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PREFACE

This book grew out of my habilitationsschrift at the University of Tübingen in
2002. Currently, there is only one monograph dealing with the issue of fixed-
parameter algorithms: Rod G. Downey and Michael R. Fellows’ groundbreaking
monograph Parameterized Complexity (1999). Since then there have been numer-
ous new results in this field of exactly solving combinatorially hard problems.
Moreover, Downey and Fellows’ monograph focuses more on structural com-
plexity theory issues than on concrete algorithm design and analysis. By way
of contrast, the objective of this book is to focus on the algorithmic side of
parameterized complexity, giving a fresh view of this highly innovative field of
algorithmic research.

The book is divided into three parts:

1. a broad introduction that provides the general philosophy and motivation;

2. a part on algorithmic methods developed over the years in fixed-parameter
algorithmics, forming the core of the book; and

3. a final section discussing the essentials of parameterized hardness theory,
focusing first on W [1 ]-hardness, which parallels NP -hardness, then stating
some relations to polynomial-time approximation algorithms, and finishing
up with a list of selected case studies to show the wide range of applicability
of the methodology presented.

The book is intended for advanced students in computer science and related
fields as well as people generally working with algorithms for discrete problems.
It has particular relevance when studying ways to cope with computational in-
tractability as expressed by NP-hardness theory.

The reader is recommended to start with Part I, but Parts II and III do
not need to be read in the given order. Thus, from Chapter 7 on (with a few
exceptions) there are almost no restrictions concerning the chosen order. The
material presented can be used to form a course exclusively dedicated to the
topic of fixed-parameter algorithms as well as to provide supplementary material
for an advanced algorithms class.

We believe that the concept of fixed-parameter tractability is fundamental
for the algorithmics of computationally hard discrete problems. Due to the ubiq-
uity of the proposed problem parameterization approach discussed here, fixed-
parameter algorithms should be seen as basic knowledge for every algorithm
designer. May this book help to spread this news.
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Part I

Foundations

A fixed-parameter algorithm is one that provides an optimal solution to a discrete
combinatorial problem. As a rule, such a problem is NP -hard and that is why
one must accept exponential running times for fixed-parameter algorithms. The
fundamental idea is to restrict the corresponding, seemingly unavoidable, “com-
binatorial explosion” that causes the exponential growth in the running time
of certain problem-specific parameters. It is hoped then that these parameters
(in the concrete application behind the problem under consideration) might take
only relatively “small” values, so that the exponential growth becomes affordable;
that is, the fixed-parameter algorithm efficiently solves the given “parameterized
problem”.

As an example of “parameterization”, consider the problem of placing as few
queens as possible to attack all the squares on a chessboard. There is a way to
place only five (which is optimal) queens on an 8×8 chessboard to do this. Here,
a natural parameter is the size k of the solution set we search for, that is, the set
of queens to be placed. Hence for 8× 8 chessboards k = 5. What about general
n× n chessboards? Can we find a minimum solution efficiently?

A “more serious” example is the following. Assume that one wants to establish
transmission towers; the towers will be located on inhabited buildings, and each
such building must be reachable by at least one transmission tower. In addition,
assume that if a tower in location u can reach location v, then also one at v can
reach u. Then, given all pairs that can reach each other, how many transmitters
are needed to cover all the buildings? Again, a natural parameter to consider is
the number of transmitters needed. Thus the task is to find a small number of
transmission tower locations such that all buildings can be reached.

Both examples are instantiations of an NP-hard graph problem called Dom-
inating Set:

Input: An undirected graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices S ⊆ V with k or fewer vertices such that
each vertex in V is contained in S or has at least one neighbor in S.

An optimal solution to Dominating Set can be found in O(nk+1) steps by
simply trying all size-k subsets of the vertex set V of size n. According to param-
eterized complexity theory, there is little hope of doing significantly better than

1



2 FOUNDATIONS

this. Fortunately, however, for restricted classes of graphs we can do better. For
instance, for planar graphs (that is, graphs that can be drawn in the plane with-
out edge crossings) Dominating Set can be solved in O(8k ·n) time. Note that
Dominating Set remains NP -hard when restricted to planar graphs. Another

algorithm even finds a solution in O(c
√

k · n) time for some (larger) constant c.
This is what we understand by fixed-parameter algorithms—the superpolyno-
mial factor in the running time depends exclusively on the parameter k. Finally,
again in case of planar graphs, there are simple data reduction rules that—in
polynomial time—can shrink an original input graph with n vertices into a new
one with only O(k) vertices such that the search for an optimal solution can be
done within the size O(k) instance. All these results lead to the fundamental
conclusion that the combinatorial explosion can be confined to the parameter k
only, the central goal to be achieved by fixed-parameter algorithms. Generally
speaking, a fixed-parameter algorithm solves a problem with an input instance
of size n and a parameter k in

f(k) · nO(1)

time for some computable function f depending solely on k. That is, for every
fixed parameter value it yields a solution in polynomial time and the degree of
the polynomial is independent from k.

Fixed-parameter algorithms have been scattered around the literature for
decades. As a method of algorithm design and analysis, parameterized complex-
ity was systematized by Rod G. Downey and Michael R. Fellows and some of their
co-authors during the 1990s. In particular, they developed a theory of parameter-
ized computational complexity, which is a strong mathematical tool for guiding
fixed-parameter algorithm design. In this book, we make use of parameterized
computational complexity theory to the extent that is necessary to learn about
the design and analysis of algorithms. More structural complexity-theoretic as-
pects are neglected in this work. Fixed-parameter algorithms are introduced as
a valuable alternative to complement other algorithmic approaches for attacking
hard combinatorial problems, such as approximation or heuristic algorithms.

Fixed-parameter algorithms adhere to a very natural concept when trying to
solve hard combinatorial problems. In the following we give a concise descrip-
tion of the very basic ideas and objectives behind this work and parameterized
complexity analysis. The focus of Part I is on encouraging the reader to adopt
a parameterized view of the study of computationally hard problems. Besides
simple motivating examples and the presentation of the elementary concepts
needed throughout the book, the breadth of the parameterized complexity ap-
proach is illustrated by means of an extensive discussion of the NP-complete
graph problem Vertex Cover. Having dealt with this perhaps most popular
parameterized problem, we finally move on and finish with a general discussion
on the “art” of parameterizing problems.
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INTRODUCTION TO FIXED-PARAMETER ALGORITHMS

Computationally hard problems are ubiquitous. The systematic study of compu-
tational (in)tractability lies at the heart of computer science. Michael R. Garey
and David S. Johnson’s monograph Computers and Intractability from the late
1970s was a landmark achievement in this direction, providing an in-depth treat-
ment of the corresponding theory of NP -completeness. With the theory of NP -
completeness at hand, we can prove meaningful statements about the compu-
tational complexity of problems. But what happens after we have succeeded in
proving that a problem is NP-hard (that is, “intractable”), but which neverthe-
less must be solved in practice? In other words, how do we cope with computa-
tional intractability?

The approach followed in this book is based on worst-case analysis of de-
terministic, exact algorithms to solve hard problems. In the course of dealing
with intractable problems, we will also refer to several other related algorithmic
methodologies, such as approximation algorithms, average-case analysis, ran-
domized algorithms, and purely heuristic methods. Each approach has advan-
tages and disadvantages. With regard to exact fixed-parameter algorithms, the
advantages are

• guaranteed optimality of the solution; and

• provable upper bounds on the computational complexity.

The disadvantage is that we have to take into account

• exponential running time factors.

Clearly, exponential growth quickly becomes prohibitive when running al-
gorithms in practice. Fixed-parameter algorithmics provides guidance on the
feasibility of the “exact algorithm approach” for hard problems by means of a
refined, two-dimensional complexity analysis. The fundamental idea is to strive
for better insight into a problem’s complexity by exploring (various) problem-
specific parameters to find out how they influence the problem’s computational
complexity. Ideally, we aim for statements such as “if some parameter k is small
in problem X , then X can be solved efficiently”. For instance, in the case of the
NP -complete graph problem Vertex Cover we know that if the solution set
we are searching for is “small”, then this set can be found efficiently whatever
the graph looks like and however big it is—the exponential factor in the running
time amounts to less than 1.28k, where the parameter k is the size of the solution
set sought.

3



4 INTRODUCTION TO FIXED-PARAMETER ALGORITHMS

We begin with three brief case studies of computationally hard problems. In
doing so, we give a concise overview of how to cope with their computational
intractability, providing the first examples of the fixed-parameter approach.

1.1 The satisfiability problem

The CNF-Satisfiability problem for Boolean formulae in conjunctive normal
form may be considered the “drosophila1 of computational complexity theory”.
This fundamental NP -complete problem has been the subject of research on
exact algorithms for decades and it continues to play a central role in algorithmic
research—the annual “SAT” conference is devoted to theory and applications of
satisfiability testing. The problem is defined as follows.

Input: A Boolean formula F in conjunctive normal form.
Task: Determine whether or not there exists a truth assignment for the
Boolean variables in F such that F evaluates to true.

Example 1.1 The formula

(x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

is satisfiable, satisfied by the truth assignment T (x1) = true, T (x2) = false ,
T (x3) = true. An alternative satisfying assignment is T (x1) = false , T (x2) =
true, T (x3) = false . By way of contrast, there is no satisfying assignment for the
formula

(x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3).

Numerous applications such as VLSI design and model checking make CNF-
Satisfiability of real practical interest. Often, however, in concrete applica-
tions the corresponding problem instances turn out to be much easier than one
might expect given the fact of CNF-Satisfiability’s NP-completeness. For in-
stance, large CNF-Satisfiability instances arising in the validation of automo-
tive product configuration data are efficiently solvable. Hence the question arises
of whether we can learn more about the complexity of CNF-Satisfiability
by means of studying various problem parameters. In particular, we are less in-
terested in empirical results and more in provable performance bounds related
to various parameterizations of CNF-Satisfiability. In this way, we hope to
obtain a better understanding of the problem properties that might be of algo-
rithmic use.

Formally, an input of CNF-Satisfiability is a conjunction of m clauses
where each clause consists of a disjunction of literals, that is, negated or non-
negated Boolean variables. Let there be n different variables occurring in the
formula. We list a set of various “parameterizations” of CNF-Satisfiability.

1Drosophila melanogaster is a fruit fly and is one of the most valuable organisms in biological
research. It has been used as a model organism for research for almost a century.



THE SATISFIABILITY PROBLEM 5

The point subsequently is to see how the running time bounds of solving algo-
rithms depend on the given parameters. The central question is whether and
how we can confine the seemingly unavoidable combinatorial explosion to the re-
spective parameter. In particular, how small can the corresponding exponential
term be kept? We list some results from the literature given in the end of this
chapter.

Parameter “clause size”. The maximum number k of literals in any of the
given clauses is a very natural formula parameter. For k = 3 (that is, 3-
CNF-Satisfiability), however, the problem remains NP -complete,
whereas it is polynomial-time solvable for k = 2 (that is, 2-CNF-Satisfi-
ability). Thus, for upperbounding the combinatorial explosion, this para-
meterization seems of little help.

Parameter “number of variables”. The number n of different variables oc-
curring in a formula significantly influences the computational complexity.
Since there are 2n different truth assignments, in essentially2 this number of
steps CNF-Satisfiability can be solved. When restricting the maximum
clause size by some k, for instance, k = 3, better bounds are known. The
currently best upper bound for a deterministic algorithm solving 3-CNF-
Satisfiability is below 1.49n. The currently best randomized algorithm
for 3-CNF-Satisfiability has expected running time below 1.33n.

Parameter “number of clauses”. If the number of clauses in a formula can
be bounded from above by m, then CNF-Satisfiability can be solved in
1.24m steps.

Parameter “formula length”. If the total length (that is, counting the num-
ber of literal occurrences in the formula) of the formula F is bounded from
above by � := |F |, then CNF-Satisfiability can be solved in 1.08� steps.

The above parameterizations do not suffice to explain all the cases of good be-
haviour of CNF-Satisfiability in many practical situations. There are appli-
cation scenarios where none of them would lead to an efficient algorithm. Hence
the following way of parameterizing CNF-Satisfiability seems to offer good
prospects.

Parameters exploiting “formula structure”. There are several recent ex-
act algorithms with exponential bounds depending on certain structural
formula parameters. These parameters are based on structural graph de-
compositions where a graph is associated with the formula structure—for
instance, one obtains so-called variable interaction graphs. The basic idea
is that the way in which different variables (or literals) occur in common
clauses—and thus how they interact—strongly influences the complexity
of finding a satisfying assignment if any exists. Then structure and width

2We neglect polynomial-time factors in the running time analysis throughout the book
whenever they play a minor role in our considerations.



6 INTRODUCTION TO FIXED-PARAMETER ALGORITHMS

concepts for graphs (as considered later in this book) are exploited to de-
rive tractability results for formulae with particular structural properties
on the graph side.

Finally, from the parameterized complexity theory point of view the following
parameterization is of particular relevance.

Parameter “weight of assignment”. Here it is asked whether a formula has
a satisfying assignment with exactly k variables being set to true. Although
the parameterization with this “weight parameter” seems rather artifi-
cial, it plays a major role in characterizing parameterized intractability
and the corresponding structural complexity theory. It serves as an an-
chor point in the parameterized hardness program similar to the role that
CNF-Satisfiability plays in classical NP-completeness theory. Thus,
in particular, it is considered very unlikely that this version of CNF-
Satisfiability can be solved in f(k) · |F |O(1) steps. So far it is only
known how to achieve the trivial running time nO(k) by testing all

(
n
k

)
candidate truth assignments—it seems that the combinatorial explosion
cannot be confined to a function exclusively depending on k. Note that
this hardness already holds true when considering the weighted version of
2-CNF-Satisfiability.

In contrast, if one asks whether there is a satisfying assignment with at
most k variables set true, then this weighted 2-CNF-Satisfiability can
be easily solved using a size-2k search tree: as long as there are clauses with
only positive literals, take an arbitrary one of these clauses and branch into
the two cases, setting either of the variables true (at least one of the two
variables must be set true). In each branch, simplify the formula according
to the variable chosen to be set true. After that, a formula remains where
every clause has at least one negative literal and this instance is trivial to
solve. Clearly, this method generalizes to arbitrary constant clause sizes.

To summarize, different ways of parameterizing CNF-Satisfiability lead to
a better understanding of the problem’s inherent complexity facets. In particular,
it is hoped that structural parameterizations in the future will yield new insights
into tractable cases of CNF-Satisfiability; but, in any case, there surely is no
“best parameterization”. As a rule, the nature of the complexity of hard compu-
tational problems will probably almost always require such a multi-perspective
view in order to gain better insight into practically relevant, efficiently solvable
special cases. To cope with intractability in a mathematically sound way, it seems
that we have to pay the price of shifting our view from considering the input
through just one pair of glasses (mostly these glasses are called “complexity mea-
surement relative to input size”) to a multitude of pairs of glasses, each of them
with a different focus (that is, parameter).

CNF-Satisfiability, as defined above, is a decision problem with answer
either “yes” or “no”, usually also providing a satisfying truth assignment if it ex-
ists. In most application scenarios considered in this book, however, we will have
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to deal with optimization problems where the goal is to minimize or maximize a
certain solution value. An optimization version of CNF-Satisfiability is Max-
imum (CNF-)Satisfiability, in which one is asked to find a truth assignment
that simultaneously satisfies as many clauses as possible. Obviously, Satisfia-
bility is a special case of Maximum Satisfiability in the sense that here one
asks whether all clauses can be satisfied. Analogous parameterizations to those
for Satisfiability can also be investigated for Maximum Satisfiability.

Parameter “clause size”. Even for maximum clause size k = 2 (Maximum
2-Satisfiability) the problem remains NP-complete.

Parameter “number of variables”. Analogously to Satisfiability, Maxi-
mum Satisfiability can be solved in 2n steps, where n denotes the num-
ber of variables appearing in the given formula. It is an open problem to
obtain better bounds even if the maximum clause size is 3 (Maximum 3-
Satisfiability). A recent breakthrough shows, however, that Maximum
2-Satisfiability can be solved in 1.74n steps.

Parameter “number of clauses”. If the number of clauses in a formula can
be bounded from above by m, then Maximum Satisfiability can be
solved in 1.33m steps. Maximum 2-Satisfiability can be solved in 1.15m

steps.

Parameter “formula length”. If the total length of the formula is bounded
from above by �, then Maximum Satisfiability can be solved in 1.11�

steps. Maximum 2-Satisfiability can be solved in 1.08� steps.

We are not aware of investigations of Maximum Satisfiability concerning
parameterizations according to “formula structure” as discussed for Satisfia-
bility.

1.2 An example from railway optimization

In our second example, we deal with a graph problem that is directly moti-
vated by an application in railway optimization. Although the fixed-parameter
approach in this case so far is not able to prove tractability according to a reason-
able parameterization, the preprocessing technique presented is of great interest
as a core algorithmic tool in parameterized complexity studies. The problem is
defined as follows.

Input: A set of trains, a set of train stations, and for each train the
stations where it stops.
Task: Find a minimum size set of train stations such that each train
stops in at least one of the selected stations.

The motivation is that at the selected stations S one wants to build some supply
stations for trains. To save costs, the set S shall be as small as possible. The
formalization as a graph problem leads to an NP-complete version of the Dom-
inating Set problem in bipartite graphs. To do so, one associates trains with
one vertex set and stations with the other vertex set; one draws an edge between
a train vertex and a station vertex iff the train stops in this station:
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Fig. 1.1. An input instance with four trains (left-hand side) connected to their
respective stopping stations (right-hand side).

Input: An undirected, bipartite graph G = (V1 ∪ V2, E) with disjoint
vertex sets V1 and V2 and edge set E.
Task: Find a minimum size set S ⊆ V2 such that each vertex in V1 has
an adjacent edge connecting it to some vertex in S.

Example 1.2 Figure 1.1 shows an example with four trains (drawn on the left
hand-side and forming the set V1) and five stations (drawn on the right-hand
side and forming the set V2). In this simple example, one may easily verify that
an optimal solution S can be built by (arbitrarily) choosing exactly two of the
first, the third and the fifth vertex on the right-hand side.

Here, a natural parameter to look at is the size k of set S, that is, k := |S|.
According to parameterized complexity theory, it is unlikely that we can show a
running time that is exponential exclusively with respect to k—the complexity
behaviour is similar to that described in Section 1.1 for Satisfiability with
respect to the parameter “weight of assignment”. Furthermore, it is open to
find and study other reasonable parameterizations of the problem. Nevertheless,
simple data reduction by polynomial-time preprocessing rules seems to suffice
to solve the problem for many practical input instances. For the two subsequent
data reduction rules there is no proven performance guarantee in terms of fixed-
parameter tractability—later we will explore data reduction rules that lead to so-
called problem kernels that have such a desirable performance guarantee. These
two rules are based on neighborhood considerations. To this end, define for a
vertex v ∈ V1 ∪ V2 the set of its neighbors N(v) := { u | {u, v} ∈ E }.
Train Rule. For t, t′ ∈ V1: if N(t′) ⊆ N(t), then remove t (together with its

adjacent edges) from the input instance.

Station Rule. For s, s′ ∈ V2: if N(s′) ⊆ N(s), then remove s′ (together with
its adjacent edges) from the input instance.

The interpretation of the Train Rule is that train t′ stops only in stations where
train t also stops. Thus, as soon as we “cover” train t′ by one station we automat-
ically cover train t as well. Hence we can remove t from further considerations
when searching for an optimal solution S. The Station Rule works analogously
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Fig. 1.2. Reduced instance.

to the Train Rule, interchanging stations with trains. Note, however, that after
applying the Train Rule or Station Rule not all optimal solutions can necessarily
be found any more.

Example 1.3 (Continued.) Refer to Figure 1.2 to see the resulting reduced in-
stance after having applied both rules as often as possible to the input instance
in Figure 1.1. Using this reduced instance, it is significantly easier to detect what
an optimal solution S is. Clearly, two out of three vertices on the right-hand side
suffice.

An important point in applying these data reduction rules is that they always
guarantee to find at least one optimal solution (with the help of the simpler
reduced instance). Note, however, that there is no longer a guarantee of finding
all optimal solutions.

The correctness and polynomial-time realizability of the above two rules is
clear. The nice thing about these data reduction rules is that, as a matter of
practical experience, for input instances such as those occurring in railway op-
timization they usually seem to suffice to transform the overall input instance
into a collection of small connected components. Each of these connected com-
ponents then can be solved quickly by simple exhaustive search, thus providing
an optimal solution to the original problem. The drawback from a theoretical
point of view is that we cannot guarantee (that is, prove) the effectiveness of the
above two rules based on a rigid mathematical analysis. For other NP-complete
problems such an analysis is possible: fixed-parameter algorithmics offers the
concept of “reduction to a problem kernel” to give a theoretically sound frame-
work for analyzing the virtue of data reduction. An in-depth treatment of this
issue is given in Chapter 7; reduction to a problem kernel together with data
reduction rules also plays an important role in the next (and final) case study in
the following section.

Finally, it is worth emphasizing that data reduction is usually considered and
used as a form of preprocessing before the “main algorithm” starts. It has been
shown, however—both theoretically and empirically—that it is often beneficial
to apply data reduction rules over and over again during the course of the whole
algorithm. The point is that after a few steps of the main algorithm the input
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v2

u2 v4

u3
v1

u1v3

u4

Fig. 1.3. An instance of Multicut in Trees with four demand paths.

instance may have changed such that data reduction again applies. As a rule,
data reduction is frequently so effective that there is rarely a case where one
would not want to exploit it.

1.3 A communication problem in tree networks

Our third and last introductory example gives a concrete fixed-parameter al-
gorithm together with its simple analysis. More specifically, we consider the
problem Multicut restricted to trees. It is motivated by applications in com-
munication networks. The problem is studied on general graphs as well; it is one
example of a relatively small number of graph problems that remain NP-complete
even when restricted to trees. Multicut in Trees is defined as follows.

Input: An undirected tree T = (V,E), n := |V |, and a collection H of m
pairs of nodes in V , H = {(ui, vi) |ui, vi ∈ V, ui �= vi, 1 ≤ i ≤ m}.
Task: Find a minimum size subset E′ of E such that the removal of the
edges in E′ separates each pair of nodes in H .

Each pair of nodes in a tree uniquely determines a corresponding path which we
subsequently refer to as a demand path.

Example 1.4 Figure 1.3 gives an example instance for Multicut in Trees
with four pairs of nodes, that is, four demand paths. There is an optimal solution
which removes two edges as marked in Figure 1.4.

By trying all possibilities (and using the fact that for trees |E| = n−1) we can
solve the problem in 2n−1 steps. Can we do better if there exists a small solution
set E′? Consider the parameter k := |E′| and study how k influences the problem
complexity. Note that clearly k < n but in some application scenarios k � n
seems to be a reasonable assumption. Here, the following simple algorithm works.
Assume that the given tree is (arbitrarily) rooted—that is, choose an arbitrary
node r ∈ V and direct all edges from r to its neighbors (that is, children), from
r’s children to their children, and so on. In Figure 1.3 the chosen node r is
drawn at the top of the picture. Consider a pair of nodes (u, v) ∈ H such that
the uniquely determined path p between u and v has maximum distance from
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v2
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u3
u4v1

u1v3

Fig. 1.4. An optimal solution that removes the two marked edges.

the root r. In Figure 1.3 (u2, v2) or (u4, v4) is such a pair. Call w the node on p
that is closest to r; that is, w is the least common ancestor of u and v.

Then one may easily see (using the tree structure) that there is an optimal
solution that contains at least one of the two path edges connected to w. This
implies that we can build a search tree of depth bounded by k: simply search for w
as specified above and then branch into the two cases (at least one of them has to
yield an optimal solution) of taking one of the two neighboring path edges of w
into the solution edge set to be constructed. Each of these two cases represents
the deletion of one of the two edges. After deleting an edge, we remove all no
longer connected node pairs from H . Iterating this process at most k times, we
obtain a search tree of size bounded by 2k, and thus we have a fixed-parameter
algorithm for Multicut in Trees with respect to parameter k. Note that in
a straightforward way, by taking both edges, one also obtains a polynomial-
time factor-2 approximation algorithm. Nothing better is known. An in-depth
treatment of depth- and thus size-bounded search trees is given in Chapter 8.

Additionally, there is a set of simple data reduction rules for Multicut in
Trees. In the description of the subsequent rules, we often contract an edge e.
Let e = {v, w} and let N(v) and N(w) denote the sets of neighbors of v and w,
respectively. Then, contracting e means that we replace v and w by one new
vertex x and we set N(x) := N(v) ∪ N(w) \ {v, w}. We occasionally consider
paths P1 and P2 in the tree and we write P1 ⊆ P2 when the node set (and edge
set) of P2 comprises that of P1. Now, the correctness of the following four data
reduction rules and their polynomial-time realizability is easy to see.

Idle Edge. If there is a tree edge with no path passing through it, then contract
this edge.

Unit Path. If a demand path has length one (in other words, it consists of
exactly one edge), then the corresponding edge e has to be in the solution
set E′. Contract e and remove all demand paths passing e from H and
decrease the parameter k by one.

Dominated Edge. If all demand paths that pass edge e1 of T also pass edge e2
of T , then contract e1.
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Dominated Path. If P1 ⊆ P2 for two demand paths, then delete P2.

These rules transform a Multicut in Trees instance (T,H) with param-
eter k into a “reduced” instance (T ′, H ′) with parameter k′ where k′ ≤ k. The
rules guarantee that (T,H) has a solution of size at most k iff (T ′, H ′) has a solu-
tion of size at most k′. Notably, none of the above four data reduction rules makes
explicit use of the parameter value k. That is, to apply them, parameter k does
not need to be known in advance. Since this turns out to be a crucial advantage
in practical applications, this sort of rule is termed parameter-independent data
reduction. By way of contrast, consider the following two parameter-dependent
data reduction rules for Multicut in Trees.

Disjoint Paths. If an instance of Multicut in Trees has more than k edge-
disjoint demand paths, then there is no solution with parameter k.

Overloaded Edge. If more than k distinct length-two demand paths pass
through an edge e, then contract e, remove all demand paths passing e,
and decrease parameter k by one.

Again, the correctness of these rules is easy to verify. By using the above six
data reduction rules together with two more parameter-dependent, slightly more
complicated, rules it is possible to show—using a fairly demanding mathematical
analysis—that a reduced instance of Multicut in Trees has a size that can
be upper-bounded by a function solely depending on k. In words of parameter-
ized complexity analysis, these data reduction rules lead to a problem kernel for
Multicut in Trees with respect to parameter k. Recall that, unfortunately,
such a problem kernel could not be proven for the railway optimization problem
studied in Section 1.2; there is strong theoretical evidence that this will not be
possible. Problem kernelization is a key issue in fixed-parameter algorithm design
and it will be explored in depth in Chapter 7.

In summary, polynomial-time preprocessing by data reduction rules is not
only a tool of central importance for designing fixed-parameter algorithms but
will almost always be beneficial in any approach attacking computationally hard
problems. The railway optimization problem from the previous section is only
one important example in this respect.

1.4 Summary

The leitmotif of parameterized algorithm design and analysis is the search for
a better explanation of what causes the hardness of NP -complete and related
problems. The method of attack is to do a two-dimensional complexity analysis.
Besides a problem’s size itself, a parameter is also singled out and we investi-
gate whether and how the seemingly unavoidable combinatorial explosion can
be solely confined to this parameter. Fixed-parameter algorithmics is based on
worst-case analysis and it leads to exponential-time algorithms providing optimal
solutions for the given problems. The running times are analyzed in a mathemat-
ically rigorous way and several fundamental techniques, such as bounded search
trees and data reduction by preprocessing, play a key role. As a rule, “small”
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parameter values are required for there to be hope for efficient practical imple-
mentations of fixed-parameter algorithms. Compared with polynomial-time ap-
proximation algorithms, the advantage of fixed-parameter algorithms lies in the
guaranteed optimality of the solution; compared with purely heuristic methods,
the advantage of fixed-parameter algorithms lies in the rigorous mathematical
analysis with provable (worst-case) performance bounds.

It is important to notice that there are usually many ways of parameterizing a
problem. We saw several parameterizations of the Satisfiability problem, but
the Multicut in Trees problem also has more than one reasonable parameter-
ization. For instance, an alternative parameter here is the maximum number of
demand paths passing through an edge or node of the tree. Hence parameter-
ized complexity analysis allows for a multitude of views of one and the same
problem. Each of these views might require different techniques and algorithms.
Moreover, it seems clear that various parameterizations lead to the feasibility
of different, practically relevant, special cases of the considered problem. There
appears to be no way to avoid the study of more than one parameterization to
get a more complete picture of the landscape of (in)tractability—finding “good”
parameterizations of a problem is a task in its own. This is a rich playground for
creative and innovative ideas.

The aim of this work is not to list as many parameterized problems as pos-
sible together with (if they exist) their fixed-parameter algorithms, but to give,
in a sense, an application-oriented introduction to the prosperous field of de-
veloping and analyzing efficient fixed-parameter algorithms. To achieve this, we
start with presenting fundamental concepts, ideas, and observations in Part I.
In Part II we then exhibit key techniques in the development of fixed-parameter
algorithms. We reinforce the insights from Part II in Part III by several case
studies from various application fields, ranging from graph to logic problems. In
addition, Part III contains more theoretical considerations concerning parame-
terized complexity theory and connections to the related field of polynomial-time
approximation algorithms.

At the necessary risk of being incomplete and biased, the whole presentation
is kept within clear, relatively small dimensions. If you follow the references
given to the already extensive literature, this book might serve (and it is meant
as) a springboard into the fast developing field of research on fixed-parameter
algorithms.

1.5 Exercises

1. Determine how many queens are necessary to attack all squares on chess-
boards of sizes 5× 5, 6× 6, and 7× 7.

2. Discuss the various parameterizations of Satisfiability and the potential
practical usefulness of the corresponding exact algorithms mentioned in
Section 1.1. Are there parameters that can be related to each other (in at
least one way)?
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3. Give an easy argument why 3-Satisfiability can be solved in less than
2n steps, n being the number of Boolean variables.

4. Give an easy argument why Maximum 2-Satisfiability can be solved in
less than 2m steps, m being the number of clauses.

5. Find simple data reduction rules for Satisfiability, analyze their running
time, and prove their correctness.

6. Find simple data reduction rules for Maximum Satisfiability. Give at
least one rule that applies to Satisfiability but not to Maximum Sat-
isfiability.

7. Give running time estimates for the two data reduction rules in Section 1.2.

8. Consider a graph with vertices arbitrarily colored either black or white. We
look for a minimum size set S of vertices such that all black vertices have
at least one neighbor in S. Describe several simple data reduction rules for
such an input instance.

9. Show that the first four data reduction rules for Multicut in Trees also
lead directly to a size 2k search tree.

10. Give running time estimates for the four data reduction rules in Section 1.3.

11. For Multicut in Trees a minimum size set of edges to be removed is
sought. Consider two “node variants” of Multicut in Trees. For the first,
a minimum size of nodes to be removed (to disconnect all given node pairs)
is sought—so-called Unrestricted Node Multicut in Trees. For the
second, we additionally require that the nodes to be removed are not part
of any of the given node pairs—so-called Restricted Node Multicut
in Trees.

(a) Show that Unrestricted Node Multicut in Trees is polynomial-
time solvable.

(b) Restricted Node Multicut in Trees is NP -complete. Give a
fixed-parameter algorithm with search tree size 2k, where k denotes
the number of removed nodes.

1.6 Bibliographical remarks

Michael R. Garey and David S. Johnson’s opus (Garey and Johnson, 1979) is
a continuing source of hard problems for this work. Most NP-completeness re-
sults we encounter here can be found there. Parameterized complexity has been
chiefly developed by Rod G. Downey and Michael R. Fellows in their mono-
graph (Downey and Fellows, 1999). Their book summarizes work till the end of
the 1990s. It is broader in scope than this book; in particular, it contains much
more material concerning structural complexity and related theoretical issues
than considered here.

Results for Dominating Set in Planar Graphs as discussed in the in-
troduction to Part I can be found in Alber et al. (2005b), Alber et al. (2002),
and Alber et al. (2004). An early example of a fixed-parameter algorithm is
given in Dreyfus and Wagner (1972) for the so-called Steiner Tree problem
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in graphs. A very recent improvement of this algorithm can be found in Mölle
et al. (2005).

We assume familiarity with basic notions of algorithms and complexity as
can be found in standard textbooks such as Cormen et al. (2001), Kleinberg and
Tardos (2005), and Skiena (1998). In-depth treatments of approximations algo-
rithms can be found in Ausiello et al. (1999), Hochbaum (1997), and Vazirani
(2001), average-case analysis (as opposed to worst-case analysis, which is done
in this book) is treated in Hofri (1995), randomized algorithms are the subject of
Mitzenmacher and Upfal (2005) and Motwani and Raghavan (1995), and exposi-
tions on heuristic methods are to be found in Michalewicz and Fogel (2004) and
Pearl (1984). Finally, the book by Juraj Hromkovič (Hromkovič, 2002) spans the
whole field of algorithmics for hard problems and also covers a little parameter-
ized complexity analysis, relating it to the concept of pseudo-polynomial-time
algorithms.

The mentioned upper bound 1.28k for Vertex Cover derives from Chen
et al. (2001) and Chandran and Grandoni (2005). The NP -completeness results
for Satisfiability and Maximum Satisfiability are contained in Garey and
Johnson (1979). The proceedings of the annual “SAT” conference appear in
Springer’s Lecture Notes in Computer Science series. Example applications of
Satisfiability in automotive product configuration and the “easy” solvability
of the corresponding formulae can be found in Küchlin and Sinz (2000) and Sinz
et al. (2003). A survey on research results for Satisfiability is Dantsin et al.
(2001). The upper bound 1.49n for 3-Satisfiability with respect to the number
of variables is from Dantsin et al. (2002). The randomized algorithm with upper
bound 1.33n is described in Iwama and Tamaki (2003). The upper bounds with
respect to the number of clauses and formula length are due to Hirsch (2000). The
article by Szeider (2004b) surveys several Satisfiability algorithms exploiting
formula structure. The parameter “weight of assignment” and its relevance in
parameterized intractability results are deeply explored in Downey and Fellows
(1999). The breakthrough showing that Maximum 2-Satisfiability can be
solved in 1.74n steps is due to Williams (2004). Further bounds for Maximum
Satisfiability and Maximum 2-Satisfiability are contained in Bansal and
Raman (1999), Chen and Kanj (2004), and Gramm et al. (2003a).

The example of railway optimization and the corresponding data reduction
rules is taken from Weihe (1998) and Weihe (2000). The parameterized hard-
ness of the problem follows from the theory developed in Downey and Fellows
(1999) (refer to Red-Blue Dominating Set). Multicut in Trees was in-
troduced and studied in Garg et al. (1997), where NP -completeness, MaxSNP -
hardness, and polynomial-time factor-2 approximability (even for the more gen-
eral weighted version) was shown. Our presentation concerning fixed-parameter
issues follows Guo and Niedermeier (2005b).

Many survey papers on parameterized complexity and algorithmics are avail-
able: see Alber et al. (2001), Downey et al. (1999), and Raman (1997) for older
and Downey (2003), Fellows (2002), Fellows (2003a), Fellows (2003b), Grohe
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(2002), and Niedermeier (2004) for more recent ones. A survey with the slightly
different focus of “exact algorithms” is Woeginger (2003). The surveys Downey
(2003), Fellows (2002), and Fellows (2003b) put special emphasis on the connec-
tion to approximation algorithms and, in particular, polynomial-time approx-
imation schemes (PTASs). The survey by Grohe (2002) is directed towards a
database audience and the surveys Fellows (2003a) and Niedermeier (2004) deal
with the diverse possibilities of problem parameterization.
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PRELIMINARIES AND AGREEMENTS

In this chapter we briefly sketch some of the notation used throughout the book.
To avoid lengthy and tiring material dealing mostly with definitions, advanced,
more problem-specific concepts and notions will be introduced in the course of
the exposition in the various chapters where needed. Also, we assume a sound
basic knowledge of (discrete) mathematics and familiarity with the very fun-
damentals of algorithms and complexity. Refer to the bibliographical remarks
in Section 2.5 for pointers to more complete presentations of the subsequently
described definitions and concepts.

2.1 Basic sets and problems

Finite alphabets are usually denoted by Σ. We often deal with the set of non-
negative integer numbers, also denoted by N. By way of contrast, R refers to the
real numbers, where R+ is the subset of all positive reals.

This work is about exact algorithms that solve computationally hard prob-
lems. We present problems in an “input-task-style”. This first of all refers to
decision problems where it is asked whether, for a given input instance of a
problem, the answer is “yes” or “no”. The task is to find the correct answer. A
standard example is given with the basic Satisfiability problem as described
in Section 1.1. As a rule, however, there exists a naturally corresponding op-
timization problem which tries to minimize or maximize a certain cost value.
For instance, a natural optimization version of Satisfiability is the Maximum
Satisfiability problem as described in Section 1.1. All algorithms in this work
can be used not only to output “yes” or “no” to answer the decision question, but
can also be easily adapted to constructively output a desired solution object—
most of the time they already do. Moreover, in most cases the algorithms can
also be modified to deliver optimal solutions (that is, not only fulfilling the given
constraints, but being optimal among all these solutions) to the corresponding
optimization problem. We do not make a sharp distinction between decision or
optimization for the parameterized problems introduced below (Section 3.1) be-
cause it will always be made clear from the context what is meant. As a matter
of fact, in a certain sense one may identify decision and parameterized problems
in many cases.

2.2 Model of computation and running times

The Random Access Machine (RAM ) model of computation will be used to
give a machine-independent description of algorithms, sometimes using pseudo-
code in the same style as is common in standard textbooks on algorithms and

17
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complexity. Particular features of RAM computation are that each “simple”
operation (basic arithmetic, assignments, if-statements, etc.) takes one time unit,
as does every access to one memory cell (with some reasonable word size). In
particular, the word size is big enough to hold all numbers occurring in the
algorithms presented. None of the described RAM features will be misused in the
sense that the corresponding algorithms could not be implemented on existing
computers in an efficient way. The RAM model employed, in order to simplify
the analysis of algorithms, will not distinguish between different levels of the
memory hierarchy (cache versus disk etc.).

We use the familiar “big Oh notation” to upper-bound the running times
of our algorithms. Hence we ignore constant factors, but, if appropriate, we
point to cases where the constant factors involved in the algorithms are large
and thus might threaten or destroy the practical usefulness of the algorithms.
Recall that the use of “Θ” instead of “O” means that there is in addition a
corresponding lower bound. The use of “o” instead of “O” means that we refer
to an asymptotically strict less than constant factor growing function following
the “o”. For example, we have that n = o(n logn). All running time analysis in
this work is worst-case analysis, that is, the presented bounds hold over all input
instances of a given problem. At a few points, partially based on experimental
experience, we will indicate that the given bounds or the worst-case analysis as
such appear to be too pessimistic when the algorithm is applied in practice—to
analyze mathematically any kind of average-case complexity, however, is beyond
the scope of this work. Indeed, due to the inherent difficulties of average-case
analysis starting with the “simple” problem to define what a practically relevant
average case is and continuing with difficult mathematical problems, relatively
little is generally known about average-case complexity.

2.3 Strings and graphs

A word or, equivalently, a string over a finite alphabet Σ, is a sequence of
elements from Σ. Strings play a particularly important role in fixed-parameter
algorithms related to computational biology. Here, we also make use of the Ham-
ming distance measure dH(s, t) between two strings s and t of equal length L.
This is defined as

|{ p | s[p] �= t[p], 1 ≤ p ≤ L }|,
where s[p] denotes the character at position p in string s.

Many computational problems that we study are graph problems. An undi-
rected graph G is a pair (V,E), where V is a finite set of vertices and E is a finite
set of edges which are unordered pairs of vertices. Almost all graphs considered
in this work are undirected—ordered pairs of vertices yield directed edges and
thus directed graphs. Furthermore, all our graphs are simple (that is, there is
at most one edge between each pair of vertices) and do not contain self-loops
(that is, edges from a vertex to itself are forbidden). The degree of a vertex is the
number of edges incident to it. A graph is d-regular if every vertex has degree
exactly d. The (open) neighborhood of a vertex v in graph G = (V,E) is defined
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as N(v) := { u | {u, v} ∈ E }. In a d-regular graph each neighborhood has size
exactly d. The closed neighborhood N [v] of v is then N(v) ∪ {v}. Finally, for a
vertex set U ⊆ V we define N(U) :=

⋃
v∈U N(v) and N [U ] :=

⋃
v∈U N [v]. A path

in a graph is a sequence of pairwise distinct vertices so that subsequent vertices
are adjacent in the graph. If the last vertex is adjacent to the first vertex in the
sequence, we have a cycle. A graph is connected if every pair of vertices is con-
nected by a path. If a graph is not connected then it naturally decomposes into
its connected components. Trees are undirected connected graphs that contain
no cycles. Sometimes we deal with rooted trees. These arise when choosing one
distinct vertex (the root) and directing all edges from the root to its neighbors—
which are then called its children—analogously directing all edges between the
root’s children and their neighbors different from the root, and so on.

For a graph G = (V,E) and a set V ′ ⊆ V , the subgraph of G induced by V ′

is denoted by G[V ′] = (V ′, E′), where E′ := { {u, v} ∈ E | (u ∈ V ′) ∧ (v ∈ V ′) }.
By way of contrast, a subgraph H = (V ′′, E′′) of G = (V,E) simply fulfills the
conditions that V ′′ ⊆ V , E′′ ⊆ E, and the endpoints of edges in E′′ must be
contained in V ′′. A subdivision of a graph is obtained by replacing some of the
edges with pairwise internally disjoint paths. A contraction of an edge e = {u, v}
is the replacement of u and v with a single new vertex whose incident edges are
the edges other than e that were incident to u or v. As a rule, after having
contracted an edge, we will delete any double edges that might possibly exist.
Minors are a core concept of modern graph theory. A graph H is a minor of a
graph G if a copy of H can be obtained from G by deleting and/or contracting
edges of G. Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there
exists a one-to-one mapping g : V → V ′ such that {u, v} ∈ E iff {g(u), g(v)} ∈
E′.

In this work we often deal with a special class of graphs called planar graphs.
A graph G is called planar if it can be drawn in the plane such that no two edges
cross. A particular crossing-free drawing of a graph is called a plane embedding
of that graph and a plane graph is a planar graph together with its embedding
in the plane. Planar graphs are sparse in the sense that the well-known Euler
formula says that a planar graph with n vertices has at most 3n − 6 edges—a
general graph may contain up to n(n−1)/2 edges. The faces of a plane graph are
the maximal regions of the plane that contain no point used in the embedding.
A triangular face is a face enclosed by only three edges (which is the smallest
number possible). A plane graph where every such face boundary is a cycle of
three edges is called a triangulation.

Planar graphs have a famous characterization due to Kasimir Kuratowski. A
graph is planar iff it does not contain a subdivision of K5 or K3,3. Herein, Ki,
i ≥ 1, denotes the complete graph with i vertices and all vertices adjacent to each
other. A graph is bipartite if each vertex is in exactly one of two subsets of the
vertex set of the graph and within each subset no two vertices are adjacent to each
other. Then Ki,j , i, j ≥ 1, denotes the complete bipartite graph with i vertices
in one subset and j vertices in the other subset and each pair of vertices from
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different subsets adjacent.

2.4 Complexity and approximation

Efficiency of algorithms from a theoretical point of view means algorithms run-
ning in time polynomial in the input size. By way of contrast, a vast number
of important computational problems have so far resisted efforts to find efficient
solutions. These problems are mostly known as NP-hard problems and they form
a central topic of basic research in theoretical computer science. The must-read
reference here is Michael R. Garey and David S. Johnson’s monograph Comput-
ers and Intractability. Formally, NP -hardness refers to decision problems and not
to optimization problems. Nevertheless, adopting a somewhat sloppy but simpli-
fying point of view, we often speak of the NP-hardness of optimization problems.
This is justified by the fact that optimization problems can be turned into de-
cision problems by introducing a threshold value as an additional part of the
input and asking whether there exists a solution above (in the case of maximiza-
tion problems) or below (in the case of minimization problems) the threshold
value. The mother of all NP-hard problems is the Satisfiability problem as
already considered in Section 1.1. An NP-hard problem is NP-complete if it can
be solved in polynomial time by a nondeterministic Turing machine—the (com-
plexity) class of all problems solvable by this means is denoted by NP . By way
of contrast, the computational complexity class P contains all problems that
can be solved in polynomial time by a deterministic Turing machine. Note that
polynomial time on a deterministic Turing machine is equivalent to polynomial
time on a RAM. All NP -complete problems are closely related to each other by
the concept of polynomial-time reducibility. That is, an instance I of any NP -
complete problem A can be transformed into an instance I ′ of any NP-complete
problem B in polynomial time such that I has a yes-answer concerning A iff I ′

has a yes-answer concerning B. All computational problems considered in this
work are decidable (or computable); that is, there is an algorithm for solving the
given problem in finite time.

NP -hard decision problems generally need exponential (or worse) running
time to be solved exactly—which appears to be impractical in many cases. A
less ambitious goal in attacking the corresponding optimization versions of the
NP-hard problems, as pursued by approximation algorithms, is to strive for ap-
proximate instead of optimal solutions. The hope is that the solution obtained is
“not too far from the optimum”. The quality of the approximation (with respect
to the given optimization criterion) is measured by the approximation ratio. An
approximation algorithm for a problem has approximation ratio ρ(n) if for any
input size n, the cost C of the solution produced by the approximation algorithm
is within a factor of ρ(n) of the cost C∗ of an optimal solution:

max{C/C∗, C∗/C} ≤ ρ(n).

The goal is to make ρ(n) as small as possible. For instance, the best known ap-
proximation ratio for Multicut in Trees (see Section 1.3) is ρ(n) = 2, meaning
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that in polynomial time a solution can be constructed that is at most twice as
large as the optimal one. By way of contrast, a formalization of the “domina-
tion problem” in the railway optimization scenario discussed in Section 1.2 leads
to the best known approximation ratio O(lnn). A polynomial-time approxima-
tion scheme (PTAS ) for an optimization problem is an algorithm which, for
each ε > 0 and each problem instance, returns a solution with approximation
ratio 1 + ε. The polynomial running time of such an algorithm, as a rule, de-
pends crucially on 1/ε. If the time bound depends only polynomially on 1/ε, then
the approximation scheme is called fully polynomial (FPTAS ) which is consid-
ered to be the best degree of approximability one can hope for. We mention in
passing that a class MaxSNP (also known as APX ) of optimization problems
can be “syntactically” defined together with a reducibility concept. The point
is that MaxSNP-hard problems are unlikely to have polynomial-time approxi-
mation schemes. For example, the optimization version of Multicut in Trees
(see Section 1.3) is MaxSNP -hard.

2.5 Bibliographical remarks

Many important concepts have been introduced in this chapter in a very informal,
sometimes sloppy, way. Hence this chapter must be seen as a brief reminder of
the things the reader should mostly have seen (and learned) already; if not, refer
to more detailed textbooks on algorithms, complexity, and discrete mathematics.
There are many good sources that provide the prerequisites needed for working
through this book. A very limited selection is as follows. Concerning fundamen-
tals and advanced material on design and analysis of algorithms, refer to Aho
et al. (1974), Cormen et al. (2001), and Kleinberg and Tardos (2005). The “al-
gorithm design manual” (Skiena, 1998) provides a quick overview of algorithmic
results and methods for many important problems. Fundamentals of theoretical
computer science and models of computation can be found in Hopcroft et al.
(2001). Valuable introductions to discrete mathematics and closely related is-
sues are Biggs (1989) and Matoušek and Nešetřil (1998). Particular sources for
graph theory with relations to algorithmic issues are available in Brandstädt et al.
(1999), Diestel (2005), Golumbic (2004), and West (2001). NP-completeness and
computational complexity theory are explored in Garey and Johnson (1979) and
Papadimitriou (1994). Approximation algorithms and corresponding theoreti-
cal issues are treated in Ausiello et al. (1999), Hochbaum (1997), and Vazirani
(2001). Ausiello et al. (1999) contains an extensive list of problems together
with their corresponding approximability properties and results—an up-to-date
on-line version is maintained through a web site. The recent monograph by
Hromkovič (2002) provides an extensive survey on various ways (including ap-
proximation and exact algorithms) to cope with computational intractability.
Related texts can also be found in Atallah (1999). The approximation ratio 2
and the MaxSNP -hardness results for Multicut in Trees are due to Garg et al.
(1997). The approximation ratio for domination and related problems appears
in Feige (1998).
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PARAMETERIZED COMPLEXITY THEORY—A PRIMER

We briefly sketch general aspects of the theoretical basis of the study of param-
eterized complexity. The focus of this chapter, however, lies on the algorithmic
side of fixed-parameter tractability, and the consideration of complexity-theoretic
issues remains very limited here. A more formal treatment follows in Part III.

3.1 Basic theory

The NP -complete minimization problem Vertex Cover is the best studied
problem in the field of fixed-parameter algorithms:

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices C ⊆ V with k or fewer vertices such that
each edge in E has at least one of its endpoints in C.

Figure 3.1 illustrates some basic graph problems occurring in the course of this
section.

In what follows, let n := |V | denote the number of graph vertices. Vertex
Cover is fixed-parameter tractable: there are algorithms solving it in O(1.28k +
kn) time. By way of contrast, consider the also NP -complete maximization prob-
lem Clique:

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices C ⊆ V with k or more vertices such that
C forms a clique, that is, C induces a complete subgraph of G.

Clique appears to be fixed-parameter intractable: it is not known whether it
can be solved in time f(k) ·nO(1), where f may be a computable but arbitrarily
fast growing function only depending on k. The well-founded conjecture is that
no such fixed-parameter algorithm for Clique exists. The best known algorithm
solving Clique runs in time O(nck/3), where c is the exponent on the time
bound for multiplying two integer n×n matrices (currently, c = 2.38). Note that
O(nk+1) is the running time for the straightforward algorithm that just checks
all size-k subsets. The decisive point is that k appears in the exponent of n, and
there seems to be no way “to shift the combinatorial explosion only into k”,
independent from n.

The observation that NP -complete problems like Vertex Cover and
Clique behave completely differently in a “parameterized sense” lies at the
very heart of parameterized complexity, a theory pioneered by Rod G. Downey
and Michael R. Fellows. In the remainder of the book, we will mainly concentrate

22
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Fig. 3.1. From left to right, the three central parameterized problems Ver-
tex Cover, Independent Set, and Dominating Set with optimal so-
lution sets marked. Their parameterized complexity ranges from FPT over
W [1 ]-complete to W [2 ]-complete. The parameter is always defined as the
size of the solution set and the respective solution sets are marked by light
shading (opposite to the dark shading of the remaining vertices).

on the world of fixed-parameter tractable problems such as those exhibited by
Vertex Cover. Here, we only briefly sketch some very basic ideas from the
theory of parameterized intractability in order to provide some background on
parameterized complexity theory and the ideas behind it.

We begin with some basic definitions of parameterized complexity theory.

Definition 3.1 A parameterized problem is a language L ⊆ Σ∗ × Σ∗, where Σ
is a finite alphabet. The second component is called the parameter of the problem.

In practically all the examples in this work the parameter is a nonnegative
integer or a set of nonnegative integers. Hence we will usually write L ⊆ Σ∗ ×N
instead of L ⊆ Σ∗ × Σ∗. In principle, however, the above definition leaves open
the possibility of also defining more complicated parameters; for instance the
subgraphs one is searching for in a graph. For (x, k) ∈ L, the two dimensions
of parameterized complexity analysis are constituted by the input size n, that
is, n := |(x, k)| and the parameter value k (usually a nonnegative integer) or its
size.

Definition 3.2 A parameterized problem L is fixed-parameter tractable if it
can be determined in f(k) · nO(1) time whether or not (x, k) ∈ L, where f is a
computable function only depending on k. The corresponding complexity class is
called FPT.

In the most general form of fixed-parameter tractability we have a multi-
plicative connection between f(k) and the polynomial running time part. The
running time for Vertex Cover is of the form f(k)+nO(1). Using “asymptotic
considerations” or, more importantly, by data reduction through preprocessing,
an algorithm with f(k) ·nO(1) running time can be transferred into an algorithm
with g(k) + nO(1) running time, g again being a function depending only on
parameter k. See Chapter 7 in Part II for more on this.

Fixed-parameter tractability is the key notion in this book. In Definition 3.2,
one may assume any standard model of sequential deterministic computation
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such as deterministic Turing machines or RAMs. For the sake of convenience,
if not stated otherwise, we will always take the parameter, denoted by k, as
a nonnegative integer encoded with a unary alphabet. Unary encoding avoids
“dirty tricks” in the analysis of the computational complexity of the algorithms
that might be possible using binary encoding.

A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction rules, often yielding a reduction to a problem
kernel. Here, the goal is, given any problem instance x with parameter k, to
transform it into a new instance x′ with parameter k′ such that the size of x′ is
bounded from above by some function depending only on k, k′ ≤ k, and (x, k)
has a solution iff (x′, k′) has a solution. Observe that data reduction (as we
have already discussed for Multicut in Trees in Section 1.3) as defined here
is not to be confused with the subsequently defined (Definition 3.3) concept of
parameterized reduction. The first is an algorithmic tool important for fixed-
parameter tractability and the second is a complexity-theoretic tool important
for fixed-parameter intractability.

Proving nontrivial, absolute lower bounds on the computational complexity
of problems appears to be very difficult and has made relatively little progress so
far. Hence it is probably not surprising that up to now there is no proof that no
f(k) · nO(1) time algorithm for Clique exists. In a more complexity-theoretical
language, this can be rephrased by saying that it is unknown whether Clique
∈ FPT . Analogously to classical complexity theory, Downey and Fellows devel-
oped some way out of this quandary by providing a reducibility and completeness
program. The completeness theory of parameterized intractability involves sig-
nificantly more technical effort than the classical one. We very briefly sketch
some integral parts of this theory in the following.

To prove the “relative hardness” of parameterized problems, we first need a
reducibility concept:

Definition 3.3 Let L1, L2 ⊆ Σ∗ × N be two parameterized problems. We say
that L1 reduces to L2 by a (standard) parameterized (many-one-)-reduction if
there are functions k �→ k′ and k �→ k′′ from N to N and a function (x, k) �→ x′

from Σ∗ × N to Σ∗ such that

1. (x, k) �→ x′ is computable in k′′ · |(x, k)|c time for some constant c and

2. (x, k) ∈ L1 iff (x′, k′) ∈ L2.

Notably, most reductions from classical complexity turn out not to be param-
eterized ones. Consider the NP-complete maximization problem Independent
Set (also known as Stable Set).

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices I ⊆ V with k or more vertices that form
an independent set, that is, I induces an edgeless subgraph of G.

Refer to Figure 3.1 for an example. The well-known reduction from Indepen-
dent Set to Vertex Cover, which is given by letting G′ = G and k′ = |V |−k
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for a graph instance G = (V,E), is not a parameterized one in the sense of Def-
inition 3.3.

This is due to the fact that the reduction function determining the new pa-
rameter k′ depends strongly on the instance G itself, hence contradicting the def-
inition of a parameterized reduction that requires that k′ solely depends on k.
The reductions from Independent Set to Clique and vice versa, however,
which are obtained by simply passing the original graph over to the complemen-
tary one3 for k′ = k, are indeed parameterized ones. Therefore, these problems
are of comparable degree of difficulty in terms of parameterized complexity.

Now, the “lowest class of parameterized intractability” can be defined as
the class of parameterized languages that are equivalent to the so-called Short
Turing Machine Acceptance problem (also known as the k-Step Halting
problem).

Input: A nondeterministic Turing machine M with its transition table,
an input word x, and a nonnegative integer k.
Task: Find out whether M accepts x in a computation of at most k
steps.

This is the parameterized analogue to the Turing Machine Acceptance
problem (where the bound on the number of steps is polynomial in the input
size |x| instead of being k)—the basic generic NP -complete problem in classi-
cal complexity theory. Short Turing Machine Acceptance can trivially be
solved in O(nk+1) time, where n denotes a bound on the total input size—this is
done by exhaustively exploring all k-step computation paths—and it would be
surprising if this can be significantly improved. Herein, observe that the alphabet
size is not bounded from above by a constant. Together with the above intro-
duced reducibility concept, Short Turing Machine Acceptance can now be
used to define the lowest class of parameterized intractability, that is, W [1 ].

Definition 3.4 The class of all parameterized languages that reduce by a stan-
dard parameterized reduction to Short Turing Machine Acceptance is called
W [1 ]. A problem which lets Short Turing Machine Acceptance reduce to it
by a parameterized reduction is called W [1 ]-hard; if, additionally, it is contained
in W [1 ], then it is called W [1 ]-complete.

The fundamental conjecture that FPT �= W [1 ] is very much analogous (but
clearly “weaker”) to the conjecture that P �= NP . Note that W [1 ] is origi-
nally defined in a “circuit-based”, more technical way. This is also where the
“W” stems from—it refers to the weft of Boolean circuits, that is, the maxi-
mum number of unbounded fan-in gates on any path from the input variables
to the output gate of the (decision) circuit. The weft has also been interpreted
as the “logical depth” of a problem. Clearly, by definition, Short Turing Ma-
chine Acceptance is W [1 ]-complete. Other problems that are W [1 ]-complete

3That is, the complement graph has the same set of vertices and there is an edge between
a pair of vertices iff there is no edge between them in the original graph.
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include Clique and Independent Set, where the parameter is the size of the
relevant vertex set. Also, for constant maximum clause size, the aforementioned
parameterization of CNF-Satisfiability by the weight of an assignment (see
Section 1.1) gives a W [1 ]-complete problem. W [1 ]-hardness gives a concrete in-
dication that a parameterized problem with parameter k is unlikely to allow for
a solving algorithm with f(k) · nO(1) running time, that is, restricting the com-
binatorial explosion to the parameter seems illusory. A parameterized reduction
from any of these W [1 ]-complete problems to Vertex Cover would lead to a
collapse of the classes W [1 ] and FPT .

As a matter of fact, a whole hierarchy of parameterized intractability can be
defined, W [1 ] only being the lowest level. In general, the classes W [t] are defined
based on the number of alternations between unbounded fan-in And- and Or-
gates in Boolean circuits. For instance, consider the NP -complete minimization
problem Dominating Set.

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices S ⊆ V with k or fewer vertices such that
each vertex in V is contained in S or has at least one neighbor in S.

Refer to Figure 3.1 for an example. Dominating Set is known to be W [2 ]-
complete with respect to parameter k. There exists a very rich structural theory
of parameterized complexity somewhat similar to classical complexity. Observe,
however, that in some respects parameterized complexity appears to be, in a
sense, “orthogonal” to classical complexity: for instance, consider the maximiza-
tion problem Vapnik-Chervonenkis Dimension (VC Dimension):

Input: A family C of subsets of some universe U and a nonnegative
integer k.
Task: Find out whether or not there is a subset S ⊆ U with |S| ≥ k such
that for each T ⊆ S there exists a subset C ∈ C such that S ∩ C = T .

VC Dimension has applications in learning theory and is not known (and not
believed) to be NP-hard but to lie somewhere above P but below the class of
NP-complete problems. It is W [1 ]-complete with respect to the parameter k,
though. Thus, although VC Dimension in the classical sense appears to be
easier than Vertex Cover (which is NP-complete), the opposite appears to be
true in the parameterized sense, because Vertex Cover is in FPT .

From a more algorithmic point of view (as pursued in this book), it is usually
sufficient to distinguish between W [1 ]-hardness and membership in FPT . Thus,
for an algorithm designer who is unable to show fixed-parameter tractability of a
problem, it may be “sufficient” to give a reduction from, for example, Clique to
the given problem using a parameterized reduction. This then proves that, unless
FPT = W [1 ], the problem does not allow for an f(k) · nO(1) time algorithm.
One piece of circumstantial evidence for this unlikeliness is the result showing
that FPT = W [1 ] would imply a 2o(n) time algorithm for the NP-complete 3-
Satisfiability problem (where n denotes the number of variables of the given
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Boolean formula), which would mean a major (and so far considered unlikely)
breakthrough in computational complexity theory. All known upper bounds for
3-Satisfiability are of the form 2O(n); see also Section 1.1.

3.2 Interpreting fixed-parameter tractability

Most of this book concentrates on the world inside the class FPT of fixed-
parameter tractable problems and the potential it offers. We therefore finish this
chapter with a discussion of FPT under some application-relevant aspects. Note
that in the definition of FPT the function f(k) may take unreasonably large
values such as

2222
22

2k

.

For instance, there are concrete examples from model checking showing that
unless P = NP , there is no algorithm for evaluating so-called monadic second-
order queries on trees in f(k) ·nO(1) time for any elementary function f (that is,
function f(k) cannot be bounded from above by

2k··
·k

where the “tower of ks” shall have a height upper-bounded by any constant),
where k denotes the query size and n is the tree size. This limits or even excludes
the practical usefulness of the corresponding known fixed-parameter tractabil-
ity results. Thus, showing that a problem is fixed-parameter tractable does not
necessarily lead to an efficient algorithm, and this may not even be true for
tiny values of parameter k. In fact, many problems that are classified fixed-
parameter tractable still await more efficient, practical algorithms. In this sense,
we must distinguish clearly two different aspects of fixed-parameter tractability:
the theoretical part, which consists in classifying parameterized problems along
the W -hierarchy (i.e. proving membership in FPT or hardness for W [1 ]), and
the algorithmic part of actually finding efficient algorithms for problems inside
the class FPT .

The famous Graph Minor Theorem by Robertson and Seymour, for instance,
provides a great tool for the classification of graph problems. It states that, for a
given family of graphs F which is closed under taking minors, membership of a
graph G in F can be checked by analyzing whether a certain finite “obstruction
set” appears as a minor in G. Moreover, the Graph Minor Order Testing
problem is in FPT ; more precisely, for a fixed graph G of n vertices there is an al-
gorithm with running time f(|H |) ·n3 that decides whether a graph H is a minor
of G or not. As a matter of fact, the set Fk of graphs with vertex covers of size
at most k is closed under taking minors. Hence there exists a finite obstruction
set Ok for Fk. The above method then yields the existence of a fixed-parameter
algorithm for Vertex Cover. The problematic thing is that the function f ap-
pearing in the Graph Minor Order Testing algorithm grows very fast and
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k f(k) = 2k f(k) = 1.32k f(k) = 1.28k

10 ≈ 103 ≈ 16 ≈ 12
20 ≈ 106 ≈ 258 ≈ 140
30 ≈ 109 ≈ 4140 ≈ 1650
40 ≈ 1012 ≈ 6.7 · 104 ≈ 2.0 · 104

50 ≈ 1015 ≈ 1.1 · 106 ≈ 2.3 · 105

75 ≈ 1022 ≈ 1.1 · 109 ≈ 1.1 · 108

100 ≈ 1030 ≈ 1.1 · 1012 ≈ 5.3 · 1010

500 ≈ 10150 ≈ 1.9 · 1060 ≈ 4.1 · 1053

Table 3.1 Comparing the combinatorial explosions of various Vertex Cover
algorithms with respect to parameter k (size of vertex cover set) for func-
tions f(k) found in the literature.

the constants hidden in the O-notation are huge. Moreover, finding the obstruc-
tion set in the Graph Minor Theorem, in general, is highly non-constructive.
Thus the above-mentioned method may serve only as a classification tool. Other
tools for deciding containment in FPT are discussed in greater detail in Part II.

Adopting the viewpoint that fixed-parameter tractability should be under-
stood as an approach to cope with inherently hard problems, it is necessary
to aim for practical, efficient fixed-parameter algorithms. In the case of Vertex
Cover, for example, it is easy to come up with an algorithm of O(2k ·n) running
time using a simple search tree strategy. The base of the exponential term in k
has been further improved and is now below 1.28. Table 3.1 gives concrete values
for these. From this table we can conclude that improvements in the exponential
growth of f can lead to significant changes in the running time, and, therefore,
deserve investigation. Observe, however, that when comparing theoretical up-
per bounds the worst case is assumed. The behaviour of various algorithms for
practical problem instances may be much better. In addition, Table 3.1 neglects
the potentially different administrative overheads that may come along in the
implementations of the various algorithms. Still, it indicates that improving the
growth of function f(k) is a worthwhile effort to undertake.

Finally, to demonstrate the problematic nature of the comparison “fixed-
parameter tractable” versus “fixed-parameter intractable”, let us compare the

growth of the two (arbitrarily chosen) functions 22k

and nk = 2(k log n). The
first refers to fixed-parameter tractability and the second to fixed-parameter
intractability. It is easy to verify that assuming input sizes n in the range from

103 up to 1015, the value of k where 22k

starts to exceed nk is in the small range
{ 6, 7, 8, 9 }, meaning that in practical applications a fixed-parameter algorithm
needs not be superior to a straightforward “check-all-possibilities” algorithm.

A striking concrete example in this direction is that of computing the treewidth
of graphs (as further discussed in Part II). For constant k, there is a famous re-
sult giving a linear-time algorithm to compute whether a graph has treewidth
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at most k. More precisely, the algorithm has running time 2Θ(k3) · kO(1) · n. As
a consequence, a known simpler O(nk+1) time algorithm appears to be more
practical. This shows how careful one must be with the term “fixed-parameter
tractable” in an applied sense, since in practical cases with reasonable input sizes
a fixed-parameter intractable problem might turn out to have a more effective
solving algorithm than a fixed-parameter tractable one. It is the function f that
counts.

3.3 Exercises

1. Describe parameterized reductions

(a) from Vertex Cover to Dominating Set;

(b) from Independent Set to Short Turing Machine Acceptance;
(c) from Maximum Cut to Maximum Satisfiability;

(d) from Independent Set to Weighted Satisfiability, the latter as
defined in Section 1.1 in the point “parameter weight of assignment”.

Herein, the parameter is always k as given in the definitions of the various
problems. Moreover, Maximum Cut is defined as follows.

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices S ⊆ V such that at least k edges have
one endpoint in S and one endpoint in V \ S.

2. Briefly argue whether or not the following problems are fixed-parameter
tractable.

(a) To color the vertices of a graph with k colors, where k is the parameter.

(b) 3-Hitting Set:
Input: A collection C of subsets of size three of a finite set S and a

nonnegative integer k.
Task: Find a subset S′ ⊆ S with |S′| ≤ k such that S′ contains at
least one element from each subset in C?

(c) To find a length-� common subsequence of k given strings over a
constant size alphabet. The parameter is �. (What about parameter-
ization with k?)

3. Show that if there is a reduction to a problem kernel for a (decidable)
problem then it is fixed-parameter tractable. Does the reverse direction
also hold?

3.4 Bibliographical remarks

Downey and Fellows (1999) is clearly the standard reference for parameterized
complexity. Almost everything described in this chapter also appears there in
much greater detail. The so-far best search tree size for Vertex Cover appears
in Chen et al. (2005). Nešetřil and Poljak (1985) describe the O(nck/3) time algo-
rithm for Clique. Concerning the complexity of the multiplication of two integer
matrices, refer to Coppersmith and Winograd (1990). Boppana and Sipser (1990)
give an overview of the little progress so far made in computational complexity
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theory concerning the derivation of absolute lower bounds. For general informa-
tion on computational complexity refer to Papadimitriou (1994). Lists of param-
eterized complexity classification results following the Garey–Johnson style can
be found in Cesati (2004) and Downey and Fellows (1999). You can learn more
about the problem of computing the Vapnik–Chervonenkis Dimension by
looking at Blummer et al. (1989) and Papadimitriou and Yannakakis (1996). Its
W [1 ]-completeness is shown in Downey and Fellows (1995). The Graph Minor
Theory is due to Neil Robertson and Paul D. Seymour, obtained in a series of
seminal papers. Downey and Fellows (1999) gives a more thorough treatment of
this topic. The linear-time algorithm to determine the treewidth of a graph (for
constant treewidth) is due to Bodlaender (1996). The alternative O(nk+1) algo-
rithm with smaller involved constant factors appears in Arnborg et al. (1987).
Recent new developments concerning parameterized intractability classes can be
found in Downey et al. (2003) and Flum et al. (2004).
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VERTEX COVER—AN ILLUSTRATIVE EXAMPLE

Vertex Cover has so far been the most popular fixed-parameter tractable
problem. It is an important problem in combinatorial optimization and graph
theory and it is easy to grasp. Many aspects of fixed-parameter algorithms can
naturally be developed and illustrated using Vertex Cover as a running ex-
ample. Hence Vertex Cover also plays a prominent role in this book. We start
with recalling the definition.

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices C ⊆ V with k or fewer vertices such that
each edge in E has at least one of its endpoints in C.

Vertex Cover has seen quite a long history in the development of fixed-
parameter algorithms. Surprisingly, many papers have published fixed-parameter
results on Vertex Cover that are worse than the O(2kn) time algorithm that
follows directly from the elementary search tree method already described in
Kurt Mehlhorn’s 1984 textbook on graph algorithms. The corresponding simple
observation, which is also used in the ratio-2 approximation algorithm for Ver-
tex Cover, is as follows: each edge {u, v} must be covered. Hence u or v must
be in the cover (perhaps both). Thus building a search tree where we branch so
as to bring either u or v into the cover, deleting the respective vertex together
with its incident edges and continuing recursively with the remaining graph by
choosing the next edge (which can be any of the still existing edges), solves
the problem. The search tree with depth at most k has less than 2k+1 nodes,
each of which can be processed in linear time using suitable data structures. In
recent times research has been very active into reducing the size of the search
tree, the best known result now being better than 1.28k. The basic idea behind
all of these papers is to use two fundamental techniques for developing efficient
fixed-parameter algorithms, namely depth-bounded search trees and data reduc-
tion rules. Both will be explained in greater detail in Part II.

To improve the search tree size, intricate case distinctions with respect to the
degree of graph vertices have been designed. As for reducing the problem kernel,
a very elementary idea is as follows: assume that there is a graph vertex v of
degree k+1, that is, k+1 edges have endpoint v. Then, to cover all these edges,
one must bring either v or all its neighbors into the vertex cover. In the latter
case, however, the vertex cover would then have size at least k+ 1—too much if
we are only interested in covers of size at most k. Hence, without branching we
have to bring v and all other vertices of degree greater than k into the cover. One
can easily conclude that after doing this preprocessing, the remaining graph may
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consist of at most k2+k vertices and at most k2 edges. Observe, however, that this
data reduction rule is parameter-dependent in the sense that it makes decisive
use of the parameter k. A well-known theorem of George L. Nemhauser and
William T. Trotter can be used to construct an improved reduction to a problem
kernel resulting in a “kernel graph” of only 2k vertices, as will be discussed in
Section 7.4. In particular, this data reduction works in a parameter-independent
fashion; that is, the knowledge of the value of the parameter k is not necessary.

In the following sections, we shed some light on the diverse opportunities
offered by fixed-parameter complexity studies. Vertex Cover is the example
used to illustrate this.

4.1 Parameterizing

In our discussions of Vertex Cover so far, the parameter k has always denoted
the size of the vertex cover set to be found. This is not the only way in which
the parameter can be chosen—it is probably the most immediate way, though.
Let us discuss some other possible choices for what we term the parameter .

As a first choice, consider the dual parameterization n−k, that is, the question
is now whether or not there is a vertex cover of size n− k, where n denotes the
total number of graph vertices and k again denotes a nonnegative integer given
as part of the input. It is a well-known fact that a graph has a vertex cover of
size k iff it has an independent set of size n− k. Hence the question of whether
or not a graph has a vertex cover of size n − k is equivalent to the question
whether or not a graph has an independent set of size k. The latter problem,
however, is known to be W [1 ]-complete (see Section 3.1), and thus is unlikely
to be fixed-parameter tractable. In this sense, therefore, one can say that the
parameterization with n− k is “hopeless” concerning desirable fixed-parameter
tractability results (the explicit parameter value still being k, which then denotes
the number of vertices not being part of the vertex cover).

There is a further subtle point brought up by this discussion, namely the
distinction between minimization problems (such as Vertex Cover) and max-
imization problems (such as Independent Set) which might also influence the
choice of the parameterization to be applied to the given problem. In several
settings, in order to guarantee a small parameter value (and, in particular, of-
ten for maximization problems) it might make particular sense to choose a dual
parameterization n− k because then k might be small whereas n − k might be
not.

Another reasonable parameterization for Vertex Cover is the following,
where we restrict, for the time being, our attention to planar graphs. Vertex
Cover is NP -complete also when restricted to planar graphs. For planar graphs
we have the famous four-color theorem—every planar graph has a coloring (that
is, neighboring vertices have to have different colors) using only four colors. More-
over, there exists a polynomial-time algorithm for constructing a four-coloring.
From this fact, however, it easily follows that every planar graph has a vertex
cover of size at most �3n/4�—at least the vertices from the largest color class
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(of size at least �n/4�) do not have to be part of a vertex cover set. Hence the
question of whether or not a given planar graph possesses a vertex cover of size
�3n/4� − k comes up naturally (again, k is a given nonnegative integer and n
is the total number of vertices). To the best of our knowledge, however, it is
open whether Vertex Cover in planar graphs with this parameterization is
fixed-parameter tractable or whether it is W [1 ]-hard. This way of parameter-
izing problems is known as parameterizing above (for this case more correctly,
respectively, below) guaranteed values.

Finally, a completely different way of parameterizing Vertex Cover is to
consider the structure of the input graph. If the given graph allows for a tree
decomposition of width w, then it is well-known (see Part II) that Vertex
Cover can be solved in O(2w · n) time independent of the size k of the cover
set we are searching for. Informally speaking, the treewidth of a graph measures
how tree-like a graph is. So, trees have width 1. Restricted to trees as input
graphs, Vertex Cover can be solved trivially in linear time by simple dynamic
programming starting at the leaves of the tree. In conclusion, Vertex Cover
is also fixed-parameter tractable when parameterized by treewidth w.

To summarize, Vertex Cover has natural and obvious practically relevant
parameterizations. In Chapter 5 we will further explore on the issue of choosing
parameters for a given problem.

4.2 Specializing

In the preceding section we encountered Vertex Cover on planar graphs, a still
NP -complete special case of the general problem on unrestricted graphs. Due to
results concerning approximation algorithms, where Vertex Cover on planar
graphs can be better approximated than in the general case,4 one might expect
that it is easier to cope with it on planar graphs. Indeed, this is the case. There

are O(c
√

k + kn) time algorithms for Vertex Cover on planar graphs, where c

can be upper-bounded by 24
√

3. This is an (asymptotic) exponential speedup
in comparison with the best known bound O(1.28k + kn) for general graphs, as
mentioned before. Here, it is important to notice the huge difference between the

exponential base values c = 24
√

3 ≈ 121.8 and 1.28, which, at first sight, makes
this result a purely theoretical one. Recent experimental studies, however, reveal
that for the mathematically proven constant c there is probably quite some
room for improvement and/or the average-case behaviour of the corresponding
algorithm seems to be much better. These encouraging improvements for planar
graphs raise the general issue of investigating Vertex Cover on various special
graph classes, which has been the subject of recent and ongoing research.

4There are linear-time algorithms giving approximation ratio-2 for the unweighted case
(as considered here) as well as for the weighted case of Vertex Cover on general graphs.
Both results can be improved to an approximation ratio that is asymptotically better:
2 − ((log log |V |)/(2 log |V |)). By way of contrast, Brenda S. Baker gave a polynomial-time
approximation scheme (PTAS) for Vertex Cover and related problems in planar graphs.
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4.3 Generalizing

There are many, more general “relatives” of Vertex Cover. The most immedi-
ate ones are Weighted Vertex Cover problems, where we put, for example,
nonnegative integer or real weights on the graph vertices. Then, the task is to
search for a minimum weight vertex cover set, where we sum up the weights of
the vertices in the set. Recent studies also give efficient fixed-parameter search
tree algorithms for some Weighted Vertex Cover problems, but, in com-
parison with unweighted Vertex Cover, other branching strategies for the
corresponding search trees have been designed. Very recently, a still more gen-
eral version, so-called Capacitated Vertex Cover, with applications in drug
design, has been considered. Here, the point is that each vertex can only cover
a pre-specified number of edges incident on it; this is called the capacity of a
vertex. Hence choosing a vertex to be in the cover set may not suffice to cover all
its incident edges. This problem has recently been shown to be fixed-parameter
tractable with respect to the parameter solution size; the corresponding combi-
natorial explosion (so far) is much worse than for Vertex Cover.

Another method of generalization is to consider a broader graph concept, that
is, hypergraphs. By way of contrast with standard graphs, here edges may connect
more than two vertices. For instance, if we allow three vertices per edge, then
Vertex Cover becomes the so-called 3-Hitting Set problem. Developing
efficient fixed-parameter algorithms for 3-Hitting Set is possible but requires
new ideas (see Part II).

Another possibility for generalizing Vertex Cover is as follows. Consider
classes of graphs that are defined through a base graph class. Then a graph is
in such a graph class if a base graph can be generated from it by deleting at
most k vertices. In particular, if the base graph class consists of all edgeless
graphs, then this exactly yields the class of graphs with a vertex cover of size at
most k. Thus, a recognition algorithm for this graph class yields an algorithm for
the parameterized Vertex Cover problem. The corresponding fixed-parameter
tractability results seem to be of more theoretical interest because the exponen-
tial functions involved so far (for instance, kk and worse) in the running times
are too big for most practical purposes.

4.4 Counting or enumerating

So far, parameterized complexity has been focusing on the consideration of deci-
sion or search problems. Counting problems, being a standard theme in classical
computational complexity, have largely been neglected. Consider the graph con-
sisting of n vertices and n/2 vertex-disjoint edges. Clearly, an optimal vertex
cover of this graph has size k = n/2 and there are exactly 2k different optimal
vertex covers. Generally, it may become difficult to exactly count the number
of optimal vertex covers of a given graph. The problem arises that the common
search tree approaches to solving Vertex Cover in a fixed-parameter way
must be extended such that it is ensured that the same vertex cover set is not
generated by two different paths through the search tree, thus avoiding double
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counting. There is a fixed-parameter search tree strategy for exactly counting
vertex covers with exponential running time factor O(1.47k).

More general considerations of parameterized counting, in particular includ-
ing hardness results, have recently been undertaken. Specifically, a whole com-
plexity theory of parameterized counting has been initiated.

In some applications it might be of interest not only to determine one vertex
cover of size at most k but to enumerate all of them, and then perhaps to choose
the one most suitable for the application at hand. Hence, enumeration of all solu-
tions is an important aspect worth consideration. Note that the aforementioned
(see introduction to Chapter 4) data reduction technique due to Nemhauser and
Trotter can also be used for enumeration. If one needs to enumerate all optimal
vertex covers of a given graph (let an optimal vertex cover have size k), then
clearly the trivial 2k search tree is optimal because, again considering the exam-
ple graph from above, there are 2k optimal vertex covers of this graph and 2k

is an upper bound for the number of optimal vertex covers of every graph. It is
a different question, however, to investigate whether a “compact description” of
all vertex covers of size at most k can be computed with combinatorial explosion
o(2k). By using minimal vertex covers (in the set inclusion sense) only this seems
possible, as value O(1.8k) has been very recently reported.

4.5 Lower bounds

Giving lower bounds for the computational complexity of problems is a core
challenge in theoretical computer science. Unfortunately, it is also a very hard
problem with relatively little success so far. Nevertheless, it is worth pursuing
this issue also in the context of fixed-parameter algorithms. Besides the “rela-
tive lower bounds” given by the W [1 ]-hardness program as such the following
questions also merit attention:

• Can Vertex Cover on general graphs be solved in (1 + ε)k · nO(1) time
for arbitrary ε > 0 or is there a minimum ε-value?

• Can Vertex Cover on general graphs be solved in 2o(k) · nO(1) time?

There is most likely a negative answer to the second question: Vertex Cover
cannot be solved in 2o(k) · nO(1) time unless 3-Satisfiability can be solved in
2o(n) time, where n is the number of variables of the Boolean 3-CNF formula.
Note that the currently best deterministic algorithm for 3-Satisfiability runs
in basically O(1.49n) time. The first question appears to be open.

4.6 Implementing and applying

All our discussions up to now have had a strong theoretical flavor. The proven
worst-case performance bounds on the time complexity of algorithms using the
O-notation indicate their practical usefulness to only some limited extent. Em-
pirical confirmation of theoretical findings is needed. Fixed-parameter algorithms
for Vertex Cover (enriched and combined with heuristic strategies) and for
Vertex Cover on planar graphs have actually been implemented and tested.
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The results are encouraging, but this field as a whole is still in its infancy, Ver-
tex Cover being one of the rare examples with some practical experiences.
Usually a lot of algorithm engineering is necessary to turn a theoretically ef-
ficient algorithm into a practically useful tool. In particular, it is foreseeable
that the theoretically best search tree algorithms for Vertex Cover, which are
based on highly complicated case distinctions, need to be simplified for practi-
cal applications. The administrative (and intellectual) overhead caused by these
fine-grained case distinctions does not seem to pay off in practice. Hence the
question of “re-engineering” these case distinctions as much as possible arises
where the challenge is to simplify the case distinctions as much as possible and,
at the same time, to deteriorate the (worst-case) bounds on the search tree size
as little as possible. An in a sense “orthogonal” effort is to investigate how far the
development of complicated case distinctions as employed in the case of Vertex
Cover search trees can be mechanized. Initial results have shown that several
case distinctions can be led back to relatively few and simple core concepts in the
sense that, together with “limited exhaustive search”, they can be automatically
generated by feeding these core concepts into a program computing favorable
branching strategies.

