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Chapter 1

Transcription Factors Regulating Embryonic

Development of Pulmonary Vasculature

Craig Bolte, Jeffrey A. Whitsett, Tanya V. Kalin,

and Vladimir V. Kalinichenko

Abstract Lung morphogenesis is a highly orchestrated process beginning with the

appearance of lung buds on approximately embryonic day 9.5 in the mouse.

Endodermally derived epithelial cells of the primitive lung buds undergo branching

morphogenesis to generate the tree-like network of epithelial-lined tubules. The

pulmonary vasculature develops in close proximity to epithelial progenitor cells in

a process that is regulated by interactions between the developing epithelium and

underlying mesenchyme. Studies in transgenic and knockout mouse models dem-

onstrate that normal lung morphogenesis requires coordinated interactions between

cells lining the tubules, which end in peripheral saccules, juxtaposed to an extensive

network of capillaries. Multiple growth factors, microRNAs, transcription factors,
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and their associated signaling cascades regulate cellular proliferation, migration,

survival, and differentiation during formation of the peripheral lung. Dysregulation

of signaling events caused by gene mutations, teratogens, or premature birth causes

severe congenital and acquired lung diseases in which normal alveolar architecture

and the pulmonary capillary network are disrupted. Herein, we review scientific

progress regarding signaling and transcriptional mechanisms regulating the devel-

opment of pulmonary vasculature during lung morphogenesis.

1.1 Introduction

The mature lung is a complex organ consisting of a multiplicity of cell types

organized in a precisely controlled pattern during morphogenesis. Perturbations

of pulmonary developmental programs cause congenital malformations that are a

common cause of morbidity and mortality in infancy. The pulmonary vasculature,

which provides efficient gas exchange between air and blood, is composed of the

bronchial and pulmonary vascular networks (Bridges and Weaver 2006). The

bronchial circulation is directly supplied by the systemic circulation and is derived

from the aorta. The bronchial circulation is formed in close proximity to the

conducting airways and provides oxygen and nutrient-rich blood to pulmonary

tissues. The pulmonary vasculature is distinct from the systemic circulation, deliv-

ering deoxygenated blood to the lung from the right ventricle of the heart via the

pulmonary artery and returning oxygen-rich blood to the left atrium via the pul-

monary vein. The pulmonary vascular network can be subdivided into proximal and

peripheral circulations. The proximal circulation consists of pulmonary veins and

arteries. The peripheral pulmonary circulation consists of a mesh of microvessels

and capillaries which create the vascular bed within the alveolar region of the

peripheral lung where gas exchange occurs. A complex lymphatic system is also

present in the lung that serves to maintain tissue fluid clearance. The development

of the pulmonary capillary network will be the primary focus of this chapter.

Morphogenesis of the embryonic pulmonary vasculature occurs via two main

processes: vasculogenesis (de novo formation of blood vessels) and angiogenesis

(branching of preexisting blood vessels). Vasculogenesis is highly active during

early stages of embryogenesis, as endothelial progenitor cells (angioblasts) differ-

entiate into endothelial cells. Angiogenesis is the major process by which the

pulmonary vasculature develops. Both angiogenesis and vasculogenesis require

precise transcriptional regulation and signaling mediated by Vascular Endothelial

Growth Factor (VEGF). Formation of embryonic vasculature depends on signaling

through ANGIOPOIETIN/TIE2, PDGF, PI3K/AKT, TGF-β, SHH, WNT, and

NOTCH, as well as transcription factors FOXF1, FOXM1, FOXC1/2, ETV2,

HAND1, MEF2C, PROX1, HEY1/2, COUP-TFII, TBX4, SNAIL, GATA, SOX,

and KLF (reviewed in De Val and Black 2009; Arora and Papaioannou 2012;

Tiozzo et al. 2012). Temporal and spatial coordination of these signaling and

2 C. Bolte et al.



transcriptional programs generates the extensive pulmonary vascular network

required for lung function.

1.2 Lung Morphogenesis

1.2.1 Structural Development of the Respiratory Tree
and Pulmonary Vasculature

The pulmonary vascular tree develops in close proximity to the epithelial lining of

the lungs in a process mediated by crosstalk between respiratory epithelial cells and

those of the pulmonary mesenchyme. Lung development in mice proceeds through

distinct anatomic stages defined as: embryonic [prior to embryonic day 9.5 (E9.5)],

pseudoglandular (E9.5–16.5), canalicular (E16.6–17.4), saccular (E17.5–postnatal

day 5 (P5), and alveolar (P5–P20) (Fig. 1.1) (Costa et al. 2001; Cardoso and Lu

2006; Morrisey and Hogan 2010; Warburton et al. 2010; Herriges and Morrisey

2014; Kool et al. 2014). Epithelial tubules in the embryonic lung undergo branching

morphogenesis during the pseudoglandular stage to generate a primitive tree-like

network of tubules (Metzger et al. 2008; Morrisey and Hogan 2010; Warburton

et al. 2010). Three modes of branching sequentially transform the lung buds into a

more complex organ. Domain branching creates a series of new buds which arise

from the bronchial stalk at specified distances, generating a series of smaller

bronchi. Subsequently, the tip of the growing buds divides by either planar or

orthogonal bifurcation based on a series of clues to prevent steric hindrance of

the growing respiratory tree (Metzger et al. 2008; Morrisey and Hogan 2010;

Warburton et al. 2010). During the canalicular stage, branching morphogenesis

continues in the periphery of the lung thereby increasing the number of subdivisions

of the tubular network. Terminal bronchioles give rise to respiratory bronchioles

and alveolar ducts as airway epithelium differentiates (Warburton et al. 2010).

Blood vessels grow with branching of the airways, increasing the complexity of the

pulmonary vascular network (Morrisey and Hogan 2010; Warburton et al. 2010).

The saccular stage involves thinning of the interstitium and differentiation of

alveolar type I and type II epithelial cells in association with rapid capillary growth

and increasingly close apposition of endothelial-lined capillaries and epithelial-

lined alveolar saccules. The complexity of the pulmonary lymphatic network

increases with advancing development (Warburton et al. 2010). While gas

exchange can occur at the saccular stage, further septation of the saccules to form

alveoli increases surface area and efficiency of gas exchange. Formation of sec-

ondary septae creates alveoli lined by type I and type II epithelial cells in close

apposition to the capillary network allowing efficient diffusion of gases between the

pulmonary circulation and the alveolar space (Morrisey and Hogan 2010;

Warburton et al. 2010). Although there is considerable knowledge regarding the

1 Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature 3



signaling pathways regulating development and differentiation of respiratory epi-

thelium, development of pulmonary vasculature is not well understood.

1.2.2 Signaling Pathways Regulating Lung Morphogenesis

Multiple growth factors, transcription factors, and their associated signaling cas-

cades are involved in formation of the pulmonary vasculature (Table 1.1). WNT and

BMP signaling pathways are required for specification of the lung (Herriges and

Morrisey 2014).Mice lackingWNT2/2b or β-CATENIN fail to generate a lung field,

whereas over-activation of this pathway expands the specified lung field into the

anterior foregut (Goss et al. 2009). Loss of BMP4 or BMP receptors 1A/B results in

embryonic lethality as endoderm fails to form a trachea or, subsequently, the

bronchial tree (Domyan et al. 2011). Formation of the gut tube also requires retinoic

acid (RA) signaling through its receptors (RARs) (Cardoso and Lu 2006;Warburton

et al. 2010). RA antagonism in mice from conception results in mid-gestation

lethality and loss of lung field specification (Niederreither et al. 1999; Desai et al.

Fig. 1.1 Stages and transcriptional regulators of lung vascular development. The murine lung

progresses through four developmental stages in utero and final fine-tuning occurs postnatally

during the alveolar stage. Images represent the appearance of the epithelial tree as well as

developing pulmonary vasculature during the pseudoglandular, canalicular, saccular, and alveolar

stages of lung development. The major transcription factors regulating development of the

pulmonary vasculature are listed for each stage. Abbreviations: EN endothelium, EPI epithelium,

TI type I pneumocyte, TII type II pneumocyte, M macrophage

4 C. Bolte et al.



Table 1.1 Signaling molecules and transcription factors regulating pulmonary vascular develop-

ment as determined by genetic mouse models

Gene Mouse model Vascular phenotype Reference

Signaling molecules

Vegf SPC-Vegf Abnormal pulmonary vascular

development

Zeng et al.

(1998)

Vegf Lyve-1-Cre Vegfr2�/� Lymphatic hypoplasia, decreased

blood vessel development in yolk

sac, liver, and lung

Dellinger et al.

(2013)

Tgf-β SPC-Tgf-β1 TG
(constitutively active)

Developmental arrest in

pseudoglandular stage, increased

vascular density

Zeng et al.

(2001)

Shh Tie2-Cre Shh�/� Simplified pulmonary vasculature van Tuyl et al.

(2007)

Wnt Wnt2�/�;Wnt2b�/� Lung agenesis, lack of lung

specification

Goss et al.

(2009)

Notch Tie2-tta Tre-Notch4 Arterial-venous shunts Miniati et al.

(2010)

Bmp Shh-Cre Bmpr1afl/+;
Bmpr1b�/�

Die at birth, tracheal agenesis and

aberrant bronchi

Domyan et al.

(2011)

Pten Dermo-Cre Pten�/� Reduced pulmonary capillary net-

work, ACD-like syndrome

Tiozzo et al.

(2012)

Transcription factors

Foxf1 Foxf1+/� Hypoplastic lung, fusion of right

lung lobes, tracheal narrowing and

fistula, ACD-like syndrome

Mahlapuu et al.

(2001)

Foxm1 Foxm1�/� Late embryonic lethal, hypertrophy

of αSMA+ cells, defective peripheral

pulmonary capillary formation

Kim et al.

(2005)

Foxm1 Smmhc-Cre Foxm1�/� Perinatal lethal, pulmonary

hemorrhage

Ustiyan et al.

(2009)

Foxc2 Foxc2�/� Abnormal lymphatic patterning,

agenesis of valves

Petrova et al.

(2004)

Foxo1 Tie2-Cre Foxo1�/� Endothelial cell hyperplasia, vessel

thickening

Wilhelm et al.

(2016)

Prox1 Prox1�/� Lethal by E15, complete lack of

lymphatic capillary network

Wigle and Oli-

ver (1999)

Hey1/2 Hey1�/�; Hey2�/� Lethal after E9.5, impaired vascular

remodeling and hemorrhage

Fischer et al.

(2004)

Coup-tf II Coup-tf II�/� Die circa E10, defective remodeling

of primitive capillary plexus

Pereira et al.

(1999)

Sox17 Sox17�/� Aberrant heart looping, enlarged

cardinal vein, anterior dorsal aorta

defects

Sakamoto et al.

(2007)

Sox17 Dermo1-Cre Sox17�/� Die <3 weeks, decreased pulmonary

microvasculature, alveolar

simplification

Lange et al.

(2014)

(continued)

1 Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature 5



2006). RARβ signaling is essential for lung field specification while RARα and

RARγ are also required for branching lung morphogenesis (McGowan et al. 2000;

Desai et al. 2006). The FGF family is also critical for lung development as multiple

FGFs including FGF10, FGF9, FGF18, FGF8, and receptors FGFR2B and FGFR3/4

regulate formation of the lung buds (Cardoso and Lu 2006), branching of the

bronchioles (Morrisey and Hogan 2010; Herriges andMorrisey 2014), and influence

development of the pulmonary vasculature (White et al. 2006). Hedgehog signaling

is critical for development of the lung and other organs. SHH is derived from the

endoderm and mediates expression ofGli genes in the mesenchyme as well as Fgf in
the mesoderm (Warburton et al. 2000; Kumar et al. 2005). SHH is essential for lung

bud formation, branching morphogenesis, and development of pulmonary vascula-

ture (van Tuyl et al. 2007; Morrisey and Hogan 2010). Shh�/�mice have significant

branching defects, and conditional deletion of Shh from endothelial and hematopoi-

etic lineages (Tie2-Cre Shh�/�) decreases complexity of the pulmonary vascular bed

(van Tuyl et al. 2007). Conversely, TGF-β negatively regulates lung development as

Table 1.1 (continued)

Gene Mouse model Vascular phenotype Reference

Sox18 Sox18�/� Lethal around E14.5, lack of lym-

phatic endothelial cell differentiation

Francois et al.

(2008)

Fli1 Fli1�/� Blood vessel leak/hemorrhage Spyropoulos

et al. (2000)

Eya1 Eya1�/� Blood congestion, decreased vascu-

lar smooth muscle, blood vessel

herniation

El-Hashash et al.

(2011a)

Six1 Six1�/� Blood congestion, decreased vascu-

lar smooth muscle, blood vessel

herniation

El-Hashash et al.

(2011b)

Id1/3 Id1�/�; Id3�/� Lack of branching/sprouting of

blood vessels into neuroectoderm

Lyden et al.

(1999)

Er71 Er71�/� Loss of Flk-1/endothelial cells Lee et al. (2008)

Erg Tie2-Cre Erg�/� Immature/disorganized vascular

plexus

Birdsey et al.

(2015)

Hoxa5 Hoxa5�/� Decreased branching, alveolar

thickening, no surfactant

Aubin et al.

(1997)

Nr3c1 Col1-Cre GR�/� Die at birth with respiratory distress

and cyanosis, lung at

pseudoglandular stage

Habermehl et al.

(2011)

Nr3c1 Dermo1-Cre GR�/� Die after birth from cyanosis, lung

atelectasis, developmental arrest in

canalicular stage

Li et al. (2013)

Prx1 Prx1�/� Die postnatal due to cyanosis, hypo-

plastic lung, reduced vWF+ blood

vessels

Ihida-Stansbury

et al. (2004)

Runx3 Runx3�/� Die within 24 h of birth; poor alve-

olar expansion/vascularization

Lee et al.

(2014a)

6 C. Bolte et al.



a constitutively active mutant form of TGF-β1 leads to developmental arrest in the

pseudoglandular stage with poor sacculation and epithelial differentiation (Zeng

et al. 2001). The PDGF family, VEGF, and retinoic acid influence alveolarization

including formation of the capillary network in the alveolar region (Kumar et al.

2005). VEGF, in particular, is critical for development of lung vasculature and,

indeed, for vascular formation in general. Targeted disruption of the Vegf gene in
mice produces an embryonic lethal phenotype due to impaired blood-island forma-

tion and delayed differentiation of endothelial cells, causing abnormal blood vessel

development (Carmeliet et al. 1996; Ferrara 1996). VEGF signals through tyrosine

kinase receptors FLK1 and FLT1 that are expressed in endothelial cells and their

progenitors. Flk1�/� mice exhibit an embryonic lethal phenotype due to disruption

of vasculogenesis and loss of angioblast cells from blood islands (Shalaby et al.

1995), while Flt1�/� embryos fail to form mature blood vessels (Fong et al. 1995).

Lung-specific overexpression of VEGF (SPC-Vegf transgenic mice) causes neonatal

lethality associated with increased pulmonary vascular development and disrupted

epithelial differentiation (Zeng et al. 1998). VEGF has also been shown to influence

expression of Etv2, a transcription factor essential for development of blood vessels

in the lungs and other organs (Casie Chetty et al. 2017). NR3C1, glucocorticoid

receptor, signaling is critical for lung maturation as Nr3c1�/� mice die after birth

due to respiratory failure and corticosteroid administration to late term or preterm

babies is a long standing medical practice (Habermehl et al. 2011). Recently,

microRNA (miR) have been shown to regulate lung vascular development, as

silencing of either DICER or DROSHA reduces endothelial sprouting and

epithelial-specific loss of Dicer decreases epithelial branching (Marcelo et al.

2013; Herriges and Morrisey 2014). miR-29 is the most common microRNA in

adult lungs, with highest expression in the distal vasculature (Cushing et al. 2015).

Disruption of miR-29 inhibits vascular smooth muscle development with increased

expression of Klf4, Pdgfrb, Fbxo32, and Foxo3a (Cushing et al. 2015). The

microRNA cluster miR-17-92 is highly expressed in early lung development and

its overexpression driven by the Spc promoter results in abnormal lung development

and lethality (Lu et al. 2007). Disruption of the miR-17-92 cluster causes perinatal

lethality due to hypoplastic lung (Ventura et al. 2008). miR clusters miR302-367 and

miR449/34 as well as miR375 have been shown to regulate cell differentiation in the

later stages of lung development (Herriges and Morrisey 2014). Among

microRNAs, miR-126 and miR-221 are pro-angiogenic and miR-27b promotes

endothelial cell tip specification and branching of the vascular plexus (Marcelo

et al. 2013). Long noncoding RNAs (lncRNAs) are another emerging player in

lung development.Mice deficient in the lncRNAFendrr die at birth with hypoplastic
lungs and enlarged alveolar saccules (Sauvageau et al. 2013).

