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Preface

Progress is the battle with the experts.

Peter Schlumbohm

Why another book with mathematical equations? I have already a book with these
embellishments.

Anonymous geologist

This realization that the key to the understanding of Nature lay within an unassailable
mathematics was perhaps the first major breakthrough in science.

Sir Roger Penrose

This work deals with the mathematical and applied aspects of the double constraint
methodology to estimate the parameters that play a role in groundwater flow and is
intended to serve students and practitioners by bridging the gap between basic
hydrogeology and inverse groundwater modeling. Groundwater is world’s largest
freshwater source, but sound and sustainable exploitation remains a challenge. For
the development and management of groundwater resources, a proper knowledge
of the physical and mathematical laws and their parameters governing the state and
movement of groundwater is essential. In the last decades, substantial progress has
been made in inverse groundwater modeling, so that not only forward modeling,
but also inverse modeling has become an essential tool for groundwater resources
management. However, a good knowledge of basic mathematical principles of
groundwater flow is essential to understand numerical models. Often such
knowledge is lacking in traditional academic programs like civil engineering or
geology. Hence, this work attempts to synthesize the mathematics of groundwater
flow to give insight in the physics of the relevant parameters that characterize the
porous formations through which groundwater flows. In this respect, this work
provides in-depth information for geophysicists, hydrogeologists, and engineers
pursuing Bachelor, Masters, and Ph.D. degrees, as well as for groundwater prac-
titioners and consultants who intend to become skillful and competent modelers.
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In addition, petroleum reservoir engineers and basin modelers will find ample
inspiration to support their exploration and production-related modeling activities.

The inspiration for this work came from two sources. In the 2000s, the idea to
apply the double constraint methodology to assist in the application of conventional
data assimilation techniques was born in the oil and gas department of Netherlands
Organisation for Applied Scientific Research TNO. Conventional data assimilation
techniques are smoothing the subsurface permeability field in the flow models in
such a way that geologists do no longer recognize their carefully constructed
geological models. To mitigate the over-smoothing without destroying the models’
match with measured pressures and flow rates, the double constraint methodology
was one of the proposed methods. In the 1980s and 1990s, there was a unique
experiment at TNO: managing director Prof. Frans Walter and his successor
Dr. Hessel Speelman were encouraging petroleum engineers and scientists of the oil
and gas department as wells as hydrogeologists and geoscientists of the ground-
water department to join forces in research and development, preferably in coop-
eration with universities. Subjects of common interest were modeling and
uncertainty analysis. Among the many initiatives, research related to inverse
modeling was initiated in close cooperation with the Department of Hydrology and
Hydraulic Engineering of the Vrije Universiteit Brussel (VUB). Although TNO
discontinued this experiment by end of the 1990s (from a commercial point of view,
the petroleum market differs too much from the water market), the VUB team—
Ph.D. students and supervisors—continued this research by developing mathe-
matical proofs and models and performing case studies.

The reason why the double constraint methodology was initiated and continued
at the VUB was that this methodology fits well as a research topic in its Water
Resources Engineering Program for M.Sc. and Ph.D. students. This program, in
which the Katholieke Universiteit Leuven (KU Leuven) has complementary tasks,
is devoted to teaching and supervising water-related topics and is basically intended
for international students, mostly from developing countries. The program has been
running for a couple of decades and has close to a thousand graduates, working as
researchers, consultants, academics, and practitioners all over the world. All stu-
dents follow among others a course in groundwater hydrology, while electives as
groundwater modeling have as ultimate goal to be proficient in modeling.

The students come from different backgrounds with diverse academic degrees in
engineering, geological sciences, or environmental sciences. Engineers may have a
profound knowledge of the mathematical–physical laws of conservation and
movement, but often lack insight in specific properties and settings of
groundwater-bearing formations and how these affect the equations describing
groundwater flow. For earth scientists, it is usually the opposite as they have a good
knowledge about geological conditions and processes, but often lack insight in the
mathematical–physical aspects of describing flow and transport.

This above typical example of training students shows that better links are
needed between basic geology/groundwater hydrology and groundwater modeling.
The double constraint methodology, which is firmly based on the mathematical–
physical laws of conservation and movement, as is amply explained and
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exemplified in this work, provides a link between “geologists” and “modelers.” We
therefore believe that this work contributes to a better understanding of groundwater
flow theory, thus providing a greater and more realistic insight into what ground-
water models can do and how they should be applied in practice.

Finally, we want to express our thanks to Dr. Anna Trykozko from the
Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, Poland. She played an important role in the initial phase
of the development of the double constraint methodology, especially regarding
stability and the question how to avoid negative conductivities. In addition, she has
considerably improved this book, not only regarding text on stability and negative
conductivities, but also regarding text on numerical over-estimation and the related
difference between calibration and imaging.

Brussels, Belgium Wouter Zijl
Brussels, Belgium Florimond De Smedt
Minia, Egypt Mustafa El-Rawy
Adelaide, Australia Okke Batelaan
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Chapter 1
Introduction: Setting the Scene

Groundwater flow models are necessary tools to understand a groundwater system,
to make predictions about the system’s response to a stress, or to design and support
management interventions and decisions. In groundwater flow modeling, we gen-
erally distinguish two types of problems:

(i) The forward problem, in which the parameters (e.g., hydraulic conductivities)
are specified, as well as the appropriate boundary and initial conditions.

(ii) The inverse problem, in which not all parameters are specified. Instead,
additional boundary conditions, more than required for a forward problem, are
imposed.

Inverse problems are common to many fields of sciences, such as geophysical
and medical imaging, meteorological forecasting, petroleum reservoir engineering,
and hydrology. Each time when we need to determine unknown properties of a
system from the observations of a response of that system, inverse models come
into play. Usually, the unknown properties are physical parameters characterizing
the model and their values are determined by systematically adjusting them while
checking the match between the model outputs and the observed parameters.

Groundwater flow models are based on the following two mathematical basic
equations:

(i) The water balance equation: a partial differential equation describing the
physical law of mass conservation—mass cannot be created or destroyed in
the groundwater flow field.

(ii) The momentum balance equation: a partial differential equation describing the
physical law of conservation of momentum. In most practical cases, the low
Reynolds number of groundwater flow allows simplification of the law of
conservation of momentum to Darcy’s law: Flow rate is equal to hydraulic
conductivity times head gradient.

© The Author(s) 2018
W. Zijl et al., The Double Constraint Inversion Methodology,
SpringerBriefs in Applied Sciences and Technology,
https://doi.org/10.1007/978-3-319-71342-7_1
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For further explanations of the basic equations for groundwater flow see, for
instance, Bear (1972, 1979), Bear and Verruijt (1987), Strack (1989), and for
transport phenomena (not discussed in this book) coupled with groundwater flow
see Bear and Corapcioglu (1985) and Bear and Cheng (2010).

In this book, the above-mentioned partial differential equations will be presented
and applied in a more heuristic way, just to show the argument, for instance by
replacing the space–time continuum by a discretized (or quantized) space–time to
avoid dealing with functional analysis and infinite set theory. By doing so, we have
tried to avoid an overly mathematical presentation. Regarding flow through porous
media, the more rigorous mathematical treatment—function spaces, proofs of
existence, uniqueness, consistency, stability, convergence, etc.—can be found in
Chavent and Jaffré (1986). For more general applications, the more rigorous
mathematics can be found in Butkov (1973) and Duvaut and Lions (1976). For the
rigorous mathematics related to the inverse problem of the potential equation, to
which we will devote attention in Chap. 2, Sects. 2.2 and 2.4, see Salo (2008) and
the references in his paper.

Solutions to the water and momentum balance equations are characterized by the
following two principles:

(i) If the hydraulic conductivity is specified over the full model domain, the two
above-mentioned basic equations lead to a unique solution in the model
domain only if they are complemented by initial and boundary conditions.
More specifically, the full boundary enclosing the model domain may be
partitioned in parts on which only one boundary condition may be imposed:
either the head, or the flux (flow rate), or a linear combination of head and
flux. This type of modeling is called forward modeling.

(ii) If we know more than one condition on one or more parts of the boundary,
these additional boundary data can be used to determine the hydraulic con-
ductivity in the model domain. Because of the lack of a sufficient number of
measured data—heads and, especially, fluxes—the thus determined hydraulic
conductivity field is generally not unique; there are generally a number of
“equivalent hydraulic conductivity fields” that honor the imposed boundary
conditions. This type of modeling is called inverse modeling.

We can distinguish two types of inverse modeling: (i) imaging and (ii) calibra-
tion. Imaging is the estimation of parameters, for instance hydraulic conductivities,
as they occur in the physically existing real subsurface. Calibration, on the other
hand, is the estimation of model parameters, e.g., hydraulic conductivities, such that
the model matches with measured data like heads. For a more precise explanation of
the difference between imaging and calibration see Sect. 3.9 of Chap. 3. Therefore,
calibration is sometimes called parameter fitting and, in the context of processes
evolving in time, data assimilation, or history matching (the latter term is generally
used in petroleum reservoir simulation). Under the requirement that the model
represents the physics of groundwater flow in a reliable way, the difference between
imaging and calibration has to be relatively small. For such models, the difference
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may be considered as unimportant, especially for the practical case in which
measurement errors determine the accuracy of the inversion. Therefore, the terms
imaging and calibration will be used here as synonyms, except when the difference
is stated explicitly. Also the more neutral terms parameter estimation and inversion
have been used.

In the context of inversion, we will consider wells as internal boundaries: small
holes in the porous subsurface on the boundary of which flow and/or head con-
ditions are imposed as boundary conditions. An observation well is then considered
as a well in which the head is known from measurements while the production/
injection rate is equal to zero. To be more specific, this way of looking at wells is
introduced for the explanation of the double constraint methodology (see below)
and does not contradict the more practical modeling approach in which well flow
rates are represented by source or sink terms in the field equations. The two
approaches—internal boundaries and source/sink terms—are mathematically
equivalent (Chavent and Jaffré 1986: 70–88). On the other hand, imposing well-
heads cannot be accomplished by source/sink terms.

This book focuses on the estimation of hydraulic conductivities in discretized (or
quantized) models, numerical models based on discretization of the continuum
equations by means of a grid (mesh). In such models, a head has to be imposed in
the center of the grid volume in which the well is situated. When dealing with an
observation well (a piezometer), the imposed head is equal to the measured head
(the piezometer’s head). However, when dealing with a production/injection well,
the grid volume head to be imposed has to be related to the measured head by a
near-well model, generally a relatively simple algebraic model (Peaceman 1977,
1983, 1991; Chen and Zhang 2009).

Estimation of the parameters in a groundwater flow model is generally the most
crucial step in the modeling process (Anderson and Woessner 1992; Anderson et al.
2015). Parameter estimation can be performed by a series of methods, ranging from
manual calibration to complex automatic data assimilation algorithms (Frind and
Pinder 1973; Neuman and Yakowitz 1979; Carrera and Neuman 1986a, b; Ginn and
Cushman 1990; Certes and de Marsily 1991; Dykaar and Kitanidis 1992; Poeter
and Hill 1997; Datta-Gupta et al. 1998; Gupta et al. 1998; Yeh and Liu 2000; Liu
et al. 2002; Sun 2004; Farcas et al. 2004; Zhou et al. 2014). The problem of inverse
modeling of groundwater flow has been studied extensively during the last four
decades (de Marsily et al. 2000) and has been reviewed by Yeh (1981, 1986),
Kuiper (1986), Carrera (1988), Keidser and Rosbjerg (1991), Sun (2004), Carrera
et al. (2005), and Nilsson et al. (2007). Parameter estimation is the most challenging
and time-consuming task of groundwater flow modeling, especially when the
number of unknown parameters is large (Hill and Tiedeman 2007; Cao et al. 2006).
It involves optimizing the model parameters to honor measured groundwater heads,
fluxes, or concentration (McLaughlin and Townley 1996; Kitanidis 1997; Carrera
et al. 2005; Pinault and Schomburgk 2006).

Zhou et al. (2014) present an overview of inverse modeling techniques in which
they explain the traditional distinction between direct and indirect inverse modeling
techniques. According to their definition, a numerically stable direct inversion
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method to determine hydraulic conductivities (e.g., in the grid volumes of a dis-
cretized groundwater flow model) requires specification of heads in each point of
the model domain (i.e., in all the grid volume centers). In practice, heads are
measured in only a limited number of points and, leaving the other heads
unspecified, may lead the direct modeling approach to become unstable. Also, Sun
(2004) shows that with only measured heads and fluxes as input data, direct
inversion may become numerically unstable as small errors in head data may lead to
large errors in hydraulic conductivity. On the other hand, indirect inversion
methods are based on an algorithm (or just on trial and error) to iteratively adapt the
hydraulic conductivities in the forward model until the calculated heads match with
the measured heads (generally measured in observation wells) and such approaches
are inherently stable. In the indirect inversion approach, the model is generally
based on imposed recharge fluxes on the model’s top boundary (the so-called flux
model).

The double constraint method presented in this book shows that there is no need
to draw a sharp demarcation line between the two types of inverse methods.
Although the double constraint method (DCM) is a direct method because the DCM
is based on heads imposed in all grid volumes centers, these heads are calculated by
a forward model in which the heads measured in the observation wells are imposed;
see Chap. 3 for more details.

As is well known, hydraulic conductivities can be estimated only if nonzero
fluxes (at least one nonzero flux) are imposed on the boundary, while head is
imposed on the other parts of the boundary (Haitjema 2006; Poeter and Hill 1997).
Note that in this context the boundary includes internal boundaries like wells. In
fact, the double constraint methodology (see below) may be considered as a rig-
orous application of these principles, because in this methodology the heads in
observation wells (zero flux wells) are used as internal boundary conditions for a
forward model, the so-called head model. The parameter estimation problem
becomes underdetermined if many hydraulic conductivities have to be estimated
and only a few measured head and flux pairs can be imposed. The resulting
parameter non-uniqueness has to be mitigated by putting additional constraints.

Indirect methods are based on one forward model, generally a model in which as
many fluxes as possible are imposed (a so-called flux model). This model fed with
estimated hydraulic conductivities results in calculated heads that generally differ
from the measured heads. These differences are then used to modify the hydraulic
conductivities and so on until the head differences are minimized. As has already
been mentioned above, a strong point of an indirect method is that it can handle any
type of parameterized process, independent from the mathematical equations and
boundary conditions that govern the process (Sun 2004; Hill and Tiedeman 2007;
Doherty and Hunt 2009, 2010; Doherty et al. 2010). Indirect inverse methods are
versatile as any type of data as input, including soft data, can be used (Tikhonov
1963a, b; Doherty 2003; Hunt et al. 2007). Automatic parameter estimation is most
often done with a gradient method. It has been used in, e.g., the pilot point and
sequential self-calibration methods (Fasanino et al. 1986; RamaRao et al. 1995;
LaVenue et al. 1995; Wen et al. 1998, 1999; Doherty 2003). As gradient methods
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have good convergence rates, they can find very accurately the parameters that
match the measured data (Sun 2004; Hager and Zhang 2006; Ewald 2006).

In this book, we consider only heads and fluxes as measured data. However,
when considering transport problems in which concentrations of dissolved matter
are available, these measurements can yield useful additional information about the
heterogeneity of the hydraulic conductivity field. In such cases, reduction of the
heterogeneity by a predefined parameterization, such as zonation (see Chap. 6), is
questionable, because such a parameterization may be too coarse to account for the
fine-scale heterogeneity by which the transport process is strongly influenced.
Seven geostatistical inversion methods were tested by Zimmerman et al. (1998) for
how appropriate they are for making probabilistic forecasts of solute transport with
heterogeneous hydraulic conductivity. Valstar (2001) presents a representer
approach using measured heads complemented by measured concentrations to
determine the fine-scale heterogeneity within a zone of the subsurface; also see
Valstar et al. (2004). Generally, a representer approach is based on a series
expansion in which the number of state variables and/or parameters is reduced to
the number of measurements used by the inversion (Bennett 1992). In that sense,
Eq. 2.10 in Chap. 2 may be considered as a relatively simple example of a rep-
resenter approach.

Hendricks Franssen et al. (2009) review and compare seven recent inverse
approaches; they show that the performance of the methods depends strongly on the
type of heterogeneity. This is partly due to subjective decisions in translating the
conceptual to the numerical parameter estimation processes (Rajanayaka and
Kulasiri 2001). Another issue is that there appears to be no consistency on how to
select the most appropriate method for a given problem.

Direct inverse methods, in contrast to indirect inverse methods, estimate
hydraulic conductivities directly from Darcy’s law, mostly while combining the
water balance equation. Direct methods for estimating hydraulic conductivity fields
appeared around the 1950s. One of the first practical applications was published by
Huisman (1950) followed by Nelson (1960, 1961, 1962, 1968), Emsellem and de
Marsily (1971), Neuman (1973) and Sagar et al. (1975). An equation stating the
relationship between the log-conductivity field and the head field was derived by
combining Darcy’s law and the mass conservation equation, while neglecting
specific and phreatic storage. It was concluded that only if the head is fully specified
in the model domain, and if the flux density is given at boundaries, integration
along the streamlines allows successful determination of the hydraulic conductivity
field.

At present, gradient-based minimization of an objective function, i.e., the dif-
ference between observed and simulated data of a forward model, is probably the
most popular and widespread approach to automatic parameter estimation (Sun
2004; Tarantola 2005). In principle, such gradient methods can be used to deter-
mine all types of parameters that occur in any mathematical model. Moreover, from
a mathematical point of view gradient methods have the best convergence prop-
erties, at least if the initial estimate of the parameters is close to the parameters for
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which the forward model matches the measurements. However, gradient-based
minimization has a number of practical limitations. The numerical complexity of
handling the gradient matrix increases considerably when the number of spatial
measurement points increases. This may lead to unacceptable high computational
requirements (computer time and memory), especially if uncertainty estimation,
which is based on multiple parameter estimation runs, is required. The adjoint
method is the most efficient way to compute the gradient of a defined objective
function (Li et al. 2003). However, the adjoint system requires modification of the
source code of the computer model, which is time-consuming and often impossible
when a commercial model is used. Furthermore, if we choose a different model
the source code for the adjoint calculations must be recoded again.

The heavy computational burden, especially in problems dealing with big data,
and/or the required modification of the source code for inverse modeling by a
gradient method has motivated petroleum reservoir engineers and hydrologists to
apply the ensemble Kalman filter (EnKF) (Evensen 1994; Naevdal et al. 2002;
Chen and Zhang 2006; Aanonsen et al. 2009). The EnKF is a Bayesian approach to
model updating and parameter estimation. The method uses Monte Carlo statistics
for merging observation data with forecasts from model simulations to estimate a
range of plausible models. The ensemble of updated models is then used to estimate
the forecast and model parameters, as well as their uncertainty. Thanks to its simple
formulation, its ability to account for measurement errors and model noise, and its
relative ease of implementation for any simulator model, the EnKF has gained
popularity. It requires neither the time-consuming computational handling of a
gradient matrix nor the construction of adjoint equations. It supports efficient
uncertainty assessment and integration of diverse data types. Because the EnKF still
requires many runs—realizations from an ensemble—to provide stable estimates,
its computational effort may be reduced by terminating the EnKF calculations after
having reached a steady Kalman filter (SKF). The SKF is then used for the sub-
sequent forecasts and parameter estimations. The EnKF-SKF approach is appre-
ciably less demanding in computational effort while maintaining stable and reliable
estimates (El Serafy and Mynett 2008).

Although parameters like hydraulic conductivity can be measured directly on the
laboratory scale, they cannot be measured directly on field scales. On such scales,
they have to be determined by groundwater flow models fed with directly and
indirectly measured quantities. Directly measured quantities are, for instance, flow
rates into or out of wells, pressures, or heads measured in wells and observation
wells. Indirectly measured quantities, for instance recharge rates, are determined
indirectly with the aid of models that interpret directly measured data, for instance
meteorological data. In the sequel, indirectly measured data (mainly recharge rates)
will be denoted as “measured” data (i.e., “measured” recharge rates).

Parameters are time-independent by definition. However, they may vary from
point to point in continuous space, or from grid volume to grid volume in dis-
cretized (quantized) space. Because the number of head measurements and flux
“measurements” is limited, it is impossible to find the spatially distributed
parameter field that exists in reality. Instead of finding the only one real parameter
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field, we will generally find equivalent parameter fields, each of which will allow to
match the calculated heads and fluxes to the measured heads and fluxes.

This book deals mainly with the double constraint methodology (DCM) for
inverse modeling. The motivation to develop the DCM was the same as the
motivation for the EnKF-SKF approach: Especially when dealing with big data
models, we have to avoid the adjoint method (a gradient method) because of its
heavy computational burden and/or its required modification of the source code.
Although this book introduces the DCM mainly as a “stand-alone methodology,”
we present arguments why and how the DCM could be applied in combination with
the EnKF-SKF (see Chap. 4, Sect. 4.3.4).

The double constraint methodology (DCM) is based on two forward ground-
water flow models with the same initial hydraulic conductivity: (i) a model in which
known (measured) fluxes are imposed in wells and on the boundary, and (ii) a
model in which known (measured) heads are imposed in wells—including the
observation wells—and on the boundary. The difference between head and flux
obtained by the two models is then used to update the initial hydraulic conductivity.
In this approach, Darcy’s law is applied directly using heads that are estimated by a
“head model” based on the relatively limited measured head data. Therefore, in
view of the definition of direct methods presented by Zhou et al. (2014), it is better
to characterize this method as an “indirect direct inversion method.” A similar
method was also tested as an approach to upscale hydraulic conductivities (Warren
and Price 1961; Durlofsky 1991; Trykozko et al. 2001; Zijl and Trykozko 2001).

Like conventional gradient methods, DCM is based on minimization. To avoid
the occurrence of negative hydraulic conductivities, DCM is formulated in terms of
the square root of the hydraulic conductivity (in short the sqrt-conductivity).
DCM’s computational complexity is relatively modest compared to conventional
approaches, even if each grid volume in a numerical model is considered as a zone
with its own hydraulic conductivity (El-Rawy et al. 2015).

The inspiration to base the parameter estimation on a second model in which
known (measured) heads are imposed came from groundwater flow systems anal-
ysis, in which the head or water table height is prescribed on the model’s top
boundary, rather than the recharge fluxes (Tóth 2009). Compared to the great step
of this flow systems approach to modeling, it was a relatively small step to impose
also the heads in the observation wells, rather than the zero fluxes, which are
“imposed” automatically in the conventional flux model.

The double constraint methodology was first published in the 1980s in the context
of electrical impedance tomography (EIT) for geophysical and medical imaging
(Wexler et al. 1985; Kohn and Vogelius 1987; Wexler 1988; Kohn and McKenney
1990); for more background theory regarding EIT see Borcea (2002, 2003), Borcea
et al. (2003) and Calderón (1980). The name double constraint method was coined
by Yorkey and Webster (1987) and Yorkey et al. (1987), Webster (1990). These
applications are based on finite element methods for electrical potentials and currents
through n-dimensional (n = 2, 3) domains bounded by curved boundaries (e.g., the
skin of a part of the human body). Although the method has been applied in the field
of hydrogeology to simulate groundwater contamination (Tamburi et al. 1988), the
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methodology remained unnoticed in the geoscientific community until it was rein-
vented in the context of petroleum reservoir engineering (Brouwer et al. 2008) and,
later on, in the context of hydrogeology (Trykozko et al. 2008, 2009; El-Rawy et al.
2010, 2011; El-Rawy 2013; El-Rawy et al. 2015, 2016). The subsequent geosci-
entific applications involved artificial numerical or experimental n-dimensional flow
conditions (mostly with n = 2) flow in rectangular domains. Wexler et al. (1985) and
Wexler (1988) found DCM to be promising; the method does not diverge, but
convergence was sensitive to noise. Kohn and Vogelius (1987) proposed some
numerical improvements, the most important one a DCM formulation that avoids
negative (unrealistic) conductivity values. Tests by Kohn and McKenney (1990) still
showed convergence instability (oscillations) when there is noise in the data. Kohn
and McKenney (1990) concluded that it is not desirable to continue DCM iterations
up to stable convergence; earlier termination has a smoothing effect on instabilities
and is generally sufficiently accurate. Also, the DCM application described by
Yorkey and Webster (1987) and Yorkey et al. (1987) showed similar convergence
behavior. Brouwer et al. (2008) applied DCM in petroleum reservoir engineering to
estimate permeability fields from pressure and flow rate measurements in wells.
These tests involved the reconstruction of synthetic two-dimensional spatially cor-
related permeability fields and showed that DCM performs well in a few iterations
near the wells while uncertainty remains in the regions further away from the wells.
Brouwer et al. (2008) compared the thus-obtained permeabilities with the perme-
abilities obtained by the ensemble Kalman filter (EnKF). This comparison was also
the starting point for application of the Kalman filter in combination with the DCM
to obtain estimation uncertainties (see Chap. 4, Sects. 4.2 and 4.3 and Chap. 5).
Trykozko et al. (2008, 2009) presented DCM applications for upscaling and
downscaling of synthetic checkerboard hydraulic conductivity patterns and noted
several anomalies as occurrence of negative hydraulic conductivity values or
extremely high hydraulic conductivity values that tend to diverge during the itera-
tions, as well as smoothing of large hydraulic conductivity contrasts, for which they
recommended renormalization. El-Rawy (2013) and El-Rawy et al. (2015) presented
a real-world DCM application (Kleine Nete basin, Belgium) by updating an initially
specified hydraulic conductivity field and found that sufficiently accurate improve-
ments are obtained near the measurement locations after a few iterations, usually 2–5
DCM runs, but no improvement is possible far away from the measurement loca-
tions. They concluded that DCM is much cheaper in computation time and memory
requirements than indirect calibration methods like UCODE or PEST and, therefore,
a valuable tool for calibration of groundwater models. El-Rawy (2013) and El-Rawy
et al. (2016) presented another real-world inverse problem (Schietveld area,
Belgium) with a DCM application very similar as in the previous case. The results
were also very similar; i.e., DCM updates hydraulic conductivities only near the
piezometers, while locations far away from the piezometers are hardly influenced.
They also noted that DCM’s better calibration performance is likely due to the
number of degrees of freedom compared to the very limited heterogeneity and
anisotropy patterns allowed by an indirect inversion procedure as UCODE.
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In the double constraint method as presented by El-Rawy (2013) and El-Rawy
et al. (2010, 2011, 2015, 2016), the hydraulic conductivity estimation was
“pointwise” or, more precisely, “grid block wise.” In Chaps. 6 and 7, we present an
interesting extension, namely a zone integrated DCM. The goal of this newer
approach is to enable inverse modeling with limited data, so that hydraulic con-
ductivity estimates can be improved in the whole model domain instead of only
near the observations. In order to do so, the model domain is partitioned in zones
with presumed constant hydraulic conductivity (soft data) and DCM is reformulated
accordingly for calibrating a steady-state groundwater model given a series of
measured heads.