We close with a subtle point. It is still comparatively easy in the academic
setting to get fixed-parameter algorithms implemented and to test them on some
“toy examples” such as given by random graphs. It may become a significantly
more time-consuming and challenging task to experiment with “real data”, that
is, graphs derived from real-world applications together with solving practically
relevant problems. Observe that, especially for exponential-time algorithms such
as those we deal with, final “fine tuning” is a must in order to make them run
as fast as possible for the particular application at hand. Also, there should be
a serious comparison with different approaches that may also exist (especially
with those of “practical people”). The task of actually finding, for at first sight a
more academic problem such as Vertex Cover (although there are nice text-
book examples of applications), a real-life, useful, industrial-level application is
a challenge of great importance. This topic deserves still more attention than it
already has, although first steps in this direction have been taken. Another issue
of increasing importance is to study the potential benefits of making FPT tech-
niques and algorithms work on parallel machines. For instance, search-tree based
algorithms should be relatively easy to parallelize—distributing the load among
several processors by assigning them different parts of the search tree is an ob-
vious and promising thing to do. Research into new parallel FPT methods is in
its infancy, though.

4.7 Using vertex cover structure for other problems

As Vertex Cover is a well-investigated parameterized problem with efficient
fixed-parameter algorithms, the question arises whether this can help in solving
other hard (parameterized) graph problems. For instance, by definition it trivially
follows that every vertex cover set is also a dominating set, that is, a set S of
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vertices such that every other graph vertex has at least one neighbor in S. Hence,
“vertex cover size” bounds “dominating set size” from above. A set being an
optimal vertex cover may be far from being an optimal dominating set, though:
for example, a complete graph with n vertices has a minimum vertex cover of
size n− 1 but a minimum dominating set of size 1.

Using “vertex cover structure”, however, seems more useful for the “dual”
problem of Dominating Set, the so-called Nonblocker:

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices S ⊆ V with k or more vertices such that
each vertex in S has at least one neighbor in V \ S.

The set S is called nonblocking. Clearly, Nonblocker is NP -complete. The basic
idea to solve Nonblocker using vertex cover structure is as follows. Herein,
note that in a graph with no isolated vertices every minimal (not necessarily
minimum) vertex cover is a nonblocking set as well.

1. Compute a minimal vertex cover S of G.

2. Distinguish two cases.

(a) If |S| ≥ k, then S is a desired nonblocking set.
(b) If |S| < k, then the underlying graphG has a particular structure that

is easily accessible to dynamic programming: it is “path-like”; more
specifically, its so-called “pathwidth” is bounded above by k − 1.

The pathwidth of a graph is directly related to the concept of path decompo-
sition and, more generally, tree decomposition. Here, we just note that a path
decomposition of pathwidth at most k − 1 can be constructed using the vertex
cover structure by forming the sets

S ∪ {v1}, S ∪ {v2}, . . . , S ∪ {vn},

where V = {v1, v2, . . . , vn}. This path decomposition allows a dynamic program-
ming technique to solve Nonblocker in O(4k ·n) time. We refer to Chapter 9 for
the definitions and methods related to path and tree decompositions of graphs.

In summary, with the help of vertex cover structure we either directly obtain
a solution for Nonblocker or are helped to build an efficient fixed-parameter
algorithm with respect to parameter k solving Nonblocker.

Further examples of using vertex cover structure are known, including the
problems

• to determine whether an n-vertex graph can be colored using at most n−k
colors, the parameter being k; and

• to determine whether a graph has a spanning tree with at least k internal
vertices.

We refer to the the bibliographical remarks for more details.
We close with two remarks. First, note that all the above problems in which

vertex cover structure was applied are derived from maximization problems with
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respect to parameter k. It would be interesting to see applications for minimiza-
tion problems, where small parameter values seem more common. Second, the
above scenario is not limited to vertex cover structure; something like “dominat-
ing set structure” etc. might be interesting as well. Such investigations are only
at the very beginning and should be extended in future research.

4.8 Exercises

1. Find a search tree smaller than 2k for Vertex Cover. Bound its size from
above.

2. Give a simple parameterized reduction from Vertex Cover to Multicut
in Trees. Note that it suffices to use Multicut in Trees restricted to
trees that form a star, that is, trees with maximal path length two.

3. Consider a graph that can be transformed into a tree by deleting k edges.
Assume that this set of edges is given. Give a fixed-parameter algorithm
for Vertex Cover restricted to this class of graphs, parameterized by k.

4. What is the maximum size that an optimal vertex cover set may have in
an n-vertex planar graph?

5. Show that Independent Set restricted to planar graphs is fixed-parameter
tractable with respect to the parameter “size of the independent set sought”.

6. Consider Vertex Cover with positive integer weights on the vertices.
Show how this general version can be solved using an algorithm for (un-
weighted) Vertex Cover.

7. Given a bipartite graph G = (V1, V2, E). Design a fixed-parameter algo-
rithm that finds out whether G has a vertex cover that consists of k1 ver-
tices from V1 and k2 vertices from V2. The running time of your algorithm
should not exceed 1.5k1+k2 · nO(1).

4.9 Bibliographical remarks

For decades, the Vertex Cover problem has played a central role in computa-
tional complexity theory and combinatorial optimization (Crescenzi and Kann,
1998). It was among the first NP -complete problems (Garey and Johnson, 1979).
Downey and Fellows (1999) describe the history in the development of fixed-
parameter algorithms for Vertex Cover. Till the present day, Vertex Cover
has remained the problem which has drawn the highest level of attention in the
development of efficient fixed-parameter algorithms. The now trivial search tree
of size 2k for Vertex Cover derives directly from Mehlhorn (1984, p. 216); for
some time, authors have been unaware of this fact, for instance, see Papadim-
itriou and Yannakakis (1996). Bounds for search tree size currently below 1.28k

appear in Chandran and Grandoni (2005), Chen et al. (2001), Chen et al. (2005),
and Niedermeier and Rossmanith (2003b).

The fundamental theorem giving the size-2k problem kernel for Vertex
Cover first appeared in Nemhauser and Trotter (1975); alternative proofs and
descriptions are given in Bar-Yehuda and Even (1985) and Khuller (2002). The
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usefulness of the Nemhauser–Trotter theorem for parameterized complexity—
originally used in the approximation algorithms field—was first pointed out
in Chen et al. (2001). A new problem kernelization technique for Vertex Cover
called “crown rules” is described in Abu-Khzam et al. (2004), Fellows (2003a),
and Langston and Suters (2005).

For the W [1 ]-completeness of Independent Set, the dual problem of Ver-
tex Cover, refer to Downey and Fellows (1999). The four-color theorem for
planar graphs is due to Appel and Haken (1977a) and Appel and Haken (1977b);
refer to Robertson et al. (1997) for later improvements. The polynomial-time
algorithm to four-color a graph is given in Robertson et al. (1996). The idea of
parameterizing above guaranteed values was put forward in Mahajan and Ra-
man (1999), there restricted to the problems Maximum Satisfiability and
Maximum Cut.

How to approximate Weighted Vertex Cover with a ratio 2 is shown
in Bar-Yehuda and Even (1981). This can be (asymptotically) improved to an ap-
proximation ratio 2−log log |V |/(2 log |V |) (Bar-Yehuda and Even, 1985; Monien
and Speckenmeyer, 1985). Baker (1994) contains often cited PTAS results for
Vertex Cover and several other problems restricted to planar graphs.

Theoretical work on c
√

k-algorithms for Vertex Cover on planar graphs
appears in Alber et al. (2003) and Alber et al. (2004)—accompanying empirical
studies appear in Alber et al. (2005a).

The fixed-parameter complexity of Weighted Vertex Cover is studied
in Niedermeier and Rossmanith (2003b). The approximability of Capacitated
Vertex Cover is dealt with in Guha et al. (2003) and its fixed-parameter
tractability is shown in Guo et al. (2005b). The 3-Hitting Set problem is the
subject of Niedermeier and Rossmanith (2003a). Other nontrivial generalizations
of Vertex Cover are explored in Nishimura et al. (2001).

The algorithm counting Vertex Cover solutions is due to Peter Rossmanith
[personal communication]. Parameterized counting algorithms are also studied
in Arvind and Raman (2002). More general considerations concerning counting
appear in Flum and Grohe (2004b) and McCartin (2002). The applicability of
the Nemhauser–Trotter theorem for enumerating Vertex Covers is shown
in Chleb́ık and Chleb́ıková (2004). Damaschke (2004) proposes a way to obtain a
more compact description of all vertex covers of size at most k with combinatorial
explosion O(1.8k).

The cited lower bound result for Vertex Cover can be found in Cai and
Juedes (2003); it is closely related to earlier work in Impagliazzo et al. (2001).
The deterministic worst-case bound for 3-Satisfiability stems from Dantsin
et al. (2002).

Cheetham et al. (2003) investigates the parallelization of fixed-parameter
algorithms for Vertex Cover. Prospective work in this direction is also done
by Abu-Khzam et al. (2005).

Empirical tests and findings for Vertex Cover (partially on planar graphs)
appear in Abu-Khzam et al. (2004), Alber et al. (2005a), and Cheetham et al.
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(2003). First approaches to automate the generation of search tree algorithms
(so far not including Vertex Cover, but the basic concept clearly applies to
Vertex Cover as well) based on case distinctions appear in Fedin and Kulikov
(2004) and Gramm et al. (2004).

The example of using vertex cover structure to solve Nonblocker is at-
tributed to Faisal Abu-Khzam in Fellows (2003a) and Prieto and Sloper (2003).
Other applications for using vertex cover structure are also discussed there. The
graph coloring application is explored in detail in Chor et al. (2004). The dynamic
programming algorithm to solve Dominating Set, and thus Nonblocker, is
developed in Alber et al. (2002) and Alber and Niedermeier (2002). The corre-
sponding issues will be further explored in Chapter 9.
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THE ART OF PROBLEM PARAMETERIZATION

For Vertex Cover we have already seen in Section 4.1 that there is usually
more than one natural way to parameterize the considered problem. As we will
now see, it cannot be taken for granted that we will find the “right” parameter-
ization for a problem. As a matter of fact, several reasonable and “equally valid”
parameters to choose may exist, and which parameterization is to be preferred of-
ten depends on the application or on additional knowledge about the problem—if
any is to be preferred at all. In what follows, we try to collect a sort of check
list of questions to ask when confronted with a new problem where the goal
is to solve it exactly by means of a fixed-parameter algorithm using a suitable
parameterization.

5.1 Parameter really small?

Recalling Vertex Cover in Section 4.1, the parameter “size of the vertex cover
set” appeared as a natural choice, and, for general graphs, it seems plausible in
many cases to assume that the size of the vertex cover set is significantly smaller
than the total number of graph vertices. Hence this can be considered as a useful
parameterization of Vertex Cover. The situation definitely changes when we
turn our attention to Vertex Cover restricted to planar graphs. Observing
the fact that planar graphs with n vertices have at most 3n − 6 edges and an
average vertex degree of less than six, it is no longer clear that the vertex cover
sizes for planar graphs are really “small” compared with the total number of
graph vertices. And, indeed, in experiments with “combinatorial random” planar
graphs one may observe that minimum size vertex covers often contain about
half of all graph vertices. Thus the consideration of other parameterizations,
such as that by treewidth (see Section 4.1 and Part II) which refer to structural
properties of the input graph, deserves attention.

For a second example, recall Multicut in Trees from Section 1.3.

Input: An undirected tree T = (V,E), n := |V |, and a collection H of m
pairs of nodes in V , H = {(ui, vi) |ui, vi ∈ V, ui �= vi, 1 ≤ i ≤ m}.
Task: Find a minimum size subset E′ of E such that the removal of the
edges in E′ separates each pair of nodes in H .

There, we considered k := |E′| as the parameter. One may expect k to be particu-
larly small when there exist edges in the tree which are passed by many demand
paths. Then a simple fixed-parameter algorithm with combinatorial explosion
O(2k) as described in Section 1.3 can be perfectly all right. If the maximum
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number of demand paths passing through a tree node is small, however, this
leads to another parameterization that might be superior to the one by param-
eter k as above.

So, let us consider the maximum number of paths passing through a node of
the given tree. This measures an input property which is basically independent of
the solution size |E′|. By means of dynamic programming, it can be shown that
Multicut in Trees is fixed-parameter tractable with respect to this parameter
d :=“maximum path number”—the combinatorial explosion amounts to 3d. It is
worth noting here that with respect to parameter d edge-weighted Multicut in
Trees remains fixed-parameter tractable, whereas this is open when considering
parameter k.

Finally, perhaps particularly concerning maximization problems, it often ap-
pears reasonable to study dual parameterizations—for instance, if k is the op-
timization parameter (such as the size of an independent set sought), then the
dual parameter k′, where then n−k′ denotes the size of the solution set and n is
an upper bound on its maximum size, might lead to a more fruitful parameter-
ization.

5.2 Guaranteed parameter value?

This issue is closely related to the previous point. Once more reconsider Vertex
Cover restricted to planar graphs. In Section 4.1 we already noted that no
minimum vertex cover can contain more than �3n/4� of all n graph vertices due to
the four-color theorem. For the dual problem of Vertex Cover, Independent
Set, on planar graphs this means that every maximum independent set contains
at least �n/4� vertices. We have the guaranteed value �n/4�. Hence, the at first
sight natural parameter “size of the independent set” is not to be considered as
really small. There is an alternative parameterization, which makes sense: find an
independent set of size �n/4�+k. Unfortunately, the fixed-parameter complexity
of Independent Set in planar graphs is open with respect to parameter k
chosen in this way. This alternative problem formulation for Independent Set
on planar graphs adheres to the concept of parameterizing above guaranteed
values.

Two further problems with guaranteed values appear in the context of compu-
tational biology. The NP-complete Minimum Quartet Inconsistency prob-
lem appears in the construction of evolutionary (that is, leaf-labeled binary)
trees:

Input: A set S of n taxa and a set QS of
(
n
4

)
quartet topologies such

that there is exactly one topology for every quartet corresponding to S
and a nonnegative integer k.
Task: Determine whether there is an evolutionary tree T where the
leaves are bijectively labelled by the elements from S such that the set
of quartet topologies induced by T differs from QS in at most k quartet
topologies.
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Here, a quartet is a size-four subset {a, b, c, d} of the set of taxa and the quartet
topology for {a, b, c, d} induced by T is simply the four leaves subtree of T induced
by {a, b, c, d}. So, each quartet topology is simply an (unrooted) tree with four
leaves. There is a polynomial-time algorithm that finds an optimal solution for
all instances which fulfill k < (n − 3)/2. Thus we may define the guaranteed
value (n− 3)/2.

Finally, the Betweenness problem deals with a finite set of n elements
S = {x1, . . . , xn} and a finite set of m constraints. Each constraint consists of a
triplet (xi, xj , xk) ∈ S×S×S. A candidate solution of Betweenness is a total
order “<” on the elements of S. A total order xi1 < xi2 < . . . < xin

satisfies
the constraint (xi, xj , xk) if either xi < xj < xk or xk < xj < xi. That is, each
constraint forces the second element xj to be between the two other elements xi

and xk, but does not specify the relative order of xi and xk. Formally, we arrive
at the following definition of Betweenness:

Input: A finite set S = {x1, . . . , xn} of n distinct elements and a set of
m constraints.
Task: Determine whether there exists a total order of all elements from S
such that all constraints are simultaneously satisfied.

The optimization version of Betweenness is to find a total ordering satisfying
the maximum number of constraints. The Betweenness problem arises when
analyzing certain mapping problems in molecular biology—for example, it occurs
when trying to order markers on a chromosome, given the results of a radiation
hybrid experiment. It is easy to find an assignment satisfying �m/3� out of the
m constraints. What is the situation with respect to satisfying �m/3�+ k con-
straints? Is Betweenness with this parameter k fixed-parameter tractable?
This question appears to be open.

In summary, guaranteed bounds for parameter values should always—when
available—be taken into account when designing fixed-parameter algorithms.
The particular difficulty herein is that to prove these bounds can be very hard;
and, additionally, it is not always clear whether these bounds are optimal or
whether even better guaranteed bounds might exist. An example of such a “prob-
lematic case” is Maximum Satisfiability, where one can easily check that al-
ways at least half of all clauses are satisfiable. In fact, however, even somewhat
better guaranteed bounds exist.

5.3 More than one obvious parameterization?

Many problems naturally offer a whole selection of possible parameterizations
and some parameterizations may make the design of a fixed-parameter algorithm
“easy” and some may make it “hard”. Different application settings and different
side conditions arising in practice may require different parameterizations.

Consider the NP -complete Closest String (or, equivalently, Consensus
String or Center String) problem. From a “linguistic” point of view, a “clos-
est” string would only mean a string with minimum Hamming distance to the
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given strings. Beyond that, we use the term “closest” here for a string which has
Hamming distance at most d to all given strings:

Input: A set of k strings s1, s2, . . . , sk over alphabet Σ of length L each,
and a nonnegative integer d.
Task: Find a string s such that dH(s, si) ≤ d for all i = 1, . . . , k.

Here, dH(s, si) denotes the Hamming distance between strings s and si. Con-
sider the two natural parameters of Closest String: the maximum Hamming
distance d allowed and the number k of given input strings. Under the natural
assumption that either d or k or both are (very) small (in particular, in biolog-
ical applications it is appropriate to assume small d, for example, d < 10), it is
important to ask whether efficient polynomial-time or, even better, linear-time
algorithms are possible when d or k are constants. Put in slightly more general
terms, this is the question of the fixed-parameter tractability of these problems.
Closest String can be solved in O(dd · kd + kL) time, yielding a linear time
search tree algorithm for constant d. Using an integer linear program formula-
tion, one can observe that the problem is also fixed-parameter tractable with
respect to k—the exponential term in k is huge, though. Thus there are two pa-
rameters with completely different fixed-parameter algorithms—the application
must determine which one is to be preferred. In this particular case, so far, the
parameterization with d seems to be the first choice in most cases.

The situation changes when moving on to generalized (and for applications
in computational biology more relevant) versions of Closest String, namely
Closest Substring and, further on, Distinguishing Substring Selection.
In Closest Substring, the goal string now only needs to be a substring in each
of the given strings, thus increasing the combinatorial complexity of the prob-
lem. And, indeed, with respect to the parameter k, Closest Substring turns
out to be W [1 ]-hard. For the still more general Distinguishing Substring
Selection problem, W [1 ]-hardness has been shown for parameterizations with
respect to k and with respect to d. For both Closest Substring and Distin-
guishing Substring Selection, the only parameterization known to work in
the sense of fixed-parameter tractability (for constant-size alphabet) is with re-
spect to solution string length (simple enumeration of all possibilities); but this
has limited applicability in many cases of practical interest.

If one has to design and analyze a fixed-parameter algorithm involving more
than one parameter at the same time, things might become more difficult as
readily as they might become easier. Two examples, one for each case, follow.

A close relative of Vertex Cover is Constraint Bipartite Vertex
Cover:

Input: A bipartite graph G = (V1, V2, E) and two nonnegative integers
k1 and k2.
Task: Find two subsets C1 ⊆ V1 and C2 ⊆ V2 of sizes |C1| ≤ k1 and
|C2| ≤ k2 such that each edge in E has at least one of its endpoints in
C1 ∪ C2.
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The presence of two parameters and two vertex sets makes this problem quite
different from the original Vertex Cover problem. Thus, whereas the classi-
cal Vertex Cover (with only one parameter!) restricted to bipartite graphs
is solvable in polynomial time (because it is equivalent to a polynomial-time
solvable maximal matching problem), by a reduction from Clique it has been
shown that Constraint Bipartite Vertex Cover is NP -complete. The fact
that the problem in a sense requires the “minimization with respect to two pa-
rameters” seemingly makes the problem significantly harder. It can be solved
in time O(1.40k1+k2 + (k1 + k2)n), but it is supposed that, due to its different
combinatorial structure in comparison with Vertex Cover, it should be very
hard to get an exponential base close to the one there (which is 1.28).

On the contrary, looking back to Closest String, it is clear that, in prin-
ciple, it is easier to design an algorithm with running time f1(k, d) · nO(1) than
to give one with running time only f2(k) · nO(1) or f3(d) · nO(1) with arbitrarily
growing functions f1, f2, and f3. So, to the best of the author’s knowledge, for
Closest String only a size k · d problem kernel but no problem kernel with
size only depending on d or k alone is known.

5.4 Close to “trivial” problem instances?

The NP -complete Graph Coloring problem is our first example of “parame-
terizing away from triviality”:

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Determine whether there is a way to assign each graph vertex one
of k possible colors such that no pair of adjacent vertices has the same
color.

Note that in its decision version Graph Coloring is already NP-complete for
k = 3 colors, so the parameterization by k is of no help. We mention in pass-
ing that the dual parameterization by asking whether an n-vertex graph can be
colored with at most n − k colors (the parameter is k) was shown to be fixed-
parameter tractable. Coming back to the original version of Graph Coloring,
for instance, restricted to the class of split graphs5 (where Graph Coloring
is known to be polynomial-time solvable) Graph Coloring is fixed-parameter
tractable with respect to parameter � on graphs that are formed from split graphs
by adding or deleting at most � edges. Thus, split graphs form the trivial case.
By way of contrast, Graph Coloring is W [1 ]-hard with respect to parame-
ter � when deletion of at most � vertices leads to a split graph. Interestingly,
the problem is much harder in case of (the trivially 2-colorable) bipartite graphs
instead of split graphs: Graph Coloring becomes NP -complete for graphs
that originate from bipartite graphs by adding three edges or if two vertex dele-
tions are needed to make a graph bipartite. In summary, the prospective idea

5A graph is called a split graph if its vertex set can be partitioned into two sets, one inducing
a clique and the other inducing an independent set.
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brought forward here is that the distance parameter � measures a distance from
a “triviality”: � = 0 represents a special case that is solvable in polynomial time.

A second example of such a “distance from triviality” parameterization is
given by studying exact solutions for the NP-complete Traveling Salesper-
son problem in the two-dimensional Euclidean plane:

Input: A set of n points in the two-dimensional Euclidean plane with
pairwise Euclidean distances.
Task: Determine a shortest round-trip through all points, visiting each
point once.

A trivial problem instance can be determined as follows. Consider a set of
n points in the Euclidean plane. Determine their convex hull, which can be
done in O(n logn) time by standard methods. If all points lie on the hull, then
this gives the shortest tour. That is, this describes a trivial problem instance. It
can be shown that the problem is solvable in O(2k ·k2 ·n) time, where k denotes
the number of points inside the convex hull. Thus the distance from triviality
here is the number k of inner points.

Finally, we give an example related to Satisfiability. Assume that a formula
in conjunctive normal form has a matching between variables and clauses that
matches all clauses. More precisely, this means that each clause is injectively
mapped to one variable also appearing in this clause. Then, it is easy to observe
that such a formula is satisfiable. Now, for a formula F , being a set of m clauses
over n variables, define its deficiency as δ(F ) := m−n. The maximum deficiency
then is

δ∗(F ) := max
F ′⊆F

δ(F ′).

Here, it can be proven that the satisfiability of a formula F can be decided in
O(2δ∗(F ) · n3) time. Note that a formula F with δ∗(F ) = 0 has a matching as
described above. Again, δ∗(F ) is a structural parameter measuring the distance
from trivial problem instances which are easily solvable.

We close with a remark concerning the already several times mentioned
treewidth of graphs. A graph of treewidth 1 is a tree. Many otherwise hard
graph problems such as Vertex Cover or Dominating Set are linear-time
solvable in trees. Thus, parameter “treewidth” measures the closeness to the
trivial problem instance trees and, in this sense, is the most prominent example
of a “distance from triviality” parameterization.

In conclusion, the examples given, taken together, show the versatility of the
proposed parameterization methodology to choose as a parameter a certain dis-
tance measure that reflects the distance between simple (polynomial-time solv-
able) and hard problem instances and how it may open new views on well-known
hard problems.
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5.5 Exercises

1. Show that in any Boolean formula in conjunctive normal form at least half
of the clauses can always be satisfied.

2. Design simple linear-time algorithms that solve Vertex Cover and Dom-
inating Set in trees.

3. Maximum Satisfiability is fixed-parameter tractable with respect to the
number of clauses k to be satisfied.

(a) Is this a reasonable parameterization; that is, may we expect small
parameter values?

(b) Is Maximum Satisfiability also fixed-parameter tractable with re-
spect to parameter k′ when we ask whether at least �m/2�+k′ clauses
can be satisfied, where m denotes the total number of clauses?

4. Consider the Closest String problem.

(a) Why is the modification where not the maximum distance but the
sum of distances shall be “minimized” trivial?

(b) Show that the following instance with k = 4, d = 2, and L =
15 has no solution: AGCATAGCATTAATA, ATCATAGAATCAATA,
AGCTTAGCATTAAAT , AGCATAACGTTTATA.

(c) Show that the following input instance with k = 5, d = 3, and L = 10
has a solution: AACTTAGGTT , GGCCTCAGAT , TGCATCGGAC ,
AGCTTGAAAT , AGATTCGGGT .

5. Consider the Graph Coloring problem.

(a) Show that Graph Coloring is trivial for bipartite graphs. Describe
a coloring algorithm.

(b) Give a simple recursive algorithm that colors a planar graph with six
colors. Hint: in a planar graph there always exists a vertex of degree
at most five.

6. Detect “trivial instances” for Vertex Cover, Dominating Set, Clos-
est String, Multicut in Trees, etc. Find natural “distance from triv-
iality” parameterizations for each of them.

5.6 Bibliographical remarks

The alternative parameterization for Multicut in Trees has been studied
in Guo and Niedermeier (2005b).
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SUMMARY AND CONCLUDING REMARKS

The systematic study of parameterized complexity analysis is still a young and
fast-growing field. Nevertheless, it has already contributed significant new con-
cepts and methods to algorithms and complexity both in theory and practice.
As is to be expected, it is not a miracle cure for all forms of computational in-
tractability, but it clearly has its pros and cons. When compared to the more
established fields of polynomial-time approximation and heuristic algorithms,
fixed-parameter complexity analysis carries enough potential and challenges to
deserve a still larger share of the attention in the research community than it
receives today.

At this point, let us once more emphasize the numerous possibilities, but also
decisions to be made, when attacking a problem the fixed-parameter way. The
wealth of opportunities concerning parameterization, in some sense, also makes
things more complicated. That is, generally one probably may not have the fixed-
parameter algorithm for a problem because, at the same time, several alternative
parameterizations of the same problem may make sense, the various options not
being comparable with each others. This stands in contrast to approximation al-
gorithms where the approximation ratio is tied to the optimization goal, whereas
the value to optimize usually is only one possible parameterization of the given
problem—consider Closest String in Section 5.3 where the distance value d
is the optimization goal but k, the number of input strings, yields an equally
reasonable parameterization. Perhaps this also makes it more difficult to obtain
a clean, unified (complexity) theory covering everything.

Coping with computational intractability is not an easy thing to do. A flexible
response, as offered by parameterized complexity, is a worthwhile opportunity to
take into consideration. Understanding the multi-dimensionality and technical
difficulties of parameterized complexity as a valuable challenge for ongoing and
future research is highly recommended.
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Part II

Algorithmic Methods

This is a book about algorithms. Hence algorithm design and analysis techniques
form its core part. So, this part of the book, which is by far the longest, tries
to survey currently known fundamental methods and techniques used in the
development of fixed-parameter algorithms. It provides a toolbox when trying
to prove new or improved fixed-parameter tractability results. Let us illustrate
this with a concrete example.

Recall our favorite problem Vertex Cover.

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset C ⊆ V with k or fewer vertices such that each edge
in E has at least one of its endpoints in C.

In Chapter 7 on data reduction and problem kernels we will see simple as well as
involved data reduction techniques that can be used to “cut away” easy parts of
the input instance, leaving just the problem kernel, which can be considered as
the basic cause of the problem’s hardness. A problem kernel for Vertex Cover
with only 2k vertices can always be achieved in this way. In Chapter 8 we will
describe simple and—based on case distinctions—complicated depth-bounded
search tree strategies that provide fixed-parameter algorithms solving Vertex
Cover with a combinatorial explosion of ck with c < 2. Dynamic programming,
as described in Chapter 9, is another fruitful technique in parameterized algo-
rithm design—in the case of Vertex Cover it helps to shrinking the search
tree size further. Vertex Cover can be solved efficiently for graphs of bounded
treewidth—a deep and central topic of algorithmic graph theory that we will
explore to some extent in Chapter 10. Finally, in Chapter 11 we will encounter
various further techniques that have mostly arisen very recently and whose de-
velopment in a sense goes hand in hand with the advancement of fixed-parameter
studies for tackling hard combinatorial problems. Here, Vertex Cover appears
when illustrating the prospective iterative compression technique.

Clearly, Vertex Cover cannot serve as a running example of all the features
and particularities of the algorithmic techniques to be described. Nevertheless, in
order to try to avoid any form of “over-formalization” we always study concrete
algorithmic problems when introducing and discussing these techniques.
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Probably the three most elementary and best understood techniques in fixed-
parameter algorithmics so far are:

• data reduction and problem kernels (Chapter 7);

• depth-bounded search trees (Chapter 8); and

• dynamic programming (Chapter 9).

Each of these has a number of aspects and tricks that appear differently in con-
text with various problems. Hence each of the corresponding chapters contains
applications to several example problems highlighting different aspects. Chap-
ter 10, however, is somewhat different in the sense that it focuses on one single
concept—tree decompositions of graphs—which is more demanding and needs
more space to be reviewed in at least some depth. Two central aspects to be
dealt with here are the construction of tree decompositions of small “width” and
their use in solving graph problems. The latter is again based on dynamic pro-
gramming algorithms whose time and space consumption are both exponential
with respect to the width of the given tree decomposition. Finally, Chapter 11
gives an overview of

• color-coding;

• integer linear programming;

• iterative compression;

• greedy localization; and

• graph minor theory,

as further advanced and valuable tools for deciding on fixed-parameter tractabil-
ity.

Many ideas described in this part are fairly new and/or have been explored
only to some limited extent. We hope that it serves as a springboard into discover-
ing new applications and techniques that further advance the field of algorithmics
for computationally hard problems.
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DATA REDUCTION AND PROBLEM KERNELS

Every phone book is sorted. In a sorted structure, by using binary search we can
find items in logarithmic time. Sorting is the fundamental algorithmic problem
in computer science. Indeed, “when in doubt, sort” is considered as one of the
first rules of algorithm design. Thus sorting is a prime example of simplifying or,
in this case more specifically, structuring the input by efficient preprocessing. In
this chapter we will present a special form of data simplification. Whereas in the
case of sorting the simplification of the input consists in restructuring it to make
it sorted, the focus in the parameterized complexity context is on simplifying the
input by shrinking it in size.

Whereas the sorting problem is a computationally feasible problem, we focus
on “intractable” problems. If a computationally hard problem must be solved
in practice, one of the first things usually done is to try to perform a reduction
of the size of the input data. Many input instances consist of some parts that
are relatively easy to cope with and other parts that form the “really hard” core
of the problem. Hence, before starting a cost-intensive algorithm to solve the
difficult problem, a polynomial-time preprocessing phase is executed in order to
shrink the given input data as much (and as fast) as possible.

In Part I we have already seen two examples of such data reduction techniques
that can be executed in polynomial time. In Section 1.2, considering a problem
from railway optimization, the two simple reductions given by the Train Rule and
the Station Rule were presented as efficient (polynomial-time) preprocessing rules
with enormous success in empirical studies. A theoretical confirmation of the
strength of these rules is still missing today, though. In Section 1.3, considering
the communication network problem Multicut in Trees, we discussed several
simple data reduction rules. In this case, by way of contrast, the “quality” of data
reduction can actually be proven by showing a size-bounded “problem kernel”—
this form of “guaranteed quality of data reduction” will be the core concept of
this chapter.

Observe the “universal importance” of data reduction by preprocessing. It is
not only a ubiquitous topic for the design of efficient fixed-parameter algorithms,
but it is of importance for basically any method (such as approximation or purely
heuristic algorithms) that tries to cope with hard problems. It is important to
emphasize, however, that the use of data reduction techniques is not restricted
to a preprocessing phase only. On the contrary, there is empirical as well as
theoretical evidence that it is beneficial to combine or interleave data reduction
techniques with the “main algorithm” for problem solution, achieving significant
speedups in this way. Data reduction is one of the most important techniques in
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designing fixed-parameter algorithms and is also useful for other paradigms in
the field of algorithmics for hard problems.

We start with two concrete examples of data reduction. First, consider CNF-
Satisfiability, where one is given a Boolean formula F in conjunctive normal
form and the task is to decide whether or not F has a satisfying truth assignment
(refer to Section 1.1). Clearly, if there are clauses consisting of only one literal
then to satisfy F one must satisfy these “unit-clauses” by setting the value of
the corresponding variable accordingly. There is no choice here. This can be
accomplished by a simple scan through the formula phase, and it may shrink the
original input formula considerably, resulting in a reduced formula.

Second, let us return to our running example Vertex Cover:

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices C ⊆ V with k or fewer vertices such that
each edge in E has at least one of its endpoints in C.

It is clearly permissible to remove isolated vertices, that is, vertices with no
adjacent edges. Moreover, if one is looking for only one optimal vertex cover and
not all of them, then vertices with only one adjacent edge, and thus one adjacent
vertex, can easily be dealt with by putting the neighboring vertex into the cover.
This is correct because in order to cover the corresponding edge one of the two
endpoints must be in the vertex cover and a vertex with higher degree has the
potential to cover more edges. In the fixed-parameter setting, where we ask for a
vertex cover of size at most k, we can further do the following. If there is a vertex
of degree at least k+1, that is, a vertex with more than k adjacent edges, then, if
a vertex cover of size k exists, this particular vertex must be part of it. Otherwise,
to cover all its adjacent edges would require all its at least k + 1 neighbors, a
contradiction. This is known as Buss’s reduction to a problem kernel for Vertex
Cover. One can easily verify that after performing the above rules, in order to
have a Vertex Cover of size at most k the remaining graph can have at most
k2 +k vertices and at most k2 edges. For the time being, however, our sole point
of interest here is that all three of the above rules (concerning isolated vertices,
vertices of degree one, and vertices of degree at least k + 1) can be executed in
polynomial time. Thus, we may obtain an efficiently executable data reduction.
In Section 7.4, we will see that Vertex Cover even allows for a much more
sophisticated and stronger data reduction.

The methodological approach, including various techniques of data reduction
or problem kernelization is best learned by a series of concrete examples. This
will be the main contents of this chapter. The examples are selected in such
a way that it is hoped that they well represent standard techniques that have
been employed in this context. So, our extensive discussions are based on diverse
problems such as Maximum Satisfiability, Cluster Editing, 3-Hitting
Set, Vertex Cover, and Dominating Set in Planar Graphs. To facilitate
illustration, the majority of the chosen problems are graph problems, although
data reduction techniques are of interest and apply to all sorts of hard problems.
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In summary, data reduction is a topic with practical importance that cannot
be overrated and it belongs as an important key technique in every algorithm
designer’s toolbox. Formal studies of data reduction techniques are still under-
represented in the algorithms literature and it will become a growing field of
research on its own. In the context of fixed-parameter algorithms, this basically
comes down to what is known as reduction to a problem kernel. We formally
introduce this notion in the first section.

7.1 Basic definitions and facts

Besides the notion of fixed-parameter tractability itself, the concept of reduction
to a problem kernel or, equivalently, kernelization, leads to the most important
definition in this book. It captures data reduction taken from a fixed-parameter
complexity point of view. To simplify matters, it is assumed that the parameter
is a positive integer. Cases with more than one parameter being a number are
each handled analogously.

Definition 7.1 Let L be a parameterized problem, that is, L consists of input
pairs (I, k), where I is the problem instance and k is the parameter. Reduction
to a problem kernel then means to replace instance (I, k) by a “reduced” instance
(I ′, k′) (called problem kernel) such that

k′ ≤ k, |I ′| ≤ g(k)

for some function g only depending on k, and

(I, k) ∈ L iff (I ′, k′) ∈ L.

Furthermore, the reduction from (I, k) to (I ′, k′) must be computable in polyno-
mial time TK(|I|, k). The function g(k) is called the size of the problem kernel.

Clearly, the aforementioned kernelization for Vertex Cover due to Buss
fits into the given definition.

Two remarks:

• Definition 7.1 requires that k′ ≤ k. In principle, it could even be allowed
that k′ = f(k) for some arbitrary function f . We are not aware of a con-
crete, natural parameterized problem with a problem kernel where k′ > k.

• This remark concerns the type of parameterizations for which we study
reduction to a problem kernel. All kernelizations we are aware of refer
to parameterized problems where the parameter reflects the value to be
optimized in the corresponding optimization problem.

To further substantiate and to state more precisely the last remark, recall the
problem Multicut in Trees introduced in Section 1.3:
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Input: An undirected tree T = (V,E), n := |V |, and a collection H of m
pairs of vertices in V , H = {(ui, vi) |ui, vi ∈ V, ui �= vi, 1 ≤ i ≤ m}.
Task: Find a minimum size subset E′ of E such that the removal of the
edges in E′ separates each pair of vertices in H .

In Section 1.3 we discussed the parameterization by k := |E′|. In Section 5.1
we briefly introduced another parameterization, namely the maximum number d
of demand paths passing through a tree node. By employing dynamic program-
ming techniques also with respect to parameter d we can achieve fixed-parameter
tractability. For parameter k, however, with some technical expenditure a prob-
lem kernel can be proven. By way of contrast, we see no point in searching for
a problem kernel with respect to d. Note that k corresponds to the optimization
value in Multicut in Trees, whereas d corresponds to a “structural property”
of the input which is basically unrelated to the optimization value. Hence it is
not conceivable to get a reduced instance with an upper bound on its size that
depends only on the parameter d because arbitrarily large instances with small d
but a large solution set exist.

For computationally hard problems, the best one can hope for is that a prob-
lem kernel has size linear in k, a so-called linear problem kernel . According to
Definition 7.1, this formally means that, for a given problem parameter k, the
reduced instance I ′ is of size O(k). For graph problems, however, this is often con-
fused with the property that the reduced graphG′ = (V ′, E′) fulfills |V ′| = O(k),
whereas the total instance size also including the number of edges still may be
O(k2). Nevertheless, one frequently terms this a linear problem kernel. A con-
crete example of this is given with the problem kernel for Vertex Cover that
contains only 2k vertices; see Section 7.4.

One can classify kernelization algorithms or, more specifically, data reduction
rules, into two types:

• parameter-independent and

• parameter-dependent ones.

The distinguishing factor is whether or not the kernelization makes explicit use
of the parameter value. For instance, consider Vertex Cover. The notion of
“high-degree vertices” as employed in the kernelization attributed to Buss is
parameter-dependent because it needs to know the value of parameter k. By
way of contrast, the rule which simply put the neighbor of a degree-one vertex
into the vertex cover does not need to know the value of k; it is parameter-
independent. Clearly, “parameter-independence” is preferable, but it seems hard
to achieve in all cases as we will see in the case studies to follow. For parameter-
dependent rules, to find a solution with optimal parameter value one has to try
several candidates for parameter k in a systematic fashion. For the time being,
just note that currently the only known kernelization of Multicut in Trees
is based on a mixture of parameter-dependent and parameter-independent data
reduction rules.
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To get further acquainted also with the pitfalls of problem kernels, let us now
have a brief look at a somewhat strange kind of problem kernelization. Consider
Independent Set in Planar Graphs:

Input: A planar graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices I ⊆ V with k or more vertices that form
an independent set, that is, I induces an edgeless subgraph of G.

Independent Set in Planar Graphs has a problem kernel consisting of only
4k vertices: due to the famous four-color theorem for planar graphs and the
corresponding polynomial-time coloring algorithm one can color the vertices of a
given planar graph with four colors such that no two neighboring vertices possess
the same color. Hence each “color class” forms an independent set of the graph,
and, since we need only four color classes, one of them must contain at least one
fourth of all vertices.

Thus the reduction to a problem kernel may simply proceed as follows: if for
a given planar graph with n vertices and parameter k it holds that k ≤ �n/4�,
then answer “yes” and produce an independent set using the polynomial-time
coloring algorithm. If k > �n/4�, then n < 4k and, voilà, we have a problem
kernel with 4k vertices. On the one hand, in a way, this kind of kernelization is
not satisfactory because in the second case we did not reduce the size of the input
graph at all, but simply made the indirect observation that it must have a big (!)
independent set that contains at least one quarter of all graph vertices. This
contradicts the common assumption of parameters being “small” and directs
our attention to the now more natural parameterization above the guaranteed
value �n/4�, see Section 5.2. On the other hand, this example also shows that
there may be deep theory behind the construction of problem kernels: here, the
famous four-color theorem and the corresponding intricate coloring algorithm.

This problem kernelization for Independent Set in Planar Graphs based
on the four-color theorem also has a “global flavor”, whereas the majority of
known reductions to a problem kernel work by using “local rules”. More specif-
ically, the corresponding data reduction rules—we usually need more than one
single rule to prove a problem kernel—explore local structures within an input
instance. Based exclusively on this, these rules decide whether the input can be
be simplified (or, equivalently, reduced) here. For instance, in the case of Vertex
Cover such a local structure may be a vertex together with all its neighbors. If
it has only one neighbor, a very simple data reduction rule says that we should
put its neighbor into the vertex cover and remove it from the given instance
together with all its incident edges, no matter what the remaining graph looks
like.

Finally, let us mention in passing that in parameterized complexity theory
it has become a commonplace that “every fixed-parameter tractable problem
is kernelizable”. To begin with, note that it is obvious that if there is a re-
duction to a problem kernel for a decidable parameterized problem, then it is
fixed-parameter tractable: simply perform a brute-force search algorithm on the
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remaining problem kernel. The opposite direction is a little less obvious: assume
that the given fixed-parameter algorithm has running time f(k) · nc for some
positive constant c. The idea is to run this algorithm on the problem for at most
nc+1 steps and then to consider the two cases that either the algorithm has fin-
ished its task within that time or it has not finished. In the first case, we directly
obtain a kernelization algorithm running in polynomial time nc+1, which simply
outputs either a trivial “no”-instance or a trivial “yes”-instance. In the second
case, we can argue that n < f(k). Thus, our problem kernel is the original input
instance itself. We can summarize these arguments as follows.

Proposition 7.2 A decidable parameterized problem L is fixed-parameter tract-
able with respect to parameter k iff there exists a reduction to a problem kernel
for L with respect to k.

Proof Following the discussion preceding Proposition 7.2, it remains to be
shown that n < f(k) in the case that the fixed-parameter algorithm has not
finished its task within nc+1 steps for a positive constant c. If so, this means
that

nc+1 < f(k) · nc,

which yields n < f(k). �

Clearly, Proposition 7.2 is of no direct practical use and gives only a trivial
problem kernel with no algorithmic impact. As a matter of experience, one may
conclude that, although it is often not hard to find some simple data reduction
rules for a fixed-parameter tractable problem, to prove that they really yield
a non-trivial problem kernel in the sense of Definition 7.1 frequently becomes a
mathematically challenging task—it is worth the effort! We will elaborate several
concrete problem kernelizations in the remainder of this chapter.

7.2 Maximum Satisfiability

To start our series of example kernelizations, we present a simple reduction to
a problem kernel for the NP -complete Maximum Satisfiability (MaxSat)
problem (see also Section 1.1):

Input: A Boolean formula in conjunctive normal form consisting of
m clauses and a nonnegative integer k.
Task: Find a truth assignment satisfying at least k clauses.

We represent the Boolean values true and false by 1 and 0, respectively. A truth
assignment I can be defined as a set of literals that contains no pairs of comple-
mentary literals. Then for a variable x we have I(x) = 1 iff x ∈ I and I(x) = 0
iff x̄ ∈ I. We deal only with propositional formulae in conjunctive normal form.
These are often represented in clause form, that is, as a set of clauses, where
a clause is a set of literals. We represent formulae as multi-sets of sets since a
formula might contain some identical clauses. For the Satisfiability problem
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(see Section 1.1) multiple clauses can be eliminated, but this is of course no
longer true if we are interested in the number of satisfiable clauses. The formula

(x ∨ y ∨ z̄) ∧ (x ∨ y ∨ z̄) ∧ (x̄ ∨ z) ∧ (ȳ ∨ z)
will be represented as

{{x, y, z̄}, {x, y, z̄}, {x̄, z}, {ȳ, z}}.
Note that the outer curly brackets denote the multi-set and the inner curly
brackets denote the sets of literals. The length of a clause is its cardinality, and
the length of a formula is the sum of the lengths of its clauses. To simplify
presentation, we assume that each clause contains at most one occurrence of a
variable x. Note that a clause where both literals x and x̄ occur is trivially always
satisfied.

Suppose that we are given an input instance for MaxSat. The first simple
observation is that if k ≤ �m/2�, then the desired truth assignment trivially
exists: take a random truth assignment. If it satisfies at least k clauses then we
are done. Otherwise, “flipping” each bit in this truth assignment to its opposite
value yields a new truth assignment that now satisfies at least �m/2� clauses.

Hence from now on we can assume that k > �m/2�, which implies that
m < 2k. The next observation gives a problem kernel of quadratic size: partition
the clauses of the given formula F into long clauses (that is, clauses containing k
or more literals) and into short clauses (that is, clauses containing less than k
literals). Thus,

F = Fl ∧ Fs,

where Fl contains all long clauses and Fs contains all short clauses. Let L be the
number of long clauses. If L ≥ k then again at least k clauses can be satisfied by
picking (in the worst case) in each long clause another variable and setting its
value accordingly such that the corresponding clause gets satisfied.

If L < k, then an important point is that now it is sufficient to focus attention
on the new MaxSat instance (Fs, k−L), which already gives our problem kernel
due to the following observations. Note that (F, k) is a yes-instance of MaxSat iff
(Fs, k−L) is a yes-instance of MaxSat: the same reasoning as in the preceding
paragraph shows that the remaining L large clauses can always be satisfied.
This is true because to satisfy k−L clauses at most k−L variables (at most one
variable per satisfied clause) are needed. Thus, for the L large clauses at least
k − (k − L) = L variables remain to be freely set and the claimed equivalence is
shown.

It remains to show that the size of the formula Fs (making the reduced
problem instance) is bounded from above by O(k2): we have that there are
m − L ≤ m small clauses, each containing at most k literals, and we have that
m < 2k as explained before. Hence the total number of literal occurrences in Fs

is bounded from above by 2k · k = 2k2. This means a quadratic-size problem
kernel for MaxSat with respect to parameter k.
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Proposition 7.3 Maximum Satisfiability has a problem kernel of size O(k2),
and it can be found in linear time.

Proof The above described method and its correctness are clear. With regard
to the running time, it is easy to see that the determination of the small and
large clauses as well as the determination of an assignment satisfying all large
clauses can be done in linear time by simply scanning the given formula. �

In summary, we observe that the given problem kernelization for Maximum
Satisfiability makes explicit use of parameter value k to perform the parti-
tioning into a small and a large formula; hence the described data reduction is
parameter-dependent. Moreover, the reduction to a problem kernel for MaxSat
has the same unsatisfactory flavor as that which Independent Set in Planar
Graphs (see Section 7.1) had. The point is that again it is the use made of the
structural property of the input instance which guarantees “beforehand” that at
least half of all clauses are always satisfiable. Hence, similar to the case of In-
dependent Set in Planar Graphs, parameterizing above guaranteed values
would probably be more appropriate here (see Section 5.2). This is also discussed
in the related literature, see the bibliographical remarks in Section 7.10.

7.3 Cluster Editing

Our next example of problem kernelization deals with a graph modification prob-
lem arising in the field of data clustering. Different from the Maximum Satisfi-
ability case, in this new example we work with with mainly local data reduction
rules. Again, however, the rules are parameter-dependent. The problem defini-
tion is based on the notion of a similarity graph whose vertices correspond to
data elements and in which there is an edge between two vertices iff the simi-
larity of their corresponding elements exceeds a predefined threshold. The goal
is to obtain a cluster graph by as few edge modifications (that is, edge dele-
tions or edge additions) as possible; a cluster graph is a graph in which each of
the connected components is a clique. Thus we arrive at the NP-complete edge
modification problem Cluster Editing:

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find out whether we can transform G, by deleting or adding at
most k edges, into a graph that consists of a disjoint union of cliques.

In our data reduction rules we employ two annotations for unordered vertex
pairs which are defined as follows.

“permanent”: In this case, {u, v} ∈ E and it is not allowed to delete {u, v};
“forbidden”: In this case, {u, v} /∈ E and it is not allowed to add {u, v}.

Note that whenever we delete an edge {u, v} from E, we make vertex pair {u, v}
forbidden, since it would not make sense to reintroduce previously deleted edges.
In the same way, whenever we add an edge {u, v} to E, we make {u, v} perma-
nent.
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Although the following data reduction rules also add edges to the graph, we
consider the resulting instances as simplified. The reason is that for every added
edge, the parameter is decreased by one. In the following rules, it is implicitly
assumed that, whenever an edge is added or deleted, parameter k is decreased
by one. In the formulation of our rules, we use the following terminology. Given
a graph G = (V,E) and a vertex pair vi, vj ∈ V , we use common neighbor of vi

and vj to refer to a vertex z ∈ V with {z, vi} ∈ E and {z, vj} ∈ E. Similarly,
a non-common neighbor of vi and vj is a vertex z ∈ V with z �= vi and z �= vj

such that either {z, vi} ∈ E or {z, vj} ∈ E but not both.

Rule 1 For every pair of vertices u, v ∈ V :

1. If u and v have more than k common neighbors, then {u, v} must be
in E and we make the vertex pair {u, v} permanent. If {u, v} �∈ E, we
add it to E.

2. If u and v have more than k non-common neighbors, then {u, v} may
not be in E and we make {u, v} forbidden. If {u, v} ∈ E, we delete it.

3. If u and v have both more than k common and more than k non-common
neighbors, then the given instance has no solution.

Lemma 7.4 Rule 1 is correct.

Proof In the following arguments it is useful to employ the easily verified fact
(also see Section 8.2) that a graph is a cluster graph iff it contains no induced
path of three vertices.
Case 1: Vertices u and v have more than k common neighbors. If we did ex-
clude {u, v} from E, then we would have to, for every common neighbor z of u
and v, delete {u, z}, {v, z}, or both. This, however, would require at least k + 1
edge deletions, a contradiction of the fact that at most k edge modifications are
allowed.
Case 2: Vertices u and v have more than k non-common neighbors. If we did
include {u, v} in E, then we would have to, for every non-common neighbor z
of u and v, edit one of the edges {u, z} and {v, z}: without loss of generality, let z
be a neighbor of u and not a neighbor of v. Then, we would either have to delete
{u, z} from E or add {v, z} to E. With at least k + 1 non-common neighbors,
this would require at least k + 1 edge modifications.
Case 3: Vertices u and v have more than k common neighbors and more than k
non-common neighbors. From the proofs for Case 1 and Case 2 it is clear that it
would require more than k edge modifications both when including {u, v} in E
and when excluding {u, v} from E. �

Note that Rule 1 applies to every vertex pair u, v ∈ V for which the number
of vertices which are neighbors of u or v (or both) is greater than 2k.

Rule 2 For every three vertices u, v, w ∈ V :

1. If {u, v} has an annotation permanent and {u,w} has an annotation
permanent, then {v, w}, if not already existing, must be added to E and
{v, w} is set permanent.



62 DATA REDUCTION AND PROBLEM KERNELS

2. If {u, v} has an annotation permanent and {u,w} has an annotation
forbidden, then {v, w}, if already existing, must be deleted from E and
{u,w} is set forbidden.

The correctness of Rule 2 is obvious. Regarding the running time, one must
analyze the interleaved application of Rules 1 and 2 together. Since the analysis
is technical and requires the efficient use of additional data structures, we refer
to the literature for the proof and just state the result:

Lemma 7.5 An n-vertex graph can be transformed into a graph which is reduced
with respect to Rules 1 and 2 in O(n3) time.

We complete our set of reduction rules with the following.

Rule 3 Delete the connected components which are cliques from the graph.

The correctness of Rule 3 is straightforward. Computing the connected compo-
nents of a graph and checking for cliques can easily be done in linear time. Hence
Rule 3 is executable in linear time.

Notably, for the problem kernel size to be shown, Rules 1 and 3 would be
sufficient. Rule 2 is also taken into account since it is simple and general and it
can be executed in the course of executing Rule 1. Thus, Rules 1 to 3 constitute
a small set of data reduction rules yielding a problem kernel with O(k2) vertices
and O(k3) edges. It is computable in O(n3) worst-case time.

The proof of the subsequent main theorem neglects the running time analysis
as mentioned before.

Theorem 7.6 For n-vertex graphs that are connected, Cluster Editing has
a problem kernel with a graph that contains O(k2) vertices and O(k3) edges. It
can be found in O(n3) time.

Proof Let G = (V,E) be a graph which is reduced with respect to Rules 1 to 3.
Without loss of generality, we assume that G is connected. Since Rule 3 deletes all
isolated cliques from the given graph, G is not a clique and we need at least one
edge modification to transform G = (V,E) into a graph G′ = (V,E′), consisting
of disjoint cliques. Let k be the minimum number of required edge modifications,
namely ka edge additions and kd edge deletions. Under the assumption that G
is reduced with respect to Rules 1 to 3, we will show by contradiction that
n ≤ (2k + 1) · k and that |E| ≤ (

2k+1
2

) · k as follows.
Assume that |V | > (2k + 1) · k. We distinguish two cases, namely the case

that ka = 0 and the case that 1 ≤ ka ≤ k. In both cases, we show a contradiction
to our assumption that the graph is reduced with respect to Rule 1.

(Case 1): ka = 0. We have kd edge deletions, 1 ≤ kd = k, to transform G
into G′. Let VC ⊆ V denote the vertex set of a largest clique in G′. The vertices
in VC also form a clique in G since ka = 0. Since G is connected, at least one
vertex u ∈ VC is connected to a vertex v /∈ VC . We further distinguish two
subcases: either v is not connected to any other vertex u′ ∈ VC with u′ �= u or
there is a u′ ∈ VC with u′ �= u and {u′, v} ∈ E.
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(Case 1.1): Vertex v is not connected to any other vertex u′ ∈ VC with
u′ �= u. We can lower-bound the clique size by |VC | ≥ |V |/(kd + 1): by kd edge
deletions, G is transformed into a graph G′ containing at most kd+1 cliques and,
therefore, a largest clique in G′ contains at least |V |/(kd + 1) vertices. First, we
assume that kd ≥ 2 (∗). Using our further assumptions that |V | > (2k+1) ·k (∗∗)

and kd = k (∗∗∗) we obtain

|VC | ≥ |V |
kd + 1

(∗∗)
>

(2k + 1) · k
kd + 1

(∗∗∗)
=

2k2 + k

k + 1
=
k2 + k

k + 1
+

k2

k + 1

(∗)
≥ k + 1.

Consequently, |VC | ≥ k+2 and u has at least k+1 neighbors—all vertices u′ ∈ VC

with u′ �= u—which are not neighbors of v. This contradicts the assumption that
G is reduced with respect to Rule 1. Second, assuming that kd = k = 1 while
|V | > (2k + 1) · k = 3, G′ consists of two cliques; either both contain at least
two vertices or one of them contains at least three vertices—both times, Rule 1
would apply, a contradiction.

(Case 1.2): There is a u′ ∈ VC with u′ �= u and {u′, v} ∈ E. We can
lower-bound the clique size by at least |V |/kd: G is transformed into a graph G′

containing at most kd cliques and, therefore, a largest clique in G′ contains at
least |V |/kd vertices. With the assumptions |V | > (2k+1) ·k (∗) and kd = k (∗∗),
we obtain

|VC | ≥ |V |
kd

(∗)
>

(2k + 1) · k
kd

(∗∗)
= 2k + 1.

Consequently, VC contains more than 2k+1 vertices and at most k many of them
are connected to v. Therefore, u has more than k + 1 neighbors in this clique
which are not neighbors of v, contradicting the assumption that G is reduced
with respect to Rule 1.

(Case 2): 1 ≤ ka ≤ k. We know, since ka + kd = k, that kd < k. Again, let
VC ⊆ V denote the vertex set of a largest clique in G′. Since G′ contains at most
kd +1 cliques, we have |VC | ≥ |V |/(kd +1). With kd < k, this yields |VC | ≥ |V |/k
and, using |V | > (2k + 1) · k, we obtain

|VC | > 2k + 1. (7.1)

Since the vertices of VC form a clique in G′ and at most k many edges are
added in the transformation from G to G′, in G there are at most k vertex pairs
(vi, vj) with i < j and vi, vj ∈ VC which are not connected by an edge. In the
following, we show that, under the two assumptions that |VC | ≥ 2(k+1) and that
|{(vi, vj) | vi, vj ∈ VC , i < j, {vi, vj} /∈ E}| ≤ k, the graph cannot be reduced
with respect to Rule 1. To this end, we consider the cases that ka = k and that
ka < k separately.

(Case 2.1): ka = k. We conclude that VC = V and G′ consists of only one
clique. Since ka = k ≥ 1, there are vi, vj ∈ V with i < j and {vi, vj} /∈ E. Since
at most k−1 of the at least 2k vertices besides vi and vj are not connected to vi

or vj in G, vi and vj have at least k + 1 common neighbors in G and Rule 1
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would apply, in contradiction to our assumption that G is reduced with respect
to Rule 1.

(Case 2.2): ka < k. We can conclude that there are u ∈ VC and v /∈ VC such
that {u, v} ∈ E. Due to inequality (7.1), there are more than 2k + 1 vertices in
VC . On the one hand, there are at least (2k + 1)− ka − 1 vertices u′ ∈ VC with
{u′, u} ∈ E. On the other hand, there are at most kd − 1 vertices u′ ∈ VC with
{u′, v} ∈ E. Consequently, we have at least

(2k + 1)− (ka + kd) = (2k + 1)− k = k + 1

vertices u′ ∈ VC with {u′, u} ∈ E but {u′, v} /∈ E. This implies that u has at
least k + 1 neighbors in G which are not neighbors of v and Rule 1 applies. In
both cases, for ka = k and for 1 ≤ ka < k, we obtain a contradiction to the
assumption that G is reduced since Rule 1 would apply.

Regarding the edge set of the connected component, we infer a contradiction
from the assumption that |E| > (

2k+1
2

) · k in an analogous way as for the vertex
set: again, we let VC be the vertex set of a largest clique in G′ and we distinguish
between the cases kd = 0 and kd > 0. If kd = 0, then we can easily derive that
|VC | > 2k + 1 and the contradiction follows in analogy to (Case 2.1) above. If
kd > 0, we can derive (omitting some details here) that |VC | ≥ 2k+ 1. Then the
contradiction follows in analogy to (Case 2.2) above.

Summarizing, the reduced graph contains at most 2k2 + k vertices and at
most

(
2k+1

2

)
k = 2k3 + k2 edges; otherwise, no solution exists. �

The proof of Theorem 7.6 illustrates that, although the data reduction may
be fairly simple, the proof of the upper bound on the size of the problem kernel
may become demanding. This is an observation that can often be made.

7.4 Vertex Cover

At the beginning of this chapter we discussed the size-O(k2) problem kernel
due to Buss, which is based on a simple observation concerning high-degree ver-
tices. There are several kernelization techniques with much improved bounds
on the kernel size and which are based on maximum matching and linear pro-
gramming techniques. Two of them are directly based on a theorem of George
L. Nemhauser and William T. Trotter from 1975. This was developed in the con-
text of approximation algorithms, but turns out to be very useful when designing
fixed-parameter algorithms for Vertex Cover.

7.4.1 Kernelization based on matching

We start with an algorithmic approach employing basic combinatorial arguments
not relying on integer or linear programming. As we will show, the described
method guarantees a “kernelized graph” where the number of vertices is bounded
from above by twice the size of an optimal vertex cover of this graph.

Theorem 7.7 For an n-vertex graph G = (V,E) with m edges, we can compute
two disjoint sets C0 ⊆ V and V0 ⊆ V in O(

√
n ·m) time, such that the following

three properties hold:
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Input: G = (V,E)
Output: C0 and V0.
Phase 1:

Construct the bipartite graph B = (V, V ′, EB)
where EB := {{x, y′}, {x′, y} | {x, y} ∈ E}
and V ′ is a copy of V .

Phase 2:
Let CB be an optimal vertex cover of B determined
by computing a maximum matching using
standard methods in O(

√
nm) time.

C0 := {x ∈ V | x ∈ CB and x′ ∈ CB}.
V0 := {x ∈ V | either x ∈ CB or x′ ∈ CB}.

Fig. 7.1. An algorithm to compute the sets C0 and V0 in Theorem 7.7. A
maximum matching is a maximum cardinality set of edges in a graph such
that no two edges share an endpoint. It is well known in matching theory
that for bipartite graphs the size of a maximum matching coincides with the
size of a minimum vertex cover of that graph (König’s Minimax Theorem).

1. There is a minimum-size vertex cover of G which comprises C0.

2. The induced subgraph G[V0] has a minimum vertex cover of size at least |V0|/2.
3. If D ⊆ V0 is a vertex cover of the induced subgraph G[V0], then C := D∪C0

is a vertex cover of G.

Proof The algorithm given in Figure 7.1 computes the sets C0 and V0 employ-
ing the bipartite graph B = (V, V ′, EB) where

EB := {{x, y′}, {x′, y} | {x, y} ∈ E}
and V ′ simply is a copy of V . For x ∈ V , its copy is x′ ∈ V ′. Moreover, CB

denotes a minimum-size vertex cover of B.
To prove the validity of the three claims in the theorem, we further need to

introduce the third “remaining set”.

I0 := {x ∈ V | x /∈ CB and x′ /∈ CB}
= V \ (V0 ∪ C0).

Note that I0 forms an independent set in G. Moreover, for every vertex in I0 all
its neighbors are in C0.

1. D ∪ C0 is a vertex cover of G: For {x, y} ∈ E we have to show that x ∈ C
or y ∈ C. We distinguish four cases.

Case 1: If x ∈ I0, that is, x, x′ /∈ CB , then it must hold that y, y′ ∈ CB ,
and, thus, y ∈ C0.

Case 2: The case y ∈ I0 is completely analogous to Case 1.
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Case 3: x ∈ C0 or y ∈ C0 is trivial.

Case 4: If x, y ∈ V0, then x ∈ D or y ∈ D by definition of D.

2. There is a minimum-size vertex cover of G comprising C0: Let S be
any minimum-size vertex cover of G. We show how to use S to construct
a minimum-size vertex cover of G that comprises C0. To this end, define
SV := S ∩ V0, SC := S ∩ C0, SI := S ∩ I0 and S̄I := I0 \ SI . By S′

C ⊆ V ′

we denote the copy of SC . We make use of the following auxiliary claim.
Claim: ĈB := (V \ S̄I) ∪ S′

C is a vertex cover of the bipartite graph B.
Using the Claim (which we prove afterwards), next we will show |C0| ≤
|S \SV | which clearly implies |C0∪SV | ≤ |S|. Since SV is a vertex cover of
G[V0], with the already proven first point of the theorem we can conclude
that C0 ∪ SV yields an optimal vertex cover.

|V0|+ 2|C0| = |V0 ∪ C0 ∪ C′
0|

= |CB| [Definition of V0 and C0]

≤ |ĈB| [Optimality of CB ]

= |V \ S̄I |+ |S′
C | [Claim]

= |V0 ∪ C0 ∪ I0 \ (I0 \ SI)|+ |S′
C |

= |V0|+ |C0|+ |SI |+ |SC |
⇒ |C0| ≤ |SI |+ |SC |

= |SI |+ |SC |+ |SV | − |SV |
= |S| − |SV |.

It remains to show the above claim. Let {x, y′} ∈ EB. We have to show
that x ∈ ĈB or y′ ∈ ĈB .

Case 1: If x /∈ S̄I , then x ∈ ĈB according to the definition of ĈB .

Case 2: If x ∈ S̄I , then x ∈ I0, and, thus, x /∈ C0 and x /∈ S. Then, y ∈ S
and y ∈ C0. Thus, y ∈ S ∩ C0 = SC and y′ ∈ S′

C .

3. G[V0] has a minimum vertex cover of size at least |V0|/2: Suppose S0

is a minimum vertex cover of G[V0]. According to the first point of the
theorem, S0 ∪ C0 is a vertex cover of G. Then, according to the definition
of the bipartite graph B the set S0 ∪ S′

0 ∪ C0 ∪ C′
0 is a vertex cover of B.

Hence:

|V0|+ 2|C0| = |CB| [Definition of V0 and C0]

≤ |C0 ∪C′
0 ∪ S0 ∪ S′

0| [Optimality of CB]

= 2|C0|+ 2|S0|.

This implies |V0| ≤ 2|S0|.

�
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Theorem 7.7 is the key to a problem kernel for Vertex Cover which is
formed by a graph that has at least half of its vertices in a minimum-size vertex
cover.

Theorem 7.8 Let (G = (V,E), k) be an input instance of Vertex Cover. In
O(k · |V |+ k3) time we can compute a reduced instance (G′ = (V ′, E′), k′) with
|V ′| ≤ 2k and k′ ≤ k such that G admits a vertex cover of size k iff G′ admits a
vertex cover of size k′.

Proof We begin by using Buss’s reduction to a problem kernel as sketched
at the beginning of the chapter to get a reduced instance containing at most
O(k2) vertices and edges with a parameter value k′′ ≤ k. Buss’s kernelization
takes O(k|V |) time. Then, Phase 2 of the algorithm described in the proof of
Theorem 7.7—which basically consists of a maximum matching computation in
a bipartite graph containing O(k2) vertices and O(k2) edges—can be done in
time O(k3). From the maximum matching in linear time we get the set C0 of
vertices that have to be in the vertex cover, and we define k′ := k′′−|C0|. We also
get the set V0 that induces the subgraph G[V0], the problem kernel G′. Observe
that due to Theorem 7.7 we directly know that if |V0| > 2k′, then there is no
vertex cover of size k for the original graph G. Otherwise, the remaining vertices
for a minimum vertex cover of G can be found by searching for a minimum vertex
cover of G′. �

There are several important observations to be made with respect to Theo-
rem 7.8.

• According to the current state of knowledge, the size bound 2k for the
number of vertices in the reduced graph is the best one may hope for be-
cause a problem kernel with (2− ε) · k vertices with constant ε > 0 would
imply a factor (2− ε) polynomial-time approximation algorithm for Ver-
tex Cover—simply put all vertices of the reduced graph into the vertex
cover which then is by a factor at most 2− ε larger than a minimum one.
This, however, is a longstanding open question in approximation theory
and an answer to it would mean a major breakthrough in approximation
algorithms for Vertex Cover.

• In contrast with the simpler Buss kernelization, after performing the above
Nemhauser–Trotter reduction to a problem kernel, at first glance we cannot
expect to find all vertex covers up to size k. Theorem 7.7 only leads to (at
least) one particular minimum vertex cover, excluding others from further
consideration. Recent research shows, however, how to modify these results
in order to obtain all optimal solutions; see the bibliographical remarks.

• Theorem 7.7 can be generalized to find minimum weight vertex covers,
where vertices have a positive real weight. This is useful for fixed-parameter
algorithms for Weighted Vertex Cover.
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• The Nemhauser–Trotter kernelization itself does not make explicit use of
the parameter value k when computing the problem kernel graph G[V0]—it
is an example of a parameter-independent data reduction.

7.4.2 Kernelization based on linear programming

Having described in detail a purely combinatorial approach to a 2k-vertices prob-
lem kernel for Vertex Cover, we now investigate an alternative route to this
result. It is rooted in (integer) linear programming techniques, from where the
original work of Nemhauser and Trotter also originated. Without delving into
the details of the theory behind it, we focus attention on the easy to grasp and
immediately clear fundamental ideas of this approach. All is based on the follow-
ing elementary observation. The optimization version of Vertex Cover can be
stated as a simple integer linear program: associate with each graph vertex v a
0/1-variable xv. Then, xv = 1 means that v is in the vertex cover set and xv = 0
means that it is not. Clearly, for a given graph G = (V,E) Vertex Cover can
be expressed as the following optimization problem

1. Minimize
∑

v∈V xv where

2. xu + xv ≥ 1 is satisfied for all {u, v} ∈ E.

Since integer linear programming is generally intractable—the corresponding
decision problem is NP -complete—we relax the integer programming formulation
to polynomial-time solvable linear programming. Without changing the above
two points, the only difference here is that we do not require a solution based
on 0/1-variables xv but we allow xv to take values in the real-valued interval
0 ≤ xv ≤ 1. The value of the objective function under this “relaxation” then
gives a lower bound for the size of an optimal vertex cover.

Based on the relaxation to linear programming, however, we may obtain a
small problem kernel for Vertex Cover. To this end, define

C0 := {v ∈ V | xv > 0.5},
V0 := {v ∈ V | xv = 0.5},
I0 := {v ∈ V | xv < 0.5}.

The following theorem results in a 2k-vertices problem kernel in the same way
that Theorem 7.7 does.

Theorem 7.9 Let (G = (V,E), k) be a Vertex Cover instance. For C0, V0,
and I0 as defined above, there is a minimum-size vertex cover S with C0 ⊆ S
and S ∩ I0 = ∅. In addition, V0 induces the problem kernel (G[V0], k− |C0|) with
|V0| ≤ 2k.

Proof Consider an optimal vertex cover set S and define S̄C := C0 \ S and
SI := S ∩ I0. We show that S′ := (S \ SI) ∪ S̄C is an optimal vertex cover as
well. Clearly, according to the linear programming formulation we must have
that N(I0) ⊆ C0. With this, |S̄C | ≥ |SI | because otherwise we could replace SI



VERTEX COVER 69

in S with S̄C , obtaining a smaller vertex cover set, contradicting the optimality
of S. Moreover, |S̄C | ≤ |SI | as can be seen as follows. Consider

ε := min{xv − 0.5 | v ∈ C0}

and

1. replace the values xu with xu + ε for all u ∈ SI ; and

2. replace the values xv with xv − ε for all v ∈ S̄C .

If |S̄C | > |SI | then such a modification would give a better objective value for the
linear program, contradicting the optimality of the given solution. Altogether,
hence, |S̄C | = |SI |, and we can replace SI with S̄C in S because N(I0) ⊆ C0.

To derive the bound |V0| ≤ 2k, notice that since the value of the objective
function for the linear program is a lower bound for the objective function of
the integer linear program, the size of any optimal cover of G[V0] is bounded
from below by

∑
v∈V0

xv = |V0|/2. Hence we conclude that if |V0| ≥ 2k (or even
|V0| ≥ 2(k − |C0|)), there is no solution to the given Vertex Cover instance.
This finishes the proof. �

We end this section with the remark that the running time of the kernelization
associated with Theorem 7.9 is essentially that needed for linear programming,
and hence is polynomial.

7.4.3 Kernelization based on crown structures

Recall that vertices of degree one can be easily deleted—we can simply decide
to take their neighboring vertices into the vertex cover. This simple observation,
in a sense, finds its generalization in the crown reduction rules which have very
recently appeared in the literature. In this sense, degree-one vertices lead to the
simplest crowns.

Let I be an independent set in the given graph G = (V,E). Assume that
there is a maximum matching in the bipartite graph induced by I and N(I) that
contains |N(I)| edges. Clearly then at least |N(I)| vertices from I ∪N(I) must
appear in any vertex cover of G. Hence there is a minimum-size vertex cover that
contains all the vertices inN(I) and none of the vertices in I. We may delete all of
I ∪N(I) from G. This is the “crown reduction rule”, which obviously generalizes
the “degree-one vertices rule” as discussed above. Moreover, the crown reduction
rule is related to the Nemhauser–Trotter kernelization in the sense that matching
again plays a key role.

In what follows, we formalize the concept of crown structures and show that
their use again leads to a problem kernel with a linear number of vertices.

Definition 7.10 A crown of a graph G = (V,E) consists of H ⊆ V and I ⊆ V
with H ∩ I = ∅ such that the following conditions hold :

1. H = N(I),

2. I forms an independent set, and



70 DATA REDUCTION AND PROBLEM KERNELS

3. the edges connecting H and I contain a matching in which all elements
of H are matched.

It is easy to observe that, given a crown H and I, we can reduce the graph.

Lemma 7.11 If G is a graph with a crown H and I, there exists a minimum-size
vertex cover of G that contains all of H and none of I.

Proof Since there is a matching of the edges between H and I, any vertex cover
must contain at least one vertex from each matched edge. Thus the matching
will require at least |H | vertices in the vertex cover. This minimum number can
be realized by selecting H to be in the vertex cover: vertices from H can be used
to cover edges that do not connect I and H , while this is not true for vertices
in I. Thus including the vertices from H does not increase, and may decrease,
the size of the vertex cover compared with including vertices from I. Therefore
there is a minimum-size vertex cover that contains all vertices in H and none of
the vertices in I. �

Two questions remain to be answered:

1. how to find crowns efficiently, that is, in polynomial time; and

2. what is the size of the problem kernel that can be obtained via crown
reductions?

Both questions are answered in the following, starting with an algorithm to com-
pute a crown in an arbitrary input graph. The algorithm is given in Figure 7.2.

The next lemma shows that the algorithm from Figure 7.2 correctly produces
a crown. For the definitions of the subsequently used vertex sets I ′ and I0 and
matching M2 see Figure 7.2.

Lemma 7.12 The algorithm from Figure 7.2 finds a crown as long as at least
one of the following two conditions is met.

1. Every vertex in N(I ′) is matched by M2, or

2. the set I0 is nonempty.

Proof We only sketch the idea of proof. The correctness of the claim is straight-
forward if the first condition is met. In addition, the set I is clearly an indepen-
dent set—otherwise, M1 would not be a maximal matching. Moreover, it is clear
from the algorithm’s steps that H = N(I). It remains to be shown that the
third condition in Definition 7.10 is fulfilled. Suppose that it is not and assume
that there exists an element h ∈ H unmatched by M2. It is not very hard to
verify that by the construction of H and I from I0 we could then determine a
matching M ′

2 that matches h and |M ′
2| > |M2|, a contradiction of the fact that

the matching M2 is of maximum size. �

Now we have all the prerequisites at hand to show another problem kerneliza-
tion for Vertex Cover which, according to worst-case analysis, may be slightly
larger than those given before.
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Input: G = (V,E)
Output: Crown H and I.
Step 1:

Find a maximal matching M1 of G,
and let I ′ be the set of all unmatched vertices.

Step 2:
Find a maximum matching M2 in the bipartite graph
induced by the edges between I ′ and N(I ′).

Step 3:
If every vertex in N(I ′) is matched by M2, then
H := N(I ′) and I := I ′ form a crown, and we are done.
Otherwise:

Step 4:
Let I0 be the set of vertices in I ′ that are unmatched by M2.

Step 5:
Start with i := 0 and repeat the following two steps
until Ii = Ii−1.

Hi := N(Ii).
Ii+1 := Ii ∪NM2(Hi).

Step 6:
H := Hi and I := Ii form a crown.

Fig. 7.2. An algorithm to compute a crown H and I in a graph. Here, NM2(Hi)
denotes the neighbors of Hi that are connected to Hi by edges contained in
the matching M2.

Theorem 7.13 Let (G = (V,E), k) be a Vertex Cover instance where both
matchings M1 and M2 from the algorithm in Figure 7.2 shall have size at most k.
Then there is a crown H and I such that the reduced instance (G[V0], k − |H |)
with V0 := V \ (H ∪ I) is a problem kernel with |V0| ≤ 3k.

Proof The size of M1 is at most k, hence it consists of at most 2k vertices and
the set I ′ in the algorithm contains at least |V | − 2k vertices. The size of M2 is
at most k, hence at most k vertices in I ′ are matched by M2. In other words, at
least |V | − 3k vertices contained in I ′ are unmatched by M2. All these vertices
are included in I0 ⊆ I in Step 4 of the algorithm. Hence, |V \ (H ∪ I)| ≤ 3k.
�

Observe that if one of the above matchings M1 and M2 in G is of size greater
than k, then the Vertex Cover instance (G, k) clearly has no solution and we
are done. Thus Theorem 7.13 covers all the cases of interest. The running time
of the kernelization, dominated by the complexity of the algorithm computing
the maximum bipartite matching M2, is clearly polynomial.
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7.4.4 Comparison and discussion

There is no other problem in the literature whose accessibility to kernelization
has been as well investigated as Vertex Cover. We have presented three ap-
proaches to obtain a problem kernel with a number of vertices linear in the
parameter k denoting the size of the desired vertex cover. Roughly speaking,
although completely different at first sight, they have common roots. Empiri-
cal investigations indicate that kernelization based on linear programming tends
to be slowest. The determination of crown structures and their usefulness for
other (graph) problems is currently under heavy investigation. Among others,
applications have been discovered for packing and coloring problems; refer to the
bibliographical remarks.

Although a problem kernel with 2k vertices appears to be optimal according
to the current state of the art, the best one—a size bound (2− ε) ·k would give a
ratio-(2−ε) polynomial-time approximation algorithm—at least from a practical
point of view, might not be the final word. All our analysis is clearly related to
a worst-case scenario and simple data reduction rules which may be ineffective
with respect to improving the worst-case upper bounds may be highly effective
in practical applications, or they may further simplify proofs and algorithms for
known worst-case bounds.

One such efficient data reduction rule is called “folding” (also known as
“struction” in the literature) and it was developed to get rid of degree-two
vertices—in addition to the trivial handling of degree-one vertices—in reduced
Vertex Cover instances. The point is that each degree-two vertex in a graph
together with its two neighbors can be melted into one super-vertex: consider a
degree-two vertex x with its two neighbors u and v. Without loss of generality,
u and v are not connected because if {u, v} exists, then we can always choose u
and v to be in a vertex cover without loosing the guarantee to find an optimal
solution. Then delete x, u, and v from the graph and insert a new vertex x′

with N(x′) := N(u) ∪N(v) \ {x, u, v}. The decisive observation then is that the
original graph has a vertex cover of size k iff the reduced graph has a vertex
cover of size k− 1. Moreover, the vertex cover of the original graph can easily be
reconstructed from the vertex cover of the reduced graph. Thus the “combinato-
rially explosive” part of the search for a minimum vertex cover can be restricted
to graphs with minimum vertex degree three. See the exercises for more on this.

7.5 3-Hitting Set

In this section we show how to generalize beyond Buss’s reduction to a problem
kernel for Vertex Cover to solve the more general d-Hitting Set problem
for an integer d ≥ 3. Simply speaking, this lifts the vertex covering issue from
graphs to hypergraphs. We focus on the 3-Hitting Set (3HS) problem, the
generalization of Vertex Cover to “hypergraphs with size-three edges”:
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Input: A collection C of subsets of size at most three of a finite set S
and a nonnegative integer k.
Task: Find a subset S′ ⊆ S with |S′| ≤ k such that S′ contains at least
one element from each subset in C.

Vertex Cover is the same as 2-Hitting Set.
Our kernelization extends ideas behind the Vertex Cover problem kernel

due to Buss as sketched in the introduction to Chapter 7. In this way, we easily
obtain a problem kernel for 3HS consisting ofO(k3) sets, that is, |C| = O(k3). The
data reduction strategy presented is parameter-dependent. We remark that it can
be generalized to achieve an upper bound O(kd) for d-Hitting Set with d > 3.
The running time increases, though.

Similar to Buss’s kernelization for Vertex Cover the kernelization for 3HS
employs the idea that we must put “high-degree elements” into the hitting set.

Theorem 7.14 3-Hitting Set has a problem kernel with |C| = O(k3), and it
can be found in linear time.

Proof First, let us consider two fixed elements x, y ∈ S:
Claim 1: For an instance (C, k) we can find an instance (C′, k) in linear time so
that (C, k) ∈ 3HS iff (C′, k) ∈ 3HS. Moreover, there can be at most k size-three
subsets in the collection C′ that contain both x and y.
Claim 1 is seen as follows. Assume that there are more than k subsets containing
x and y. Since each set appears only once in C this implies that there are more
than k different “third” elements in the corresponding sets. Hence to cover these
more than k different sets with at most k elements from the base set S, we must
bring at least one of x and y into our hitting set S′. This means, however, that
all sets containing both x and y can be replaced by the single set {x, y}. This
proves Claim 1.