1 Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature 7



1.3 Transcriptional Regulation of Lung Development

1.3.1 Embryonic Stage

In order to control a process as complex as lung organogenesis, precise temporal

and spatial regulation of gene expression is required. Homeobox transcription

factor NKX2.1 is the earliest known marker of the primitive lung field, marking

respiratory epithelial cells in the primordial lung buds. Nkx2.1-null mice die from

respiratory failure at birth caused by severe lung hypoplasia (Kimura et al. 1996).

Nkx2.1 is regulated by FOXA2, a member of the Forkhead box (Fox) family of

transcription factors, and by GATA6 (Ikeda et al. 1996; Shaw-White et al. 1999;

Costa et al. 2001; Kumar et al. 2005). Nkx2.1 expression depends on the canonical

WNT/β-CATENIN pathway and BMP signaling. Disruption of either FOXA2 or

GATA6 pathways blocks expression of Nkx2.1 and inhibits lung specification

(Herriges and Morrisey 2014). GATA4 also plays a role in the early specification

of the lung field (Kumar et al. 2005). Mice lacking Foxa1/2, Gata4, or Gata6 die at
early stages of embryogenesis due to multiple developmental abnormalities, includ-

ing heart defects, loss of extra-embryonic endoderm, and severely underdeveloped

gut tube (Costa et al. 2001; Cardoso and Lu 2006). All these transcription factors

are expressed in foregut endoderm and endoderm-derived lung epithelial cells,

suggesting they control epithelial cell fate decisions during lung specification.

1.3.2 Pseudoglandular Stage

Branching morphogenesis in the pseudoglandular stage of lung development is

associated with increased angiogenesis. The ETS transcription factors ER71 and

FLI1 play important roles early in pulmonary vascular development (Fig. 1.1). Fli1
is expressed in endothelial cells of the developing vasculature, and deletion of Fli1 in
mouse causes death before E12.5 related to vascular leak (Lelievre et al. 2001). In the

mouse, Er71 can be detected as early as E7, and its expression is regulated by VEGF,
BMP, NOTCH, and WNT signaling pathways (Kataoka et al. 2011). Er71�/� mice

die at E9.5 due to lack of endothelial cells, decreased Fli1 and Gata6 expression, and
loss of Flk1 (Lee et al. 2008). Both ER71 and GATA2 are critical for differentiation

of hemangiogenic mesoderm into endothelial cells as opposed to hematopoetic cell

lineages (Kataoka et al. 2011; Park et al. 2013). The homeobox transcription factor

SIX1 and its transcriptional co-activator EYA1 are important regulators of lung

vascular development. Deletion of either Eya1 or Six1 causes lung hypoplasia

associated with decreased branching (Table 1.1), as well as disruption of FGF10

and SHH signaling (El-Hashash et al. 2011a, b). Both FGF10 and SHH are critical for

epithelial–mesenchymal interactions during formation of the lung (van Tuyl et al.

2007; Morrisey and Hogan 2010). Deletion of Eya1 or Six1 causes vascular defects

including decreased vascular smooth muscle and herniation of the blood vessels

8 C. Bolte et al.



(El-Hashash et al. 2011b). SHH plays critical roles during lung development, medi-

ated by the GLI family of zinc finger transcription factors. Deletion or mutation of

eitherGli2 orGli3 results in failure of normal lobulation, generating a simplified lung

(Grindley et al. 1997; Motoyama et al. 1998; Costa et al. 2001). While mice with

mutant Gli1 or compound Gli1/3 mutations have no lung phenotype, compound

mutations in Gli1/2 or Gli2/3 cause severe lung hypoplasia (Grindley et al. 1997;

Motoyama et al. 1998; Park et al. 2000; Costa et al. 2001). Although no vascular

phenotype has been described inGli-deficient mice, GLI2 and GLI3 inhibit FGF10, a

growth factor essential for pulmonary vascular development (Warburton et al. 2000).

Multiple isoforms of the IRX homeobox transcription factors, including Irx1, Irx2,
Irx3, and Irx5, are expressed in the lung and play redundant roles during lung

formation and branching morphogenesis. Simultaneous deletion of these Irx’s
inhibits epithelial branching in vitro and inhibits differentiation of airway epithelial

cells (van Tuyl et al. 2006). Decreased α-smooth muscle actin surrounding pulmo-

nary vessels was observed after inhibition of the Irx transcription factors, supporting a
role for IRX in the development of vascular smooth muscle (van Tuyl et al. 2006).

Deletion of Hoxa5 inhibited branching morphogenesis, caused alveolar thickening,

and inhibited surfactant production (Aubin et al. 1997; Costa et al. 2001; Jones 2003);

whereas deletion of either Hoxa1 or Hoxa3 caused lung hypoplasia and respiratory

failure at birth (Chisaka and Capecchi 1991; Lufkin et al. 1991; Jones 2003).

Consistent with a critical role of BMP signaling during pulmonary vascular devel-

opment, mice lacking the BMP/SMAD targets ID (inhibitor of differentiation and

DNA binding 1 and 3) died before E13.5 and exhibited vascular defects and

decreased branching morphogenesis (Lyden et al. 1999; Park et al. 2013).

1.3.3 Canalicular Stage

During the canalicular stage of lung development, branching morphogenesis con-

tinues in the terminal saccules, which will later undergo sacculation to form alveoli.

Vascular development is highly active during this stage, as an extensive capillary

network is formed. NOTCH signaling has emerged as a major regulator of pulmo-

nary vascular development. NOTCH signaling stabilizes angiogenic sprouts which

are essential for expansion of the vascular network (Lee et al. 2014b). NOTCH

signaling also influences expression of Vegfa, which is critical for vascular devel-

opment (Crivellato 2011). Loss of VEGFA activity has been shown to result in

decreased numbers of pulmonary capillaries and reduced alveolarization (Yun et al.

2016). Endothelial-specific expression of constitutively active Notch4 caused

arterial-venous shunts (Miniati et al. 2010). In support of a critical role of

NOTCH in vascular development, embryos deficient in NOTCH target genes

Hey1/2 die during the early stage of lung development with impaired vascular

remodeling (Fischer et al. 2004; Park et al. 2013) (Table 1.1). Furthermore,

NOTCH inhibits Sox17, a transcription factor critical for vascular development

(Lee et al. 2014b). Sox17-null mice die at E10.5 (Kanai-Azuma et al. 2002), while

1 Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature 9



endothelial-specific deletion of Sox17 disrupted formation of the pulmonary micro-

vasculature and caused alveolar simplification (Lee et al. 2014b). Conversely,

endothelial overexpression of Sox17 enhances angiogenic sprouting (Lee et al.

2014b). Mice with mesenchymal-specific Sox17 deletion mediated by Dermo1-
Cre die within 3 weeks of birth with a significant decrease in pulmonary micro-

vasculature and alveolar simplification (Lange et al. 2014). Forkhead box (Fox)

transcription factors are also important regulators of pulmonary vascular formation.

Severe defects in pulmonary mesenchyme and undeveloped capillaries were

observed in Foxm1�/� embryos causing death in utero (Wang et al. 2003; Kim

et al. 2005), demonstrating FOXM1 is critical for lung development. Perturbations

in Foxm1 expression have profound effects on multiple organ systems, including

the cardiovascular, gastrointestinal, and hematopoietic systems (Wang et al. 2003;

Ren et al. 2010; Bolte et al. 2011, 2012; Sengupta et al. 2013). Foxm1 deficiency

inhibits development of Clara and goblet cells in airway epithelium and disrupts

normal epithelial patterning in the developing lung (Wang et al. 2010, 2012;

Ustiyan et al. 2012, 2016). FOXM1 stimulates proliferation of endothelial cells

during formation of pulmonary vasculature and accelerates cell cycle progression in

normal and neoplastic cells during tissue repair, carcinogenesis, and inflammation

(Liu et al. 2011; Balli et al. 2012; Ren et al. 2013; Cheng et al. 2014; Wang et al.

2014; Gao et al. 2015; Kalinichenko and Kalin 2015; Xia et al. 2015). Conditional

deletion of Foxm1 from smooth muscle cells using smooth muscle myosin heavy
Cre (Smmhc-Cre Foxm1�/�) resulted in decreased vascular muscle formation and

pulmonary hemorrhage (Ustiyan et al. 2009), supporting an important role for

FOXM1 in pulmonary vascular development. FOXO1 has been shown to inhibit

endothelial proliferation as mice deficient for endothelial Foxo1 (Tie2-Cre Foxo1�/�

mice) have increased rates of proliferation resulting in thicker vessels than control

mice (Wilhelm et al. 2016). Foxf1 and Foxf2 are expressed in mesenchyme-derived

cells of the lung and are regulated by SHH (Aitola et al. 2000; Bolte et al. 2015; Xu

et al. 2016; Milewski et al. 2017). While Foxf1�/� mice die before E9.5 related to

defects in the yolk sac and allantois (Mahlapuu et al. 2001; Kalinichenko et al.

2003b), Foxf1+/� mice frequently die at birth due to disruption of pulmonary

vascular formation, a syndrome similar to alveolar capillary dysplasia (ACD)

(Kalinichenko et al. 2001; Sen et al. 2014). Foxf1+/� mice are also more susceptible

to lung injury indicating the importance of FOXF1 in lung injury and repair (Kalin

et al. 2008; Cai et al. 2016; Pradhan et al. 2016). Mesenchymal-specific inactivation

of Pten resulted in death at birth, decreased Foxf1 expression, and caused pathology
consistent with findings in ACD, thus implicating the PI3K/AKT pathway in

development of the pulmonary vasculature (Tiozzo et al. 2012). Interestingly,

overexpression of Foxf1 in transgenic mice also causes perinatal lethality with

vascular hemorrhage, immature lungs, and disrupted capillary network

(Dharmadhikari et al. 2016), indicating pulmonary vascular development is depen-

dent on dosage of the Foxf1 gene. HIF1α and HIF2α regulate the expression of Vegf
and thus influence normal formation of the pulmonary vasculature (Jones 2003;

Galambos and deMello 2007; Park et al. 2013; Kool et al. 2014; Tibboel et al.

2015). Mice with mesenchyme-specific deletion of the Nr3c1 nuclear receptor
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failed to progress from the canalicular to the saccular stage of lung development

(Li et al. 2013). These mice were cyanotic at birth and died shortly afterwards with

lung morphology consistent with the canalicular stage of development (Li et al.

2013).

1.3.4 Saccular/Alveolar Stages

Considerable remodeling of lung structure occurs during the saccular and alveolar

stages of lung development as the number of terminal saccules increases, complex-

ity of the vascular network expands, and development of the pulmonary lymphatic

system occurs (Costa et al. 2001; Cardoso and Lu 2006; Morrisey and Hogan 2010;

Warburton et al. 2010; Herriges and Morrisey 2014; Kool et al. 2014). This period

is defined by increased specialization and differentiation of respiratory epithelial

cells, which differ across the proximal–peripheral gradient of the airways. PROX1

and COUP-TF II mediate formation of lymphatic vasculature and are actively

expressed during the saccular stage of lung development (Pereira et al. 1999;

Wigle and Oliver 1999; Galambos and deMello 2007). SOX18, known to be a

critical regulator of endothelial venous cell differentiation, stimulates formation of

lymphatic vessels (Francois et al. 2008; Park et al. 2013). Deletion of Foxc2
inhibited lymphatic vessel formation (Petrova et al. 2004; Park et al. 2013), and

mice lacking both Foxc1 and Foxc2 die during early mouse embryogenesis with

defective vascular remodeling (Kume et al. 2001; Park et al. 2013). COUP-TF II

blocks retinoic acid receptor signaling (Kimura et al. 2002), suggesting RAR

signaling directs endothelial cells towards a vascular versus lymphatic cell fate.

VEGF signaling also influences lymphatic development as deletion of Flk1 from

lymphatic vasculature (Lyve-1-Cre Vegfr2�/� mice) was sufficient to cause embry-

onic death at E14.5. Lyve-1-Cre Vegfr2�/� mice presented with lymphatic hypo-

plasia as well as decreased blood vessel formation in the yolk sac, liver, and lungs

(Dellinger et al. 2013). Paired-class homeobox transcription factors PRX1 and

PRX2 have been linked to pulmonary hypertension due to a role in smooth muscle

proliferation (Jones 2003), and Prx1�/� mice have been shown to have decreased

lung vascular smooth muscle development (Ihida-Stansbury et al. 2015). Prx1�/�

mice die soon after birth from cyanosis and exhibit reduced blood vessel formation

and decreased expression of Flk-1 and Vcam-1, molecules essential for blood vessel

formation and integrity (Jones 2003; Ihida-Stansbury et al. 2004). Runt-related
transcription factor 3 knockout mice (Runx3�/�) die within the first day of life and

demonstrate vascular abnormalities (Lee et al. 2014a). RUNX3 inhibits Pecam-1,
Vegf, and von Willebrand factor expression (Lee et al. 2014a), suggesting a role in

endothelial cell growth and/or maintenance. ETS1, expressed by endothelial cells

during angiogenesis, regulates the expression of numerous genes involved in

vascular development including Tie1/2, Flt-1, Flk-1, and VE-cadherin. Remark-

ably, Ets1�/� mice have no abnormalities in the vascular system, likely related to

redundancy of expression of other ETS transcription factors including FLI1 and
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ERG1, both known to influence expression of VE-cadherin and Flt1 (Lelievre et al.
2001; Grzenda et al. 2013). ERG in particular has been shown to be critical for

vascular development as endothelial deletion of Erg (Tie2-Cre Erg�/�) causes

death before E9.5, prior to lung vascular development, and mice heterozygous for

endothelial Erg have decreased levels of VE-cadherin in lung endothelial cells

(Birdsey et al. 2015).

1.4 Foxf1 Transcription Factor Is a Critical Regulator

of Pulmonary Vascular Development

Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACD/MPV)

is one of the most severe human congenital disorders. This syndrome, which occurs

in neonates and in early infancy, is associated with impaired lobulation, loss and

displacement of pulmonary capillaries, abnormalities in formation of pulmonary

arteries and malposition of veins, which leads to pulmonary hypertension, lung

edema, cyanosis, and respiratory failure (Bishop et al. 2011). ACD/MPV patients

frequently present with other congenital malformations of the genitourinary, gas-

trointestinal, and cardiovascular systems. The severity of congenital abnormalities

and progressive respiratory insufficiency in ACD/MPV infants usually results in

death shortly after birth (Bishop et al. 2011). Recently, heterozygous deletions and

point mutations in the FOXF1 gene locus were identified in up to 50% of

ACD/MPV patients (Stankiewicz et al. 2009; Dharmadhikari et al. 2015). These

clinical studies demonstrate a critical role for FOXF1 in development of the

capillary network of the human lung.

FOXF1 (HFH-8 or FREAC-1) is a member of the Forkhead Box (Fox) family of

transcription factors which share an evolutionary conservedWinged helix/Forkhead

DNA binding domain. Foxf1 is expressed in endothelial and mesenchymal cells of

yolk sac, placenta, and allantois, and Foxf1�/� mice die in the early embryonic

period at approximately E8.5 with vascular abnormalities in the extra-embryonic

mesoderm (Peterson et al. 1997; Mahlapuu et al. 2001; Kalinichenko et al. 2002).

Foxf1 haploinsufficiency in mice causes an alveolar capillary dysplasia-like syn-

drome, associated with lung hypoplasia, fusion of lung lobes, loss of pulmonary

capillaries, and various developmental defects in the mesenchyme of gallbladder,

esophagus, and trachea (Kalinichenko et al. 2001, 2002; Mahlapuu et al. 2001). A

subset of Foxf1+/� mice die at birth, in association with ACD and progressive

respiratory insufficiency (Kalinichenko et al. 2001). The remarkable similarities

between mouse and human phenotypes associated with mutations in Foxf1 indicate
these mice provide a useful model to study the pathogenesis of ACD and to develop

therapeutics to intervene with this congenital pediatric disorder. In fact, Foxf1
promoter and coding regions have been found to be highly conserved from mouse

to humans (Kim et al. 2005); however, Foxf1 haploinsufficiency in mice is less

severe than the syndromes seen in humans, since 50–70% of Foxf1+/� mice survive
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after birth (Kalinichenko et al. 2001). Although these mice usually reach adulthood,

they are susceptible to lung injury, pulmonary hemorrhage, and exhibit abnormal

lung and liver repair (Kalinichenko et al. 2002, 2003a).

Foxf1 is a downstream target of SHH signaling and Shh�/� mice lack Foxf1
expression (Mahlapuu et al. 2001). SHH-mediated activation of Foxf1 occurs

through direct binding of GLI transcription factors to the Foxf1 gene promoter

region (Madison et al. 2009; Hoffmann et al. 2014). Loss of GLI binding sites in the

FOXF1 gene locus were found in ACD/MPV patients (Szafranski et al. 2013),

emphasizing the importance of the SHH/GLI/FOXF1 signaling pathway in the

regulation of pulmonary vascular development. FOXF1 plays a critical role in

migration of endothelial and mesenchymal cells through activation of Integrin β3
and Notch-2 (Kalinichenko et al. 2004; Malin et al. 2007). Mice with Foxf1-floxed
alleles were recently generated (Hoggatt et al. 2013; Ren et al. 2014). Inactivation

of Foxf1 in endothelial cells using either Tie2-Cre or Pdgfb-CreER transgenes

disrupted the development of the pulmonary vasculature (Ren et al. 2014; Cai

et al. 2016), indicating FOXF1 functions in an endothelial cell-autonomous manner

during pulmonary angiogenesis. FOXF1 promotes VEGF, PDGF, and ANGPT/

TIE2 signaling in the developing vasculature through direct transcriptional activa-

tion of Flk1, Pdgfb, and Tek genes.