The DCM can be considered as a relatively simple minimization methodology
that is not based on a gradient matrix. In DCM, the objective function to be
minimized is a so-called Darcy residual based on a form of Darcy’s law in which
the square root of the hydraulic conductivity (the sqrt-conductivity) is used as
parameter, rather than the hydraulic conductivity. As a consequence, the DCM
cannot be used to determine all types of parameters. It can only be applied to the
parameters in constitutive laws such as Darcy’s law, Ohm’s law, Fick’s law,
Fourier’s law, Hooke’s law. In addition, these laws have to be embedded in process
equations that lead to a well-posed forward problem for more types of boundary
conditions, as is the case for Darcy’s law embedded in the water balance equation,
which can be solved either with flux boundary conditions, or with head boundary
conditions (for more details see Chap. 2). In the context of hydrogeology also
specific yield, specific storage and dispersion coefficient can be determined by the
DCM, at least in principle. On the other hand, gradient methods, as well as the
ensemble Kalman filter (EnKF) and the steady Kalman filter (SKF), can do the job
of determining any type of parameter.

Although the DCM has not the best convergence properties, it has the advantage
that it improves the initial estimate of the parameters even if this estimate is far
away from the parameters for which the forward model matches the measurements.
Even more importantly, the numerical complexity of handling the minimization
iterations is hardly increasing when the number of spatial measurement points and
parameters to be determined increases. This may lead to acceptable computer
requirements regarding computation time and memory requirements, especially if
multiple inverse modeling runs, e.g., for uncertainty estimation, are required. In
contrast to gradient methods and the EnKF/SKF, the DCM is less prone to
over-smoothing the spatial parameter distribution.

To be more specific, the double constraint methodology is based on two models.
One model—the “flux model”—uses as many boundary fluxes as possible, like the
model that is generally used in indirect inversion methods. The other model—the
“head model”—uses as many boundary heads as possible, which means that also
the heads measured in the observation wells have to be imposed. The remainder of
this book is devoted to the presentation and explanation of the double constraint
methodology, as well as the Kalman Filter, which will be used to investigate the
inversion accuracy by sequentially updating the DCM-determined hydraulic con-
ductivities (El-Rawy 2013; El-Rawy et al. 2015).
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This first chapter presents an introduction to the subject matter and some relevant
literature. The second chapter explains how the physical laws of conservation of
mass and conservation of momentum are applied to groundwater flow and enable to
formulate the basic laws of groundwater flow. Special attention is paid to the
parameters that occur in the equations, especially to the hydraulic conductivity and
the important role of its square root. Over-smoothing and under-smoothing of the
hydraulic conductivity field by inversion methods is addressed by considering the
Calderón problem. The third chapter discusses the double constraint methodology
and its different appearances in more detail, with a justification of the method. The
fourth chapter focuses on time-dependent flow. Not only the parameters that play a
role in the time-dependent terms of the equations, but also the decrease in uncer-
tainty when time series of measurements are taken into account are discussed. The
latter point, uncertainty versus observation error, is considered from a Bayesian
point of view by application of the Kalman filter and is exemplified in Chap. 5 for
the case study of the Kleine Nete basin. Chapter 6 presents an extension to the
double constraint method to account for zonation, a popular parameter reduction
technique, which makes it possible to compare the double constraint results with
results obtained from conventional inversion techniques. Also, a brief account of
the comparison with a conventional method for a realistic case is presented. Chapter
7 summarizes the results and presents some directions for further research and
development. Chapters 2, 3, and 4 have a last section with the title beginning with
“In depth: a closer look at …”. These last sections focus more in depth on the
theoretical aspects presented in the previous sections. Reading of these sections is
not necessary for understanding the message of this book, but may be helpful for
the curious reader looking for more background information.

The references at the end of the chapters are not intended to be comprehensive,
but direct the reader to works that can be considered as supporting aids in the
theoretical and practical development of the double constraint methodology.
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Chapter 2
Foundations of Forward and Inverse
Groundwater Flow Models

2.1 Basic Equations and Parameters

The equations governing groundwater flow through a porous medium are the water
balance equation

s
@h
@t

þr � q ¼ 0 ð2:1Þ

and Darcy’s law

q ¼ �k � rh ð2:2Þ

where s [L−1] is the specific storage, h [L] is the head, q [L T−1] is the flux density
or specific discharge, k [L T−1] is the hydraulic conductivity tensor (in short the
conductivity), t [T] is the time, r [L−1] is the gradient operator, [rh is the vector
with Cartesian components ð@h=@x; @h=@y; @h=@zÞ], andr� [L−1] is the divergence
operator (r � q is the scalar @qx=@xþ @qy=@yþ @qz=@z). Equation 2.2 holds under
conditions where the water density may be considered as constant. In Eq. 2.1, the
specific storage term s @h=@t accounts for the compressibility of the water and the
pore space. To be precise, the terms flux and flux density have a different meaning.
The flux density qn ¼ q � n [L T−1] through a face with unit vector n [−] and
surface area A [L2] is equal to the flux Q [L3 T−1] through that surface area divided
by the surface area of that face. However, in many texts and also in this book, the
terms flux and flux density are used as synonyms, except when the difference is
specified explicitly. In the literature, also the terms specific flux and specific dis-
charge are used for flux density.

For incompressible flow, i.e., flow where compressible storage is negligibly
small, the water balance (Eq. 2.1) simplifies to the continuity equation
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r � q ¼ 0 ð2:3Þ

In many formulations, the right-hand sides of Eqs. 2.1 and 2.3 contain a source/
sink term of the form

PN
n¼1 Qndðx� xnÞ to account for wells with injection rate Qn

or production rate �Qn [L3 T−1] in the points xn, where dð�Þ represents the Dirac
delta function (Butkov 1973: 223–232; Morse and Feshbach 1953: 825).

In practical modeling applications, this source/sink approach is much simpler to
apply than the more exact formulation based on well boundary conditions; in the
limit of small well diameters, the two formulations are mathematically equivalent
(Chavent and Jaffré 1986: 70–88). However, in applications where instead of the
well rate the head is imposed, a source/sink approach is not applicable; in that case,
the original equations (Eqs. 2.1 and 2.3) have to be applied. The well head has then
to be imposed at the boundary of the well. In discretized models (numerical
models), the head in the grid volume can be imposed. For nonzero production rates,
the volume-centered head may differ from the measured well head; therefore, a
near-well model (generally a relatively simple algebraic model) has to be used to
relate the two heads (Peaceman 1977a, 1983, 1991; Chen and Zhang 2009).

Substitution of Darcy’s law (Eq. 2.2) into the water balance equations (Eqs. 2.1
and 2.3) results in the groundwater flow equations for, respectively, compressible
and incompressible flow

Compressible flow Incompressible flow
s @h@t ¼ r � ðk � rhÞ r � ðk � rhÞ ¼ 0 ð2:4Þ

When there is nonzero groundwater flow (q 6¼ 0, e ¼ �rh 6¼ 0), the entropy per
unit volume is increasing in time, which means that the dissipation rate qg e � k �
e[ 0 (heat produced per unit volume and unit time) is positive. As a consequence,
hydraulic conductivity tensor k is positive definite and specific storage s is non-
negative. The conductivity tensor has the nine components, k11, k12, k13, k21, k22,
k23, k31, k32, k33. On the scale of a representative elementary volume, this tensor is
symmetric (Olmstead 1968), i.e., k12 ¼ k21, k23 ¼ k32, k31 ¼ k13. Also, on coarser
scales, this tensor may often be assumed to be symmetric; symmetry is exactly the
case for periodic porous media (Trykozko et al. 2001), but is not generally the case
(Zijl and Nawalany 1993). In an orthogonal curvilinear coordinate system, this
positive-definite symmetric matrix has three orthogonal eigendirections with non-
negative eigenvalues, or principal conductivities, k1 ¼ k11 � 0, k2 ¼ k22 � 0,
k3 ¼ k33 � 0, while the cross terms vanish, i.e., k12 = k23 = k31 = 0. From now on,
we assume that we know the principal directions of the conductivity tensor already
before calibration. A popular choice is to apply a Cartesian coordinate system in
which x and y represent the two horizontal directions and z the vertical direction and
to assume k1 ¼ kx, k2 ¼ ky, k3 ¼ kz.

The water table, or phreatic surface, forms the top boundary of the groundwater
domain. The boundary conditions on the top boundary of the model play a
prominent role in the so-called flow systems analysis (Bresciani et al. 2016;
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El-Rawy et al. 2016; Tóth 2009). Flow systems analysis is one of the approaches
that have inspired our approach to inverse modeling. Because of its importance, we
will first give a rigorous description of the exact water table conditions (Eqs. 2.5
and 2.6). Then, we present a simpler and perhaps more insightful approximation
(given by Eq. 2.7).

Denoting the water table height above a horizontal reference level as
z ¼ fðx; y; tÞ, the kinematics of the water table (its movements in time) are gov-
erned by the kinematic condition

h
@f
@t

þ qx
@f
@x

þ qy
@f
@y

� qz ¼ reff on z ¼ fðx; y; tÞ ð2:5Þ

where hðx; y; fÞ [−] is the specific yield, or effective porosity, and reff ðx; y; tÞ [L T−1]
is the recharge rate, or effective precipitation, arriving at the water table from the
unsaturated zone above the water table. In flux models, i.e., in models where the flux
is imposed on the boundaries, the recharge rate reff is imposed. (To be precise, in
Eq. 2.5 it is assumed that the recharge flux density, reff , is vertical. Its component

normal to the curved phreatic surface is reff =½1þð@f=@xÞ2 þð@f=@yÞ2�1=2.
The dynamics of the water table, i.e., the forces exerted in the water table, are

governed by the fact that at the water table the water pressure is equal to the
atmospheric pressure. This is equivalent to the statement that, on the water table, the
head, h, is equal to the water table height, f, resulting in the dynamic boundary
condition

hðx; y; fðx; y; tÞ; tÞ ¼ fðx; y; tÞ on z ¼ fðx; y; tÞ ð2:6Þ

In “head models,” i.e., in models where the head is imposed on the boundaries,
head h is imposed on the water table. For instance, flow systems analysis (Tóth
2009) is based on such a head model. From the dynamic condition (2.6), it follows
that @h=@k ¼ ð@f=@kÞ=ð1� @h=@zÞ, k ¼ x; y; t, and substitution into kinematic
condition (2.5) leads to an expression for the recharge rate reff as a function of the
head and its derivatives with respect the horizontal coordinates x and y, vertical
coordinate z, and time t (Bear 1972). For a detailed explanation of the physics
underlying the water table equations (Eqs. 2.5 and 2.6), see Bear (1972), Zijl and
Nawalany (1993), and De Smedt and Zijl (2018); these books present also a
derivation of the well-known two-dimensional Dupuit–Forchheimer equation for
flow in unconfined aquifers (water-bearing ground layers in which the periodically
rising and falling water table resides).

To illustrate the essence of the above-presented water table description, we
present a rough approximation to water table equations (Eqs. 2.5 and 2.6).
Assuming that j@h=@zj � 1, we may replace in Eq. 2.5 water table height func-
tion fðx; y; tÞ with head function hðx; y; z; tÞ. This assumption can be justified in
many practical applications, and the often-applied hydraulic approximation, or
Dupuit–Forchheimer approximation, is based on this assumption (De Smedt and
Zijl 2018). However, for the purpose of demonstration, we also assume that in
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Eq. 2.5 the terms qx@h=@x and qy@h=@y are negligibly small with respect to qz. This
linearization leads to the simple (often too simple), but insightful expression

�qz ¼ reff � h
@h
@t

on the top boundary ð2:7Þ

Since the vertical direction is defined positive upward, the term �qz in Eq. 2.7 is
the downward directed vertical groundwater flux density. Equation 2.7 illustrates
clearly the water balance on the water table. On the top boundary of the model
domain, i.e., on the water table h ¼ z, the downward directed vertical groundwater
flux, �qz, is equal to the recharge rate, reff , minus the increase in the amount of
groundwater, h @f=@t, flowing into the model domain. In a time interval Dt, the
volume of the model domain is increased by the raised water table height
Df ¼ ð@h=@tÞDt. Although the phreatic boundary conditions have to be applied at
the phreatic surface z ¼ fðx; y; tÞ, the linearized condition (Eq. 2.7) may sometimes
be applied on a fixed horizontal top boundary z ¼ h0 representing the water table
height averaged over space and time. This geometric linearization can be justified
for cases in which the variations and fluctuations of the water table height are
relatively small with respect to the depth of the basin under consideration.
Combined with Eq. 2.7, this results in a linear groundwater flow problem that can
be solved by analytical methods; see, for instance, Tóth (2009: 41–46), El-Rawy
et al. (2015).

In conventional “flux models,” i.e., in forward models where the recharge rate
rFeff is imposed on the top boundary, the solution of groundwater flow Eq. 2.4 yields
head hF and groundwater flux qF in the model domain as well as on the boundaries
including the top boundary (superscript F refers to the flux model). On the other
hand, in Tóthian “head models,” i.e., in forward models where the head, hH , is
imposed on the top boundary, the solution of groundwater flow Eq. 2.4 yields the
head hH and groundwater flux qH in the model domain as well as on the boundaries
including the top boundary (superscript H refers to the head model). Provided that
specific yield h is known, Eq. 2.7 then results in the recharge rate rHeff . The
requirement that recharge rate rFeff imposed on the flux model matches with recharge

rate rHeff obtained from the head model can be used to modify the original “old”

conductivity koldz in a corrected “new” conductivity knewz by the simple correction
equation knewz ¼ �qFz =ð@hH=@zÞ ¼ koldz ðqFz =qHz Þ based on Darcy’s law. This idea
has been worked out and justified in more detail in Chaps. 3 and 6, while the case
studies presented in Chaps. 5 and 6—in which both flux and head models are
applied in coupled mode—have generally been based on the linearized approxi-
mation (Eq. 2.7 applied on an averaged top boundary).

The four parameters, kx, ky, kz, and s, are assumed to be dependent on position x,
y, z, but independent from time t (as has been justified above, we neglect the six
cross terms kxy, kyz,kzx, kyx, kzy, kxz of the conductivity tensor). The fifth parameter,
the specific yield h, is only dependent on the horizontal coordinates x and y. It is
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generally assumed that this parameter is time-independent, but it dependent on the
timescale of the process under consideration. On timescales where @h=@tj j is rel-
atively large, h is small, while on timescales where @h=@tj j is relatively small, h is
relatively large. If the flow is incompressible (negligible term s @h=@t in Eq. 2.1)
and if in addition the phreatic storage term s h @f=@t in Eq. 2.5 is negligible, the
flow is called quasi-steady (also see Chap. 4, Sect. 4.1 and Chap. 6, Sect. 6.4).
Although we will pay some attention to the two storage parameters s and h in
Chap. 4, Sect. 4.1, this book focuses mainly on the hydraulic conductivity.

2.2 Introduction to Calderón’s Conjecture

In a highly cited paper (1215 cites Google Scholar), Calderón conjectured that,
under some smoothness conditions, the conductivity field in a model domain can be
determined uniquely from the head and the normal flux imposed on the closed
boundary of that model domain (Calderón 1980). To be more specific, Calderón
considered equation r � krh ¼ 0 for incompressible flow (see Eq. 2.4). Calderón
used this equation in the context of electrical impedance tomography for geo-
physical and medical imaging. He considered an electricity conducting body with
isotropic conductivity k and electric potential h where the potential and the normal
current density (normal flux) are imposed on the boundary; see, for instance,
Cheney et al. (1999), Borcea (2002, 2003), Borcea et al. (2003), Holder (2005). To
be sure, in hydrogeology we cannot know both head and normal flux on the
boundary; head–flux pairs are generally known only at some places on the external
boundary and/or internal boundaries (wells, including monitoring wells). However,
because Calderón’s conjecture is inspiring for the inverse methods presented in the
next chapters focusing on hydrogeological problems, we will present below an
argument for the validity of Calderón’s conjecture.

We consider an isotropic porous medium with heterogeneous conductivity
k ¼ a2 � 0. To avoid the occurrence of negative conductivities in the conductivity
estimation procedure, we base the theories presented in this book as much as
possible on the square root of the conductivity, in short denoted as the
sqrt-conductivity a ¼ �k1=2. The heterogeneous sqrt-conductivity may be discon-
tinuous. However, we also pay some attention to subsurface bodies in which the
sqrt-conductivity is a smooth function of space, as may, for instance, be the case
within aquifers or aquitards.

Under the condition that the heterogeneous square root conductivity a ¼
a ðx; y; zÞ has at least continuous second derivatives, it follows from straightforward
mathematical manipulations that the groundwater flow equation (Eq. 2.4) is
mathematically equivalent with the equation r2ha� hr2a = ðs=aÞ @h=@t, which
can be written in two coupled equations for the three functions a [L−1/2 T−1/2],
x ¼ ha [L−3/2 T−1/2], and s ¼ a�1r2a
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r2a� sa ¼ 0 ð2:8Þ

r2x� sx ¼ s
a2

@x
@t

ð2:9Þ

In the literature on Calderón’s conjecture, the analysis is generally based on
Eqs. 2.8 and 2.9 (Salo 2008). Following their approach, we have to invoke the
condition that a ¼ aðxÞ is a smooth function of position vector x with Cartesian
components x; y; z. In realistic hydrogeological applications, the hydraulic con-
ductivity is generally discontinuous. At faces of discontinuous conductivities, the
head, h, and the normal component of the flux density, qn ¼ �k @h=@n, are con-
tinuous. As a consequence, the normal derivative of sqrt-conductivity a is dis-
continuous, which means that derivatives of a do not exist at discontinuity faces. In
such cases, Eqs. 2.8 and 2.9 are not at all equivalent to the groundwater flow
equation (Eq. 2.4).

However, within certain subsurface units, it is often reasonable to assume spa-
tially correlated conductivities. For instance, zonation, in which the conductivity is
assumed to be homogeneous within a number of zones, is a technique for inverse
modeling (see Chap. 6). A discontinuous conductivity field cannot be fully deter-
mined from measured head and flux data on the boundaries of a model domain
(wells, including monitoring wells, may be considered as internal boundaries); for a
further analysis of this case, see Sect. 2.4.

Under the assumption that the conductivity field is smooth (differentiable), we
are able to add a third equation to the two coupled equations (Eqs. 2.8 and 2.9); for
a further analysis of this case, see Sect. 2.4. To show the way how this can be
accomplished, we expand sqrt-conductivity field aðxÞ in a series of meaningfully
chosen basis functions, or representer functions, uiðxÞ; i.e.,

aðxÞ ¼
Xm
i¼1

ciuiðxÞ ð2:10Þ

where ci is a coefficient. The m coefficients c1; c2; . . .; cm are related to the values
a1; a2; . . .; am of the sqrt-conductivity in m points x1; x2; . . .; xm on the
boundaries. This results in a linear relation between c1; c2; . . .; cm and
a1; a2; . . .; am.

aj ¼ aðxjÞ ¼
Xm
i¼1

ciuiðxjÞ ð2:11Þ

In this way, the sqrt-conductivities a within the model domain are linearly
related to the m sqrt-conductivities aj on the boundaries. Meaningful basis functions
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for this approach may be exponential functions (Uhlmann 2003, 2009; Salo 2008)
or powers of x, y, and z; see Sect. 2.4 for a detailed analysis.

Substitution of Eq. 2.10 into Eq. 2.8 yields s ¼ ðPm
i¼1 air2uiÞ=ð

Pm
i¼1 aiuiÞ, and

considering incompressible flow (flow for which ðs=a2Þ @x=@t in Eq. 2.4 is neg-
ligible), substitution into Eq. 2.9 results in an equation for x

r2x�
Pm

i¼1 cir2uiPm
i¼1 ciui

x ¼ 0 in themodel domain ð2:12Þ

For given ai and xi on the boundary, Eq. 2.12 (or its discretized approximation)
can be solved to determine x in the whole model domain, from which also the head
h ¼ x=a is known in the whole model domain. However, instead of specifying m
values of sqrt-conductivity ai on the boundary, we may impose m normal flux
values qm;i ¼ �a2i @h=@n on the boundary. Doing so, Eq. 2.12, combined with this
flux boundary condition and this head boundary condition, has been turned into a
nonlinear problem to determine the m sqrt-conductivities on the boundary, as well
as the heads and the sqrt-conductivities in the model domain. This problem could
then be solved iteratively (also see Chap. 2, Sect. 2.4). The above-presented
argument shows a way how to tackle Calderón’s conjecture (in which m ! 1).
For more details, see Sect. 2.4. The solution exists only if the boundary conditions
allow for a nonnegative conductivity field. This latter requirement is not always
satisfied in hydrology, where the imposed boundary conditions may be based on too
inaccurately measured data to allow for a nonnegative solution.

The above-presented original Calderón problem is inspiring, because it shows
that for inverse modeling (parameter estimation) more heads and fluxes have to be
imposed than required for forward modeling (specified parameters). However, in
realistic groundwater flow problems, we do not know head and flux on the full
boundary; we know head and flux only in a limited number of observation wells
(zero flux, head measured) and, sometimes, on the water table (estimated water
table height and recharge rates). Therefore, we will from now on focus on the
incomplete Calderón problem, in which only a limited number of flux and head data
are measured, often with rather great inaccuracy. Fluxes are imposed only at
locations where fluxes are known, while heads are imposed only at locations where
heads are known. In this incomplete Calderón problem, the conductivity field is not
unique, but depends on the initial choice of the conductivity field. Moreover,
because in hydrogeology the conductivity is generally discontinuous, r2a does not
exist, and therefore, Eqs. 2.8, 2.9, and 2.10 cannot be applied. For that reason, we
introduce in Chap. 3 a “Calderón-inspired” approach to parameter estimation that is
directly based on the water balance equation (Eq. 2.1) and, to avoid negative
conductivities, on Darcy’s law (Eq. 2.2) formulated with sqrt-conductivity a, as
well as on the imposed flux and head conditions.
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2.3 Stefanescu’s Alpha Centers

Stefanescu (1950) introduced the so-called alpha center method in the context of
geo-electrical problems. His method is based on solutions of Eqs. 2.8 and 2.9 with
@x=@t ¼ 0. In his approach s ¼ 0 except in a number of singular points ðxn; yn; znÞ,
n = 1, 2, …, N, the so-called alpha centers. The components an of the
sqrt-conductivity field a ¼ PN

n¼1 an ¼ �k1=2 are then given as

an ¼ Anffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xnÞ2 þðy� ynÞ2 þðz� znÞ2

q ð2:13Þ

From Eq. 2.8, it follows then that, in the limit ðx; y; zÞ ! ðxn; yn; znÞ, sn is equal to

sn ¼ �4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xnÞ2 þðy� ynÞ2 þðz� znÞ2

q
� dðx� xnÞdðy� ynÞdðz� znÞ

ð2:14Þ

where dð�Þ represents the Dirac delta function (Butkov 1973: 223–232; Morse and
Feshbach 1953: 825). From the definition of the Dirac delta function, it follows that
sn ¼ 0 and, as a consequence, s ¼ PN

n¼1 sn ¼ 0 outside the alpha centers
ðxn; yn; znÞ and may have any value (is undetermined) in the alpha centers.

Since Eq. 2.9 with @x=@t ¼ 0 has the same form as Eq. 2.8, a similar solution
holds for xn

xn ¼ Xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xnÞ2 þðy� ynÞ2 þðz� znÞ2

q ð2:15Þ

From Eqs. 2.14 and 2.15, it follows that the head is

h ¼ x
a
¼

PN
n¼1 xnPN
n¼1 an

ð2:16Þ

In the alpha centers ðxn; yn; znÞ, the head is equal to the finite value hn ¼ Xn=An;
i.e., the head is a smooth function of x, y, z without singularities.

Finally, the 2N constants An, Xn can be adjusted to honor both the head boundary
condition and the flux boundary condition at the N alpha centers. This approximation
method shows that inverse problems can be solved approximately using the two
coupled equations (Eqs. 2.8 and 2.9) with both head and flux boundary conditions.

Stefanescu’s approach is inspiring because of its assumptionr2a ¼ 0. Although
not directly applicable to groundwater modeling, this idea can be generalized to
assuming r2ma ¼ 0 for the construction of basis functions uiðx; y; zÞ and coeffi-
cients ci in which sqrt-conductivity aðx; y; zÞ is expanded to solve the Calderón
problem; see Sect. 2.4.
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2.4 In Depth: A Closer Look at Calderón’s Conjecture

In this section, we analyze the so-called “Calderón problem” in more detail.
Calderón conjectured that from the potential equation r � krh ¼ 0 (Eq. 2.4) with
“sufficiently smooth” nonnegative conductivity field kðx; y; zÞ � 0, the conduc-
tivity can be determined uniquely from exact measurements of head h and normal
flux qn ¼ �k @h=@n on the closed boundary of the model domain. For inaccurately
measured conditions, a conductivity that is nonnegative everywhere in the domain
cannot always be found. The Calderón problem is then to determine what “suffi-
ciently smooth” means to guarantee existence and uniqueness, and to find solutions.

For the estimation of conductivities in grid volumes, we apply Calderón’s idea of
“conductivity smoothness” to correlate the conductivities in neighboring grid
blocks. In this framework, existence and uniqueness need not be considered: A
“sufficiently accurate” approximate solution can always be found.

In Sect. 2.4.1, we investigate how many uncorrelated conductivities (in the grid
volumes of a numerical model) can be derived from specification of a finite number
of imposed flux and head conditions, and in the remaining sections (Sects. 2.4.2,
2.4.3, 2.4.4, 2.4.5, and 2.4.6), we show how we can determine many more con-
ductivities if we correlate them by “smoothness conditions.”

2.4.1 Uncorrelated Conductivity Fields

In this subsection, we investigate the following question: How many conductivities
can be determined from Nþ 1 measured flux–head pairs?

