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Preface

This monograph focuses on the applications of the integral equations method (IEM),
particularly with regard to the form of the boundary element method (BEM), for
modeling the electrical resistivity tomography (ERT) method in geophysics. This
book is written by two authors with different scientific backgrounds: Igor Modin is a
geophysicist, and Balgaisha Mukanova conducts research on computational mathe-
matics and inverse problems. This monograph reflects the theoretical and practical
research of the authors over the past decade and the results of their collaboration
since 2013.

We consider the applications of the IEM and BEM to the study of geological
media using direct current (DC). Both the IEM and the BEM allow for the solution of
direct sounding problems using the resistivity method for a medium model with a
piecewise-constant electrical conductivity distribution. Such a conductivity distri-
bution simulates many practically important distributions of electrical properties. At
the same time, currently available interpretation programs provide a smooth distri-
bution of the electrical properties of a medium. As a rule, geophysicists replace these
smooth distributions with a piecewise-constant conductivity distribution during the
geological interpretation. In this situation, the solution of the direct problem with a
piecewise-constant conductivity function provides an important auxiliary tool for
refining the interpretation results. In addition, an essential part of the design of an
electrical survey is a simulation to determine the capabilities of the method for
solving geological tasks of varying complexities.

In contrast to finite difference methods (FDMs) and finite element methods
(FEMs), the BEM has a number of advantages, including higher accuracy, more
economical approach, and lack of artificial boundary conditions at the boundaries of
the computational domain. The main advantage of the BEM is that the solution of the
problem in the whole domain is reduced to a problem stated for the boundaries only.
This fact significantly decreases the computational cost and simultaneously increases
the accuracy of the calculations associated with the application.

Compared with the use of FEMs to solve partial differential equations (PDEs), the
use of the BEM to solve integral equations can be restricted to the simplest finite
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elements of the first or zero order. The reason for this is that there is no need to find
the derivatives and formulate the problem in a weak sense, as is common when
solving PDEs through an FEM. Then, we do not consider any theoretical aspects of
finite element theory. Additional information on the contemporary use of the BEM is
available on the Internet. Corresponding references and links can be found, for
instance, in http://www.boundary-element-method.com/.

This monograph is organized as follows. Chapter 1 presents a review of the
literature and a brief introduction to resistivity sounding methods and ERT. For the
convenience of the reader, the main material in Chap. 2 is preceded by a preliminary
section from a course in mathematical physics. Chapter 2 also describes some of the
mathematical facts and theorems that we refer to thereafter.

Chapter 3 describes equipment, recommendations for field measurements, and
mathematical models. This chapter can be used independently as an introduction to
geophysical and mathematical methods for the resistivity surveying of subsurface
media. This chapter contains the mathematical models commonly used for electro-
magnetic surveys, the analytical solutions for layered media, and an introduction to
the IEM. The material concludes with a discussion of resistivity filter coefficients
that are computed and used in practice. The statements of direct and inverse
problems are formulated in Sects. 3.3, 3.4 and 3.6, and the methods used to solve
inverse problems are outlined.

Chapters 4 and 5 present the applications of the IEM and BEM for solving
different types of direct problems. In Chap. 4, the theorems and mathematical
expressions for the methods are formulated, as they are required to have a strong
mathematical basis for the numerical simulations. However, those sections can be
omitted by specialists in the field of geophysics. The BEM and adaptive mesh
generation algorithms for forward DC sounding problems in 2D and 3D media
with a piecewise-constant resistivity distribution are also presented. The integral
equations for various 2D media models, namely, media with piecewise-linear
contact boundaries, media with immersed local inhomogeneities, and media with
buried relief, are derived and solved numerically. In the abovementioned models, the
earth's surface is assumed to be flat.

Chapter 5 focuses on the new results obtained by authors during application of the
BEM to the modeling of ERT data above a medium with ground surface relief. For
2D and 3D conductivity distributions, the influence of the relief on the interpretation
results is shown. Each solution of the direct problem is compared using appropriate
interpretation results based on different inversion programs. The possible inaccura-
cies and errors that can arise during the interpretation processes associated with the
relief are discussed. Finally, some numerical data obtained for different model
parameters are presented.

We would like to use this opportunity to thank our colleagues and students in the
Geology faculty at Moscow State University and in the Information Technologies
faculty at the Eurasian National University. A former PhD student, T. Mirgalikyzy,
helped provide some numerical tests and plot the results in an admissible form. Our
current PhD student, K. Baranchuk, provided her results of physical modeling for a
comparison with our numerical simulations, and A. Skobelev ran some simulations
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using the interpretation programs Res2Inv and Zond2Dres. Another former student,
M. Tussupova, adapted our programs for parallel computing technology. We are also
grateful to D. Azimova for help with the editing of pictures.

The work on this book has been partially supported by a grant from a Ministry of
the Republic of Kazakhstan entitled “Luchshiy prepodavatel' vuza - 2016”.

The authors are also grateful for the support of the project team working on the
Innovation and Discovery in Russian Science and Engineering series of books,
especially Prof. Carlos Brebbia.

Astana, Kazakhstan Balgaisha Mukanova
Moscow, Russia Igor Modin
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List of Accepted Abbreviations and Symbols
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CIP –Coefficient inverse problem
ERT –Electrical resistivity tomography
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PDE – Partial differential equation
SLAE – System of linear algebraic equations
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We primarily use Cartesian coordinates and denote points by (x1, x2, x3) or (x, y, z).
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terms of the radius vector, and the notation depends on the context and convenience
of use. r denotes the modulus of the vector r.

The terms dГP or dГM under integrals denote the elements of the surface Г, where
the coordinates of the points P or M are the integrating variables.

nM or nP denote the unit vectors normal to a surface computed at the pointsM and
P, respectively.

lx, ly, and lz denote the unit vectors of the Cartesian coordinate system (x, y, z).
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G(M,P) is the potential created at the point P from a point source located at the

point M of the medium (the Green’s function); in the case of a homogeneous
medium, G(M,P) ¼ �1/(4πjMPj).

The notation σ with various indices is used for the specific conductivities of the
media, and ρ ¼ 1/σ is the electrical resistivity of the medium.
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Chapter 1
Introduction

The method of electrical prospecting has been developing for approximately
100 years. The method was first introduced during successful field experiments
conducted by the Schlumberger brothers following the first mathematical attempts
to solve the interpretation problem (Langer 1933; Slihter 1933; Stefanescu and
Shlumberger 1930; Stevenson 1934). Electrical prospecting represents an industrial
method used to create and observe an electric field in order to retrieve information on
the structure of a geological section. This method is being utilized by vast numbers
of scientists and engineers for engineering geology, hydrogeology, ecology, and
geotechnical and archaeological problems to search for ancient settlements, defense
constructions, kurgans, and burial grounds. Ore geophysicists use this method to
prospect for deposits of polymetallic substances in addition to copper, gold, and lead
ores (Yerohin 2012; Yerokhin et al. 2011). Resistivity methods are extensively used
to survey the upper sections of geological media because they provide greater
surveying depths than other electrical sounding techniques and because the mathe-
matical methods for interpreting the results are more developed.

Electrical resistivity tomography (ERT) includes numerous aspects: special mea-
surement methods (i.e., for gathering field data) based on the principle of electrical
sounding; digital equipment for automatically injecting direct current into the
medium and recording the signals acquired by measuring electrodes; and special
programs to visualize, process, interpret, and ultimately image the obtained data in
the form of a geoelectric cross-section. The maturity of the electrical tomography
method is progressing as a result of improvements in the equipment and automation
of the measurement process.

Various publications influenced the origin of the electric tomography method,
including those by Edwards (1977), Barker (1981, 1992), Griffits and Turnbill
(1985), Zohdy (1989), Dahlin (1993, 1996), Loke and Barker (1996), and
Bobachyev et al. (1995, 1996, 2006).

Two special features of ERT are its two-dimensional (2D) inversion performance
and a high density of observations (Dahlin 1993, 1996, 2001; Dahlin and Zhou
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2004; Dahlin et al. 2007; Loke 2000; Loke and Barker 1996; Loke and Dahlin 1997).
The main peculiarity of the 2D inversion process that makes it attractive for
thousands of geophysics around the world is its ability to draw geological sections,
which can be used immediately to indicate geological content.

The automation of measurement acquisition allows the accumulation of large
amounts of data that must be numerically processed. As a consequence, the roles of
mathematical models and algorithms for data interpretation problems are increasing.

Geophysical problems are divided into direct and inverse problems according to
their mathematical classification. Direct problems indicate that it is necessary to
determine the observed electric field and apparent resistivity for a given set of
geometric and electrical properties of the medium.

Inverse problems require the distribution of the specific electrical conductivity to
be recovered from the observed data. However, measured data are available only at
the surface of the medium and within boreholes. These problems are currently being
addressed through various inversion programs. In other words, interpretation pro-
grams are necessary for solving inverse problems. Mathematically, inverse geophys-
ical problems belong to the class of coefficient inverse problems (CIP), which are
severely ill-posed. This means that the exact solution of such an inverse problem
either does not exist or is non-unique; thus, the results are unstable with respect to the
input data. In practice, the ill-posedness of an inverse problem is expressed in terms
of equivalence principles, based upon which the inversion results for similar pseudo-
sections can be substantially different. In other words, geophysical inverse problems
do not satisfy the stability condition with respect to the measured data. The choice of
an appropriate solution depends on the experience of the interpreter and additional
information. Mathematical modeling represents an auxiliary tool for refining the
results of such inversion scenarios.

Currently, several methods can be used to solve direct geophysical problems,
including the radio-technical analysis method (i.e., the transmission surface method;
Madden 1971); the integral equations method (IEM) (Alpine 1947; Hohmann 1975;
Khmelevskii and Shevnin 1988; Modin et al. 1988; Bobachyev 2002); the finite
difference method (FDM) (Mufti 1976; Dey and Morrison 1979); the finite element
method (FEM) (Coggon 1971); and the boundary elements method (BEM) (Xu et al.
1998; Xu 2001). The most influential research in this field includes the work of
several authors (Inman et al. 1973; Lehrnann 1995; LaBrecque et al. 1996; Ellis and
Oldenburg 1994; Lesur et al. 1999; Maurer et al. 1998; Menke 1984; Loke and
Dahlin 1997). In addition, a few analytical solutions for direct problems exist and are
commonly used for software testing purposes (Skalskaya 1948; Veshev 1959;
Koefoed 1979; Tarkhov 1980).

FDMs and FEMs are useful for a variety of practical aims, but they have several
particular disadvantages: (1) The methods have a low computational accuracy for the
first derivatives of potential fields and for the computational results of the apparent
resistivity in a coarse mesh, requiring high computational costs to refine the mesh.
(2) Problems occur during construction of the grid, which must be adapted to the
structure of the complicated computational domain. (3) Problems exist along the
artificial boundary conditions at the boundaries of the computational domain. There
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are also problems associated with singularities, that is, difficulties in describing the
field near the heterogeneous surface. These problems are related to the source
function and description of the field near the corner points of the relief boundaries;
namely, the field goes to infinity near the bottom of convex upward forms of the
surface, but goes to zero near the top of convex downward surficial features. These
disadvantages are even more important when sharp boundaries and sharp corners are
apparent within the model, because even small smoothness changes significantly
change the apparent resistivity field (Yerokhin et al. 2011; Yerohin 2012). Mean-
while, geophysics problems require high accuracy and fast field computations. The
IEM and BEM satisfy both of these requirements and thus constitute alternative
methods for solving direct problems (Alpine 1947; Bobachyev 2002; Bobachyev
et al. 2006; Mirgalikyzy et al. 2015; Mukanova et al. 2017; Orunkhanov et al. 2004a,
b, 2005; Orunkhanov and Mukanova 2006); this is the main topic of the present
monograph.

Multiple complicated algorithms are utilized in the background of an inversion
program needed to solve either direct or inverse problems. However, as the ERT
method is relatively new and constantly developing, the associated 2D inversion
algorithms can be improved.

Currently available interpretation programs are based on the successive solutions
of a sequence of direct problems that are used to find a solution that most closely fits
the measured data, for example, Res2DInv (Loke 2000) and ZondRes2D (A. Е.
Kaminskiy; last updated on 4 October 2013). These programs are expected to solve
an inverse problem automatically within the framework of a 2D inversion of the
electric field without human intervention, which includes the entering of additional,
prior information. Because of the influence of the principle of equivalence, a formal
approximation of an experimental or theoretically calculated field leads to an
increase in the contrast within the considered section, which changes the geometry
of the acquired cross-section. In most 2D inversion programs, the solution of the
inverse problem is performed with a minimal contrast of the electric properties of the
medium. As a result, the solution appears smooth with blurred boundaries, which do
not usually exist in a real geological section. Therefore, 2D inversion schemes are
not ideal for interpreting a real geological section from electric field data. Most
authors call such a transformation a “controlled transformation.” Most authors in
American publications refer to the ERT method as “electrical imaging” or “resistiv-
ity imaging” (Barker 1992; Dahlin and Zhou 2004), which suggests a distant
likeness between real sections and inversion sections.

Furthermore, as a rule, geophysicists replace these smooth distributions with a
piecewise-constant conductivity distribution during the geological interpretation. In
this situation, the solution of the direct problem with a piecewise-constant conduc-
tivity function provides an important auxiliary tool for refining the interpretation
results. From this perspective, the BEM seems to be the most appropriate method for
solving direct piecewise-constant conductivity problems.

It is well known that the observed distribution of an electric field in a medium
depends on numerous factors, including the geometry of the relative positions of the
source and the measuring electrodes, the distribution of the specific electric
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resistivity, ρ(x, y, z), and the relief of the earth’s surface. The last factor complicates
the discovery and allocation of ρ(x, y, z) via measurements of the electric field at the
earth’s surface.

Most 2D inversion programs use the topography of the earth’s surface to solve the
inverse problem as a part of the solution for the direct problem. The effects of
heterogeneities in the section and the relief produce a complicated image of the
resulting geoelectric pseudo-section. As long as the field of the evoked potentials
(i.e., the induced polarization) depends on the enclosed geoelectric section, the
determination of the geometry of an anomalously polarized object and its properties
is the final result of a geophysical survey. Check drilling, which is conducted to
confirm the results of geophysical surveying, is very expensive, and the absence of
downhole ore objects forecasted by a geophysicist can have very negative conse-
quences. Without special mathematical modeling of the systematization of sectional
distortions caused by the influences of relief during a 2D or 3D inversion, it is
impossible to achieve a final geoelectric section that is equivalent to the true
geological section.

In practice, few results are associated with a dependence on the anomalies caused
by relief polarization. Some of these results were obtained from physical models
(Veshev 1959, 1980). Bobachyev (2003) estimated the influence of the relief using a
1D approach for a homogeneous external field. In other publications (Chanturishvili
1959; Veshev 1959), the relief anomalies were calculated for specific relief models,
such as half-spherical recesses and valleys.

Various studies have been performed to examine the influence of surface relief on
resistivity sounding data (Bobachyev 2002; Chanturishvili 1959, 1983; Fox et al.
1980; Mirgalikyzy et al. 2015; Mukanova et al. 2017; Holcombe and Jiracek 1984;
Veshev 1980).

FEMs and FDMs are the most commonly used numerical methods for solving
direct and inverse problems (Coggon 1971; Demirci et al. 2012; LaBrecque et al.
1996; Loke 2000). Several approaches exist that consider the topography (Demirci
et al. 2012; Erdogan et al. 2008; Fox et al. 1980; Tsourlos et al. 1999; Gunther et al.
2006; Gunther and Rucker 2013; Penz et al. 2013). The influence of the 2D
topography was also considered using “full-air” and “half-air” approximations
(Demirci et al. 2012; Erdogan et al. 2008). Such approaches are based on the use
of rectangular and triangular finite elements near the surface–air boundary. An “FE
distorted-mesh” approach was presented by Holcombe and Jiracek (1984) and Loke
(2000) that was based on modification of the grid in the vicinity of the boundary.

Previous studies (Mirgalikyzy et al. 2015; Mukanova et al. 2017; Orunkhanov
and Mukanova 2006; Orunkhanov et al. 2004a, b, 2005) showed that the formulation
of a mathematical model using an IEM can provide an efficient and accurate solution
for direct vertical electrical sounding (VES) problems. The IEM method is based on
the theory of fundamental solutions. The field is represented in the form of simple
layer potentials distributed along the inner and outer boundaries. In some cases, the
IEM can be reduced to the BEM.

The presence of relief complicates the formulation of BEM problems relative to
cases when the surface is flat, because a reflection method can be used for plain
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earth–air boundaries, thereby resulting in a relatively simple type of integral equa-
tion or system of integral equations. When a surface with relief separates the
sounding medium from complicated internal boundaries, the corresponding mathe-
matical model should be constructed as a system of integral equations. Until
recently, there were no examples of numerical solutions for such problems using
the IEM, even in the case of a system with at least two integral equations. This
problem was first addressed using mathematical modeling through the BEM by the
authors of this monograph (Mukanova et al. 2017).

During the first steps of our approach, we consider the case when the earth–air
contact is flat with an assumed local inclusion or buried relief within the structure of
the sounding medium (Orunkhanov and Mukanova 2006). The discretization pattern
of the transition boundaries significantly influences the quality of the field compu-
tations. This introduces an auxiliary problem associated with the development of
algorithms to construct a grid that can adapt to the geometries of the transition
surfaces and the array of measuring electrodes.

While performing the system of integral equations, it is also necessary to develop
a sustainable numerical method to solve it. The system of integral equations in its
discrete form represents a system of linear algebraic equations (SLAE) with a dense
matrix. The size of such a matrix depends on the geometry of the medium and is
proportional to the square of the number of mesh points along the inner and outer
boundaries. The corresponding size may be large, and the resulting matrix may
require several gigabytes of computational short-term memory. The inversion of
large, dense matrixes is computationally time consuming, which is why we must
increase the computational performance through parallel computing technologies.
Based on our experience with solving an SLAE containing dense matrixes, the most
efficient increase in the computational performance is available through a parallel
system with shared memory, whereas a cluster system is relatively ineffective
because of the time required for communication among nodes.

As mentioned above, the method of potentials is the main technique used for field
modeling in this monograph. The contact boundaries and heterogeneous inclusions
within the geoelectric section act as secondary sources of the electric field. The
corresponding problem is reduced to a system of integral equations considering the
densities of the secondary sources and induction along the contact surfaces of
conductive media and along the surface of the medium. Peculiarly, most of the
resulting integral equations are defined in an infinite domain with singularities in
their kernels. The kernel function in the integral operator belongs neither to the space
C(R2) nor the space L2(R

2). This makes the direct application of classical Fredholm’s
theory impossible. In Chaps. 4 and 5, we prove some mathematical theorems to
verify the solvability of the obtained equations.

Let us recall that the advantages of the BEM include a decrease in the dimension
of the problem from 3D to 2D and the presence of a unified (i.e., one-for-all)
approach for the complicated configuration of the transition boundaries. However,
there are currently no systematic, numerical computational models for ERT based on
the BEM for nonhomogeneous media with relief along the outer boundary. In this
book, we fill this gap to some extent by presenting numerical analyses for media
characterized by piecewise-constant conductivity and ground surface relief.
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Chapter 2
Mathematical Background

2.1 Elements of Potential Theory for Laplace’s Equation

In the classical theory of potentials for the Laplace equation, the solution is
expressed in terms of simple- or double-layer potentials. The functions that describe
the densities of the simple or double layers depend on either a single variable
(Tikhonov and Samarskii 1963) or on several variables that are defined in a bounded
domain (Gunther 1934; Tricomi 1957). In this section, we consider functions defined
in two dimensions (2D), possibly unbounded surfaces in a three-dimensional
(3D) space. We restrict the class of surfaces to the following conditions, known as
the Lyapunov conditions (Tikhonov and Samarskii 1963):

1. A normal vector and a tangent plane are defined at each point on the surface.
2. Let θ be the angle between two normal vectors at the points P and Q. For any pair

of points P and Q on the surface, there exist constants 0 < α � 1 and C such that
the angle θ satisfies the condition

jθj � CjPQjα.
3. There exists a number d > 0 for all points on the surface at which the lines parallel

to the normal vector at the point M have only one intersection with the surface
inside the sphere with radius d and center at the point M.

These conditions allow us to introduce a local parameterization of the surface
near the point M in both spherical and cylindrical coordinates with a center at the
pointM. Consequently, we can uniquely map the vicinity of the pointM to a circle of
radius that does not exceed d. These spheres are known as Lyapunov spheres.

If the surface forms the boundary of some spatial domain Ω, then the side of the
surface facing the domain Ω is called the “inner” side and the opposite side is called
the “outer” side.

© Springer International Publishing AG 2018
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Surfaces satisfying conditions 1–3 are called Lyapunov surfaces. Let Γ be a
surface satisfying conditions 1–3. Suppose that the function ν(P) is defined on this
surface and is bounded. The following function is known as the potential of a simple
layer with a density ν(P):

u Mð Þ ¼
ðð
Γ

μ Pð ÞdΓP

MPj j : ð2:1Þ

In some cases, it is convenient to apply an alternative definition of the potential of
a simple layer in the form

u Mð Þ ¼ 1
2π

ðð
Γ

ν Pð ÞdΓP

MPj j : ð2:2Þ

Here,M 2 R3. In the definition above, the density of a simple layer ν(P) is related
to the function μ(P) in the representation (2.1) by the following formula:

ν Pð Þ ¼ 2πμ Pð Þ: ð2:3Þ
If the domain Ω is bounded, then the function u(M ) has a number of remarkable

properties:

1. The function u(M ) is defined for all points M 2 R3 of the space and is bounded
and continuous.

2. The function u(M ) satisfies Laplace’s equation everywhere except for the points
on the surface Γ:

Δu ¼ 0 ð2:4Þ
3. There exist normal derivatives of the function u(M ) on both sides of the surface

that have a discontinuity at the surface Γ.

Let

∂u
∂n

����
þ
,
∂u
∂n

����
�

be the derivatives of the potential u(M ) along the direction of the outer normal
n taken from the outer and inner sides of the surface at the point M. The derivatives
from the different sides are calculated by passing through the surface Γ from the
inside and outside of the domain Ω; these values are respectively defined by the
following equalities:
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∂u
∂n

� �
�
Mð Þ ¼ 2πμ Mð Þ þ

ðð
Γ

μ Pð Þ ∂
∂n

1
jMP j
� �

dΓP

∂u
∂n

� �
þ
Mð Þ ¼ �2πμ Mð Þ þ

ðð
Γ

μ Pð Þ ∂
∂n

1
jMP j
� �

dΓP,
ð2:5Þ

They can be alternatively written in terms of the density ν(P):

∂u
∂n

� �
�
Mð Þ ¼ ν Mð Þ þ 1

2π

ðð
Γ

ν Pð Þ ∂
∂n

1
jMP j
� �

dΓP

∂u
∂n

� �
þ
Mð Þ ¼ �ν Mð Þ þ 1

2π

ðð
Γ

ν Pð Þ ∂
∂n

1
jMP j
� �

dΓP:

ð2:6Þ

Equalities (2.5) and (2.6) are also valid for an unbounded surface Γ under the
existence of improper integrals in (2.5) and (2.6). The following expression is known
as the direct value of the normal derivative of the potential of a simple layer at the
point M:

w Mð Þ ¼
ðð
Γ

μ Pð Þ ∂
∂nM

1
jMP j
� �

dΓP ð2:7Þ

We note here that the derivative is taken along the normal at a fixed point M and
that the integration is conducted along the coordinates of the point P.

The proof of the properties of the function u(M ) is well known and is given in
textbooks on the equations of mathematical physics (Tikhonov and Samarskii 1963;
Vladimirov 1971); consequently, it is omitted here.

The function ∂
∂nM

1
jMPj
� �

in the expression (2.7) has the following singularity when

P approaches the point M for a Lyapunov surface:

∂
∂nM

1
jMP j
� �

� 1

MPj j2�α ,

where α is an exponent in condition 2.
We can now introduce the function v(M ), which is defined by the following

formula:

v Mð Þ ¼
ðð
Γ

μ Pð Þ ∂
∂nP

�1
jMP j
� �

dΓP ð2:8Þ

Unlike the function (2.7), the normal derivative in (2.8) is taken at the variable
integration point P, and the point M is an arbitrary point in the 3D space. The
function (2.8) defines the potential of a double layer. The properties of these
functions are also described in the abovementioned textbooks. For further consider-
ation, we require the following property.

2.1 Elements of Potential Theory for Laplace’s Equation 11



Proposition 2.1 Let Γ be a surface with normal vectors defined at each point P. If
the point M does not belong to Γ, then the modulus of the function v(M ), where the
density is constant and equal to the unit density μ(P) ¼ 1, is equal to the solid angle
at which the surface Γ is visible from the point M (Tikhonov and Samarskii 1963).

The proof of this property originates from the consideration of Fig. 2.1. Let dΓ be
a small element on the surface Γ. The derivative along the normal of the function�1/
|MP| is equal to the scalar product of the gradient of that function and the normal
taken at the point P. It is not difficult to verify that the gradient of the function is
directed along the vectorMP. Let ψPM be the angle between the direction ofMP and
the direction of the normal nP at the point P. Let dΩ be the projection of dΓ at the
point P onto the plane perpendicular to the vector MP. Then, the angle between this
plane and the plane tangent to dΓ at the point P is equal to the angle between the
normal nP and the vector MP. Therefore, the product of dΓP with the cosine of this
angle is equal to the element of the area dΩ on a sphere of radius MP centered at
pointM; then, the ratio of the area of this element to the square of the distance |PM|2

is the solid angle element, under which the element dГ is visible from the point P:

dΘ ¼ dΩ
MPj j2 :

Then, the function (2.8) for μ ¼ 1 can be rewritten as follows:

v Mð Þ ¼
ðð
Γ

∇
�1

j MP j ; nP
� �

dΓP ¼
ðð
Γ

�
~MP; nP

�
MPj j3 dΓP

¼
ðð
Γ

cosψPM

MPj j2 dΓP ¼
ðð
Γ

dΩ
MPj j2 ¼

ðð
Γ

dΘ ¼ Θ:
ð2:9Þ

Thus, the integral (2.8) is equal to the solid angle at which a part of the surface Γ
can be seen from the pointM. The sign in (2.9) depends on which side of the surface

M

P

dG

dW

y
PM

n

Fig. 2.1 The surface
element dΓ, the normal
n with respect to it, and its
projection dΩ
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the point M is located. A “þ” sign is used if the point is on the side from which the
normal is directed, and a “�” sign is used otherwise.

2.2 Elements of Integral Equation Theory

A number of electrical sounding problems are reduced to a Fredholm integral
equation of the second kind, with a symmetric kernel. Here, we provide several
facts of this theory that we shall rely upon during the subsequent presentation
(Petrovskii 1965; Tikhonov and Samarskii 1963; Tricomi 1957).

Let a functionK(P,M) be defined in the bounded domainΩ� R2� R2,Ω¼ Γ� Γ,
Γ � R2. Suppose the two following conditions hold:

(a) The function K(P,M ) 2 L2(Ω); that is, the following integral exists:

ð
Ω

K2 P;Mð ÞdΩ < 1 ð2:10Þ

Then, by the Fubini theorem, the following integrals exist for almost all P 2 Γ and
M 2 Γ:

P Mð Þ ¼ Ð
Γ
K2 P;Mð ÞdΓP < 1,Q Mð Þ ¼ Ð

Γ
K2 P;Mð ÞdΓM < 1,

whereÐ
Γ

Ð
Γ
K2 P;Mð ÞdΓPdΓM ¼ Ð

Γ

Ð
Γ
K2 P;Mð ÞdΓPdΓM ¼ Ð

Γ
K2 P;Mð ÞdΩ:

(b) The function K(P,M) is symmetric with respect to the variables P and M:

K P;Mð Þ ¼ K M;Pð Þ,8P2Γ,8M2Γ: ð2:11Þ
Let us define the integral operator for an arbitrary function f(M ) 2 L2(Γ) defined

on Γ as follows:

Af Mð Þ ¼
ð
Γ

K M;Pð Þf Pð ÞdΓP: ð2:12Þ

Through the assumptions about the functions K(M, P) and f(M ), the operator
(2.12) can be defined, the result of which is a function Af(M ) 2 L2(Γ). The following
integral equation is known as a Fredholm integral equation of the second kind:

f ðMÞ ¼ λAf ðMÞ þ gðMÞ, λ2R, gðMÞ2L2ðΓÞ
or

f Mð Þ ¼ λ

ð
Γ

K M;Pð Þf Pð ÞdΓP þ g Mð Þ ð2:13Þ
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Next, we formulate a number of theorems that we shall refer to thereafter.

Theorem 2.1 (the Fredholm alternative). For every non-zero fixed complex
number λ, either (2.14) has a non-trivial solution f(M) 2 L2(Γ) or the
non-homogeneous (2.13) has a solution for all g(M):

f Mð Þ ¼ λAf Mð Þ ð2:14Þ

The functions satisfying (2.14) are called eigenfunctions of the integral equation
(2.14) or are sometimes known as the eigenfunctions of the kernel K(M, P).

For symmetric kernels, the following properties are valid: Eigenfunctions that are
not identically equal to zero can exist; the eigenvalues for symmetric kernels are real;
the functions corresponding to different eigenvalues are orthogonal to each other; only
a finite number of eigenfunctions can correspond to the same eigenvalue; and the set of
eigenvalues does not have finite limit points. If the number of eigenfunctions is
infinite, they can be normalized and ordered so that the corresponding eigenvalues
increase:

lim jλij ¼ 1 as i ! 1:

The number of eigenfunctions is at most countable. The number of eigenvalues is
finite if and only if the kernel is degenerate. Otherwise, the number of eigenvalues is
infinite.

The problem with the construction of eigenfunctions and eigenvalues of (2.14) is
rather complicated and goes beyond the scope of this monograph.

The following theorems also hold:

Theorem 2.2 Let Γ � R2 be a bounded measurable set, Ω ¼ Γ � Γ, Γ � R2. If
K(M, P) 2 L2(Ω), then (2.12) with sufficiently small λ will have a unique solution for
any g(M ) 2 L2(Γ).

The proof of this theorem follows immediately from the properties of the eigen-
values of (2.13) with symmetric kernels and from the Fredholm alternative. It is
sufficient to define jλj <minijλij.
Theorem 2.3 The solution of the inhomogeneous equation (2.13) exists if and only
if the right-hand side of that equation is orthogonal to any eigenfunction of (2.14):

Ð
Γ
gðMÞhðMÞdΓM ¼ 0, 8hðMÞ : hðMÞ ¼ λ

Ð
Γ
KðM,PÞhðPÞdΓP:

From a practical perspective, Theorems (2.1) through (2.3) are significant because
it is always possible to numerically solve (2.13) by using direct calculations to verify
the stability of the obtained solution with respect to small perturbations in the input
parameters of the equation. The instability of the numerical procedure for some input
parameters can indirectly indicate that the parameter λ in the equation is an eigen-
value. In this case, an acceptable practice is to consider the problem with other input
data or to ensure that the solution is within the spectrum. In geophysical practice,

14 2 Mathematical Background



changes in the input parameters represent changes in the positions of the source
electrodes or changes in the hypothesis about the media model.

Furthermore, we are interested in integral equations with a singularity of the
following form:

K P;Mð Þ ¼ k P;Mð Þ= PMj jα, ð2:15Þ
where

M ¼ (x, y) 2 Γ, P ¼ (xP, yP) 2 Γ, Γ � R2, 1 � α < 2.
Here, Γ is a bounded set, and the function k(P,M) is bounded, continuous and

symmetric with respect to the variablesM and P. In this case, the kernels of (2.15) do
not belong to L2(Γ), since the function of the order 1/|PM|-2α is not integrable in the
small vicinity of the point M at the surface Γ with respect to variable point P. This
means that the conditions of Theorem 2.1 are not satisfied.

However, according to (Petrovskii 1965), the integral equation (2.13) with a
kernel of the form (2.15) and α < 2 can be reduced to an integral equation with an
iterated second-order kernel K2(P, M ) for which all of the Fredholm theorems are
valid. We recall that an iterated kernel of order n is defined as follows:

K1 P;Mð Þ ¼ K P;Mð Þ,
Kn P;Mð Þ ¼

ð
Γ

K P;Qð ÞKn�1 Q;Mð ÞdΓ:

To obtain an integral equation with an iterated second-order kernel, it is sufficient
to substitute the operator of the integral equation into (2.13) and change the order of
integration:

f ðMÞ ¼ λ2
ðð
Γ

K2ðP,MÞf ðPÞdΓM þ Σ2ðMÞ: ð2:16Þ

The right-hand side of (2.16) is defined as

Σ2ðMÞ ¼ gðMÞ þ λ

ðð
Γ

KðP,MÞgðPÞdΓP:

After the integration in (2.16), the order of the singularity in the kernel K2(P, M )
decreases to

K2 P;Mð Þ � K P;Mð Þ
PMj j2α�2 :

Remark 2.1 Under our assumption that α � 1, the singularity in the kernel of (2.16)
disappears, and thus, (2.16) becomes an equation with a continuous bounded kernel.
Thus, Theorems (2.1) through (2.3) for (2.16) remain valid.
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Remark 2.2 The results formulated above are obtained for a bounded domain Γ.
However, according to remarks of (Petrovskii 1965), Theorems (2.1) through (2.3)
also hold on unbounded domains under the condition of compactness of the integral
operator.

In most of the mathematical models considered here, the integration regions are
unlimited. Chapters 4 and 5 describe the application of this theory to the case of
infinite domains.

2.3 Fourier and Hankel Transforms

2.3.1 The Fourier Transform

As shown in Driver’s functional analysis course (Driver 2003), it is possible to
define the concept of a scalar product, as well as a related norm and an orthonormal
basis, in a functional space similar to Rn.

In the space L2(Γ), the inner (scalar) product is defined by the following formula:

f ; gð Þ ¼
ð
Γ

f xð Þg xð ÞdΓ: ð2:17Þ

This formula generates the corresponding norm:

fk k2 ¼
ð
Γ

f xð Þj j2dΓ ð2:18Þ

The concept of orthogonality in a functional space is generalized in the following
manner:

Definition. Two functions of L2(Γ) are orthogonal if their scalar product is zero.
During the course of functional analysis, it is proven that the space L2(Γ) is

complete; that is, the limit of any fundamental sequence that converges in the norm
(2.18) belongs to L2(Γ). In addition, in L2(Γ), there exist many countable orthonor-
mal bases such that any element of L2(Γ) is represented as a functional series as
follows:

f xð Þ ¼
X1
i¼1

f iφi xð Þ, ð2:19Þ

where φi(x), i ¼ 1, 2, . . . are basis functions. The convergence of the series in (2.19)
is understood in the sense of convergence in the norm of L2; that is, the series (2.19)
converges if and only if
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lim
N!1

k
XN
1

f iφiðxÞ � f ðxÞ k2 ¼ 0

The following Perceval equality holds for Fourier coefficients:

f xð Þk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX1
i¼1

f 2i

s

The representation (2.19) is known as the Fourier expansion of the function f(x)
on the basis φi(x), and the expansion coefficients fi define the Fourier coefficients.
These coefficients are calculated in terms of the scalar product of the function by the
corresponding basis function and are defined by the following formula:

f i ¼ f xð Þ;φi xð Þð Þ
The choice of the basis functions depends on the specific nature of the problem

that is being solved each time; it is independently determined by the researcher.
Representation (2.19) means that any function f(x) in L2(Γ) can be approximated

as a finite linear combination of the basis functions. The accuracy of this approxi-
mation depends on the number of functions involved in the approximation and the
properties of the function f(x).

Let the finite-dimensional space SN be a set of functions that can be represented as
a finite linear combination of the first N basis functions:

f xð Þ ¼
XN
i¼1

f iφi xð Þ, f i2R, i ¼ 1, 2, . . . ,N: ð2:20Þ

This sum lies within the space SN. Since the functions in SN are determined by
their Fourier coefficients fi, this space can be identified within the space Rn. The
norm of the functions in SN is determined similarly to the norm of the vectors of Rn

via the root of the sum of the squares of the coordinates. This norm coincides with
the norm of the function in L2. It is also obvious that a chain of embeddings of a
lower dimensional space into a larger one is fulfilled:

SN � SNþ1 � SNþ2 � . . . � L2 0; 1½ �ð Þ: ð2:21Þ
In mathematical modeling, it is sometimes useful to replace complex-defined

functions with a finite sum of their Fourier expansions, since this greatly simplifies
the computations.