1.5 Summary

Pulmonary vascular morphogenesis is mostly mediated by angiogenesis, instructed

by paracrine signaling between endodermally derived epithelial progenitor cells

and mesenchymal cells via processes mediated by VEGFs, ANGIOPOIETINs,

PDGFs, FGFs, RETINOIC ACID, TGF-β, SHH, WNT, and NOTCH, which in

turn control the activities of multiple transcription factors. Recent evidence sup-

ports important roles for the FOX, SOX, GATA, ETS, PRX, HIF, and PROX

families of transcription factors in pulmonary vascular development. From a clin-

ical perspective, FOXF1 transcription factor serves as a critical regulator of the

pulmonary capillary network as haploinsufficiency of the Foxf1 gene in mice and

humans causes Alveolar Capillary Dysplasia. Mutations in the FOXF1 locus lead to
respiratory insufficiency in preterm infants associated with severe abnormalities in

formation of the pulmonary vascular network. Better understanding of the signaling

and transcriptional regulatory networks controlling development of the pulmonary

vasculature will identify new therapeutic targets needed to treat congenital and

acquired pulmonary disorders.
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Chapter 2

Comparative View of Lung Vascular

Endothelium of Cattle, Horses, and Water

Buffalo

David Schneberger, Ram S. Sethi, and Baljit Singh

Abstract Endothelium plays an important role in maintaining the vascular barrier

and physiological homeostasis. Endothelium also is fundamental to the initiation

and regulation of inflammation. Endothelium demonstrates phenotypic and func-

tional heterogeneity not only among various organs but also within an organ. One of

the striking examples would be the pulmonary endothelium that participates in

creating blood–air barrier. Endothelium in large pulmonary blood vessels is distinct

in structure and function from that lining of the pulmonary capillaries. This chapter

focuses on the comparative aspects of pulmonary endothelium and highlight unique

differences such as the presence of pulmonary intravascular macrophages among

select species.

2.1 Introduction

The pulmonary endothelium is a dynamic and metabolically active layer of squamous

endothelial cells that is ideally placed to mediate lung homoeostasis (Millar et al. 2016).

The pulmonary capillary is made up of a few (usually 2–3) thin, squamous endothelial

cells (Dornan and Meban 1985; King et al. 2004), and capillary endothelial cells

constitute 30–50% and 46–50% of the total cell population in the alveolar septal wall
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in human (Crapo et al. 1982) and nonhuman primate (Crapo et al. 1983), respectively.

Horse lung showed an average of 252.4 capillaries per centimeter of lung alveolar wall

with endothelial cells constituting 49.5% of total tissue cells in the alveolar septal wall

(Gillespie and Tyler 1967). Endothelium is the gatekeeper of the tissues and regulates

traffic of circulating cells and molecules into the tissues (Cotran 1989).

Endothelial cells of the lung can be easily split into two subgroups, one com-

prising the lining of larger blood vessels such as arteries and veins and another

population that constitutes capillary endothelial cells of the microvasculature, each

with distinct functions. Both subsets of endothelial cells contain rough endoplasmic

reticulum, numerous vesicles such as caveolae, a low number of mitochondria, and

filaments around the basal cell surface amongst other common cellular features

(King et al. 2004). Filaments are more common in arterial cells which also exhibit

projections from the apical surface, particularly near cellular junctions (King et al.

2004). As there is transition from arterial to microvascular endothelial cells, there is

a flattening and elongation of the cells, with a greater restriction of cytoplasm near

the flattened periphery. Many of the organelles are excluded from the flattened parts

and concentrated around the nucleus. While apical projections were present, they

were not as pronounced in this population (King et al. 2004; Ochoa et al. 2010).

A key intracellular feature of endothelial cells are dark bodies in the cytoplasm

referred to as Weibel–Palade bodies (WPb) which contain a variety of secretable

products such as vonWillebrand Factor (vWF), interleukin (IL)-8, factor XIIIa, and

P-selectin. While these bodies are present in arterial endothelial cells they are not

present in the capillary endothelial cells, though these factors are still secreted by

these cells as well (Fuchs and Weibel 1966; Lowenstein et al. 2005). Upon injury or

another activating stimulus, these bodies fuse with the cellular membrane and

degranulate, releasing their contents into circulation and on the surface of the

endothelial cells. vWF, a substrate of XIIIa, plays a role in adhesion of platelets

to the endothelium and also serves as a carrier for coagulation factor VIII (functions

reviewed in Wang and Eikenboom 2010). IL-8 on the other hand is a strong

neutrophil chemoattractant and activator, which is likely to cause damage to the

endothelium (discussed later; Fig. 2.1). vWF can bind to platelets and initiate

clot formation (Ochoa et al. 2010). While this is one of the most obvious and

recognizable difference between both endothelial cell populations, a host of other

differences exist.

Another function of the endothelium is the active regulation of vascular permeabil-

ity and relaxation of arterial vessels. Relaxation is controlled by nitric oxide

(NO) release from arterial endothelial cells (Furchgott and Vanhoutte 1989; Furchgott

and Zawadzki 1980) which in turn prompts smooth muscle to release guanylate

cyclase, increasing cGMP and vasodilation (Furchgott and Vanhoutte 1989). This

mechanism is observed during exercise (Pelletier and Leith 1993), even at rest (Rees

et al. 1989), and can be prompted by shear force of circulating blood (Kaiser and Sparks

1986; Koller et al. 1994). In hypoxia, removal of endothelial cells from vessels

significantly reduces arterial NO production and the resulting vasoconstriction (around

65–70%), indicating a role for these cells in this phenomenon as well (MacEachern

et al. 2004). However, such removal in human and sheep completely abrogated this

response (Demiryurek et al. 1991, 1993), suggesting that this function is somewhat less
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important in horses and cattle than in other species (MacEachern et al. 2004). The role

of NO in this phenomenon may be more complex though as in exercise models of lung

injury, inhibition of NO production in horses increased damage seen in the lungs,

suggesting mechanisms other than just vessel relaxation (pressure) likely play a role in

endothelial damage (Kindig et al. 2000).

Fig. 2.1 (a) IL-8 expression (arrows) is seen in the alveolar septa of normal and (b) inflamed

lungs. (c and e) The airway epithelium (double arrows) and vascular endothelium (arrowheads)

of the normal lungs reacts weakly for IL-8 compared with (d) the intense expression in the

airway epithelium (double arrows) and (f) the vascular endothelium (arrowheads) of the inflamed

lungs. IHC. Reprinted with permission from J Comp Pathol. 2011 Feb–Apr;144(2–3):135–44. doi:

https://doi.org/10.1016/j.jcpa.2010.08.003
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2.2 Circulation Constraints in the Lung

Maintenance of vascular integrity is an important function of endothelial cells in the

lung. They can however often fail during exertion (Pascoe et al. 1981). Several

studies have focused on exercise induced pulmonary hemorrhage in the lungs of

race horses, where blood pressure can become very high (Pascoe et al. 1981; West

et al. 1993). Arterial pressures can reach up to 120 mmHg in exercising horses

(West et al. 1993), and capillary threshold pressure can reach between 75 and

100 mmHg in thoroughbreds (Birks et al. 1997). By comparison, the capillary

threshold in rabbits is below 40 mmHg, and 70 mmHg in dogs (Fu et al. 1992;

Tsukimoto et al. 1991). While we do not know of any study that examines

molecular structural differences between rabbit and horse lung that can account

for these differences, it seems likely that such differences must exist to allow for

such increased pressures in the capillaries. A study estimating canine and equine

capillary strength based on morphology, while accurately predicting increased

strength over rabbits, also underestimated actual strength in equines (Birks et al.

1994), suggesting such molecular differences should be present.

Response to pressure in endothelial cells is carried out by the calcium channel

TRPV4 (Jian et al. 2008; Yin et al. 2008). Increased pressure elevates cellular

calcium, but blockage of TRPV can abrogate most of this change (Jian et al. 2008;

Yin et al. 2008). Activation of the channel can also increase lung endothelial

permeability (Alvarez et al. 2006). Increase in pressure is also shown to induce

exocytosis of endothelial vesicles such as WPb (Kuebler et al. 1999). As these

bodies include proteins such as vWF, P-selectin, and IL-8, pressure and calcium

control could also be considered mechanisms of inflammation in these cells. Even

eNOS production in these cells is controlled partially by calcium and can act as a

negative feedback on TRPV4 induced calcium influx (Yin et al. 2008).

Finally, endothelial cells are constrained by the competing requirements of gas

diffusion and blood pressure. Thus, it is no surprise that their capillary cell

morphology takes on a more flattened structure compared to arterial endothelial

cells to improve gas exchange. Increased ability to handle pressure will come at a

cost of increased thickness, which will also trade off gas exchange efficiency.

Thoroughbred horses in particular fall into this conundrum. While bred for work

and speed, cardiac output has been increased, but the lungs often cannot handle this

output pressure, such that alveolar bleeding is a common occurrence (West 2000).

In the end, selection pressure may remain on improving endothelial cell thinness to

maintain gas diffusion efficiency, and increase of extracelluar matrix toughness to

improve strength of the alveoli (West 2000). While improvement of endothelial cell

junctions would be expected, disruptions when they happen are observed frequently

in the cells and not at junctions (Costello et al. 1992), and often seal quickly upon

relief of pressure (Elliott et al. 1992).

Capillary endothelium is surrounded by mainly alveolar type I epithelial cells

and occasional type II cell (Townsley 2012). Further, capillary endothelium is

connected to other cellular constituents of the alveolar septal wall via fibroblasts

24 D. Schneberger et al.



by intercellular junctions (Sirianni et al. 2003) and pericytes by myoendothelial

junctions (Michel et al. 1995). Most of these cell junctions are not random but

strategically placed at the interface between the thick and the thin sides of the septal

wall to provide structural stability and minimize the distensibility, especially during

the increase in the mass of surrounding tissue (Walker et al. 1995).

Capillary endothelium lacks large gap junctions unlike endothelial junctions in

extra-alveolar arteries and veins, but contains occasional small gaps in capillary

inter-endothelial cell junctional complexes (Schneeberger 1982). Further, a third

adjoining endothelial cell forms a flap overlaying the borders of these cells and this

flap has specific organization of junctional strands (Walker et al. 1994). These

strands run parallel instead of perpendicular to the plane of the overlying cell to

provide some protection against transendothelial fluid movement during increased

intravascular pressure as the increased hydrostatic force results in “sealing” of this

junctional complex (Walker et al. 1994).

Endothelial cells are capable of allowing diffusion of a number of molecules

across the cellular barrier, but studies in several species have shown a general

resistance to diffusion, particularly in lung capillary endothelial cells. Capillary

endothelial cells of the lung show lower permeability to water and solutes compared

to vascular endothelial cells (Kelly et al. 1998; Parker and Yoshikawa 2002; Parker

et al. 2006). Studies of hydraulic conductance also show values much lower for

microvascular endothelial cells suggesting tighter junctions and lower diffusion

(Kelly et al. 1998; Parker et al. 2006; Ofori-Acquah et al. 2008). This makes sense

when considering the need to maximize diffusion of oxygen across the cell mem-

brane and minimize solute and fluid transport, the last of which could cause tissue

or alveolar edema problems if not closely controlled. Both arterial and microvas-

cular endothelial cells have about the same amount of intracellular actin. However,

the chemical disruption of actin wtih cytochalasin D is much harder in microvas-

cular endothelial cells (Ofori-Acquah et al. 2008).

A reason for this more restrictive permeability is alterations in localized cAMP

expression in endothelial cells. High levels of cAMP are generated at the membrane

of microvascular endothelial cells by adenylate cyclase 6 which enhances barrier

function (Ludwig and Seuwen 2002). This adenylate cyclase is calcium regulated

and thus permeability can be increased by increased intracellular (cytosolic) cal-

cium (Cioffi et al. 2002; Stevens et al. 1995; Sayner and Stevens 2006; Sayner et al.

2006), though a specific cAMP effector of barrier strength is not fully resolved

(Prasain and Stevens 2009). One such example is endothelial response to thrombin.

Thrombin is a pro-inflammatory molecule that binds to PAR receptors (PAR-1 and

PAR-3) and activates endothelial cells (reviewed in Minami et al. 2004). Amongst

these cellular changes is Gq activation, which leads to calcium release from the

endoplasmic reticulum resulting in calcium depletion which is replenished by

opening calcium channels (TRPC1 and TRPC4 subunits). This increase in free

cytosolic calcium thus disrupts the endothelial cell barrier (Cioffi et al. 2009).

Another ion channel, TVRP4, is selectively expressed in lung microvasculature

but not the arterial endothelial cells (Alvarez et al. 2006). Activation of this channel
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leads to leakage into the alveoli, but in this case leakage is due to sloughing of cells

and/or loss of attachment to cell matrix (Alvarez et al. 2006).

Neuropeptides play important roles in the regulation of respiratory function and

topographical inflammation and are localized in both motor and sensory neurons in

the mammalian respiratory tract (Lundberg et al. 1988). Substance P (SP) and

calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers are present

around pulmonary blood vessels throughout the respiratory tract of calves and cows

(Nishi et al. 2000). These fibers are few in number in the lung compared to nasal and

laryngeal mucosae and tracheal bronchus, and are more numerous in calves than in

cows (Nishi et al. 2000). Co-localization of SP and CGRP in most of the nerve

fibers suggests that these nerve fibers are involved in the regulation of the bovine

respiratory tract.

2.3 Inflammation and Immunity

Endothelial cells are located at the interface between blood and tissues not only to

gate the traffic of molecules and cells across the vessel wall but also contribute to

hemostasis, inflammatory reactions, and immunity (Mantovani et al. 1992). When

not activated, endothelial cells can secrete a variety of products that can aid in

inhibiting clotting and inappropriate activation of innate immune functions

(reviewed in Pober and Sessa 2007). Amongst these is NO, which can inhibit

platelet aggregation and adhesion in addition to being a vasorelaxant as mentioned

earlier (Sessa 2004). In this state, P-selectin is sequestered within the cell (Bonfanti

et al. 1989), and other leukocytes adherence molecules such as E-selectin, VCAM,

and ICAM-1 are suppressed to a greater degree (Pober and Sessa 2007).

During inflammation, there is binding to cell-surface receptors by one of a

number of potential molecules (e.g., histamine, thrombin, LPS, etc.). For those

that bind to G-protein receptors, there is a release of cytosolic Ca2+ that will result

in increased endothelial permeability as discussed earlier (Pober and Cotran 1990;

Pober and Sessa 2007) causing release of WPb (Birch et al. 1992, 1994). Calcium

also activates phospholipase A2 which catalyzes arachidonic acid formation

and subsequently its conversion to COX1 resulting in increased blood flow

(Egan and FitzGerald 2006). A by-product of arachidonic acid formation,

lysophosphatidylcholine, at the same time acts as a platelet activating factor. When

this is combined with the released P-selectin it leads to neutrophil attachment,

integrin activation, and the extravasation of said neutrophils across the endothelial

barrier (Prescott et al. 1984; Lorant et al. 1991; Pober and Sessa 2007).

Another activated protein, RHO, also aids in contraction of cellular actin fila-

ments, resulting in creation of gaps between endothelial cells, especially post-capillary

venules (Heltianu et al. 1982). Passage of most cells through the endothelial barrier

appears to be between such endothelial cells and supported by increased expression

in these intercellular gaps of PECAM1 and CD99 (Marchesi 1961; Schenkel et al.

2002). Cytokines such as TNF-α and IL-1 can also induce a similar response
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(reviewed in Pober and Sessa 2007), but leading to transcriptional activation of

NF-kB and AP-1, which activates a number of the same effector pathways already

mentioned (Pober and Sessa 2007). Secretion of IL-8 will lead to activation, firm

attachment, and diapedesis of neutrophils to the endothelial cells, but still requires

E-selectin to tether such cells (Pan et al. 1998).

Specific to pulmonary microvascular capillary endothelial cells is a 1G T-type

calcium channel. Activated by thrombin, the channel causes membrane depolari-

zation, but in this case does not increase permeability but instead promotes

P-selectin expression for neutrophil recruitment (Wu et al. 2003, 2009). Thus,

calcium again appears to play a very important role in induction of inflammatory

responses in endothelial cells, particularly with regard to P-selectin expression

(Kuebler et al. 1999; Parthasarathi et al. 2006).