Let us consider a groundwater flow domain with Nþ 1 nodes with node num-
bers n = 1, 2, …, N þ 1, where we know both the flux of water Qn [L3 T−1] into
each node n and the head hn [L

3] in each node n. Only the differences in measured
head play a role in groundwater flow (see Eq. 2.2), which means that all heads
could be measured with respect to head hNþ 1. That is, only the N measured head
differences hn � hNþ 1, n = 1, 2, …, N, play a role. Also, for incompressible flow,
only N fluxes are measured; the N þ 1st flux follows from continuity equationPNþ 1

n¼1 Qn ¼ 0 (flow in = flow out; also see Eq. 2.3).
From the point of view of theNþ 1 nodes, the subsurface is “seen” as a network of

NðNþ 1Þ=2 conductors mutually connecting the Nþ 1 nodes. Each conductor has a
conductance defined as flux through the conductor divided by head difference
between the conductor’s end nodes. As will be shown below, only N conductivities
can be determined from the N measured fluxes and head differences, the other
NðN � 1Þ=2 conductivities have to be obtained from additional knowledge (the
soft data).
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Let us consider nodes 1 and 2 with measured heads h1 and h2, respectively. Head
difference h1 � h2 causes flow through the conductor connecting node 1 to node 2.
If we know flux Q1 ! 2 from node 1 to node 2, we can determine conductance
K1 $ 2 = Q1 ! 2=ðh1 � h2Þ [L2 T−1] (see Darcy’s law, Eq. 2.2). To determine flux
Q1 ! 2, we assign realistically chosen values (the soft data) to the remaining N � 1
conductances K1 $ n, n = 3, 4, …, Nþ 1, connecting node n to node 1. From the
measured head differences between all nodes, we can then determine the N � 1
fluxes Q1 ! n = K1 $ nðh1 � hnÞ. The measured total flux of water flowing into node
1 is equal to Q1 = Q1 ! 2 þ

PN þ 1
n¼3 Q1 ! n, from which we determine Q1 ! 2

resulting in K1 $ 2.
A similar procedure can be set up for node 2. Because we know already con-

ductance K1 $ 2, we have to assign N � 2 realistically chosen values (soft data) of
the conductances K2 $ n, n = 4, 5, …, N þ 1, to the N � 2 remaining conductors
connecting node n to node 2; only conductance K2 $ 3 is left unspecified. From
these conductances and from the known head differences between their nodes, we
calculate the n� 2 fluxes Q2!n = K2 $ nðh2 � hnÞ. The measured total flux of water
flowing into node 2 is equal to Q2 = Q1 ! 2 þQ2 ! 3 þ

PNþ 1
n¼4 Q2 ! n, from which

we determine Q2 ! 3 resulting in K2 $ 3 = Q2 ! 3=ðh2 � h3Þ.
Continuation of this procedure shows that, in the end, we have to assign values

(soft data) to NðN � 1Þ=2 conductances to determine N conductances from the
measured N flux–head pairs in the nodes.

Now, we consider a gridded numerical model. The above-presented “tubes with
conductances” are now made up of the grid block conductivities in the model. Also
in this case holds that from Nþ 1 measured heads (i.e., N measured head differ-
ences) and N measured fluxes, the conductivities of only N grid volumes can
be determined. In fact, we know more, because the soft data, i.e., the chosen
NðN � 1Þ=2 conductivity values, cannot be chosen arbitrarily; they have to be
chosen in such a way that the calculated N conductivities are nonnegative.
Smoothing, i.e., allowing only small differences between conductivity values in
neighboring grid blocks, may help to avoid negative conductivities.

The above-presented conductance network procedure is an example of direct
inversion as defined byYeh (1986), fromwhich we observe that small head gradients,
as they often occur in flat deltaic regions, makes the solution unstable because of the
divisions by hn � hn	 with hn 
 hn	. Smoothing will stabilize the inversion procedure
(also see the discussion on Chap. 3, Sect. 3.9.2.2). For the above-mentioned reasons,
Sect. 2.4.2 explores the concept of smoothness in more detail.

2.4.2 Smoothed Conductivity Fields

Defining sqrt-conductivity a ¼ �k1=2 and assuming that a is sufficiently smooth to
allow for the existence of r2a, the groundwater flow equation (Eq. 2.4) can be
written as Eqs. 2.8 and 2.9. Elimination of s from these equations results in
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r2ha� hr2a ¼ ðs=aÞ @h=@t ð2:17Þ

Terms like “smooth” and “sufficiently smooth” to denote some form of differ-
entiability, as well as the mathematics to handle such notions, are used here in an
intuitive way based on quantized (discretized) space. The mathematical framework
in which these terms are rigorously defined and applied for continuous space can,
for instance, be found in Duvaut and Lions (1976).

In a differentiable conductivity field, neighboring conductivities are related to
each other by the well-known Taylor series expansion

aðxþDxÞ ¼ aðxÞþ ð@a=@xÞxDx
þ 1

2
ð@2a=@x2ÞxDx2 þ � � � þ 1

n!
ð@na=@xnÞxDxn þ � � �

ð2:18Þ

We exemplify our approach for a two-dimensional grid with discretization
lengths Dx ¼ Dy ¼ D. Then, the finite difference approximations of the terms in
Eq. 2.17 are

ðr2haÞi;j 
 ½ðhaÞi�1; j þðhaÞiþ 1;j

þðhaÞi;j�1 þðhaÞi;jþ 1 � 4ðhaÞi;j�=D2

hi;jðr2aÞi;j 
 hi;jðai�1;j þ aiþ 1;j

þ ai;j�1 þ ai;jþ 1 � 4ai;jÞ=D2

ð2:19Þ

and substitution of Eq. 2.19 into Eq. 2.17 yields

aiþ 1;jðhi;j � hiþ 1;jÞ � ai�1;jðhi�1;j � hi;jÞ
þ ai;jþ 1ðhi;j � hi;jþ 1Þ � ai;j�1ðhi;j�1 � hi;jÞ
¼ �ðs=aÞ@h=@t

ð2:20Þ

From now on, we simplify our presentation by considering incompressible flow
(negligible term s @h=@t); generalization to compressible flow is straightforward.
In the block-centered finite difference method, Darcy’s law for the flux in the
x-direction through the face between grid block i þ 1; j and grid block i; j is
approximated by

qx; iþ 1
2; j ¼ �a2iþ 1

2; j
ðhi; j � hiþ 1; jÞ ð2:21Þ

where a2iþ 1
2; j
, the effective conductivity at that face, is equal to the harmonic

average of the conductivities in the grid blocks i þ 1; j and i; j. Similar approxi-
mations follow for the other three faces. Substitution of Eq. 2.21 into Eq. 2.20
yields
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aiþ 1; j

a2iþ 1
2; j

qx;iþ 1
2; j �

ai�1; j

a2i�1
2; j

qx; i�1
2; j

þ ai; jþ 1

a2i; jþ 1
2

qy; i; jþ 1
2
� ai; j�1

a2i; j�1
2

qy; i; j�1
2
¼ 0

ð2:22Þ

Thanks to the water balance (Eq. 2.1), the fluxes through the faces are contin-
uous, and in the model domain, the fluxes change only gradually. Equation 2.22
shows then that not only the fluxes, but also the conductivities vary smoothly in the
model domain. This is clearly demonstrated for one-dimensional flow, where
qx; iþ 1

2; j ¼ qx; i�1
2; j ¼ q0 is constant. From Eq. 2.22, it follows then that the

smoothest possible solution is aiþ 1;j = aiþ 1
2;j = ai�1;j = a0 is constant. Of course,

there are infinitely more smooth solutions, but here we consider the smoothest
possible solution.

Since the flux runs and head runs with a numerical model (e.g., MODFLOW) for
the double constraint method are based on the conventional formulation (Eq. 2.4),
the resulting sqrt-conductivity field will not be smooth. To smooth the
sqrt-conductivity, we propose an additional step in the double constraint iterations.

Equation 2.17 (for incompressible flow) can also be written as
r2a = ðhþ h0Þ�1r2½ðhþ h0Þa� in which h0 is a suitably chosen reference head. To
avoid division by zero, we choose h0 [ � hmin, where hmin is the smallest value of
h in the model domain. Then, ~h ¼ hþ h0 is positive everywhere in the model
domain.

Now, we consider the original double constraint method, in which each grid
volume (each “point”) is a zone. Consider a sqrt-conductivity a obtained after an
iteration step with head ~h in the head run. From the a-values in the grid volume
centers, we calculate b ¼ ~h�1r2~ha by numerical differentiation (using an expres-
sion like Eq. 2.19). According to Eq. 2.17, b may be considered as a source term
for Poisson equation r2a0 ¼ b. Using the sqrt-conductivity obtained from the
iteration step as boundary condition for this Poisson equation (i.e., applying
Dirichlet boundary condition a0j@D ¼ aj@D), the smoothed sqrt-conductivity a0 is
then obtained by solving the Poisson equation. This can simply be done by a
groundwater flow model (e.g., MODFLOW). We use the thus-obtained smoothed a0

as initial sqrt-conductivity for the next iteration step by the double constraint
method. Repeating this procedure after every DCM iteration step will then result to
converge, i.e., to a ! a0 in the grid block centers. Instead of smoothing the whole
model domain, we could also select a number of zones in which we want to smooth.

2.4.3 Smoothest Possible Sqrt-Conductivity Fields

We consider a two- or three-dimensional domain D enclosed by boundary @D in
which the conductivity is isotropic but heterogeneous; i.e., k ¼ kðx; y; zÞ is a
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function of the spatial coordinates x; y; z (for a one-dimensional domain problem,
see Sect. 2.4.6). We require that this heterogeneous conductivity field is “the
smoothest possible” conductivity field. That is, if everywhere on boundary @D the
conductivity has the same value, kB, independent from its spatial position, the
conductivity in domain D is homogeneous and equal to its boundary value kB. This
requirement corresponds with Calderón’s aim to develop a method that can detect
an internal deviation from homogeneity by voltage and current measurements on
the surface. In this way we can detect a well-conducting tumor in a poorly con-
ducting breast, or a well-conducting salt lens in a poorly conducting fresh water
body (Uhlmann 2003, 2009). For hydrogeological applications, voltage is replaced
by head and current by flux, for instance, to detect a poorly conducting clay lens in
a well-conducting aquifer.

In Stefanescu’s approach (Chap. 2, Sect. 3), the construction of an inverse
solution is based on the simple assumption s ¼ 0 leading tor2a ¼ 0 andr2ha ¼ 0
(see Eqs. 2.8 and 2.9). Although Stefanescu’s approximation may lead to acceptable
conductivity estimations in simple applications, application to more comprehensive
problems has to be based on more general and flexible assumptions. Instead of
Stefanescu’s assumption r2a ¼ 0 (Sect. 2.3), we base the inverse solution of
sqrt-conductivity function aðx; y; zÞ on equation r2ðLþ 1Þa ¼ 0. For a sufficiently
large number L, the groundwater flow equation r2a ¼ h�1r2ha, or its more usual
mathematically equivalent r � a2rh ¼ 0, is then used to determine a
sqrt-conductivity field a in domain D that approximately honors the head and flux
conditions hB and qB on boundary @D. This approach implies that we have solved
the equation r2Lðh�1r2haÞ ¼ 0 instead of Stefanescu’s equation r2ha ¼ 0.

In principle, the above-introduced approach can be used for model domains with
an arbitrary shape. However, to illustrate the idea, we consider a rectangular or
block-shaped domain D with closed boundary 0 � x � Dx, 0 � y � Dy,
0 � z � Dz. For this domain, we construct a finite number of L polynomials pL�‘

(‘ ¼ 1; 2; . . .; L \ 1) in x, y, z, in such a way that the polynomials preserve their
form when the coordinates are interchanged (e.g., when x ! y, y ! z, z ! x or
x ! z, y ! x, z ! y). In addition, we consider polynomials of finite degree.

To avoid nonzero solutions a for which a ¼ 0 on the boundary (spurious solu-
tions), we derive conditions for function s in the coupled equations r2a� sa ¼ 0
and r2x� sx ¼ 0 (Eqs. 2.8 and 2.9, respectively) for incompressible flow.
Sqrt-conductivity a is expanded in a series of linearly independent basis functions, or
representer functions, uðxÞ, vðyÞ, wðzÞ in such a way that a ¼ P

ijk cijk ui vj wk, where
the cijk’s are the coefficients. For each component aijk ¼ cijkuivjwk in this series
expansion, we find suivjwk = a�1

ijk r2aijk = u�1
i @2ui=@x2 + v�1

j @2vj=@y2 +
. A boundary condition for a on the closed boundary @D (a Dirichlet condition for
Eq. 2.8) leads to a unique solution only if at least one of the functions
sui ¼ u�1

i @2ui=@x2, svj = v�1
j @2vj=@y2, swk ¼ w�1

k @2wk=@z2 is nonnegative. If all
three functions sui , svj , swk derived from function uiðxÞ vjðyÞwkðzÞ are negative, there
exist spurious solutions, which means that the solution of r2a� sa ¼ 0 is not
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unique. For example, for the above-defined block-shaped domain the solution aijk ¼
cijk sinðjxxÞ sinðjyyÞ sinðjzzÞ results for jx ¼ �mp=Dx, jy ¼ �mp=Dy, jz ¼
�mp=Dz (m ¼ 1; 2; 3; . . .) in nonzero values of a inside domain D for zero
boundary values aB ¼ 0. In that case, sui ¼ �j2x\0, svj ¼ �j2y\0, and swk ¼
�j2z\0 are negative. On the other hand, a solution like aijk ¼
cijk sinðjxxÞ sinðjyyÞ expðjzzÞ cannot give rise to nonzero solutions for the Dirichlet
boundary conditions aB ¼ 0. Although sui ¼ �j2x\0 and svj ¼ �j2y\0 are neg-

ative, spurious solutions do not occur because swk ¼ j2z [ 0 is positive. Polynomial
basis functions uiðxÞ ¼ xi, vjðyÞ ¼ y j, wkðzÞ ¼ zk , i, j, k = 0, 1, 2, 3,…, do not result
in spurious solutions, as well as exponential basis functions [upon which “complex
geometrical optics” is based (Salo 2008: 18)].

2.4.4 Polynomial Construction

To simplify the presentation, we consider a two-dimensional rectangular domain;
the extension to the above-introduced three-dimensional rectangular domain is
straightforward.

For the ease of presentation, we assume that the domain is a square with center
ðx1; y1Þ ¼ ðd; dÞ, where 2d ¼ Dx ¼ Dy ¼ Dz. The polynomial solution of Poisson
equationr2pL ¼ cL, where cL is a constant, is pL ¼ ðaxx2 þ bxxÞþ ðayy2 þ byyÞþ c,
from which it follows that cL ¼ r2pL ¼ 2ðax þ ayÞ. Specifying the four boundary
conditions, the four polynomial values pL;0;1, pL;2;1, pL;1;0, pL;1;2 result in the following
four equations for the four polynomial constants: ayd

2 þ byd ¼ p0L;0;1,

axd
2 þ bxd ¼ p0L;1;0, 4axd

2 þ 2axdþ ayd
2 þ bxd ¼ p0L;2;1, and axd

2 þ bxdþ 4ayd
2 þ

2byd ¼ p0L;1;2, where p0L;i;j ¼ pL;i;j � ðbx þ byÞ. Solving this system yields the four
polynomial constants ax; bx; ay; by, from which the constant cL ¼ 2ðax þ ayÞ can be
determined. Constant c ¼ pL; 0; 0 is chosen equal to the average of the boundary
conditions specified near the origin (0,0); i.e., c ¼ ðpL; 0; 1 þ pL; 1; 0Þ=2. Thanks to this
choice, a conductivity that is homogeneous on the boundary (i.e., pL; 0; 1 = pL; 2; 1 =
= pL; 1; 2 = aB) results in a conductivity that is homogeneous in the model domain
(i.e., ax ¼ ay ¼ 0, bx ¼ by ¼ 0, c ¼ aB).

Because of the extremely coarse discretization, the above-presented approxi-
mation is very poor. However, we can systematically derive better approximations.
For that purpose, we partition the model domain in four grid blocks, which means
that we can honor eight boundary conditions. For this grid-refined domain, we solve
Poisson equation r2pL�1 ¼ pL þ cL�1 with the eight boundary conditions for pL�1.
To be sure, we do not use the polynomial constants calculated for the one-grid
block domain; they will be recalculated. Since function pL is a polynomial of degree
2, function pL�1 is a polynomial of degree 4: pL�1 ¼ ða0xx4 þ b0xx

3 þ c0xx
2 þ d0xxÞ

plus a similar polynomial in y plus a constant, e. Honoring the eight boundary
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conditions for AL�1 results in a system of eight linear algebraic equations that can
be solved to find the eight polynomial constants a0x; b

0
x; c

0
x; d

0
x; a

0
x; b

0
x; c

0
x; d

0
x. Function

pL is then pL ¼ r2pL�1 ¼ 12a0xx
2 þ 6b0xxþ c0x plus a similar polynomial in y, while

constant e is equal to e ¼ pL�1; 0; 0 ¼ ðpL�1; 0; 1 þ pL�1; 1; 0Þ=2. Again, thanks to this
choice, we find a conductivity field that is homogeneous in the domain if the
conductivities on the boundary are homogeneous (i.e., all polynomial constants are
equal to zero, except for e ¼ aB).

Continuing this procedure, we introduce polynomials of degree 2L (for which
we recalculate the polynomial constants obtained for the previous 4th degree
polynomial example). For that number of L grid blocks, we consider the sequence
of Poisson equations r2pL�‘ ¼ pL�‘þ 1 þ cL�‘ for ‘ ¼ 2; 3; . . .; L� 3; L� 1.

For ‘ ¼ L� 1, we have to solve Poisson equation r2p1 ¼ p2 þ c1, which means
that polynomial p1 has degree 2L. The 4L polynomial constants can be determined
from the 4L boundary conditions for p1 specified in the 4L boundary points, while
the additional constant p1; 0; 0 ¼ ðp1; 0; 1 þ p1; 1; 0Þ=2 is chosen equal to the average
of the two boundary values specified near the origin.

2.4.5 A Double Constraint Methodology

Now, we equate sqrt-conductivity a to the above-determined polynomial p1; i.e.,
generalizing to three dimensions we set aðx; y; zÞ ¼ p1ðx; y; zÞ. From the
above-presented polynomial construction, it follows that for given aB ¼
aðxB; yB; zBÞ on the boundary with coordinates xB; yB; zB sqrt-conductivity
aðx; y; zÞ is known in the whole model domain. For imposed head boundary con-
dition hB ¼ hðxB; yB; zBÞ, head hðx; y; zÞ can then be determined in the whole
model domain from groundwater flow equation r � a2rh ¼ 0.

However, instead of specifying boundary values of the sqrt-conductivity, we
may impose normal boundary fluxes qB ¼ qnðxB; yB; zBÞ. Doing so, groundwater
flow equation r2ha� hr2a ¼ 0, or its mathematical equivalent r � a2rh ¼ 0
(Eq. 2.4), with both this flux boundary condition and this head boundary condition,
results in a partial differential problem from which the boundary sqrt-conductivity
aB ¼ aðxB; yB; zBÞ as well as the sqrt-conductivities, heads and fluxes in the
model domain can be determined. More specifically, assume that boundary con-
dition hB for head h has been determined from measurements. As a consequence,
the normal head gradients @hðaBÞ=@n on the boundary can be determined as a
function of function aBðxB; yB; zBÞ, where argument a in hðaÞ denotes the
dependency of head h on sqrt-conductivity field a (a “function of a function” is a
functional; see Sect. 3.4). Also, the normal head gradient ½@hðaBÞ=@n�B on the
boundary can be determined as a function of function aðx; y; zÞ. To match this
normal head gradient to the measured normal boundary flux qBðaBÞ, we apply
Darcy’s law (Eq. 2.2) to obtain the qBðaBÞþ a2B½@hðaBÞ=@n�B ¼ 0. In other
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words, we have to find the function aB ¼ aðxB; yB; zBÞ that makes the functional
qBðaBÞþ a2B½@hðaBÞ=@n�B equal to zero, thus honoring Darcy’s law. Thanks to
the polynomial construction presented in Sect. 2.4.4, this formulation results in a
system of nonlinear algebraic equations for the NB values of aB in the NB
boundary points, where NB ¼ 2nL for n-dimensional flow with n � 2; see
Sect. 2.4.4. Finally, sqrt-conductivity aðx; y; zÞ, head hðx; y; zÞ, and flux density
qðx; y; zÞ follow from the polynomial expansions.

As an introduction to the double constraint method presented inChap. 3, we extend
the above-presented argument to a constructive iterative approach to find a solution.
For an estimated initial sqrt-conductivity aB;i ¼ aiðxB; yB; zBÞ, the sqrt-conductivity
aiðx; y; zÞ can be determined from the polynomial construction. Head boundary
condition hB ¼ hðxB; yB; zBÞ is determined by measurements, and given the esti-
mated initial sqrt-conductivity aiðx; y; zÞ, head hiðx; y; zÞ can be calculated in the
whole model domain from groundwater flow equationr � a2irhi ¼ 0 (Eq. 2.4). As a
consequence, the normal head derivative ð@hi=@nÞB on the boundary can be deter-
mined, while the normal boundary flux follows from Darcy’s law (Eq. 2.2) yielding
qB;i ¼ �a2B;ið@hi=@nÞB. The thus-determined normal boundary flux does not gener-
ally match the measured normal boundary flux qB. To determine a new normal
boundary flux qB; iþ 1 that better matches the measured normal flux, we introduce a
new sqrt-conductivity, aiþ 1 by applying Darcy’s law in the form qB ¼ �a2B; iþ 1

ð@hi=@nÞB. Substitution of the above-presented expression for qB;i leads then to the
update rule kB; iþ 1 ¼ kB; i qB=qB; i for the conductivity on the boundary. The updated

aiþ 1 ¼ �k1=2iþ 1 in the whole model domain follows then from the above-derived
polynomial construction. After starting the procedure for i ¼ 0, we repeat this pro-
cedure for i ¼ 1; 2; 3; . . . until aiþ 1 has converged sufficiently close to ai.

Until now, we have supposed that the system is well posed (existence of stable

unique solution). However, in practical applications, the step aiþ 1 ¼ �k1=2iþ 1, which
is required for the polynomial construction, may turn out to fail. During the iteration
process, kiþ 1 may become negative in a number of boundary points, which means
that, even if ai was a real number, aiþ 1 is no longer real (is an imaginary number).
Negative conductivity updates may be caused by measurement errors and also by a
poor initial guess of the initial conductivities. To handle such cases, the update rule
has to be modified to kB;iþ 1 ¼ kB;i qB=qB;i

�� ��, as will be explained in Chap. 3,
Sect. 3.4. Using this modified update rule, negative conductivities caused by a poor
initial guess may gradually disappear during the iteration process, but negative
conductivities caused by measurement errors cannot be removed.

The above-presented iterative approach may be considered as a simple example
of the double constraint methodology presented in Chap. 3. The introduction of
smoothness (differentiable polynomials) has resulted in a simplified double con-
straint methodology in which the update rule is only applied to the boundary
conductivities. Moreover, in this case, the groundwater flow equation is only used
to determine the head, while in the general approach this equation has also to be
solved for the flux. For a detailed explanation, see Chap. 3.
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2.4.6 The One-Dimensional Case

In one dimension, for example, flow through a tube of length Ltube filled with
porous material, the situation is different. Since there are only two boundary points
NB ¼ 2
� �

, only two polynomial coefficients can be determined, which means that
the smoothest possible polynomial is a ¼ bxþ c. From groundwater flow equation
hr2a ¼ r2ha, it follows that d2ha=dx2 ¼ 0, i.e., ha ¼b0xþ c0, h ¼ ðb0xþ c0Þ=
ðbxþ cÞ, dh=dx ¼ b0ðbxþ cÞ � bðb0xþ c0Þ½ � =ðbxþ cÞ2, and q ¼ �a2dh=dx ¼
bðb0xþ c0Þ � b0ðbxþ cÞ. Continuity equation dq=dx ¼ 0 requires that q is constant,
which means that b0 ¼ 0 or b ¼ 0. Solution b0 ¼ 0 means that there is no head
gradient and, as a consequence, no flow, which contradicts our requirement that
there should be at least one point in which the flux is nonzero. Hence, the solution is
b ¼ 0, which means that conductivity a2 ¼ k is constant. Darcy’s law then results
in k = qLtube=ðhþ Ltube=2 � h�Ltube=2Þ.

One of the aspects of the Calderón problem is to determine the smoothness
requirements in such a way that there exists a unique conductivity field determined
by the head–flux boundary conditions (another aspect is to find solutions).
Requiring, in addition, that the smoothness condition is as simple as possible, the
above-presented example shows that the required smoothness for a
one-dimensional Calderón problem is a constant conductivity.

In Sects. 2.4.3, 2.4.4, and 2.4.5, we have shown that for n-dimensional problems
with n � 2 a solution exists. The above-presented “discrete analytical” construc-
tion may be considered as an argument for the validity of Calderón’s conjecture. In
our example, where the NB boundary points are evenly distributed over the
boundary, the continuum limit NB ! 1 could be considered as a strong argument
for the validity of Calderón’s conjecture. However, it is not a general proof for all
types of bounded continuous space; the smoothness conditions, the distribution of
boundary points, and the way of approaching the continuum limit may be specified
in different ways. For instance, Kenig et al. (2007) present a three-dimensional
problem in which on some parts of the boundary no head–flux data are specified.
For more details on the general continuous problem, see, for instance, Barber and
Brown (1984, 1986), Sylvester and Uhlmann (1987), Nachman (1996), Brown
(1996), Brown and Uhlmann (1997), Siltanen et al. (2000), Bukhgeim and
Uhlmann (2002), Uhlmann (2003, 2009), Borcea (2002, 2003), Borcea et al.
(2003), Bukhgeim and Uhlmann (2002).
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Chapter 3
The Pointwise Double Constraint
Methodology

3.1 Parameter Estimation

The majority of inverse groundwater flow models are based on a “flux model”; that
is, a model based on groundwater flow equation (Eq. 2.4) with imposed fluxes on
the top boundary (the water table) and on as many as possible other boundaries
where fluxes are known, in particular the zero flux at the impervious bottom
boundary. The nonzero recharge fluxes on the water table are measured indirectly
by using models that take direct measurements of rainfall, runoff, and evapotran-
spiration into account. Other nonzero fluxes may come from flow rate measure-
ments in production or injection wells. The conductivity field is then determined by
manipulating the conductivities in a number of spatial points (grid volumes in a
discretized model), in such a way that the heads measured in the observation wells
match with the heads calculated by the model. This manipulation is often accom-
plished automatically by minimization of an objective function (cost function). This
minimization results in a gradient matrix or sensitivity matrix. Handling the gra-
dient matrix is a relatively heavy burden, both from a computational and from a
programming point of view. Therefore, there is a growing interest in gradient-free
calibration methods; see, for instance, Chen and Zhang (2006), Naevdal et al.
(2002), who applied the ensemble Kalman filter (EnKF) for that purpose.