Second, we consider the case where there is only one fixed element x ∈ S:
Claim 2: For an instance (C, k) we can find an instance (C′, k′) in linear time
so that (C, k) ∈ 3HS iff (C′, k′) ∈ 3HS where k′ ≤ k. Moreover, there can be at
most k2 size-three subsets in the collection C′ that contain x.
Claim 2 is seen as follows. Assume that there are more than k2 subsets contain-
ing x. By Claim 1 we can assume that x can occur in a subset together with
another element y at most k times. Hence, if there were more than k2 subsets
containing x, these could not be covered by any S′ ⊆ S with |S′| ≤ k without
taking x. Thus, x must be in S′ and the corresponding sets can be deleted. This
proves Claim 2.

Now, from Claim 2 we can conclude that each element x from S can occur
in at most k2 subsets in C because, otherwise, x had to be in the hitting set S′.
Clearly, since |S′| ≤ k this means (provided that C has a hitting set of size ≤ k)
that C can consist of at most k ·k2 = k3 size three subsets. This gives the desired
upper bound on the size of the problem kernel.
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Finally, we remark that we can easily count in how many sets each element
occurs and throw away in linear time all elements (and their corresponding sub-
sets) occurring in more than k2 subsets. �

7.6 Dominating Set in Planar Graphs

In Section 7.4 we became acquainted with a problem kernel for Vertex Cover
consisting of only 2k vertices. Specializing this result to planar graphs, we can
even speak of a linear-size problem kernel because for planar graphs the number
of edges is linearly bounded by the number of vertices. We know so far of only
a few problem kernels of linear size—a further example is that for Dominating
Set in Planar Graphs.

Input: A planar graph G = (V,E) and a nonnegative integer k.
Task: Find a subset S ⊆ V with at most k vertices such that every
vertex v ∈ V is contained in S or has at least one neighbor in S.

The kernelization for Dominating Set in Planar Graphs consists of two
main parts—the algorithmic side with the actual data reduction rules and the
mathematical side with the proof of correctness and the analysis of the prob-
lem kernel size. Because of the significant technical machinery involved, we will
essentially focus on the algorithmic side.

Two data reduction rules are used to prove the linear-size problem kernel.
Both reduction rules are based on the same principle: explore the local neighbor-
hood of one vertex or the neighborhood of two vertices and try to replace it by
a simpler structure. In what follows, the minimum k such that the graph G has
a size-k dominating set is called the domination number of G, denoted by γ(G).
We begin with the simpler rule which refers to the local neighborhood of a single
vertex.

7.6.1 The neighborhood of a single vertex

Consider a vertex v ∈ V of the given graph G = (V,E), and partition the
neighbors N(v) of v into three different sets N1(v), N2(v), and N3(v) depending
on what the neighborhood structure of these vertices looks like. More specifically,
setting N [v] := N(v) ∪ {v}, we define

N1(v) := {u ∈ N(v) | (N(u) \N [v]) �= ∅},
N2(v) := {u ∈ N(v) \N1(v) | (N(u) ∩N1(v)) �= ∅},
N3(v) := N(v) \ (N1(v) ∪N2(v)).

An example which illustrates the partitioning of N(v) into the subsets N1(v),
N2(v), and N3(v) is given in the left-hand diagram of Figure 7.3. A helpful
intuitive interpretation is that of

• considering vertices in N1(v) as exits because they have direct connections
to the world outside the closed neighborhood of v;
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Fig. 7.3. The left-hand side shows the partitioning of the neighborhood
of a single vertex v. The right-hand side shows the partitioning of a
neighborhood N(v, w) of two vertices v and w. Since, in the left-hand
figure, N3(v) �= ∅, reduction Rule 1 applies. In the right-hand figure,
since N3(v, w) cannot be dominated by a single vertex at all, Case 2 of Rule 2
applies.

• considering vertices in N2(v) as guards because they have direct connec-
tions to exits; and

• considering vertices in N3(v) as prisoners because they have absolutely no
chance to see the world outside N [v], the closed neighborhood of v.

Based on the above definitions we obtain the first reduction rule.

Rule 1 If N3(v) �= ∅ for some vertex v, then

• remove N2(v) and N3(v) from G, and

• add a new vertex v′ with the edge {v, v′} to G.

Note that the vertex v′ is used as a “gadget vertex” that forces us to take v
into an optimal dominating set in the reduced graph. More specifically, if finally
in the reduced graph we find an optimal dominating set containing v′, we can
safely replace it by v without destroying the optimality of the solution.

Lemma 7.15 Let G = (V,E) be a graph and let G′ = (V ′, E′) be the resulting
graph after having applied Rule 1 to G. Then γ(G) = γ(G′).

Proof Consider a vertex v ∈ V such that N3(v) �= ∅. The vertices in N3(v)
can only be dominated by either v or by vertices in N2(v) ∪N3(v). But, clearly,
N(w) ⊆ N(v) for every w ∈ N2(v) ∪N3(v). This shows that an optimal way to
dominate N3(v) is given by taking v into the dominating set. This is simulated by
the “gadget” {v, v′} in G′. It is safe to remove N2(v) ∪N3(v), since N(N2(v) ∪
N3(v)) ⊆ N(v); in other words, since the vertices that could be dominated by
vertices from N2(v) ∪N3(v) are already dominated by v. Hence, γ(G′) = γ(G).
�

Lemma 7.16 Rule 1 can be carried out in O(n) time for planar graphs and in
O(n3) time for general graphs.

Proof We first discuss the planar case. To carry out Rule 1, for each vertex v of
the given planar graph G we have to determine the neighbor sets N1(v), N2(v),
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and N3(v). By definition of these sets, one easily observes that it is sufficient to
consider the subgraph G that is induced by all vertices that are connected to v
by a path of length at most two. To do so, we employ a “partial” depth-first
search tree of depth two, rooted at v. More precisely, this means that we explore
all vertices at distance one from v (that is, connected to v by an edge in G) and
some vertices at distance two from G (details to follow). We perform two phases.

In phase 1, constructing the search tree, we determine the vertices fromN1(v).
Each vertex of the first level (that is, distance one from the root v) of the search
tree that has a neighbor at the second level of the search tree belongs to N1(v).
Observe that it is enough to stop the expansion of a vertex from the first level as
soon as its first neighbor in the second level is encountered. Hence, denoting the
degree of v by deg(v), phase 1 takes O(deg(v)) time because there clearly are at
most 2 · deg(v) tree edges and at most O(deg(v)) non-tree edges to be explored.
The latter holds true since these non-tree edges all belong to the subgraph of G
induced by N [v]. Since this graph is planar and |N [v]| = deg(v) + 1, the claim
follows.

In phase 2, it remains to determine the sets N2(v) and N3(v). To get N2(v),
one basically has to go through all vertices from the first level of the above search
tree that are not already marked as being in N1(v) but have at least one neighbor
in N1(v). All this can be done within the planar graph induced byN [v], using the
already marked N1(v)-vertices, in O(deg(v)) time. Finally, N3(v) simply consists
of vertices from the first level that are neither marked being in N1(v) nor marked
being in N2(v). In summary, this shows that for vertex v the sets N1(v), N2(v),
and N3(v) can be constructed in O(deg(v)) time.

Having determined these three sets, the sizes of which are all bounded by
deg(v), it is clear that the possible removal of vertices from N2(v) and N3(v)
and the addition of a vertex and an edge as required by Rule 1 all can be done
in O(deg(v)) time. Finally, it remains to analyze the overall complexity of this
procedure when going through all n vertices of G = (V,E). But this is easy. The
running time can be bounded from above by∑

v∈V

O(deg(v)) = O(m) = O(n).

Since G is planar, we have the O(n) bound, that is, the whole reduction takes
linear time.

For general graphs, the method described above leads to a worst-case cubic
time implementation of Rule 1. Here, one ends up with the sum∑

v∈V

O((deg(v))2) = O(n3).

Note that the size of the graph that is induced by the neighborhoodN [v] again is
relevant for the time needed to determine the sets N1(v), N2(v), and N3(v). For
general graphs, this neighborhood may contain O(deg(v)2) many edges. �
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7.6.2 The neighborhood of a pair of vertices

Similar to Rule 1, we explore the neighborhood set N(v, w) := N(v) ∪N(w) of
two vertices v, w ∈ V . Analogously, we now partition N(v, w) into three disjoint
subsets N1(v, w), N2(v, w), and N3(v, w). Setting N [v, w] := N [v] ∪ N [w], we
define

N1(v, w) := {u ∈ N(v, w) | (N(u) \N [v, w]) �= ∅},
N2(v, w) := {u ∈ N(v, w) \N1(v, w) | (N(u) ∩N1(v, w)) �= ∅},
N3(v, w) := N(v, w) \ (N1(v, w) ∪N2(v, w)).

The right-hand diagram of Figure 7.3 shows an example which illustrates the
partitioning of N(v, w) into the subsets N1(v, w), N2(v, w), and N3(v, w).

Our second reduction rule—compared to Rule 1—is slightly more compli-
cated.

Rule 2 Consider v, w ∈ V (v �= w) and suppose that N3(v, w) �= ∅. Suppose
that N3(v, w) cannot be dominated by a single vertex from N2(v, w) ∪N3(v, w).

Case 1 If N3(v, w) can be dominated by a single vertex from {v, w}:
(1.1) If N3(v, w) ⊆ N(v) as well as N3(v, w) ⊆ N(w):

• remove N3(v, w) and N2(v, w) ∩N(v) ∩N(w) from G, and
• add two new vertices z, z′ and edges {v, z}, {w, z}, {v, z′}, {w, z′}

to G.

(1.2) If N3(v, w) ⊆ N(v) but not N3(v, w) ⊆ N(w):

• remove N3(v, w) and N2(v, w) ∩N(v) from G, and

• add a new vertex v′ and the edge {v, v′} to G.

(1.3) If N3(v, w) ⊆ N(w) but not N3(v, w) ⊆ N(v):

• remove N3(v, w) and N2(v, w) ∩N(w) from G, and

• add a new vertex w′ and the edge {w,w′} to G.

Case 2 If N3(v, w) cannot be dominated by a single vertex from {v, w}:
• remove N3(v, w) and N2(v, w) from G, and

• add two new vertices v′, w′ and edges {v, v′}, {w,w′} to G.

Clearly, Cases (1.2) and (1.3) are symmetric to each other. Again, the newly
added vertices v′ and w′ of degree one act as gadgets that enforce us to take v
or w into an optimal dominating set. A special situation is given in Case (1.1).
Here, the gadget added to the graph G simulates that at least one of the vertices
v or w has to be taken into an optimal dominating set.

Lemma 7.17 Let G = (V,E) be a graph and let G′ = (V ′, E′) be the resulting
graph after having applied Rule 2 to G. Then γ(G) = γ(G′).

Proof Similar to the proof of Lemma 7.15, vertices from N3(v, w) can only be
dominated by vertices from M := {v, w}∪N2(v, w)∪N3(v, w). All cases in Rule 2
are based on the fact that N3(v, w) needs to be dominated. All cases only apply
if there is not a single vertex in N2(v, w) ∪N3(v, w) which dominates N3(v, w).
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We first of all discuss the correctness of Case (1.2) (and similarly the sym-
metric Case (1.3)): if v dominates N3(v, w) (and w does not), then it is optimal
to take v into the dominating set—and at the same time still leave the option of
taking vertex w. It is never better to take any combination of two vertices {x, y}
from the set M \ {v}. It may happen that we still have to take w to obtain a
minimum dominating set, but in any case the vertex set {v, w} dominates at
least as many vertices as {x, y}. The “gadget edge” {v, v′} simulates the effect of
taking v. It is safe to remove R := (N2(v, w)∩N(v))∪N3(v, w) since, by taking
v into the dominating set, all vertices in R are already dominated and since,
as discussed above, it is always at least as good to take {v, w} into a minimum
dominating set as to take any other of the vertices from M .

In the situation of Case (1.1), we can dominate N3(v, w) by either v or w.
Since we cannot decide at this point which of these vertices should be chosen
to be in the dominating set, we use the “gadget” with vertices z and z′ which
simulates a choice between v or w. In any case, however, it is at least as good
to take one of the vertices v and w (maybe both) than to take any other two
vertices from M . The argument for this is similar to the one for Case (1.2). The
removal of N3(v, w)∪ (N2(v, w)∩N(v)∩N(w)) is safe by a similar argument to
the one that justified the removal of R in Case (1.2).

In Case 2, we need at least two vertices to dominateN3(v, w). SinceN(v, w) ⊇
N(x, y) for all pairs x, y ∈ M , it is optimal to take v and w into the dominat-
ing set, simulated by the gadgets {v, v′} and {w,w′}. As in the previous cases,
removing N3(v, w) ∪N2(v, w) is safe since these vertices are already dominated
and since these vertices need not be used for an optimal dominating set. �

It is easy to see that applying the reduction rules to planar graphs always
results in a planar graph again. This is due to the fact that the removal of vertices
and edges does not affect planarity and the gadget vertices (and edges) that are
introduced by Rules 1 and 2 can clearly be drawn without causing edge crossings.
Here, only Case (1.1) of Rule 2 needs a little care: since N3(v, w) ⊆ N(v) as well
as N3(v, w) ⊆ N(w), the removal of N3(v, w) provides “space” for the (clearly
planar) gadget drawn between v and w without any edge crossings.

Lemma 7.18 Rule 2 can be carried out in time O(n2) for planar graphs and in
time O(n4) for general graphs.

Proof To prove the time bounds for Rule 2, basically the same ideas as for
Rule 1 apply (compare the proof of Lemma 7.16). Instead of a depth-two search
tree, one now has to argue on a search tree where the levels indicate the mini-
mum of the distances to vertex v and w. Hence we associate the vertices v and w
with the root of this search tree. The first level consists of all vertices that lie
in N(v, w) (that is, at distance one from either of the vertices v or w). Deter-
mining the subset N3(v, w) means to check whether some vertex on the first
level has a neighbor on the second level. We do the same kind of construction
as in Lemma 7.16. The running time is again determined by the size of the sub-
graph induced by the vertices that correspond to the root and the first level of
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this search tree, that is, by G[N [v, w]] in this case. For planar graphs, we have
|G[N [v, w]]| = O (deg(v) + deg(w)). Hence, we get

∑
v,w∈V O (deg(v) + deg(w))

as an upper bound on the overall running time in the case of planar graphs.
Making use of the fact that

∑
v∈V deg(v) = O(n) for planar graphs, this is

upper-bounded by

O


 ∑

v,w∈V

deg(v) +
∑

v,w∈V

deg(w)


 = O(n2).

In the case of general graphs, we have |G[N [v, w]]| = O
(
(deg(v) + deg(w))2

)
,

which trivially yields the upper bound∑
v,w∈V

O
(
(deg(v) + deg(w))2

)
= O(n4)

for the overall running time. �

We remark that the running times given in Lemmas 7.16 and 7.18 are pure
worst-case estimates and the algorithms seem to be much faster in experimental
studies than would be expected from the given worst-case bounds. In particular,
for practical purposes it is important to see that Rule 2 can only be applied for
vertex pairs that are at distance at most three from each other.

7.6.3 Reduced graphs and the problem kernel

We say that an application of a reduction rule leaves the graph unchanged if the
“new” graph after applying the rule is isomorphic to the old one. Clearly, we
are only interested in applications of the reduction rules that change the graph:
Let G = (V,E) be a graph such that both the application of Rule 1 and the
application of Rule 2 leave the graph unchanged. Then we say that G is reduced
with respect to these rules.

Observing that the (successful) application of any reduction rule always
“shrinks” the given graph implies that there can only be O(m) (where m := |E|)
successful applications of reduction rules. This leads to the following.

Lemma 7.19 A graph G can be transformed into a reduced graph G′ with γ(G) =
γ(G′) in time O(n3) in the planar case and in time O(n6) in the general case.

Proof We prove the general statement that for a graph with m edges there can
be at most O(m) successful applications of reduction rules. The decisive claim
we show is that after one application of Rule 1 or Rule 2 that changes the graph,
the resulting graph has at most the same number of vertices, but at least one
edge fewer than before the application of the rule.

Note that it is easy to verify that the total number of vertices never increases
by applying the reduction rules. Now we go through Rule 1 and the various
subcases of Rule 2, checking the validity of our claim. As to Rule 1, a change
only occurs if there is more than one vertex affected by the rule—this means that
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more than one vertex and at least two edges are removed, whereas one vertex
and one edge are newly introduced by the gadget.

Cases (1.2) and (1.3) of Rule 2 trivially fulfill the claim since only one gadget
vertex and one gadget edge are introduced, but at least two N3(v, w) vertices
together with at least two incident edges are deleted. The validity of Case 2
of Rule 2 also follows easily because clearly the rule never adds more than it
deletes—at least two vertices together with their edges are removed. If a change
takes place, however, more edges will be removed.

Finally, concerning Case (1.1) of Rule 2 we can observe that, although the
gadget introduces two more vertices and four more edges, at least the same
number of vertices and more than four edges are deleted. This is true because
if this case applies, then at least two N3(v, w) vertices with edges to v as well
as w each must exist. These and at least one additional edge will be deleted if a
change takes place (otherwise, there were no changes).

This concludes the proof of the claim and the theorem follows by Lemmas 7.16
and 7.18 noting that m = O(n) for planar graphs and m = O(n2) for general
graphs. �

The kernelization procedure implied by the above reduction rules allows to
prove the following main result. Herein, γ(G) denotes the size of an optimal
dominating set of graph G.

Theorem 7.20 For a planar graph G = (V,E) which is reduced with respect to
Rules 1 and 2, we get |V | = O(γ(G)), that is, Dominating Set in Planar
Graphs admits a linear problem kernel.

To present the proof of correctness of Theorem 7.20 is beyond the scope of
this book. We refer to the literature for a complete exposition.

7.7 On lower bounds for problem kernels

Lower bounds are very hard to achieve in computational complexity analysis. Not
surprisingly, relatively little is known about lower bounds on kernel sizes. There
are two exceptions, though. First, one may make use of known lower bounds
on the polynomial-time approximability of certain problems. Recent years have
brought several deep results in this direction. Thus, if we know that a certain
problem “cannot” be approximated better than a factor c, then we may often
conclude that there is no kernel smaller than c · k where parameter k refers to
the size of the solution set. More specifically, we can make the following concrete
statement about problem kernels for Vertex Cover with parameter k denoting
the size of the desired vertex cover:

Theorem 7.21 Vertex Cover has no problem kernel formed by a graph with
1.36k vertices unless P = NP.

Proof Assume that Vertex Cover has a problem kernel with 1.36k vertices.
Then this set of vertices yields a ratio-(1.36) polynomial-time approximation of
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an optimal solution. By deep results from approximation theory (based on the
famous “PCP theorem”) this is not possible unless P = NP �

Based on the above approach, we may obtain further lower bounds for prob-
lem kernels employing deep results from the theory of polynomial-time approxi-
mation. We are not aware of any problem where the lower bound and the upper
bound on the problem kernel are as close as for Vertex Cover.

Now we discuss a fairly easy approach, based on elementary calculations
and yielding surprising new results. The key observation made use of is based
on “parametric duality”. Again, we illustrate matters using Vertex Cover.
Recall that an n-vertex graph G has a vertex cover of size k iff G has an inde-
pendent set of size n − k. In this sense, the parameters “size of a vertex cover”
and “size of an independent set” are duals of each other. Moreover, let us focus
attention on planar graphs. The Nemhauser–Trotter problem kernel for Ver-
tex Cover consisting of 2k vertices clearly also applies to the special case of
planar graphs. In particular, however, due to the four-color theorem and the
corresponding polynomial-time coloring algorithm, we also know that there is a
size-(4k) problem kernel for Independent Set in Planar Graphs. This ob-
servation can be used for a “two-sided” algorithmic attack on Vertex Cover
in Planar Graphs, yielding the subsequent theorem. Herein, observe that the
first approach exhibited with Theorem 7.21 does not work for Vertex Cover
in Planar Graphs. The reason is that there is no constant-ratio lower bound
for its polynomial-time approximability because there exists a polynomial-time
approximation scheme (PTAS) with approximation ratio (1 + ε) for arbitrarily
small ε > 0.

Theorem 7.22 For any ε > 0, Vertex Cover in Planar Graphs has no
problem kernel formed by a planar graph with (4/3−ε)·k vertices unless P = NP.

Proof Consider the polynomial-time kernelization for Vertex Cover’s dual
problem Independent Set in Planar Graphs—now referred to as “4C”—
with upper bound 4k′ = 4(n − k) for the number of vertices in the problem
kernel. Assume that there exists a size-((4/3− ε) ·k) problem kernel for Vertex
Cover in Planar Graphs. Call the corresponding polynomial-time kernel-
ization algorithm “VK”. Let (G, k) be an input instance of Vertex Cover in
Planar Graphs and perform the following steps.

if k ≤ 4
4/3−ε+4 · |V |

then run algorithm VK on (G, k)
else run algorithm 4C on (G, |V | − k)

fi
Let G′ = (V ′, E′) be the graph of the “reduced instance” computed in the

above way. Now, if k ≤ 4
4/3−ε+4 · |V | then

|V ′| ≤ 4 · (4/3− ε)
4/3− ε+ 4

· |V | < |V |.

Otherwise, we conclude
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|V ′| ≤ 4 · (|V | − k) < 4 ·
(

4/3− ε
4/3− ε+ 4

)
· |V | < |V |.

Thus, in both cases we get |V ′| < |V |. Clearly, after a linear number of steps we
will arrive at a graph with a constant number of vertices—the Vertex Cover
problem can be trivially solved here. Altogether, this would yield a polynomial-
time algorithm for the NP -complete Vertex Cover problem, implying P =
NP . �

We remark that in the same way we can show that there is no (2−ε)k vertices
problem kernel for Independent Set in Planar Graphs unless P = NP . The
above method can be generalized to other problems with “linear problem kernel
sizes” for both the “primal” and the “dual” problem, one further example being
Dominating Set in Planar Graphs. The approach seems to be tailored
for linear bounds, however; we are not aware of any nonlinear lower bound for
problem kernels. Much remains to be done in the field for lower bounds for
problem kernels.

7.8 Summary and concluding remarks

In this chapter we have seen several concrete examples of how to derive data
reduction rules that yield a reduction to a problem kernel.

• In the case of Maximum Satisfiability we discussed a parameter-depend-
ent kernelization which is based on a fairly simple observation. Moreover,
this kernelization is algorithmically completely trivial and its practical use
seems limited— a particular reason for this being the fact that no small pa-
rameter values are to be expected. In this sense the case of Maximum Sat-
isfiability is related to Independent Set in Planar Graphs where a
parameterization above guaranteed values would seem more appropriate—
and leads to significantly harder algorithmic problems.

• With a parameter-dependent reduction to a problem-kernel for the Clus-
ter Editing problem, we encountered an example where the reasoning is
similar in spirit to the obvious rule concerning Buss’s reduction to a prob-
lem kernel for Vertex Cover. Nevertheless, although the rules appear
very natural, to prove their effectiveness—that is, to show a size bound on
the problem kernel—is not easy.

• Vertex Cover is the problem that appears in most places of this book.
Also with respect to reduction to a problem kernel it plays a major role
since we achieve an in a sense “optimal” problem kernel size and there
are several ways to do so. The fact that there is more than one way to
achieve this result and also how it is achieved by interesting relations to
matching theory and linear programming shows that data reduction often
is a technically demanding topic worth thorough research. In particular,
the idea behind crown reduction rules has now been applied to several
other problems besides Vertex Cover.
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• 3-Hitting Set is the Vertex Cover problem adapted to hypergraphs
with hyperedges built between at most three vertices. The parameter-
dependent data reduction technique employed here resembles Buss’s reduc-
tion to a problem kernel for Vertex Cover. It remains open to investigate
whether the more advanced kernelization techniques for Vertex Cover
can also be extended to this case, achieving a problem kernel of size o(k3).
It would also be interesting to see whether the Vertex Cover kerneliza-
tion may help for the one of 3-Hitting Set. With Dominating Set in
Planar Graphs we presented “locality-based”, parameter-independent
data reduction rules. Whereas their correctness is relatively easy to show,
the corresponding linear-size upper bound on the problem kernel requires a
significant technical expenditure. Although being elementary in the sense
that it does not use any deep graph-theoretical concepts or results, the
lengthy and technical proof is omitted.

• The issue of (relative) lower bounds for problem kernel sizes, on the one
hand, exhibits close connections to the theory of approximation algorithms.
On the other hand, it demonstrates how in a surprising way upper bounds
for a problem and its “dual” can lead to lower bounds for the very same
problem as well.

When considering all the above-mentioned problems, note that the parameter is
always related to the “size” of the solution we seek. This seems to be the natural
thing in the case of problem kernelization—“structural parameters” such as the
treewidth of graphs (see Chapter 10) seem to be less adequate for that purpose.

In summary, the design and analysis of good kernelization algorithms clearly
is among the most important and practically most relevant contributions to
fixed-parameter algorithmics for hard problems. The reason for that is the ubiq-
uitous need for efficient preprocessing procedures in the algorithmics for hard
problems. In addition, as the Nemhauser and Trotter problem kernel for Ver-
tex Cover and the lower bounds issue exhibit, there are close connections to
the theory of approximation algorithms. These should be further pursued in fu-
ture investigations. All in all, a good problem kernelization for a combinatorially
hard parameterized problem is among the best and most valuable objectives
from a practical as well as a theoretical view that a designer of fixed-parameter
algorithms can achieve.

7.9 Exercises

1. Show that an exhaustive application of the data reduction rules for Mul-
ticut in Trees presented in Section 1.3, namely the rules Idle Edge, Unit
Path, Dominated Edge, and Dominated Path, leads to a reduced instance
where there is either no demand path remaining or there is at least one
demand path of length exactly two.

2. Show that the Closest String problem as introduced in Section 5.3 has
a problem kernel of size k · d.
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3. We subsequently propose several data reduction rules for Maximum Sat-
isfiability. Decide on the correctness of these rules by giving a short
argument each time.

(a) If formula F contains a clause with only one literal, then set the
corresponding variable accordingly and decrease the parameter k by
one.

(b) If a variable x occurs only positively in F , then set x to true, decrease
parameter k by the number of clauses satisfied this way, and delete
these clauses.

(c) If formula F contains clauses (x) and (x), then delete both clauses
and decrease the parameter k by one.

(d) If the variables x, y, and z occur in F exclusively in the subformula
(x ∨ y) ∧ (y ∨ z) ∧ (x ∧ z), then delete all three clauses and decrease
parameter k by three.

(e) If variable x occurs in F exclusively in the subformula (x ∨ y) ∧ (y ∨
z) ∧ (x), then replace x by y and leave parameter k unchanged.

(f) If variable x occurs in F exclusively in the subformula (x ∨ y) ∧ (y ∨
z)∧ (x), then replace x by y, decrease parameter k by one, and delete
the first clause.

4. Prove the correctness of the “folding reduction rule” for Vertex Cover
as described in Section 7.4.4.

5. Consider the following facility location problem where one is given n points
in the Euclidean plane. The task is to select k of these as transmission
stations such that each of the n points is within the radius of at least one
sending station. Here, each transmission station shall have transmission
radius 2 and two sending stations have to have distance at least 1 from each
other. Find a reduction to a problem kernel with respect to parameter k.

6. The following problem, Sorting by Reversals, originates in compu-
tational biology and occurs in the context of genome rearrangements.
Consider a set of genes G = {1, 2, . . . , n}. We denote strings over G where
every gene occurs exactly once by

π = 0, e1, e2, . . . , en, n+ 1

with two extra symbols 0 and n + 1 to mark the start and the end of
the string. A reversal Rev(π, i, j), 1 ≤ i < j ≤ n, is an operation which
transforms π into π′ such that the substring from ei to ej gets reversed;
that is, Rev(π, i, j) transforms

π = 0, e1, e2, . . . , ei−1, ei, ei+1 . . . ej−1, ej, ej+1 . . . , en, n+ 1

into

π′ = 0, e1, e2, . . . , ei−1, ej , ej−1 . . . ei+1, ei, ej+1 . . . , en, n+ 1.

The problem Sorting by Reversals is then defined as follows:
Input: Two strings π1 and π2 over G = {1, 2, . . . , n} and a nonnegative
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integer d.
Task: Find a sequence of at most d reversals that transforms π1 into π2.
Hint: it is known that it can be assumed that a minimum number of rever-
sals transforming π1 into π2 does not “destroy” a substring or its reverse
that is part of both π1 and π2.
Show that Sorting by Reversals can be reduced to a problem kernel
consisting of only O(d) genes.

7. Consider the following problem, Matrix Domination:
Input: An n×n-matrixM with entries 0 or 1 and a nonnegative integer k.
Task: Find a set C of at most k nonzero-entries such that all other nonzero
entries are in the same row or in the same column with at least one entry
from C.
Show a reduction to a problem kernel for Matrix Domination.

8. In Section 7.6 two data reduction rules for Dominating Set are intro-
duced. Show that both rules are “orthogonal” to each other by

(a) giving a graph that is reduced with respect to the first rule but can
be further reduced by the second rule, and

(b) by giving a graph that is reduced with respect to the second rule but
can be further reduced by the first rule.

Now consider the second rule and more precisely its subcase (1.2). Con-
struct a graph which fulfills the prerequisites of this case and in which one
of the two vertices v and w is not contained in any optimal dominating set.

7.10 Bibliographical remarks

Preprocessing of hard problems has been around since the very beginnings of
algorithm research. It seems impossible to trace it back to one particular piece
of research. Besides the exact, fixed-parameter algorithms that we study here,
data reduction is important in all sorts of heuristic methods for combinatorial
optimization. Note that data reduction techniques in the literature are often
considered as preprocessing methods. It seems clear, however, that it is benefi-
cial to combine and interleave them with the “main algorithm” such that data
reduction techniques may appear in all phases of algorithm design. Downey and
Fellows (1999) formalized data reduction for parameterized complexity purposes
by introducing the concept of reduction to a problem kernel.

“When in doubt, sort” (referring to our starting motivating example in this
chapter) is a quote from the algorithm design manual by Skiena (1998). The
discussed data reduction for the railway optimization problem is due to Weihe
(1998) and Weihe (2000); also see Mecke and Wagner (2004) and Nemhauser and
Wolsey (1988). The technically costly proof for a problem kernel for Multicut
in Trees can be found in Guo and Niedermeier (2005b).

The simple data reduction for Vertex Cover is attributed to Buss and
appears in Buss and Goldsmith (1993) in Downey and Fellows (1999). The four-
color theorem for planar graphs is due to Appel and Haken (1977a) and Appel
and Haken (1977b); refer to Robertson et al. (1997) for later improvements. The
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polynomial-time algorithm to four-color a graph is given in Robertson et al.
(1996). The observation that every fixed-parameter tractable problem is kernel-
izable goes back to Cai et al. (1997) (see also Alber (2003) for a recent presen-
tation).

Studying the parameterized and exact complexity of Maximum Satisfia-
bility was initiated by Mahajan and Raman (1999), where also the quadratic-
size problem kernel as presented here was proven. Moreover, they introduced
the study of parameterizing above guaranteed values here. Further research was
pursued in Bansal and Raman (1999), Chen and Kanj (2004), and Niedermeier
and Rossmanith (2000b). In particular, Niedermeier and Rossmanith (2000b)
contains several simple data reduction rules for Maximum Satisfiability. Re-
lated studies for the still NP -complete case Maximum-2-Satisfiability appear
in Gramm et al. (2003a).

The kernelization for Cluster Editing appears in Gramm et al. (2005).
The problem itself was studied in Shamir et al. (2004) under different complexity
aspects. Cluster Editing is also an important special case of the “correlation
clustering” scenario as studied in Bansal et al. (2004). Its applications mainly lie
in data clustering in fields such as computational biology or machine learning.
Its NP -completeness is (implicitly) proven in Křivánek and Morávek (1986).
Cluster Editing falls into the category of graph modification problems whose
parameterized complexity is studied in a broader context by Cai (1996). Finally,
Cluster Editing is also the central problem in the automated generation of
search tree algorithms as pursued in Gramm et al. (2004).

The fundamental result concerning the size-(2k) problem kernel for Vertex
Cover is due to Nemhauser and Trotter (1975) (see also Bar-Yehuda and Even
(1985) and Khuller (2002)). Its applicability for parameterized complexity was
observed in Chen et al. (2001). The folding technique is also described there.
The other routes to a linear problem kernel for Vertex Cover are described
in Abu-Khzam et al. (2004), Fellows (2003a), and Langston and Suters (2005).
The generalization of the described Nemhauser-Trotter kernelization in order to
enumerate all optimal solutions is investigated in Chleb́ık and Chleb́ıková (2004).
The hardness of approximating Vertex Cover better than ratio 2 is studied
in Khot and Regev (2003).

The size-O(k3) problem kernel for 3-Hitting Set is shown in Niedermeier
and Rossmanith (2003a). Also the more general d-Hitting Set case for d > 3
is discussed there.

The linear-size problem kernel for Dominating Set in Planar Graphs
appears in Alber et al. (2004). Follow-up work with better upper bounds on the
kernel size or generalizations to non-planar graphs appears in Chen et al. (2005)
and Fomin and Thilikos (2004a). Some additional experimental work concerning
these reduction rules is undertaken in Alber et al. (2003). As shown there, the
data reduction rules exhibit good performance on other sparse but non-planar
graphs.
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Theorem 7.22 is due to Chen et al. (2005). The lower bound 1.36 for the
approximation ratio of Vertex Cover appears in Dinur and Safra (2002).

To learn more about Sorting by Reversals (see exercises), refer to Han-
nenhalli and Pevzner (1996). Its NP-completeness is shown in Caprara (1999).
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DEPTH-BOUNDED SEARCH TREES

When studying data reduction and problem kernels in Chapter 7 the focus was
on polynomial-time (pre)processing of the input. The basic idea is to “cut away
easy parts” of the given input instance, leaving behind the “really hard problem
kernel”. For NP-hard problems one usually cannot avoid using some exponential-
time method to finally determine an optimal solution. A standard way to explore
the huge search space related to a computationally hard problem is to perform a
systematic exhaustive search. This can be organized in a tree-like fashion, which
is the subject of this chapter. In the fixed-parameter context, the depths of these
search trees are usually bounded from above by some numbers depending on
the parameter values. Bounded search trees lie at the heart of many efficient
fixed-parameter algorithms today.

The basic idea behind a systematic search by way of depth-bounded search
trees is as follows: in polynomial time find a “small subset” of the input instance
such that at least one element of this subset is part of an optimal solution to the
problem. For instance, in the case of Vertex Cover this “small subset” can be
chosen as a two-element set consisting of the two endpoints of an edge—one of
these two vertices must be part of the vertex cover. This leads to the previously
mentioned (see Chapter 4) search tree of size O(2k), where the parameter k
denotes the size of the vertex cover. In principle, a depth-bounded search tree
coincides with the tree of recursive calls of the corresponding recursive algorithm,
where the depth of the recursion is upper-bounded by the parameter value.

In the case of 3-Hitting Set, we have the same observation with size-three
sets. Hence we obtain a size-O(3k) search tree here, where parameter k denotes
the size of the hitting set. The “art” of constructing search trees lies in detect-
ing more clever—and usually more complicated—ways of “defining” these small
subsets. Both Vertex Cover and 3-Hitting Set are subject to an elaborate
search tree machinery leading to significantly reduced search tree sizes. The prob-
lematic nature of search trees, as we will see in the course of this section, may
come from the fact that many small size search trees are based on using numer-
ous case distinctions. These case distinctions require a complicated analysis and
correctness proof and, when implemented, may cause administrative overhead.
Thus the theoretically best search tree with the smallest worst-case size bound
may not always be the best one in practice. Implementation and experiments
must have the final say in this respect.

Before we deal with several examples of more or less intricate bounded search
trees used in fixed-parameter algorithmics, let us first consider a very simple
search tree, which, to the best of our knowledge, is the smallest in size known

88
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for that particular problem. Consider the Independent Set problem:

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset I ⊆ V with k or more vertices that form an inde-
pendent set, that is, I induces an edgeless subgraph of G.

For general graphs, Independent Set is W [1]-complete with respect to pa-
rameter k—there is no hope of fixed-parameter tractability. If Independent
Set is restricted to the class of planar graphs—where it nevertheless remains
NP -complete—fixed-parameter tractability can be easily attained. There is an
important property of planar graphs directly following form the well-known Eu-
ler formula that says that an n-vertex planar graph has at most 3n− 6 edges: in
every planar graph there is at least one vertex of degree five or smaller. Using this
knowledge, our search strategy to find a size-k independent set in planar graphs
is as follows. Pick a vertex v in G which has minimum degree (bounded by five)
and branch into at most six cases. Either put v into the independent set or one
of its, at most, five neighbors. In each branching case, delete the corresponding
vertex together with all its adjacent edges and vertices from G. Thus, obtain a
smaller graph G′ in each case, and recursively search for an independent set of
size k − 1 in each of these G′. This is correct because from the set { v } ∪N(v),
that is, the closed neighborhood of v, at least one vertex must be in a maximum
independent set. Since the parameter in each branch decreases by one, we thus
obtain a search tree of size O(6k). Using a suitable edge list representation of
the O(n) graph vertices and edges, picking a vertex and generating G′ can easily
be done in linear time O(n). Altogether, we have that Independent Set in
Planar Graphs can be solved in O(6k · n) time, where k is the size of the
independent set we search for.

Sometimes, such a tempting simple argument as that for Independent Set
in Planar Graphs above can go wrong. Consider the Dominating Set prob-
lem restricted to planar graphs.

Input: A planar graph G = (V,E) and a nonnegative integer k.
Task: Find a subset S ⊆ V with at most k vertices such that every
vertex v ∈ V is contained in S or has at least one neighbor in S.

For general graphs, in a parameterized sense, Dominating Set is even “harder”
than Independent Set; that is, it is W [2 ]-complete. Can we use a similar ar-
gument as for Independent Set in order to show fixed-parameter tractability
of Dominating Set on planar graphs? Unfortunately, it is much harder to
prove the existence of a bounded search tree here. The problem is the following.
Assume that we want to argue along the same lines as we did for Indepen-
dent Set, that is, choosing a vertex of minimum degree, then branching on
it by recursively solving the problem in each branch. It is true that for such a
minimum-degree vertex v again either itself or one of its neighbors must be in
the dominating set. A vertex that has become dominated, however, in the course
of the algorithm can only be discarded from further consideration when all its
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neighbors are dominated as well. The point is that it could still be necessary
to incorporate an already dominated vertex into the dominating set because it
is needed to optimally dominate other vertices. To circumvent this problem, in
Section 8.6 we will formulate a more general, “annotated” version of Dominat-
ing Set, where there are two kinds of vertices in our graph. The technical effort
required to solve this problem increases significantly (see Section 8.6). Notably,
the difficulty mainly comes from the mathematical analysis of correctness; the
algorithm presented is still fairly easy.

Let us end this introductory part by returning to the Vertex Cover prob-
lem and taking a first glimpse at how to obtain a search tree size o(2k) by
means of case distinctions. In particular, the subsequent consideration motivates
a closer look at how to determine upper bounds on search tree sizes. There is a
fairly simple “degree-branching strategy” that beats the trivial O(2k)-bound for
Vertex Cover search trees. Here, let V ′ be the vertex cover of size at most k
that we are searching for:

1. If there is a vertex of degree one, then put its neighbor into V ′.

2. If there is a vertex v of degree two, then either put v into V ′ together with
all neighbors of its neighbors or put both neighbors of v into V ′.

3. If there is a vertex v of degree at least three, then put either v or all its
neighbors into V ′.

Actually, we could even avoid the second step when making use of the folding
of degree-two vertices as discussed at the end of Section 7.4. Since we have a
different focus here, for the time being we omit these considerations. It is not
hard to see that the above search strategy always leads to an optimal solution.
This is simply based on the fact that to cover the edges adjacent to v either v
or all its neighbors must be in the vertex cover—the second step needs a little
thought, though: basically, the second step is based on branching to put either v
or both its neighbors into the vertex cover. In the first branch, however, we can
argue that we may even bring all the neighbors of v’s neighbors into the vertex
cover because of the following. Assume that there would exist a minimum vertex
cover containing v and one of its neighbors. Then changing this set by replacing v
by its second neighbor clearly yields a minimum vertex cover as well. This will
be found in the second branching case. Hence, if there should be a vertex cover
smaller than the one that contains both v’s neighbors then it must contain v and
it must not contain its neighbors. This implies that all neighbors of v’s neighbors
have to be part of this vertex cover as well. In the algorithm’s second and third
steps the search branches into two cases each time. In the second step each
branch puts at least two vertices into V ′. In the third step the first branch puts
one vertex into V ′ and the second branch puts at least three vertices into V ′.

This branching process is recursively repeated until an optimal solution is
found. If the solution has size k, the corresponding search tree has size bounded
from above by O(1.47k). How do we obtain this bound? The recursive construc-
tion of the search tree makes it possible to analyze its size with the help of simple
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recurrences which upper-bound the search tree sizes. These recurrences can be
solved using standard mathematical tools—see Section 8.1 for more on that.

In what follows, we will start with basic facts about depth-bounded search
trees. In particular, we discuss how to determine search tree sizes by solving
recurrences with standard mathematical tools. After that we will study various
concrete problems and the corresponding search tree strategies. Emphasis is
laid on the fact that in some cases it is not “clear” how the depth-bounded
search tree paradigm can be applied, whereas in other cases the challenge is to
shrink the size of the search trees as much as possible. The latter often involves
complicated case distinctions. To this end, frequently the combination with data
reduction rules is very fruitful. Moreover, the interleaving of search trees with
repeated application of data reduction may further accelerate the solution finding
process; see Section 8.7. Finally, we discuss how to replace the error-prone and
messy “case distinction business” in the construction of small search trees by a
mechanized approach using the help of computers; see Section 8.8. The specific
problems we study include Cluster Editing, Vertex Cover, Hitting Set,
Closest String, and Dominating Set in Planar Graphs.

8.1 Basic definitions and facts

The central theme in this chapter is the development of “small” search trees that
lead to efficient fixed-parameter algorithms. These search trees are nothing but
the trees of recursive calls of the underlying algorithms. Depending on the struc-
ture of the recursion, determining an upper bound on the search tree size will
require more or less mathematical effort. The determination of the sizes of the
above depth-bounded search trees for Vertex Cover, 3-Hitting Set, and In-
dependent Set in Planar Graphs was trivial: we branched into either two,
three, or six cases, in each of which the parameter value could be decreased by
exactly one. This is due to the fact that in each case we selected exactly one ele-
ment for inclusion into the solution set to be constructed. Thus we had extremely
regular branchings, and since the parameter value (and thus the depth of the
search tree) was bounded by k, we ended up with search tree sizes O(2k), O(3k),
and O(6k) in the respective problems. The upper bounds for Vertex Cover
and 3-Hitting Set, however, can be significantly improved. These improve-
ments on 2k and 3k, respectively, rely heavily on more complicated branching
strategies with numerous case distinctions. In particular, in one branching step
often more than one element is selected for inclusion into the desired set. In
addition, the numbers of selected elements may differ in different branches. This
leads to more complicated recursive algorithms, and to estimate the worst-case
sizes of the corresponding depth-bounded search trees requires rigorous mathe-
matical analysis. Fortunately, the necessary tools are readily available and are
easy to use. This is explained next.

Search tree algorithms work in a recursive manner. The number of recursion
calls is the number of nodes in the according tree. This number is governed
by linear recurrences with constant coefficients. It is well known how to solve
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these, and the asymptotic solution is determined by the roots of the so-called
characteristic polynomial. If the algorithm solves a problem of size n and calls
itself recursively for problems of sizes n−d1, . . . , n−di, then (d1, . . . , di) is called
the branching vector of this recursion. It corresponds to the recurrence

Tn = Tn−d1 + · · ·+ Tn−di
. (8.1)

Observe that in recurrence (8.1) we actually give a recurrence to estimate the
number of leaves of a search tree. This is sufficient because for non-degenerate
trees (that is, all inner nodes have at least two children), as we always consider
here, the leaves make more than half of the total number of tree nodes. In
addition, also note that we assume that T0 = T1 = . . . = Tdi−1 = 1 for the
termination of the recursion. Again, the validity of this is clear: we assume that
constant-size problems can be solved by one final recursive call. To solve the
recurrence, now the characteristic polynomial comes into play. The characteristic
polynomial of recurrence (8.1) is

zd − zd−d1 − · · · − zd−di, (8.2)

where d := max{d1, . . . , di}.
Now, we describe a simple scheme how to solve recurrence equations in the

form of (8.1). Let us assume that recurrence (8.1) has a solution of the form
Tn = αn for some real or even complex number α. Setting n := d and plugging
this into recurrence (8.1) we obtain

αd = αd−d1 + . . .+ αd−di ,

that is, α is a zero of the characteristic polynomial (8.2). In the same way, it is
also not hard to see the converse direction if α is a zero of the characteristic poly-
nomial then αn is a solution of the recurrence (8.1). Moreover, with some more
effort one can show that if α is a jth zero of the characteristic polynomial (8.2)
then nl · αn for all 0 ≤ l < j is a solution of recurrence (8.1). This finally leads
to the following result, which we state without proof here.

Proposition 8.1 A depth-bounded search tree with branching vector (d1, . . . , di)
and its root labeled with parameter value n has size nO(1) · |α|n, where α is the
zero of the corresponding characteristic polynomial.

The base α of the exponentially growing function in Proposition 8.1 is called
the branching number. Obviously, the ordering of the entries of a branching
vector plays no role in the mathematical analysis; it may only reflect the order
of the recursive calls corresponding to each vector entry. We mention in passing
that in the examples in the remainder of this chapter the zero with the largest
absolute value is always a single root, so the polynomial multiplicative factor can
be replaced by a constant.

In most concrete applications we will have sets of recurrence equations, each
describing a particular case of the recursive branching. Clearly, an upper worst-
case bound for the overall search tree size then simply derives by analyzing every
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recurrence equation separately and then simply take the maximum branching
number as the base for the exponential term to bound the search tree size from
above. Thus, in the examples to follow, the size of the search tree is O(αk),
where k is the parameter and α is the biggest branching number that will occur.
For instance, in an intricate search tree algorithm for Vertex Cover, among
others, the branching vectors (3, 5, 7), (4, 5, 8, 9, 9), and (3, 5, 8, 8) occur. Here, it
is no longer obvious which one the branching with the largest branching num-
ber is. By solving the corresponding recurrences—which can be done using any
standard computer algebra system or by simply determining the zeros of the
characteristic polynomials—we obtain the respective (approximate) branching
numbers 1.273739, 1.290649, and 1.291743. The last number gives the worst case
and the corresponding search tree algorithm indeed has the worst-case bound
O(1.291743k) on its search tree size.

One more thing to learn from the above brief description is that all the
bounds for search tree sizes we give are worst-case estimates. They are based
on the determination of worst-case branching vectors and branching numbers.
It is quite conceivable that the average-case sizes of the constructed search trees
are significantly smaller in many cases. Since average-case complexity analysis
is a very elusive matter, the normal way to find out the typical average-case
and practical behaviour of a search tree algorithm is through implementation
and experiments. Experience tells us that additional heuristic improvements can
often be incorporated and the resulting algorithm then frequently performs much
better than would be expected from sole consideration of the proven worst-case
bounds. Finally, “iterative branching” is a worthwhile thing to do as a means
of perhaps further improved upper bounds and branching strategies. Roughly
speaking, the idea is to pick special branches iteratively in a skilful way in order
to keep some kind of invariant concerning “nice” branching situations which lead
to good branching vectors.

8.2 Cluster Editing

Our first more demanding example concerning the application of the depth-
bounded search tree paradigm is taken from the field of graph modification
problems. We describe a recursive algorithm for Cluster Editing that fol-
lows the bounded search tree paradigm. Recall that in Section 7.3 we have seen
a reduction to a problem kernel for this problem. The problem is as follows:

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find out whether we can transform G, by deleting or adding at
most k edges, into a graph that consists of a disjoint union of cliques.

The basic idea underlying the depth-bounded search tree is to identify a “conflict
triple” consisting of three vertices and to branch into subcases to repair this
“conflict” by adding or deleting edges between the three considered vertices.
Thus we invoke recursive calls on instances which are simplified in the sense that
the value of the parameter is decreased by at least one. Central to the branching



94 DEPTH-BOUNDED SEARCH TREES

strategy is the following observation. In fact, our branching strategy will make
use of a forbidden subgraph characterization of graphs that are disjoint unions
of cliques.

Lemma 8.2 A graph G = (V,E) consists of disjoint cliques iff there are no
three distinct vertices u, v, w ∈ V with {u, v} ∈ E, {u,w} ∈ E, but {v, w} /∈ E.

Proof If a graph is a collection of disjoint cliques then it clearly contains no
path induced by three vertices, proving the “if”-direction. For the reverse di-
rection, if there are u, v, w ∈ V with {u, v}, {u,w} ∈ E but {v, w} /∈ E then
the connected component containing u, v, and w cannot be a clique, which is in
contradiction to the fact that G is a collection of cliques. �

Lemma 8.2 says that a graph is a disjoint union of cliques iff it contains
no P3 (a path of three vertices) as an induced subgraph. Lemma 8.2 implies
that, if a given graph does not consist of disjoint cliques, then we can find a
conflict triple of vertices between which we must either insert or delete an edge
in order to transform the graph into disjoint cliques. In the following, we describe
the recursive procedure that results from this observation. Inputs are a graph
G = (V,E) and a nonnegative integer k, and the procedure reports, as its output,
whether G can be transformed into a union of disjoint cliques by deleting and
adding at most k edges.

• If the graph G is already a union of disjoint cliques, then we are done:
report the solution and return.

• Otherwise, if k ≤ 0, then we cannot find a solution in this branch of the
search tree: return.

• Otherwise, identify u, v, w ∈ V with {u, v} ∈ E, {u,w} ∈ E, but {v, w} �∈
E (they exist with Lemma 8.2). Recursively call the branching procedure
on the following three instances consisting of graphs G′ = (V,E′) with
nonnegative integer k′ as specified below:

(B1) E′ := E \ {{u, v}} and k′ := k − 1.

(B2) E′ := E \ {{u,w}} and k′ := k − 1.
(B3) E′ := E ∪ {{v, w}} and k′ := k − 1.

Proposition 8.3 There is a size-O(3k) search tree for Cluster Editing.

Proof The recursive procedure suggested above is obviously correct and di-
rectly implies a search tree of size O(3k). �

Note that so far we have ignored the overall running time behind the above
search tree algorithm. It is easy to see, however, that multiplying the search tree
size O(3k) by a polynomial factor clearly bounds the running time from above.
In fact, a cubic factor suffices.

The “art of case distinction”—still comparatively modest in case of Cluster
Editing— now leads us to a search tree of size O(2.27k). The preceding branch-
ing strategy can be easily improved as described in the following. We still identify
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NG∩G′(v) NG∩G′(w)

G G′

Fig. 8.1. In case (C1), adding edge {v, w} does not need to be considered. Here,
G is the given graph andG′ is a clustering solution ofG by adding edge {v, w}.
The dashed lines denote edges being deleted to transform G into G′, and the
bold lines denote edges being added. Observe that the drawing only shows
that parts of the graphs (in particular, edges) which are relevant for our
argument.

a conflict triple of vertices, that is, u, v, w ∈ V with {u, v} ∈ E, {u,w} ∈ E, but
{v, w} /∈ E. Based on a case distinction, we provide for every possible situation
additional branching steps. The amortized analysis of successive branching steps,
then, yields the better worst-case bound on the search tree size. To this end, in
the same way as in Section 7.3, we make use of two annotations for unordered
vertex pairs:

“permanent”: In this case, {u, v} ∈ E and it is not allowed to delete {u, v};
“forbidden”: In this case, {u, v} /∈ E and it is not allowed to add {u, v}.

Clearly, if an edge {u, v} is deleted, then the vertex pair is made forbidden. If an
edge {u, v} is added, then the vertex pair is made permanent.

We start by distinguishing three main situations that may apply when con-
sidering the conflict triple u, v, w:

(C1) Vertices v and w do not share a common neighbor, that is, ∀x ∈ V, x �=
u : {v, x} �∈ E or {w, x} �∈ E.

(C2) Vertices v and w have a common neighbor x �= u and {u, x} ∈ E.

(C3) Vertices v and w have a common neighbor x �= u and {u, x} /∈ E.

Regarding case (C1), the following lemma shows that a branching into two cases
(B1) and (B2) as described in the preceding algorithm suffices.

Lemma 8.4 Given a graph G = (V,E), a nonnegative integer k and u, v, w ∈ V
with {u, v} ∈ E, {u,w} ∈ E, but {v, w} /∈ E, then if v and w do not share
a common neighbor besides u, then branching case (B3) cannot yield a better
solution than cases (B1) and (B2), and it can therefore be omitted.

Proof Consider a clustering solution G′ for G where we did add {v, w} (see
Figure 8.1 for an example). We use NG∩G′(v) to denote the set of vertices
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Fig. 8.2. Branching for case (C2). Bold lines denote permanent edges and
dashed lines forbidden edges.

which are neighbors of v in G and in G′. Without loss of generality, assume
that |NG∩G′(w)| ≤ |NG∩G′(v)|. We then construct a new graph G′′ from G′ by
deleting all edges adjacent to w. It is clear that G′′ is also a clustering solu-
tion for G. We compare the cost of the transformation G → G′′ to that of the
transformation G→ G′:

• −1 for not adding {v, w},
• +1 for deleting {u,w},
• −|NG∩G′(v)| for not adding all edges {w, x}, x ∈ NG∩G′(v),

• +|NG∩G′(w)| for deleting all edges {w, x}, x ∈ NG∩G′(w).

Here we have omitted possible vertices which are neighbors of w in G′ but not
neighbors of w in G because they would only increase the cost of transforma-
tion G→ G′.

In summary, the cost of G→ G′′ is not higher than the cost of G→ G′, that
is, we do not need more edge additions and deletions to obtain G′′ from G than
to obtain G′ from G. �

Lemma 8.4 shows that in case (C1) a branching into two cases is sufficient,
namely to recursively consider graphs G1 = (V,E \ {{u, v}}) and G2 = (V,E \
{{u,w}}), each time decreasing the parameter value by one.

For case (C2), we change the order of the basic branching. In the first branch,
we add edge {v, w}. In the second and third branches, we delete edges {u, v} and
{u,w}, as illustrated by Figure 8.2.

• Add {v, w} as labeled by 2© in Figure 8.2. The cost of this branch is 1.

• Make {v, w} forbidden and delete {u, v}, as labeled by 3©. This creates
the new conflict triple u, v, x. To resolve this conflict, we make a second
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Fig. 8.3. Branching for case (C3).

branching. Since adding {u, v} is forbidden, there are only two branches to
consider:

∗ Delete {v, x}, as labeled by 5©. The cost is 2.

∗ Make {v, x} permanent and delete {u, x}. With reduction Rule 2 from
Section 7.3, we then delete {w, x}, too, as labeled by 6©. The cost is 3.

• Make {v, w} forbidden and delete {u,w} ( 4©). This case is symmetric to
the previous one, so we have two branches with costs 2 and 3, respectively.

In summary, the branching vector for case (C2) is (1, 2, 3, 2, 3).
For case (C3), we perform a branching as illustrated by Figure 8.3:

• Delete {u, v}, as labeled by 2©. The cost of this branch is 1.

• Make {u, v} permanent and delete {u,w}, as labeled by 3©. With Rule 2,
we can additionally make {v, w} forbidden. We then identify a new conflict
triple u, v, x. Not being allowed to delete {u, v}, we can make a 2-branching
to resolve the conflict:

∗ Delete {v, x}, as labeled by 5©. The cost is 2.
∗ Make {v, x} permanent. This implies {u, x} needs to be added and
{w, x} needs to be deleted due to reduction rule 2, as labeled by 6©.
The cost is 3.

• Make {u, v} and {u,w} permanent and add {v, w}, as labeled by 4©. Ver-
tices u, w, and x form a conflict triple. To solve this conflict without delet-
ing {u,w}, we make a branching into two cases:

∗ Delete {w, x} as labeled by 7©. We then also need to delete {v, x}.
The cost is 3. Additionally, we can make {u, x} forbidden.

∗ Add {u, x}, as labeled by 8©. The cost is 2. Additionally, we can make
{u, x} and {v, x} permanent.

It follows that the branching vector for case (C3) is (1, 2, 3, 3, 2).
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In summary, this leads to a refinement of the branching with a worst-case
branching vector of (1, 2, 2, 3, 3), yielding branching number 2.27. Since the re-
cursive algorithm stops whenever the parameter value has reached 0 or below,
we obtain a search tree size of O(2.27k). This gives the following result.

Theorem 8.5 There is a size-O(2.27k) search tree for Cluster Editing.

In fact, combining the reduction to a problem kernel from Section 7.3 with
the search tree shown here and applying the interleaving technique as discussed
in Section 8.7, one can show that Cluster Editing can be solved in O(2.27k +
|V |3) time. Note, however, that already data reduction Rule 2 from Section 7.3
has played a decisive role in the above search tree strategy. Thus it gives a
first example of the fact that data reduction rules are frequently also of central
importance in the development of branching strategies, and that they improve
their behaviour in the sense of upper bounds on the search tree size. A further
reduction of the search tree size is possible based on computer-assisted analysis.
This will be explored in Section 8.8.

8.3 Vertex Cover

Recall the problem definition:

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset C ⊆ V with k or fewer vertices such that each edge
in E has at least one of its endpoints in C.

Vertex Cover has a long history of more and more improved search tree
sizes, the state of the art now being O(1.28k). Here we give a complete and self-
contained description of a search tree of size O(1.33k), which should be seen as a
compromise between reasonable complexity of description and a good worst-case
upper bound. Other than in the case of Cluster Editing we do not employ a
forbidden subgraph characterization here, but our branching strategy is that of
“degree-branching”. Based on the various vertex degrees occurring in the input
graph, we distinguish several cases for recursive calls. More specifically, here we
consider degrees from one up to at least five. Note that in the more complex
case distinctions leading to better upper bounds on the search tree size vertices
of degree five and six are considered separately. In what follows, without loss of
generality, we assume that the graph is connected because connected components
can be handled completely independently of each other.

The algorithm finds recursively an optimal vertex cover as follows. Given a
graph G, we choose several subgraphs G1,. . . ,Gi and compute optimal vertex
covers for all of them. From these we can construct an optimal vertex cover
for G. For example, let x be some vertex of G and let G1 be the subgraph that
results from G by deleting x and all incident edges. A vertex cover of G1, together
with x, then is a vertex cover of G. Moreover, if there is an optimal vertex cover
for G that contains x, then we can construct an optimal vertex cover from an
optimal vertex cover of G1. Otherwise, if no optimal vertex cover of G contains x,
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then it must contain all neighbors of x. Hence, let G2 be the graph that results
from G by deleting all neighbors of x. Again, we can construct a vertex cover
of G by taking a vertex cover of G2 and adding all neighbors of x. If we start
from optimal vertex covers for G1 and G2, then one of the resulting covers for G
must be optimal, since either x or its neighbors must be part of any vertex cover.
We say we branch according to x and N(x), where N(x) denotes the neighbors
of x. In the first branch, x will be part of the vertex cover and in the second
branch N(x) will be part of it. The vertex cover constructed grows in size with
each step. Since its size cannot exceed k, the algorithm terminates, implicitly
having constructed a search tree of depth upper-bounded by k.

In principle this is the way our algorithm works, but we choose the subgraphs
G1,. . . ,Gi in a more complicated way and branch according to much more com-
plicated sets. Subsequently, we call a graph regular if all its vertices have exactly
the same degree. If the graph is connected, the rules for how to choose these
branching sets are as follows.

1. If there is a vertex x with degree one, then choose N(x) to be in the vertex
cover. There is no other branch since there is always an optimal vertex
cover that contains N(x) and does not contain x.

2. If there is a vertex x with degree at least five, then branch according to x
and N(x).

3. If 1. and 2. do not apply and if the graph is regular, then choose any
vertex x and branch according to x and N(x). (This can happen at most
three times in each path of the search tree and increases its size at most
by a small constant factor.)

4. If there are no vertices with degree one or at least five but there is a vertex
with degree two, then proceed as shown in the subsequent case distinction.

5. If 1.–4. do not apply and if there is a vertex with degree three then proceed
as shown in the subsequent case distinction.

Before going into the details of the subcases concerning the vertices of degree
two and three, let us first verify that the above case distinction is complete, that
is, that it covers all cases that may occur. The only subtle point herein is to ask
why we do not have to study vertices of degree four in a separate case: after the
fourth case, we know that the graph has to consist of at least one degree-three
and at least one degree-four vertex. Hence the fifth case always applies and there
is no need for extra consideration of degree-four vertices, because this situation
will be subsumed by one of the given cases. It thus remains to give a closer
description of the two cases concerning degree-two and degree-three vertices. We
study several subcases in the first and second cases.

Degree-two vertices. Let x be a degree-two vertex with two neighbors a and b.
We distinguish three cases.

1. If there is an edge between a and b then bring both a and b into the vertex
cover. No branching is necessary because x, a, and b form a triangle—thus,
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two of the three vertices must be chosen anyway—and a and b cover a
superset of edges covered by any other “two out of three” combination.

2. If there is no edge between a and b but a and b both have degree two with
a common neighbor c different from x, then bring x and c into the vertex
cover. No branching is necessary because x and c cover a superset of the
edges covered by choosing any other pair of vertices from the set {x, a, b, c}.

3. Otherwise, we know that |N(a) ∪N(b)| ≥ 3 and we can branch according
to N(v) and N(a) ∪ N(b). At least one of these two branches leads to
an optimal solution: the first branch deals with the case that x is not
part of an optimal vertex cover, and hence all its neighbors must be. The
second branch then of course means that x is in an optimal vertex cover.
Then, however, we can infer even more. The central point is that it is
not necessary to search for an optimal vertex cover containing x and a
or x and b. The reason is that choosing a and b must also then give an
optimal vertex cover. Hence, the only possibility that choosing x could lead
to a smaller vertex cover than choosing a and b already does may occur
when we choose x and neither a nor b. This implies that we can choose
N(a) ∪N(b) in the second branch. The corresponding branching vector is
at least (2, 3) because |N(a) ∪ N(b)| ≥ 3. The branching number then is
smaller than 1.33.

Degree-three vertices. Let x be a degree-three vertex with its three neighbors
a, b, and c. We distinguish four subcases where one of these cannot occur.

1. Assume that x is part of a triangle, for instance, let {x, a, b} be the triangle
(but there can be more triangles). Then we can branch according to N(x)
and N(c). If x is not part of the vertex cover, then N(x) is. If x is part of
the vertex cover, then either a or b is in order to cover all triangle edges. If
c is also in the cover, then two neighbors of x are and the set N(x) covers a
superset of the edges. Hence, to get a smaller vertex cover than by choosing
N(x), the only chance is to choose N(c) which includes x. The branching
vector is at least (3, 3). The branching number is smaller than 1.27.

2. Assume that x is part of a cycle of length four consisting of a, x, b, and d.
Here d is a new vertex. Then we can branch according to N(x) and {x, d}.
If x is not part of the vertex cover, then N(x) is. If x is part of the vertex
cover, then not choosing d would mean that we would have to choose both
a and b together with x. This, however, cannot give a smaller vertex cover
than choosing N(x) already does. Hence we can confine the second branch
to picking {x, d}. The branching vector is as least (3, 2). The branching
number then is smaller than 1.33.

3. Assume that there is no edge between a, b, and c, and without loss of gener-
ality N(a) = {x, a1, a2, a3} with |N(a)| = 4. Then we branch according to
N(x) and N(a) and {a}∪N(b)∪N(c). If x is not part of the vertex cover,
then N(x) is. If x is part of the vertex cover, then further distinguish two
cases. If a is not part of the vertex cover, then N(a) is. Thus it remains to
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study what happens when both x and a are chosen. As in previous cases,
we can infer that then it is of no interest to choose additionally b or c. This
leads to the choice of {a} ∪N(b) ∪N(c) which contains a. The branching
vector is at least (3, 4, 6) because according to the previous cases we can
conclude that N(b) ∩N(c) = {x}, and hence |N(b) ∪N(c)| ≥ 5, implying
that |{a}∪N(b)∪N(c)| ≥ 6 because a �∈ N(b) and a �∈ N(c). The branching
number is smaller than 1.31.

4. The situation that seems to remain now is that we have to consider a
degree-three vertex all of whose neighbors have degree three. Since, how-
ever, in the course of the search tree algorithm the degree of every graph
vertex is a monotonically decreasing function and since regular graphs are
handled in the third main case, we must always be able to find a degree-
three vertex with a degree-four neighbor here and the preceding case ap-
plies.

This concludes the case distinction for degree-three vertices and the whole
search tree algorithm. Observe that the above example shows that one can avoid
some case distinctions by “discussing away” certain situations—the example here
was the observation concerning regular graphs. Often, and in particular in the
case of Vertex Cover, one can somewhat improve the branchings by studying
what happens after having applied a certain branching. It may happen that
afterwards a favorable situation with a particularly good branching vector always
occurs that can be made use of to improve the upper bounds. The idea is to merge
two subsequent recursive calls into one big one. In the same direction we find the
idea of “iterative branching” where one tries to guide the selection of branching
cases and which one to apply with the goal of always generating new situations
where somehow better branchings than the worst case can be applied. See the
literature for more on this.

To summarize, the presented case distinction led us to branching numbers
1.33, 1.27, and 1.31. We can infer an upper worst-case bound on the search tree
as follows.

Theorem 8.6 There is a size-O(1.33k) search tree for Vertex Cover.

In other words, Theorem 8.6 says that Vertex Cover can be solved with a
branching algorithm as described above that performs O(1.33k) recursive calls.
The currently best fixed-parameter algorithms for Vertex Cover—which are
based on depth-bounded search trees—have a search tree size of O(1.28k).

8.4 Hitting Set

The next example is a depth-bounded search tree for d-Hitting Set for some
fixed positive integer d. Here the determination of the size of the search tree is
a little more involved than usual. Recall from Section 7.5 that we already know
that 3HS has a problem kernel of size O(k3). The definition of d-Hitting Set
for d ≥ 3 is as follows.
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Input: A collection C of subsets of size at most d of a finite set S and a
nonnegative integer k.
Task: Find a subset S′ ⊆ S with |S′| ≤ k such that S′ contains at least
one element from each subset in C.
We assume that no subset occurs more than once within the collection.

Equally, d-Hitting Set can be seen as a vertex cover problem for hypergraphs:
Interpret the elements of S as vertices and interpret the size-d subsets as hyper-
edges. Thus a hyperedge may join three vertices. Then, 3-Hitting Set requires
the covering of all these three-element sets (hyperedges) by elements (vertices)
completely analogously to Vertex Cover.

A special property of the subsequent mathematical analysis of the search tree
size is that in contrast to previous estimates of search tree sizes, we use a system
of recurrence equations.

Before we describe the search tree approach, note that there are some special
cases, which are always considered first. For instance, if there is a singleton {x} in
our collection, we must clearly put x into our hitting set. A simple but important
concept is that of domination. An element x is dominated by an element y if,
whenever x occurs in a set of the collection, y occurs in this set as well. In this
case, we can delete x from the sets without repercussion.

The trivial search tree algorithm for d-Hitting Set tries all d possibilities
for a set of d elements and yields a search tree of size O(dk). Our algorithm is
better, having a search tree of size O(αk), where

α =
d− 1

2
+
d− 1

2

√
1 +

4

(d− 1)2
= d− 1 +

1

d− 1
+O(d−3) = d− 1 +O(d−1).

The algorithm proceeds as follows.

1. Eliminate all dominated elements.

2. Choose some set s = {x1, x2, . . . , xd}.
3. Branch according to the following possibilities:

(a) Choose x1 for the hitting set, or

(b) x1 is not in the hitting set but xi is for i = 2, . . . , d.

This makes d branches in total. If Tk is the number of leaves in a branching tree
with upper bound k on its depth, then the first branch has at most Tk−1 leaves.
Let Bk be the number of leaves in a branching tree where there is at least one
set of size d−1 or smaller. For each i = 2, . . . , d, there is some set s′ in the given
collection such that x1 ∈ s′ but xi /∈ s′. Therefore, the size of s′ is at most d− 1
after excluding x1 from and including xi into the hitting set. Altogether we get

Tk ≤ Tk−1 + (d− 1)Bk−1.

If there is already a set with at most d − 1 elements, we can play the same
game and get

Bk ≤ Tk−1 + (d− 2)Bk−1.

The branching number of this recursion for Tk is α as given above.
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d 3 4 5 6 7 8 9 10 20 50 100

Tk 2.41k 3.30k 4.23k 5.19k 6.16k 7.14k 8.12k 9.11k 19.05k 49.02k 99.01k

Table 8.1 Search tree sizes for d-Hitting Set.

Table 8.1 shows the resulting search tree sizes for several values of d. Note
that α is always smaller than d − 1 + (d − 1)−1. Summarizing, we obtain the
following result.

Theorem 8.7 There is a size-Tk search tree for d-Hitting Set where Tk is
specified as in Table 8.1. Each search tree node can be processed in time linear
in the input size.

The above simple search tree strategy can be improved by case distinguishing,
giving the currently best search tree size of O(2.18k) for 3-Hitting Set.

Observe, however, that the general Hitting Set problem (unbounded subset
size) is W [2 ]-complete (see Section 13.3.2), so it seems hopeless to try to show
fixed-parameter tractability for the general problem with unbounded value of d.

8.5 Closest String

This example presents a depth-bounded search tree where case distinguishing is
not the point. It deals with a string problem with applications in coding theory
and computational molecular biology. We encountered it already in Section 5.3
when giving an example of a problem with more than one reasonable parameter-
ization. Here, we will concentrate on one of these parameterizations. The problem
is named Closest String or sometimes also Consensus String or Center
String.

Input: A set of k strings s1, . . . , sk over alphabet Σ of length L each,
and a nonnegative integer d.
Task: Find a string s such that dH(s, si) ≤ d for all i = 1, . . . , k.

Here, dH(s, si) denotes the Hamming distance between strings s and si. We
present a fixed-parameter algorithm with respect to the distance parameter d. To
start with, we need to introduce some notation and state some easy observations.

Given a set of k strings of length L, we can think of these strings as a k × L
character matrix. The columns of a Closest String instance are the columns
of this matrix. With the following observation we find that it is sufficient to
solve instances containing at most kd columns. We call a column dirty iff it
contains at least two different symbols from alphabet Σ. Clearly, all the work in
solving Closest String concentrates on the dirty columns of the input instance,
because otherwise the desired center string simply carries the same letter at the
corresponding position as all input strings do.

It is easy to verify the following simple lemma using just the definition of
Closest String.
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Lemma 8.8 Given a Closest String instance with k length-L strings and
distance parameter d. If the corresponding k × L matrix has more than kd dirty
columns, then there is no solution to this instance.

Lemma 8.8 gives a simple reduction to a problem kernel. Notably, it is not
with respect to the parameter d alone, but needs to incorporate both parame-
ters k and d. A nontrivial reduction to a problem kernel only with respect to
parameter d is not known. Note, however, that Lemma 8.8 has no effect on the
upper size bound on the subsequently shown depth-bounded search tree, but
it only may influence the polynomial factors in the running time when really
implementing the algorithm.

Whereas the existence of a depth-bounded search tree for the preceding prob-
lems was more or less obvious and the central challenge was to shrink it as much
as possible, in the case of Closest String the point now is to detect that there
indeed is a solution using a depth-bounded search tree. Other than for the pre-
ceding problems, the derivation of the upper bound for the search tree size then
will be straightforward.

The central idea is to make use of the fact that the desired closest string
can differ in at most d positions from each input string. Hence, if the candidate
center string differs from an input string in too many positions, then one of these
positions has to be changed in the candidate string such that it coincides with
this input string at the respective position. In addition, as a starting candidate
center string one may choose any of the given input strings, that is, without loss
of generality string s1.

In Figure 8.4, we outline a recursive algorithm solving Closest String. It
yields a search tree algorithm obeying the depth bound d. For the correctness of
the algorithm, we need the following simple observation.

Lemma 8.9 Let S = {s1, s2, . . . , sk} be a set of strings and let d be a nonneg-
ative integer. If there are i, j ∈ {1, . . . , k} with dH(si, sj) > 2d, then there is no
string s with maxi=1,...,k dH(s, si) ≤ d.

Proof The Hamming distance clearly satisfies the triangle inequality, that is,

dH(q, r) ≤ dH(q, t) + dH(t, r)

for arbitrary strings q, r, and t. If dH(si, sj) > 2d, we therefore know that
dH(s, si) + dH(s, sj) > 2d for any string s. Since Hamming distances are non-
negative, it follows that dH(s, si) > d or dH(s, sj) > d (or both). �

The following fixed-parameter algorithm for Closest String is based on a
size-O(dd) search tree which is implicitly constructed by the algorithm in Fig-
ure 8.4.

Theorem 8.10 There is a size-O(dd) search tree for Closest String.

Proof Figure 8.4 presents the recursive procedure CSd which after a “success-
ful” reduction to a problem kernel—that is, Lemma 8.9 does not exclude the
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Recursive procedure CSd(s,∆d):
Global variables: Set of strings S = {s1, s2, . . . , sk}, nonnegative integer d.
Input: Candidate string s and integer ∆d.
Output: A string ŝ with maxi=1,...,k dH(ŝ, si) ≤ d and dH(ŝ, s) ≤ ∆d,

if it exists, and “not found,” otherwise.
Method:
(D0) if ∆d < 0 then return “not found”;
(D1) if dH(s, si) > d+ ∆d for some i ∈ {1, . . . , k} then return “not found”;
(D2) if dH(s, si) ≤ d for all i = 1, . . . , k then return s;
(D3) choose any i ∈ {1, . . . , k} such that dH(s, si) > d:

P := { p | s[p] �= si[p] };
choose any P ′ ⊆ P with |P ′| = d+ 1;
for all p ∈ P ′ do

s′ := s;
s′[p] := si[p];
sret := CSd(s′,∆d− 1);
if sret �=“not found” then return sret;

(D4) return “not found”

Fig. 8.4. Algorithm CS-D. Inputs are a Closest String instance consisting
of a set of strings S = {s1, s2, . . . , sk} of length L each, and a nonnegative
integer d. The recursion is invoked with CSd(s1, d). Instead of s1, we could
choose an arbitrary element from S here.

existence of a solution—is invoked by the call CSd(s1, d). Referring to this by
“Algorithm CS-D,” we subsequently analyze the size of the tree of recursive calls
and prove that it correctly solves Closest String.
Search tree size. Consider the recursive part of the algorithm. Parameter ∆d
is initialized to d. Every recursive call decreases ∆d by one. The algorithm stops
when ∆d < 0. Therefore, the algorithm builds a search tree of height at most d.
In one step of the recursion, the algorithm chooses, given the current candidate
string s, a string si such that dH(s, si) > d. It explores d+1 subcases for positions
in which s and si disagree. This yields an upper bound of O((d + 1)d) on the
search tree size.
Correctness. What must be shown is that Algorithm CS-D always finds a
string ŝ with maxi=1,...,k dH(ŝ, si) ≤ d, if one exists. Here, we explicitly show
only the correctness of the first recursive step where s1 is the candidate string;
the correctness of the algorithm then follows with a straightforward inductive
application of the argument.

In the situation that s1 satisfies maxi=1,...,k dH(s1, si) ≤ d, we already have
a solution, namely s1. If s1 is not a solution but there exists a desired closest
string for this instance with distance value d, then there must be a string si,
i = 2, . . . , k, such that dH(s1, si) > d. For branching, we consider the positions
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where s1 and si differ, that is,

P := { p | s1[p] �= si[p] }.

According to Lemma 8.9, we may assume that |P | ≤ 2d. Algorithm CS-D suc-
cessively creates subcases for d + 1 positions p from P in order to create a new
candidate by altering the respective position p from s1[p] to si[p]. Assume that
ŝ is a desired solution. A change as described is correct if we choose a position p
from a set P1 of positions defined as

P1 := { p | s1[p] �= si[p] ∧ si[p] = ŝ[p] }.

We show that at least one of the d + 1 moves is a correct one. To this end, we
observe that P = P1 ∪ P2 for

P2 := { p | s1[p] �= si[p] ∧ si[p] �= ŝ[p] }.

Since dH(ŝ, si) ≤ d we can conclude that |P2| ≤ d. Therefore, at least one of
our d + 1 subcases will try a position from P1. An inductive application of this
argument shows that Algorithm CS-D finds a closest string for this instance, if
one exists. Note that in deeper levels of the search tree we may allow alteration of
the candidate s in only that position p in which s[p] = s1[p]: having started with
s1 as the candidate string, every position p with s[p] �= s1[p] has been previously
altered. It does not make sense to alter the candidate twice in one position. In
addition, with ∆d we store how many positions we may still change, that is, how
deep the search tree may still be explored.

Regarding instruction (D1), we can analogously to Lemma 8.9 observe that
it is correct to omit branches where the candidate string s satisfies dH(s, si) >
d + ∆d for some string si of the given strings s1, . . . , sk: assume that there is
a solution ŝ′. The solution ŝ′ can differ from every si in at most d positions.
Due to the triangle inequality, ŝ′ would differ from s in more than ∆d positions,
contradicting the assumption that ŝ′ is a solution. �

Combining the search tree from Theorem 8.10 with the reduction to a problem
kernel (as a preprocessing phase) from Lemma 8.8, with little effort one achieves
the following result.

Corollary 8.11 Closest String can be solved in O(kL + kd · dd) time.

With Algorithm CS-D, we can find a solution if one exists. One may easily
observe that we find all solutions if the given distance parameter d is minimum.
We do not necessarily find all solutions to a given instance when d is not optimal.
Moreover, if there are two strings si, sj with dH(si, sj) = 2d then we can use a
special strategy with improved time bounds: we know that a solution must differ
from both si and sj in d positions. Thus, search a solution by trying all ways
to partition the set of positions p with si[p] �= sj [p] into two sets of size d each.
In the candidate string, we give to one set of positions the characters of si, to
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the second set the characters of sj . For each candidate, we only have to check
whether it is a solution or not. It is not hard to verify that if such a special
instance has a solution then we will find it—actually all of them—using this
approach. This yields an exponential part limited by O(22d) = O(4d).

It is open to give a depth-bounded search tree to prove fixed-parameter
tractability with respect to parameter k, the number of input strings. In Sec-
tion 11.2, however, we will see that a deep result from integer linear programming
theory implies that Closest String is fixed-parameter tractable with respect
to parameter k as well.

8.6 Dominating Set in Planar Graphs

Dominating Set in Planar Graphs is the example of this book for a depth-
bounded search tree whose existence is not obvious at all. This problem also
represents cases where the search tree algorithm does not employ many case
distinctions, and hence is comparatively easy. By way of contrast, the proof of
correctness of the underlying branching strategy—more precisely, to show that
one always branches into only a constant number of subcases—is hard.

Recall from the beginning of the chapter the problems we face with handling
Dominating Set instead of Independent Set. The difficulties described there
lead us to the study of a more general version of Dominating Set, that is,
Annotated Dominating Set:

Input: A graph G = (B �W,E) with its vertices colored either black or
white and a nonnegative integer k.
Task: Find a subset S ⊆ B �W with k or fewer vertices such that each
vertex in B is contained in S or has at least one neighbor in S. In other
words, find a set of at most k vertices (which may be either black or
white) that dominates the set of black vertices.

Then, in each inner node of the search tree we may branch according to a low-
degree black vertex. More specifically, we have to decide whether v shall be dom-
inated by itself or by one of its neighbors. Restricting Annotated Dominating
Set to planar graphs we can guarantee the existence of a vertex u ∈ B�W with
deg(u) ≤ 5. However, this vertex needs not necessarily be black. As a conse-
quence, a direct O(6k ·n) search tree algorithm for (Annotated) Dominating
Set in Planar Graphs by analogy with the one for Independent Set in
Planar Graphs seems out of reach.

In what follows, we sketch a recursive search strategy for (Annotated)
Dominating Set on planar graphs with search tree size O(8k). To this end,
we provide a set of simple data reduction rules and then use a depth-bounded
search tree in which we are constantly simplifying the instance according to the
data reduction rules. The branching in the search tree will be done with respect
to low-degree vertices. More specifically, we will be able to guarantee that we
can always find a black vertex v with degree at most seven and branch on v by
either putting v or one of v’s at most seven neighbors into the dominating set.
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This yields eight recursive calls to branch into and the search tree size O(8k)
follows. Here, the central technical obstacle that has to be surmounted is to
prove that whenever we want to do a branching on a minimum-degree black
vertex then a degree-at-most-seven black vertex always actually exists. That
is why we introduce the set of data reduction rules mentioned above. They
continuously generate a reduced graph which always possesses such a degree-
seven black vertex. This is shown by involved technical arguments related to the
Euler formula for planar graphs, demonstrating that planar reduced black-and-
white graphs always contain a vertex of degree at most seven. The technically
demanding proof of this property is out of the scope of this book.

Without loss of generality, in what follows we restrict attention to connected
planar graphs, that is, connected graphs that admit crossing-free embeddings in
the plane.