The mathematical models in many geophysical sounding methods can be reduced
to solutions of the Laplace equation. In many applications, it is convenient to express
the solution in terms of the eigenfunctions of the Laplace operator. It is obvious that
trigonometric functions are eigenfunctions of the Laplace operator defined in Car-
tesian coordinates:
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Δ ¼ ∂2u

∂x2
þ ∂2u

∂y2
þ ∂2u

∂z2

 !
,

Δ cos kxþ αð Þ cos lyþ βð Þ cos mzþ γð Þð Þ
¼ � k2 þ l2 þ m2

� �
cos kxþ αð Þ cos lyþ βð Þ cos mzþ γð Þ,

α, β, γ2R, k, l,m ¼ 0, 1, 2, . . .

For a bounded domain of rectangular form, the basis is often formed from
trigonometric functions. However, if the domain of the defined variables is not
bounded, then trigonometric functions are not square-integrable and, therefore,
cannot form a basis in the space. Nevertheless, it is possible to represent the function
through trigonometric functions based on a Fourier transform. Let there be an
absolutely integrable function of three variables (x, y, z) in Cartesian coordinates.
A partial Fourier transform with respect to x is

~f kx; y; zð Þ ¼
ð1

�1
f x; y; zð Þexp �ikxxð Þdx: ð2:22Þ

The following inversion formula holds:

f x; y; zð Þ ¼ 1
2π

	
ð1

�1

~f kx; y; zð Þexp ikxxð Þdkx: ð2:23Þ

Partial transforms with respect to other variables are defined similarly. Through-
out this book, we apply the transform with respect to the variable y as follows:

~f x; ky; z
� � ¼ ð1

�1
f x; y; zð Þexp �ikyy

� �
dy: ð2:24Þ

Moreover, we consider functions that are even with respect to the variable y. In
this case, the Fourier transform (2.23) can be written in the form of a cosine
transform:

~f x; ky; z
� � ¼ 2

ð1
0

f x; y; zð Þ cos kyy
� �

dy: ð2:25Þ

For even functions, the imaginary part of the Fourier transform vanishes. In this
case, the inversion formula (2.23) is reduced to

f x; y; zð Þ ¼ 1
π
	
ð1
0

~f kx; y; zð Þ 	 cos kxxð Þdkx: ð2:26Þ
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The Fourier transform is often called the spectrum or spectral representation of
the function. Fourier transforms have the following important property. Suppose that
the functions f(x, y, z) and g(x, y, z) are given in R3. A convolution of the functions ( f
* g) (x, y, z) with respect to the variable x is the following function:

f∗g x; y; zð Þ ¼
ð1

�1
f x0; y; zð Þ 	 g x� x0; y; zð Þdx0:

If there exists a Fourier transform of the functions f(x, y, z) and g(x, y, z), there
must exist a Fourier transform of the convolution

h(x, y, z) ¼ f∗g(x, y, z),

and the following formula holds:

h
� ðkx, y, zÞ ¼ f

� ðkx, y, zÞ 	 g� ðkx, y, zÞ: ð2:27Þ

2.3.2 The Hankel Transform

We now write the Laplace operator in cylindrical coordinates:

1
r

∂
∂r

r
∂u
∂r

� �
þ 1
r2

∂2u

∂φ2
þ ∂2u

∂z2
¼ 0, r > 0; z2R; 0 < φ � 2πð Þ:

We introduce the following notation for the radial part of the Laplace operator:

Λru 
 1
r

∂
∂r

r
∂u
∂r

� �
:

The zero-order Bessel function of the first kind is an eigenfunction of the Laplace
operator defined in cylindrical coordinates. Indeed, suppose that some function Rλ(r)
is an eigenfunction of the operator Λr:

ΛrRλðrÞ 
 1
r

d

dr
r
dRλ

dr

� �
¼ �λ2Rλ:

Then, this function satisfies the following equation:

rR0ð Þ0 þ λ2rR ¼ 0 ) R00 þ 1
r
R0 þ λ2R ¼ 0: ð2:28Þ

Then, we perform a change of variables x ¼ λr and obtain
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Rλ rð Þ ¼ R x=λð Þ ¼ y xð Þ, R0 ¼ λy0, R00 ¼ λ2y00 )
λ2y00 þ λ2

x
y0 þ λ2y ¼ 0:

It follows from the above that the function y(x) ¼ R(x/λ) is precisely the zero-
order Bessel function of the first kind, y(x) ¼ J0(x), Rλ(r) ¼ J0(λr).

Thus, we have

ΛrJ0 λrð Þ 
 1
r

d

dr
r
dJ0 λrð Þ

dr

� �
¼ �λ2J0 λrð Þ: ð2:29Þ

Similar to the definition of the Fourier transform with trigonometric functions, it
is possible to define a Fourier transform with Bessel functions. This transformation is
known as a Hankel transform, sometimes also called a Bessel–Fourier transform.

We denote the Hankel transform of the function U(r, z) with respect to the
variable r by ΦU(λ,r) with the Bessel function J0(λr):

ΦU λ; zð Þ ¼
ð1
0

U r; zð ÞJ0 λrð Þrdr: ð2:30Þ

It is known that this transformation is an inverse of itself:

U r; zð Þ ¼
ð1
0

ΦUð Þ λ; zð ÞJ0 λrð Þλdλ.

Let V(λ, r) be the Hankel transformΦU. Suppose that the functionU(r, z) tends to
zero at infinity and that the function ∂U(r, z)/∂r decreases at infinity faster than 1/r.
Let us derive a formula for the Hankel transform of the Laplace operator applied to
the function U(r, z):

ΦΛrU ¼
ð1
0

ΛrU r; zð ÞJ0 λrð Þrdr ¼
ð1
0

1
r

∂
∂r

r
∂U r; zð Þ

∂r

� �
J0 λrð Þrdr ¼

¼ rJ0 λrð Þ ∂U r;zð Þ
∂r

���r¼1

r¼0
�
ð1
0

∂U r; zð Þ
∂r

	 ∂J0 λrð Þ
∂r

rdr:

Considering that the function U(r, z) decreases at infinity, integrating by parts
gives

ΦΛrU ¼ �rU r; zð Þ∂J0 λrð Þ
∂r

����
r¼1

r¼0

þ
ð1
0

U r; zð Þ ∂
∂r

r
∂J0 λrð Þ

∂r

� �
dr:

Now, we consider property (2.29) of the function J0(λr) and the condition of the
decrease of the function U(r, z) at infinity:
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ΦΛrUð Þ λ, zð Þ ¼
ð1
0

U r, zð Þ1
r

∂
∂r

r
∂J0 λrð Þ

∂r

� �
rdr � rU r, zð Þ∂J0 λrð Þ

∂r

����
r¼1

r¼0

¼ �λ2
ð1
0

U r, zð ÞJ0 λrð Þrdr ¼ �λ2ΦU λ, zð Þ:
ð2:31Þ

Thus, the Hankel transform (2.30) of the radial part of the Laplace operator of the
function U(r, z) is equal to the product of the Hankel transform of the same function
by the number �λ2.
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Chapter 3
Electrical Survey Technique and Mathematical
Models

3.1 Electrical Arrays, Field Measurements,
and the Electrical Resistivity Tomography Method

Electrical exploration is a component of exploration geophysics that is used to study
the structure of the earth by exploiting electromagnetic fields to search for minerals,
solve numerous near-surface tasks, and provide constraints for the design and
construction of buildings. Electrical exploration is based on the differences in the
electromagnetic properties of rocks, primarily with regard to the electrical resistivity
ρ. From the perspective of physical fundamentals, electrical prospecting methods
can be divided into high-frequency methods of electrical exploration (e.g., ground-
penetrating radar (GPR) and radio transmission methods), low-frequency methods
(e.g., magnetotelluric sounding (MTS) and time-domain electromagnetic (TEM)
methods), and DC methods. The major component of such techniques is the resis-
tivity method. This monograph is devoted to the resistivity method in the modifica-
tion of electrical resistivity tomography (ERT).

The resistivity method includes different modifications of electrical surveying
techniques, the theory of which is based on the study of the distribution of the
electric field generated by artificial sources with known parameters in conducting
geological media (Khmelevskoi 1984; Yakubovskii 1980).

The resistivity method is based on a dependence of the electric field observed at
the earth’s surface on the distribution of the resistivity throughout the medium. The
electric field is created by the current IAВ flowing from an electrode A to an electrode
B. The electric field strength is measured by receiving electrodes M and N. For small
MN separations, the potential difference ΔUMN is proportional to the component of
the electric field strength in the direction of the line MN:

ΔUMN � (E � MN).
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A specific arrangement of four source and measuring electrodes is known as an
electric survey installation or array. There are many types of arrays. The measure-
ment results for each particular array depend on the configuration of the array and on
the distribution of the resistivity in a region of the geoelectric section through which
the electric current actually penetrates.

To estimate the approximate dimensions of this region, the distribution of the
following derivative is used:

Sens x; zð Þ ¼ ∂ρк xa; xb; xm; xnð Þ
∂ρ x; zð Þ :

This derivative is calculated for an array located on the earth’s surface, for which
the receiving and feeding electrodes are located at four arbitrary points. This
derivative is known as the sensitivity (Sens) of the array.

The sensitivity represents how a change in the resistivity at a point (x, z) affects
the measured signal within the receiving dipole MN for an initially homogeneous
half-space. Examples of the sensitivity sections for the three-electrode MNB array
are shown in Fig. 3.1. A comparison of these sections demonstrates that the size of
the area of influence, including the depth, depends on the geometry of the array.
The installation is primarily sensitive to the distance between the source and
measuring electrodes. This distance is called the spacing of array.

Fig. 3.1 Sensitivity sections in conventional units for a Pole-Dipole array, with two OB values and
the same MN lines in relative units
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By increasing or decreasing the spacing, we can accordingly increase or decrease
the depth of the investigation. This makes it possible to study geoelectric sections at
various depths based only on measurements from the earth’s surface.

3.1.1 Types of Arrays

In the field, measurements are performed using the resistivity method with either one
or two point sources or with a dipole source. The main types of electric survey arrays
are shown in Fig. 3.2.

Fig. 3.2 Main types of electric survey installations electrical survey arrays for the resistivity
method (R is a separation)
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3.1.2 Apparent Resistivity

The concept of the apparent resistivity was introduced for convenience within the
analysis and interpretation of the observed electric field. The apparent resistivity
represents the observed electric field normalized by the parameters of the array in
such a way that, within a homogeneous half-space, the apparent resistivity coincides
with the true resistivity. The value of the apparent resistivity for a surface array is
calculated using the following formula:

ρa ¼ К
ΔUMN

IAB
, К ¼ 2π

�
1

AM
� 1
AN

� 1
BM

þ 1
BN

� �
, ð3:1Þ

whereΔUMN is the measured potential difference between the receiving electrodesM
and N, IAB is the current along the line AB, and K is the geometric factor of the array.

In a generalized case, the apparent resistivity exhibits a complex dependency on
the resistivity distribution throughout the sounding medium. For a horizontally
layered medium, the apparent resistivity is approximately equal to the specific
resistance of the layers averaged over a certain volume. For horizontally inhomoge-
neous media, the apparent resistivity may be greater than the maximum resistivity of
a particular object within a section or less than the minimum resistivity of that same
object. The size of the spatial region affecting the observation results depends on the
separation and geometry of the array. As the spacing of array increases, deeper layers
can be imaged within this region (Fig. 3.1).

3.1.3 Different Types of Resistivity Methods

Within the framework of the resistivity method, various research methods have been
developed to solve particular types of problems (Fig. 3.3). Traditionally, there are
three main types of resistivity technologies.

Fig. 3.3 Basic modifications of the resistivity method
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3.1.4 Electroprofiling

For electroprofiling (EP) methods, the array is moved along the profile without
changing the configuration. Since the geometry of the installation does not change,
the depth of the investigation remains approximately constant. This technique was
designed to map horizontal heterogeneities within a geoelectric section.

3.1.5 Electrical Sounding

At each observation point, measurements are taken while increasing the spacing
within the array. With the help of electrical sounding data, the depth distribution of
the resistivity of the medium can be investigated.

3.1.6 Circular (Azimuthal) Measurements (Profiling
and Sounding)

At each point, measurements are collected along different directions of the axis of
the installation (i.e., the azimuth of the array). This special technique is used to study
media with azimuthal resistivity anisotropy.

3.1.7 Electrical Resistivity Tomography

Real geological media are often heterogeneous in both the horizontal and the vertical
directions. To study such media, two-dimensional (2D) electrotomography methods
have been used in recent years by combining probing and profiling techniques.
A feature of this technique is the use of an automatic 2D inversion during the
interpretation. Such interpretations are conducted using automatic 2D or 3D inver-
sion programs. Automatic inversion techniques require a high observation density
and a specific survey implementation. Modern high-performance equipment pro-
vides the requisite measurement speed for field observations. There are both surface
and well-surface installations for electrotomography methods. In addition, some
electrotomographic installations are performed in motion both on land (e.g., using
an OhmMapper) and in aquatic environments (e.g., narrow-azimuth continuous
aquatic sounding). Currently, 3D modifications of electrotomography techniques
are in development. The resolution (i.e., the number of the smallest objects in the
geoelectric section that can be stably detected in the electric field) and the
corresponding quality of the electrotomography data interpretation are closely
related to the number and density of measurements within the profile. The number
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of measurements usually reaches 1000 and, thus, the speed of the acquisition of field
measurements is of fundamental importance and largely determines the practical
applicability of this method. Special equipment with the programmable ability to
switch electrodes automatically is used to achieve maximum efficiency during
fieldwork (Griffiths and Barker 1993; Bobachyev et al. 1996; Dahlin 2001). For
the sake of brevity, we use the term “multi-electrode equipment” hereafter.

Multi-electrode equipment sets constitute numerous electrodes (usually ranging
from 48 to 128 pieces) connected by an electrical multiwire cable. In this case, each
electrode can be used not only as a receiving electrode but also as a supply electrode
(Fig. 3.1). Thus, once the array of electrodes has been installed and connected, the
entire process of profiling measurements can be conducted.

Multi-electrode equipment sets were first developed during the beginning of the
1990s. Then, multi-channel and multi-electrode systems were introduced at the
beginning of the twenty-first century. Such equipment is able to communicate with
the given electrodes with a generator and a meter, and the equipment also allows
parallel measurements along several receiving lines (Fig. 3.4). This approach pro-
vides a significant increase in the measurement speed, which essentially reduces the
measurement time, allowing one station to finish acquiring data in 10–15 min.

The most globally recognized devices for ERT are manufactured by Iris Instru-
ments (Syscal Pro, developed by both France and Japan), ABEM (Terrameter,
LUND Imaging System, Sweden), and AGIUSA (Supersting, USA). In Russia,
there are several developers of similar systems, namely, OMEGA-48 (Logis, Mos-
cow), SGD-ETT (SibGeofizPribor, Krasnoyarsk), SKALA-64 (AA Trofimuk Insti-
tute of Oil and Gas Geology and Geophysics, Novosibirsk), and ERA-MULTIMAX
(SPC ERA, S.Peterburg).

Fig. 3.4 Multi-electrode and multichannel system
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The measurement procedure with multi-electrode equipment consists of
switching the roles of the electrodes (i.e., either providing or measuring the current)
without moving the electrode system. This process is described within a so-called
measurement sequence, which comprises a list of all of the planned measurements
without changing the position of the cables along the observed profile. This distin-
guishes the electrotomography method from the vertical electrical sounding (VES)
method, where it is sufficient to determine the electrode interval along the profile and
the spacing of the grid.

Typically, measurement sequences are generated using one of four traditional
electrical survey arrays, namely, the Wenner, Schlumberger, dipole axial, and Pole-
Dipole array. A set of such measurements can be represented by electrical probes
with frequent intervals or by multipurpose profiling. Thus, we can obtain a data set in
which both deep and surface objects are imaged. The depth of the survey section and
the details of the study area can be assessed from the images generated using the
VES and electrical profiling (EP) methods. For example, the depth for the
Schlumberger array is estimated as one-third to one-tenth of the spacing of AB,
and the detail of the section is comparable to the electrode interval along the profile.
Using classical settings allows one to represent the results of the measurements in a
standard manner, including pseudo-sections, sounding curves, and profile graphs. To
optimize the measurement speed and inversion reliability, non-traditional arrays (for
example, multigradient arrays and Dahlin array) have been developed. As a rule,
ERT equipment is programmed with a set of predefined measurement sequences.
However, this does not exclude the possibility of using sequences prepared or edited
by the user and optimized for specific tasks.

Note that the results of ERT depend on the type of multi-electrode equipment
employed, as they have different depths and resolving abilities in addition to other
unique features.

ERT has a wide range of applications. At present, ERT is used to map complex
geological structures with limited dimensions, spatially varying properties, and steep
incidence angles. ERT applications include prospecting primarily for ore deposits of
different minerals, solving engineering and geological problems for the designs of
buildings and structures, solving hydrogeological problems, and mapping perma-
frost. ERT is also used to map pollution and search for archaeological objects.
Usually, electrotomography is utilized for detailed surveys at a scale of 1:5000 or
larger. ERT has been successfully used to confidently identify and study objects at
depths of 30–50 m (sometimes 100–150 m or more). At the same time, as with all
geophysical methods, objects at depths that are comparable with the transverse
length of the profile cannot be reliably detected.

It follows from Table 3.1 that the most effective array is a combined three-
electrode installation. A symmetrical four-electrode Schlumberger array also pos-
sesses good qualities. By virtue of the reciprocity theorem, the Schlumberger inverse
arrayM_AB_N is theoretically equivalent to the traditional Schlumberger array. This
array therefore allows for the implementation of multichannel measurements. The
Dipole-Dipole axial array also has satisfactory qualities. However, in a conventional
Dipole-Dipole axial array, one position of a measuring electrode corresponds to only
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one position of a current electrode; in the inverse array, a plurality of measuring
electrode positions can correspond to the current array. The Wenner and Pole-Pole
arrays are rarely used in practice. The Wenner array is not convenient because it is
cumbersome to install, lacks the ability to provide multichannel measurements, and
provides only a small number of independent physical measurements. The Pole-Pole
array is also not commonly used because of the need to create two lines at “infinity.”

The primary parameters of ERT methods are all geometric parameters:

1. The number of applied electrodes, which depends on the equipment
2. The distance interval between the electrodes, which depends on the cable length
3. The type of electrical survey array (i.e., measurement sequence)
4. The range of the spacing used (specified by the measurement sequence)
5. The length of the dipoles (determined by the measurement sequence)
6. The interval of the shifted alignment when working with long profiles

All of these parameters are described in the log files; it is recommended that these
files be stored together with the measurement results.

In addition to the geometric parameters of the survey, the following dynamic
parameters should also be considered:

1. The signal shape, namely, whether it is meandering, meandering with a pause, or
sinusoidal

2. The signal duration when the current is flowing into the current dipole or the
period of the harmonic signal

3. The amount of stored data

The duration of the current pulse or the operating frequency can directly affect the
measurement speed. In addition, measurements with large pulse widths (or low
operating frequencies) are usually less distorted by induction and industrial noise.
When using ERT, a 0.5-s pulse is used, whereas a 0.25-s pulse is employed in
favorable conditions. For harmonic signals, operating frequencies ranging from 5 to
10 Hz (i.e., periods of 0.2–0.1 s) are usually selected. For successful measurements
using the vertical profiling (VP) method, the pulse length should range from 1 to 2 s.

Table 3.1 Comparison of electroprospecting arrays in relation to electrotomography

Arrays DI ΔUmn S Nch km Inf

A_M High High Low Yes Large Two lines

A_M_N_B Medium High Low No Small No

A_MN_B Medium Medium Medium Yes Medium No

AB_MN Low Low High Yes Small No

A_MN þ MN_B High Medium High Yes Large One line

A_M Pole-Pole array, A_M_N_B Wenner array, A_MN_B Schlumberger array, AB_MN Dipole-
Dipole axial array, A_MN þ MN_B two Pole-Dipole arrays, DI depth of the investigation, ΔUmn

level of the measured signal, S resolution, Nch possibility of multichannel measurements, km
number of measurements within a single cycle of observations, Inf the need to set the line to
“infinity”
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A meander with a pause is usually used only for measurements of induced polari-
zation parameters.

Field measurements with multi-electrode equipment are performed in several
stages:

1. The first stage consists of deployment of the electrical equipment, grounding of
electrodes, and connection of the measuring electrodes to the spit. The distance
between the electrodes is determined either directly along the cable or along a
measuring tape. In the presence of sharp relief, the distances are measured along
the relief. The spit is located along a straight line as much as possible. To
accomplish this, the intended profile of the survey is preliminarily marked on the
terrain. Smooth turns of the cables are allowed, but sharp breaks or abrupt turns
in the spit position are unacceptable. The depth and quality of the grounding of
the electrodes determines the transient resistance, which is verified using special
measurements before the survey is initiated (see point 3).

2. For a Pole-Dipole array, the “infinity” placement must be organized; its position
depends on the terrain conditions and the operational methodology. The correct
location on the ground is verified and recorded using a GPS receiver. To reduce
transient resistance, several electrodes can be grounded at infinity. Usually, the
maximum number of measurements from one position of infinity must be
determined.

3. The measurement process begins with verifying the grounding of each elec-
trode. For this purpose, a special operating mode is provided for all multi-
electrode stations. In this mode, the resistance of a grounded electrode is
determined in pairs or with respect to a reference electrode. The value of the
transient resistance depends on the operating conditions and the parameters of
the equipment. As a rule, the transient resistance should be less than 5–10 kOhm
and should be similar for all electrodes located in the same type of ground. If the
resistance of an individual electrode is high, a new hole is dug or the existing
hole is either deepened or wetted with salt water. Sometimes, additional elec-
trodes must be used and attached to the system.

4. The transmitter parameters must be established. Before initiating the measure-
ment process, it is necessary to set the abovementioned operating parameters,
namely, the measurement sequence and the duration and shape of the pulse. In
addition, the output voltage of the generator (e.g., 400 V) or the amplitude of the
current in the supply line (depending on the type of equipment used) must also
be set. The optimal parameters are determined by the experimental method. A
higher current within the supply line leads to better signal-to-noise ratios.
However, if the signal level is too high (i.e., the first voltage), the analog-to-
digital converter (ADC) of the measurement instrument may restart. In unfa-
vorable conditions, it is necessary to break the measurement sequence into two
sections for small and large spacing and operate the system with different output
parameters for the generator.

5. The parameters of the measurement instrument must be established. One way to
improve the quality of the measurements is to accumulate a useful signal
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through repeated measurements. The number of accumulations depends on the
level of interference and, as a rule, is equal to 2–6 accumulations.

6. The measurements are usually conducted in automatic mode and, at a high
measurement speed, it is almost impossible to control the process. The operator
usually monitors the level of the measured signal, the current strength in the line,
and the voltage of the battery.

7. A height-planned anchor of the profile is necessary for the correct processing
and interpretation of the ERT data. Usually, this step is performed in parallel
with the measurement process. For this step, it is desirable to note the position of
each electrode and store it within a GPS receiver. Because the accuracy of the
GPS altitude reference is poor, an additional definition of the profile relief is
performed using a tachometer or a high-precision GPS measurement device.

8. The qualities of the measurements are checked immediately after the observa-
tions are acquired through primary data processing and the construction of
pseudo-sections of the apparent resistivity. High-density observations lead to
smooth pseudo-sections without separate anomalous measurements. If the qual-
ity of the data obtained is doubtful, the measurements are repeated with an
increase in the data accumulation number and an increased generator voltage. If
abnormal measurements are observed at the same electrodes, then the grounding
of those electrodes is checked and improved.

9. After performing measurements with a single electrode system, a part of the
electrode array is physically moved for a long profile. After completing the
measurement acquisition for one allocation, the first segment of the line is
shifted by moving it to the end of the alignment along the observation profile
(i.e., the “roll-along” technique). To accelerate movement of the array, connec-
tors are located on both sides of the segments and the electrodes are connected to
the same lines of the cable, thereby allowing one segment to remain stationary
(Fig. 3.5). In this case, there is no sense in repeating the measurements in which
only half of the electrodes are used. Therefore, it is recommended to apply the
measurement sequence in which these measurements are already excluded. It is
possible to move the array along a distance that is one-quarter of the whole line.
This is convenient when working with lines that are divided into four segments.
At the same time, the labor productivity is slightly reduced; however, with this
disaggregation, the refinement of the work increases.

10. The result of the fieldwork is a set of pseudo-sections of apparent resistivities
(Fig. 3.6). The qualities of the materials can be assessed directly in the field after
the experiment. To quantify their quality, measurement errors are calculated. For
ERT, these errors are calculated using the following formula:

σ ¼ 1
N

XN
i

ρo
i � ρ c

i

�� ��
ρo
i þ ρ c

i

� 100%,

where σ is the percentage error in the measurements using the ERT method, ρo
i is

a measurement at the i-th common point, ρ c
i is a control measurement at the i-th
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Fig. 3.6 Examples of pseudo-sections of apparent resistivities: (a) Dipole-Dipole array ABMN,
(b) Pole-Dipole array MNB, and (c) Pole-Dipole array AMN

Fig. 3.5 Scheme of cable moving by technology roll-along
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ordinary point, and N is the number of control points. As a rule, the obtained average
value of the measurement error should not exceed 1–3% for each study site. An error
of more than 5–7% indicates large interference, which can worsen the signal-to-
noise ratio. It is therefore necessary to check for errors, especially for large distances
where the useful signal can have a small amplitude. Large measurement errors can
significantly affect the quality of the interpretation in future steps.

3.2 Mathematical Model of the Resistivity Method

One of the reasons for the popularity of the ERT method is that the mathematical
methods for interpreting the measurement data are more developed. Maxwell’s
equations are the basic model for describing the electromagnetic field in a medium.
Let us write the Maxwell equations in the SI system for the electromagnetic field in a
medium:

rotH ¼ jþ ∂D
∂t

,

rot E ¼ �∂B
∂t

,

div B ¼ 0,

divD ¼ q:

ð3:2Þ

Here, H is the magnetic field strength, E is the electric field strength, B is the
magnetic induction, D is the electric induction and q is the bulk density of electric
charge.

The system (3.2) is not yet closed. To close it, characteristics of the medium
such as the coefficients of the dielectric constant, magnetic permeability, and
specific electrical conductivity (or specific electrical resistance) are introduced. In
the general case of an anisotropic medium, these coefficients form tensors. However,
here we only consider isotropic media. In this case, each of these coefficients is a
scalar.

The vectors of magnetic and electric induction are connected to the electric and
magnetic field strengths by the following material equations:

D ¼ ε0εE, B ¼ μ0μH, j ¼ σE: ð3:3Þ
Here, ε and μ are the coefficients of the relative electric and magnetic perme-

abilities of the medium, σ is the coefficient of specific electrical conductivity,
ε0 ¼ 1/(μ0c

2) ¼ 8.854187 � 10�12 F/m and μ0 ¼ 4π � 10�7 H/m are the dielectric
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and magnetic constants, respectively, and c ¼ 299,792,458 m/s is the speed of
light in a vacuum.

Considering the material equations (3.3), Maxwell’s equations are rewritten as
follows:

rotH ¼ σEþ εε0
∂E
∂t

,

rotE ¼ �μμ0
∂H
∂t

,

div μμ0Hð Þ ¼ 0,

div εε0Eð Þ ¼ q:

ð3:4Þ

In this monograph, we consider media with a piecewise constant distribution of
electrical conductivity. However, the divergence operation in (3.4) does not make
sense in the regions of conductivity jump. In this case, we must start from a more
general, integral formulation of the Maxwell equations:þ

∂S

H � dl ¼
ðð
S

σEndSþ ε0
d

dt

ðð
S

εEndS

þ
∂S

E � dl ¼ �μ0
d

dt

ðð
S

μHndS,

�
ðð
S

μμ0HndS ¼ 0,

�
ðð
S

εε0EndS ¼ Q:

ð3:5Þ

Here, Q is the total charge inside the surface S. First, let us simplify the model for
the case of ERT. In practice, for the vast majority of media, the coefficient of relative
permeability μ can be assumed to be constant and equal to unity. In an electric
tomography survey, the internal charges that create an electric field inside the
medium are absent, and the current in the medium flows due to external sources
only. Therefore, we can set q ¼ 0 in (3.4). Let H0, E0, T, and X be the characteristic
scales of the magnetic field strength, electric field, time, and spatial length, respec-
tively. Now, introduce the relative (dimensionless) variables into (3.4):

H0 ¼ H=H0, E0 ¼ E=E0, t0 ¼ t=T , r0 ¼ r=X: ð3:6Þ
Substituting (3.6) into (3.4), we obtain the equations with dimensionless

variables:
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rotH0 ¼ σ
E0X

H0
E0 þ εε0

E0X

TH0

∂E0

∂t0
,

rotE0 ¼ �μμ0
H0X

TE0

∂H0

∂t0
,

div H0ð Þ ¼ 0,

div εε0E0ð Þ ¼ 0:

ð3:7Þ

The system (3.7) contains more equations than unknowns (eight equations and
six unknowns). However, the last two scalar relations express the conditions that the
electric and magnetic fields must satisfy at the initial moment. It can be shown that if
the last equations are satisfied at the initial time, then they are satisfied at each
subsequent time. Therefore, assuming that at the initial moment these conditions are
valid, we exclude the last two equations from consideration. Further simplification of
the system (3.7) depends on the ratio of the physical quantities σ and εε0/T. If the
value of εε0/T in (3.7) is significantly less than the conductivity σ, then the second
term in the first equation can be neglected. Therefore, the bias current is smaller than
the conduction current. This result is possible if the source field has a low frequency
or the magnitude of the characteristic time scale T is relatively large.

In this case, the second term on the right-hand side of the first equation, which is
responsible for the bias current and is associated with the variable nature of the
magnetic field, is negligible. Similarly, we can omit the right-hand side of the second
equation. Instruments that are used for sounding in electrical tomography operate in
the low-frequency range, up to 20 Hz, which allows the application of the direct
current (DC) model (i.e., neglecting the dependence of the quantities in the equation
on time). However, at higher frequencies, it is necessary to consider the omitted
values. Depending on the frequency of the sounding signal and the values of the
material constants, we can obtain other mathematical models, such as quasi-
stationary and wave models.

Based on the above considerations, and returning to the dimensional variables,
we obtain a DC model. This model is a theoretical basis for sounding by the ERT
method:

rot H ¼ σE,

rot E ¼ 0:
ð3:8Þ

We now apply the divergence operation to the first equation of the model (3.8).
Considering that div(rotH) ¼ 0, we obtain:

div σEð Þ ¼ 0: ð3:9Þ
The second equation in (3.8) shows that the electric field has an irrotational

character; therefore, we can introduce the potential of the electric field, which is
denoted by the function U:
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E ¼ gradU: ð3:10Þ
This relation identically satisfies the equation rotE¼ 0. By substituting (3.10) for

(3.9), we obtain an equation for the potential function:

div σ gradUð Þ ¼ ∇ � σ∇Uð Þ ¼ 0: ð3:11Þ
In the case of an electrically homogeneous medium, the coefficient of (3.11) is

constant, and we obtain the Laplace equation for the electric field potential:

∇ �∇U � ΔU ¼ 0 ð3:12Þ
However, (3.12) holds for a constant conductivity coefficient. In the case of

discontinuity in the conductivity, we must start from the integral form of the law
of conservation of charge (3.9) that is written through the potential U. To this end,
we integrate (3.9) with respect to an arbitrary volume V:ððð

V

div σ∇Uð ÞdV ¼
ðð
∂V

σ∇U � dS ¼
ðð
∂V

σ
∂U
∂n

dS ¼ 0 ð3:13Þ

Let dV be the small element of the volume that is in the vicinity of some smooth
surface on which the conductivity is discontinuous and has the values of σþ and σ�
from different sides. Let the volume dV contain the element dΓ inside it. If the
volume is contracted to the surface dΓ from two sides, from (3.13) we obtain:

σþ
∂U
∂n

����
þ
¼ σ�

∂U
∂n

����
�
: ð3:14Þ

Relation (3.14) expresses the equality of the normal current from two sides of
surface Γ. The potential function completely determines the electric field in the
medium. To determine the current density at any point in the medium, we apply
Ohm’s law and obtain:

j ¼ σ∇U ¼ 1
ρ
∇U:

3.3 Direct and Inverse Problems in the Resistivity Method

In this section, we provide some examples of the formulation of direct and inverse
problems for the mathematical models of ERT. Maxwell’s equations are linear,
which allows us to use the principle of the superposition of electric fields. Therefore,
the resulting field in the medium, which is induced by different sources, is equal to
the vector sum of the fields from each source. When the current is ejected in the
medium, two poles (positive and negative) are necessarily present; they can change
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their polarity with a given frequency. However, the time in which the ERT devices
are reading the data from electrodes is so small that the current in this interval can be
regarded as constant; as shown in Sect. 3.2, an approximation of the DC theory is
sufficient at low frequencies. Furthermore, according to the principle of superposi-
tion, in numerical modeling, we consider problems in which an electric field is
excited by a single source (sink). In the presence of several sources (sinks), the
potentials (electric fields and currents) from all sources can be algebraically com-
bined. Therefore, in most of the mathematical models that are considered here, we
consider the case of a single point source.

Let us consider the simplest model of a source with a current I that is placed at the
origin in a homogeneous conducting half-space z > 0 with specific conductivity σ
(and resistivity ρ ¼ 1/σ). In this case, the potential is given by the function

U ¼ � I

2πσr
¼ � Iρ

2πr
: ð3:15Þ

Here, r is the distance to the source. It is easy to check that the function (3.15)
satisfies Laplace’s equation. The electric field strength for a point source has the
form:

E ¼ ∇U ¼ I

2πσr2
r
r
, ð3:16Þ

and the current density at each point of the medium is given by the following
formula:

j ¼ σE ¼ I

2πr3
r:

Due to the spherical symmetry of the source function, at all points of the surface
of the medium (formed by the plane z¼ 0), the component of the electric field En¼ 0
is normal to the surface. Therefore, at all points of the surface of the medium, except
the origin, the current is equal to zero. By the definition of the potential (3.15), the
total current that is flowing into the medium is equal to I. Indeed, integrating over a
hemisphere of radius R with the center at the origin, we obtain the total current from
Ohm’s law:

ðπ
0

ðπ=2
0

jndΓ ¼
ðπ
0

ðπ=2
0

σEnR
2sin dθdφ ¼ I

2π

ð2π
0

ðπ=2
0

sin dθdφ ¼ I:

The representation (3.15) is convenient if the size of the electrode through which
the current flows into the medium is negligible compared with the step between the
measuring electrodes. As a rule, this condition is satisfied in practice. Let us use the
definition of the Dirac delta function and write the boundary condition in symbolic
form. If a current source is placed at the origin, then the current density that is
directed along the normal to the boundary is
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∂U
∂n

¼ I

σR2
0

� δ rð Þ: ð3:17Þ

Here, δ(r) is a cylindrically symmetric delta function such that the integral over
any circle that encloses the origin is unity. The multiplier corresponds to the
dimension of the current density, because the delta function is a dimensionless
abstract mathematical object. We now consider the case of an inhomogeneous
medium in which the conductivity coefficient σ(x, y, z) depends on the coordinates
of the points. Let the medium occupy the half-space z > 0. In this case, the field
potential satisfies the following equation and boundary conditions:

∇ � σ∇Uð Þ ¼ 0, z > 0

σ
∂U
∂z

x; y; 0ð Þ ¼ I

R2
0

� δ rð Þ, r ¼ rj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
lim
r!1U ¼ 0:

8>>>><>>>>: ð3:18Þ

If the function σ(x, y, z) is defined at all points of the medium, then the problem
(3.18) is a direct problem. To solve a direct problem, it is necessary to find a
distribution of the electric field in a medium U(x, y, z) that satisfies the conditions
(3.18). In a general case, the problem (3.18) is solved numerically; analytic solutions
are known only for certain simple cases. The solution to the direct problem deter-
mines the value of the field on a surface of the medium U(x, y, 0). If the conductivity
distribution σ(x, y, z) is known, then the results of the numerical calculation of the
function U(x, y, 0) should be close to the measured values. Such situations are
realized under the conditions of physical modeling, when the researcher artificially
forms a medium with known properties and conducts measurements on it. Then, a
numerical simulation is performed, and the results are compared with the measured
data. Such modeling allows, for example, the errors of a mathematical model to be
estimated.