One of the approaches to gradient-free calibration is the double constraint
methodology introduced in this chapter. This method determines conductivities by
using both a model with imposed fluxes (the conventional flux model) and a model
with imposed heads (the head model).
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3.2 Linear Conductivity Estimation

Conventional approaches are based on a flux model and an inversion model based
on the flux model’s gradient matrix. In contrast, we base our method on the
groundwater flow equation (Eq. 2.4) with all known (“measured”) fluxes imposed
as boundary condition (the flux model), and, again, on Eq. 2.4, but now with
measured heads imposed as boundary condition (the head model). This means that
in the head model, the heads measured in the observation wells are imposed.
Wexler et al. (1985) originally introduced such an approach for electrical impe-
dance tomography for geophysical and medical imaging. The two solutions of
Eq. 2.4, one of the flux model and one of the head model, constrain the inverse
modeling process, which is aptly expressed by the name “double constraint
method” coined by Yorkey and Webster (1987), Yorkey et al. (1987), Webster
(1990).

The double constraint method, which is conceptually very simple and can easily
be implemented, is based on the following four steps:

1. In each “point” (center of a grid volume) of the model domain, the three
principal conductivities kx;i, ky;i, and kz;i are assumed to be known initially
(index i ¼ 0). The initial conductivities may come from “hydrogeological per-
ceptions,” i.e., from the knowledge that the hydrogeologist already has about the
subsurface under consideration.

2. One constraining forward run—the so-called flux run—is based on the known
flux boundary conditions (e.g., recharge rates and production or injection rates
of wells) and results in the flux densities qFx;i, q

F
y;i, and qFz;i in each point (su-

perscript F denotes results from the flux run).
3. A second constraining forward run—the so-called head run—is based on the

known head boundary conditions (including the heads measured in the moni-
toring wells!) and results in the heads hHi as well in as the head gradients
eHx;i ¼ �@hH=@x, eHy;i ¼ �@hH=@y, and eHz;i ¼ �@hH=@z in each point (super-
script H denotes results from the flux run).

4. Now the “old” conductivities kx;i, ky;i, and kz;i are “forgotten,” and we determine
the updated conductivities kx;iþ 1, ky;iþ 1, and kz;iþ 1 from Darcy’s law
kx;iþ 1 ¼ qFx;i=e

H
x;i, ky;iþ 1 ¼ qFy;i=e

H
y;i, and kz;iþ 1 ¼ qFz;i=e

H
z;i. Substitution of

eHx;i ¼ qHx;i=kx;i, e
H
y;i ¼ qHy;i=ky;i, and eHz;i ¼ qHz;i=kz;i results in the following update

rule in each point (grid volume center) of the model domain

kx;iþ 1 ¼ kx;i
qFx;i
qHx;i

, ky;iþ 1 ¼ ky;i
qFy;i
qHy;i

, kz;iþ 1 ¼ kz;i
qFz;i
qHz;i

ð3:1Þ

These conductivities, derived as a result of the DCM approach and used in a
groundwater flow model, comply with both the flux and the head boundary con-
ditions including the heads measured in the monitoring wells.
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The points where jqFx;i=qHx;i � 1j � 1, jqFy;i=qHy;i � 1j � 1, and jqFz;i=qHz;i � 1j � 1
are situated in the so-called terra incognita, i.e., in regions of the model domain
which are too far away from locations where the imposed flux and head data can
determine the conductivities by update rule Eq. 3.1. On the other hand, the points
where jqFx;i=qHx;i � 1j � 0, jqFy;i=qHy;i � 1j � 0, and jqFz;i=qHz;i � 1j � 0 are situated
in the “measurement ranges,” i.e., in regions sufficiently close to locations where
the imposed flux and head data can influence the hydraulic conductivity via the
update rule Eq. 3.1.

If the measurement errors of the imposed heads and fluxes would be sufficiently
small, and if the initial hydraulic conductivities kx;i, ky;i, and kz;i would have values
that are sufficiently close to the true values, the update equations (Eq. 3.1) would
result in nonnegative values of the updated hydraulic conductivities kx;iþ 1, ky;iþ 1,
and kz;iþ 1. Under such ideal conditions, a solution of the inverse problem is found
in one stroke, without subsequent iterations. However, in practical hydrogeological
problems, the quality of these data is generally insufficient to yield a linear inverse
problem (one-dimensional flow is a trivial exception). The imposed heads and
fluxes are far from error-free, and even if the hydrogeological setting is known
beforehand (e.g., the positions of aquifers and aquitards with their characteristic
conductivity values), these “soft data” are generally far from sufficiently accurate.

To investigate this aspect, Trykozko et al. (2008) presented a DCM application
for estimating a two-dimensional synthetic checkerboard conductivity patterns.
Starting with nonnegative conductivities k0, they noted the occurrence of negative
conductivities k1 after the first DCM stroke. To apply these values for the first
iteration step, they used the absolute values jk1j and it appeared that after the first
iteration, the number of negative conductivities k2 was diminished and so on for
further iterations. Iterative improvement of the conductivity pattern diminished the
number of negative conductivity values. Although the iterations converged, nega-
tive conductivity values did not completely disappear. Also Brouwer et al. (2008),
Trykozko et al. (2009), and El-Rawy (2013) have used absolute values of the
conductivities. However, they did so without presenting arguments. This book
presents an extensive justification of the “absolute value approach”; see Sect. 3.4.

3.3 Generalized Points: The Voxel Notation

Until now, we have based our analysis on the powerful tools of classical mathe-
matical analysis: differentiation, integration, and partial differential equations. In
this type of analysis, we consider the differential df of a function f as a very small
change in that function, without actually specifying how small that change is. In
applied mathematics—the mathematics used by geoscientists and engineers—a
differential is generally presented as an “infinitely small” limit to zero: Denoting an
arbitrary, not necessarily small difference in function f as Df , differential df is equal
to the limit Df ! 0, which means that df is nonzero but approaches zero without
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specifying how close it is to zero. For reasons that will be explained in Sect. 3.4, we
apply this interpretation of differentiation to replace our analytical equations with
algebraic equations for our groundwater flow problems.

More specifically, we quantize (discretize) the model space by a grid with a large
number of NV grid volumes with (extremely small but finite) size DV . To each grid
volume, we assign a volume number, nV , relating the volume to the coordinates
x; y; zð Þ in its center nV ¼ 1; 2; . . .;NVð Þ. Doing so a function f x; y; zð Þ in point
x; y; zð Þ will be denoted as fnV . This notation is now extended to vector functions
u ¼ ux; uy;uz

� �
in point x; y; zð Þ by the introduction of “generalized grid volumes,”

or voxels (the term voxel is a portmanteau for volume and pixel, where pixel is a
combination of picture and element). A voxel represents just one quantity; for
instance, ux in a grid volume is a voxel while uy in the same volume is another
voxel and uz in the same volume is again another voxel. In other words, we quantize
(discretize) the model space as a uniformly arranged grid with a large number of
N ¼ 3NV voxels. To each grid volume, we assign a voxel number, n, in such a way
that vector component uz has voxel number n ¼ 3nV , component uy has voxel
number n ¼ 3nV � 1, while component ux has voxel number n ¼ 3nV � 2
n ¼ 1; 2; . . .;Nð Þ. Doing so vector function uðx; y; zÞ in point ðx; y; zÞ will be
denoted as un. The thus-introduced notation is useful for discretized models in
which the partial differential equations with boundary conditions are replaced with
algebraic approximations; also see Narasimhan (2010) as well as Shinbrod’s
introduction of the quantized Navier–Stokes equations (Shinbrod 1973, part II).

As a result, instead of the NV volumes with three conductivity components, we
consider N ¼ 3NV voxels with voxel number n ¼ 1; 2; . . .;N. Update rule Eq. 3.1
can now be written as only one equation.

kn;iþ 1 ¼ kkn;i
qFn;i
qHn;i

ð3:2Þ

As has already been described in Sect. 3.1, Eqs. 3.1 and 3.2 may result in
negative conductivities kn;iþ 1 in a number of voxels. Intuitively, it makes sense to
modify the update equation (Eq. 3.2) by replacing qFn;i=q

H
n;i with its absolute value

jqFn;i=qHn;ij, as has been proposed and applied by Brouwer et al. (2008), Trykozko
et al. (2008, 2009), and El-Rawy (2013). In Sect. 3.4, we present an elaborate
justification of this approach.

Equations 3.1 and 3.2 can be implemented relatively simply, without much
additional programming. The flux model and the head model can be run with
standard modeling software, without need for software modifications; in our case
studies (Chaps. 5 and 7), we have applied MODFLOW. For each grid volume, the
(absolute values of the) fluxes obtained as output from the flux model have to be
divided by the (absolute values of the) fluxes obtained as output from the head
model, after which the model’s conductivities have to be updated using Eqs. 3.1
and 3.2. This can simply be done by MATLAB (2017) or another simple computer
program.
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3.4 Minimization Based on Sqrt-Conductivities

To automate the search for as much as possible nonnegative values of kn;iþ 1, we
derive a slightly modified update rule. Instead of basing our considerations directly
on the conductivities kn, we base ourselves on the sqrt-conductivities an ¼ �k1=2n .
That is, we write Darcy’s law (2.2) as a�1

n qn � anen ¼ 0, in which qn ¼ qFn honors
the imposed flux conditions while en ¼ eHn honors the imposed head conditions
(note the minus sign in the definitions ex ¼ �@h=@x, ey ¼ �@h=@y, and
ez ¼ �@h=@z). Doing so, we accept conditions in which Darcy’s law cannot be
honored exactly everywhere in the model domain (because kn ¼ a2n cannot become
negative), i.e., a�1

n qn � anen 6¼ 0.
To keep the error in Darcy’s law sufficiently small, we minimize the following

function of the N sqrt-conductivities a1; . . .; aN (Kohn and Vogelius 1987; Kohn
and McKenney 1990).

R a1; . . .; aNð Þ ¼
XN
n¼1

qn a1; . . .; aNð Þ
an

� anen a1; . . .; aNð Þ
� �2

ð3:3Þ

If Darcy’s law is honored exactly, the “Darcy residual” R a1; . . .; aNð Þ is equal to
zero.

In the continuum limit DVn ! 0, N ! 1, Eq. 3.3 can be written as

RðaÞ ¼
ZZZ
D

qða; xÞ
aðxÞ � a xð Þ e a; xð Þ

� �2

w xð Þ dxdydz ð3:4Þ

where x is the vector with coordinates x; y; z; D denotes integration over the model
domain and w xð Þ is a weighting function; in the discrete approximation of the
above integral w xnð Þ ¼ wn ¼ 1=DVn yields Eq. 3.3. To be more precise, Eq. 3.4
represents the continuum formulation for an isotropic porous medium, but exten-
sion to anisotropy is straightforward. Darcy residual R að Þ may be considered as a
function of array a containing the sqrt-conductivities in all points of the model
domain (an infinitely large number); these sqrt-conductivities have to be determined

in such a way that RðaÞ is minimized. The integrand ‘ a; xð Þ ¼ a�1q� a eð Þ2 is a
functional, i.e., a “function” of function a xð Þ (Morse and Feshbach 1953: 275–280;
Butkov 1973: 553–562). For practical problems, and in particular for minimization
problems, derivations based on an algebraic formulation with a finite number of
sqrt-conductivities, as presented by Eq. 3.3, are simpler than derivations based on
functional analysis. They are also more insightful because they relate directly to
numerical models—in which the model domain is discretized—which play a
dominant role in present-day applied geoscience and engineering.
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At the stationary points (minimums, maximums, or saddle points) of R, we have
@R=@an ¼ 0, which results in the following N equations for the N unknowns
a1; a2; . . .; an; . . .; aN�1; aN

1
2
an@R
@an

¼ e2n
a2n

a2n �
qn
en

� �
a2n þ

qn
en

� �
þ
XN
m¼1

em a2m � qm
em

� �
an@em
@an

� 1
a2m

an@qm
@an

� �
¼ 0

ð3:5Þ

In voxels where qn=en [ 0 (flow obtained by flux model has the same direction
as flow obtained from head model), we can honor Darcy’s law a2n ¼ qn=en [ 0
exactly. If this is the case in all voxels, substitution into Eq. 3.3 shows that R ¼ 0.
However, if there are voxels where qn=en\0 (flow obtained by flux model has
direction opposite to flow obtained from head model), which is generally the case
for a minority of voxels (Trykozko et al. 2008, 2009), a solution has to be derived
from the above system of nonlinear algebraic equations.

In general, such systems have many solutions. Only one of the stationary points
represents the global minimum of R a1; . . .; aNð Þ, while the others are either a local
minimum, or a maximum, or a saddle point. The gradient matrices q0nm ¼
an@qm=@an [L T−1] and e0nm ¼ an@em=@an [−] reflect the sensitivity of voxel con-
ductivity an to variations in other voxel conductivities.

We solve Eq. 3.5 approximately by neglecting gradient matrices q0nm and e0nm,
which results in

a2n �
qn
en

� �
a2n þ

qn
en

� �
¼ 0 ð3:6Þ

To correct for the neglected gradient matrices, Eq. 3.6 is applied iteratively.
Starting with initial conductivities kn;i ¼ a2n;i, the numerical model calculates qn;i
(obtained from the flux run) and en;i (obtained from the head run). The solution of
system (3.6) is

kn;iþ 1 ¼
jqn;ij
jen;ij

¼ kkn;i
jqFn;ij
jqHn;ij

ð3:7Þ

Written for the three directions x; y; z and adding an additional term to handle
zero fluxes, Eq. 3.7 can be written for each grid volume n as

kx;iþ 1 ¼ kx;i
jqFx;ij
jqHx;ij

; ky;iþ 1 ¼ ky;i
jqFy;ij
jqHy;ij

; kz;iþ 1 ¼ kz;i
jqFz;ij
jqHz;ij

ð3:8Þ
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Comparison of Eqs. 3.7 and 3.8 with Eqs. 3.2 and 3.1, respectively, shows that
we end up with almost the same update rules; the difference is that not the fluxes
and head gradients, but their absolute values have to be used.

In this approximation, the Hessian is a diagonal matrix with positive components
@2Riþ 1=@a2iþ 1 ¼ 8e2n;i [ 0, which means that all stationary points of Darcy residual

Riþ 1 a1;iþ 1; . . .; aN;iþ 1
� � ¼PN

n¼1 a�1
n;iþ 1qn;i � an;iþ 1en;i

� �2
are minimums.

To avoid division by zero, we may replace Eq. 3.7 with kn;iþ 1 ¼
kn;i jqHn;ij þ qen
� �

= jqHn;ij þ qen
� �

, where qen is a small flux with respect to the repre-

sentative flux in the model domain or a subdomain.

3.5 Arguments for the Neglect of Gradient Matrices

The most important argument for neglecting the terms with the gradient matrices in
Eq. 3.5 is that the handling of these matrices is extremely demanding in terms of
computer memory storage and computational time. Moreover, to construct these
matrices, additional software has to be developed, while neglecting them allows for
almost no additional programming when a standard groundwater model like, for
instance, MODFLOW is applied.

Below we will present a second argument why the global minimum may result in
a conductivity field that is too smooth to be realistic. In other words, we present an
argument why the inverse solution obtained by approximation Eq. 3.6 may be
preferred above a solution obtained by Eq. 3.5. For that purpose, we consider the
two gradient matrices e0nm ¼ an@em=@an and q0nm ¼ an@qm=@an in the second term
right-hand side of Eq. 3.5. When all sqrt-conductivities an n ¼ 1; 2; . . .;Nð Þ are
multiplied by a constant c, the gradient matrices do not change. This means that a
change of the sqrt-conductivity field (an update) caused by a change in flux field
(flux run) and head gradient field (head run) changes the matrices only when the
ratios between sqrt-conductivities an and am n 6¼ mð Þ are changed. Consequently,
these matrices play a role in updating the ratios between the different an-values.

This ratio-changing role of the matrices is exemplified for one-dimensional flow
(e.g., flow through a tube filled with porous material (El-Rawy et al. 2015)). For the
case q=en [ 0, update rule Eq. 3.5 results in a Darcy residual equal to zero. Since in
one-dimensional flow the flux density qn ¼ q is the same in each voxel n, the case
q=en\0 is obviously based on a measurement error (for instance, the sign of the
heads at the two end points of the tube has been interchanged). Since the flux
depends only on the flux imposed at the boundary (on one of the two end points of
the tube) and is independent from the conductivities, matrix q0nm is equal to zero. Let
us now consider a homogeneous conductivity, i.e., the case in which all voxel
conductivities have the same value. In that case, the head gradients in the voxels are
everywhere the same and are independent from the conductivity values. Hence, the
head gradient depends only on the heads imposed at the boundaries (the two end
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points of the tube), which means that matrix e0nm is equal to zero and the Darcy
residual has reached its minimum. If we would start with a heterogeneous con-
ductivity, the Darcy residual is larger than its minimum. Only if the gradient
matrices are equal to zero, i.e., if the conductivity has been smoothed to a homo-
geneous field, the Darcy residual has reached its minimum. However, why should
we care for the exact estimation of a minimum in case of obvious measurement
errors? When neglecting the gradient terms in Eq. 3.5 from the beginning, we end
up with the same solution as we would obtain for q=en [ 0, which is, in fact, the
correct solution.

In many practical cases, it is desirable to preserve ratios between conductivities
in neighboring grid volumes as much as possible. Uncontrolled spatial smoothing
of conductivities may lead to unwanted disappearance of conductivity contrasts that
have to be preserved, for instance, the conductivity contrasts between
well-conducting and poorly conducting subsurface bodies. Some conductivity
smoothing may be required in more or less homogeneous parts of the subsurface
(homogeneous in an averaged sense, heterogeneous in the fine-scale details) and
has to be guided, for instance, by zonation (see Chap. 6). However, we have to
avoid unguided smoothing in order to preserve the soft data about differences in
rock-type conductivity of different geological formations. Since taking the gradient
matrices into account leads to unguided smoothing, neglect of the gradient terms in
Eq. 3.5 does not only liberate us from heavy computational requirements, but also
liberate us from unwanted smoothing.

As a third argument to omit the gradient matrices can be based on the fact that if
the stationary point of Darcy residual Eq. 3.3 or 3.4 is a minimum, it is generally
not the global, but a local minimum. The probability that we have found the global
minimum is very small. So, why not being satisfied with the approximate local
minimum obtained by omitting the gradient matrices?

3.6 Anisotropy

The anisotropy of the updated conductivities kx, ky, and kz (omitting iteration index
i + 1) may be too extreme. For the grid volumes in which the anisotropy ratios are
outside the pre-ordained intervals axz � kx=kz � bxz, ayz � ky=kz � byz, and
axy � kx=ky � bxx, we determine new conductivities by transforming the updated

conductivities to conductivities ekx , eky , and ekz using the following “mixing rule.”

ekxekyekz
0@ 1A ¼

gxz
gyz
1

0@ 1A kx
gxz

� �bx ky
gyz

 !by

kzð Þ bz ð3:9Þ
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where gxz ¼ ðaxzbxzÞ1=2 and gyz ¼ ðayzbyzÞ1=2 are the geometric mean values of the
pre-ordained intervals while bx, by, and bz are given by

bx
by
bz

0@ 1A ¼ 1
jqFx j þ jqFy j þ jqFz j

jqFx j
jqFy j
jqFz j

0@ 1A ð3:10Þ

For flow almost exclusively in the x direction qFy � qHy � 0 and qFz � qHz � 0,
which means that Eq. 3.7 or 3.8 cannot accurately update the values of ky and kz;
only kx can be updated accurately. In that case, Eq. 3.10 simplifies to bx � 1,
by � 0, and bz � 0. Substitution into Eq. 3.9 yields ~kx ¼ kx, ~ky ¼ ðgyz=gxzÞ kx, and
~kz ¼ ð1=gxzÞ kx, which means that the inaccurate updates ky and kz do not play a role
and the final result has anisotropy ratios within the pre-ordained bounds. This
approach is in agreement with the philosophy upon which streamline methods are
based (Nelson 1960, 1961, 1962, 1968; Datta-Gupta et al. 1998).

It is also possible to introduce pre-ordained anisotropy ratios without intervals in
which these ratios may vary. For that case, we define sqrt-conductivities ax ¼
g1=2xz az and ay ¼ g1=2yz az with prescribed gxz and gyz. Substitution into the Darcy
residual given by Eq. 3.3 and minimization with respect to az take the specified
anisotropy ratios directly into account and result in the following update rule.

kx;iþ 1

ky;iþ 1

kz;iþ 1

0@ 1A ¼
kx;i
ky;i
kz;i

0@ 1A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqFx;iÞ2
gxz

þ ðqFy;iÞ2
gyz

þðqFz;iÞ2
ðqHx;iÞ2
gxz

þ ðqHy;iÞ2
gyz

þðqHz;iÞ2

vuuuut ð3:11Þ

For isotropy gxz ¼ gyz ¼ 1
� �

, update rule Eq. 3.11 simplifies to the result
kiþ 1 ¼ jqij=jeij ¼ kijqFi j=jqHi j. This result was for the first time obtained by Kohn
and Vogelius (1987); also see Kohn and McKenney (1990).

Wexler et al. (1985) and Wexler (1988) invented a method in which the residualeRiþ 1 k1;iþ 1; . . .; kN;iþ 1
� �

=
PN

n¼1 qn;i � kn;iþ 1en;i
� �2 is minimized with respect to

kz;iþ 1, rather than minimizing Darcy residual Eqs. 3.3 and 3.4 with respect to
az;iþ 1. Under the condition that conductivities have to be nonnegative, this mini-
mization results in
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kx;iþ 1

ky;iþ 1

kz;iþ 1

0B@
1CA ¼

kx;i
ky;i
kz;i

0B@
1CA qFx;iq

H
x;i þ qFy;iq

H
y;i þ qFz;iq

H
z;i

ðqHx;iÞ2 þðqHy;iÞ2 þðqHz;iÞ2

¼
kx;i
ky;i
kz;i

0B@
1CA qFi � qHi

qHi � qHi
for qFi � qHi 	 0

kx;iþ 1

ky;iþ 1

kz;iþ 1

0B@
1CA ¼

0

0

0

0B@
1CA for qFi � qHi \0

ð3:12Þ

The inventors considered electrically conducting isotropic media
(kx ¼ ky ¼ kz ¼ k) for applications in geophysical and medical imaging including
subsurface imaging of pollution plumes in groundwater (Tamburi et al. 1988). In
their patent (Fry and Wexler 1995), they describe their invention as a tool for
solving the field equation of an electrically conductive medium with the aim to
extract an image of its interior based on the electric impedivity distribution in the
medium.

Wexler’s update rule Eq. 3.12 is attractive because of its simplicity. However,
the fact that the minimum of their Darcy residual ~R may result in conductivities that
are equal to zero is a disadvantage, because zero conductivity values may hamper
meaningful further iterations. This was avoided by Brouwer et al. (2008), Trykozko
et al. (2008, 2009), and El-Rawy (2013) by modifying Eq. 3.12 and replacing the
term qFi � qHi with its absolute value j qFi � qHi j. El-Rawy (2013) has compared the
results obtained by modified update rule Eq. 3.12 with the results obtained by
update rule Eqs. 3.9 and 3.10; the differences appear to be small and irrelevant in
view of the measurement inaccuracy (especially those of the fluxes) that is generally
encountered in hydrogeological problems.

3.7 Convergence and Practical Termination Criterions

The first DCM stroke (i ¼ 0) followed by subsequent iterations i ¼ 1; 2; 3; . . .ð Þ can
be terminated after a minimum value of Riþ 1 has been reached. In most cases, the
thus found minimum will be one of the many local minimums (Chavent 1987). If
the number of measurements (imposed flux-head pairs) is much smaller than the
number of voxel conductivities, the position of this minimum in the solution space
generally depends on the specified initial values of ki used to calculate qi and ei.
Instead of finding the minimum of Riþ 1, which is relatively difficult, we could stop
after having found a minimum of the related quantity Dk=k ¼ j kiþ 1 � kið Þ=kij2 ¼
j qF=qHð Þiþ 1�1j2 (summed over all grid voxels). In cases where the convergence is
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monotonous kiþ 1\kið Þ, we stop the iterations after Dk=k\e in which e is a small
number (e.g., e ¼ 0:01).

To find the global minimum, we can introduce NT conductivity types. Each
voxel belongs to one of these types. For instance, we can define two types: a
well-conducting type with conductivity 0.5 m/day and a poorly conducting type
with conductivity 0.005 m/day. For N voxels, there are ðNTÞN different spatial
conductivity configurations that can be used as initial condition for the calibration
method. The configuration with the smallest minimum is then an approximation of
the global minimum. Doing this for thousands to millions of voxels is impossible; it
would require an astronomical large number of inverse modeling runs.

However, if we partition the model domain in a limited number of NL zones, say
four zones, we need to calibrate only NTð ÞNL¼ 16 conductivity configurations. In
this approach, a zone is a collection of voxels having the same conductivity. The
grid volumes belonging to a zone need not necessarily be spatially connected; a
zone may consist of spatially disconnected parts. A realistic zonation has to be
based on hydrogeological insights obtained from other sources, like geophysical
prospecting, sedimentology, pumping well test, and other soft data.

Until now, we have focused on the estimation of the hydraulic conductivities in
the grid volumes of numerical models like finite difference and finite element
models, the so-called pointwise double constraint method. However, for analytical
methods and analytical element methods, the model domain is partitioned in a
limited number of zones with homogeneous conductivity. In such cases, the
pointwise DCM cannot be used. Moreover, zones with homogeneous conductivity,
or with fine-scale heterogeneity superimposed on coarse-scale homogeneity, are
often required to avoid too large conductivity contrasts within subsurface bodies
with the same rock type. Therefore, Chap. 6 extends the double constraint
methodology to estimate homogeneous zone conductivities.

3.8 Boundary Conditions “Upside Down”

Suppose that we consider a problem in which only flux boundary conditions are
imposed. Such types of problems are frequently considered in petroleum reservoir
simulations, where the fluids (water, oil, gas) are contained in a closed reservoir and
flow is caused only by production and injection wells. Provided that the volumetric
balance “production rate equals injection rate” (Eq. 2.3) is honored, the flux model
results in a well-posed problem. For a specified conductivity field, the fluxes and
head gradients can be determined everywhere in the flow field, while the head is
known up to a constant. However, some, not all, numerical methods for solving the
system of algebraic equations perform better if in one point the head is specified. In
the double constraint method, this means that for the flux model, all production/
injection rates are imposed except for one well (the “upside-down well”) where the
well head is imposed. In that case, the head run is based on imposed well heads,
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except for the “upside-down well,” where the volumetric flow rate is imposed.
Similar types of problems may be encountered in hydrogeology. Below we analyze
the consequences of such a deviation from the original flux model and head model
principle.

