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Chapter 1      
Physical Inactivity and the Economic 
and Health Burdens Due to Cardiovascular 
Disease: Exercise as Medicine                                      

Mark Hamer, Gary O’Donovan, and Marie Murphy

Abstract Leisure time physical activity, or exercise, has been described as today’s 
best buy in public health. Physical inactivity is responsible for around 10% of all deaths 
and physical inactivity costs global healthcare systems billions of dollars each year. 
Here, we describe the human and economic costs of cardiovascular disease. Then, we 
explain that physical inactivity is a major modifiable risk factor for cardiovascular 
disease. The evidence of the role of physical activity in the primary prevention of car-
diovascular disease is reviewed and we make the case that exercise is medicine.

Keywords  Exercise • Cardiovascular disease • Prevalence • Medicine

1  Introduction

Cardiovascular  disease  (CVD)  is  a  term  used  to  describe  a  range  of  conditions 
affecting the heart and the vessels that carry blood around the body. These condi-
tions include abnormalities in the structure or function of the heart (heart failure, 
rheumatic heart  disease  and cardiomyopathy) or  the blood vessels  supplying  the 
heart (coronary or ischaemic heart disease),  the brain (cerebrovascular disease or 
stroke), or the peripheral vascular system (including hypertension, claudication and 
thrombosis). CVD is the main cause of death in Europe, accounting for 45% of all 
deaths [1]. Half of all CVD deaths are caused by coronary heart disease (CHD), 
while a further third are directly attributable to stroke. Most heart attacks and many 
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strokes occur as a result of atherosclerosis (narrowing of the arteries) and thrombo-
sis (blood clotting). The narrowing of the arteries in atherosclerosis is an inflamma-
tory process characterised by the accumulation of low-density lipoprotein cholesterol 
(LDL-C)  in  the artery wall  and  the  formation of atherosclerotic plaques. Angina 
(pain in the chest) can occur when an atherosclerotic plaque become large enough 
to compromise blood flow in a coronary artery. However, many heart attacks occur 
without warning when a plaque ruptures, its thrombotic content is exposed to blood, 
and a large clot is formed [2]. In fact, autopsy data suggest that around 90% of heart 
attacks occur when a blood clot is superimposed on an already narrow artery. While 
gender, age and genetics play roles in CVD, it is now well established that environ-
mental factors such as smoking and lack of physical activity are the major determi-
nants of disease risk in most individuals in developed nations. In this chapter we 
describe the human and economic burdens of CVD in the EU and we outline the 
major risk factors for this group of diseases. The evidence on the role of physical 
activity in the primary prevention of CVD will be reviewed with a view to making 
a case that exercise is medicine.

2  The Burden of Cardiovascular Disease

2.1  Human Costs

Cardiovascular  disease  is  responsible  for  four  million  deaths  across  Europe. 
Coronary heart disease is the single most common cause of death, accounting for 
approximately 20% of all deaths, while stroke and other CVD are responsible for 
11% and 14% of all deaths, respectively [1]. The human costs of caring for individu-
als with cardiovascular disease has also been calculated. It is estimated that over half 
a million people in the UK alone provide over 500 million hours of informal care for 
family and friends with CVD [3]. In addition to being a major cause of death, CVD 
significantly  reduces  quality  of  life  for  many  individuals  in  the  UK.  Disability 
Adjusted Life Years is a measure of the years of life lost due to premature death and 
the years of healthy life lost through disability. It is estimated that more than 80 mil-
lion fully healthy life years are lost to CVD every year in the European Region [4]. 
The human costs of physical inactivity are described in Sect. 3.2.

2.2  Economic Costs

Cardiovascular disease is estimated to cost the EU economy almost €196 billion a 
year. Some 54% of the total cost is due to direct health care costs, 24% to productiv-
ity losses, and 22% to the informal care of people with CVD. The cost to the health 
care systems of over €106 billion represents a cost per capita of €212 per annum [5]. 
The economic costs of physical inactivity are described in Sect. 3.2.

M. Hamer et al.
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3  Risk Factors for Cardiovascular Disease

Over 300 risk factors have been identified for CVD. In order to be classified as a 
major risk factor, however, an exposure or behaviour must meet three criteria: (1) an 
independent association with CVD; (2) a high prevalence in many populations; and 
(3) its treatment and control can result in reduced risk. The contribution of individ-
ual risk factors may vary depending on the socioeconomic status of the country and 
the prevailing forms of CVD. In Britain, around 80% of CHD events in middle-aged 
men are thought to be explained by total cholesterol, blood pressure and cigarette 
smoking [6]. High blood pressure presents a greater risk for ischaemic stroke, while 
high cholesterol is a stronger predictor of CHD risk. Herein, we discuss ‘traditional’ 
and ‘novel’ risk factors because 20–50% of CHD events are not explained by tradi-
tional risk factors [6].

3.1  Non-modifiable CVD Risk Factors

Risk factors that cannot be modified include age, male gender, and a family history 
of  premature CVD. Advancing  age  is  one  of  the most  powerful  risk  factors  for 
CVD; for example, the risk of stroke doubles every decade past the age of 55 years. 
Cardiovascular disease is not inevitable, but age is a surrogate measure of exposure 
to  all other  risk  factors. Historically, men experience a higher  rate of CVD  than 
women at a younger age, and prior to menopause women have better cardiovascular 
risk profiles than men [7]. For example, pre-menopausal women demonstrate lower 
levels of blood pressure and LDL-C and higher levels of high-density lipoprotein 
cholesterol (LDL-C). Given that risk profiles of women and men become similar 
following the menopause, the cardio-protective effects of female sex hormones may 
partly explain the gender difference in CVD risk. Postmenopausal women appear to 
be at a distinct disadvantage because diabetes carries a significantly greater risk of 
CVD and systolic hypertension becomes more frequent in older women.

3.2  Physical Inactivity and Other Modifiable CVD Risk 
Factors

Some of the major CVD risk factors are modifiable, in that they can be prevented, 
treated and controlled. The World Health Organisation highlights seven major mod-
ifiable CVD risk factors, which include raised blood pressure, abnormal blood lip-
ids, tobacco use, physical inactivity, obesity, unhealthy diet, and diabetes mellitus. 
Physical inactivity has been defined as an activity level insufficient to meet the 
World  Health  Organisation  recommendation  of  at  least  150  min  per  week  of 
moderate- intensity aerobic activity, or at least 75 min per week of vigorous- intensity 

1  Physical Inactivity and the Economic and Health Burdens Due to Cardiovascular…
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aerobic activity, or equivalent combinations [8]. It has been estimated that, if physi-
cal inactivity were to decrease by 25%, more than a million deaths worldwide would 
be avoided each year (the population attributable fraction for all-cause mortality is 
9%, ranging from 4% in low-income countries to 11% in high-income countries) 
[8]. Reductions in smoking, blood pressure, and cholesterol have explained approx-
imately 50% of the decline in CVD events over the last 25 years in Britain [9]. The 
relative risk of heart disease per unit change in cholesterol has been shown to 
decrease with age and blood pressure, although the positive association persists into 
older age [10]. Pharmacological therapies that have been employed to control ele-
vated cholesterol and blood pressure demonstrate a favourable effect on cardiovas-
cular outcomes. For example, statin therapy was associated with a 12% proportional 
reduction in all-cause mortality per mmol⋅l−1 reduction in LDL-C and a 19% reduc-
tion in the 5-year incidence of coronary events [11]. The recent implementation of 
comprehensive smoking bans in public places has provided an opportunity to exam-
ine the large-scale impact of exposure to tobacco smoke using a natural experiment 
design. Hospital admission rates for acute myocardial infarction were reduced by 
8% as a result of a comprehensive smoking ban in New York State, which was esti-
mated to result in direct healthcare savings of US$56 million per year [12]. While 
much as been done to tackle smoking, little has been done to tackle physical inactiv-
ity [13, 14].  Physical  inactivity  costs  global  healthcare  systems  at  least  INT$54 
billion per year [15] and policy makers have been urged to take physical inactivity 
more seriously [16].

3.3  Novel Modifiable CVD Risk Factors

A variety  of  novel  circulating  biomarkers  that  reflect  inflammation,  coagulation, 
impaired fibrinolysis, and increased blood viscosity have been identified as poten-
tial CVD risk factors [17]. There is intense inflammatory activity in atherosclerosis, 
for example, and inflammatory markers such as interleukin (IL)-6 and C-reactive 
protein  (CRP)  may  directly  influence  plaque  vulnerability  and  rupture  [18]. 
However, the clinical utility and causal role of novel risk markers remains widely 
debated. In several meta-analyses of large scale prospective cohort studies, CRP and 
fibrinogen were found to be moderately associated with risk of CHD and other car-
diovascular outcomes after adjustment for traditional risk factors [19, 20]. There are 
limited data on the predictive value of novel biomarkers beyond that of traditional 
risk factors, and existing evidence is equivocal. For example, in the 17-year follow 
up of 1592 participants  from the Edinburgh Artery Study, a wide  range of novel 
biomarkers provided very little prognostic information for incident CVD over and 
above traditional risk factors [21]. In contrast, prospective data from the Women’s 
Health Study suggested that fibrinogen and CRP provided additive value to tradi-
tional risk factors in predicting incident CVD [22].

Geneticists have examined if alleles associated with higher CRP increase risk of 
CVD because the measurement of plasma CRP at a single point in time may not 

M. Hamer et al.
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adequately  reflect  an  individual’s  cumulative  inflammatory  burden.  Transgenic 
studies of over-expression of human CRP have demonstrated no influence on the 
development of atherosclerosis in mice. In prospective studies in humans the asso-
ciation between polymorphisms of the CRP gene and incident CVD have produced 
conflicting findings. For example, although CRP genotype was strongly associated 
with plasma CRP concentration, there was little association between CRP genotype 
and  risk  of CVD  events  in  the  Physician’s Heath  Study,  the  Framingham Heart 
Study, or the Rotterdam Study. This contrasts with the Cardiovascular Health Study 
where  a  strong  independent  association  between  CRP  genotype  and  fatal  CVD 
events was observed [23]. Confirmation of these findings in other large population 
studies of older adults with large numbers of fatal events will be important for clari-
fying the role of the CRP gene and risk of CVD. Further research is also required to 
determine the clinical utility of apolipoproteins, adiponectin and other biomarkers 
because the existing evidence is largely equivocal [24, 25].

3.4  Risk Factor Clustering

The  presence  of  two  or more  risk  factors  dramatically  increases CVD  risk.  For 
example,  there are 43 CVD deaths per 10,000 person-years  in middle-aged men 
who smoke, have high blood pressure, and high cholesterol compared to three CVD 
deaths per 10,000 person-years in middle-aged men without these risk factors [26]. 
Accordingly, modern treatment regimes have focussed on risk factor clustering to 
identify those individuals at greatest risk.

4  Physical Activity and Cardiovascular Disease: 
The Evidence

4.1  Population Based Studies

Prospective cohort designs allow groups of individuals with differing levels of phys-
ical activity to be followed for a period of time to determine the relationship between 
physical activity and CVD risk. Since  the early work of  Jerry Morris and Ralph 
Paffenbarger, the role of regular physical activity in the prevention of CVD has been 
well established.  In  the 1950s, Morris and colleagues  [27] demonstrated that the 
CHD death  rates of bus  conductors  and postmen were half  those of  comparably 
inactive bus drivers and telephonists. Since then, the assessment of physical activity 
exposure has become more refined with the use of validated self-reported physical 
activity  questionnaires.  In  the  Harvard  Alumni  Health  Study,  for  example, 
Paffenbarger and colleagues [28] questioned 16,936 alumni about the daily number 
of blocks walked and flights of stairs climbed, and about the frequency and duration 

1  Physical Inactivity and the Economic and Health Burdens Due to Cardiovascular…
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of sporting and recreational activities. Regular stair climbing and strenuous sports 
play were associated with  reduced  risk of CHD during 6–10 years of  follow-up, 
whilst  student  athleticism  offered  no  protection.  More  recently,  the  Health 
Professionals’ Follow-Up Study, that consisted of 44,452 health professionals fol-
lowed between 1986 and 1998, is noteworthy because of its large sample size and 
rigorous methodology [29]. In this study, various forms of activity conferred protec-
tion against CHD, including regular walking (18% risk reduction) and 1 h of run-
ning per week  (42%  risk  reduction). Men who  increased  their  exercise  intensity 
from low to vigorous over time had a CHD risk reduction of 12%. There has been 
considerable recent interest in the relationships between physical activity, sedentary 
behavior and health. The culmination of this research was Ekelund and colleagues’ 
[30] in a review of 16 studies which included more than one million adults. They 
found that sedentary behavior was associated with all-cause mortality in the entire 
sample. Importantly, they also found that sedentary behavior was not associated 
with  all-cause  mortality  in  those  who  were  “highly  active”  (that  is,  those  who 
reported about 60–75 min per day of moderate activity) suggesting that high levels 
of activity may offset the negative effects of sedentariness.

Although there is now irrefutable epidemiological evidence that regular physical 
activity plays an important role in the prevention of CVD, this evidence has been 
largely  derived  from  studies  of white males. More  recent  studies  have  therefore 
attempted  to  examine  associations  between  physical  activity  and  CVD  risk  in 
women and non-white populations [31, 32]. The major epidemiological studies on 
physical  activity  and  CVD  among  women  have  emerged  from  large American 
cohorts such as the Nurse’s Health Study [33], Women’s Health [34], and Women’s 
Health Initiative studies [32]. Across studies there appears to be a fairly consistent 
inverse dose-response association between physical activity and CVD in women, 
with minimal protection achieved at a  level of at  least 1 h per week of moderate 
intensity exercise such as walking [35].

The association between vigorous-intensity activity and mortality may be stron-
ger than the association between moderate-intensity activity and mortality, at least 
in men [36–40]. Taken together, the epidemiological evidence supports the notion 
that exercise should be at least moderate intensity and, for many men and women, 
brisk walking offers protection from CVD [41]. Our understanding of the optimal 
frequency, intensity, duration and type of activity for CVD risk reduction [42, 43] is 
still evolving. Several recent analyses of large scale population data have been use-
ful in trying to determine minimal and optimal physical activity dosage. For exam-
ple, 15 min a day or 90 min a week of moderate-intensity exercise was shown to 
lower mortality risk in a sample of more than 400,000 adults from Taiwan [44]. Data 
from a recent meta-analysis of nine cohort studies revealed that undertaking some 
moderate to vigorous physical activity but less than the guidelines was associated 
with 22% reduction in mortality risk [45].  In an analysis of over 600,000 adults 
from the US and Europe, an upper threshold for longevity occurred at 3 to 5 times 
the physical activity recommendation although the additional benefit over and 
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above the guideline was modest, leading Arem and colleagues [46] to describe an 
‘L-shaped’ association. We have used data from the Scottish Health Survey (SHS) 
and  the Health Survey  for England  (HSE)  to  examine  the  relationships  between 
physical activity and health. We investigated associations between physical activity 
patterns  and  mortality  in  more  than  60,000  participants  in  SHS  and  HSE  [47]. 
Leisure-time physical activity was assessed and participants were defined as inac-
tive (reporting no moderate-intensity or vigorous-intensity activities), insufficiently 
active (reporting  less  than 150 min per week of moderate-intensity and  less  than 
75 min per week of  vigorous-intensity  activities), weekend warrior  (reporting  at 
least  150  min  per  week  of  moderate-intensity  or  at  least  75  min  per  week  of 
vigorous- intensity activities from one or two sessions), and regularly active (report-
ing at least 150 min per week of moderate-intensity or at least 75 min per week of 
vigorous-intensity activities from three or more sessions). All-cause mortality risk 
was  approximately  30%  lower  and CVD mortality  risk was  approximately  40% 
lower in active versus inactive participants; active included the weekend warriors 
who performed all their exercise in one or two sessions per week. The weekend war-
riors took part in a relatively high proportion of vigorous-intensity activity and we 
concluded that quality might be more important than quantity. Vigorous-intensity 
activity increases cardiorespiratory fitness more than moderate-intensity activity 
and cardiorespiratory fitness may be a stronger predictor of mortality than smoking, 
high cholesterol, high blood pressure and other established risk factors [48].