8.6.1 Data reduction rules

We consider the following data reduction rules for simplifying instances of An-
notated Dominating Set in Planar Graphs. In developing the search tree,
we will always assume that we are branching from a reduced instance—thus, we
are constantly simplifying the instance according to the data reduction rules.
When a vertex v is placed into the dominating set D by such a rule, the target
size k for D is decremented to k − 1 and the neighbors of v become colored
white. This is because the neighbors no longer need to be dominated—they al-
ready are—but they may still serve as “dominating vertices”. The list of seven
data reduction rules reads as follows.

D1 Delete edges between white vertices.

D2 Delete degree-one white vertices.

D3 If there is a degree-one black vertex v with neighbor u (either black or white),
then delete v, place u into the dominating set, and decrement parameter k
by one.

D4 If there is a white vertex v of degree two with two black neighbors v1 and v2
connected by an edge {v1, v2}, then delete v.

D5 If there is a white vertex v of degree two with black neighbors v1 and v2, and
if there are a black vertex v3 and edges {v1, v3} and {v2, v3}, then delete v.

D6 If there is a white vertex v of degree two with black neighbors v1 and v2, and
if there is a white vertex v3 and edges {v1, v3} and {v2, v3}, then delete v.

D7 If there is a white vertex v of degree three with black neighbors v1, v2,
and v3, and additionally existing edges {v1, v2} and {v2, v3}, then delete v.

Let us call a set of data reduction rules sound if whenever (G, k) is some prob-
lem instance and the new instance (G′, k′) is obtained from (G, k) by applying
at least one of the data reduction rules, then (G, k) is a yes-instance iff (G′, k′)
is a yes-instance. Besides soundness, we demand that the solution for (G, k) can
be easily (re-)constructed having the solution for (G′, k′). The following is easily
shown by a simple case analysis.
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Fig. 8.5. A reduced black-and-white graph where all black vertices have degree
exactly seven.

Lemma 8.12 The transformation rules are sound.

Not only are they sound, the data reduction rules can also be efficiently
executed leading to a reduced graph; that is, a graph where none of the rules
applies any more.

Lemma 8.13 Applying transformation rules D1–D7, a given black-and-white
graph G = (B �W,E) can be transformed into a reduced black-and-white graph
G′ = (B′ �W ′, E′) in O(n2) time, where n := |B �W |.
Proof The claim is easy to see if we perform the data reduction rules in the
following order: first apply rule D1, and then visit every white vertex, checking
whether rules D4–D7 can be applied. Finally, carry out rules D2 and D3. �

8.6.2 Main result and some remarks

Based on the above data reduction rules, the following technical lemma can
be established. Its lengthy proof, which relies on “Euler-like considerations”,
although more or less elementary, is beyond the scope of this book.

Lemma 8.14 If G = (B�W,E) is a planar black-and-white graph that is reduced
then there exists a black vertex u ∈ B with degree at most seven.

Figure 8.5 shows a reduced black-and-white graph all whose black vertices
have degree exactly equal to seven.

Interestingly, there exists an infinite set of planar reduced black-and-white
graphs with the property that all black vertices have degree exactly seven. Hence,
in this limited sense, the upper bound provided in Lemma 8.14 is optimal since
these examples provide a matching lower bound. Note, however, that it is com-
pletely open to prove—if, after all, possible—the existence of a family of graphs
which keeps this property after every possible branching one is allowed to per-
form. Moreover, it is open whether extending the given set of data reduction
rules may lead to reduced graphs with a guaranteed existence of a black vertex
with degree smaller than seven. In summary, we obtain the following main result.
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Theorem 8.15 There is a size-O(8k) search tree for (Annotated) Dominat-
ing Set in Planar Graphs.

Proof Use Lemma 8.14 for the construction of a search tree as described in the
beginning of the section by branching according to the closed neighborhood of a
small-degree black vertex. The size of this neighborhood is bounded from above
by eight. �

Observing that to perform the data reduction in each node of the search tree
according to Lemma 8.13 can be done in O(n2) time leads to the following.

Corollary 8.16 (Annotated) Dominating Set in Planar Graphs can be
solved in O(8k · n2) time.

We remark that by slightly changing the above reduction rules and doing
a more refined analysis, the quadratic time factor O(n2) can be improved to a
linear one.

The above sketched data reduction rules lead to the first search tree al-
gorithm with “parameterized bound” on the search tree size for Dominating
Set in Planar Graphs. Unfortunately, the proof of correctness has become
fairly technical. Since the “optimality” of Lemma 8.14 only holds with respect
to the particular set of transformation rules given above, it remains challenging
to improve Lemma 8.14 by adding further, more involved data reduction rules.
Moreover, a generalization of the above considerations is possible and yields
analogous bounded search tree algorithms for Dominating Set on graphs of
bounded genus. Finally, we stress that the above algorithm is fairly easy to im-
plement.

It is worth noting that compared with the data reduction rules for Domi-
nating Set in Planar Graphs given in Section 7.6, the data reduction rules
described here are different in purpose. Whereas the rules given in Section 7.6
serve to prove a linear-size problem kernel, the rules from this section are de-
signed to generate an “advantageous branching situation”. Whether there is any
provable benefit in the worst case by combining both rules remains open. In
implementations, however, it is strongly recommended to make combined use of
them.

8.7 Interleaving search trees and kernelization

In the preceding parts of this chapter we have seen several different problem types
in which the bounded search tree paradigm applies. In Chapter 7 we encountered
several examples of the reduction to a problem kernel paradigm. One may say
that these two paradigms form the pillars of “feasible fixed-parameter tractabil-
ity”. One obvious way to combine these two methods is, as already indicated,
to perform a two-phase attack. Start by preprocessing the given input instance
by performing a reduction to a problem kernel, and then systematically process
the generated problem kernel using depth-bounded search trees. What we show
next is that to do a kernelization repeatedly during the course of the search tree
algorithm may provably further accelerate the solution finding process.
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8.7.1 Basic methodology

In the following, we will deal with a large class of fixed-parameter algorithms.
Let us state the conditions that these algorithms must meet: they must be fixed-
parameter algorithms that consist of two parts, a reduction to a problem kernel
and a depth-bounded search tree. Let (I, k) be an instance of a parameterized
problem to be solved. Reduction to a problem kernel shall take P (|I|) steps and
result in an instance of size at most q(k), where both P and q are polynomially
bounded. The expansion of a node in the search tree takes R(|I|) steps, which
must also be bounded by some polynomial. The search tree size is O(αk). The
overall time complexity of the algorithm is then

O(P (|I|) +R(q(k)) · αk).

In the following we show how to modify the second stage of the algorithm in
order to improve the time complexity to

O(P (|I|) + αk).

To this end, assume that a branching step produces i subcases with branching
vector (d1, d2, . . . , di). Furthermore, let I1, I2, . . . , Ii be the new instances of the
problem generated thereby, with new parameter values k− d1, k− d2, . . . , k− di.
Generally, we now use the following algorithmic steps to expand a node (I, k) in
the search tree:

if |I| > c · q(k) then (I, k) := (I ′, k′) where (I ′, k′) forms a problem kernel fi;
replace (I, k) with (I1, k − d1), (I2, k − d2), . . . , (Ii, k − di).

In other words, we enrich the ordinary branching as executed in the second line
with a conditional kernelization as executed in the first line. Here c ≥ 1 is a con-
stant that can be chosen with the aim of further optimizing the running time.
There is a tradeoff in choosing c: the optimal choice depends on the implemen-
tation of the algorithm but in the end it affects only the constant factor in the
overall time complexity. Therefore we neglect optimizing c here.

A closer look shows that we in fact seem to increase the time needed to
expand a node in the search tree. This is generally speaking true: sometimes we
apply reduction to a problem kernel prior to branching into recursive calls. These
additional kernelizations, however, also decrease the instance size in the “middle”
of the search tree. Since the time for branching is bounded polynomially in the
instance size, this also helps to decrease the time to expand a node. It proves to
be the case that, while we waste time near the root of the search tree, we gain
much more time near the leaves.

In order to mathematically analyze the running time of the above approach,
we describe the time needed to expand a node (I, k) and all its descendants by
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a recurrence equation. Let Tk denote an upper bound on the time to process
(I, k). The following recurrence holds for Tk:

Tk = Tk−d1 + Tk−d2 + · · ·+ Tk−di
+O(P (q(k)) +R(q(k))).

The time to expand (I, k) itself is at most O(P (q(k)) + R(q(k))) because |I| =
O(q(k)) since |I| > c · q(k) is prevented by the conditional kernelization. In
order to solve this non-homogeneous linear recurrence we need a special solution.
To get its general solution we add the general solution of the corresponding
homogeneous recurrence

Tk = Tk−d1 + Tk−d2 + · · ·+ Tk−di
.

We already know that all solutions of this homogeneous recurrence are bounded
by O(αk). Consequently, we only need to find a small special solution of the
non-homogeneous recurrence. In our case the inhomogeneity is a polynomial.
Therefore, there exists a special solution that is also a polynomial in k. It is
easy to construct such a special solution explicitly. There is always a polynomial
solution that has the same degree as the inhomogeneity p. If r is a polynomial
special solution then

r(k)−
i∑

j=1

r(k − dj) = p(k),

and the highest degree monomials on the left side cannot cancel each other. All
solutions of Tk are therefore bounded by O(αk).

In order to illustrate this, let us consider the following concrete recurrence
equation.

Tk = 2Tk−1 + C · k2 +D · k + E,

where C, D and E are constants that depend on the implementation of the
algorithm. The initial conditions are simple, say, T0 = 0. The general solution
of the homogeneous recurrence is λ2k for λ ∈ R. Since it is a recurrence of first
order, the dimension of its space of solutions is one, too.

One may easily check that

Tk = −Ck2 − (4C +D)k − (6C + 2D + E)

is a special solution. The general solution is then

λ2k − Ck2 − (4C +D)k − (6C + 2D + E)

and the solution for T0 = 0 is

Tk = (6C + 2D + E) · 2k − Ck2 − (4C +D)k − (6C + 2D + E).
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Fig. 8.6. A no-instance of Vertex Cover. The graph shown is the k = 15
member of a family of graphs Gk. The graph Gk consists of a tree with
degree k − 1 and depth 2 to which a path with 3k + 1 vertices is attached
(called the tail). It is easy to see that the smallest vertex cover for Gk has
size 5

2k− 3
2 , and therefore the family of inputs (Gk, k) with k ≥ 2 for Vertex

Cover are all no-instances.

8.7.2 Interleaving is necessary

From an algorithmic point of view, the interleaving of kernelization and branch-
ing described above is necessary: we show that an improved analysis alone cannot
achieve the speedup of the last section. That is, the interleaving of the reduc-
tion to a problem kernel and the bounded search tree really is needed to get the
claimed improvements. Without modification, the algorithms in general have a
running time of Ω(P (|I|) + R(f(k))αk). As an example, we can use Vertex
Cover and we assume that we use the trivial size-2k search tree algorithm.

Look at Figure 8.6 for a definition of a family of graphs defined for odd k.
There is no solution of size at most k, since the optimal vertex cover has size
5
2k − 3

2 (in the head k − 2 vertices and half the vertices of the tail). The graph
contains exactly (k− 1)(k− 2)+1 vertices in the head and 3k+1 vertices in the
tail (altogether k2 + 4). Trying to apply Buss’s reduction to a problem kernel
based on the selection of degree-≥ k vertices (see beginning of Chapter 7) at the
very beginning does not affect this graph since the degree of every vertex is at
most k. Now, assume that the unmodified algorithm chooses edges from right to
left. This leads to a search tree of size 2k, the largest possible. While the algo-
rithm examines this graph, it removes vertices and edges but the head remains
unchanged. Consequently, instances have size Θ(k2) during each branching step.
The overall time complexity is therefore the worst possible—Θ(k22k). Of course,
a better time complexity can also be achieved by changing the order of choosing
edges. Nevertheless, the time bound is Θ(k22k) in the worst case.

When the described interleaving methodology is applied, the running time is
decreased tremendously. After the second edge is removed and parameter k is
decreased by two, the whole head will be removed from the graph.
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The presented interleaving technique applies in numerous settings such as
3-Hitting Set and Maximum Satisfiability. It thus belongs in the toolbox
for the development of efficient fixed-parameter algorithms. In this context, it is
important to note that the achieved improvements when replacing

O(αk · q(k) + p(|I|))

by

O(αk + p(|I|))
are not due to asymptotic tricks, but that q(k) can be replaced by a small con-
stant. And the improvement really matters. For 3-Hitting Set, simply compare
a O(2.18k · k3 + n) time (without interleaving, employing the search tree of size
2.18k (Section 8.4) and the problem kernel of size O(k3) (Section 7.5)) with a
O(2.18k + n) time (with interleaving) algorithm.

One must be careful when trying to apply the interleaving technique, however.
It is tempting to apply it to Dominating Set in Planar Graphs, for which
we know a linear-size problem kernel (see Section 7.6) and a size-8k search tree
(see Section 8.6). We cannot directly apply interleaving because the search tree
works with black-and-white graphs, whereas the problem kernelization was only
designed for non-colored graphs.

In summary, as a rule, the potential for improvement due to interleaving
increases the larger the problem kernel of the underlying parameterized problem
is. It probably almost always pays off in practice when perhaps not applied at
every search tree node but in a regular manner after some branchings. In this way,
the additional administrative overhead can be compensated. The best tradeoff,
in the end, must be determined empirically.

8.8 Automated search tree generation and analysis

We now have seen several examples of depth-bounded search trees, each with a
somewhat different focus. As with the search trees related to Cluster Editing,
Vertex Cover, and 3-Hitting Set (see Sections 8.2, 8.3, and 8.4), however,
they all have in common that they were based on fairly extensive case distinc-
tions. As case distinguishing is a tedious and error-prone task, the question arises
whether this sort of design of depth-bounded search trees can be automated. The
potential benefits of such an approach would be

• rapid development, and

• improved upper bounds

due to computer assistance. In this section we briefly sketch an approach to how
to make use of computers in search tree generation and analysis. We study an
NP-complete special case of the Cluster Editing problem from Section 8.2,
the so-called Cluster Deletion.

Search tree algorithms basically consist of a set of branching rules. Branching
rules are usually based on local substructures. For graph problems, these can be
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induced subgraphs having up to s vertices for a constant integer s; we refer to
graphs having s vertices as size-s graphs. Then each branching rule specifies the
branching for a particular local substructure. The idea behind the automation
approach is roughly described as follows:

1. For constant s, enumerate all “relevant” subgraphs of size s such that every
input instance of the given graph problem has s vertices inducing at least
one of the enumerated subgraphs.

2. For every local substructure enumerated in Step 1, check all possible branch-
ing rules for this local substructure and select the one corresponding to the
best, that is, smallest, branching number. The set of all these best branching
rules then defines our search tree algorithm.

3. Determine the worst-case branching rule among the branching rules stored
in Step 2, because this branching rule yields a worst-case bound on the
search tree size of the generated search tree algorithm.

Note that in both Step 1 and Step 2 we usually make use of further problem-
specific rules: for example, in Step 1, problem-specific rules can determine input
instances which do not need to be considered in our enumeration, such as in-
stances which can be solved in polynomial time, instances which can be simplified
due to data reduction rules, or instances for which we can use a clever manually
developed branching rule; instances with one of these properties are referred to
as “trivial instances”. Here we restrict ourselves to describing a general frame-
work, indicating where problem-specific rules may apply. The problem-specific
rules corresponding to particular graph modification problems are then given in
the following sections.

In the following we discuss Steps 2 and 1, respectively, in more detail. We
will use Cluster Deletion as a running example. Cluster Deletion is an
edge deletion problem in which the forbidden induced subgraph is a P3, that is,
a path consisting of three vertices. Cluster Deletion is defined as follows.

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find out whether we can transformG, by deleting at most k edges,
into a graph that consists of a disjoint union of cliques.

Obviously, there is a trivial size-O(2k) search tree for Cluster Deletion.
We outline a general framework to generate, given a size-s graph Gs =

(Vs, Es) for constant s, an “optimal” branching rule for Gs. To compute a search
tree branching rule we again use a search tree to explore the space of possible
branching rules. This search tree is referred to as a meta search tree. A central
reference point herein is a meta search tree that systematically searches through
a space of possible branchings for a Gs and then chooses a best one.

(1) Branching rules. A branching rule for Gs specifies a set of “simplified”
(to be made precise in the next paragraph) graphs Gs,1, Gs,2, . . . , Gs,r. When
invoking the branching rule, one would replace, for every Gs,i, 1 ≤ i ≤ r, Gs
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by Gs,i and invoke the search tree procedure recursively on the thereby gen-
erated instances. By definition, the branching rule has to satisfy the following
property: a “solution” is an optimal solution for Gs iff it can be inferred from a
“best” one among the optimal solutions for all Gs,i, 1 ≤ i ≤ r, produced by the
branching rule. This is referred to by saying that the branching rule is complete.
The branching is done with respect to the vertex pairs of Gs since we obtain a
solution graph by deleting edges.

(2) Annotations. A “simplified” graph Gs,i, 1 ≤ i ≤ r, is obtained from Gs

by assigning labels to a subset of vertex pairs in Gs. The labels for a vertex
pair u, v ∈ Vs can be chosen as permanent (that is, the corresponding edge is in
the solution graph to be constructed) or forbidden (that is, the corresponding
edge is not in the solution graph to be constructed). All vertex pairs sharing
no edge are initially assigned the label forbidden since edges cannot be added.
An annotation then is a mapping π from the vertex pairs to either permanent,
forbidden, or simply undefined. The latter simply means that no label is assigned.
By Gs with annotation π we then refer to the graph obtained fromGs by deleting
{u, v} ∈ Es if π assigns the label forbidden to (u, v). Thus an annotation specifies,
in particular, a set of edges to be deleted from the input graph. In this way, an
annotation can be used to specify one branch of a branching rule.

(3) Representation of branching rules. A branching rule for Gs with
annotation π can be represented by a set A of annotations for Gs such that, for
every π′ ∈ A, π′ refines π. Here, an annotation π′ refines an annotation π iff for
every vertex pair p, it holds that

π(p) �= undefined =⇒ π′(p) = π(p).

Then, every π′ ∈ A specifies one branch of the branching rule. A set A of annota-
tions has to satisfy the following three conditions in order to specify a branching
rule:

• The branching rule is complete.

• Every annotation decreases the parameter “number of edge deletions”.

• The annotated vertex pairs do not form a P3, that is, there are no u, v, w ∈
Vs with π(u, v) = π(v, w) = permanent and π(u,w) = forbidden .

(4) Problem-specific rules that refine annotations. To obtain non-
trivial bounds it is necessary to have a set of problem-specific reduction rules. In
our terminology, a reduction rule specifies how to refine a given annotation π to π′

such that an optimal solution for the input graph with annotation π′ is also an
optimal solution for the input graph with annotation π. For Cluster Deletion,
we have the following simple data reduction rule: given a graph G = (V,E)
with annotation π, if there are three pairwise distinct vertices u, v, w ∈ V with
π(u, v) = π(v, w) = permanent , then we can replace π by an annotation π′ which
refines π by setting π′(u,w) := permanent . Analogously, if π(u, v) = permanent
and π(v, w) = forbidden , then π′(u,w) := forbidden .



AUTOMATED SEARCH TREE GENERATION AND ANALYSIS 117

(∗)

(∗) (∗) p

p p p p

p

1 1

1 2 2 1

Fig. 8.7. Cluster Deletion. Illustration of a candidate for branching in the
case of an induced subgraph in form as drawn in the above root. At the
root we have a 4-vertex input graph having no labels. Arrows indicate the
branching steps of the meta search tree. We only display branches of the meta
search tree which contribute to the computed branching rule. The vertex
pair on which we branch is indicated by (∗). Permanent edges are indicated
by p, vertex pairs sharing no edge are implicitly forbidden (bold or dotted
lines indicate when a vertex pair is newly set to permanent or forbidden,
respectively). Besides the vertex pair on which we branch, additional vertex
pairs are set to permanent or forbidden due to the problem-specific reduction
rule explained in (4). The numbers at the arrows indicate the number of edges
deleted in the respective branching step. Thus the resulting branching rule
is determined by the leaves of this tree and the corresponding branching
vector is (2, 3, 3, 2). Alternative possibilities to branch can be systematically
generated by the meta search tree by choosing other edges to branch on,
perhaps leading to more favorable branchings with better branching vectors.

(5) Meta search tree. Procedure compute br(), for graph Gs, has as input
an annotation π. It returns a set of possible branching rules with respect to Gs

and annotation π, that is, a set B = {A1, . . . , Ar} of annotation sets such that,
for every 1 ≤ i ≤ r and every π′ ∈ Ai, π

′ refines π. Each π′ ∈ Ai represents one
branch of the branching rule given by Ai.

For instance, Figure 8.7 illustrates the development of a branching into four
subcases—yielding branching vector (2, 3, 3, 2) in the case of a four-vertex input
graph with annotation π that assigns to all vertex pairs the label “undefined”.
This particular branching is derived from starting the branching with respect
to one particular edge (marked (∗)). Other branchings are obtained analogously
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by means of the meta-search tree where the point is to find a particular edge to
branch on. Moreover, using the meta search tree one can systematically search
through a whole space of possible branchings and then choose the best one. To
do so more efficiently than by pure brute-force search a few further tricks can be
applied—see the literature cited in the bibliographical remarks.

To further ameliorate the efficiency of the branching strategy, one can use the
following problem-specific rules that improve the enumeration of graphs. Given
a constant integer s, we can, firstly, assume that every connected component in
a given instance has at least s vertices; every connected component of the input
graph having less than s vertices can be processed in constant time. Therefore, we
can restrict the enumeration to connected size-s graphs. Secondly, we know that
a non-trivial Cluster Deletion instance contains a P3 as a vertex-induced
subgraph, since otherwise the input graph is already a solution. Therefore we
can restrict the enumeration to connected size-s graphs having a P3 as a vertex-
induced subgraph. Using some more observations, the enumeration can be further
sped up by restricting the number of graphs that have to be considered.

With this automated approach one can develop a depth-bounded search tree
for Cluster Deletion with size O(1.77k) and a size-O(1.92k) search tree for
Cluster Editing, improving on the previous purely “human-made” bound of
O(2.27k) from Section 8.2.

The idea sketched above and other similar ones (see bibliographical remarks)
generalize to other graph problems and also (Maximum) Satisfiability prob-
lems. We have concentrated on the Cluster Deletion problem. This frame-
work is usable for graph problems in general, observing two main issues where
changes must be made depending on the problem considered:

• In Cluster Deletion, the branching objects are vertex pairs and the
possible labels are “permanent” and “forbidden”. In general, the branch-
ing objects and an appropriate set of labels for them are determined by the
considered graph problem. For example, in Vertex Cover, the objects
to branch on are vertices instead of edges, and thus the labels would be
assigned to the vertices. The labels would be, for example, “is in the vertex
cover” and “is not in the vertex cover”. Depending on the problem, addi-
tional auxiliary labels might be helpful, for example, reflecting the vertex
degree.

• The reduction rules are problem-specific. To design an appropriate set of
reduction rules working on local substructures is probably the most chal-
lenging part when applying the framework to a new problem and for the
development of practical search tree algorithms in general.

Until now only a few problems are available where the best known “human up-
per bound” could be improved by an “automated upper bound” as is the case
for Cluster Deletion. The reason is that there often are special tricks and
data reduction arguments in these better human-made branching algorithms
which so far have withstood an automated approach because of their special



SUMMARY AND CONCLUDING REMARKS 119

features. It is unclear now how far automated search tree generation can lead
us. Since it is a very new field one may hope for further significant advances
to be made. Note that even if the “automated setting” does not always lead
to the best known worst-case bounds, however, it might be still considered sci-
entific progress since it usually significantly reduces the “proof complexity” of
the corresponding search trees when compared to the hand-made, often highly
complicated, case distinctions. In this sense, the sketched framework helps to
reveal the (usually) few real “core rules” that lie at the very heart of successfully
attacking combinatorially hard problems. This may lead to a better understand-
ing of the problems considered and may smooth the way for new approaches in
deriving smaller and smaller search tree sizes. To make this whole line of attack
a complete success, many things remain to be done. Obviously, trying to de-
velop new problem-specific rules may lead to improved search tree size bounds
in this scenario. It remains for future work to extend the framework in order
to translate the computed case distinctions directly into “executable search tree
algorithm code” and to test algorithms thus implemented empirically. Finally, a
challenge could also be to use the automated framework in order to derive ana-
lytical proofs for search tree sizes, that is, proofs and case distinctions that are
“compact enough” such that they can again be verified by hand/human brains
in reasonable time.

8.9 Summary and concluding remarks

The development of depth-bounded search tree fixed-parameter algorithms offers
various challenges. Sometimes the more demanding part is to prove the correct-
ness and the search tree size of the proposed method (examples in this chapter
are given with Closest String (Section 8.5) and Dominating Set in Planar
Graphs (Section 8.6)), and sometimes the more challenging part is to design and
cleverly organize intricate case distinctions leading to good worst-case bounds for
the search tree size (Cluster Editing, Vertex Cover, and 3-Hitting Set).
We have seen in Section 8.8 that the latter type of search tree algorithm leads
to the question of automating the design and analysis of branching strategies
as employed in search tree case distinctions. Little research has been pursued
in this direction and more insights should be attainable here. Moreover, a re-
lated question arises that should also be considered in future research. Given
some complicated branching strategy employed by a depth-bounded search tree
algorithm, how can one achieve the same or “nearly the same” upper bounds on
the search tree size but with a significantly simplified case distinction? One may
consider this as a kind of “re-engineering” of case distinctions and it might have
particular importance for the practical side of search tree algorithms, trying to
minimize the implementation overhead caused by extensive case distinctions. A
lesson to learn from Section 8.7 is that it is highly recommended to interleave
search trees with reduction to a problem kernel—there are provable benefits with
respect to saving polynomial factors in running time.
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Other points when considering the practical sides of search tree algorithms
are as follows. Search tree algorithms . . .

• . . . build one of the most important techniques for coping with the really
hard kernel of a problem;

• . . . can often be further accelerated by incorporating standard heuristic
techniques such as branch-and-bound;

• . . . in applications frequently have a few cases of their case distinction
that occur very often and the remaining cases occur very seldom, so more
systematic studies in this direction are of great interest;

• . . . as a rule are easily run on parallel machines because of the straightfor-
ward load balancing which is directly implied by the construction process
of search trees;

• . . . may be combined with polynomial-time approximation algorithms by
stopping the recursive search “near” the leaves and running an approxi-
mation algorithm instead, thus getting improved approximation factors at
the cost of affordable exponential running times.

When dealing with depth-bounded search tree algorithms, it might some-
times appear unsatisfactory that there are no “clear” lower bounds on the search
tree size. For instance, the upper bounds on the search tree sizes for Vertex
Cover have been continually improved in a series of papers—and the same holds
for Maximum Satisfiability and several other problems. Thus, the impression
might be that, at the cost of further extending (which often means further compli-
cating) the case distinctions there will always be some (tiny) progress achievable.
Note, however, that it is not always only a matter of refining case distinctions in
order to get the search tree size down—sometimes elegant, practically relevant
techniques such as the Nemhauser–Trotter problem kernel reduction for Vertex
Cover have resulted from these efforts (see Section 7.4). One might conclude
that the community has to decide whether there is enough innovation in a newly
proposed search tree—elegance is a thing that matters here. Unfortunately, prov-
ing concrete lower bounds for the search tree size seems out of reach of current
possibilities—as does the analogous upper bound.

8.10 Exercises

1. Show that Dominating Set for graphs with maximum vertex degree
bounded from above by a constant is fixed-parameter tractable.

2. Design a depth-bounded search tree for Maximum Satisfiability, using
the number of clauses to be satisfied as the bound on the depth of the
search tree.

3. Consider the following special structure occurring in a search tree algorithm
for Vertex Cover: a subgraph formed by a cycle of five vertices, and all
vertices on the cycle have degree exactly three. At least one vertex has a
neighbor with degree four. What is a good branching strategy in this case,
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what is your branching vector, and what is the corresponding branching
number?

4. Derive a search tree for 3-Hitting Set which improves the size bound
O(2.41k) from Section 8.4.

5. Prove Lemma 8.8.

6. Prove Lemma 8.12.

7. Give all details for a proof of Lemma 8.13.

8. Show that the following graph modification problem is fixed-parameter
tractable:
Input: A bipartite graph G = (V1, V2, E) and a nonnegative integer k.
Task: Find out whether G can be transformed into a new graph G′ by
adding or deleting (both is allowed) at most k edges such that each con-
nected component of G′ is a biclique.
Here a biclique is a complete bipartite graph.

9. In the area of “reconfigurable VLSI” the following problem occurs. Given
a rectangular m × n-field in which some of the m · n cells may be faulty.
One is looking for a minimal number of rows and columns of this field such
that all faults are covered by these. In “parameterized terms” this is to
ask whether all faults can be covered by choosing at most k1 rows and at
most k2 columns.

(a) Model this problem as a graph problem.

(b) Show that this problem is fixed-parameter tractable with respect to
the combined parameter (k1, k2), that is, design a solving algorithm
running in f(k1, k2) · (m+ n)O(1) time.

10. A graph is chordal if it contains no induced cycle of length at least 4.
Consider the following graph modification problem Minimum Fill-In.
Input: A graph G = (V,E) and a positive integer k.
Task: Find out whether G can be made chordal by inserting at most k
edges.
Show that Minimum Fill-In is fixed-parameter tractable with respect to
parameter k.

11. Describe modifications to be done in order to generalize the automated
analysis described in Section 8.8 from Cluster Deletion to Cluster
Editing.

8.11 Bibliographical remarks

Depth-bounded search trees are one of the most fundamental concepts in the
design of fixed-parameter algorithms. In the literature one often finds synony-
mous concepts such as splitting algorithms or branching algorithms. Whereas
Downey and Fellows (1999) went through this topic fairly quickly, here we have
spent more time on them because there appear to be numerous facets of depth-
bounded search trees that deserve further investigation. The basic idea behind
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search trees in our sense can be found in earlier books on algorithms and com-
plexity such as Mehlhorn (1984). The first problem with an extensive list of
more and more refined depth-bounded search trees was Vertex Cover, signifi-
cant contributions appearing in (chronologically ordered) Balasubramanian et al.
(1998), Downey et al. (1999), Niedermeier and Rossmanith (1999), Chen et al.
(2001), Niedermeier and Rossmanith (2003b), Chandran and Grandoni (2005),
and Chen et al. (2005).

The paper by Kullmann (1999) provides a detailed description of how to ana-
lyze search tree sizes using recurrence equations. Refer to standard mathematical
textbooks for more on solving recurrences as appearing in this book. For a more
refined mathematical analysis of search tree sizes multivariate recurrences often
come into play—Eppstein (2004) shows how to treat these.

The search tree for Cluster Editing appears in Gramm et al. (2005)—with
later improvement concerning the search tree size using the automated approach
sketched in Section 8.8 (Gramm et al., 2004). Its NP -completeness follows from
work of Křivánek and Morávek (1986)—independently proven in Shamir et al.
(2004). It is also studied under the name Correlation Clustering (Bansal
et al., 2004). A more general perspective on the fixed-parameter tractability of
graph modification problems such as Cluster Editing is due to Cai (1996).

The Vertex Cover search tree machinery has been mainly developed in Bal-
asubramanian et al. (1998), Chen et al. (2001), Chen et al. (2005), and Nieder-
meier and Rossmanith (1999). We give a simplified version with worse worst-case
bounds here. By combining search trees with dynamic programming—the idea
goes back to Robson (1986)—the worst-case search tree sizes can be lowered
slightly further at the cost of exponential space usage (Chandran and Grandoni,
2005; Niedermeier and Rossmanith, 2003b).

Hitting Set generalizes Vertex Cover in the sense that Vertex Cover
is the same as 2-Hitting Set. The presented search tree algorithm for d-
Hitting Set for constant d appears in Niedermeier and Rossmanith (2003a).
Improved upper bounds can be found in Fernau (2004). Observe that for un-
limited subset size Hitting Set is W [2 ]-complete (Downey and Fellows, 1999);
hence there is basically no hope of finding a depth-bounded search tree as in the
above cases.

The search tree for Closest String is from Gramm et al. (2003b). The
NP-completeness of Closest String was first derived by Frances and Litman
(1997). The algorithm presented has proven its usefulness in practical implemen-
tations. The more general problems Closest Substring (Fellows et al., 2002;
Marx, 2005) and Distinguishing Substring Selection (Gramm et al., 2003)
appear to be fixed-parameter intractable, though. By way of contrast, Clos-
est String and its generalizations all possess polynomial-time approximation
schemes (Li et al., 2002a; Li et al., 2002b; Deng et al., 2003).

The size-O(8k) search tree for Dominating Set in Planar Graphs is
proven in Alber et al. (2005b). It corrects an earlier flawed bound O(11k) appear-
ing in Downey and Fellows (1999). The result generalizes to graphs of bounded
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genus (Ellis et al., 2004).
The interleaving technique as described in Section 8.7 is presented along the

lines of Niedermeier and Rossmanith (2000a). It is also applicable to Maximum
Satisfiability (Chen and Kanj, 2004), 3-Hitting Set (Niedermeier and Ross-
manith, 2003b), and many other problems solved by depth-bounded search trees
and problem kernelization.

Concerning the automated generation and analysis of search trees we fol-
lowed Gramm et al. (2004). Further work in this direction has been undertaken
in Fedin and Kulikov (2004) and Nikolenko and Sirotkin (2003). In a some-
what different and more specialized setting, Robson (2001) applied computers
to improve his older bounds from Robson (1986) on the search tree size for In-
dependent Set. Note that Robson (1986) contains a sophisticated search tree
algorithm for Independent Set where the combinatorial explosion is restricted
with respect to the number of graph vertices but not with respect to the number
of vertices in a maximum independent set for which one seeks.

There are numerous other depth-bounded search tree algorithms for various
kinds of problem; a very small selection is contained in the papers Alber et al.
(2004), Chen and Kanj (2003), Fernau and Niedermeier (2001), and Kaplan et al.
(1999). In Chen et al. (2004a) the use of nondeterminism as an elegant way to
perform and analyze search strategies is advocated. Finally, note that a very
recent line of research takes the direction of investigating how to achieve better
bounds, sometimes even with simplified algorithms, by improved mathematical
analysis. Three examples here are Chen et al. (2002), Fernau (2004), and Fomin
et al. (2005). To this end, multivariate recurrences often appear in the analysis
of search tree sizes—Eppstein (2004) provides the necessary tools.
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DYNAMIC PROGRAMMING

Avoiding time-consuming recomputations of the solutions of subproblems by
storing intermediate results and doing table look-ups is the core idea behind
dynamic programming. It is a fairly general problem-solving technique which
applies to problems whose solution can be computed from solutions to subprob-
lems. While the basic idea is very natural, it usually takes some time to verify
the correctness of a given dynamic programming solution because, as a rule,
some more or less complicated access to information on subproblems stored in
tables has to be understood. That is why some people say that it might be
easier to think about a dynamic programming solution for oneself than trying
to understand a given one. In any case, however, dynamic programming is best
learned by examples and by gaining personal experience by going through several
applications.

One well-known example of dynamic programming is given by the compu-
tation of binomial coefficients. Pascal’s formula states that, for all n ≥ 1 and
1 ≤ k ≤ n, (

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

This immediately leads to a recursive algorithm for computing
(
n
k

)
, knowing

that
(
m
m

)
=

(
m
0

)
= 1 for all m ≥ 1. Indeed, the table filled by computing

(
n
k

)
is known as Pascal’s triangle, which has O(n · k) entries. Hence filling this ta-
ble in a “bottom-up” process yields a non-recursive polynomial-time algorithm
for computing binomial coefficients. Note that a straightforward recursive im-
plementation would always have branched into two recursive calls, yielding an
exponential running time. The reason for this is that the same binomial coeffi-
cient is recomputed again and again in many different recursive calls.

Another standard dynamic programming algorithm from theoretical com-
puter science is the cubic-time algorithm of Cocke, Younger, and Kasami that
solves the word problem for context-free languages. Again the straightforward
recursive implementation without using tables here would have ended up in ex-
ponential running time.

Both of the above examples are polynomial-time solvable problems and there
are many others in this direction. In this chapter, however, we demonstrate
the particular use of dynamic programming in the context of exponential-time
fixed-parameter algorithms. To illustrate the various flavors in which dynamic
programming may occur, we have chosen the Steiner Problem in Graphs,
a flow problem in tree networks, and a tree-structured variant of the in general

124
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fixed-parameter “intractable” Set Cover problem. Finally, we discuss a com-
bination of dynamic programming with depth-bounded search trees in order to
save the exploration of some search tree parts, thus reducing the combinato-
rial explosion. To begin with, as a warm-up, we provide some notation and few
classical examples concerning dynamic programming to solve hard combinatorial
optimization problems.

9.1 Basic definitions and facts

In a sense, dynamic programming makes exhaustive search—which guarantees
finding optimal solutions—more efficient by avoiding the computation of solu-
tions of subproblems more than once. Dynamic programming is a promising
solution strategy when a problem exhibits the property of having optimal sub-
structure; that is, an optimal solution to the problem contains within it optimal
solutions to subproblems. Moreover, dynamic programming uses this property
in a bottom-up fashion. For instance, in our introductory example concerning bi-
nomial coefficients we can start with the entries

(
m
m

)
and

(
m
0

)
for all 1 ≤ m ≤ n;

then we may compute
(
2
1

)
=

(
1
0

)
+

(
1
1

)
= 2, by this

(
3
1

)
and

(
3
2

)
, and so on. Two

properties usually make dynamic programming particularly feasible:

• independence, and

• overlapping subproblems.

By independence of subproblems we mean that the solution of one subproblem
does not affect the solution of another subproblem of the same problem. By
overlapping subproblems we mean that the same problem occurs as a subproblem
of different problems, hence giving an advantage over recursive algorithms where
these solutions of subproblems would be computed more than once.

Dynamic programming applies to every problem that observes the principle
of optimality. In a nutshell, this means that solutions to subproblems can be
optimally extended only with regard to the current “state” of this solution—it is
not necessary to know exactly which sequence of operations has been performed
to date. In other words, this means that at a certain point one may also “forget”
information because only the actual solution to a subproblem—and not the way
to its construction—matters.

Finally, a brief word about a variation of dynamic programming: memoiza-
tion. The basic difference from dynamic programming in the classical sense here
is that the flow of control changes; the dynamic programming table is filled in a
top-down manner instead of a bottom-up one. In fact, the idea is to memorize
the natural but inefficient recursive solving algorithm. That is, again we main-
tain a table with subproblem solutions, but we fill these tables with the results
from successful recursive calls. Section 9.6 describes a strategy to shrink depth-
bounded search trees which can be interpreted as memoization. Note, however,
that bottom-up dynamic programming is often more efficient because there is
no administrative overhead for recursion and because sometimes regular access
patterns to dynamic programming tables can be exploited. By way of contrast,
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the advantage of memoization is that it is guaranteed that only solutions to those
subproblems that are actually needed are computed.

We conclude this section with a well-known exponential-time dynamic pro-
gram which gives the to date best exact algorithm for the Traveling Sales-
person Problem (TSP):

Input: A set {1, 2, . . . , n} of “cities” with pairwise nonnegative dis-
tances d(i, j), 1 ≤ i, j ≤ n.
Task: Find an order of the cities such that by following this order each
city is visited exactly once and the total distance traveled is minimized.

A trivial algorithm to solve TSP simply enumerates all possible O(n!) tours.
In 1962, the up to now best exact algorithm solving TSP was published. It
brings the combinatorial explosion down to O(2n) by using a natural dynamic
programming approach which we sketch in the following.

Clearly, without loss of generality, the tour we search for may start in city 1.
For every non-empty subset S ⊆ {2, . . . , n} and for every city i ∈ S, denote by
Opt(S, i) the length of the shortest path that starts in city 1, then visits all cities
in S \ {i} in arbitrary order, and finally stops in city i. Obviously,

Opt({i}, i) = d(1, i),

giving the “bottom entries” of the dynamic programming table. The decisive
point fulfilling the principle of optimality now is based on the following recur-
rence:

Opt(S, i) = min
j∈S\{i}

{Opt(S \ {i}, j) + d(j, i)}.
Then the optimal solution is given by

min
2≤j≤n

{Opt({2, . . . , n}, j) + d(j, 1)}.

The combinatorial explosion now is basically determined by the number of sub-
sets of {2, . . . , n} which is bounded by O(2n). Indeed, it is not difficult to see
that the overall running time is bounded from above by O(2n · n2), giving a big
improvement over enumerating all O(n!) possibilities.

The above dynamic programming algorithm is not a parameterized one in
the classical sense. In Section 5.4, however, we briefly discussed the special case
of TSP restricted to the two-dimensional Euclidean plane and interpreting cities
as points in the plane. Then, introducing the number of inner points with respect
to the convex hull of the point set as a parameter called k, a fixed-parameter
algorithm running in O(2k ·k2 ·n) time was stated. For this special case, this will
usually beat the above algorithm. See also Section 15.6.1 for further consideration
of this problem.

9.2 Knapsack

The Binary Knapsack problem is a classical NP-complete problem with many
applications. It is particularly related to resource allocation scenarios. There are
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many variations of knapsack-like problems that could even fill a book on their
own. Here, we focus on the following problem Binary Knapsack:

Input: A set of n items, each with a positive integer value vi and a
positive integer weight wi, 1 ≤ i ≤ n, and a positive integer bound W .
Task: Find a subset of items such that their total value is maximized
under the condition that their total weight does not exceed W .

Let I be an instance of Binary Knapsack. By trying all possible 2n subsets,
one trivially finds an optimal solution in 2n · |I|O(1) time. Using preprocessing
methods, this can be improved to 2n/2 · |I|O(1) time using 2n/2 · |I|O(1) space.
The focus in this section, however, is a dynamic programming algorithm related
to the parameter W .

To begin with, let us clarify an important fact concerning Binary Knapsack
and similar problems. When describing an algorithm, we always measure its
time and space complexity relative to the input size. In the case of Binary
Knapsack, however, the input instance is specified by 2n+ 1 integer numbers.
These numbers are encoded in binary. In particular, this means that if we talk
about number W we assume that the length of its encoding as an input is
�logW �. Hence one has to take care of what it means when we say that we
have an algorithm with running time O(W · n) as we do in the following. This
is an exponential running time, since W = 2log W . That is why we consider such
an algorithm as a special case of a fixed-parameter algorithm with respect to
parameter bound W . Before continuing this discussion, now let us see how to
derive an O(W · n) algorithm for Binary Knapsack.

In the case of “relatively small” weights, Binary Knapsack is efficiently
solvable: we employ dynamic programming with a table of size O(W · n). Obvi-
ously, we can throw away all elements whose weight exceeds W . Hence, without
loss of generality, we assume that wi ≤W for all 1 ≤ i ≤ n. Let S ⊆ {1, 2, . . . , n}.
Define the Boolean variable R[X,S] for positive integer X : R[X,S] is true iff
there exists a subset of S whose total weight is exactly X . In other words, the
weight X is “realizable” using only items from S. Step by step, we consider the
subsets

S = ∅, S = {1}, S = {1, 2}, . . . , S = {1, 2, . . . , n},
and compute, for growing S, each of the values R[X,S]. Clearly, R[X, ∅] is false
for all 1 ≤ X ≤ W . Let S = {1, 2, . . . , i}. The value of R[X,S ∪ {i + 1}] is
determined by

R[X,S ∪ {i+ 1}] = R[X,S] ∨R[X − wi+1, S]. (9.1)

This is the central observation and its correctness is based on the fact that
item i+ 1 is either used for “realizing” weight X or it is not. Clearly, filling the
corresponding size-(W × n) table can be done in O(W · n) time and, after all,
we know all the realizable weights together with subsets realizing these weights.

So far we have neglected the value vi of each item i, 1 ≤ i ≤ n. To incorporate
it, we replace the Boolean variables R[X,S] by integer variables which express
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the maximum possible value that can be achieved by a subset S that realizes X .
Thus, instruction (9.1) is then replaced by computing a maximum of two integer
values instead of determining the Boolean “or” of two truth values. Recording
here which option led to the maximum—if both did, we record an arbitrary one—
we can by following the thus determined path through the dynamic programming
table find out which subset of the n items actually gives a maximum value
solution of Binary Knapsack. Taken together, this proves the following.

Theorem 9.1 Binary Knapsack can be solved in O(W · n) time.

Theorem 9.1 provides an efficient algorithm whenever the given total weight
allowed is not too big. In fact, if the input instance of Binary Knapsack were
encoded in unary, that is, using a one-element alphabet, then Binary Knapsack
could be solved in polynomial time with respect to the input size. In the literature
the above algorithm is called a pseudo-polynomial-time algorithm because it is
polynomial with respect to the largest occurring value of an integer in the input.
By way of contrast, note that Vertex Cover remains NP-complete even when
the size k of the vertex cover is encoded in unary. The distinction between prob-
lems that remain NP-complete even for input instances with unary encoding of
integers and those that become polynomial-time solvable as Binary Knapsack
does is made rigorous through the concept of strong NP-completeness. Refer to
the cited literature to learn more about that.

9.3 Steiner Problem in Graphs

Long before parameterized complexity theory was developed, in 1972 S. E. Drey-
fus and R. A. Wagner gave an early example of a fixed-parameter algorithm
for an important “connectivity problem” in graphs. The NP-complete Steiner
Problem in Graphs is defined as follows.

Input: An edge-weighted graph G = (V,E) and a set of terminal ver-
tices S ⊆ V with |S| =: k.
Task: Find a subgraph G′ of G that connects all vertices in S and whose
total edge weight is minimum.

The original Steiner Problem is an old problem in geometry and requires
finding the set of lines of minimum total length which connect a given set of
points S in the Euclidean plane. Note that the lines may intersect not only in
points from S but also on other points in the plane in order to minimize the
total length. When studying the Steiner Problem in Graphs, observe that,
opposite to the geometric problem as specified above, the triangle inequality
must no longer hold making the problem more elusive. Still, it is easy to observe
that the connecting subgraph G′ must be a tree: assume that G′ contains a
cycle. Then there are two different paths available for connecting some vertex
in S to the rest. Clearly, one can delete the heaviest edge on these paths without
destroying the connectivity but reducing the total edge weight of G′. Hence we
subsequently speak of minimum (weight) Steiner trees we are searching for.
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Let us consider two simple special cases of Steiner Problem in Graphs.

• If S = V , then the problem reduces to computing a minimum weight
spanning tree of G = (V,E) and clearly can be solved in polynomial time.

• If |S| = 2, then the problem reduces to computing a shortest path between
two vertices in G. Again, this clearly is polynomial-time solvable.

Considering the parameterization by the size of the terminal set S, we now show
that Steiner Problem in Graphs is fixed-parameter tractable with respect
to parameter k := |S|.

The Steiner Problem in Graphs carries a nice decomposition property
that can be made use of to solve the problem by a recursive approach. To make
things more efficient, that is, to avoid repeated calls solving one and the same
subproblem, dynamic programming is employed. The fundamental idea is to
compute the weight of a minimum Steiner tree for a given terminal set by con-
sidering the weights of the minimum Steiner trees of all proper subsets of this set.
Starting the process with two-element subsets (where the Steiner tree can be de-
termined by shortest path computations) one finally ends up with the k-element
terminal set S.

The fixed-parameter algorithm follows easily from the subsequent key lemma.
To this end, we have to introduce some notation. Let X ⊆ S and v ∈ V \X .

• s(X ∪ {v}) denotes the weight of a minimum Steiner tree connecting all
vertices from X ∪ {v} in the given graph G;

• p(u, v) denotes the total weight of the shortest (lightest) path between
vertices u and v.

Lemma 9.2 Let X �= ∅, X ⊆ S, and v ∈ V \X. Then,

s(X ∪ {v}) = min{min
u∈X

{s(X) + p(u, v)}, min
u∈V \X

{su(X ∪ {u}) + p(u, v)}}, (9.2)

where

su(X ∪ {u}) := min
X′ �=∅,X′�X

{s(X ′ ∪ {u}) + s((X \X ′) ∪ {u})}. (9.3)

Proof To prove equation 9.2, assume that T is a minimum Steiner tree for
X ∪ {v}. If v is a leaf in T , then define Pv as the longest (heaviest) path in T
starting in v and in which all interior points have degree two in T . Distinguishing
three cases and minimizing over all of them then gives equation (9.2):

1. If v is no leaf and has degree at least two in T , then it is easy to observe
that there is a partition ofX into two sets X ′ and X ′′ such that T [X ′∪{v}]
and T [X ′′∪{v}] are the minimum Steiner trees for X ′∪{v} and X ′′∪{v},
respectively. Moreover, vertex v is a leaf in both these Steiner trees. This
case is clearly covered by the special case u = v in (9.3).
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2. If v is a leaf in T and Pv ends at a vertex u ∈ X , then T consists of a
minimum Steiner tree for X and a shortest (lightest) path from u to v.
Hence,

s(X ∪ {v}) = s(X) + p(u, v),

which is covered by the first term in (9.2).

3. If v is a leaf in T and Pv ends at a vertex u ∈ V \X , then u has at least
three neighbor vertices in T . This implies that T consists of a minimum
Steiner tree for X ∪ {u} in which u has degree at least two and a shortest
(lightest) path from u to v. Observe that the minimum Steiner tree for
X ∪ {u} exactly corresponds to the first case discussed above. Therefore,
this case is covered by the second term in (9.2).

�

With the help of Lemma 9.2, the fixed-parameter algorithm solving the
Steiner Problem in Graphs now easily derives.

Theorem 9.3 The Steiner Problem in Graphs can be solved in O(3k · n+
2k · n2 + n2 · logn+ n ·m) time, where n denotes the number of vertices and m
denotes the number of edges in the given graph.

Proof We employ the following algorithm which is basically a one-to-one trans-
lation of the recursions from Lemma 9.2. The solution is given by the value
of s(S).

In an initialization step, compute p(u, v) for all u, v ∈ V , and for all x, y ∈ S
initialize

s({x, y}) := p(x, y).

Then perform recursive calls as prescribed by Lemma 9.2, assuming that the
values on the right-hand sides are stored in a dynamic programming table.

With regard to the running time, observe that the initialization can be done
in O(n2 · logn+n ·m) time using n times Dijkstra’s shortest path algorithm. The
number of recursive calls corresponding to (9.3) in Lemma 9.2 can be bounded
from above by 3k: for all X �= ∅, X ⊆ S we have to consider all X ′ �= ∅, X ′ ⊆ X ,
and all v ∈ V \X . The number of combinations can be upper-bounded by

k∑
i=1

(
k

i

)
·

i−1∑
j=1

(
i

j

)
· n ≤ n ·

k∑
i=1

(
k

i

)
· 2i−1 ≤ n · 3k.

Since each combination leads to two table look-ups (recursive calls corresponding
to s(X ′∪{v}) and s((X\X ′)∪{v})) and since we have to perform only constantly
many operations for a fixed combination of X , X ′, and v, we obtain the upper
bound O(3k ·n) for the running time here. As to equation (9.2), observe that by
similar considerations we can conclude that in this case O(2k ·n) of pairsX and v
are possible. For each fixed pair X and v, however, due to the consideration of



MULTICOMMODITY DEMAND FLOW IN TREES 131

u ∈ X and u ∈ V \X , we get an additional factor of O(n). Altogether, we have
an upper bound of O(2k · n2) here, implying the claimed overall running time.

We have only described an algorithm for determining the weight of a mini-
mum Steiner tree here—it is straightforward to extend it in order to construct
the corresponding tree explicitly. �

9.4 Multicommodity Demand Flow in Trees

As a rule, most hard graph problems become easy when restricted to trees.
For instance, Vertex Cover restricted to trees is solvable in linear time by
a straightforward algorithm that works bottom-up from the leaves to the (arbi-
trarily chosen) root. By way of contrast, the Multicommodity Demand Flow
in Trees problem, MDFT for short, gives an example where NP -completeness
even holds in the case of trees. Fortunately, for trees there is a fixed-parameter
algorithm based on dynamic programming. It is the subject of this section.

MDFT is defined as follows.

Input: A “capacitated tree” T = (V,E, c), where each edge capacity c(e)
is an integer, and a collection F of flows which is encoded as a list of
pairs of vertices of T ,

F = {fi | fi := (ui, vi), ui ∈ V, vi ∈ V, ui �= vi, 1 ≤ i ≤ m}.

Each flow f ∈ F has associated an integer demand value d(f) > 0 and
a real valued profit p(f) > 0.
Task: Find a routable subset F ′ ⊆ F which maximizes p(F ′) :=∑

f∈F ′ p(f). A subset F ′ ⊆ F is routable in T if the flows in F ′ can be
simultaneously routed without violating any edge capacity of the tree.
That is, for any edge e the sum of the demand values of the flows routed
through e does not exceed c(e).

The tree T is termed the supply tree. The vertices u, v are called the two
endpoints of the flow f = (u, v). Note that, for a tree, the path between two
distinct vertices is uniquely determined and can be found in linear time. Thus,
we can assume that each flow f = (u, v) ∈ F is given as a path between u and v.
We use Fv to denote the set of demand flows passing through vertex v. A demand
flow passes through vertex v if it has v as one of its endpoints or v lies on the
flow’s path.

We will show that MDFT is fixed-parameter tractable with respect to the
parameter k := “maximum number of demand flows passing through any ver-
tex of the tree”. It is important to note here that a parameterization by the
“maximum number of demand flows passing through any edge of the tree” is of
no “parameterized interest”: it can be shown that MDFT is NP-complete even
when there are at most six demand flows passing through any edge. Hence there
is no hope for fixed-parameter tractability with respect to this parameter.

Before we present the dynamic programming algorithm for the general MDFT
problem, as a “warm-up” we briefly discuss an easy special case with a restriction
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s := s1s2 . . . skv
De(s)

00 . . .00
00 . . .01

...
11 . . .11

Fig. 9.1. Table De for edge e = {u, v} with Fv := {fv
1 , f

v
2 , . . . , f

v
kv
} with kv ≤ k.

to paths instead of trees. Besides the restriction to paths we further require that
only unit flow demands and unit profits are allowed. Then the following simple
strategy works. The algorithm starts at the left end of the supply path. While
not reaching the right end of the path, it does the following.

1. Check whether the capacity of the current edge e = {u, v} suffices, where u
is the left endpoint of e and v is the right endpoint.

2. If not, remove “longest” demand flows which start in u until the capacity
of e suffices.

3. Replace each of the flows f = (u, z) with z �= v by a flow between v and z.

The solution is simply given by the set of non-removed demand flows.

Proposition 9.4 MDFT restricted to paths as supply tree, unit flow demands,
and unit profits can be solved in O(m+ n) time, where n denotes the number of
tree vertices and m denotes the number of flows.

Proof The above algorithm is obviously correct. After simple preprocessing,
we know the length of each demand flow. Then we can proceed from left to right
in O(n) main steps. All steps together need to remove at most O(m) demand
flows, yielding O(m+ n) running time. �

The central idea behind the dynamic programming algorithm for the general
MDFT problem is to distinguish three main cases. This is what we describe
next. We begin with some agreements and basic observations. We assume that
we deal with arbitrarily rooted trees. Thus an edge e = {u, v} reflects that u is
the parent vertex of v. We use T [v] to denote the subtree of the input tree rooted
at vertex v. In particular, using the rooted tree structure, we will solve MDFT
in a bottom-up fashion by dynamic programming from the leaves to the root.

The core idea of the dynamic programming is based on the following definition
of tables which are used throughout the algorithm. For each edge e = {u, v} with

Fv := {fv
1 , f

v
2 , . . . , f

v
kv
} ⊆ F,

we construct a table De as illustrated in Figure 9.1. Thus, Fv denotes the set
of flows from F running through v, and kv ≤ k is the number of these flows.
Table De has 2kv rows which correspond to all possible vectors s with kv entries
over {0, 1}—kv-vectors for short. Each of these vectors represents a route schedule
for the flows in Fv. The ith component si of s corresponds to flow fv

i , and si = 0
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means that we do not route flow fv
i and si = 1 means that we do route fv

i .
Furthermore, to refer to the set of routed flows, we define

r(s) := {i | si = 1, 1 ≤ i ≤ kv}.
Table entry De(s) stores the maximum profit which we can achieve according to
the route schedule encoded by s with the flows which have at least one of their
endpoints in T [v].

The algorithm works bottom-up from the leaves to the root. Having computed
all tables De for the edges e connected to the root vertex, MDFT will be solved
easily, as pointed out later on. The algorithm starts with “leaf edges” which are
initialized as follows. For an edge e = {u, v} connecting a leaf v with its parent
vertex u, the table entries for the at most 2k rows s are determined by

De(s) :=

{
0, if c(e) <

∑
i∈r(s) d(f

v
i );∑

i∈r(s) p(f
v
i ), otherwise.

Then the main algorithm consists of distinguishing three cases.
Case 1: Consider an edge e = {u, v} connecting two inner vertices u and v

where v has only one child w connected to v by edge e′ = {v, w}.
The sets of flows passing through u, v, and w, respectively, are denoted

by Fu := {fu
1 , . . . , f

u
ku
}, Fv := {fv

1 , . . . , f
v
kv
}, and Fw := {fw

1 , . . . , f
w
kw
}. More-

over, we use Fe and Fe′ to denote the sets of flows passing through e and e′ and
we have Fe = Fu ∩ Fv and Fe′ = Fv ∩ Fw.

First, if Fe∩Fe′ = ∅, then the given instance can be divided into two smaller
instances, one consisting of subtree T [v] and the flows inside it and the other
consisting of the original tree without the vertices below v and the flows therein.
The optimal solution for the original instance is then the sum of the optimal
solutions of the two smaller instances. An optimal solution of the first smaller
instance is already computed and is obtained from a maximum entry of tableDe′ .
In order to compute an optimal solution of the second smaller instance, we can
treat v as a leaf and proceed as for leaf edges above.

Second, if Fe ∩ Fe′ �= ∅, then there are some flows passing through both e
and e′. Recall that entry De(s) for a kv-vector s will store the maximum profit
with respect to the route schedule encoded by s that can be achieved by the
flows with at least one of their endpoints in T [v]. We partition Fv into two sets,
Fv ∩Fw and Fv \Fw. The value of De(s) is thus the sum of the maximum of the
entries of De′ which have the same route schedule for the flows in Fv ∩ Fw as
encoded in s, and the profit achieved by the flows in Fv \ Fw obeying the route
schedule encoded by s. Let

Bv := {i | fv
i ∈ (Fv ∩ Fw)}

and
Bw := {i | fw

i ∈ (Fv ∩ Fw)},
and j := |Bv| = |Bw|. Clearly, Bv and Bw refer to the same sets of demand flows.
Note, however, that they may differ due to different “naming” of the same flow
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in the two tables De and De′ . To more easily obtain the maximum of the entries
of De′ which have the same route schedule for the flows in Fv ∩Fw , we condense
table De′ with respect to Bw. The condensation of De′ with respect to Bw is to
keep only the components of the kw-vector s′ of De′ which correspond to the
demand flows in Fv ∩Fw. More precisely, for a route schedule s′ condensed with
respect to Bw, we obtain

De′(s′) := max{De′(s′) | s′ = πBw (s′)}.

Herein, πBw (s′) returns the projection of s′ onto the j components of s′ that
correspond to Bw. Then, using A := {i | fv

i ∈ Fe} to refer to the set of the flows
in Fv passing through edge e, the entries of De are computed as follows.

De(s) :=

{
0, if c(e) <

∑
i∈A d(f

v
i );

De′(πBv (s)) +
∑

i∈(r(s)\Bv) p(f
v
i ), otherwise.

Obeying the route schedule encoded by s, De′(πBv (s)) and
∑

i∈(r(s)\Bv) p(f
v
i )

denote the profits achieved by the flows in Fv ∩Fw and in Fv \ Fw, respectively.
Case 2: Consider an edge e = {u, v} connecting two non-leaf vertices u

and v where v has two children w1 and w2 connected to v by edges e′ = (v, w1)
and e′′ = (v, w2).

We use Fu := {fu
1 , . . . , f

u
ku
}, Fv := {fv

1 , . . . , f
v
kv
}, Fw1 := {fw1

1 , . . . , fw1

kw1
},

and Fw2 := {fw2
1 , . . . , fw2

kw2
} to denote the sets of flows passing through vertices u,

v, w1, and w2. As in Case 1, Fe = Fu ∩ Fv, Fe′ = Fv ∩ Fw1 , and Fe′′ = Fv ∩
Fw2 . With the same argument as in Case 1, if one of Fe ∩ Fe′ and Fe ∩ Fe′′ is
empty, we can divide the given instance into two smaller instances and solve
them separately. Thus we assume that they are not empty. Similar to Case 1,
we “partition” Fv into the three sets Fv ∩ Fw1 , Fv ∩ Fw2 , and (Fv \ Fw1) \ Fw2 .
For a kv-vector s, one might simply set De(s) equal to the sum of the maximum
of the entries of De′ which have the same route schedule as encoded in s for the
flows in Fv ∩Fw1 , the maximum of the entries of De′′ which have the same route
schedule as encoded in s for the flows in Fv ∩ Fw2 , and the profit achieved by
the flows in (Fv \Fw1) \Fw2 obeying the route schedule encoded by s. However,
if (Fv∩Fw1 )∩(Fv∩Fw2) �= ∅, that is, due to the tree structure, Fw1∩Fw2 �= ∅, then
the edges e′ and e′′ have some common flows. Then, for each flow between T [w1]
and T [w2] scheduled to be routed in both subtrees, we must subtract its profit
once from the sum to avoid double counting. Let

Bv
1 := {i | fv

i ∈ (Fv ∩ Fw1)}; Bw1
1 := {i | fw1

i ∈ (Fv ∩ Fw1)};
Bv

2 := {i | fv
i ∈ (Fv ∩ Fw2)}; Bw2

2 := {i | fw2

i ∈ (Fv ∩ Fw2)};
Bw1

3 := {i | fw1

i ∈ (Fw1 ∩ Fw2)}; Bw2
3 := {i | fw2

i ∈ (Fw1 ∩ Fw2)}.

Note that |Bv
1 | = |Bw1

1 |, |Bv
2 | = |Bw2

2 |, |Bw1
3 | = |Bw2

3 |, Bw1
3 ⊆ Bw1

1 , and Bw2
3 ⊆

Bw2
2 . As in Case 1, we condense De′ and De′′ . More specifically, we condense De′

with respect to Bw1
1 and De′′ with respect to Bw2

2 :
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De′(s′) := max{De′(s′) | s′ = πB
w1
1

(s′)};
De′′(s′′) := max{De′′(s′′) | s′′ = πB

w2
2

(s′′)}.

Then, using A := {i | fv
i ∈ Fe}, the entries of De are computed as follows.

De(s) :=

{
0, if c(e) <

∑
i∈A d(f

v
i );

α+ β, otherwise.

Herein,

α := De′(πBv
1
(s)) +De′′(πBv

2 )(s)− γ,
β :=

∑
i∈(r(s)\(Bv

1∪Bv
2 ))

p(fv
i ),

γ :=
∑

i∈B
w1
3 ,π{i}(s)=1

p(fw1

i ).

In order to avoid double counting of common flows of edges e′ and e′′, γ has
been subtracted in the above determination of De.

Case 3: Consider an edge e = {u, v} connecting two non-leaf vertices u and v
where v has l > 2 children w1, w2, . . . , wl.

We add l − 2 new vertices v1, v2, . . . , vl−2 to T and we transform T into a
binary tree. Each of these new vertices has exactly two children. Vertex v1 is the
parent vertex of w1 and w2, v2 is the parent vertex of v1 and w3, and so on.
Thus, v becomes the parent vertex of vl−2 and wl. The edge between wi and its
new parent vertex is assigned the same capacity as the edge between wi and v in
the original tree. The edges {v, vl−2}, {vl−2, vl−1}, . . . , {v2, v1} between the new
vertices obtain unbounded capacity. The flows have the same endpoints as in the
original instance. It is easy to see that the solutions for the new and the old tree
are the same, and thus Case 1 and Case 2 suffice for handling the new binary
tree. This concludes the description of the dynamic programming algorithm. It
implies the following result.

Theorem 9.5 MDFT can be solved in O(2k ·m · n) time, where k denotes the
maximum number of demand flows passing through any vertex of the given supply
tree, n denotes the number of tree vertices and m denotes the number of flows.

Proof The correctness of the algorithm follows directly from its description. To
this end, however, note that when the D-tables of all edges of the supply tree are
computed, we may easily determine the final optimum by comparing the tables
without loss of generality of at most two edges leading to the root. Moreover, by
means of a top-down traversal from the root to the leaves we can easily determine
the actual subset of routable flows that led to the overall maximum profit. We
omit the straightforward details here.

With regard to the algorithm’s running time, observe that table De for
edge e = {u, v} has at most O(2k) entries. For a vertex v with more than two
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children, as described in Case 3 above, we add some new vertices to construct a
binary tree. The resulting tree at most doubles in size. Moreover, since Fv′ ⊆ Fv

for each of the new vertices v′, the D-tables of the new edges have at most O(2k)
entries. Assuming that all basic set operations such as union and set minus
between two sets having at most m elements can be done in O(m) time, the
computation of a new table from its at most two child tables runs in O(2k ·m)
time. Altogether, the algorithm then takes O(2k ·m · n) time. �

The algorithm presented is a competitive or even superior alternative to
heuristic or approximation algorithms for not too large values of parameter k,
a realistic assumption for several application scenarios. Its space consumption
grows with k as the running time does, though. Thus it is conceivable that its
practical usefulness will be more limited by its memory usage than it is by its
running time—a fairly frequent observation for dynamic programming in relation
to tables of exponential size.

9.5 Tree-structured variants of Set Cover

In this section we present the technically most challenging example of dynamic
programming. We deal with one of the most important problems of combinato-
rial optimization—Set Cover. This classical NP-complete problem is notori-
ously hard with respect to polynomial-time approximation—no constant-factor
approximation is known—as well as from the viewpoint of parameterized com-
plexity studies. That is why we introduce a tree-structured NP -complete variant
of Set Cover which is motivated by practical applications. Thus, besides further
presenting a highly non-trivial example of dynamic programming, the intentions
behind this section are at least two-fold:

• To give an example of the creative process of discovering and exploiting
practically relevant problem parameterizations, and

• to emphasize the importance of a “tree-likeness” respectively “acyclic-
ity” property in dynamic programming; this will play a central role when
investigating the use of tree decompositions of graphs in Chapter 10.

We divide this slightly longer section into three subsections. The first formally
introduces the Set Cover problem and the tree-structured variants we study.
Moreover, it summarizes some simple observations and the hardness of tree-
like special cases to be studied. In the next subsection, we deal with the easier
to grasp, polynomial-time solvable “very special” case where the tree structure
actually boils down to only a path. This prepares the NP -complete case with
arbitrary tree structures studied in the third and final subsection. We end by
discussing a close relation to the Multicut in Trees problem.

9.5.1 Basic definitions and facts

The basic Set Cover problem (optimization version) is defined as follows:
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Input: A base set S = {s1, s2, . . . , sn} and a collection C of subsets of S,
C = {c1, c2, . . . , cm}, ci ⊆ S for 1 ≤ i ≤ m, and

⋃
1≤i≤m ci = S.

Task: Find a subset C′ of C of minimum cardinality which covers all
elements in S, that is,

⋃
c∈C′ c = S.

By assigning weights to the subsets and minimizing the total weight of the col-
lection C′ instead of its cardinality, one naturally obtains the Weighted Set
Cover problem. We call C′ the minimum (weight) set cover of S. Define the
occurrence of an element s ∈ S in C as the number of the subsets in C which con-
tain s. An element with occurrence of one is called unique. Set Cover remains
NP -complete even if the occurrence of each element is bounded by two.

Definition 9.6. (Tree-like subset collection) Given a base set S = {s1, s2,
. . . , sn} and a collection C of subsets of S, C = {c1, c2, . . . , cm}, ci ⊆ S for 1 ≤
i ≤ m, we say that C is a tree-like subset collection of S if we can organize the
subsets in C in an unrooted tree T such that every subset one-to-one corresponds
to a node of T and, for each element sj ∈ S, 1 ≤ j ≤ n, the nodes in T
corresponding to the subsets containing sj induce a subtree of T .

We call T the underlying subset tree and the property of T that, for each s ∈
S, the nodes containing s induce a subtree of T , is called the consistency property
of T . Observe that the consistency property also will be of central importance in
the notion of tree decompositions of graphs to be explored in Chapter 10—the
dynamic programming techniques to be described heavily rely on this property.
It is known from the literature that one can test whether a subset collection is
a tree-like subset collection and, if yes, one can construct a subset tree for it in
linear time. For this reason, in the following we always assume that the subset
collection is given in form of a subset tree. For convenience, we denote the nodes
of the subset tree by their corresponding subsets.

Example 9.7 For S = {s1, s2, s3}, the subset collection C = {c1, c2, c3} where
c1 = {s1, s2}, c2 = {s2, s3}, and c3 = {s1, s3} is not a tree-like subset collection.
These three subsets can only be organized in a triangle. By way of contrast,
if c1 = {s1, s2, s3} instead, then we can construct a subset tree (actually a path)
with these three nodes and two edges, one between c1 and c2 and one between c1
and c3.

We now define the tree-structured variant of Set Cover to be studied in
the remainder of this section—Tree-like Weighted Set Cover (TWSC).

Tree-like Weighted Set Cover (TWSC):
Input: A base set S = {s1, s2, . . . , sn} and a tree-like collection C of sub-
sets of S, C = {c1, c2, . . . , cm}, ci ⊆ S for 1 ≤ i ≤ m, and

⋃
1≤i≤m ci = S.

Each subset in C has a positive real weight w(ci) > 0 for 1 ≤ i ≤ m.
The weight of a subset collection is the sum of the weights of all subsets
in it.
Task: Find a subset C′ of C with minimum weight which covers all
elements in S, that is,

⋃
c∈C′ c = S.
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The following simple observation will be helpful in developing our main results.

Lemma 9.8 Given a tree-like subset collection C of S together with its under-
lying subset tree T , then each leaf of T is either a subset of its parent node or it
has a unique element.

Proof Consider a leaf c = {s1, s2, . . . , sr} of the subset tree. Let c′ be its
parent node. We show that, if c is not a subset of c′, that is, c \ c′ �= ∅, then c
contains a unique element. Assume that c contains no unique element. Thus, for
each si ∈ (c\c′), 1 ≤ i ≤ k, there is a subset c′′ different from c which contains si.
According to the consistency property of the subset tree, all subsets on the path
from c to c′′ must also contain si. Since the uniquely determined path from c
to c′′ must pass through c′, si has to be in c′. This contradicts si ∈ (c \ c′).
�

Unlike the general unweighted Set Cover which is NP-complete, Tree-
like Unweighted Set Cover can be solved by a simple polynomial-time
algorithm:

Process the subset tree T in a bottom-up manner, that is, begin with the
leaves. By Lemma 9.8, each leaf of T is either a subset of its parent node or
it contains a unique element from S. If a leaf c contains a unique element, the
only choice to cover this element is to put c into the set cover. Then we delete c
from T and c’s elements from other subsets. If c is contained in its parent node,
it is never better to take c into the set cover than to take its parent node. Hence
we can safely delete it from the subset tree. After processing its children, an
internal node becomes a leaf and we can iterate the described process. Thus we
obtain the following result.

Proposition 9.9 Tree-like Unweighted Set Cover can be solved in O(m ·
n) time.

Proof The correctness of the above algorithm is clear from its description.
Furthermore, it is easy to observe that the algorithm goes through each node
of the tree only once. At each node, we compare it with its parent node and
delete some elements from it. All these operations can be done in O(n) time.
Altogether, the whole subset tree can be processed in O(m · n) time. �

The key idea of the above algorithm is that one never puts a set into the
desired subset collection C′ which is a subset of other subsets in the collection C.
If we associate each subset with an arbitrary positive weight and ask for the
set cover with minimum weight, however, this strategy is no longer valid: a
simple reduction of the NP-complete unweighted Set Cover problem to TWSC
shows that the decision version of TWSC is NP -complete. Indeed, this reduction
also implies that TWSC is W [2 ]-hard with respect to the parameter “total
weight of the solution” of the set cover. This excludes fixed-parameter tractability
for this parameterization. Similarly, one can show that TWSC remains NP -
complete when the occurrence of each element is limited to at most three. Thus
we can also conclude that parameterization by “occurrence number” is not useful
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concerning fixed-parameter tractability studies for TWSC. We therefore propose
parameterization by maximum subset size. To this end, as a warm-up to get
acquainted with the employed dynamic programming strategy, we first study
the simpler special case Path-like Weighted Set Cover. Here, however, the
parameter “maximum subset size” may be still completely unbounded.

9.5.2 Algorithm for Path-like Weighted Set Cover

We begin with studying the polynomial-time solvable special case of Tree-like
Weighted Set Cover where the underlying subset tree is only a path. The
techniques introduced here will be further refined and developed when presenting
a fixed-parameter algorithm for the general, NP-complete case. Replacing trees
with paths in Definition 9.6, we naturally end up with the notion of Path-like
Weighted Set Cover. Note that Path-like Weighted Set Cover is also
known by the name Set Cover With Consecutive Ones Property. The
dynamic programming algorithm to solve this problem works as follows.

Given S = {s1, s2, . . . , sn} together with a path-like subset collection C =
{c1, c2, . . . , cm} with positive real weights w(ci) > 0 for 1 ≤ i ≤ m, assume
that these subsets are ordered on a line, that is, from the left end to the right
end, c1, c2, . . . , cm. Every two consecutive subsets are connected by an edge.
Additionally, we define for every subset ci two functions A(ci) and B(ci):

A(ci) := c1 ∪ c2 ∪ · · · ∪ ci,
and

B(ci) := minimum weight to cover A(ci) by using only subsets from {c1, . . . , ci}.
Clearly, B(cm) stores the minimum weight to cover all elements, which ba-

sically solves Path-like Weighted Set Cover. To compute B(cm) based on
the values of B(c1), B(c2), . . . , B(cm−1), the dynamic programming algorithm
processes the subsets from left to right and, afterwards, by way of traceback
from right to left constructs a minimum set cover with weight B(cm).
Initialization. We can assume that every element occurs in at least two subsets;
otherwise, by preprocessing, we add the subsets into the set cover that contain at
least one such unique element and delete the elements already covered by these
subsets from the remaining subsets. For ease of presentation, we additionally
introduce c0 := ∅ with w(c0) := 0, A(c0) := ∅, and B(c0) := 0. The values
of A(c1) and B(c1) are trivial to compute, that is, A(c1) := c1 and B(c1) :=
w(c1).
Main algorithm. We compute the value of A(ci) and B(ci) for an arbitrary i,
2 ≤ i ≤ m. Clearly, A(ci) := A(ci−1) ∪ ci. To compute B(ci), we distinguish two
cases.

Case 1: If ci � ci−1, then ci contains an element which is not in A(ci−1). To
cover A(ci) by only using c1, . . . , ci, we have to take ci. Hence,

B(ci) := w(ci) + min
0≤l≤i−1

{B(cl) | (A(ci) \ ci) ⊆ A(cl) }.
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Case 2: If ci ⊆ ci−1, then A(ci) = A(ci−1). We compare the two alternatives
to cover A(ci)—either to take ci or not—and we take the minimum of the
two. If we do not take ci, the minimum weight to cover A(ci) is stored
in B(ci−1); thus,

B(ci) := min{B(ci−1), w(ci) + min
0≤l≤i−1

{B(cl) | (A(ci) \ ci) ⊆ A(cl) } }.

After computing B(cm), we know the minimum weight to cover all elements.
Based on whether the minimum weight was achieved by taking cm or not, we
can construct the minimum set cover by a traceback.

Theorem 9.10 Path-like Weighted Set Cover can be solved in O(m2 ·n)
time.

Proof The correctness of the above algorithm follows directly from its descrip-
tion.

The preprocessing needs O(m · n) time. With regard to the running time of
the dynamic programming, we go through each subset from left to right once
in order to compute the minimum weight. For each subset ci, the most time-
consuming work is to find out the subset cl with minimum B(cl) among those
subsets satisfying (A(ci)\ci) ⊆ A(cl). Clearly, the subset cj , j < i, with minimum
index satisfying (A(ci)\ci) ⊆ A(cj) can be found in O(m·n) time. Note that there
can be two subsets cj′ , cj′′ , j ≤ j′ < j′′ < i, with A(cj′ ) ⊆ A(cj′′ ) and B(cj′) >
B(cj′′ ). Hence, in order to find the subset cl with the minimum B(cl) among
the subsets between cj and ci, we go through all these subsets. This takes O(m)
time. Since all employed set operations such as set minus and union between two
sets with a maximum size of n can be done in O(n) time, we need O(m ·n) time
at each node. The traceback is clearly doable in O(m) time. Thus, in summary,
the algorithm takes O(m2 · n) time. �

9.5.3 Algorithm for Tree-like Weighted Set Cover

By extending the polynomial-time dynamic programming algorithm for the path-
like case given in Section 9.5.2, we will here present a fixed-parameter algorithm
for TWSC with respect to the parameter maximum subset size k, that is,

k := max
c∈C

{ |c| }.

To facilitate the presentation of the algorithm, we will only describe how to solve
the problem for binary subset trees, an also NP -complete special case of TWSC.
It is not very hard to extend the method presented here in order to solve the
problem for arbitrarily structured subset trees (see Exercises).

By analogy with the dynamic programming algorithm from Section 9.5.2,
which processes the subset collection in a manner from left to right, we process
the underlying subset tree bottom-up, that is, first the leaves, then the nodes
having leaves as their children, and finally the root. Hence, for a given tree-like
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subset collection C with its underlying subset tree T , we define for each node ci
of T the function A(ci). However, taking into account the tree structure, A(ci)
contains all elements occurring in the nodes of the subtree with ci at the root:

A(ci) :=
⋃

c∈T [ci]

c ,

where T [ci] denotes the node set of the subtree of T rooted at ci.
During the bottom-up process, consider an internal node ci. By analogy with

the dynamic programming in Section 9.5.2, we try to cover A(ci) by using only
the subsets in T [ci]. If ci contains an element which does not occur in any node
of T [ci] but ci, we have no other choice to cover A(ci) than to take ci. Otherwise,
we have to consider two possibilities: one is to use ci to cover the elements in ci,
and the other is to use some subsets in T [ci] other than ci to cover the elements
in ci. Unlike in Path-like Weighted Set Cover, we now have a subtree
instead of a line. In the path-like subset collection, ci has only one preceding
(child) node ci−1, where we can find, in B(ci−1), the best alternative to cover
the elements in ci by using some subsets to the left of ci. In contrast, a node in
the subset tree can have two children, each of these children having a subtree
rooted at it. Then, if an element in ci occurs in both of these child subsets, it is
possible to cover it by using one or several subsets from any of the subtrees. In
order to find the best alternative to cover the elements in ci by using subsets in
these subtrees, a naive approach would have to try all the possibilities to combine
the subsets in T [ci]. It is clear that there can be exponentially many (in the size
of T [ci]) of these subset combinations.

To get a fixed-parameter algorithm with respect to k, we thus have to bound
the number of subset combinations by a function depending only on k. To this
end, we associate with each node c of T a table Dc. Table Dc has three columns,
the first two corresponding to the two children of c and the third to c. The
rows of the table correspond to the elements of the power set of c, that is, there
are 2k′

rows if c = {s1, s2, . . . , sk′}, k′ ≤ k. Figure 9.2 illustrates the structure of
table Dc for a node c having two children c′ and c′′. Table Dc has 3 ·2k′

= O(2k)
entries. Entry Dc(x, y) of the row corresponding to x ⊆ c and of the column
corresponding to y ∈ {c, c′, c′′} is the minimum weight to cover the elements
in x ∪ (A(y) \ c) by using the subsets in the subtree T [y]. At each node, we
have to fill out such a table. Since we process the subset tree in a bottom-up
manner, the entries of the columns corresponding to c′ and c′′ can be directly
retrieved from Dc′ and Dc′′ , which have been already computed before we arrive
at node c. Note that these two columns are only used to simplify the description
of the computation of the last column. For the purpose of implementation, the
table Dc needs only the column corresponding to c. Using the values from the
first two columns, we can compute the entries in the column of c. After Dr for
the root r of the subset tree is computed, we can find the minimum weight to
cover all elements in S in the entry Dr(r, r). In the following, we describe the
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Dc c′ c′′ c

∅
{s1}
{s2}

...
c := {s1, s2, . . . , sk′}

Fig. 9.2. Table Dc for node c := {s1, s2, . . . , sk′} with k′ ≤ k having two chil-
dren c′ and c′′.

subtle details of how to fill out the table for a node in the tree. We distinguish
three cases:

Case 1: Node c := {s1, s2, . . . , sk′} is a leaf:
Since c has no child, columns c′ and c′′ are empty. We can easily compute

the third column:

Dc(x, c) :=

{
0, if x = ∅;
w(c), otherwise.