We simplify the analysis for an isotropic medium for which we minimize a
modified version of Darcy residual Eq. 3.3.

RðaÞ ¼
X

a�1qA � aeB
� �2

¼
X

a�2 qA
� �2�2qA � eB þ a2 eB

� �2h i ð3:13Þ

where qA ¼ jqAj and eB ¼ jeBj, while the superscripts A and B denote types of
boundary conditions. In the original DCM, qA is equal to flux qF obtained from the
flux model, while eB is head gradient eH ¼ �rhH obtained from the head model. In
that case, a flux run based on an initial conductivity field k0 with a value far away
from the true value of k results in an initial flux field qF0 , while a head run based on
that k0 results in an initial head gradient eH0 . Minimization of Darcy residual
Eq. 3.13 results in k1 ¼ qF0 =e

H
0 . Applied to one-dimensional flow (flow through a

tube filled with porous material), this is the final solution with R a1ð Þ ¼ 0; additional
iterations do not change this result. For two- and three-dimensional problems,
iterations i ¼ 1; 2; . . .; I result in kiþ 1 ¼ qFi =e

H
i . The iterations are terminated for

sufficiently small R aIð Þ. Because the ratio qFi =eHi is bounded by the fluxes and heads
imposed on the boundaries, the iterations do not lead to an unbounded value of the
final solution kI .

Now we choose the other extreme. In Eq. 3.13, we choose qA as the flux
obtained by the head model (i.e., qA ¼ qH), while eB is chosen as the head gradient
is chosen as the head gradient obtained by the flux model (i.e., eB ¼ eF).
Minimization of Darcy residual Eq. 3.13 yields k1 ¼ qH0 =e

F
0 . Expressing this result

in the bounded ratio qF0 =e
H
0 yields k1=k0 ¼ k0eH0 =q

F
0 . Further iterations result in

kiþ 1=k0 = k0eH0 =q
F
0
k1eH1 =q

F
1
 � � � 
 kieHi =q

F
i in which the terms eHi =q

F
i are

bounded by the imposed boundary conditions and have order of magnitude eH=qF .
This result shows that boundary conditions “upside down” lead to unstable DCM:
An initial k0 smaller than qF=eH results in a much smaller kiþ 1, while an initial k0
larger than qF=eH results in a much larger kiþ 1. Only if initial k0 is exactly equal to
qF=eH (the exact solution), the upside-down DCM does not explode; any small
deviation from the exact solution, however small it may be, blows up exponentially.
In other words, the upside-down DCM is unstable.

In the above-presented discussion, we have considered two extremes of
imposing boundary conditions in Darcy residual Eq. 3.13. The conventional way
results in a stable iteration process, while the upside-down approach leads to an
exponentially unstable iteration process. The question is: What about a mixed
condition under which in residual Eq. 3.13 superscript A is equal to F at some
points on the boundary and superscript A is equal to H at some other points of the
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boundary, while for superscript B the complement of the above-specified conditions
holds? Although it is more difficult to analyze this problem, it seems reasonable to
assume that, in the best case, such a mixed condition leads to a less accurate
solution than the solution obtained by posing the boundary conditions in the con-
ventional way. In the worst case, the mixed solution becomes unstable.

3.9 In Depth: A Closer Look at Imaging and Calibration

3.9.1 Imaging Versus Calibration

Let us, for the sake of argument, consider a hypothetical case study for which we
know the real spatial conductivity distribution, as it occurs in the natural subsurface.
This real conductivity field is then used as input of a mathematical model based on
exactly measured fluxes, as they occur in nature, as boundary conditions. This way
we have a perfect flux model.

To be able to find numerical solutions, the mathematical model is based on a
discrete approximation of the governing equations (Eqs. 2.1–2.7). For our analysis,
we have to make a distinction between flux-continuous approximation methods and
head-continuous approximation methods. Flux-continuous methods yield fluxes
that are continuous at the grid faces between the grid volumes, while the heads are
continuous only at the centers of the grid faces. Models that are based on the
block-centered finite difference method are flux continuous. The MODFLOW
model (Harbaugh 2005; Harbaugh et al. 2000) is an example and is, therefore, a
flux-continuous model. Not only in groundwater hydrology, but also in petroleum
reservoir engineering the block-centered finite difference method is the most pop-
ular numerical technique (Aziz and Settari 1979; Peaceman 1977). However, at the
grid faces, the heads are continuous only at the grid face centers, not at the whole
face. On the other hand, head-continuous methods result in heads that are contin-
uous at the grid faces, while the fluxes are discontinuous at the faces. Conventional
node-based finite element methods (like, for instance, FEFLOW (Diersch 2005)),
are head-continuous methods. In contrast to flux-continuous methods,
head-continuous methods result in discontinuous flow velocities at the grid faces,
which may result in a less accurate determination of streamlines (Kaasschieter
1990; Kaasschieter and Huijben 1992). For these reasons, so-called streamline
methods for estimation of conductivities, generally applied to block-centered finite
difference methods, have to take into account the head discontinuities over the faces
(Datta-Gupta et al. 1998).

More importantly, flux-continuous models perform the calculation of heads and
fluxes in such a way that they underestimate conductivity values, while
head-continuous models perform the calculation of heads and fluxes in such a way
that they over-estimate conductivity values (except for one-dimensional flow). This
under/over-estimation can be proved mathematically, and has been exemplfied for a
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number of synthetic conductivity patterns (Trykozko et al. 2001; Zijl and Trykozko
2001).

Consequently, although the MODFLOW-based flux model will result in cor-
rectly approximated fluxes, the head gradients will be over-estimated. Similarly, a
MODFLOW-based head model with the same conductivities results in correctly
approximated heads and head gradients; however, the fluxes will be
underestimated.

Since the double constraint method (DCM) is based on the correctly approxi-
mated fluxes obtained from the flux run divided by the correctly approximated head
gradients obtained from the head run, the resulting conductivity will be a good
approximation of the initially specified real conductivities. This also means that,
even if we have specified initial conductivities that are far removed from the real
conductivities, the conductivities obtained after termination of the double constraint
method’s iterations may be considered as an approximate image of the subsurface
conductivity field. In other words, we may consider the double constraint method as
a geophysical imaging method, a kind of geo-hydraulic method to determine the
hydraulic conductivity pattern of the subsurface. Alternatively, when considering
electrical potentials and currents instead of hydraulic heads and fluxes, it is a
geo-electrical method to determine the electric conductivity pattern of the subsur-
face, for instance, to detect interfaces between fresh and saline water. The method is
also applicable as inversion technique in electrical impedance tomography for
geophysical and medical imaging.

However, many hydrogeological studies do not aim at obtaining a realistic image
of the subsurface, but aim at a model—generally a flux model—in which the
calculated heads match with the heads measured in the piezometers. In such studies,
the head gradients obtained from the flux model with conductivities obtained by the
double constraint method will be too large. Therefore, calibration—matching with
the measured heads—will result in higher conductivities than obtained by the
double constraint method. To be sure, for comprehensive models with thousands to
millions of grid blocks, this difference will be small and in the limit of infinitely fine
discretization the difference vanishes. For case studies based on comprehensive
models, the differences will generally fall within the observation error (see Chap. 4,
Sect. 4.2 for more details regarding the observation error). Nevertheless, compar-
ison of the double constraint method with conventional gradient-based calibration
methods may show a systematic difference. For instance, if in the flux model an
upstream head is imposed, the double constraint method yields conductivities
which, when applied to the flux model, will result in lower downstream heads than
measured in the downstream piezometers; also see the Schietveld case study in
Chap. 6.

For simple models, i.e., coarsely gridded models based on a limited number of
grid blocks, the conductivity image obtained by double constraint method may
deviate appreciably from the conductivities obtained by calibration. Below we will
present a method related to the double constraint method with focus on calibration
instead of imaging.
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3.9.2 Constrained Back Projection

Below we briefly introduce “constrained back projection,” a calibration method
based on iterations between two models: the forward model—generally the flux
model—and the back projection model. However, unlike the double constraint
method, which is an imaging method, constrained back projection is a calibration
method because it is only based on a flux model, not on a head model.

3.9.2.1 The Forward Model

First we present the forward model. For flux-continuous discrete approximation
methods, the groundwater flow equation (Eq. 2.4) can be written as the
matrix-vector equation.

S
@H
@t

þDZ�1ðDTHþPÞ ¼ 0 ð3:14Þ

while the column vector of fluxes through the faces is given by the discretized (or
quantized) analog of Darcy’s law (Eq. 2.2).

Q ¼ Z�1 DTHþP
� � ð3:15Þ

Here S [L2] is a diagonal matrix with components s1V1; . . .; snVn; . . .; sNVNð Þ in
its diagonal, where sn [L

−1] n ¼ 1; 2; . . .;Nð Þ represents the specific storages of the
N grid volumes with volumes Vn [L

3]; H [L] is a column vector with the heads in
the grid volume centers; D [−] is the incidence matrix relating grid volume numbers
to grid face numbers; P [L] is a column vector with heads on the external
boundary; Q [L3 T−1] is a column vector of the fluxes through the faces; the flux
density q [L T−1] through a face is equal to the flux divided by the surface area of
that face (in this book, the terms flux and flux density are used as synonyms, except
when the difference is specified explicitly); and Z�1 [L2 T−1] is the inverse of the
resistance matrix (impedance matrix).

The elements of resistance (impedance) matrix Z [T L−2] are linear combinations
of the grid volume resistivities (or impedivities) cx;n ¼ k�1

x;n , cy;n ¼ k�1
y;n , and cz;n ¼

k�1
z;n [T L−1]. In the block centered finite difference method (MODFLOW), matrix

Z is a diagonal matrix, which means that determination of its inverse, Z�1, does not
pose computational problems. This method has been worked out in great detail by
Mohammed (2009) and Mohammed et al. (2009a), who developed and exemplified
this approach for incompressible flow (negligible term S @H=@t). He also compared
his approach to Eq. 3.14 with an improved version of the edge-based
three-dimensional stream function method initially proposed by Zijl and
Nawalany (2004); also see Nawalany and Zijl (2010). For the mixed-hybrid finite
element method (or face centered finite element method) with arbitrarily shaped
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grid volumes and off-diagonal resistivity components, the inverse of the resistance
matrix has to be determined volumewise to avoid excessive numerical computa-
tions (Chavent and Jaffré 1986; Kaasschieter 1990; Kaasschieter and Huijben 1992;
Zijl 2005a, b).

The above-presented “generalized finite differences” approach to discretization
has been introduced by Bossavit (1998a, b, 1999, 2000) in the context of elec-
tromagnetism; for a good summary, see Bossavit (2005). In the limit of an infinite
number of infinitely small discretization volumes, Eqs. 3.14 and 3.15 transform into
the well-known continuum equations and boundary conditions presented in Chap. 2
. To be more precise, these equations transform to the equations in the
Grassmann-Cartan notation of exterior calculus, in which the metrics of space (the
dimensions of the grid) appear only in the resistance matrix. This notation is
mathematically equivalent to the more usual Gibbs-Heaviside notation based on the
operators gradient r, divergence r�, and curl r
 in which the metric of space
appears in the operators (Frankel 2004; Zijl 2005a, b).

3.9.2.2 The Back Projection Model

Now we turn to the back projection model. Choosing the N initial voxel resistivities
c1;i; . . .; cN;i, the initial resistance matrix Zi c1;i; . . .; cN;i

� �
can be determined (a voxel

is a generalized grid volume; see Chap. 3, Sect. 3.3). The model to be calibrated is a
flux model based on Eqs. 3.13 and 3.14, which means that the volume-based heads
HF

i and the face-based fluxes QF
i are calculated by the flux run. To update the

resistivities, Eq. 3.15 is applied in the form.

Ziþ 1 Q
F
i ¼ EMF

i ð3:16Þ

EMF
i ¼ DTHMF

i þPMF
i ð3:17Þ

where Ziþ 1 c1;iþ 1; . . .; cN;iþ 1

� �
is the resistance matrix composed of the resistivities

c1;iþ 1; . . .; cN;iþ 1 that have to be updated; QF
i is the above-defined vector of fluxes

through the faces calculated by the forward flux run. However, HMF
i is the vector of

grid block centered heads in which as much as possible measured heads are
imposed while the remaining heads are chosen equal to the heads calculated by the
flux run. Similarly, vector PMF

i represents the measured face centered heads on the
external boundaries while the remaining heads are equal to the heads calculated by
the flux run.

Since the resistance matrix is linear in the grid volume resistivities
c1;iþ 1; . . .; cN;iþ 1, it makes sense to define resistivity vector Yiþ 1 ¼ c1;iþ 1; . . .;

�
cN;iþ 1ÞT and back projection matrix Pi independent from the resistivities, in such a
way that
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PiYiþ 1 ¼ Ziþ 1 c1;iþ 1; . . .; cN;iþ 1

� �
QF

i ð3:18Þ

Combination of Eqs. 3.16, 3.17, and 3.18 results in the linear algebraic system.

PiYiþ 1 ¼ EMF
i ð3:19Þ

In Eq. 3.19, zonation can be introduced by setting the resistivities within each
zone equal to each other. This way the original system (Eq. 3.19) is transformed
into the system.

P�
i Y

�
iþ 1 ¼ EMF

i ð3:20Þ

Because vector Y�
iþ 1 contains only the zone resistivities, there are less unknown

resistivities in system Eq. 3.20 than in system Eq. 3.19 and back projection matrix
P�
i has less columns than matrix Pi. If the number of linearly independent algebraic

equations is greater than the number of resulting conductivities matrix P�T
i P�

i is
nonsingular, which means that the updated conductivities follow from solving the
least squares system.

P�T
i P�

i Y
�
iþ 1 ¼ P�T

i EMF
i ð3:21Þ

A system of algebraic equations obtained from a least squares approach is
generally ill-conditioned. However, for not too many unknown zone conductivities,
a mathematically equivalent system can be solved by orthogonal matrix decom-
position (also known as QR decomposition). This method, which has a much better
matrix condition, is available in standard numerical mathematical libraries like
MATLAB (2017). Negative resistivities can be removed by taking their absolute
value, from which we find the positive conductivities kx;n;iþ 1 ¼ 1=jcx;n;iþ 1j,
ky;n;iþ 1 ¼ 1=jcy;n;iþ 1j, and kz;n;iþ 1 ¼ 1=jcz;n;iþ 1j.

Van Leeuwen (2005) was inspired by a simpler form of the above-presented
approach. She considerably improved the approach and developed and compared
different back projection techniques. Thanks to her work a much better choice could
be made for a practice-oriented development of the back projection method; also
see Zijl (2004, 2007), Mohammed (2009), Mohammed et al. (2009b), Zijl et al.
(2010).

In the context of the above-presented approach to calibration, it is appropriate to
cite Olsthoorn (1998):

“The direct approach treats the parameters that need to be optimized as the
dependent variables and the measured heads and flows as given. It was the only
method that was practical before computers became available. Huisman (1950)
used a mesh of 52 hexagons to calibrate the aquitard between the phreatic and
second aquifer, in the 36-km2-large Amsterdam Dune Area. He did this by hand.
Given net precipitation, the transmissivity, and the head in the phreatic aquifers, he
computed the water balance of each hexagon. This flow was then used, together
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with the head difference between the phreatic and the second aquifer, to compute
the hydraulic resistance of the aquitard for each hexagon. By smoothing, he dealt
with the high sensitivity of head gradients, used to compute the flows. He suc-
ceeded in revealing the general spatial pattern of this resistance.”

Comparing Huisman’s calibration of vertical hydraulic resistances with resis-
tance calibration by the back projection equation (Eq. 3.21) Huisman’s smoothing
to deal with high sensitivity of head gradients may be compared with zonation (see
Chap. 6) combined with iterations of the head gradient equation (Eq. 3.17).

By historical default, the hydrogeological community, as well as the community
of petroleum reservoir engineers, traditionally distrusts direct inversion methods.
Their distrust is generally based on the argument that for small head gradients, as
they often occur in flat deltaic regions, the solution becomes “unstable”; also see
Sect. 2.4.1 and Olsthoorn (1998). Indeed, at locations where there is no flow QF

i is
equal to zero and, consequently, back projection matrix P�

i is equal to zero. Since

also EMF
i is equal to zero, the resistivities Y�

iþ 1 = P�T
i P�

i

� ��1
P�T
i EMF

i are undeter-
mined, like the quotient 0/0 is undetermined. Denoting small inaccuracies in
measured heads by e, we may then find results like the quotients 0=e or e=0. Such
instabilities can be overcome by an approach presented in Chap. 5, Eq. 5.1, as well
as by zonation, as presented in Chap. 6. This type of argument against direct
inversion, often presented in a more sophisticated way, shows that for small head
gradients the solution becomes unstable. However, such an instability argument
may not be used selectively against direct methods; it is only an argument for
stabilization of the inversion method, irrespective of direct or indirect inversion.
Therefore, Yeh’s often-quoted demarcation between direct and indirect inversion
models is not very helpful (Yeh 1986). As has been explained in Sect. 3.9.1,
demarcation between calibration methods and imaging methods is more relevant.

In conclusion, constrained back projection leads to an iterative inversion method
based on the flux model as forward model and a back projection model. This means
that it is a calibration method, in contrast to the double constraint method, which is
an imaging method because it is based on both a flux and a head model. Until now,
the back projection calibration method has been applied only to a limited number of
synthetic problems; the results are encouraging and, therefore, further research and
development are recommended.
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Chapter 4
Time Dependency

4.1 Storage Coefficients

Equations 2.1 and 2.2 can be written in the following way

�qt þ @xqxþ @yqy þ @zqz ¼ 0: water balanceð Þ ð4:1Þ

qt
qx
qy
qz

0
BB@

1
CCA ¼ �

kt 0 0 0
0 kx kxy kxz
0 kyx ky kyz
0 kzx kzy kz

0
BB@

1
CCA �

@th
@xh
@yh
@zh

0
BB@

1
CCA generalized Darcyð Þ ð4:2Þ

where 4-vector ð@ht; @hx; @hy; @hzÞ represents a short-hand notation for the gener-
alized head gradient ð@h=@t; @h=@x; @h=@y; @h=@zÞ. Equation 4.1 is a kinematic
equation, i.e., an equation in which only flow rates occur. This equation is inde-
pendent from the dynamic equations in which the driving force (head gradient,
pressure gradient) occurs. In the water balance (Eq. 4.1) not only flux density
q ¼ ðqx; qy; qzÞ [L T−1], but also flow rate qt [T

−1] occurs. Considering an infinitely
small volume DV ! 0, quantity qtDV [L3 T−1] is equal to the volume of water
flowing out of this volume due to compression caused by an increase in pressure
(head). The dynamic equations presented in Eq. 4.2 are Darcy’s law q ¼ �k � rh
relating the flux density to the spatial head gradient rh and the “compression law”
qt ¼ �kt@h=@t relating the flow rate to the “temporal head gradient” @h=@t, where
kt ¼ s is the specific storage (see Eq. 2.1).

Under conditions explained in Chap. 2, Sect. 2.1, the off-diagonal components
of “conductivity 4 � 4 matrix” are equal to zero. In that case, the flux model, with
initial “conductivity 4-vector” ðkt;i; kx;i; ky;i; kz;iÞ, results in “flux 4-vector”
ðqFt;i; qFx;i; qFy;i; qFz;iÞ honoring the imposed flux conditions. These conditions are the
fluxes known at the wells and through the boundaries, as well as the known initial
fluxes. To be sure, at boundary locations where the fluxes are not known we impose
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another condition (head condition or a mixed head–flux condition). In addition, if
the initial flux condition is unknown, as is generally the case, we impose another
initial condition.

The head model, again with “conductivity 4-vector” ðkt; i; kx; i; ky; i; kz; iÞ, results in
head hHi and head gradient 4-vector ðeHt ; eHx ; eHy ; eHz Þ = �ð@thHi ; @xhHi ; @yhHi ; @zhHi Þ
honoring the imposed head conditions (including the heads measured in the
observation wells). Again, at boundary locations where the heads are not known we
impose another condition. If the initial head conditions are unknown, as is generally
the case, we impose the same condition as used for the flux model (for instance, a
guess of the initial head).

In addition to Eq. 3.8, we honor Eq. 4.2 by introducing a new specific storage
ktþ iþ 1 ¼ jqFt;i=eHt;ij. Substituting qFt;i ¼ ktþ ieFt;i results in

kt;iþ 1 ¼ kt;i
jqFt;ij þ qet
jqHt;ij þ qet

ð4:3Þ

where qet [ 0 is a small flow rate to account for incompressible flow
(@xqx þ @yqy þ @zqz ¼ 0). In almost all practical applications dealing with shallow
groundwater, the flow may be considered as incompressible; in such cases, update
rule (4.3) yields the trivial result kt;iþ 1 ¼ kt;i. However, update rule (4.3) plays a
role in pumping well tests set up in such a way that compressibility (the term
qt ¼ �kt@h=@t in Eq. 4.1) is not negligible (De Smedt et al. 2017).

Even if update rule Eq. 4.3 does not play a role (incompressible flow), the
specific yield may play a role. Boundary condition Eq. 2.5 on the water table
z ¼ fðx; y; tÞ can be written as

�qh þ qx
@f
@x

þ qy
@f
@y

� qz ¼ reff ð4:4Þ

qh ¼ �kh
@f
@t

ð4:5Þ

in which kh ¼ h [−] is the specific yield. In Eq. 4.4, only flux densities occur,
independent from the “Darcy-like” phenomenological equation, Eq. 4.5, which is in
fact an approximation of the interaction between the saturated groundwater domain
and the unsaturated zone. In Eq. 4.4 not only flux density q [L T−1] occurs, but also
flux density q# [L T−1]. The recharge rate reff of water flowing from above (from
the unsaturated zone) upon the water table is separated into two parts: (i) Darcy flux
qx@f=@xþ qy@f=@y� qz flowing through the water table into the saturated
groundwater domain and (ii) accretion flux �qh causing the water table to rise
(increasing the volume of water in the saturated domain) with rate @f=@t ¼ �qh=kh
(Eq. 4.5).

The head model with specified initial specific yield hi yields the water table
height fHi and its rate of increase @fHi =@t. The flux model, again with initial hi,
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yields accretion flux qFh;i. Requiring that the accretion flux obtained by the flux

model results in the rate of water table rise @fHi =@t obtained by the head model, the
initial specific yield has to be replaced with a new one that honors Eq. 4.5. This
results in the same equation as Eq. 4.3; only subscript t has to be replaced with
subscript h.

In many practical applications, dealing with shallow groundwater, the flow has
to be considered as time-dependent. In a number of such cases, update rule (4.3)
may play a role for the specific yield kh. However, in quite a number of cases,
Eqs. 4.4 and 4.5 are linearized and averaged over a longer time, over the interval
from time t0 to time t1. Defining the flux averages �qz ¼ ðt1 � t0Þ�1 R t1

t0
qzdt and

�reff ¼ ðt1 � t0Þ�1 R t1
t0
reff dt, the linearized Eqs. 4.4 and 4.5 result in

kh
fðt1Þ � fðt2Þ

t1 � t2
� �qz ¼ �reff ð4:6Þ

In such applications, the averaged time-dependent term fðt1Þ � fðt2Þ=ðt1 � t2Þ is
negligibly small with respect to the average fluxes, i.e., �qz � ��reff , which makes the
flow problem quasi-steady, thus reducing Eq. 4.3 to a trivial update. Nevertheless,
update rule (4.3) will always play a role in pumping well tests, because in such tests
phreatic storage term qh ¼ �kh@f=@t is never negligible.

4.2 Observation Error Versus Estimation Uncertainty:
The Linear Kalman Filter

Many hydrogeological studies are devoted to the evolution in time of the
groundwater heads and fluxes. Although the parameters are time-independent,
estimation of these parameters by the double constraint method will generally show
a time evolution of the parameters too. This parameter evolution is caused by the
inaccuracies in the measured heads and fluxes that are imposed as boundary con-
ditions. The N spatially distributed conductivities kon;m (n ¼ 1; 2; . . .;N) “observed”
at time tm by the double constraint method can be time-averaged to find the
time-independent conductivities �kon . However, to perform an analysis based on
Gaussian statistics, we introduce the observed log-conductivities zon;m ¼ ln kon;m.
Averaging the time series of conductivity values obtained for conductivity n over a
time interval containing M observations m ¼ 1; 2; . . .;M results in the
time-independent observed log-conductivity n

�zon ¼
1
M

XM
m¼1

zon;m ð4:7Þ
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The observation error, or unconditional uncertainty, is then

son ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � 1

ðzon;m � �zonÞ2
r

ð4:8Þ

According to Bayesian probability theory, the observation uncertainty will be
less than the observation error given by Eq. 4.8. In Bayesian theory, the conditional
probability, denoted as PðAjBÞ, plays a central role. It is the probability of observing
event A given that event B is true. Bayes’s theorem states that PðAjBÞ = c PðAÞ with
c ¼ PðBjAÞ=PðBÞ, where PðAÞ and PðBÞ are the probabilities of observing events A
and B without regard to each other. Using the expression for c, it can be shown that
for events related by an underlying process c[ 1. In our problem dealing with
parameter estimation, a probability may be considered as a measure for the degree
of certainty. Let us consider PðAjBÞ as the probability of the parameters observed at
time tmþ 1 (event A) taking into account the parameters observed at an earlier time
tm (event B), while PðAÞ is the probability of event A when event B would not have
taken place. In other words, PðAjBÞ represents the degree of certainty at observation
time tmþ 1 while PðAÞ represents the degree of certainty at the earlier time tm. And
because c[ 1, the degree of uncertainty 1� PðAjBÞ at time tmþ 1 is smaller than
the degree of uncertainty 1� PðAÞ at time tm. The more observations become
available, the more we may trust the time average obtained from Eq. 4.7; the results
become much less uncertain than expressed by Eq. 4.8. For application of history
matching by Bayesian estimation see, for instance, Gavalas et al. (1976), and for
more details on probability theory see Jaynes (2003).