Few epidemiological studies have been designed to examine the mechanisms 
that mediate the cardio-protective effects of physical activity. In a study of 27,000 
apparently healthy women followed for 11 years, most of the reduced risk of CVD 
associated with being physically active was explained by risk factors measured by 
the investigators, including inflammatory/haemostatic biomarkers (which explained 
33% of the reduced risk), blood pressure (27%), traditional lipids (19%), adiposity 
(10%),  and  glycaemic  control  (9%)  [22]. More  observational  cohort  studies  and 
exercise interventions are required to determine whether novel biomarkers explain 
the ‘protective effect’ of physical activity in men.

4.2  Exercise Interventions

Although the large population studies have been invaluable in establishing associa-
tions between physical activity and CVD, observational studies are prone to bias 
(that is, the inferential error associated with any process that causes results to vary 
systematically  from  the  truth). Randomised controlled  trials  (RCTs)  can provide 
important  information on  the effect of exercise  frequency, exercise  intensity, and 
exercise duration on various CVD risk factors. The findings from some of the larger 
studies, meta-analyses and systematic reviews on modifiable CVD risk factors are 
described below.
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4.2.1  Blood Pressure

In a meta-analysis of RCTs published up to February 2012 (105 aerobic, 29 dynamic 
resistance, 14 combined, and 5 isometric training groups), systolic blood pressure 
was reduced with aerobic, dynamic resistance, and isometric resistance training, but 
not combined training [49]. Diastolic  blood  pressure was  reduced with  aerobic, 
dynamic resistance, isometric resistance, and combined training. The authors tenta-
tively concluded that isometric handgrip and isometric leg training might result in 
larger reductions in systolic and diastolic blood pressure than the other modes of 
training, despite limited evidence currently available.

Although resting blood pressure is a widely used clinical measure of cardiovas-
cular risk, it is well established that exercise causes a reduction in blood pressure 
during the period immediately following a bout of exercise. Post-exercise hypoten-
sion (PEH), or the reduction in blood pressure following a bout of exercise, may last 
up to 18 hours and may play an important role in the anti-hypertensive effects of 
exercise. The optimal dose of exercise is not clear, however, Pescatello and col-
leagues [50] demonstrated that a light intensity (40% maximal oxygen consumption 
[VO2 max]) was as effective as a higher intensity bout of exercise (60% VO2 max) 
in eliciting significant PEH over the course of a nine-hour ambulatory monitoring 
period. In contrast, Quinn [51] demonstrated more substantial and sustained PEH 
over a 24 h period after a bout of higher intensity exercise (75% VO2 max) com-
pared with lower intensity exercise (50% VO2 max). There is also some evidence 
that short bouts of moderate exercise produce more sustained PEH compared to 
continuous sessions of the same total duration in prehypertensive adults [52].

4.2.2  Lipid Metabolism

Although  observational  studies  suggest  that  regular  activity  is  associated  with 
favourable lipid profiles, exercise interventions have yielded less consistent results. 
In randomised, controlled trials of physical activity, the most commonly noted 
change in blood lipid profiles is an increase in HDL-C concentration with less con-
sistent alterations in triglycerides (TG) and LDL-C concentrations. When HDL- C, 
TG  and  LDL-C  changes  were  noted,  these  were  associated  with  interventions 
involving weekly energy expenditure in excess of 900–1200 kcal but appear to be 
independent of the exercise intensity used to achieve this energy expenditure [53, 
54]. In a notable study that contained 492 sedentary adults, higher intensity (65–
70% of heart rate reserve) or more frequent walking (5–7 days per week) produced 
more favourable changes in lipid profiles than moderate intensity (45–55% of heart 
rate reserve) or low frequency (3–4 days per week) walking at 6 months, although 
the effects were not sustained at 24 months [55]. Alterations in TG concentrations 
appear to be more likely in men than in women and more likely to accompany 
weight loss. There is also some evidence that less favourable lipid profiles at base-
line are more likely to alter in response to exercise [56]. In a meta-analysis of 13 
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exercise interventions with overweight and obese adults, Kelley and colleagues [57] 
noted a significant decrease in fasting triglyceride levels (11%) but no significant 
changes in other lipoprotein parameters associated with cardiovascular risk. 
Genetics may also play an important role. For example, in 35 pairs of monozygotic 
twins who were discordant for vigorous activity, there were significant correlations 
between the twin pairs for HDL-C and HDL subclasses, thus suggesting a substan-
tial  influence  of  genetics  over  and  above  exercise  [58].  Data  from  the Heritage 
Family Study also suggest that genetic variation largely explains the substantial 
variability in HDL cholesterol responses to endurance training [59, 60].

In many studies the favourable alterations in blood lipids have been demon-
strated exclusively in a fasted state. Given that humans spend the majority of their 
lives in a post-absorptive state and impaired metabolism of postprandial lipopro-
teins  are  implicated  in  the development of CVD,  the  role of physical  activity  in 
altering postprandial concentrations of blood lipids may be more clinically impor-
tant [61]. Cross-sectional studies show improved clearance of postprandial triglyc-
erides among regular exercisers compared to the inactive, although these alterations 
may be due in greater part to the acute effects of a recent exercise bout rather than 
any chronic adaptation to regular activity [62]. These findings underscore the impor-
tance of regular activity and support the recommendation that physical activity 
bouts should be daily.

4.2.3  Cardiorespiratory Fitness

Steven Blair’s seminal work has demonstrated that low cardiorespiratory fitness is 
among the most powerful predictors of cardiovascular and all-cause mortality in 
Caucasian men [63]. More recent work has found that low cardiorespiratory fitness 
predicts mortality in other populations, including women [64] and black men [65]. 
The addition of cardiorespiratory fitness to traditional risk factors significantly 
improves the classification of risk and it has been argued that efforts to improve 
cardiorespiratory fitness should become a standard part of clinical encounters [48].

Fitness is developed by moderate to vigorous intensity activity and cardiorespi-
ratory fitness is therefore an objective measure this type of activity [66]. Indeed, 
Blair and colleagues have found that cardiovascular mortality is halved in men who 
become active and fit compared to those who remain inactive and unfit. Progressive 
manipulation of the training variables or ‘dose’ (exercise frequency, exercise inten-
sity and exercise duration) is likely to improve cardiorespiratory fitness [67]. Indeed, 
in a large RCT including 464 overweight post-menopausal women various doses of 
walking were shown to produce significant gains in fitness [68]. Modest gains in 
fitness were even observed at the lowest exercise dose of approximately 72 min per 
week of moderate-intensity activity. The effect of exercise on fitness was similar 
across age, weight, baseline fitness, and hormone therapy usage, suggesting that the 
benefits are comparable across a variety of individuals.
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4.2.4  Novel Risk Factors

Several studies have considered the role of physical activity in altering haemostatic 
dysfunction [69]. There  is some evidence  that a single bout of vigorous  (but not 
moderate) intensity exercise induces a prothrombic state characterised by platelet 
hyper-aggregability, blood hyper-coagulability and hypo-fibrinolysis [70]. This 
response to strenuous exercise appears to be more pronounced in individuals who 
are normally sedentary [71] and may be one of the causes for the transient increase 
in the risk of cardiac arrest during and after strenuous exercise [72]. These findings 
support the notion that low- or moderate-intensity exercise is the most suitable start-
ing point for inactive individuals.

Epidemiological evidence suggests a positive relationship between regular exer-
cise and blood haemostasis and inflammatory markers. Fibrinogen, an acute phase 
reactant protein that plays an important role in blood clotting, is lower in those 
participating in vigorous physical training even when age, smoking, alcohol intake 
and body mass are taken into account [73]. Those who take part in regular low- to 
moderate-intensity physical activity may also demonstrate lower platelet aggrega-
tion and adhesion [74]. In a 20-year follow-up to the British Regional Heart Study, 
Wannamathee and colleagues [75] showed a reduction in coagulation (measured by 
plasma fibrinogen, plasma and blood viscosity and coagulation factors VIII and IX), 
inflammatory markers (CRP, white cell count), and increased fibrinolysis (measured 
by  fibrin  D-dimer  and  tissue  plasminogen  activator  antigen)  in  those who were 
physically active. These changes were dependent upon current activity level with 
those who took up at least light activity approaching those who were always active 
and those who became inactive over the 20 year period demonstrating levels similar 
to the inactive [75].

Such epidemiological observations are less well-substantiated by exercise inter-
ventions. Wang and colleagues have shown that an eight-week programme of 
moderate- intensity exercise decreases adhesive and aggregative properties of plate-
lets in healthy young men [76] and women [77] and have demonstrated that this 
beneficial effect is reversed by a similar period of de-conditioning. These authors 
have also demonstrated that regular exercise training may desensitise the exagger-
ated platelet reactivity response associated with strenuous exercise in sedentary 
individuals [78]. Exercise interventions comparing blood fibrinolysis before and 
after training have yielded equally inconsistent results [79].

Exercise interventions generally appear to demonstrate reductions in inflamma-
tory markers if accompanied by weight loss, especially among women. For example, 
in 152 female smokers, there were no changes in CRP or fibrinogen after a 12-week 
exercise program that improved physical fitness, but was not accompanied by sig-
nificant weight loss [80]. In contrast, a two-year program designed to improve diet 
and increase physical activity resulted in significant weight loss and reductions in 
CRP and IL-6 among 120 obese women [81]. However, in another large RCT con-
taining 193 sedentary, mildly obese, dyslipidemic men and women, 6 months’ exer-
cise  training did not alter  levels of CRP despite  improvements  in fitness, visceral 
adiposity and subcutaneous adiposity [82]. The equivocal nature of these findings 
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might best be explained by disparity in the exercise interventions and insufficient 
training periods, poor adherence levels, differences between characteristics of par-
ticipants and genetic influences. Indeed, evidence from the Heritage Family study 
suggests that exercise training only has significant anti-inflammatory effects in sed-
entary  adults  with  initially  elevated  CRP  levels  [83]. Thus, further studies are 
required to resolve these issues.

4.3  Biological Mechanisms

Given the range of factors that are altered by exercise it seems likely that multiple 
biological mechanisms are responsible for alterations in CVD risk. Some of these 
mechanisms are well-understood and supported by empirical evidence, and others 
are biologically plausible but unsubstantiated. The reductions in blood pressure 
associated with regular exercise are likely to be due to a combination of nervous 
system adaptations and vascular adaptations [84], including decreased activation of 
sympathetic nervous system and increased vasodilation which decreases peripheral 
resistance. Various mechanisms have been associated with  these vascular adapta-
tions [85], for example, exercise induced enhancement of the synthesis and release 
of nitric oxide and endothelin-1. The favourable alterations in blood lipids as a 
consequence  of  exercise  are  likely  to  be  due  an  alteration  in  the  activity  of  key 
enzymes  involved  in  lipoprotein metabolism. For  example,  increased  lipoprotein 
lipase  activity  and  decreased  hepatic TG  lipase  activity  have  been  noted  after  a 
single bout of exercise [86]. In addition, reductions in cholesterol ester transfer 
protein concentrations have been reported [87], which might allow slowed catabo-
lism of HDL particles with endurance training. Increases in cardiorespiratory fitness 
with exercise result from a combination of improvements in cardiac function, oxy-
gen  transport,  muscle  perfusion  and  alterations  in  the  activity  of  key  enzymes 
involved in aerobic metabolism. Numerous mechanisms have been connected with 
the anti-inflammatory effects of exercise. One key mechanism might be related to 
nuclear factor-κB activation, given that this is a redox sensitive and oxidant- activated 
transcription factor that regulates inflammation related gene expression. Heat shock 
proteins that are released during exercise may be a viable mechanism that could 
explain the training induced changes in toll like receptor 4, which is thought to play 
an important role in inflammatory pathways [88]. Changes in leukocyte telomere 
dynamics, which progressively change with age, may also be involved although the 
current evidence remains equivocal [89]. The anti-inflammatory effects of exercise 
may also be mediated by increased insulin sensitivity and oxidative capacity, HDL 
cholesterol, and improved endothelial and autonomic nervous system functioning. 
Thus, it is clear that exercise induced reduction in CVD risk is related to multiple 
mechanisms that are unlikely to operate in isolation. Recent advances in metabolo-
mics platforms may help to further elucidate biological signatures associated with 
physical activity [90].
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5  Summary and Conclusions

The Table 1.1 presents evidence statements based on a summary of the evidence 
given in this chapter. The evidence is such that exercise has been described as 
today’s best buy in public health [91]. It’s time to take physical inactivity seriously 
and we agree with those who would have policies to increase both physical activity 
and cardiorespiratory fitness [43, 48].

Acknowledgement  Hamer acknowledges support from the National Institute for Health Research 
(NIHR)  Leicester  Biomedical  Research  Centre,  which  is  a  partnership  between  University 
Hospitals of Leicester NHS Trust, Loughborough University and the University of Leicester.

References

  1. Townsend N, Wilson L, Bhatnagar P et al (2016) Cardiovascular disease in Europe: epidemio-
logical update 2016. Eur Heart J 37(42):3232–3245

  2. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. 
Nat Rev Immunol 6(7):508–519

  3. Luengo-Fernandez R, Leal J, Gray A et al (2006) Cost of cardiovascular diseases in the United 
Kingdom. Heart 92(10):1384–1389

Table 1.1  Goals and recommendations for physical activity and cardiovascular disease risk

Evidencea

Goal Evidence statement Type Strength

Minimal benefit

At least 150 minutes of 
moderate-intensity aerobic 
activity per week

Physical activity is inversely associated 
with cardiovascular disease risk

C 1

Physical activity acts favourably on low 
grade inflammation and haemostasis

B 3

Physical activity acts favourably on 
lipid profiles

B 1

Physical activity reduces blood pressure B 1
Physical activity improves 
cardiorespiratory fitness

B 1

Greater benefit

Performing some 
vigorous-intensity aerobic 
exercise on a weekly basis

Vigorous exercise confers greater 
protection against cardiovascular 
mortality, especially in men

C 2

Moderate- to vigorous- 
intensity activity

Moderate-vigorous activity confers 
‘optimal’ benefits for blood pressure 
lowering, haemostasis and lipid levels

B 3

aType of evidence: (A) major randomized, controlled trials (RCTs); (B) smaller RCTs and meta- 
analyses of other clinical trials; (C) observational and metabolic studies; (D) clinical experience. 
Strength of evidence: (1) very strong evidence; (2) moderately strong evidence; (3) strong trend

M. Hamer et al.



15

  4. World Health Organisation  (2012) Health  statistics  and  information  systems. Estimates  for 
2000–2012  disease  burden.  http://wwwwhoint/healthinfo/global_burden_disease/estimates/
en/index2html. Accessed Jan 2017

  5. Nichols M, Townsend N, Luengo-Fernandez R et al (2012) European cardiovascular disease 
statistics  2012.  European Heart Network/European  Society  of Cardiology, Brussels/Sophia 
Antipolis

  6. Emberson JR, Whincup PH, Morris RW et al (2003) Re-assessing the contribution of serum 
total cholesterol, blood pressure and cigarette smoking to the aetiology of coronary heart dis-
ease: impact of regression dilution bias. Eur Heart J 24(19):1719–1726

  7. Pilote L, Dasgupta K, Guru V et al (2007) A comprehensive view of sex-specific issues related 
to cardiovascular disease. CMAJ 176(6):S1–44

  8. Lee  IM,  Shiroma  EJ,  Lobelo  F  et  al  (2012)  Effect  of  physical  inactivity  on  major  non- 
communicable diseases worldwide: an analysis of burden of disease and life expectancy. 
Lancet 380(9838):219–229

  9. Hardoon SL, Whincup PH, Lennon LT et al (2008) How much of the recent decline in the inci-
dence of myocardial infarction in British men can be explained by changes in cardiovascular 
risk factors? Evidence from a prospective population-based study. Circulation 117(5):598–604

