1920
α Constant °C/‰ 0.054
Teq Constant °C 0
m porosity 0.6

Fig. 3 a Time series of daily air temperatures, and b snow thickness on the ice (1) and total
cloudiness (2) at the Tiksi station. The zero on the time axis corresponds to December 10, 2014
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period from October 12, 2014 through June 1, to perform simulations with the
thermodynamic 1D model (see section “Model Description” for details). The choice
of October 12 as the start date for ice formation in the model agrees well with ice
observations carried out daily in October–November in the Gulf of Tiksi. The
extended period of negative air temperatures, which dropped below −40 °C in
January and February 2015, results in substantial ice production in the Gulf, so that
at the end of ice growth season in the Laptev Sea (late May), fast ice thickness
reaches 2.08 m.

Vertical temperature profiles measured by the thermistor chain within the con-
tacting layers of snow, ice, and water during winter 2014–2015 were close to linear,
indicating rather constant heat fluxes there (Fig. 4). Different temperature gradients
(vertical slopes of temperature distribution) in the snow and ice layers likely suggest
differences in the thermal conductivity of these layers. We found that the linearity
of the temperature profiles increases with the growth of fast ice thickness. This
finding is contrary to the theoretical conclusion that the linear profile is more typical
for thin (up to 0.5 m) ice [14]. The difference can be theoretically explained by
stronger variability of the atmospheric forcing at the initial period of ice formation,
compared with the observations in late winter. Highly variable thermal fluxes at the
top of young ice result in variations of the rates of phase transitions in the body of
newly formed ice saturated with brine. During the initial period of ice growth, the
fraction of liquid phase within the ice, one of the major contributors to a non-linear
temperature distribution, is quite large, but decreases when the solid phase begins to
grow due to internal crystallization. In addition, during this period there was still no
snow cover on top of the sea ice, which serves as a powerful thermal insulator. The
formation of steady snow cover gradually reduces temperature contrasts between
the atmospheric boundary layer and the snow/ice surface and, consequently,
decreases vertical heat fluxes through the ice. In the water column below the fast
ice, temperature distribution was always uniform due to convective mixing; the
temperatures were close to the freezing point over the entire period of ice growth in
the Gulf of Tiksi (i.e., from December to May).

Fig. 4 Temperature profiles
in the layers of snow, ice, and
water measured by the
thermistor chain in the Gulf of
Tiksi on 15 December (1), 30
December (2), 15 January (3),
30 January (4), 15 February
(5), 28 February (6), 15
March (7), 30 March (8), 15
April (9), and 30 April (10)
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Simulation Results

We performed simulations of the seasonal growth of fast ice and freezing of bottom
sediments using the model described in section “Model Description”. To do so,
model (1)–(8) was integrated over 230 days, from October 12, 2014 through June 1,
2015, for the initial water salinity of 10 psu and 1-, 1.5-, and 3-m bottom depths.
The geothermal heat fluxes at the interface between the mushy zone and the
underlying, completely melted layer of bottom sediment were taken as
Qth =0.06Wt ̸m2. The date of the onset of ice formation was determined from
regular ice observations carried out at the Tiksi station. Three-hour measurements
of air temperature, relative humidity, wind velocity, atmospheric pressure, total
cloudiness, and snow thickness over the ice surface averaged over daily intervals
were utilized as an atmospheric forcing for the model.

The estimated growth of fast ice at various depths is shown in Fig. 5a. The
differences between simulated ice thicknesses during the first two months of ice
growth (i.e., for thin ice) were very small at all depths. We note good agreement
between simulated fast ice thicknesses at 3-m depth with those measured by regular
ice thickness surveys carried out at the Tiksi station (<8 cm on the first thirty days
of simulations; and <4 cm after thirty days; Fig. 5). Some discrepancies with the
in situ measurements at the end of the ice growth season can be explained through

Fig. 5 Simulated fast ice thickness (a), salinity (b), and temperature (c) of the under-ice layer, and
heat fluxes through the ice cover (d) in 2014–2015. Numbers indicate the basin depths of 1 (1), 1.5
(2) and 3 (3) meters used in the model simulations. Black circles in (a) show the fast ice
thicknesses measured at the Tiksi station
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potential impact from radiation heating not described by the model, as well as by
natural irregularities in the thickness of the ice cover.