The above-presented ideas can be worked out using the Kalman filter, in which
Bayesian probability theory is embedded. The Kalman filter is applicable under the
assumption that the observations, with error determined by Eq. 4.8, are realizations
of serially uncorrelated random observations with zero mean and finite variance
(white noise) with Gaussian statistics. A detailed explanation of the Kalman filter,
both for linear and nonlinear processes, is presented in Sect. 4.3; below we present
only the results derived in Sect. 4.3.1 from the linear Kalman filter theory. As a
result, we consider the following simple recurrence relations for the analysis state
xan;m of log-conductivity n after observation m

xan;m ¼ gmz
o
n;m þð1� gmÞxan;m�1 ð4:9Þ

rn;m ¼ ffiffiffiffiffiffi
gm

p
son ð4:10Þ

gm ¼ gm�1 þ b
1þ gm�1 þ b

; g1 ¼ 1 ð4:11Þ

where standard deviation rn;m represents the uncertainty in the analyzed
log-conductivity xan;m; gm is the Kalman gain after observation m while dimen-
sionless quantity b represents the relative model error.
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According to Darcy’s law, the model “conductivity at time m equals conduc-
tivity at time m� 1” is correct for the groundwater flow as it occurs in reality.
However, in our approach, we do not deal with the real groundwater flow; we deal
with the flow as calculated by the flux model and the head model. These models do
not represent reality exactly, but only approximately. In the double constraint
method, the conductivities for the grid volumes (or for larger units; see Chap. 6) are
estimated by equating them to the flux calculated from the flux model divided by
the head gradient calculated by the head model. Depending on the reliability of the
flux and head model, this flux/head gradient ratio—i.e., the model’s conductivity—
may vary somewhat when the flow pattern is changing in time. As an example, we
illustrate this idea by considering models in which the conductivities are assumed to
be isotropic. In that case, conductivity kn;iþ 1 in grid volume n is determined from
the calculated flux/head gradient ratio jqFn;ij=jrhHn;ij (Chap. 3, Sect. 3.6). If the real
conductivity is not exactly isotropic, the thus-determined conductivity will turn out
to be dependent on the time-dependent flow pattern. For instance, the calculated
kn;iþ 1 will be smaller for flow patterns in which the flow is more vertical and will be
larger for flow patterns in which the flow is more horizontal. In the Kalman filter,
such deviations from the model “conductivity at time m + 1 equals conductivity at
time m” can be accounted for by the introduction of a finite model quality
0\1=b\1, which causes that estimation uncertainty rn;m does not tend to zero
when the time series grows longer and longer. Some uncertainty will always be
present.

The Kalman filter is based on the assumption that the log-conductivities zon;m
observed by the double constraint method (DCM) may be considered as a Gaussian
random process. In addition, the Kalman filter requires a sequence (history) of
independent observations. As a consequence, the iterative DCM update procedure
ðkn;iþ 1Þm ¼ ðkn;ijqFn;i=qHn;ijÞm (described in Chap. 3) has to be based on indepen-
dently chosen initial conductivities ðkn;1Þm. In other words, at observation time m
conductivity ðkn;1Þm may not be influenced by knowledge obtained from the earlier
DCM observations 1, 2, …, m� 2, m� 1. The simplest way to obtain this inde-
pendency is to specify the same initial conductivities kn;1 for all observation times
m. In that case, only the observation errors and uncertainties in the measurement
ranges are meaningful; the zero, or almost zero, observation errors and uncertainties
in the terra incognita are meaningless (see Chap. 3, Sect. 3.2). In other words, son
and rn;m determined by Eqs. 4.1 and 4.10 are meaningful only in the measurement
ranges and have to be replaced with a realistic assessment of the observation errors.
Such a realistic assessment can be obtained by choosing, at each observation time
m, different initial conductivities ðkn;1Þm obtained from a number of realistic
alternative geological models (for instance, based on geological or hydrogeological
“soft data”). In the Kleine Nete case study presented in Chap. 5, these two
approaches have been applied and compared.

Let us, for the moment, assume that the model is error-free; i.e., its quality factor
1=b is infinitely large. Then recurrence equation Eq. 4.11 yields the following result
for the Kalman gain
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gm ¼ 1
m

ð4:12Þ

Substitution into Eq. 4.9 yields

xan;M ¼ 1
M

XM
m¼1

zon;m ¼ �zon ð4:13Þ

while Eq. 4.10 results in

rn;M ¼ 1ffiffiffiffiffi
M

p son ð4:14Þ

We observe from Eq. 4.13 that without model error the Kalman estimate is equal
to the moving average of the observations, from which it follows that in that case
Eq. 4.7 is the correct estimate. More importantly, Eq. 4.14 shows that the esti-
mation uncertainty decreases below the observation error presented by Eq. 4.8 and
will eventually become zero if there were no model error. The thus-obtained simple
Eq. 4.14 is well known in metrology and is presented in many texts on measure-
ment techniques for industrial engineering to show the difference between mea-
surement error and uncertainty; see for instance, Bell (2001).

Equation 4.13 suggests that the Kalman estimate is independent from the order in
which the observations have taken place. For instance, for 100 observations (M = 100),
the Kalman estimate xan;100 for the observed time series zon;1; z

o
n;2; z

o
n;3; . . .; z

o
n;99; z

o
n;100

is the same as for the observed time series zon;100; z
o
n;2; z

o
n;99; . . .; z

o
n;2; z

o
n;1. This

principle has been applied in the Kleine Nete case study presented in Chap. 5.
However, in reality, it is not that simple. The exact Kalman filter recurrence

equations show that, for a nonzero model error b[ 0, the above approximation
looses its validity after a number of, say M1\1, observations (see below). After
these M1 observations, the Kalman filter becomes steady (see Sect. 4.3.3 of this
chapter). Then its estimate is no longer exactly equal to the moving arithmetic
average (Eqs. 4.7 and 4.13), but to a weighted average in which the last observa-
tions have greater weight than the earlier observations. However, such theoretical
differences do not have practical consequences; also when a model error is
accounted for, Eqs. 4.7 and 4.13 may be applied as a good approximation, as has
been verified by numerical experiments based on the Kleine Nete case study
(Chap. 5).

More importantly, after these M1 observations, the estimation uncertainty does
no longer decrease; i.e., in Eq. 4.14 the number M has to be replaced with M1. The
observation sequence (observation history) may then be terminated because more
reliable calibration results cannot be obtained.

For a sufficiently high-quality factor 1=b (e.g., 1=b� 1000) Eq. 4.11 shows that,
for sufficiently small m, gm ¼ 1=m and rn;m ¼ son=

ffiffiffiffi
m

p
, which shows that the
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observation uncertainty decreases below the observation error. However, when m
becomes sufficiently large, Eq. 4.11 shows that the Kalman filter becomes steady,
i.e., gm ! g1 � ffiffiffi

b
p

independent from further recursion steps (for a proof see
Sect. 4.3.3 of this chapter). As a consequence, after a sufficient number of Kalman
filter steps M1 the situation is reached where g1 � 1=M1 and g1 � ffiffiffi

b
p

; that is,
we find

M1 �
ffiffiffi
1
b

r
ð4:15Þ

For instance, assuming a quality factor 1=b � 1000, we find for Eq. 4.10 after
M1 ¼ 32 ¼ ffiffiffi

1
p

024 recurrence steps based on 32 log-conductivity observations
that the estimation uncertainty is equal to rn;M1 ¼ son

ffiffiffi
b4

p � 0:18� son. In other
words, the uncertainty does no longer decrease: the Kalman filter recurrence may be
terminated because more reliable results cannot be obtained.

From the above discussion, we see that an estimate of model quality 1=b (i.e.,
relative model error b) is, in fact, an estimate of the smallest possible observation
uncertainty with respect to the observation error. This estimate is more or less
subjective and depends on the experts’ experience in confrontations between
stubborn reality with results obtained from modeling and its underlying assump-
tions and soft data. For this estimation, we have also to take into account that the
Kalman filter should be able to react to a trend reversal, i.e., to an unanticipated
change in the hydrogeological situation, for instance, a relatively sudden change in
conductivity caused by subsidence/compaction or an earthquake. This means that in
the limit of a great many of observations the Kalman gain has to be finite (g1 [ 0).
Indeed, if this limit tends to g1 ! 0 Eq. 4.9 results in xan;m ! xan;m�1; a situation in
which the log-conductivities are fully determined by the model and cannot,
therefore, react to the observations zon;m. More generally, a steady Kalman filter with
nonzero Kalman gain is especially important when the Kalman filter does not only
handle the parameters, but also other state variables like heads and fluxes. In such
applications, the Kalman filter is not terminated, like in the above-presented
example, but it is continued with a constant, observation-independent Kalman gain:
the so-called steady Kalman filter (SKF); also see Sect. 4.3.3. In conclusion, we
may not trust a model for 100%. There has to be room for doubts, for assimilation
of additional observations. This can be accomplished by a finite steady Kalman gain
(also see Sect. 4.3.3).

Quite a number of modeling studies are devoted to flow in which not only
specific storage is negligible (i.e., incompressible flow) but in which also the
phreatic storage term in Eq. 4.6 is negligibly small. Such studies are generally
based on time-averaged models and time-averaged flux and head measurements
(see Eq. 4.6). Assuming that the time-averaged model is approximately linear, we
may apply Eqs. 4.13 and 4.14 to determine the log-conductivities and the obser-
vation uncertainty with respect to the observation error, rn;M=son. However, in this
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type of time-averaged modeling, the error cannot be determined by Eq. 4.8. This
idea has been illustrated in the Schietveld case study presented in Chap. 5.

4.3 In Depth: A Closer Look at the Kalman Filter

In contrast to Sect. 4.2, this section briefly introduces the Kalman filter in its
general form. A complete description of the Kalman filter can be found in Jazwinski
(1970) and Maybeck (1979) while a good introduction is presented by Welch and
Bishop (2006). Below we present an introduction based on the line of thought
developed at Deltares (Delft, The Netherlands) in the context of oceanography; see,
for instance, Zijl et al. (2015). While keeping their line of thought, we have
rewritten their original text in order to address the specific problems encountered in
porous media flow.

4.3.1 The Kalman Filter (KF)

This section deals with the original Kalman filter, initially introduced by Kalman
(1960). Generally speaking, the Kalman filter is a recursive algorithm for estimating
the state of a time-dependent system. The estimation is accomplished by a linear
combination of spatially distributed observations and a forecast (a prediction by a
forecast model). To be sure, the three concepts “state,” “observation”, and “model”
introduced in the terminology of the Kalman filter theory do not necessarily cor-
respond with the meaning of these concepts in physics, hydrogeology, or petroleum
reservoir engineering.

In a groundwater flow system (an aquifer–aquitard system), the NS components
xn;m (n ¼ 1; 2; . . .;NS) of the Kalman filter’s state vector xm at time tm are the heads
in the grid volumes, as well as the conductivities in the grid volumes (in some cases
also the specific storage coefficients in the grid volumes and the specific yields on
the water table). The Kalman filter’s forecast model consists of the following two
hydrogeological models:

(i) The parameter forecast model. This model simply states that the value of a
parameter (conductivity, specific storage coefficient, specific yield) at obser-
vation time tm is equal to its value at an earlier observation time tm�1\tm.

(ii) The head and flux forecast model. Conventionally this model is the flux
model, as defined in Chaps. 2 and 3.

Since the measured fluxes (pumping well rates, recharge rates) are already
embedded in the Kalman filter’s forecast model, these fluxes are not considered as
observations in the Kalman filter sense. In contrast to conventional hydrogeological
applications of the Kalman filter, we propose to extend the Kalman filter
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observations by considering some parameters as “observed” parameters in the
Kalman filter sense. In this unconventional extension, these observations may come
from different sources, for instance, from laboratory measurements on borehole
permeabilities, from extrapolations of outcrop data, from geological rock models, in
summary, from “soft data.” Here, we will mainly focus on conductivities “ob-
served” by the double constraint method. As a consequence, in this approach, the
NO components zn0;m, n0 ¼ 1; 2; . . .;NO, of observation vector zm at time m are not
only heads, but may also be conductivities.

The state estimation is performed at each time tm where observation m comes
available. The update of state vector xm�1 (a column vector with NS components) at
observation time m� 1 to state vector xm at observation time m is accomplished by
the stochastic forecast equation

General KF KF for simplemodel
xm ¼ Fmxm�1 þwm xm ¼ xm�1 þwm

ð4:16Þ

where “General KF” shows the general Kalman filter, while “KF for simple model”
shows the Kalman filter in which only conductivities, not heads, are contained in
the state vector and in which all state vector conductivities are “observed” (in this
case NO ¼ NS). Vector Fmxm�1 (a column vector with NS components) represents
the forecast model, while vector wm accounts for the random forecast errors (not for
the systematic errors) by Gaussian white noise with zero ensemble mean. To keep
all state variables and observations within the interval �1\xn;m\1, as required
for a Gaussian distribution, we do not use conductivity kn;m in vector x, but we use
instead its logarithm xn;m ¼ ln kn;m. For the specific storage coefficient and the
specific yield, we may use xn;m ¼ ln sn;m and xn;m ¼ ln½ðhn;m=ð1� hn;mÞ�, respec-
tively; these transformation also guarantee that the parameters remain nonnegative.

Matrix notation Fmxm�1 for the forecast model suggests that matrix Fm (an
NS � NS matrix) is independent from the state vector. That is, this notation suggests
that the forecast of time m is a linear combination of the state vector components at
earlier observation time m� 1. In the original filter as proposed by Kalman (1960),
this was indeed the case. However, in models for groundwater flow or petroleum
reservoir simulations, matrix Fm generally depends on the state vector. Let us, for
instance, consider a simple flux model for quasi-steady-state groundwater flow
(Eq. 2.3) and specified conductivities (only heads in the state vector). Under these
conditions, the groundwater flow model to calculate the heads xm (Eq. 2.4) results
in a forecast model Fmxm�1 that is independent from the state vector (i.e., matrix Fm

depends on x�1
n;m�1). In that case, forecast model Fmxm�1 depends only on

time-dependent data like recharge rates at time m.
The above update (Eq. 4.16) is related to the NO observations zm (a column

vector or NO � 1 matrix) by the stochastic observation equation
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General KF KF for simplemodel
zm ¼ Hmxm þ vm zm ¼ xm þ vm

ð4:17Þ

where NO � NS matrix Hm is the observation matrix. Vector vm (an NO � 1 matrix)
represents white noise with zero ensemble mean; it accounts for the random errors
in the observations (again, not for the systematic errors).

In the Kalman filter, the random errors are assumed to be Gaussian and inde-
pendent from observation m� 1 to observation m. These errors are represented by
covariance matrices Qm (an NS � NS matrix) for model noise wm and Rm (an NO �
NO matrix) for observation noise vm.

The Kalman filter results in an analysis state xam. This analysis state may be
considered as a weighted average between a forecast state x fm obtained by the
forecast model and the observation state zom obtained from the observations. The
analysis state is obtained by the forecast step followed by the analysis step.

In the forecast step, forecast mean vector x fm and its covariance matrix Pf
m (an

NS � NS matrix) are updated by the forecast model (the groundwater flow model)
resulting in (see Eq. 4.16)

General KF KF for simplemodel
x fm ¼ Fmxam�1 x fm ¼ xam�1

ð4:18Þ

Pf
m ¼ FmPa

m � 1F
T
m þ Qm Pf

m ¼ Pa
m � 1 þ Qm ð4:19Þ

In which superscript T denotes the transpose of the matrix.
In the analysis step, the forecast state is combined linearly with the available

observation state zom to obtain the analysis state xam

General KF KF for simplemodel
xam ¼ x fm þ Gmðzom � Hmx fmÞ xam ¼ x fm þ Gmðzom � x fmÞ ð4:20Þ

Pa
m ¼ ðI � GmHmÞPf

m Pa
m ¼ ðI � GmÞPf

m ð4:21Þ

where the Kalman gain matrix Gm (an NS � NO matrix) is given by

General KF KF for simplemodel
Gm ¼ Pf

mH
T
mðHmPf

mH
T
m þ RmÞ�1 Gm ¼ Pf

mðPf
m þ RmÞ�1 ð4:22Þ

and I is the unit NS � NS matrix. Instead of denoting the Kalman gain by the usual
symbol K, we denote it by the symbol G to avoid confusion with the hydraulic
conductivity. The expressions for the optimal analysis state, the state in which we
are interested, can be obtained by elimination of the forecast state vector x fm and the
forecast covariance matrix Pf

m.
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For the simple model, “parameter value at observation m is equal to parameter
value at observation m � 1,” NS ¼ NO and the resulting equations for the anal-
ysis state are

Gm ¼ ðPa
m � 1 þ QmÞðPa

m � 1 þ Qm þ RmÞ�1 ð4:23Þ

xam ¼ Gmz
o
m þ ðI � GmÞxam � 1 ð4:24Þ

Pa
m ¼ ðI � GmÞðPa

m � 1 þ QmÞ ð4:25Þ

In these equations, Rm is the covariance matrix of the observation error while Qm

is the covariance matrix of the model error (forecast error). If the flow system is
stable and time-invariant, these matrices do not change much during the recursion
time interval from time m ¼ 1 to time m ¼ M. Under the condition that they
remain unchanged, we may omit index m in observation error R and in model error
Q. It is then reasonable to assume that these matrices are proportional to each other,
i.e., we assume Q ¼ bR in which constant b represents the model error with
respect to the observation error (see Sect. 4.2 for the justification of relating model
error to observation error). Equation 4.25 shows that the analysis covariance matrix
of the uncertainty after analysis step, m, Pa

m, changes during the recursion. Because
the Kalman filter incorporates Bayesian probability calculus, we may expect that
the analysis uncertainty is initially (at time m = 1) equal to the observation error
and decreases gradually when more and more observations come available (at times
1 \ m � M). These assumptions result in Pa

m � 1 ¼ gm � 1R and substitution into
Eqs. 4.23, 4.24, and 4.25 yields

Gm ¼ gmI ¼ gm � 1 þ b
1 þ gm � 1 þ b

I ð4:26Þ

xam ¼ gm z
o
m þ ð1 � gmÞ xam � 1 ð4:27Þ

Pa
m ¼ gmR ð4:28Þ

From Eq. 4.26, we see that gm \ gm � 1 \ 1, which clearly illustrates the
well-known engineering wisdom: uncertainty is not equal to measurement error.
Equations 4.26, 4.27, and 4.28 form the basis of the uncertainty/error analysis
presented in this chapter, Sect. 4.2.

The Kalman filter results in a state estimate xam that is optimal in various senses:
minimum variance, maximum likelihood, and mean square error senses (Maybeck
1979). However, some practical difficulties hamper its implementation for large
models (e.g., hydrogeological, reservoir engineering, meteorological, oceano-
graphic models).

The simple case “parameter value at observation m is equal to parameter value at
observation m – 1” is computationally cheap and the assumption of linearity upon
which the Kalman filter is based is satisfied (because Fm ¼ I is the unit matrix).
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However, the general Kalman filter is difficult to apply because of computational
cost to propagate the forecast and its error covariance. For a system with NS state
variables, covariance Pa is an NS � NS matrix. A typical groundwater flow model
has often hundreds of thousands of variables (heads and conductivities in the grid
volumes). Hence, it is computationally too costly to implement the Kalman filter in its
original form. In addition, the linearity assumption of the forecast model is not honored;
a groundwater flow model combined with parameter identification is nonlinear. In the
next two sections, two approaches that can solve these issues are briefly summarized.

4.3.2 The Ensemble Kalman Filter (EnKF)

Although this book does not present a case study based on the ensemble Kalman
filter (EnKF), we introduce this method because the EnKF is a promising method
gaining more and more popularity in all branches of science and technology dealing
with forecasts. Moreover, the reinvention of the DCM by Brouwer et al. (2008) was
intended as a remedy for the loss of geological information caused by
EnKF-smoothing (see Sect. 4.3.4). The EnKF was originally introduced by
Evensen (1994) for numerical weather forecasting, and the method is also popular
in oceanography (Zijl et al. 2015), hydrology (Chen and Zhang 2006), and petro-
leum reservoir engineering (Naevdal et al. 2002; Aanonsen et al. 2009). Below we
present an introduction to the EnKF that was originally written for oceanographic
applications (Zijl et al. 2015) and has substantially been modified by us to be
applicable for hydrology and petroleum reservoir engineering.

The EnKF is a Monte Carlo approximation of the linear Kalman filter introduced
in Sect. 4.3.1. In the original Kalman filter (KF), the probability density function
(pdf) of state vector xm is represented by an ensemble with an infinite number of
ensemble members NR ! 1. However, in the EnKF, this pdf is approximated by
an ensemble with a finite number of ensemble members NR \ 1, for instance
NR ¼ 100. As will be shown below, this discretization allows us to avoid the
handling of the covariance matrix Pm (an NS � NS matrix), which is an extremely
great advantage, because in almost all practical applications of the Kalman filter, the
number of state variables NS (in hydrogeological applications the heads and the
conductivities in all grid blocks) is extremely large. Another important advantage is
that EnKF can handle, in a relatively simple way, models in which matrix Fm is
dependent on the state vector. This allows us to apply the EnKF to all types of
models, among which quasi-steady-state models, while including data assimilation
(in the sense of calibration of the flux model in the strict sense as defined in Chap. 3,
Sect. 3.9.1).

To deal with the EnKF, we introduce for each observation time m an ensemble
matrix Xm = ðx1;m; x2;m; . . .; xr;m; . . .; xNR;mÞ, an NS � NR matrix whose columns
xr; m (r ¼ 1; 2; . . .; NR) are the ensemble members. Except for the initial prior
ensemble (the ensemble at observation time m ¼ 1), the ensemble members are
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not generally independent because subsequent observation steps m ¼ 2; 3; . . . tie
the ensemble members together. However, as an approximation, we proceed with
all calculations as if they were independent.

In the forecast step of the EnKF, the mean is not calculated directly like in the
original Kalman filter (Eq. 4.18). Instead, the mean is determined indirectly. For
each ensemble member r, forecast model Fmxar;m�1 perturbed by a realization of

model error wr;m is used to calculate the forecast state x fr;m at observation time m
from the analysis state xar;m�1 at earlier observation time m � 1

x fr;m ¼ Fmx
a
r;m�1 þwr;m ð4:29Þ

Equation 4.29 can easily be used if forecast matrix Fm is dependent on state
vector xar;m�1, which allows us to consider incompressible flow models. Instead of
specifying the conductivities, or estimating them by DCM, the log-conductivities
are included in the state vector, which results in calibration of the flux model in the
strict meaning of calibration as defined in Chap. 3, Sect. 3.9.1.

The ensemble mean x fm is approximated by averaging overall NR ensemble
members

x fm ¼ 1
NR

XNR

r¼1

x fr;m ð4:30Þ

while the covariance matrix (an NS � NS matrix) is approximated by

Pf
m ¼ Lf ;Tm L f

m ð4:31Þ

where L f
m is defined as the NS � NR matrix

L f
m ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NR � 1
p ½ðx f1;m � x fmÞ; . . .; ðx fr;m � x fmÞ; . . .; ðx fNR;m � x fmÞ� ð4:32Þ

In the analysis step, each ensemble member is updated by

xar;m ¼ x fr;m þGmðzom � Hmx
f
r;m þ vr;mÞ ð4:33Þ

in which vr; m is a realization of the observation error, while the Kalman gain is
calculated by

Gm ¼ L f
mL

f ;T
m HT

mðHmL
f
mL

f ;T
m HT

m þRmÞ�1 ð4:34Þ

Equation 4.34 is essentially the same equation as Eq. 4.22 for the Kalman gain
of the original Kalman filter. The ensemble analysis state is approximated by the
mean overall ensemble members
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xam ¼ 1
NR

XNR

r¼1

xar;m ð4:35Þ

Because the mean of infinite ensemble vm of the observation noise is equal to
zero, the mean of the finite ensemble vr;m will be approximately equal to zero (at
least for a sufficient number of ensemble members). Therefore, using Eq. 4.35 to
determine the mean of Eq. 4.33 leads to an approximation of equation as Eq. 4.20
for the analysis state gain of the original Kalman filter. Similarly, we can use
Eq. 4.21 of the original Kalman filter to find the covariance vector in the analysis
state

Pa
m ¼ ðI � GmHmÞLf ;Tm L f

m ð4:36Þ

This covariance matrix is not necessary for the update of the state vector.
However, it gives additional information: the variances of the uncertainties in the
diagonal, diagðPa

mÞ, of matrix Pa
m, as well as the covariances of the correlations in

the off-diagonal components Pa
m � diagðPa

mÞI. Especially the covariances of the
correlations between the log-conductivities are interesting from a hydrogeological
point of view; also see Sect. 4.3.4.

In the update step (Eq. 4.33 followed by Eq. 4.35), the Kalman gain (Eq. 4.34)
plays an essential role. Equation 4.34 shows that to determine the Kalman gain it is
not necessary to compute the covariance matrix Pf

m from Eq. 4.31. This is in great
contrast with the original Kalman filter (Sect. 3.3.1), in which the covariance matrix
has first to be calculated explicitly by Eq. 4.19 and has then to be handled in
Eq. 4.22 to determine the Kalman gain, which leads to excessive computational
requirements, also because the matrix HmPf

mH
T
m þ Rm has to be inverted.

Consequently, for problems with large state vectors and large numbers of observed
data, the EnKF is the only computationally feasible approach to data assimilation
compared with the original KF.

To avoid spurious correlation leading to filter divergence, which is caused by the
limited ensemble size, a distance-dependent covariance localization is generally
applied (Hamill et al. 2001; Houtekamer and Mitchell 1998; Lee et al. 2011; Zhang
and Oliver 2011). Covariance localization cuts off longer range correlation in the
error covariance at a specified distance. The accuracy of the EnKF is highly
dependent on the size of the finite ensemble. To obtain sufficiently accurate results,
a relatively large number of ensemble members is required, which increases the
computational cost. Fortunately, for quite a number of practical applications, the
computational cost can be considerably reduced by the steady Kalman filter pre-
sented in Sect. 4.3.3.
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4.3.3 The Steady Kalman Filter (SKF)

As has been exemplified in Sect. 4.2, the Kalman gain Gm (Eqs. 4.23 and 4.35) of
a stable time-invariant system converges for m ! 1 to a finite limiting value
G1 6¼ 0 (Anderson and Moore 1979). This steady Kalman filter is computationally
very efficient and has been proven reliable in many applications; see, for instance,
Heemink (1990), Verlaan et al. (2005), Zijl et al. (2015). Different techniques have
been introduced for calculating a steady Kalman gain. One method is to compute a
steady Kalman gain by averaging a time series of Kalman gains computed by the
EnKF (El Serafy and Mynett 2008). The resulting steady Kalman gain is then
applied to the original Kalman filter equations (Eqs. 4.20 and 4.21) to determine the
update of state vector xam and the components of covariance matrix Pa

m in which we
are interested.