Case 2: Node c := {s1, s2, . . . , sk′} has only one child c′:
The column c′′ of Dc is empty. The first step to fill out the table is to get the

values of the first column from the table Dc′ . According to the definition of the
entries of Dc, entry Dc(x, c

′) stores the minimum weight to cover the elements
of x∪(A(c′)\c) by using the subsets in T [c′]. If there is one element sj , 1 ≤ j ≤ k′,
in set x which does not occur in T [c′], that is, x � A(c′), then it is impossible to
cover x∪(A(c′)\c) by using only the subsets in T [c′]. The entry Dc(x, c

′) is then
set to ∞. Otherwise, that is, x ⊆ A(c′), in order to get the value of Dc(x, c

′), we
have to find the uniquely determined row in table Dc′ which corresponds to the
subset x′ of c′ satisfying x′ ∪ (A(c′) \ c′) = x∪ (A(c′) \ c). Due to the consistency
property of tree-like subset collections, each element in c also occurring in T [c′]
is an element of c′. Hence we get

x ∪ (A(c′) \ c) = x ∪ (c′ \ c) ∪ (A(c′) \ c′).

We set x′ := x ∪ (c′ \ c). Since x ⊆ A(c′) and x ⊆ c, it follows that x ⊆ c′.
Therefore, also x′ ⊆ c′ and there is a row in Dc′ corresponding to x′. Thus,
Dc(x, c

′) is set equal to Dc′(x
′, c′). Altogether, we have:

Dc(x, c
′) :=

{∞, if x � c′;
Dc′(x ∪ (c′ \ c), c′), if x ⊆ c′.

The second step is to compute the last column of Dc using the values from the
column for c′. For each row corresponding to a subset x of c, we have to compare
the two possibilities to cover the elements of x∪(A(c)\c), either using c to cover
elements in x and using some subsets in T [c′] to cover the remaining elements
or using solely subsets in T [c′] to cover all elements:
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Dc(x, c) := min{w(c) +Dc(∅, c′), Dc(x, c
′)}.

Case 3: Node c := {s1, s2, . . . , sk′} has two children c′ and c′′:
In this case, the first step can be done in the same way as in Case 2, that is,

retrieving the values of the columns c′ and c′′ of Dc from tables Dc′ and Dc′′ .
In order to compute the value of Dc(x, c), for a row x corresponding to a

subset of c, we also compare the two possibilities to cover x ∪ (A(c) \ c), either
using c to cover x or not. In this case, however, we have two subtrees T [c′]
and T [c′′], and hence we have more than one alternative to cover x∪(A(c)\c) by
only using subsets in T [c′] and T [c′′]. As a simple example consider a subset x ⊆ c
that has only two elements, that is, x = {s′1, s′2}. We can cover it by using only
subsets in T [c′], only subsets in T [c′′], or a subset in T [c′] to cover {s′1} and a
subset in T [c′′] to cover {s′2} or vice versa. Therefore, for x := {s′1, s′2, . . . , s′k′′} ⊆
c with k′′ ≤ k′,

Dc(x, c) := min




w(c) +Dc(∅, c′) +Dc(∅, c′′),
Dc(∅, c′) +Dc(x, c

′′),
Dc({s′1}, c′) +Dc(x \ {s′1}, c′′),
Dc({s′2}, c′) +Dc(x \ {s′2}, c′′),
...
Dc(x \ {s′2}, c′) +Dc({s′2}, c′′),
Dc(x \ {s′1}, c′) +Dc({s′1}, c′′),
Dc(x, c

′) +Dc(∅, c′′)




.

With these three cases, we can fill out all tables. The entry Dr(r, r) stores
the minimum weight to cover all elements where r denotes the root of the subset
tree. In order to construct the minimum set cover, we can, using table Dr, find
out whether the computed minimum weight is achieved by taking r into the
minimum set cover or not. Then, doing a traceback, we can recursively, from
the root to the leaves, determine the subsets in the minimum weight set cover.
Note that, if one only wants to know the minimum weight, we can discard the
tables Dc′ and Dc′′ after filling out Dc, for each internal node c with children c′

and c′′, to reduce the required memory space from O(2k ·m) to O(2k).

Theorem 9.11 Tree-like Weighted Set Cover with an underlying binary
subset tree can be solved in O(3k · m · n) time, where k denotes the maximum
subset size, that is, k := maxc∈C |c|.
Proof The correctness of the above algorithm directly follows from its descrip-
tion.

With regard to the running time of the algorithm, the size of table Dc is
upper-bounded by 2k · 3 for each node c, since |c| ≤ k. Using a proper data
structure, such as a hash table, the retrieval of a value from one of the tables
corresponding to the children can be done in constant time. Thus the two columns
of Dc corresponding to the two children c′ and c′′ can be filled out in O(2k) time.
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To compute an entry in the column c, which corresponds to a subset x of c, the
algorithm compares all possibilities to cover some elements of x by some subsets
in T [c′]. There can be only 2|x| such possibilities. Hence it needs O(2|x|) steps to
compute Dc(x, c) for each subset x of c. Since all set operations needed between
two sets with maximum size of n can be done in O(n) time, the running time
for computing Dc is

n ·

 |c|∑

j=1

(|c|
j

)
·O(2j)


 +O(2|c|) = O(3|c| · n).

Therefore the computation of the tables of all nodes can be done in O(3k ·m ·n).
During the traceback, we visit, from the root to leaves, each node only once and,
at each node, can in constant time find out whether or not to put this node into
the set cover and with which entries in the tables of the children to continue the
traceback. Thus the traceback works in O(m) time. �

Observe that the path-like subset collection is a special case of the tree-like
subset collection with a binary subset tree. We can also use the fixed-parameter
algorithm to solve Path-like Weighted Set Cover. For instances where the
maximum subset size is o(logm), the fixed-parameter algorithm is faster than
the dynamic programming algorithm from Section 9.5.2. However, it needs more
space to store the tables.

In a sense, by reorganizing an arbitrary tree into a binary tree, it is possible
to show the following consequence of Theorem 9.11. We omit the details.

Corollary 9.12 Tree-like Weighted Set Cover can be solved in O(3k ·m ·
n) time, where k denotes the maximum subset size, that is, k := maxc∈C |c|.

Recall that we have already discussed the NP-complete (unweighted) Mul-
ticut in Trees problem in Section 1.3. Weighted Multicut in Trees is
defined as follows.

Input: An undirected tree T = (V,E), n := |V |, and a collection H of m
pairs of nodes in V , H = {(vi, ui) | vi, ui ∈ V, vi �= ui, 1 ≤ i ≤ m}. Each
edge e ∈ E has a positive real weight w(e) > 0.
Task: Find a subset E′ of E with minimum total weight whose removal
separates each pair of nodes in H .

It is possible to show that Weighted Multicut in Trees can be reduced to
TWSC in polynomial time in a “parameter-preserving” way. Hence, again omit-
ting the details, by Theorem 9.11 and Corollary 9.12 we end up with the following
fixed-parameter tractability result for Weighted Multicut in Trees.

Corollary 9.13 Weighted Multicut in Trees can be solved in O(3k ·m ·n)
time, where k denotes the maximum number of paths passing through a node or
an edge, m denotes the number of node pairs, and n denotes the number of tree
nodes.
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In conclusion, we note that the original motivation for studying TWSC is
drawn from efforts to reduce the memory requirement of dynamic programming
in connection with tree decompositions of graphs and the solution of correspond-
ing problems such as Vertex Cover or Dominating Set. We will further
discuss this issue in Chapter 10. Interestingly, the problem appears also in a
completely different context in computational biology, appearing there in phylo-
genetic studies; refer to the bibliographical remarks.

9.6 Shrinking search trees

Depth-bounded search trees are of fundamental importance in fixed-parameter
algorithmics (Chapter 8). In Section 8.7 we have already seen how search trees
can be cleverly combined with data reduction and problem kernels in order to
achieve significant polynomial-time speed-ups. In what follows, we describe how
to combine depth-bounded search trees with dynamic programming in order to
obtain even (small) improvements in the exponential running time terms; that is,
we shrink the size of the search trees. Note, however, that this does not come for
free. It goes along with the use of an exponential amount of space, something that
is usually not the case for ordinary depth-bounded search trees. In other words,
the approach trades space for time. Hence it remains open to clarify the practical
usefulness of the subsequently described approach invented by John M. Robson in
a 1986 paper containing an exact algorithm for the Independent Set problem.
Other authors used the term memoization for this approach. The key idea—not
surprisingly—is that if the same subproblem appears many times, then it may
be helpful to store its solution instead of recomputing it again and again.

Depth-bounded search tree algorithms, as described in Chapter 8 and, in
particular, those for Vertex Cover incur exponential running times but only
use a polynomial amount of space. This is true because working through a search
tree in a depth-first manner only requires storing the data related to a path of
bounded length. This can be improved by dynamic programming: we focus our
considerations on the Vertex Cover problem. Choose a size s (that is, number
of vertices) and store all induced subgraphs of the input graph G of size s in a
database D. Solve all instances in D and store an optimal solution for each of
them. Then apply a “regular” search tree algorithm for Vertex Cover, given
graph G. Such a regular algorithm finds an optimal solution for G by recursively
computing optimal solutions for induced subgraphs of G. “Regular search tree
algorithm” here means that the only operation allowed to reduce the size of a
graph is the deletion of vertices. Normally, the size of the graph is then recursively
reduced in the branches of the search tree until the sizes of the graphs—note that
each node of the search tree corresponds to an induced subgraph of G—in the
leaves come down to 0. Having the database D at its disposal, the search tree
algorithm can stop earlier: as soon as the size of the graphs in the nodes of the
search tree are as small as s, a dictionary lookup replaces the remaining part of
the search tree. In this way, one may save time to (re-)compute optimal vertex
covers for the same (small) induced subgraphs again and again. Clearly, this cuts
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down the size of the search tree at the cost of storing optimal solutions for all
induced subgraphs of G consisting of up to s vertices.

Before we continue our description of how to transfer the described tech-
nique into the fixed-parameter context we point out a subtle issue concerning
the applicability of the whole scenario. There is a fixed-parameter algorithm for
Vertex Cover that uses only polynomial space and takes time O(1.286k +kn),
where k denotes the size of the desired vertex cover set and n denotes the num-
ber of graph vertices. Unfortunately, it does not seem possible to apply dynamic
programming to this algorithm since this algorithm uses the so-called folding
technique that contracts edges (see Section 7.4.4). This leads to graphs that are
not induced subgraphs of the original instance. Hence the memoization tech-
nique only applies to search tree algorithms for Vertex Cover that do not
apply the folding technique. For instance, there exists an algorithm which fulfills
these requirements and which employs a search tree of size O(1.292k).

Instead of pruning the search tree and looking up the optimal vertex cover
of the remaining graph in a database when the size of the graph drops below
some predetermined size, in the parameterized setting as applies here we prune
the search tree when the parameter reaches or drops below some predetermined
value.

In this way, making use of a 2k-vertices problem kernel (Section 7.4), for
Vertex Cover at the expense of exponential space usage, the search tree size
1.292k could be lowered to 1.275k. Meanwhile, by using a further refined memo-
ization technique for Vertex Cover, running times of O(1.2759kk1.5 +kn) and
O(1.2745kk4 + kn) could be proven (see bibliographical remarks).

One might argue that these improvements are of purely theoretical interest.
Note, however, that the dynamic programming method presented shrinks the
search tree by a larger amount, the bigger the original search tree and the smaller
the (linear) problem kernel is. For instance, if the best known search tree for
Vertex Cover only were of size 2k then we could reduce the search tree size to
approximately 1.89k. By way of contrast, the known linear-size problem kernel for
Dominating Set in Planar Graphs (see Section 7.6) is too big to significantly
improve the corresponding search tree of size 8k (see Section 8.6). If we had a
2k-vertices problem kernel for Dominating Set in Planar Graphs (which
might be possible but is far from what we have now) the search tree size could be
improved from 8k to approximately 4.67k. Hence, the practical relevance seems
realistic.

9.7 Summary and concluding remarks

Dynamic programming, a core method of algorithm design as a whole, also plays
an important role in the context of fixed-parameter algorithms. With Binary
Knapsack (Section 9.2) we see how the concept of pseudo-polynomial-time al-
gorithms naturally fits into the concept of fixed-parameter algorithms as a spe-
cial case. The dynamic programming solution for the Steiner Problem in
Graphs (Section 9.3) is one of the earliest examples of a successful param-
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eterized complexity analysis. A very hard flow problem even NP -complete in
trees—Multicommodity Demand Flow in Trees—can be solved by means
of dynamic programming incorporating the “thickness of flow” as a parame-
ter (Section 9.4). The Tree-like Weighted Set Cover problem requires a
fairly complex dynamic programming solution, showing that a decisive point
is the right definition of the table entries (Section 9.5). Moreover, Tree-like
Weighted Set Cover in a sense prepares the dynamic programming used
in the context of tree decompositions of graphs. Here and there the so-called
consistency property plays a decisive role. Finally, dynamic programming also
combines nicely with other techniques of parameterized algorithm design. The
usage for shrinking depth-bounded search trees (Section 9.6) gives a perhaps
more surprising example of this sort.

In summary, however, there is one point worth particular notice. Except for
the last example (Section 9.6) all preceding applications of dynamic program-
ming in the fixed-parameter context are related to some form of “structural para-
meterization” and not to parameterization by the size or quality of the desired
output:

• For Binary Knapsack the parameter was the maximum weight W al-
lowed and not the total value to be maximized.

• For the Steiner Problem in Graphs the parameter is the number of
vertices to be connected and not the weight of the connecting tree network
to be minimized.

• For Multicommodity Demand Flow in Trees the parameter is the
maximum thickness of flow and not the profit to be maximized.

• For Tree-like Weighted Set Cover the parameter is the maximum
subset size and not the weight of the set cover that is to be minimized.

The seeming closeness of dynamic programming to structural parameter-
ization will find its culmination when using it in the solution of many hard
problems on graphs of bounded treewidth—the most important general graph
parameter in this book.

9.8 Exercises

1. The Longest Common Subsequence problem (for two strings) is, given
two strings s1 and s2 over some fixed alphabet, find a maximum length
subsequence6 of s1 and s2. Show how to solve Longest Common Subse-
quence in O(|s1| · |s2|) time by dynamic programming.

2. Show that Binary Knapsack can be solved in 2n/2 · |I|O(1) time.

3. Develop a dynamic programming algorithm for Binary Knapsack with
respect to the parameter V := max{vi | 1 ≤ i ≤ n}.

4. Generalize (the proof of) Theorem 9.3 in order to explicitly construct a
minimum Steiner tree.

6Note that, for instance given s1 = ababab and s2 = ababb, then s = aabb is a maximum-
length common subsequence but s is not a common substring.
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5. Try to bring the combinatorial explosion in the algorithm for Steiner
Tree in Graphs below 3k. Warning: this is a hard exercise.

6. Describe the top-down traversal needed for the algorithm solving Mul-
ticommodity Demand Flow in Trees (omitted in the proof of Theo-
rem 9.5).

7. Using a concrete example, explain why the simple approach for Tree-
like Unweighted Set Cover (Proposition 9.9) no longer works in the
weighted case.

8. Generalize the algorithm for Tree-like Weighted Set Cover to arbi-
trarily structured subset trees.

9. Prove Corollary 9.13.
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TREE DECOMPOSITIONS OF GRAPHS

Many hard graph problems become easy when restricted to trees. For instance,
Vertex Cover and Dominating Set can be solved in linear time when re-
stricted to trees: start at the leaves and perform a straightforward bottom-up ap-
proach. Based on this fact, one would naturally like to find out what makes trees
such an algorithmically nice class of graphs—for the moment ignoring the “ex-
ceptions” of NP -complete problems such as Multicut in Trees (Section 1.3)
and Multicommodity Demand Flow in Trees (Section 9.4)—and whether
and how these properties can be extended to more general classes of graphs.
These considerations lead to the following central question.

How “tree-like” is a given graph?

This question is the cradle of the concept of tree decompositions of graphs,
introduced by Neil Robertson and Paul D. Seymour about twenty years ago.
Tree decompositions nowadays play a central role in algorithmic graph theory. In
this chapter, which is far from giving an exhaustive presentation, we will survey
several important aspects of tree decompositions of graphs and their algorithmic
use with respect to fixed-parameter tractability.

The notion of tree decomposition and the related treewidth measure—the
smaller the treewidth number the more tree-like the graph is—are introduced
as a kind of compromise between the generality of graphs and the algorithmic
feasibility of trees. In a nutshell, tree decompositions of small width demonstrate
algorithmic tractability—in our sense, often fixed-parameter tractability—for
many problems on graphs that are “almost” trees. Needless to say, there are
several real-world applications of tree decompositions of graphs, ranging from
compiler optimization and natural language processing over expert systems and
probabilistic inference to telecommunication network design and frequency as-
signments, to name just a few.

In the following, we begin by introducing basic definitions and facts about
tree decompositions. After that, we discuss how to construct a tree decomposi-
tion for a given graph, paying special attention to the case of planar graphs. We
continue by illustrating the algorithmic use of tree decompositions once found;
dynamic programming is again the key technique here and we exhibit in de-
tailed examples concerning Vertex Cover and Dominating Set. In addition,
we present monadic second-order logic as a classification tool for deciding on
fixed-parameter tractability of graph problems with respect to the parameter
treewidth. Finally, we briefly discuss other width metrics for graphs such as
pathwidth, local treewidth, and branchwidth, and we conclude by summarizing

150
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the contributions of this chapter. It must be emphasized here, however, that tree
decompositions and related concepts constitute a very deep and far-reaching el-
ement of algorithmic graph theory that deserves treatment in a book on its own.
Thus this chapter only scratches the surface of this important and prospective
field.

10.1 Basic definitions and facts

This section is based on the following, at first sight somewhat technical, defini-
tion.

Definition 10.1 Let G = (V,E) be a graph. A tree decomposition of G is a
pair 〈{Xi | i ∈ I}, T 〉 where each Xi is a subset of V , called a bag, and T is a
tree with the elements of I as nodes. The following three properties must hold:

1.
⋃

i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi; and

3. for all i, j, k ∈ I, if j lies on the path between i and k in T then Xi ∩Xk ⊆
Xj.

The width of 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The treewidth of G
is the minimum k such that G has a tree decomposition of width k.

A clique of n vertices has treewidth n−1. The corresponding tree decomposition
trivially consists of one bag containing all graph vertices. In fact, no tree decom-
position with smaller width is attainable. More generally, it is known that every
complete subgraph of a graph G is completely “contained” in a bag of G’s tree
decomposition. By way of contrast, a tree has treewidth 1 and the bags of the
corresponding tree decomposition are simply the two-element vertex sets formed
by the edges of the tree. Note that the third, algorithmically most important,
requirement in Definition 10.1 is fulfilled in this way. Due to its importance in
dynamic programming this third condition is also called consistency property.
An equivalent formulation of this property is to demand that for every graph
vertex v, all bags containing v form a connected subtree. Observe that we have
already encountered the consistency property—phrased somewhat differently—
in Definition 9.6 (Section 9.5) when introducing tree-like subset collections. The
subsets there correspond one-to-one with the bags here. Here and there it is
essential for making dynamic programming techniques applicable. Finally, there
are several equivalent notions for tree decompositions; amongst others, graphs
of treewidth at most k are known as partial k-trees. Figure 10.1 shows a graph
together with an optimal tree decomposition of width two.

Importantly, an � × �-grid graph has treewidth �. The upper bound can be
easily shown by going—in a row-by-row manner—through the grid, always tak-
ing one more vertex from the next row and deleting one from the previous row
when constructing the bags of the tree decomposition. Actually, the underlying
decomposition tree is only a path, and it can be shown that this tree decompo-
sition is optimal, that is, it yields minimum width. The important consequence
of this is, however, that graphs that “contain” large grids have large treewidth.
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Fig. 10.1. A graph together with a tree decomposition of width 2. Observe
that—as demanded by the consistency property—each graph vertex induces
a subtree in the decomposition tree.

In particular, because grid graphs are planar it follows that planar graphs in
general will not have small treewidth.

There is a very helpful and intuitively appealing characterization of tree de-
compositions in terms of a game. Consider the following robber–cop game. The
robber stands on a graph vertex and, at any time, he can run at arbitrary speed
to any other vertex of a graph as long as there is a path connecting both. He is
not permitted to run through a cop, though. A cop, at any time, either stands
at a graph vertex or is in a helicopter (that is, he is above the game board). The
goal is to land a helicopter on the vertex occupied by the robber. Note that, due
to the use of helicopters, cops are not constrained to move along graph edges.
The robber can see a helicopter approaching its landing vertex and he may run
to a new vertex before the helicopter actually lands. Thus, for a set of cops the
goal is to occupy all vertices adjacent to the robber’s vertex and to land one
more remaining helicopter on the robber’s place. The treewidth of the graph is
then simply the minimum number of cops needed to catch a robber minus one.

A tree decomposition with a particularly simple structure is given by the
following. Its usefulness will be exhibited when solving problems by dynamic
programming on tree decompositions, as shown in Section 10.4.

Definition 10.2 A tree decomposition 〈{Xi | i ∈ I}, T 〉 is called a nice tree
decomposition if the following conditions are satisfied:
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1. Every node of the tree T has at most two children.

2. If a node i has two children j and k, then Xi = Xj = Xk; in this case, i is
called a join node.

3. If a node i has one child j, then one of the following situations must hold

(a) |Xi| = |Xj| + 1 and Xj ⊂ Xi; in this case, i is called an introduce
node, or

(b) |Xi| = |Xj |−1 and Xi ⊂ Xj ; in this case, i is called a forget node.

It is not hard to transform a given tree decomposition into a nice tree decom-
position. More precisely, without stating the proof, the following result holds.

Lemma 10.3 Given a width-k and n-nodes tree decomposition of a graph G,
one can find a width-k and O(n)-nodes nice tree decomposition of G in O(n)
time.

Tree decompositions of graphs are connected to another central concept in
algorithmic graph theory: graph separators are vertex sets whose removal from
the graph separates the graph into two or more connected components.

Definition 10.4 Let G = (V,E) be a connected graph. A subset S ⊆ V is called
a separator of G if the subgraph G[V \ S] is disconnected.

Actually, each bag of a tree decomposition forms a separator of the corre-
sponding graph. Here, however, we are more interested in the reverse direction,
that is, constructing tree decompositions from graph separators. The fundamen-
tal idea is to find small separators of the graph and to merge tree decompositions
of the resulting subgraphs using the separator sets as “interfaces”.

For any given separator splitting a graph into different components, we obtain
a simple upper bound for the treewidth of this graph which depends on the size
of the separator and the treewidth of the resulting components.

Proposition 10.5 If a connected graph can be decomposed into components of
treewidth of at most t by means of a separator of size s, then the whole graph
has treewidth of at most t+ s.

Proof The separator splits the graph into different components. Suppose that
we are given the tree decompositions of these components of width at most t.
The goal is to construct a tree decomposition for the original graph. This can
be achieved by firstly adding the separator to every bag in each of these given
tree decompositions. In a second step, add some arbitrary connections preserving
acyclicity between the trees corresponding to the components. It is straightfor-
ward to check that this forms a tree decomposition of the whole graph of width
at most t+ s. �

10.2 On the construction of tree decompositions

Constructing a tree decomposition of minimum width for a given graph is a
difficult task. In fact, the subproblem to determine, given a graph G and an
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integer k, whether the treewidth of G is at most k is NP-complete. For several
special graph classes (such as bipartite graphs or graphs of maximum degree
nine) the problem remains NP-complete, whereas for others (such as chordal
graphs or permutation graphs) it is polynomial-time solvable. As to the question
of whether this problem is fixed-parameter tractable with respect to the width
parameter k, the answer is positive. Hans L. Bodlaender in 1996 published a
“linear-time-FPT” algorithm—it runs in linear time when the parameter k is
constant. Unfortunately, the hidden constant factor is huge and seems too large
for practical purposes. Thus it is a major open question whether there is a sig-
nificantly better fixed-parameter algorithm. Another longstanding open problem
in this context refers to the class of planar graphs. Whereas we learned that the
determination of treewidth is NP-complete for general graphs, it is open whether
this also holds for planar graphs or whether it is polynomial-time solvable.

To apply the concept of tree decompositions in practice, as a rule heuris-
tic approaches are employed for their construction. Although these methods do
not guarantee optimal tree decompositions, their output is often good enough
for the desired application. For instance, there is a relatively simple and effi-
cient ratio-4 approximation algorithm for constructing tree decompositions—the
obtained treewidth is at most a factor of 4 from the optimum value. This approx-
imation algorithm is a fixed-parameter algorithm in the sense that its running
time is exponential in the treewidth. It is a longstanding open problem whether
there exists a polynomial-time approximation algorithm for treewidth with a
constant approximation factor. To describe general tree decomposition construc-
tion methods in detail is beyond the scope of this book. Roughly speaking, many
algorithms and, in particular, heuristics for tree decomposition finding are based
upon the same principle:

1. Try to find a linear ordering of the vertices (which allows a one-to-one
assignment of numbers to them) such that the higher numbered neigh-
bors of every vertex form a clique—in other words, the graph is chordal.
Then an optimal tree decomposition can be found using this so-called per-
fect elimination scheme. In this case, the graph can be interpreted as the
“intersection graph” of subtrees of trees, naturally leading to a tree decom-
position.

2. In general, the ordering found is not a perfect elimination scheme as de-
scribed before. Hence one has to run some “fill-in” procedure (making the
graph chordal, which means that there is no induced cycle of length at least
four without a chord) to “triangulate” the graph by adding edges between
non-adjacent higher-numbered neighbors of every vertex. After this task
is accomplished, again the triangulation is turned into a tree decomposi-
tion as indicated in the first step, also giving a tree decomposition for the
original graph.

It is important to note, however, that although one usually obtains non-
optimal tree decompositions in this way, using these tree decompositions in a
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Fig. 10.2. An outerplanar graph (left) and a 2-outerplanar graph (right).

subsequent dynamic programming phase one can nevertheless obtain optimal
solutions for the underlying graph problem, such as Vertex Cover or Domi-
nating Set, to be solved. The “only” price one has to pay for non-optimal tree
decompositions is that the dynamic programming will consume more time and
memory space because both resource requirements usually grow exponentially
with respect to the width of the given tree decomposition.

In the context of fixed-parameter tractability with respect to solution size
of the underlying graph problem, most algorithms based on tree decompositions
deal with planar graphs or slight generalizations thereof. In these cases, efficient
construction algorithms are known. That is why we devote the next section
solely to planar graphs and how to find “problem-specific tree decompositions”
for them. In a few words, by problem-specific we mean that if we know that a
planar graph has a vertex cover or dominating set of size k, then we can make
use of that to efficiently find a tree decomposition of width only depending on k.

10.3 Planar graphs

It is known that every n-vertex planar graph has treewidth O(
√
n) which, in a

certain sense, can also be interpreted as the famous Planar Separator Theorem
in disguise. Graph separators play an important role in the construction of tree
decompositions. Moreover, in the case of planar graphs, there is a constructive
way towards small separators. This is partially based on the “layer view” of
planar graphs, expressed by the notion of r-outerplanarity.

Definition 10.6 A plane graph G is called outerplanar if each vertex lies on
the boundary of the outer face. A graph G is called outerplanar if it admits an
outerplanar embedding in the plane.

See the left-hand side of Figure 10.2 for an example outerplanar graph. The
following generalization of the notion of outerplanarity is very helpful in our
context.

Definition 10.7 1. A plane embedding of a graph G is called r-outerplanar
if, for r = 1, the embedding is outerplanar, and, for r > 1, inductively,
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Fig. 10.3. A 3-outerplanar embedding of a graph.

when removing all vertices on the boundary of the outer face and their in-
cident edges the embedding of the remaining subgraph is (r−1)-outerplanar.

2. A graph G is called r-outerplanar if it admits an r-outerplanar embedding.

3. The smallest number r such that G is r-outerplanar is called the outerpla-
narity number.

See the right-hand side of Figure 10.2 for an example 2-outerplanar graph,
namely a 4× 4-grid graph.

In this way, we may speak of the layers L1, . . . , Lr of an embedding of an
r-outerplanar graph.

Definition 10.8 For a given r-outerplanar embedding of a graph G = (V,E), we
define the ith layer Li inductively as follows. Layer L1 consists of the vertices
on the boundary of the outer face, and, for i > 1, the layer Li is the set of
vertices that lie on the boundary of the outer face in the embedding of the subgraph
G[V \ (L1 ∪ . . . ∪ Li−1)].

Figure 10.3 shows a plane graph with three layers. Notably, by peeling off
the outer layer one would obtain two connected components, both being 2-
outerplanar.

Now, using the layer decomposition of plane graphs, there is an iterated
version of Proposition 10.5.

Proposition 10.9 Let G be a plane graph with layers Li, i = 1, . . . , r. For
i = 1, . . . , �, let Li be a set of consecutive layers, that is,

Li = {Lji
, Lji+1, . . . , Lji+ni

},
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such that Li ∩ Li′ = ∅ for all i �= i′. Moreover, suppose that G can be de-
composed into components, each of treewidth of at most t, by means of separa-
tors S1, . . . , S�, where Si ⊆

⋃
L∈Li

L for all i = 1, . . . , �.
Then G has treewidth of at most t+ 2s, where s = maxi=1,...,�{|Si|}.

Proof The proof uses the merging technique illustrated in Proposition 10.5:
suppose that, without loss of generality, the sets Li appear in successive order,
that is, ji < ji+1. For each i = 0, . . . , �, consider the component Gi of treewidth
at most t which is cut out by the separators Si and Si+1—by default, we set S0 =
S�+1 = ∅. We add Si and Si+1 to every bag in a given tree decomposition of Gi.
In order to obtain a tree decomposition of G, we successively add an arbitrary
connection between the trees Ti and Ti+1 of the so-modified tree decompositions
that correspond to the subgraphs Gi and Gi+1. �

Thus, for plane graphs the goal now can be set as follows: decompose the given
graph into various “small” components by using “small” separators, construct a
tree decomposition for each component, and get an overall tree decomposition
by applying Proposition 10.9. It remains to show how to find these small sepa-
rators and how to get the tree decompositions for the graph components. This
is explained next.

As already mentioned, we aim at problem-specific tree decompositions. The
reason for this is that in this way we can relate the solution size of the graph
problem we want to solve with the size of the separators we can find in the
underlying planar graph. In what follows, we proceed in two steps. To this end,
the example graph problems we consider are Vertex Cover and Dominating
Set. Analogous considerations hold for many other graph problems.

1. In the first step we demonstrate that the vertex cover or domination num-
ber k and the treewidth of a planar graph are linearly related. We show
this without explicit construction of graph separators.

2. In the second step, we show that the linear bound O(k) from Step 1 can
be improved to O(

√
k). Here, me make explicit use of graph separators.

With regard to the first step, one easily observes the following central relation
between the vertex cover number and the domination number on the one side
and the outerplanarity number of a planar graph on the other side.

Proposition 10.10 1. If a planar graph G = (V,E) has a size-k vertex cover
then all plane embeddings of G can be at most k-outerplanar.

2. If a planar graph G = (V,E) has a size-k dominating set then all plane
embeddings of G can be at most 3k-outerplanar.

Proof We show only the result for Dominating Set. For a given crossing-free
embedding of G in the plane, each vertex in the dominating set can dominate
vertices from the previous, the next, or its own layer only. Hence each vertex in
the dominating set can contribute to at most three new layers. �

To understand the techniques also used in the second step, it is helpful to
consider the concept of a layer decomposition of an r-outerplanar embedding of
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graph G. A layer decomposition of an r-outerplanar embedding of G is a forest of
height r−1: the trees of the forest correspond to different connected components
of G. The nodes correspond to the various layers.

One more result needed is the following relation between r-outerplanarity
and treewidth. We skip the proof.

Theorem 10.11 An r-outerplanar graph has treewidth of at most 3r − 1.

The proof of Theorem 10.11 can be made constructive, so a tree decomposi-
tion of width at most 3r − 1 can be computed in polynomial time.

Proposition 10.10 and Theorem 10.11 immediately imply the following rela-
tionship between the domination number and the treewidth of a planar graph.

Corollary 10.12 If a planar graph has a k-dominating set then its treewidth is
at most 9k − 1.

With regard to the second step mentioned above, the basic idea of construct-
ing a tree decomposition of small width is the following. If the given graph has
few layers, then use Theorem 10.11 directly. If not,

1. find small graph separators that decompose the graph into chunks of small
outerplanarity,

2. apply Theorem 10.11 to these graph chunks, and

3. finally combine the tree decompositions of the various chunks into a big
one for the overall graph using Proposition 10.9.

Next, we describe how to find these small graph separators.
It is clear that in a layer decomposition (L1, . . . , Lr) of a given planar graph

of outerplanarity r each layer Li, 1 ≤ i ≤ r, forms a separator. What makes
the problem mathematically demanding is that the sizes of the layers Li might
be too large. Thus it remains to be shown that, nevertheless, small separators
can be found in a layerwise fashion. To this end, one makes use of the special
properties of the underlying parameterized graph problem. We focus on Vertex
Cover and Dominating Set to see how this works. Both problems possess
problem kernels with a number of vertices linearly depending on the size of the
solution set; see Sections 7.4 and 7.6. Hence in both cases we trivially have that
|⋃r

i=1 Li| = O(k).

Theorem 10.13 If a planar graph has a k-vertex cover or a k-dominating set,
then its treewidth is bounded from above by O(

√
k).

Proof Using the graph layersLi as separators, go through the sequence of layers
L1, L2, L3, . . . and look for separators of size s(k) := O(

√
k). Due to |⋃r

i=1 Li| =
O(k) such separators of size at most s(k) must appear within each n(k) := O(

√
k)

layers in the sequence. In this manner, we obtain a set of disjoint separators of
size at most s(k) each, such that any two consecutive separators from this set
are at most O(

√
k) layers apart. Clearly, the separators chosen in this way fulfill

the requirements in Proposition 10.9.
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The components cut out in this way each have O(
√
k) layers, and hence their

treewidth is bounded by O(
√
k) due to Theorem 10.11. Using Proposition 10.9,

we can upperbound the treewidth of the planar graph by O(
√
k). �

The tree structure of the tree decomposition obtained in the above proof
corresponds to the structure of the layer decomposition forest.

Remark 1 Up to constant factors, the relation exhibited in Theorem 10.13 is
optimal. This can be seen, for example, by considering a grid graph G� of size �×�,
that is, with �2 vertices and 2(l2 − l) edges: it is known that the treewidth of G�

is exactly � and that a minimum vertex cover as well as a minimum dominating
set for G� both consist of Θ(l2) vertices.

A mathematically more refined analysis than the above one—not making
use of linear problem kernels as we did here but employing a more direct way
of constructing the separators layerwisely—gives upper bounds O(

√
k) on the

treewidths with somewhat smaller constants hidden in the O-notation. Still,
however, these worst-case factors are fairly large (in the tens but not astronom-
ical).

Summarizing, we join together the preceding considerations into an algorithm
that constructs tree decompositions of width O(

√
k) in the case that we are given

a planar graph that possesses a vertex cover or a dominating set of size at most k.
It is important to note here that the tree decompositions are only constructed
for reduced graphs that are obtained by the reduction to a problem kernel for
the underlying parameterized problem (Vertex Cover or Dominating Set
in this context). The algorithm proceeds in the following steps.

1. Perform a reduction to a problem kernel that yields a reduced planar graph
whose number of vertices is O(k).

2. Embed the reduced planar graph G = (V,E) crossing-free into the plane.
Linear-time algorithms are known for that. Determine all layers L1, . . . , Lr

and the outerplanarity number r of this embedding. By default, we set
Li = ∅ for all i ≤ 0 and i > r.

3. Vertex Cover: If r > k, then exit (there exists no size-k vertex cover).
This is justified by Proposition 10.10.

Dominating Set: If r > 3k then exit (there exists no size-k dominating
set). This is justified by Proposition 10.10.

4. Find separators of size O(
√
k) according to the proof of Theorem 10.13.

5. Decompose the graph into subgraphs by removing all the graph separa-
tors found in the preceding step. Note that each of these subgraphs has
outerplanarity O(

√
k).

6. Construct tree decompositions for all the subgraphs using Theorem 10.11.
In this way, all subgraphs obtain tree decompositions of width O(

√
k).

7. Merge the tree decompositions of all subgraphs into a tree decomposition
of the overall graph. To do so, use the tree decompositions of the subgraphs
and the separators that generated these subgraphs (see fifth step above)
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and apply the “separator merging technique” described in the proof of
Proposition 10.9.

The above algorithm outline constructively shows how to obtain tree de-
compositions of width O(

√
k) for problems such as Vertex Cover or Domi-

nating Set in planar graphs parameterized by k. Clearly, to demonstrate the
definite usefulness of constructing tree decompositions of graphs it remains to
be shown how the underlying graph problem can be efficiently solved using dy-
namic programming on tree decompositions. This will be the topic of Sections
10.4 and 10.5.

What about the constant factors hidden in the O-notation used throughout
the previous considerations? Note that the given presentation traded compre-
hensibility for exact determination of the considered running time and treewidth
values. A thorough mathematical analysis can be found in the literature. As al-
ready indicated, the proven upper bounds involve quite high constant factors.
For instance, based on the above approach and several more technical details the

running times O(24
√

3k · n) and O(212
√

34k · n) were proven for Vertex Cover
and Dominating Set in planar graphs, respectively. The bounds are worst-case,
however. Recent work has lowered the exponential bound for Dominating Set
in planar graphs.

10.4 Dynamic programming for Vertex Cover

To understand the practical usefulness of tree decompositions, one has to learn
how algorithmic techniques used for graph problems restricted to trees can be
generalized to also work for graphs of bounded treewidth. The standard approach
here is dynamic programming. Notably, making this dynamic programming as
efficient and practical as possible is not only a question of running time but
also of memory consumption. Finally, observe that our dynamic programming
approaches provide optimal solutions for the problems considered. This also un-
derpins the relevance of approximative or heuristic algorithms for constructing
tree decompositions as long as the delivered treewidths remain small enough.

Typically, tree decomposition based algorithms proceed according to the fol-
lowing scheme in two stages:

1. Find a tree decomposition of bounded width for the input graph; and

2. solve the problem by dynamic programming on the tree decomposition.

So far in this chapter on tree decompositions, we have dealt with the first
stage. Now, we describe how the second stage works. In fact, what we show is
a fixed-parameter algorithm with respect to the parameter treewidth. Notably,
the parameter is not the size of the vertex cover set but it is the width of the
tree decomposition. This implies that we are able to solve Vertex Cover for
almost arbitrarily large graphs as long as their treewidth is small enough.

Theorem 10.14 For a graph G with given tree decomposition 〈{Xi | i ∈ I}, T 〉
an optimal vertex cover can be computed in O(2ω · ω · |I|) time. Here, ω denotes
the width of the tree decomposition.
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Proof The basic idea is to check for all of the |I| many bags each time for all of
the at most 2|Xi| possibilities to obtain a vertex cover for the subgraphG[Xi] ofG
induced by the vertices from Xi. This information is stored in tables Ai, i ∈ I.
Adjacent tables will be updated in a bottom-up process starting at the leaves
of the decomposition tree. Each bag of the tree decomposition thus has a table
associated with it. During this updating process it is guaranteed that the “local”
solutions for each subgraph associated with a bag of the tree decomposition are
combined into a “globally optimal” solution for the overall graph G.

The algorithmic details are as follows.

Step 0: For each bag Xi = {xi1 , . . . , xini
}, |Xi| = ni, compute a table

Ai =

xi1 xi2 · · · xini−1 xini
mi()

0 0 · · · 0 0
0 0 · · · 0 1
0 0 · · · 1 0
0 0 · · · 1 1

...
1 1 . . . 1 0
1 1 . . . 1 1




2ni

The table consists of 2ni rows and |ni| + 1 columns. Each row represents
a so-called “coloring” of subgraph G[Xi]. By this we mean a 0-1 sequence
of length ni that determines which of the respective bag vertices from Xi

should be put into the current vertex cover—this corresponds to value 1—
and which should not—this corresponds to value 0. Formally, a coloring is
a mapping

Ci : Xi = {xi1 , . . . , xini
} → {0, 1}.

For each of the 2ni different possibilities for a coloring, the table has one
further entry. This last column stores, for each specific coloring Ci, the
number mi(Ci) of vertices of a minimal vertex cover that contains those
vertices from Xi selected by the coloring Ci. More precisely, this means
that it stores the value

mi(Ci) := min{|V ′| : V ′ ⊆ V is a vertex cover for G,

such that v ∈ V ′ for all v ∈ (Ci)
−1

(1)

and v /∈ V ′ for all v ∈ (Ci)
−1

(0)}.
Note that (Ci)

−1(1) denotes the set of all vertices in Xi that are colored 1,
and (Ci)

−1(0) denotes all vertices in Xi that are colored 0 under color-
ing Ci. This value is determined by dynamic programming as described in
Step 2 to follow.
Of course, not every possible coloring may lead to a vertex cover. Such a
coloring is called invalid . To check whether or not a coloring Ci is valid ,
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for each edge {u, v} of the subgraph G[Xi] induced by Xi, consider Ci(u)
and Ci(v). If there is at least one edge where Ci(u) = Ci(v) = 0 then the
coloring is invalid; otherwise, it is valid.

Step 1: Table initialization.
For all tables Xi and each coloring Ci : Xi → {0, 1} set

mi(Ci) :=

{∣∣∣(Ci)
−1

(1)
∣∣∣ , if Ci is valid;

+∞, otherwise.

Clearly, once when value +∞ appears the corresponding “computation
path” can be immediately stopped because no vertex cover of the whole
graph can be computed in this way.

Step 2: Dynamic programming.
We now go through the decomposition tree T from the leaves to the root
and compare the corresponding tables against each other.
Let i ∈ I be the parent node of j ∈ I. We show how the table for Xi

with mi can be updated by the table for Xj with mj. To this end, assume
that

Xi = {z1, . . . , zs, v1, . . . , vti
} and

Xj = {z1, . . . , zs, u1, . . . , utj
},

that is, Xi ∩Xj = {z1, . . . , zs}.
Subsequently, by an extension of a coloring C : W → {0, 1} (where
W ⊆ V ) we mean a coloring C̃ : W̃ → {0, 1} with W̃ ⊇ W and C̃
restricted to ground set W yields C, in signs, C̃|W = C. Then, for each
possible coloring

C : {z1, . . . , zs} → {0, 1}
and each extension Ci : Xi → {0, 1} of C we set

mi(Ci) := mi(Ci)

+ min{ mj(Cj) | Cj : Xj → {0, 1} is an extension of C}
− ∣∣C−1(1)

∣∣ .
This is the central instruction of the algorithm. In other words, what hap-
pens here is that the value of mi(Ci) grows by the minimum value for the
vertex cover of the subgraph induced by all the vertices contained in the
subtree rooted at j. Here, however, one has to take care of double count-
ing with respect to vertices that are also contained in Xi, which is why
|C−1(1)| is subtracted. In fact, we record some more (pointer) information
in order to be able to construct a solution set efficiently in a subsequent
traceback phase.
If a node i ∈ VT has several children j1, . . . , jl ∈ VT then table Ai is
successively updated against all tables Aj1 , . . . , Ajl

in the same way. All
this is repeated until the root node is finally updated.
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Step 3: Construction of a minimum vertex cover V ′.
The size of V ′ is derived from the minimum entry of the last column of the
root node table Ar. The coloring of the corresponding row shows which
of the vertices of the “root bag” Xr are contained in V ′. By recording
during Step 2 how the respective minimum of each bag was determined by
its “child values”, one can easily compute all vertices of an optimal vertex
cover by following the pointers mentioned in Step 2.

This concludes the description of the dynamic programming algorithm. It
remains to show its correctness and its running time.

1. Correctness of the algorithm.

a) The first condition in Definition 10.1, that is, V =
⋃

i∈I Xi, makes sure
that every graph vertex is taken into account during the computation.

b) The second condition in Definition 10.1, that is, ∀e ∈ E ∃i0 ∈ I : e ∈ Xi0 ,
makes sure that after the treatment of invalid colorings right after the
initialization in Step 0, during the dynamic programming process only
actual vertex covers are dealt with.

c) The third condition in Definition 10.1 guarantees the consistency of the
dynamic programming. If a vertex v ∈ V occurs in two different bags
Xi1 and Xi2 then it is guaranteed that for the computed minimum vertex
cover this vertex cannot receive different colors in the two respective rows
in the tables Ai1 and Ai2 . This is handled in the bag of the least common
ancestor i0 of i1 and i2 in T .

2. Running time of the algorithm.
By keeping the tables sorted adequately, the comparison of a table Aj against a
table Ai can be done in time proportional to the maximum table size, that is,
O(2ω · ω). For each edge e ∈ ET in tree T such a comparison has to be done,
that is, the overall running time of the algorithm is O(2ω · ω · |I|). �

Combining Theorem 10.14 with Theorem 10.13 and the corresponding al-
gorithm that constructs a tree decomposition (see Section 10.3) results in a
fixed-parameter algorithm for Vertex Cover in Planar Graphs that pro-
vides an exponential speedup when compared with the depth-bounded search
tree fixed-parameter algorithms for Vertex Cover on general graphs in Sec-
tion 8.3. Note, however, that now the constants in the O-term are significantly
larger.

Corollary 10.15 Vertex Cover in Planar Graphs can be solved in 2O(
√

k) ·
n time, where k denotes the size of the vertex cover and n is the number of graph
vertices.

Doing a more refined, deep mathematical analysis, according to the literature
the exponential factor in the statement of Corollary 10.15 can be upper-bounded

by 24.5
√

k.
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10.5 Dynamic programming for Dominating Set

The basic technique for solving Dominating Set on a “tree-decomposed” graph
is the same as for Vertex Cover. We have already experienced in earlier parts
of this book, however, that from a combinatorial point of view Dominating
Set is a problem that is more elusive than Vertex Cover. This also reflects
in the larger overhead needed to solve Dominating Set efficiently via dynamic
programming on tree decompositions. The very first observation is that we need
three colors for the dynamic programming tables instead of only two as we had for
Vertex Cover: suppose that G = (V,E) and V = {x1, . . . , xn}. Assume that
the vertices in the bags are given in increasing order when used as indices of the
dynamic programming tables, that is, Xi = {xi1 , . . . , xini

} with i1 ≤ . . . ≤ ini
,

1 ≤ i ≤ |I|. We use three different “colors” that will be assigned to the vertices
in the bag:

• “black”: represented by 1, meaning that the vertex belongs to the domi-
nating set;

• “white”: represented by 0, meaning that the vertex is already dominated
at the current stage of the algorithm; and

• “grey”: represented by 0̂, meaning that, at the current stage of the algo-
rithm, one is still asking for a domination of this vertex.

Again, mapping

Ci : {xi1 , . . . , xini
} → {0, 0̂, 1}

will be called a coloring for the bag Xi = {xi1 , . . . , xini
}, and the color assigned

to vertex xit
by Ci is given by Ci(xit

). Hence, a coloring can be represented as
a vector (C(xi1 ), . . . , C(xini

)).
For each bag Xi with |Xi| = ni, in the same spirit as for Vertex Cover we

use a mapping

mi : {0, 0̂, 1}ni −→ N ∪ {+∞}.
For a coloringCi, the valuemi(Ci) stores how many vertices are needed for a min-
imum dominating set of the graph visited up to the current stage of the algorithm
under the restriction that the color assigned to vertex xit

is Ci(xit
), t = 1, . . . , ni.

We end up with tables of size 3ni . Now, by performing a table updating process
analogous to the case for Vertex Cover described in Section 10.4, it is not
difficult to finally come up with an algorithm that solves Dominating Set on
graphs with given tree decomposition of |I| nodes and width ω in O(9ω · ω · |I|)
time. The significant increase from base value 2 to 9 is due to the more compli-
cated “dependence structure” in the combinatorics of Dominating Set when
implemented in a basically straightforward way. Thus, comparing two tables Ai

and Aj now takes O(3|Xi| · 3|Xj | ·max{|Xi|, |Xj |}) = O(9ω · ω) time.
There is room for improvement, however. This needs some further definitions:

to simplify matters, we identify colorings simply by their naturally corresponding
vectors {0, 0̂, 1}ni . On the color set {0, 0̂, 1}, let ≺ be the partial ordering given
by 0̂ ≺ 0 and d ≺ d for all d ∈ {0, 0̂, 1}. This ordering naturally extends to
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colorings: for c = (c1, . . . , cm), c′ = (c′1, . . . , c
′
m) ∈ {0, 0̂, 1}m, let c ≺ c′ iff ct ≺ c′t

for all t = 1, . . . ,m. It is essential for the improved dynamic programming that
the mappings mi are monotonic functions from ({0, 0̂, 1},≺) to (N ∪ {+∞},≤);
that is, for c, c′ ∈ {0, 0̂, 1}ni, c ≺ c′ implies that mi(c) ≤ mi(c

′). A coloring
c ∈ {0, 0̂, 1}ni is locally invalid for a bag Xi if(∃s ∈ {1, . . . , ni} : cs = 0

) ∧ (
�t ∈ {1, . . . , ni} : ((xit

∈ N(xis
)) ∧ (ct = 1))

)
.

In other words, a coloring is locally invalid if there is some vertex in the bag
that is colored white but this color is not “justified” within the bag, that is, this
vertex is not dominated by a vertex colored 1 within the bag. Note that a locally
invalid coloring may still be a correct coloring if the white vertex whose color is
not justified within the bag is dominated by a vertex from bags that have been
considered earlier. Also, for a coloring c = (c1, . . . , cm) ∈ {0, 0̂, 1}m and a color
d ∈ {0, 0̂, 1}, we use the notation

#d(c) := |{t ∈ {1, . . . ,m} | ct = d}|.
Now we are ready to describe the various steps of the improved dynamic pro-
gramming. To make things easier, we subsequently assume that we work with a
nice tree decomposition (see Definition 10.2 and Lemma 10.3 in Section 10.1).

Step 1: Table initialization.
For all tables Xi and each coloring c ∈ {0, 0̂, 1}ni set

mi(c) :=

{
+∞, if c is locally invalid for Xi,
#1(c), otherwise

(10.1)

With this initialization step we make sure that only colorings are taken
into consideration where an assignment of color 0 is justified.
Since the check for local invalidity takesO(ni) time, this step can be carried
out in O(3ni · ni) time.
Trivially, the mappings mi of leaf bags are monotonic.

Step 2: Dynamic programming.
After the initialization, we visit the bags of our tree decomposition from
the leaves to the root, evaluating the corresponding mappings in each step
according to the following rules.

forget nodes: Suppose i is a forget node with child node j and sup-
pose that Xi = {xi1 , . . . , xini

}. Without loss of generality—possibly
after rearranging the vertices in j’s bag Xj and the entries of mj

accordingly—we may assume that Xj = {xi1 , . . . , xini
, x} for some

graph vertex x not in Xi. Evaluate the mapping mi of Xi as follows:
For all colorings c ∈ {0, 0̂, 1}ni set

mi(c) := min
d∈{0,1}

{mj(c× {d})}. (10.2)

Note that a coloring c×{0̂} for Xj means that the vertex x is assigned
color 0̂, that is, x is not yet dominated by a graph vertex. Since, by the



166 TREE DECOMPOSITIONS OF GRAPHS

consistency property of tree decompositions, the vertex x will never
appear in a bag for the rest of the algorithm, a coloring c× {0̂} will
not lead to a dominating set because vertex x is not dominated. That
is why the minimum in the assignment (10.2) is taken over colors 1
and 0 only.
Clearly, the evaluations can be carried out in O(3ni · ni) time. It is
trivial to observe that the monotonicity of the mapping mj implies
that mi also is monotonic.

insert nodes: Suppose that i is an insert node with child node j and
suppose that Xj = {xj1 , . . . , xjnj

}. Without loss of generality—pos-

sibly after rearranging the vertices in Xi and the entries of Ai accord-
ingly—we may assume that Xi = {xj1 , . . . , xjnj

, x}. Let

N(x) ∩Xj = {xjp1
, . . . , xjps

}

be the neighbors of the “introduced” vertex x which are contained in
the bag Xi. We now define a function

φ : {0, 0̂, 1}nj → {0, 0̂, 1}nj

on the set of colorings of Xj . For c = (c1, . . . , cnj
) ∈ {0, 0̂, 1}nj , we

define φ(c) := (c′1, . . . , c
′
nj

) such that

c′t =

{
0̂, if t ∈ {p1, . . . , ps} and ct = 0,
ct, otherwise.

Then, evaluate the mapping mi of Xi as follows: for all colorings
c = (c1, . . . , cnj

) ∈ {0, 0̂, 1}nj set

mi(c× {0}) := mj(c) if x has a neighbor

xjq
∈ Xi with cq = 1; (10.3)

mi(c× {1}) := mj(φ(c)) + 1; (10.4)

mi(c× {0̂}) := mj(c). (10.5)

Concerning the correctness of the assignments (10.3) and (10.4) we
remark the following: it is clear that, if we assign color 0 to vertex x
(assignment (10.3)), we again—as already done in the initializing as-
signment (10.1)—have to check whether this color can be justified at
the current stage of the algorithm. Such a justification is given if and
only if the coloring under examination already assigns a 1 to some
neighbor of x in Xj resp. Xi. This is true, since the consistency prop-
erty of tree decompositions implies that at the current stage of the
dynamic programming process, x can only be dominated by a vertex
in Xj (as checked in assignment (10.3)).
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If we assign color 1 to vertex x (assignment (10.4)), we thereby dom-
inate all vertices {xjp1

, . . . , xjps
}. Suppose now that we want to eval-

uate mi(c × {1}) and suppose that some of these vertices are as-
signed color 0 by c, say cp′

1
= . . . = cp′

q
= 0, where {p′1, . . . , p′q} ⊆

{p1, . . . , ps}. Since the “1-assignment” of x already justifies the “0-
values” of cp′

1
, . . . , cp′

q
, and since our mapping mj is monotonic, we

obtain mi(c×{1}) by taking entry mj(c
′), where c′p′

1
= . . . = c′p′

q
= 0̂,

that is, c′ = φ(c).
Since we need time O(ni) in order to check whether a coloring is locally
invalid, the evaluation of mi can be carried out in O(3ni ·ni) ⊆ O(4ω)
time.
Considering assignments (10.4) and (10.5), it is easy to see that mi is
monotonic if mj is monotonic.

join nodes: Suppose i is a join node with children j and k and suppose
that Xi = Xj = Xk = (xi1 , . . . , xini

).

Let c = (c1, . . . , cni
) ∈ {0, 0̂, 1}ni be a coloring for Xi. We say that

c′ = (c′1, . . . , c
′
ni

), c′′ = (c′′1 , . . . , c
′′
ni

) ∈ {0, 0̂, 1}ni divide c if

1. (ct ∈ {0̂, 1} ⇒ c′t = c′′t = ct), and

2.
(
ct = 0 ⇒ [

(c′t, c′′t ∈ {0, 0̂}) ∧ (c′t = 0 ∨ c′′t = 0)
])

.

Then, evaluate the mapping mi of Xi as follows:
For all colorings c ∈ {0, 0̂, 1}ni set

mi(c) := min{mj(c
′) +mk(c′′)−#1(c) | c′ and c′′ divide c }. (10.6)

In other words, in order to determine the value mi(c) we look up
the corresponding values for coloring c in mj (corresponding to the
left subtree) and in mk (corresponding to the right subtree), add the
corresponding values, and subtract the number of “1-assignments”
in c, since they would be counted twice otherwise.
Clearly, if coloring c of node i assigns the colors 1 or 0̂ to a vertex x
from Xi, we have to make sure that we use colorings c′ and c′′ of
the children j and k which assign the same color to x. However, if c
assigns color 0 to x, it is sufficient to justify this color by only one
of the colorings c′ or c′′. Observe that, from the monotonicity of mj

and mk we obtain the same “min” in assignment (10.6) if we replace
condition 2 in the definition of “divide” by:

2′.
(
ct = 0 ⇒ [(c′t, c

′′
t ∈ {0, 0̂}) ∧ (c′t �= c′′t )]

)
.

Note that, for given c ∈ {0, 0̂, 1}ni , with z := #0(c), we have 2z many
pairs (c′, c′′) that divide c if we use condition (2’) instead of (2). Since
there are 2ni−z

(
ni

z

)
many colorings c with #0(c) = z, we obtain that

{(c′, c′′) : c ∈ {0, 0̂, 1}ni , c′ and c′′ divide c }
has size
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ni∑
z=0

2ni−z

(
ni

z

)
· 2z = 4ni .

This shows that evaluating mi can be done in O(4ni · ni) time.
Again, it is not hard to see that mi is monotonic if mj and mk are
monotonic. This basically follows by the definition of “divide”.

Step 3: Let r denote the root of T . The domination number is given by

min{mr(c) | c ∈ {0, 1}nr}. (10.7)

The minimum in (10.7) is taken only over colorings containing only colors 0
and 1 because a color 0̂ would mean that the corresponding vertex still
needs to be dominated.

This concludes the description of the dynamic programming algorithm and
leads to the following result.

Theorem 10.16 For a graph G with given tree decomposition 〈{Xi | i ∈ I}, T 〉
an optimal dominating set can be computed in O(4ω ·ω ·|I|) time. Here, ω denotes
the width of the tree decomposition.

Proof Obviously, the total running time of the algorithm is O(4ω · ω · |I|).
For the correctness of the algorithm, we observe the following. In initialization
Step 1, as well as in the updating process for insert nodes and join nodes
of Step 2, we made sure that the assignment of color 0 to a vertex x always
guarantees that at the current stage of the algorithm x is already dominated
by a vertex from previous bags. Since, by definition of tree decompositions, any
pair of neighbors appears in at least one bag, the validity of the colorings was
checked for each such pair of neighbors. Finally, the consistency property of tree
decompositions together with the comments given in Step 2 of the algorithm
imply that the updating of each mapping is done consistently with all mappings
that have been visited earlier in the algorithm.

When bookkeeping how the minima in assignments (10.2), (10.6), and (10.7)
of Step 2 and Step 3 were obtained, this method also constructs a dominating
set D delivering the domination number. �

In conclusion, the most important point in dynamic programming on tree
decompositions is the sizes of the tables involved. The table sizes are usually
bounded by cω, where ω denotes the width of the underlying tree decomposi-
tion and c usually depends on the underlying combinatorial problem. Hence two
optimization goals are immediate:

1. keep the width of the tree decomposition as small as possible; and

2. closely investigate the combinatorics of the underlying graph problem in
order to keep the base c as small as possible.

Dominating Set provides a striking example of the second goal, as the constant
could be improved from the naturally given 9 to 4. To illustrate the significance of
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Runtime ω = 5 ω = 10 ω = 15 ω = 20

9ω · ω · |I| 0.25 sec 10 hours 100 years 8 · 106 years
4ω · ω · |I| 0.005 sec 10 sec 4.5 hours 260 days

Table 10.1 Comparing the O(4ω · ω · |I|) algorithm for Dominating Set with
the O(9ω · ω · |I|) algorithm for |I| = 1000; we assume a computer executing
109 instructions per second and we neglect the constants hidden in the O-terms
(which are comparable in both cases).

such a result, Table 10.1 compares hypothetical running times of the O(9ω ·ω ·|I|)
algorithm to the O(4ω ·ω · |I|) algorithm for some realistic values of ω and |I| =
1000. Observe that this gives a realistic comparison of the relative performances
since both algorithms incur comparable, small constant factors hidden in the O-
notation. The O(4ω · ω · |I|) time algorithm has been successfully implemented.
As a non-surprising result, this tells us that improving exponential terms often
is a “big issue” for fixed-parameter algorithms.

Finally, it must be emphasized that besides (exponential) running time (expo-
nential) memory usage is also an important issue in making tree decomposition-
based algorithms useful in practice. The exponential table sizes lie at the heart
of the exponential running times as well as of the exponential memory usage.
In order to avoid the “memory boundedness” of dynamic programming on tree
decompositions, all tricks and techniques should be tried—another promising
research challenge connected with the development of efficient fixed-parameter
algorithms.

In complete analogy to the case of Vertex Cover, Theorem 10.16 yields
the following:

Corollary 10.17 Dominating Set in Planar Graphs is solvable in 2O(
√

k) ·
n time, where k denotes the size of the dominating set and n is the number of
graph vertices.

10.6 Monadic second-order logic (MSO)

In the preceding two sections we have explicitly seen two efficient fixed-parameter
algorithms with respect to the parameter treewidth to determine optimal vertex
covers and dominating sets for graphs given together with their tree decomposi-
tions. It might not always be easy to see whether a problem is fixed-parameter
tractable with respect to the parameter treewidth in this way. In fact, dynamic
programming can become an elusive matter here. There are also results, however,
that state that large classes of problems can be solved in linear time when a tree
decomposition with constant treewidth is known; in other words, these problems
are in “linear-time FPT”. The main work in this direction was done by Bruno
Courcelle, providing a powerful classification tool for such problems. It must be
emphasized, however, that the now described methodology is of purely theoreti-
cal interest because the associated running times suffer from huge constant fac-
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tors and combinatorial explosions with respect to the parameter treewidth. Still,
it provides an excellent tool for quickly deciding whether a problem is fixed-
parameter tractable on graphs parameterized by treewidth. After establishing
fixed-parameter tractability in this way, as a second step one should then head
for a concrete, problem-specific algorithm with improved efficiency. Because the
underlying theory is much beyond the scope of this book, we subsequently focus
on describing central concepts and results and how to use them in a profitable
way.

Our tool is called monadic-second order logic (MSO). Roughly speaking, it
is an extension of first-order logic that also allows quantification over sets. The
point here is that whenever a graph problem is expressible using the formalism of
this logic, we can infer that the problem is fixed-parameter tractable with respect
to the parameter treewidth. We start by describing the language of MSO.

What do MSO-formulae expressing graph properties look like, that is, what
is their syntax? First of all, we have an infinite supply of “individual” variables,
denoted by small letters x, y, z, etc. Moreover, there is an infinite supply of set
variables, denoted by capital letters X , Y , Z, etc. To specify graphs and their
properties, we use the particular vocabulary {E, V, I}, where V and E are unary
relation symbols interpreted as the vertex and the edge set of a graph, and I is a
binary relation symbol interpreted as the incidence relation between vertices and
edges. Continuing with MSO syntax for graphs, using mainly postfix notation,
we introduce atomic MSO-formulae as formulae of the forms x = y, V x, Ex,
Ixy, and Xx, where X is a set variable and x, y are individual variables. Based
on atomic formulae, more complicated MSO-formulae can be built as follows,
thus specifying the whole class of MSO-formulae.

• If φ is an MSO-formula, then ¬φ is one as well.

• If φ and ψ are MSO-formulae, then φ ∧ ψ, φ ∨ ψ, and φ→ ψ are as well.

• If φ is an MSO-formula and x is an individual variable and X is a set
variable, then ∃xφ, ∀xφ, ∃Xφ, and ∀Xφ are as well.

Here, “→” denotes the Boolean implication. This concludes the description of
the syntax. Let us next come to the semantics of MSO-formulae. To simplify
notation, for a graph G = (V,E) let U := V ∪ E. An assignment α for an
MSO-formula φ maps each individual variable of φ to an element of U and every
set variable to a subset of U . Thus we can inductively define the concept of an
assignment α satisfying an MSO-formula φ, written as (G,α) |= φ for a given
graph G.

• (G,α) |= x = y iff α(x) = α(y);

• (G,α) |= V x iff α(x) ∈ V ;

• (G,α) |= Ex iff α(x) ∈ E;

• (G,α) |= Ixy iff α(x) ∈ V , α(y) ∈ E, and vertex α(x) is endpoint of
edge α(y);

• (G,α) |= Xx iff α(x) ∈ α(X);
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• (G,α) |= ¬φ iff (G,α) �|= φ;

• (G,α) |= φ ∧ ψ iff (G,α) |= φ and (G,α) |= ψ, and analogously for the
logical or “∨” and the logical implication “→”;

• (G,α) |= ∃xφ iff there exists an a ∈ U such that (G,α a
x) |= φ, where α a

x
denotes the assignment with α a

x (x) = a and α a
x (v) = α(v) for all v �= x;

• (G,α) |= ∀xφ iff for all a ∈ U we have (G,α a
x) |= φ;

• (G,α) |= ∃Xφ iff there exists an A ⊆ U such that (G,α A
X ) |= φ, and

similarly for ∀X meaning “for all A ⊆ U”.

The relation (G,α) |= φ depends only on the values of α at the free variables
of φ, that is, those variables v not occurring in the scope of a quantifier ∃v or ∀v,
where v may denote an individual as well as a set variable. One writes

φ(x1, . . . , xi, X1, . . . , Xj)

to indicate that the free individual variables of φ are x1, . . . , xk and the free set
variables are X1, . . . , Xj . Then for a graph G and a1, . . . , ai ∈ U , A1, . . . , Aj ⊆ U
one writes

G |= φ(a1, . . . , ai, A1, . . . , Aj)

if for every assignment α with

α(x1) = a1, . . . , α(xi) = ai

and
α(X1) = A1, . . . , α(Xj) = Aj

it holds that (G,α) |= φ. A sentence is a formula without free variables.
For example, to express that a graph G is bipartite we write G |= φ with φ

being the following formula

∃X∃Y (∀x(V x→ (Xx ∨ Y x)) ∧
∀x∀y(((x �= y) ∧ ∃z(Ixz ∧ Iyz))→ ¬((Xx ∧Xy) ∨ (Y x ∧ Y y)))).

The core result in this field, due to Bruno Courcelle, now reads as follows.

Theorem 10.18 Let ω ≥ 1 and let

φ(x1, . . . , xi, X1, . . . , Xj)

be an MSO-formula. Then there is a linear-time algorithm, given a graph G with
a tree decomposition of width at most ω and a1, . . . , ai ∈ U , A1, . . . , Aj ⊆ U ,
decides whether

G |= φ(a1, . . . , ai, A1, . . . , Aj).

So far, we have seen how MSO-formulae can be used to express decision
problems. There are extensions of MSO allowing us to deal with optimization
problems without giving up linear-time solvability as stated in Theorem 10.18.
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For instance, the following formula expresses the (optimization version of the)
Vertex Cover problem:

minX ∀y∃x(Xx ∧ Ey ∧ Ixy).
Similarly, the optimization version of Dominating Set can be expressed as
follows:

minX ∀y∃x∃z(Xx ∧ V y ∧ Ez ∧ Ixz ∧ Iyz).
In the purely parameterized (decision) version searching for a vertex cover of
size k, we would write

∃x1∃x2 . . .∃xk∀y(V x1 ∧ . . . ∧ V xk ∧ (Ey → (Ix1y ∨ . . . ∨ Ixky)))

instead. The parameterized version of Dominating Set can be dealt with simi-
larly. Observe that, of course, the huge constant factor hidden in the O-notation
in Theorem 10.18 depends on the formula size and its complexity.

Summarizing, monadic second-order logic offers a descriptive way of the clas-
sifying the computational complexity of problems restricted to graphs of bounded
treewidth. It is a very elegant and powerful tool for quickly deciding about fixed-
parameter tractability, but it is far from any efficient implementations. Algorith-
mic analysis of the concrete problem at hand always seems beneficial in order to
come up with more practical results once we know that fixed-parameter tractabil-
ity is achievable due to a description in the language of MSO.

10.7 Related graph width parameters

Besides treewidth there are several graph width parameters of algorithmic use.
We briefly mention three of them here.
Pathwidth. This is a simple special case of treewidth. It is obtained by restric-
tion of the underlying trees in the definition of tree decompositions to paths.
Pathwidth closely resembles a form of “narrowness” of graphs. Graphs with
small pathwidth typically appear in natural language processing. An important
problem in VLSI layout theory, the so-called Gate Matrix Layout problem, is
equivalent to the pathwidth problem. Trivially, the treewidth of a graph always
gives a lower bound for the pathwidth of a graph. Moreover, trees may have
arbitrarily large pathwidth. As for tree decompositions, there are many differ-
ent equivalent characterizations for graphs of bounded pathwidth. Recall from
Section 10.1 that the optimal tree decomposition of a grid graph is actually a
path decomposition. Concerning the determination of optimal path decomposi-
tions of graphs, again it is known that the corresponding decision problem is
NP-complete. As to fixed-parameter tractability with respect to the parameter
pathwidth for the problem to construct path decompositions, analogous state-
ments as for the treewidth case apply—the algorithms are far from practical.
That is why here also approximation and heuristic algorithms are important.

With regard to the algorithmic use of path decompositions, we note only
that it is obvious that dynamic programming is easier for path-like than for
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tree-like structures. Actually, in Section 9.5 we experienced with the Weighted
Set Cover problem polynomial-time solvability for arbitrary “pathwidth” val-
ues, whereas it turned out NP-complete for tree-structured cases in general. For
the latter case, however, we could show fixed-parameter tractability with re-
spect to the parameter “width of the corresponding tree structure”. By way of
contrast, path decompositions can lead to larger width values than tree decom-
positions do—simply consider trees which have treewidth one—and so the use of
tree decompositions may become favorable when we encounter a combinatorial
explosion with respect to the corresponding width.
Local treewidth. In Section 10.3 we saw that graphs which have a size-k vertex
cover or a size-k dominating set possess tree decompositions of width O(

√
k). In

Section 10.6 we learned that for graphs of bounded treewidth all graph properties
(such as having a size-k vertex cover) that are expressible in monadic second-
order logic are decidable in linear time. The notion of local treewidth arose in
an attempt to extend and generalize these sorts of results.

To this end, we need to define the concept of r-neighborhood. Let G = (V,E)
be a graph and v ∈ V be a vertex in G. Then Nr[v] is the set of all vertices
with distance at most r to v, that is, Nr[v] includes v and all vertices that are
connected to v via a path of at most r edges in G. Let tw(G) denote the treewidth
of graph G.

Definition 10.19 The local treewidth of a graph G = (V,E) is

ltw(G, r) := max{tw(G[Nr [v]]) | v ∈ V }.

Then, G has bounded local treewidth if there is a function f : N −→ N such
that ltw(G, r) ≤ f(r) for r ∈ N.

The definition of bounded local treewidth requires that the local treewidth
depends only on r and is independent of the number of graph vertices etc. Clearly,
if a graph has treewidth t then its local treewidth is bounded from above by t.
However, whereas planar graphs have unbounded treewidth, their local treewidth
is bounded, that is, it can be shown that ltw(G, r) ≤ 3r for an arbitrary planar
graph G and r ≥ 1. Without going into any details here, we only mention in
passing that with the help of the concept of bounded local treewidth numerous
fixed-parameter tractability results extending those for planar graphs could be
achieved. These results, however, suffer from large hidden constant factors, and
so far are of only theoretical interest.
Branchwidth. This is a concept similar to treewidth. In contrast to tree decom-
positions, however, it is known that optimal branch decompositions of planar
graphs can be computed in polynomial time. For general graphs, branchwidth
determination again becomes an NP-complete problem.

Definition 10.20 Let G = (V,E) be a graph. A branch decomposition of G is
a pair 〈σ, T = (I, F )〉 where T is a tree with every node in T of degree one or
three, and σ is a one-to-one mapping from E to the set of leaves in T .
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The order of an edge f ∈ F is the number of vertices v ∈ V with incident
edges {v, u}, {v, w} ∈ E such that the path in T from σ({v, u}) to σ({v, w})
uses f .

The width of branch decomposition 〈σ, T = (I, F )〉 is the maximum order
over all edges f ∈ F . The branchwidth of G is the minimum k such that G has
a branch decomposition of width k.

There is a close relationship between treewidth and branchwidth. Let k be
the treewidth of a graph and let k′ be its branchwidth. Then it is known that

max{2, k′} ≤ k + 1 ≤ max{2, �3 · k′/2�}.

As with tree decompositions, branch decompositions receive particular atten-
tion from an algorithmic point of view because they are amenable to dynamic
programming techniques. The basic ideas are analogous to dynamic program-
ming on tree decompositions and we omit the details. Note that the currently

best fixed-parameter “c
√

k-algorithm” with constant base c solving Dominating
Set in Planar Graphs is based on branch decompositions. More specifically, it

runs in O(36000
√

k ·k+k4+n4) time. Observe, however, that this refers to proven
worst-case bounds concerning the constant c in the base. For the time being it
is not clear what the best algorithms in practice are. Moreover, algorithmically
the various tree decomposition and branch decomposition based algorithms are
similar—the improvements in the worst-case time bounds are mainly due to
refined and improved mathematical analysis.

10.8 Summary and concluding remarks

Treewidth is a sophisticated concept one has to get used to. To this end, its
characterization by the robber–cop game (see Section 10.1) is extremely useful.
It needs time, however, to become familiar with this methodology—only starting
material is presented in this chapter. Already the construction of (semi-)optimal
tree decompositions is a thing that needs much more attention than we could
pay to it here. For the purpose of studying parameterized problems in planar
graphs, however, Section 10.3 presents the fundamental ideas. Note that, so far,
most known fixed-parameter complexity results using tree decompositions and
related concepts are connected to planar and somewhat more general graphs. The
algorithmic usefulness of tree decompositions is tightly connected to dynamic
programming—here we presented two concrete examples for Vertex Cover and
Dominating Set. In the literature one can find a generalized description of how
dynamic programming for graphs of bounded treewidth works. With monadic
second-order logic a powerful classification tool is given in order to determine
the solvability of graph problems for bounded treewidth in a “descriptive way”.
Intuitively speaking, in particular for graph problems that carry some “non-
local” properties—that is, for instance, the choice of a vertex into a solution set
may directly affect other vertices at arbitrary distance from that vertex—fixed-
parameter tractability with respect to the parameter treewidth is often far from



EXERCISES 175

being clear. Monadic second-order logic may help to decide on that. Finally, it
must be noted that the concept of tree decompositions has several relatives—
local treewidth and branchwidth being two of them which have already played
a role in fixed-parameter complexity studies.

Treewidth and related concepts offer a new view of parameterization—that is,
structural parameterization. Whereas the most conventional way to choose prob-
lem parameters is based on the sizes of the desired solution sets, structural pa-
rameters are basically independent of these. Thus, structural parameters such as
treewidth might also be considered as ways to define special problem instances—
graphs of bounded treewidth also belong into the large field of studying special
graph classes and their algorithmic properties. It is plausible to assume that
future research will reveal more and more connections and mutual interaction
between parameterized computational complexity and the vast field of special
graph classes. Another point to note here is that it seems less appropriate to
search in the case of structural parameterizations such as by treewidth for prob-
lem kernels: clearly, a graph of bounded treewidth k may have size completely
independent of k, so there appears to be no point in asking for bounding the
graph size by its treewidth as is inherent by the concept of reduction to a problem
kernel (see Chapter 7).

Tree decomposition-based algorithms bring forward a so far somewhat ne-
glected point in fixed-parameter algorithmics—efficient usage of memory. Com-
binatorial explosions with respect to memory consumption must be kept as small
as possible—a system may run almost forever on hard problems, but it will
immediately break down when running out of memory. Keeping this in mind
is essential for successful applications of tree decomposition-based and related
memory-intensive algorithms.

Tree decompositions of graphs, studied thoroughly, deserve a book on their
own. The basic concepts and definitions are technically demanding. Neverthe-
less, it seems as though anybody doing advanced fixed-parameter algorithmics
should gain some familiarity with this mathematically beautiful and algorithmi-
cally strong methodology. Discovering and exploiting “width parameters” in hard
problems is a core issue that fixed-parameter algorithmics should be occupied
with.

10.9 Exercises

1. Describe in detail what the width-� tree decomposition of an � × �-grid
looks like.

2. Construct an optimal tree decomposition for a graph that is simply a cycle.

3. Prove Lemma 10.3.

4. Show that a graph that has a vertex cover of size k has pathwidth at
most k + 1.

5. Show that a complete graph with n vertices has treewidth exactly n− 1.

6. Show that if a graphG has an induced complete subgraphK then every tree
decomposition of G must contain a bag that contains all vertices from K.



176 TREE DECOMPOSITIONS OF GRAPHS

7. Prove Proposition 10.10 for the case of Vertex Cover.

8. The NP -complete 3-Coloring problem is to color (if possible) each vertex
of a graph with one out of three colors such that no pair of neighboring
vertices has the same color.
Show how 3-Coloring can be solved by dynamic programming on graphs
of bounded treewidth (with given tree decomposition).

9. Describe bounded treewidth dynamic programs for the following variations
of Dominating Set:

(a) Independent Dominating Set: Here, the desired dominating set
must additionally form an independent set.

(b) Total Dominating Set: Here, each vertex in the dominating set
additionally must have a neighbor in the dominating set.

(c) Perfect Dominating Set: Here, every vertex not in the dominating
set must have exactly one neighbor in the dominating set.

10. The NP-complete Feedback Vertex Set problem is defined as follows.
Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset of vertices V ′ ⊆ V with k or fewer vertices such that
each cycle in G contains at least one vertex from V ′. Thus, removing the
vertices in V ′ from G results in a forest.
Show how to express Feedback Vertex Set using monadic second-order
logic.

10.10 Bibliographical remarks
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FURTHER ADVANCED TECHNIQUES

In the preceding chapters we presented in some depth—using several concrete
problems and the fixed-parameter algorithms for solving them—the fundamen-
tal techniques of reduction to a problem kernel, depth-bounded search trees,
dynamic programming, and tree decompositions of graphs. Now we describe a
few more techniques which belong in the toolkit of every “parametric algorithm
designer”.

We begin with color-coding, a very elegant randomized method designed in
the context of subgraph isomorphism problems. The method can be derandom-
ized and it seems to apply to a whole list of problems. Our illustrative example
is Longest Path, which concerns the parameter path length. Future research
must show its breadth and how it performs with respect to practical applications.

Our next technique is integer linear programming. The point here is that due
to a ground-breaking result of Hendrik W. Lenstra it is known that bounding the
number of variables in an integer linear program by a function depending only
on the problem parameter yields fixed-parameter tractability with respect to this
parameter. Because of the hidden constants and the large combinatorial explosion
involved this method seems more suitable as a classification tool, though. Still,
the corresponding integer linear programs can be implemented and handled using
standard solvers. Our illustrative example is Closest String with respect to
the parameter number of input strings—no other way to show fixed-parameter
tractability is known here.

We continue with a very new and promising method from the year 2004—
iterative compression. The point here is to make use of size-(k + 1) solutions in
order to find size-k solutions in an iterative manner. This technique is designed
for minimization problems. It was used for the breakthrough result to show that
Graph Bipartization is fixed-parameter tractable with respect to the number
of vertices to be deleted. To illustrate the ideas, we employ the conceptually
simpler cases Vertex Cover and Feedback Vertex Set. We believe that
future research might turn this technique into one that fills a whole chapter.

As with iterative compression, the technique called greedy localization is
from 2004. It tries to make use of a greedily found solution in order to find a
better or even optimal one. It works for maximization problems where small
solution set sizes—which are the parameters—might be less frequent than for
minimization problems. Still, the method definitely carries potential for more
applications. We illustrate the method using the Set Splitting and 3-Set
Packing problems.

We conclude our series of advanced techniques with a brief glimpse at the
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celebrated graph minor theory—one of the deepest achievements of modern
mathematics—and its particular use with respect to fixed-parameter tractabil-
ity. This beautiful theory, due to its universality and enormous hidden factors in
the running times of the corresponding algorithms, must at the current state of
knowledge be considered as a classification tool only.

11.1 Color-coding

Many graph problems studied in this work are special versions of the Subgraph
Isomorphism problem:

Input: Two graphs G = (V,E) and G′ = (V ′, E′).
Task: Determine whether there is a subgraph of G that is isomorphic
to G′.

For instance, Clique asks for a subset U ⊆ V of size at least k such that in
the induced subgraph G[U ] each pair of vertices is connected by an edge.

Color-coding is a method that can be used to derive (randomized) fixed-
parameter algorithms for several subgraph isomorphism problems. We study this
technique through an example application of the NP -complete Longest Path
problem:

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a simple path in G that contains k− 1 edges and k vertices.

Note that the restriction to simple paths where no vertex may appear more
than once is crucial here—otherwise, computing the kth power of the adjacency
matrix of G, one can easily find in polynomial time all pairs of vertices that are
connected by a path of at most k−1 edges: assume that one matrix multiplication
takes t(n) time. Then using repeated squaring one obtains after O(log k) rounds
all pairs of vertices connected by a path of length at most k. Altogether, this
needs O(log k · t(n)) time.

The central idea behind color-coding is that to find the desired vertex set U
with |U | = k one randomly colors the whole graph with k colors and “hopes” that
all vertices in U will obtain different colors. If so, the task of finding U is greatly
simplified: color-coding makes use of dynamic programming for finding paths of
vertices with pairwisely different colors. The randomized fixed-parameter algo-
rithms derived in this way can be transformed into deterministic fixed-parameter
algorithms through the use of hashing techniques at the cost of increased run-
ning time. On the negative side, color-coding does not lead to a fixed-parameter
algorithm for the W [1]-complete problem Clique.

The key to solving Longest Path lies in the concept of colorful paths which
simply means that each vertex of the path has another color. Each colorful path
is clearly simple, and by coloring the graph vertices uniformly at random with
k colors, a simple path will consist of k different colors with probability k!/kk.
Using Stirling’s approximation, this probability is lower-bounded by e−k.
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For the time being, let us assume that there is a colorful simple path of
k vertices in G. The following lemma shows that it can be found quickly by
dynamic programming.