One of the important features of ice formation in shallow waters is the stabi-
lization of ice thickness caused by a substantial water salinity increase [3, 4]. The
calculations performed suggested that strong winter cooling maintains a very thin
under-ice brine layer (a few mm thick), in which water salinity reaches 800 psu
(Fig. 5b), corresponding to water freezing temperatures below −40 °C (Fig. 5c).
This makes the liquid in the under-ice layer similar to unfrozen water in the soil.
The presence of the thin brine layer theoretically prevents the consolidation of fast
ice with the bottom sediment layer, even at very low Arctic temperatures. This
finding does not contradict the results of laboratory experiments on ice adhesion in
salt water (see [7] for details). As follows from the simulations, the restraining effect
of the salinity increase reduces as bottom depths exceed 3 m; at depths greater than
3 m, this effect becomes insignificant.

Simulated heat fluxes through the ice (EH) demonstrate a clear tendency to
decrease from autumn through spring, resulting in the corresponding reduction in
ice growth rate for thick fast ice (Fig. 5d). In the second half of winter, temperature
at the lower ice interface becomes higher than at the upper one, due to an increase
of the air temperature (Fig. 3a). This temperature distribution suggests a change in
the direction of heat fluxes through the ice cover. Following Stefan’s condition (6b),
these heat fluxes result in ice melting despite continued negative air temperatures.
This effect is especially strong in the shallow water, where cooling of the brine layer
is more intense. In these zones, the fast ice will melt, while in the deeper parts of the
Gulf it will continue to grow at the same air temperatures.

The features of fast ice growth and salinization of the under-ice brine layer
determine the evolution of the mushy zone in the bottom sediment layer (Fig. 6).
The consequent decrease in water temperatures in winter leads to deeper freezing of
the soil, accompanied by a decrease in its moisture content. Simulations performed
with the model demonstrate the partial freezing of the upper layers of the soil
(Fig. 6). As expected, the layer of bottom sediments is frozen most rapidly and
deeply at the minimum depth (i.e., in the model experiment with 1-m bottom
depth). The contents of unfrozen liquid in the two-phase zone is strongly affected
by the depth of the basin (Fig. 6d). For instance, when bottom depth decreases from
3 to 1 m, the simulated water content equivalent of the two-phase zone decreases by
almost an order of magnitude (from ∼0.07 to ∼0.007). This decrease is explained
by a faster transition of liquid pore moisture into the solid state in the upper soil
layer at shallow depths.

According to the conditions of thermodynamic equilibrium, ice formation in the
layers of sea water and the bottom sediments begins simultaneously at all depths.
The rates of ice formation in these two layers vary considerably over time. For
example, if the highest growth rates of fast ice occur during the initial period of ice
formation, the fastest consolidation of the bottom sediment layer coincides with the
maximal development of unfrozen sub-ice brine layer (Fig. 6c).
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The initial salinity of sea water also has a significant effect on the growth of
permafrost at the depths exceeding the thickness of fast ice. According to simula-
tions performed for a water depth of 3 m, a salinity increase from 5 to 20 psu
results in the decrease of the maximum ice thickness from 2.07 m to 1.98 m, and
corresponding changes in the permafrost layer from 0.37 to 0.7 m. We argue that
these changes result from a substantial reduction in water temperatures beneath the
fast ice layer due to salinization, creating favorable conditions for deeper freezing of
the sediment layer. At the same time, the effect of the salt flux at the interface
between water and soil layers for the growth of permafrost is almost negligible, due
to weak salt diffusion.