As an illustration, we consider again the simple case “parameter value at
observation m is equal to parameter value at observation m� 1” discussed in
Sect. 4.3.1 and Sect. 4.2. From Eq. 4.26, it follows that
gmgm � 1 þ gmb � b = gm�1 � gm. In the limit m ! 1 this becomes

g21 þ g1b� b ¼ 0 resulting in g1 ¼ ½ð12bÞ2 þ b�1=2 � 1
2b. If relative model error

b is small (e.g., 0 \ b \ 0:001), the approximation g1 � b1=2 is a sufficiently
accurate approximation of the steady Kalman gain. From Eq. 4.28, it follows then
that the vector of variances of the steady Kalman analysis state,
ðr21;1; . . .; r2n;1; . . .; r2N;1ÞT = diagðPa

1Þ, is equal to b1=2ððso1;1Þ2; . . .; ðson;1Þ2; . . .;
ðsoN;1Þ2ÞT , where ððso1;1Þ2; . . .; ðson;1Þ2; . . .; ðsoN;1Þ2ÞT = diagðRÞ is the vector of
variances of the observation error. In other words, the uncertainty rn;1 in
log-conductivity xn;1 as determined by the Kalman filter is a factor b1=4 (a factor
0.2, say) times the observation error son of log-conductivity xn “observed” by the
double constraint method. In this simple case, we may terminate the Kalman filter
recursion; further recursion steps do not result in a smaller uncertainty. However,
when using the steady-state Kalman filter in general applications, in which not only
time-independent parameters, but also time-dependent state variables like heads,
flow rates play a role, continuation of the Kalman filter recursion with the SKF
makes sense and is a good alternative for the computationally demanding EnKF.

4.3.4 Balancing Between Over-Smoothing
and Under-Smoothing

In hydrogeological modeling and petroleum reservoir simulation, data assimilation
by the ensemble Kalman filter and steady Kalman filter (EnKF/SKF) may lead to
loss of heterogeneity. In such cases, the EnKF/SKF is over-smoothing; geo(hydro)
logists complain that calibration causes the loss of their geological models and
insights.
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The first type of over-smoothing is caused by the fact that the Kalman filter is
based on two-point geostatistics in the form of multi-Gaussian random fields.
However, the hydrogeological system—i.e., the spatial conductivity distribution—
is often better described by a multiple-point geostatistical model, especially when
channels play a role in the geological structure (Huysmans et al. 2008; Huysmans
and Dassargues 2009, 2011). The analysis state obtained by a Kalman update is a
linear combination of the forecasted and the observed ensemble (see Eqs. 4.20 and
4.33). In this update only the variances and covariances of the forecast and the
observation play a role, thereby only preserving two-point geostatistics. As a
consequence, the EnKF gradually smoothes the multiple-point geostatistical model
—in which more characteristics than only variance and covariance play a role—to a
two-point geostatistical model. Solutions to overcome this kind of “Gaussian
smoothing” have been proposed, mainly in the field of petroleum reservoir simu-
lation (Agbalaka and Oliver 2011; Sarma and Chen 2009).

The second type of over-smoothing is caused by the fact that there are generally
much less measurements than grid block conductivities that have to be calibrated. In
Chap. 2, Sect. 2.4.1, it has been shown that the number of uncorrelated conduc-
tivities that can be determined is equal to the number of head and flux measurement
points (minus one). The DCM in which each grid block is considered as a zone,
without correlation between the conductivities in these grid block zones, leads
generally to under-smoothing. On the other hand, the EnKF smoothly interpolates
the ensemble means of the log-conductivities (as given by Eq. 4.35) between the
measurement points. Such a smoothed conductivity field may deteriorate the ini-
tially specified geo(hydro)logical model with different rock types having appre-
ciably different conductivities (for instance, in an aquifer-aquitard system).

This type of over-smoothing could be remediated by considering some con-
ductivities as Kalman filter observations. For instance, in the “terra incognita”
determined by the double constraint method (Chap. 3, Sect. 3.2), we could consider
the conductivities obtained from one or more hydrogeological models (the soft
data) as observations. This could be done in a way comparable with the double
constraint approach in the case study presented in Chap. 5, Sect. 5.2. Doing so, the
EnKF honors the additional geo(hydro)logical information (soft data) without
deteriorating the match with the measured heads. In fact, to satisfy the geologists’
need for preservation of their geological models (obtained after hard work based on
their great expertise), Brouwer et al. (2008) reinvented the double constraint method
as a possible remedy for the loss of geological information caused by
EnKF-smoothing. This idea could be an interesting subject for future research and
development. Also, see the discussion on over-smoothing in Sect. 3.5 of Chap. 3.
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Chapter 5
Case Study Kleine Nete: Observation
Error and Uncertainty

5.1 Introduction

To illustrate the difference between observation error and uncertainty, we consider a
case study related to the Kleine Nete basin (El-Rawy 2013; El-Rawy et al. 2015).
The basin is located in the northeast of Belgium, 65 km from Brussels, and com-
prises 581 km2. The elevation of the basin is between 3 and 48 m with an average
slope of 0.36%. The soil map indicates that sand is the most extensive occurring
soil texture, while some loamy sand, sandy loam, and sandy clay are present in the
valleys. The average precipitation is about 840 mm/y. The distributed recharge,
reff ðx; y; tÞ (see top boundary conditions Eqs. 2.5–2.7), was estimated half-monthly
for the year 1992 using the WetSpa model (Dams et al. 2008, 2012). The averaged
recharge, about 500,000 m3/d, is an order of magnitude larger than the 50,000 m3/d
abstracted by the 565 pumping wells. Heads were measured in observation wells,
also half-monthly for the year 1992; see Fig. 5.1.

The groundwater flow model has been presented by Dams et al. (2008, 2012)
and is based on MODFLOW software (Harbaugh et al. 2000; Harbaugh 2005), a
flux-continuous block-centered finite difference approximation of Eqs. 2.1–2.7. The
conductivities are determined by the double constraint method (DCM), which is
based on two models: a flux model and a head model (Sect. 3.2). The head model
matches exactly with the heads measured in the observation wells, while the, flux
model matches exactly with the imposed flux data (recharge rates and pumping well
rates). As a result of MODFLOW’s flux-continuous approximation, the flux model
over-estimates the head gradients. As a consequence, the flux model does not
exactly reproduce the measured heads and cannot, therefore, be considered as a
calibration method (calibration in the strict sense). In other words, the DCM is an
imaging technique, as explained in Sect. 3.9 of Chap. 3). However, in the Kleine
Nete model (more precisely, the Kleine Nete flux model), this head mismatch
turned out to be small with respect to the measurement errors.

© The Author(s) 2018
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The model domain is discretized horizontally in 722 columns and in 511 rows
with horizontal grid block dimensions Dx ¼ Dy = 50 m. In the vertical direction,
the gridding consists of two layers with varying thickness Dzðx; yÞ. Hence, the
model is discretized with 737,884 grid blocks. Provided that the vertical head
gradient @h=@z is small with respect to the horizontal head gradient, MODFLOW’s
finite difference formulation of Darcy’s law yields a sufficiently accurate approxi-
mation for varying layer thickness.

The WetSpa-estimated distributed recharge reff ðx; y; tÞ gives input to
MODFLOW’s RCH package, while the WELL package manages the pumping
wells. A no-flow condition is assumed for the catchment boundary. MODFLOW’s
RIVER package is used to simulate rivers, canals, and lakes. However, the DRAIN
package is preferred for simulating groundwater drainage to small streams and
wetlands. The drain-level parameter is estimated as the highest elevation in the soil
profile where oxidation is observed. Above this level, groundwater will discharge
(Batelaan and De Smedt 2004). The horizontal initial grid block conductivities (the
conductivities before applying the DCM) kH ¼ kx ¼ ky are parameterized on basis
of information from the hydrogeological classification system for Flanders (HCOV)
(Cools et al. 2006). Model layer 1 corresponds to Quaternary, Pleistocene, and
Pliocene formations, while model layer 2 represents the productive Miocene aquifer
(HCOV 025).

For the conductivity estimation, update rule Eq. 3.8 is applied in the modified
form.

Fig. 5.1 Observation wells in Kleine Nete catchment, Belgium
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kx;iþ 1 ¼ kx;i
jQF

x;ij þQe

jQH
x;ij þQe

ky;iþ 1 ¼ ky;i
jQF

y;ij þQe

jQH
y;ij þQe

kz;iþ 1 ¼ kz;i
jQF

z;ij þQe

jQH
z;ij þQe

ð5:1Þ

where Qx ¼ qxDyDz, Qy ¼ qyDzDx, Qz ¼ qzDxDy denote the grid block averaged
fluxes [L3 T−1] in the x, y, and z direction through the corresponding surface areas.
These fluxes are obtained by linear interpolation of the face-based fluxes calculated
by MODFLOW. The relatively small flux Qe ¼ 0:01 m3=d is introduced to avoid
division by zero. Generally, division by zero may occur in grid blocks with a
production/injection well (not applicable in this particular case study), at water
divides, and in stagnation zones. For grid blocks in which the DCM resulted in too
large anisotropy ratios, mixing rule Eqs. 3.9 and 3.10 were applied to keep ani-
sotropy ratios within the interval 1:1� kx=kz � 10 while the intervals for ky=kz and
kx=ky were left unspecified which leads to reasonable ratios for the Kleine Nete
basin (El-Rawy et al. 2010; El-Rawy 2013).

The model has been run for incompressible flow (flow in which the specific
storage term s @h=@t in Eq. 2.4 is negligible), and also under quasi-steady condi-
tions (phreatic storage terms h @f=@t and h @h=@t in Eqs. 2.5 and 2.7 are negligi-
ble). The validity of these assumptions has been tested using a time-dependent
model with specific storage coefficient s ¼ 0:5� 10�5 m�1 and specific yield
h ¼ 0:25. The differences with the incompressible and quasi-steady state model
turned out to be negligible; therefore, we have chosen for the simpler and com-
putationally much cheaper quasi-steady-state model. For more details about
numerical experiments regarding the phreatic top boundary conditions, see
El-Rawy (2013: 175–177).

The DCM simulations are continued till a (local) minimum difference between
measured and simulated heads are obtained (also see Chap. 3, Sect. 3.7). The first
local minimum is reached after a relatively small number of iterations. Considering
the observation inaccuracy obtained from the time series of estimated conductivi-
ties, it is not necessary to look for a smaller local minimum, or for the global
minimum. Dealing with realistic hydrogeological problems means that it makes no
sense to simulate till an accuracy is obtained that is much higher than the accuracy
of the uncertain head and even more uncertain flux estimates. Hence, we applied a
first DCM stroke followed by two iterations.
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5.2 Case 1: Observation-Independent Initial
Log-Conductivities

As has been explained in Chap. 3, Sect. 3.2, and Chap. 4, Sect. 4.2, the uncertainty
in the conductivities calculated by the Kalman filter equations (Eqs. 4.1 and 4.10) is
meaningful only in the measurement ranges. In the terra incognita, the application
of these equations is meaningless and may, therefore, be omitted from the com-
putational scheme. However, both in case 1 presented in this section, and in case 2
presented in Sect. 5.3, we have applied these equations to all grid blocks for the
purpose of demonstration.

In case 1 is for each observation time the same initial conductivities used in DCM;
only the measured heads and fluxes differ at each observation time. DCM “observes” a
time series of 24 different log-conductivities for each of the 737,884 grid blocks. The
log-conductivity has been normalized as x ¼ lnðk=knormÞ with knorm = 1 m/d. The
differences between the initial conductivities (K0), the averaged DCM-observed
conductivities (K_after DCM, Eq. 4.7) and the KF-estimated conductivities (K_after
KF, Eq. 4.9) are shown in Figs. 5.2 and 5.3, while their standard deviations before
KF (Eq. 4.8) and after KF (Eq. 4.10) are presented in Figs. 5.4 and 5.5.

It is observed that the DCM-estimated conductivities in the measurement ranges
turn out to differ appreciably from the initial conductivities while the averaged and
KF-estimated conductivities differ relatively slightly, which shows that Eq. 4.13 is
a reasonable approximation, at least for this case with model error b ¼ 0:001, or
model quality factor 1=b ¼ 1000), see Chap. 4, Sect. 4.2.

The observation errors and uncertainties (standard deviations son and rn;M ,
respectively) have been calculated from Eqs. 4.8 and 4.10 and are presented in

Fig. 5.2 Horizontal conductivities at piezometer locations in the top layer: K0 (light grey), after
averaged DCM (dark grey) and after KF-estimation (black)
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Figs. 5.4 and 5.5. As a result of the Kalman filter, the uncertainties are about 77%
smaller than the observation errors; see Eq. 4.14 and the subsequent discussion in
Chap. 4, Sect. 4.2.

Conductivities in grid blocks further away from the piezometers have (almost)
zero variance and are therefore not presented; they indicate the “terra incognita,”
these locations are so far away from the measurements that DCM is hardly able to
update these conductivities. In reality, the uncertainty of these initial conductivities
will generally be much larger than the uncertainty in the measurement ranges.

Fig. 5.3 Horizontal conductivities at piezometer locations in the bottom layer: K0 (light grey),
after averaged DCM (dark grey) and after KF-estimation (black)

Fig. 5.4 Standard deviations of the observed conductivities at piezometer locations in the top
layer before KF (grey) and after KF (black)
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5.3 Case 2: Artificially Constructed Sequence of Initial
Log-Conductivities

In case 1 discussed in Sect. 5.2, we keep, every time DCM estimates the con-
ductivity, the initial conductivities the same. Consequently, the greatest observation
error and uncertainty was found in the measurement ranges of the piezometers; the
“terra incognita” conductivities have not been improved by DCM. Application of
the Kalman filter (Eqs. 4.1 and 4.10) is meaningful only in the measurement ranges,
except if the observation error in the terra incognita is specified explicitly. To show
the consequences of observation errors in the initial conductivities (the “soft input
data”), we introduce case 2, in which for every observation time another initial
conductivity is specified. Hence, in case 2 input to DCM and the Kalman filter
(KF) is, besides the measurements of the 24 different head-flux couples, also a
different initial conductivity pattern for each of the 24 time sequences.

We could, for instance, consider a team (hydro) of geological experts in which
each team member develops the best possible initial conductivity pattern, inde-
pendent from the other team members. This ensemble of realistic initial conduc-
tivity patterns can then be used as input for the DCM and subsequent application of
the KF. As has been anticipated in Chap. 4, Sect. 4.2 and shown experimentally for
case 1, the order in time in which the different ensemble members are applied does
not matter very much, because Eq. 4.13 is a reasonable approximation for not too
large model errors. To assign realistic initial conductivities, the hydrogeologists
have to make use of (hydro)geological information, as e.g., facies distributions,
boreholes observations, geophysical imaging. Generally, this will be in combination
with measurements of (fine-scale) conductivity from pump tests or grain size data

Fig. 5.5 Standard deviations of the conductivities at piezometer locations in the bottom layer
before KF (grey) and after KF (black)
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(Rogiers et al. 2012), which can be upscaled or homogenized (Trykozko et al. 2001;
Zijl and Trykozko 2001). Information or knowledge of (conceptual) (hydro)geol-
ogy is already frequently used in geostatistical methods applied in inverse modeling
of groundwater flow (Doherty 2003; Doherty and Hunt 2009, 2010; Doherty et al.
2010). In this respect, one of the more advanced methods is multiple-point geo-
statistics, which relies on information from geological analogs (Huysmans et al.
2008; Huysmans and Dassargues 2009, 2011).

However, for the purpose of demonstration, we have used a much simpler
approach than assigning a team of hydrogeologist to construct an ensemble of
reasonable initial conductivity patterns. We have chosen 3N different initial
log-conductivities xn (n ¼ 1; 2; . . .; 3N) of the N grid blocks (in this example
3N = 3� 737; 884 = 2; 213; 652) in such a way that the ensemble mean �xn of each
log-conductivity equals the initial log-conductivity of case 1 (index n denotes the
voxel number; Chap. 3, Sect. 3.3). A simple way to obtain an ensemble with
members xn;m is to assume xn;m = ½1þ cðm� ðMþ 1Þ=2Þ��xn, where index m ¼
1; 2; . . .;M is the member number and c is a constant. In our application, M is the
number of observations and xn;m is considered as observation m of the initial
log-conductivity of voxel n at time tm (initial means before applying DCM). For
these realizations, the mean is equal to �xn;m and is chosen equal to the initial
log-conductivity applied in case 1. The difference between the two extreme values
xn;1 and xn;M is xn;M � xn;1 ¼ cðM � 1Þ�xn. For sufficiently large M (theoretically for
M ! 1), the standard deviation of the observation error (the spread) is equal to
sn ¼ jxn;M � xn;1j=2

ffiffiffi

3
p

, which is a sufficiently accurate approximation for a finite
value of M. In our example, the number of observations is equal to M ¼ 24. We
have chosen c ¼ 0:045 resulting in xn;m = ½1þ 0:045ðm� 12:5Þ��xn,
xn;1 ¼ 0:4825�xn, xn;24 ¼ 1:5175�xn and �xn;24 � �xn;1 ¼ 1:035�xn, while the spread is
given as sn ¼ 0:2988 j�xnj. Admittedly, these realizations do not represent a
Gaussian ensemble; however, as a simple method, it is sufficiently illustrative to
exemplify the effect of soft data observation errors and initial conductivity uncer-
tainties (the soft date). In Sect. 5.4, the results of a more realistic distribution are
shown.

Comparison of the thus-obtained log-conductivities with the ones of case 1, with
zero soft data observation error, indicates for the measurement ranges that case 1
results in slightly higher conductivities than case 2; there are small systematic
differences. See Figs. 5.6 and 5.7.

The numerical experiments show that in the measurement ranges the observation
errors and resulting uncertainties, in this case with appreciable soft data observation
error (c = 0.045), are essentially the same as in the case without zero soft data
observation (c = 0); the random errors (noise) have the same magnitude. See
Figs. 5.8 and 5.9.

In the areas away from the measurement ranges, the observation uncertainties
turn out to differ considerably. As expected, the difference is greatest in the terra
incognita; i.e., the areas where the head observations cannot improve the initially
selected conductivities of the double constraint method. It is also noted that both in
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the measurement ranges and in the terra incognita the uncertainty is approximately
77% smaller than the observation error.

5.4 Case 3: Realistically Constructed Sequence of Initial
Log-Conductivities

The above-presented artificially constructed sequence of initial log-conductivities is
useful because of its simplicity and insightful expressions for the observation error
and observation uncertainty. To investigate whether the thus-obtained results make

Fig. 5.6 Horizontal conductivities for case 2 at piezometer locations in the top layer: K0 (light
grey), after averaged DCM (dark grey) and after KF-estimation (black)

Fig. 5.7 Horizontal conductivities for case 2 at piezometer locations in the bottom layer: K0 (light
grey), after averaged DCM (dark grey) and after KF-estimation (black)
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sense from a more realistic point of view we have also applied 24 initial conductivities
constructed by sequential Gaussian simulation with ordinary spatial kriging using the
Stanford Geostatistical Modeling Software (Remy et al. 2009). The results are pre-
sented in Figs. 5.10, 5.11, 5.12 and 5.13. The figures show that, in the measurement
ranges, the differences with the above-presented cases 1 and 2 are small.

Fig. 5.8 Standard deviations for case 2 of the observed conductivities at piezometer locations in
the top layer before KF (grey) and after KF (black)

Fig. 5.9 Standard deviations for case 2 of the observed conductivities at piezometer locations in
the bottom layer before (grey) and after KF (black)
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Fig. 5.10 Horizontal conductivities for case 3 at piezometer locations in the top layer: K0 (light
grey), after averaged DCM (dark grey) and after KF-estimation (black)

Fig. 5.11 Horizontal conductivities for case 3 at piezometer locations in the bottom layer: K0
(light grey), after averaged DCM (dark grey) and after KF-estimation (black)
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Chapter 6
The Zone-Integrated Double Constraint
Method

6.1 Introduction

In Chap. 2, Sect. 2.2, we have introduced smooth porous media, i.e., media for
which it is required that the Laplacian of the sqrt-conductivity, r2a, exists in the
model domain, or in a number of zones in which the model domain is partitioned.
This smoothness requirement means that the conductivity value in one point cannot
“jump” in an arbitrary way to a completely different value. In other words, the
requirement that r2a exists introduces a correlation between conductivities in
neighboring points. In Sect. 2.2, it has been exemplified that, under this smoothness
condition, the conductivities in the model domain can be determined uniquely by
imposing heads and normal fluxes on the boundaries. This exemplification illus-
trates Calderón’s conjecture (1980) stating that the conductivity field in the model
domain is uniquely determined by head and normal flux conditions on the closed
boundary, provided that the conductivity field has some smoothness or, in other
words, that conductivities in neighboring points are correlated in a “smooth” way
(e.g., by differentiability). The problem to determine what smoothness conditions
are necessary and sufficient is generally known as the Calderón problem; also see
Chap. 2, Sect. 2.4. Of course, in hydrogeological problems existence of r2a is
not a realistic assumption for the whole model domain but may be considered as a
realistic approximation for a relatively limited number of zones within the model
domain.

Application of the double constraint method in the way presented in Chap. 3
may lead to loss of smoothness at locations where smoothness is expected from a
hydrogeological point of view. To avoid such a loss of smoothness, this chapter
presents the simplest possible smoothness condition: constant hydraulic conduc-
tivity in a limited number of zones. Accounting for anisotropy this means that we
introduce NL conductivity zones in which the conductivities kx;L; ky;L; kz;L
L ¼ 1; 2; . . .;NLð Þ are homogeneous (independent from the spatial coordinates
x; y; zÞ.
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6.2 Minimization of Darcy Residual

In the framework of the double constraint methodology (Chap. 3), we consider the
sequence of conductivities kx;L;i ¼ a2x;L;i; ky;L;i ¼ a2y;L;i; kz;L;i ¼ a2z;L;i obtained from
the first DCM stroke i ¼ 0ð Þ followed by iterations i ¼ 1; 2; 3; . . .ð Þ until conver-
gence. Based on these conductivities, we calculate in the whole flow domain (in-
cluding all zones) the fluxes ðqx;n;i; qy;n;i; qz;n;iÞ that honor the flux conditions (i.e.,
we run the flux model) and we calculate the head gradients ðex;n;i; ey;n;i; ez;n;iÞ that
honor the head conditions (i.e., we run the head model). In this notation index,
n ¼ 1; . . .;N denote the points in the model domain, as has been explained in
Chap. 3, Sect. 3.3; these points represent a discrete approximation of the model
domain. The limit N ! 1 (N is extremely large in an unspecified way) denotes the
continuum, for which powerful analytical tools based on differential and integral
calculus make sense as a good approximation of reality.

To simplify the derivation, we omit the indices x, y, z and use instead the voxel
notation introduced in Chap. 3, Sect. 3.3. The Darcy residual that has to be mini-
mized with respect to an;iþ 1 is (see Eq. 3.3)

Riþ 1 ¼
XN
n¼1

ða�1
n;iþ 1qn;i � an;iþ 1en;iÞ2 ð6:1Þ

For the NL, conductivities that are homogeneous in the NL zones Eq. 3.1 can be
written as

Riþ 1 ¼
XNL

L¼1

a�2
L;iþ 1

X
DL

q2n;i � 2NL

X
DL

qn;ien;i þ a2L;iþ 1

X
DL

e2n;i

 !
ð6:2Þ

where DL represents the subdomain of zone L; summation
P

DL
fn;i is a discrete

approximation of the integral
RRR

DL
fiðx; y; zÞwðx; y; zÞdV in which dV ¼ dxdydz and

wðx; y; zÞ are a suitably chosen weighting function (see Sect. 3.4). To find a min-
imum, we determine @Riþ 1=@aL;iþ 1

@Riþ 1=@aL;iþ 1 ¼ �2 a�3
L;iþ 1

X
DL

q2n;i � aL;iþ 1

X
DL

e2n;i

 !
ð6:3Þ

The requirement for a stationary point, @Riþ 1=@aL;iþ 1 ¼ 0, results in an update
rule. Going back to the notation with indices x, y, z and using volume integrals
instead of summations over discrete approximations this update rule yields
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kx;L;iþ 1 ¼ kx;L;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRRR
DL

ðqFx;iÞ2wdVRRR
DL

ðqHx;iÞ2wdV

vuut

ky;L;iþ 1 ¼ ky;L;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRRR
DL

ðqFy;iÞ2wdVRRR
DL

ðqHy;iÞ2wdV

vuut

kz;L;iþ 1 ¼ kz;L;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRRR
DL

ðqFz;iÞ2wdVRRR
DL

ðqHz;iÞ2wdV

vuut

ð6:4Þ

for each zone L ¼ 1; . . .;NL. The second derivative of the Darcy residual is

@2Riþ 1=@a
2
L;iþ 1 ¼ 6a�4

L;iþ 1

X
DL

q2n;i þ 2
X
DL

e2n;i ð6:5Þ

and because this second derivative (Eq. 6.5) is positive, the solution (Eq. 6.4)
represents a local minimum of the residual (Eq. 6.2).

Too large anisotropy ratios may be removed by mixing rule Eq. 3.10 in which

qFx;iþ 1; q
F
y;iþ 1; q

F
z;iþ 1 are replaced with ðRRRDL

ðqFx;iÞ2wdVÞ1=2; ð
RRR

DL
ðqFy;iÞ2wdVÞ1=2;

ðRRRDL
ðqFz;iÞ2wdVÞ1=2, respectively. If we want to obtain conductivities with speci-

fied anisotropy ratios, we can use Eq. 3.11 in the modified form

kx;L;iþ 1

ky;L;iþ 1

kz;L;iþ 1

0
B@

1
CA ¼

kx;L;i
ky;L;i
kz;L;i

0
B@

1
CA

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRRR

DL
½ðqFx;iÞ2=gxz þðqFy;iÞ2=gyz þðqFz;iÞ2�wdVRRR

DL
½ðqHx;iÞ2=gxz þðqHy;iÞ2=gyz þðqHz;iÞ2�wdV

vuut
ð6:6Þ

where gxz ¼ kx;L=kz;L and gyz ¼ ky;L=kz;L are the specified anisotropy ratios; see
Chap. 3, Sect. 3.6. Also, mixed forms of dealing with anisotropy are possible. For
instance, in the Schietveld case study presented in Sect. 6.4, an update rule like
Eq. 6.6 has been used for the horizontal componentRRR

DL
½ðqFx;iÞ2=gxz þðqFy;iÞ2=gyz�wdV while an independent update rule has been used

for the vertical component
RRR

DL
ðqFz;iÞ2wdV .

In view of the approach to time-dependent flow presented in Chap. 4, Sect. 4.1,
in which the generalized Darcy law qt ¼ �kt@h=@t is proposed, it is also possible to
apply update rules like Eq. 6.6 for zones in which the zone does not consist of only
a piece of space, but in which the zone contains also a piece of time. This idea has
been worked out by De Smedt et al. (2017) for the interpretation of pumping well
tests.