Lemma 11.1 Let G = (V,E) and let C : V → {1, . . . , k} be a coloring. Then a
colorful path of k vertices can be found (if it exists) in time 2O(k) · |E|.
Proof In what follows, we describe an algorithm that finds all colorful paths of
k vertices starting at some fixed vertex s. This is not really a restriction because
to solve the general problem, we may just add some extra vertex s′ to V , color
it with the new color 0, and connect it with each of the remaining vertices of V
by an edge.

To find the described paths, we use dynamic programming. Assume that
for all v ∈ V already all possible color sets of colorful paths between s and v
consisting of i vertices have been found. Clearly, the length-0 path starting and
ending at s is assigned the color set {0}. For each v, there are at most

(
k
i

)
of

these sets. Let now F be such a color set belonging to v. We consider every F
belonging to v and every edge {u, v} ∈ E: if C(u) �∈ F then build the new color
set F ′ := F ∪{C(u)}—so F ′ becomes part of the set of color sets belonging to u.
In this way, we obtain all color sets belonging to paths of length i + 1 and so
on. Thus G contains a colorful path with respect to coloring C iff there exists
a vertex v ∈ V that has at least one color set that corresponds to a path of
k vertices.

The described algorithm performs O(
∑k

i=1 i ·
(
k
i

) · |E|) steps. Here the factor i

refers to the test whether or not C(u) is already contained in F . The factor
(
k
i

)
refers to the number of possible sets F and the factor |E| refers to the time to
check all edges {u, v} ∈ E. The whole expression is upper-bounded by O(k · 2k ·
|E|). It is not hard to effectively construct a colorful path for a given color set.
�

Observe that in the proof of Lemma 11.1 it was crucial not that the paths
(that is, all vertices on them) were stored but only that their corresponding
color sets were recorded. Thus, for a path of i ≤ k vertices at most

(
k
i

)
= O(ki)

candidate colorings are possible. By way of contrast, there are
(
n
i

)
= O(ni)

different vertex sets of size i. This difference exactly reflects the gap between
fixed-parameter tractability (combinatorial explosion f(k)) and fixed-parameter
intractability (combinatorial explosion nk).

Now, using standard techniques for randomized algorithms, a randomized
fixed-parameter algorithm for Longest Path follows.

Theorem 11.2 Longest Path can be solved in expected running time 2O(k) ·
|E|.
Proof According to the above remarks a simple path of k vertices is colorful
with probability at least e−k. According to Lemma 11.1, such a colorful path
can be found in time 2O(k) · |E|; more precisely, all colorful paths of k vertices
can be found.
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We repeat the following ek = 2O(k) times:

1. Randomly choose a coloring C : V → {1, . . . , k}.
2. Check using Lemma 11.1 whether or not there is a colorful path; if so then

this is a simple path of k vertices.

In this way, the expected value of the number of colorful paths found—if any
exist—after trying 2O(k) random colorings is at least one. �

Theorem 11.2 is based on a randomized algorithm. Using hashing, it can be
derandomized at the cost of somewhat increased running time. To this end, we
need a list of colorings of the vertices in V such that for each subset V ′ ⊆ V
with |V ′| = k there is at least one coloring in the list that gives to each vertex
in V ′ a unique color. This is formalized by the concept of a k-perfect family of
hash functions from {1, 2, . . . , |V |} onto {1, 2, . . . , k}.
Definition 11.3 A k-perfect family of hash functions is a family H of functions
from {1, . . . , n} onto {1, . . . , k} such that for each S ⊆ {1, . . . , n} with |S| = k
there exists an h ∈ H such that h is one-to-one when restricted to S.

In the literature one can find the following statement.

Theorem 11.4 It is possible to construct families of k-perfect hash functions
from {1, . . . , n} onto {1, . . . , k} which consist of 2O(k) · logn hash functions. For
such a hash function h the value h(i), 1 ≤ i ≤ n, can be computed in linear time.

Based on Theorem 11.4, we obtain deterministic fixed-parameter tractability
for Longest Path.

Theorem 11.5 Longest Path can be solved deterministically in 2O(k) · |E| ·
log |V | time.

Proof Assume that a simple path with k vertices exists. Color the graph using
all possible hash functions from the family given in Theorem 11.4. According to
Definition 11.3 at least one of these colorings must lead to a colorful simple path.
Such a colorful path then can again be found using Lemma 11.1.

Because the family from Theorem 11.4 consists of 2O(k) · logn hash functions,
the time complexity of the algorithm from Lemma 11.1 has to be multiplied by
this factor. In total, we obtain the upper bound

2O(k) · log |V | · 2O(k) · |E| = 2O(k) · |E| · log |V |

for the overall running time. �

Although (randomized) color-coding appears to be an elegant and promising
tool for designing fixed-parameter algorithms, we are not aware of any substantial
practical experience with this method.

There are several other applications of color-coding to subgraph isomorphism
problems to be found in the literature. Still, let us briefly discuss why W [1]-hard
problems such as Clique seem inaccessible to color-coding. Consider Clique.
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In Lemma 11.1, it was decisive that a path could be represented by its start
vertex s, its end vertex v, and the color set corresponding to the path. To extend
a path by one further vertex, it was sufficient to consider edges with endpoint v
and to know the colors already used. By way of contrast, this would not be
sufficient when constructing a clique in such a step-by-step manner. Here we
would need to check the existence of edges of the new vertex to all the already
selected vertices—the mere information about the colors of these vertices would
not suffice. Then, however, it seems impossible to avoid the “

(
n
i

)
-behaviour”

instead of the “
(
k
i

)
-behaviour” as discussed before.

We mention in passing that families of k-perfect hash functions also can
be used directly to obtain fixed-parameter algorithms—similar to the above de-
scribed derandomization—by systematically going through a search space testing
all hash functions. To the author’s knowledge, these approaches suffer from bad
running times and still seem impractical.

11.2 Integer linear programming

In spite of the enormous significance that (integer) linear programming generally
has for approximation algorithms and combinatorial optimization in general, so
far it has only played a minor role in the context of fixed-parameter algorithms.
Future research might bring significant changes here. One first link will be de-
scribed now and it will be illustrated using the aforementioned Closest String
problem.

There is a deep result of Hendrik W. Lenstra that applies to fixed-parameter
algorithms. It basically says that integer linear programs (ILP’s for short) with
a constant number of variables can be solved in linear time. More precisely, with
improvements due to Ravi Kannan, we have the following theorem. It refers to
the so-called Integer Linear Programming Feasibility problem where one
has to decide on the existence of (not necessarily optimal) solutions fulfilling all
the constraints given by linear inequalities over a set of integer-valued variables.

Theorem 11.6 Integer Linear Programming Feasibility can be solved
with O(p9p/2L) arithmetic operations in integers of O(p2pL) bits in size, where
p is the number of ILP variables and L is the number of bits in the input.

Note that this fixed-parameter result with respect to p also needs space expo-
nential in the parameter p. In what follows, we will explain the relevance of this
result when designing fixed-parameter algorithms. To give a detailed exposition
of integer linear programming and, in particular, Lenstra’s result, is beyond the
scope of this work. Using Theorem 11.6, we show that Closest String is fixed-
parameter tractable with respect to the parameter “number of input strings”.
Using a depth-bounded search tree, in Section 8.5, we have shown that Closest
String is fixed-parameter tractable with respect to the parameter “maximum
distance allowed” called d.

Recall the definition of Closest String:
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Input: A set of k strings s1, s2, . . . , sk over alphabet Σ of length L each,
and a nonnegative integer d.
Task: Find a string s such that dH(s, si) ≤ d for all i = 1, . . . , k.

We use the term “closest” string here for a string which has Hamming distance
at most d to all given strings. As a warm-up in thinking about the problem,
one might think about how to solve Closest String for an input instance
with k = 2 (which is easy) and for one with k = 3 (which is hard) by a direct
combinatorial algorithm.

The goal is to give an ILP formulation for Closest String such that the
number of variables depends solely on the parameter value k, the number of
input strings. The key to this lies in the notion of column types. Given a set
of k strings of length L, we can think of these strings as a k × L character
matrix. By columns of a Closest String instance we refer to the columns
of this matrix. In the following, we state that after reordering the columns of
the Closest String instance, we can easily obtain solutions for the original
instance from solutions for the reordered instance. For reordering the columns,
we introduce a permutation on strings as follows. Given a string s = c1c2 . . . cL
of length L with c1, . . . , cL ∈ Σ and a permutation π : {1, . . . , L} → {1, . . . , L}.
Then, π(s) = cπ(1)cπ(2) . . . cπ(L). The following lemma is obvious.

Lemma 11.7 Given a set of strings S = {s1, s2, . . . , sk}, each of length L, and a
permutation π : {1, . . . , L} → {1, . . . , L}. Then s is an optimal closest string for
{s1, s2, . . . , sk} iff π(s) is an optimal closest string for {π(s1), π(s2), . . . , π(sk)}.

Several columns can be identified due to isomorphism: we make use of the
fact that the columns are independent of each other in the sense that the distance
from the closest string is measured columnwise. For instance, consider the case of
the two columns (a, a, b)T and (b, b, a)T when k = 3. Clearly, these two columns
are isomorphic because they express the same structure except that the symbols
play different roles. For the process of finding the optimal closest string, however,
only the structure matters. Isomorphic columns form column types, that is, a
column type is a set of columns isomorphic to each other.

This can be generalized as follows. Without loss of generality, let a always
denote the letter that occurs most often in a column, let b always denote the
letter that has the secondly most often occurrences, and so on. This property of
being normalized, as we will refer to it in the following, can be easily achieved
by a simple linear time preprocessing of the input instance. In addition, solving
the normalized problem optimally, one can again compute the optimal solution
of the original problem instance by simply reversing the above mapping done by
the preprocessing. Hence:

Lemma 11.8 To compute an optimal closest string it is sufficient to solve a nor-
malized and reordered instance. From this, the solution of the original instance
can be derived in linear time.
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In the following, we call two input instances isomorphic if there is a one-to-
one correspondence between the columns of both instances such that each in this
way determined pair of columns is isomorphic. The following lemma shows that
it is sufficient to solve an instance with alphabet size |Σ′| ≤ k.

Lemma 11.9 A Closest String instance with arbitrary alphabet Σ, |Σ| > k,
is isomorphic to a Closest String instance with alphabet Σ′, |Σ′| = k.

Proof Assume that there is an input instance with |Σ| > k. Clearly, in each col-
umn at most k different symbols from Σ appear. Since columns are independent
from each other, to solve the underlying Closest String problem it suffices to
represent the structure of a column by an isomorphic input instance. To do this,
at most k symbols are always enough. �

Example 11.10 For k = 3, the set of all possible column types for a Closest
String instance consists of

(a, a, a)T , (a, a, b)T , (a, b, a)T , (b, a, a)T , (a, b, c)T .

Generally, the number of column types for k strings depends only on k—it
is given by the so-called Bell number B(k) ≤ k!. By using the column types,
Closest String can be formulated as an ILP having only B(k) · k variables.
Let the underlying alphabet be Σ. The ILP can be formulated as follows. It uses
B(k) · k variables xt,ϕ, where t denotes a column type which is represented by a
number between 1 and B(k), and ϕ ∈ Σ where |Σ| = k. The value of xt,ϕ denotes
the number of columns of column type t whose corresponding character in the
desired solution string of Closest String is set to ϕ. Thus, the corresponding
ILP seeks to minimize

max
1≤i≤k

∑
1≤t≤B(k)

∑
ϕ∈(Σ\{ϕt,i})

xt,ϕ, (11.1)

where ϕt,i denotes the alphabet symbol at the ith entry of column type t. The
following two constraints must be fulfilled when minimizing the above function.

1. All variables xt,ϕ must be nonnegative integers.

2. Let #t denote the number of columns of type t in the input instance (taking
into account isomorphism as described before). Then,∑

ϕ∈Σ

xt,ϕ = #t

for every column type t. That is, for each column there must be a letter in
the solution.

We must explain one more subtle point. Above, we formulated Closest String
as an integer linear programming optimization problem looking for the smallest
possible distance d, with a solution that fulfills the given constraints, that is, a
feasible solution. The difficulty to overcome now is that Theorem 11.6 (Lenstra)
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refers to the integer linear programming feasibility and not the optimization
problem. A parameterized Closest String instance formulated as a decision
problem gives the maximum distance d allowed. Thus we may obtain the follow-
ing “feasibility formulation” where the above two constraints remain unchanged,
but the objective function (11.1) that was to be minimized is replaced by a third
constraint, namely:

max
1≤i≤k

∑
1≤t≤B(k)

∑
ϕ∈(Σ\{ϕt,i})

xt,ϕ ≤ d.

Taken together, we arrive at three types of constraint which can all be expressed
by linear (in)equalities over nonnegative integer variables. In this way, we meet
all the conditions to apply Theorem 11.6. Therefore, we obtain fixed-parameter
tractability of Closest String with respect to the parameter k because the
parameter p (number of ILP variables) can be bounded from above by a function
exclusively depending on k. Note, however, that the combinatorial explosion
in k is huge and this approach appears to be impractical for k > 4 as some
experimental investigations indicated. In this case, ILP heuristics such as branch-
and-bound strategies might somewhat extend the range of practical applicability,
still using the above ILP formulation.

The ILP approach described can serve as a tool to help classify whether a
problem is fixed-parameter tractable. As to Closest String, the ILP approach
seems to be the only one that yields fixed-parameter tractability with respect to
parameter k. Finally, note that there exists an alternative ILP formulation for
Closest String where the variables have only binary values but the number of
variables is |Σ|·L (for alphabet Σ and string length L). Hence such an ILP formu-
lation does not imply the fixed-parameter tractability of Closest String with
respect to parameter k. In conclusion, it remains to investigate further examples
besides Closest String where the described ILP approach turns out to be
applicable. More generally, it would be interesting to discover more connections
between fixed-parameter algorithms and (integer) linear programming.

11.3 Iterative compression

Iterative compression is a very new technique published in 2004. It has already
led to significant breakthroughs in showing fixed-parameter tractability results.
For instance, in this way the problem Graph Bipartization, that is, the task of
finding a minimum set of vertices whose deletion transforms a graph into a bipar-
tite graph, has been shown fixed-parameter tractable with respect to the number
of the deleted vertices. For years this has been a central open problem in parame-
terized complexity. Moreover, ongoing research indicates that the corresponding
algorithm, improved by performance tuning through algorithm engineering, is
competitive in practice. In this section we present the fundamental, intuitively
very appealing ideas behind iterative compression. We reveal the central tech-
nical hurdle that has to be overcome in order to apply iterative compression
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successfully to a problem. To this end, we present two illustrative examples—the
Vertex Cover problem and the Feedback Vertex Set problem.

In a nutshell, iterative compression can be described as follows. The technique
serves for developing fixed-parameter algorithms for minimization problems pa-
rameterized by the size of the solution set. The basic idea is that it is sufficient
to give a fixed-parameter algorithm which, given a size-(k + 1) solution, either
constructs a size-k solution or proves that there is no size-k solution. For ex-
ample, one can show that, given an n-vertex graph and a bipartization vertex
set with k + 1 vertices, one can find in O(3k · k ·m) time a bipartization vertex
set with k vertices, or decide that there is no such vertex bipartization. This
is the compression step, the workhorse of the whole algorithm. Based on this
compression step, the algorithm iteratively considers for i = 1, 2, . . . , n the in-
duced subgraphs Gi of the input graph G = (V,E) where V := {v1, . . . , vn}
and Gi = G[{v1, . . . , vi}]. Clearly, the optimal vertex bipartization for G1 is
the empty set. For i ≥ 1, if Gi has no vertex bipartization of size k, then nei-
ther has Gi+1; otherwise, let X denote a vertex bipartization of Gi with |X | ≤ k.
Then, X∪{vi+1} is a vertex bipartization of Gi+1. If the set X∪{vi+1} has k+1
vertices, the algorithm attempts to “compress” it to a set of size k. The running
time of the algorithm is clearly O(3k ·k ·m ·n). Although the overall algorithmic
strategy is very intuitive, observe that a lot of technical work can lie in showing—
if at all possible—that the compression step can be done in O(f(k) ·nO(1)) time.

11.3.1 Vertex Cover

We already have seen simple and elaborate depth-bounded search tree algorithms
for Vertex Cover (see Chapter 8). Recall the definition.

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset C ⊆ V with k or fewer vertices such that each edge
in E has at least one of its endpoints in C.

Even the straightforward observation that one or both endpoints of an edge must
be in a vertex cover set leads to a combinatorial explosion bounded from above
by O(2k). The best known depth-bounded search tree algorithms can bring this
below O(1.28k). Thus, the subsequently described, completely different approach
to solve Vertex Cover currently is of no real practical interest but serves
only to give a simple, easy-to-overview introductory example of the iterative
compression technique.

As mentioned above, the workhorse of iterative compression is some sort of
compression step. In case of Vertex Cover, this reads as follows.

Lemma 11.11 Let G = (V,E) be a graph with V = {v1, . . . , vn}. Assume that
we have a size-k vertex cover for the subgraph Gi of G induced by {v1, . . . , vi}
where 1 ≤ i ≤ n. Then we can check in O(2k · |G|) time whether there exists a
size-k vertex cover for Gi+1.

Proof Let C be the size-k vertex cover for Gi and let C′ = C ∪{vi+1}. Clearly,
C′ is a size-(k + 1) vertex cover for Gi+1 = G[{v1, . . . , vi+1}] = (Vi+1, Ei+1).
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With the following algorithm we can check whether or not there exists a size-k
vertex cover for Gi+1:

Consider all possible partitions of C′ into two sets C′
0 and C′

1. For each pair
C′

0 and C′
1, where C′

0 contains the vertices from C′ that will be discarded when
constructing a size-k vertex cover whereas C′

1 will be chosen to be part of a
size-k vertex cover, we perform the following steps. Hence the subsequent steps
are repeated 2k+1 times.

1. Set C′′ := ∅.
2. For every edge {u, v} ∈ Ei+1 with u �∈ C′

1 and v �∈ C′
1 distinguish three

cases:

(a) If u ∈ C′
0 and v ∈ C′

0, then there is no vertex cover without a vertex
from C′

0 and the partition into C′
0 and C′

1 gives no solution candidate.
(b) If u ∈ C′

0 and v ∈ (Vi+1 \ C′), then set C′′ := C′′ ∪ {v}.
(c) If v ∈ C′

0 and u ∈ (Vi+1 \ C′), then set C′′ := C′′ ∪ {u}.
3. If |C′

1 ∪ C′′| ≤ k, then return C′
1 ∪ C′′ as a solution.

If none of the 2k+1 repetitions led to the output of a solution in Step 3 then
no size-k vertex cover for Gi+1 exists. This can be seen as follows. First, note
that the set C′

1 exactly represents the vertices from size-(k + 1) vertex cover C′

for Gi+1 which are tested as being part of a size-k vertex cover for Gi+1. Hence,
trying all partitions of C′ checks all possible situations. In Step 2 observe that
it is essential that no edge can have both its endpoints in V ′ \ C′ because C′ is
a vertex cover for Gi+1. This is the decisive point for “compressing the search
space”. Here, we make sure that edges not covered by C′

1 will be covered by
some other vertices. In Step 2.(a) this fails and we have to proceed with the
next partition. Otherwise, one of the two cases 2.(b) or 2.(c) must apply and
their correctness is obvious because C′

0 represents the vertices not being in the
size-(k+ 1) vertex cover. Evidently, in Step 3, C′

1 ∪C′′ being small enough then
yields a desired size-k (or smaller) vertex cover. Steps 1–3 can be performed in
linear time, giving the overall time complexity of O(2k · |G|). �

Obviously, for G1 = ({v1}, ∅) we have the initial vertex cover C = ∅. Going
through all graphs G1, . . . , Gn = G in n rounds, always applying Lemma 11.11,
implies that we can solve the Vertex Cover problem for graphG inO(2k·|G|·n)
time.

Of course, this algorithm is not competitive with the known search tree al-
gorithms. The point here is to see a relatively simple compression lemma—as a
rule, the proofs of compression lemmas, if at all possible, require significant ef-
forts and in interesting cases are far less evident than in case of Vertex Cover.
The case of Feedback Vertex Set to be discussed next provides an example
in this direction. Moreover, unlike for Vertex Cover, here the application of
the iterative compression technique really means an algorithmic step forward.
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11.3.2 Feedback Vertex Set

In the mid-1980s, Feedback Vertex Set was considered to be one of the least
understood of the classical NP -complete problems. It is defined as follows.

Input: A graph G = (V,E) and a nonnegative integer k.
Task: Find a subset V ′ ⊆ V with k or fewer vertices such that each cycle
in G contains at least one vertex from V ′. Thus, removing the vertices
in V ′ from G results in a forest.

In this section we show that Feedback Vertex Set can be solved in O(ck ·
nO(1)) time for a constant c by presenting an algorithm based on iterative com-
pression. Observe that after 10 years of fixed-parameter algorithms for Feed-
back Vertex Set, this was the first one to have a combinatorial explosion of
the form ck with constant c. The following lemma provides the compression step.

Lemma 11.12 Given a graph G and a size-(k + 1) feedback vertex set (fvs) X
for G, we can decide in O(ck ·m) time whether there exists a size-k fvs X ′ for G,
and if so, provide one.

Proof Consider the smaller fvs X ′ as a modification of the larger fvs X . The
smaller fvs retains vertices Y ⊆ X and replaces the other vertices S := X \ Y
with at most |S| − 1 new vertices from V \ X . The idea is to try by brute
force all 2|X| partitions of X into such sets Y and S. In each case, we then
have significant information about a possible smaller fvs X ′—it contains Y , but
not S—and it turns out that there is only a “small” set V ′ of candidate vertices
to draw from in order to complete Y to X ′. More precisely, we show later in
Lemma 11.14 that the size of V ′ can be bounded from above by 14 · |S| and that,
given S, we can compute V ′ in O(m) time. Since |S| ≤ k + 1, |V ′| thus depends
only on the problem parameter k and not on the input size. We again use brute
force and consider each of the at most

(14·|S|
|S|−1

)
possible choices of |S| − 1 vertices

from V ′ that can be added to Y in order to form X ′. The test of whether a choice
of vertices from V ′ together with Y forms an fvs can be easily done in O(m)
time: delete the vertices in Y and the vertices chosen from V ′ together with
their incident edges from G; this can be done in O(m) time. In the resulting
graph, one can detect a cycle with depth-first search in O(m) time. We can now
estimate the overall running time T , where the subsequent index i corresponds
to a partition of X into Y and S with |Y | = i and |S| = |X | − i:

T = O

(
k∑

i=0

(|X |
i

)
·
(
O(m) +

(
14 · (|X | − i)
|X | − i− 1

)
·O(m)

))
,

and with Stirling’s inequality to evaluate the second binomial coefficient,

= O

(
2k ·m+

k∑
i=0

(|X |
i

)
(36.7)k+1−i ·m

)
= O((1 + 36.7)k ·m),
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which gives the lemma’s claim with c = 37.7. The value of c can be improved by
a more careful analysis in Lemma 11.14 to a value close to 10. �

Using Lemma 11.12, we can prove the central result:

Theorem 11.13 Feedback Vertex Set can be solved in O(ck · m · n) time
for a constant c.

Proof Given a graph G with vertex set {v1, v2, . . . , vn}, we can apply iterative
compression to solve Feedback Vertex Set for G by iteratively considering
the graph Gi that is the subgraph of G induced by {v1, . . . , vi}.

For i = 1, the optimal fvs is the empty set. For i > 1, assume that an
optimal fvs Xi for Gi is known. We can compute an optimal fvs Xi+1 for Gi+1

as follows. We consider set Xi∪{vi+1}, which is obviously an fvs for Gi+1. Using
Lemma 11.12, we can in O(ck ·m) time either determine that Xi ∪ {vi+1} is an
optimal fvs for Gi+1, or, if not, compute an optimal fvs of size |Xi| for Gi+1.

When i = n, we will thus have computed an optimal fvs for G in O(ck ·m ·n)
time. �

It remains to show the size bound of the “candidate vertices set” V ′ for fixed
partition Y and S of a size-(k + 1) fvs X . To this end, we make use of two
simple data reduction rules: it is intuitively clear that degree-one and degree-
two vertices are of no particular interest when trying to destroy cycles with a
minimum number of vertex removals. Hence these rules accomplish getting rid
of (most of) them. This plays a significant role in order to prove the subsequent
central technical lemma.

Lemma 11.14 Given a graph G = (V,E), a size-(k + 1) fvs X for G, and a
partition of X into two sets Y and S. Let X ′ be a size-k fvs for G with X ′∩X = Y
and X ′ ∩ S = ∅. In O(m) time, we can either decide that no such X ′ exists or
compute a subset V ′ of V \X with |V ′| < 14 · |S| such that there exists an X ′ as
desired consisting of |S| − 1 vertices from V ′ and all vertices from Y .

Proof The idea of the proof is to use a well-known data reduction technique
for Feedback Vertex Set to get rid of degree-one and degree-two vertices
from V \X and to show that if the resulting instance is too large compared with
the part S (whose vertices we are not allowed to add to X ′), then there exists
no X ′ as desired. The details are a little technical.

First, check that S does not induce a cycle; otherwise, no X ′ with X ′∩S = ∅
can be an fvs for G. Then, remove in G all vertices from Y as they are determined
to be in X ′. Finally, use the mentioned standard data reduction technique for
Feedback Vertex Set to get rid of degree-one and degree-two vertices in V \X ,
removing degree-one vertices and bypassing any degree-two vertices by a new
edge between its neighbors (thereby removing the bypassed degree-two vertices)
with two exceptions: one is that we do not bypass a degree-two vertex in V \X
which has two neighbors in S, and the other is the way we deal with parallel edges.
If we create two parallel edges between two vertices during the data reduction
process—these two edges form a length-two cycle—then exactly one of the two
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F

H

R

S

Fig. 11.1. Partition of the vertices in V ′ into three disjoint subsets F , H , and R.
Observe that removing S yields a tree.

endpoints of these edges must be in S since S is an fvs of the subgraph G[V \Y ]
of G induced by V \ Y , and the induced subgraph G[S] contains no cycle. Thus,
we have to delete the other endpoint and add it to X ′ since we are not allowed
to add vertices from S to X ′. Given an appropriate graph data structure, all of
the above steps can be accomplished in O(m) time. Proofs for the correctness
and the time bound of the data reduction technique are basically straightforward
and are omitted here.

In the following, we use G′ = (V ′∪S,E′) with V ′ ⊆ V \X to denote the graph
resulting after exhaustive application of the data reduction; note that none of
the vertices in S has been removed during the data reduction process. In order
to prove that |V ′| ≤ 14 · |S|, we partition V ′ into three subsets, each of which will
have a provable size bound linearly depending on |S|—the partition is illustrated
in Figure 11.1:

F := {v ∈ V ′ | |N(v) ∩ S| ≥ 2},
H := {v ∈ V ′ \ F | |N(v) ∩ V ′| ≥ 3},
R := V ′ \ (F ∪H).

To upper-bound the number of vertices in F , consider the bipartite sub-
graph GF = (F ∪ S,EF ) of G′ = (V ′ ∪ S,E′) with EF := (F × S) ∩ E′. Let
us first consider conditions for GF being acyclic. If there are more than |S| − 1
vertices in F , then there is a cycle in GF : if GF is acyclic then GF is a forest
and, thus, |EF | ≤ |S| + |F | − 1. Moreover, the fact that each vertex in F has
at least two incident edges in GF implies |EF | ≥ 2|F |, which further implies
that |F | ≤ |S| − 1 if GF is acyclic. It follows directly that if |F | ≥ 2|S|, it is
impossible to delete at most |S| vertices chosen from F such that G′[F ∪ S] is
acyclic.

To upper-bound the number of vertices in H , observe that the subgraph
G′[V ′] ofG′ induced by V ′ is a forest. Furthermore, all leaves of the trees in G′[V ′]
are from F since G′ is reduced with respect to the above data reduction rules.
By definition, each vertex in H has at least three vertices in V ′ as neighbors.
Thus there cannot be more vertices in H than there are in F , that is |H | < 2|S|.

Finally, consider the vertices in R. By the definitions of F and H and since G′

is reduced, each vertex in R has degree two in G′[V ′] and exactly one neighbor
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in S. Hence, the subgraph G′[R] of G′ induced by R is a forest consisting of paths
and isolated vertices. We now separately bound the number of isolated vertices
and those vertices participating in paths.

Each of the isolated vertices in G′[R] connects two vertices from F ∪ H
in G′[V ′]. Since G′[V ′] is acyclic, the number of isolated vertices in G′[R] cannot
exceed |F ∪H | − 1 < 4|S|. The total number of vertices participating in paths
in G′[R] can be upper-bounded as follows: consider the subgraph G′[R∪S] of G′

induced by R∪S. Each edge in G′[R] creates a path between two vertices from S,
that is, if |E(G′[R])| ≥ |S|, then there exists a cycle in G′[R∪S]. By an analogous
argument to the one that upper-bounded the size of F (and considering that
removing a vertex from G′[R] destroys at most two edges), the total number of
edges in G′[R] may thus not exceed |S| + 2|S|, bounding from above the total
number of vertices participating in paths in G′[R] by 6|S|.

Altogether, we have shown that

|V ′| = |F |+ |H |+ |R| < 2|S|+ 2|S|+ 4|S|+ 6|S| = 14|S|,

directly giving the claim. �

We conclude with two remarks. First, due to refined analysis based on ex-
tended data reduction rules, the running time O(10.6k ·n3) for Feedback Ver-
tex Set could be shown by basically the same approach. Second, a very simple
randomized algorithm—using the described data-reduction rules but a direct
approach instead of iterative compression—runs in O(c · 4k · k · n) time with

probability of success at least (1− (1− 4−k))c·4k

for an arbitrary constant c (see
Section 15.2.2).

11.4 Greedy localization

In the previous section with iterative compression we described a new method to
show fixed-parameter tractability for minimization problems. A new approach
attacking maximization problems is now considered; it is called greedy local-
ization. As for iterative compression, the parameter relates to the size of the
solution set. Again the basic ideas behind greedy localization are very natural
and appealing:

• In a first step greedily compute a maximal solution of the problem.

• Then either this solution is already good enough, that is, the solution size
is at least as big as the given parameter value, or we can make use of this
known solution to construct—if it exists—a larger one.

In a way similar to iterative compression, the “greedy solution” provides
some initial information that narrows down our search space. In other words, it
“localizes” the search efforts to this initial structure.

We illustrate greedy localization using the NP -complete problems Set Split-
ting and 3-Set Packing as examples. Our emphasis lies on presenting the fun-
damental concepts and ideas as concisely as possible. Thus the derived upper
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bounds on the running time—in particular, the combinatorial explosion with
respect to the parameters—are not the best known ones from the literature.
Although similar in spirit, the greedy localization solution for Set Splitting
seems significantly easier to grasp than that for 3-Set Packing, which appears
to be the harder problem.

11.4.1 Set Splitting

The NP -complete Set Splitting problem is defined as follows.

Input: A collection C of n subsets of a finite set S and a nonnegative
integer k.
Task: Find a partition of S into two disjoint subsets S1 and S2 such
that there exist at least k subsets in C with nonempty intersections with
both S1 and S2.

Without loss of generality we assume in the following that each subset from C
consists of at least two elements from S. Otherwise, the subset can be discarded
from consideration because it is “unsplittable”. We say that S1 and S2 split a
subset C ∈ C if S1 ∩ C �= ∅ and S2 ∩ C �= ∅. Before describing the actual work
of the greedy localization procedure, we consider a simple data reduction step
done in a preprocessing phase. The point is the following.

Lemma 11.15 If there exists a subset C ∈ C with |C| ≥ 2k then a solution
for Set Splitting—if it exists—can be found by searching a solution for the
reduced instance (C \ {C}, k − 1) and splitting C into two subsets appropriately.

Proof Clearly, if C \ {C} has no solution splitting k − 1 sets, then there is no
solution splitting k sets for C. So we have only to show that every partition of
C \ {C} splitting k − 1 sets suffices to construct a solution for C.

Assume that (C \ {C}, k− 1) has a solution S′
1 and S′

2 splitting k− 1 subsets
from C\{C}. To split a subset C′ we need two elements a, b ∈ C′ with a ∈ S′

1 and
b ∈ S′

2. Hence, to split k− 1 subsets we need a set of at most 2 · (k− 1) elements
from S. Let S′ := S′

1 ∪ S′
2. We conclude that |C \ S′| ≥ 2. Let a′, b′ ∈ C \ S′.

Then S1 := S′
1 ∪ {a′} and S2 := S′

2 ∪ {b′} is a solution for the input instance
(C, k). �

Clearly, one preprocessing step as implied by Lemma 11.15 can be done in
linear time. Moreover, at most k rounds of such preprocessing need to be applied.
From now on we will assume that we have an input instance where each subset
in C has size less than 2k.

We are ready to outline the two phases that greedy localization performs to
solve Set Splitting.
Greedy phase. Greedily compute a maximal solution S′

1, S
′
2 that splits a col-

lection C′′ of subsets:

1. Set C′ := C; C′′ := ∅; S′
1 := ∅; S′

2 := ∅.
2. If C′ = ∅, then go to Step 10.
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3. Choose an arbitrary subset C from C′.
4. Let a ∈ C \ (S′

1 ∪ S′
2) and b ∈ C with b �= a, and without loss of generality

b �∈ S′
2.

5. Set S′
1 := S′

1 ∪ {a}; S′
2 := S′

2 ∪ {b}.
6. Let D ⊆ C′ be the set of subsets from C′ split by S′

1 and S′
2.

7. Set C′ := C′ \ (D ∪ {C | C ⊆ S′
1 ∨ C ⊆ S′

2}).
8. Set C′′ := C′′ ∪ D.

9. If C′ �= ∅ then go to Step 2.

10. If |C′′| ≥ k then we have found a desired solution and we stop; otherwise,
go to the localization phase.

Localization phase. Here, given the maximal solution S′
1 and S′

2 from the
greedy phase, we use S′

1 and S′
2 to “localize”—if it exists—a solution S1 and S2

splitting at least k subsets from C.
Let us begin with some fundamental observations. Due to the maximality of

S′
1 and S′

2, we know that

∀C ∈ C \ C′′ : C ⊆ S′
1 ∪ S′

2. (11.2)

Otherwise, we could further extend the collection C′′ and the sets S′
1 and S′

2 in
a straightforward way (see greedy phase) contradicting maximality.

Hence, we proceed as follows: try all possible partitions of S′
1 ∪ S′

2 into new
disjoint subsets S′′

1 and S′′
2 with S′′

1 ∪ S′′
2 = S′

1 ∪ S′
2.

1. If one of these partitions splits at least k subsets from C then we have found
a desired solution and we stop.

2. Otherwise, we consider each of these new partition sets S′′
1 and S′′

2 and
proceed as follows. Let k′ be the number of subsets from C split by S′′

1

and S′′
2 . We want to find k − k′ further subsets from C that can be split.

According to the inclusion (11.2), all these subsets are subsets of S′
1 ∪ S′

2.
Hence the only way to “extend” the partitioning given by S′′

1 and S′′
2 is to

choose elements from S \ (S′′
1 ∪S′′

2 ) that are contained in the subsets of the
“maximal collection” C′′ found by the greedy phase.

Since |C′′| < k and due to the preprocessing there are less than k · 2k = 2k2

elements from S in ( ⋃
C∈C′′

C

)
\ (S′′

1 ∪ S′′
2 ).

In this way, we have localized our search to this set with size only depending
on parameter k. By simply trying all partitions of this set by brute force, we
arrive at 22k2

= 4k2

possibilities. This must be multiplied by the upper bound of
22k = 4k for all partitions of S′

1∪S′
2, yielding a combinatorial explosion bounded

from above by 4k · 4k2

= 4k2+k. Thus we have shown the following result.

Theorem 11.16 Set Splitting is fixed-parameter tractable with respect to pa-
rameter k.
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By using problem kernelization by means of crown reduction rules and further
refining the above greedy localization method, one can achieve a combinatorial
explosion upper-bounded by only 8k instead of 4k2+k.

11.4.2 Set Packing

The Set Packing problem is defined as follows.

Input: A collection C of n subsets of a finite set S and a nonnegative
integer k.
Task: Find a subcollection C′ ⊆ C which consists of at least k mutually
disjoint subsets.

By way of contrast to the fixed-parameter tractable Set Splitting, Set Pack-
ing is W [1]-complete with respect to parameter k. Hence, as for Hitting Set
(see Sections 7.5 and 8.4), we focus our attention on restricted versions of Set
Packing where all given subsets have bounded size. In the remainder of this
section we focus on the still NP -complete special case 3-Set Packing where
subset sizes are bounded by three in order to illustrate the greedy localization
technique. Note that 2-Set Packing is solvable in polynomial time by matching
techniques.

Let us sketch the basic ideas behind the fixed-parameter algorithm for 3-Set
Packing using greedy localization. As indicated before, the algorithm begins
by greedily computing a maximal subcollection C′0: it does so by starting with
C′0 as the empty set and considering each set in C in some arbitrary order for
addition to C′0 if it does not intersect with any set already in C′0. Using a suitable
data representation, this phase takes linear time. Now, if |C′0| ≥ k we are clearly
done. Hence, from now on assume that |C′0| < k. In addition, if |C′0| < k/3, then
the given 3-Set Packing instance has no solution: with little effort this can be
shown by making use of the fact that, due to the maximality of C′0, for every
set S1—if it exists—in a solution C′ with |C′| ≥ k there has to exist a set S2

in C′0 with S1 ∩ S2 �= ∅. From this one can conclude that there must be at least
k different elements from S occurring in the sets from C′0, implying the claim
because each subset of the collection contains only three elements.

Without loss of generality, we now can assume the following. Let

C′0 = {{a1, a2, a3}, {a4, a5, a6}, . . . , {a3j−2, a3j−1, a3j}}

with j < k be the greedy solution, with all subsets pairwisely disjoint. If there
exists a solution C′ with |C′| = k, then every 3-element set in C′ contains at
least one element from A := {a1, a2, . . . , a3j}. In order to determine for each set
in C′ one of its corresponding elements from A, we thus only need to consider(
3j
k

)
<

(
3k
k

)
possibilities. In this way, for each possibility we obtain a “partial

collection”

C∗ = {{ai1 , ∗, ∗}, {ai2, ∗, ∗}, . . . , {aik
, ∗, ∗}},
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where ai1 , ai2 , . . . , aik
∈ A are pairwisely different and “∗” represents an unde-

termined element from S. Then the question is whether this partial collection
can be completed into a valid solution

C′ = {{ai1 , b1, c1}, {ai2 , b2, c2}, . . . , {aik
, bk, ck}}.

A naive way to answer this would be to try all candidates for b1, c1, . . . , bk, ck,
giving

(|S|
2k

)
possibilities which is clearly not a function solely depending on pa-

rameter k. Hence the goal is to restrict the size of the candidate set from which
we must choose b1, c1, . . . , bk, ck. A simple observation is to check for every ai�

,
1 ≤ � ≤ k, whether the partial set {ai�

, ∗, ∗} has exactly one extension {ai�
, b�, c�}

in C; that is, there is exactly one 3-element set in C that contains ai�
. Obviously,

if there is a solution with respect to ai1 , ai2 , . . . aik
, all corresponding uniquely

determined 3-element sets have to be chosen—if two of them intersect, there is
no such solution. Hence, without loss of generality, from now on we may assume
that there is no partial set with a uniquely determined extension.

Again, we apply a greedy algorithm as follows.

1. Let C∗∗ := C∗.
2. For each 3-element set {d1, d2, d3} from C check whether there is exactly

one partial 3-element set π from C∗∗ which can be extended to {d1, d2, d3},
and {d1, d2, d3} has an empty intersection with any other set from C∗∗. If
so, let

C∗∗ := (C∗∗ \ {π}) ∪ {{d1, d2, d3}}.
3. Let C∗∗0 denote the set of 3-element sets from C contained in C∗∗, that is,

all sets added in the second step.

Clearly, if |C∗∗0 | = k we are done. Otherwise, let h := |C∗∗0 | and, without loss of
generality, assume that

C∗∗0 = {{ai1 , b1, c1}, {ai2 , b2, c2}, . . . , {aih
, bh, ch}}.

If C∗ can be completed into an overall solution C′ with |C′| = k, then the fol-
lowing must hold: consider the 3-element set {aih+1

, bh+1, ch+1} from C′. Since
all sets in C′ have to be disjoint, {aih+1

, bh+1, ch+1} has an empty intersection
with every set in C∗ except for the one containing aih+1

. In step 2 of the above
algorithm no partial 3-element set π has been replaced by {aih+1

, bh+1, ch+1}. As
a consequence, when {aih+1

, bh+1, ch+1} was considered in the second step, there
must have been a non-empty intersection of {aih+1

, bh+1, ch+1} with one of the
sets from C∗∗0 . More specifically, one of bh+1 and ch+1 must already occur in one
of the sets from C∗∗0 . Moreover, bh+1 and ch+1 cannot be any of ai1 , ai2 , . . . , aih

;
otherwise, aih+1

would occur together with an ai�
, 1 ≤ � ≤ h, in a 3-element set,

contradicting that C∗ is a partial collection that can be completed into an overall
solution C′. This is the decisive point for concluding fixed-parameter tractability
because now we have narrowed down the candidate set of elements to

{b1, c1, b2, c2, . . . , bh, ch}.
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The size of this set is smaller than 2k. By trying all possibilities, that is, branching
into less than 2k cases in a search tree manner, we will find the right element
if it exists and determine the value of one more so far undetermined element
“∗”. Thus, with one application of the above algorithm we can determine the at
most 2k cases to branch into. Here, we start with C∗ where, step by step, more
and more undetermined values get resolved and the next round of the algorithm
then starts with C∗∗ being set to this new partial instance with one more resolved
element. After 2k rounds, starting with C∗∗ = C∗, if a solution with k pairwisely
disjoint subsets exists, all elements will be resolved in at least one of the search
paths of the corresponding search tree.

Summarizing, we start with less than
(
3k
k

)
= O((3k)k) initial partial solutions

and for each of them we have a procedure that constructs a search tree of depth
upper-bounded by 2k which branches into less than 2k children at each inner
node. Altogether, the combinatorial explosion in parameter k can be bounded
from above by O((3k)k · (2k)2k). Obviously, all other computations can be done
in time polynomial in the input size, giving only a polynomial factor for the
running time. Hence we have shown:

Theorem 11.17 3-Set Packing is fixed-parameter tractable with respect to
the parameter k.

A much more refined analysis can actually show that 3-Set Packing can
be solved by greedy localization in O((5.7k)k ·n) time, see the literature cited in
the bibliographical remarks. Also one can find there the generalization to m-Set
Packing for m > 3. Meanwhile, using a sophisticated combination of problem
kernelization, color coding, and dynamic programming this bound could be im-
proved to O(2O(k) + n). Again, however, one first finds a maximal solution that
here helps to bound the problem kernel size. Thus in a sense greedy localization is
used for bounding the problem kernel as a tool in the color-coding dynamic pro-
gramming. In the example given above, the problem was solved directly without
searching for a problem kernel.

As a final remark, note that it might be less frequent to have small parameter
values for maximization problems than it is for minimization problems with
respect to realistic input instances; this might hamper the practical use of greedy
localization.

11.5 Graph minor theory

Graph minor theory as developed by Neil Robertson and Paul D. Seymour is
considered to be the deepest achievement of modern graph theory. The corre-
sponding results and proofs are far beyond the scope of this book. The impor-
tance of graph minor theory for fixed-parameter tractability investigations is of
purely theoretical flavor—probably no other technique of this book is so far from
practical algorithmics as what we very briefly discuss now. Nevertheless graph
minor theory and the long series of corresponding papers has brought about a
tremendous amount of important findings of algorithmically relevant concepts.
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Fig. 11.2. A graph (left) and a minor of it.

Let us only mention here the notion of tree decompositions of graphs that grew
out of this theory as a by-product. In what follows, no proofs will appear and
we only roughly indicate what graph minor theory may be used for in our field
of interest.

Recall from Section 2.3 that planar graphs can be characterized by forbidden
subdivisions. Using the concept of minors, we will reformulate this famous result
of Kasimir Kuratowski.

Definition 11.18 1. A graph H is a minor of a graph G iff H can be obtained
from G by a finite sequence of edge deletions and edge contractions. We
then write H ≤m G. Herein, contracting an edge e = {v, w} means to
replace vertices v and w by one new vertex u which is connected by an edge
to all vertices from (N(v) ∪N(w)) \ {v, w}.

2. A family F of graphs is closed under taking minors if for graphs G,H ∈ F
we have

((G ∈ F) ∧ (H ≤m G)) ⇒ (H ∈ F).

Figure 11.2 shows a graph and one of its minors. The family of planar graphs
is clearly closed under taking minors. Moreover, it can be characterized by Ku-
ratowski’s result saying that a graph is planar iff it does not contain one of K5

and K3,3 as a minor. Here K5 is the complete graph with five vertices and K3,3

is the complete bipartite graph with three vertices on each side. In a sense, the
results of graph minor theory we focus on here strongly generalize Kuratowski’s
characterization of planar graphs. The following two theorems are of core interest
to us. The first one is known as graph minor theorem.

Theorem 11.19 Let F be a family of finite graphs closed under taking minors.
Then there exists a finite “obstruction set” of graphs OF = {H1, H2, . . . , Ht}
such that

(G �∈ F) ≡ (∃1 ≤ i ≤ t : Hi ≤m G).

In other words, Theorem 11.19, formerly known as Wagner’s conjecture, is
equivalent to stating that every minor-closed class of graphs has a finite num-
ber of “minor-minimal” elements. Note that in Kuratowski’s characterization of
planar graphs we have t = 2 and H1 = K5 and H2 = K3,3. The minor-closed
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class of forests has the obstruction set {K3}. It is important to observe that
Theorem 11.19 is not constructive in the sense that, other than in the case of
planar graphs, it is generally not known how to determine the obstruction set
for a given graph family. This is a severe drawback from an algorithmic point
of view. Under the assumption of having an obstruction set given, we still need
a so-called minor test in order to draw algorithmic conclusions with respect to
fixed-parameter tractability.

Theorem 11.20 Given an n-vertex graph G and a fixed k-vertex graph H, we
can decide in f(k) · n3 time whether H ≤m G. Here f is a function depending
only on k but not on f .

Function f in Theorem 11.20 grows enormously quickly, however, so the result
is only useful for classification purposes. Theorem 11.20 implies a cubic-time test
for the planarity of graphs—there are linear-time algorithms, though. Let us see
how graph minor theory applies to derive the fixed-parameter tractability of
Vertex Cover.

For fixed k, the family F of graphs with a vertex cover of size at most k
is closed under taking minors. According to Theorem 11.19 there must exist a
finite obstruction set OF . Using Theorem 11.20, for a given graph G we can
check whether there is an H ∈ OF with H ≤m G. If no such H exists, we know
that G has a vertex cover of size at most k. Since one can also show that all
graphs in OF have size depending only on k, we can conclude that this takes
f(k) · n3 time for some function f depending only on k.

By way of contrast, the family of graphs with a dominating set of size at
most k is not closed under taking minors, in this sense signalling the fixed-
parameter intractability of Dominating Set.

In conclusion, the result for Vertex Cover clearly cannot compete with
the trivial depth-bounded search tree algorithm for Vertex Cover running in
O(2k · n) time. But graph minor theory provides such a general and powerful
classification tool that this was not to be expected.

11.6 Summary and concluding remarks

Although the techniques in this chapter have been termed advanced, this does
not mean that they are harder to apply than the methods presented in previous
chapters. By way of contrast, perhaps, these techniques particularly offer many
opportunities for extensions, improvements, and new applications. A fruitful re-
search ground is prepared in this chapter.

• Color-coding—randomized or derandomized—is a very natural way to con-
fine the combinatorial complexity in (graph) search problems. In a way it
narrows down the search space by identifying different objects.

• Integer linear programs are more of a classification tool because of the
huge associated combinatorial explosions in the parameter “number of vari-
ables”. Still, as for Closest String, this may be a first and perhaps “only”
way to decide on fixed-parameter tractability.
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• Iterative compression is a very new, promising technique to cope with hard
minimization problems. It seems useful for a fresh attack on unsettled fixed-
parameter complexity questions. A prominent example of this is the newly
achieved fixed-parameter tractability of Graph Bipartization. Moreover,
there are concrete indications that iterative compression may lead to prac-
tically useful algorithms.

• Greedy localization appears as the counterpart of iterative compression,
tailored for maximization problems. Here, however, the ultimate use for
practical applications is less clear.

• Graph minor theory again is more or less beyond the scope of this book
due, on the one hand, to its great technical demands and difficulties, and
on the other to the huge constants that are involved. It seems to be an
attractive candidate for classification purposes only.

It is difficult to decide now what must be considered and what will develop into
a methodology on its own. Hence the example applications presented here and
in previous chapters must be seen as a personally biased snapshot of a dynamic
field of research. It is possible that perhaps five or ten years from the writing
of this book the picture will be drawn significantly differently. No doubt other
authors might already do so now. Still, however, there is some confidence that
at least several of the core ingredients of fixed-parameter complexity have been
touched on—and they will survive.

11.7 Exercises

1. Describe a simple randomized algorithm for Feedback Vertex Set—
using the described data reduction rules as presented in Section 11.3.2—
which runs in O(4k · kn) time with probability of success at least (1− (1−
4−k))c·4k

for an arbitrary constant c.

2. Provide direct combinatorial algorithms solving Closest String for k = 2
(easy) and k = 3 (hard).

3. Show how the following problem can be solved using color-coding:
Input: A graph G and a nonnegative integer k.
Task: Find out whether there are at least k vertex-disjoint induced stars
with one center vertex and five neighbor vertices in G. (Note that the
neighbor vertices must form an independent set.)

4. The following is a network configuration problem. Consider a cycle of n ver-
tices. On this cycle are “stacked” multiple rings, each of which has capac-
ity c. On these rings we realize “communication channels” subject to the
following conditions.

• A communication channel between two vertices on the cycle must
always use the same ring.

• Through each edge of each ring there may be at most c communication
channels.
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• If a vertex of the cycle is the endpoint of a communication channel
on a ring, then it must use a so-called ADM (add/drop multiplexer)
for this vertex/ring pair.

We end up with the following NP -complete problem, Ring Grooming.
Input: Positive integers n (cycle size), c (ring capacity), k, and a list
{j1, k1}, {j2, k2}, . . . , {js, ks} of unordered pairs from {1, 2, . . . , n} repre-
senting communication demands. Note that communication demands be-
tween the same endpoints may occur multiple times, but the two endpoints
must be different.
Task: Check whether all communication demands can be fulfilled by keep-
ing all capacity conditions and using at most k ADMs.
Show that Ring Grooming is fixed-parameter tractable with respect
to parameter k. To this end, design an integer linear program for Ring
Grooming with a number of variables that is a function only of k.

5. The NP-complete Graph Bipartization problem is defined as follows.
Input: A graph G and a nonnegative integer k.
Task: Find a set of at most k vertices whose deletion makes the graph
bipartite.
Using iterative compression, show that Graph Bipartization is fixed-
parameter tractable with respect to parameter k. Note: this is a hard ex-
ercise.

6. Given that Graph Bipartization is fixed-parameter tractable, show that
so-called Edge Bipartization is fixed-parameter tractable as well.
Input: A graph G and a nonnegative integer k.
Task: Find a set of at most k edges whose deletion makes the graph bi-
partite.

7. Use greedy localization to find at least k vertex-disjoint triangles in an
arbitrary graph.
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SUMMARY AND CONCLUDING REMARKS

Part II is the heart of this book. If there is nothing to be learnt here, the other
two parts will not be beneficial.

The classification into five methodological chapters as presented here is de-
batable. One must be aware of the fact that there will be omissions to complain
about and focal points that could or should have been chosen differently. Fixed-
parameter algorithmics is probably not mature enough, or, to express it more
positively, is still developing too dynamically, to decide clearly what the essen-
tials finally will turn out to be. The arsenal of algorithmic methods presented,
however, might be sufficient to convince the reader that this is a versatile and
prospective field of research.

Among others, particular topics where the last word cannot be pronounced
on the current stage of research are iterative compression (Section 11.3) and
greedy localization (Section 11.4). Also the role that various graph parameters
related to treewidth (Section 10.7) will eventually play seems wide open. By way
of contrast, concepts such as reduction to a problem kernel (Chapter 7), depth-
bounded search trees (Chapter 8), and dynamic programming (Chapter 9) are
solid parts of the “establishment” in fixed-parameter algorithmics. In addition,
a technique such as color-coding (Section 11.1) has profitable applications in
many settings and is a clear candidate to survive as a fundamental contribution.
At this still early stage of development, however, it is open whether everything
from this central part of the book will last for a longer time or whether better
replacements will eventually be found.

Besides the call for new methods and techniques that arises particularly
from this part of the book—recall that an attractive technique such as itera-
tive compression was invented during the writing of this book—there is also a
call for further broadening and deepening of “known” methods. For instance,
can mechanized analysis (Section 8.8) replace many of the “hand-made” search
tree strategies based on extensive and error-prone case distinctions? Is such a
form of automation also possible in the context of finding data reduction rules?

We have tried to exhibit many aspects of fixed-parameter algorithmics by
using Vertex Cover as the main running example. One may wonder whether
one single problem such as Vertex Cover and its variants can be used as a
source to base a whole introduction to fixed-parameter algorithms upon it. Dis-
covering structure using only a few fundamental concepts and problem variations
is rewarding and would help to achieve a better understanding and more popular
presentation of the field.

Having presented several nice algorithmic results from a mainly theoretical
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point of view, it remains a task for future work to better evaluate and understand
their practical benefits and potentials. Algorithm engineering for fixed-parameter
algorithms is still at its very beginning.



Part III

Some Theory, Some Case Studies

One reason why parameterized complexity analysis has still not reached a really
broad degree of attention in the algorithms and complexity community may
lie in the fact that the corresponding complexity theory seems to be somehow
unwieldy. As a matter of fact, there are more “parameters” that one has to take
into account for developing the theory, making it more technical than classical
computational complexity theory. In the first chapter of this third and last part of
the book, we try to condense the essential highlights of parameterized complexity
theory in around 30 pages. What we provide here are the absolute basics that
are needed and that may also be sufficient to appreciate what parameterized
complexity theory can perform. It is insufficient to fully explore the richness of
the field.

There are two main objectives of our presentation in Chapter 13:

• to provide enough basic working knowledge for a designer of fixed-para-
meter algorithms to be in a position to see the peculiarities of parameter-
ized intractability results, maybe even deriving such results oneself; and

• to put the designer on a firm footing such that, with the knowledge pre-
sented in Chapter 13, it is easier to appreciate, understand, and further
explore the world of structural parameterized complexity theory.

Chapter 13 is not a replacement for other, deeper presentations as provided in
the cited literature. It is a starting point only.

The second chapter of this part deals with the still neglected relationship be-
tween approximation algorithms and fixed-parameter algorithms. Apparently,
the interaction between both fields can and should be further strengthened;
Chapter 14 is very brief still. A fair competition and interchange between these
two main “theory-based” attacks against computational intractability is needed,
clearly stating the pros and cons of each approach. We try to initiate a corre-
sponding agenda here.

Finally, the third and last chapter exhibits a selection of more than twenty
case studies dealing with various computational problems studied from a param-
eterized point of view. Also, reverting to the material that has been presented
throughout the book, the objective is to show a colorful spectrum of facets of
fixed-parameter algorithmics, ranging from computational biology over graph
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problems to problems from logic and many other fields. To this end, in a concise
style mostly newer results are discussed. To inspire future research activities is
the ultimate goal here.



13

PARAMETERIZED COMPLEXITY THEORY

After the crash course in Chapter 3 we now delve a little deeper into parame-
terized complexity theory. So far in this book, we have mainly been concerned
with algorithmic methods to show fixed-parameter tractability of various prob-
lems. Unfortunately, not all parameterized problems of interest turn out to be
fixed-parameter tractable. By way of contrast, there are natural and important
problems such as Clique and Dominating Set—both parameterized by the
size of the solution set—which have resisted all attempts to confine the com-
binatorial explosion to the parameter. As is to be expected when studying the
computational complexity of problems, we are not able to prove fixed-parameter
intractability unconditionally. A way out of this misery is at least to show that
fixed-parameter tractability for some problems could only be achieved if a long
series of other hard parameterized problems are fixed-parameter tractable as
well. Thus we obtain what are known as “relative lower bounds” which work
analogously to NP -hardness theory. This is the topic of this chapter.

Where is the borderline—with respect to the current state of knowledge—
between fixed-parameter tractability and intractability? Let us gain some intu-
ition by coming back to the drosophila of computational complexity theory—the
satisfiability of Boolean formulae we introduced in Section 1.1. Recall the defi-
nition of CNF-Satisfiability:

Input: A Boolean formula F in conjunctive normal form.
Question: Is there a satisfying truth assignment for F?

Bounding the maximum clause size by two makes this decision problem polyno-
mial-time solvable, whereas bounding it by three leaves CNF-Satisfiability
NP -complete. Now let us parameterize this problem by weight. Define the weight
of a truth assignment as the number of variables that are set true. Then the
Weighted CNF-Satisfiability problem is the following:

Input: A Boolean formula F in conjunctive normal form and a nonneg-
ative integer k.
Question: Is there a satisfying truth assignment for F which has weight
exactly k?

For ease of presentation, in the following we concentrate on Weighted 2-CNF-
Satisfiability where the maximum clause size is upper-bounded by two. Sur-
prisingly, Weighted 2-CNF-Satisfiability is not known to be fixed-parameter
tractable with respect to parameter k. Indeed, showing that Weighted 2-CNF-
Satisfiability is fixed-parameter tractable would imply an unlikely collapse
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of parameterized complexity classes similarly, as would showing that 3-CNF-
Satisfiability is solvable in polynomial time in classical complexity theory. In
this sense, the essence of parameterized intractability theory can be exhibited
and experienced by studying Weighted 2-CNF-Satisfiability. The border of
fixed-parameter tractability is a very sharp one here. As discussed in Section 1.1,
the seemingly harmless relaxation of Weighted 2-CNF-Satisfiability where
one asks for a satisfying truth assignment of weight at most k instead of a weight
exactly k or at least k is easily shown to be fixed-parameter tractable.

In what follows, we explore only a few of the facets of parameterized com-
plexity classes. Since this is a book mainly about algorithms, we adopt a fairly
pragmatic point of view, omitting several proofs and some insights more related
to a structural complexity theory investigation. As a rule of thumb, one may say
that parameterized complexity theory—in order to reflect (subtle) parameter-
ization aspects—has to follow a more fine-grained and perhaps more technical
methodology than classical complexity theory does.

13.1 Basic definitions and concepts

Historically, Vertex Cover, Independent Set, Clique, and Dominating
Set were, and to some extent still are, the driving forces for developing the the-
ory of parameterized complexity. The investigations started by trying to better
understand and classify what makes Vertex Cover so “easy” with respect to
fixed-parameter algorithms whereas the other problems appear to be so “hard”.
So far in this book, we have chosen a relatively informal approach when introduc-
ing parameterized problems. In order to give a clean and simple presentation of
complexity-theoretic considerations, we now become somewhat more strict. First,
we only consider decision problems. Second, the parameter must be a function of
the “basic input”. This leads to the following refinement of Definition 3.1 from
Section 3.1.

Definition 13.1 A parameterized problem L over an alphabet Σ is a set of
pairs (x, k) with x ∈ Σ∗ and k a nonnegative integer such that there is no x with
(x, k) ∈ L and (x, k′) ∈ L for some k′ �= k.

In particular, Definition 13.1 describes problems where we search for solu-
tions with parameter value exactly k. As we have seen for Weighted 2-CNF-
Satisfiability, the distinction between “at most” and “exactly” can be of de-
cisive importance. Let us reformulate our favorite problems in order to fulfill
Definition 13.1. The minimization problem Vertex Cover then turns into the
following.

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Is there a C ⊆ V with exactly k vertices such that each edge
in E has at least one of its endpoints in C?

Analogously, Independent Set then is defined in the following way.
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Input: A graph G = (V,E) and a nonnegative integer k.
Question: Is there an I ⊆ V with exactly k vertices that form an
independent set, that is, I induces an edgeless subgraph in G?

The dual problem to Independent Set, that is, Clique, is then defined as
follows.

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with exactly k vertices
such that C forms a clique, that is, C induces a complete subgraph of G?

Finally, the “close relative” of Vertex Cover, that is, Dominating Set,
where one has to cover vertices instead of edges, is then defined in the following
way.

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Is there a S ⊆ V with exactly k vertices such that each vertex
in V is contained in S or has at least one neighbor in S?

Note that in the case of these four problems, other than for Weighted
2-CNF-Satisfiability, the distinction between “at least”, “at most”, and “ex-
actly” is not decisive for our considerations. The reason is that, for instance, in
the case of the minimization problems Vertex Cover and Dominating Set,
a solution of size k′ < k can be turned into a size-k solution by simply adding
k − k′ arbitrarily chosen further vertices. Observe that, by way of contrast, it is
not clear how to transform a weight-k′ satisfying assignment with k′ < k into a
weight-k satisfying assignment.

We will compare the four above problems by means of reducibility among
them. Before giving a formal definition of (parameterized) reductions, let us first
provide some intuition. To this end, let G = (V,E) be an n-vertex graph. We
have the following simple observations.

• G has a size-k vertex cover iff it has a size-(n− k) independent set.

• G has a size-k independent set iff its complement graph G has a size-k
clique.

• G has a size-k vertex cover iff the following graphG′ has a size-k dominating
set: G′ := (V ∪ V ′, E ∪ E′) where V ′ := {ve | e ∈ E}, V ′ ∩ V = ∅, and E′

consists of all edges connecting any vertex u that is an endpoint of edge e
with ve.

13.1.1 Parameterized reducibility

What can we learn from the above observations? In a nutshell, we learn that
Vertex Cover on the one side and Independent Set on the other side are
dual problems of each other, Independent Set and Clique are “basically
the same” problems, and Dominating Set is “at least as hard” as Vertex
Cover. We will develop a better picture of these mutual relationships once we
have become acquainted with an appropriate concept of reducibility between
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combinatorial problems. Let us start with many–one reductions as known from
classical complexity theory.

Definition 13.2 We call a function g : Σ∗ −→ Σ∗ a polynomial-time many–one
reduction from a problem L1 ⊆ Σ∗ to a problem L2 ⊆ Σ∗ if

1. x ∈ L1 iff g(x) ∈ L2 and

2. g(x) is computable in |x|O(1) time.

As an example, consider the reduction of CNF-Satisfiability to 3-CNF-
Satisfiability. Here the central idea is as follows. Replace a clause

(�1 ∨ �2 ∨ . . . ∨ �m)

by the expression

(�1 ∨ �2 ∨ z1) ∧ (z1 ∨ �3 ∨ z2) ∧ . . . ∧ (zm−3 ∨ �m−1 ∨ �m),

where z1, z2, . . ., zm−3 denote newly introduced variables. It is not hard to verify
that an original CNF-formula is satisfiable iff the 3-CNF formula constructed by
replacing all its size-at-least-four clauses in the above way is satisfiable. Clearly,
the reduction is computable in polynomial time, thus also fulfilling the second
condition of Definition 13.2. Note that a core observation concerning the use of
reductions for the sake of proving relative lower bounds is that if a problem L1

is reducible to a problem L2 and L1 is not solvable in polynomial time, then L2

is also not solvable in polynomial time.
Would this classical reduction as given in Definition 13.2 suffice to show that

if a parameterized problem L1 is reducible to a parameterized problem L2 and
L1 is not fixed-parameter tractable, then L2 is not as well? The answer is no.
The problem is that the interrelationship between the respective parameters can-
not be modelled by using standard polynomial-time many–one reductions. For
instance, using the previous observation, we can trivially reduce Independent
Set to Vertex Cover in a many–one fashion—but Vertex Cover is fixed-
parameter tractable and Independent Set (probably) is not. Hence, we need
a more fine-grained reducibility concept to better characterize the relationship
between parameterized problems.

Definition 13.3 Let L,L′ ⊆ Σ∗ × N be two parameterized problems. We say
that L reduces to L′ by a standard parameterized (many–one-)reduction if there
are functions k �→ k′ and k �→ k′′ from N to N and a function (x, k) �→ x′ from
Σ∗ × N to Σ∗ such that

1. (x, k) �→ x′ is computable in k′′ · |(x, k)|c time for some constant c and

2. (x, k) ∈ L iff (x′, k′) ∈ L′.
Clearly, the relationship between Independent Set and Clique described

above yields parameterized reductions in both directions, even computable in
polynomial time. The indicated reduction from Vertex Cover to Indepen-
dent Set, however, does not yield a parameterized reduction: whereas Vertex
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Cover has parameter value k, Independent Set receives parameter value n−k,
a value that does not exclusively depend on k but also on the number n of vertices
in the input graph.

Finally, let us look back at the reduction from CNF-Satisfiability to 3-
CNF-Satisfiability. Could this be extended into a parameterized reduction
from Weighted CNF-Satisfiability to Weighted 3-CNF-Satisfiability?
This does not seem to be the case. The point is as follows. Assume that the CNF
formula has a weight-k satisfying truth assignment, making exactly one literal �j
in clause (�1 ∨ �2 ∨ . . . ∨ �m) true. To satisfy the corresponding 3-CNF formula
associated with (�1 ∨ �2 ∨ . . . ∨ �m), however, one has has to set all variables z1,
z2, . . ., zj−2 to true. Thus, the weight of a satisfying truth assignment for the
constructed 3-CNF formula does not depend exclusively on the original param-
eter k. In other words, an explanation for the difference is that, although the
CNF and the 3-CNF formulae are equivalent with respect to satisfiability, they
are not “logically equivalent”. Indeed, although both Weighted 3-CNF Satis-
fiability and Weighted CNF-Satisfiability appear to be fixed-parameter
intractable, they seem to belong to different structural degrees of parameterized
intractability. As we shall see later on, these degrees of intractability are directly
tied to the “logical depth” required to express these problems as weighted sat-
isfiability problems. In its very simple form here, 3-CNF formulae have logical
depth one in the sense that we only have one big (that is, unbounded fan-in)
Or-gate whereas CNF formulae have logical depth two because we basically have
a big And of big Ors.

13.1.2 Parameterized complexity classes

The enchantment of NP -completeness theory is that thousands of combinatorial
problems can be interrelated through polynomial-time many–one reducibility. If
any NP -complete problem is solvable in polynomial time, then all of them are.
This is a basic reason for believing that none of them is. From a parameterized
point of view, we want to follow an analogous agenda: try to interrelate as many
parameterized, seemingly fixed-parameter intractable problems as possible using
parameterized reductions. In this context, note that parameterized reductions as
well as classical ones are transitive, that is, if L1 reduces to L2 and L2 reduces
to L3, then L1 also reduces to L3. There are two problems with parameterized
complexity theory and the definition of adequate complexity classes:

• Since parameterized reductions are more fine-grained than classical ones, it
seems to be unavoidable to split the world of intractability into more classes
(although the related worst-case upper bounds on the running times may
not differ significantly between these classes).

• The machine characterization is not as nice for parameterized complexity
classes as we have for NP with nondeterministic Turing machines running
in polynomial time.

Losing some elegance because the parameterized world seems to be more com-
plicated, we accept the first problem. We ignore the second problem because we
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focus on hardness and, to this end, a machine model is not really needed.
NP -hard problems are all those problems that 3-Satisfiability can be re-

duced to by means of polynomial-time many–one reductions. In complete anal-
ogy, we can use weighted satisfiability problems to define complexity classes of
“parameterized hardness”. The basic degree of parameterized intractability is
the class W [1 ].

Definition 13.4 1. The class W [1 ] contains all problems that can be reduced
to Weighted 2-CNF-Satisfiability by a parameterized reduction.

2. A parameterized problem is called W [1 ]-hard if the parameterized problem
Weighted 2-CNF-Satisfiability can be reduced to it by a parameterized
reduction.

3. A problem in W [1 ] that fulfills both the above properties is W [1 ]-complete.

4. The class W [2 ] is defined analogously by replacing Weighted 2-CNF-
Satisfiability with Weighted CNF-Satisfiability.

Before we continue our discussion of parameterized intractability, we give
simple examples for problems in W [1 ] and W [2 ].

Example 13.5 • Independent Set (analogously Clique) is in W [1 ]. This
is based on the observation that a graph G = (V,E) with V = {1, 2, . . . , n}
has an independent set of size k iff the 2-CNF formula∧

{i,j}∈E

(xi ∨ xj)

has a weight-k satisfying truth assignment. Clearly, the corresponding pa-
rameterized reduction works in polynomial time.

• Dominating Set is in W [2 ]. This is based on the observation that a
graph G = (V,E) with V = {1, 2, . . . , n} has a dominating set of size k iff
the CNF-formula ∧

i∈V

∨
j∈N [i]

xj

has a weight-k satisfying truth assignment. Here, note that the size of the
closed neighborhood N [i] of vertex i in general cannot be bounded from
above by a constant; hence an unbounded Or might be necessary here.

Clearly, we could analogously show that Vertex Cover is in W [1 ]. This
also follows from the inclusion FPT ⊆W [1 ] which is a direct consequence of the
definition of W [1 ]. As we see, W [1 ] is defined through a satisfiability problem
which employs a formula structure that is a “big And” of “small Ors” (2-CNF).
In fact, we will shortly see that small Ors can be defined by Or-gates having
fan-in bounded from above by a constant. Moreover, W [2 ] is defined through a
satisfiability problem which employs a formula structure that is a “big And” of
“big Ors” (CNF). This generalizes into the concept of t-normalized formulae,
where the term “product” refers to And-operators and “sum” refers to Or-
operators.
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Definition 13.6 A Boolean formula is called t-normalized if it can be written in
the form of a “product-of-sums-of-products-. . .” of literals with t−1 alternations
between products and sums.

2-CNF formulae are 1-normalized and CNF formulae are 2-normalized.
With this concept at hand, we may define “higher” classes of parameter-

ized intractability. To this end, we introduce the Weighted t-Normalized
Satisfiability problem which is the natural extension of Weighted CNF-
Satisfiability (equivalently, Weighted 2-Normalized-Satisfiability) to
t-normalized Boolean formulae.

Definition 13.7 1. W [t ] for t ≥ 1 is the class of all parameterized problems
that can be reduced to Weighted t-Normalized Satisfiability by a
parameterized reduction.

2. W [Sat ] is the class of all parameterized problems that can be reduced to
Weighted Satisfiability by a parameterized reduction.

3. W [P ] is the class of all parameterized problems that can be reduced to
Weighted Circuit Satisfiability by a parameterized reduction.

In the definition of W [Sat ] we generalize t-normalized Boolean formulae to ar-
bitrary Boolean formulae. In the definition of W [P ] we furthermore generalize
Boolean formulae to Boolean circuits (of polynomial size)—the main distinguish-
ing factor between circuits and formulae here is that circuits may use “interme-
diate results” more than once at different places in the circuit.

It is time to clarify what “W” stands for. It is used as a shorthand for the
weft of Boolean formulae and circuits. The weft denotes the maximum number
of alternations between unbounded fan-in And- and Or-gates used plus one.
Thus, a CNF formula has weft two whereas a q-CNF formula for constant q has
weft one.

Finally, we introduce one more class of parameterized intractability which,
in fact, is known to be a proper superset of FPT .

Definition 13.8 A parameterized language L belongs to the class XP if it can be
determined in f(k)· |x|g(k) time whether (x, k) ∈ L where f and g are computable
functions only depending on k.

Now, we can draw an overview of parameterized complexity hierarchies.

Theorem 13.9 FPT ⊆W [1 ] ⊆W [2 ] ⊆ . . . ⊆W [Sat ] ⊆W [P ] ⊆ XP.

Proof The inclusion FPT ⊆ W [1 ] directly follows from the fact that W [1 ]
allows “FPT -computations” through the use of parameterized reductions. The
inclusion W [Sat ] ⊆ W [P ] is immediate because a formula is a special case of a
circuit (the “computation graph” is a directed tree in the first case and it is a
directed acyclic graph in the second case). Except for W [P ] ⊆ XP , all other in-
clusions are trivial by definition. Finally, W [P ] ⊆ XP follows from the fact that
in order to solve a weighted circuit satisfiability problem one may simply guess a
weight-k truth assignment of the n input variables and then check in polynomial
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time whether the circuit evaluates to true. Since guessing can be realized by
trying all

(
n
k

)
possibilities, we end up with running time nO(k). Every problem

in W [P ] can be parameterized reduced to a weighted circuit satisfiability prob-
lem. Thus, by combining the above algorithm with a parameterized reduction we
clearly arrive at an overall running time of f(k) · ng(k) for appropriate functions
f and g. �

The borderline between “good” (fixed-parameter tractable) and “bad” (fixed-
parameter intractable) here lies between FPT and W [1 ]. Whereas problems
in FPT can be solved in f(k) · nO(1) time, for W [1 ]-hard problems only ex-
act solving algorithms with running time nΘ(k) for some constant c are known.
Indeed, we are not aware of any differences concerning running times for say
W [1 ]-hard and W [2 ]-hard problems. Thus, pragmatic as we are, henceforward
we concentrate on the distinction between FPT and W [1 ]-hard in order to sep-
arate between good and bad. Therefore, questions such as showing containment
in W [1 ] or W [2 ] are basically neglected here. A thorough study of these more
structural complexity issues can be found in the literature.

Next, we take a closer look at W [1 ] and, in particular, at showing W [1 ]-
hardness.

13.2 The complexity class W [1 ]

Although we will later become acquainted with the complexity class M [1 ] which
is a candidate for lying “between” FPT and W [1 ], W [1 ]-hardness continues to
be the basic degree of parameterized intractability. Thus, proving W [1 ]-hardness
for a parameterized problem is our main tool for proving relative lower bounds.
It is important to note that, to the best of our knowledge, there are no results
showing that W [1 ]-hard problems can be solved by significantly faster exact
algorithms than, say, W [2 ]-hard or even W [P ]-hard problems can.

We begin by learning more about the structure and properties of W [1 ] and
the related W [1 ]-complete and -hard problems. We defined W [1 ] as the class
of problems parameterized reducible to Weighted 2-CNF-Satisfiability, or,
in the words of computational complexity theory, the closure of Weighted 2-
CNF-Satisfiability under parameterized reductions. The following—technical-
ly demanding—theorem tells us that we could have defined W [1 ] by an even
“simpler” problem. To this end, call a Boolean formula in CNF antimonotone
if it exclusively contains negative literals. Then, in the natural way, we ob-
tain Weighted Antimonotone 2-CNF-Satisfiability as a special case of
Weighted 2-CNF-Satisfiability with formulae restricted to be antimono-
tone. We omit the proof.

Theorem 13.10 Weighted 2-CNF-Satisfiability reduces to Weighted
Antimonotone 2-CNF-Satisfiability by a parameterized reduction.

Indeed, Theorem 13.10 can be generalized to show that Weighted q-CNF-
Satisfiability reduces to Weighted Antimonotone q-CNF-Satisfiability
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by a parameterized reduction. The important consequence of this theorem is that
Weighted Antimonotone 2-CNF-Satisfiability is W [1 ]-complete.

Corollary 13.11 The set of problems parameterized reducible to Weighted
Antimonotone 2-CNF-Satisfiability coincides with W [1 ]. This implies that
Weighted Antimonotone 2-CNF-Satisfiability is W [1 ]-complete.

Proof By definition, Weighted 2-CNF-Satisfiability is W [1 ]-complete.
Every problem in W [1 ] can be reduced to Weighted 2-CNF-Satisfiability
by a parameterized reduction and Weighted 2-CNF-Satisfiability in turn
can be reduced to Weighted Antimonotone 2-CNF-Satisfiability by a
parameterized reduction. Hence the transitivity of parameterized reductions im-
plies the claim. �

Corollary 13.11 is extremely useful for providing W [1 ]-completeness and
hardness results. For instance, the W [1 ]-completeness of Independent Set
can now easily be shown.

Theorem 13.12 Independent Set is W [1 ]-complete.

Proof In Example 13.5 we have seen a simple parameterized reduction of
Independent Set to an instance of Weighted Antimonotone 2-CNF-
Satisfiability. This shows that Independent Set is in W [1 ]. Moreover, the
reduction presented can actually be reversed, that is, every antimonotone 2-CNF
formula can be transformed into a graph such that the original formula has a
weight-k truth assignment iff the constructed graph has a size-k independent set.
Hence, Weighted Antimonotone 2-CNF-Satisfiability parameterized re-
duces to Independent Set, implying the W [1 ]-hardness of Independent Set.

�

Due to the close relationship between Clique and Independent Set, we
also obtain W [1 ]-hardness for Clique.

Corollary 13.13 Clique is W [1 ]-complete.

Proof At the beginning of Section 13.1 we presented a trivial parameterized
reduction from Clique to Independent Set and vice versa; both problems
are equivalent in a parameterized sense. The claim then follows from the W [1 ]-
completeness of Independent Set. �

In this book, which is oriented towards algorithms and not towards struc-
tural complexity investigations, we circumvent basically all of the fairly technical
constructions in relation to the W -hierarchy and the corresponding complexity
classes with their complete problems. For W [1 ], however, we will at least touch
the surface of this world by showing that Weighted q-CNF Satisfiability for
every constant q > 2 is W [1 ]-complete as well. To this end (see Definition 13.4),
the main difficulty is to show that Weighted q-CNF-Satisfiability is con-
tained in W [1 ] by establishing a one-to-one correspondence (by parameterized
reducibility) to Weighted 2-CNF-Satisfiability.
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Theorem 13.14 Weighted q-CNF-Satisfiability is W [1 ]-complete for ev-
ery constant q ≥ 2.

Proof By definition, Weighted 2-CNF-Satisfiability is W [1 ]-complete.
Let q > 2 be any integer constant. First, it is easy to see that Weighted q-
CNF-Satisfiability is hard for W [1 ]: consider the case q = 3. Replace every
clause (�1 ∨ �2) of a 2-CNF formula by two new clauses

(�1 ∨ �2 ∨ y) ∧ (�1 ∨ �2 ∨ y),
where y is a new variable that does not occur in the 2-CNF formula. Obviously,
in this way the constructed 3-CNF-formula has a weight-k satisfying assignment
setting y = 0 iff the original 2-CNF formula has a weight-k assignment. Moreover,
this transformation is doable in polynomial time, hence Weighted 2-CNF-
Satisfiability parameterized reduces to Weighted 3-CNF-Satisfiability,
implying the W [1 ]-hardness of Weighted 3-CNF-Satisfiability. The con-
struction easily generalizes to q > 3, implying the W [1 ]-hardness of Weighted
q-CNF-Satisfiability.

It remains to show the containment of Weighted q-CNF-Satisfiability
in W [1 ] for any q > 3. By the generalization of Theorem 13.10 to arbitrary
q-CNF formulae it suffices to show the following. Let F be an antimonotone
formula in q-CNF, that is, all variables occur in negated form. Then there is a
2-CNF formula F ′ such that F has a weight-k satisfying assignment iff F ′ has a
satisfying assignment of weight

k′ = f(k) := k2k +

q∑
i=2

(
k

i

)
= k2k +O(2k).

We first show the construction of F ′ from F and then show the claimed equiva-
lence.

Let x1, . . . , xn be the variables occurring in F . Consider all possible subsets
of sizes between two and q of this variable set. Call these subsets A1, . . . Ap. A
clause thus directly corresponds to one of these subsets. Associate with each Ai,
1 ≤ i ≤ p, a new variable vi in F ′. When vi is true, this shall mean that all
variables in Ai are also true. We will replace the clause corresponding to Ai

by vi and introduce for each input variable xj , 1 ≤ j ≤ n, exactly 2k “copies”
xj,0, . . . , xj,2k−1. Then, F ′ has the following structure. It consists of all clauses
from F replaced by their corresponding literal vi (thus giving a one-literal-clause)
and the following two-literal clauses (written as implications, to simplify the
presentation).

1. vi → vi′ if Ai′ ⊆ Ai;

2. vi → xj,0 if xj ∈ Ai;

3. xj,r → xj,r+1 (mod 2k) for j = 1, . . . ,m and r = 0, . . . , 2k − 1.

With this construction, the size of F ′ compared to F increases by a factor O(2k)
and an additive term

∑q
i=1

(
n
i

)
= O(nq) with constant q. Hence, this is a param-

eterized reduction.
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The correctness of the construction is seen as follows. First, assume that F
has a weight-k satisfying assignment which sets exactly the variables xj1 , . . . , xjk

true. Now consider F ′. Setting variables

xj1,0, . . . , xj1,2k−1, . . . , xjk,0, . . . , xjk,2k−1

true and all those variables vi that correspond to an Ai which forms a subset
of the variable set {xj1 , . . . , xjk

} then gives a satisfying assignment of F ′ with
weight

k2k +

q∑
i=2

(
k

i

)
= k′.