 10. Lewington S, Whitlock G, Clarke R et al (2007) Blood cholesterol and vascular mortality by 
age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies 
with 55,000 vascular deaths. Lancet 370(9602):1829–1839

 11. Baigent C, Keech A, Kearney PM et  al  (2005) Efficacy and  safety of  cholesterol-lowering 
treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials 
of statins. Lancet 366(9493):1267–1278

 12. Juster HR, Loomis BR, Hinman TM et al  (2007) Declines  in hospital admissions for acute 
myocardial  infarction in New York state after  implementation of a comprehensive smoking 
ban. Am J Public Health 97(11):2035–2039

 13. Fox KR, Hillsdon M (2007) Physical activity and obesity. Obes Rev 8 Suppl 1(s1):115–121
 14. Wareham N (2007) Physical activity and obesity prevention. Obes Rev 8 Suppl 1(s1):109–114
 15. Ding D, Lawson KD, Kolbe-Alexander TL et al (2016) The economic burden of physical inac-

tivity: a global analysis of major non-communicable diseases. Lancet 388(10051):1311–1324
 16. Das  P,  Horton  R  (2016)  Physical  activity-time  to  take  it  seriously  and  regularly.  Lancet 

388(10051):1254–1255
 17. Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical consid-

erations. Circulation 113(19):2335–2362
 18. Blake GJ, Ridker PM (2001) Novel clinical markers of vascular wall inflammation. Circ Res 

89(9):763–771
 19. Danesh J, Lewington S, Thompson SG et al (2005) Plasma fibrinogen level and the risk of 

major cardiovascular diseases and nonvascular mortality: an individual participant meta- 
analysis. JAMA 294(14):1799–1809

 20. Danesh  J, Wheeler  JG, Hirschfield GM  et  al  (2004) C-reactive  protein  and  other  circulat-
ing  markers  of  inflammation  in  the  prediction  of  coronary  heart  disease.  N  Engl  J  Med 
350(14):1387–1397

 21. Tzoulaki I, Murray GD, Lee AJ et al (2007) Relative value of inflammatory, hemostatic, and 
rheological factors for incident myocardial infarction and stroke: the Edinburgh Artery Study. 
Circulation 115(16):2119–2127

 22. Mora S, Cook N, Buring JE et al (2007) Physical activity and reduced risk of cardiovascular 
events: potential mediating mechanisms. Circulation 116(19):2110–2118

 23. Lange  LA,  Carlson  CS,  Hindorff  LA  et  al  (2006)  Association  of  polymorphisms  in  the 
CRP  gene  with  circulating  C-reactive  protein  levels  and  cardiovascular  events.  JAMA 
296(22):2703–2711

 24. Sattar N, Wannamethee G, Sarwar N et al (2006) Adiponectin and coronary heart disease: a 
prospective study and meta-analysis. Circulation 114(7):623–629

1  Physical Inactivity and the Economic and Health Burdens Due to Cardiovascular…

http://www.who.int/healthinfo/global_burden_disease/estimates/en/index2.html
http://www.who.int/healthinfo/global_burden_disease/estimates/en/index2.html


16

 25. Thompson A, Danesh J (2006) Associations between apolipoprotein B, apolipoprotein AI, the 
apolipoprotein B/AI ratio and coronary heart disease: a literature-based meta-analysis of pro-
spective studies. J Intern Med 259(5):481–492

 26. Stamler  J  (1995)  Established  major  coronary  risk  factors.  In:  Marmot  M,  Elliott  P  (eds) 
Coronary heart disease epidemiology. Oxford University Press, Oxford

 27. Morris JN, Heady JA, Raffle PA et al (1953) Coronary heart-disease and physical activity of 
work. Lancet 265(6796):1111–1120

 28. Paffenbarger RS Jr, Wing AL, Hyde RT (1978) Physical activity as an index of heart attack risk 
in college alumni. Am J Epidemiol 108(3):161–175

 29. Tanasescu M, Leitzmann MF, Rimm EB et al (2002) Exercise type and intensity in relation to 
coronary heart disease in men. JAMA 288(16):1994–2000

 30. Ekelund U, Steene-Johannessen J, Brown WJ et al (2016) Does physical activity attenuate, or 
even eliminate, the detrimental association of sitting time with mortality? A harmonised meta- 
analysis of data from more than 1 million men and women. Lancet 388(10051):1302–1310

 31. Eyler AA, Matson-Koffman D, Rohm Young D et al (2003) Quantitative study of correlates of 
physical activity in women from diverse racial/ethnic groups: Women’s cardiovascular health 
network project–introduction and methodology. Am J Prev Med 25(3 Suppl 1):5–14

 32. Manson JE, Greenland P, LaCroix AZ et al (2002) Walking compared with vigorous exercise 
for the prevention of cardiovascular events in women. N Engl J Med 347(10):716–725

 33. Manson JE, Hu FB, Rich-Edwards JW et al (1999) A prospective study of walking as com-
pared with vigorous exercise in the prevention of coronary heart disease in women. N Engl 
J Med 341(9):650–658

 34. Lee IM, Rexrode KM, Cook NR et al (2001) Physical activity and coronary heart disease in 
women: is “no pain, no gain” passe? JAMA 285(11):1447–1454

 35. Oguma Y, Shinoda-Tagawa T (2004) Physical activity decreases cardiovascular disease risk in 
women: review and meta-analysis. Am J Prev Med 26(5):407–418

 36. Lee  IM,  Paffenbarger  RS  Jr  (2000) Associations  of  light,  moderate,  and  vigorous  inten-
sity  physical  activity  with  longevity.  The  Harvard Alumni  Health  Study. Am  J  Epidemiol 
151(3):293–299

 37. Tanasescu M, Leitzmann MF, Rimm EB et al (2003) Physical activity in relation to cardiovascu-
lar disease and total mortality among men with type 2 diabetes. Circulation 107(19):2435–2439

 38. Wisloff U, Nilsen TI, Droyvold WB et al (2006) A single weekly bout of exercise may reduce 
cardiovascular mortality: how little pain for cardiac gain? ‘The HUNT study, Norway’. Eur 
J Cardiovasc Prev Rehabil 13(5):798–804

 39. Noda H, Iso H, Toyoshima H et al (2005) Walking and sports participation and mortality from 
coronary heart disease and stroke. J Am Coll Cardiol 46(9):1761–1767

 40. Kujala UM, Kaprio J, Sarna S et al (1998) Relationship of leisure-time physical activity and 
mortality: the Finnish twin cohort. JAMA 279(6):440–444

 41. Hamer M, Chida Y (2008) Walking and primary prevention: a meta-analysis of prospective 
cohort studies. Br J Sports Med 42(4):238–243

 42. Samitz G, Egger M, Zwahlen M (2011) Domains of physical activity and all-cause mortal-
ity:  systematic  review  and  dose-response meta-analysis  of  cohort  studies.  Int  J  Epidemiol 
40(5):1382–1400

 43. Bouchard C, Blair SN, Katzmarzyk PT (2015) Less sitting, more physical activity, or higher 
fitness? Mayo Clin Proc 90(11):1533–1540

 44. Wen CP, Wai JP, Tsai MK et al (2011) Minimum amount of physical activity for reduced mor-
tality and extended life expectancy: a prospective cohort study. Lancet 378(9798):1244–1253

 45. Hupin D, Roche F, Gremeaux V et al (2015) Even a low-dose of moderate-to-vigorous physi-
cal  activity  reduces mortality by 22%  in adults  aged >/=60 years:  a  systematic  review and 
meta-analysis. Br J Sports Med 49(19):1262–1267

 46. Arem H, Moore SC, Patel A et al (2015) Leisure time physical activity and mortality: a detailed 
pooled analysis of the dose-response relationship. JAMA Intern Med 175(6):959–967

M. Hamer et al.



17

 47. O’Donovan G, Lee IM, Hamer M et al (2017) Association of “weekend warrior” and other lei-
sure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer 
mortality. JAMA Intern Med 177(3):335–342

 48. Ross  R,  Blair  SN, Arena  R  et  al  (2016)  Importance  of  assessing  cardiorespiratory  fitness 
in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the 
American Heart Association. Circulation 134(24):e653–e699

 49. Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review 
and meta-analysis. J Am Heart Assoc 2(1):e004473

 50. Pescatello LS, Guidry MA, Blanchard BE et al (2004) Exercise intensity alters postexercise 
hypotension. J Hypertens 22(10):1881–1888

 51. Quinn TJ (2000) Twenty-four hour, ambulatory blood pressure responses following acute exer-
cise: impact of exercise intensity. J Hum Hypertens 14(9):547–553

 52. Park  S,  Rink  LD, Wallace  JP  (2006) Accumulation  of  physical  activity  leads  to  a  greater 
blood pressure  reduction  than a  single continuous  session,  in prehypertension.  J Hypertens 
24(9):1761–1770

 53. Durstine JL, Grandjean PW, Davis PG et al (2001) Blood lipid and lipoprotein adaptations to 
exercise: a quantitative analysis. Sports Med 31(15):1033–1062

 54. Kodama S, Tanaka S, Saito K et al (2007) Effect of aerobic exercise training on serum levels 
of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med 167(10):999–1008

 55. Duncan GE, Anton SD, Sydeman SJ et al (2005) Prescribing exercise at varied levels of inten-
sity and frequency: a randomized trial. Arch Intern Med 165(20):2362–2369

 56. Leon AS, Sanchez OA (2001) Response of blood lipids to exercise training alone or combined 
with dietary intervention. Med Sci Sports Exerc 33(6):S502–S515

 57. Kelley GA, Kelley KS, Vu Tran Z (2005) Aerobic exercise, lipids and lipoproteins in overweight 
and obese adults: a meta-analysis of randomized controlled trials. Int J Obes 29(8):881–893

 58. Williams PT, Blanche PJ, Krauss RM (2005) Behavioral versus genetic correlates of lipopro-
teins and adiposity in identical twins discordant for exercise. Circulation 112(3):350–356

 59. An P, Borecki IB, Rankinen T et al (2005) Evidence of major genes for plasma HDL, LDL 
cholesterol and triglyceride levels at baseline and in response to 20 weeks of endurance train-
ing: the HERITAGE family study. Int J Sports Med 26(6):414–419

 60. Leon AS, Gaskill SE, Rice T et al (2002) Variability in the response of HDL cholesterol to 
exercise training in the HERITAGE family study. Int J Sports Med 23(1):1–9

 61. Karpe  F  (1999)  Postprandial  lipoprotein  metabolism  and  atherosclerosis.  J  Intern  Med 
246(4):341–355

 62. Gill  JM,  Hardman AE  (2003)  Exercise  and  postprandial  lipid  metabolism:  an  update  on 
potential mechanisms and interactions with high-carbohydrate diets (review). J Nutr Biochem 
14(3):122–132

 63. Blair SN, Kampert JB, Kohl HW 3rd et al (1996) Influences of cardiorespiratory fitness and 
other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 
276(3):205–210

 64. Mora S, Redberg RF, Cui Y et al (2003) Ability of exercise testing to predict cardiovascular 
and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics 
prevalence study. JAMA 290(12):1600–1607

 65. Kokkinos P, Myers J, Kokkinos JP et al (2008) Exercise capacity and mortality in black and 
white men. Circulation 117(5):614–622

 66. Blair SN, Cheng Y, Holder JS (2001) Is physical activity or physical fitness more important in 
defining health benefits? Med Sci Sports Exerc 33(6 Suppl):S379–S399

 67. Wenger HA, Bell GJ (1986) The interactions of intensity, frequency and duration of exercise 
training in altering cardiorespiratory fitness. Sports Med 3(5):346–356

 68. Church TS, Earnest CP, Skinner JS et al (2007) Effects of different doses of physical activity 
on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women 
with elevated blood pressure: a randomized controlled trial. JAMA 297(19):2081–2091

1  Physical Inactivity and the Economic and Health Burdens Due to Cardiovascular…



18

 69. El-Sayed MS, El-Sayed Ali Z, Ahmadizad S  (2004) Exercise and  training effects on blood 
haemostasis in health and disease: an update. Sports Med 34(3):181–200

 70. Wang JS, Chow SE, Chen JK (2003) Strenuous, acute exercise affects reciprocal modulation 
of platelet  and polymorphonuclear  leukocyte  activities under  shear flow  in men.  J Thromb 
Haemost 1(9):2031–2037

 71. Kestin AS, Ellis PA, Barnard MR et al (1993) Effect of strenuous exercise on platelet activation 
state and reactivity. Circulation 88(4 Pt 1):1502–1511

 72. Albert CM, Mittleman MA, Chae CU et al (2000) Triggering of sudden death from cardiac 
causes by vigorous exertion. N Engl J Med 343(19):1355–1361

 73. Ford ES (2002) Does exercise reduce inflammation? Physical activity and C- reactive protein 
among US adults. Epidemiology 13(5):561–568

 74. Rauramaa R, Li G, Vaisanen SB (2001) Dose-response and coagulation and hemostatic fac-
tors. Med Sci Sports Exerc 33(6 Suppl):S516–S520; discussion S528–519

 75. Wannamethee SG, Lowe GD, Whincup PH et al (2002) Physical activity and hemostatic and 
inflammatory variables in elderly men. Circulation 105(15):1785–1790

 76. Wang JS, Jen CJ, Chen HI (1995) Effects of exercise training and deconditioning on platelet 
function in men. Arterioscler Thromb Vasc Biol 15(10):1668–1674

 77. Wang JS, Jen CJ, Chen HI (1997) Effects of chronic exercise and deconditioning on platelet 
function in women. J Appl Physiol 83(6):2080–2085

 78. Wang  JS,  Li YS, Chen  JC  et  al  (2005) Effects  of  exercise  training  and  deconditioning  on 
platelet aggregation induced by alternating shear stress in men. Arterioscler Thromb Vasc Biol 
25(2):454–460

 79. El-Sayed MS, El-Sayed Ali Z, Ahmadizad S  (2004) Exercise and  training effects on blood 
haemostasis in health and disease. Sports Med 34(3):181–200

 80. Hammett CJ, Prapavessis H, Baldi JC et al (2006) Effects of exercise training on 5 inflamma-
tory markers associated with cardiovascular risk. Am Heart J 151(2):367.e7–367.e16

 81. Esposito K, Pontillo A, Di Palo C et al (2003) Effect of weight loss and lifestyle changes on vas-
cular inflammatory markers in obese women: a randomized trial. JAMA 289(14):1799–1804

 82. Huffman KM, Samsa GP, Slentz CA et al (2006) Response of high-sensitivity C-reactive pro-
tein to exercise training in an at-risk population. Am Heart J 152(4):793–800

 83. Lakka TA, Lakka HM, Rankinen T  et  al  (2005) Effect  of  exercise  training on plasma  lev-
els  of  C-reactive  protein  in  healthy  adults:  the  HERITAGE  family  study.  Eur  Heart 
J 26(19):2018–2025

 84. Pescatello LS, Franklin BA, Fagard R et al (2004) American College of Sports Medicine posi-
tion stand. Exercise and hypertension. Med Sci Sports Exerc 36(3):533–553

 85. Gielen S, Schuler G, Adams V (2010) Cardiovascular effects of exercise training: molecular 
mechanisms. Circulation 122(12):1221–1238

 86. Ferguson MA, Alderson NL, Trost SG et al  (1998) Effects of  four different single exercise 
sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol 85(3):1169–1174

 87. Seip RL, Moulin P, Cocke T et al (1993) Exercise training decreases plasma cholesteryl ester 
transfer protein. Arterioscler Thromb 13(9):1359–1367

 88. Stewart LK, Flynn MG, Campbell WW et al (2005) Influence of exercise training and age on 
CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun 19(5):389–397

 89. Mundstock E, Zatti H, Louzada FM et al (2015) Effects of physical activity in telomere length: 
systematic review and meta-analysis. Ageing Res Rev 22:72–80

 90. Xiao Q, Moore SC, Keadle SK et al (2016) Objectively measured physical activity and plasma 
metabolomics in the shanghai physical activity study. Int J Epidemiol 45(5):1433–1444