2.4 Toll-Like Receptors

Toll-like receptors (TLRs), the mammalian homologues of the Drosophila Toll

family, are critical for recognition of conserved pathogen-associated molecular

patterns in bacteria and viruses by immune cells (Aderem 2001). TLRs are expressed

in the endothelium to activate the immune systemwhen encountering specific antigen

(Xu et al. 2011). TLR4 recognizes lipopolysaccharides (LPS) and plays important

roles in host defense against bacterial infections (Lymboussaki et al. 1998; Takeda

et al. 2003). We reported the presence of weak TLR4 immunoreactivity in the

vascular endothelium in normal lung of cattle (Wassef et al. 2004) and buffalo

(Sethi et al. 2011), which is consistent to what is observed in humans (Faure et al.

2000). Some TLR4 staining was reported in peribronchiolar blood vessels and

alveolar septal endothelial cells in horse lungs (Singh Suri et al. 2006). TLR4

activates endothelium and induces recruitment of leukocytes in lung along with

expression of adhesion molecules such as P-selectin and vascular cell adhesion

molecule-1 (Andonegui et al. 2002, 2003). Interestingly, TLR4 appeared unchanged

or reduced in the vascular endothelium of inflamed lungs from calves and Water

buffalo infected with Mannheimia haemolytica and Pasteurella multocida, respec-
tively (Wassef et al. 2004; Sethi et al. 2011). Lack of TLR4 in vascular endothelium

during Mannheimia haemolytica and Pasteurella multocida infection may be a

protective mechanism against unwanted inflammation.

Similarly, early studies with LPS treatment of horse lungs showed endothelial

cells to be fairly unaffected by the exposure. This was, however, in the absence of

immune cells such as neutrophils. While this study primarily looked at electron

microscopic examination of endothelial cells, it does suggest that endothelial cells

maintain morphology through exposure. By contrast, cell death was common in the

presence of neutrophils, suggesting that when other immune cells are present

endothelial cells are sensitive to products of these cells in the horse (Turek et al.

1987). Later experiments have also suggested TNF-α and IL-1b secretion by these

cells to LPS in a whole animal exposure system (Parbhakar et al. 2005).
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TLR9 identifies bacterial DNA and is a key player in bacterial DNA induced cell

signaling (Bauer and Wagner 2002). TLR9 is not only activated by unmethylated

CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during

vascular apoptosis and necrosis (Krogmann et al. 2016). We observed that pulmo-

nary vascular endothelium of water buffalo did not show any TLR9

immunopositive reactivity which is similar to expression of TLR4 (Sethi et al.

2011) (Fig. 2.2). However, unlike TLR4, TLR9 expression was increased in the

vascular endothelium during P. multocida induced lung inflammation in water

buffalo (Sethi et al. 2011). The data suggest that increased TLR9 expression may

handle the DNA released either from the phagocytosed bacteria or from the dying

extracellular bacteria at the later stages of infection. However, the contradictory

finding of TLR9 agonism in vascular biology remains the potential area of research.

In horse and cattle, expression of TLR9 was clearly shown in vascular endothelial

cells (Fig. 2.3), with some possible capillary staining, though if present it was much

lighter in comparison (Schneberger et al. 2009, 2011).

Recently, TLR10 mRNA upregulation in THP-1 cell line has been linked with

reactive oxygen species induced during hypoxia (Kim et al. 2010). TLR10 is

expressed in lungs of human although at very low levels and immune cells viz

neutrophils, macrophages, and dendritic cells (Chuang and Ulevitch 2001). We

recently reported immuno-histochemical and immuno-electron microscopic data

indicating expression of TLR10 in the pulmonary vascular endothelium of cattle

along with other veterinary species (Balachandran et al. 2015). However, TLR10

immunohistological expression was much reduced in the M. haemolytica infected

animals compared to the controls (Balachandran et al. 2015). The data suggest

implications of TLR10 duringM. haemolytica infection in terms of entry of bacteria

to establish infection in cattle lung.

2.5 Pulmonary Intravascular Macrophages

One of the most striking differences between species in the lung capillaries is the

presence of pulmonary intravascular macrophages (PIMs) attached to the micro-

vascular endothelial cells of the lung. This population of macrophages colonizes the

lung shortly after birth and are maintained through life in animals such as in horses,

Artiodactyla, odontoceti, and cats, while in other species they may be induced

under certain circumstances (reviewed in Schneberger et al. 2012). They are

attached strongly to the endothelial cell layer through a number of darkly staining

structures, which may complicate creating primary cell cultures. These attachments

to the endothelial cells are unknown but are thought to be a glycosyl-phosphatidyl

inositol anchor (Atwal et al. 1992; Singh et al. 1995; Singh and Atwal 1997).

Attachment is seen on the thicker side of the endothelial cell, possibly to reduce

interference with gas exchange, (Winkler 1988) and the cells range from 20 to

80 μM in size, with horse PIMs being the largest. While similar to other macro-

phages, PIMs possess a unique decoration of lipid/lipoprotein vesicles at or near the
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Fig. 2.2 (a) Normal lung section shows weak expression of TLR9 in alveolar septa (arrows) and

(b) airway epithelium (double arrows), (c) but not in the endothelium of large blood vessels

(arrowheads). (d) TLR9 expression was increased in the alveolar septa (arrows), (e) airway

epithelium (double arrows) and (f) the endothelium of large blood vessels (arrowheads) in

inflamed lungs. The blood cells (double arrowheads) in the control (c) and the infected lung (f)

were also positive for TLR9 expression. IHC. Reprinted with permission from J Comp Pathol.

2011 Feb–Apr;144(2–3):135-44. doi: https://doi.org/10.1016/j.jcpa.2010.08.003
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cell surface membrane which are believed to help in phagocytosis (Atwal et al.

1992; Singh and Atwal 1997). Recently, PIMs were also identified in Water buffalo

(Sethi et al. 2011; Fig. 2.4). Like other macrophage populations, PIMs are deco-

rated with a number of TLR receptors (Wassef et al. 2004; Singh Suri et al. 2006;

Schneberger et al. 2009, 2011; Sethi et al. 2011) (Fig. 2.5) and play a role in lung

inflammation (Singh and de la Concha-Bermejillo 1998; Singh et al. 2004;

Parbhakar et al. 2005), and phagocytosis (Atwal and Saldanha 1985). In disease,

abrogation of PIMs can greatly reduce symptoms in recurrent airway obstruction in

horses (Aharonson-Raz et al. 2012). Recently, we have reported the recruitment of

PIMs in dogs that died due to acute necrotizing pancreatitis (Vrolyk et al. 2017).

These data raise the intriguing possibility of PIM recruitment in domestic animal

species that may not have constitutive PIMs and that the recruited PIMs may

predispose these to higher susceptibility for lung inflammation and disease.

2.6 Culture of Endothelial Cells

Isolation and culture of equine endothelial cells has been described in detail (Lamar

et al. 1986; MacEachern et al. 1997). Arterial endothelial cells are obtained by

surgical removal of vessels and flushing them with PBS supplemented with antibi-

otics to remove any residual blood and potential bacterial contamination. Warmed

DMEM with collagenase added is instilled in vessels which are clamped shut and

Fig. 2.3 TLR9 immunostaining of vascular endothelium in lungs of control (A) and LPS-treated

horses (B) (noted by arrows). Immuno-electron microscopy (C) showed TLR9 staining in nucleus

(N) of capillary endothelial cells in the lung (arrows). Original magnification A-B:�400, C:�10,000.

Reprinted with permission from Anat Rec (Hoboken). 2009 Jul;292(7):1068–77. doi: https://doi.org/

10.1002/ar.20927
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incubated for 30–40 min at 37 �C. After incubation, vessels are rinsed emptied,

media saved, and further washed with PBS and antibiotics. This wash is added to

growth media and centrifuged to remove fluid, replacing it with final culture media

of DMEM plus fetal calf serum and antibiotics. This is then cultured on 1% gelatin

Fig. 2.4 (a) Lung section stained without primary antibody does not show any colour develop-

ment in airways (double arrows) or bloodvessels (arrowheads). (b) Antibody specific for Factor

VIII-related antigen labels vascular endothelium (arrowheads), but not the airways (double

arrows). Macrophage antibody reacts with septal cells (arrows) in the normal lungs (c) and the

infected lungs (d). (e) High magnification shows intravascular location of labelled macrophages

(arrows) in the normal and (f) the infected lungs. An alveolar macrophage (arrowhead) is seen in

(e). (g) The number of septal macrophages was significantly increased (P ¼ 0.001) in the inflamed

lungs compared with the normal lungs. Reprinted with permission from J Comp Pathol. 2011 Feb–

Apr;144(2–3):135–44. doi: https://doi.org/10.1016/j.jcpa.2010.08.003
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coated plates, washing cells with PBS and replacing with fresh media until cells

reach required density (MacEachern et al. 1997 for more details; Lamar et al. 1986).

This method yields primarily epithelial cells, but some smooth muscle cells will

also be harvested in the process. Use of plasma-derived fetal bovine serum in media

(10–20%) was able to inhibit growth of these smooth muscle cells, however, as

opposed to equine-derived serum which stimulated this population as well as

endothelial epithelium. It is believed that a lack of platelet-derived growth factors

caused this inhibition of smooth muscle cells (Lamar et al. 1986). Cell type is

verified by staining for vWF (Lamar et al. 1986).

Isolation procedures for lung microvascular endothelial cells will follow harvest

and isolation techniques seen with capillaries in other tissues. Tissue is aseptically

Fig. 2.5 TLR9 staining observed in a PIM and endothelium (E: arrows). L: Lysosomes; Ep:

Epithelium; AS: Alveolar Space. Original magnification �10,000. Anat Rec (Hoboken). 2009

Jul;292(7):1068–77. doi: https://doi.org/10.1002/ar.20927
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obtained and minced or otherwise mechanically disrupted in Hank’s balanced salt

solution, often with addition of antibiotics similar to arterial methods to ensure

sterility. This suspension is then treated with collagenase to digest connective tissue

and heated for 30 min at 37 �C before passing through a nylon mesh. Filtrate is

combined with equal an equal volume of DMEM with 10% fetal bovine serum.

After 10 min, cells are centrifuged at low speed, resuspended in DMEMþFBS, and

passed through a 30 μM filter. The filter is washed for clumps of endothelial cells

which are saved, while flow through is discarded (containing erythrocytes and

stromal cells). Harvested cells are washed, re-centrifuged, re-suspended in HBSS

and 10 ml gently layered onto 35 ml HBSS þ 5% BSA in centrifuged and left stand

at room temperature for 15 min. The bottom 20–25 ml containing enriched endo-

thelial cells is saved while the upper layer containing stromal cells is discarded.

Cells are centrifuged, resuspended in DMEM þ 10% FBS plus antibiotics and

endothelial cell growth supplement and plated into dishes coated with fibronectin

(Bochsler et al. 1989).

While some microvascular cultures methods will suggest vWF as a method of

detection of these cells, expression in microvascular endothelial cells is less robust,

and there are no signs of WPb in these cells. Some other suggested markers include

uptake of low density lipopeptide and angiotensin converting enzyme in bovine

models (Chung-Welch et al. 1988). While not specifically tested in equine, CD34

has also been proven effective at labeling endothelial cells (Muller et al. 2002), and

unlike vWF, it appears to be more strongly expressed in microvascular endothelial

cells. Similarly, discrimination of different lung endothelial cells has been done

using lectins that selectively bind to each endothelial population in several species

including cattle (Schnitzer et al. 1994; Magee et al. 1994; Abdi et al. 1995), though

these can vary between species, and to our knowledge no screening study of these

has yet been done for the horse.

2.7 Conclusions

There are good amounts of data on the morphology and function of lung vascular

endothelium in domestic animals. However, there are significant gaps in the

molecular phenotyping of lung vascular endothelium in domestic animals. This

will always remain the case because of the challenge of creating knock-outs or

abilities to functionally block a molecule for precise functional phenotyping. The

strength of the data obtained from domestic animal species is their closer physio-

logical relevance to human’s pulmonary physiology. There are, however, instances

where the data on cells such as PIMs is opening new areas to investigate mecha-

nisms of lung inflammation in rodent models and humans. Therefore, an increased

focus on the comparative physiology of domestic animal species and less reliance

on rodent models may provide more translational data to understand human lung

vascular physiology. The increased use of methods such as electron microscopy

especially the correlative light and electron microscopy will yield more precise

localization of molecules of functional interest in lung capillary endothelium.
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Chapter 3

The Pulmonary Vascular Barrier: Insights

into Structure, Function, and Regulatory

Mechanisms

Kaushik Parthasarathi

Abstract Pulmonary blood vessels act as a well-regulated barrier to the flux of

fluid and solutes between the lumen and the air space. Perturbation of the barrier

function results in excessive fluid leak into the interstitium and alveoli, and impairs

gas exchange. Recent studies provide deeper insight into the precise control mech-

anisms involved in the regulation of the barrier. This chapter will highlight these

mechanisms and discuss the current understanding on the fluid and solute transport

pathways across the vascular endothelial layer. In addition, the chapter summarizes

the contributions of extra-endothelial structures such as pericytes and glycocalyx in

regulating fluid flux across pulmonary vessels. The chapter concludes with an

analysis on the impact of pulmonary endothelial heterogeneity and experimental

models on current interpretations of barrier function and regulatory mechanisms.

3.1 Introduction

The pulmonary vasculature forms a semi-permeable barrier and acts as the first line

of defense that limits the movement of fluid and macromolecules from blood into

the interstitium. When this protective barrier is impaired, fluid leaks across the

vascular endothelium, resulting in accumulation of the fluid in the interstitial space

and subsequently entering the pulmonary air spaces. Excessive leak that over-

whelms the fluid clearance mechanisms of the pulmonary epithelial barrier (Vadasz

and Sznajder 2017) leads to pulmonary edema.

Fluid flux across the pulmonary vascular barrier and development of pulmonary

edema could be of either cardiogenic or non-cardiogenic origin. Cardiogenic pul-

monary edema results from impairment of cardiac function, including myocardial
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infarction and congestive heart failure, which lead to elevation of hydrostatic

pressure gradients in pulmonary microvessels (Cosentini et al. 2009). The increased

pressure differences result in the leakage of fluid with low protein content, typically

less than 65% compared to that in plasma into the interstitial space (Ware et al.

2010). In contrast, non-cardiogenic edema results from alterations in the permeabil-

ity properties of the pulmonary vascular barrier. In response, fluid with protein

content similar to that in plasma leaks into the interstitium (Ware et al. 2010;

Weidenfeld and Kuebler 2017). Excessive accumulation of proteinaceous fluid in

air spaces of the lung is a characteristic feature of acute lung injury and its more

severe form, acute respiratory distress syndrome (Gonzales et al. 2015; Matthay

et al. 2017; Wang et al. 2017). The accumulating fluid impairs gas exchange,

resulting in arterial hypoxemia and hypercapnia (Matthay et al. 2012). The ensuing

tissue hypoxia can in itself induce inflammation (Eltzschig and Carmeliet 2011;

Eltzschig et al. 2014) and result in organ dysfunction. Given the important role of the

pulmonary vascular barrier in limiting fluid flux, maintenance and tight regulation of

the barrier is critical to maintaining proper lung function and homeostasis.

This chapter provides a broad outline of the current understanding of the features

of the pulmonary vascular barrier, mechanisms that result in failure of the

interendothelial junctions, and the role of the actin cytoskeleton. Mechanisms

leading to the lung vascular barrier breakdown and emerging therapeutic mecha-

nisms aimed at reversing excessive fluid flux are briefly discussed. Several recent

reviews provide additional in-depth information on specific topics and are referred

to throughout the article.

3.2 Transcellular Fluid–Flux Pathway

3.2.1 Aquaporins

Fluid and solute flux across the pulmonary vasculature could utilize either the

paracellular or transcellular pathway. The transcellular fluid flux is considered to

contribute minimally to the transport of water across the endothelial barrier.

Transport via this pathway is mediated either via aquaporins or caveolae. Lung

endothelial plasma membranes express aquaporin-1 (Schnitzer and Oh 1996; Bai

et al. 1999; King et al. 2002). However, the role of aquaporin-1 as a mediator of

osmotically driven water transport across the pulmonary vascular endothelium has

remained controversial, due to the limited loss of fluid transport functions in

aquaporin null mice (Verkman 2007). However, newer evidence point to a modi-

fication in the expression of aquaporin-1 in human lungs with diffuse alveolar

damage (Pires-Neto et al. 2016). Whether the newer studies support or discount

the role of aquaporin-1 in lung fluid balance remain to be seen.
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3.2.2 Caveolae

In contrast to aquaporins, there is a growing body of evidence that suggest a role for

caveolae in lung fluid balance. Caveolae are plasma membrane-associated flask-

shaped pits, averaging 55 nm in diameter (Richter et al. 2008). Caveolae are

abundant in multiple cell types including endothelial cells and are involved in

diverse functions including mechanosensing, lipid regulation, and endocytosis

(Heimerl et al. 2008; Hansen and Nichols 2010; Sinha et al. 2011; Parton and del

Pozo 2013). Loss of caveolae results in cardiovascular dysfunction due to impaired

nitric oxide and calcium signaling (Drab et al. 2001). In lungs, absence of proteins

critical to the formation of caveolae causes dysregulation of endothelial prolifera-

tion and fibrosis (Drab et al. 2001; Hansen et al. 2013).