Second, for the reverse direction assume that F ′ has a satisfying assignment
of weight k′ = k2k +

∑q
i=2

(
k
i

)
. Due to the construction of F ′ we know that if one

xj,r is true, then all xj,�, 1 ≤ � ≤ 2k−1, must be true. Moreover, 2k >
∑q

i=2

(
k
i

)
.

Hence every weight-k′ satisfying assignment of F ′ has to set exactly k “variable
copy sets” of size 2k each to true. These variable copy sets naturally correspond
to a satisfying assignment of F by identifying each copy set with the original
variable in F it belongs to. �

Once more, observe that the main purpose of providing the proof of Theo-
rem 13.14 here was to give some idea of the typical technical expenditure pa-
rameterized complexity theory takes.

We have now encountered several W [1 ]-complete problems and there are nu-
merous others. The decisive point is that all W [1 ]-hard problems probably do
not allow for fixed-parameter algorithms. Before we study several more param-
eterized reductions leading to W [1 ]-hardness results in the next section, let us
briefly discuss the relationship between FPT and W [1 ]. Clearly, FPT ⊆W [1 ].
But how strong in the sense of provable intractability is the statement that a
parameterized problem is W [1 ]-hard? Here, the current state of knowledge is
as follows. We know that if P = NP , then FPT = W [1 ] because then for in-
stance the W [1 ]-complete and NP-complete problem Clique is in P . Since all
problems in W [1 ] can be reduced to Clique by a parameterized reduction, we
obtain fixed-parameter algorithms for all W [1 ]-complete problems by combin-
ing the assumed polynomial-time algorithm for Clique with the fixed-parameter
algorithm performing the reduction.

Establishing the (not believed) equality FPT = W [1 ] would have weaker
consequences than P = NP . Still, however, these consequences give some good
reason to believe that W [1 ]-hardness delivers robust statements about parame-
terized intractability. The fundamental separation hypothesis,

FPT �= W [1 ],

upon which the theory of parameterized intractability is based, is underpinned
by the following statement.
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Theorem 13.15 If W [1 ] = FPT then 3-CNF-Satisfiability for a Boolean
formula F with n variables can be solved in 2o(n) · |F |O(1) time.

The proof of Theorem 13.15 is beyond the scope of this book. The significance
of Theorem 13.15 lies in connecting classical complexity theory with parameter-
ized complexity. An even stronger link can be established when considering the
separation hypothesis FPT �= W [P ]; here, there are tight connections to the
concept of bounded nondeterminism in classical complexity theory and, in fact,
Theorem 13.15 can be derived from this correspondence between parameterized
complexity and bounded nondeterminism. We skip any details here. Let us only
remark that solving 3-CNF-Satisfiability in basically 2o(n) steps (that is,
equivalently, in 2o(n) · |F |O(1) steps) seems fairly unlikely from today’s point of
view. All exact algorithms for 3-CNF-Satisfiability we know to date work in
basically cn steps for some constant c < 2 and the (significant) progress achieved
in the last twenty years was to bring down the constant from the trivial c = 2
to c = 1.49 (with a randomized algorithm achieving c = 1.33). This seems to
indicate that there is reason to believe that FPT �= W [1 ]. This is the working
hypothesis throughout this book. Clearly, from the viewpoint of computational
complexity theory there is much more to say and the reader is invited to further
explore parameterized complexity theory using the bibliographical remarks as a
starting point.

13.3 Concrete parameterized reductions

As explained before, from an algorithmic point of view the main interest for
exploring the W -hierarchy lies in showing the “probable non-existence” of fixed-
parameter algorithms for particular problems. To this end, our main tool is
showing W [1 ]-hardness by giving a parameterized reduction from a W [1 ]-hard
problem such as Clique to the problem under consideration. In some cases, how-
ever, even stronger statements than W [1 ]-hardness are possible. Let us consider
k-Coloring as a simple example:

Input: A graph G = (V,E) and a positive integer k.
Question: Can G be colored with at most k colors, that is, does there
exist an assignment of colors to vertices such that no two adjacent ver-
tices have the same color?

It is well-known that k-Coloring and even 3-Coloring are NP-complete.
This implies that with respect to parameter k the parameterized problem k-
Coloring is not fixed-parameter tractable unless P = NP , since setting k = 3
would result in a polynomial-time algorithm. This statement is clearly stronger
than showing that k-Coloring is W [1 ]-hard with respect to parameter k be-
cause P = NP would imply FPT = W [1 ] but the reverse direction is not known.
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A second example of fixed-parameter intractability based on the assumption
P �= NP is given by a generalization of Vertex Cover to the case with vertices
having positive real-valued weights—General Weighted Vertex Cover:7

Input: A graph G = (V,E), a weight function assigning nonnegative
real values to vertices, and and a positive real number k.
Question: Does there exist a vertex cover set such that the sum of the
weights of its vertices is upper-bounded by k?

General Weighted Vertex Cover is not fixed-parameter tractable with
respect to parameter k because of the following reduction of (unweighted) Ver-
tex Cover to it showing NP -completeness even in the case k = 1.

Consider an instance of Vertex Cover with parameter k′. Transform this
into an instance of General Weighted Vertex Cover by simply assigning
weight 1/k to every vertex of the original graph. Clearly, the unweighted graph
has a vertex cover of size k iff the weighted graph has a vertex cover of total
weight 1. Hence, if General Weighted Vertex Cover were fixed-parameter
tractable we could derive a polynomial-time algorithm for the NP -complete Ver-
tex Cover problem. We mention in passing that a decisive point in the above
reduction is that weights can be arbitrarily close to zero.

Finally, before starting with parameterized hardness proofs, let us end this
introduction by showing how parameterized reductions also can lead to fixed-
parameter tractability results. Again consider a weighted version of Vertex
Cover—Integer Weighted Vertex Cover:

Input: A graph G = (V,E), a weight function assigning positive integer
values to vertices, and and a positive integer k.
Question: Does there exist a vertex cover set such that the sum of the
weights of its vertices can be bounded from above by k?

Here we assume that the weights are bounded from above by a polynomial
in the graph size.

In what follows, we exhibit that we can easily reduce Integer-Weighted
Vertex Cover to unweighted Vertex Cover via a simple parameterized
many–one reduction that does not change the value of the parameter. To prove
the following theorem, we may safely assume that the maximum vertex weight
is bounded by k. The according preprocessing needs only polynomial time.

Theorem 13.16 Integer-Weighted Vertex Cover can be solved as fast
as unweighted Vertex Cover up to an additive term polynomial in k.

Proof An instance of Integer-Weighted Vertex Cover is transformed
into an instance of Vertex Cover as follows: replace each vertex v of weight i
with a cluster cv consisting of i vertices. The graph does not contain intra-cluster
edges. Furthermore, if {u, v} is an edge in the original graph, then we connect

7Also positive rational weights are sufficient to show intractability.
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every vertex of cluster cu to every vertex of cluster cv. Now, it is easy to see
that both graphs (the instance for Integer-Weighted Vertex Cover and
the new instance for Vertex Cover) have minimum vertex covers of the same
weight/size. Here it is important to observe that the following is true for the
constructed instance for Vertex Cover: either all vertices of a cluster are in a
minimum vertex cover or none of them is. Assume that one vertex of cluster cv is
not in the cover but the remaining ones are. Then all vertices in all neighboring
clusters have to be included and, hence, it makes no sense to include any vertex
of cluster cv in the vertex cover.

Let t(k, n) be the time needed to solve Vertex Cover. The running time of
the algorithm on the “cluster instance” is clearly bounded by t(k, wn) ≤ t(k, kn),
where w ≤ k is the maximum vertex weight in the given graph. Using the
interleaving technique (see Section 8.7), it is possible to show that the running
time is not increased by a polynomial factor, but only a polynomial amount of
additional processing is needed. �

13.3.1 W [1 ]-hardness proofs

Experience tells us that parameterized many–one reductions are, as a rule, harder
to achieve than classical many–one reductions. This appears to be plausible be-
cause parameterized reductions, taking care of the “parameter structure”, have
to fulfill more properties. Nevertheless, in this part we present a series of not too
difficult examples for parameterized reductions showing W [1 ]-hardness. Far from
being exhaustive, we try to exhibit a wide range of different types of reductions
and problems.

We start with a generic problem that, since containment in W [1 ] (and, thus,
W [1 ]-completeness) can also be shown, is particularly useful for proving con-
tainment in W [1 ]. Moreover, it resembles the generic NP -complete problem of
determining whether a nondeterministic Turing machine has a polynomial-length
accepting computation path on a given input word. We focus on W [1 ]-hardness
of Short Turing Machine Acceptance here:

Input: A nondeterministic Turing machine with its transition table, an
input word x for M , and a nonnegative integer k.
Question: Does M on input x have an accepting computation path of
length at most k?

Observe that it is of key importance for the following proof that M may have
an input alphabet of arbitrary size.

Theorem 13.17 Short Turing Machine Acceptance is W [1 ]-hard with
respect to parameter k denoting the number of computation steps.

Proof The idea of the proof is to give a parameterized reduction from Clique
to Short Turing Machine Acceptance. Let (G = (V,E), k) form an input
instance of Clique where we want to determine whether G contains k vertices
inducing a clique. Without going into the technical but straightforward details,
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we may clearly assume that the structure of the graph G, for instance its ad-
jacency matrix, can be encoded into the transition table of the Turing machine
using alphabet and state sets of unbounded size. Then the Turing machine M
is designed to work in two phases. In the first phase, M nondeterministically
guesses k vertices from V , each represented by a different alphabet symbol, and
writes them on its working tape, using k tape cells. In the second phase, M
then makes

(
k
2

)
scans through the work tape, verifying that all pairs of vertices

represented on the tape are adjacent in G. Note that the adjacency information
is stored in the finite control of M and can thus be “looked up” in constant
time. If all scans are successful, then G has a size-k clique. Otherwise, it does
not. Clearly, the computation of M as described takes

O

(
k +

(
k

2

))
= O(k2)

time, thus showing that we have a parameterized reduction from Clique to
Short Turing Machine Acceptance computable in polynomial time. �

Next, we come to a more standard parameterized reduction between two
graph problems yielding W [1 ]-hardness. We study another generalization of
Vertex Cover known from the literature as Partial Vertex Cover:

Input: A graph G = (V,E) and two positive integers k and t.
Question: Does there exist a subset C ⊆ V with k vertices such that C
covers at least t edges?

Clearly, setting t = |E| gives the standard Vertex Cover problem. Perhaps
surprisingly, Partial Vertex Cover is W [1 ]-hard.

Theorem 13.18 Partial Vertex Cover is W [1 ]-hard with respect to pa-
rameter k.

Proof We give a parameterized reduction from Independent Set to Partial
Vertex Cover. Let (G = (V,E), k) be an instance of Independent Set.
For every vertex v ∈ V , let deg(v) denote the degree of v in G. We construct
a new graph G′ = (V ′, E′) in the following way: for each vertex v ∈ V we
insert |V | − deg(v) new vertices into G and connect each of these new vertices
with v. In the following, we show that a size-k independent set in G one-to-one
corresponds to a size-k partial vertex cover in G′ which covers t := k · |V | edges.

First, a size-k independent set in G also forms a size-k independent set in G′.
Moreover, each of these k vertices has exactly |V | incident edges. Then, these k
vertices form a partial vertex cover covering k · |V | edges. Second, if we have a
size-k partial vertex cover in G′ which covers k · |V | edges, then we know that
none of the newly inserted vertices in G′ can be in this cover. Hence this cover
contains k vertices from V . Moreover, a vertex in G′ can cover at most |V | edges
and two adjacent vertices can together cover only 2|V | − 1 edges. Therefore no
two vertices in this partial vertex cover can be adjacent, which implies that this
partial cover forms a size-k independent set in G. �
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The next W [1 ]-hardness result shows a simple relation between the graph
problem Clique and the set problem Set Packing. Recall the definition of Set
Packing from Section 11.4.2:

Input: A collection C of subsets of a finite set S and a nonnegative
integer k.
Question: Is there a subcollection C′ ⊆ C which consists of at least k
mutually disjoint subsets?

Theorem 13.19 Set Packing is W [1 ]-hard with respect to the desired num-
ber k of disjoint sets.

Proof We give a parameterized reduction from the W [1 ]-hard Independent
Set problem to Set Packing. Let (G = (V,E), k) be an instance of Indepen-
dent Set. We construct an instance of Set Packing as follows. The elements
of the base set S ⊆ 2V are two-element multi-subsets of V .

More precisely, for every vertex v ∈ V we build two-element sets {v, u} for
all u that are non-adjacent to v in G. Moreover, for every v ∈ V we build the
two-element set {v, v}—to simplify the presentation we think of multisets here
such that {v} �= {v, v}. Altogether, for every graph vertex v we have then built
the following subset of S:

Sv := {{v, u} | {v, u} �∈ E} ∪ {{v, v}}.

The collection C of sets Sv thus constructed together with the unchanged param-
eter value k then forms our instance of Set Packing. Altogether, it is not hard
to see that graph G together with k forms a yes-instance of Independent Set
iff the constructed collection forms a yes-instance of Set Packing. To this end,
observe that an independent set in G corresponds to a subcollection of pairwise
disjoint subsets of C and a vertex v one-to-one corresponds to the subset Sv.
�

We end this subsection with a more demanding construction that shows the
W [1 ]-hardness of an NP -complete string problem arising in computational biol-
ogy. The purpose is to illustrate the significant technical expenditure that may
be needed in order to prove W [1 ]-hardness results. More specifically, we consider
the following generalization of the Closest String problem (see Sections 8.5
and 11.2), called Closest Substring.

Input: A set of k strings s1, s2, . . . , sk over a finite alphabet Σ and
nonnegative integers d and L.
Question: Is there a string s of length L, and for i = 1, . . . , k, a substring
s′i of si of length L such that, for all i = 1, . . . , k, dH(s, s′i) ≤ d?

Here dH(s, s′i) denotes the Hamming distance between s and s′i.
Observe that we have increased combinatorial complexity compared with

Closest String because the input strings do not need to be of same length
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anymore and the desired substrings may start in |si|−|s|+1 positions individually
for every of the given k strings. Indeed, whereas we have shown in Section 11.2
that Closest String is fixed-parameter tractable with respect to the number
of input strings k, we now show that Closest Substring becomes W [1 ]-hard
with respect to this parameterization. To simplify the presentation, we only prove
W [1 ]-hardness in the case of unbounded size of the alphabet Σ—by significantly
increased mathematical efforts one can also show W [1 ]-hardness even in the
case of Σ being a binary alphabet. We refer to the literature for the latter proof,
which is based on the proof for unbounded alphabet size as described here.

We derive the W [1 ]-hardness result by a series of intermediate steps, aiming
at a reduction from Clique to Closest Substring.

Let a Clique instance be given by an undirected graph G = (V,E), with a
set V = {v1, v2, . . . , vn} of n vertices, a set E of m edges, and a positive integer k
denoting the size of the desired clique. We describe how to generate a set S of

(
k
2

)
strings such that G has a clique of size k iff there is a string s of length L := k+1
such that every si ∈ S has a substring s′i of length L with dH(s, s′i) ≤ d := k−2.
If a string si ∈ S has a substring s′i of length L with dH(s, s′i) ≤ d, we call s′i a
match for s. We assume k > 2, because k = 1 and k = 2 are trivial cases.
Alphabet. The alphabet of the produced instance is given by the disjoint union
of the following sets:

• { [vi] | vi ∈ V }, i.e. an alphabet symbol for every vertex of the input graph;
we call them encoding symbols;

• { [ci,j ] | i = 1, . . . , k, j = i + 1, . . . , k }, that is, a unique symbol for every

of the
(
k
2

)
produced strings; we call them string identification symbols;

• {#} which we call the synchronizing symbol.

This accounts for a total of n+
(
k
2

)
+ 1 alphabet symbols.

Choice strings. We generate a set of
(
k
2

)
choice strings Sc = {c1,2, . . . , c1,k, c2,3,

c2,4, . . . , ck−1,k} and assume that the strings in Sc are ordered as shown. Every
choice string will encode the whole graph; it consists of m concatenated strings,
each of length k+1, called blocks; from this, we have one block for every edge of
the graph. The blocks will be separated by barriers, which are length k strings
consisting of k identification symbols corresponding to the respective string. A
choice string ci,j is given by

ci,j := 〈block(i, j, e1)〉 ([ci,j ])k 〈block(i, j, e2)〉 ([ci,j ])k . . . ([ci,j ])
k 〈block(i, j, em)〉,

where e1, e2, . . . , em are the edges of G and 〈block()〉 will be defined below. The
solution string s will have length k+ 1, which is exactly the length of one block.
Block in a choice string. Every block is a string of length k+1 and it encodes
an edge of the input graph. Every choice string contains a block for every edge of
the input graph; different choice strings, however, encode the edges in different
positions of their blocks: for a block in choice string ci,j , positions i and j are
called active and these positions encode the edge. Let e be the edge to be en-
coded and let e connect vertices vr and vs, 1 ≤ r < s ≤ n. Then the ith position
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v1 v2

v3 v4

(a)

c1,2 = [c1,2] [c1,2] [c1,2] [c1,2]# # # #[c1,2] [c1,2] [c1,2] [c1,2] [c1,2] [c1,2] [c1,2] [c1,2] [c1,2][v1] [v3] [v1] [v4] [v2] [v3] [v3] [v4]

c1,3 = [c1,3] [c1,3] [c1,3] [c1,3]# # # #[c1,3] [c1,3] [c1,3] [c1,3] [c1,3] [c1,3] [c1,3] [c1,3] [c1,3][v1] [v3] [v1] [v4] [v2] [v3] [v3] [v4]

c2,3 = [c2,3] [c2,3] [c2,3] [c2,3]# # # #[c2,3] [c2,3] [c2,3] [c2,3] [c2,3] [c2,3] [c2,3] [c2,3] [c2,3][v1] [v3] [v1] [v4] [v2] [v3] [v3] [v4]

solution s = [v1] [v3] [v4] #

edge (v1, v3) edge (v1, v4) edge (v2, v3) edge (v3, v4)barrier barrier barrier

(b)

Fig. 13.1. Example of the reduction from a Clique instance G with k = 3
(shown in (a)) to a Closest Substring instance with bounded alphabet
(shown in (b)) as explained in Example 13.20. In (b), we display the con-
structed strings c1,2, c1,3, and c2,3 (the contained blocks are highlighted by
bold boxes) and the solution string s that is found, since G has a clique of
size k = 3; s is a string of length k + 1 = 4 such that c1,2, c1,3, and c2,3 have
length 4 substrings (indicated by dashed boxes) that have Hamming distance
at most k − 2 = 1 to s.

of the block is equal to [vr] in order to encode vr and the jth position is equal
to [vs] in order to encode vs. The last position of a block is set to the synchroniz-
ing symbol #. All remaining positions in the block are set to the identification
symbol [ci,j ] of [ci,j ]. Thus, a block is given by

〈block(i, j, (vr , vs))〉 := ([ci,j ])
i−1 [vr ] ([ci,j ])

j−i−1 [vs] ([ci,j ])
k−j #.

Values for L and d. We set L := k + 1 and d := k − 2.

Example 13.20 LetG = (V,E) be an undirected graph with V = {v1, v2, v3, v4}
and E = {{v1, v3}, {v1, v4}, {v2, v3}, {v3, v4}} (as shown in Figure 13.1(a))
and let k = 3. Using G, we exhibit the above construction of

(
k
2

)
= 3 choice

strings c1,2, c1,3, and c2,3 (as shown in Figure 13.1(b)). We claim that (which
will be proven in the following) there exists a clique of size k in G iff there is a
string s of length L :=

(
k
2

)
+1 = 4 such that, for 1 ≤ i < j ≤ 3, each ci,j contains

a length 4 substring si,j with dH(s, si,j) ≤ d := k − 2 = 1.
The choice strings are over an alphabet consisting of {[v1], [v2], [v3], [v4]} (the

encoding symbols, that is, one symbol for every vertex of G), {[c1,2], [c1,3], [c2,3]}
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(the string identification symbols), and {#} (the synchronizing symbol). Every
string ci,j , 1 ≤ i < j ≤ 3, consists of four blocks, each of which encodes an edge

of the graph. Every block is of length
(
k
2

)
+ 1 = 4 and has # at its last position.

The blocks are separated by barriers ([ci,j ])
k = ([ci,j ])

3.
In string c1,2, positions 1 and 2 within each block are active and encode the

corresponding edge (in general, in ci,j positions i and j within a block are active).
All of the first k positions of a block in string ci,j which are not active contain
the [ci,j ] symbol. Thus, for instance, the block in c1,2 encoding the edge {v1, v3}
is given by [v1] [v3] [c1,2] #. Further details can be found in Figure 13.1.

The closest substring that corresponds to the k-clique in G consisting of
vertices v1, v3, v4 is [v1] [v3] [v4] #. The corresponding matches are [v1] [v3] [c1,2] #
in c1,2 (encoding the edge {v1, v3}), [v1] [c1,3] [v4] # in c1,3 (encoding the edge
{v1, v4}), and [c2,3] [v3] [v4] # in c2,3 (encoding the edge {v3, v4}).

We have now seen the construction. It remains to show its correctness. To
prove the correctness of the proposed reduction, we have to show two directions.
The easier one is to see that a k-clique implies a closest substring fulfilling the
given requirements.

Proposition 13.21 For a graph with a k-clique, the above construction produces
an instance of Closest Substring which has a solution, i.e. there is a string s
of length L such that every ci,j ∈ Sc has a substring si,j with dH(s, si,j) ≤ d.

Proof Let the input graph have a clique of size k. Let h1, h2, . . . , hk denote the
indices of the clique’s vertices, 1 ≤ h1 < h2 < · · · < hk ≤ n. Then we claim that
a solution for the produced Closest Substring instance is

s := [vh1 ] [vh2 ] . . . [vhk
] #.

Consider the choice string ci,j , 1 ≤ i < j ≤ k. As the vertices vh1 , vh2 , . . . , vhk

form a clique, we have an edge connecting vhi
and vhj

. The choice string ci,j
contains a block si,j := 〈block(i, j, (vhi

, vhj
))〉 encoding this edge:

si,j := ([ci,j ])
i−1 [vhi

] ([ci,j ])
j−i−1 [vhj

] ([ci,j ])
k−j#.

We have dH(s, si,j) = k − 2, and we can find such a block for every ci,j , 1 ≤ i <
j ≤ k. �

For the reverse direction, we show in Proposition 13.24 that a solution in the
produced Closest Substring instance implies a k-clique in the input graph.
For this, we need the following two lemmas which show that a solution to the
constructed instance has encoding symbols at its first k positions and the syn-
chronizing symbol # at its last position.

Lemma 13.22 A closest substring s contains at least two encoding symbols and
at least one synchronization symbol.
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Proof Let s be a solution of the Closest Substring instance produced by
the construction above. Let A[c](s) be the set of string identification symbols
from { [ci,j ] | 1 ≤ i < j ≤ k } that occur in s. Let S′

[c](s) ⊆ Sc be the subset of

choice strings that do not contain a symbol from A[c](s).
Since s is of length k + 1, we have |A[c](s)| ≤ k + 1. Therefore, for k ≥ 4,

there are at least
(
k
2

) − (k + 1) choice strings in S′
[c](s). We show that with

less than two encoding symbols and no synchronizing symbol, we cannot find
matches for s (with maximally allowed Hamming distance d = k − 2) in the
choice strings of S′

[c](s). Observe that in every choice string, because of the
barriers, every length k + 1 substring contains at most two encoding symbols
and at most one symbol #. Further observe that, having taken a choice string
from S′

[c](s), positions with symbols from { [ci,j ] | 1 ≤ i < j ≤ k } cannot coincide
with the corresponding positions in s. Therefore s has a match in such a string
only if s has two encoding symbols and one symbol # that all coincide with
the corresponding positions in the selected substring. This proves the claim for
k ≥ 4. Regarding k = 3, if |A[c](s)| < 3, then the above argument applies here,
too. If, however, |A[c](s)| = 3, a length 4 substring in every choice string has at
least two positions that do not coincide with the corresponding positions in s.
�

Based on Lemma 13.22, we can now exactly specify the numbers and positions
of the encoding and synchronizing symbols in the closest substring.

Lemma 13.23 A closest substring s contains encoding symbols at its first k po-
sitions and a symbol # at its last position.

Proof Let n#(s) denote the number of symbols # in s, let n[c](s) denote the
number of string identification symbols in s, and let n[v](s) denote the number
of encoding symbols in s. Let S′

[c](s) ⊆ Sc be the subset of choice strings whose
string identification symbol does not occur in s. In the following, we establish
a lower bound on the number of strings in S′

[c](s) and an upper bound on the

number of strings from S′
[c](s) in which we can find a match for s. By comparing

these bounds, we will show that, if n#(s) > 1, there are choice strings in S′
[c](s)

in which we cannot find a match; we will conclude that n#(s) = 1. Then we will
show that if n[v](s) < k, there are again strings in S′

[c](s) without a match for s;

which will lead to the conclusion that n[v](s) = k.

Regarding the size of S′
[c](s), a lower bound on its size is |S′

[c](s)| ≥
(
k
2

)−
n[c](s). To obtain an upper bound on the number of strings in S′

[c](s) in which
we can find a match for s, recall that such matches must contain two encoding
symbols and one symbol # that all coincide with the corresponding positions
in s. On the one hand, the synchronizing symbol of a block must coincide with
a symbol # in s. On the other hand, in all blocks of a choice string, its encoding
symbols are in fixed positions relative to the block’s synchronizing symbol; for
example, in the choice string c1,2, the encoding symbols are located only at the
first and second positions and # at the last position of a block in c1,2. For
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these two reasons, one symbol # in s can provide matches in at most
(n[v](s)

2

)
choice strings from S′

[c](s). Consequently, n#(s) many symbols # in s can provide

matches in at most n#(s) · (n[v](s)
2

)
choice strings from S′

[c](s).

Summarizing, we have at least
(
k
2

) − n[c](s) choice strings in S′
[c](s) and we

can find matches in at most n#(s) · (n[v](s)
2

)
of them. Thus, we find matches for s

in all choice strings only if

n#(s) ·
(
n[v](s)

2

)
≥

(
k

2

)
− n[c](s). (13.1)

In order to show that s contains exactly one synchronizing symbol, we assume
that n#(s) > 1 (we know that n#(s) ≥ 1 by Lemma 13.22) while k > 2, and
show that then inequality (13.1) is violated.

We know that k + 1 = n[v](s) + n[c](s) + n#(s) and, by Lemma 13.22, that

n[v](s) ≥ 2. Using this, we conclude on the one hand, that n#(s) · (n[v](s)
2

) ≤
n#(s) · (k+1−n#(s)

2

)
and, since n#(s) ≥ 2, that n#(s) · (k+1−n#(s)

2

) ≤ 2 · (k−1
2

)
.

On the other hand, we have
(
k
2

) − n[c](s) ≥
(
k
2

) − (k − 1 − n#(s)) and, since

n#(s) ≥ 2, also
(
k
2

) − (k − 1 − n#(s)) ≥ (
k
2

) − (k − 3). For k ≥ 3, however, we

have
(
k
2

)− (k − 3) > 2 · (k−1
2

)
. Thus,

n#(s) ·
(
n[v](s)

2

)
≤ n#(s) ·

(
k + 1− n#(s)

2

)
<

(
k
2

)− (k − 1− n#(s))

≤ (
k
2

)− n[c](s),

that is, there are choice strings in S′
[c](s) which contain no match for s, a con-

tradiction. Since n#(s) ≥ 1 (Lemma 13.22), we conclude that n#(s) = 1.
In order to show that s contains exactly k encoding symbols, we assume

that n[v](s) < k while k > 2 and n#(s) = 1, and show that inequality (13.1) is
violated. Since k + 1 = n[v](s) + n[c](s) + n#(s) = n[v](s) + n[c](s) + 1, we have(

k
2

)− n[c](s) =
(
k
2

)− (k − n[v](s)) and, thus,(
n[v](s)

2

)
<

(
k

2

)
− (k − n[v](s)) =

(
k

2

)
− n[c](s),

that is, again, some strings in S′
[c](s) have no match for s, a contradiction. Thus,

on the one hand, we have n[v](s) ≥ k, and, on the other hand, we have n#(s) = 1
and therefore n[v](s) ≤ k.

Note that if an encoding symbol is located after the synchronizing symbol in s,
then due to the barriers it is not possible that both # and this encoding symbol
will coincide with the respective positions in every choice string from S′

[c](s), e.g.
in c1,2. Therefore, symbol # is located at the last position of s. �

Proposition 13.24 The first k characters of a closest substring correspond to
k vertices of a clique in the input graph.
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Proof By Lemma 13.23, a closest substring s has encoding symbols at its first
k positions and a synchronizing symbol at its last position. Consequently, the
blocks are the only possible matches of s in the choice string. Now, assume that
s = [vh1 ] [vh2 ] . . . [vhk

] # for h1, h2, . . . , hk ∈ {1, . . . , n}. Consider any two hi, hj ,
1 ≤ i < j ≤ k, and the choice string ci,j . Recall that in this choice string,
the blocks encode edges at their ith and jth position, they have # at their last
position, and all their other positions are set to a string identification symbol
unique for this choice string. Thus we can only find a block that is a match if there
is a block with [vhi

] at its ith position and [vhj
] at its jth position. We have such

a block only if there is an edge connecting vhi
and vhj

. Summarizing, the closest
substring s implies that there is an edge between every pair of {vh1 , vh2 , . . . , vhk

};
that is, these vertices form a k-clique in the input graph. �

Propositions 13.21 and 13.24 establish the following hardness result. (Note
that hardness for the combination of all three parameters also implies hardness
for each subset of the three.)

Theorem 13.25 Closest Substring with unbounded alphabet is W [1 ]-hard
for every combination of the parameters L, d, and k.

As mentioned before, the parameterized reduction above can be strength-
ened for parameter k in order to show W [1 ]-hardness in the case of binary
alphabets. In contrast to the previous construction, here one cannot encode ev-
ery vertex with its own symbol and one cannot use a unique symbol for every
string produced. Also, one has to find new ways to “synchronize” the matches of
a solution, a task previously done by the synchronizing symbol “#”. To overcome
these problems, one can construct an additional “complement string” for the in-
put instance and lengthen the blocks in the produced choice strings considerably.
We omit the lengthy technical details, just stating the result.

Theorem 13.26 Closest Substring is W [1 ]-hard with respect to the number
of input strings k for binary input alphabet.

13.3.2 Further reductions and W [2 ]-hardness

We have used Weighted CNF-Satisfiability (see Definition 13.4) as the
“defining” complete problem for the class W [2 ]. In Example 13.5 we have seen
that Dominating Set can be expressed as a weighted CNF-satisfiability prob-
lem, showing that Dominating Set is contained in W [2 ]. In fact—by a fairly
complicated construction—one can also show that, given a Boolean formula F
in conjunctive normal form and a nonnegative integer k, a graph G can be con-
structed such that F has a weight-k satisfying truth assignment iff G has a
size-2k dominating set. We only state the result here and refer to the literature
for the proof.

Theorem 13.27 Dominating Set is W [2 ]-complete with respect to the size of
the solution set.
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Theorem 13.27 can be used as the starting point for several W [2 ]-hardness
results. We provide three simple examples.

Our first example deals with the Hitting Set problem. Recall the definition.

Input: A collection C of subsets of a base set S and a nonnegative
integer k.
Question: Is there a subset S′ ⊆ S with |S′| ≤ k such that S′ contains
at least one element from each subset in C?
In Section 8.4 we have observed that the special cases with subset sizes

bounded from above by a constant are fixed-parameter tractable. By way of
contrast, an unbounded subset size leads to W [2 ]-hardness.

Theorem 13.28 Hitting Set is W [2 ]-hard with respect to the size of the so-
lution set.

Proof We give a parameterized reduction from Dominating Set to Hitting
Set. Let (G = (V,E), k) be an instance of Dominating Set. We construct an
instance of Hitting Set as follows. Let S := V and let C := {N [v] | v ∈ V },
that is, the subsets in C are exactly the closed neighborhoods of all vertices in V .
Based on the fact that a vertex can only be dominated by a vertex from its
closed neighborhood, we can immediately conclude that G has a dominating set
of size k iff C has a hitting set of size k. The reduction is clearly computable in
polynomial time. �

Hitting Set has a close relative: Set Cover.

Input: A base set S = {s1, s2, . . . , sn}, a collection C = {c1, . . . cm} of
subsets of S such that

⋃
1≤i≤m ci = S, and a nonnegative integer k.

Question: Is there a subset C′ of C of size at most k which covers all
elements in S, that is,

⋃
c∈C′ c = S?

In Section 9.5 we have studied (fixed-parameter) tractable variants of Set
Cover. By way of contrast, we show here that the general problem is W [2 ]-hard.

Theorem 13.29 Set Cover is W [2 ]-hard with respect to the size of the solu-
tion set.

Proof The W [2 ]-hardness of Set Cover follows from a well-known equiva-
lence between Set Cover and Hitting Set. Let (C, k) be an input instance
of Hitting Set over the base set S with S = {s1, s2, . . . , sn} and C =
{c1, c2, . . . , cm}. Define

Ĉ = {c′1, c′2, . . . , c′n},
where

c′i := {tj | 1 ≤ j ≤ m, si ∈ cj}.
Here, S′ := {t1, t2, . . . , tm} forms the base set in the set cover instance. By
considering the analogous inverse reduction one easily obtains the equivalence of



228 PARAMETERIZED COMPLEXITY THEORY

both problems in the sense that the Hitting Set instance has a size-k solution
iff the Set Cover instance has a size-k solution. This straightforward obviously
correct polynomial-time reduction works in both directions. �

Our last example has a more exotic flavor, presenting a fairly new variant
of the domination problem in graphs, applied to electric power networks. The
problem is called Power Dominating Set and we need two “observation rules”
to define it.

Observation Rule 1 (OR1): A vertex in the power dominating set observes
itself and all of its neighbors.

Observation Rule 2 (OR2): If an observed vertex v of degree d ≥ 2 is ad-
jacent to d − 1 observed vertices, then the remaining unobserved vertex
becomes observed as well.

Thus, the definition of Power Dominating Set reads as follows:

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Is there a subset C ⊆ V with at most k vertices that observes
all vertices in V with respect to the observation rules OR1 and OR2?

Note that the classical Dominating Set problem can be defined by simply
omitting OR2. Subsequently, the following simple lemma is useful—the reader
is asked to prove it in the exercises.

Lemma 13.30 If G is a graph with at least one vertex of degree three or higher,
then there is always a minimum power dominating set which contains only ver-
tices with degree as least three.

The following reduction, as a side result, also gives a simplified NP-hardness
proof for Power Dominating Set.

Theorem 13.31 Power Dominating Set is W [2 ]-hard with respect to the
size of the solution set.

Proof We give a parameterized reduction from Dominating Set to Power
Dominating Set. Given an instance (G = (V,E), k) of Dominating Set, we
construct an instance (G′ = (V ∪ V1, E ∪ E1), k) of Power Dominating Set
by simply attaching newly introduced degree-1 vertices to all vertices from V .
Figure 13.2 illustrates this transformation.

For a dominating set D of G, we set C := D to be a power dominating set
for G′. By definition, all vertices from V are observed by OR1. Applying OR2
to every vertex in V , the vertices in V1 become observed as well. Thus, C is a
power dominating set of G′.

If G′ has a power dominating set C with |C| = k, we can assume due to
Lemma 13.30 that each vertex in C has degree at least three. This implies that
C ∩ V1 = ∅. The proof is by contradiction. Assume that C is not a dominating
set of G. Then there is a vertex v ∈ V with NG[v] ∩ C = ∅. Let v′ denote the
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G G′

Fig. 13.2. An example of the reduction from Dominating Set to Power
Dominating Set in the proof of Theorem 13.31. The vertices in V1 are
drawn white.

newly introduced degree-1 neighbor of v in G′. We also have that NG′ [v]∩C = ∅.
Vertex v can get observed in G′ only by applying OR2 to one of its neighbors
in G′. Denote this neighbor by u. It is easy to see that u can not be v′. Hence,
u ∈ V . Furthermore, u has also a degree-1 neighbor u′ ∈ V1 in G′. Since u /∈ C
and u′ /∈ C, u′ can be observed only by applying OR2 to u. However, this is
impossible since u has two unobserved neighbors v and u′. Thus, C cannot be a
power domination set of G′, yielding a contradiction. �

So far, we have seen several examples of proving W [1 ]- and W [2 ]-hardness.
Many other (and also more intricate) examples can be found in the literature.
We conclude this section by demonstrating that one single problem with its para-
meterization and slight variations can exhibit the whole scenario of parameter-
ized complexity. To this end, we consider the NP -complete Longest Common
Subsequence problem, which has numerous applications ranging from compu-
tational biology to text processing.

Input: A set of k strings s1, s2, . . . , sk over an alphabet Σ and a positive
integer L.
Question: Is there a string s ∈ Σ∗ of length at least L that is a subse-
quence of every si, 1 ≤ i ≤ k?

Three parameters appear naturally in Longest Common Subsequence:

• the number k of input strings;

• the length L of the common subsequence; and

• somewhat aside, the size of the alphabet Σ.

In the case of constant-size alphabets it is straightforward to see that Longest
Common Subsequence is fixed-parameter tractable with respect to parame-
ter L by a simple brute-force enumerative approach—the combinatorial explosion
amounts to |Σ|L. By way of contrast, it is known that the problem is W [1 ]-hard
with respect to parameter k. In the case of unbounded alphabet size, however,
parameterized hardness predominates. Longest Common Subsequence then
is

• W [t ]-hard for all t ≥ 1 with respect to parameter k,
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• W [2 ]-hard with respect to parameter L, and

• W [1 ]-complete with respect to the combined parameters k and L.8

We mention in passing that the proofs of all above hardness results are fairly
demanding.

13.4 Some recent developments

To fully explore the rich literature of parameterized complexity issues is far
beyond the scope of this book. Thus, in what follows we present only a small
selection of recent developments that deserve further investigations elsewhere.
Our presentation here is completely informal. To obtain a more accurate picture
of developments, studying the literature we will point to is essential.

13.4.1 Lower bounds and the complexity class M [1 ]

There may be problems lying between FPT and W [1 ]. The class M [1 ] is a
proposal for classifying problems in this field, where FPT ⊆ M [1 ] ⊆W [1 ] and it
is an open problem of current research whether M [1 ] = W [1 ] or not. Whatever
the answer to this question turns out to be, M [1 ] plays an important role in
the context of “subexponential lower bounds” for fixed-parameter algorithms.
The main technical motivation for introducing M [1 ] is based on the following
observation. Recalling that weighted satisfiability problems play a central role in
the definition of the W -hierarchy, consider the following “trick”, which leads to
reductions between satisfiability and weighted satisfiability problems: specifying
a weight-k assignment for a set of n variables requires k · logn bits for binary
encoding. This can be used to reduce the weighted satisfiability problem of a
formula with n variables to an unweighted satisfiability problem for a formula
with only k · logn variables.

Based on our current knowledge, there are two natural “routes” to M [1 ].

• The first is called the renormalization route. One “renormalizes” the Ver-
tex Cover problem by defining the problem k logn-Vertex Cover.

Input: An n-vertex graph G = (V,E) and a nonnegative integer k.
Question: Does G have a vertex cover of size at most k · logn?

Using parameterized reductions9, this can be used as a defining M [1 ]-
complete problem. Note that k logn-Vertex Cover can be trivially solved
in nO(k) steps simply by translating the size-2k search tree idea for the
standard Vertex Cover problem into this context.

8Observe that in the case of combined parameters one might have a running time such as
2O(kL) which would imply fixed-parameter tractability with respect to the combined parame-
ter. By way of contrast, such a running time would neither imply fixed-parameter tractability
with respect to the parameter k nor with respect to the parameter L.

9Note that instead of the many–one reductions we used before so-called Turing reductions
are more suitable here. We refer to the literature for details.
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• The second is called the miniaturization route and it shows that the ba-
sic idea behind the definition of M [1 ] and classes beyond (again there
is a whole M -hierarchy, M [1 ] being the lowest level as W [1 ] is for the
W -hierarchy) is a translation of a natural hierarchy of satisfiability prob-
lems into the parameterized complexity context. Importantly, the supposed
fixed-parameter intractability of the corresponding satisfiability problems
lays the foundations for these complexity classes. Consider the Mini-3-
CNF-Satisfiability problem:

Input: A Boolean formula F in conjunctive normal form with at most
three literals per clause, and two nonnegative integers k and n encoded
over a one-element alphabet such that F contains at most k · logn vari-
ables.
Question: Does F have a satisfying truth assignment?

By means of parameterized reductions, Mini-3-CNF-Satisfiability can
again be used as a defining M [1 ]-complete problem. It can be trivially
solved by checking all 2k·log n = nO(k) truth assignments.

We mention in passing that the main combinatorial tool in the development
of a M [1 ]-completeness theory is a famous sparsification lemma which basically
says that the satisfiability problem for d-CNF formulae can be reduced to the
satisfiability problem for d-CNF formulae whose size is linear in the number of
variables by using a suitable reduction that also preserves subexponential-time
solvability.

Notably, whereas k logn-Vertex Cover and k logn-Independent Set are
M [1 ]-complete, k logn-Clique turns out to be fixed-parameter tractable be-
cause the Clique problem for an n-vertex graph can be solved in nO(

√
n) time.

We omit any details.
Recall from Theorem 13.15 that W [1 ] = FPT would imply that the 3-CNF-

Satisfiability problem for a Boolean formula F with n variables can be solved
in 2o(n) · |F |O(1) time. This can be turned into an equivalence as follows.

Theorem 13.32 FPT = M [1 ] iff the 3-CNF-Satisfiability problem for a
formula with n variables can be solved in basically 2o(n) steps.

Here, as on previous occasions, “basically” means that we ignore polynomial
factors in the running time.

Again the proof is beyond the scope of this book. The assumption that 3-
CNF-Satisfiability cannot be solved in basically 2o(n) steps for an n-variable
formula is also known as the exponential time hypothesis.

Besides providing a tool for fixed-parameter intractability results, M [1 ] can
also be used in the deployment of subexponential lower bounds. We give two
examples in the following theorem, not proven here.

Theorem 13.33 If FPT �= W [1 ], then there is no fixed-parameter algorithm
that solves Vertex Cover with a combinatorial explosion f(k) = 2o(k), and
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there is no fixed-parameter algorithm that solves Vertex Cover in Planar

Graphs with a combinatorial explosion f(k) = 2o(
√

k).

In summary, one might say that currently the main use of M [1 ] at this point
in time lies in showing subexponential lower bounds such as those in Theo-
rem 13.33.

13.4.2 Lower bounds and linear FPT reductions

As in classical complexity theory, the derivation of (relative) lower bounds in
parameterized complexity theory is based on a “reduction-and-completeness”-
program. So far, we have seen how classes such as W [1 ] or M [1 ] are employed
for this purpose. In particular, as indicated in the previous subsection, this line
of research has led to subexponential (relative) lower bounds for fixed-parameter
tractable problems. Now let us return to W [1 ]-hard problems and their presumed
fixed-parameter intractability.

By definition, W [1 ]-hardness does not, in principle, exclude the possibility
that say Clique in an n-vertex graph can be solved in nO(log log k) time. Such
an algorithm would be very useful for moderate values of k. The best known
algorithms for Clique, however, run in nO(k) time. To close this gap, a refined
parameterized reducibility concept has been introduced which we very briefly
sketch in the following. To simplify the presentation and to make things more
concrete, we consider the Clique problem for a graph with n vertices and overall
input size m. We have to find k out of the n vertices—this forms the search
space—that induce a clique. Thus in the following definition we assume that
a parameterized problem is characterized by a triple (m,n, k), where m is the
overall input size, n is the size of the search space, and k is the parameter. The
central definition then reads as follows.

Definition 13.34 There is a linear parameterized reduction from a parameter-
ized problem L with an (m,n, k)-instance x to a parameterized problem L′ with
an (m′, n′, k′)-instance x′ if there is an algorithm that runs in f(k) ·no(k) ·mO(1)

time and produces an x′ with

• m′ = mO(1),

• n′ = nO(1),

• k′ = O(k), and

• x is a yes-instance of L iff x′ is a yes-instance of L′.

Using this refined type of reducibility with linear dependence between the
parameters then leads to refined concepts of W [1 ]-and W [t ]-hardness for t ≥ 2.
The point again is that (relative) lower bounds for weighted satisfiability prob-
lems are proven by leading these problems back to the solvability of unweighted
satisfiability problems. These lower bounds, together with linear parameterized
reductions, then are used to establish lower bounds for W [1 ]-hard problems such
as Clique or Dominating Set (the latter being even W [2 ]-hard). For instance,
the following result has been shown.
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Theorem 13.35 Unless W [1 ] = FPT, Dominating Set and Weighted
CNF-Satisfiability cannot be solved in f(k) · no(k) ·mO(1) time for any com-
putable function f .

Note that Theorem 13.35 refers to two W [2 ]-hard problems and deals with
only two example problems. In the case of W [1 ]-hardness, under somewhat differ-
ent conditions referring to the (non-)existence of subexponential-time algorithms,
the non-existence of algorithms running in f(k)·mo(k) for any function f has been
shown for problems such as Clique and Weighted q-CNF-Satisfiability.

In conclusion, we note that all of the above-mentioned problems, either W [1 ]-
or W [2 ]-hard, are solvable by algorithms running in O(nk · m2) time by enu-
merating all size-k subsets of the solution space. New approaches are needed to
significantly improve these upper bounds.

13.4.3 Machine models, limited nondeterminism, and bounded FPT

All parameterized complexity classes except for FPT have been defined using
complete problems—they have not been defined based on natural machine char-
acterizations based, for instance, on certain Turing machine models. This is
probably one of the main reasons that makes these complexity classes harder
to understand than classical ones. For the class W [P ], however, there is a very
nice machine characterization. A problem is in W [P ] iff it is solvable by a nonde-
terministic fixed-parameter algorithm whose use of nondeterminism is bounded
in terms of a parameter. More precisely, one can show:

Theorem 13.36 A parameterized problem with parameter k and input size n is
in W [P ] iff it is solvable in f(k) · nO(1) time by a nondeterministic Turing ma-
chine that makes at most f(k) · log n nondeterministic steps for some computable
function f .

Theorem 13.36 clearly indicates a strong relationship between parameterized
complexity and the concept of limited nondeterminism. Moreover, one can also
show that a problem is in W [1 ] iff it is solvable by a nondeterministic fixed-
parameter algorithm that makes its nondeterministic decisions only among the
last steps of the computation. To make precise what is meant by “among the last
steps” the concept of nondeterministic random access machines is useful—we skip
any details here. Note, however, that machine characterizations are particularly
useful for showing membership in a class, whereas in this book the classes of the
W -hierarchy are mainly of interest in terms of showing parameterized hardness
results. To this end, machine models are of less importance in our context.

Closer to the focus of an algorithmic point of view on parameterized com-
plexity of problems is the question of how small the combinatorial explosion in a
fixed-parameter algorithm can be made. For instance, note that fixed-parameter
algorithms obtained from Courcelle’s famous theorem (see Section 10.6) are com-
pletely impractical due to the huge combinatorial explosions involved. Hence, to
better differentiate between the extremely varying combinatorial explosions of
fixed-parameter algorithms, the notion of bounded fixed-parameter tractability



234 PARAMETERIZED COMPLEXITY THEORY

has been proposed. The idea is to put upper bounds on the growth of the “param-

eter dependence” f , the two most natural being f ∈ 2kO(1)

and f ∈ 2O(k). The
resulting bounded fixed-parameter classes probably contain all problems that are
“fixed-parameter tractable in practice”. In this way, one may define natural sub-
classes of FPT and, on top of them, together with a refined reducibility concept,
a hierarchy of classes corresponding to various degrees of presumable “bounded
fixed-parameter intractability” similar to the W -hierarchy.

In this context note that certain natural model-checking problems that are
known to be fixed-parameter tractable in the classical “unbounded sense” have a
very high complexity in terms of bounded parameterized complexity, illustrating
why these fixed-parameter tractability results might be of little practical value.

13.5 Summary and concluding remarks

Summarizing, this chapter provides an excursion into the deep and rich world of
parameterized complexity theory. We have mostly just scratched the surface. For
deeper insights into structural complexity, further reading of the cited literature
is highly recommended.

A general observation is that it usually takes a while to familiarize oneself
with the difficulties and pitfalls that the theory bears. The main reason is that,
because the parameters play the key role, all constructions and—in particular—
the reductions need to be more fine-grained, thus posing higher technical de-
mands. To some extent, this is similar to the case of approximation theory with
its “approximation-preserving” reductions which are also more subtle than stan-
dard polynomial-time many–one reductions.

Finally, let us emphasize that parameterized complexity theory is still a highly
dynamic research field with numerous recent innovations and ongoing new de-
velopments. We end by highlighting five points in this respect.

• With the concept of bounded fixed-parameter tractability a desirable sub-
structuring of the class of fixed-parameter tractable problems has recently
been initiated.

• Lower bounds on the running time of exact algorithms for fixed-parameter
tractable problems as well as for W [1 ]-hard problems are another inter-
esting research issue that has only recently been addressed.

• The parameterized complexity class M [1 ] as a candidate for lying between
the classes FPT and W [1 ] leads to new challenges such as asking for new
parameterized intractability results using M [1 ]-hardness as a basic degree
of parameterized intractability or asking whether M [1 ] = W [1 ].

• Several further parameterized complexity classes (and corresponding hi-
erarchies) not discussed here are known and lead to numerous challenges
concerning structural complexity investigations to clarify their mutual re-
lationships.
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• So far, only a few links have been established between parameterized in-
tractability theory and inapproximability theory (see Chapter 14); both
theories should have more to say to each other than we currently know.

13.6 Exercises

1. What is the intuitive explanation for why it is not surprising that there
exists a parameterized reduction from Clique, which is classically NP -
complete, to a problem such as VC Dimension (also see Section 15.6.4)
which is not known to be NP -hard but contained in NP?

2. Show that the problem to decide whether a 3-CNF formula has a satisfying
truth assignment of weight at most k is fixed-parameter tractable with
respect to parameter k.

3. Show that parameterized reductions are transitive. That is, for parame-
terized problems L1, L2, L3, if L1 ≤ L2 and L2 ≤ L3 by parameterized
reductions, then also L1 ≤ L3 by a parameterized reduction.

4. Show that the following problems are W [1 ]-hard:

(a) The variant of Partial Vertex Cover where we wish to choose at
least k vertices such that at most t edges are covered; the parameter
being k.

(b) The introductory example in Section 1.2 with the parameter being
the size of the desired set.

(c) The “exact variant” of Maximum Satisfiability where one only
counts clauses where exactly one literal is true; the parameter is the
number of clauses with exactly one true literal.

(d) Steiner Tree in Graphs with respect to the parameter “number
of non-terminal vertices”, that is, the dual parameterization to the
one studied in Section 9.3.

(e) Set Packing with respect to the parameter “number of mutually
disjoint sets”; see Section 11.4.2.

5. Prove Lemma 13.30.

13.7 Bibliographical remarks

Most material in this chapter is taken from the groundbreaking monograph
Downey and Fellows (1999); also refer to this work for older literature not cited
here. Some recent surveys also provide insight in latest developments in param-
eterized complexity theory (Downey, 2003; Fellows, 2003a; Fellows, 2003b; Flum
and Grohe, 2004a).

Concerning some of the parameterized reductions, note that Weighted
Vertex Cover problems are studied in Niedermeier and Rossmanith (2003b),
the W [1 ]-hardness of Partial Vertex Cover is proven in Guo et al. (2005b),
and the W [1 ]-hardness of Closest Substring is from Fellows et al. (2002).
See Marx (2005) for a very recent result showing the W [1 ]-hardness of Closest
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Substring also with respect to the distance parameter d. The Longest Com-
mon Subsequence problem is studied in Bodlaender et al. (1995), Downey
and Fellows (1999), and Pietrzak (2003), the close relationship between Set
Cover and Hitting Set was already observed in Ausiello et al. (1980), and
the W [2 ]-hardness of Power Dominating Set independently appears in Guo
et al. (2005a), and Kneis et al. (2004).

The development of the class M [1 ] goes back to Downey et al. (2003), and
is further investigated in Chen and Flum (2004). The roots of studying M [1 ]
and lower bounds for fixed-parameter tractable problems lie in Cai and Juedes
(2003), with close relations to the earlier work Impagliazzo et al. (2001). The
study of lower bounds and linear FPT reductions is due to Chen et al. (2004b).
More about machine models for parameterized complexity classes can be found
in Chen et al. (2005); limited nondeterminism is discussed in Papadimitriou
and Yannakakis (1996) and Chen et al. (2003). The use of special versions of
the Turing Machine Halting problem to show membership in the classes
W [1 ], W [2 ], and W [P ] is advocated in Cesati (2003). Finally, studying the
structure inside FPT introducing bounded fixed-parameter tractability has been
undertaken in Flum et al. (2004).
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CONNECTIONS TO APPROXIMATION ALGORITHMS

In dealing algorithmically with NP -hard problems, polynomial-time approxima-
tion algorithms have so far been the main focus of the theoretical computer
science community: when we cannot afford to search for optimal solutions, then
let us investigate how good an approximate solution we can find in polynomial
time. For instance, in the case of Vertex Cover we can always find—in linear
time—a solution that is at most twice as large as an optimal one: instead of
having to decide which of the two endpoints of an edge to choose, simply take
both. Somewhat surprisingly, in the worst case this is basically the best strat-
egy known; that is, it has been an open problem for more than twenty years
whether there exists a factor-(2 − ε) polynomial-time approximation algorithm
for a constant ε > 0. The deep and famous “PCP inapproximability theory” has
proceeded to a point that shows that, unless P = NP , there is no polynomial-
time approximation algorithm for Vertex Cover with approximation factor
better than 1.36.

In contrast to approximation algorithms, fixed-parameter algorithms aim to
find optimal solutions at the price of accepting seemingly unavoidable exponen-
tial running times. This appears to be reasonable whenever the parameter to
which the combinatorial explosion is confined turns out to be small in real ap-
plications. Thus, in some sense the concept of fixed-parameter tractability is a
competitor of polynomial-time approximability with respect to coping with com-
putational intractability. Indeed, both methodologies have their obvious pros and
cons. Notably, polynomial-time approximability is the much deeper explored and
better developed field at the current time.

What is there in favor of polynomial-time approximation algorithms?

• No matter what the input is, efficiency in terms of polynomial-time com-
plexity is always guaranteed.10

• The approximation factor provides a worst-case guarantee, and in practical
applications the actual approximation might be much better, thus turning
approximation algorithms into useful heuristic algorithms as well.

• There is a huge arsenal of methods and techniques developed over the years
in conjunction with studying approximation algorithms, and there is a
strong and deep theoretical foundation for impossibility results particularly
concerning lower bounds for approximation factors.

10In the author’s opinion, however, the analysis of the degree of the polynomial in the running
time is too often neglected. To this end, note that depending on the exponent, polynomial
running time does not necessarily imply efficiency in a practical sense.

237
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By way of contrast, on the one hand, fixed-parameter algorithms may have
unreasonably high running times because the parameters might be too large
or the involved combinatorial explosion might be astronomical even for small
parameter values. On the other hand, the following speaks in favor of fixed-
parameter algorithms:

• There is complete freedom to choose the “right” parameterization, which is
not only fixed to measure the size of the solution but can also incorporate
structural aspects of the input such as the treewidth parameter does.

• Fixed-parameter algorithms stick to worst-case analysis—in this case con-
cerning the combinatorial explosion—but in practical applications they
might turn out to run much faster than the worst-case runtime analysis
suggests.

• Although not as developed and mature as inapproximability theory, with
the famous PCP theorem, parameterized complexity has already made
worthwhile contributions to structural complexity theory, culminating in
W [1 ]-hardness theory.

Hence, in conclusion we propose the still young field of parameterized prob-
lem analysis and algorithm design as a valuable and interesting alternative to
polynomial-time approximation algorithms. It seems that both fields can com-
plement each other very well, thus giving hope for progress based on synergetic
effects.

Altogether, however, instead of discussing where which approach might be be
superior to the other, it is more productive to see where one approach may serve
the other. Interaction between both disciplines is needed. The establishment of
links between both fields is still underdeveloped and we hope to see more mutual
fertilization in the future.

14.1 Approximation helping parameterization

We started our discussion by mentioning that it is a longstanding open problem
to find a better-than-factor-two polynomial-time approximation algorithm for
Vertex Cover. In Section 7.4 we have seen that by a result of Nemhauser and
Trotter—a result that originated in the context of approximation algorithms—a
2k-vertices problem kernel for Vertex Cover has been developed. From this,
our first conclusion is:

• Approximation algorithms may help to prove fixed-parameter tractability
results.11

There is a perhaps even more important statement we can make concerning lower
bounds. Since a (c · k)-vertices polynomial-time problem kernelization trivially

11This observation is not confined to a scenario dealing with reduction to a problem kernel.
For instance, using a linear-time constant-factor approximation algorithm for Feedback Ver-
tex Set, the iterative compression fixed-parameter algorithm presented in Section 11.3.2 can
be turned into a “linear-time fixed-parameter algorithm”; that is, this algorithm runs in linear
time for a constant parameter value k.
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gives a polynomial-time factor-c approximation algorithm, we can conclude for
Vertex Cover that a problem kernel with less than 2k vertices seems unlikely.
More specifically, since the PCP inapproximability theory tells us that there is
no hope of a polynomial-time better-than-factor-1.36 approximation algorithm,
we can infer that there is also no hope of a 1.36k-vertices problem kernel. Hence
our second conclusion is:

• Lower bound results for approximation algorithms directly yield lower
bounds for problem kernel sizes; thus, PCP theory also helps parameterized
complexity theory.

It remains for future work to extend these observations by perhaps also making
deeper connections between both fields. In any case, there is no doubt that
techniques developed in the context of approximability may provide tools and
starting points which parameterized complexity can make use of.

14.2 Parameterization helping approximation

The field of parameterized complexity is younger and so far much less work-
time has been invested in its exploration. Still it may help to derive new and
fruitful insights concerning approximability. So far, these are mostly based on
the W [1 ]-hardness theory and concern “impossibility results” in context with
polynomial-time approximation schemes.

We become a little more formal here. The central starting point is the obser-
vation that every optimization problem that has an “efficient” polynomial-time
approximation scheme is fixed-parameter tractable with respect to the parameter
being the optimization value (which is the size of the solution set searched for):
for ease of presentation, let us focus on minimization problems—the case of of
maximization problems works in completely analogous fashion. Then, informally
speaking, a minimization problem has

• a polynomial-time approximation scheme (PTAS ) if, for any constant ε >
0, there is a factor-(1+ ε) approximation algorithm running in polynomial
time;

• an efficient polynomial-time approximation scheme (EPTAS ) if, for any
constant ε > 0, there is a factor-(1 + ε) approximation algorithm running
in f(1/ε)·|x|O(1) time for any computable function f only depending on 1/ε;
and

• a fully polynomial-time approximation scheme (FPTAS ) if, for any con-
stant ε > 0, there is a factor-(1 + ε) approximation algorithm running in
(1/ε)O(1) · |x|O(1) time.

The decisive point above is that in the case of a PTAS the degree of the polyno-
mial in the running time bound may depend on 1/ε, whereas in the case of an
FPTAS or an EPTAS it may not. (Clearly, every FPTAS is an EPTAS.)

To state the central result, we need to define what we understand by the
standard parameterization of an optimization (here only minimization) problem.
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Definition 14.1 Let x be an input instance of an optimization problem where we
want to minimize the goal function m(x). Then its standard parameterization is
the pair (x, k), which means that we ask whether m(x) ≤ k for a given parameter
value k.

We are now ready for the main theorem.

Theorem 14.2 If a minimization problem has an EPTAS, then its standard
parameterization is fixed-parameter tractable.

Proof Let x be an input instance with goal function m(x) and let k be the
threshold value of the standard parameterization, that is, the parameter. Choose
ε := 1/(2k). Since there is an EPTAS, we know that there is an algorithm running
in f(2k) · xO(1) time that produces a solution with approximation factor 1 +
1/(2k). Hence if there is a solution for x such that m(x) ≤ k, then we know
that the above approximation algorithm can find a solution with goal value
(1 + 1/(2k)) · k = k + 1/2. Considering only integer-valued optimization goals,
we may conclude that the constructed solution leads to the goal value k. This
implies that the standard parameterization is fixed-parameter tractable. �

Clearly, the above considerations hold completely analogously for maximiza-
tion problems. The point with Theorem 14.2 is not so much that it gives fixed-
parameter tractability results using approximability results—usually a direct
fixed-parameter approach yields faster algorithms. More important is the con-
clusion we can draw from reformulating the statement as follows.

Corollary 14.3 If the standard parameterization of an optimization problem
is not fixed-parameter tractable, then there is no EPTAS for this optimization
problem.

Hence parameterized complexity analysis may help to explore the borders
of feasible approximability. Polynomial-time approximation schemes have been
intensively studied in the approximation literature. Note that a PTAS may have
nothing to do with practical feasibility. For instance, a PTAS may have a running
time of O(|x|3000/ε) or O(|x|(1/ε)!). Thus, for practically interesting small ε the
associated running times can become astronomically large. The problem is that
the quality of approximation, expressed by the constant ε, is tied to the degree of
the polynomial running time bound. This is not the case for an EPTAS. Hence it
is useful to distinguish between optimization problems that allow for an EPTAS
and those that only allow for a PTAS. Here, W [1 ]-hardness theory enters the
stage, giving a clear theory-based indication of fixed-parameter intractability,
and thus of the non-existence of an EPTAS. In fact, there are already examples
in the literature of concrete W [1 ]-hard parameterized problems where the non-
existence of an EPTAS is indicated whereas a PTAS is known.

Finally, we mention in passing that very recent developments along the lines
sketched above have led to results such as stating that an optimization problem
has no approximation scheme running in f(1/ε) · |x|o(1/ε) time unless an unlikely
collapse in parameterized complexity theory occurs.
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14.3 Further (non-)relations

May one expect that a problem that has no “good” polynomial-time approxima-
tion algorithm will turn out to be well-behaved from a parameterized point of
view? Or may one expect that a problem which is parameterized intractable is
hard to approximate? Even if we restrict our attention to standard parameteri-
zations (see Definition 14.1), the general answer is both times “no”:

• There are problems such as Graph Bipartization (see Section 15.2.3) for
which only factor O(log n) polynomial-time approximation algorithms are
known but which have efficient and practical fixed-parameter algorithms.

• There are W [1 ]-hard problems (such as the so-called Distinguishing
Substring Selection problem, a generalization of Closest Substring)
that have PTASs or efficient constant-factor approximations.

Finally, we mention in passing that it also makes sense to combine both
concepts. We give two examples here.

• A practically efficient factor-4 approximation algorithm to compute the
treewidth of a graph and to construct a corresponding tree decomposition
is actually a fixed-parameter algorithm in terms of running time (see also
Section 10.2).

• One may easily combine depth-bounded search trees with approximation
algorithms—stop the search at a higher level and replace the “undone
search tree” part by an approximation algorithm. This may yield an ap-
proximation algorithm with an improved approximation factor and a fixed-
parameter running time better than in the exact case. A concrete applica-
tion has been described in the literature for the Maximum Satisfiability
problem.

The above discussion only scratches the surface of a world of numerous fruitful
interactions between parameterization and approximation—perhaps it will find
more attention in future research.

14.4 Discussion and concluding remarks

There still is a gap between the communities of approximation and parameterized
algorithmics which needs to be (better) bridged. This is also reflected in the
brevity of this chapter. It seems clear that more and deeper interactions between
both fields await discovery. Whereas approximation is the more mature field,
parameterization seems to offer more opportunities for studying one and the
same problem from different angles. This is due to the freedom of parameter
choice. By way of contrast, the algorithmic tools and techniques as well as the
corresponding lower bound theory currently form the larger and more attractive
toolbox of approximation in comparison with parameterization. Perhaps future
research will bring some progress such that the fields will grow further into each
other.
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14.5 Bibliographical remarks

The books Ausiello et al. (1999), Hochbaum (1997), and Vazirani (2001) provide
an excellent basis for studying approximation algorithms. A few words about
the connections between approximation and parameterized algorithmics can be
found in Downey and Fellows (1999), Downey (2003), and Fellows (2003b). The
lower bound for the approximation factor of Vertex Cover is due to Dinur
and Safra (2002). The deep and famous PCP theory is surveyed in Ausiello et al.
(1999), Hochbaum (1997), and Vazirani (2001).

The mentioned use of a linear-time constant-factor approximation algorithm
for Feedback Vertex Set in order to achieve linear-time fixed-parameter
tractability is described in Guo et al. (2005). The connection between fixed-
parameter tractability and EPTAS is established in Cesati and Trevisan (1997).
The efficient fixed-parameter algorithm for Graph Bipartization is due to Reed
et al. (2004). The “fixed-parameter treewidth approximation algorithm” appears
in Reed (1993). The W [1 ]-hardness result for Distinguishing Substring Se-
lection and the thus seemingly first “proof of non-existence” of an EPTAS for a
natural problem appears in Gramm et al. (2003). Finally, the combination of an
approximation and an exact search tree algorithm for Maximum Satisfiability
appears in Dantsin et al. (2001).
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SELECTED CASE STUDIES

The objective of this chapter is to provide some further arguments for the ver-
satility of the fixed-parameter complexity agenda. To this end, we enumerate
several case studies from various fields and very briefly exhibit why and how pa-
rameterized complexity analysis is relevant here. In doing so, after some general
statements concerning planar and related graphs, from Section 15.2 on we follow
always the same structure:

1. we define and motivate the problem;

2. we make some general considerations concerning the fixed-parameter tract-
ability of the problem;

3. we concisely state the known results;

4. we discuss its relevance and potential for future research; and

5. we point to basic references in the literature.

Here, for different problems, we choose different foci and descriptions with dif-
ferent degree of detail; the individual presentations are limited to at most two
pages. Clearly, in all cases it is absolutely necessary to refer to the cited literature
in order to obtain more complete pictures of the discussed problems.

Note that most fixed-parameter tractability results discussed in this chapter
so far have combinatorial explosions that seem to make their practical useful-
ness doubtful. The selection of problems was done with the idea of presenting
results that carry particular challenges for future research, namely to shrink the
combinatorial explosions.

15.1 Planar and more general graphs

The study of the parameterized complexity of NP-complete problems in pla-
nar graphs was the incentive for findings concerning subexponential-time fixed-
parameter algorithms. In follow-up work these results were generalized to larger
classes of graphs.

15.1.1 Planar graphs

In this monograph we have encountered planar graphs in many places.

• In Section 7.6 we described a sophisticated kernelization algorithm for
Dominating Set in Planar Graphs.

• In Section 8.6 we discussed a depth-bounded search tree for Dominating
Set in Planar Graphs.

• In Section 10.3 we explored connections between planar graphs and the
construction of tree decompositions.
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The reasons why planar graphs play such a prominent role in this work are as
follows.

• Planar graphs derive as natural abstractions from real-life problems.

• Many NP-complete graph problems remain NP-complete when restricted
to planar graphs. However, they behave much better with respect to ap-
proximate (polynomial-time) or exact (exponential-time) solvability.

• Planar graphs have several nice properties:

∗ they are sparse, that is, the number of edges is bounded from above
by a number less than three times the number of vertices;

∗ there always exists a vertex of maximum degree five;

∗ they are characterized by forbidding the complete graph K5 and the
complete bipartite graph K3,3 as minors; and

∗ they have nice decomposition properties to be further discussed in
what follows.

There are basically two routes to cope with NP-complete problems in planar
graphs using fixed-parameter algorithms.

1. Through the use of classical separator theorems. Let G = (V,E) be an
undirected graph. A separator S ⊆ V of G divides V into two parts A1 ⊆ V
and A2 ⊆ V such that

• A1 ∪ S ∪A2 = V , and
• no edge joins vertices in A1 and A2.

Informally speaking, the point is that for planar n-vertex graphs there is
always a graph separator S with |S| = O(

√
n) that divides V into two

sets A1, A2 each with at most 2n/3 vertices. Hence, a divide-and-conquer
approach applies, yielding algorithms with exponential running time factor
c
√

n for some constant c. In the case of linear-size problem kernels, this can
be extended into fixed-parameter algorithms with subexponential combi-

natorial explosion c
√

k for parameterized graph problems. An example is
Dominating Set where parameter k denotes the size of the solution set.

2. A closely related but conceptually different route is that through the con-
cept of k-outerplanarity as sketched in Section 10.3. This has been devel-
oped into a fairly general methodology applying to graph problems with
the so-called “Layerwise Separation Property”: in this case one can run a
general algorithm which quickly computes a tree decomposition of guar-
anteed small width. Again, this leads to fixed-parameter algorithms with

combinatorial explosion c
√

k for some constant c.

Literature. The literature is rich with studies of subexponential fixed-parameter
algorithms for problems such as Vertex Cover or Dominating Set in planar
graphs. First results were derived in Alber et al. (2002), Alber et al. (2003), and
Alber et al. (2004), with later improvements concerning running times such as
the ones in Fomin and Thilikos (2003). The results all suffer from constants c

that are still too big in the exponential terms c
√

k.



GRAPH MODIFICATION PROBLEMS 245

15.1.2 More general graphs

The encouraging results for planar graphs have stirred interest in possible exten-
sions to more general classes of graphs. Under these, graph classes such as the
following have been successfully investigated:

• graphs of bounded genus (note that planar graphs have genus 0);

• disk graphs;

• map graphs;

• K3,3-minor-free or K5-minor-free graphs;

• minor-closed families for bounded local treewidth;

and several others. We particularly remark that very recently a “bidimensional
theory” of bounded-genus graphs (somewhat analogous to the famous graph mi-
nor theory) has been developed. In this context, bidimensionality is considered
as a general approach for obtaining treewidth-parameter bounds and therefore
subexponential fixed-parameter algorithms. Roughly speaking, a parameterized
graph problem is bidimensional if the parameter is large in “grid-like graphs”,
that is, linear in the number of vertices, and if it is (for instance) closed un-
der taking minors. Examples of bidimensional problems are Vertex Cover,
Feedback Vertex Set, Dominating Set, and many others.

Note, however, that all of the above considerations appear to be of mainly
theoretical interest because of the large constants involved.
Literature. The bidimensionality theory is developed in Demaine and Haji-
aghayi (2005), Demaine et al. (2004a), and Demaine et al. (2004c). Other results
for generalizations of planar graphs are to be found in, among others, Alber and
Fiala (2004), Demaine et al. (2003), Demaine et al. (2005), Fomin and Thilikos
(2004b), and Chen et al. (2003).

15.2 Graph modification problems

Graph modification problems provide a very natural setting for studying param-
eterized complexity in terms of a parameterization by the number of modification
operations. There is a long list of problems arising in various fields of applications
that fall into the category of graph modification. For instance, one may ask

• to delete the minimum number of vertices of a graph to transform it into a
forest—this is the NP -complete Feedback Vertex Set problem12 (see
Section 11.3.2;

• to delete the minimum number of vertices or edges to transform it into a
bipartite graph—these are the NP -complete problems Graph Bipartiza-
tion and Edge Bipartization;

• to add a minimum number of edges to transform a graph into a chordal
one, that is, a graph in which every induced cycle of length at least four
has a chord—this is the NP-complete Minimum Fill-In problem;

12In the case of deleting edges instead of vertices, the problem is solvable in polynomial
time—this is equivalent to find a spanning forest with a maximum number of edges.
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• to add and delete a minimum number of edges to transform a graph into a
collection of disjoint cliques—this is the NP -complete Cluster Editing
problem (see Sections 7.3 and 8.2); and

• to add and delete a minimum number of edges to transform a graph into
a so-called 3-leaf power which is a special case of a graph power prob-
lem restricted to trees—this is the NP-complete Closest 3-Leaf Power
problem.

We have already seen (Sections 7.3 and 8.2) how to attack Cluster Editing
with fixed-parameter techniques using the parameter “number of edge additions
and deletions”. In the following case studies we will sketch how the other four
problems are dealt with by fixed-parameter methods. In this way, we revisit the
Feedback Vertex Set problem, complementing the results using the itera-
tive compression technique from Section 11.3.2. Before that, we give a general
classification of graph modification problems into four natural categories:

• Edge deletion problems where the goal is to find a minimum set of edges
to be removed in order to transform the graph as wanted.

• Edge addition problems where the goal is to find a minimum set of edges
to be added in order to transform the graph as wanted.

• Edge editing problems where the goal is to find a minimum set of edges to
be removed or to be added in order to transform the graph as wanted.

• Vertex deletion problems where the goal is to find a minimum set of vertices
to be removed (together with their incident edges) in order to transform
the graph as wanted.

We have omitted vertex addition problems since this, in its general form, can be
seen as a general graph construction instead of a graph modification method.

Clearly, vertex deletion can be combined with any other of the three edge
modification mechanisms. Often graph modification problems turn out to be
NP-complete. In many application scenarios behind, however, it appears to be
natural that the number of modification operations—often considered as some
form of “error compensation”—should be relatively small. This makes graph
modification problems prime candidates for parameterized complexity studies.

Before presenting four case studies for the above mentioned concrete prob-
lems, we begin with a very general framework dealing with graph modification
problems from a parameterized point of view.

15.2.1 Graph modification and hereditary properties

Definition and motivation. A graph property is a set of graphs. A graph prop-
erty is hereditary if every induced subgraph of a graph with the property has the
property as well. For instance, planarity and bipartiteness clearly are hereditary
whereas regularity (all vertices shall have same degree) is not. A property Π has
a finite forbidden set characterization if there is a finite set F of graphs such
that any graph has property Π iff it does not contain any of the graphs in F as
an induced subgraph. Note that a graph property is hereditary iff it has a (not
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necessarily finite) forbidden set characterization. We shall see that a very general
version of graph modification problems is fixed-parameter tractable if the goal
graph class of the modification process has a finite forbidden set characterization.
To this end, we formulate the following problem Πi,j,k Graph Modification
for a particular graph property Π:

Input: A graph G = (V,E) and nonnegative integers i, j, k.
Question: Can we delete at most i vertices, delete at most j edges,
and add at most k edges such that G is transformed into a graph with
property Π?

Many of the subsequently mentioned problems are special cases of this very
general, NP-complete graph modification problem.
General considerations. We will see that Πi,j,k Graph Modification in case
of a finite forbidden set characterization of graph property Π is fixed-parameter
tractable with respect to the combined parameters i, j, and k. The basic idea
of the approach is to—if it exists—determine an induced subgraph in the given
graph G that coincides with a forbidden subgraph. If the finitely many forbidden
subgraphs all have constant size, then this step is doable in polynomial time
by a simple exhaustive approach. Then the crucial idea is to modify such a
found induced forbidden subgraph in G, exhaustively trying all of finitely many
edge modifications (deletions or additions) or vertex deletions on this subgraph
structure in order to destroy the forbidden subgraph. In a natural way, this
leads to a depth-bounded search tree strategy: in each search tree node, find a
forbidden subgraph and branch into all (of finitely many) cases that lead to a
destruction of the considered forbidden induced structure.
Result. Πi,j,k Graph Modification can be decided in O(N i+2j+2k · |G|N+1|)
time for any graph property with finite forbidden set characterization. Here N
denotes the maximum number of vertices over all graphs in the forbidden set
of graphs. Thus, Πi,j,k Graph Modification is fixed-parameter tractable with
respect to the combined parameters i, j, and k.
Discussion. The above result is clearly of mainly theoretical interest. There
are several special cases of the problem for which more efficient fixed-parameter
algorithms can be achieved. Altogether, this indicates that graph modification
problems are a fertile ground for fixed-parameter research.
Literature. The basic reference for the result on Πi,j,k Graph Modification
is Cai (1996).

15.2.2 Feedback Vertex Set revisited

Definition and motivation. The Feedback Vertex Set problem is defined as
follows.

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Is there a subset V ′ ⊆ V with k or fewer vertices such that
each cycle in G contains at least one vertex from V ′?

Thus removing the vertices in V ′ from G results in a forest.



248 SELECTED CASE STUDIES

We have seen in Section 11.3.2 how to solve Feedback Vertex Set by a
fixed-parameter algorithm running in O(ck ·m·n) time for some constant c. Actu-
ally, this can be turned into a linear-time fixed-parameter algorithm by combining
it with a linear-time constant-factor approximation algorithm, further increasing
constant c. By relaxing our paradigm of considering deterministic algorithms and
moving to randomized ones—which means to accept some likelihood of errors—a
fairly simple and efficient randomized fixed-parameter algorithm for Feedback
Vertex Set can be derived.
General considerations. The key observations are as follows. First, it is easy to
eliminate vertices of degree at most two from the graph. Thus, assuming without
loss of generality a graph with minimum vertex degree three, the algorithm is
based on the easy-to-prove observation that if one picks an edge at random then
there is a probability of at least 1/2 that at least one of its two endpoints belongs
to any feedback vertex set searched for. This implies that with probability 1/4
a vertex chosen uniformly at random is part of the desired feedback vertex set.
This leads to a simple randomized algorithm that terminates with a feedback
vertex set of size k with probability at least 1/4k.
Result. Repeating the above algorithm independently c · 4k times results in an
algorithm that after O(c · 4k · n) steps finds a size-at-most-k feedback vertex

set—if it exists—with probability at least 1− (1 − 1/4k)c·4k

.
Discussion. The above randomized algorithm gives one of the few known (see
also the color-coding method in Section 11.1) concrete examples where random-
ization is employed in the design of fixed-parameter algorithms. This randomized
algorithm for Feedback Vertex Set appears to be superior to its determinis-
tic counterparts from a practical viewpoint. Bringing the run time of the deter-
ministic algorithm closer to that of the randomized algorithm appears to be an
interesting challenge for future research.
Literature. The randomized fixed-parameter algorithm is due to Becker et al.
(2000).

15.2.3 Graph Bipartization

Definition and motivation. Deleting as few vertices as possible from a graph
to make it bipartite is an NP-complete problem with applications in diverse
fields such as VLSI design and computational biology. Formally, Graph Bi-
partization, also known as Maximum Bipartite Subgraph or Odd Cycle
Transversal, is defined as follows.

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Is there a subset V ′ ⊆ V with k or fewer vertices such that
each odd-length cycle in G contains at least one vertex from V ′?

Thus removing the vertices in V ′ from G results in a bipartite graph.
General considerations. The iterative compression technique (see Section 11.3)
was first introduced in conjunction with showing that Graph Bipartization
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is fixed-parameter tractable. At the current time, however, the associated com-
pression lemma seems to be a little more technical for Graph Bipartization
than it appears to be for the closely related Feedback Vertex Set (see Sec-
tion 11.3.2). Whereas in the latter we need to destroy all cycles by a minimum
number of vertex deletions, in the first case we “only” have to destroy the cycles
of odd length. Importantly, experiments demonstrate that iterative compression
is in fact a worthwhile alternative to integer linear programming approaches for
solving Graph Bipartization in practice. To this end, some useful “heuristics”
improving the running time have been explored.
Result. Graph Bipartization can be solved in O(3k ·m · n) time, where m
denotes the number of edges and n denotes the number of vertices.
Discussion. The closely related Edge Bipartization problem can be solved
in O(2k ·m2) time. Here the task is to delete edges instead of vertices. Again, the
algorithm is based on iterative compression. Note that iterative compression can
be employed to “compress” a non-optimal solution until an optimal one is found.
Initial experiments indicate that with Graph Bipartization such a strategy
finds an optimal solution very quickly, even when starting with C = V , but then
takes a long time to actually prove the optimality.
Literature. The basic reference for graph bipartization and iterative compres-
sion is Reed et al. (2004). The algorithm engineering paper Hüffner (2005) gives
a somewhat more accessible presentation of the underlying algorithm together
with numerous practical improvements. Edge Bipartization is studied in Guo
et al. (2005).

15.2.4 Minimum Fill-In

Definition and motivation. Recall that a graph is chordal (or triangulated) if
every cycle of length four or more contains a chord, that is, an edge between
nonadjacent vertices on the cycle. The Minimum Fill-In problem, also known
as Chordal Completion, is an NP-complete graph completion problem.

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Can G be made chordal by adding at most k edges?

Minimum Fill-In is important in the context of sparse matrix computations.
General considerations. Note that it can be decided in linear time whether
a graph is chordal. A simple enumerative approach can solve Minimum Fill-
In in O(n2k · m) time where n denotes the number of vertices and m denotes
the number of edges. Related NP-complete problems are to find the minimum
number of vertex deletions to make a graph chordal and the minimum number
of edge deletions to make a graph chordal.
Results. Minimum Fill-In can be decided in O(ck · m) time for c ≈ 4 or in
O(6k · k6 + k2 ·m · n) time.
Discussion. The first result means that Minimum Fill-In is linear-time fixed-
parameter tractable with respect to parameter k. It is based on a relatively simple
search tree strategy. The second result is based on a more involved algorithm.
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Both algorithms can actually enumerate all minimal triangulations obtained by
adding at most k edges within the same time bounds. Fixed-parameter tractabil-
ity has recently been stated for the problem to delete at most k vertices to make
a graph chordal based on a complicated use of the iterative compression tech-
nique, tree decompositions, and Courcelle’s theorem for monadic second-order
logic.
Literature. The central reference point is Kaplan et al. (1999). See also Cai
(1996) for related results and Marx (2004a) for the result concerning the deletion
of vertices.