 91. Morris JN (1994) Exercise  in  the prevention of coronary heart disease:  today’s best buy  in 
public health. Med Sci Sports Exerc 26(7):807–814

M. Hamer et al.



Part II
Cardiac Exercise Physiology



21© Springer Nature Singapore Pte Ltd. 2017 
J. Xiao (ed.), Exercise for Cardiovascular Disease Prevention and Treatment, 
Advances in Experimental Medicine and Biology 999, 
DOI 10.1007/978-981-10-4307-9_2

Chapter 2      
Acute and Chronic Response to Exercise 
in Athletes: The “Supernormal Heart”                                      

Antonello D’Andrea, Tiziana Formisano, Lucia Riegler, Raffaella Scarafile, 
Raffaella America, Francesca Martone, Marco di Maio, 
Maria Giovanna Russo, Eduardo Bossone, Maurizio Galderisi, 
and Raffaele Calabrò

Abstract During last decades, most studies have examined the exercise-induced 
remodeling defined as “athlete’s heart”. During exercise, there is an increased car-
diac output that causes morphological, functional, and electrical modification of the 
cardiac chambers. The cardiac remodeling depends also on the type of training, age, 
sex, ethnicity, genetic factors, and body size. The two main categories of exercise, 
endurance and strength, determine different effects on the cardiac remodeling. Even 
if most sport comprise both strength and endurance exercise, determining different 
scenarios of cardiac adaptation to the exercise. The aim of this paper is to assemble 
the current knowledge about physiologic and pathophysiologic response of both the 
left and the right heart in highly trained athletes.
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Abbreviations

MET  metabolic exercise training
LV  left ventricle
RV  right ventricle
LA  left atrium
RA  right atrium
AoR  aortic root
ECG  electrocardiography
HCM  hypertrophic cardiomyopathy
DCM  dilated cardiomyopathy
ARVC  arrhytmogenic right ventricular cardiomyopathy
TDI  tissue Doppler imaging
RBBB  right bundle branch block
TAPSE  tricuspid annular plane systolic excursion
PASP  pulmonary arterial systolic pressure
CMR  cardiac magnetic resonance
PTAC  pulmonary transit of agitated contrast
BSA  body surface area
LAVI  left atrial volume indexed
TNF-α tumor necrosis factor-α
STE  speckle tracking echocardiography
BAV  bicuspid aortic valve

The physical exercise leads many benefits, especially, in reducing the cardiovascular 
risk and in improving quality and expectancy of life. It has been demonstrated that 
the regular physical exercise reduces of about 30% the cardiovascular risk in healthy 
people [1]. Moreover, long term regular exercise training determines, especially in 
elite athletes, several cardiac structural changes, which represent the “athlete’s heart”, 
characterized by bradycardic rhythm at rest and enlarged cardiac chambers [2].

The  current  recommended  regular  physical  exercise  of  150 min  per week  of 
moderate physical exercise is far from developing the athlete’s heart. Its develop-
ment occurs in athletes that regularly perform 20 h of intense exercise (15 METs) 
per week to participate to competitive races. Cardiac adaptations of the “athlete’s 
heart” is affected by many factors as the ethnicity, genetic, age, sex, and type, inten-
sity and duration of exercise. Physical activity determine an increased stroke vol-
ume and enhanced diastolic filling also at high heart rates, reduction of vascular 
resistance and of heart rate due to the improvement of vagal tone and reduction of 
sympathetic  tone.  Isotonic  or  endurance  sports  (for  example  walking,  running, 
swimming and skiing) are characterized by aerobic work and long distance exer-
cise. In acute phase of endurance exercise, there is an increase of cardiac output, 
maximum oxygen consumption and peripheral vasodilatation in order to satisfy the 
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oxygen demand of tissues [2].  Strength  training  (or  isometric  exercise,  such  as 
weightlifting, wrestling or throwing heavy objects) is an anaerobic exercise in 
which the muscle fibers retain the initial length during the exercise but contract to 
develop  tension against  the afterload  increase. Moreover,  it  implies  the  improve-
ment of strength, anaerobic work and dimension of skeletal muscles. The improve-
ment of oxygen provision and of the cardiac output are not necessary during 
isometric exercise, that determine a prevalent increase of the blood pressure, heart 
rate and peripheral vascular resistance [2].

Long-term cardiovascular adaptation to endurance exercise produces increased 
maximal oxygen uptake due to increased cardiac output and arteriovenous oxygen 
difference, while strength exercise results in little or no increase in oxygen uptake 
[3]. Thus, endurance exercise determines a predominant volume overload and 
strength exercise a predominant pressure overload.

In this chapter, we describe separately the acute and chronic cardiac effects of 
physical exercise on the left ventricle (LV), the right ventricle (RV), the left atrium 
(LA), the right atrium (RA) and the aortic root (AoR). In the 1899 Henschen, by 
using only the physical examination, discovered that cross-country skiers had larger 
heart and concluded that the enlargement involved both the right than the left ven-
tricle [3]. Today various techniques are available, but most of data about the adapta-
tion of cardiac structures to the exercise derive from the color-Doppler 
Echocardiography and from the new diagnostic technologies such as Doppler myo-
cardial  imaging,  two-dimensional  speckle  tracking  echocardiography  (STE)  and 
cardiac magnetic resonance which are able to anticipate some modifications before 
they become evident to the standard echocardiography. The aim of the application 
of all these techniques to the study oh athlete’s heart is not only to describe the 
adaptation of the heart to the exercise, but also to differentiate this benign adaptation 
from  pathologic  conditions  such  hypertrophic  (HCM),  dilated  cardiomyopathy 
(DCM) and arrhytmogenic right ventricular cardiomyopathy (ARVC).

Electrocardiography (ECG) is the first tool to examine the athletes, both the ath-
letes with symptoms suggestive of cardiac disease than for the asyntomatic athletes 
in pre-partecipation screening. Adaptive ECG characterizes on healthy athletes tipi-
cally include sinus bradycardia, sinus arrhythmia, hearly repolarization pattern [4] 
and increased QRS voltage [5]. Other signs as left bundle brunch block, repolariza-
tion abnormalities such as ST-segment depression or T wave inversion and patho-
logical Q waves are abnormal signs and are closely associated with underlining and 
occult cardiomyopathy- in these cases further diagnostic evaluation are necessary in 
order to make an accurate diagnosis. Between the normal and the pathological signs 
there are some one that are collocated in the “grey zone”. One of these is the right 
bundle branch block  (RBBB), complete or  incomplete. RBBB could be an early 
manifestation of cardiomyopathies that involves the right heart, such as the 
ARVC. But often it can be detectable in healthy athletes with a normal heart. It has 
been demonstrated that the presence of RBBB and its duration correlates with the 
biventricular enlargement and is associated with a reduced rest systolic function. 
These two aspects are frequent in healthy endurance training athletes [6]. Complete 
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or incomplete RBBB can be considered an adaptation finding of the athlete’s heart 
if other pathological signs are absent. Inparticular the presence of T-Wave inversion 
in V1, V2 and V3 and Epsilon wave, which make the suspicion for ARVC.

1  Right Heart and Pulmonary Circulation

During exercise, the increased cardiac output of the LV determines an augmented 
venous return to the right chambers, which progressively enlarge during the physi-
cal exercise more than the LV to adequately collect the venous return. The enlarge-
ment of the RV developes during the endurance exercise. Also the diastolic function 
change, in fact it is demonstrated an increased atrial component of the pattern of 
flow across the tricuspid valve [7]. This volume overload determine both RA and 
RV dilatation and increased wall thickness. It has been described greater RV inflow 
and outflow dimension in the athlete’s heart compared to sedentary controls, with a 
normal systolic function expressed by tricuspid annular plane systolic excursion 
(TAPSE) [7]. Moreover, the higher the level of trained athletes and most obvious is 
the heart adaptation. Baggish et al. studied a population of 40 athletes: 20 Olympic 
rowers  and  20  university  level  rowers. Olympic  athletes  shown greater RV  end- 
diastolic chamber dimensions and, at the same time an improvement of both sys-
tolic and late diastolic relaxation examined by color tissue Doppler (TDI) and strain 
analysis [8]. Recently, D’Andrea et al. described the distribution of dimensions of 
RV (and also  the RA)  in a group of athletes and  the  impact of  the  type of  long- 
training on these variables. They observed an increased of the cavitary dimensions 
with  higher  RV  sphericity  index  in  endurance  athletes  [9].  Enlargement  of  RV 
dimension is associated with an improved diastolic function, with a normal systolic 
function. Moreover, in the “athlete’s heart” the LV stroke volume and pulmonary 
artery systolic pressure (PASP) are predictors of RV dimensions, demonstrating that 
there is a high interdependence of the two ventricles. The alternative method to 
evaluate the RV is the cardiac magnetic resonance (CMR) expecially for athletes 
who have a poor acoustic window. This diagnostic tool has a high spatial and tem-
poral resolution. It is accurate for measuring the wall thickness and for the tissue 
characterization, that is very important to differentiate the physiological enlarge-
ment of the athlete’s heart from pathological conditions as ARVC [2].

1.1  Acute Changes in Right Ventricle in the Post Exercise 
Phase

The effects of physical exercise on the RV are just evident in the acute phase post- 
exercise. Right ventricle is the first chamber to show the adaptation of the athlete’s 
heart to exercise expecially in the phase post-exercise during endurance training. 
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Recent studies demonstrated a significant reduction of RV fractional area change of 
12–32% and of the TAPSE of 4–22% during this phase [10]. Because these param-
eters could be influenced by the load conditions, it has been studied the RV free wall 
strain and the strain rate after exercise because they may be less influenced by load 
conditions. As a result, a reduction of 15% has been reported in post exercise RV 
strain, while changes in RV strain rate are more variable, probably because the strain 
rate is more dependent by the load condition [10–14]. The fact that RV strain rate 
has been observed to reduce in some studies but not in others may due to the vari-
ability of this measure. If it is real that RV strain rate is modified by load condition, 
also the LV strain rate should be modified by load condition. However, some studies 
have reported that the RV strain rate reduces while LV strain is preserved [10–13]. 
Previously, 20 years ago, Douglas et al. have just demonstrated that after an ultra-
endurance triathlon, RV dilatation appears immediately whereas the LV dimensions 
did not change [15]. During the phase of diastolic overload of RV the interventricu-
lar septum is pushed towards the LV determining an increase of the LV eccentricity 
index [10, 12]. These observations are also demonstrated with the CMR performed 
post-exercise [16, 17]. The RV is the cardiac chamber that disproportionately suffers 
the fatigue during an intense endurance exercise. The explanation of this work over-
load on the RV can be found in the fact that endurance exercise is an aerob work that 
requires greater oxygen supply to the muscle tissue and, so cardiac output have to 
increase five to eightfold. This is obtained with an enhanced venous return, increase 
of myocardial contractility and dilatation of pulmonary arteries. During exercise, 
PASP increases proportionally with the cardiac output. La Gerche et al. performed 
echocardiography monitoring during exercise and found a greater increase in PASP 
than  in  invasively measured  systolic  blood pressure. They demonstrated  that RV 
wall stress and work is much more high than the LV work during endurance exercise 
[18, 19]. This analysis is conducted with a non-invasive method to estimate the 
PASP. Other studies have evaluated the invasive measure of PASP with catheteriza-
tion of the pulmonary arthery, demonstrating the same linear relationship between 
cardiac output and PASP and the marked increase of PASP during exercise in ath-
letes. Moreover,  La Gerche  et  al.  demonstrate  that  the  increase  of  PASP  during 
exercise is associated with the enhancement of pulmonary vascular reserve, evalu-
ated through the study of the pulmonary transit of agitated contrast (PTAC) to [20]. 
At rest, agitated echicardiographic contrast does not significantly pass through the 
pulmonary circulation at rest, but may do so during exercise. The researchers dem-
onstrated  that,  during exercise,  the PTAC was higher  in  the  subjects with higher 
PASP and lower pulmonary vascular resistance and that this result did not depend 
by training status. During intense exercise of short duration, there is an increased 
RV function and volume work overload, but it is able to recovery completely at the 
end of training. It remains to be determined whether recovery of intense exercise-
induced RV dysfunction is complete in all athletes from repeated bouts.

2  Acute and Chronic Response to Exercise in Athletes: The “Supernormal Heart”



26

1.2  Chronic Changes in Right Ventricle in the Long Term 
Exercise

RV adaptations are more evident in endurance exercise that determines an eccentric 
remodelling. RV dimensions appear greater in endurance athletes of high categories 
than in strength athletes and sedentary controls when analyzed after a long term 
training. RV free walls appear thicker in endurance athletes (normal value of RV 
free wall thickness is inferior to 0.5 cm, measured with echocardiography from the 
sub-costal or parasternal long axis view). The inferior vena cava is larger (average 
value 26 mm, upper value 40 mm) but with a normal collapsibility in inspiration [2]. 
In a recent meta-analysis study, it has been demonstrated a positive and significant 
correlation between body surface area (BSA) and RV parameters. For this reason, it 
is necessary to index RV parameters for BSA in athletes [21].

Using  monodimensional  or  bidimensional  mode  2D  imaging,  the  thickness 
should be measured at end-diastole at the level of tricuspid valve chords, excluding 
the thickness of the papillary muscle. Other necessary measures to evaluate the RV 
enlargement are the RV basal diameter (RVD1), RV medium-ventricular diameter 
(RVD2) and RV base-apex diameter (RVD3) in apical four chamber view. A recent 
experts consensus on echocardiography on athlete’s heart have proposed some 
range values for RV in athletes [2] (Table 2.1). Several cohort studies have demon-
strated augmented systolic function in athletes using the TAPSE as a measure of 
global RV function [22]. However, a large study recently showed that echocardio-
graphic systolic parameters of RV systolic function were slightly reduced in athletes 
at rest compared to nonathletic controls. This reduction was more pronounced in 
those with more evident RV dilatation. D’Andrea et al. have evaluated the RV sys-
tolic function in 430 athletes by using both 2D and 3D echocardiography. They have 
demonstrated that all 2D RV diameters and 3D volumes were higher in endurance 

Table 2.1  Upper range for cardiac ventricles dimension in athletes [48]

RVD1(mm) RVOT (mm) LVEDD (mm) LVWT (mm)

Caucasian adult
Male 55 43 63 12
Female 49 40 56 11
Caucasian adolescent (14–18 years)
Male – – 58 12
Female – – 54 11
Black adult
Male 55 43 62 15
Female 49 40 56 12
Black adolescent (14–18 years)
Male – – 62 15
Female – – 56 11

LVEDD left ventricular end diastolic diameter, LVWT left ventricular wall thickness, RVD1 basal 
right ventricular diameter, RVOT right ventricular outflow tract

A. D’Andrea et al.
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athletes versus controls, while all 2D and 3D systolic indexes were comparable in 
both group [2]. Therefore, a “mild” reduction in RV function can be considered a 
physiologic adaptation. It can be explained by the increased end diastolic volume 
with a normal stroke volume that cause a reduced ejection fraction [2]. Anyway, a 
severe reduction in global systolic function is not present in the athlete’s heart and 
should be considered as a pathologic condition.

In the athlete’s heart it is very frequent the presence of a tricuspid valve regurgi-
tation on Color Doppler analysis in presence of normal valve leaflets and anulus. It 
is often mild and it is a consequence of the enlarged size of right chambers. The 
regurgitant jet is typically central and the PASP upper limit is 40 mmHg [23]. More 
often the higher values of PASP are found in endurance athletes rather than strength 
ones. Moreover, it has been found that the LV stroke volume is an independent pre-
dictor of PASP, that, in presence of normal pulmonary vascular resistance, can be 
considered as a “physiological phenomena” of physical exercise.

The regional systolic function has been also evaluated using tissue deformation 
imaging. In endurance athletes, both TDI and 2D–strain-derived parameters show 
significant difference respect to healthy sedentary people [24]. The systolic defor-
mation of the inlet, the basal portion and, to a lesser extent, of the mid free wall of 
the RV, is significantly lower than the same region in non-athletes. La Gerche et al. 
demonstrated that this regional systolic wall anomalies at rest normalize itself at the 
peak of exercise, demonstrating a preserved contractile reserve. This observation 
suggests that the wall abnormality of regional systolic function at rest are not the 
result of  a ventricular damage, but  a physiological  adaptation  in  response  to RV 
dilatation [25].