Endothelial caveolae play an important role in albumin transcytosis via endocy-

tosis, trafficking across the cell, and exocytosis at the basolateral plasma membrane.

Signaling associated with caveolae-mediated albumin transcytosis is increasingly

better understood since the seminal descriptions of the process by Palade (Palade

1953, 1961; Milici et al. 1987). Caveolae coat proteins, caveolin-1, caveolin-2, and

caveolin-3, mediate caveolae-dependent signaling (Le Lay and Kurzchalia 2005).

Recent reviews provide extensive details on the structure and function of caveolins

(Maniatis et al. 2012; Sowa 2012; Hansen et al. 2013; Parton and del Pozo 2013).

Lack of caveolin-1 results in loss of caveolae in endothelial cells, which leads to

reduced transcytosis of albumin (Li et al. 2013). Interestingly, loss of caveolin-1

results in elevated permeability via the paracellular route (Schubert et al. 2002),

indicating that the two pathways regulating endothelial permeability are likely

intertwined.

Caveolae-mediated albumin transcytosis is mediated by interaction of caveolin-

1 with GTP-ases, rac, and dynamin (Armstrong et al. 2012) and requires integrated

actions by actin cytoskeleton-associated proteins, including filamin A (Sverdlov

et al. 2009). The transcytosis rate in pulmonary microvascular endothelial cells can

be modulated by inflammatory agents such as lipopolysaccharide, thrombin, high-

mobility group box protein 1, and paraquat, which act through intermediates such as

nuclear factor-κB, acid spingomyelinase, advanced glycation end products, and

C-src, respectively (Tiruppathi et al. 2008; Wang et al. 2015; Kuebler et al. 2016;

Shang et al. 2016; Huang and He 2017). The findings from these reports suggest

that albumin transcytosis plays a key role in augmenting transvascular fluid flux

under inflammatory conditions. As discussed in other sections of this chapter,

paracellular pathways for fluid flux are also enhanced by proinflammatory media-

tors. While arguments of the dominance of one mechanism over another have been

posited, it is very likely that both mechanisms may act in tandem toward regulating

fluid flux across the endothelial barrier. Thus, resolution of inflammation-induced

increase in fluid leak may require a holistic approach targeting the elevated fluid

flux via both para- and trans-cellular routes.
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3.3 Paracellular Fluid–Flux Pathway

3.3.1 Adherens Junctions

Fluid flux via the paracellular route across the pulmonary vascular barrier is regu-

lated by a complex set of interacting proteins. The interendothelial junction is

populated by junctional complexes that include adherens junctions, tight junctions,

and gap junctions. Adherens junctions of the vascular endothelium are primarily

composed of vascular endothelial (VE)-cadherin, the extracellular domain of which

binds homotypically at the interendothelial junctions (Taveau et al. 2008). Disrup-

tion of this VE-cadherin-mediated cell–cell interaction results in augmented perme-

ability across themicrovessel barrier (Corada et al. 2002), suggesting the critical role

of VE-cadherin in the maintenance of this barrier. On the cytoplasmic side,

VE-cadherin forms a complex with several catenin subtypes including α, β, γ, and
p120 catenin. The catenins are targets for cell signaling during inflammation and

thus serve as regulatory switches in the modulation of microvessel permeability.

Recent reviews provide extensive details on the structure of VE-cadherin and its

interactionwith catenins (Quadri 2012; Vogel andMalik 2012; Dejana andOrsenigo

2013; Gavard 2014). Coupling between the VE-cadherin–catenin complex and actin

cytoskeletal network lends stability to the adherens junction complex (Dorland and

Huveneers 2017). Dynamic interaction between the actin cytoskeleton and the

VE-cadherin–catenin complex (Oldenburg and de Rooij 2014; Schnittler et al.

2014) facilitates both the physiological and pathological modulation of the

interendothelial junction strength.

Given the complex interplay among various components of the adherens junc-

tions, it is no surprise that perturbations of any one component elicited via changes in

protein expression can lead to disassembly of the junctions, and, thus, disruption of

the pulmonary vascular barrier (Gao et al. 2000; Dejana and Orsenigo 2013). In

addition to expression changes, redistribution of junctional components from the

plasmamembrane sites could also induce similar disruptions (Sawant et al. 2011). In

this regard, redistribution of VE-cadherin from the membrane and, thus, loss of

VE-cadherin homophilic interactions could lead to loss of barrier integrity. Relevant

mechanisms that initiate the redistribution have been studied extensively (Iyer et al.

2004; Fainaru et al. 2008; Herwig et al. 2008; Ieguchi et al. 2013). Modulations in

cytosolic calcium levels play an important role in inducing changes in VE-cadherin

homophilic interaction and its redistribution. Calcium is essential for the mainte-

nance of VE-cadherin homophilic interactions, with low cytosolic calcium levels

leading to disassembly of VE-cadherins (Gao et al. 2000). However, calcium plays

the role of a double-edged sword as an increase in endothelial cytosolic Ca2+ also

leads to destabilization of VE-cadherin interactions.

In this context, mechanisms for cytosolic calcium increase include store-operated

calcium entry, which is activated in response to depletion of endoplasmic calcium

stores. Blocking store-operated calcium entry by inhibiting the proteins that mediate

this process, including STIM1, the endoplasmic store calcium sensor, and Orai1, the
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plasma membrane pore-forming component, (Ambudkar et al. 2017), both attenuate

fluid leak across the pulmonary microvascular endothelium (Wang et al. 2016;

Yazbeck et al. 2017). Interestingly, modulating events both upstream and downstream

of STIM1-Orai1 also bears upon endothelial barrier strength. Inositol 1,4,5-

trisphosphate, the messenger involved in triggering calcium release from endoplasmic

reticulum stores, which is an early event leading to store-operated Ca2+ entry (Wu et al.

2014), causes clustering of its receptors on the endoplasmic reticulum. Inhibiting the

receptor clustering blocks endoplasmic reticulum calcium release and blunts endothe-

lial permeability (Geyer et al. 2015). Transient receptor potential channels facilitate

calcium entry and a subset of these are triggered by store-operated calcium entry. One

such channel that is thought to be downstream of STIM1 and Orai1 is transient receptor

potential canonical 1 (Ambudkar et al. 2017), whose function is relevant in the context

of pulmonary microvessels (Sundivakkam et al. 2012). Activation of this channel and

the resulting increase in cytosolic calcium leads to perturbation of the microvascular

barrier (Ahmmed and Malik 2005). However, the exact contributions of transient

receptor potential channels to microvascular permeability and the specific mechanisms

remain to be teased out further (Villalta and Townsley 2013; Malczyk et al. 2017). The

presence of multiple transient receptor potential channels in the pulmonary vasculature,

the heterogeneity in channel expression among the different regions of the pulmonary

vasculature, and the overlap of triggering events complicate the delineation of channel

contribution to pulmonary microvessel barrier disruption.

Increase in endothelial cytosolic calcium activate different signaling pathways

that impact on the integrity of the adherens junctions. For an extensive delineation

and discussion of the pathways, the reader is referred to comprehensive reviews on

the topic (Tiruppathi et al. 2006; Ambudkar et al. 2017). Recent studies show that

the integrity of adherens junctions is modulated precisely via tyrosine phosphory-

lation of the various components of these junctions, through the action of kinases,

which in themselves are activated by elevated levels of endothelial cytosolic

calcium (Adam 2015). For example, increases in cytosolic calcium by thrombin

activate protein kinase C subtypes, which phosphorylate p120 catenin (Lucas et al.

2012; Vandenbroucke St Amant et al. 2012; Bijli et al. 2016). In addition to p120

catenin, phosphorylation of β-catenin and indeed VE-cadherin itself has also been

shown to result in disassembly of adherens junctions (Cai et al. 2017; Muramatsu

et al. 2017; Soni et al. 2017). Interestingly, tyrosine phosphorylation of

VE-cadherin and catenins is only one of the multiple mechanisms associated with

adherens junction disruption. Internalization of VE-cadherin and enzymatic cleav-

age of VE-cadherin also contribute to disassembly of adherens junctions and are

reviewed elsewhere (Dejana et al. 2008). Intriguingly, it has recently been shown

that phosphorylation of VE-cadherin in itself is only a necessary, but not a sufficient

condition to induce disruption of adherens junctions (Orsenigo et al. 2012). In

addition to phosphorylation, it has been posited that the presence of inflammatory

agents is also required in order for an increase in microvessel permeability to occur.

These reports suggest that our understanding of the barrier regulation via modulat-

ing adherens junction proteins is still incomplete and requires further elucidation.
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3.3.2 Tight Junctions

Intertwined among the VE-cadherin interendothelial bridges are tight junction

proteins, including claudins, occludins, and junction adhesion molecules (Tsukita

et al. 2001; Dejana 2004). The cytoplasmic domain of tight junctions is linked to

adaptor proteins including zona-occludins and cingulin (Bazzoni et al. 2000).

Similar to adherens junctions, interaction among the transmembrane and cytoplas-

mic components of the tight junctions and the actin cytoskeleton regulates the

strength of the microvessel barrier (Dejana 2004).

3.3.3 Actin Cytoskeleton

As can be evinced from the above discussion, the integrity and stability of both

adherens and tight junctions is modulated by the actin cytoskeleton. In endothelial

monolayers, stability of the junctional protein complexes is concomitant with the

presence of cortical actin (Gulino-Debrac 2013). Disruption of the cortical actin

layer in tandem with an increase in stress fiber formation increases stresses on the

junctional complexes, resulting in their disassembly (Schnoor et al. 2017). The link

between the junctional complexes and actin cytoskeleton is mediated mainly by

actin-binding proteins zona occludin-1 and α-catenin, for tight and adherens junc-

tions, respectively (Garcia-Ponce et al. 2015). The specific mechanisms via with

these binding proteins function is still under much debate. The debate is much more

rigorous since a classic study by Yamada et al. dented a long standing paradigm that

α-catenin interacted simultaneously with cadherin and actin (Yamada et al. 2005).

It is now emerging that the interaction may depend on the specific form of α-catenin
involved (Desai et al. 2013). The complexity of making these determinations

exemplifies the dynamic nature of the interactions between junctions and the

endothelial cytoskeletal framework. In addition to α-catenin and zona occludin-1,

a number of other actin-binding proteins, including vinculin and epithelial protein

lost in neoplasm, modulate the actin-junctional complex interactions. For a detailed

analysis of the mechanisms associated with these proteins, the reader is referred to

other comprehensive reviews on this subject (Oldenburg and de Rooij 2014;

Garcia-Ponce et al. 2015).

3.3.4 Small GTPases

Contractility of the actin cytoskeleton in itself is modulated by the Rho family of

small GTPases (Duluc and Wojciak-Stothard 2014). In addition to the Rho family,

the superfamily of small GTPases includes Rab and Ras families (Takai et al. 2001),
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which too play a role inmediating endothelial permeability. Overexpression of Rab4

and Rab9, members of the Rab family involved in the regulation of intracellular

vesicle trafficking, blunt endocytic uptake of VE-cadherin and thus disruption of the

pulmonary endothelial barrier (Chichger et al. 2016). In contrast to Rab-4 and -9,

knockdown of Rab11a protects against VE-cadherin recycling, and thus, limits fluid

leak across pulmonary microvessels (Yan et al. 2016). Thus, the functional contri-

bution of Rab GTPases to barrier enhancement or disruption appears to be hetero-

geneous among members of the family. Knockdown of R-Ras, a member of

RasGTPases, also increases endothelial barrier permeability (Ichimiya et al. 2015;

Vahatupa et al. 2016). In contrast to Rab- and Ras-GTPases, more detailed infor-

mation is available on the role of RhoGTPases, likely due to their direct impact on

the actin cytoskeletal dynamics (Wojciak-Stothard and Leiper 2008; Duluc and

Wojciak-Stothard 2014). The Rho/Rac/CDC42 subfamily of the RhoGTPases act

as intermediaries for a number of proinflammatory stimuli that disrupt the pulmo-

nary vascular barrier. RhoA and its effector protein Rho kinase are activated by

proinflammatory agents, such as histamine and lysophosphatidic acid (Mikelis et al.

2015; Cai et al. 2017). In contrast to Rho, activation of Rac and CDC42 blunt

increases in pulmonary endothelial permeability. Rac1 mediates the endothelial

barrier enhancing effects of sphingosine-1-phosphate (Singleton et al. 2005; Schle-

gel and Waschke 2014), and a reduction in Rac1 activity is associated with asym-

metric methylarginine-induced pulmonary endothelial barrier breakdown (Wojciak-

Stothard et al. 2009). Thus, a complex interplay among the small GTPases in lung

endothelial cells allows for the dynamic regulation of the actin cytoskeleton and,

thus, plays a role in both pulmonary endothelial barrier disruption and post-injury

repair of the barrier.

In addition to RhoGTPases, cytosolic calcium increases via endoplasmic store

calcium release could also modulate actin cytoskeleton dynamics. Induction of

actin stress fibers in endothelial monolayers in response to thrombin and other

proinflammatory agents that increase cytosolic calcium levels is well described

(Park et al. 1999; Chiang et al. 2009; Shinde et al. 2013; Absi et al. 2014; Parker

et al. 2015). Recent findings suggest that the responses to thrombin treatment are

similar in in situ lung microvessels (Escue et al. 2017). Herein, the data revealed

that thrombin infusions into microvessels increased endothelial F-actin levels,

which in turn was dependent on the release of calcium from endoplasmic stores.

However, direct evidence of the mechanisms that tie increased F-actin levels with

calcium increase induced by store calcium release is lacking and needs to be

elucidated. One possibility is to explore the role of heat shock protein 27, which

regulates the actin cytoskeleton by stabilizing the cortical actin and limiting stress

fiber formation (Piotrowicz and Levin 1997; Mounier and Arrigo 2002; Sawada

et al. 2015). Inactivation of heat shock protein 27 by p38 mitogen-activated protein

kinase in a calcium-dependent manner (Huot et al. 1997; An et al. 2005; Evans and

Zhao 2017) could be a likely mechanism for actin stress fiber formation in response

to proinflammatory mediators.
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3.3.5 Gap Junctions

Gap junctions, the third interendothelial junctional complex, act as channels

between adjacent cells (Kumar and Gilula 1996; Saez et al. 2003). These channels

facilitate the movement of small molecules (<1 kDa) between the connected cells.

Connexins, the primary components of gap junctions, assemble into hemichannels

or connexins on the plasma membrane (Parthasarathi and Quadri 2009).

Connexons, which are hexamers of connexins, diffuse along the plasma membrane

toward the intercellular junction. Therein, the hemichannels from apposing plasma

membranes then dock together to form a functioning channel. Connexin expression

is ubiquitous, and accordingly, connexins are involved in wide-ranging roles from

development to apoptosis (Cea et al. 2016; Buo et al. 2017; Uzu et al. 2017). In lung

microvessels, gap junctions act as conduits for interendothelial transfer of calcium

(Parthasarathi et al. 2006). Thus, gap junction-mediated transfer of calcium

increases from one vessel to another could induce proinflammatory responses at

the destination vessel. While three connexin subtypes, connexin37, connexin40,

and connexin43, predominate the pulmonary vasculature, inhibition of connexin43-

containing gap junctions completely abrogates the inter-vascular calcium transfer

(Parthasarathi et al. 2006). These data suggest the importance of connexin43 in

proinflammatory responses in lung microvessels. In addition, endothelial

connexin40 has also been shown to facilitate intercellular propagation of

hypoxia-induced membrane depolarization, resulting in vasoconstriction of

upstream vessels (Wang et al. 2012).

However, emerging evidence suggest that in addition to their conduit function,

gap junctions could act as regulators of permeability in microvessels (Parthasarathi

2012; Soon et al. 2016). Increases in microvascular permeability initiated by

instillation of hydrochloric acid in adjoining alveoli are reversibly blocked by

inhibiting connexin43-dependent intercellular communication using gap peptides

specific to connexin43 (Parthasarathi 2012). This blunting of permeability increases

is evident not only at the single microvessel level but also in larger regions of a lung

subjected to injury via intra-tracheal acid instillation (Parthasarathi and

Bhattacharya 2011). An intriguing nature of these findings is that the increased

strength of the barrier is synchronous with the loss of gap junction communication.