15.2.5 Closest 3-Leaf Power

Definition and motivation. For an unrooted tree T with leaves one-to-one la-
beled by the elements of a set V , the k-leaf power of T is a graph, denoted T k,
with T k := (V,E), where

E := {{u, v} | u, v ∈ V and dT (u, v) ≤ k}.

The tree T is called a k-leaf root of T k. The recognition problem then is, given a
graph G, is there a tree T such that T k = G. In practical applications motivated
by studying phylogenies in computational biology, errors occur. This motivates
the definition of the Closest k-Leaf Power problem.

Input: A graph G = (V,E) and a nonnegative integer l.
Question: Is there a tree T such that T k and G differ by at most l
edges, that is, |E(T k) � E(G)| ≤ l?

Here, for two sets A and B, A � B denotes the symmetric difference (A \ B) ∪
(B \A).
General considerations. Closest k-Tree Power is NP-complete for k ≥ 2.
In fact, Closest 2-Leaf Power is equivalent to Cluster Editing. The recog-
nition problem is polynomial-time solvable for k ≤ 4 and its complexity is open
for k ≥ 5. To the best of our knowledge, except for the “simpler” case k = 2
no results concerning polynomial-time approximation or nontrivial exact algo-
rithms are known. In contrast, here we discuss the first positive algorithmic
results, stating fixed-parameter tractability with respect to the number l of edge
modifications for Closest 3-Leaf Power. The key tool here is a forbidden
subgraph characterization of graphs that are 3-leaf powers: a graph is a 3-leaf
power iff it is chordal and it contains none of the 5-vertex graphs bull, dart, and
gem as an induced subgraph (see Figure 15.1). A simpler characterization of
graphs that are 2-leaf powers is already known by forbidding an induced path
of three vertices. This characterization finds direct applications in corresponding
fixed-parameter algorithms (see Section 8.2), whereas the above characterization
of 3-leaf powers requires a more sophisticated approach.

According to the above characterization of 3-leaf powers, the fixed-parameter
algorithm has two tasks to fulfill:



MISCELLANEOUS GRAPH PROBLEMS 251

gembull dart

Fig. 15.1. 5-vertex graphs that occur as forbidden induced subgraphs.

1. Edit the input graph G to get rid of the forbidden subgraphs bull, dart,
and gem.

2. Edit G to make it chordal.

Results. Closest 3-Leaf Power on a graph with l edge editing operations
allowed is fixed-parameter tractable with respect to l. More precisely, the overall
running time is O((2l+8)l ·m·n). Fixed-parameter tractability can also be shown
for Closest 4-Leaf Power.
Discussion. Compared with the corresponding result for Cluster Editing,
here the additional difficulty arises that we have no characterization by a finite
number of forbidden subgraphs. The problem remains fixed-parameter tractable
in the case of studying the corresponding vertex deletion, edge deletion, and
edge addition problems. It is open whether there is a non-trivial reduction to a
problem kernel for Closest 3-Leaf Power or even Closest 4-Leaf Power.
Literature. See Dom et al. (2004) for the basic reference. The results on the
recognition problem are due to Nishimura et al. (2002). The Closest 4-Leaf
Power problem is investigated in Dom et al. (2005).

15.3 Miscellaneous graph problems

Graphs are the mathematical objects that appear most often in this book. In-
deed, the book could almost have been called “parameterized graph algorithms”.
Here, we provide some further examples from the rich field of NP-hard graph
problems together with their consideration from the viewpoint of parameterized
complexity analysis.

15.3.1 Capacitated Vertex Cover

Definition and motivation. Vertex Cover, the drosophila of fixed-parameter
algorithmics, has a number of significant generalizations and variants. We discuss
one of them here. Capacitated Vertex Cover is motivated by applications
in drug design. To define the problem, for a graph G = (V,E), assume that each
vertex v ∈ V is assigned a capacity c(v) ∈ N+. For each vertex, this capacity
limits the number of edges that it can cover when being part of the vertex cover.
Then, given a “capacitated graph” G = (V,E) and a vertex cover C for G, we
call C capacitated vertex cover if there exists a mapping g : E → C which maps
each edge in E to one of its two endpoints such that the total number of edges
mapped by g to any vertex v ∈ C does not exceed c(v).
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Input: A vertex-weighted (with positive real numbers) and capacitated
graph G = (V,E), a nonnegative integer k, and a real number W ≥ 0.
Question: Is there a capacitated vertex cover C for G that contains k
or fewer vertices such that

∑
c∈C w(c) ≤W?

Capacitated Vertex Cover is NP-complete.
General considerations. Obviously, ordinary Vertex Cover is the special case
of Capacitated Vertex Cover, where each vertex has capacity equal to its
degree. It is possible to show fixed-parameter tractability for Capacitated Ver-
tex Cover and both its soft and hard variants. The easiest way to do so is by
means of a reduction to a problem kernel. First, assume uniform vertex weights.

Let u, v ∈ V , u �= v, and {u, v} �∈ E. The simple observation that lies at the
heart of the data reduction rule needed to attain the claimed kernelization is
that if the open neighborhoods coincide, that is, N(u) = N(v), and c(u) < c(v),
then u is part of a minimum capacitated vertex cover only if v is as well. We can
generalize this finding to a data reduction rule: let {v1, v2, . . . , vk+1} ⊆ V with
the induced subgraphG[{v1, v2, . . . , vk+1}] being edgeless, and N(v1) = N(v2) =
· · · = N(vk+1). Then delete from G a vertex vi ∈ {v1, v2, . . . , vk+1} which has
minimum capacity. The correctness of this rule is given by the fact that any
size-k capacitated vertex cover C containing vi can be modified by replacing vi

with a vertex from {v1, v2, . . . , vk+1} which is not in C.
Based on this data reduction rule, the reduced graph can be computed fromG

by the following two steps:

1. Use the straightforward linear-time factor-2 approximation algorithm to
find a vertex cover S for G of size at most 2k′ (where k′ is the size of a
minimum vertex cover for G and hence k′ ≤ k). If |S| > 2k, then we can
stop because then no size-k (capacitated) vertex cover can be found. Note
that V \ S induces an edgeless subgraph of G.

2. By examining V \ S, check whether there is a subset of k + 1 vertices
that fulfill the premises of the above rule. Repeat application of the data
reduction rule until the rule is no longer applicable. Note that this process
continuously shrinks V \ S.

In the above computation the number of all possible neighbor sets can be at
most 22k (the number of different subsets of S). For each neighbor set, there
can be at most k neighboring vertices in V \ S; otherwise, the reduction rule
would apply. Hence in the worst case we can have at most 22k · k vertices in the
remaining graph G̃. The generalization to non-uniform vertex weights yields a
problem kernel with 22k · 2k2 vertices.
Results. For an n-vertex graph G = (V,E) and an integer k ≥ 0 as part of an in-
put instance for Capacitated Vertex Cover one can construct an O(4k ·k2)-
vertex graph G̃ such that G has a size-k solution for Capacitated Vertex
Cover iff G̃ has a size-k solution for Capacitated Vertex Cover. In the
special case of uniform vertex weights, G̃ has only O(4k · k) vertices. The con-
struction of G̃ can be performed in O(n2) time. Altogether, by combining the
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above problem kernelization with an enumerative approach, Capacitated Ver-
tex Cover can be solved in O(1.2k2

+ n2) time.
Discussion. The exponential time bounds for Capacitated Vertex Cover
are far from the upper bounds for Vertex Cover and clearly are not practi-
cal. Perhaps future research may lead to significant savings in the combinatorial
explosion involved. Note, however, that fixed-parameter tractability is far less ob-
vious for Capacitated Vertex Cover than it was for Vertex Cover. Recall
that the Partial Vertex Cover problem as studied in Section 13.3.1 turned
out to be W [1 ]-hard with respect to the cover size. This is worth emphasiz-
ing because all Vertex Cover, Capacitated Vertex Cover, and Partial
Vertex Cover have polynomial-time factor-two approximation algorithms but
behave completely differently from a parameterized point of view.
Literature. The basic reference is Guo et al. (2005b). Capacitated Vertex
Cover has been introduced and motivated by Guha et al. (2003), studying it in
terms of polynomial-time approximability.

15.3.2 Constraint Bipartite Vertex Cover

Definition and motivation. Vertex Cover restricted to bipartite graphs is
equivalent to the polynomial-time solvable maximum matching problem in bi-
partite graphs. The situation changes drastically when two parameters come into
play, leading to the definition of Constraint Bipartite Vertex Cover.

Input: A bipartite graph G = (V1, V2, E) and two nonnegative integers
k1 and k2.
Question: Are there two subsets C1 ⊆ V1 and C2 ⊆ V2 of sizes |C1| ≤ k1

and |C2| ≤ k2 such that each edge in E has at least one endpoint in
C1 ∪ C2?

The existence of two parameters and two vertex sets makes Constraint
Bipartite Vertex Cover (CBVC) quite different from the original Vertex
Cover problem. Thus, whereas classical Vertex Cover restricted to bipartite
graphs is solvable in polynomial time, by a reduction from Clique it follows that
CBVC is NP -complete. CBVC is motivated by applications in reconfigurable
VLSI design modelling a fault coverage scenario.
General considerations. CBVC can be solved by a depth-bounded search tree
algorithm: to cover an edge, we have to put at least one of its two endpoints into
the (optimal) vertex cover set. Thus, starting with an arbitrary edge, we can
make a binary decision between its two endpoints. In each subcase, we delete
the corresponding vertex chosen and its incident edges and repeat this until we
have built a search tree of size 2k1+k2 . As a consequence, it is easy to obtain an
algorithm running in time O(2k1+k2 · (n +m)), where n denotes the number of
vertices and m denotes the number of edges in the graph. The exponential base
can be significantly improved, however.

The improved algorithm consists of three pieces:

1. a reduction to a problem kernel;
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2. a depth-bounded search tree; and

3. a special treatment of graphs consisting of vertices with maximum degree
two and some slightly more general graphs.

Only the second part of the algorithm has exponential time complexity. We
achieve a reduction of the search tree size by distinguishing between the degree
of graph vertices. Since for CBVC we have to minimize with respect to two
parameters, this gets significantly harder than in the classical Vertex Cover
case. For instance, in the classical instance, taking the neighbor of a degree-one
vertex will always lead to an optimal vertex cover. Thus a branching in the search
tree is avoided. This is no longer possible in the CBVC case because the neighbor
belongs to the second vertex set in the bipartite graph and we have to minimize
with respect to two vertex cover set sizes. In particular, since the signature
s := (|C1|, |C2|) of a vertex cover C1 and C2 is a tuple of numbers instead of
simply one number, there are in terms of size incomparable solutions. The known
fixed-parameter algorithm provides for each minimal s a corresponding minimal
solution.

A reduction to a problem kernel in the style of Buss (see beginning of Chap-
ter 7) also works for CBVC. Moreover, isolated components of a maximum vertex
degree two are easily dealt with in polynomial time. As for Vertex Cover, the
improved search tree algorithm relies on an extensive case distinction with re-
spect to vertex degrees. In fact, the branching becomes more intricate here. Part
of this increased difficulty arises from the fact that we have to minimize with
respect to two parameters.
Result. Constraint Bipartite Vertex Cover is solvable in O(1.40k1+k2 +
(k1 + k2) · n) time.
Discussion. The above result derives from a complicated case distinction. It is
doubtful whether the high complexity in implementing all these cases pays off
from a practical viewpoint. It might well be the case that a somewhat worse (in
terms of worst-case time complexity) but much simpler search tree algorithm is
superior in applications.

There is a simplified version of CBVC which allows for a more efficient fixed-
parameter algorithm. The Constrained Minimum Vertex Cover problem
is defined as follows. The input consists of a bipartite graph G = (V1, V2, E) and
two nonnegative integers k1 and k2. The task is to find a vertex cover of G with
at most k1 vertices in V1 and at most k2 vertices in V2. Note that the decisive
difference from CBVC as considered before is that here one asks for a minimum
vertex cover (that is, the sum of the numbers of vertices from the two sides of the
bipartite graph) under the given “constraints” k1 and k2 whereas CBVC mini-
mizes with respect to the signature. In particular, the previously defined term
signature does not make sense for Constrained Minimum Vertex Cover.

The nice thing about Constrained Minimum Vertex Cover is that due
to its somewhat simpler combinatorial structure it allows for simpler and more
efficient algorithms than CBVC does. In particular, classical results from match-
ing theory become applicable and allow for a much simpler search tree structure.
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The key tool is the so-called Gallai–Edmonds structure theorem from matching
theory which implies a reduction to problem kernel. More precisely, based on this
theorem it can be shown that there is a linear problem kernel consisting of only
2(k1 + k2) vertices, and, moreover, the corresponding kernel graph has a perfect
matching. Then the so-called Dulmage–Mendelsohn decomposition for graphs
with a perfect matching is applied. This leads to a much simpler search tree pro-
cedure than the one known for CBVC. In summary, Constrained Minimum
Vertex Cover thus can be solved in time O(1.26k1+k2 + kn), where n is the
number of graph vertices.
Literature. The basic reference is Fernau and Niedermeier (2001). A better
fixed-parameter tractability of Constrained Minimum Vertex Cover is
shown in Chen and Kanj (2003).

15.3.3 Graph Coloring

Definition and motivation. Graph Coloring is a classic problem in computer
science and discrete mathematics with numerous applications. It is one of the
hardest NP -complete problems under a variety of measures.

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Can G be colored by assigning each vertex one of at most k
colors such that two adjacent graph vertices do not have the same color?

It is well-known that Graph Coloring is already NP-complete for k = 3.
Thus, parameterization with respect to k seems fruitless.
General considerations. Graph Coloring has been subject of recent fixed-
parameter studies from different viewpoints.

• Special graph classes with known coloring number (for instance, bipartite
graphs have coloring number two) have been studied under the viewpoint
that it is asked whether the coloring number can be still determined for
graphs that are d edge or vertex modifications away from the given class
of graphs. The parameter is d.

• The Precoloring Extension problem where a graph with some of the
vertices having preassigned colors is given and it must be decided whether
the whole graph can be colored extending the given coloring. Parameters
are either the number of precolored vertices or the number of colors used
in the precoloring.

• The original Graph Coloring problem in an n-vertex graph is studied
by choosing the parameter to be k and asking whether the graph can
be colored using at most k colors. The opposite problem asks the same
question with n − k colors instead; this (n − k)-Graph Coloring thus
studies the “dual parameterization” when compared with the original
question.
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Results. (n−k)-Graph Coloring can be decided in O(ck +k2 +kn2) time for
c ≈ 14. Precoloring Extension is W [1 ]-hard with respect to both param-
eterizations even when restricted to chordal graphs. For a graph which differs
from a bipartite graph by deleting only two vertices or deleting only three edges
Graph Coloring is NP-complete. Choosing so-called split graphs—here the
set of vertices can be partitioned into two sets such that one induces an indepen-
dent set and the other induces a clique—instead of bipartite graphs, the deletion
or addition of � edges leads to fixed-parameter tractability of Graph Coloring
with respect to parameter �, whereas the deletion of � vertices makes the problem
W [1 ]-hard.
Discussion. The two last of the above results fall into the category of param-
eters measuring “distance from triviality”. Precoloring Extension is an ex-
tension of Graph Coloring, hence hardness is not surprising. Still, a new
parameterization comes into play here. The result for n− k-Graph Coloring
is particularly interesting because it employs a kernelization algorithm based on
the crown data reduction rule (see Section 7.4).
Literature. The above results are drawn from Cai (2003), Chor et al. (2004),
and Marx (2004b).

15.3.4 Crossing Number

Definition and motivation. Deciding whether a graph is planar can be done in
linear time. Relax planarity by admitting a small number of edge-crossings in a
drawing of the graph in the plane. Thus, the crossing number is the indexcrossing
number minimum number of edge crossings needed in a drawing of the graph.
The Crossing Number problem is NP -complete.

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Is the crossing number of G at most k?

General considerations. By an exhaustive search approach, one can decide in
nO(k) time (where n = |V |) whether the crossing number is at most k. This is
done by guessing at most k pairs of edges that cross. It is far from obvious to
decide whether or not the problem is fixed-parameter tractable with respect to k.
Note that the class of graphs of crossing number at most k is not closed under tak-
ing minors, hence, Robertson and Seymour’s graph minor theory does not apply.
Based on sophisticated bounded treewidth machinery, results by Robertson and
Seymour (excluded grid theorem), and Courcelle’s theorem the fixed-parameter
tractability of Crossing Number can be shown by means of monadic-second
order logic machinery.
Result. Crossing Number can be decided in f(k) ·n2 time where f is at least
doubly exponential.
Discussion. The above result is of purely theoretical interest—the associated
constants are huge. It remains open to give a more practical fixed-parameter
algorithm. We remark that the related NP -complete problem of deciding about
the genus of a graph actually has a linear-time fixed-parameter algorithm. Here,
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with respect to the parameter “graph genus”, fixed-parameter tractability also
follows by application of Robertson and Seymour’s graph minor theory, which,
by way of contrast, does not apply to Crossing Number.
Literature. The above result is due to Grohe (2004). For the linear-time fixed-
parameter algorithm for the graph genus problem refer to Mohar (1999).

15.3.5 Power Dominating Set

Definition and motivation. The Dominating Set problem plays a prominent
role in this book. In contrast to Dominating Set, Power Dominating Set
carries some form of non-locality: here, the correctness of a dominating set cannot
be decided by locally checking every constant-size neighborhood. A vertex may
dominate vertices at arbitrary distance when certain conditions are fulfilled.
Power Dominating Set is motivated by applications in monitoring electrical
networks. We already encountered it in Section 13.3.2 as a problem that seems
at least as hard as Dominating Set. Recall the formal definition. We need two
observation rules.

Observation Rule 1 (OR1): A vertex in the power dominating set observes
itself and all its neighbors.

Observation Rule 2 (OR2): If an observed vertex v of degree d ≥ 2 is ad-
jacent to d − 1 observed vertices, then the remaining unobserved vertex
becomes observed as well.

Thus the definition of Power Dominating Set reads as follows:

Input: A graph G = (V,E) and a nonnegative integer k.
Question: Is there a subset C ⊆ V with k or fewer vertices that observes
all vertices in V with respect to the two observation rules OR1 and OR2?

General considerations Whereas Dominating Set is trivially linear-time solv-
able in trees, although true, this is not so obvious in the case of Power Dom-
inating Set. In Section 13.3.2 we showed that Power Dominating Set is
W [2 ]-hard with respect to the parameter “size of the solution set”. Thus, in gen-
eralizing the result for trees it is natural to ask for the “tractability” of Power
Dominating Set in graphs of bounded treewidth, that is, is Power Dominat-
ing Set fixed-parameter tractable with respect to the parameter treewidth?
Result. For an n-vertex graph with given width-w tree decomposition, Power
Dominating Set can be solved in O(cw

2 · n) time for a constant c.
Discussion. Clearly, this result is of purely theoretical interest. Power Dom-
inating Set should be further studied for special graph classes. So far, little is
known here. One may also ask whether there is a “significant computational”
difference between Dominating Set and Power Dominating Set. How do
fixed-parameter tractability results for Dominating Set in planar graphs trans-
fer to Power Dominating Set? Are there nontrivial data reduction rules for
Power Dominating Set similar to those we have for Dominating Set (see
Section 7.6)?
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Literature. Power Dominating Set was introduced in Haynes et al. (2002).
The result discussed here is from Guo et al. (2005a). Independent work in the
same direction (using monadic second-order logic, however) appears in Kneis
et al. (2004).

15.4 Computational biology problems

Dealing with biologically motivated problems has become a vast area of algorith-
mic research. Even specialized topics such as the reconstruction of phylogenetic
trees, the analysis of gene expression data (also closely related to clustering
problems), the comparison and structure prediction of protein, RNA, and DNA
molecules, or the search for motifs and signals in sequences (closely related to
string searching problems) form subfields that are hard to overview. Thus the
considerations in this section build a very small selection of biologically moti-
vated problems in the fixed-parameter context. In addition, observe that some of
the problems discussed, such as those related to string algorithms, may also have
applications in other fields, for instance information retrieval or coding theory.

Before we come to some more concrete examples of parameterized complexity
analysis in computational biology, however, we want to take up the cudgels for
fixed-parameter algorithms with the following communicated by an anonymous
referee:

...fixed-parameter algorithms do seem laudable approaches to NP-hard problems in
biology, better than approximation methods in most cases.

What makes computational biology a particularly fruitful area for fixed-
parameter studies is the fact that often there are several—and frequently all
of them “reasonable” at the same time—parameters and “usually” at least one
of them can be considered to carry small values. For instance, recall Closest
String—with applications in “primer design” and “motif search”—from Sec-
tions 8.5 and 11.2. Here, two very natural parameters are the number of input
strings k as well as the maximally allowed Hamming distance d to the closest
string that is to be found. Both k as well as d in practice are small numbers (for
instance, k ≈ 10 and d ≈ 5); hence parameterizations in both directions make
sense and both actually lead to fixed-parameter algorithms (see Sections 8.5
and 11.2).

Last but not least it goes without saying that computational biology offers a
vast amount of NP-hard problems, thus triggering research for approximative or
heuristic algorithms and now increasingly also fixed-parameter algorithms. In the
four case studies we present here, we discuss a tiny selection of fixed-parameter
results for biologically motivated problems that have been achieved in recent
years. Covering all the material in this direction might easily make up a book
on its own.

We begin our considerations with two case studies related to the computation
of phylogenetic trees.



COMPUTATIONAL BIOLOGY PROBLEMS 259

a

b

c

d

a

c

b

d

a

d

b

c

Fig. 15.2. Possible quartet topologies for quartet {a, b, c, d}, which are (from
left to right) [ab|cd], [ac|bd], and [ad|bc].

15.4.1 Minimum Quartet Inconsistency

Definition and motivation. To determine the evolutionary relationship of a set
of taxa, say, based on DNA or protein sequence data, is an important question in
computational biology. A common model for this relationship is an evolutionary
tree, an unrooted binary tree T in which the leaves are one-to-one labeled by the
taxa. In recent years, quartet methods for reconstructing evolutionary trees have
received considerable attention. Here, a quartet is a size four subset {a, b, c, d} of
the set of taxa and the quartet topology for {a, b, c, d} induced by T is simply the
four leaves subtree of T for {a, b, c, d}. The three possible quartet topologies for
{a, b, c, d} are [ab|cd], [ac|bd], and [ad|bc]. They are shown in Figure 15.2.13 The
fundamental objective of quartet methods is, given a set of quartet topologies, to
reconstruct the corresponding evolutionary tree. Here, the given set of quartet
topologies can be incomplete, may contain errors or more than one topology for
one quartet. Hence to reconstruct (a good estimation of) the original evolutionary
tree becomes an optimization problem.

We focus on the Minimum Quartet Inconsistency (MQI) problem; see
also Section 5.2.

Input: A set S of n taxa and a set QS of
(
n
4

)
quartet topologies such

that there is exactly one topology for every quartet corresponding to S
and a nonnegative integer k.
Question: Is there an evolutionary tree T where the leaves are one-to-
one labelled by the elements from S such that the set of quartet topolo-
gies induced by T differs from QS in at most k quartet topologies?

There are several reasons why quartet methods are widely used in practice.
They are founded on the fact that an evolutionary tree is uniquely characterized
by the quartet topologies for its size-four sets of taxa. From this set of topologies,
we can efficiently compute the tree in polynomial time O(n4). Quartet methods
clearly divide the tree construction process into two stages—one can use an ar-
bitrary, even computationally expensive tree construction method to infer the
quartet topologies, while the recombination of topologies can be handled inde-
pendently of the method chosen for inference. Another reason to use quartet
methods is data disparity. In practice, one often does not have the same amount
of data for all considered taxa.

13A fourth possible topology is the star topology, which is not considered here because it is
not binary.
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Limitations of quartet methods in practice are caused by the process of quar-
tet inference which can be erroneous. Therefore, one cannot be sure that there
exists a tree inducing the inferred set of quartet topologies. Assuming that the
number of errors is small compared to the number of correct topologies, one
may overcome this problem by searching for a tree that matches the inferred
topologies as “closely” as possible.
General considerations. MQI is NP -complete. It is important to note that there
is a so-called “quartet cleaning algorithm” that finds finds the optimal solution
for instances with k < (n − 3)/2. Therefore, MQI is NP -hard only for k ≥
(n−3)/2. It is known that MQI is polynomial time approximable with a factor n2.
Heuristics for the problem include semidefinite programming and the widely used
quartet puzzling. For the case that the number k of “wrong” quartet topologies
is small in comparison with the total number of given quartet topologies, MQI is
fixed-parameter tractable with respect to parameter k. The more general variant
of MQI where the set QS is not required to contain a topology for every quartet
is NP -complete even if k = 0.

The key to developing a fixed-parameter solution for MQI with respect to
parameter k is that it is sufficient to examine the size-three sets of quartet
topologies and to recursively branch on local conflicts. Roughly speaking, this
means that the fixed-parameter algorithm solving MQI can process as follows:
if the given set of quartet topologies is non-conflicting and if there is exactly
one topology for each possible quartet then one can construct the corresponding
evolutionary tree in time O(n4). Otherwise, as long as the given set of quartet
topologies is conflicting, one can deduce that there must exist a “contradicting”
subset of three quartet topologies whose set of taxa altogether contains five
elements. These three topologies contradict each other in the sense that there is
no binary tree with five leaves labeled by the given taxa such that it induces these
three topologies. In addition, one can efficiently maintain a conflict list containing
all current “local” conflicts of the above kind. Thus the idea of a depth-bounded
search tree algorithm with respect to parameter k becomes immediately clear.
The only thing one still has to observe is that there are four ways to get rid of
such a local conflict by changing one of the three given quartet topologies. This
leads to a branching into four cases, each of which decreases the parameter k of
maximally allowed quartet topology changes by one.
Result. Minimum Quartet Inconsistency can be solved in O(4k · n + n4)
time. Observe that the input size is O(n4).
Discussion. The above algorithm can be sped up in practice by adding several
heuristic improvements that do not violate the optimality of the solution ob-
tained. A simple addition is to guarantee that no quartet topology is changed
more than once. Another is the fact that if there is a topology t that is involved
in more than 3k local conflicts (each consisting of three quartet topologies) then
t has to be changed, a so-called “forced change”.

Since MQI can be solved in polynomial time for k < (n − 3)/2, one may
ask—in the spirit of parameterizing above guaranteed values (see Section 5.2)—
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whether it is fixed-parameter tractable with respect to parameter k′ to find a
tree that violates at most (n − 3)/2 + k′ quartet topologies. This is an open
problem.

A problem closely related to MQI is Minimum Triplet Inconsistency
(MTI). Here, a triplet is a size-three subset of the taxa set and a triplet topology
is a rooted leaf-labeled three-leaves tree. In comparison to MQI, the input of
MTI is a set of triplet instead of quartet topologies, and it asks for a rooted
evolutionary tree that induces all except k of the given topologies. In contrast to
MQI, MTI is solvable in cubic time for k = 0 even if there is not a topology for
every triplet. Whether the latter general case is fixed-parameter tractable with
respect to k is an open question.
Literature. The basic references are Gramm (2003) and Gramm and Nieder-
meier (2003). A survey of quartet methods can be found in Chor (1998). The
polynomial-time algorithm for MQI instances with k < (n−3)/2 is due to Berry
et al. (1999). The O(n4) time algorithm for non-conflicting topologies is de-
scribed in Berry and Gascuel (2000). The MTI problem has been communicated
by Benny Chor (Tel Aviv). The cubic-time algorithm for the case k = 0 is due
to Aho et al. (1981).

15.4.2 Compatibility of Unrooted Phylogenetic Trees

Definition and motivation. The combinatorics of phylogenetic trees yields many
interesting and generally NP -hard problems. A central problem in this context
is that of compatibility. Informally speaking, the problem is, given a collection
of phylogenetic trees for overlapping sets of species, is there a “supertree” such
that all given trees can be “inferred” from the larger tree. Here, we focus on
Compatibility of Unrooted Phylogenetic Trees (CUP):

Input: A collection T1, T2, . . . , Tk of unrooted, leaf-labeled trees.
Question: Is there a tree T such that each tree Ti can be obtained
from T by deleting leaves and contracting edges?

If such a tree T exists, then T1, T2, . . . , Tk are said to be compatible. Herein, an
unrooted tree simply is an undirected graph without cycles. Deleting a leaf means
also deleting the incident edge and contracting an edge means to identify its both
endpoints and melting these into one new node, keeping all other adjacency
relations to other nodes. CUP is NP-hard.

It is important to note that if we replace unrooted trees with rooted ones—
that is, directed trees with the root node having indegree zero—then the problem
is solvable in polynomial time. By way of contrast, CUP remains NP-hard even
if all input trees contain only four leaves. The derived results only assume that
for all input trees the inner nodes have at least three neighbors.
General considerations. The question for fixed-parameter tractability of CUP
with respect to parameter k is very natural and practically relevant. The problem
can be solved in O(nk) time, using the polynomial-time algorithm for the rooted
case.
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The basic idea behind showing the fixed-parameter tractability of CUP lies
in two key steps.

1. The definition of a so-called display graph that provides a simple way
to amalgamate the given phylogenetic trees into one graph. It can be
shown that if the trees are compatible then the display graph has bounded
treewidth.

2. Usage of monadic second-order logic to solve CUP on graphs of bounded
treewidth.

Result. Compatibility of Unrooted Phylogenetic Trees is decidable in
O(f(k) · n) time, where f is an enormously growing exponential function and n
is the total number of leaves. Hence, the problem is linear-time fixed-parameter
tractable.
Discussion. The result, due to the huge combinatorial explosion hidden in f(k)
which goes along with the usage of monadic second-order logic, is of purely
theoretical interest. Nevertheless it means a significant breakthrough result and
the race is open to make CUP fixed-parameter tractable in practical terms also.
Literature. The basic reference is Bryant and Lagergren (2005). The polynomial-
time solvability of the unrooted case follows from Aho et al. (1981), the NP -
hardness is due to Steel (1992).

15.4.3 Longest Arc-Preserving Common Subsequences

Definition and motivation. Structure comparison for RNA and for protein se-
quences has become a central computational problem in biology. In this context,
the Longest Arc Preserving Common Subsequence problem (LAPCS)
has recently received considerable attention. It is a sound and meaningful math-
ematical formalization of comparing the secondary structures of molecular se-
quences:14 For a sequence s, an arc annotation A of s is a set of unordered
pairs of positions in s. Focusing on the case of two given arc-annotated input
sequences, LAPCS in its general version is defined as follows.

Input: Two arc-annotated sequences s1 and s2 and nonnegative integers
k1 and k2.
Question: Can one delete at most k1 letters (also called bases) from s1—
when deleting a letter at position i, then all arcs with endpoint i are also
deleted—and at most k2 letters from s2 such that in both cases the same
arc-annotated sequence t emerges?

Thus, t forms an arc-annotated subsequence of s1 as well as s2.
Whereas the Longest Common Subsequence problem for two sequences

without arc annotations is solvable in quadratic time—it becomes NP-complete

14As usual in computational biology, we identify the terms “sequence” and “string” here.
Note, however, that the terms “subsequence” and “substring” have to be clearly distinguished
from each other, the first concept being the much more general one: every substring forms a
subsequence but not vice versa.
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Fig. 15.3. Example of a longest arc-preserving common subsequence for two
arc-annotated input sequences s1 and s2. The common subsequence is ob-
tained by deleting three bases in s1 and two bases in s2.

when allowing for an arbitrary number of input sequences—LAPCS for two se-
quences is NP-complete. There is a statement in the literature that LAPCS for
nested arc annotations is “generally thought of as the most important variant of
the LAPCS problem”. Here, one requires that no two arcs share an endpoint and
no two arcs cross each other, referred to by LAPCS(nested,nested). An ex-
ample of a longest common subsequence for two sequences with nested arc anno-
tations is given in Figure 15.3. LAPCS(nested,nested) remains NP -complete.
General considerations. LAPCS(nested,nested) is studied in terms of two
natural parameterizations.

• The first is by the combined parameter k1 + k2, the number of deletions
allowed in sequences s1 and s2.

• The second is by the parameter � which denotes the length of the common
arc-preserving subsequence.

The first fixed-parameter algorithm with respect to the parameter k1 + k2

employs a depth-bounded search tree. The algorithm works through both given
sequences from left to right, deletes already treated bases of the sequences (when
deleting a base adjacent arcs are also deleted). By a case distinction depending on
the bases at the currently first positions in s1 and s2, we decide how to continue
recursively. This case distinction also takes into account arcs which are adjacent
to these bases.

The fixed-parameter algorithm with respect to the parameter � employs an
enumerative approach. A core tool here is a polynomial-time dynamic program-
ming algorithm that, given two arc-annotated sequences s1 and s2, decides in
O(|s1| · |s2|) time whether s2 is an arc-preserving subsequence of s1. The idea
behind the algorithm is then simply to try all length-� sequences with nested arc
structure as candidates for being a length-� arc-preserving common subsequence.
In the case of nested arc annotations and base alphabet set Σ, the number of
these candidates is roughly bounded from above by O((3 · |Σ|)�). Clearly, each
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candidate can then simply be tested using the above-mentioned polynomial-time
pattern matching algorithm.
Results LAPCS(nested,nested) is decidable in O(3.31k1+k2 · n) time where
n is the maximum input sequence length. LAPCS(nested,nested) is decidable
in O(|Σ|� · � · n) time when parameterized by the length of the arc-preserving
common subsequence. In both cases, n denotes the maximum input sequence
length and both cases mean linear-time fixed-parameter tractability.
Discussion. There are numerous related problems in this context. For instance,
in protein structure comparison the closely related concept of “contact maps” has
been investigated. Moreover, when allowing more complicated structures than
nested arcs, with respect to the parameter “length of the common subsequence”
W [1 ]-hardness can usually be shown. In addition, still other parameterizations
of the LAPCS problem which parameterize properties of the arc structure have
been explored. Refer to the extensive literature.
Literature. The basic reference is Alber et al. (2004). The polynomial-time pat-
tern matching algorithm appears in Gramm et al. (2002); also see Gramm (2004).
The first parameterized hardness and tractability results appear in Evans (1999a)
and Evans (1999b). Further investigations of classical complexity and approxi-
mation algorithms concerning LAPCS(nested,nested) appear in Jiang et al.
(2004) and Lin et al. (2002).

15.4.4 Incomplete Perfect Path Phylogeny Haplotyping

Definition and motivation. Haplotyping problems currently are a major theme
in computational biology. Roughly speaking, haplotype information needs to be
inferred from genotype data in order to study the association between genomic
variation and medical condition. Haplotype inference methods can be based on
so-called perfect phylogeny principles. When stripped of the biological context,
the haplotype inference problem is a purely combinatorial problem. Consider
an n × m-matrix with entries from {0, 1, 2}. Call this the genotype matrix.15

A haplotype matrix then is a 2n × m-matrix with entries from {0, 1}. For a
given genotype matrix A, one searches for a haplotype matrix B such that rows
2i − 1 and 2i in B correspond to row i in A in the following way: for every
position j in these rows, if there is a 2-entry in position j in the “A-row” then
the corresponding entries in the “B-rows” differ; if there is a 0 or 1 in position j
in the A-row then these entries in the two B-rows coincide with this value. Then
we say that a haplotype matrix B admits a perfect path phylogeny if there exists
a path PB with a dedicated root node (which may be one of the leaves) such
that

1. every row of B labels exactly one node of PB;

15In fact, each row vector in this matrix is a genotype, each entry corresponding to a so-called
SNP site (single nucleotide polymorphism). SNPs account for the majority of the variation
between DNA sequences of different individuals. Each genotype has two underlying haplotypes,
where 0- and 1-entries imply that the underlying haplotypes are identical at that position and
a 2-entry implies that they are different at that position.
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2. for every column of B, the rows carrying a 1 (or a 0) in these columns form
a connected subpath in PB ; and

3. the root node of PB is labeled with the all-0 row.

Note that the existence of a root node naturally implies two sides of a perfect
path phylogeny.

The Perfect Path Phylogeny Haplotyping (PPPH) problem is, given
a genotype {0, 1, 2}-matrixA, decide whether A admits a perfect path phylogeny.
Note that PPPH is a special case of the more general case where one has trees
instead of paths—the consideration of the simpler path version is motivated
by observations that around 70% of real data sets that admit a perfect (tree)
phylogeny also allow a perfect path phylogeny. In practice, however, due to ex-
perimental noise, one has to work with incomplete genotype matrices. That is,
genotype matrices lack some entries. These missing entries are represented by
a fourth value “?”. We arrive at the following central problem Incomplete
Perfect Path Phylogeny Haplotyping (Incomplete PPPH):

Input: An n×m-matrix with entries from {0, 1, 2, ?}.
Question: Can the ?-entries be replaced by entries from {0, 1, 2} such
that the resulting {0, 1, 2}-matrix admits a perfect path phylogeny?

Incomplete PPPH is NP -complete.
General considerations. It is natural to assume that the number of ?-entries may
be not too large, motivating the study of the parameterization of Incomplete
PPPH by the maximum number k of ?-entries per column of the given {0, 1, 2, ?}-
matrix. In the case k = 0, the (complete) PPPH can be efficiently solved in
linear time. To derive a fixed-parameter algorithm for Incomplete PPPH with
respect to parameter k, a two-phase approach is performed, consisting of

1. preprocessing; and

2. dynamic programming.

In the preprocessing phase, the input instance is simplified by collapsing
multiple columns into one “consensus column”: suppose that several columns
can become identical by replacing some ?-entries, and we replace the columns
with this consensus column. Clearly, if we can find a perfect path phylogeny for
this new matrix, we can also find one for the original matrix. Notably, the reverse
implication is also true if the number of columns that formed the consensus is
large enough. Altogether, this gives a problem kernel with size exponential in k.

In the dynamic programming phase, one makes use of a certain partial or-
dering of the columns of the preprocessed input matrix. One iterates over the
columns in the given order and makes use of the fact that the perfect path phy-
logenies for columns up to a certain order value can be constructed from the al-
ready computed information of a constant-size range of order values for columns
preceding the current column. The details are technical, though. It should be
noted, however, that the corresponding combinatorial explosion with respect to
parameter k is far from practical sizes.
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Result. Incomplete Perfect Path Phylogeny Haplotyping is fixed-
parameter tractable with respect to the parameter “maximum number of ?-
entries in a column”.
Discussion. One obvious point of interest is to improve the upper bounds on
the combinatorial explosion of the above algorithm. Another point of interest is
to extend the fixed-parameter tractability result from path phylogenies to more
general, “bounded width” structures or even (tree) phylogenies.
Literature. The basic reference is Gramm et al. (2005).

15.5 Logic and related problems

Logic problems are tightly connected with the development of computational
complexity theory. This is best reflected by the role that Satisfiability played
in the development of NP -completeness theory. Logic problems also play a core
role in parameterized complexity theory. Thus weighted satisfiability problems
are the key to understanding the theory of parameterized intractability as cap-
tured by the W -hierarchy (see Chapter 13). Logic and related problems are of
fundamental importance in practice as well, having applications in areas such as
model checking, database theory, or system verification. In particular, a whole
conference series is devoted to satisfiability checking and related problems. In
the following we want to briefly survey some of the opportunities and challenges
that logic-like problems offer in the fixed-parameter context.

15.5.1 Satisfiability

Definition and motivation. In Section 1.1 we have already shown several aspects
of the fundamental Satisfiability problem in computational complexity and
algorithm theory. Recall the definition.

Input: A Boolean formula F in conjunctive normal form.
Question: Does there exist a truth assignment for the Boolean variables
in F such that F evaluates to true?

As pointed out in Section 1.1, there are numerous parameterizations that make
sense. For instance, there are the parameters

• number of variables in F ;

• number of clauses in F ; or

• numbers that restrict the structure of F .

Here, we overview in a little more detail some fixed-parameter tractability results
with respect to several structural formula parameters.
General considerations. Our main goal is to spot the great variety of possible
structural parameters. To this end, consider formulae in conjunctive normal form
simply as sets of clauses. A decisive point in this context is to associate graphs
or hypergraphs with clause sets. For instance,

• the primal graph of a formula F in conjunctive normal form is the graph
whose vertices are joined by an edge if both variables occur together in a
clause;
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• the incidence graph of a formula F in conjunctive normal form is the bi-
partite graph where one vertex side consists of the variables in F and the
other vertex side consists of the clauses of F—a variable and a clause are
joined by an edge if the variable occurs in the clause;

• the directed incidence graph derives from the incidence graph by orienting
edges according to whether a variable occurs positively or negatively in a
clause; and

• a hypergraph can naturally be associated with a formula F in conjunctive
normal form by letting the vertices be the variables and by identifying
every clause with a hyperedge formed by the variables occurring in the
clause.

By means of the above graph structures associated with Boolean formulae in
conjunctive normal form it is possible to employ well-known structural graph
parameters such as treewidth and branchwidth in order to quickly solve the
corresponding satisfiability problems in the case of small parameter values.

Note that besides drawing such direct connections to graphs and hypergraphs
other structural parameterizations are also possible. For instance, the deficiency
of a formula F in conjunctive normal form on n variables and m clauses is
δ(F ) := m− n; its maximum deficiency is

δ∗(F ) := max
F ′⊆F

δ(F ′).

Here each F ′ above simply denotes a subformula of F .
Results. Satisfiability is fixed-parameter tractable with respect to the pa-
rameters

• treewidth of the primal graph;

• treewidth of the incidence graph;

• branchwidth of the hypergraph; and

• maximum deficiency.

Discussion. As indicated above, there are numerous fixed-parameter tractabil-
ity results for natural structural parameterizations of Satisfiability. Some of
these involve combinatorial explosions that are so high that there is an urgent
need for improvements in this direction. Also, the practical consequences of these
fixed-parameter tractability results have been left mostly unexplored. Moreover,
it seems likely that there is still more to say about natural parameterizations
of Satisfiability. Parameterized complexity studies of satisfiability problems
seem to have the potential to develop into a broad research topic.
Literature. The basic reference for this subsection is Szeider (2004b), which
surveys several more results. The fixed-parameter tractability results mentioned
appear in Gottlob et al. (2002), Alekhnovich and Razborov (2002), and Szeider
(2004a). See also Fellows et al. (2004c) for a recent achievement in this field.
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15.5.2 Maximum Satisfiability

Definition and motivation. Maximum Satisfiability is a natural general-
ization of Satisfiability—whereas for Satisfiability one asks to satisfy all
clauses, in the case of Maximum Satisfiability one asks to satisfy a prespec-
ified (or maximum) number of clauses. Recall the definition.

Input: A Boolean formula in conjunctive normal form and a nonnegative
integer k.
Question: Is there a truth assignment satisfying at least k clauses?

In Section 7.2 we studied the parameterization of Maximum Satisfiability
by the number k of satisfied clauses, and a problem kernel of size O(k2) is
easily seen. As for Satisfiability, however, there are numerous other ways
for parameterizing Maximum Satisfiability. Little work has been done in
this direction and there is much potential for future research. Parameterized
complexity studies have mainly focussed on the above parameter k. Here, we
will briefly discuss how to complement the problem kernel with further data
reduction rules combined with intricate branching strategies yielding a good
upper bound on the size of the depth-bounded search tree involved.
General considerations. A particularly notable thing about the fixed-parameter
algorithm with respect to the parameter “number of satisfied clauses” is that,
besides a number of branching rules, so-called transformation rules play a decisive
role. In a sense, transformation rules are nothing but data reduction, as we
encountered many times in Chapter 7, but with a different focus here. Here
these rules are not used to prove a (better) problem kernelization but are used
in order to achieve good branchings in conjunction with good branching vectors.
In this context, a transformation rule replaces a formula simply by a single
formula (without losing the guarantee of finding an optimal solution) whereas
a branching rule replaces it by at least two formulae, at least one of which
guarantees a path to an optimal solution. Among others, we have the following
transformation rules.

• Pure literal rule. If a variable occurs either only positively or only nega-
tively in the formula, then its truth value can be set accordingly, neglecting
the second possibility for the complementary truth value.

• Complementary unit clause rule. If for variable x the formula contains both
the one-literal clauses {x} and {x}, then these two can be removed and
the parameter counting the number of clauses still to be satisfied can be
decremented by one.

• Resolution rule. If there are two clauses, one containing literal x and one
containing literal x, then one can merge these two clauses into one with x
and x removed from this new clause. The parameter counting the number
of clauses still to be satisfied can be decremented by one.
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These are only three examples and there are several more transformation rules
of similar style. These are combined with branching rules which, for instance,
distinguish between the cases:

• there is a variable that occurs at least five times in the formula;

• each variable occurs three or four times and some variable occurs exactly
three times; and

• all variables occur exactly four times in the formula.

Here it is important that transformation rules are to be applied whenever possible
and branching rules are only applied when this is not the case. In this way,
one may guarantee favorable branching subcases and corresponding branching
vectors because this allows the exclusion of unfavorable branching situations
which are “covered” by transformation rules.
Result. Maximum Satisfiability can be decided in O(1.37k + |F |) time.
Discussion. Maximum Satisfiability together with parameter k is an exam-
ple where parameterization above guaranteed values (see Section 5.2)—for any
formula (more than) half of its clauses can be satisfied—is highly recommendable.
Thus the above parameterization by k is doubtful in the sense that k is usually
big. Still, the known fixed-parameter tractability result for the guaranteed value
“half of all clauses” is based on the above parameterization. The results achieved
for parameterizing above guaranteed values are not yet completely satisfactory.
Moreover, several alternative parameterizations of Maximum Satisfiability
should be the subject of future research (see also Section 1.1).
Literature. The parameterization of Maximum Satisfiability discussed here
has been studied in a series of papers (Mahajan and Raman, 1999; Niedermeier
and Rossmanith, 2000b; Bansal and Raman, 1999; Chen and Kanj, 2004), the
mentioned upper bound appearing in Chen and Kanj (2004). Analogous stud-
ies have also been undertaken for the NP-complete special case Maximum 2-
Satisfiability in Gramm et al. (2003a).

15.5.3 Constraint satisfaction problems

Definition and motivation. A Boolean constraint is a function

f : {0, 1}r −→ {0, 1}.
A Boolean constraint family is a finite set of Boolean constraints. The goal is
to satisfy all constraints by choosing an appropriate truth assignment. Thus,
Satisfiability is a special case of constraint satisfaction where all Boolean
constraints simply are Or-functions applied to a number of literals. Constraint
satisfaction is a well-studied field. Recently, study of the parameterized complex-
ity of constraint satisfaction has begun. Here, weighted satisfiability problems,
as in Chapter 13, are studied, leading to the following base problem Weighted
F-Satisfiability.

Input: A formula based on a finite family F of Boolean constraints.
Question: Does there exist a truth assignment of weight exactly k that
satisfies all constraints in F?
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Recall that the weight of an assignment is the number of variables it is setting to
true. Depending on what F looks like, the problem may have varying complexity.
General considerations. It can be shown that Weighted F-Satisfiability
is in W [1 ] for every Boolean constraint family F . The point of interest here is
to decide for which F Weighted F-Satisfiability becomes fixed-parameter
tractable and when it becomes W [1 ]-complete. In fact, a “dichotomy theorem”
holds, that is, for every constraint family F , Weighted F-Satisfiability is
either fixed-parameter tractable or W [1 ]-complete. To obtain this classification,
one needs the concept of weakly separable constraints. To this end, consider
an assignment as a Boolean vector s ∈ {0, 1}r and represent it as a subset
of {1, 2, . . . , r} by putting i ∈ {1, 2, . . . , r} into the subset representing s iff the
i-th position in s is set 1. Thus, we may interpret assignments as sets. A Boolean
constraint f is weakly separable if

1. whenever there are two satisfying assignments for f , their intersection is
satisfying as well; and

2. whenever for three satisfying assignments s1, s2, s3 of f we have s1 ⊆ s2 ⊆
s3, then (s2 \ s1) ∪ s3 is satisfying as well.

Result. If every constraint in a set of constraints F is weakly separable, then
Weighted F-Satisfiability is fixed-parameter tractable, and it is W [1 ]-
complete otherwise.
Discussion. A dichotomy theorem such as the above one was first considered
in the classical context for Boolean constraint satisfaction problems showing
that every problem in this family of problems is either polynomial-time solv-
able or NP-complete. Also in this context, further structural restrictions on the
formula related to incidence graphs, as we discussed for Satisfiability (see
Section 15.5.1) have been studied. Weighted F-Satisfiability becomes fixed-
parameter tractable with respect to the weight parameter if the incidence graph
has treewidth bounded by a constant or is planar.
Literature. The basic reference is Marx (2004c). The famous classical dichotomy
theorem for Boolean constraint satisfaction goes back to Schaefer (1978).

15.5.4 Database queries

Definition and motivation. Database theory makes a very natural setup for
studying parameterized complexity. Here we focus on database queries—one of
the main issues of database theory. When considering the evaluation of a query
on a database instance, one has to distinguish between two sorts of complexity:

• data complexity measures the complexity of evaluating a query solely in
terms of the size of the database and ignores the query size; and

• combined complexity measures the complexity in terms of the size of the
query plus the size of the database.

The query is typically much smaller than the database, making this a natural
subject for parameterized complexity analysis. Among other things, one analyzes
the complexity of relational database queries for two parameters:
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• the query size; and

• the number of variables that appear in the query.

Herein, a database d = {D;R1, . . . , Rm} consists of a domain D and a set of
relations R1, . . . , Rm over D. A query Q is a function that maps a database d
to a relation Q(d) over the same domain D. Several classes of query can be
distinguished, such as conjunctive queries or first-order queries—refer to the
literature. The basic Database Query problem then is defined as follows.

Input: A database d and a tuple t.
Question: Is t ∈ Q(d)?

General considerations. As mentioned before, two natural parameterizations of
Database Query naturally come to mind, that is, the query size and the num-
ber of variables appearing in the query. Another point to distinguish is whether
the set of relations and their arity is fixed or can vary. Clearly, considering the
parameter “number of variables” together with a variable set of relations with
variable arity forms the most general problem. It turns out, however, that in
most cases the assumption of fixed or variable set of relations and arity makes
no difference in the following. Unfortunately, in their general form both of the
above-mentioned parameterizations turn out to be W [1 ]-hard. Fixed-parameter
tractability can only be achieved by further restricting the structure of queries.
Result. For various query languages such as “conjunctive”, “positive”, or “first-
order” Database Query is W [1 ]-hard for parameter “query size” as well as for
parameter “number of variables”.
Discussion. As mentioned, to achieve practical fixed-parameter tractable cases
of Database Query one must consider special forms of queries. “Acylicity”
plays a central role here. Thus, the so-called class of “acyclic conjunctive queries
with inequalities” leads to fixed-parameter tractable cases of Database Query
with respect to both discussed parameters. By way of contrast, the so-called
class of “conjunctive queries with comparisons” remains W [1 ]-hard with respect
to both parameterizations. There are many other methods and frameworks for
studying parameterized query complexity; refer to the cited literature to gain
an overview. There are few fixed-parameter tractability results for Database
Query for restricted classes of input database instances where—analogously to
Satisfiability in Section 15.5.1—one again refers to a graph structure associ-
ated with a relational database instance.
Literature. The basic reference for this section is Papadimitriou and Yannakakis
(1999). Grohe (2002) provides a brief survey on the parameterized complexity
of database query evaluation. Moreover, Frick and Grohe (2001) and Flum and
Grohe (2005) provide deeper insights into the closely related field of model check-
ing and descriptive complexity.

15.6 Miscellaneous problems

We conclude our small selection of case studies with a set of miscellaneous prob-
lems arising in various contexts. The purpose is eventually to underpin the leit-
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motif of this work stating the ubiquity of fruitful problem parameterizations.
Hence parameterized complexity analysis makes sense almost everywhere.

15.6.1 Two-dimensional Euclidean TSP

The Traveling Salesperson problem (TSP) is one of the most prominent
NP-complete problems with numerous applications. Unfortunately, the problem
is hard to approximate but several successful heuristic strategies have been de-
veloped to solve it efficiently. Here, we exhibit a novel sort of parameterization—
“distance from triviality” (see Section 5.4)—for an interesting special case of
TSP that remains NP -complete; that is, we study the Two-dimensional Eu-
clidean TSP where the set of points under study lies in the Euclidean plane.

Input: A set of n points in the Euclidean plane.
Question: Choosing Euclidean distances as the basis for the cost mea-
sure, is there a roundtrip through all n points that has length (resp. cost)
at most k?

General considerations. This is once more an example of a problem where the
considered parameter has nothing to do with the size or quality of the solution
but it refers to “structural aspects” of the input. Thus the parameter is not given
explicitly but is an input property as follows. It is well known that TSP is trivial
when all n points are in convex position, that is, they are vertices of a convex
polygon. Hence the question arises what happens if the number of “inner points”
is small: given n points in the Euclidean plane, compute their convex hull and
determine the set of points inside the convex hull. Let the number of these inner
points be k and consider this as the problem parameter.

The basic strategy of attack is dynamic programming. Two fundamental and
basically obvious facts necessary to derive the results are as follows:

1. Every shortest tour has no crossing when drawn in the plane.

2. As a consequence, in every shortest tour all points lying on the convex hull
appear in a cyclic order, that is, every two consecutive points in the order
are also consecutive on the convex hull.

Results. It can be shown that the problem is solvable in O(k! · k ·n) time using
O(k) space or in O(2k · k2 · n) time using O(2k · k · n) space.
Discussion. The employed dynamic programming strategies are standard and
do not need any complicated definitions or reasoning. They are also applicable
to certain variants of TSP such as Prize-Collecting TSP and Partial TSP.
It is tempting to study the parameterization by the “number of inner points”
for more problems from computational geometry.
Literature. The basic reference is Dĕıneko et al. (2004). A parameterization by
the number of inner points was also studied for the Minimum Weight Trian-
gulation problem (Hoffmann and Okamoto, 2004; Spillner, 2005).
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15.6.2 Multidimensional matching

Definition and motivation. Matching problems are a key component of many
algorithms. In particular, Multidimensional Matching can be used as a sub-
routine in many other fixed-parameter algorithms. The problem is, given a set
of r-tuples, to find at least k “independent” tuples. For two r-tuples T, T ′ we
write T ∼ T ′ if there is an i ∈ {1, 2, . . . , r} such that T and T ′ coincide in the
ith coordinate; otherwise, we write T �∼ T ′.

Input: A set S ⊆ A1 ×A2 × . . .×Ar for some collection A1, A2, . . . , Ar

of pairwise disjoint sets and a nonnegative integer k.
Question: Is there a matching P for S of size at least k, that is, is there
a subset P of S where for any T, T ′ ⊆ P , T �∼ T ′, and |P | ≥ k?

General considerations. The strategy for solving Multidimensional Match-
ing consists of two steps:

1. find a problem kernel; and

2. use color-coding in combination with dynamic programming on a subset
of colors.

The idea behind the kernelization is that if a large number of tuples match a
particular “pattern” then some of them can be removed. Observe that fixed-
parameter tractability with respect to the combined parameter (k, r) already
follows from the existence of a size-O(kr) kernel by simply performing exhaus-
tive search. To gain a more efficient fixed-parameter algorithm, color-coding and
dynamic programming are employed. To this end, one begins by greedily com-
puting a maximal matching in the kernel instance in O(kr) time.
Result. Multidimensional Matching can be decided in O(crk + n) time for
some constant c, where n denotes the size of the overall input.
Discussion. Note that the technique used to deploy a fixed-parameter algo-
rithm for Multidimensional Matching makes use of the fact that the goal
is to obtain at least k disjoint objects. It generalizes to solving related packing
problems in an analogous way with similar time bounds. It remains open to jus-
tify the relevance of the fixed-parameter algorithm in terms of implementation
and experiments. As Multidimensional Matching derives from a maximiza-
tion problem, it is unclear whether small parameter values appear in practical
applications. Note, however, that the first fixed-parameter algorithms for this
problem only had a running time of the form O(kO(k) + n) for constant r, thus
the above result means a significant breakthrough.
Literature The basic reference is Fellows et al. (2004b). Color-coding is due
to Alon et al. (1995); see also Section 11.1.

15.6.3 Matrix Domination

Definition and motivation. Matrix Domination is a problem closely related
to so-called edge domination problems in graphs and also to Constraint Bi-
partite Vertex Cover which we discussed in Section 15.3.2. Applications
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appear in the context of telephone switching or VLSI design. The problem is
defined as follows.

Input: An n × m-matrix with entries from {0, 1} and a nonnegative
integer k.
Question: Is there a set C of at most k entries with value 1 such that
all other 1-entries are in the same row or column with at least one entry
from C?

The set C may be considered as matrix dominating set. Matrix Domination
is NP -complete.
General considerations. The basic strategy to derive a fixed-parameter algo-
rithm for Matrix Domination consists of:

1. deriving a problem kernel; and

2. employing a depth-bounded search tree, particularly making use of the
algorithm for Constraint Bipartite Vertex Cover.

For instance, the following three data reduction rules apply:

• Remove “all-0” rows and columns.

• If there are more than k + 1 identical rows (columns), then all of these
except for k + 1 many can be removed.

• If there are more than k identical rows (columns) that contain more than k
1-entries, then the problem has no solution.

Based on these rules, one can prove a problem kernel of size O(2k · k).
Result. Matrix Domination is decidable in O(1.96k · k5/2 + n3) time where,
without loss of generality, n ≥ m.
Discussion. Matrix Domination provides an example of a problem where—
so far—only a problem kernel of exponential size is known. Another problem
where only an exponential-size problem kernel is known is given by Multicut
in Trees, as discussed in Section 1.3.
Literature. The basic reference is Weston (2004). The Constraint Bipartite
Vertex Cover problem is studied in Fernau and Niedermeier (2001) (see also
Section 15.3.2). The exponential-size problem kernel for Multicut in Trees is
derived in Guo and Niedermeier (2005b).

15.6.4 Vapnik–Chervonenkis Dimension

Definition and motivation. The Vapnik–Chervonenkis Dimension (VC Di-
mension for short) problem is of particular importance in learning theory. It is
also famous for being a candidate problem being neither polynomial-time solv-
able nor being NP -complete. When n denotes the overall input size, it is known
to be solvable in O(nlog n) time. The formal definition of VC Dimension reads
as follows.
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Input: A family C of subsets of some universe U and a nonnegative
integer k.
Question: Is the VC dimension of C at least k, that is, is there an S ⊆ U
with |S| ≥ k with the property that for all subsets T of S there is a set C
in C such that C ∩ S = T ?

The VC dimension is intuitively a measure of the “variability” of C. It has been
shown that it is a reasonably precise estimate of the complexity of “learning C”
if C is thought of as a class of concepts to be learned.
General considerations. The question for the complexity of the VC dimension
has led to the introduction of natural complexity classes potentially lying between
P and NP . These are founded on “limited nondeterminism”, a concept seemingly
closely related to fixed-parameter tractability. The important thing about VC
Dimension—which also implies solvability in nO(log n) time—is that it can be
shown that for universe U of size m the VC dimension of C can be at most logm.
This indicates that it is unlikely to be NP -complete. By way of contrast, VC
Dimension turns out to be intractable with respect to parameter k by reducing
the W [1 ]-complete Clique problem to it. Observe that the reduction involves
parameter functions that are exponential in the parameter.
Result. VC Dimension is W [1 ]-complete with respect to parameter k.
Discussion. The fact that VC Dimension is W [1 ]-hard clearly shows that clas-
sical and parameterized complexity analysis are in a sense “orthogonal” to each
other. So, whereas for instance the NP-complete Vertex Cover with respect
to the parameter “solution size” is fixed-parameter tractable, the presumably
not NP -hard VC Dimension is W [1 ]-hard with respect to parameter “solution
size”. This indicates that classical complexity studies do not necessarily always
“transfer” into the parameterized context.
Literature. The proof for the W [1 ]-completeness of VC Dimension can be
found in Downey and Fellows (1999). A systematic study of limited nondeter-
minism in connection with the complexity of the VC Dimension is undertaken
in Papadimitriou and Yannakakis (1996). The connections between learnability
and the VC dimension are described in Blummer et al. (1989).

15.7 Summary and concluding remarks

With the relatively small selection of case studies given in this chapter the main
purpose is to briefly sketch various areas and concrete problems where parame-
terized complexity analysis fits naturally. Through personal bias and ignorance,
however, a number of important fields and topics have been left unaddressed.
Among these omissions are problems related to

• graph drawing;

• computational geometry;

• model checking problems in connection with descriptive complexity;

• machine learning;

• cryptography;



276 SELECTED CASE STUDIES

• formal languages and linguistics;

• social sciences;

• operations research and economy;

and many other fields offering challenging combinatorial problems. It seems hard
to overview and reflect all opportunities for studying fixed-parameter algorithms.
For an invitation to study fixed-parameter algorithms the above selection may
perhaps be enough—for complete coverage hundreds of more pages must be
written.
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The good prospects for fixed-parameter algorithms as predicted in the 1990s
have come true. Fixed-parameter tractability will surely continue to prosper in
various ways.

The emphasis of this work was on algorithms. Both the algorithmic and
the structural complexity theory side of parameterized complexity analysis are
flourishing and developing rapidly.

We avoid listing concrete algorithmic challenges here since numerous exam-
ples are spread all over the text. The reservoir of challenges for parameterized
algorithm design and analysis is almost inexhaustible. This is due to the contin-
uously growing list of NP -hard problems and to the fact that fixed-parameter
algorithmics encourages the study of one and the same problem under different
parameterizations.

A point that has been neglected so far is that fixed-parameter tractability may
also, in some cases, be an alternative to polynomial-time solvability. Imagine that
one only has an algorithm with a high-degree polynomial running time for some
problem. A fixed-parameter algorithm for that problem with a perhaps linear-
time component in the overall input size and an exponential time component
exclusively depending on a small parameter (so-called “linear fixed-parameter
tractability”) might still be beneficial in this case. In concrete terms, an O(2k ·
n) time algorithm for small parameter k may be superior to an O(n3) time
algorithm.

Among others, one may identify the following five basic themes as important
components in ongoing research on fixed-parameter algorithms:

• implementation and experimentation;

• improved mathematical analysis;

• new algorithmic techniques;

• new (structural) problem parameterizations; and

• combination with approximation algorithms.

We conclude with three (of many) central challenges for parameterized algo-
rithm design:

• Is the Feedback Vertex Set problem—destroy all cycles with at most k
vertex deletions—in directed graphs fixed-parameter tractable with respect
to parameter k?

• Is it fixed-parameter tractable to delete at most k clauses from a Boolean
formula in 2-CNF such that the remaining formula becomes satisfiable?

277



278 ZUKUNFTSMUSIK

(Note that this can be seen as a generalization of the fixed-parameter
tractable Graph Bipartization problem.)

• Is the problem to find an independent set of size �n/4�+ k in an n-vertex
planar graph fixed-parameter tractable with respect to the parameter k?

There are many options to explore and extend the range of applicability of
fixed-parameter algorithms. Be invited!
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Dom, Michael, Guo, Jiong, Hüffner, Falk, and Niedermeier, Rolf (2005). Ex-
tending the tractability border for closest leaf powers. In Proc. 31st WG,
Volume 3787 of LNCS. Springer.

Downey, Rodney G. (2003). Parameterized complexity for the skeptic. In Proc.
18th IEEE Annual Conference on Computational Complexity, pp. 147–169.

Downey, Rodney G., Estivill-Castro, Vladimir, Fellows, Michael R., Prieto,
Elena, and Rosamond, Frances A. (2003). Cutting up is hard to do: the
parameterized complexity of k-cut and related problems. Electronic Notes in
Theoretical Computer Science, 78.

Downey, Rod G. and Fellows, Michael R. (1995). Parameterized computational
feasibility. In Feasible Mathematics II, pp. 219–244. Birkhäuser.
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Guo, Jiong, Gramm, Jens, Hüffner, Falk, Niedermeier, Rolf, and Wernicke, Se-
bastian (2005). Improved fixed-parameter algorithms for two feedback set
problems. In Proc. 9th WADS, Volume 3608 of LNCS, pp. 158–168. Springer.
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acyclicity, 136, 153, 271
algorithm engineering, 36, 184, 202, 249
algorithmic graph theory, 150
annotation, 60

refined, 116
vertex pair, 95

approximation
polynomial-time, 80

approximation algorithm, 3, 15, 20, 33,
64, 120, 237

Vertex Cover, 67
approximation ratio, 20
approximation scheme

efficient polynomial-time, 239
fully polynomial-time, 21, 239
polynomial-time, 21, 239

approximation theory, 67
APX , 21
arc annotation, 262

nested, 263
average-case analysis, 3, 15

bag, 151
Bell number, 183
Betweenness, 43
biclique, 121
bidimensionality, 245
big Oh notation, 18
binary encoding, 127
Binary Knapsack, 126
binomial coefficient, 124
Boolean constraint, 269

family, 269
bounded FPT , 233
branch decomposition, 173
branch-and-bound, 120
branching, 90

algorithm, 121
number, 92
object, 118
vector, 92

branchwidth, 173, 267

capacitated graph, 251
capacitated tree, 131
capacitated vertex cover, 251
capacity, 251
case distinction, 88

art of, 94
complete, 99
re-engineering of, 119

Center String, 43, see Closest String
character matrix, 103
characteristic polynomial, 92
choice string, 221
chord, 249
Chordal Completion, 249
clause, 4

form, 58
length of a, 59

Clique, 22, 45, 207, 213, 221
clique, 151

disjoint union of, 93
closed under taking minors, 196
Closest k-Leaf Power, 250
Closest String, 43, 103, 181
Closest Substring, 44, 220, 241
Cluster Editing, 60, 93, 250
CNF-Satisfiability, 4, 54, 205

parameterizations of, 5
coding theory, 103, 258
color-coding, 178, 248, 273
coloring, 164

extension of a, 162
column isomorphism, 182
column type, 182
combinatorial explosion, 2, 5, 12, 28
combined complexity, 270
communication problem, 10
compact description, 35, 39
compatibility, 261
Compatibility of Unrooted

Phylogenetic Trees, 261
compiler optimization, 150
complement graph, 25, 207
complementary unit clause rule, 268
compression step, 185
computational biology, 84, 103
computer algebra, 93
computer-assisted analysis, 98
Computers and Intractability, 3, 20
condensation, 134
conflict triple, 93
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conjunctive normal form, 58
connected component, 19, 62
consensus problem, 265
Consensus String, 43, see Closest

String
consistency, 163

property, 137, 151
Constrained Minimum Vertex Cover,

254
Constraint Bipartite Vertex Cover,

44, 253
constraint satisfaction, 43
contact map, 264
context-free language

word problem, 124
convex hull, 46, 126
convex position, 272
Correlation Clustering, 122
correlation clustering, 86
Crossing Number, 256
crown

of a graph, 69
reduction, 193
rule, 39, 256
structure, 69

cycle, 19
CYK algorithm, 124

d-Hitting Set, 72, 101
data clustering, 60
data complexity, 270
data disparity, 259
data reduction, 8, 24, 31, 107, 188

by folding, 84
crown, 69
local, 60
parameter-dependent, 32, 56, 60, 73
parameter-independent, 12, 32, 56, 68

database, 145, 271
query, 270
relational, 270
theory, 266

Database Query, 271
decision problem, 6, 17
decomposition property, 129
deficiency, 46, 267

maximum, 46, 267
degree of a vertex, 18
degree-branching, 90, 98
demand path, 10
demand value, 131
dependence structure, 164
descriptive complexity, 172, 271
dichotomy theorem, 270
dictionary look-up, 145
Dijkstra algorithm, 130

dirty column, 103
distance from triviality, 46, 256, 272
Distinguishing Substring Selection,

44, 241
divide a coloring, 167
Dominating Set, 1, 26, 89, 157, 197, 207,

210
in bipartite graphs, 7

Dominating Set in Planar Graphs, 14,
74

domination, 102
number, 74

double counting, 35, 162
drosophila, 205

melanogaster, 4
drug design, 34, 251
Dulmage–Mendelsohn decomposition, 255
dynamic programming, 33, 37, 42, 124

edge
addition, 246
capacity, 131
contraction, 11, 19
deletion, 246
domination, 273
editing, 246
modification, 60

Edge Bipartization, 249
electrical network, 228, 257
empirical confirmation, 35
enumeration, 35
error compensation, 246
Euler formula, 19, 89, 108
evolutionary

relationship, 259
tree, 42, 259

exact algorithm, 3, 5, 16
excluded grid theorem, 256
exhaustive search, 88, 125
exit vertex, 74
expected running time, 179
experimental work, 86
expert system, 150
exponential time hypothesis, 231

face, 155
facility location, 84
fault coverage, 253
Feedback Vertex Set, 176, 187, 247
fill-in, 154
first-order logic, 170
fixed-parameter algorithm

subexponential-time, 243
fixed-parameter intractability, 205

bounded, 234
fixed-parameter intractable, 22
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fixed-parameter tractability
bounded, 233

fixed-parameter tractable, 22, 23
folding, 72, 90, 146
forbidden set characterization, 246
forbidden subgraph characterization, 94,

250
forget node, 153
formal language theory, 148
formula

antimonotone, 212
length of a, 59
propositional, 58
structure, 5

formula
t-normalized, 211

four-color theorem, 32, 57, 81
FPT , 27
FPTAS

see polynomial-time approximation
scheme

fully 21
free variable, 171
frequency assignment, 150

gadget, 77
edge, 78
vertex, 75

Gallai-Edmonds structure theorem, 255
Gate Matrix Layout, 172
gene, 84

expression, 258
General Weighted Vertex Cover, 217
genome rearrangement, 84
genomic variation, 264
genotype, 264

matrix, 264
graph

bipartite, 19, 45, 65, 256
bounded genus, 245
bull, 250
chordal, 121, 154, 256
class, 33
cluster, 60
complete, 19
complete bipartite, 19
connected, 19
d-regular, 18
dart, 250
directed, 18
directed incidence, 267
disk, 245
display, 262
edge-weighted, 128
gem, 250
genus, 257

grid, 151, 172
grid-like, 245
incidence, 267
intersection, 154
isomorphic, 19
K3,3-minor-free, 245
K5-minor-free, 245
layer, 156
map, 245
minor, 19, 196
outerplanar, 155
permutation, 154
planar, 2, 19, 32, 243
plane, 19

face of a, 19
primal, 266
regular, 99
similarity, 60
simple, 18
sparse, 86
split, 45, 256
subdivision of a, 19
tree-like, 150
undirected, 18
variable interaction, 5

Graph Bipartization, 184, 241, 248
Graph Coloring, 45, 255
graph coloring, 29, 37
graph minor

closed under, 27
theorem, 196
theory, 195

Graph Minor Order Testing, 27
Graph Minor Theory, 27
graph modification, 93, 245
graph property, 246
graph separator, 153, 155
greedy algorithm, 194
greedy localization, 190
greedy phase, 191
guaranteed value, 42
guard vertex, 75

Hamming distance, 18
haplotype, 264

matrix, 264
haplotyping, 264
hash table, 143
hashing, 178, 180
hereditary property, 246
heuristic

method, 3, 15
strategy, 35

Hitting Set, 227
hyperedge, 102
hypergraph, 34, 72, 267
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Incomplete Perfect Path Phylogeny
Haplotyping, 265

independence property, 125
Independent Dominating Set, 176
Independent Set, 24, 89, 206, 210, 213
independent set, 32
Independent Set in Planar Graphs,

38, 42, 57
individual variables, 170
information retrieval, 258
integer linear program, 44, 68
integer linear programming, 107, 181
Integer Programming Feasibility, 181
Integer Weighted Vertex Cover, 217
interface, 153
interleaving technique, 98, 110, 218
introduce node, 153
iterative branching, 93, 101
iterative compression, 184

join node, 153

k-Coloring, 216
k-leaf power, 250
k-leaf root, 250
k-perfect family of hash functions, 180
k-Step Halting, 25
kernelization, see reduction to a problem

kernel
conditional, 111

k log n-Vertex Cover, 230

layer decomposition, 157
layer view, 155
learning theory, 274
least common ancestor, 163
limited exhaustive search, 36
linear FPT reduction, 232
linear programming, 64
literal, 4
load balancing, 120
local rule, 57
local substructure, 114
localization phase, 192
locally invalid, 165
logic, 266
logical depth, 25, 209
logically equivalent, 209
Longest Arc Preserving Common

Subsequence (LAPCS), 262
Longest Common Subsequence, 147,

229
Longest Path, 178
lower bound, 35, 230, 239

M -hierarchy, 231

M [1 ], 230
machine learning, 86
machine model, 233
many–one reduction, 208
match, 221
matching, 46, 193

maximal, 45, 273
maximum, 64, 253

in a bipartite graph, 67, 69
multidimensional, 273
perfect, 255

matching theory, 254
matrix dominating set, 274
Matrix Domination, 85, 274
Maximum 2-Satisfiability, 7, 14
Maximum Cut, 29
Maximum Induced Bipartite

Subgraph, 248
Maximum Satisfiability, 7, 14, 17, 43,

58, 268
MaxSNP , 21
MaxSNP-hard, 21
mechanized analysis, 201
memoization, 125, 145
memory

boundedness, 169
consumption, 160
usage, 175

merging technique, 157
meta search tree, 115, 117
Mini-3-CNF-Satisfiability, 231
miniaturization route, 231
Minimum Fill-In, 121
Minimum Quartet Inconsistency, 42,

259
Minimum Triplet Inconsistency, 261
Minimum Weight Triangulation, 272
Minimum-Fill-In, 249
minor test, 197
minor-minimal, 196
model checking, 234, 266
molecular biology, 43
monadic second-order logic, 169, 262
monomial, 112
monotonic function, 165
motif

search, 258
MSO extension, 171
MSO-formula, 170
multi-set, 58
Multicut in Trees, 10, 13, 20, 21, 38,

41, 53
Multidimensional Matching, 273

(n − k)-Graph Coloring, 255
natural language processing, 150
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neighbor
common, 61
non-common, 61

neighborhood
closed, 19
local, 74
open, 18

network configuration, 198
non-locality, 257
Nonblocker, 37
nonblocking set, 37
nondeterminism, 123

bounded, 216
limited, 233, 275

normalized problem, 182
NP-complete, 20
NP-completeness, 3
NP-completeness

strong, 128
NP-hardness, 20

observation rule, 228
obstruction set, 27, 196
occurrence, 137

number, 139
Odd Cycle Transversal, 248
optimal solution, 17
optimal substructure, 125
optimization problem, 7, 17
order of an edge, 174
outerplanarity number, 156
overlapping substructure, 125

P3, 94
packing, 273
parallel machine, 36, 120
parameter-dependent, 12
parameterization

above guaranteed value, 33, 42, 260
away from triviality, 45
dual, 32, 42, 255
standard, 240
structural, 6, 46, 147, 175

parameterized
establishment, 201
problem, 206
reducibility, 207
reduction, 208, 216

parameterized reduction
linear, 232

parametric duality, 81
partial k-tree, 151
partial ordering, 164
Partial TSP, 272
Partial Vertex Cover, 219
Pascal’s formula, 124

Pascal’s triangle, 124
path, 19

colorful, 178
shortest, 126, 129
simple, 178

path decomposition, 37
Path-like Weighted Set Cover, 139
pathwidth, 37, 172
pattern matching, 264
PCP

inapproximability theory, 237
theorem, 81

Perfect Dominating Set, 176
perfect elimination scheme, 154
perfect path phylogeny, 264
Perfect Path Phylogeny

Haplotyping, 265
perfect phylogeny principle, 264
phylogenetic tree, 258
phylogeny, 145, 250
Πi,j,k Graph Modification, 247
Planar Separator Theorem, 155
plane embedding, 19
plane graph

layer decomposition of, 156
Power Dominating Set, 228, 257
preprocessing, 8, 24, 53, 127, 191

by data reduction, 12
primer design, 258
principle of optimality, 125
prisoner vertex, 75
Prize-Collecting TSP, 272
probabilistic inference, 150
problem

computable, 20
counting, 34
decidable, 20
maximization, 32
minimization, 32
parameterized, 23

problem kernel, 12, 55, 79
linear, 56, 80
lower bound, 80
size, 55
trivial, 58

problem-specific rule, 115
profit, 131
projection, 134
proof complexity, 119
protein sequence, 262
pseudo-polynomial-time algorithm, 128
PTAS, see polynomial-time

approximation scheme, see

polynomial-time
approximation scheme
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pure literal rule, 268

quartet, 43, 259
cleaning algorithm, 260
method, 259
puzzling, 260
topology, 43, 259

query
conjunctive, 271
first-order, 271

r-neighborhood, 173
r-outerplanar, 155
railway optimization, 7, 53
Random Access Machine, 17
randomized algorithm, 3, 15, 178, 190,

248
re-engineering, 36
realizable weight, 127
reconfigurable VLSI, 121, 253
recurrence, 91

homogeneous, 112
linear, 91
multivariate, 122
non-homogeneous, 112
of first order, 112

recurrence equations
system of, 92, 102

Red-Blue Dominating Set, 15
reduced graph, 79
reduced instance, 12, 55, 67
reducibility

polynomial-time, 20
reduction

approximation-preserving, 234
parameterized, 24
transitive, 235

reduction to a problem kernel, 9, 24, 54,
104

Buss’s, 54
relation

binary, 170
unary, 170

relative hardness, 24
relaxation

to linear programming, 68
renormalization route, 230
resolution rule, 268
resource allocation, 127
reversal, 84
Ring Grooming, 199
RNA sequence, 262
robber-cop game, 152
routable, 131
route schedule, 132

Satisfiability, 13, 17, 20, 46, 266
satisfiability checking, 266
satisfying assignment, 4, 170
search tree, 28, 241

depth-bounded, 31, 88
size, 36

self-loop, 18
sentence, 171
separation hypothesis, 215
separator, 153

merging, 160
Set Cover, 136, 227
Set Cover with Consecutive Ones

Property, 139
Set Packing, 193, 220
Set Splitting, 191
set variables, 170
Short Turing Machine Acceptance,

25, 218
signature, 254
SNP (single nucleotide polymorphism),

264
sorting, 53
Sorting by Reversals, 84
spanning forest, 245
spanning tree, 37

minimum weight, 129
sparse matrix computation, 249
sparsification lemma, 231
split a subset, 191
splitting algorithm, 121
Stable Set, see independent Set
star topology, 259
Steiner Problem in Graphs, 128
Steiner Tree, 15
Steiner tree, 128
Stirling formula, 178, 187
string, 18

identification symbol, 221
problem, 103

struction, see folding
structural complexity theory, 203
structural parameter, 5
structure

comparison, 262
subexponential lower bound, 230
subgraph, 19

induced, 19
Subgraph Isomorphism, 178
subsequence, 147

common, 29
subset tree, 137
substring, 147, 220
supply tree, 131
synchronizing symbol, 221
system verification, 266
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table
look-up, 124
updating, 164

telecommunication network design, 150
telephone switching, 274
terminal vertex, 128
text processing, 229
top-down traversal, 135
Total Dominating Set, 176
traceback, 139
trading space for time, 145
transformation rule, 268
transition table, 218
transitivity, 209
Traveling Salesperson Problem, 46,

126, 272
tree, 19

network, 10
rooted, 19

tree decomposition, 33, 37, 145, 151, 243
nice, 152
problem-specific, 155

tree of recursive calls, 88
tree-like subset collection, 137, 151
Tree-like Unweighted Set Cover, 138
Tree-like Weighted Set Cover

(TWSC), 137
tree-likeness, 136
tree-structured, 136
treewidth, 28, 33, 151, 241, 267

bounded, 262
bounded local, 245
complete graph, 175
local, 173

triangle inequality, 104, 106, 128
triangular face, 19
triangulation, 19, 154
triplet, 261

topology, 261
truth assignment, 58

random, 59
weight of, 6
weight of a, 205

Turing Machine Acceptance, 25
Turing reduction, 230
two-dimensional complexity analysis, 12
Two-dimensional Euclidean TSP, 272

unary encoding, 128
unit-clause, 54

VC Dimension, 26, 235, 274
vertex

addition, 246
deletion, 246

Vertex Cover, 3, 22, 26, 28, 31, 51, 54,
64, 98, 157, 185, 197, 206

approximation algorithm, 31
vertex cover

for hypergraphs, 102
minimal, 35
structure, 37

Vertex Cover in Planar Graphs, 41
VLSI design, 248, 274

W [1 ], 25, 210, 212
W [1 ]-complete, 25, 210
W [1 ]-hard, 25, 210
W [2 ], 210
W [2 ]-complete, 26
Wagner’s conjecture, 196
weakly separable constraint, 270
weft, 211
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