About the RV diastolic function, there are non univocal data. Some authors have 
reported  increased filling pressure of  the RV [22, 26, 27], while others found no 
change compared with nonathletic controls [28, 29]. Tissue Doppler velocity mea-
surements reveal an accentuated early-diastolic phase of the ventricular filling and 
prolonged isometric relaxation time, similar to those described for LV. Indeed, the 
time of regional release (RTm) and the velocity of early diastolic filling (Em) of the 
free wall of RV correlates with stroke volume of LV, demonstrating an interdepen-
dent relation between the two chambers. RV RTm is prolonged providing an opti-
mal diastolic filling in order to reach a greater right systolic stroke volume. At the 
same time, the augmented stroke volume of the LV determines an increased venous 
return towards the right chambers with a higher flow that causes a prolongation of 
the RTm. About the decline of diastolic function of RV in athletes, it has been dem-
onstrated that only the age and heart rate, and no other factors, such as amount of 
endurance  exercise,  influence  the  diastolic  parameters.  So  if  an  altered  diastolic 
function of RV is founded in a young athlete, it could indicate underling heart dis-
ease and require further investigation [30].

2  Acute and Chronic Response to Exercise in Athletes: The “Supernormal Heart”
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2  Right Atrium

The normal RA is an oval chamber that supports the filling of the RV and represents 
a “passive conduit”  to the RV in early diastole. It completes  the diastole with an 
active contraction, that contributes to 30% of RV cardiac output. During physical 
exercise, there is a volume overload of the right chambers that involves also the 
right atrium [9]. The strength exercise generate an acute pressure overload with only 
transient increased of volume overload of RA, that normalize at rest. Instead, during 
endurance exercise, the volume overload causes an acute increase of RA dimension 
that persists also at rest in the athlete who perform endurance exercise at competi-
tive level for long term period. This different mechanism explains the difference of 
the dimensions of RA in endurance athletes, often higher than in strength athletes. 
Acute, transient RA (and RV) dilatation correlates with the release of cardiac mark-
ers of workload such as B-type natriuretic peptides [10] and cardiac troponin-I [17], 
immediately  after  severe  endurance  exercise  such  as marathon  running.  Several 
observational studies demonstrate a prevalence of RA dilatation that is independent 
on age [30]. In a cohort of more than 1.300 elite athletes, it was observed a preva-
lence of RA ECG abnormalities (P-wave amplitude more than 2.5 mm in the infe-
rior leads) in 1.2% of endurance athletes and 0.5% in non-endurance athletes [31]. 
For echocardiographic evaluation of RA size, it is recommended to measure the RA 
area, because this parameter is easier to obtain and seems more reliable rather than 
the RA diameters or volume [32, 33]. The American Society of Echocardiography 
proposed a cut-off of 18 cm2 for the RA dimension, but this value is derived from a 
study of small dimension and is not indexed for age, BSA or gender [34].

The largest observational studied was realized by Ekkehard et al. [32]. They pro-
spectively analyzed the RA dimensions of a population of 880 Caucasian healthy 
subjects (composted of non athletes, strength and endurance athletes), with the aim 
of defining the mean value and the cut-off of RA dimension. They measured the RA 
area at the end of ventricular systole (when atrial chambers reach the maximum 
size), by using a 2 dimensional echocardiography in four-chamber view.

It was observed that RA mean area was similar in non athletes (12.5 ± 2.0 cm2) 
and in strength athletes group (12.7 ± 1.6 cm2), with a superior cut-off area for both 
group of 15 cm2. In endurance athletes the RA area was higher (15.4 ± 2.1 cm2) with 
a  superior  cut-off  area  of  18  cm2. Data were also stratified for gender, age and 
BSA. It was found that BSA is the second determinant of RA dimension, after the 
type of  sport. The gender  also determine difference  in  the RA area, with higher 
value  in  men  (Fig.  2.1), even if this difference disappears when the values are 
indexed for BSA (Table 2.2). It was hypothized that also the race would determine 
differences on  the RA dimension. At  this purpose, Zaidi et al. compared  the RA 
dimension in a group of about 300 black athletes with a group of 375 white athletes 
and any difference was found [35]. This indicates no need to obtain cut-off value of 
RA stratified for race, but only for type of sports and BSA.

A. D’Andrea et al.
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3  Left Atrium

LA has an oval shape and is located in the back position of the other chambers in the 
mediastinum. The adaptation of athlete’s heart also involves the LA, that presents 
larger dimension in the athletes, because LA pressure and volume increase during 
exercise [33]. In athletes, LA adaptation is not isolated but always associated with 
LV cavity enlargement. During ventricular diastole, the LV pressure is transmitted 
back to the LA. During diastole LV filling pressure increase and it is necessary that 
also LA pressure rises to obtain a complete LV filling. This mechanism determines 
LA enlargement and stretch on atrial cardiomyocites. The imaging technique used 
to study LA dilatation and function is the standard transthoracic-echocardiography 
with color Doppler and the novel techniques such as Doppler Tissue Imaging (DTI), 
STE and 3-dimensional echocardiography. The novel DTI and STE allow to evalu-
ate the atrial myocardium remodeling before the eventual occurrence of dilation 

Fig. 2.1  Determinant factor of RA area. (a) type of training. (b) Gender [32]

Table 2.2  Mean absolute and for body surface area (BSA) of the right atrium (RA) [32]

RA area (cm2) RA area Index (cm2/m2)
Number 
of 
subjects Mean ± SD Q-95

Q-95 
(L-CI/U-CI) Mean ± SD Q-95

Q-95 
(L-CI/
U-CI)

Men
Non-athletes 137 12.5 ± 2.0 15.7 15.1–16.5 6.7 ± 1.0 8.4 8.1–8.8
Strength 155 12.7 ± 1.6 15.3 14.8–15.9 6.9 ± 0.8 8.3 8.0–8.6
Endurance 255 15.4 ± 2.1 18.9 18.4 ± 19.5 8.3 ± 1.1 10.1 9.8–

10.4
Women
Non-athletes 93 11.9 ± 1.9 15.1 14.3–16.0 6.5 ± 1.0 8.2 7.7–8.6
Strength 100 12.8 ± 1.5 15.3 14.7–16.0 7.0–0.8 8.3 8.0–8.6
Endurance 140 15.3 ± 2.1 18.7 18.0–19.5 8.2 ± 1.1 10.0 9.6–

10.4

2  Acute and Chronic Response to Exercise in Athletes: The “Supernormal Heart”
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[36, 37]. They have been also applied to the study of LA remodeling in athletes. The 
aim of this technique is to distinguish the LA adaptation secondary to left ventricu-
lar hypertrophy due to the exercise from pathologic cardiac remodeling due to arte-
rial hypertension, diabete or cardiac valvular diseases.

In a cohort study of 1300 elite athletes, it was observed a prevalence of LA ECG 
abnormality (expressed by P-wave duration more than 120 msec in I or II leads with 
a  negative deflession of  the P-wave greater  than or  equal  to  1 mm  in depth  and 
40 msec in duration in V1 lead) in 1.2% of endurance athletes and in 0.5% of non- 
endurance athletes, respectively [31]. The presence of this abnormality requires a 
further investigation with echocardiography.

By using 2D echocardiography, the LA size should be measured at the end of 
ventricular systole, when it reaches its greater dimension. The easier method to 
evaluate the LA dimension is the measurement of the antero-posterior diameter (in 
the parasternal long axis view), the longitudinal and the trasverse diameter (in apical 
four chamber view) [38].  Linear  dimension  are  simple  to  obtain  but  considered 
inaccurate, so measurement of volume rather than linear dimension or area is pre-
ferred [38, 39]. Measurements of LA volume (LAV) is obtained by ellipsoid model 
and Simpson method, measuring the LA area and the longitudinal diameter in apical 
four-chamber and apical two-chamber views [38].

LAV should be indexed for the BSA to obtain the Left Atrial Volume indexed 
(LAVi) [33]. The cut-off to define LA enlargement is established to 34 mL/m2 as 
indicated in the ASE/EAE guidelines [2, 38]. Anyway this cut-off has been calcu-
lated on a large non-athlete population.

Pelliccia et al. conducted a large study on 1777 competitive athletes and found a 
small increase of LA antero-posterior diameter(≥40 mm) in 18% of athletes and a 
greater dilatation (≥ 45 mm) in 2%, that was proportional to the LV cavity enlarge-
ment. As the 20% of athletes have a dilatation, it means that a mild enlargement is a 
physiologic adaptation to exercise [39]. For this reason, it was established the upper 
limit  to 45 mm in female and 50 mm in male athletes  to define LA enlargement 
evaluated with the linear method [2, 39] (Table 2.3). Regards to the LAVi dimen-

Table 2.3 Athlete’s left atrial morphological and functional parameters

Authors
Number of 
athletes Type of exercise Parameter

Mean 
value

Upper 
value

Pelliccia et al. 
[39]

1777 Endurance or 
power

LA diameter (male) 
(mm)

37 50

LA diameter 
(female) (mm)

32 45

D’Andrea et al. 
[40]

615 Endurance or 
power

LA volume index 
(male)(ml/m2)

28 36

LA volume index 
(female) (ml/m2)

26.5 33

D’Andrea et al. 
[43]

80 Power LA strain (%) 50 80

A. D’Andrea et al.
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sion,  in a  recent observational  study, D’Andrea et  al.  [40] examined 615 trained 
athletes  and  found  LA  mild  enlargement  (LAVi  29–33  ml/m2)  in  150  athletes 
(24.3%) and a moderate enlargement (LAVi ≥34 ml/m2) only in 20 (3.2%) of ath-
letes (all were men). The upper limit was 36 ml/m2 (Fig. 2.2, Table 2.3).

The type and duration of training are the most important independent predictive 
factors of LAVi. In fact LAVi is significantly greater in endurance athletes. Because 
of a mild or moderate dilation is frequent in athletes, a cut-off of 36 ml/m2 may help 
to identify the athletes with an abnormal LA dilation who require further investiga-
tion [2, 40]. This cut off could also help to avoid to categorize erroneously a LA 
dimension as abnormal for an athlete [2]. Thus, LA enlargement is a physiological 
consequence of the enlargement of all cardiac chambers. Another study confronted 
the LA dimension between athletes and a group of sedentary healthy control and 
found that the LA enlargement (LAVi ≥34 ml/m2) has a prevalence of 67% in ath-
letes [41]. Moreover, the major determinants of LAV in athletes are LV and-diastolic 
volume index, age and LV mass, while in non athletes the major determinants are 
the body mass index and the E/A ratio [30, 41]. In patients with a suboptimal acous-
tic window, CMR is a rationale alternative to study LA dimension. It provides great 
anatomic detail and also the presence of LA wall scar, for example after a radiofre-
quency ablation. Even if little data are available, also this technique has demon-
strated LAV enlargement in athlete’s heart. However, atrial volumes normalized for 
total heart volume do not differ between athletes and controls, indicating that LA 
enlargement is balanced on the total heart volume enlargement [42]. Of interest, the 
female athletes have smaller LA dimension, confirming the results of the previous 
studies performed with echocardiography [42].
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Fig. 2.2  Distribution of LA volume index in 615 athletes [40]

2  Acute and Chronic Response to Exercise in Athletes: The “Supernormal Heart”



32

LA function is an important part of cardiac cycle to determine an adequate LV 
filling. In a study conducted by D’Andrea and collegues [43], it has been demon-
strated  that  the atrial  function, expressed by LA strain  is normal  in elite athletes 
compared with sedentary healthy controls and hypertensive patients, all age- matched 
(Table 2.3). Atrial longitudinal strain was performed from the apical four and two 
chamber views for the basal segment of LA septum, lateral wall and roof. LA diam-
eter and maximum volume were increased but similar in both groups. The peak 
systolic myocardial atrial strain was significantly reduced in patients with patho-
logic LV hypertrophy compared with controls and athletes in all studied segments.

In a multivariate analysis, LV end-diastolic volume and LV mass were the major 
predictive  factors of LA  lateral wall peak systolic  strain.  Instead,  it was  found a 
negative correlation of LA lateral wall peak systolic strain with LV mass and cir-
cumferential end-systolic stress in subject with hypertension [43]. Therefore, LA 
myocardial deformation is normal in elite athlete’s compared with aged-matched 
sedentary controls and hypertensive patients. Thus, the atrial enlargement oh ath-
lete’s heart does not mean loss of atrial function, but, conversely, it indicates an 
increase of functional capacity during exercise.

The LA enlargement is considered a risk factor for atrial fibrillation (AF) in gen-
eral population. Several studies have analyzed the relationship between long-term 
endurance sport and AF. Firstly, Karjalainen and collegues [44] published in 1998 a 
prospective longitudinal study in which after 10 years of follow up, AF incidence 
was 5.3% among athletes compared with 0.9% among the control subjects. After, 
Molina and collegues [45] analyzed the incidence of AF in a group of 183 amateur 
marathon runners and in a group of 290 sedentary controls. The annual incidence 
was 0.43% in the former and 0.11% in the latter group. Moreover the risk of AF 
correlates with hours and intensity of exercise [46]. On the other hand, Mozaffarian 
and collegues [47] demonstrated that a daily and costant exercise, such as walking, 
is associated with significant lower AF incidence in older adult, while a more intense 
physical exercise is associated with a moderate increase of risk of AF. Some studies 
have defined an exercise risk threshold for developing AF. They reported that a life-
time exercise practice of more than 5000 h and formore than 5 h per week at the age 
of 30 years or over increases the risk of AF [48]. The mechanisms of lone AF in the 
athlete’s heart are various: LA remodeling, increased vagal tone and atrial ectopic 
beats. Fibrosis is a common feature of atrial remodeling in some pathologic condi-
tions, such as hypertension. There are little data on the atrial wall fibrosis in humans. 
In rat models of marathon running, it has been demonstrated a profibrotic process in 
rats subjected to endurance exercise. Endurance exercise is associated with acute 
post-exercise release of inflammation and oxidative factors, which favour the devel-
opment of wall fibrosis [49–51]. The most studied factor is the tumor necrosis 
factor-α  (TNF-α) [51]. Data of the preclinical studies demonstrate that the atrial 
fibrosis is not sufficient to determine AF, but other factors are necessary. For exam-
ple, the increased vagal tone favours the excitability of myocardium creating the 
substrate for a re-entry circuit [52] while the atrial ectopic beats could be the trigger 
to start the arrhythmia. Therefore, the sport-related AF may occur in a middle-aged 
male athlete with a history of long-term regular endurance sport practice, expecially 
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involved in high endurance training [30, 53]. Tipically, this arrhythmia is paroxys-
mal self limiting AF and occurs during the night or after meals, demonstrating that 
the vagal overtone is an important trigger.

4  Left Ventricle

In the last 35 years, the development of echocardiographic technique has allowed to 
study  the  adaptation  of  the  LV  to  physical  exercise  in  order  to  discriminate  the 
physiological adaptation from the pathologhycal changes. The two principal catego-
ries of exercise (strength and endurance) determine different adaptations of the LV, 
as hypothized by Morganroth [54]. According to this hypothesis, endurance training 
would lead a volume overload and, so to an increased diastolic wall stress. The 
adaptation of the LV to this work is eccentric ventricular hypertrophy (increase of 
both ventricular mass and ventricular cavity dimension). In contrast, strength train-
ing determines pressure overload and increased systolic wall stress. In this case the 
answer of the LV is a concentric hypertrophy (increase of ventricular mass and of 
wall thickness with normal cavity dimension). Both of them result in increased LV 
mass.  LV  hypertrophy  is  definided  by  a LV mass  index  >115  g/m2 in male and 
>95 g/m2  in female. The relative wall  thickness (2 × posterior wall  thickness/LV 
internal end-diastolic diameter) defines the type of hypertrophy: eccentric when the 
relative wall thickness is ≤0.42, concentric when the relative wall thickness is >0.42 
[55].