6.2 Minimization of Darcy Residual 89



6.3 Grid Block Averaging

To show the integration for the block centered finite difference method (e.g.,
MODFLOW), we consider the integrals of the form

RRR
DL

q2xwdV as they occur in
update rules Eqs. 6.4 and 6.6. In this method, the grid volumes are “blocks,” i.e.,
parallelepipeds with mutually orthogonal edges in the x; y, and z directions. We
denote the three coordinates of a grid block center by xI ; yJ ; zK or, in short-hand
notation, by its three discretized coordinates I; J;K. The volume of each grid block
is then equal to DVI;J;K ¼ DxIDyJDzK , which makes that the integrals in Eqs. 6.4
and 6.6 can be written as

ZZZ

DL

q2xwdV ¼
X

ðI;J;KÞ2L

ZZZ
DVI;J;K

q2xwdV ð6:7Þ

where
RRR

DVI;J;K
q2xwdV is the integral over grid block ðI; J;KÞ, while PðI;J;KÞ2L

indicates that we have to take the sum over all grid blocks ðI; J;KÞ within zone L.
In the mathematical assumptions underlying the mixed hybrid finite element

method, or face centered finite element method, the fluxes vary linearly within a grid
volume (Chavent and Jaffré 1986; Kaasschieter 1990; Kaasschieter and Huijben
1992; Zijl 2005a, b). The block centered finite difference method differs from an
algorithmic point of view strongly from the face centered finite element method.
However, for not too large grid bocks there is near mathematical equivalence between
the two methods (Weiser and Wheeler 1988). More specifically, in the face centered
method the fluxes within the grid blocks are linear interpolations between the fluxes
through two opposite grid block faces and in the block centered finite difference
method this is approximately the case too. Therefore, we base our analysis on the
fluxes through faces I � 1

2 and Iþ 1
2 in the x-direction, the fluxes through faces

J � 1
2 ; Jþ 1

2, in the y-direction, and the fluxes through faces K � 1
2 ;Kþ 1

2 in the
z-direction. Considering the x-direction and omitting the subscript x (i.e., writing
qx ¼ qÞ linear interpolation between the fluxes through two opposite the grid block
faces results in

qðxÞ ¼ axþ b

a ¼ �
qI�1

2;J;K
� qIþ 1

2;J;K

DxL

b ¼
qI�1

2;J;K
þ qIþ 1

2;J;K

2

ð6:8Þ
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where x ¼ 0 denotes the grid block center. Integration results in

Zþ 1
2DxI

�1
2DxI

q2ðxÞdx ¼ 1
12

a2Dx3I þ b2DxI ð6:9Þ

We now choose the weighting function for flow in the x-direction equal to

wI;J;Kðx; y; zÞ ¼ 1=DVI;J;K ¼ 1=DxIDyJDzK ð6:10Þ

From Eqs. 6.8, 6.9, and 6.10, we then find

ZZZ

DVI;J;K

q2ðxÞwdV ¼ q2

¼
ðqI�1

2;J;K
þ qIþ 1

2;J;K
Þ2

4
þ

ðqI�1
2;J;K

� qIþ 1
2;J;K

Þ2
12

ð6:11Þ

If qL�1
2;M;N � qLþ 1

2;M;N , the second term at the right-hand side of Eq. 6.11 is
sufficiently small to be neglected with respect to the first term in the right-hand side,

which results in the approximation ðq2Þ1=2 � �qxj j with �qx ¼ qL�1
2;M;N þ

�
qLþ 1

2;M;NÞ=2, as introduced in Chap. 3 and applied in Chap. 5. However, in grid

blocks with sources or sinks the fluxes through two opposite faces may have
opposite directions, qL�1

2;M;N � �qLþ 1
2;M;N , which results in an intolerably poor

approximation when omitting the second term at the right-hand side of Eq. 6.11.
For that case, we have to apply the complete Eq. 6.11, which can also be written as

q2 ¼ q2I�1
2;J;K

þ qI�1
2;J;KqIþ 1

2;J;K þ q2Iþ 1
2;J;K

3
ð6:12Þ

For nonzero fluxes, Eq. 6.12 produces always positive values. For instance, if
qL�1

2;M;N ¼ �qLþ 1
2;M;N ¼ q, we find q2x ¼ q2=3. Similar expressions hold for flow in

the y- and the z-directions, as well as for the components q2x=gxz; q
2
y=gxz as they

occur in Eq. 6.6.
If zone L contains only one grid block, i.e., if L = n, the grid block averaged

terms of the form qn;i
�� �� ¼ ½ðqn;iÞ2�1=2 in Eqs. 3.7 and 3.8 may be replaced with the

terms ðq2n;iÞ1=2 resulting in

kn;iþ 1 ¼ kn;i

ffiffiffiffiffiffiffiffiffiffiffiffi
ðqFn;iÞ2
ðqH;i Þ2

vuut ð6:13Þ
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The update rules for the conductivities in the y- and z-directions can be derived
in a similar way. Using this equation, the introduction of a small flux qe, as
proposed in Sect. 3.4. for Eqs. 3.7 and 3.8, can be avoided.

6.4 Case Study Schietveld

In this section, we summarize the results of a case study presented in great detail by
El-Rawy et al. (2017). Here we pay only attention to some theoretical aspects
presented in Sects. 6.2 and 6.3.

A comprehensive hydrogeological description of the Schietveld basin has been
presented by Batelaan et al. (2012), El-Rawy (2013), Nagels et al. (2015).
Summarizing, the water table of the Schietveld basin has declined over several
decades due to an enlarged number of drainage canals, leading to deterioration of
protected heathlands. In order to set up a plan for nature restoration, a modeling
study was required. The model area, which covers the Schietveld basin as well as
the neighboring agricultural land, has a rectangular area of about 90 km2, located
on the Western side of the Campine Plateau in North–East Belgium. The elevation
ranges between 50 and 182 m above sea level. This area is located within two major
catchments that of the River Scheldt to the west and of the River Meuse to the east.
The water divide runs approximately from north–east to south–west. The area
includes several small streams and ditches that drain the site. Some depression bogs
in the area are ecologically highly valued. The subsurface consists of Quaternary
sediments and Tertiary fine sands forming a phreatic aquifer of 11–130 m thick.
Below this, aquifer is a more poorly conducting aquifer, 100–220 m thick, com-
posed of Tertiary medium to coarse sands resting on a very thick clay layer forming
a natural no-flow bottom boundary. The two aquifers are connected, except in the
northwest where they are separated by a clayey poorly conducting layer of 10–20 m
thickness. Only general information concerning the properties of the hydrogeo-
logical layers, in particular their conductivity, is available from the
above-mentioned regional groundwater modeling studies, as well as from pumping
tests, but none of them are located inside the study area. In this model study, this
information was considered as a source of “soft data.” The boundary conditions are
groundwater recharge at the water table and imposed heads at the four horizontal
boundaries. The WetSpass water balance model (Batelaan and De Smedt 2007) was
used to obtain a time-averaged (20-year period) spatially distributed recharge rate.
The model requires spatially distributed data on elevation, land use, soil type, slope,
and initial groundwater levels, as well as long-term averaged climate data obtained
from the Kleine Brogel meteorological station, which is about 20 km north of the
study area. The small streams and drains are simulated with the
MODFLOW DRAIN package, imposing a drain level and conductance. Also, 92
pumping wells, mainly in the phreatic aquifer, are incorporated as internal boundary
conditions with fixed abstraction rates ranging from 45 to 124,000 m3/year.
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By taking data from a period Dt = 20 year and time-averaging the equations, the
conductivity estimation becomes considerably simpler. Doing so, the time-averaged
specific storage term sDh=Dt in Eq. 2.4 and the time-averaged specific yield term
hDh=Dt in Eq. 2.7 (the linearized approximation of Eq. 2.5) become negligibly
small resulting in a steady-state model. Neglecting the model’s nonlinearities (e.g.,
the appearance/disappearance of surface waters in wet/dry periods) the grid block
conductivities determined by the DCM from the steady-state model are equal to the
grid block conductivities that would be obtained by averaging of the time series of
conductivities obtained by a sequence of DCM-observations (20 observations/year
� 20 year = 480 observations). Since the average of the time series (Eq. 4.7) is
practically equal to the Kalman-estimated conductivities (see the derivation of
Eq. 4.13 from Eqs. 4.9 and 4.11), the uncertainty is relatively small with respect
with the observation error (i.e., rn;M=s0n ¼ 1

� ffiffiffiffiffiffiffiffi
480

p � 5% if there are no model
errors; see Eq. 4.14). However, the observation error son (Eq. 4.8) cannot be
determined from an averaged steady-state model.

The steady-state MODFLOW-2005 model (Harbaugh et al. 2000; Harbaugh
2005) was built with support of the ModelMuse (Winston 2009) graphical user
interface. The model has a horizontal resolution of 10 m � 10 m, or 785 rows (grid
blocks in y-direction) and 1180 columns (grid blocks in x-direction), while three
layers of variable thickness (z-direction) discretize the vertical direction. As a result,
the model consists of 2,778,900 grid blocks. The initial horizontal layer conduc-
tivities were taken from the above-mentioned regional studies while the initial
vertical hydraulic conductivities for all layers were based on an anisotropy ratio of
10.

In previous work (El-Rawy 2013; El-Rawy et al. 2015, 2016), the conductivities
were estimated using the double constraint method in which each grid block in the
model domain was considered as a zone. El-Rawy (2013) and El-Rawy et al. (2015)
used the update rule given by Eq. 5.1, in which the grid block fluxes were obtained
by averaging the face-based fluxes, like in Chap. 5, while El-Rawy et al. (2016)
used the update rule given by Eq. 6.13. The results showed that only conductivities
in the neighborhood of the head measurements (the measurement ranges) could be
estimated, while in grid blocks at distance from the measurements (the terra
incognita) DCM was ineffective. This is no surprise, because in an approach in
which each grid block is a zone the grid block conductivities are not correlated to
their neighbor grid block conductivities. However, using the available “soft
hydrogeological” information about hydrogeological units, in which the conduc-
tivities are spatially correlated, we may introduce a zonation in which only a limited
number of units is considered as a zone. In this way, the number of unknown
conductivity values is drastically reduced. Inverse modeling based on a limited
number of zones is relatively popular among practice-oriented hydrogeologists.
Moreover, this approach can be handled by conventional gradient methods without
leading to excessive computational requirements. In this Schietveld study, we have
compared our DCM results with results obtained by the UCODE inversion model
(Hill and Tiedeman 2007; Poeter et al. 2005).
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In this particular Schietveld case, the zone-integrated double constraint method
is applied considering four conductivity zones with independent horizontal and
vertical anisotropic conductivities. This means that we have used the following two
update rules (see Eqs. 6.4 and 6.6)

kH;L;iþ 1 ¼ kH;L;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRRR
DL

½ðqFx;iÞ2 þðqFy;iÞ2�wdVRRR
DL

½ðqHx;iÞ2 þðqHy;iÞ2�wdV

vuut ð6:14Þ

kV ;L;iþ 1 ¼ kV ;L;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRRR
DL

ðqFz;iÞ2wdVRRR
DL

ðqHz;iÞ2wdV

vuut ð6:15Þ

where in each grid block weighting function w is chosen equal to w ¼ 1=DxDyDz.
In accordance with the theory presented in Sect. 6.3 of this chapter, this leads to
Eq. 6.3 for the evaluation of the integrals in Eqs. 7.1 and 7.2.

Zone 1, the first layer of the model, represents the upper aquifer; zone 2a is the
poorly conducting layer in the north–east; zone 2b is the remaining part in the
second layer of the model; and zone 3, the third layer, represents the lower aquifer.
Although zone 2b is expected to have similar properties as zone 3, it is considered
as a separate zone to test the robustness of model calibration procedure, which is a
rather tough test as there are no head observations in this zone. Hence, there are
eight model parameters to be calibrated: kH;1; kV1; kH;2a; kV ;2a; kH;2b; kV ;2b; kH;3, and
kV ;3, for which general and impartial initial values have been chosen to start the
DCM calibration procedure, i.e., 5 m/d for all conductivities, except for the poorly
conducting zone 2a for which a value of 0.1 m/d was assumed. A run of the model
with these initial conductivity values yields estimated heads that are in the order of
about 5 m lower than the observations, which indicates that the initial horizontal
conductivity values are too high and far from the optimum values.

The model was first calibrated in a classical way using UCODE (Hill and
Tiedeman 2007; Poeter et al. 2005) and ModelMate (Banta 2011). However, after
about 100 iterations and several hundreds of model runs, the procedure terminated
without finding optimum parameter values. Obviously, the reason is that we are
trying to estimate 8 parameters with only 37 observations. This is also reflected by
the parameter sensitivities. A sensitivity analysis showed that kH;3 is the most
sensitive parameter, while kH;1 and kH;2b are about 10 times less sensitive, while the
remaining parameters are about 100 or more times less sensitive. Hence, with the
present data it is impossible to estimate all parameters with UCODE unless addi-
tional constraints are imposed on the insensitive parameters. We opted to fix the
vertical conductivities of zones 1, 2b, and 3 to one-tenth of the corresponding
horizontal conductivities and to fix the horizontal and vertical conductivities of
zone 2a to a small value of 0.001 m/d (i.e., virtually impervious). The remaining
three parameters kH;1; kH;2b, and kH;3 were calibrated with UCODE, and
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convergence (change in conductivity values less than 0.01) was obtained after 12
iterations and 84 model runs.

Using DCM to determine these three parameters we applied Eq. 6.6 with gxz ¼
gyz ¼ 10 for zones 1, 2b, and 3. Convergence (change in conductivity values less
than 0.01) was obtained after a first DCM stroke followed by 11 iterations (i.e., after
24 model runs). However, it turned out that application of DCM using Eqs. 6.14
and 6.15 to determine the above-defined eight conductivities does not give prob-
lems and results in realistic conductivities and anisotropy ratios, as can be observed
from the comparison presented in Table 6.1.

In Table 6.1, HC means hydraulic conductivity, INIT means initial value in m/d,
UCODE and DCM denote the two inversion techniques, (a) means fixed anisotropy
ratio kH=kV ¼ 10, (f) means fixed conductivity value. The numbers between square
brackets, […], denote the 95% confidence intervals in m/d derived under the
assumption that the estimated conductivities have lognormal probability
distributions.

The thus-obtained conductivity values and confidence intervals determined by
UCODE are reasonable, except maybe for kH;2b as this value is rather high and the
confidence interval rather wide. Moreover, the value of kH;2b deviates considerably
from kH;3 and the confidence intervals do not overlap, although these conductivities
relate to the same aquifer. However, the parameters are strongly linked because the
correlation coefficient determined by UCODE is −0.89. Hence, if one of these horizontal
conductivities increases, the other one would decrease so that the overall conductivity of
the lower aquifer is less affected. The conductivities determined by UCODE yield a
mean absolute error (MAE) and a root mean squared error (RMSE) between observed
and simulated heads equal to 0.21 and 0.48 m, respectively. When UCODE is rerun
with other starting values almost the same optimum values and confidence intervals are
obtained, hence we can conclude that the global optimum has been attained.

For the inversion by DCM, we determined the eight horizontal and vertical
conductivities of the four zones using Eqs. 6.14 and 6.15. To terminate the itera-
tions, we impose that the conductivity updates should be larger than 1%; that is, we
accept that the method has converged when for each zone Dk=k� 0:01.
Unlike UCODE the DCM runs without any problem with little computational
effort. During the iterations, the conductivities vary rather smoothly from their
initial value and tend asymptotically to their final value. The largest variation occurs
for kH;1, which is also the parameter with the slowest convergence rate. During the
iterations, we noticed an almost exponential decrease of the relative conductivity

Table 6.1 Comparison between UCODE and DCM

HC kH;1 kV1 kH;2a kV ;2a kH;2b kV ;2b kH;3 kV ;3
INIT 5 5 0.01 0.01 5 5 5 5

UCODE 0.35
[0.10–
1.21]

0.035
(a)

0.001
(f)

0.001
(f)

19.8
[7.6–
51.4]

1.98
(a)

0.98
[0.42–
2.30]

0.098
(a)

DCM 0.28 0.54 0.025 0.033 2.15 0.75 2.4 1.78
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changes. The relative change in the conductivity of most zones becomes smaller
than 0.01 after relatively few (about 20–30) iterative DCM strokes (i.e., about 40–
60 model runs), except for kH;1, which needs one first DCM stroke followed by 57
iterations (116 model runs) to converge. This slower convergence is caused by the
fact that most head observations are situated in the first model layer (zone 1, the
upper aquifer). This is less important for the vertical conductivity because the
groundwater flow in the study area is largely horizontal. The fastest convergence
rate was noticed for kH;3, likely because layer 3 is the lower, largest aquifer where
most of the groundwater flow occurs. All estimations are within reasonable orders
of magnitude. Striking is the fact that the vertical conductivities have the same order
of magnitude for all zones, which means that the anisotropy ratio is not that high as
previously anticipated. Nevertheless, it must be stressed that the groundwater flow
is predominantly horizontal so that the vertical conductivities are less important and
have little impact on the numerical model, which likely gives rise to the uncertainty
of their estimates. The horizontal conductivity values for zone 1 and zone 3 esti-
mated by DCM comply with what was obtained by UCODE, but this is not the case
for zone 2b. With DCM the conductivities of zones 2b and zone 3 are found to be
very similar, which agrees with what is known from the geological buildup of these
layers. However, with UCODE the conductivity of zone 2b becomes rather high
and somewhat unrealistic.

Regarding the variation of the RMSE of the differences between observed and
simulated heads obtained with the flux model during the DCM iterations, we
observed a very smooth decrease and asymptotic convergence. The final MAE and
RMSE values are −0.68 and 0.78 m, respectively, which is somewhat lower than
what was obtained by UCODE.

Regarding the simulated heads versus the observed heads, we notice that the
simulated heads obtained from UCODE are in better agreement with the observa-
tions from the 37 piezometers, although the results obtained with DCM are almost
of the same quality. The difference may be explained by the fact that UCODE is a
calibration method; that is, it is a method based on minimization of the differences
between observed heads and heads obtained from the flux model. In contrast to
UCODE, DCM is an imaging method minimizing the errors in the Darcy equation,
in which the fluxes are obtained by the flux model, like in UCODE, while the
observed heads are matched by an auxiliary model: the head model (see Chap. 3,
Sect. 3.9.1). As has been explained in Chap. 3, Sect. 3.9, models based on
MODFLOW under estimate the conductivities. As a consequence, the flux model,
although yielding the correct fluxes, over-estimates the head gradients. These
considerations explain the difference between UCODE (better match with the
measured heads) and DCM (better match with the real field conductivities).
Moreover, the heads imposed on the head model (measured in piezometers) and the
fluxes imposed on the flux model (recharge, well rates) may introduce systematic
errors, even if the random errors have decreased by the time-averaging over
20 years. These errors may cause that DCM minimization of the Darcy errors does
not make the Darcy residual (Eqs. 6.1 and 6.2) equal to zero.
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In conclusion, the results obtained by DCM are good and, from a practical point
of view to be preferred, because DCM enables to obtain estimates for all horizontal
and vertical conductivities of the zones without any additional assumptions or
restrictions and with no more effort or complication than a classical gradient-based
calibration method.
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Chapter 7
Summary and Conclusions

We have demonstrated a double constraint methodology for the determination of
hydraulic conductivities in grid volumes of groundwater flow models. The
methodology is straightforward as it allows to update hydraulic conductivities by
simply comparing the results of a model run in which known fluxes are imposed as
boundary conditions with the results of a model run in which known heads are
imposed as boundary conditions. In this approach, flux and head conditions in wells
—including zero-flux observation wells—are considered as boundary conditions
too. In the zone-integrated double constraint approach, the model domain is par-
titioned into zones with presumed constant hydraulic conductivity. In this sense, the
original double constraint method is a zone-integrated double constraint method in
which each zone is a grid volume.

The feasibility and practical use of the (zone-integrated) double constraint
methodology has been illustrated by two practical case studies, the Kleine Nete case
in which each grid block in the MODFLOW model is a zone, and the Schietveld
case in which only four zones are considered. In the latter case—the four zones case
—the horizontal and vertical conductivities determined by double constraint
methodology compared favorably with the results obtained by UCODE, which is
based on a classical gradient method that minimizes the differences between cal-
culated and measured heads. Since the classical approach needed additional
assumptions and simplifications to reach a meaningful result, we may conclude that
the double constraint methodology is more robust. Moreover, in contrast to classical
gradient-based methods, the number of zones in the double constraint methodology
can simply be extended to any number of zones less than or equal to the number of
grid blocks, without excessive increase in computation time and computer memory
requirements, as has been demonstrated by the Kleine Nete case study.

Because the double constraint methodology is not only based on the model of
interest for the study (a flux model), but also on an auxiliary model (the head
model), it is not a calibration method in the strict sense; in fact, it is an imaging
method. Its results may differ a bit from an exactly calibrated model obtained by an
error-free calibration method. However, in practice observations are not error-free,
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as has been demonstrated and quantified by the Kleine Nete case study. There will
always be random and systematic differences and mismatches between observations
and model predictions so that an exact model calibration can never be obtained.

In view of the fact that determination of the parameters in a groundwater model
is a nonlinear problem and conventional gradient-based inversion by optimization
(minimization) techniques are computationally cumbersome and time-consuming,
and accepting that parameter determination needs not to be more accurate than
justified by the accuracy of the head or flux observations, we may conclude that the
double constraint methodology produces sufficiently reliable results at relatively
low computational cost. Hence, the double constraint methodology proves to be a
promising approach for the estimation of parameter values of groundwater flow
models (especially hydraulic conductivities).

Comparison with a conventional gradient method, presented in Sect. 6.4 by the
Schietveld case study, suggests to devote here some thoughts about the similarities
and differences between the conventional methods and the double constraint
methodology. Although the comparisons presented in Chap. 6 show that the results
do not differ too much, i.e., are within the range of measurement errors, experiences
obtained by only two comparisons cannot be decisive to make a choice between the
different methods. Therefore, we will present here some arguments to weigh the
merits of the different approaches. For problems in which “big data” play a role the
ensemble Kalman filter (EnKF), the steady Kalman filter (SKF) and the double
constraint methodology (DCM) might be the better choice, while for problems
handling only relatively few data conventional gradient-based optimization tech-
niques might be preferable. Often the choice has to be based on the more practi-
cal question whether standard software is easily available. Although the double
constraint methodology is relatively simple to implement (just divide the results of
two MODFLOW models), the criterion of ready-to-use software often forces the
hydrogeologist to routinely apply UCODE or PEST (conventional gradient meth-
ods). In the petroleum reservoir community, the present-day ready-to-use choice
may also be the ensemble Kalman filter. For a detailed explanation of the ensemble
Kalman filter (EnKF) inversion technique, see Sect. 4.3.2 of Chap. 4.

There are, however, also more theoretical—or, if you like, more philosophical—ways
to discuss the similarities and the differences. The first remark is that, in our opinion, the
popular classification in direct and indirect inversion methods is not very helpful. In fact,
we have given arguments why the distinction between calibration methods and imaging
methods is more relevant. More specifically, the double constraint methodology is an
imaging method, while the conventional inversion techniques are calibration methods
(for a detailed explanation of the difference between imaging and calibration see Sect. 3.9
of Chap. 3). This means that the results obtained from the double constraint methodology
will always be different from the results obtained by conventional methods. For com-
prehensive numerical models—models based on a fine-scale grid—these differences can
be made sufficiently small by grid refinement of the model, but for simple models—
models based on a coarse grid—these differences may become significant. Objective
criteria upon which a choice between calibration and imaging can be based are not
(yet) available; the best we can say is that the two approaches are complementary rather
than competing; also see Sect. 3.9.2 of Chap. 3.
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Although the double constraint methodology can be used as a “stand-alone
method” to determine parameters, especially conductivities, the method can also be
applied in combination with other inversion techniques. In Sect. 4.3.3 of Chap. 4,
suggestions have been presented how the ensemble Kalman filter (EnKF) can be
assisted by the double constraint methodology (DCM) to overcome
over-smoothing by the EnKF. If a conventional gradient methodology is preferred,
the double constraint methodology could be used to precondition the conventional
method. If the initial guess of the conductivities is far removed from the true con-
ductivities, the first stroke of the double constraint methodology—without subsequent
iterations—gives already a good estimate of the orders of magnitude of the con-
ductivities. Thanks to this property the double constraint methodology can be used as
a simple tool to find conductivities that are acceptable for (are within the domain of
convergence of) the conventional methodology. In addition, using the double con-
straint methodology gives insight in the physics of flow contained in its governing
equations. For instance, from the understanding of the double constraint methodol-
ogy, it is immediately clear that conductivity estimation is meaningful only if there
are more conditions imposed on the boundaries and in the (observation) wells than
required for a forward problem. In other words, if conditions that have to be imposed
for a forward problem are unknown, they cannot be found by inverse modeling.

In Chap. 4, Sect. 4.2, it has been shown that thanks to Kalman filter post pro-
cessing, repeating the DCM estimations for varying hydrological conditions results in
conductivities with lower uncertainty than the measurement errors. This uncertainty
reduction has been demonstrated in Chap. 5 by the Kleine Nete case study, while a
comprehensive explanation of the Kalman filter is presented in Chap. 4, Sect. 4.3.

Finally some words about the justification of our approach to mathematics. The
Calderón problem was one of the sources of our inspiration. Roughly speaking, this
problem includes all aspects of Calderón’s conjecture stating that, under some
smoothness conductions, the conductivity distribution in the model domain can be
uniquely determined by imposing both flux and head on the closed boundary of the
model domain. However, the literature on this conjecture is generally using overly
rigorous mathematical tools based on infinite function spaces. We have avoided this
mathematical type of analysis, not only because it is hard to understand for
practice-oriented geoscientists and engineers, but also because this type of analysis is
too abstract to suggest practical constructions of solutions. Therefore, rather than basing
our approach on the concept of infinity from the beginning, we have presented our
analysis in a more insightful way by basing it on discretized, or quantized problems,
like in numerical models with a large number of small grid cells (edges, faces, vol-
umes). Although we have used the powerful mathematical tools of classical analysis
(differentiation, integration, differential equations, etc.), the concept “infinity” has been
used only in the meaning of an extremely large number of extremely small grid cells,
without the need to specify how much “extremely large” and how small “extremely
small” actually is. Anyhow, the thus-conceived “infinitesimally small” volume is larger
than a representative elementary volume of the porous medium.
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