However, in practice, the goal of the survey is to obtain the distribution of the
resistivity, (i.e., it is a priori unknown). Therefore, the data to solve a direct problem
are insufficient. However, we can measure the potential difference on the surface and
calculate the apparent resistivities of the medium. These data give additional infor-
mation for determining the conductivity of the medium, which is how the inverse
problem arises; in geophysics, this problem is called the data interpretation problem.
However, based on additional data, the researcher can make assumptions regarding
the nature of the distribution ρ(x, y, z) in the medium. Depending on these assump-
tions, different formulations of inverse problems are possible. For example, if the
medium is vertically nonuniform, then the resistivity function depends only on the
depth z. As shown above, in ERT, the current electrodes are placed in different
positions. However, if the distribution of resistivities in the medium depends only on
the depth z, then the measurement results remain the same when moving the array
along the profile. This observation provides a basis for solving the problem of
interpretation within the framework of a one-dimensional (1D) medium model. In
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this case, considering the superposition principle, it is sufficient to consider only one
position of the current electrode. Because of the cylindrical symmetry of the field,
the equations of the direct problem are written in a cylindrical coordinate system (r,
φ, z) in this case. Because of the cylindrical symmetry, the dependence on the
azimuth angle φ is omitted, and the direct problem has the following form:

∂
∂z

σ zð Þ∂U
∂z

� �
þ σ zð Þ

r

∂
∂r

r
∂U
∂r

� �
¼ 0, z > 0, r > 0

σ 0ð Þ∂U
∂z

r; 0ð Þ ¼ I

R2
0

� δ rð Þ,

lim
z!1U r; zð Þ ¼ 0, lim

r!1U r; zð Þ ¼ 0:

Note that by setting the scales for the quantities U(r, z), then σ(z), r, and z are I/
(σ(0) R0), σ(0), and R0, respectively. Then the direct problem in the dimensionless
variables has the following form:

∂
∂z

σ zð Þ∂U
∂z

� �
þ σ zð Þ

r

∂
∂r

r
∂U
∂r

� �
¼ 0, z > 0, r > 0

∂U
∂z

r; 0ð Þ ¼ δ rð Þ,

lim
z!1U r; zð Þ ¼ 0, lim

r!1U r; zð Þ ¼ 0:

ð3:19Þ

The inverse problem is posed as follows: find the distribution σ(z) from the
measurements of the potential on the surface with

∂U
∂r

r; 0ð Þ ¼ ψ rð Þ, 0 < r < 1 ð3:20Þ

In geophysics, inverse problems are often called data interpretation problems, and
the solution procedure is called “inversion.” Examples of numerical algorithms to
solve the inverse problem (3.19) with the data (3.20) are provided in the literature
(Mukanova and Orunkhanov 2010; Mukanova 2013a, b). Formulations of the direct
and inverse problems for the mathematical model (3.19) can be modified if we
introduce a medium with piecewise constant resistivity that depends on the coordi-
nate z. In this case, we arrive at the classic model of a horizontally layered medium.
The distribution of the function σ(z) is described by a finite number of parameters,
such as the depths of the layers and their resistivities (see, for instance, Sect. 3.4).
Some ideas for the approximate solution to the inverse problem for this model of the
medium are described (Koefoed 1979). The solution to the problem in an interactive
mode, with the active participation of the user, is realized in several software
packages, for example, in the program IPI2Win (http://geophys.geol.msu.ru/
ipi2win.htm), co-authored by I. N. Modin.
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The requirements for the correct statement of a mathematical problem were first
formulated by French mathematician and mechanic Jacques Hadamard. According
to Hadamard, a problem is posed correctly (well-posed) and it makes sense to solve it
if and only if the problem satisfies the following three conditions:

1. A solution to the problem exists
2. The solution is unique
3. The solution depends continuously on the input data

A problem that meets these requirements is called a direct problem. The classical
problems of mathematical physics are stated in such a way that these requirements
are satisfied. However, in practice, not all problems are well-posed. The main reason
for this is a lack of information. The main feature of inverse problems is that they do
not satisfy Hadamard’s conditions.

Definition. A problem where the necessary data for the statement of a direct
problem are insufficient, but some additional information about the solution is
available, is called an inverse problem.

Definition. Inverse problems in which the unknown data are the coefficients of the
equations are called coefficient inverse problems (CIPs).

Note that CIPs are characterized by large instability with respect to the input data
(i.e., they are ill-posed). Nonetheless, they have the greatest practical interest
because the coefficients of the mathematical model usually contain information
about the properties of the medium, such as the thermal conductivity, electrical
permeability, elasticity, and speed of sound in the medium. In many practical
applications, these coefficients must be determined on the basis of some indirect
measurements and other available additional information. However, when we have
more additional information, the inverse problem can be solved more accurately.

In practice, ERT often assumes that the distribution of the resistivity has a
two-dimensional (2D) character. In this case, the measured data are obtained by
moving the current electrodes along the profile. It is also possible to formulate the
inverse problem for a three-dimensional (3D) conductivity distribution. In this case,
a survey is performed on the 2D surface to obtain the measured data. Let us construct
a possible formulation of the inverse problem for the 2D resistivity distribution. Let
the surface of the medium coincide with the plane z¼ 0, the abscissa axis be directed
along the profile, and a a parameter that describes the position of the supply electrode
along the profile a ¼ (a, 0, 0). Then, the potential that is created by a point source
depends on the coordinates (x, y, z) and the parameter a: U ¼ U(x, y, z, a). In the
inverse problem statement, it is necessary to find the distribution of the electrical
resistivity ρ(x, z) of the medium from the measured data on the surface:

U x; y; 0; að Þ ¼ ψ x; að Þ, 0 < x < L, 0 < a < L: ð3:21Þ
where the function U(x, y, z, a) is a solution to the following boundary value
problem:
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∂
∂x

σ x; zð Þ∂U
∂x

� �
þ σ x; zð Þ∂

2U

∂y2
þ ∂
∂z

σ x; zð Þ∂U
∂z

� �
¼ 0, z > 0

σ x; 0ð Þ∂U
∂z

x; y; 0; að Þ ¼ δ r� að Þ,

lim
r!1U x; y; z; að Þ ¼ 0, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

ð3:22Þ

Thus, according to the sounding data, which form a function of two variables ψ(x,
a), it is also necessary to determine the function of two variables ρ(x, z) for the values
of 0 < x < L and 0 < z < L. This problem is currently being solved by using 2D
inversion programs, which convert the measured data into a geoelectric profile ρ(x, z)
(http://www.geotomosoft.com/downloads.php; http://zond-geo.ru/english/zond-soft
ware/ert-and-ves/zondres2d/).

The formulation of the inverse problem that is presented above is adapted to the
theory of CIPs. In this formulation, it is assumed that the potential can be measured
at each point of the profile and for an arbitrary position of the current electrode.
However, in ERT practice, the values of the potential differences are measured at
certain points along the profile. Through these potential differences, the apparent
resistivity is calculated, relative to the points at the center of each segment of
MN. This discrete set of apparent resistivity values forms a geoelectrical pseudo-
section. Then, it is entered into an inversion program. The inversion program, in
turn, generates a geoelectric section.

The present inversion programs provide a solution in the form of a smooth
function. However, for geologists and geophysicists, it is usually required in practice
to provide the sounding results with the sharply defined boundaries of different
media. This is necessary, for example, to assess the amounts of the reserves of
materials. Therefore, the result of the interpretation is transformed into a geoelectric
section with a piecewise constant resistivity distribution. After this step, it makes
sense to simulate the constructed section with a piecewise constant resistivity
function, which allows us to determine how accurately the obtained model fits the
measured data. The most accurate and efficient method for modeling such media is
the method of integral equations. The method of boundary finite element represents a
special case of the integral equations method (IEM) and has many applications. This
method is discussed in later chapters. To check the correctness of the numerical
algorithms and determine the admissible numerical parameters, it is useful to
conduct test calculations on known analytical solutions.

3.4 The Electric Field of a Point Source Above
a Horizontally Layered Medium

The material in this chapter has a reference nature and is partly written based on the
known solutions and techniques that are described in the literature. The algorithm for
calculating the apparent resistivity that is described in this section is further used in
testing the numerical methods that are described in Chaps. 4 and 5.
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3.4.1 Introduction

For geological reasons, sedimentary rocks, which in most cases form the upper part
of the section, accumulate in the form of layered strata. At the same time, the
horizontal boundaries of the layers can extend over very long distances: for conti-
nental deposits, this distance can be tens or hundreds of meters, and for marine
sedimentary rocks, these boundaries can extend many kilometers or tens of kilome-
ters. Such strata can consist of dozens of layers of considerable thickness that differ
significantly in their lithology and that can therefore have different electrical prop-
erties. In the first approximation, the properties of a single layer in the horizontal
direction change insignificantly. If the array is placed completely within the bound-
aries of this layered medium, then the most suitable mathematical model of the
section under investigation is a horizontally layered stratum; at each point, the
electric resistivity varies only vertically. The model of a horizontally layered
medium is the first and a very important approximation of the geological structure
of the earth. This model was completely dominant in electrical exploration until the
early 1990s, when a more complex model of a horizontally inhomogeneous 2D
medium appeared. Such a transition is natural due to the development of technical
capabilities, the theory of electrical exploration, and the use of personal computers at
all stages of geophysical survey.

The model of the medium is shown in Fig. 3.7. The model under consideration is
divided into two half-spaces: an upper half-space, which has a very high resistivity
of air, and a lower half-space, which consists of n layers. Suppose that at point A on
the surface of the earth, where the origin of the coordinates is located, there is a

Fig. 3.7 Model of
horizontally inhomogeneous
layered medium

3.4 The Electric Field of a Point Source Above a Horizontally Layered Medium 43



current electrode A (zA ¼ 0). The layers have resistivities of ρ1, ρ2, . . ., ρi, . . ., ρn�1

and thicknesses of h1, h2,. . ., hi,. . ., hn�1, respectively. The lowest layer has an
infinitely large thickness, and our arrays “do not feel” its base. The soles of the layers
(the depths of the lower boundaries) are located at the marks d1, d2,. . . di,. . . dn�1.
The problem is stated as follows: find a component of the electric field on the earth’s
surface for z ¼ 0 that is directed radially from the point source at a distance r.

3.4.2 Statement of the Problem and Its Solution
in General Form

1. It is necessary to find the solution to Laplace’s equation ΔU ¼ 0 in each of the
layers. We write the Laplace equation (3.11) in cylindrical coordinates:

1
r2

∂2U

∂ϕ2 þ
∂2U

∂r2
þ 1

r

∂U
∂r

þ ∂2U

∂z2
¼ 0:

The electric field and its potential have axial symmetry, giving ∂U
∂φ ¼ 0.

Therefore, the Laplace equation takes a simpler form:

∂2U

∂r2
þ 1

r

∂U
∂r

þ ∂2U

∂z2
¼ 0:

2. At the contact of the layers, we state the boundary conditions that correspond to
the equality of the potentials, the equality of the normal components of the current
density, and the absence of a vertical component of the current density on the
earth’s surface:

Ui ¼ Uiþ1 z¼zij ;
1
ρi

∂Ui

∂z
¼ 1

ρiþ1

∂Uiþ1

∂z z¼zi

��� ;
∂U1

∂z
¼ 0 z¼0

��� :

3. The potential near the source in the first layer comprises the potential of the
primary current source itself and the anomalous potential U0

1(r, z), which origi-
nates from the reflections of the electric field from the upper and lower boundaries
of the first layer:

U1 ¼ Iρ1
2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p þ U0
1 r; zð Þ:

For brevity, we use the notation q ¼ Iρ1
2π .

4. The physical condition for the damping of the field at infinity must be satisfied. At
a considerable distance from the source, all functions U1. . .Un ! 0, as r, z!1.

5. We determine the solution to the Laplace equation ΔU ¼ 0 by separating the
variables in the form
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U ¼ uðrÞ � vðzÞ:
1

u rð Þ
d2u rð Þ
dr2

þ 1
ru rð Þ

du rð Þ
dr

þ 1
ν zð Þ

d2v zð Þ
dz2

¼ 0:

This equation has two terms: the first term depends only on r, the second term
depends only on z, and their sum is zero. Therefore, each term is equal to a
constant, such that the two constants have different signs. Therefore, each of these
parts of the equation constitutes a new equation. In particular, we can write the
equation for u(r) in the following form:

1
u

d2u

dr2
þ 1
ru

du

dr
¼ �m2:

The last expression is the Bessel equation, whose solutions are the Bessel
functions of the first type of zero order c1J0(mr). Here, c1 is an arbitrary constant.

The second equation is the Helmholtz equation

1
v

d2v

dz2
¼ m2,

whose solution is the exponential function

c2e
mz þ c3e

�mz:

A particular solution can be represented in the form

c2e
mz þ c3e

�mzð Þc1J0 mrð Þ ¼ c1c2e
mz þ c1c3e

�mzð ÞJ0 mrð Þ ¼ Aemz þ Be�mzð ÞJ0 mrð Þ:
A general fundamental solution for each layer and for all m can be represented

in integral form through exponential and cylindrical functions:

Ui ¼
ð1
0

Aie
�mz þ Bie

mzð ÞJ0 mrð Þdm

Here, Ai and Bi are functions that depend on the geological section’s param-
eters in each layer. We note an interesting feature of the last formula. We use the
well-known Fourier transform formula

U x; y; zð Þ ¼ 1
2π

ð1
�1

ð eU ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
; z

� �
e�i kxxþkyyð Þdkxdky,

which is related to the Hankel transform as follows:
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U x; y; zð Þ ¼
ð1

�1

eU mzð ÞJ0 mrð Þmdm:

From the structures of the last expressions, the integrand function eU is the
same in the Fourier and Hankel transforms. Therefore, this function is henceforth
called the spectral potential. We note one more feature that follows from the
Hankel transform: the integration variable m, which was introduced purely
formally, physically represents an infinite set of spatial frequencies that describe
the structure of the electric potential of a point source for a given medium
structure. In addition, it is easy to show that the boundary conditions are satisfied
for the spectral potential and its derivatives.

6. In the first layer, the potential comprises the potential of the primary source itself
and the anomalous potential that is associated with the influence of the earth’s
surface and the base of the first layer:

U1 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p þ
ð1
0

A1e
�mz þ B1e

mzð ÞJ0 mrð Þdm;

∂U1

∂z
¼ 0 z¼0j

The equality of the first derivative of the potential on the surface of the earth
corresponds to the physical condition of the absence of a vertical current from the
earth to air. It cannot penetrate upwards, because air has very high resistivity. The
vertical component of the current density from each primary source is equal to
zero, since an imaginary reflection occurs in the form of an imaginary source.
This reflection completely compensates for the action of the primary source at the
boundary. In addition, the aggregate of secondary sources generates a zero for the
vertical current density on the surface of the earth, which can be written formally
as

�mA1e
�mz þ mB1e

mzjz¼0 ¼ 0; ) A1 ¼ B1:

The first term in the equation for the potential in the first layer can be
represented according to the Weber–Lipschitz formula in the form of an integral:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p ¼
ð1
0

e�mzJ0 mrð Þdm:

Then, the integrand for the spectral potential can be written in the following
form:

eU1 ¼ qe�mz þ B1 e�mz þ emzð Þ:
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For z ¼ 0, all the exponentials tend to unity, and the expression for the
potential in the first layer acquires a relatively simple form:

U1 rð Þ ¼
ð1
0

qþ 2B1ð ÞJ0 mrð Þdm: ð3:23Þ

Thus, the coefficient B1 must be found for the integral in (3.23) to be
calculated, and it depends on the parameters of the geoelectric section

7. In the last layer, Bnexp(mz) ! 1 as z ! 1 and, consequently, does not satisfy
the physical condition of damping the potential. We equate Вn to zero because
this term is responsible for the field from the lower edge of the layer. Indeed,
when the measurement point approaches the lower edge inside the layer, this
component of the field grows with depth as we approach the secondary charges at
the lower edge of the layer. The last layer has no bottom edge, and there are no
sources of this component. Consequently,

Bn � 0eUn ¼ Ane�mz:

Now, we can write out all the equations for the spectral potential for all layers:

eU1 ¼ qe�mz þ B1 e�mz þ emzð Þ;eU2 ¼ A2e�mz þ B2emz;

� � �� � �� � �� � �� � �� � �� � �� � �� � �eUi ¼ Aie�mz þ Biemz;

� � �� � �� � �� � �� � �� � �� � �� � �� � �eUn�1 ¼ An�1e�mz þ Bn�1emz;eUn ¼ Ane�mz:

The boundary conditions for the spectral potential are written similar to the
boundary conditions for the ordinary potential:

eUi ¼ eUiþ1 z¼zij ;
1
ρi

∂eUi

∂z
¼ 1

ρiþ1

∂eUiþ1

∂z z¼zij :

Then, the equalities for the base of the first layer at z ¼ z1, for the internal
boundaries z ¼ zi, and for the last boundary on the roof of the lower layer can be
written as a system of equations:
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B1 e�mz1ð þ emz1Þ ¼ A2e�mz1 þ B2emz1 ;
1
ρ1

B1 e�mz1 � emz1ð Þ½ � ¼ 1
ρ2

A2e
�mz1 � B2e

mz1½ �;
• • •

Aie�mzi þ Biemzi ¼ Aiþ1e�mzi þ Biþ1emzi ;
1
ρi

Aie
�mzi � Bie

mzi½ � ¼ 1
ρiþ1

Aiþ1e
�mzi � Biþ1me

mzi½ �;
• • •

An�1e�mzn�1 þ Bn�1emzn�1 ¼ Ane�mzn�1 ;

1
ρn�1

An�1e
�mzn�1 � Bn�1e

mzn�1½ � ¼ 1
ρn
Ane

�mzn�1 :

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;
It is easy to verify that this system contains n equations and n unknown

quantities. For example, for a three-layered medium, we have four independent
equations (two boundary conditions on the roof and two boundary conditions on
the base of the second layer) and four unknowns, namely, B1, A2, B2, and A3.

8. We aim to find an electric field on the surface of the earth. That is, we aim to
determine the coefficient B1. The resulting system can be solved in a usual way by
excluding the variables. In this case, the unknowns are obtained through rather
cumbersome calculations. It is more convenient to solve the system by using an
algorithm that implements the sweep method.

Divide the left-hand side of the first equation by the left-hand side of the second
equation, and, correspondingly, divide the right-hand side of the first equation by the
right-hand side of the second equation:

Ai
Bi
e�mzi þ emzi

Ai
Bi
e�mzi � emzi

¼ ρiþ1

ρi

Aiþ1
Biþ1

e�mzi þ emzi

Aiþ1
Biþ1

e�mzi � emzi

Denote

Ri zið Þ ¼
Ai
Bi
e�mzi þ emzi

Ai
Bi
e�mzi � emzi

, Riþ1 zið Þ ¼
Ai
Bi
e�mzi þ emzi

Ai
Bi
e�mzi � emzi

:

Then,

Ri zið Þ ¼ ρiþ1

ρi
Riþ1 zið Þ:

Elementary algebraic transformations give

Ai

Bi
¼ e

1
2 ln

Ai
Bi
þ1

2 ln
Ai
Bi

� �
; 1 ¼ e

1
2 ln

Ai
Bi
�1

2 ln
Ai
Bi

� �
:

Substitute the formulas above into the expression for Ri(zi), and obtain the simple
expression of the hyperbolic cosine:
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Ri zið Þ ¼
e
1
2 ln

Ai
Bi e

1
2 ln

Ai
Bi
�mzi

� �
þ e

� 1
2 ln

Ai
Bi
�mzi

� �" #

e
1
2 ln

Ai
Bi e

1
2 ln

Ai
Bi
�mzi

� �
� e

� 1
2 ln

Ai
Bi
�mzi

� �" #
¼ cth 1

2 ln
Ai
Bi
� mzi

� �
:

It is not difficult to derive an expression for Ri(zi � 1) in terms of Ri + 1(zi):

Ri zi�1ð Þ ¼ cth arcth
ρiþ1

ρi
Riþ1 zið Þ þ mhi

� �
:

Figure 3.8 shows a scheme of the transition from bottom to top in computing Ri.
At each subsequent step, we move to the top of the next upper layer and calculate
Ri � 1(zi � 2). Finally, we find R1 at the earth’s surface:

R1 0ð Þ z¼0j ¼ cth mh1 þ arcth
ρ1
ρ2
R2 h1ð Þ

	 

:

On the top of the last lower layer, Rn ¼ 1 because Bn ¼ 0:

Rn ¼ Ane�mzn�1 þ 0 � emzn�1

Ane�mzn�1 � 0 � emzn�1
� 1:

Therefore, we can start from the (n � 1)th layer:

Rn�1 zn�2ð Þ ¼ cth mhn�1 þ arcth
ρn
ρn�1

	 

:

At the first layer, formally, R1 is equal to

Fig. 3.8 The bottom-up
sweep algorithm in the Ri

calculation
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R1 0ð Þ ¼ B1e�mz þ B1emz þ qe�mz

B1e�mz � B1emz þ qe�mz z¼0j

¼ 2B1 þ q

q z¼0j :

By the expression 2B1 + q ¼ qR1(0) and (3.23), we have

U1 ¼ Iρ

2π

ð1
0

R1 m; 0ð ÞJ0 mrð Þdm:

Note that

∂J0 mrð Þ
∂r

¼ �mJ1 mrð Þ,

where J1 is a Bessel function of the first type and first order.
Now, we can formally write the solution to the problem and calculate the apparent

resistivity, which, with Ohm’s law, can be written in the form of a Hankel integral:

ρк ¼ E

j0
¼ 2πr2

I
�∂U

∂r

� �
¼ ρ1r

2
ð1
0

R1 0ð ÞJ1 mrð Þm dm: ð3:24Þ

The integral (3.24) for apparent resistivity was obtained by mathematicians in the
1930s. It seems that only simple tasks remain, namely, to calculate the integral in
formula (3.24) and determine the apparent resistivity value. However, from a
practical point of view, implementation of the algorithm encounters an intractable
obstacle in the form of a Bessel function, which has a quasiperiodic character and
decays very slowly with increasing argument. Direct computations of the Hankel
integral (3.24) are extremely inefficient, even on modern computers. For a long time,
there was no way to solve this problem effectively. To solve the inverse problems for
the VES method practically, mathematicians and geophysicists used to apply many
interpretation charts that made it possible to obtain estimates with very low accuracy
in terms of the parameters of the geoelectric section.

Finally, in the 1970s, a theoretical approach to the solution to this problem was
created, and in the mid-1980s, numerical methods to solve the integral (3.24) were
developed. These new methods allow one to obtain the solution to a direct problem
with high accuracy and rapid calculation (practically in real time). With the advent of
personal computers, highly advanced interpreting programs were written, and these
algorithms are still used to solve the inverse problem in the VES method. Let us
briefly discuss the essence of numerically computing the integral (3.24).
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3.4.3 Algorithm of Linear Filtration

Introduce the new variables x¼ lnr and y¼ ln(1/m) into formula (3.24). Then, r¼ ex,
m ¼ e�y, and dm ¼ �e�ydy. The limits of integration are y ¼ 1 for m ¼ 0 and
y ¼ �1 for m ¼ 1. Then, we have

ρк ¼ ρ1e
2x
ð�1

1
R1 eyð ÞJ1 e�yexð Þe�y �e�yð Þdy ¼ ρ1

ð1
�1

R1 eyð ÞJ1 e x�yð Þ
� �

e 2x�2yð Þdy:

The last integral is a convolution:

ρк ¼ ρ1

ð1
�1

R yð Þg x� yð Þdy ¼ ρ1

ð1
�1

R x� yð Þg yð Þdy:

It is important that the function g( y) does not depend on the parameters of the
medium. Only the function R( y) is related to the geoelectrical section, and R( y)
contains all the information of the section. Then, its discrete form can be written as a
linear filter. The formula of the linear filter is quite simple:

ρa rj
� � ¼ ρ1 �

Xn
k¼1

R xkþj�1
� � � g kð Þ,

where R is a function that depends on the geological section parameters and
the abscissa value x, which has the physical meaning of the length of the spatial
wave; g(k) denotes the coefficients of the filter of which there are n; r is the
separation (AB/2); and j is its index. In the literature, the formula of a linear filter
is often given in a slightly different form: when R depends on m, where m ¼ 1/X,
then the index for m has the form ( j � k), and the coefficients g are specified in
inverse order. However, the use of X instead of m is more convenient, because it is
easier to work with indices. In addition, with increasing X, the values of
R correspond to the greater depth of the study, which is analogous to the behavior
of ρa with increasing r.

The principle of linear filtration can be explained with the help of Fig. 3.9: the top
line is the axis of spacing r on a logarithmic scale. Below it, also on a logarithmic
scale, is the X ¼ 1/m axis. To compute the value of ρa for one spacing of r, it is
necessary to calculate the n values of the function R for a grid of values of Xi that
increase in a geometric progression with a coefficient q. The difference between the
values of r and the central point XC is called the shift α (where α ¼ XC/r). Based on
the number of coefficients to the left of the center (M), one can calculate the position
of the first point X with respect to r:
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X1 ¼ r � α=qM: ð3:25Þ
To calculate ρa for the following values of r, which increase with the same factor

q as the X values, we can use all the values of R (except the first) that were calculated
for the previous spacing of r.

At the third lower level (see Fig. 3.9), a set of filter coefficients is schematically
shown. The value of each coefficient can be either positive or negative; the coeffi-
cients with the largest modulus are found in the middle part of the filter, and they
decrease toward the edges. The sum of all the filter coefficients must be equal to
1. For example, we can cite the filter parameters that were computed by V. A.
Shevnin for a symmetric Schlumberger array (S-16). The number of filter coeffi-
cients n is equal to 15, the number of points per decade equals 7, α ¼ 1.005, and
M ¼ 9. The values of the filter coefficients are �0.015821, 0.203596, �1.222006,
3.856356, �5.567616, 2.414293, �0.758876, 2.122195, �0.671525, 0.783732,
�0.290884, 0.169452, �0.031227, 0.003612, and 0.004705. The sum of all coef-
ficients is equal to 0.99998610.

The VES curve of type Q is shown in Fig. 3.10. The calculation is most difficult
for this type of apparent resistivity curve because the anomalous field with large
spacing should almost completely compensate for the primary field, and the
remaining difference field must be calculated with very high accuracy. The quality
of the calculated VES curve can be estimated from the right asymptote, which
exactly corresponds to 1. In this case, the calculation speed is several milliseconds,
and the resistivity contrast between the first and second layer is 0.001, which is
practically unattainable with most of the existing algorithms. For many years, V. A.
Shevnin’s filters have been successfully used in the program of interactive interpre-
tation of electrical soundings IPI2Win, which was developed by the team at the
Moscow Electrotechnical Laboratory and has been widely used in Russia and other
countries.

Fig. 3.9 Diagram of the linear filtration algorithm
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3.5 Introduction to the Integral Equations Method
and the Boundary Element Method

The few medium models that yield analytical solutions to direct problems are usually
characterized by a piecewise constant resistivity distribution. If the solution cannot
be constructed analytically, the most convenient method for applications is the
method of integral equations and its modified form the boundary element method
(BEM). To facilitate an understanding of the material in subsequent chapters, and as
an introduction to the method, let us consider the solution to the electrical sounding
problem above an inclined plane. Based on this example, we demonstrate applica-
tion of the reflection method and the derivation of the integral equation and provide
some recommendations for the numerical solution to the problem. All of these
techniques are later generalized to more complicated models of media.

Thus, consider the problem of determining the field and its derivatives for a point
source that is located above an inclined plane. Suppose that the half-space {z 	 0}
corresponds to the earth and is divided by an inclined plane into regions with
different resistivities ρ1 and ρ2 (Fig. 3.11).

The potential of a stationary current source in a medium with constant conduc-
tivity satisfies Laplace’s equation,

ΔU ¼ 0: ð3:26Þ
Equation (3.26) holds everywhere in Ω ¼ {(x, y, z)|z > 0} except the geoelectrical

boundary Γ ¼ {(x, y, z) 2 Ω, |z ¼ tan (α)x, α < π/2}.
The conditions of continuity of the potential and the current density in the normal

direction with respect to the boundary Γ are written as follows:

Uj� ¼ Ujþ, ð3:27Þ

Fig. 3.10 The VES curve
ρ2/ρ1 ¼ 0.001
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1
ρ1

∂U
∂n

����
�
¼ 1

ρ2

∂U
∂n

����
þ
: ð3:28Þ

The signs “þ” and “�” mean that the normal derivative is taken from the
corresponding side of the boundary Γ. The positive direction of the normal corre-
sponds to the þ sign and is directed from a medium with resistivity ρ1 to a medium
with resistivity ρ2. The condition of vanishing at infinity and the boundary condition
on the earth’s surface must also be satisfied:

U 1ð Þ ¼ 0

∂U
∂z

���
z¼0

¼ Iρ1
R2
0

� δ�~r � OA
!�

:
ð3:29Þ

Here, R0 is some scale of length. The function δ(r) is the generalized Dirac delta
function such that the integral over the surface of the ball that surrounds point A is
equal to one and at all other points, is equal to zero. In this case, condition (3.29)
simulates a point current source, and the delta function symbolically describes the
current that is flowing into the medium. The multiplier I/R0

2 (3.29) reflects the
dimensional nature of the current density, since the delta function is introduced as
a dimensionless abstract mathematical object. According to Ohm’s law, the normal
derivative of the potential is proportional to the current density by the formula (3.29),

∂U
∂n

¼ ρ1 � jn:

This yields the representation of the boundary condition (3.29).
We pass to the dimensionless variables by taking as units of the potential and

length scale the quantities of I/(ρ1R0) and R0, respectively. Then, we seek the
potential U(P) in the problem (3.26,. 3.27, 3.28, and 3.29) in the form of

Fig. 3.11 Sounding scheme above an inclined plane (left) and reflection into upper half-space
(right)
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U Pð Þ ¼ Iρ1
R0

U0 Pð Þ þ u Pð Þð Þ, ð3:30Þ

where P ¼ (x, y, z), U0ðPÞ ¼ �ð2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
Þ�1 is a known solution to the

potential of a point source in a homogeneous half-space, and u(P) is an addendum to
the solution due to the presence of a geoelectric boundary Γ. The representation
(3.30) allows us to eliminate the singularity in the boundary condition (3.29) and
write the condition for the function u(P) as follows:

∂u
∂z

����
z¼0

¼ 0: ð3:31Þ

The representation (3.30) is known in geophysics as an expression of the field as a
sum of a “normal” and an “anomalous” field. Accordingly, the field consists of a
field without inhomogeneity, plus some additive term that is related to this inhomo-
geneity. In this case, the normal field corresponds to a homogeneous half-space, and
the anomalous field is associated with the presence of an inclined plane. This
representation means that we interpret the inhomogeneities of the medium as certain
secondary sources of the field, which introduce distortions into the field in a
homogeneous medium. The problem of calculating the field and apparent resistivity
was first stated in an article by Tikhonov (1946), and it is shown that the problem
reduces to an integral equation. Here, we derive this equation, because fragments of
this reasoning are used in the following chapters for more complicated medium
models.

In this example, we demonstrate the application of the reflection method, which is
often used to solve the direct problems of VES, where the ground surface of the
medium is assumed to be flat. The condition (3.31) can be treated as a symmetry
condition for the extension of the function u(x, y, z) to the entire space. This
condition is easily satisfied if the lower half-space is symmetrically reflected into
the upper half-space so that the medium occupies the entire space (Fig. 3.11). Next,
introduce the secondary current sources with a certain density ν(M ) that are distrib-
uted on the boundary Γ and that are symmetrically distributed on its reflection in the
upper half-space Γ0. We now seek the function u(P) in the form of the potential of the
sources that are distributed on the surfaces Γ and Γ0:

uðPÞ ¼ 1
2π

ðð
Γ

νðMÞ
jPMj dΓðMÞ þ 1

2π

ðð
Γ0

νðM 0 Þ
jPM 0 j dΓ

0 ðMÞ

¼ 1
2π

ðð
Γ

νðMÞ 1
jPMj þ

1

jPM 0 j
� �

dΓðMÞ:
ð3:32Þ

Here, point M0 is a point that is symmetrical to M with respect to the plane z ¼ 0.
The function ν(M ) is a function of two variables that are defined at the plane Γ.
According to the materials in Chap. 2 (Sect. 2.2), this function u(P) satisfies
Laplace’s equation on Ω\Γ and is continuous and symmetrical with respect to the
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plane z ¼ 0. This result guarantees the fulfillment of the boundary conditions (3.31)
and (3.27). The conditions (3.29) are satisfied because of the function U0(P)
and because the simple-layer potential u(P) decreases at infinity. Now, it is necessary
for the function ν(M ) to satisfy the condition (3.28). The condition (3.28) is
expressed in terms of the function u(P) as follows:

1
ρ2

∂u
∂n

����
Γþ

� 1
ρ1

∂u
∂n

����
Γ�

¼ 1
ρ1

� 1
ρ2

� �
∂U0

∂n
Pð Þ: ð3:33Þ

In (3.33), we consider that the function ∂U0/∂n is continuous on Γ; therefore, its
derivatives on both sides of the surface coincide with and are equal to ∂U0/∂n(P).

We use the formula (2.6) from Chap. 2 for the values of the normal derivative of
the potential of a simple layer from two sides of the surface:
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Substitute these expressions in the formula (3.33):

1
ρ2

�ν Pð Þ þ 1
2π

ðð
Γ

ν Mð Þ ∂
∂nP

1
PMj j þ

1

PM
0�� ��

 !
dΓ Mð Þ

0@ 1A�

1
ρ1

ν Pð Þ þ 1
2π

ðð
Γ

ν Mð Þ ∂
∂nP

1
PMj j þ

1

PM
0�� ��

 !
dΓ Mð Þ

0@ 1A ¼ 1
ρ1

� 1
ρ2

� �
∂U0

∂n
Pð Þ:

ð3:34Þ

Remark 3.1 The gradient vector of the function 1/|PM| at point P is always directed
from point M to point P (i.e., it lies in the plane Γ); simultaneously, the direction of
the normal n at any point is always orthogonal to the plane Γ. Therefore, the angle
between the normal n and the gradient is always equal to π/2. Hence, the normal
derivative is equal to zero:

∂
∂nP

1
PMj j

� �
� 0 ð3:35Þ

for all points M 2 Γ. This method provides an advantage to the geoelectric model
with flat boundaries: the singularity in the kernel of the integral equation vanishes
due to (3.35) as M ! P. The reflection coefficient is denoted by κ ¼ (ρ1 � ρ2)/
(ρ1 + ρ2). After obvious transformations, we obtain from (3.34) and (3.35) the
integral equation for the density function of the simple layer ν(P):
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The potential is calculated through the function ν(P) in the form

u Pð Þ ¼ Iρ1
2πR

ðð
Γ

ν Mð Þ 1
rPM

þ 1
rPM 0

� �
dΓM ð3:37Þ

Equation (3.36) is one of the simplest integral equations in geophysical models
and can be solved by the BEM. Tikhonov (1946) showed that the integral operator in
(3.36) is contractive, the solution to the integral equation exists, and the iterative
process converges to this solution for all κ.