The  “Morganroth  Hypothesis”  has  some  limitations  because  some  types  of 
sports, such as cycling and rowing, imply both endurance and strength exercise, and 
the hypertrophy results in an intermediate phenotype (Fig. 2.3). Furthermore, espe-
cially with strength exercise, the phenotype could be not completely explained 
because of the confounding factor of the drug abuse (for example steroids).

Generally, athletes show a 10–20% increase of the wall thickness and 10–15% 
enlargement of the cavity [48] compared with individual of similar age and size. 
The LV enlargement is always proportionate to the enlargement of the other cardiac 
chambers. Adaptations of right chambers to the physical exercise are visible right 
after a prolonged physical training, instead the LV adaptation to the exercise become 
visible after a period of training of several months. In fact in adolescent athletes, the 
magnitude of this modifications is lower because of the shorter period of training 
[56–58].  The  LV  adaptation  regresses  after  a  period  of  de-training  of  about  3 
months. After this “physical de-conditioning”, it has been demonstrated a reduction 
of 15–33% of the septal wall thickness, whereas the reduction of both septal thick-
ness (of about 15%) and LV cavity dimension (of about 7%) may be observed after 
a period of 1–13 years of de-training. This demonstrated that the LV cavity reduce 
more slowly and slightly than the LV wall thickness. The regression of the “ath-
lete’s heart” allows to make differential diagnosis with the pathologic hypertrophy 
(DCM  and HCM).  In  these  cardiomyopathies,  the  hypertrophy  do  not  decrease 
after a period of de-training. Other aspects of the cardiomyopathies help to make 
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the correct diagnosis. If HCM is suspected, some criteria should be considered as 
the presence of left outflow tract obstruction, systolic anterior movement of mitral 
valve, diastolic dysfunction and the family history. For suspected DCM, impaired 
or borderline systolic function and a peak oxygen consumption inferior to 50 ml/
min/kg  (<120%  of  the  predicted)  should  be  considered  to make  the  differential 
diagnosis [3].

The pattern  and  the magnitude  of LV mass may depend on  the  nature  of  the 
sports [3] (Fig. 2.3). Sports as cycling, rowing and swimming determine the major 
variation of both LV cavity and thickness, whereas athletes participating in ultra- 
endurance sport (as thriathlons) paradoxically show more modest alterations in car-
diac dimensions, even if there are very limiting data [3].

Data assembled in a large populations of trained athletes assessed with multi- 
variate  analysis  demonstrated  that  about  75%  of  variability  in  LV  cavity  size 
depends on non-genetic factors such as body size, type of sports, gender and age, 
with the BSA as the principal determinant. The remaining 25% of variability is not 
completely explained, but maybe genetic factors and the race play an important 
role. Because the BSA is the most powerful predictor of LV cavity dimension, the 
measures have to be always indexed for BSA. Larger athletes generally show greater 
absolute LV cavity and  thickness dimension,  that normalizes when corrected  for 
BSA [3] (Fig. 2.4).

Fig. 2.3  Different models  of  left  ventricular  hypertrophy  (LVH)  secondary  to  long-term  sport 
training. Endurance sports are associated with eccentric LVH, while power training usually deter-
mines concentric LVH. However, most of team sports are related with balanced form of LVH, with 
consequent right ventricular (RV) enlargement
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In a group of 1309 athletes of different disciplines, 55% had an increased LV 
end-diastolic  diameter  and  14%  of  endurance  athletes  show  values  more  than 
60 mm,  that  is compatible with DCM. However,  the presence of a preserved LV 
systolic function and a normal VO2 max during cardiopulmonary test may help to 
exclude DCM [2].

In 947 elite athletes, maximal end diastolic septal wall thickness was ≤12 mm. 
Only 1.7% had septal thickness ≥13 mm (range 13–16 mm). Septal thickness was 
lower in women (mean value 9 mm; upper limits 12 mm). The black athletes show 
often major LV wall thickness, with always a normal LV cavity, demonstrating that 
the race is a predisposing factor to an increased wall thickness rather than to an 
increased LV cavity [2]. LV hypertrophy with LV wall >12 mm is described in 13% 
of black male athletes and in 3% of black female athletes. Anyway, a wall thick-
ness > 16 mm is very uncommon, irrespective of the race [3]. A recent interesting 
review has proposed the upper limits of the LV dimension, stratified for age, sex and 
race [48] (Table 2.1).

In  athletes,  the LV mass  increase  is  always  associated with  a normal  systolic 
function. The ejection fraction is normal with an increased stroke volume at rest, as 
a  result  of  the  increased pre-load  (major  end-diastolic diameters). By using TDI 
method, also the systolic peak velocity of the lateral annulus of mitral valve (s’) is 
demonstrated  to  be  normal  or  supra-normal.  It  has  been  proposed  a  s’  cut-  off 
<9 cm/s in order to distinguish the pathological hypertrophy (HCM or Hypertensive 
Cardiomiopathy) from the adaptation of the athlete’s heart [2].

The athletes LV diastolic function is normal or even super-normal at rest, in par-
ticular in endurance athletes. By using Pulsed-Doppler echocardiography, the trans-
mitral flow velocity expressed by the ratio E/A is >2 in athletes, because the large 
LV volume of refill increases the contribution of early diastolic phase to during the 
LV diastole. Instead, in pathological forms of LV hypertrophy the diastolic function 
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is  impaired  (E/A < 1 with a prolonged deceleration  time). By using Pulsed TDI, 
early diastolic velocity (e’) and the ratio e’/a’ of basal septal and basal lateral wall 
are increased in athletes. Moreover, it has been demonstrated that LV inferior wall e’ 
correlates with LV end-diastolic diameter demonstrating that in endurance athlete 
the LV cavity enlargement induces a proportional improvement of LV relaxation [2]. 
In endurance athletes, the novel technique of STE have been also used to analyze the 
LV  function  in  athlete.  In  a  group of  professional  soccer  athletes  it was  found  a 
reduction of global longitudinal strain at rest that is compensated by an increased 
radial and circumferential strain [59]. However, it has been described lower apical 
radial strain and lower twisting at rest in cyclists and not in sedentary controls [2]. 
These studies demonstrate that the athlete’s heart adaptation at rest is different from 
that of sedentary controls and also  that  is  loading dependent. Moreover, different 
type of sports determine different pattern of strain modification (Fig. 2.5).

There are many data of LV chronic response to exercise, but about the adaptation 
of left ventricle in the acute phase of post exercise, there are few and conflicting data. 
Immediately  after  an  intense  physical  exercise,  it  is  reported  an  increase  of  both 
Troponin and Brain Natriuretic Peptide that indicates a “cardiac fatigue” [16, 17].

Fig. 2.5 Echocardiographic analysis of top-level endurance athlete, showing increased left ven-
tricular  cavity  by M-mode  (A) and B-mode, enlarged right ventricular (RV) outflow tract (C), 
super-normal diastolic function both at global (D) and regional (E) level, and normal myocardial 
deformation by global strain analysis (F)
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A meta-analysis of 23 studies demonstrated a slight reduction of ejection fraction 
(−2%), of uncertain clinical significance that is, in part, explainable with a different 
load condition [21].  Some  echocardiographic  studies  found wall  regional  abnor-
malities and reduced pulsed DTI e’ velocity of both septal and lateral mitral annulus 
in runners after a marathon [2]. After long exercise, a decrease of longitudinal, cir-
cumferential and radial strain and a reduction and delay of peak twisting were also 
documented in thriathletes. Of interest, while the LV systolic function return to the 
normality in 2 days, the diastolic dysfunction persists until 1 months after a mara-
thon. In some studies, the late gadolinium enhancement distribution on CMR is used 
to verify the presence of myocardial fibrosis in athletes as a sign of permanent 
injury.  It was observed LGE in 12% of marathon runners and  its prevalence was 
correlated with the number of marathons previously performed, suggesting that an 
intense training determine the development of small myocardial scars [60].

5  Aortic Root

Adaptations of athlete’s heart  involve also  the aortic  root  (AoR). Endurance and 
strength exercise have different effects on the aortic root. During endurance exercise 
the increase of stroke volume repeated and protracted over time determines a major 
distension of the aortic wall and, so, a great systolic pressure during the exercise. 
The strength exercise is characterized by short exercise of high intensity that deter-
mine rapid and brief increase of cardiac output. At the same time, the enhanced 
sympathetic nervous system activity and external compression of blood vessels 
makes a rapid increase of heart rate and of the systemic peripheral resistance. Thus, 
during heavy-resistance static exercise, the arterial rapidly increase with values 
which arrive to 480/350 mmHg [61]. Starting from the pathologic model of aortic 
dilatation in arterial hypertension, it has been hypotized that the hemodynamic load 
during prolonged exercise and, particularly, the pressure overload during strength 
exercise may lead to AoR dilatation. A recent study [62] has explored the aortic root 
dimension  on  615  elite  athletes  (370  endurance-trained  athletes,  245  strength- 
trained  athletes,  with  a  mean  age  of  28.4  ±  10.2  years)  using  transthoracic- 
echocardiography (Table 2.4). The aortic root diameters were significantly greater 
in all segments in the strength-trained athletes with greater diameters in men than in 
women, even if this difference abolished when the data were indexed for BSA. Only 

Table 2.4  Bi-dimensional echocardiographic root diameters in athletes (p value < 0.05) [62]

Variable (cm) Overall (n = 615) Endurance (n = 370) Strenght (n = 245)

Aortic annulus 2.3 (1.8–2.8) 2.1 (1.8–2.4) 2.5 (2.2–2.8)
Sinuses of Valsalva 3.3 (2.8–4.2) 3.1 (2.8–3.6) 3.6 (3.2–4.2)
Supra-aortic ridge 3.1 (2.6–3.7) 2.9 (2.6–3.2) 3.3 (2.9–3.7)
Proximal ascending aorta 3.3 (2.8–3.9) 3.1 (2.8–3.4) 3.5 (3.1–3.9)

Data are presented as mean (range)
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in 6 athletes (1%) an aneurism of aortic root was observed. A multiple linear regres-
sion analysis was made and  it was demonstrated  that BSA,  type and duration of 
competitive training were the only independent determinants of AoR dimension.

A large meta-analysis of 23 observational study [63, 64] found that athletes have 
larger aortic root diameters compared to sedentary subjects, especially at the sinuses 
of Valsalva,  that  is  statistically  significant  but  not  clinically  significant.  In  this 
research, the 95% confidence limit was only 33 mm for men and 27.3 for women, 
respectively. Moreover, the physical exercise do not favour the enlargement of the 
aortic root also in patient with a risk factor such as the bicuspid aortic valve (BAV) 
but with normal aortic dimension [64]. It has been demonstrated that in 88 athletes 
with BAV the increase was 0.98 mm/year, the same rate observed in non-athletes 
with BAV (0.2–1.9 mm/year) [65]. These results demonstrate that the physical exer-
cise determine a small enlargement of the aortic root, as a consequence of physical 
adaptation to the exercise, but it is never pathological and a marked enlargement 
(>40 mm)  suggests  a  pathologic  process,  that  could  be  exacerbated  by  physical 
exercise. Thus, it should be emphasized that subjects with aortic dilatation or pre-
disposition  to  rupture  (for example Marphan’s  syndrome)  should be discouraged 
from practicing intense physical exercise (both endurance than strength).

6  Conclusions

Exercise practice, both for recreational and competitive purpose, is spreading 
worldwide.  In  fact,  there  are growing numbers of  sports  event  (i.e.,  community- 
based road running races) and in the last years there is a greater awareness of docu-
mented health benefits.

Then, an increase in the number of subjects with features of exercise-induced 
cardiac remodeling could be expected. It is necessary for the cardiologist and sports 
medicine practitioners to possess at least a basic knowledge of this subject. With 
respect to the contemplated potential existence of an “exercise-induced cardiomy-
opathy” or of any potential excess of arrhythmias in athletes, it is critical to maintain 
some balance. There is a multitude of positive effects from exercise and these are 
very unlikely to be outweighed by any small risk of cardiac enlargement or arrhyth-
mias.  However,  there  is  lack  of  knowledge  on  the  potential  negative  effects  on 
healthy of the “extreme” exercise. Data collection and new information should be 
taken in order to identify the threshold beyond which the exercise becomes no lon-
ger beneficial to health.
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Chapter 3
The Effects of Exercise on Cardiovascular 
Biomarkers: New Insights, Recent Data, 
and Applications

Lin Che and Dong Li

Abstract The benefit of regular exercise or physical activity with appropriate 
intensity on improving cardiopulmonary function and endurance has long been 
accepted with less controversy. The challenge remains, however, quantitatively 
evaluate the effect of exercise on cardiovascular health due in part to the amount and 
intensity of exercise varies widely plus lack of effective, robust and efficient bio-
marker evaluation systems. Better evaluating the overall function of biomarker and 
validate biomarkers utility in cardiovascular health should improve the evidence 
regarding the benefit or the effect of exercise or physical activity on cardiovascular 
health, in turn increasing the efficiency of the biomarker on individuals with mild to 
moderate cardiovascular risk. In this review, beyond traditional cytokines, chemo-
kines and inflammatory factors, we systemic reviewed the latest novel biomarkers 
in metabolomics, genomics, proteomics, and molecular imaging mainly focus on 
heart health, as well as cardiovascular diseases such as atherosclerosis and ischemic 
heart disease. Furthermore, we highlight the state-of-the-art biomarker developing 
techniques and its application in the field of heart health. Finally, we discuss the 
clinical relevance of physical activity and exercise on key biomarkers in molecular 
basis and practical considerations.
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1  Introduction

1.1  Biomarker—What Is Answered?

In the biomedical field, the biomarker is generally considered as a kind of bioindica-
tor, which usually obtained from patient’s bio-samples, and can be qualitatively or 
quantitatively measured by the clinical assay/testing equipment [1–4]. There are 
diverse categories of biomarkers per the source of the sample, application, assay 
methods, and even the stability of biomarkers. A biomarker can be gathered from the 
healthy person [5] and the sick patients’ biological sample, for example, urine, 
blood, tissue biopsy specimens and so on [6–8]. Besides, a biomarker can be obtained 
from a clinical record, a combination of laboratory and clinical tests, for example, 
blood pressure, glucose and lipid components in serum, or biomarker can be gath-
ered from imaging tests (ECG, echocardiogram, cardiac CT scan). To date, from the 
practical point of view, biomarker increasingly plays an important role in translating 
of highly promising basic research into clinical applications from a routine diagnos-
tic test, therapy decision-making, and prognostic evaluation [9–11] (Fig. 3.1).

1.2  What Is an Ideal Biomarker?

Ideally, the biomarker should tightly associate with the different stages of the dis-
ease [12] or/and health status [13, 14], the intensity, and durability of physical exer-
cise [15] such as physiological status, the stage of the diseases [16], the pathogenic 

Fig. 3.1 Flowchart of biomarkers application in cardiovascular health evaluation
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processes [17], the environmental exposure [18], the therapeutic intervention [19] 
and so on (Table 3.1). Additionally, an effective “ideal” biomarker has the following 
characteristics,  according  to  the  FDA:  (1)  Non-invasive/accessible.  Ideally,  the 
overall expectation of biomarkers, from the way in which the sample is obtained, 
the  sampling  should  be  non-invasive/accessible,  or  at  least  non-lethal.  As  a 
researcher or clinical physician, it is also important to consider whether samples are 
readily available, and the results obtained via a rapid access measurement or pro-
posal. (2) high, sensitive and specific. Given one of the main purposes of the bio-
marker, applications are to make a definite diagnosis and to guide treatment methods 
and management strategies in clinical practice, beyond the rapid and inexpensive, 
high sensitive and specific is one of the important indicators. Applicable to a broad 
range of testing and lacking sensitivity and specificity is the primary reason restrict-
ing its application; (3) Cost effective. As an ideal biomarker, the overall costs should 
be reasonable.

2  Traditional Inflammatory Biomarker and Regular 
Physical Activity—at a Glance

The inflammatory biomarkers provide part of the comprehensive assessment of 
physical activity.