This raises the question on how loss of the conduit function of gap junctions

impacts on the barrier protective function of adherens and tight junctions. It is

possible that the physical interaction of gap junctions with tight and adherens

junction proteins (Nagasawa et al. 2006; Chang et al. 2014; Ambrosi et al. 2016;

Radeva and Waschke 2017) could underlie the functional interaction among these

junctions. In brain and retinal endothelial cells, it has been posited that physical

interaction between zona occludin-1 and connexin43 underlies the reduction in

barrier strength when the interendothelial gap junction communication is blocked

(Nagasawa et al. 2006; Tien et al. 2013). Thus, studies using endothelial cells of the

systemic vasculature support the possibility of physical and functional interaction

between gap junctions and other junctional proteins, albeit in a diametrically

inverse direction. Loss of gap junction communication weakens the endothelial
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barrier in the systemic circulation, while it strengthens the barrier in the pulmonary

circulation, suggesting that the barrier regulatory mechanisms in the two circula-

tions may be dissimilar. Support for functional interaction between gap and

adherens junction in pulmonary microvessels comes from studies to determine

the long-term effects of endotoxin. Airway instillation of endotoxin in rats caused

an acute increase in microvessel permeability, which declined to baseline levels in

5 days (Kandasamy et al. 2015). In situ immunofluorescence of VE-cadherin and

connexin43 expression in lung microvessels following endotoxin treatment

revealed that VE-cadherin levels declined in the acute phase and returned to

baseline levels, while connexin43 levels increased in the acute phase, but declined

to near zero in 5 days (Kandasamy et al. 2015). The interaction between the two

proteins is further supported by findings that show an increase in VE-cadherin

levels in lung microvessels in response to in vivo knockdown of connexin43,

elicited by tail vein injection of connexin43 shRNA. However, the intermediary

between the loss of gap junction communication and increase in VE-cadherin

expression remains to be delineated.

3.4 Glycocalyx

The luminal side of the vascular endothelium is layered with a variety of macro-

molecules, together termed the glycocalyx (Collins et al. 2013). The major constit-

uent molecules of the glycocalyx are proteoglycans and glycosaminoglycan, whose

composition is continually modified via self-assembly and shedding (Reitsma et al.

2007; Woodcock and Woodcock 2012). The glycocalyx extends into the

interendothelial cleft and forms a physical and functional barrier against the

movement of proteins across the vasculature (Reitsma et al. 2007; Dull et al.

2012). In systemic vessels, damage to the glycocalyx, as assessed by penetration

of dextran molecules into the glycocalyx layer or presence of glycocalyx compo-

nents in plasma, increases under inflammatory conditions such as sepsis and due to

the presence of inflammatory mediators such as TNF-α (Henry and Duling 2000;

Steppan et al. 2011), leading to increased microvascular permeability (Salmon and

Satchell 2012). However, in the pulmonary microcirculation, evidence of a role for

glycocalyx in permeability regulation has been at best, indirect. In human lung

endothelial cell monolayers, knockdown of glycocalyx components increases fluid

flux across the monolayer (Wu et al. 2017). Enzymatic degradation of sialic acid, a

glycocalyx component that confers a protective negative charge, increases endo-

thelial monolayer permeability and alveolar fluid filling in isolated lungs (Cioffi

et al. 2012). Inhibiting enzymatic degradation of glycocalyx components by lipo-

polysaccharide limits the development of pulmonary edema (Wang et al. 2017).

Thus, while these studies suggest the possibility that the glycocalyx may be

involved in regulating lung microvessel permeability, additional studies are needed

to strengthen this hypothesis and shed more light on the specific mechanisms and

pathways involved.
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3.5 Pericytes

Pericytes are located on the abluminal side of pulmonary microvessels and maintain

close contact with the endothelium (Schallek et al. 2013). Their location and

morphology pose difficulties in identifying and studying them in situ. However, a

recent consensus has emerged that cells in close proximity to the endothelium and

those that show reactivity to two markers, platelet-dependent growth factor recep-

tor-β and nerve-glial antigen 2, could be classified as pericytes (Navarro et al.

2016). This newer definition has facilitated pericyte identification and characteri-

zation. The proposal that pericytes play a role in regulating fluid and solute flux

across lung microvessels was presented more than 20 years ago (Lonigro et al.

1996). The ability of lung pericytes in culture to contract in the presence of certain

inflammatory agents (Speyer et al. 1999; Donoghue et al. 2006; Kerkar et al. 2006),

suggest that they may play an active, rather than passive role in permeability

regulation in the lung. However, in vivo evidence that directly support a role for

pericytes in pulmonary microvessel permeability remains elusive. Indirect evidence

in this regard include recent data showing that lipopolysaccharide treatment results

in loss of pericytes, microvessel dysfunction, and attendant increase in fluid leak in

mice (Zeng et al. 2016). Further, experiments using endothelial-pericyte coculture

in a three-dimensional culture model reveal that the presence of pericytes enhances

endothelial junctional protein coupling and reduction in permeability (Bichsel et al.

2015). In contrast to these studies, recent findings that ablation of pericyte-like cells

in mouse lungs using diphtheria toxin does not modify the protein content in

bronchoalveolar lavage (Hung et al. 2017a), oppose the notion that pericytes are

involved in permeability regulation in lungs. These divergent findings could be due

to the emerging role of pericytes as active mediators of inflammatory responses.

Accordingly, in response to lipopolysaccharide treatment, pericytes in murine lungs

have been shown to secrete chemokines (Hung et al. 2017b). Hence, it is possible

that pericytes play a more active role in an inflammatory milieu. Additional novel

approaches are thus needed to specifically address the role pericytes in lung

microvessel permeability.

3.6 Microvessel Heterogeneity

To fully appreciate the signaling mechanisms relevant to the pulmonary endothelial

barrier that have been elucidated thus far, two caveats need to be borne in mind.

One is the heterogeneous nature of the vascular endothelium, both in terms of the

molecular properties and function. In a broad sense, it is well established that

significant differences exist between the pulmonary, systemic, and lymphatic

vasculature (Potente and Makinen 2017). Juxtaposing characteristics of the vascu-

latures include hypoxia-induced changes in vascular dimensions, sites of leukocyte

retention and migration, and proteoglycan expression (McMahon et al. 2002;
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Paffett and Walker 2007; Calabrese et al. 2011; Gane and Stockley 2012). It has

been shown recently that inflammatory stimuli elicit heterogeneous responses in

different vascular beds (Scott et al. 2013). Even within the pulmonary vasculature, a

great degree of phenotypic heterogeneity is evident (Stevens 2011). Expression of

proteins including, endothelial nitric oxide synthase, nucleosome assembly protein-

1, transient receptor potential channels, and Weibel–Palade bodies differ between

pulmonary arteries and microvessels (Stevens 2005; Clark et al. 2008; Cioffi et al.

2009; Ochoa et al. 2010). Further, vascular barrier strength differs between extra-

alveolar vessels and septal capillaries (Lowe et al. 2007). Interestingly, endothelial

heterogeneity extends even to single pulmonary microvessels. Within single post-

capillary venules, some endothelial cells may act as pacemaker cells (Ying et al.

1996). The pacemakers may have a greater number of organelles and thus, exhibit

exaggerated responses to inflammatory stimuli in comparison to their neighboring

endothelial cells (Parthasarathi et al. 2002; Parthasarathi 2012). In addition to

pulmonary microvessels, pulmonary arteries too exhibit regional differences in

reactivity (Stack et al. 2016). The extensive inter- and intra-vascular heterogeneity

behooves us to limit broad generalizations of data on signaling and mechanisms

captured using vessels or cells from a single pulmonary bed. By the same token, the

heterogeneous nature of the pulmonary vasculature needs to be implied when

extending molecular and functional properties specific to a subsection of the

pulmonary vasculature to other subsections.

3.7 Endothelial Monolayers Versus Intact Lung Models

A second caveat involves the differences between data derived using pulmonary

endothelial cells and vessels in situ. Due to methodological difficulties associated

with characterizing signaling mechanisms in lung vasculature in situ, the bulk of the

reported studies are based on monolayers of endothelial cells isolated from pulmo-

nary arteries or microvessels. Alternatives to monolayer-based elucidations include

the isolated blood-perfused lung preparation and surgically implanted thoracic

window preparation, wherein the endothelial cell mechanisms can be observed in

situ (Tabuchi and Kuebler 2008; Parthasarathi 2012; Kandasamy and Parthasarathi

2014). Though these alternatives do have their own limitations, they offer the added

advantage of being able to specify the specific subsection of the pulmonary

vasculature from which the data is obtained and thus limit errors due to endothelial

heterogeneity (Kandasamy and Parthasarathi 2014). A second advantage of the

alternative strategies is that the endothelial cells remain in their native environment.

The disadvantages of the intact lung preparations are that they are complex and

expensive, which likely limits their use. However, though widely utilized, growing

evidence indicate that signaling mechanisms delineated using endothelial cells

grown in monolayers differ significantly from those defined using in situ endothe-

lial cells (Kandasamy et al. 2013; Uhlig et al. 2014; Aman et al. 2016). In addition

to endothelial heterogeneity, a possible reason for the differences in signaling could
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be that endothelial cells in situ interact with other cells and the matrix within their

microenvironment (Aman et al. 2016), a feature that is not available for cells in

culture. These differences raise the question on how representative are the data

derived using endothelial monolayers. Our studies using isolated lung preparations

show that the overall signaling pathways defined in single microvessels concur with

that from endothelial monolayers. However, the functional, temporal, and spatial

aspects of the signaling are different between the two systems (Kandasamy et al.

2013; Escue et al. 2017). To mitigate these issues, alternate experimental

approaches are needed for studies on pulmonary endothelial signaling. Recent

advances, such as endothelial–epithelial cocultures, transwell culture methods,

and microfluidic platforms (Cao et al. 2016; Chonan et al. 2017; Kim et al. 2017),

may well provide a middle path that facilitates generation of more physiologically

accurate data.

3.8 Conclusion

Dysregulated increases in pulmonary microvascular permeability contribute to

reduced quality of life and increased mortality in affected patients. In addition to

microvessels, pathological increases in permeability also occur in pulmonary arter-

ies, which could play a role in pulmonary artery hypertension (Zhou et al. 2016;

Satoh et al. 2017). Thus, blunting and eventually reversing pathophysiological

disruptions of the pulmonary vascular barrier is key step to restoring normal lung

function. Toward this end, several potential targets have been proposed, though

their success in mitigating lung injury in clinical practice remains elusive (Bosma

et al. 2010; Confalonieri et al. 2017). Pharmacological therapies remain unsuccess-

ful (Matthay et al. 2017) and could be due to the possibility that the underlying

causes of endothelial barrier dysfunction are heterogeneous. Intriguingly, several of

the proposed therapeutic possibilities have been proven to successfully mitigate

vascular dysfunction in animal and cell-based models and yet have failed to yield

similar success in clinical trials (Network 2000; Jerng et al. 2006; Rice et al. 2011;

Schwartz et al. 2015; Evans and Zhao 2017; Nagendran et al. 2017). Thus, newer

therapies based on novel approaches, which take into account pulmonary vascular

heterogeneity discussed above, are critically needed. In this regard, use of mesen-

chymal stem cells toward repairing the endothelial barrier shows promise with

success in preclinical trials (Huppert and Matthay 2017). Similar novel and well-

designed approaches could well serve to improve quality of life and increase

survival in patients afflicted by pulmonary microvascular dysfunction.
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Chapter 4

Pulmonary Endothelial Cell Apoptosis
in Emphysema and Acute Lung Injury

Eboni Chambers, Sharon Rounds, and Qing Lu

Abstract Apoptosis plays an essential role in homeostasis and pathogenesis of a

variety of human diseases. Endothelial cells are exposed to various environmental

and internal stress and endothelial apoptosis is a pathophysiological consequence of

these stimuli. Pulmonary endothelial cell apoptosis initiates or contributes to

progression of a number of lung diseases. This chapter will focus on the current

understanding of the role of pulmonary endothelial cell apoptosis in the develop-

ment of emphysema and acute lung injury (ALI) and the factors controlling

pulmonary endothelial life and death.
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ADA Adenosine deaminase
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ARDS Acute respiratory distress syndrome
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ATGs Autophagy-related genes
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DAMPs Damage associated molecular patterns

EC Endothelial cells

ECM Extracellular matrix

eIF2α Eukaryotic initiation factor 2α
ENT1/2 Equilibrative nucleoside transporter 1/2

ER Endoplasmic reticulum

FAC Focal adhesion complexes

FAK Focal adhesion kinase

GSH Glutathione

ICMT Isoprenylcysteine-O-carboxyl methyltransferase

IRAK-1 Interleukin (IL)-1 receptor associated kinase

IRE1 Inositol-requiring enzyme 1

JNK c-Jun N-terminal kinase

LPS Lipopolysaccharide

MLKL Mixed lineage kinase domain-like protein

mTOR Mammalian target of rapamycin

MyD88 Myeloid differentiation factor 88

PERK Pancreatic ER kinase like ER kinase

RBC Red blood cells

RIPK1/3 Receptor-interacting protein kinase 1 and 3

ROS Reactive oxygen species

S1P Sphingosine 1-phosphate

SAH S-adenosyl-L-homocysteine

SAHH S-adenosyl-L-homocysteine hydrolase

SAM S-Adenosyl-L-Methionine

TLRs Toll-like receptors

TNF-α Tumor necrosis factor-alpha

TRAF-6 TNF receptor associated factor-6

UPR Unfolded protein response

VEGF Vascular endothelial growth factor

VEGFR2 VEGF receptor type 2

4.1 Overview of Cell Death

4.1.1 Apoptosis

Apoptosis is a term first used by Kerr et al. in 1972 to describe a genetically

determined energy-dependent active form of programmed cellular suicide. Apoptosis

is characterized by well-ordered morphologic and molecular features including: cell

surface exposure of phosphatidylserine, plasma membrane blebbing, cell shrinkage,

cytoskeletal rearrangement, collapse of nuclear membrane, chromatin condensation,

DNA fragmentation, and formation of membrane bound fragments known as “apo-

ptotic bodies” (Kerr et al. 1972). Cell surface-exposed phosphatidylserine acts as a

chemoattractant for phagocytes to engulf and clear apoptotic bodies (Henson and

Tuder 2008). Apoptosis serves to eliminate unwanted, aged, harmful, injured, or

infected cells. Due to limited release of intracellular contents, minimal inflammation

occurs (Savill et al. 2002). However, if ingestion of apoptotic bodies by monocytes,

macrophages, and dendritic cells (efferocytosis) is impaired, inflammation and
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autoimmunity may be enhanced (Gaipl et al. 2006). Apoptosis plays an essential role

in the maintenance of tissue homeostasis and embryonic development. Further,

during embryonic development, the timing of apoptosis is genetically determined.

Excessive or inadequate apoptosis can, however, contribute to the pathogenesis of a

variety of human diseases. Apoptosis is triggered by external stressors (e.g., death

ligands, ultraviolet, and γ radiation) and/or internal stimuli (e.g., oxidants, DNA

damage, increased Ca2+). Apoptosis is processed by two fundamental signaling

pathways: the death receptor-mediated extrinsic pathway and the mitochondria-

dependent intrinsic pathway (Olson and Kornbluth 2001; Thorburn 2004). Extrinsic

pathway-activated caspase-8 can truncate and activate BID, thus activating the

intrinsic pathway (Li et al. 1998). The details on regulation of apoptosis have been

reviewed (Harrington et al. 2007; Subramanian and Steer 2010; Ola et al. 2011).

Therapies targeting regulators of apoptosis have been used in preclinical and clinical

trials for a variety of diseases including the treatment of cancers (Goldar et al. 2015).

4.1.2 Necrosis

Necrosis is a passive and caspase-independent cell death, characterized by cell

swelling, mitochondrial degeneration, impaired ATP generation, lysosomal leak-

age, early rupture of plasma membranes, random fragmentation/degradation of

DNA, and leakage of cellular contents into the surrounding environment (Henriquez

et al. 2008). Necrosis is usually induced by nonspecific and non-physiological stress.

Further, inhibition of caspases leads to necrosis (Henriquez et al. 2008). Due to

release of potentially pro-inflammatory and pro-immunogenic cellular contents into

surrounding tissues, necrosis often induces inflammation, autoimmune responses,

and is often seen concomitant with apoptosis.

4.1.3 Necroptosis

Necroptosis describes a type of active, regulated, and programmed necrosis depen-

dent upon the serine/threonine kinase activity of receptor-interacting protein kinase

1 and 3 (RIPK1/3) (Linkermann and Green 2014). Necroptosis and apoptosis share

several upstream signaling elements including death receptors caspase 8 and FLIP.

When caspase-8 is inhibited, RIPK1 is activated and forms an intracellular complex

with RIPK3 to assemble the necrosome, leading to phosphorylation of mixed

lineage kinase domain-like protein (MLKL) and ultimately cell death. Unlike

apoptosis, necroptosis promotes harmful innate and adaptive immunologic

responses by releasing damage associated molecular patterns (DAMPs). Thus, the

reduction of necroptosis might be beneficial by minimizing the release of DAMPs
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and proinflammatory responses. Necroptosis is, however, a defense mechanism

against invading microbes, including viral infections, and promotes the death and

removal of virally infected cells. Therefore, blockade of necroptosis may increase

susceptibility to viral infections particularly in patients with suppressed immunity.

A number of inhibitors of necroptosis, such as necrostatin (specific inhibitor for

RIPK1) and necrosulfonamide (specific inhibitor for human MLKL), have been

described, providing potential therapeutic tools for treatment. Given the complex

role of necroptosis, tissue and cell-specific targeting therapy is needed.