For the BEM application, we must approximate (3.36) by using its discrete form.
For a numerical implementation of the method, we restrict the boundary Γ to some
finite domain G. Therefore, the integrals over the outer part of this region are
neglected or we assume that the density of the secondary charges is negligible far
from the current source. This approach is physically justified: if the primary field
decreases with increasing distance from the source, then the secondary field that is
generated by it must also decrease at infinity. Stricter estimates of the nature of the
decrease in the density of secondary sources are obtained in Chap. 4.

Moreover, in the computational domain G, a grid is constructed. This grid divides
G into cells. Because of the symmetry with respect to the y¼ 0 axis, it is sufficient to
search for the unknown function in the half of the computational domain in which
y > 0.

There are different options for mesh construction. Because our computational
area is flat, the simplest version of the sampling is obtained on a uniform rectangular
mesh. Figure 3.12 shows possible meshes.

Let us introduce a coordinate system (ξ, η) on the computational area (Fig. 3.12).
Let the boundaries of the grid cells be given by the formulas ξi ¼ i ∙ h, ηj ¼ j ∙ h,
i, j ¼ 0,N: The mesh step is equal to h ¼ L/N, where L is the width of the calculated
area, and h is a sampling step.

Denote the cell of the computational area by Sij ¼ {(ξ, η)jξi < ξi 
 ξi þ 1, ηj <
ηj 
 ηj þ 1}. Let us consider various ways of approximating unknown functions
through their discrete values on a grid. We have a function of two variables that is
defined on a 2D rectangular grid domain. It can be assumed that, within a single cell,
the density of secondary sources ν(P) is constant. Such a sampling corresponds to
the simplest type of approximation through a finite-element function that is constant
within each cell.

It is known that a finite-element function is a finite function with bounded support
that represents a polynomial of degree n. A finite element of degree zero φij

0(x, y) is a
function that is equal to one within a single grid cell (i, j) and is equal to zero in all
other cells. Then, an arbitrary function, which is defined by its values in the grid
cells, can be approximated by a linear combination of finite elements:
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ν ξ; ηð Þ ¼
XN
k, l¼1

νklφ
0
kl ξ; ηð Þ: ð3:38Þ

We denote by the indices (i, j) the constant values of the functions within the cell
Sij. In this approximation, integration by the rectangle formula yields a natural
approximation of the integral in (3.36). Then, (3.36) can be written in the following
approximate discrete form:

νij ¼
XN
k, l

Kij,klνkl þ bij, i ¼ 1,N , j ¼ 1,N ð3:39Þ

Here, the coefficients of (3.39) are defined by the following formulae:

Kij,kl ¼ κ

2π
∂
∂nP

1
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0 j
� �

Skl, bij ¼ κ
∂U0

∂nP
Pij

� �
, ð3:40Þ

2.5
2

1.5z

h

x

1
0.5
0

2.5

2

1.5

1

0.5

0

a

b

A

A

0

0

0

0
1

1

1

1
2

2
2

x y
2

3

3
3

3
4

4

4

4
5

5

5

5

h

x

A

A

0

0

0
1

1

1

1
2

2
2

x y
2

3

3
3

3
4

4

4

4
5

5

5

5

Fig. 3.12 Uniform grid on coordinate system (ξ, η) on the computational area (a) and
corresponding non-uniform grid on Cartesian coordinates (b)
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where point Pij is the center of the cell (i, j), point Mkl
0 is the center of the cell (k, l )

that is reflected in the upper half-space, and Skl is the area of the cell (k, l ).
The potential (3.37) can be computed similarly through a discrete approximation

of the integral over the boundary Γ. The method of boundary finite elements is a
method in which the approximation of unknown functions is conducted with the help
of finite elements that are defined on the boundary surfaces (see, for instance,
Brebbia 2012).

However, the rectangle formula has the lowest accuracy among the formulae of
numerical integration. To improve the accuracy of numerical integration, it is
necessary to use higher-order numerical integration formulae. These formulae are
based on the approximation of a function on the grid cells through their values at grid
nodes by higher-order polynomials or by higher-order boundary elements. In par-
ticular, linear finite elements that depend on two variables can be defined on tri-
angles. Therefore, for the application of linear elements, triangulation of the
computational domain is necessary. The application of linear boundary elements
and triangulation algorithms is described in Chap. 5. We note that the trapezoid
formula corresponds to the integration of the functions that are approximated by
finite linear elements. It is possible to use finite elements of a higher order; however,
this use is relevant only to problems that are formulated in terms of differential
equations. In our case, we reduce all problems to integral equations; therefore, for the
purposes of our research, smoothness of the finite elements is not required to be
higher than linear.

Let νij be the value of an unknown function at grid node (i, j). To improve the
accuracy of the calculations, we approximate the integral in (3.36) by using the
Simpson cubature formula, which has fourth-order accuracy on a rectangular grid. In
this case, the equation again reduces to the form (3.39). However, such an approx-
imation is not a realization of a certain finite elemental representation because, in this
case, we do not write out an explicit formula for a finite element of the second order,
which would constitute a basis for representing the function in a form that is
analogous to (3.38).

In this sense, BEM can be treated as a particular case of the IEM. In this section,
in the numerical examples, we calculate the integrals by using the cubature formula
of Simpson.

Using the obtained solution ν(M ), it is possible to calculate the potential function
and construct the apparent resistivity curves for different positions of the measuring
line with respect to the slope of the inclined plane. This method is implemented
numerically on the basis of the following iterative scheme:

ν0 Mð Þ ¼ κ
∂U0

∂n
Mð Þ,

v Mð Þ �
Xn
0

κkvk Mð Þ,
ð3:41Þ
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νk Mð Þ ¼ 1
2π

ðð
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νk�1 M1ð Þ ∂
∂n1

1
rMM1

0

� �
dΓ M1ð Þ, ð3:42Þ

The potential u(P) is approximately calculated by formula (3.37) through νn(M ).
For different positions of the measuring line concerning the slope of the formation,
different values of the slope angle, and the conductivity ratios of the layers, it is
possible to calculate the apparent resistivity curves from the potential values.

The algorithm was tested by comparing the apparent resistivity curves for a small
angle of inclination of 5� with the apparent resistivity curves for a two-layer medium.
The curves for a two-layer medium were built based on the solution that was
constructed in Sect. 3.4. At a sufficiently small angle of inclination of the boundary
(5�), similar curves of apparent resistivity are obtained at different positions of the
measuring line, namely, 0�, 90�, and 180�. The relative difference between the
theoretical curve for horizontally layered medium and computed curves for inclina-
tion angle of 5� did not exceed 4%. The apparent resistivity was calculated by the
theoretical limit formula:

ρa ¼
2πs2

Iσ1

du

ds
, ð3:43Þ

where the parameter s is measured along the profile. The use of the theoretical curve
(3.43) makes it possible to compare the solution to the available analytical solution
for the field potential and apparent resistivity and to verify the quality of the
numerical solution.

To test the method, the calculation results were compared with the solution that is
was obtained by Skalskaya (1948) for an inclination angle of π/4, which is given in
the form of the 2D convolutions of the Bessel function with a known function. The
solution, which is constructed according to the formula (Skalskaya 1948) for an
angle of inclination of 45�, was compared with the data obtained in the numerical
solution to the integral equation. This method achieves good accuracy in computing
the apparent resistivity along the slope direction of the second layer and a measuring
line that is parallel to the line of the intersection of the second layer with the earth’s
surface. Table 3.2 shows the comparison of results for this case. Here, L is the size of
the calculation area that is shown in Fig. 3.12 along the axes (ξ, η) on which the
density of a single layer was calculated. As a length scale, the vertical distance from
the source to the boundary of G was taken. The case of high media contrast was the

Table 3.2 Comparison of the
numerical solution with the
analytical solution for an
inclined plane with α¼ π/4 on
a uniform grid

Grid size
L (domain
size)

Contrast
ρ2/ρ1

Relative
error Δu (%)

60 � 60 16 5 1.2

60 � 60 16 9 2.2

60 � 60 16 79 3.6

60 � 60 11 79 3.2

100 � 100 11 79 2.6
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least favorable for the convergence of iterations and the accuracy of the calculation.
Maximum error is achieved when the contrast of the media is increased; however,
this error decreases with the refinement of the mesh. In the vicinity of the intersection
of G with the earth’s surface, the accuracy of the calculation drops sharply and, in the
worst conditions, with a high contrast (σ2/σ1 ¼ 1/80) and coarse mesh (60 � 60),
reaches 18%.

The 3D distribution of the potential at inclination angles, which is necessary to
consider in practice (for angles that exceed 10�), is calculated on a grid of size
50 � 50 in 10–20 iterations.

This problem and all other problems that are considered here have the following
peculiarity: to increase the accuracy of the calculation, it is necessary to both
increase the size of the calculation area and refine the mesh. These requirements
lead to a situation in which expansion of the computational domain with an
unchanged number of grid points causes low accuracy in the domains in which the
gradient of the unknown function is large.

Note that the solution changes little for the points that are far from the current
source, and there is thus no reason to use the same mesh density that is in the vicinity
of the current source. The idea of constructing an adaptive mesh has long been used
in numerical solutions to the problems of mathematical physics. We can also
implement it in solving the integral equation. However, we do not want to lose the
fourth-order accuracy of Simpson’s formula for numerical integration on a uniform
grid. To combine these two requirements, it is necessary to construct a mesh that is
dense in the areas in which the gradient of the solution is large and uniform with
some changes in the variables. For instance, a uniform grid that is constructed with a
logarithmic variable scale satisfies these two requirements. This grid can be
constructed by the following changes in the variables:

p ξ; ηð Þ ¼ ln 1þ ξð Þ, q ξ; ηð Þ ¼ ln 1þ ηð Þ: ð3:44Þ
For the conductivity ratio σ1/σ2 ¼ 79 on a 60 � 60 mesh with calculated area

L ¼ 11, the relative accuracy of the potential near the surface line on a uniform grid
is above 18% and for a nonuniform grid is equal to 6%; for the ratio σ1/σ2 ¼ 5, these
values are 6% for a uniform grid and 3% for a nonuniform grid, with 15 iterations.

Computational accuracy can be improved by further refinement of the mesh.
Figure 3.13 shows the distribution of the densities of a simple layer on a uniform and
logarithmic grid; the higher degree of detail of the data for the logarithmic grid is
evident. Systematic calculations of apparent resistivity for multiple conductivity
ratios and slope angles yield the following acceptable calculation parameters: the
size of the domain in two coordinates is [–5, 5] � [5, 5]; the size of the logarithmic
grid is 32 � 32; and numerical integration is conducted by using the 2D Simpson
formula. With these parameters, the maximum deviation from the exact solution for
the slope angle π/4 does not exceed 6%.

Now, we derive the equations for the case of several parallel inclined layers. Let
Γ0 be the earth’s surface and Γi be the slope boundary between two media with the
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conductivities σi and σi þ 1 for i ¼ 1,. . ., n. We seek the potential of the pointwise
current source over several inclined layers in the form

U ¼ I

Rσ1
� 1
2πr

þ u

� �
ð3:45Þ

Here, r is the dimensionless distance to the source. The function u satisfies
Laplace’s equation, the boundary conditions at infinity, and the boundary conditions
on the contact surfaces of the media:
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ð3:46Þ

The function U0 ¼ �1/(2πr) is a potential of a point source in the dimensionless
variables.

Similar to the method above, we symmetrically reflect the lower half-space to the
upper half-space and search for the solution u in the form of the potential of several
simple layers that are distributed on the angled contact boundaries and their reflec-
tions in the upper half-space:

uðMÞ ¼ 1
2π

Xn
i¼1

ðð
Γi

νiðMiÞ dΓi

jMMij þ
ðð
Γi

νiðM 0
iÞ

dΓ0
i

jMM
0
ij

0B@
1CA ð3:47Þ

From formulae (2.6) for the derivative of the potential of a single layer, which is
taken from the different sides of the boundary Γi, we obtain:

Fig. 3.13 The densities of a simple layer on (a) uniform and (b) logarithmic grids. The slope of the
geoelectric boundary is 30�, and σ2/σ1 ¼ 1.5
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The conditions (3.46) imply that the function u(M ) must be satisfied on the
boundaries between the layers. Substituting the expressions (3.48) and (3.49) into
(3.46), we obtain a system of n integral equations that determine the unknown
densities νi for i ¼ 1,..,n:
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ð3:50Þ
Here, κi ¼ (σiþ 1� σi)/(σiþ 1þ σi).

Another widely known method for solving direct problems is the finite difference
method (FDM). FDM is described in sufficient detail in textbooks; therefore, we do
not describe it here. Note that in the case of a gradient medium in which the
resistivity is a smooth function of the coordinates of the point in the medium, this
method is a natural choice for solving the direct problem. Currently, there are
software packages that implement the solution to multidimensional Maxwell equa-
tions with the FDM, such as the MEEP package, which is available on the Massa-
chusetts Institute of Technology (MIT) website:

(https://meep.readthedocs.io/en/latest/).
However, geophysical objects do not always have continuous distributions of

electrical properties. For example, in the case of a discontinuous conductivity
coefficient, (3.11) generally does not make sense, and the solution to the problem
should be understood in the weak sense. Nevertheless, in this case, it is also possible
to construct a difference scheme by using the finite volume method. To construct a
divergent difference scheme and to accord with the definition of a weak solution, we
must start from the more general integral form of (3.13). In the finite volume method,
the difference scheme is constructed based on an approximation of the integral
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conservation law that is written for each elementary volume of the grid, such as the
finite-difference time-domain (FTDT) method. The disadvantage of this method is
its implementation on a grid with a constant step and the need to discretize the entire
3D domain of the solution. An example of a solution to the VES direct problem for a
medium that contains a cylindrically symmetric inclusion was discussed in by
Orunkhanov et al. (2004a, b). Our experience has shown that computing the apparent
resistivity based on the difference method is inefficient because it produces large
errors as a result of numerical differentiation on the mesh; in addition, the influence
of artificial boundary conditions, which are required by the difference scheme, is
significant. To avoid these issues, it is necessary to expand the computing area
greatly. Based on an analysis of the results of the application of the IEM to the
inclined plane problem and the results of modeling from the finite volume method
(Orunkhanov et al. 2004a, b), we prefer the IEM in its modified BEM form. The
most important advantage of this method is that only the boundary of the computa-
tional domain is subject to discretization, which considerably reduces the amount of
computation. The results of applying this method are presented in Chaps. 4 and 5.

Next, we list the reasons for choosing IEM and BEM for media with sharply
expressed geoelectric boundaries:

(a) The distribution of the potential is 3D, but the sought-after distribution of a
single layer is a function of two spatial variables; thus, the computational costs
are comparable to the computational costs of 2D problems.

(b) Compared with the FDM, apparent resistivities are calculated more accurately.
(c) The numerical realization is simpler than the method of finite volumes in the

3D case.
(d) A natural scheme for parallelizing computations is allowed.
(e) The method admits a natural generalization to several inhomogeneities, which

may be the subject of further research.
(f) Constructing an adaptive mesh is simpler in the 2D case than in the 3D case.

3.6 Methods of Solving Inverse Problems

The regularization method and minimization of the residual functional are widely
used to solve inverse problems. To introduce these concepts, we first define the
inverse problem operator.

The operator of the inverse problem and a set of well-posedness.All the problems
that were mentioned in Sect. 3.3 can be presented in a mapping form that compares
the required missing functions and measured data. Thus, an inverse problem oper-
ator can be determined for each inverse problem. Considering that, in ERT, we are
mostly interested in recovering the conductivity σ, let σ denote the input data for this
operator. To formulate the direct problem correctly, this operator associates the data
that are missing with some additional information or measured data (ψ):
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Λσ ¼ ψ ð3:51Þ
Then, the inverse problem solution is reduced to the inversion of the operator

(3.51): the existence of a unique solution to the inverse problem is equivalent to the
existence of the inverse operator Λ�1.

Let us consider the problems (3.19) and (3.20). It is practically possible to create a
physical model with predetermined properties and perform measurements on
it. Then, for the same model, one can solve a direct problem. The experimental
data always differ from the solution to the direct problem that is obtained numeri-
cally using model (3.19). These differences between the model and the observed data
occur because the measured data are always contaminated with many errors, includ-
ing errors of the mathematical model, measurement errors, and other noises. There-
fore, it is only possible to satisfy (3.20) approximately.

The problem of the continuous dependence on input data is reduced to the
question of the continuity of the inverse operator Λ�1. In many practically important
cases, the operator Λ does not have a continuous inverse operator in its domain of
definition. For instance, in the CIP (3.19) and (3.20), the output data are measured
data ψ(r), and the solution to the CIP is the function σ(z).

In geophysics, there are principles of equivalence that state that similar measured
data can correspond to geoelectric sections that are very different from one another.
Therefore, the functions σ(z) that are far from one another can yield similar curves of
apparent resistivity. This finding obviously violates the stability requirement regard-
ing the solution to the inverse problem, because very distant functions σ(z) can
correspond to the same input data ψ(r) within the admissible measurement error.
However, the uniqueness condition for the solution can nevertheless be satisfied
(see, for example, Tikhonov 1949). Examples of how these features of interpretation
problems are expressed in 1D problems are provided, for instance, by
Koefoed (1979).

Usually, the question of the existence of a solution for each measured function
remains open, and the inverse problem is replaced by some other problem that is
solvable. This method is discussed next.

Let us define a misfit functional as follows:

J σð Þ ¼ Λσ � ψk k22 ð3:52Þ
This functional represents the difference between the data Λσ that we obtain if the

given function σ is substituted into the direct problem, and the measured data ψ .
Then, the inverse problem is reduced to the minimization problem of the functional
(3.52). This problem again raises questions concerning the existence of a minimum
of this functional in the set of possible functions σ 2 Σ. However, in many practically
important cases, the problem of minimizing J(σ) can be solved by applying the
Tikhonov regularization method (Ivanov 1962; Tikhonov and Arsenin 1977). First,
we should restrict the operator Λ to some compact subset S of Σ (Tikhonov and
Arsenin 1977). In numerical simulations, this subset is bounded and belongs to some
finite dimensional space; the minimization problem can thus be reduced to a problem

3.6 Methods of Solving Inverse Problems 65



in finite dimensional space. Moreover, a quasi-solution to the inverse problem is
sought as a minimizer of the regularized misfit functional, which has the form

Jα σð Þ ¼ J σð Þ þ Rα σð Þ ¼ Λσ � ψk k22 þ α σ � σ0k k2S ! min
S

: ð3:53Þ

Here, the norm k�kS defines some admissible norm in S, the parameter α > 0 is a
small real number, and the function σ0 is given a priori. Minimizing the functional
(3.53) instead of (3.52) has several advantages. First, if we know a priori that the
solution is close to the known function σ0, then this information can be included in
(3.53). If such information is unavailable, then we can set σ0 ¼ 0. Second, because
the measured data always contain noise of some level δ, for a sufficiently small
parameter α ~ δ, the addition of an auxiliary term Rα does not affect the accuracy of
the functional, but the regularization parameter α improves the properties of the
functional J(σ). For instance, in many practically important cases of linear inverse
problems, the minimization problem (3.53) has a unique minimizer on the compact
set S. The choice of the parameter α depends on the noise level δ of the measured
data. It is natural to choose this parameter so that α ! 0 as δ! 0. The problem of
minimizing the residual functional can generally be solved by the methods of
variational and extreme problems (Bruaset and Survey 1995). However, in several
simple cases, it is sometimes possible to explicitly solve for the relations that
determine the minimum of the residual functional (Mukanova 2013a, b).

What are the best practices for selecting the parameter α and the finite dimen-
sional set S? To check whether the selected parameters are suitable for solving the
inverse problem, the quasi-solution method is first tested on the so-called synthetic
measurement data.

Definition. Data ψ that are obtained by solving a direct problem with known input
data σ are called synthetic measurement data.

Next, we solve the inverse problem, for example, by minimizing the regularized
misfit functional. In this case, we obtain an approximate solution σα. Because the
solution σ to the problem is known in advance, we can compare the solution σα to the
exact function σ. Thus, the use of synthetic measurement data allows one to test a
numerical method for solving the inverse problem on a large amount of synthetic
data and many parameters. Then, based on numerical experiments, an acceptable set
of parameters and the class S of unknown functions σ is established for which a
solution can be successfully constructed. These data represent noise-free synthetic
data. However, to work fully with synthetic data, we should include the noise (i.e.,
the distortions of the data) in the calculation and perform simulations for different
noise levels.

Unfortunately, the gradient method has a disadvantage that is associated with
local minima. To succeed, we must provide a good initial guess with the input data σ;
otherwise, the solution could be unrealistic.

In several cases, the new globally convergent method can be applied to solve CIP
(Beilina and Klibanov 2012). However, to the best of our knowledge, no application
has been published of this method in geophysical practice for ERT.
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In some cases, inverse problems may turn out to be linear, which means that the
input and output data are linearly mapped to one another. For such problems, the
solution methods are well developed and find applications in practice (Mueller and
Siltanen 2012). However, as a rule, the inverse problems of geophysics are not
linear. For example, in problems (3.19) and (3.20), the input and output data are not
linearly dependent, which can easily be verified directly. In addition, the solutions to
the inverse problems are unstable concerning the input data. Therefore, the solutions
are ambiguous. However, in some cases, the problem can be reduced to a linear
problem (Mukanova and Romanov 2016).

Consider an example. Suppose that the internal structure and construction mate-
rial of a newly constructed artificial object (e.g., a dam) are known. Let us now
imagine that because of some external factors, such as water leakage and the
influence of weather conditions, some changes have gradually occurred in the
material of the dam. If these changes are small compared with the initial state of
the dam, we can linearize the problem in the following way. For simplicity, let us
consider the 2D case and assume that the apparent resistivity measurements are
conducted along the boundary part of the dam’s cross-section by the ERT method.
Let the section of the dam occupy the 2D regionΩ. Let Γ be a part of the boundary of
the region ∂Ω on which the measurements are taken; for example, suppose that this
is the boundary with the atmosphere (i.e., the boundary of the region into which the
electric field penetrates), which is expressed as ∂Ω ¼ Γ U Γ1. For each of the
possible positions a of the current electrodes, we can write the following mathemat-
ical model:

∂
∂x

σðx, zÞ∂U
∂x

� �
þ ∂
∂z

σðx, zÞ∂U
∂z

� �
¼ 0, ðx, zÞ2Ω

σðx, zÞ∂U
∂n

ðx, z, aÞ
���
Γ
¼ δðr2 aÞ,

lim
r!1Uðx, z, aÞ ¼ 0, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
:

ð3:54Þ

Note that to formulate a direct problem correctly, the conditions (3.54) must be
supplemented with some additional physically justified conditions on the remaining
part of the boundary Γ1. Suppose that the measurements are taken for the different
positions of the current electrodes in the section of the dam that is defined by the
plane y ¼ a, then

U x; z; að Þ ¼ ψ x; z; að Þ, x; zð Þ, ax; azð Þ2Γ: ð3:55Þ
Here, the vector a ¼ (ax,az) determines the current position of the source

electrode. Suppose that, at the beginning of the operation of the dam, we know the
distribution of electrical conductivity σ0(x, z) and the measurements of ψ0(x, z, a).
Let the solution be represented in the form U(P)¼ U0(P)þ u(P), where the solution
U0(P) is the solution at the beginning of the dam’s operation. To determine the
function U0(P), we can apply one of the methods to solve a direct problem: the IEM
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or its modification in the form of a BEM, or FDM. For application, we need to set
some boundary conditions on the inaccessible part of the boundary. As shown in
Sect. 3.5, in the case of application of the IEM, one can consider a problem in an
infinite domain and impose the condition that the potential decreases to zero at
infinity. Suppose that, compared with the initial state of the dam, the change in the
specific electrical conductivity is small and has the form σ(x, z) ¼ σ0(x, z)þ σ1(x, z).
Then, we can linearize the problem as follows:

∂
∂x

σ0 x,zð Þþ σ1 x,zð Þð Þ∂ U0þ uð Þ
∂x

� �
þ ∂
∂z

σ0 x, zð Þþ σ1 x,zð Þð Þ∂ U0þ uð Þ
∂z

� �
¼ 0, x, zð Þ2Ω

σ0 x, zð Þþ σ1 x,zð Þð Þ ∂ U0þ uð Þ
∂n

x; z;að Þ
����
Γ
¼ δ r� að Þ:

Considering that the function U0(x, z) is a solution to the problem for the known
coefficient σ0(x, z), we obtain the following formulation of the direct problem for the
unknown function u(x, z):

∂
∂x

σ0 x; zð Þ∂u
∂x

� �
þ ∂
∂z

σ0 x; zð Þ∂u
∂z

� �
¼ F x; zð Þ, x; zð Þ2Ω

F x; zð Þ ¼ � ∂
∂x

σ1 x; zð Þ∂U0

∂x

� �
� ∂
∂z

σ1 x; zð Þ∂U0

∂z

� �
,

∂u
∂n

x; z; að Þ
����
Γ
¼ 0, u x; z; að ÞjΓ1

¼ 0:

ð3:56Þ

Assume that the values of u(x, z) on Γ are measured for each of the possible
positions aj of the current electrode. Then, the measured data are rewritten as

uðx, z, ajÞ ¼ ψ1ðx, z, ajÞ � ψðx, z, ajÞ � ψ0ðx, z, ajÞ,
ðx, zÞ2Γ, aj ¼ aðjÞx , aðjÞz

� �
2Γ, j ¼ 1,K :

ð3:57Þ

In the formulation of the inverse problem (3.56) and (3.57), it is necessary to
recover the function F(x, z). Then, from these values, we must solve the first-order
partial differential equation with respect to the function σ1(x, z):

∂
∂x

σ1 x; zð Þ∂U0

∂x

� �
þ ∂
∂z

σ1 x; zð Þ∂U0

∂z

� �
¼ �F x; zð Þ,

σ1 x; zð ÞjΓ ¼ g x; zð Þ:
ð3:58Þ

with boundary conditions on the boundary of the domain Γ.
Remark 3.2: Because the boundary of the region Γ is accessible for measurement,

we can assume that the values of σ1(x, z) at this boundary are known. Methods for
solving first-order partial differential equations (3.58) are described in the handbook
by Kamke (1959). The main difficulty in solving the problem (3.56) and (3.57) is in
the definition of the function F(x, z).
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However, the linearization that was performed above substantially simplifies the
recovery of the function F(x, z). Suppose that this function is representable as a linear
combination of finite elements of the zero or first order that are defined on a certain
mesh. In the case of zero-order elements, it is convenient to use a regular rectangular
grid; in the case of first-order elements, the triangulation of the computational
domain is convenient. Thus, we can write

F x; zð Þ ¼
XN
i¼1

Ciφi x; zð Þ: ð3:59Þ

Then, we can solve many direct problems in which there are finite-element
functions on the right-hand side:

∂
∂x

σ0 x; zð Þ∂uij
∂x

� �
þ ∂
∂z

σ0 x; zð Þ∂uij
∂z

� �
¼ φi x; zð Þ, x; zð Þ2Ω

∂uij
∂n

x; z; aj
� �����

Γ
¼ 0, uij x; z; aj

� ���
∂Ω\Γ ¼ 0:

ð3:60Þ

Here, we added additional boundary conditions for the inaccessible part of the
boundary ∂Ω\Γ so that the direct problem could be solved correctly. However, the
statement of physically justified direct problems for each right-hand side of φi(x, z)
deserves a separate study. Note that the problems (3.60) can be solved in advance for
some reasonable choice of the functions φi(x, z), i ¼ 1,. . ., N and for a certain set of
positions of the supply electrode aj.

Then, the solution to the direct problem with the right-hand side F(x, z) can be
represented in the form

ujðx, zÞ ¼
XN
i¼1

Ciuijðx, z; ajÞ, j ¼ 1,K : ð3:61Þ

The corresponding synthetic measurement data are calculated by using the values
of the functions (3.61) at the boundary Γ.

Now, it remains to select the coefficients Ci of the linear combination (3.59) such
that they best approximate the measured data in the sense of the root-mean-square
deviation. Thus, the problem is reduced to the problem of minimizing the residual
functional with respect to the coefficients (C1, C2,. . ., CN):

J C1;C2; . . . ;CNð Þ ¼
XK
j¼1

ð
Γ

XN
i¼1

Ciuij x; z; aj
� �� ψ

�
x; z; aj

� !2

dΓ þ α
XN
i¼1

C2
i

ð3:62Þ
Here, the function ψ(x, z; aj) is the measured data.

Upon closer examination, we see that the functional (3.62) is a positively defined
quadratic form with respect to the variables (C1, C2,. . ., CN). In this case, the
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condition that is satisfied by a minimum of the functional can be written explicitly
and expresses the vanishing of the first derivatives regarding Ck, where k ¼ 1,.., N.
Differentiating the functional (3.62) with respect the variable Ck yields

∂J C1, C2, . . .CNð Þ
∂Ck

¼ 2
XK
j¼1

ð
Γ

XN
i¼1

Ciui x, z; aj
� �� ψ x, z; aj

� � !
ukðx, z; ajÞdΓ

¼ 2
XK,N

j¼1, i¼1

Ci

ð
Γ

uiðx, z; ajÞukðx, z; ajÞdΓ� 2
XK
j¼1

ð
Γ

ψðx, z; ajÞukðx, z; ajÞdΓþ 2αCk,

k ¼ 1, 2, . . . ,N:

ð3:63Þ
Let us introduce a matrix A and a vector B through the following definitions:

Aik ¼
XK
j¼1

ð
Γ

uiðx, z; ajÞukðx, z; ajÞdΓ

Bk ¼
XK
j¼1

ð
Γ

ψðx, z; ajÞukðx, z; ajÞdΓ:

Matrix A forms a so-called stiffness matrix for the FEM. Now, we equate the
derivatives (3.63) to zero:

αIþ Að ÞC ¼ B

Here, I denotes the identity matrix. Finally, we obtain a system of linear equations
in the unknown (C1, C2,. . ., CN) with a matrix (αI + A). This is the general approach
for solving a linear inverse problem. However, in each specific case, we must always
perform complicated studies to obtain an appropriate solution to the inverse problem
being considered.
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Chapter 4
The Boundary Element Method in ERT Direct
and Inverse Problems

4.1 The Integral Equations Method for Solving Direct
Electrical Sounding Problems Above a 2D Medium
with Piecewise-Linear Contact Boundaries

Due to the fundamental laws of the propagation of electromagnetic fields expressed
in Maxwell’s equations, heterogeneities within a geoelectric section act as secondary
sources of the electric field. Replacing the heterogeneities in the geoelectric section
with a system of secondary sources is the basic principle of the integral equations
method (IEM). The intensities of the secondary sources in an inhomogeneous
medium are determined by the gradient of the electrical conductivity and the strength
of the electric field at a given point in space. In this case, the electric field E is the
sum of the primary field generated by the external sources E0 (i.e., the field of the
current electrodes or other sources generating the electric current) and the electric
fields ES generated by all of the secondary sources. Thus, the intensity of a
secondary source depends on the intensity of all other secondary sources, and they
are simultaneously affected by their electric fields. This is the essence of the
mechanism of interaction between the causative agents of the secondary field. A
mathematical description of this phenomenon leads to integral equations (which are,
as a rule, are Fredholm equations of the second kind). Subsequently, these equations
are discretized into systems of linear algebraic equations (SLAE), which are solved
using either direct or iterative methods.

In the abovementioned case, we obtain a solution following a finite number of
arithmetic operations (2/3n3) operations using the Gaussian method, where n is the
dimension of the SLAE). Direct methods exhibit a significantly higher computa-
tional efficiency during the calculation of fields at several external source positions.
Meanwhile, iteration methods are employed to obtain a series of approximate
solutions and require substantially fewer operations to achieve an acceptable accu-
racy. The disadvantage of an iterative method is the uncertainty in the rate of its
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convergence. At the physical level, the principle of the iterative approach can be
explained through an example of the perturbation method. In the first stage of
calculations in this method, it is assumed that the electric field near an inhomoge-
neity is equal to the primary field, based upon which the intensities of the secondary
sources are calculated. Then, the secondary fields are calculated and added to the
primary field, after which the intensities of the secondary sources are again calcu-
lated. This process is repeated until the intensities of the secondary sources are
stable. The replacement of inhomogeneities with secondary sources can be
performed in different ways, leading to different modifications of the IEM. In
gradient media, we derive volumetric integral equations in which the charges or
dipoles act as secondary sources. In piecewise-homogeneous media, simple layers
are used as secondary sources, leading to surface integral equations. In the case of a
finite-element approximation of an integrand, we employ a BEM that is, generally
speaking, a particular case of the IEM.

Integral equations can be written for both the intensities of the secondary
sources and the values of the potentials. By solving these integral equations, we
obtain either the distribution of the secondary sources or the potentials within
the inhomogeneities. We can then calculate the field at any point, including those
within inhomogeneities, at the secondary current source or charge level. When
describing secondary sources, both their charges and currents can be utilized because
there is a connection between them within the conducting medium. For example, in
the unit time interval, I ¼ Q/(ερ), where I is a flowing current, and Q is the total
charge of the source. In differential form, an analogous equation can be written in the
following form: dI/dV¼ q/(ερ), where dI/dV is the current density flowing out of the
volume dV, and q is the bulk charge density. Similar to the case involving primary
sources, it is more convenient from the author’s perspective to measure the intensi-
ties of secondary sources through the current rather than the charge when using
the IEM.

This concept involving both normal and anomalous parts of a geoelectric section
is an important component of the IEM. In the IEM computational process,
geoelectric models with algorithms that are effective for calculating the Green’s
function can be used as a normal section. Recall that the Green’s function G(P, M )
represents the potential at the pointM of a single pointwise source of electric current
located at the point P within a given geoelectric section.

Separating the electrical field of a geoelectric section into normal and anomalous
components is very important. When solving direct electrical exploration problems
using the IEM, this differentiation allows us to exclude secondary sources related to
inhomogeneities in the normal section. The effect of the normal section is considered
through the Green’s function. Such an approach makes it possible to reduce the
dimensionality of a SLAE following the discretization of the problem. From this
perspective, it is preferable that the normal section contains as many inhomogene-
ities within the investigated medium as possible. However, the complexity of
calculation of the corresponding Green’s function increases. Therefore, separating
the geoelectric section into normal and anomalous components should be conducted
in such a way that the total computational costs in calculating the Green’s function
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and in the subsequent solution of the integral equation are minimal. In many cases, a
homogeneous half-space model or the contact between two half-space models is
used as a normal section in the IEM.

4.1.1 2D Statement of Resistivity Method Problems

The mathematical algorithm and the program used to solve flat two-dimensional
(2D) problems were developed by the author subsequent to the three-dimensional
(3D) modeling program in 1988. This program, known as IE2DL, was developed in
collaboration with E. V. Pervago, who is also an author of the data preparation
program VCOORD. Despite its apparent lack of physical representation, IE2DL is
now employed for numerous applications. The basic properties of a transversely
polarized electric field within a geological section for a flat problem are exactly the
same as those in a quasi-3D case. When using the method of the median gradient, the
differences between their corresponding algorithms completely disappear. The main
advantage of IE2DL is its potential to create highly sophisticated 2D models and
calculate the electric fields for models similar to real geoelectric sections. In addition,
all the calculations in IE2DL are performed for specific lengths of the current and
measuring electrodes. The program provides a wide variety of electroprospecting
arrays, thereby allowing the modeling of fields for a variety of practical situations.
An important feature of the program is that the current electrodes can be located
within the inhomogeneities, and the inhomogeneities themselves can intersect the
surface of the earth. The electric field is calculated at any point along the half-
surface.

For the sake of clarity, it should be noted that the second physical model modeled
in the framework of this program is a 2D medium that is infinitely extended along the
axis Oy. The excitation of this medium is produced by infinitely long lines placed
along the y-axis. The detection of an electric field is performed via infinitely long
reception lines. As demonstrated later, this problem corresponds to the first zero
spatial harmonic of a quasi-3D problem. Later, based on the program IE2DL, A. A.
Bobachev developed an algorithm and a program for constructing current lines in a
2D section (A. A. Bobachev 2003). We briefly dwell on the features of this
mathematical algorithm and, at the end of this section, provide an example of a
calculation for this problem.