However, taking into account the diverse effect on physical activity and factor- 
mediated inflammation, in this part, we would like to concentrate on the applica-
tions and limitations of inflammatory biomarkers for the evaluation of some 
multi-center,  community-based  physical  activity  studies. Numerous  studies  have 

Table 3.1 Biomarkers: a basic glossary

Categories of 
biomarkers subgroup Discription

Inflammatory factors 
biomarkers

IL-6, IL-8, IL-10, TNF-alpha, hs-CRP, 
IL-6sR, IL-1sRII, sTNFRI, sTNFRII, IL-15, 
Adiponectin

Associated with 
exercise-induced 
cardiac dysfunction 
[20];
Chronic heart failure 
[21]

Functional 
metabolomics 
biomarkers

1-naphthol, 2-naphthol, GlcNAc-6-P, 
L-carnitine methylitaconate, N-acetyl-d- 
glucosamine 6-phosphate and l-carnitine

Maximum oxygen 
uptake [22]
Coronary artery 
calcium (CAC) 
progression [23]

The heart-specific 
proteome

Natriuretic peptide B, troponin T type 2 
(cardiac), myosin binding protein C, ankyrin 
repeat domain 1, SH3 domain binding kinase 
family, myosin, light chain 4, alkali; atrial, 
embryonic

Interstitial fibrosis [24]

3 The Effects of Exercise on Cardiovascular Biomarkers: New Insights, Recent Data…
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reported the beneficial effects of physical exercise in the rehabilitation of the dis-
ease, in particular, on the heart [20, 21]. Beavers et al. tried to evaluate the effect of 
long-term (6–12 months) physical excise intervention on inflammatory biomarkers 
in the elder population [22]. In this study, a bundle of biomarkers includes a family 
of interleukin-related cytokines (IL-1ra, IL-2sRα, IL-6sR, IL-8, IL-1sRII, IL-15), 
adiponectin, and TNF- α were measured. They concluded that the IL-8 was the only 
inflammatory biomarker in their study population was affected by the physical 
activity. Similar results were observed in a short-term physical activity population. 
Lund et al.  tried  to  investigate  the stability of  inflammatory biomarkers  in short- 
term physical activity in middle-aged male [23]. Their data suggested that change 
the style of exercise (withdrawal of highly active and the imposition of daily exer-
cise) will not elicit substantial changes in C-reactive protein (CRP), IL-6, and TNF- 
α. In other words, these inflammatory markers (CRP, IL-6, and TNF-α) are relatively 
stable and rarely affected by exercise behavior.

Notably, the latest data suggest that the inflammatory biomarkers may be affected 
by exercise intensity. Another study has different answers. Different from the previ-
ous studies, in this study, the authors selected the change of maximal oxygen con-
sumption (VO2max) as the primary outcome and tried to determine if the response 
of  certain  inflammatory  biomarkers  change  (decrease  or  increase  in  the  level  of 
biomarkers) to the diverse of the exercise intensity [24–26]. The inflammatory bio-
markers involved in this study include IL-1β, IL-6, IL-10, TNF- α, hs-CRP, soluble 
intercellular adhesion molecule-1 (sICAM-1), and ratios of TNF- α/IL-10 in circu-
lating peripheral blood. The data clearly demonstrated that a single bout of exercise 
with high-intensity induces a transient increase in IL-6 and the ratio of IL-6/IL-10, 
and low-intensity can decrease the level of sICAM-1 [27].

3  Fibroblast Growth Factor 23 (FGF23): New Insight 
into Links Between Bone and Heart

Several initial studies indicated that fibroblast growth factor 23 (FGF23), a major 
regulator of phosphate homeostasis and vitamin D homeostasis, may play a unique 
role in linking benefits of physical exercise on the heart [28, 29]. FGF23 is a 32-kDa 
protein with 251 amino acids that is synthesized and secreted by bone cell (mainly 
osteoblasts) which was initially regarded as responsible for phosphate metabolism. 
Unexpectedly, a recent study indicated that FGF23 has significantly expanded into 
its present role as a key player in cardiovascular disease, though the study’s sample 
size was very small [30, 31]. It will, nevertheless, be valuable to confirm these find-
ings in additional settings, especially in athletes, fitness lovers or even community- 
based, multi-race/ethnic regular physical exercise population. The data about the 
FGF23  levels will  itself be  informative and be  important  in designing  the  future 
exercise evaluation, and the findings may act as a potential direction of benefit to the 
exercise on the heart function.

L. Che and D. Li
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Though initial studies show that FGF23 is secreted from bone cells, and imme-
diately circulated into peripheral blood to reach the whole-body [32–34]. FGF23 is 
regulated by bone proteins PHEX and DMP1 [35]. A recent study based on an ani-
mal model showed only chronic exercise or calorie restriction upregulates FGF23 
mRNA and protein expression in skeletal muscle [36, 37]. FGF23 mRNA and pro-
tein expression may vary in different exercise patterns, or models, including acute 
exercise, exhaustive exercise, and chronic exercise. Li et al. used C57BL/6 J mice to 
evaluate the exercise performance, H2O2 production, reactive oxygen species (ROS), 
and functional mitochondrial biomarkers in muscle, the gene expression of sirtuin 
1, and mitochondrial transcription factor A, PGC-1α, PPAR-δ, and citrate synthase 
activity was assayed. There have been some unexpected findings such as only 
chronic exercise upregulated the level of FGF23 mRNA and protein expression. In 
addition,  the  exogenous  FGF23  can  significantly  extend  the  time  to  exhaustion, 
which associated with VO2 and VO2 max. As a matter of fact, this issue is extremely 
important to the evaluation of exercise promotes exercise performance by pro-
teomics technologies, in particular for chronic exercise evaluation.

4  Troponins Proteins—A Novel Biomarker of Myocardial 
Injury in Physical Exercise

The benefit of physical exercise on heart function has been accepted with minimal 
debate. However, the intensity and amount of exercise vary widely, and another pos-
sibility exists, that is the physical exertion or exercise above a certain threshold may 
paradoxically worsen heart health. Thus far, some small studies from clinical have 
been performed that documented adverse cardiac and vascular events with high 
levels of endurance exercise. Investigating the potential role of prolonged exercise 
and endurance training elevations in adverse cardiovascular early reports focused on 
the serum concentrations of troponins proteins, a family of acidic regulatory mole-
cules found in cardiac muscle. This phenomenon was partly due to cTns are highly 
specific biomarkers of response to myocardial cell damage [38–41].  So  far,  two 
high-sensitive regulatory proteins, which can be measured from serum, cardiac tro-
ponin T (cTnT) and troponin I (cTnI) have been found related to the mechanisms of 
actin-mediated regulation [42]. There is little good evidence from clinical data that 
cardiac troponins may as a potential biomarker in response to exercise [43]. The 
objective of this study was to determine if prolonged exercise resulted in the appear-
ance of cardiac troponin T (cTnT) in serum and whether this was associated with 
elevated levels of myocardial oxidative stress. The initial evidence was derived from 
animal experiments [44]. Li et al. using a myocardial oxidative stress model built in 
Sprague-Dawley rats, their data clearly indicated that serum cardiac troponin T is 
significantly associated with the myocardial oxidative stress after prolonged exer-
cise [45]. A pilot study from clinical trials leads by Lee et al., using a novel high- 
sensitivity cardiac  troponin I  (hs-cTnI) as a biomarker  to  investigate whether  the 
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cTnI level in the peripheral blood is associated with exercise-induced myocardial 
ischemia [46]. With the help of the latest imaging technology (myocardial perfusion 
single-photon emission computed tomography), based on a total 819 patients with 
suspected myocardial ischemia induced by exercise, the author concluded that the 
exercise-induced myocardial ischemia significantly increased the hs-cTnI levels in 
these patients diagnosed myocardial ischemia as compared with those patients with-
out myocardial ischemia conditions.

5  The Emerging Technologies— Influence Cannot 
be Ignored

It is well accepted that the physical exercise is an effective, as well as economic 
strategy  to  promote  circulatory  system  health.  Using  biomarker  to  the  accurate 
quantitative assessment of the intensity and durability of physical activity, mean-
while, to evaluate the effects associated with the benefits to the heart is highly desir-
able. With the growth of technological advances in the field of biomedicine, 
proteomics,  as  a  powerful,  cutting-edge  subject  that  has  enormous  potential  for 
evaluating the conditions and status of human health as well as physical activity. 
Below we summary some novel protein biomarkers’ application.

5.1  NT-proBNP—A Bidirectional Impact Protein

Brain  natriuretic  peptide  (BNP)  is  secreted  by  ventricular  cardiomyocytes  as  a 
proBNP hormone. Recent findings  from  transgenic animal models  indicated  that 
overexpressing BNP have a fourfold increase [47] is associated with sharply adverse 
risk of cardiovascular risk factors [48, 49], cardiovascular disease (CVD) and heart 
failure [50, 51]. Using healthy  controls, Aengevaeren  et  al.  found  the  endurance 
exercise (30–50 km/week)-induced changes in BNP concentrations in cardiovascu-
lar patients versus BNP [52].

However, there are still unanswered questions concerning BNP’s concentration in 
cardiopulmonary exercise. An extremely important study, led by Smart et al., meta-
reviewed nine published  studies  (Cochrane Central Register of Controlled Trials, 
Embase.com (1974-current), CINAHL (1981-current), conducted of Medline (Ovid) 
(1950-July 2008), and Web of Science (2000-current)), they concluded that the exer-
cise training had a mean decrease BNP 79 pg/ml (95% CI: −141, −17 pg/ml), as 
well as decrease NT-pro-BNP 621 pg/ml (95% CI: −844, −398 pg/ml) in patients 
with left ventricular dysfunction [53].  Although  the  exact  mechanism  remains 
unclear. These effects remind us that these biomarkers deserve further study.

L. Che and D. Li

http://embase.com


49

5.2  Serum Uric Acid (UA) Simple But a Long Neglected 
Biomarker

Compared with other “novel” serum markers,  the  influence of exercise on serum 
uric acid has not attracted enough attention for a long time. Montoye et al. study 
based on a total of 4535 both genders, age range10–64 year’s people. They found 
the serum uric acid is one of the good indicators which associated with one’s physi-
cal fitness and is much correlated to body fatness than the response of heart rate on 
exercise [54, 55]. A similar result was observed in another race/Etcitty population. 
The  authors  selected  categorized walking  steps  and  the  time per  day  as primary 
outcomes [56, 57]. These results are consistent with that serum uric acid may 
increase during conditions of high energy utilization. Additionally, our unpublished 
data based on an average 2.5 years follow-up data from a multi-center, large sample 
size cohort, also indicated that serum uric acid was associated with 1.40 (1.16–1.45) 
fold higher risk for adverse cardiac events even after additional adjustment for LDL, 
HDL, TG, Creatinine, BMI, and hypertension.

5.3  How About Bioimaging?

Traditionally, the physical activity always associates with bone structure and bone 
density  change.  Indeed. The  bone mineral  density  (BMD)  is  evaluated  by  dual- 
energy X-ray absorptiometry (DXA) of lumbar spine and hip, with the use of other 
tests to assess atherosclerosis, when appropriate. This screening model adds consid-
erable cost and patient burden but also radiation exposure. Additional, the sensitiv-
ity of two-dimensional (2-D) DXA techniques to accurately determine early bone 
loss is limited due to the natural overlapping formation of cortical and trabecular 
bone. Notably, trabecular bone (the metabolically active portion) is lost first and is 
the first to respond to medical therapies, making it a more realistic reflection of bone 
mineral metabolism and bone density status compared to cortical bone [58–60]. To 
date, the next-generation computed tomography (CT) scanner, MRI [61], particular 
cardiac CT scan provides better cardiac imaging [62–64], as well as vertebral bone 
mineral density information with minimal radiation, 92 of 2352 Olympic athletes, 
showed abnormal CV structure and arrhythmias [65]. Given bone density status and 
atherosclerosis, independent but highly interactive, we are cautiously optimistic that 
bioimaging marker (both quantitative and qualitative) gathered from next- generation 
CT scan has a potential to become a robust tool for exercise benefits evaluation. In 
fact, compared to DXA, cardiac CT, especially the latest generation CT, allows for 
a high-resolution three-dimensional (3-D) imaging by isolation of trabecular from 
cortical bone of the vertebral shell and posterior elements to assess true volumetric 
density, as well as cardiovascular function [66–68].
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6  Concluding Comments

The biomarker has increasingly become a powerful research tool for assessing and 
monitoring physical excise,  training status, and performance. Although consider-
able challenges exist, advances such as high-throughput screening platforms to 
screen gene expression, protein coding or even epigenetic modulation technologies 
become increasingly mature in the field of sports medicine. More importantly, com-
pared with the traditional time-consuming and labor-intensive detection methods, 
modern biomarker system offers accurate, fast, reproducible, and highly sensitive 
high-throughput screening at a cost-effective price point. These innovations are nec-
essary for big data-driven cutting-edge bioinformatics products which are emerging 
fields in sports medicine and biomarker research. We expect that the information we 
provided in this review will not only illustrate by summarizing existing knowledge 
and filling the gaps in knowledge but also spark inspiration for future heart-specific 
biomarker studies.
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Chapter 4
Acute and Chronic Exercise in Animal Models 

Vu Thi Thu, Hyoung Kyu Kim, and Jin Han

Abstract Numerous animal cardiac exercise models using animal subjects have 
been established to uncover the cardiovascular physiological mechanism of exercise 
or to determine the effects of exercise on cardiovascular health and disease. In most 
cases, animal-based cardiovascular exercise modalities include treadmill running, 
swimming, and voluntary wheel running with a series of intensities, times, and 
durations. Those used animals include small rodents (e.g., mice and rats) and large 
animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the 
research goal, each experimental protocol should also describe whether its respec-
tive exercise treatment can produce the anticipated acute or chronic cardiovascular 
adaptive response. In this chapter, we will briefly describe the most common kinds 
of animal models of acute and chronic cardiovascular exercises that are currently 
being conducted and are likely to be chosen in the near future. Strengths and weak-
ness of animal-based cardiac exercise modalities are also discussed.
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1  Introduction

Exercise affects virtually every organ and contributes to many cardiovascular health 
benefits. Current concept of exercise was further extended as an active therapy 
which can prevent or enhance various chronic pathological conditions including 
cardiovascular diseases. Thus researchers are trying to understand the benefits of 
exercise in the cardiovascular system, as well as the underlying molecular biologi-
cal mechanisms behind it. Literature review shows exercise as a simple and low- 
cost lifestyle intervention and has shown its feasibility, desirability, and practicality. 
However, there is a need of using different animals to study exercise due to concerns 
such as research ethics, duration, time and technical difficulties regarding human 
studies [1, 2].

Numerous exercise research protocols have been established and used appropriate 
animal subjects to study the impacts on cardiovascular health and diseases [3–8]. 
Proper exercise models using animals are necessary to study cardiophysiological 
responses and to develop strategy to recover from cardiovascular abnormalities [4, 9, 
10]. The study of exercise physiology is concerned with how the body adapts physi-
ologically to acute stress of exercise and the chronic stress of physical training [3]. 
Any specialized exercise models developed for testing acute and chronic exercise 
effects on specific physiological issues should well understand how the animal 
model-recorded factors are reflected in the human physiological outcomes [3, 8]. For 
example, humanized animal exercise models providing insight into the understand-
ing of exercise and exercise physiology were summarized in another study [11].