Discussion and Conclusions

Numerical simulations performed with the 1D thermodynamic model plausibly
reproduce seasonal evolution in the “ice-brine-ground” system as follows, for
example, from the good agreement between simulated and measured fast ice
thicknesses in 2014–2015. Fast ice growth in the winter of 2014–2015 is also well
represented by the empirical equation h1 = aNb by Vieze [26] proposed for the
Laptev Sea, where N is the sum of freezing-degree-days (the sum of daily

Fig. 6 a Simulated thickness, b maximal vertical extension, c growth rate, and d equivalent water
content of two-phase zone reproduced with the thermodynamic model. Numbers indicate basin
depths of 1 (1), 1.5 (2) and 3 (3) meters used in the model simulations
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temperatures below the freezing point); a=0.00633 and b=0.692 are the empirical
coefficients that take into account the other meteorological factors. We speculate
that this circumstance may be the evidence of quite stable conditions of fast ice
formation over the Laptev Sea shelf, or, most likely, the existence of some com-
pensation mechanisms that reduce the effect of increased air temperatures in the
Arctic [1].

Despite the plausibility of major simulated properties in the “ice-brine-ground”
system generally agreeing with the current knowledge of the mechanisms of fast ice
and the ground freezing, they should be considered with caution, due to several
limitations used in the model. For instance, water salinity in the sub-ice brine layer
may not reach the simulated values (∼800 psu) due to horizontal mixing and salt
advection, which are completely neglected in the one-dimensional model. There-
fore, the simulated salinization effect is most pronounced in the stagnant areas of
the Gulf with typical depths of 2–4 m and weak tidal and surge dynamics.

Advective heat and salt fluxes induced by the barotropic tides in the Buor-Khaya
Bay are small, as evident from simulations using a linear inverse model of Arctic
Ocean barotropic tides by Padman and Erofeeva [19], with assimilation of the
coastal and benthic tide gauge measurements, TOPEX/Poseidon, and ERS
altimetry. A relatively coarse (∼5 km) spatial resolution of this model for coastal
applications does not allow us to resolve all particular features of tidal dynamics in
shallow parts of the Gulf, but still provides valuable information about the general
pattern of tides in the region.

According to the model, the highest tidal elevations (∼30 cm) in the Buor-Khaya
Bay were simulated in semi-enclosed shallow (<5-m) lagoons near the coast of the
Bykovsky Peninsula. However, tidal velocities in these lagoons are small and
usually do not exceed 1 cm/s. Tidal currents gradually rise toward the deep part of
the Gulf, so they increase up to 2 cm/s towards the gulf opening. The strongest
barotropic tidal velocities were simulated for the semi-diurnal constituents M2 and
S2, the most energetic tidal harmonics at the Laptev Sea shelf and slope [20]. The
diurnal components of tides (K1 and O1 constituents) were substantially (more than
an order of magnitude) weaker. Low amplitudes of the tidal currents suggest
unsubstantial lateral tidal mixing in this region, which can be negligible in the
simulations of the under-ice water salinization reproduced by our thermodynamic
model. The average slopes of the bottom of the investigated water area are also
insignificant (of the order of 10−3), which allows us to neglect salt advection caused
by the dense brine outflow.

An additional source of the discrepancy between the observations and modeling
is that the model does not take into account potential supercooling of pore liquid in
the bottom sediments. At the same time, this supercooling is not always observed in
the bottom sediment layer, at salinities exceeding 5 psu, the supercooling of pore
liquid usually does not occur [30].

The following conclusions can be drawn as a summary of this study:

1. The linear temperature profiles measured by the thermistor chain in the snow,
ice, and water layers suggest constant vertical thermal fluxes in these media.
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The linearity of the temperature profiles in ice increases with the growth of fast
ice, likely indicating a reduction in the liquid phase fraction in the ice layer due
to crystallization.

2. The liquid sub-ice layer formed by salt rejection is an important element of the
“ice-brine-ground” system. This layer cannot completely freeze, even at very
low air temperatures typical for the shelf of the Siberian seas. The salinity
increase in the sub-ice brine layer can cause melting of fast ice in shallow areas
at negative air temperatures, alongside its simultaneous growth for offshore
regions.

3. The bottom depth is one of the most important limiting factors of ice formation
in water and bottom sediment layers. The deepest freezing in the sediment layer
was simulated for shallow depths, where the grown fast ice approaches the
bottom.
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