Figure 4.1 shows a generalized model of the geoelectric section for which the
algorithm was developed. We consider a pure 2D model in which the electric current
propagates only along the flat cross-section of the medium. This problem corre-
sponds to the physical modeling of electrically conductive paper. The difference
between this problem and its physical analog is the unlimited space of the modeling
domain. Therefore, the electric current flows freely along the plane section. In
physical modeling, one must always remember that the edges of electrically con-
ductive paper completely reflect the electric current. Inclusions with a piecewise-
constant distribution of the resistivity ρi(x, y) (i ¼ 1, 2, 3,. . . ., N ) are placed within
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the lower half-plane. The heterogeneities can have almost arbitrary shapes, and they
can touch each other and intersect the surface of the earth. The boundaries of the
inhomogeneities Г are characterized by the external normal n(x, y) at each point. The
thesis of A. A. Bobachyev describes how a high-density charge can accumulate along
the intersecting model boundaries in the case of an external field acting along acute
angles, but the charge itself is integrated; as a result, its action can be considered
through additional refinements of the mesh at the boundaries. The model is excited by
one or more DC sources. In such a piecewise-homogeneous medium, the electric field
potential satisfies the Laplace equation at all points that do not belong to the interfaces
and at which there are no external sources. In addition, the conditions are satisfied at
infinity and at the sources. The conditions also hold for the conjugation of the
potential along the interfaces of media with different electrical conductivities.

It is possible to derive equations for secondary surface sources located along both
the outer and inner surfaces of inhomogeneities. In this case, the solution of the
problem in terms of the surface sources makes it possible to analyze the physical
mechanism more efficiently regarding formation of the anomalous field.

The electric field in this model is the sum of the normal field of the current
electrodes E0(M ) and anomalous field Ean(M ) that is induced by secondary surface
sources:

E Mð Þ ¼ E0 Mð Þ �
ð
Γ

∇MG P;Mð Þ � I Pð Þ � dΓP, ð4:1Þ

where {IL(Р)�dГP} denotes the intensity of a secondary surface source located at the
point Р, G(Р, М) is the Green’s function for a half-space, and IL(Р) is numerically
equal to the density of the electric current flowing from the boundary element dГP,
which is located at a point P.

To calculate the electric field or its potential according to the above formulae, it is
necessary to find the distribution of the source densities for the anomalous field

Fig. 4.1 Model of a 2D geoelectric section

76 4 The Boundary Element Method in ERT Direct and Inverse Problems



IL(Р). Together with the primary sources in the homogeneous medium, the anoma-
lous field should create such a field that would otherwise be created only by the
primary sources in an inhomogeneous medium. Consider a small element dГ of the
surface Г. The resistivity of the enclosing half-space is ρE. The surface density of the
source ILwithin a small element of the boundary dГ can be regarded as constant, and
the element itself is flat. Then, near the boundary element dГ, we obtain the
following through the differential form of Ohm’s law:

E e
n ¼ E ex

n þ ILρE
2

, E i
n ¼ E ex

n � ILρE
2

, ð4:2Þ

where En
i and En

e are the normal components of the total field E inside and outside,
respectively, the inhomogeneity near the boundary Г. The external field Еex denotes
the sum of the fields at the point M produced by the primary and secondary sources
located outside of dΓ in the geoelectric section. Therefore, En

ex is the projection of
the external field onto the normal to dΓ. Equation (4.2) has a simple physical
meaning. The current IL that is excited on the surface of the element dΓ flows
from the surface along two mirror-wise reflection directions. In the first case, the
current flows along the normal; thus, the component of the anomalous field of the
element dΓ has a positive value. In the second case, the current flows against the
normal inside the body; thus, the component of the anomalous field has a negative
value. In both cases, the resistivity is equal to the resistivity of the enclosing medium
in which the given element of the boundary is located. The value of 2 in the
denominator of (4.2) means that half of the field flows along the normal to the
external environment while the other half flows inside the body (see Fig. 4.2).

Fig. 4.2 The element dΓ of
the boundary Г
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Using the boundary condition for the equality of the normal current density at the
inhomogeneity boundary En

E/ρi
E ¼ En

I/ρj and (4.2), we obtain the following:

IL ¼ 2
ρe

ρj � ρi
ρi þ ρj

E ex
n :

Substituting the expression of the normal component of the electric field (4.1) into
the previous formula, we obtain the Fredholm integral equation of the second kind
with respect to IL:

IL Mð Þ ¼ K E0
n Mð Þ �

ð
Г

∂G P;Mð Þ
∂n

� IL Pð Þ � dΓP

2
4

3
5,

whereЕn
0 is the component of the normal field, which is perpendicular to the surface

Γ, n is the normal to Γ at the pointM, and the coefficient K depends on the contrast of
the inclusion with respect to the surrounding medium, where K ¼ 2

ρe
� ρj � ρi
ρi þ ρj

.

By solving the integral equation (4.2), we can define the distribution of the
densities of secondary current sources within the simulation domain. After this,
the potential and electric field are computed at the required points, after which it is
possible to calculate the apparent resistivity.

Below, we give a calculation example for the model shown in Fig. 4.3. This
calculation is meant to demonstrate the possibilities of the program IE2DL devel-
oped by the author. In this model, the inhomogeneities intersect the earth’s surface,
the supply electrodes and line MN are below the ground surface and inside different
inhomogeneities, and the line MN crosses the contact.

4.1.2 Quasi-3D Modeling: Transverse Polarization

The mathematical algorithm described below for the solution of a quasi-3D problem
was developed by the author in 1987 in collaboration with A. G. Yakovlev, V. A.
Shevnin, and S. A. Berezina (Rogova) (Modin et al. 1988). Later, using the basic
principles of this algorithm, the author managed to implement this algorithm in the
form of the program IE2DR1, which was created in 1991. Its prototype was the
program PRIZT, which was developed by A. G. Yakovlev, V. A. Shevnin, and S. A.
Berezina. The PRIZT program was meant purely for research purposes; the model
included a single rectangular body placed in a homogeneous half-space, and only
two arrays (the median gradient and the VES) were used. The IE2DR1 program
possesses advanced capabilities for calculating electric fields in real media. In
particular, its advantages include the following:

1. An almost complete set of the 17 most common installations
2. A large number of inclusions that can intersect each other and cross the surface of

the earth
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3. The current and measuring electrodes can be located within the heterogeneity
4. Soundings can be performed at the required depth

The given problem of the field of a pointwise source placed on the surface of a
conducting half-space with a 2D inhomogeneity is 2D with respect to the object.
However, the problem is also 3D with respect to the field. Formally, the solution of a
direct problem in such media can be obtained using 3D modeling methods. The
computational costs are of the same or a higher order as the simulation of the electric
field in the presence of 3D inhomogeneities. A more effective approach is based on
the expansion of the field into components that harmonically vary in the lengthwise
direction of the structures. In this way, the quasi-3D problem reduces to a series of
2D problems in the spectral domain for the corresponding set of spatial frequencies.
After solving the problem at the spectrum level, the electric field in the real space is
calculated with the help of an inverse Fourier transform. This approach allows us to
reduce the calculation time for an electric field of a pointwise source in a 2D medium
by several orders of magnitude.

Let us examine the possibilities of the IEM for solving quasi-3D problems using
the simple model shown in Fig. 4.4. In this model, an inclusion with a resistivity ρI is
infinitely elongated along the y-axis (i.e., a horizontal cylindrical body) and is placed
inside a homogeneous half-space with a resistivity ρE. The current electrode is

Fig. 4.3 The results of
modeling using the IE2DL
program. The depth of the
MN lines is 50 m, the
current electrodes A and B
are located at a depth of
15 m. The step along the
profile (conditionally in the
horizontal drift) is 1 m. The
number of observation
points is 31. The length of
the line MN is 1 m. (a) Plot
of apparent resistivity versus
distance.(b) 2D geoelectric
section
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located at a point A with coordinates (xA, 0, 0). In the IEM, the electric field is the
sum of the primary field of the source electrode in a homogeneous half-space and the
field generated by the secondary sources located along the boundary of the hetero-
geneity. The surface density of the secondary sources can be found from the
following equation:

IS Mð Þ ¼ K E0
n Mð Þ �

ðð
Γ

∂G P;Mð Þ
∂n

IS Pð ÞdΓP

2
4

3
5, ð4:3Þ

where

K ¼ 2
ρE

ρE � ρI

ρE þ ρI
, P2Г, M2Г:

After computing the intensities of the secondary sources, the electric field at the
required points is calculated by the formula

E Mð Þ ¼ E0
n Mð Þ �

ð
Г

∂G P;Mð Þ
∂n

IS Pð ÞdΓP:

Let the pointsM and Р have coordinates (x, y, z), and (x0, y0, z0), respectively. The
Green’s function G(P, M ) depends on the arguments (x, x0, y, y0, z, z0). In (4.3), the
Green’s function is differentiated in the direction of the normal at the point M. For a
2D body elongated along the y-axis, the direction of the normal depends only on the
coordinates x and z of the point M. Consequently, the derivative of the Green’s
function depends on (x, x0, y, y0, z, z0).

We note that the integration over the surface Γ can be represented as a sequential
integration along a line directed along the y-axis and then along the contour L, which
is the cross-section of the surface of the horizontal cylinder Γ transected by the plane
xOz. Thus, (4.3) can be rewritten in the following form:

Fig. 4.4 Model of a 2D inhomogeneity inside a homogeneous half-space
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IS x; y; zð Þ ¼ K E0
n x; y; zð Þ �

ð
L

ð1
�1

∂G
∂n

x; x0; y� y0; z; z0ð Þ � IS x0; y0; z0ð Þ dy0dL

2
4

3
5:
ð4:4Þ

The inner integral is the convolution integral of the functions ∂G/∂n and Is with
respect to the y coordinate.

Now, we enter the spectral domain. Since the quantities IS, Е
0
n, and ∂G/∂n are

even functions with respect to the variable y, we can apply the cosine Fourier
transform (2.25):

~I S x; ky; z
� � ¼ 2

ð1
0

IS x; y; zð Þ cos kyy
� �

dy,

~E0
n x; ky; z
� � ¼ 2

ð1
0

E0
n x; y; zð Þ cos kyy

� �
dy,

∂~G

∂n
x; x0; ky; z; z0
� � ¼ 2

ð1
0

∂G
∂n

x; x0; y; z; z0ð Þ cos kyy
� �

dy:

Because of the 2D geometry of the medium, the normal n does not depend on
the y coordinate; thus, the Fourier transform and the differentiation commute. The
spectra of IS, En, and ∂G/∂n are the amplitudes of the spatial harmonics with a
frequency ky. We apply a direct Fourier transform to the left and right sides of (4.4):

~IS x; ky; z
� �

¼ K ~E0
n x; ky; z
� �� ð

L

ð1
0

ð1
�1

∂G
∂n

x; x0; y�y0; z; z0ð Þ � IS x0; y0; z0ð Þdy0
2
4

3
5�cos kyy

� �
dydL

8<
:

9=
;:

According to property (2.27), the convolution spectrum is the product of the
spectra of the convoluted functions. Consequently,

~IS x; ky; z
� � ¼ K ~E0

n x; ky; z
� �� ð

L

∂~G

∂n
x; x0; ky; z; z0
� � � ~I S x0; ky; z0

� �
dL0

2
4

3
5: ð4:5Þ

The integral equation (4.5) for the spectra of the secondary sources at the
frequency ky is written over the contour L rather than the surface Г, as shown in
the original equation (4.4). Thus, the Fourier transform reduces the dimensionality of
the solved equation. For a homogeneous half-space, we have the following:

E0
n x; y; zð Þ ¼ ρE

2π r3
r � n,

∂G
∂n

x; x0; y� y0; z; z0ð Þ ¼ ρE

4π
r
r3

þ r∗
r3∗

� �
� n,
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rA ¼ x� xAð Þ � lx þ y � ly þ z � lz,
r ¼ x� x0ð Þ � lx þ y� y0ð Þ � ly þ z� z0ð Þ � lz,
r∗ ¼ x� x0ð Þ � lx þ y� y0ð Þ � ly þ zþ z0ð Þ � lz,

where n is the unit vector of the outer normal to the surface Γ at the point (x, y, z).
Considering that (1y, n) ¼ 0, we obtain the following expressions for the spectra of
En

0 and ∂G/∂n:

~E0
n x; ky; z
� � ¼ ρE

2π
x� xAð Þ � lx � nð Þ þ z � lz � nð Þ½ � �

ð1
0

cos ky � y
� �

R2
A þ y2

� �3=2 dy, ð4:6Þ

∂G
∂n

x; x0; ky; z; z0
� �

¼ ρE

2π
x� x0ð Þ � lx � nð Þ þ z� z0ð Þ � lz � nð Þ½ � �

ð1
0

cos ky � y
� �

R2 þ y2
� �3=2 dyþ

8<
:

þ x� x0ð Þ � lx � nð Þ þ zþ z0ð Þ � lz � nð Þ½ � �
ð1
0

cos ky � y
� �

R2
∗ þ y2

� �3=2 dy
9=
;

ð4:7Þ

where RA
2¼ (х� хA)

2 + z2, R2¼ (x� х0)2þ (z� z0)2, and R*
2¼ (x� x0)2þ (z + z0)2.

The parameters RA, R, and R* are the projections of the vectors ra, r, and r*,
respectively, onto the xOz plane. There is a cosine transform from functions of the
form I/(a2 + y2)3/2 in (4.6) and (4.7), where a is a constant. For this transformation,
we have the following:

S ky; a
� � ¼ ð1

0

cos ky � y
� �

a2 þ y2ð Þ3=2
dy ¼ ky

2a
K1 � a � ky

� �
,

where K1(x) is the MacDonald function (modified Bessel function of the second
kind) of the first order. In the numerical solution of the integral equation (4.5), we
use the tabulated values of the function K1(x) to calculate Еn

0 and ∂G/∂n in a
homogeneous half-space. To reduce (4.5) in the SLAE, the contour L is divided into
the elements Δl, within which IS is supposed to be constant. After calculation of the
spectral densities IS of the secondary sources, the electric fields and their potentials
are calculated at the required points. The spectral potential is calculated using the
following formula:

~U x; ky; z
� �þ ð

La

~G x� x0; ky; z; z0
� � � IS x0; ky; z0

� �
dl:
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The potentials and the components of the field can be represented in terms of an
inverse Fourier transform:

U x; y; zð Þ ¼ 1
π
�
ð
0

~U x; ky; z
� � � cos ky � y

� �
dky,

Ex x; y; zð Þ ¼ �1
π
�
ð1
0

∂ ~U

∂x
x; ky; z
� � � cos ky � y

� �
dky ¼ E0

x x; y; zð Þ�

1
π
�
ð1
0

ð
La

∂G
∂x

x� x0; ky; z; z0
� � � ~I S x0; ky; z0

� �
dl

2
4

3
5 cos ky � y

� �
dky:

To compute the cosine transform, it is useful to apply an approach similar to that
used in the Hankel transform. The expression for Ex can then be written in the
following form:

Ex x; y; zð Þ ¼ E0
x x; y; zð Þ þ 1

π
�
ð1
0

~E ан
x x; ky; z
� � � cos ky � y

� �
dky,

ƨ∂е ~E ан
x x; ky; z
� � ¼ �

ð
La

∂G
∂x

x� x0; ky; z; z0
� � � IS x0; ky; z0

� �
dl0:

ð4:8Þ

The anomalous field in (4.8) can be represented by

E ан
x yð Þ ¼

ð1
0

f ky
� � � cos ky � y

� �
dky:

We introduce the notation s ¼ ln(x) and t ¼ ln(1/ky). Then, у ¼ es, ky ¼ e�t, and
dky¼�e�tdt, and the limits of integration in (4.8) are changed such that the limits of
t and ky are 1 and �1, respectively, when ky ¼ 0.

Hence, we have

E ан
x yð Þ ¼

ð1
�1

f e�tð Þ � cos e�t � eS� � � �e�tð Þdt ¼
ð1

�1
f 0 tð Þ � f 00 s� tð Þdt, ð4:9Þ

where f0(t) ¼ f(e�t)e�t and f00(s � t) ¼ cos(es � t). The last integral is the convolution
of the function f0(t), which depends on the geoelectric model; the function f00(s� t) is
related to the type of the integral transformation. In a discrete form, the integral
equation (4.9) can be represented as

E ан
x

� �
j
¼
Xn
i¼�k

Ci f
0ð Þj�i,
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where Ci is the set of pre-computed coefficients. In the particular case where the
electrical survey array is placed on the earth’s surface and is oriented across the
inhomogeneity (y ¼ 0, z ¼ 0), we have Ez ¼ 0 (because jz ¼ 0 for z ¼ 0) and Ey ¼ 0
(due to the symmetry of the transverse polarization of the field). Because cos(kyy)¼ 1
for y ¼ 0, the cosine transform is reduced to the ordinary integral

Ex x; 0; 0ð Þ ¼ E0
x x; 0; 0ð Þ � 1

π
�
ð1
0

ð
La

∂~G

∂x
x� x0; ky; 0; z0
� � � IS x0; ky; z0

� �
dl0

2
4

3
5dky:

We present an example calculation using the program IE2DP1 for the model
shown in Fig. 4.5. The model of the geoelectric section corresponds to a
low-amplitude tectonic disturbance zone (a fairly typical situation for the Donetsk
region). To simulate a zone of alteration within the rocks, an inhomogeneity is
placed at the center of the model. The left side of the anomaly is elevated and
inclined to the right. The curves at the pickets �50 m and 150 m practically
correspond to the horizontally layered VES curves. Substantially strong distortions
of the VES curves are located within the contact zone that, during a formal layer-by-
layer interpretation, can lead to false geological conclusions. In particular, the curve
at the picket 0 m appears to be a four-layer curve, whereas the locally normal curve at
this point should be a two-layer curve.

Fig. 4.5 Calculation
example on the surface of
the 2D inhomogeneous half-
space (program IE2DP1):
(a) VES curves at certain
points; (b) model of the
geoelectric section
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4.1.3 Quasi-3D Modeling: Longitudinal Polarization

A mathematical algorithm for longitudinal polarization over 2D objects was also
developed within the framework of the joint project to solve quasi-3D problems, led
by I. N. Modin, A. G. Yakovlev, V. A. Shevnin, and S. A. Berezina (Rogova)
(Modin et al. 1988). From a mathematical perspective, the algorithms for both
longitudinal and transversal polarization have very similar solutions. However,
during a concrete implementation of the numerical algorithm, we encountered
considerable difficulties. In 1993, the author independently developed a personal
computer program (IE2DP2) purely for research on longitudinal polarization with
capabilities closely analogous to those of the program PRIZT. Much later, in 2004,
A. A. Bobachyev developed another version of the program IE2DP2 because of
increasing numbers of personal requests. This program is universal and permits the
use of almost any array, as the geoelectric sections can be virtually arbitrary. Most
importantly, however, the program can work with any physical relief regardless of its
complexity. This version of IE2DP2 represents the pinnacle of the programming of
DC problems both in terms of its ability to solve complex problems and its potential
for modeling electric fields in horizontally inhomogeneous media.

In geological and engineering practice, forced action arrays are mostly used for
longitudinal polarization problems. Several situations then require the use of a
longitudinal array: (1) river crossings (VES pickets are located along the profile
and must span the river; thus, the river stream is perpendicular to the profile);
(2) dams and bunds (the only possible installation location is along the body of
such a bulk structure); and (3) across large and active transport highways (when the
use of a physical line with cables and electrodes across such a road is dangerous). In
addition, strong distortions of the VES curves may be observed in the third scenario
as a result of the intersection of the current and measuring electrodes with under-
ground communication lines and the body of the embankment itself. More than
approximately 10–15% of such cases are encountered during electrical exploration
applications. However, these cases are extremely important and cannot be ignored.

Thus, we must solve the problem regarding the field of a pointwise current source
on the surface of a conducting half-space, with a 2D piecewise-constant distribution
of the resistivity ρ(x, z) (Fig. 4.6). Thus, both the problem under consideration and
the previous problem have 2D geometries and 3D electrical fields. The principle
difference is that the entire array is deployed perpendicularly to the cross-section of
Γ. In this problem, as in the calculation of the field in a layered medium, there is no
fundamental difference between the Schlumberger four-electrode installation and the
three-electrode installation, because the second electrode does not create distortions
and specific anomalies of the electric field; instead, the second electrode only
doubles the field. For the sake of brevity, it should be noted from a practical
perspective that the two-dimensionality of the cross-section in the framework of
the longitudinal polarization problem is more challenging than that in the transverse
polarization problem. The main physical requirement is that the entire array must be
placed completely within a block exhibiting a generally 2D structure. In a number of
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cases, this requirement is physically impossible due to the complex structures of both
natural and artificial objects. In addition, each application of a longitudinal installa-
tion should be performed following a thorough examination of the whole study area,
which increases the cost of the survey. Therefore, the decision to use a longitudinal
array should be scrutinized.

The formal solution of the direct problem completely coincides with the solution
presented in the previous section, except for the final formulas. Therefore, the
surface density of the secondary sources can be found from the following equation:

IS Mð Þ ¼ K E0
n Mð Þ �

ð
Г

∂G P;Mð Þ
∂n

� IS Pð ÞdΓp

2
4

3
5:

Then, bypassing all the intermediate conclusions for the y component of the field,
we can write the inverse Fourier transform:

Ey x; 0; 0ð Þ ¼ Ey0 x; 0; 0ð Þ

� 1
π

ð1
0

ð
La

~G x� x0; ky; z; z0
� �

~I s x0; ky; z0
� �

dl0ky sin kyy
� �

dky:

To find the electric field, the calculations are performed according to the follow-
ing algorithm. The potential is initially transferred to the spectral region with respect
to the spatial frequencies ky. In the program, the potential spectra are calculated for
the intervals of the necessary distances x for the different depths of the sources z0 and
receivers z. Then, for each frequency, a 3D matrix of values ~Gky Δx; z; z0ð Þ is
computed, following which it is easy to interpolate the results for the required points.
Furthermore, the SLAE is solved in the spectral domain, and the spectral density of

Fig. 4.6 The model of a 2D section and a sounding installation in the case of longitudinal
polarization
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the secondary sources ~I s ky
� �

is defined for each frequency. The next step is to
integrate over all the internal and external circuits La and obtain the spectrum of the
anomalous electric field ~Ey

аном
ky
� �

. The last step is integration of the electric field
spectra over all frequencies at the required points:

Ey x; 0; 0ð Þ ¼ Ey
0 x; 0; 0ð Þ þ 1

π

ð1
0

~Ey
аном

x; ky
� �

ky sin kyy
� �

dky:

As the previous expression cannot be numerically obtained via ordinary integra-
tion, the integral is converted to a convolution integral and then calculated.

In the relatively simple example below, we demonstrate the difference between
the VES curves for longitudinally polarized and transversely polarized fields. The
results of the calculations using the programs IE2DP1 and IE2DP2 are shown in
Fig. 4.7. The geoelectric model consists of a two-layered medium and a conducting
inclusion. This example demonstrates the fundamental differences between three
VES curves calculated at one point. The locally normal curve corresponds to a four-
layer section of type HA at picket 0 (ρ1¼ 30, ρ2¼ 5, ρ3¼ 30, and ρ4¼ 150Оhm m;
h1 ¼ 0.5, h2 ¼ 2, and h3 ¼ 2.5 m). The transverse curve of the VES exhibits a
distortion when the current electrodes intersect the horizontal boundaries of the
inhomogeneity, and the curve then descends to a locally normal curve and runs

Fig. 4.7 Example of
calculations using the
programs IE2DP2 and
IE2DP1 with longitudinal,
transverse, and locally
normal VES curves (a) and a
geoelectric section model
(b)
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parallel to it at large spacings. As shown below, this behavior of the curve is
completely natural and obeys the distortion from the so-called P-effect. In contrast
to the transverse VES curve, the longitudinal VES curve is smooth, because no
electrode of this installation intersects the horizontal boundaries. However, after
reaching a minimum, a strong rise in the curve steeper than 45� can be observed.
This rise is caused by the effect of the current concentration within the conductors.

4.2 The BEM for Solving Direct Sounding Problems Above
a Medium with an Immersed Local Inhomogeneity

In the previous section, we considered 2D mathematical models for media with
rectilinear contact boundaries. We also considered Fourier transformation method,
which were used to reduce the 3D problem into a 2D problem. In this section, we
consider the theoretical and computational aspects of solving direct problems using
the BEM in a 3D formulation for media with sufficiently smooth boundaries.

4.2.1 Statement of the Problem and the Mathematical Model

Here, we consider the mathematical aspects and describe a numerical solution
algorithm of the problem considered in Sect. 4.1.2 for a 3D formulation or, more
precisely, for a 2.5D formulation. Let the medium contain a local 2D inhomogeneity
(Fig. 4.8). Suppose that the medium has a 2D piecewise-constant conductivity
distribution. Let a current electrode be placed at a point A on a planar surface of
the medium that coincides with the plane z¼ 0 in Cartesian coordinates. A schematic
model of the medium is shown in Fig. 4.8. Let the containing layer have a constant

O

Q
n

A

x

P

M

z

y

σ

σ

σ1

σ2

=

=

Fig. 4.8 Model of the
medium with a 2D local
inclusion
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resistivity ρ1 (conductivity σ1 ¼ 1/ρ1), and let the local inclusion have the resistivity
ρ2 (conductivity σ2 ¼ 1/ρ2).

Concerning the geometry of the inclusion, we make the following assumptions:

(a) The Cartesian x–y plane coincides with the earth’s surface, and the conductivity
distribution does not depend on the y coordinate.

(b) The intersection of the medium with the y plane (which is a constant) forms a
stellar closed curve in the x–z plane (Fig. 4.8).

(c) There exists a parameterization ρ ¼ r(θ) of the inclusion surface Γ in cylindrical
coordinates (ρ, θ, ζ) with a center at some point Q(xQ, zQ) and an axis ζ parallel
to the axis Oy of the Cartesian coordinate system (Fig. 4.8). Let the function
ρ ¼ r(θ) satisfy the following conditions:

rðθÞ2C2ð½0, 2π�Þ, 0 < R1 � rðθÞ � R2, max r0 θð Þj j, r00 θð Þj jð Þ � K,

m ¼ R1 � 2πK > 0, θ2½0, 2πÞ:
ð4:10Þ

(d) The smallest distance from the surface Oxy to the inhomogeneity is dΓ > 0.

Let us now derive an integral equation. In contrast to the derivation given in
Sect. 4.1, we obtain this equation based on the potential theory described in Chap. 2
(Sect. 2.1). Based on the mathematical model of the direct current, the potential of a
stationary field satisfies the Laplace equation

ΔU ¼ 0: ð4:11Þ
The conditions of continuity for the potential and the normal component of the

current are satisfied on the surface Γ:

Ujþ ¼ Uj�, σ1
∂U
∂n

����
þ
¼ σ2

∂U
∂n

����
�
: ð4:12Þ

Here, the signs “þ” and “�” correspond to the derivatives in the direction of the
normal n taken on different sides of the surface Γ (Fig. 4.8). Let R0 be a specified
length scale. We can write the conditions for the decrease of the potential at infinity
and the boundary condition at the earth’s surface:

∂U
∂z

����
z¼0

¼ I

R2
0σ1

δ r�OAð Þ,

U 1ð Þ ¼ 0:

ð4:13Þ

Here, OA is the radius vector of a point source of direct current, and I is the
current of the source electrode. We then represent the solution of the problem given
in (4.11) through (4.13) at the pointM in the form of a sum of the potentials of a point
source in a homogeneous half-space and an unknown regular additive:
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U Mð Þ ¼ I

R0σ1
U0 Mð Þ þ u Mð Þð Þ ¼ I

R0σ1
� 1
2π j AM j þ u Mð Þ

� �
: ð4:14Þ

Here, the multiplier I/R0σ1 forms the scale of the potential measurement. The
function u(M ) must also satisfy the Laplace equation everywhere except for the
boundary Γ. The boundary conditions can be rewritten as follows:

σ1
∂u
∂n

����
Γþ

� σ2
∂u
∂n

����
Γ�

¼ � σ1
∂U0

∂n

����
Γþ

� σ2
∂U0

∂n

����
Γ�

 !
, ð4:15Þ

∂u
∂z

����
z¼0

¼ 0 ð4:16Þ

Similar to the sounding problem over an inclined plane described in Chap. 3
(Sect. 3.5), we seek a solution u(M ) in the form of a simple layer potential created by
secondary sources distributed over the geoelectric boundary Г and its reflection in
the upper half-space:

u Mð Þ ¼ 1
2π

ðð
Γ

ν Pð Þ 1
j MP j dΓP þ 1

2π

ðð
Γ

ν Pð Þ 1

MPj j0 dΓP, ð4:17Þ

where the point P(x, y, z) 2 Γ, P0(x, y,�z) 2 Γ0, and Γ0 is a symmetric reflection of
the surface Γ in the half-space z < 0. A symmetric reflection ensures that condition
(4.16) is satisfied at the surface of the earth. The quantities |MP|, |MP0| denote the
distances from the point M to the points P and P0, respectively. Now, we can derive
the integral equation via the unknown function ν(M ) M 2 Γ in a way similar to that
presented in Chap. 3 (Sect. 3.5).

According to (2.6), the normal derivative of the first term of the potential (4.17)
on the surface Γ has a discontinuity, and its values on different sides of the surface
are expressed through the following formulae:

∂u
∂n

� �
Γ�

Mð Þ ¼ ν Mð Þ þ 1
2π

ðð
Γ

ν Pð Þ ∂
∂n

1
j MP jdΓþ 1

2π

ðð
Γ

ν Pð Þ ∂
∂n

1

MPj j0dΓ

∂u
∂n

� �
Γþ

Mð Þ ¼ �ν Mð Þ þ 1
2π

ðð
Γ

ν Pð Þ ∂
∂n

1
j MP jdΓþ 1

2π

ðð
Γ

ν Pð Þ ∂
∂n

1

MPj j0dΓ:

ð4:18Þ
Here, the sign “þ” corresponds to the side of the surface with a conductivity σ1,

and the sign “�” corresponds to the side facing the inside of the inclusion. The
normal n is the outer normal to the inclusion boundary.

Substituting the expressions in (4.18) into the boundary conditions of (4.15), we
obtain the following:

90 4 The Boundary Element Method in ERT Direct and Inverse Problems



ν Mð Þ ¼ σ1 � σ2ð Þ
2π σ1 þ σ2ð Þ

�
ðð
Γi

ν Pð Þ ∂
∂n

1
j MP j þ

1
j MP0 j

� �
dΓþ σ1 � σ2ð Þ

σ1 þ σ2ð Þ
∂U0

∂n

����
Γ
: ð4:19Þ

We let κ be the reflection coefficient:

κ ¼ ρ2 � ρ1ð Þ
ρ2 þ ρ12ð Þ ¼

σ1 � σ2ð Þ
σ1 þ σ2ð Þ :

Now, we can rewrite (4.19) in the following form:

ν Mð Þ ¼ κ

2π

ðð
Γ

ν Pð Þ ∂
∂nM

1
rMP

þ 1
rMP0

� �
dΓP þ κF0 Mð Þ, ð4:20Þ

where F0(M ) ¼ ∂U0/∂n, M 2 Γ
Equation (4.20) is similar to the equation for an inclined plane problem (3.36), but

it contains the additional term

∂
∂nM

1
rMP

� �
:

This term has an integrable singularity when the integration pointM tends toward
the point P. This circumstance considerably complicates the computational aspect of
the problem in comparison with the example of sounding above an inclined plane.

4.2.2 Solvability of the Integral Equation

This section may be of particular interest to mathematicians and specialists in the
field of numerical methods; thus, a reader who is interested only in the applied
aspects of this method can skip this section.

Equation (4.20) can be written in the following operator form:

ν ¼ Aνþ f , ð4:21Þ
where the integral operator is defined as follows:

Aν M θ; ςð Þð Þ �
ð2π
0

ð1
�1

ν θ1; z1ð Þ ∂
∂nM

1
j MP j þ

1
j MP0 j

� �
I θ1; ς1ð Þdθ1dς1: ð4:22Þ
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Here, I(θ, ς) is the Jacobian of the transformation from Cartesian coordinates to
the parameterization of the surface. Suppose that the defined area of the operator A is
the set of continuous bounded functions ν(M ) 2 C(Γ), kνkC < 1 , M 2 Γ. The
order of decrease of that function at infinity is established in Lemma 4.1. Assume
that the surface Γ is parameterized in accordance with the conditions of (4.10) so that
the points on the surfaces M(θ, ς) and P(θ1, ς1) are given by the cylindrical coordi-
nates (r(θ), θ, ς) and (r(θ1), θ1, ς1), respectively.

We cannot apply the Fredholm theory directly to the integral equation (4.20) for
the following reasons. First, for P!M, the kernel of the equation has a singularity at
|MP|�1: thus, neither the theory for continuous kernels nor the theory for quadrati-
cally summable kernels can be applied. Fortunately, this difficulty is easily over-
come by transition to an iterated second-order kernel. However, to consider an
equation with an iterated kernel in the class L2(Γ), we must verify that the right-
hand side of (4.20) and the right-hand side of the equation with an iterated kernel
also belong to L2(Γ). Second, we must verify the compactness of the integral
operator with an iterated second-order kernel in the space L2(Γ). The differences
between (4.20) and the classical problems of potential theory (Gunther 1934;
Petrovskii 1965; Tricomi 1957) are expressed in the fact that simple layers are
considered defined on a bounded surface in the classical formulation. In other
words, classical problems are posed in such a way that the domain in which the
desired solution of the integral equation is defined is bounded. In our formulation,
simple layers are considered defined on an unbounded surface. Therefore, to justify
the numerical method for solving the integral (4.20), we must investigate the
properties of the integral operator in (4.20). However, in the case involving a low
media contrast, there is no need to use an iterated kernel (Mukanova 2010). We show
this below based on the following lemma.

Lemma 4.1 The operator of the integral equation (4.20) is continuous on the set of
bounded functions ν 2 C(Ω), Ω ¼ [0, 2π] � (�1,1) and is contractive for
sufficiently small jκj.
Proof. It is easy to verify that the derivative with respect to some direction n at the
point M is

∂
∂n

1
jMPj þ

1
jMP0 j

� �
¼ cosψ

MPj j2 þ
cosψ 0

MP0j j2 , ð4:23Þ

where the angles ψ and ψ 0 are formed by the vector n and the directionsMP andMP0,
respectively.

Let us first prove the continuity of the operator. Consider two functions ν1(M ),
ν2(M ) 2 C(Γ). We estimate the norm of the difference between the values of the
operator A:

92 4 The Boundary Element Method in ERT Direct and Inverse Problems



Aν1 � Aν2k kC � ν1 � ν2k kC � κj j
2π

ðð
Γ

cosψj j
MPj j2 þ cosψ 0j j

MP0j j2
 !

dΓP

� ν1 � ν2k kC � κj j
2π

I1 Mð Þ þ I2 Mð Þð Þ:
ð4:24Þ

Now, we uniformly estimate the right-hand side in (4.24) with respect to the point
M. Consider the parameterization of the surface Γ according to conditions (4.10). Let
points M and P have cylindrical coordinates (ρ, θ, ς) and (ρ1, θ1, ς1), respectively.
The following equalities then hold:

I1ðMÞ ¼
ðð
Γ

jcosψ j
jMPj2 dΓ ¼

ð2π
0

ð1
�1

jðMP,nÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðθ1Þ2 þ r02ðθ1Þ

q
dς1dθ1

jPMj3 , r0 θð Þ ¼ dr

dθ

� �

I2ðMÞ ¼
ðð
Γ

cosψ
0�� ��

MP
0�� ��2 dΓ ¼

ð2π
0

ð1
�1

jðMP
0
,nÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðθ1Þ2 þ r02ðθ1Þ

q
dς1dθ1

jP0
Mj3 :

ð4:25Þ
In terms of the chosen parameterization, we have

MPj j2 ¼ ρ2 � 2ρ1ρ cos θ � θ1ð Þ þ ρ21 þ ς� ς1ð Þ2:
The Cartesian coordinates of the vectors PM and P0M are expressed in terms of

cylindrical coordinates:

PM ¼ ρ cos θ � ρ1 cos θ1; ς� ς1; ρ sin θ � ρ1 sin θ1ð Þ,
P0M ¼ ρ cos θ � ρ1 cos θ1; ς� ς1; ρ1 sin θ1 þ ρ sin θ þ 2ςQ

� �
,

~n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ r02 θð Þ

q r0 θð Þ sin θ þ ρ cos θð Þ; 0; ρ sin θ � r0 θð Þ cos θð Þ: ð4:26Þ

Here, ςQ is the depth of occurrence of the center of the polar coordinate system
associated with the inclusion.