4.1.4 Endoplasmic Reticulum Stress-Induced Apoptosis

The endoplasmic reticulum (ER) is the site of posttranslational modifications and

folding of secreted and membrane proteins. A variety of insults, such as ER Ca2+

chelators, reducing agents, glucose starvation, glycosylation antagonists, and pro-

tein mutations, can disrupt ER protein folding and lead to an accumulation of

unfolded or misfolded proteins in the ER, thus initiating ER stress (Schroder and

Kaufman 2005). Cells respond to ER stress by the unfolded protein response (UPR).

The UPR includes three arms: pancreatic ER kinase (PKR)-like ER kinase (PERK)/

eukaryotic initiation factor 2α (eIF2α), transcription factor 6 (ATF6), and inositol-

requiring enzyme 1 (IRE1) (Schroder and Kaufman 2005). Through the UPR, cells

attempt to restore ER homeostasis in order to maintain cell survival by inhibiting

global protein synthesis (to reduce the loading of client protein to the ER for

folding), enhancing ER protein folding capacity, and promoting ER-associated

degradation of misfolded or unfolded proteins (Schroder and Kaufman 2005).

Prolonged ER stress causes cell death due to simultaneous activation of multiple

apoptotic pathways by the UPR (Szegezdi et al. 2006). PERK-induced phosphoryla-

tion of eIF2α can lead to apoptosis by induction of pro-apoptotic transcription factor,

C/EBP homologous protein (CHOP), which suppresses expression of anti-apoptotic

protein, Bcl-2. Activated IRE1 activates c-Jun N-terminal kinase (JNK), which causes

apoptosis by phosphorylation and thus inactivation of Bcl-2 and by phosphorylation

and thus activation of pro-apoptotic protein, Bim. In addition, increased Ca2+ in the

ER activates the death effector, Bax/Bak in the ER membrane, causing movement of

Ca2+ from the ER to the mitochondria leading to mitochondrial-dependent apoptosis.

ER membrane-localized caspase-12 (rodent) and caspase-4 (human) have also been

implicated in ER-stress-induced apoptosis (Szegezdi et al. 2003; Kim et al. 2006).

Caspase-12/-4 are cleaved and thus activated by the Ca2+-dependent protease,

m-calpain, by ER stress (Groenendyk and Michalak 2005). However, other studies

have suggested that ER stress-induced apoptosis depends upon the apoptosome and

not caspase-12/-4 (Obeng and Boise 2005; Di Sano et al. 2006).

Cell fate determination is not well understood when both survival (adaptive) and

apoptotic pathways are simultaneously activated. It has been proposed that persis-

tent ER stress causes apoptosis due to sustained induction of CHOP and instability

of the adaptive pathway (Lin et al. 2007). It has also been suggested that cells
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survive mild ER stress because of the short half-life of pro-apoptotic proteins,

compared to pro-survival proteins (Rutkowski et al. 2006). Robust prolonged ER

stress causes apoptosis due to the induction of CHOP excessive to its degradation

(Rutkowski et al. 2006).

4.1.5 Autophagy-Associated Cell Death

Autophagy is a dynamic and continuous process by which cells dispose of

damaged or unneeded cellular proteins or organelles (mitochondria) by self-

digestion to generate intracellular nutrients. During physiological conditions,

autophagy is suppressed by mammalian target of rapamycin (mTOR), thus

inhibiting the expression of autophagy-related genes (ATGs). Upon external or

internal stress: including nutrient starvation, growth factor deprivation, hypoxia,

ischemia, or mitochondrial aging, mTOR is inhibited thus initiating autophagy.

Autophagy is a multistep sequential process, consisting of the formation of

double-membrane vesicles that sequester unwanted cargo (proteins or mitochon-

dria) in autophagosomes, fusion of autophagosomes with endosomes or lysosomes

to form amphisomes or autolysosomes, and digestion of cargo by proteases

(Hotchkiss et al. 2009; Choi et al. 2013). Autophagy is an evolutionarily conserved

housekeeping process that allows recycling of damaged proteins and organelles in

order to maintain homeostasis. Impairment in any step of autophagy causes

cellular nutrient deficiency and/or accumulation of damaged proteins and organ-

elles leading to cell death (Hotchkiss et al. 2009). Whether autophagy promotes

cell survival or death may depend on cell type and setting (Gustafsson and

Gottlieb 2008).

4.1.6 Assessments of Cell Death

Based on the unique characteristics of different types of cell death, a variety of

assays have been developed to assess the specific types of cell death in vivo and

in vitro. Different types of cell death may share common characteristics at different

stages of cell death; therefore, it is often necessary to use multiple assays to confirm

cell death. The details on the assessments of cell death have been extensively

reviewed (Harrington et al. 2007; Henson and Tuder 2008; Lu and Rounds 2009;

Klionsky et al. 2016) and will not be discussed in this review.
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4.2 Pulmonary Endothelial Cell Apoptosis

Balance of endothelial cell survival and death is crucial for angiogenesis, vessel

regression, and barrier function. Due to the unique position of endothelial cells

(EC) at the interface of circulating blood and surrounding tissues, EC may be

exposed to various environmental stress including: hypoxia, hyperoxia, oxidants,

lipopolysaccharide (LPS), and cigarette smoke (CS), or internal stress including:

adenosine, ceramide, tumor necrosis factor (TNF)-α, and angiotensin II. Apoptosis

is a pathophysiological consequence of these stimuli. However, a variety of bio-

mechanical and biochemical factors are involved in the anti-apoptotic processes.

For example, physiological levels of shear stress and cyclic strain, vascular endo-

thelial growth factor (VEGF), focal adhesion kinase (FAK), activated protein C

(APC), and sphingosine 1-phosphate (S1P) protect EC against apoptosis. The pro-

and anti-apoptotic effects of these mediators have been reviewed (Harrington et al.

2007; Lu and Rounds 2009); therefore, this review will focus on the current

understanding of endothelial pro-survival factors (VEGF and FAK) and

apoptosis-inducing stress (adenosine, cigarette smoke, and LPS) in the lungs.

4.2.1 Vascular Endothelial Growth Factor

EC express abundant VEGF, which promotes EC survival and maintains normal

alveolar structure (Voelkel et al. 2006). Expression of both VEGF and VEGF

receptor type 2 (VEGFR2) are decreased in lung tissue of patients with chronic

obstructive pulmonary disease (COPD) (Kasahara et al. 2001). This diminished

VEGF/VEGFR2 signaling is inversely associated with increased lung EC apoptosis

(Kasahara et al. 2001). Lung-targeted inhibition of VEGF or VEGFR2 causes

alveolar septal cell apoptosis in mice (Kasahara et al. 2000; Tang et al. 2004).

Our group has also shown that blockade of VEGFR2 causes cultured pulmonary

artery EC apoptosis in vitro (Lu 2008). These results indicate that VEGF signaling

is essential for lung EC survival.

4.2.2 Focal Adhesion Kinase

EC are linked to the basement membrane through binding of cell surface expressed

integrins to extracellular matrix (ECM) proteins at focal adhesion complexes (FAC)

(Hynes 1992). As anchorage-dependent cells, EC undergo detachment-initiated

apoptosis, referred to as anoikis, upon loss of adhesion to underlying basement

membrane. FAK, a non-receptor tyrosine kinase and an essential component of

FAC, is activated upon integrin engagement of ECM (Guan et al. 1991; Guan and

Shalloway 1992; Parsons 2003). FAK provides survival signaling for anchorage-

dependent cells such as cultured fibroblasts (Hungerford et al. 1996). Similarly, EC
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isolated from FAK-null embryos undergo apoptosis (Ilic et al. 1995, 2003).

Endothelium-specific deletion of FAK (Cre/FAKflox) is embryonic lethal and causes

EC apoptosis (Shen et al. 2005; Braren et al. 2006). Guan and colleagues (Guan et al.

1991; Guan and Shalloway 1992) have demonstrated that FAK tyrosine kinase

activity is essential for FAK activity. FAK promotes cell survival by recruiting

proteins containing SH2 domain including Src and phosphatidylinositol-3-kinase

(PI3K) (Schaller et al. 1994). The activated PI3K recruits and activates Akt (Khwaja

et al. 1997), which promotes cell survival via phosphorylation and thus inhibition of

pro-apoptotic protein, Bad (Kennedy et al. 1997). FAK also promotes survival by

activation of NF-κB and ERK signaling pathways (Huang et al. 2007). Additionally,

FAK can translocate to the nucleus and inhibit p53 transcriptional activation and

enhance p53 degradation, leading to protection against apoptosis (Ilic et al. 1998).

4.2.3 Adenosine

Adenosine is generated from adenosine-50-triphosphate (ATP) and adenosine-

50-diphosphate (ADP) by extracellular ecto-50-nucleotidases, CD39 and CD73,

and is metabolized by adenosine deaminase (ADA). Extracellular adenosine exists

in low concentrations (40–600 nM) under physiological conditions and is increased

due to platelet degranulation, cell necrosis, activation of CD39 and/or CD73, or

inhibition of ADA (Thompson et al. 2004; Eltzschig et al. 2006; Volmer et al. 2006;

Eckle et al. 2007). Increased extracellular adenosine can interact with cell surface

G-protein coupled adenosine receptors (ARs) (Feoktistov et al. 2002; Wyatt et al.

2002; Umapathy et al. 2010). Activation of adenosine receptors, specifically

A3-mediated signaling, has been shown to protect against apoptosis and tissue

injury (Rivo et al. 2004; Chen et al. 2006; Matot et al. 2006).

However, sustained increased adenosine in ADA-deficient mice enhances

alveolar cell apoptosis (Zhou et al. 2009). We have also shown that prolonged

exposure to adenosine causes apoptosis of cultured lung EC (Lu et al. 2013). The

injurious effect of adenosine is mediated by equilibriative nucleoside transporters.

EC predominantly express equilibriative nucleoside transporter 1 (ENT1) and ENT2

(Archer et al. 2004). Upon sustained exposure, adenosine may be taken up into cells

by ENTs. Further, similar to other G-protein coupled receptors, prolonged engage-

ment of ARs causes receptor desensitization and internalization (Fredholm et al.

2001). This concept is supported by findings that sustained increased adenosine in

ADA-deficient mice enhances alveolar cell apoptosis via a mechanism independent

of adenosine receptor, A2BR (Zhou et al. 2009). In addition, sustained exposure to

adenosine causes endothelial cell apoptosis; this effect is prevented by inhibition of

ENT1/2 however exacerbated by inhibition of either A2AR or A2BR (Lu et al. 2013).

These results are consistent with the concept that ENT1/2-facilitated intracellular

adenosine uptake and subsequent metabolism mediates adenosine-induced EC

apoptosis, whereas AR-mediated signaling limits apoptosis (Simonis et al. 2009).

Once intracellular, adenosine reacts with homocysteine and generates

S-adenosyl-L-homocysteine (SAH) by inhibition of SAH hydrolase (SAHH). SAH
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induces endothelial cell apoptosis independent of homocysteine (Sipkens et al.

2012). SAH is also a product of carboxyl methylation with S-adenosyl-L-methionine

(SAM) as a methyl donor. We have demonstrated that exogenous adenosine causes

lung EC apoptosis via increased ratio of intracellular SAH to SAM (Rounds et al.

1998). The increased ratio of SAH to SAM suppresses carboxyl methyltransferase

activity. Isoprenylcysteine-O-carboxyl methyltransferase (ICMT) is a major

methyltransferase for carboxyl methylation of small GTPase, Ras (Clarke 1992),

which is a posttranslational modification essential for membrane localization and

activation of Ras (Boivin and Beliveau 1995; Fleming et al. 1996; Kranenburg et al.

1997; Michaelson et al. 2001). We have shown that exogenous adenosine causes

lung EC apoptosis in part by ICMT inhibition-mediated inhibition of Ras carboxyl

methylation and activation (Kramer et al. 2003).

SAM is a precursor to glutathione (GSH) and is synthesized exclusively in the

cytosol (Reytor et al. 2009) and also transported into mitochondria (Agrimi et al.

2004). Exogenous SAM has been shown to elevate GSH levels in vivo and prevent

alcohol-induced mitochondrial oxidative stress and dysfunction as well as liver and

lung injury in animal models (Holguin et al. 1998; Bailey et al. 2006; Cederbaum

2011). p38 is a redox-sensitive protein (Matsuzawa and Ichijo 2008). Reactive

oxygen species (ROS)-mediated p38 activation has been implicated in extracellular

ATP-induced macrophage apoptosis (Noguchi et al. 2008) and H2O2-induced EC

apoptosis (Machino et al. 2003). Activation of p38 has also been implicated in

homocysteine-induced apoptosis of endothelial progenitor cells (Bao et al. 2010)

and cardiomyocytes (Wang et al. 2011). We have shown that sustained exposure to

exogenous adenosine causes mitochondrial defects and endothelial apoptosis via

mitochondrial oxidative stress-induced activation of p38 (Lu et al. 2012, 2013).

Active p38 causes apoptosis by direct phosphorylation, and thus inhibition of Bcl-2

(De Chiara et al. 2006; Farley et al. 2006) and by increasing mitochondrial translo-

cation of Bax (Capano and Crompton 2006). Future studies are needed to address

whether sustained adenosine exposure reduces mitochondrial SAM, thus leading to

mitochondrial oxidative stress via increased ratio of SAH to SAM in the cytosol.

In summary, adenosine displays seemingly paradoxical effects on lung EC life and

death. Acute exposure protects EC against apoptosis via AR-mediated signaling,

whereas prolonged exposure causes EC apoptosis via ENT1/2-mediated intracellular

adenosine uptake and subsequent metabolism and mitochondrial oxidative stress.

4.2.4 Cigarette Smoke

Lung EC apoptosis is significantly elevated in human smokers with emphysema

(Kasahara et al. 2001) and mice with mild emphysema caused by CS exposure

(Sakhatskyy et al. 2014). We (Sakhatskyy et al. 2014) and others (Tuder et al.

2000; Damico et al. 2011) have shown that CS extract (CSE) causes cultured lung

macro- and microvascular EC apoptosis in vitro. The mechanisms underlying

CS-induced lung EC apoptosis are rather complicated and involve FAK, p53,

UPR, and autophagy.
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FAK is a survival signal for anchorage-dependent cells (Hungerford et al. 1996).

Tyrosine 397 phosphorylation of FAK is essential for its activation (Schaller et al.

1994). CSE decreases FAK phosphorylation at tyrosine-397 in an oxidative stress-

dependent manner (Lu et al. 2011)—essential in CSE-induced EC apoptosis

(Sakhatskyy et al. 2014). FAK also promotes cell survival via suppression of p53

(Ilic et al. 1998). Further, activation of p53 has contributed to CSE-induced

pulmonary EC apoptosis (Damico et al. 2011). Thus, we speculate that CSE causes

lung EC apoptosis via oxidative stress-mediated inhibition of FAK and subsequent

activation of p53.

The UPR is an important mechanism of the elimination of ER stress and

enhanced cell survival (Schroder and Kaufman 2005). The UPR is activated in

lung tissue of smokers who do not have emphysema (Kelsen et al. 2008). The UPR

is also activated by CSE in cultured human bronchial epithelial cells and 3T3

fibroblasts (Hengstermann and Müller 2008; Jorgensen et al. 2008) and cultured

pulmonary EC (Sakhatskyy et al. 2014). Using mouse models of CS exposure, we

have demonstrated a strong link between impairment of eIF2α signaling with lung

EC apoptosis (Sakhatskyy et al. 2014). Future studies are necessary to determine if

impaired eIF2α signaling contributes to lung EC apoptosis.

Autophagy is increased in response to deficiencies in extracellular and intracel-

lular nutrients. Enhanced autophagy is observed in the lung tissue of smokers with

emphysema (Chen et al. 2008). Autophagy is also activated by CSE exposure in

lung epithelial cells and fibroblasts (Kim et al. 2008) as well as lung EC

(Sakhatskyy et al. 2014). Increased autophagy has contributed to CS-induced

alveolar epithelial cell apoptosis in mice (Chen et al. 2010). In contrast, increased

autophagy has also been shown to protect against pulmonary endothelial cell

apoptosis induced by cadmium, a component of cigarette smoke (Surolia et al.

2015). We have reported that autophagy was not altered in the lung tissue of a

mouse strain susceptible to CS-induced lung EC apoptosis and emphysema

(Sakhatskyy et al. 2014). The role of autophagy in CS-induced apoptosis may be

dependent on cell types and stimuli.

Due to open structure and limited repair capacity, mitochondrial DNA is

50 times more sensitive to oxidative damage than nuclear DNA (Yakes and Van

Houten 1997). Oxidative stress-induced mitochondrial DNA damage triggers mito-

chondrial dysfunction and apoptosis of lung EC (Ruchko et al. 2005). The role of

mitochondrial DNA damage in CS-induced lung EC apoptosis remains to be

studied.