To calculate the integral I1 in expressions (4.25), we consider the cylindrical
coordinate system with an axis ς1 passing through the center of the polar coordinate
system parallel to the axis Oy of the initial Cartesian system (Fig. 4.8) and rotate
the polar axis θ1 in the θ direction. Then, the coordinates of the points M and P are
(ρ ¼ r(0), 0, ς) and (ρ1 ¼ r(θ1), θ1 � θ, ζ1), respectively. We then substitute the
expressions of (4.26) into the expressions of (4.25) and change the integration
variables such that z ¼ ζ1�ζ. We can then obtain the following:
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I1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ r02ðθÞ

q ð2π
0

ð1
�1

ρ2 � ρρ1cos θ
0 � r

0 ð0Þρ1sin θ
0�� ��

ρ2 þ ρ12 � 2ρρ1cos θ
0 þ z02

� 	3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðθ0 Þ2 þ r02ðθÞ

q
dz

0
dθ

0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ K2

q
R1

ð2π
0

ð1
�1

ρ2 � ρρ1cos θ
0 � r

0 ð0Þρ1sin θ
0�� ��

ðρ2 þ ρ12 � 2ρρ1cos θ
0 þ z02Þ3=2

dz
0
dθ

0
:

ð4:27Þ
The improper integral with respect to z0 in the expressions of (4.27) can be taken

explicitly; therefore, integrating with respect to the variable z0, we obtain

I1 �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ K2

q
R1

ð2π
0

ρ2 � ρρ1 cos θ
0 � r0 0ð Þρ1 sin θ0

�� ��
ρ2 þ ρ12 � 2ρρ1 cos θ

0 dθ0: ð4:28Þ

We can represent the values of the function ρ ¼ r(θ) in terms of ρ1 ¼ r(θ1) as
follows:

ρ ¼ r θ1ð Þ þ θ � θ1ð Þ
ð1
01

dr

dθ
θ1 þ t θ � θ1ð Þð Þdt � ρ1 þ L θ0ð Þθ0: ð4:29Þ

Then, considering the direction of the polar axis and the definition of θ, we have

ρ1 ¼ r θð Þ � θ0
dr

dθ
0ð Þ þ θ02

2

ð1
0

ð1
01

d2r

dθ02
tsθ0ð Þdtds � ρ� r0 0ð Þθ0 þ L1 θ0ð Þθ

02

2
, ð4:30Þ

By virtue of (4.10), the functions satisfy inequalities jL(θ0
) j � K, j L1(θ0

) j � K and
are both bounded and continuous. Now, we estimate the integrand in (4.28).
Expressing ρ1 with (4.30) and substituting it into the numerator of the fraction in
(4.28), we obtain the following (the prime notation for θ is omitted):

ρ2 � ρρ1 cos θ � r0 0ð Þρ1 sin θ ¼ 2ρ2 sin 2 θ=2ð Þ þ r0 0ð Þρ θ cos θ � sin θð Þþ
þr02 0ð Þθ0 sin θ � L1θ

2 ρ cos θ þ r0 0ð Þ sin θð Þ=2 � 2R2
2 sin 2 θ=2ð Þþ

0:5KR2θ
2 þ K2θ2 þ 0:5K R2 þ Kð Þθ2 � 0:5R2

2 þ KR2 þ 1:5K2
� �

θ2:

ð4:31Þ
Here, we use the estimate jθ cos(θ)� sin(θ)j � 0.5θ2 which is obtained by

expanding the function in a Taylor series and estimating the remainder term on the
interval [0, 2π]. Substituting (4.29) into the denominator of the integrand in (4.28),
we obtain the following:
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ρ2 þ ρ1
2 � 2ρρ1 cos θ

0 ¼ 4ρ1
2 sin 2 θ0=2ð Þ þ 4ρ1L θ0ð Þ sin 2 θ0=2ð Þ þ L2θ02 	

	 4R1m sin 2 θ0=2ð Þ þ K2θ02
� 	

:

ð4:32Þ
Substituting the estimates of the expressions in (4.31) and (4.32) into inequality

(4.28), we have

I1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ K2

q
R2
2 þ 2KR2 þ 3K2

� �
R1

ð2π
0

θ2dθ

K2θ2 þ 4R1m sin 2 θ=2ð Þ � C1

¼ const: ð4:33Þ
We can now estimate the integral I2. If the value dΓ is the depth of occurrence of

the inhomogeneity, then

MP0j j 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2Γ þ z02

q
, and the following inequality hold for I2:

I2 ¼
ð2π
0

ð1
�1

jcos ðψ 0 jÞ
jMP

0 j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðθÞ þ r02ðθÞ

q
dzdθ

�
ð2π
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðθÞ þ r02ðθÞ

q ð1
�1

dz

4d2Γ þ z02
dθ ¼ Cπ

2dΓ
, ð4:34Þ

where C is the length of the contour of the cross-section of the surface Γ. Then, from
estimates (4.24), (4.33), and (4.34), we obtain

Aν1 � Aν2k kC � ν1 � ν2k kC � κj j
2π

C1 þ Сπ
2dΓ

� �
: ð4:35Þ

This implies the continuity of the operator A.
It follows from inequality (4.35) that the operator A is contractive for sufficiently

small values of | κ | corresponding to small media contrasts. The lemma is proven.
Remark. For the particular case when the inhomogeneity cross-section is a circle

of radius R, direct calculations using (4.27) and (4.34) yield С1 ¼ 2π, С ¼ 2πR, and

Aν1 � Aν2k kC � ν1 � ν2k kC � jκj 1þ R

2dΓ

� �
:

Let us consider the iterative scheme for the solution of (4.20). We define an initial
approximation of the function ν0(M ) 2 C(Γ). Each subsequent approximation
νm þ 1(M) is calculated using (4.20) by substituting νm(P) for ν(P) in the right-
hand side:
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νmþ1ðMÞ ¼ κ

2π

ðð
Γ

νmðPÞ ∂∂n
1
MPj j þ

1

MP
0�� ��

 !
dΓP þ κF0ðMÞ, m ¼ 0, 1, 2, . . .

ð4:36Þ

Theorem 4.1. Under the abovementioned assumptions (a) through (d) and for
sufficiently small values of jκj, the iterative process in (4.36) converges on Γ to a
unique solution of the integral equation (4.20) for any initial ν0(M) satisfying the
conditions of the lemma.

Proof. We estimate the uniform norm of the difference between two successive
approximations. The estimate (4.35) of the lemma implies

νmþ1 � νmk kC � νm � νm�1k kC � j κ j
2π

C1 þ Сπ
2dΓ

� �
:

Then, for sufficiently small | κ | values such that

κj j � 2π C1 þ Сπ
2dΓ

� ��1

¼ 4πd
2C1dΓ þ Cπ

¼ 4π
2C1 þ Cπ=dΓ

, ð4:37Þ

it follows that the iterative process (4.36) converges as a geometric progression with
the denominator jκj(C1 + Cπ/2dΓ)/2π. The uniqueness of the solution follows from
the properties of a contractive operator.

It also follows from (4.37) that cases with a small ratio of the length of the
contour C to the depth dΓ are favorable for the speedy convergence of the iterative
process.

Remark 4.1 The estimates of the Lemma 4.1 and the results of Theorem 4.1 can be
easily generalized to the case of several local inclusions placed along the direction of
the axis Oy.

4.3 The BEM for Solving Direct Sounding Problems
Above a Medium with Buried Relief, with Numerical
Examples

In this section, we consider the mathematical aspects of the 2.5D and 3D solutions of
electrical sounding problems above buried relief. In this case, the domain of the
definition of an unknown function in the integral equation is infinite in both vari-
ables. This requires some additional research to justify the numerical method.

96 4 The Boundary Element Method in ERT Direct and Inverse Problems



4.3.1 Statement of the Direct Problem and Solvability
of the Integral Equation

Let us formulate the mathematical statement of the VES problem over a medium
with buried 2D relief. Concerning the geometry of the medium, we assume the
following:

(a) Let the Cartesian x–y plane coincide with the earth’s surface, and assume that the
conductivity distribution does not depend on the y coordinate.

(b) The medium consists of two layers; the boundary Γ between them allows for a
parameterization of the form z ¼ f(x), where the function f(x) (Fig. 4.9) satisfies
the following conditions:

f xð Þ2C2 Rð Þ, f xð Þ � h, j x j	 a,

max jf 0 xð Þj; jf 00 xð Þjð Þ � K, 0 < mf �j f xð Þ j� Mf < 1:
ð4:38Þ

(c) The distribution of the conductivity is piecewise constant and 2D in the domain
z > 0: σ(x, z) ¼ σ1, if z < f(x) and σ(x, z) ¼ σ2, if z 	 f(x) for all {(x, y, z)|z > 0}.

Let the origin of the coordinate system coincide with the point location of the
current source. We remain within the framework of the mathematical model
described in Chap. 3 (Sect. 3.2):

ΔU ¼ 0, x; y; zð Þ2 z > 0f g\Γ,
∂U
∂z

����
z¼0

¼ I

R2
0σ1

δ rð Þ,

σ1
∂U
∂n

����
Γþ

¼ σ2
∂U
∂n

����
Γ�

U 1ð Þ ¼ 0:

ð4:39Þ

Z

V V

n

V

M

A

h h

-a a x

P

s = s2

s = s1

y

Fig. 4.9 The sounding scheme over a model with buried 2D relief and the model of the medium
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Additionally, as in Sect. 4.2, we represent the solution of the problem at an
arbitrary point M in the form of a sum of potentials:

U Mð Þ ¼ I

R0σ1
U0 Mð Þ þ u Mð Þð Þ,

where I is the current strength, and R0 is a given length scale.
In the numerical simulation, it is convenient to take the function U0(M ) in the

form of a solution for a two-layered medium with conductivities of σ2 (if z > h) and
σ1 (if z � h). As shown in Chap. 3 (Sect. 3.4), this solution is expressed in terms of
Bessel functions of the first kind and zero order and has the form

U0 r; zð Þ ¼ ρ1I

2π

ð1
0

K λð ÞJ0 λrð Þrdr

¼ I

2πσ1

ð1
0

1þ 2θ1 λð Þ cos h λzð Þð ÞJ0 λrð Þrdr, ð4:40Þ

if z � h, and is equal to

U0 r; yð Þ ¼ I

2πσ1

ð1
0

1þ θ2 λð Þexp �λzð Þð ÞJ0 λrð Þrdr, ð4:41Þ

if z > h.
The functions θ1(λ) and θ2(λ) are given by the following expressions:

θ1 λð Þ ¼ κexp �2λhð Þ
1� exp �2λhð Þ , κ ¼ σ1 � σ2

σ1 þ σ2
,

θ2 λð Þ ¼ 1þ exp 2λhð Þð Þθ1 λð Þ ¼ κ 1þ exp �2λhð Þð Þ
1� exp �2λhð Þð Þ : ð4:42Þ

Here, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance from a point to the Oz axis. Then, the function

u(M ) is a solution of the boundary value problem:

Δu ¼ 0, x; y; zð Þ2 z > 0f g\Γf g,
∂u
∂z

����
z¼0

¼ 0,

σ1
∂u
∂u

����
Γþ

� σ2
∂u
∂n

����
Γ�

¼ �σ1
∂U0

∂u

����
Γþ

þ σ2
∂U0

∂n

����
Γ�

u 1ð Þ ¼ 0:

ð4:43Þ

Additionally, as in Sect. 4.2, we represent the solution u(M ) in the form of a
simple layer potential generated by secondary sources distributed along the
geoelectric boundary Г and its reflection in the half-space {z < 0}:
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u Mð Þ ¼ 1
2π

ðð
Γ

ν Pð Þ 1
j MP j þ

1

MPj j0
� �

dΓP: ð4:44Þ

Repeating the arguments of Sect. 4.2, we know that the function ν(M ) satisfies an
integral equation of the form of (4.20), but the function ν(M ) is defined in R2:

ν Mð Þ ¼ κ

2π

ðð
Γ

ν Pð Þ ∂
∂n

1
j MP j þ

1
j MP0 j

� �
dΓP þ κF0 Mð Þ, ð4:45Þ

where F0(M ) ¼ ∂U0/∂n, M 2 Γ.
Here, the points M and P belong to the integration surface Γ, and the point P0

belongs to its reflection in the half-space {z < 0}.
Let us consider the solvability of (4.45). Again, we cannot directly apply the

classical results of Chap. 2 (Sect. 2.2) because the domain of Γ is unbounded.
However, in this case, the iteration procedure can also be justified for small media
contrasts (Mukanova 2010).

Lemma 4.2. Suppose that the abovementioned conditions (a) through (c) hold and
that the function ν(x, y), defined on the surface Γ, is both bounded and continuous,
and satisfies the descending condition at infinity:

νðx, yÞj j � Cν k νkC
j x j , ð4:46Þ

where Cν is a constant. Then, the functions

μ x; yð Þ ¼
ðð
Γ

ν x1; y1ð Þ ∂
∂n

1
MPj j

� �
dΓ x1; y1ð Þ,

μ1 x; yð Þ ¼
ðð
Γ

ν x1; y1ð Þ ∂
∂n

1
MP0j j

� �
dΓ x1; y1ð Þ,

where

M ¼ x; y; f xð Þð Þ,P ¼ x1; y1; f x1ð Þð Þ2Γ,P0 ¼ x1; y1;�f x1ð Þð Þ
satisfy the estimates

μ x; zð Þ � C1 K; a;Cνð Þ sup
Γ

ν x; zð Þj j, μ1 x; zð Þ � C2 K; a;Cνð Þ sup
Γ

ν x; zð Þj j ð4:47Þ

and the decreasing conditions at infinity:

μðx, zÞ, μ1ðx, zÞ 
 Oð1=jxjÞ as xj j ! 1:
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Proof. The derivative with respect to the direction n is

∂=∂n 1=jMPj þ 1=jMP0jð Þ ¼ cosψ= MPj j2 þ cosψ 0= MP0j j2, ð4:48Þ
where the angles ψ and ψ 0 are formed by the vector n and the directionsMP andMP0,
respectively.

Considering (4.48), we transform the expressions for μ(x, z) and μ1(x, z) and
consider the parameterization of Γ according to condition (b):

μ x; zð Þ ¼
ðð
Γ

ν x1; y1ð Þ cosψ

MPj j2
 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0 x1ð Þ
q

dx1dy1

μ1 x; zð Þ ¼
ðð
Γ

ν x1; y1ð Þ cosψ 0

MPj j2
 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0 x1ð Þ
q

dx1dy1:

ð4:49Þ

With regard to the parameterization of Γ, the vectors MP, MP0, and n have the
following components:

MP ¼ x1 � x; y1 � y; f x1ð Þ � f xð Þð Þ, MP0 ¼ x1 � x; y1 � y; f x1ð Þ þ f xð Þð Þ,

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 xð Þ

p f 0 xð Þ; 0;�1ð Þ,

Therefore, the expressions of (4.49) can be rewritten as

μ x;yð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02 xð Þ

q ð1
�1

ð1
�1

ν x1;y1ð Þ f xð Þ� f x1ð Þ� f 0 xð Þ x� x1ð Þð Þ
MPj j3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02 x1ð Þ

q
dx1dy1,

μ1 x;yð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02 xð Þ

q ðð
Γ

ν x1;y1ð Þ �f x1ð Þ� f xð Þ� f 0 xð Þ x� x1ð Þð Þ
MP0j j3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02 x1ð Þ

q
dx1dy1:

ð4:50Þ
We first prove the assertion of the lemma for the function μ(M ). Let us take some

b > 2a. Consider two cases: (1) the pointM(x, z) is such that |x| > b, and (2) the point
M(x, z) is such that |x| � b.

Then, the function μ(M ) from the expressions of (4.50) is equal to

μ Mð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 xð Þ2

q ð
jx1j>a

ð1
�1

ν x1; y1ð Þ cosψ
MPj j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 x1ð Þ2

q
dx1dy1

2
64

þ
ða
�a

ð1
�1

ν x1; y1ð Þ cosψ
MP0j j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 x1ð Þ2

q
dx1dy1

3
5:
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By the assumptions implied for the function f(x), the first term is zero for jxj > b
and for jx1j > a; hence,

μðMÞj j � νk kC
ð

x1j j�a

ð1
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
x� x1ð Þ2 þ y� y1ð Þ2 dx1dy1

¼ νk kC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
π

ða
�a

dx1
x� x1j j � νk kC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
π ln

xþ a

x� a

��� ���
� νk kC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
π ln

3a
a

����
���� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ K2
p

π ln3 νk kC:

ð4:51Þ

Considering the asymptote of the function lnj(x + a)/(x � a)j as x ! 1, we also
know that for jxj ! 1: μ(M ) ~ O(1/jxj). Thus, the assertion of the lemma for the
function μ(M ) for jxj > b is proven.

For x � b, it suffices to obtain an estimate for the modulus of the function μ(M ).
Considering the representation of an increment in the function with a remainder term
in Lagrangian form, we have

f xð Þ � f x1ð Þ � f 0 xð Þ x� x1ð Þj j � K x� x1ð Þ2: ð4:52Þ
We divide the regions of integration with respect to x1 in the equations of (4.50)

into two parts and consider the inequality (4.52) and the conditions of the lemma,
after which we have

μ x, zð Þj j � 1þ K2
� �

K

2
νk kC

ðb
�b

ðx� x1Þ2
ð1

�1

dy1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x1Þ2 þ ðy� y1Þ2

q 3 dx1þ

ð1þ K2Þ νk kC
ð

x1j j>b

ðþ1

�1

Cνdy1dx1

x1j j x� x1ð Þ2 þ y� y1ð Þ2
h i :

Now, we calculate the elementary integrals and, using the asymptotic behavior of
the function ν(P), substitute the estimate jν(P)j � Cν/jx1j. Then, we consider the
boundedness of a function of the form ln(b � x)/x for all x, including x ! 0, and
obtain the following:

μðMÞj j � 2 1þ K2
� �

Kb νk kC þ Cν νk kCð1þ K2Þπ
ð

jx1j>b

dx1
x1k x� x1j,j

μðx, zÞj j � 2Kð1þ K2Þb νk kC þ Cν νk kC
π

x
ln
bþ x

b� x

� ð1þ K2Þð2Kbþ 3πCν=bÞ νk kC: ð4:53Þ
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Combining (4.51) and (4.53), we obtain the assertion of the lemma with respect to
the function μ(M ):

μ Mð Þ � π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
ln 3þ 1þ K2

� �
2Kbþ 3πCν=bð Þ

h i
νk kC ¼ C1 νk kC:

Now, we are going to prove the lemma for the function μ1(M ). Suppose that x > a.
It follows from the expressions of (4.50) and the conditions on the function f(x) that

μ1ðx,yÞ ¼ ð1þK2Þ
ð

jx1j>a

ð1
�1

2Hνðx1,y1Þ
ððx1 � xÞ2 þ 4H2 þðy1 � yÞ2Þ3=2

dx1dy1þ

þð1þK2Þ
ð

jx1j<a

ð1
�1

νðx1,y1Þ
�
Hþ f ðx1Þ

	
ððx1 � xÞ2 þ

�
Hþ f ðx1Þ

	2
þðy1 � yÞ2Þ3=2

dx1dy1 � 4Hð1þK2Þ νk kC�

ð
jx1j>a

Cνdx1

j x1 j ððx1 � xÞ2 þ 4H2Þþ 2ðHþMf Þð1þK2Þ νk kC
ð

jx1j<a

dx1

ðx1 � xÞ2 þ 4m2
f

:

Calculating the elementary integrals, we obtain the following:

j μ1 x; yð Þ j� 4CνH 1þ K2
� �

νk kC
x2 þ 4H2 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H2 þ a� xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H2 þ aþ xð Þ2

q
a2

þ
0
@

x arctan
aþ x

2H
� arctan

a� x

2H

� 		
þ H þMf

� �
1þ K2
� �

νk kC
mf

arctan
xþ a

2mf
�

�

arctan
x� a

2mf

�
� C Cν;H;mf ;Mf ; a

� �
νk kC:

Analyzing the asymptote of the formula above for |x| ! 1, we can see that
μ1(x, z) ~ O(ln(x)/x2) þ O(1/x2) ~ O(ln(x)/x2).

If x � a, then

μ1 x;yð Þj j � 1þK2
� � ð

jx1j<a

ð1
�1

f x1ð Þþ f xð Þ� f 0 xð Þ x1 � xð Þð Þν x1;y1ð Þ
x1 � xð Þ2 þ f xð Þþ f x1ð Þð Þ2 þ y1 � yð Þ2

� 	3=2 dx1dy1
������� þ

ð
jx1j>a

ð1
�1

ν x1;y1ð Þ Hþ f xð Þð Þ
x1 � xð Þ2 þ f xð Þþ y0ð Þ2 þ y1 � yð Þ2

� 	3=2 dx1dy1
�������� 2 Mf þKa

� �
1þK2
� �

νk kC�

ð
jx1j<a

dx1

x1 � xð Þ2 þ 4mf
2
þ 2 HþMf

� �
1þK2
� �

νk kC
ð

jx1j>a

dx1

x1 � xð Þ2 þ 4mf
2
:
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Integrating with respect to x1, we obtain the following:

μ1 x; zð Þ � π 1þ K2
� �

mf
νk kC �max Mf þ Ka;Mf þ H

� �
:

The lemma is thus proven.
Let us consider an iterative scheme to solve (4.45). We define an initial approx-

imation of the function ν0(M ) satisfying the conditions of the lemma. Each subse-
quent approximation νj þ 1(M ) is calculated using the iterative scheme similar to
(4.36):

νjþ1 Mð Þ ¼ κ

2π

ðð
Γ

νj Pð Þ ∂
∂n

1
j MP j þ

1
j MP0 j

� �
dΓP þ κF0 Mð Þ, j ¼ 0, 1, 2, . . .

ð4:54Þ

Theorem 4.2. Under the abovementioned assumptions (a) through (c) and for
sufficiently small values of jκj, the iterative process in (4.54) converges uniformly
on Γ to the solution of the integral equation (4.45) for any initial ν0(M) satisfying the
conditions of the lemma.

Proof. Let us estimate the uniform norm of the difference between two successive
approximations. It follows from (4.54) that

νjþ1 � νj


 



C
� κj j

2π

ðð
Γ

νj � νj�1

�� �� ∂
∂n

1
j MP j þ

1

j MP
0 j

� �����
����dΓP, j ¼ 0, 1, . . .

ð4:55Þ
Estimating the integrals based on the lemma, we obtain

νjþ1 � νj


 



C
� jκj

2π

�
C1ðK, a,CνÞ þ C2ðK, a,CνÞ

	
νj � νj�1



 


C
:

Hence, it follows that for sufficiently small values of |κ|, the iterative process in
(4.54) converges uniformly on Γ to some function ν(M ) as a geometric progression
with a denominator of

q ¼ κ(C1(K, a,Cν) þ C2(K, a,Cν))/2π.

Considering the limit in (4.54) as j ! 1, the function ν(M ) satisfies the integral
equation (4.45). The transition to the limit under the integral in this case is correct
with the existence of integrals and the uniform convergence of the integrands. The
improper integral with respect to x1 and z1 also converges uniformly by virtue of the
properties of a Newtonian potential with a polar kernel defined on a Lyapunov
surface.
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4.3.2 Solvability of the Integral Equation in the 3D Case

In this section, we justify a numerical method for the purpose of solving the integral
equation to calculate the field in a medium with an immersed 3D relief. Let us
formulate the mathematical formulation of the problem.

The assumptions concerning the geometry of the inhomogeneity are as follows:

(a) Let the Cartesian x–y plane coincide with the surface of the earth, and let axis Oz
be directed inward.

(b) The distribution of the conductivity is piecewise constant: σ(x, y, z)¼ σ2, if z	 f
(x, y) and σ(x, y, z) ¼ σ, if 0 < z < f(x, y) for any point M ¼ {( x, y, z)| z 	 0}.

(c) There exists a parameterization of the internal geoelectric boundary Γ of the
form z ¼ f(x, y) (Fig. 4.10) with the function z ¼ f(x, y).

(d) The surface Γ can be represented as a finite union of the surfaces Γi on which the
cosine of the angle between the normal to the surface and the direction of AM is
constant: Γ ¼ [I

i¼1Γi.

For the 3D geometry of the buried relief, the integral equation has the same form
(4.45), where the function U0 can be obtained from (4.40) or (4.14).

In this case, the problem again reduces to an integral equation similar to (4.45):

ν Mð Þ ¼ κ

2π

ðð
Γ

ν Pð Þ ∂
∂n

1
j MP j þ

1
j MP0 j

� �
dΓP þ κF0 Mð Þ, ð4:56Þ

where the right-hand side is equal to the derivative of the “normal” fieldU0(M ) in the
direction n:

F0 Mð Þ ¼ ∂U0=∂n M2Γ:

Let us formulate the following lemma without proof (Mukanova 2010).

Fig. 4.10 The sounding scheme over a model with buried 3D relief and the model of the medium
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Lemma 4.3. Suppose that the abovementioned conditions (a) through (c) hold and
that the function ν(M) for M ¼ (x, y, z) 2 S is bounded and continuous on S and
satisfies the decreasing condition of the form

ν Mð Þj j � Cν νk kC
r

, for r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> af ,Cν ¼ const:

Then, the functions

μ Mð Þ ¼
ðð
S

ν M1ð Þ ∂
∂n

1
MPj j

� �
dΓP, μ1 Mð Þ ¼

ðð
S

ν M1ð Þ ∂
∂n

1
PM0j j

� �
dΓP

satisfy the following estimates:

μ Mð Þ � C1f K;Cν; að Þ νk kC Γð Þ, μ1 Mð Þ � C2 K;mf ;Mf ;Cν; a
� �

νk kC Γð Þ,

μ Mð Þ ¼ O 1=rð Þ, μ1 Mð Þ ¼ O 1=rð Þ as r ! 1:

The main steps in the proof of the above lemma differ slightly from the proof of
Lemma 4.3 and contain a large number of cumbersome calculations; therefore, we
omit them here.

Based on Lemma 4.3, we can prove the following theorem similar to
Theorem 4.2.

Theorem4.3. Underassumptions (a) through (c) for sufficiently smallκ¼ jσ2�σ1 j /
(σ2 + σ1), the iterative process in (4.54) converges uniformly on Γ to the solution
of the integral equation (4.56) for any initial ν0(M ) satisfying the conditions of
Lemma 4.3.

A distinctive feature of the theorems proven herein is that the desired functions
are not required to belong to L2(Γ). The solution can be obtained in the class of
continuous functions that satisfy the relatively weak conditions of decreasing on
infinity.

We now consider the solvability of the integral equation (4.56) in the class of
continuous and quadratically summable functions in R2. Let the dimensionless
scales of the length, conductivity, and potential be R0, σ1, and I/(σ1R0), respectively.
We formulate the results of this section in dimensionless variables. Without the loss
of generality, we can assume that the center of the Cartesian coordinate system
coincides with the point A (i.e., with the position of the point source).

Let us prove the following lemma.

Lemma 4.4. LetU0¼�1/(2πjAMj) be a solution corresponding to a homogeneous
medium with a conductivity σ1 ¼ 1. We introduce the notation F0(M ) ¼ ∂U0/∂n,
M 2 Γ. Then, the function defined as
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F1 Mð Þ ¼ κ

2π

ðð
Γ

F0 Pð Þ ∂
∂n

1
MPj j þ

1
MP0j j

� �
dΓP þ κF0 Mð Þ, M2Γ ð4:57Þ

is continuous and quadratically summable on the surface Γ.

Proof. First, we prove that the function F0(M ) is bounded, continuous, and quadrat-
ically summable on R2, after which we prove the lemma.

The normal to the surface and the vector AM in the parameterization defined by
condition (b) are given by the following formulae:

n ¼ f x; f y;�1
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2x þ f 2y

q
,

AM ¼ x; y; f x; yð Þf g:
For RM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> 2af , the function F0(M ) ¼ ∂U0/∂n is written as follows:

F0 Mð Þ ¼ z

AMj j3 ¼
f x; yð Þ
AMj j3 , x2 þ y2 > 2af : ð4:58Þ

Then, under assumptions (a) through (c) of this subsection, the following esti-
mates hold:

F0 Mð Þj j � Mf

AMj j3 �
Mf

x2 þ y2 þ m2
f

� 	3=2 � Mf

R3 , R ¼ x2 þ y2: ð4:59Þ

On the other hand, this function is bounded inside the circle of radius 2af:

F0 Mð Þj j ¼ f x x; yð Þxþ f y x; yð Þy� f x; yð Þ�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ f 2 x; yð Þ

q 3 � K x2 þ y2ð Þ
x2 þ y2 þ m2

f

� 	3=2
� Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ m2
f

q � K

mf
: ð4:60Þ

The estimates (4.59) and (4.60) guarantee the boundedness of the function F0(M )
and the summability of the improper integral of F0

2(M ), that is, F0(M ) 2 L2(Γ).
Suppose now that the function F(M ) is continuous, bounded on Γ, and satisfies

the estimate

F Mð Þj j � CF

R1þγ , R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, γ > 0: ð4:61Þ

Let us study the asymptotic behavior of the operator of the integral equation
applied to the function F(M ) as R ! 1:
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Q Mð Þ ¼
ðð
Γ

F Pð Þ ∂
∂n

1
MPj j þ

1
MP0j j

� �
dΓP ¼

ðð
Γ

F Pð Þ~K M;Pð ÞdΓP,

~K M;Pð Þ≜ ∂
∂n

1
MPj j þ

1
MP0j j

� �
, M ¼ xM ; yMð Þ2R2:

ð4:62Þ

Let M be such a point that R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2M þ y2M

q
> 2af . We consider the parameteri-

zation of Γ with respect to the variables x and y in the expression (4.62) and split the
integral (4.62) into two terms: the integral over the interior of a circle of radius R/2
with the center at the point M and the integral over the outer part of the circle:

Q Mð Þ ¼
ðð
KR=2

F Pð Þ~K M;Pð ÞJ Pð Þdx0dy0 þ
ðð

R2=KR=2

F Pð Þ~K M;Pð ÞJ Pð Þdx0dy0

� I1 þ I2: ð4:63Þ
Here, P ¼ (x, y) and J(P) is the Jacobian of the transformation to the surface

parameterization with respect to the coordinates (x, y).
We estimate each term in the integral equation (4.63) separately. By virtue of

condition (c), the Jacobian can be estimated as

J Pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2x þ f 2y

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2K2

p
:

Since the pointM is located at a distance R from the origin, the points on the circle
KR/2, whose center is at the pointM, are placed at a distance of no less than R/2 from
the origin. Therefore, considering the asymptotic behavior of the function F(M ), we
can write the following:

I1 � C K;CFð Þ
ðð
KR=2

~K M;Pð Þ�� �� dxdy

AMj j1þγ �
C1 K;CFð Þ

Rð Þ1þγ

ðð
KR=2

~K M;Pð Þ�� ��dxdy: ð4:64Þ

We now consider the polar coordinates in the last integral with a center at the
point M. According to the surface properties, the integral in a neighborhood with a
radius equal to the Lyapunov sphere radius d does not depend on the choice of points
P and M on the surface, and the integral is bounded by some constant C2(d )
depending only on d. We exclude this neighborhood from the circle KR/2 and
estimate the integral of the kernel:

ðð
KR=2

cosψPMj j
PMj j2 dΓ Mð Þ ¼ Id þ

ð2π
0

ðR=2
d

1
ρ2

ρdρdφ ¼ 2π ln R=2ð Þ � ln dð Þ þ C2 dð Þ:

ð4:65Þ
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ðð
KR=2

cosψPMj j
MP0j j2 dΓ Mð Þ �

ð2π
0

ðR=2
d

1

ρ2 þ 4m2
f

� 	ρdρdφþ
ð2π
0

ðd
0

1

ρ2 þ 4m2
f

� 	ρdρdφ �

ð2π
0

ðR=2
d

1
ρ2
ρdρdφþ

ð2π
0

ðd
0

1

m2
f

ρdρdφ � 2π ln R=2ð Þ � ln dð Þ þ C3 d;mf

� �
:

From the inequalities above and from (4.64) we obtain the following for some
exponent η < γ:

I1 � С1 K;CFð Þ
R1þγ 4π ln R=2ð Þ � ln dð Þ þ С2 dð Þ þ С3

�
d;mf

�� �
� C4 K;CF; dð Þ

R1þη ð4:66Þ

In the case of the function F(M ) ¼ F0(M ), we have γ ¼ 2, and then

I1 � C2 K;CF; dð Þ
R2þη1

, 0 < η1 < 1:

Here, we have considered that the logarithm increases slower than any power,
that is,

lim
R!1

lnR
Rη ¼ 0, for 8η > 0:

Now, we can estimate the second term in (4.64). Note that the kernel of the
equation satisfies the following inequality for |MP| > R/2:

~K M;Pð Þ�� �� � 1

MPj j2 þ
1

MP0j j2 �
4

R2 þ
1

MPj j2 þ PP0j j2 �
8

R2 : ð4:67Þ

Then, for the integral I2, the following estimate holds:

I2 � 8

R2

ð2π
0

ð1
R=2

F0 Pð Þj jJ Pð Þdρdφ � 8

R2

ðð
R2=KR=2

F0 Pð Þj jdΓP: ð4:68Þ

The function F0(P) has the form ∂
∂n � 1

2πjAPj
� 	

, where the normal n to the surface Γ
is computed at the point P. Therefore, the estimate (4.68) can be computed as
follows:
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I2 � 8

R2

ðð
R2=KR=2

F0 Pð Þj jdΓP ¼ 4

πR2

ðð
R2=KR=2

cosψPAj j
APj j2 dΓP: ð4:69Þ

Here, cosψPA is the cosine of the angle between the normal to the surface Γ at the
point P and the direction PA. Let us represent the integral in (4.69) as the sum of
integrals over the surfaces Γi where the cosine signs are constant. Then, according to
condition (d), we can estimate each term separately. Then, from Proposition 2.1 (see
Chap. 2), we know that (4.69) is estimated using the sum of the solid angles, under
which each part Гi of the surface Γ is visible from point A (i.е., the integral is
bounded). Therefore, the following estimate holds:

I2 � С5

R2 ,

where some constant C5 depends on the surface Γ.
Estimates (4.66) and (4.69) show that the asymptotic behavior of the function Q

(P) at infinity for the integral operator (4.62) is of the order R�(2 þ η), η > 0. This
means that the functions of the form (4.57) are quadratically summable on the
surface Γ. Since the function F0(M ) satisfies (4.61), the lemma is proven.

Let ν(P) be a solution of (4.56). We substitute the expression of ν(P) from (4.56)
instead of ν(M ) and obtain

ν Mð Þ ¼ κ

2π

ðð
Γ

K M;Pð Þ κ

2π

ðð
Γ

ν Qð ÞK�P;Q�dΓQ þ κF0 Pð Þ
0
@

1
AdΓP þ κF0 Mð Þ:

According to the lemma, the integral of the second term exists, and it can be
estimated via the Hölder inequality. Changing the order of integration in the first
term (the order of integration can be changed by virtue of the existence and uniform
convergence of the improper integrals according to (4.67)), we obtain the following:

ν Mð Þ ¼ κ

2π

� 	2 ðð
Γ

ðð
Γ

ν Qð ÞK M;Pð ÞK P;Qð ÞdΓQdΓP þ κ2

2π

ðð
Γ

K M;Pð ÞF0 Pð ÞdΓP þ κF0 Mð Þ

¼ κ2

4π2

ðð
Γ

ν Qð Þ
ðð
Γ

K M;Pð ÞK�P;Q�dΓP

0
@

1
AdΓQ þ κ

κ

2π

ðð
Γ

K M;Pð ÞF0 Pð ÞdΓP þF0 Mð Þ
0
@

1
A:

Introducing the iterated second-order kernel

K2ðM,QÞ ¼
ðð
Γ

KðM,PÞKðP,QÞdΓP, ð4:70Þ

we find that any solution of (4.56) is a solution of the integral equation
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ν Mð Þ ¼ κ

2π

ðð
Γ

ν Pð ÞK2 M;Pð ÞdΓP þ κF1 Mð Þ, ð4:71Þ

where the term F1(M ) has the form of (4.57):

F1 Mð Þ ¼ κ

2π

ðð
Γ

K M;Pð ÞF0 Pð ÞdΓP þ F0 Mð Þ:

However, if the solution of (4.71) exists, and if we apply the transformations in
the inverse order, we see that each solution of (4.71) is also a solution of (4.56).
Therefore, (4.71) and (4.56) are equivalent.

Theorem 4.4. The operator of the integral equation is compact in L2(Γ), and there
exists a unique solution of (4.71) for sufficiently small reflection coefficients κ.

As follows from Lemma 4.4, the function F1(M ) is quadratically summable; thus,
(4.71) makes sense. However, as shown in the proof of Lemma 4.4 according to
(4.67), the kernel

K M;Pð Þ ¼ ∂
∂n

1
j MP j þ

1
j MP0 j

� �

at infinity has a decreasing order of R�2, which guarantees the quadratic summa-
bility of this function with respect to each of the variables on Γ. Then, the iterated
kernel is also quadratically summable on the direct product Γ� Γ and, in accordance
with Remark 2.1 (see Chap. 2), the singularity in the kernel vanishes (i.e., it becomes
continuous and bounded).

The proof of the compactness of the operator A of the integral equation almost
coincides with the proof of the compactness of the theorems by Petrovskii (1965).
Without completely providing the proof from Petrovskii (1965), we outline only the
basic steps of the proof:

1. Consider the set S of continuous functions uniformly bounded in the norm of
L2(Γ).

2. Taking Hölder’s inequality into account, show that the image AS of this set is
uniformly bounded. Then, according to Lemma 4.4, the functions AS have the
same order of decrease at infinity as L2(Γ).

3. Using an explicit expression for the kernel of the operator A similar to that used
by Petrovskii (1965) and for the decrease of the functions at infinity, show that the
image of S is a compact set in the space of continuous functions (i.e., it is
uniformly bounded and equicontinuous).

4. According to Arzela’s theorem, a uniformly convergent subsequence can be
chosen from this set. By the nature of the decrease of this subsequence at infinity
and the estimate of the norm in L2(Γ) via the norm of C(Γ), show that this
sequence also converges in L2(Γ). This completes the proof of the compactness
of the operator of the equation.
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Then, according to Remark 2.2, Theorems 2.1 through 2.3 hold (see Chap. 2,
Sect. 2.2). This means that there exists a unique solution of (4.71) for sufficiently
small values of κ. Thus, instead of (4.56), we can consider and solve (4.71), for
which the above Fredholm theorems for equations of the second kind with a compact
operator are valid.

4.3.3 Numerical Examples

In this subsection, we give two examples of the numerical solution of the ERT
problem for a two-layer medium containing buried relief. We show examples of
anomalies that arise in a numerical solution related to the buried relief. Preliminary
test calculations for each case were performed to confirm that the result does not
change for further grid refinement. The calculation algorithm was tested, comparing
the results of calculations with known solutions for a two-layered medium as
described in Chap. 5 (Sect. 5.2.2).

Here, we consider an example of the simplest forms of a buried relief, such as a
shaft (Fig. 4.11).

The triangulation is constructed based on the algorithm described in detail in
Chap. 5 (Sect. 5.1.2). Figure 4.11b shows the grid placed on the calculation area in
Cartesian coordinates. The constructed triangulation allows us to approximate an
unknown function using standard 2D linear finite elements. Then, the integral
equation (4.45) is solved numerically based on an iterative procedure (4.54). The
medium parameters are taken as follows: for the first example, ρ1 ¼ 10 and
ρ2 ¼ 1 Ohm m; for the second example, ρ1 ¼ 10 and ρ2 ¼ 100 Ohm m. The
shape of the buried relief is given by the following formula:

Fig. 4.11 (a) Cross-section of the buried relief and (b) triangulation of the computational domain
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z ¼
d cos 2π x� x0ð Þ þ 1:2ð Þ

2:2d, x � x0f g [ x 	 1þ x0f g

(
:

Here the parameter d is determined through maximum inclination angle β of the
relief. For instance, in the presented examples we use the inclination angle β ¼ π/3.
Then the corresponding parameters are the following: AB ¼ 235 m, MN ¼ 5 m, and
d ¼ 21.6 m.

Figure 4.12a, b show distributions of the ν(M ) function over the relief surface
shown in Fig. 4.11b. In Fig. 4.13a, b, apparent resistivity curves obtained numeri-
cally are shown in log–log scales. The curves are depicted for successive positions of
the AMN installation, moving from left to right.

The upper parts of Fig. 4.13a, b show apparent resistivity curves. The
corresponding relief shapes are depicted in the bottom of each picture. It is seen
from Fig. 4.13 that the presence of the buried relief causes perturbation in the

Fig. 4.13 Shape of the surface relief and the apparent resistivity curves in logarithmic scales for (a)
medium with a low resistivity basis (ρ1 ¼ 10 and ρ2 ¼ 1 Ohm m) and (b) medium with a higher
resistivity basis (ρ1 ¼ 10 and ρ2 ¼ 100 Ohm m)

Fig. 4.12 Densities of secondary sources on the buried relief surface: (a) ρ1¼ 10 and ρ2¼ 1Ohmm;
(b) ρ1 ¼ 10 and ρ2 ¼ 100 Ohm m
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double-layer resistivity curves. Simulations show that the amplitude of these distor-
tions practically remains unchanged on a logarithmic scale for different positions of
current electrode.
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Chapter 5
The Boundary Element Method
in the Sounding of Media with Ground
Surface Relief

5.1 The BEM for a Homogeneous Medium
with Surface Relief

In electric tomography, the current source produces an electric field that depends on
the array geometry, geoelectric section, and the relief of the land surface. The
influence of relief is expressed via anomalies in the distribution of the electric
field, which can sometimes be incorrectly interpreted. In Chap. 4, in the case of a
ground–air interface with a flat boundary, we applied a reflection method to derive
the integral equation.

We start with the mathematical model of electrical resistivity tomography (ERT)
above a homogeneous medium with ground surface relief to both identify the
influence of relief on distortions of the field and obtain the apparent resistivity
curves.

In the case of ground surface relief, we cannot apply a reflection method;
however, as shown in Sect. 5.1 and 5.2, the resulting mathematical model can be
formulated as either an integral equation or a system of integral equations. The
authors of this monograph derived this integral equation for the first time
(Mirgalikyzy et al. 2015). Some results of Sect. 5.1 have also been published
(Mirgalikyzy et al. 2015); namely, Mirgalikyzy et al. (2015) considered the mathe-
matical model with one source electrode, and performed numerical simulations on a
regular rectangular mesh in cylindrical coordinates. The numerical results described
here are obtained in an alternative way using the boundary element method (BEM)
on a triangular mesh. The content of Sect. 5.2 is based on our collaborative work
with the co-authors (Mukanova et al. 2017). Some of the numerical experiments
were conducted by our former Ph.D. student T. Mirgalikyzy, and several simulations
to choose acceptable mesh parameters through the use of parallelization technologies
were conducted by our former bachelor student M. Tussupova. The material in
Sect. 5.3 is new and published here for the first time.
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B. Mukanova, I. Modin, The Boundary Element Method in Geophysical Survey,
Innovation and Discovery in Russian Science and Engineering,
https://doi.org/10.1007/978-3-319-72908-4_5

115



5.1.1 Mathematical Basics for 2D Relief

In this section, we derive the integral equation and then analyze the solvability of that
equation. We make several assumptions regarding the geometry of the ground
surface, as follows:

1. Assume that the studied medium occupies a part Ω of a space with some infinite
smooth surface Γ. In this section, first we consider relief with 2D geometry.

2. Let the ground surface be formed by a cylindrical surface with generatrices
parallel to axis Oy in Cartesian coordinates. In other words, the medium crossed
by the planes y ¼ const remains invariable for all y. For convenience, we
formulate conditions in the Cartesian system of coordinates Oxyz. Let the Oz
axis be directed inside the medium, towards an increase in depth, the Ox axis be
directed to the right, and theOy axis be such that the system of coordinates is right
(Fig. 5.1). Let the specific conductivity of the medium be equal to σ. Assume that
the surface Γ satisfies Lyapunov’s conditions (see Chap. 2, Sect. 2.1).

In addition to the conditions listed above, we impose some additional geometrical
restrictions on the considered surfaces:

3. Let the current source be located at point A of the surface Γ; in the neighborhood
of A, there is a strip of width 2a > 0 whose surface is flat.

4. Assume that out of some strip of width L, the boundary of the medium turns into
two half-planes. We choose the system of coordinates so that one of the two half-
planes lies on the coordinate plane z¼ 0. Let there exist the parametrization of the
surface Γ of the form

Γ ¼ x; y; zð Þj �1 < y < 1; z ¼ Z xð Þ ¼
f xð Þ, x2 0; L½ �,

0, x < 0:

kxþ b, x > L:

8><
>:

9>=
>;

8><
>:

9>=
>; ð5:1Þ

O

2a

x

W

A
n

L

Fig. 5.1 Structure of a 2D model of a medium with a relief surface. See text for a description of the
symbols used
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The Z(x) function defines a form of the relief in Cartesian coordinates. It is easy to
see that external normal vectors to the surface are defined by the following formulae:

n ¼
f 0 xð Þ; 0;�1ð Þ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 xð Þ2

q
, x2 0; L½ �,

0; 0;�1ð Þ, x < 0:

k; 0;�1ð Þ
. ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

, x > L:

8>>><
>>>:

ð5:2Þ

The direction of a normal in (5.2) is defined in such a way that it is directed out of
the medium; then, the medium is located in the region z > Z(x, y).

5. The f(x) function is uniformly limited together with its first derivative, so that
f Mð Þk kC1 < 1, M2R2.

6. Let Hölder’s indicator for the normal vector in Lyapunov conditions be α > 0 for
the surface Г.

7. Let the parts of a surface Γi, i ¼ 1,..., N that are visible from any point P overlap
each other a finite number of times; consequently the cosine of the angle under
which pointsM of the surface Γ are visible from a point P changes the sign a finite
number of times along Γ.

We consider the problem of the definition of an electric field in the domain Ω
occupied by a medium of constant conductivity σ. The external current source is a
current electrode placed on the ground surface. We transfer the source into the
boundary condition; then, inside the domain Ω, we have Laplace’s equation for
the potential of the field. Thus, we are in the framework of the model (4.39) that is
written for domain Ω as follows:

ΔU ¼ 0, x; y; zð Þ2Ω,

∂U
∂n

����
Γ
¼ I

σR2
0

δ r� OAð Þ, Γ ¼ ∂Ω

U 1ð Þ ¼ 0:

ð5:3Þ

Here, A denotes the position of the source electrode, the point O designates the
origin of a Cartesian coordinate system, and R0 designates the length scale. We
reduce the computation problem of the field potential to an integral equation. First,
we present the solution of the problem (5.3) at an arbitrary point P in the form of the
sum of the potentials of a pointwise source in a uniform half-space and the unknown
potential of secondary sources. We pass to the dimensionless variables using R0 as
the scale of length and the relation I/(R0σ) as the scale of potential:

U Pð Þ ¼ U0 Pð Þ þ I

R0σ
u Pð Þ ¼ I

R0σ
� 1
2π j AP j þ u Pð Þ

� �
:

Substituting the function U(P) in (5.3), we see that the u(P) function for P2Ω
satisfies the following boundary value problem:
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Δu Mð Þ ¼ 0, M2Ω
∂u
∂n

����
Γ
¼ ∂

∂n
1

2π j AP j
����
Γ
þ δ r� OAð Þ

u 1ð Þ ¼ 0

8>>><
>>>:

: ð5:4Þ

We look for the function u(P) in the form of a simple layer potential with a density
μ(M ) on the surface of the medium:

uðMÞ ¼
ðð
Γ

μðPÞ
j MP j dΓP: ð5:5Þ

Representation (5.5) describes the polarization of a surface of the medium caused
by a deviation of Γ from a plane surface. The capacity of the field induced on a
surface by charges μ(M ) compensates the external field of a pointwise source in such
a way that the total current through the surface is equal to zero (except at point A).

The function expressed by (5.5) satisfies Laplace’s equation out of the boundary
surface Γ (see Chap. 2). At the surface, we state the boundary condition that ensures
the following physical requirement: the current flowing into the medium through the
surface at all points of the medium, excluding point A, must be equal to zero.

The current flowing into the medium is expressed in terms of the normal
derivative of the potential from the inner side of the medium. According to the
properties of the potential of a simple layer, the normal derivative of the potential has
a discontinuity on surface Γ. According to (2.5), its value on the inner side of the
surface is expressed as

∂u
∂n

� �
�
Mð Þ ¼ 2πμ Mð Þ þ

ðð
Γ

μ Pð Þ ∂
∂n

1
j MP j
� �

dΓP

¼ 2πμ Mð Þ þ
ðð
Γ

μ Pð Þ cosψMP

MPj j2 dΓP:
ð5:6Þ

Here, the angle ψMP is an angle between MP and the direction of normal at point
M. Expression (5.6) allows one to derive an integral equation on the unknown
function μ(M ). Substituting (5.6) into the boundary condition (5.4), we have

2πμ Mð Þ þ
ðð
Γ

μ Pð Þ cosψMP

MPj j2 dΓP ¼ ∂
∂n

1
2π j AM j
� �����

Γ
þ δ r� OAð Þ

or

μ Mð Þ ¼ � 1
2π

ðð
Γ

μ Pð Þ cosψMP

MPj j2 dΓP þ F0 Mð Þ, ð5:7Þ
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where the function F0(M ) is defined by the expression

F0 Mð Þ ¼ 1
2π

∂
∂n

1
2π j MA j
� �����

Γ
þ δ r� OAð Þ

� �
: ð5:8Þ

Consider the function (5.8). We notice that according to assumption (4) about a
relief form, part of surface Г is flat in the neighborhood of source point A; therefore,
the following function vanishes:

∂
∂n

1
2π j MA j
� �

jΓ ¼ cosψMA

2πjMAj2 ¼ 0, j x� xA j< a, M ¼ ðx, y, zÞ2Γ∖fAg:

The reason for this is that the direction of normal on this flat part of a surface is
orthogonal to theMA direction; therefore, in all points of that part of Γ, cosψMA ¼ 0.
However, the potential 1/(2π|AM|) at the point A exactly compensates the source
created by the potential of U0(M ) ¼ �1/(2π|AM|). Therefore, if there is a flat area in
the neighborhood of the source and the function U0(M )¼�1/(2π|AM|) is considered
the normal field, then the right side in the equation for the anomalous field u(M ) in
this neighborhood vanishes. Let us show that the function F0(M ) remains bounded
outside of this area. Calculating the normal derivative of the function U0(P) and
considering the surface equation and formula (5.2), we obtain

j F0 Mð Þ j¼ 1
4π2

j zA j
MAj j3 , x < 0

j f 0 xð Þx� zþ zA j
MAj j3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02 xð Þ

q , 0 � x � L

j �bþ zA j
MAj j3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p , x > L

:

8>>>>>>>>><
>>>>>>>>>:

Here, zA is the z coordinate of the current source. As noted above, at the vicinity of
point A and within its definition area, that function is bounded. Let us examine its
behavior outside a circle of radius R. At sufficiently large R such that |AM| > R for
any point M(x,y,z), we have

j F0 Mð Þ j� C zA; b; kð Þ
R3 , for x =2 0; L½ �

j F0 Mð Þ j� j f 0 xð Þx� zþ zA j
4π2R3 � C j x j þ j z j þ j zA j

4π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z� zAð Þ2

q 3 �

Const
j x jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 3 , for 0 � x � L:

To determine whether that function is quadratically summable in R2, it is neces-
sary to show that the integral
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I ¼
ðð
KR

x2dΓ
x2 þ y2ð Þ3 ð5:9Þ

taken over an external part of some circle of radius R is limited. Passing to
parametrization (x, y) in the integral and using a uniform estimate of the Jacobian
J x; yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z

02 xð Þ
p

, we estimate integral (5.9) as follows:

I ¼
ðð
KR

x2dΓ
ðx2 þ y2Þ3 ¼

ðð
KR

Jðx, yÞ x2dxdy

ðx2 þ y2Þ3 :

Furthermore, we pass to polar coordinates in the planes (x, y) and have

I � C

ð2π
0

ð1
R

r2 cos 2φrdrdφ
r6

¼ C

ð2π
0

ð1
R

cos 2φdrdφ
r3

¼ Cπ

2R2 ! 0, as R ! 1:

We note that, by virtue of the obtained estimates, the decrease of the function
F0(M ) at infinity is of the order �R�2.

Remark. It can be proven that if surface Γ has continuous curvature, then function
F0(M ) remains smooth and limited on Γ, even if the vicinity of source A is not flat.

Now, let us show that the function

F1 Mð Þ ¼ 1
2π

ðð
Γ

F0 Pð Þ cosψMP

MPj j2 dΓP þ F0 Mð Þ, M2Γ ð5:10Þ

is also quadratically summable in R2. Let us study the behavior of the first term in
(5.10), namely, the function

F2 Mð Þ ¼ 1
2π

ðð
Γ

F0 Pð Þ cosψMP

MPj j2 dΓP, M2Γ: ð5:11Þ

As point P tends to point M, kernel K(P, M ) of integral (5.11) has an integrable
singularity of order |PM|�1 and function F0(M ) is bounded; therefore, for the
existence of the integral, the order of decrease of the integrands in (5.11) at infinity
is important. Let point M be located outside a circle of sufficiently large radius
R > 2L. As shown above, function F0(M ) is bounded by some constant CF, is
quadratically summable and has the following order of decreasing at infinity:

F0 Pð Þ � C1

r2
, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
:

We show first that integral (5.11) exists for each point ofM lying on Γ. Pass in the
integral (5.11) to parametrization of a surface on variables (x, y) and then represent
the integral as a sum of two items: an integral over the circle of radius R/2 with the
center at point M and over the external part of that circle:
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F2 Mð Þ ¼ 1
2π

ðð
КR=2

F0 Pð Þ cosψMP

MPj j2 J Pð Þdxdyþ 1
2π

ðð
R2\КR=2

F0 Pð Þ cosψMP

MPj j2 J Pð Þdxdy

� I1 þ I2:

Here, P¼ (x, y) and J(P) is the Jacobian of the transition to coordinates (x, y). The
Jacobian is estimated from the above by some constant.

Because point M is placed at distance R from the origin, then for points of the
circle KR/2, the center of which is at pointM, the distance to the origin is not less than
R/2. Then, taking into account an asymptotic of function F0(M ), we have

I1 � C2

ðð
KR=2

j cosψMP j
MPj j2

dxdy

AMj j2 �
C3

R2

ðð
KR=2

j cosψMP j
MPj j2 dxdy: ð5:12Þ

The last integral is estimated in a similar manner to inequality (4.65) as the sum of
the integral over a circle inside Lyapunov’s sphere of radius d and the integral
outside it:

ðð
KR=2

j cosψMP j
PMj j2 dxdy ¼ Id þ

ð2π
0

ðR=2
d

1
ρ2

ρdρdφ ¼ 2π ln R=2ð Þ � ln dð Þ þ C4 dð Þ:

ð5:13Þ
Substituting (5.13) in inequality (5.12) and considering that the logarithm

increases more slowly than any power function, we have

I1 � C4

R1þη , 0 < η < 1: ð5:14Þ

Estimates for an external part of the circle of KR/2 literally repeat the proof of the
inequalities (4.68) and (4.69) and have the form

I2 � С5

R1þα :

The last estimate guarantees that function F1(M ) has an asymptotic on infinity of
the order of R�(1 þ min(α,η)) and that it is quadratically summable on Γ. Therefore, the
integral equation with the second-order iterated kernel with the right-hand side of
(5.10) makes sense. Applying Fredholm’s theory in the same manner as in Chap. 4
(Sect. 4.3), Eq. (5.6) is reduced to the equation with the iterated kernel, similar to
(4.71):
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μðMÞ ¼ 1
4π2

ðð
Γ

μðPÞK2ðM,PÞdΓP þ F1ðMÞ, ð5:15Þ

where kernel K2(M, P) is defined by the formula

K2ðM,PÞ ¼
ðð
Γ

cosψMQ

jMQj2
cosψQP

jQPj2 dΓQ:

The above estimates for functions F0(P) and F1(P) allow us to organize the
standard iterative procedure for (5.15), taking function F1(M ) as an initial guess.
However, for a numerical solution of the problem, it is possible to use the following
iterative scheme:

μmþ1ðMÞ ¼ � 1
2π

ðð
Γ

μmðPÞ
∂
∂n

1
rMP

dΓðPÞ þ F0ðMÞ, m ¼ 0, 1, 2, . . . ð5:16Þ

Remarks for the case of 3D buried relief. In the case of a 3D relief, we impose the
requirements on surface geometry as in conditions (a), (c), and (d) in Chap. 4 (Sect.
4.3). Additionally, we assume only that the relief satisfies the condition that, in a
neighborhood of source A, there is a circle of radius a on which surface Γ is planar.

The derivation of the integral equation in this case does not differ from the above.
All the statements concerning application of the Fredholm theory to the equation
with an iterated kernel remain valid. The proof of existence of improper integrals of a
type of F1(M ) of the previous section literally repeats the proof given in Chap. 4
(Sect. 4.3). The only additional requirement applied to function F0(M ) is the
condition of the existence of the small flat vicinity of the source.

5.1.2 Application of the BEM to Solve the Integral Equation

For the numerical solution of the integral equation, we must first construct a mesh on
the computational domain. The ultimate goal of solving a direct problem is to
compute the apparent resistivity curves. To calculate these curves, we must keep
in mind the following:

(a) The distribution of the sought-after function μ(M ) near the measuring line has
the most influence on the potential distribution near the measuring line.

(b) The grid should be condensed near the source electrode.
(c) In numerical simulation, we must consider that in the ERT method, the elec-

trodes are at equal distances and can change their roles; therefore, the mesh must
be adapted to the location of the electrodes and condensed in the vicinity of any
of them.

(d) The grid must be adapted to the shape of the ground surface.
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To meet all the above requirements, we perform a triangulation of the computa-
tional domain, condensing to the measuring line and logarithmically expanding
away from it. First, curvilinear coordinates (q, y) are introduced on the surface of
the medium in such a way that coordinate q is measured along the line of the
intersection of surface Γ with plane y ¼ const. The transformation from (x, y)
coordinates to (q, y) coordinates is conducted using the following formulae:

dq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dz2

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Z02 xð Þp
dx,

dx

dq
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Z02 xð Þp , x 0ð Þ ¼ 0:
ð5:17Þ

The computational domain is taken in the form of an oval, and the triangulation of
the surface is made in the plane of variables (q, y). The size of the computational area
is defined by the axis length Lq ¼ AB, which corresponds to the length of the
measuring line of ERT installation; the height of the computing area along the axis
Oy is taken as equal to the radius of the oval curving Rq (Fig. 5.2). The total width of
the estimated area with respect to the variable q is Lq þ 2Rq. Because of the
symmetry of the problem with respect to the Oy axis, only triangles of the upper
half of that oval are used. A typical example of a computational domain and a
triangulation is depicted in Fig. 5.2. Calculation of the Cartesian coordinates of the
triangles is conducted via the numerical solution of the ordinary differential equation
(ODE) (5.17) using the fourth-order Runge–Kutta method.

It is convenient to calculate all functions in dimensionless quantities. In all the
numerical examples described below, we use one-half of the length of measuring
line AB as a scale of length. Therefore, in the given examples of triangulation, the
length of that line is equal to Lq ¼ 2. The triangulation is performed layer by layer,
constructing concentric layers of triangles. Each layer of triangles has a height that is
greater than that of the previous layer. The number of layers of triangles N is

Fig. 5.2 Parameters of the computational domain and a typical triangulation mapped on the plane;
Rq radius of the oval curving, Lq axis length
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determined so that the thicknesses of the layers form a uniform grid in a logarithmic
scale with the step hs ¼ log (1 þ Rqα)/N. Here, α is a parameter of the non-
uniformity of the grid. The larger α is, the greater the difference in the sizes of the
smallest and largest triangles.

For modeling calculations when the form of a relief can be set analytically, it is
convenient to set the computing area Lq, Rq, the parameter of non-uniformity α, and
the number of layers of triangles N. These sizes determine a logarithmic step hs along
the radius, the height of the first layer r1 ¼ h1 ¼ (exp(hs) � 1)/α, and a grid step on
the measuring line hq ¼ 2=

ffiffiffi
3

p
h1.

For calculations for a real relief in the field, it is possible to control the density of
the grid via two parameters: the number of electrodes K on the measuring line and
the number of grid nodes Ntr between two consecutive electrodes. In this case, the
triangulation is constructed in such a way that when the number of electrodes is
given on the segment Lq, an integer number of triangles is located between two
electrodes M and N. As a result, all the electrodes are placed at the vertices of
triangles. In this way, the smallest step of a grid hq¼ Lq/Ntr/K is defined. It is equal to
the edge of the smallest triangle. The sizes of the triangles increase in the following
manner as we move away from the axis Lq: the logarithmic step of hs is selected from
the condition that the triangles on the first layer are equilateral; that is, their height is
h1 ¼ hq

ffiffiffi
3

p
=2 or r1 ¼ h1 ¼ (exp(hs) � 1)/α. From here, hs ¼ log (αh1 þ 1) and the

number of layers N of triangles is specified from the condition N¼ log (1þ Rqα)/hs.
In this way, the height of the i-th layer of triangles is defined as ri¼ (exp(ihs)� 1)/α.

The grid represented in Fig. 5.2 is constructed for the parameters Lq ¼ 2, Rq ¼
1, N ¼ 20, and α ¼ 4.0; the triangulation consists of 1464 nodes and 2803 triangles.

The constructed triangulation allows us to approximate an unknown function
using standard 2D linear finite elements. Figure 5.3 shows the same grid as in
Fig. 5.2, but placed on the calculation area in Cartesian coordinates.

To reduce the equation to a SLAE, the integral in (5.7) is approximated via the
sum of integrals over triangles:

Fig. 5.3 Triangulation of the relief surface in Cartesian coordinates
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ðð
Γ

μ Pð Þ cosψMP

MPj j2 dΓP �
XNΔ

l¼1

ðð
Δl

μ Pð Þ cosψMP

MPj j2 dΓP

Because the integration formula over a triangle is approximately equal to the
prism volume based on this triangle, the integral is approximately equal to the
following sum:ðð
Δl

μ Pð ÞK M;Pð ÞdΓP � 1
3

μ Pið ÞK M;Pið Þ þ μ Pj

� �
K M;Pj

� �þ μ Pkð ÞK M;Pkð Þ� �
Sl:

Here, Pi, Pj, and Pk are the vertices of the triangle, and Sl is its area.
Then, Eq. (5.7) is written in a discrete form as follows:

μi ¼
XNn

j¼1

Aijμj þ F ið Þ
0 , i ¼ 1,Nn , ð5:18Þ

where Nn is the number of nodes of a triangulation. Here, coefficients Aij are formed
by the sum on triangles having a common vertex at point Pj:

Aij ¼ 1
3

X
lj

K Mi;Pj

� �
Slj :

The system of equations in (5.18) can be solved by either iterative or direct
methods. Our numerical experiments using compilers of Intel for the Fortran lan-
guage show that the iterative method is several times faster because the iterative
method allows use of embedded functions for operations with matrixes. In addition,
our former student M. Tussupova found that, in the case of parallelization using
OpenMP technology, it is possible to achieve an acceleration of the iterative process
that is larger than the number of threads when working in parallel mode. For
instance, using parallel operation on four threads, one would expect a fourfold
acceleration, but the iterative process was accelerated nearly fivefold under these
conditions. We explained this surprising circumstance by the fact that, in the parallel
operation of threads, each thread can use the results of the new iterations that have
been executed by other threads (i.e., any thread working on the mth iteration can take
the results of the next iteration performed by another thread); this is impossible in the
standard iterative procedure performed by a sequential program. Iterations were
executed before achievement of a machine accuracy for variables with the accuracy
of real (“float”) data types. Compared with a double-precision data type, we could
reduce the volume of the random-access memory occupied by data by about 50%.
Calculations show that the application of a double-precision variables data type has
no practical influence on the results of the computation.

The goal of our calculations is computation of apparent resistivity. Therefore,
after computing the density of a simple layer μ(M ) in triangulation nodes, we
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calculate the potential u(M ) using (5.5). In dimensional variables, this formula is
written as follows:

uðMÞ ¼ 2I
σLAB

ðð
Γ

μðPÞ
j MP j dΓP � 2I

σLAB

XNΔ

l¼1

μlSl
j Mi �Pl j : ð5:19Þ

Here, μl is the density averaged over the triangle with number l, and �Pl is a center
of gravity of that triangle. The averaged values are taken over the triangle
vertices. For four-electrode array, it is necessary to compute the current potential
for electrode B and then perform algebraic summation of the potentials for electrodes
A and B.

After calculating the potential function, the apparent resistivity is calculated using
formula (3.1), taking into account the representation of the field as a sum of the
normal and anomalous fields:

ρa ¼
2πΔUMN

IAB

1
AM

� 1
AN

� 1
BM

þ 1
BN

� ��1

¼ 1
σ
þ 2πΔuMN

IAB

1
AM

� 1
AN

� 1
BM

þ 1
BN

� ��1

:

Here, A and B are the positions of the current electrodes, and M and N are the
positions of the measuring electrodes. The second term gives an anomalous devia-
tion of the apparent resistivity from the resistivity of a homogeneous medium, which
is only associated with the influence of the relief.

Before performing systematic calculations to identify possible anomalies, we
must perform a series of tests of the numerical method. The first step is to check
the convergence of the calculation results when changing and expanding the grid.
Because the admissible grid parameters depend on the shape of the relief, it is
desirable to conduct test calculations separately for each relief shape. In the calcu-
lations, the minimum grid step hq, the non-uniformity parameter α, and the size of
the computational domain Rq should vary.

For an inclination angle of relief of 20� and a half-width of the grid Rq varying in
the interval from 1 to 2, the relative change in apparent resistivity is no more than
0.6%. However, the maximum relative deviation between the apparent resistivities
calculated for N ¼ 20 and N ¼ 101 is 2.5% (Fig. 5.5). A change in N from 90 to
100 entails a change in ρa of not more than 0.5%. A change in α from 8 to 16 yields
an average change in ρa of not more than 0.2%. Therefore, for this form of the relief
and length of the measuring line, and a maximum inclination angle of 20�, the
admissible computing parameters are Rq ¼ 1, α ¼ 8, and N ¼ 20. In the captions of
Figs. 5.5, 5.6, 5.7, and 5.8, we denote the number of vertices and the number of
triangles by f and k, respectively.

We then repeat the calculations for a triangular shape of the relief and an angle of
inclination of 30�. When the width of the calculated region Rq varies from 10 to
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25, the relative change in apparent resistivity is no more than 1.5%. Figure 5.7 shows
that grinding (i.e., subdividing) the mesh with a number of layers of triangles greater
than i ¼ 30 does not lead to any noticeable changes in the solution. Therefore, the
value N ¼ 30 is acceptable for most calculations. However, the maximum relative
deviation between the apparent resistivity calculated for N ¼ 8 and N ¼ 32 is 3%. A
change in N from 24 to 32 entails changes in ρa of not more than 2.03%. A change in
α in the interval from 4 to 8 results an average change in ρa of no more than 2%. It
follows that for the given relief shape and length of the measuring line at a slope
angle of 30�, the calculation parameters Rq ¼ 10, α ¼ 8, and N ¼ 32 are acceptable.

One of the tests is to verify the principle of reciprocity for a four-electrode array.
Another way of checking the algorithm is to load our simulation results into existing
interpretation programs. If the interpretation program gives a homogeneous medium
after the inversion of our computations, it provides an independent verification of our
program. The results of such an experiment are discussed in Sect. 5.1.3.

Figure 5.4 shows the typical distribution of the μ(M ) function over the relief
surface shown in Fig. 5.3.

5.1.3 The Influence of Different Relief Forms on the Results
of Interpretation

In this subsection, we discuss several examples of the numerical solution of the ERT
problem for a homogeneous medium and for various forms of relief. We consider
examples of anomalies that arise in a numerical solution related specifically to the
relief. Preliminary test calculations for each form of the relief were performed to

Fig. 5.4 Distribution of secondary sources on the surface of a relief in the form of a shaft
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confirm that the result does not depend on the grid parameters. Here, we consider
examples of the simplest typical forms of a relief, such as a shaft, a triangle valley,
and a ledge. In the calculations, the geometric parameters of the relief, such as its
angle of inclination and the height of the ledge, vary. For some of these options,
examples of interpretation are given for the widely used interpretation programs
Res2DInv and ZondRes2D. Numerical calculations have shown that the influence of
the relief can lead to erroneous interpretation.

The apparent resistivity curves of VES for models of a relief with a negative
triangular form for slope angles 10� and 20� are given in Fig. 5.6. It can be seen from
the numerical results that the values of the maxima and minima of a curve of the
apparent resistivity increase considerably with increase in angle.

Figures 5.5, 5.6, 5.7, 5.8, and 5.9 show the anomalies of the apparent resistivity
for the relief forms listed above with angles of 10�, 20�, and 40�. The parameters of
the grid were chosen for the most adverse case with a tilt angle of 40�. In this case,
the level of anomalies is so great that it is necessary to use a rather small grid;
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Fig. 5.5 Apparent resistivity curves and a relief form for different parameters: N ¼ 20, α ¼ 8.0,
f ¼ 993, k ¼ 1844 (curve 1); N ¼ 30, α¼ 8.0, f ¼ 2154, k ¼ 4095 (curve 2); and N ¼ 101, α¼ 8.0,
f ¼ 23,103, k ¼ 45,492 (curve 3), where N is the number of layers of triangles, α is a parameter of
the non-uniformity of the grid, f is the number of nodes, and k is the number of triangles
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Fig. 5.6 Apparent resistivity curves for a three-electrode array where the model surface has
negative shape of symmetrical triangle. The tilt slope angle is equal to 20� for curve 1 and 10�

for curve 2. The computational parameters are N ¼ 32, α ¼ 8.0, and number of nodes f ¼ 12,366
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Fig. 5.7 A triangle form of a relief and apparent resistivity curves. The computational parameters
for curve 1 are a ¼ 10, N ¼ 32, α ¼ 8.0, number of nodes f ¼ 12,366, number of triangles
k ¼ 23,269; for curve 2, a ¼ 15, N ¼ 32, α ¼ 8.0, f ¼ 10,580, k ¼ 19,828; and curve 3, a ¼ 25,
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otherwise, computing errors can result in wrong or negative values of the apparent
resistivity curves.

After defining acceptable grid parameters, we performed numerous simulations;
the obtained data were loaded into inversion programs. The influence of the shape of
the relief on the interpretation can be seen from the results. Because the calculations
were performed for a homogeneous relief, we expected that the result of the
inversion would also show a homogeneous medium. In reality, different programs
gave different results. Figure 5.10 shows a pseudo-section based on the simulation
results for a homogeneous medium with a relief in the form of a shaft (Fig. 5.5).

Figure 5.11 shows an interpretation of the modeling of resistivity curves over the
homogeneous medium executed by the Zon2DRes program for a relief with a slope
angle of 20�. The results demonstrate that the interpretation was satisfactory only for
small angles up to 20�; further increases in the angle caused artifacts that distorted
the inversion result. The corresponding illustration is shown in Fig. 5.12. Note that
this interpretation of the results of our calculations constitutes an additional test that
verifies our algorithm. The most significant interpretation errors appeared when the
interpretation was executed by the Res2DInv program (Fig. 5.13).