4.2.5 Lipopolysaccharide

LPS, also known as lipoglycans or endotoxin, is a component of the outer envelope of

gram-negative bacteria and elicits pro-inflammatory responses. It is well established

that LPS-induced EC activation, dysfunction, and apoptosis play an important role in

bacterial sepsis and endotoxemia. In the blood circulation, LPS binds to soluble

CD14 via LPS-binding protein (LBP), followed by engagement of toll-like receptor
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(TLR)-4. This engagement results in the recruitment of adaptor, myeloid differenti-

ation factor 88 (MyD88), and subsequent activation of interleukin (IL)-1 receptor

associated kinase (IRAK)-1, TNF receptor associated (TRAF)-6, NF-kB, and MAPK

pathways (Desch et al. 1989; Wang et al. 2001; Bannerman and Goldblum 2003).

NF-kB has been shown to transcriptionally upregulate anti-apoptotic genes such

as IAP-1, IAP-2, and FLIP (LaCasse et al. 1998; Bannerman et al. 2004). However,

suppression of NF-kB has minimal effect on LPS-induced EC apoptosis (Zen et al.

1999). This is due to FADD/MyD88-dependent negative regulation of LPS-induced

NF-kB activation (Martin et al. 2005; Zhande et al. 2007); Fas is no longer able to

activate MyD88, thus stimulating LPS/TLR4/NF-kB signaling (Martin et al. 2005).

LPS also stimulates MyD88-independent signaling of endothelial apoptosis

(Dauphinee and Karsan 2006). Heterotrimeric Gi/Go proteins play a role in

LPS-induced TLR signaling independent of the MyD88-dependent pathway, lead-

ing to MAPK, Akt, and IFN activation of endothelial cells (Dauphinee et al. 2011).

Whether LPS-induced stimulation of heterotrimeric G coupled proteins plays a role

in EC apoptosis is unknown. LPS can activate the BID-dependent intrinsic pathway

of apoptosis in lung EC (Wang et al. 2007). Conversely, LPS has been shown to

upregulate mRNA of anti-apoptotic molecules, thus preventing EC apoptosis

(Hu et al. 1998). LPS-induced intrinsic apoptosis and cytoprotection in disease

states are not well understood and require further study.

4.3 Pulmonary EC Apoptosis in Lung Diseases

Apoptosis has been shown to ameliorate or exacerbate lung injury. Pulmonary EC

apoptosis plays an important role in physiological processes including vasculogenesis

and angiogenesis during lung development. Pulmonary EC apoptosis may also

initiate or contribute to the progression of a number of lung diseases, as reviewed

elsewhere (Harrington et al. 2007; Lu and Rounds 2009). In this review, we will focus

on the role of pulmonary EC apoptosis in development of emphysema and Acute

Lung Injury (ALI).

4.3.1 Emphysema

Chronic obstructive pulmonary disease (COPD), a progressive respiratory condi-

tion consisting of emphysema and chronic bronchitis, is the fourth leading cause of

death worldwide and may become the third leading cause of death by 2030 based on

prediction by the World Health Organization (Khaltaev 2005). The prevalence of

COPD in the United States in 2013 was estimated to be 6.4% (15.7 million adults)

(Wheaton et al. 2015). COPD is also an important contributor of mortality and

disability in the United States (Murray et al. 2013). Further, COPD-related medical

costs were estimated at $32 billion in the USA in 2010 with an additional $4 billion
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in costs due to absence from work (Ford et al. 2015). α1-antitrypsin (AAT)

deficiency and other genetic predispositions contribute to the development of

COPD (Sandford et al. 1997). However, tobacco smoke remains the leading

cause of this devastating disease. Indoor air pollution (such as biomass fuel used

for cooking and heating), outdoor air pollution, and occupational dusts and

chemicals also increase the risk of COPD (Diette et al. 2012). Although the

pathology of COPD has been well defined, the pathogenesis of the disease initiation

and progression is not understood. Currently, there is no specific treatment avail-

able to reverse COPD.

Emphysema, a common and debilitating manifestation of COPD, is character-

ized by alveolar airspace enlargement, loss of alveolar capillary septa, and resultant

impaired gas exchange. Several hypotheses have been proposed to explain alveolar

wall damage in emphysema. Protease/anti-protease imbalance has been accepted as

a major mechanism for emphysematous lung destruction (Shapiro 1995, 1999;

Shapiro et al. 2003; Taraseviciene-Stewart and Voelkel 2008). It is believed that

neutrophil elastase and macrophage matrix metalloproteinases enzymatically

degrade elastin in alveolar septa, leading to emphysema (Taraseviciene-Stewart

and Voelkel 2008). This notion is supported by findings that patients with genetic

deficiency of the anti-protease, AAT, develop emphysema (No Authors 1997).

Additionally, intra-tracheal instillation of proteases causes an emphysema pheno-

type in rats (Pastor et al. 2006). However, less than 5% of emphysema patients have

AAT deficiency. Inflammatory cell infiltration is also seen in human emphysema.

However, lung inflammation in pneumonia or acute lung injury does not usually

result in emphysema. This suggests that inflammation may not be sufficient by itself

for the development of emphysema. Oxidant stress and immunological injury also

play a role in the pathogenesis of emphysema (Taraseviciene-Stewart and Voelkel

2008). Emerging evidence has highlighted a role of apoptosis, particularly EC

apoptosis, in the initiation and progression of emphysema (Kasahara et al. 2000,

2001; Giordano et al. 2008).

Lung tissue from patients with emphysema displays increased apoptosis of both

epithelial and endothelial cells in the alveolar septa (Kasahara et al. 2001; Imai et al.

2005). Bcl-2 single-nucleotide polymorphisms have been associated with severity

of human emphysema (Sata et al. 2007). We have shown that lung EC apoptosis is

elevated in a mouse model of emphysema induced by CS exposure (Sakhatskyy

et al. 2014). Interestingly, induction of alveolar cell apoptosis by intratracheal

instillation of the active caspase-3 causes emphysema in rats (Aoshiba et al.

2003). Additionally, inhibition of VEGF signaling causes alveolar septal cell

apoptosis and emphysema in mice (Kasahara et al. 2000; Tang et al. 2004).

Similarly, intra-tracheal instillation of C12 ceramide triggers alveolar endothelial

and epithelial cell apoptosis and emphysema-like changes in mice (Petrache et al.

2005). Further, lung EC-targeted induction of apoptosis led to emphysema and

enhanced oxidative stress and lung inflammation (Giordano et al. 2008). More

importantly, inhibition of apoptosis using pan-caspase inhibitors prevented the

emphysematous changes induced by either ceramide (Petrache et al. 2005) or

blockage of VEGF signaling (Kasahara et al. 2000; Tang et al. 2004). These results
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support a central role of lung EC apoptosis in the development of emphysema. Anti-

protease, AAT, inhibits CSE-induced pulmonary EC apoptosis in vitro by direct

interaction with caspase-3 (Aldonyte et al. 2008). Overexpression of AAT also

inhibits lung endothelial apoptosis and attenuates emphysema caused by either

active caspase-3 or blockade of VEGF signaling (Petrache et al. 2006). These

studies suggest that lung EC apoptosis is a critical step in the pathogenesis of

emphysema.

Inhibition of FAK causes emphysema-like change in rat lungs (Mizuno et al.

2012). We have shown that CS exposure for 3 weeks enhanced pulmonary EC

apoptosis and decreased FAK activity in mice susceptible to CS-induced emphysema

(Sakhatskyy et al. 2014). Further studies are necessary to address whether reduced

FAK activity contributes to CS-induced lung EC apoptosis and emphysema in

humans in vivo. We have shown that CS exposure increases lung tissue adenosine

levels in mice, an effect associated with lung EC apoptosis and early emphysema

(Lu et al. 2013). Sustained increased adenosine in ADA-deficient mice also enhances

alveolar cell apoptosis and causes emphysema in mice (Zhou et al. 2009). ADA

expression and activity are reduced in the lung of smokers with COPD (Zhou et al.

2010). Whether chronically elevated adenosine contributes to CS-induced lung

endothelial cell apoptosis and development of emphysema remains to be

investigated.

Ceramide is upregulated in emphysematous lungs of patients and animal models,

as well as in cultured pulmonary EC exposed to CSE (Petrache et al. 2005). This

increase in ceramide is associated with enhanced alveolar cell apoptosis (Petrache

et al. 2005). Interestingly, intratracheal instillation of C12 ceramide triggers air-

space enlargement and apoptosis of alveolar EC and type II epithelial cells

(Petrache et al. 2005). Further, inhibition of de novo ceramide synthesis signifi-

cantly attenuated lung cell apoptosis and emphysema induced by VEGFR2 block-

ade (Petrache et al. 2005). These results suggest that ceramide is also an important

mediator of alveolar cell apoptosis and emphysema (Petrache et al. 2005).

Only 10–15% of smokers develop emphysema. The mechanism underlying

increased susceptibility to emphysema remains unclear. The UPR is elevated in

the lungs of smokers without evidence of emphysema (Kelsen et al. 2008). Nrf2, a

redox-sensitive, antioxidant transcription factor, is activated by eIF2α, a branch of

UPR (Digaleh et al. 2013). Nrf2 knockout mice demonstrate enhanced susceptibil-

ity to cigarette smoke-induced emphysema in comparison to wild-type mice (Iizuka

et al. 2005). We have shown that active eIF2αwas significantly reduced in the lungs

of AKRmice with mild emphysema induced by CS (Sakhatskyy et al. 2014). Future

studies are needed to address whether Nrf2 is reduced in the lungs and whether

inadequate induction of Nrf2 contributes to development of emphysema.

Autophagy is significantly increased in lung tissue of patients with COPD; the

degree of autophagy positively correlates with the clinical severity of disease

(Chen et al. 2008). Increased autophagy has contributed to CS-induced alveolar

epithelial cell apoptosis and emphysema in mice (Chen et al. 2010; Mizumura et al.

2014). In contrast, increased autophagy protects against pulmonary endothelial cell

apoptosis and emphysema induced by cadmium, a component of cigarette smoke
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(Surolia et al. 2015). We have reported that autophagy was not altered in lung

tissue of a mouse strain with increased lung EC apoptosis and mild emphysema

induced by CS (Sakhatskyy et al. 2014). Thus, the role of autophagy in regulating

lung EC apoptosis and early onset of CS-induced emphysema needs further study.

4.3.2 Acute Lung Injury

ALI and its more severe form, acute respiratory distress syndrome (ARDS), are life-

threatening disorders clinically characterized by severe hypoxemia and pulmonary

bilateral infiltrates. In the United States, ARDS affects approximately 190,000

patients annually (Rubenfeld et al. 2005). ARDS accounts for 3.6 million associated

hospital days (Rubenfeld et al. 2005; Adhikari et al. 2010). The global impact of

ARDS has been difficult to assess due to varying definitions of the broad clinical

phenotypes and limited data. Thus, ARDS remains an underreported disease of

treated incidence, as opposed to actual incidence, in the undeveloped world

(Buregeya et al. 2014). Although the mortality rate of ARDS has decreased to

around 30–40% due to lung protective ventilation strategies (Amato et al. 1998;

Villar et al. 2006), ARDS remains a deadly syndrome without a specific cure.

Currently, there are no pharmacological interventions available to reduce the

mortality of ARDS.

Sepsis, bacterial and viral pneumonia, and trauma remain the leading risk factors

for the development of ARDS. Emerging evidence from epidemiologic studies,

animal models, and cultured cell models have suggested that both active and

passive cigarette smoke exposure modifies the susceptibility for development of

ALI and ARDS (Iribarren et al. 2000; Calfee et al. 2011; Lu et al. 2011, 2013; Hsieh

et al. 2014; Borgas et al. 2016).

The pathophysiology of ARDS is characterized by increased permeability of the

alveolar-capillary barrier, influx of protein and inflammatory cell-rich fluid into the

alveolar space, attenuated gas exchange between alveolar-capillary barrier, and

dysregulated inflammation. Increased permeability of the microvascular endothe-

lium and alveolar epithelium promotes edema formation, and this concept has been

accepted as an important mechanism for the initiation of ARDS (Matthay et al.

2012). It is well established that polymorphonuclear cells (PMN) and immunolog-

ical injury also play a significant role in the pathogenesis of ARDS (Perl et al.

2011). PMN accumulation is observed in the broncheoalveolar lavage fluid (BALF)

(Pittet et al. 1997) and lung biopsies of early ARDS patients (Bachofen and Weibel

1977, 1982). Further, neutrophilia has been correlated with exacerbation of sepsis-

induced ALI (Steinberg et al. 1994). However, ARDS may also develop in neutro-

penic patients, and neutrophil activation and migration may be observed in human

lungs without injury (Martin et al. 1989; Downey et al. 1999). This suggests that

inflammation may not be sufficient by itself for the development of ARDS.

Emerging evidence has suggested a role of pulmonary cell apoptosis in the

initiation and progression of ARDS. The death receptor, Fas, and its ligand, FasL
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system, is an important death receptor-mediated extrinsic pathway of apoptosis.

FasL is expressed and released by inflammatory cells, including neutrophils and

lymphocytes, whereas Fas is expressed on the surface of lung EC, alveolar and

bronchial epithelial cells, Clara cells, and alveolar macrophages. Fas and FasL are

increased in pulmonary edema fluid and in lung tissue of patients with ARDS

(Albertine et al. 2002). Silencing of Fas/FasL reduces lung cell apoptosis and

ALI in a mouse model of sepsis (Perl et al. 2005, 2007). Soluble FasL (sFasL) is

a cleaved form of FasL by metalloproteinases and is increased in BAL fluid of

patients with ARDS (Matute-Bello et al. 1999). sFasL released from inflammatory

cells is capable of inducing lung epithelial cell apoptosis (Matute-Bello et al. 1999).

The role of Fas/FasL in lung EC apoptosis is not yet clear. Robust pulmonary

endothelial cell apoptosis has been observed in patients with severe ARDS (Abadie

et al. 2005) and in mice with ALI induced by LPS (Fujita et al. 1998). Sepsis-

induced ARDS in mice indicates evidence for pulmonary microvascular endothelial

cell death as a cause of barrier dysfunction and edema (Gill et al. 2014, 2015).

Inhibition of apoptosis using a broad-spectrum caspase inhibitor prolonged survival

of mice exposed to LPS (Kawasaki et al. 2000). Since apoptosis of alveolar

endothelial, epithelial, and interstitial inflammatory cells occurs during ALI, future

studies are needed to address the role of apoptosis of specific cells in initiation of

ALI/ARDS.

Apoptosis has been thought of to be a non-inflammatory means of removing

injurious cells, thus facilitating lung repair. However, there is increasing evidence

indicating that Fas/FasL-mediated lung epithelial apoptosis results in release of

pro-inflammatory cytokines (such as TNF-α and TGF-β1), leading to inflammation

and progression from ARDS to fibrosis (Chapman 1999). Whether pulmonary

endothelial cell apoptosis occurs during initiation or progression of pulmonary

fibrosis is unknown.

The role of necroptosis in development of ARDS is yet to be determined. Of

interest, a recent study of blood transfusion-related acute lung injury indicates that

banked red blood cell (RBC) transfusion enhances susceptibility to lung inflamma-

tion and ARDS in critically ill transfused patients and mice through necroptosis of

lung EC and subsequent release of DAMPs (Qing et al. 2014).

4.4 Conclusions and Perspectives

Cell life and death are tightly regulated by survival signaling and death inducing

programs. Pulmonary EC apoptosis significantly contributes to the development of

emphysema and ALI/ARDS, as depicted in Fig. 4.1. Pan-caspase inhibitors have

been used to inhibit lung cell apoptosis and prevent emphysema and ALI in animal

models. However, use of such drugs to treat apoptosis-associated lung diseases may

be problematic due to breakdown of tissue homeostasis and activation of

necroptosis (Linkermann and Green 2014). The therapeutic potential of drugs that

modulate cell death is dependent upon cell type-specific, tissue-specific, and
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vascular bed-specific actions. Thus, drugs acting locally and with cell type speci-

ficity are needed. Areas where research is needed include: (1) apoptosis suscepti-

bility of different EC (conduit artery versus microvascular versus progenitor);

(2) role of apoptosis of specific lung cells in initiation and/or progression of lung

diseases; (3) role of necrosis and necroptosis in development of lung diseases, such

as emphysema and ALI.
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Fig. 4.1 Signaling pathways to CS-induced pulmonary endothelial cell apoptosis. Multiple

signaling pathways are involved in CS-induced pulmonary endothelial cell apoptosis. (1) CS

reduces VEGF/VEGFR2 signaling, leading to induction of ceramide and consequent apoptosis;

(2) CS reduces FAK activation, leading to activation of p53 and inhibition of PI3K/Akt signaling,

which results in apoptosis; (3) CS causes mitochondrial oxidative stress and mitochondrial

dysfunction, leading to apoptosis; (4) CS elevates adenosine levels, leading to inactivation of

Ras and mitochondrial oxidative stress, resulting in apoptosis; (5) CS impairs unfolded protein

response, leading to apoptosis
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