Both the Zon2DRes and the Res2DInv programs give satisfactory results for
angles of less than 10�. Zon2DRes inverted the relief anomalies correctly up to a
slope angle of 20�. The larger the angle is, the worse the interpretation results. The
deviation from the uniform distribution of resistivity shown by the interpretation can
be as great as 50% of the true value (even for the Zon2DRes program) when the
slope angle of a relief reaches 40�.

Based on the numerical simulation, we arrived at the following conclusion: If the
shape of the relief under consideration differs significantly from the forms that were
checked in the numerical experiments, then for each relief form it is desirable to

Fig. 5.10 Geoelectrical pseudo-section for a homogeneous medium above a relief with 20�

inclination angle
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conduct a series of experiments in which the parameters are Rq and N. This helps us
to obtain stable results that do not depend on the nature of the triangulation or the
size of the computational domain.

Based on the established computing parameters for each angle of inclination, it is
possible to calculate the apparent resistivity in two different scenarios: (1) If the

Fig. 5.11 Geoelectrical section obtained by the inversion program Zon2DRes for 20� inclination
angle. A homogeneous medium was obtained

Fig. 5.12 Geoelectrical section obtained by the inversion program Zon2DRes for 40� inclination
angle. Several artifacts distort homogeneity
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surface of the relief is smooth and the inclination angles do not exceed 20�, the
parameters Rq ¼ 1, α ¼ 8, and N ¼ 32 are permissible. (2) If the surface contains
high tilt angles and abrupt shape transitions, it is necessary to increase the computing
area to Rq ¼ 10, α ¼ 8, and N ¼ 60. Despite the preliminary values of the
recommended calculation parameters, it is desirable to perform additional modeling
in which the calculation parameters (the number of layers of triangles and the size of
the calculation area) are changed for each relief. It is preferable to use a high-
performance technique with parallel computing, because the matrix arising in the
BEM is dense and occupies a large amount of memory.

5.2 The BEM for a Two-Layered Medium with a Ground
Surface Relief

5.2.1 Mathematical Model

In this section, we consider a medium with piecewise constant 2D distribution of
electrical conductivity (see, for instance, Fig. 5.14). Let the medium comprise two
layers with electrical conductivity coefficients σ1 and σ2 (corresponding to the
specific resistances ρ1 and ρ2). Suppose the lower layer is disposed horizontally at
h depth and the upper layer has an embossed surface. Let the form of the surface
satisfy the conditions supposed in Sect. 5.1.1.

In practice, the voltage is applied to the medium through two source electrodes,
designated A and B. However, by virtue of the principle of the superposition of
electric fields, we consider only the potential created by a single point source A.

Let Г1 be a ground surface and Г2 the contact boundary of media with conduc-
tivities σ1 and σ2 (Fig. 5.14).

We look for a potential field sought as the sum of the simple layer potentials:

Fig. 5.13 Geoelectrical section obtained by the inversion program Res2Dinv for 20� inclination
angle. Several artifacts distort homogeneity
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uðMÞ ¼ I

2πσ1R0 j AP j þ
I

4πσ1R0

ðð
Γ1

q1ðPÞ
j MP j dΓP þ

ðð
Γ2

q2ðPÞ
j MP j dΓP

0
B@

1
CA: ð5:20Þ

The factor I/(σ1R0) appears here as the dimensional scale for the dimensionless
functions of the simple layer potential. The integral terms in (5.20) correspond to the
simple layer potentials of the densities q1 and q2. According to the properties of the
simple layer potential, U(P) satisfies Laplace’s equation in domain Ω1 [ Ω2 except
for borders Г1, Г2 and point A (Fig. 5.14). Function U(P) is required to satisfy the
boundary condition at inner boundary Г2 between two materials and on surface Г1 of
the medium. The first of these conditions specifies the conservation of the current
through the contact boundary and is written as

σ1
∂U
∂n

����
1

¼ σ2
∂U
∂n

����
2

: ð5:21Þ

The indices i ¼ 1, 2 mean that the normal derivatives are taken from the side of
the medium with the corresponding value of the conductivity.

Now, we write (5.21) in terms of the simple layer potentials:

ui Mð Þ ¼
ðð
Γi

qi Pð Þ dΓP

j MP j , i ¼ 1, 2

We take into account the discontinuity of the normal derivatives of the simple
layer potential on different sides of the surface. The change in the normal derivative
of the potential taken at the inside and outside of regionΩ2 is equal to the density of a
simple layer multiplied by 4π (2.5). If the normal to the boundary Г2 is directed from
medium 2 to medium 1, then

z

x

h

y

A

s = s1
W1

W2

È1 È2

s = s2

Fig. 5.14 Model of a two-layered medium with ground surface relief. See text for description of the
symbols
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∂u2
∂n

����
2

� ∂u2
∂n

����
1

¼ 4πq2 Mð Þ

and the following equalities hold:

∂u2
∂n

� �
2

Mð Þ ¼ 2πq2 Mð Þ þ
ðð
Γ2

q2 Pð Þ cosψMP

j MP j dΓP

∂u2
∂n

� �
1

Mð Þ ¼ �2πq2 Mð Þ þ
ðð
Γ2

q2 Pð Þ cosψMP

j MP j dΓP:

ð5:22Þ

The derivatives of the simple layer potential at the second boundary are discon-
tinuous, but the derivatives of the potential of the other sources remain continuous.
Therefore, the continuity condition for a normal current passing through a surface Г2

is written as

σ2
∂u2
∂n

����
2

¼ σ1
∂u2
∂n

����
1

� ðσ2 � σ1Þ 4πσ1R0

I

∂U0

∂u

����
Γ2

þ ∂u1
∂n

ðPÞ
 !

: ð5:23Þ

Substituting (5.22) into (5.23), we obtain

2πq2ðMÞ ¼ σ2 � σ1
σ2 þ σ1

ðð
Γ2

q2ðPÞ
cosψMP

j MP j dΓP þ 4πσ1R0

I

∂U0

∂n
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∂n
ðMÞ

0
B@

1
CA:

Therefore, the following integral equation is obtained:

q2ðMÞ ¼ κ

2π

ðð
Γ2

q2ðPÞ
cosψMP

j MP j dΓ2 þ κ

2π
4πσ1R0

I

∂U0

∂n
ðMÞ þ ∂u1

∂n
ðMÞ

� �
: ð5:24Þ

Here, κ ¼ σ2�σ1
σ2þσ1

denotes a reflection coefficient at the boundary between medium

1 and medium 2. Substituting the potential for source electrode A and u1(P) into
expression (5.24), we obtain

q2ðMÞ ¼ κ

2π

ðð
Γ2

q2ðPÞ
cosψMP

j MP j dΓ2þ

κ

2π

ðð
Γ1

q1ðPÞ
cosψMP

j MP j dΓ1 þ κ

π

∂
∂n

1
j MA j,M2Γ2

ð5:25Þ

The boundary condition at the medium’s ground surface is derived from the
condition that other normal currents (with the exception of the current from the point
source) do not flow into medium 1. Let us write the expression for the normal current
that enters medium 1:
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I
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∂u1ðMÞ

∂n

����
Γ1

þ ∂u2ðMÞ
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 !
þ σ1

∂U0
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����
Γ1

¼ I

2π
δðrÞ: ð5:26Þ

The current flowing into the medium is expressed in terms of the normal
derivative of the potential, which is taken from the side of the medium. Due to the
properties of the simple layer potential, the normal derivative of the potential has a
discontinuity on the surface of Г1. Let the normal be directed outside of medium
1. The normal derivative at the inner side of the surface is expressed as

∂u1ðMÞ
∂n

����
Γ1

¼ 2πq1ðMÞ þ
ðð
Γ1

q1ðPÞ
cosψMP

j MP j dΓ1ðPÞ ð5:27Þ

Substituting (5.27) into (5.25), we obtain

2πq1 Mð Þ þ
ðð
Γ1

q1 Pð Þ cosψMP

j MP j dΓ1 þ ∂u2 Mð Þ
∂n

����
Γ1

0
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1
CAþ 4πσ1

I

∂U0

∂n

����
Γ1

¼ 2δ rð Þ

This yields another integral equation

q1 Mð Þ ¼ � 1
2π

ðð
Γ1

q1 Pð Þ cosψMP

j MP j dΓ1 � 1
2π

ðð
Γ2

q2 Pð Þ cosψMP

j MP j dΓ2

þ 1
π

δ rð Þ � ∂
∂n

1
j MA j

����
Γ1

 !
,M2Γ1:

ð5:28Þ

Thus, we have two integral relations (5.25) and (5.28) for two unknown functions
of the simple layer densities q1(P) and q2(P), defined at the ground surface Г1 and the
contact boundary Г2, respectively.

5.2.2 The Numerical Method

The numerical solution of the system of integral equations is obtained by discretizing
the integrals in (5.25) and (5.28). We limited the infinite surfaces Г1 and Г2 by their
finite parts, which represent the regions of the oval shape. The boundary Г1 is
mapped on the plane on which the irregular triangular mesh is constructed. The
grid is condensed along the axis Ox at the part corresponding to the measurement
line where the field potentials are computed. From the differences in the potential
values along the profile, the apparent resistivity of the medium is calculated, as is
customary in geophysical experiments.
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A typical triangulation of the calculations domain is shown in Fig. 5.15.
The unknown functions q1(P) and q2(P) are computed at the nodes of triangulation.
The integrals in the right-hand sides of (5.25) and (5.28) are approximated by using the
values of the integrands at the grid nodes, taking into account the areas of the triangles.

Approximation of the integrals in (5.25) and (5.28) by their discrete analogs leads
to the following system of linear algebraic equations:

qi ¼
κ1,2
2π

XN
j¼1

qjAij þ κ1,2
π

Bi, i ¼ 1,N ð5:29Þ

Here, N is the total number of triangulation nodes at external and internal borders
Г1 and Г2,; the factor κ1,2 depends on the type of boundary to which the node
belongs. If the node is at Г1, the coefficient is 1; otherwise, it is equal to the value of
reflection coefficient κ. Values Aij represent the coefficient of mutual influence of
points i, j. Values Aij are formed by expressing integrals in discrete form. The system
of (5.29) can be solved both by direct methods and by iterative methods. Both of
these methods have been checked to verify that the solution does not depend on the
choice of solution method.

Testing of the calculation algorithm was conducted using two methods: checking
the implementation of the “reciprocity principle” for four-electrode array AMNB
sounding and comparing the results of calculations with known solutions for a
two-layered medium.

5.2.2.1 Test 1: Reciprocity Principle

In modern ERT equipment, the roles of electrodes as measuring or source electrodes
can be exchanged in different experiments. Thus, it is possible to diversify the types
of measuring electrode arrays available without large monetary expenditures. To
optimize the switching of equipment and accelerate measurements in geophysics, the

Fig. 5.15 Typical triangulation of the computed region (the positive z-direction is directed
downward)
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principle of reciprocity is applied. Based on this principle, the potential difference
between the points MN, measured by some AMNB array, does not change if the
roles of the pairs AB and MN are changed to make the source electrodes measuring
electrodes and make the measuring electrodes source electrodes. Therefore, it is
possible to reduce the number of measurements by changing the roles of the
electrodes and using the principle of reciprocity.

To test our algorithm, the reciprocity principle was verified numerically. Let
k ¼ 0,..., K be a series of equidistant positions of electrodes on a measuring line of
length L. Assume that the source and sink electrodes A and B occupy the positions
k ¼ 0 and k ¼ 1. Then, numerical experiments for A and B give the values of
potential difference ΔUij between electrodes Mi, and Mj, i ¼ 2,..., K � 1; j ¼ 2,...,
K� 1. If electrodes A and B are now located in positions Mi and Mj, i¼ 2,..., K� 1;
j¼ 2,..., K � 1 in another series of experiments, the potential difference between the
electrodes with numbers 0 and 1 should be equal to ΔUij obtained in the previous
experiment.

This test was conducted using a four-electrode array by exchanging the source
electrodes (A, B) with the pair of measuring electrodes (M, N) and calculating the
potential difference between the points M and N. The value of K was set at 25.
Calculations were made for the source electrodes A and B for two cases: (a) placed at
positions 0 and 1; and (b) placed at positions 4 and 5. In the first case, the successive
positions of the measuring electrodes Mi, Mi + 1 were considered. Then, the roles of
the electrodes were changed, placing A and B at the points Mi and Mi + 1 and
calculating the potential difference ΔU01 between the positions 0 and 1. The average
relative difference between the obtained values ΔU01 and ΔUi,i + 1 for the potential
difference did not exceed 2%. The left part of Fig. 5.16a, b shows the sequence of
values ΔUii þ 1, i ¼ 2,..., K � 1 for the positions of source electrodes 0 and 1. The
right-hand part of Fig. 5.16a, b plots the results obtained when the source electrodes
(A, B) were exchanged with the measuring electrodes (M, N).

The same procedure was executed for the calculation of the second test (case b)
for the position of the source electrodes A and B at positions 4 and 5. In contrast to
the first case, the potential difference between the electrodesM0,Mi, i ¼ 1,. . ., K was
computed excluding the values i ¼ 4, 5. The experiments were then conducted by
exchanging the roles of the pairs AB and MN.

The relative deviation of the respective values of the potential difference in the
second test did not exceed 2%. Thus, both tests demonstrated the implementation of
the principle of reciprocity. The test results of case (b) are shown in Fig. 5.16c, d.

Thus, the tests show the implementation of the principle of reciprocity in our
numerical models.

5.2.2.2 Test 2: Two Horizontally Layered Media

A numerical solution of the system (5.29) was tested on a known solution for a
two-layered medium (Koefoed 1979). The results are presented in Fig. 5.17a, b. The
calculations were made for the three-electrode system AMN for a two-layered
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medium model with a flat surface with a high-resistivity base (ρ1 < ρ2) and a
conductive base (ρ1 > ρ2).

The influence of the depth of the second layer was checked for both decreasing
resistivity and rising resistivity models. The maximum relative error in calculations
of the apparent resistivity was not greater than 2%.
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Fig. 5.17 The function of the apparent resistivity for models with a conductive base (left) and a
high-resistivity base (right). Curve 1 is a solution built by Koefoed (1979); curve 2 is a solution
obtained by solving the system (5.29). (Reproduced from Mukanova et al. 2017)
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Fig. 5.16 (a) Potential differences Ui � Ui + 1, depending on i (number of positions of MN). (b)
Potential difference UA � UB after exchange of the roles of AB and MN with A placed at 0 and B
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position number of B. (Reproduced from Mukanova et al. 2017)
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This test allows us to determine the admissible dimensions of the computational
domain and the degree of thickening of the mesh necessary to achieve the desired
accuracy of approximately 1–2% in the apparent resistivity function.

5.2.3 Influence of a Second Layer on the Measured Data
and Inversion Results

It was found that, if the resistivity of the second medium is less than that of the first,
the size of the computational region can be less than if the second medium has a
resistivity substantially (~100	) larger than the first. In the calculations, a certain
length scale was used as the unit of length, and all the geometric parameters of the
model (height of the relief, depth of the second layer, and length of the measuring
profile) are expressed in this unit. The symmetry with respect to the abscissa axis is
taken into account, allowing the number of nodes of the mesh to be halved. The
resistivity of the first medium is used as a unit of resistivity. For instance, in the case
of σ2 ¼ 10σ1, the dimensions of the oval, which has been triangulated, are equal to
4	 2. Here, the length of the line along which the grinding of the mesh is conducted
is equal to 2, and the number of nodes at this line varies over the range 200–300. The
mesh was expanded when removed from the central line. If the expansion coefficient
is 8 (i.e., if the size of the largest cell is approximately eight times greater than the
size of the smallest cell), these parameters are consistent with the number of tri-
angles, or approximately 16,600. For media with σ2 ¼ 0.001σ1, the dimensions of
the computational domain are 9 	 6, with 320 points on the condensation line and a
condensation coefficient equal to 25. The total number of nodes in this case is
approximately 10,400. The calculation time for the iterative method does not exceed
1 min on a personal laptop, whereas a direct method of solving a system of linear
equations requires approximately 40 min.

Figure 5.18a, b show solutions of the system of integral equations for the shape of
the relief, which is given analytically by the following formula:

z xð Þ ¼
0:06 cos 2π xþ 0:25ð Þð Þ � 1ð Þ, � 0:25 � x � 0:75

0, x=2 �0:25; 0:75½ �

(

In this case, the relief has a shaft shape, as shown in Fig. 5.14, with the underlying
layer at a depth of z ¼ 0.5 and a conductivity σ2 ¼ 10σ1. The discontinuity at one
point of the solution in Fig. 5.18a corresponds to the point of application of the
pointwise source electrode.

The shape of the surface relief and the apparent resistivity, calculated along the
profile with length equal to 2 and placed in a direction transverse to the relief, is
shown in Fig. 5.19.

To determine the effect of the relief on the sounding curves, the results of
numerical simulation for a two-layered medium with a relief of the ground surface
were considered. Numerical simulations were made for reliefs in the form of a shaft
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Fig. 5.18 (a) Distribution of the density of a simple layer q1(P) at the surface Г1. (b) Distribution of
the density q2(P) at the surface Г2

-0.10.0 0.5 1.0 1.5 2.5 3.0 3.5 4.0 4.5

0.0
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0
ra , Wm

0.5 1.0 1.5 2.0

2.0

2.5 3.0 3.5 4.0

ρ2=10

ρ2=30

ρ2=50

ρ1=100

4.5

1 2

r,m

r,m

0.0

0.1

S
ur

fa
ce

 s
ha

pe

0.2
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two-layered medium with a relief (1) and for a model of a two-layered medium with a horizontally
plane surface (2). (Reproduced from Mukanova et al. 2017)
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(Fig. 5.12) and a valley with an underlying layer at a depth of h ¼ 0.5. To determine
the effect of the resistivity of the underlying layer on the apparent resistivity (ρa)
anomaly associated with the relief, we performed the calculations by changing the
resistivity values of the underlying layer for models with conductive and high-
resistivity bases.

Figure 5.19 shows the simulation results for a medium with a conductive under-
lying layer with the relief of the ground surface in the form of the valley and without
relief (horizontal plane) for resistivity values ρ2 ¼ 10, 30, and 50 Ωm of the
underlying layer. The resistivity of the first layer is set at ρ1 ¼ 100 Ωm.

The simulation results for the same medium with a higher resistivity basis for the
values of the resistivity of the upper layer ρ1 ¼ 10 Ωm and the underlying layer
ρ2 ¼ 30, 50, and 70 Ωm are shown in Fig. 5.20.

Figures 5.21 and 5.22 show the results of calculations similar to those performed
in the previous models, but for the relief in the form of a shaft (Fig. 5.13).

The depth of the second layer, h, also influences the sounding curves. To study
the influence of the depth of occurrence of the second layer, we performed numerical
simulations on a two-layered medium with a relief for different values of h. Fig-
ure 5.23 shows the simulation results for values h ¼ 0.25, 0.5, and 0.75 m for a
decreasing resistivity model where ρ1 ¼ 100 and ρ2 ¼ 10 Ωm.

For all cases, the obtained apparent resistivity curves go to the asymptotic values
of the second layer ρ2. Evident anomalies are present in the vicinity of the irregu-
larities of the relief. The vertices of convexity or concavity of the relief form are
marked at the sounding curves with a minimum or a maximum, respectively. It
should be noted that in the case of a relief in the form of a valley, the anomalies are
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with a relief (1) and for a model of a two-layered medium with a horizontally flat surface (2).
(Reproduced from Mukanova et al. 2017)
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more pronounced than in the case of a relief in the form of a hill. We also note that
when performing numerical calculations to reach the asymptotic values of the
second layer for the model with a high-resistivity base, the computational domain
was set to twice that for the model with a low-resistivity base.
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Fig. 5.21 Surface relief shape and apparent resistivity curves for a two-layered medium with a
horizontally flat surface (1) and for a two-layered medium with a relief (2). (Reproduced from
Mukanova et al. 2017)
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Calculations show that the apparent resistivity anomalies associated with the
relief are more pronounced when the resistivity of the underlying layer is smaller
than that of the upper layer and when the lower layer is closer. Conversely, if the
underlying layer has a resistivity that is much higher than that of the upper layer, the
influence of the relief is less pronounced.

To define the influence of the relief on the inversion results, we calculated
apparent resistivity curves for a relief form similar to that depicted in Fig. 5.14.
Numerical simulations were performed for the following parameters: length of the
measuring line (AB ¼ 235 m), number of electrodes (K ¼ 48), depth equal to the
height of the relief (h ¼ 20.9 m), elevation angle (40�), resistivity (ρ1 ¼ 100 and
ρ2 ¼ 10 Ohm m), and MN (5 m). The forward problems were solved for both three-
electrode arrays, AMN and BMN. The successive positions of the electrode arrays
correspond to common practice for ERT: source A moves from left to right, and B
moves in the opposite direction in steps of MN. The pseudo-section obtained for the
listed parameters is shown in Fig. 5.24.

The synthetic data shown in Fig. 5.24 were entered into 2D resistivity imaging
programs. We applied the programs Res2DInv and ZondRes2D. The inversion
results obtained from the data by Res2DInv and ZondRes2D are depicted in
Figs. 5.25 and 5.26, respectively. As can be seen in Figs. 5.25 and 5.26, the influence
of the relief yields distortions in the interpretation data, especially in the Res2DInv
program. In the case of the inversion program ZondRes2D and for the considered
example, the distortions are less expressed (Fig. 5.26). Indeed, the similarity of the
original model and the inversion results shown in Fig. 5.26 serve as an additional
verification of our numerical method.

Fig. 5.23 Influence of the occurrence depth (h) of the second layer on the apparent resistivity
curves. (Reproduced from Mukanova et al. 2017)
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Fig. 5.24 Pseudo-section calculated for a model of a two-layered medium with ground surface
relief

Fig. 5.25 Interpretation data obtained by the program Res2DInv for a model of a two-layered
medium with ground surface relief
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5.3 The BEM for 3D Media: Influence of the Third
Coordinate on Measuring Data and Interpretation
Results

As noted above, the derivation of integral equations for the 3D case does not differ
from the 2D case; therefore, it is not described here. The system of equations for the
case of a two-layered medium with a 3D surface relief and an underlying layer has
the same form as (5.25) and (5.28) of the previous section.

5.3.1 Triangulation and Approximation of the Ground
Surface

For the numerical solution of the system of integral equations, the relief of the
surface must be approximated. In the examples considered in this section, the
algorithm for solving the integral equation of the ERT survey above a homogeneous
medium with a relief of the surface is realized for analytically defined relief shapes.
In practical applications, the relief parameters are determined by the step along the
profile (the distance between electrodes) and by the height of the localization of the
electrodes placed along the investigated profile; the parameters are measured under
field conditions. A surface relief function is constructed based on this data. This
function must satisfy the requirements necessary for the numerical realization of the
method of integral equations. First, for each point of the surface, the normal to the
surface must be defined; in addition, at intermediate points, it is necessary for the
function not to have discontinuities or large gradients. As shown by Zaporozhets

Fig. 5.26 Interpretation data obtained by the program ZondRes2D for a model of a two-layered
medium with ground surface relief
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(1938), the presence of jumps on the surface leads to the appearance of large
parasitic anomalies on the sounding curves, a situation that is highly undesirable
for further interpretation. For numerical simulations, the most favorable case is that
in which the surface can be represented by a single formula in the form of a smooth
function with a very simple form. Then, we must ensure the condition of strict
approximation; that is, our surface must pass through the given points (heights).

For 2D inversion data, there are many methods for approximating the shape of the
relief specified from the experiments. However, for the 3D case, the choice of
methods is not large. Let us remark on that subject. Assume that we want to
approximate the surface in the form of a linear combination of some basis functions:

Z x; yð Þ ¼
Xn
i¼1

λiφi x; yð Þ

It can be shown that for any set of basic functions φi x; yð Þf gn
i¼1, (n > 1) there are

many different points xi; yið Þf gn
i¼1 such that the linear system of equations for

determining the coefficients becomes singular. This result is called the Haar theorem.
The problem can be solved if a basis composed of shifts of one basic function
symmetric with respect to the center is used as an interpolating function. This
approach was first used by Hardy (1971), who called it the method of radial basis
functions (RBFs). This method was applied to the mapping problem when it was
necessary to construct a continuous function that represents a surface based on a set
of scattered measurements of the heights of a set of points on a topographic surface.
From our point of view, RBFs are the best choice for describing the surface relief and
for the subsequent application of BEM in the 3D case. The use of RBFs for the
approximation of multidimensional surfaces was proposed and applied by
Broomhead and Lowe (1988). We will not dwell on a description of the method
but simply recommend its application.

5.3.1.1 Triangulation of a 3D Surface

Another algorithmically difficult problem is the construction of a triangulation of the
surface so that the vertices are condensing in the vicinity of the measuring line, grid
nodes are placed equidistantly between electrodes, and the electrodes are located in
the grid nodes. Triangulation should be conducted for an arbitrary shape of the relief
given from the actual measurements.

With the use of RBFs, we can achieve a uniform surface description using an
analytically defined function. Therefore, without considering the question of the
approximation of the relief, let us consider the problem of constructing a triangula-
tion on a 3D surface. Suppose, however, that the surface is such that it satisfies the
conditions of the theorems outlined in Chap. 4.

Thus, we can represent the surface z¼ Z(x, y) as a sufficiently smooth function of
two variables (x, y). We now describe the main ideas of the triangulation of the
computational domain that we have used in our simulations.
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First, the whole computing area is constructed so that its projection onto the Oxy
plane forms an oval made up of two semicircles and a rectangle, as in Fig. 5.2. The
triangulation is then constructed layer by layer, beginning with the triangles closest
to the measuring line. Let the projection of the measuring line AB on the Oxy plane
form the segment [0, Lmax] on the Ox axis. The very first layer of nodes is placed on
the measuring line with some step hq

0. This step is chosen so that the measuring
electrodes fall into the grid nodes. The length of the measuring line is set equal to 2 in
dimensionless variables. The location of the nodes on the relief is determined in a
similar manner as in Sect. 5.1 for each cross-section of the relief by the plane y ¼ yj.
The Cauchy problem for the ODE for each plane curve formed by the intersection of
the surface Γ with the plane y ¼ yj is solved by the Runge–Kutta method:

dq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dz2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z

02 x; yj
� �q

dx,

dx

dq
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Z
02 x; yj
� �q , q2 qi�1; qi½ �

q0 ¼ 0, qi ¼ qi�1 þ hj
й

x 0ð Þ ¼ 0,

x qi�1ð Þ ¼ xi�1

ð5:30Þ

In this way, we define the grid nodes such that their projection on the plane Oxy is
located in a rectangle y 2 [�Rq,Rq], x 2 [0, Lx]. The grid step hj

qon each layer is
increased so that the grid is uniform in logarithmic coordinates. To construct a grid
on semicircles, the grid nodes are arranged layer by layer at the intersection of the
surface Γ with cylinders of radius rj ¼ |yj| These curves are given by parametrization

x tð Þ ¼ �rj sin t, y tð Þ ¼ rj cos t, t2 0; π½ �
on the left semicircle and by

x tð Þ ¼ rj sin t, y tð Þ ¼ rj cos t, t2 0; π½ �
on the right semicircle.

The following ODEs determine the Cartesian coordinates of the surface points on
the semicircle:

dq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ dz2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ Z2

x x tð Þ; y tð Þð Þ cos 2t þ Z2
y x tð Þ; y tð Þð Þ cos 2t

q
dt,

dt

dq
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2j þ Z2
x x tð Þ; y tð Þð Þ cos 2t þ Z2

y x tð Þ; y tð Þð Þ cos 2t
q , q2 qi�1; qi½ �

q0 ¼ 0, qi ¼ qi�1 þ hj
i

t 0ð Þ ¼ 0,
t qi�1ð Þ ¼ ti�1:

ð5:31Þ
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The solution of (5.31) determines the parameter t for each grid value of the
curvilinear coordinate q. This coordinate has the meaning of the length of the
curve measured along the intersection of the surface with a cylinder of radius |yj|
for each semicircle on the projection of the oval. The Cartesian coordinates of the
triangulation nodes are calculated using the parameter t. After determining the
positions of the nodes, triangles are constructed on them. Figure 5.27a shows an
example of the triangulation constructed in such a way for the case in which the
measuring line passes along the axis of symmetry. Fig. 5.28 shows the
corresponding example of a numerical solution, that is, the distribution of the
densities of a simple layer on a triangulation of boundaries Γ1 and Γ2. The calcula-
tion parameters are as follows: the second layer is flat; the resistivities are 10 and
1 Ohm for the first and second layers, respectively; the angle of the relief is 40�; and
the relief shape is set analytically in the form z ¼ f(x) g( y), where the functions f(x)
and g( y) are given by the following expressions:

f xð Þ ¼ A cos π�1 x� x0ð Þð Þ � 1ð Þ, x2 x0; x0 þ 1½ �
0, x=2 x0; x0 þ 1½ �

(
, ð5:32Þ

Fig. 5.27 Triangular mesh
at the models of the 3D
surface for the measuring
line (a) passing along the
symmetry line of the relief
and (b) shifted in parallel
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g yð Þ ¼
1, y2 �a; a½ �

0, y2 aþ Δ;1½ � [ �1;�a� Δ½ �,
g1 yð Þ, y2 �a� Δ;�a½ � [ a; aþ Δ½ �

8><
>: ð5:33Þ

Here, function g1( y) is constructed to ensure the smoothness of the relief. We
took a polynomial of the second order for g1(y).

As a test, in this case it is convenient to compare the solution with those obtained
for the 2D relief and for two-layered media with horizontal interfaces. These tests
were performed successfully.

5.3.2 Numerical Results

Figure 5.27b shows examples of the triangulation and solution of the system of
integral equations (5.25) and (5.28) for a 3D surface in which the measuring line
does not pass through the center of symmetry.

To see how the modeling results are affected by the presence of the third
coordinate, it is better to consider a homogeneous relief. For this, it is sufficient to
set ρ1¼ ρ2 in the program. We considered the relief given in the form Z(x, y)¼ f(x) g
( y) by (5.32) and (5.33). The value of x0 is set equal to zero, the height of the relief is
determined through the given angle of inclination, the width of the relief along the x-
axis is equal to one dimensionless unit, and the width along the ordinate axis is
specified by the parameters a ¼ 0.1 and Δ ¼ 0.2. The total width of the relief along
the ordinate axis is 2(a þ Δ) units.

To test the program, we simply compared the results with those obtained for the
program described in the previous section for 2D relief. When the width of the relief
was close to the size of the computing area, the results coincided with the 2D case.

The results showed that if the width of the relief is comparable to half the
measuring line, then the difference between the apparent resistivity for the 2D case

0.2

0

-0.2

-0.4

-0.6
-1 -0.5 1 1.5 2 2.5 3

-1
-0.5

0
0.5

1

0
-0.2
-0.4
-0.6
-0.8

-1
-1 -0.5 0 0.5 1 1.5 2 2.5 3

-1
-0.5

0
0.5

1

0 0.5

a b

Fig. 5.28 Distribution of simple layer densities at the outer (Figure a) and inner (Figure b)
boundaries
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and the 3D case is greater than 10% (Fig. 5.29). In this model, the angle of
inclination is equal to 30�.

The dependence of the apparent resistivity on the third coordinate y is more
clearly expressed if the measuring line does not pass along the symmetry line of the
relief but is shifted in parallel. Fig. 5.30 shows the apparent resistivity curves
obtained for a relief angle of 40� and for different values of the shift Δy of the
measuring line parallel to the axis of symmetry Ox.
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Fig. 5.29 Influence of a third coordinate on symmetrical 3D relief
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In the case shown in Fig. 5.30, at Δy ¼ 0.2 the line passes the relief along a flat
base; however, the apparent resistivity curves “sense” the presence of the relief
nearby.
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Conclusions and Future Directions of Research

In this monograph, we discussed the modeling of direct ERT problems with the help
of the IEM and the BEM. Media with a piecewise-constant electrical conductivity
distribution were considered. Our results show that this method can be applied to
media with a complex internal structure and surface relief. We considered problems
stated for 2D and 3D media structures. In all cases, the electrical field generated in a
medium is 3D. The BEM demonstrates a high efficiency in this type of field
computation. Numerical simulations showed that the apparent resistivity anomalies
associated with relief lead to distortions of the interpretation results when using 2D
inversion programs. Modeling using the BEM allows one to estimate the level of
false anomalies that appear due to the presence of topography. Numerical modeling
is necessary for accurate account of the effect of topography on the results of vertical
electrical sounding due to the very large electric field anomalies over the topography.
These anomalies can exceed 100–200% of the background level. Under these
conditions, a small software imbalance of inversion may lead to false anomalies in
the geoelectric section. Further research should be conducted on the calculation of
the effects of relief in field experiments and on models for more complicated media
structures. Consequently, the elimination of false interpretation results and anoma-
lies produced by topography must rely on future solutions.

Numerous problems have not been discussed in the framework of the methods
considered here. In particular, we did not consider the mathematical problems of the
IEM related to media in which the relief and the boundaries of the media are angular.
Several years ago, in collaboration with A. G. Yakovlev, the author (Prof. I. Modin)
showed that the density of an electric charge increases as the point approaches an
angular point. However, the total charge cannot grow to infinity; thus, the singularity
near an angle is at least integrable. Therefore, to correctly calculate the electric field
near the corner points, it is necessary to thicken the grid. Meanwhile, under real
conditions, there are absolutely no ideal sharp angles; as a result, an anomaly of an

© Springer International Publishing AG 2018
B. Mukanova, I. Modin, The Boundary Element Method in Geophysical Survey,
Innovation and Discovery in Russian Science and Engineering,
https://doi.org/10.1007/978-3-319-72908-4

153

https://doi.org/10.1007/978-3-319-72908-4


electric field does not grow to infinity. Although we did not discuss the construction
of a triangulation scheme adapted to the kinks and corner points of contact bound-
aries, such a construction is quite feasible in the framework of the ideas
outlined here.

The reduction of a 3D problem to a 2D problem via a Fourier transform
(Section 4.1) was solved in a sufficiently general form for media with planar internal
boundaries. However, mathematical questions regarding the correctness of the
Fourier transformation were not discussed. In addition, we did not dwell on the
problems of the Fourier transform using discrete filters or the justification of this
technique.

The questions that arise when solving these interpretation problems based on
mathematical models formulated using integral equations remain open. Moreover,
there are interpretation programs that provide smoothed results. Based on existing
computational technologies, it is possible to approximate these data via a piecewise-
constant conductivity distribution and even automate this process. Furthermore, on
the basis of the ideas outlined here, it is possible to formulate direct ERT problems
and, for the obtained model, to develop programs for their solutions. However, at the
present time, we are not aware of programs that are capable of performing such
computations.

The authors of this monograph are ardent supporters of both the IEM and BEM.
This is because these methods are fundamentally different from the FDM and FEM,
which are currently predominantly used by software developers to solve direct and
inverse ERT problems, and because they can generate entirely different simulations.

In addition, the BEM is more economical in terms of its required computational
costs for a large class of models; thus, the IEM program can solve such problems
with a large margin of accuracy. This makes it possible to obtain solutions that are
more adequate when solving inverse problems. As such, the artifacts in inversion
results can be determined confidently. It is also possible to state with a high degree of
confidence that the IEM produces fairly accurate solutions for curvilinear
(non-planar) boundaries. Together with D. B. Yakovlev, one of the authors (Prof.
I. Modin) tested the IEM on a hemisphere and on a submerged spherical inclusion
(this problem was solved analytically by A. I. Zaborovsky). For this purpose, a
special program called SFE1DR was developed. The corresponding tests of the
method exhibited a high accuracy and effectiveness.

The numerical simulation methods considered here showed high computational
efficiencies, and they were adapted precisely for piecewise-constant distributions of
the electrical properties of media. The described methods can be used to model 3D
media containing complex structures. The principle of constructing a grid adapted to
the relief and measuring equipment can be useful for the development of different
programs and applications in geophysical practice.
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