It is clear that animal models are an essential tool in cardiovascular researches 
where numerous cardiovascular functions and therapeutic targets can be studied. 
The goal of animal cardiac exercise research is to improve on how we view human 
health and disease in cardiovascular system and build on this improved understand-
ing to further advance clinical outcomes [6]. In general, animals used in cardiovas-
cular exercise studies are enormously varied from species to species, ranging from 
small rodent animals (e.g. mice, rats) to large animals (e.g. rabbits, canine, goats, 
sheep, pigs, horses) [5, 12–16]. It was previously reported that exercise-induced 
autonomic regulation was changed in a species-dependent manner [16]. Even within 
a species, several indexes (e.g., animal’s size, gender, age) could be considered in 
order to select suitable animals to achieve the research goals [3]. In animal models, 
exercise can be either voluntary (e.g. housing animals with a running wheel) or 
forced (e.g. placing animals on a treadmill for a certain period of time). The deter-
minants for achieving expected beneficial effects of exercise are largely dependent 
on the designed protocols with chosen animals (species), different types (aerobic, 
anaerobic), intensities (vigorous-, modulate-, low-intensity), time (morning, eve-
ning), and duration (acute, chronic) [16–19]. Animal-based cardiovascular exercise 
modalities mostly include treadmill running, swimming, voluntary wheel running, 
usually coupled with a series of other parameters such as varied intensities, times, 
metabolism, and durations [17, 20–23]. Each chosen experimental protocol should 
also describe whether respective exercise treatment has produced the expected acute 
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or chronic cardiovascular adaptive responses. Ultimately the research goal is either 
to uncover the cardiovascular physiological mechanism of exercise or to uncover 
how exercise affects cardiovascular health and disease. The latter sections will 
briefly describe the most common kinds of animal models of acute and chronic 
cardiovascular exercises that are currently being tested and are likely to be employed 
in the near future.

2  Criteria for Choosing Animal Cardiac Exercise Modalities

Different criteria may be applied for each exercise modality during the training or 
conditioning period. These criteria should be reliable and practical without impact-
ing the study’s primary aims. On the other hand, performance design and imple-
mentation standards are keys to success [5, 7, 15, 24]. In order to optimize exercise 
protocol, animal experiments designed for assessing the impact of exercise on 
health and physiology should perfectly address at least several concerns [3].

First, the experimental protocol should exert minimal amount of exercise to pro-
duce the expected outcomes (e.g. intensity, duration, frequency) [3]. In reality, many 
studies have shown that the intensity (low, high), timing (morning, evening), and 
duration (continuous, discontinuous) of the exercises are the determinants of the 
physiological responses and outcomes [8, 11, 12, 25–27]. Before initiating any 
exercise study, animals should be familiarized with the given exercise modalities 
with a period of adaptation and habituation [3]. This conditioning process is essen-
tial to minimize exercise-induced stress responses and injuries. Importantly, 
researchers must ensure that humane procedures are devoted in either acute or 
chronic exercise protocols.

Second, exercise study should carefully chose the animal type, which will be 
selected according to maximal advantages and minimal disadvantages [3]. More 
care should be also provided in the disease- or disorder-conditioned animals because 
they are likely unwilling to perform any exercise at all [3, 7].

Third, investigators should also pay attention in selecting exercise type which 
will best produce the requisite physiological changes with minimal negative conse-
quences brought by stress. For example, while the efficiency and endurance capac-
ity of the heart become more efficient in aerobic exercise, muscle strength and 
endurance also increase with resistance exercise [11, 28]. Chosen species is also the 
primary determinant in selecting cardiovascular exercise modalities [1, 6, 7]. These 
animal exercise modalities, particularly aerobic exercises, include swimming, tread-
mill running, and voluntary wheel running [10, 17, 20–23, 29, 30].

Fourth, the experimental protocols should be designed to maximize perceived 
physiological adaptations and to minimize the negative consequences [3]. Protocols 
should be developed to test the anticipated physiological adaptations to ensure high- 
quality research and ensure the safety of the research animals (e.g., following the 
Guide for the Care and Use of Laboratory Animals and ethical guidance concerning 
about animal welfare) [31].
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In addition, careful attention to selection of anesthesia and excision before 
performing the experiment are essential to the collection of data [3]. Using anes-
thetic or any drug before can influence several factors in working heart model of 
rats [32, 33]. Various researches are designed to evaluate the beneficial or detri-
mental effect of exercise in animals exhibiting specific cardiovascular diseases, 
such as cardiac hypertrophy, hypertension, ischemic heart disease, and heart fail-
ure [1, 2, 10, 15, 17, 20, 24, 34, 35]. As cardiovascular disease models would most 
likely pose limitations to exercise capabilities or even aggravate an animal’s clini-
cal condition, researchers must consider various factors to select the best animal 
model for their researches. Many of these alternatives are genetically modified 
models which may offer better choices of achieving experimental goals [31, 34]. 
However, human and animal hearts are different, depending on the specific animal 
model used. The advantages and disadvantages of using animal models in study-
ing cardiac contraction deeply underlined [3, 6]. With all animal-based research, 
a team-based approach to developing performance-based design and implementa-
tion standards are needed in order to attain favorable results [3].

Overall, there is no golden standard for which animal model can be used for all 
cardiovascular researches. Depending on the research goals, animal model needs to 
be chosen carefully and whether outcomes will be affected and whether these can 
eventually be adapted for human use [6].

3  Animal Used in Acute and Chronic Cardiac Exercises

3.1  Modalities

As previously mentioned, efficiency and endurance capacity of the heart become 
more efficient with aerobic exercise and interestingly muscle strength and endurance 
increase with resistance exercise [11, 28]. The muscle activity performed during 
exercise has both mechanical and metabolic properties which can differ significantly 
[28]. Review of previous literatures have shown that aerobic exercise models are 
most suitable in studying cardiovascular functions [1, 3, 20, 22]. Acute exercise is 
defined as a single bout of physical activity or exercise, and regular bouts of acute 
exercise eventually lead to what is termed as chronic exercise. Accordingly, experi-
mental aerobic exercise models in animals use either voluntary or forced activity. 
Effects of both acute exercise and chronic exercise have been well characterized and 
reviewed in physiological conditions, and was found to affects human cardiovascular 
disorders or diseases and animal disease models [36]. A wide range of cardiovascu-
lar changes after an exercise from studies in animal models is linked with behavioral 
effects in human [6, 8, 11, 36]. Normally, physiological changes are described as an 
acute or chronic activation of the stress response [37, 38]. These stress responses are 
normal and adaptive facets of body in order to maintain or restore homeostasis to 
acute exercise. Somehow, the common problem of exercise studies is that chronic or 
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prolonged stress can significantly affect animal condition and can affect the experimental 
variables. Furthermore, a significant body of work shows that the range of animal exer-
cise protocols (training type, intensity, time, duration, species, and sizes) has presented a 
diverse set of findings [1, 3, 18, 24, 25, 39–41]. Considering that acute exercise intensity 
is a major factor influencing the cardiovascular function (regarding low-, moderate-, and 
high-intensity) [41], understanding the changes induced by a singular bout of exercise 
may provide novel insights on how to approach the effects of chronic increases on car-
diovascular function [42]. Investigators can also lower stress response activation by max-
imizing the animal’s perceived behavioral control of the exercise situation. In the next 
section, we will focus on reviewing for aerobic exercise applied in animal cardiovascular 
researches.

3.2  Aerobic Cardiac Exercise Models

Aerobic exercise models for studying cardiovascular function (arrhythmia, cardiac 
hypertrophy, coronary artery disease, hypertension, myocardial infarction,) include 
treadmill running [1, 24, 31, 43–47], wheel running and rotating tract running [1, 3, 
48], and swimming [3, 21, 37, 40, 49] (as presented in Fig.  4.1 adapted from 

Fig. 4.1 Aerobic animal exercise models (Adapted from published review [11]). (a) Treadmill 
running. (b) Elastic wheel running. (c) Rotating tract running. (d) Swimming

4 Acute and Chronic Exercise in Animal Models



60

previous review [11]). While treadmill running and swimming are involuntary types 
of exercise, wheel running is a voluntary exercise. These aerobic exercise models 
with either voluntary or involuntary are extensively used to investigate the determi-
nants of exercise performance or interventional effects on various cardiovascular 
pathological conditions, including chronic heart failure [11]. Treadmill running and 
swimming are widely used as aerobic exercise in small animal rodents and in larger 
animals. In moderate intensity or duration-controlled aerobic exercises, the duration 
is performed in the acute or chronic mode of exercise in animals [1, 3] leading to a 
reduction in blood pressure in hypertension [50], an induction of physiological car-
diac hypertrophy, and cardiac remodeling [1, 15, 51, 52].

3.2.1  Treadmill Running Exercise

Treadmill running exercise, an aerobic exercise, is a simple and yet effective modal-
ity widely used in cardiovascular researches. In this modality, several animals can 
be simultaneously trained [3]. Treadmill running can be performed in a continuous 
manner with a fixed or progressively increasing parameters such as inclination, 
speed, and duration (minutes to hours) [1, 18, 39, 43]. This exercise can be per-
formed in an interval training model allowing for high-intensity running bouts (suc-
cessive 4–8-min high-intensity treadmill running bouts at 85–90% of maximal 
oxygen consumption (VO2max) achieved by running speeds of over 30 m per min 
on a 25° inclined treadmill during the exercise sessions [22, 42, 43, 51].

Interval running is widely used in studying exercise-induced animal cardiac 
hypertrophy [1, 34]. This can reduce the impact of the metabolic syndrome and 
immensity of the effect depending on the intensity [22, 42]. In other exercise 
researches, the finding outcome suggested that compared to moderate intensity, 
high-intensity exercise training was more beneficial in reducing cardiovascular risks 
or heart failures in small rodents (rats, mice) with the metabolic syndrome [22, 42]. 
This was linked to significantly improved VO2 max, endothelial function, blood 
pressure, tissue metabolic parameters [22]. Increased mitochondrial density was 
also reported in study applied this modality [42]. That data documented that a higher 
training intensity is required to activate mitochondrial biogenesis and cardiac effi-
ciency in the mice heart [42]. Thus, the significance of training intensity is impor-
tant to trigger metabolic improvements in the myocardium, and it could promise a 
potential therapeutic for heart failure patients [42]. In fact, not all exercise trainings 
are equally beneficial, but high intensity training could be a vital therapeutic strat-
egy for treating patients who were once advised to have bed rest [53]. Endurance 
treadmill training could be a safe and effective non-pharmacological means of 
maintaining an optimal cardiac autonomic balance, improving cardiac electrical sta-
bility, and therefore eliminating risks of sudden cardiac death [5].

Overall, it is clearly accepted that treadmill running is a promising forced model 
which can be used for aversive stimuli to induce appropriate exercise modality for 
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research goal, and can be designed with reproducible parameters such as distances 
and speed. But oftentimes the experimental conditions are stressful and the stimulus 
to exercise is unpleasant, which may confound outcomes of exercise research goals.

3.2.2  Swimming

Swimming exercise may result in high alternating loads to the cardiovascular sys-
tem [1, 3, 38, 52]. This exercise can be performed spontaneously with a relative 
amount of animal and a range of intensities, and it requires a simpler apparatus 
compared to treadmill running and spontaneous wheel exercise [20, 52].

After a shorter period of familiarization, animals are able to perform exercise 
with less attention [29]. Swim exercise-induced cardiac hypertrophy model was 
generated to study the susceptibility to arrhythmias and determine molecular mech-
anisms underlying exercise-induced cardiac hypertrophy in small rodents (rats, 
mice) [52, 54]. Interestingly, exercise model using swimming apparatus to control 
duration, load, and frequency of exercise applied to mice with or without the weight 
workload attached to the tail of the mouse was designed [52]. The findings demon-
strated that duration- and frequency-controlled exercise training similarly induces a 
significant conditioning response similar with the study done in humans, and the 
optimal conditioning protocol to induce physiological hypertrophy was 90 minutes, 
two times a day, 5 days a week for 4 weeks without overload [52]. In the swimming 
exercise, moderate intensity exercise consists of 1 hour per day and 5 days per week 
for 8–10 weeks was the optimal protocol [20, 34]. In another study, swimming 
induced cardiac hypertrophy and hemodynamic changes, but it does not protect the 
heart against the induction of ventricular fibrillation [49]. Either moderate or high 
intensity swim training can have an effect on intrinsic calcium current characteris-
tics in rat myocardium [20]. In addition, swim training can prevent changes in ace-
tylcholinesterase and butyrylcholinesterase activities in hypertensive rats exposed 
to 6 weeks interval swimming training, trained 5 times per week in an adapted 
swimming system for 60 minutes a day, gradually increasing the workload up to 5% 
of animal's body weight [29]. In contrast, the susceptibility to ventricular fibrillation 
was either reduced [54] or unaltered [49] in the isolated, non-ischemic heart of the 
swimming-trained rats.

Lack of graded workload protocols and the interference of water in the recording 
equipment can be disadvantageous for swimming exercise. In exercise research, 
control or sedentary animals are normally placed in shallow water (about 5 cm in 
depth) at the same temperature and for the same duration as the experimental group, 
but without a workload to exclude the effect of water [29]. However, there is a need 
for closer examination on the ways in which stress-induced modulation of behavior 
in the force swimming test is employed [38].
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3.2.3  Wheel Running

In contrast to treadmill and swimming, wheel running is voluntary exercise. Voluntary 
wheel running is usually adopted to examine chronic exercise in rodent species. It 
involves the use of running wheels manufactured with stainless steel and plastic 
(Fig. 4.1b) or the use of an angled rotating running track (Fig. 4.1c) [17]. Animals 
will spontaneously start running if given access to a freely rotating wheel [9, 48]. This 
spontaneous exercise can be performed with minimal intervention by the investiga-
tors, is less stressful to the animals, and can be performed with varying resistance 
loads as summarized in a previous review [11]. Since animals can be housed in 
wheels for long periods of time with minimal disturbance, the wheel running exercise 
is appropriate for aging studies [55]. Furthermore, wheel running are able to promote 
physiological cardiac remodeling involving a set of microRNAs, essential in different 
cellular processes in the regulation of cardiovascular phenotypes [55, 56].

3.3  Animals in Cardiovascular Exercise Studies

Researches regarding cardiovascular physiological and pathophysiological activi-
ties are necessary for designing novel treatment options to prolong and improve 
patients’ lives [6]. In fact, exercise is considered as a medicine which can prevent, 
manage, and regulate numerous cardiac chronic conditions [41]. Regular physical 
exercise in humans can even reduce cardiovascular risk and reduce death during 
cardiovascular diseases [41, 57]. However, the beneficial or adverse outcomes of 
exercise intervention in the treatment of a specific condition should be tested before 
applying in a clinical setting. Because of research ethics and technical difficulties in 
humans, animal exercise models are necessary for the future development of exer-
cise mimetics in treatment of cardiovascular abnormalities [11]. In fact, animal 
models are key aspects of cardiac research where a variety of cardiac pathophysiol-
ogy and therapeutic targets can be studied [3, 4, 6, 10, 15, 18, 43]. In cardiovascular 
researches, mouse, rat, rabbit, canine, goat, horse, and sheep are commonly used, 
having its own strengths and weaknesses. A suitable animal model is still required 
to study cardiovascular pathophysiology efficiently in order to be reliably used for 
translational applicability in humans. Despite the preservation and conservation of 
many aspects of the cardiovascular system, various gaps still exist between animals 
and humans which must be considered. Differences arising from variations in heart 
properties and characteristics were described in detail in a previous publication [6].

3.3.1  Small Rodent Animals Used in Cardiovascular Models

Mouse or rat models possess unique properties which make them efficient models for 
cardiovascular researches. Strengths such as easy handling, short gestation time, and 
cost effectiveness make them suitable to be used for researches on cardiovascular 
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physiology and diseases [10]. Pre-clinical trial of cardiovascular pharmacology can 
possibly be investigated using these small rodents efficiently and with relatively low 
financial cost.

The most advantageous aspect of utilizing small rodents, such as mice, is the 
allowance of several in vivo cardiac parameters to be measured by applying techno-
logical advances such as in making genetic models [31, 43, 58]. Cardiovascular 
adaptation accompanied exercise training in experimental animal rodent models are 
dependent on various applied factors such as duration, intensity, time, and frequency 
[20]. With a motorized treadmill (with speed at 5, 10, 15, and 20 meters per minute 
on a 10% grade for about 3 minutes at each workload), rats and mice can increase 
their heart rates by ~40–50% and ~30–40%, respectively [59].

To study the positive effect or effect of exercise training on hearts, investigators 
used different sample types like in vivo hearts [60], isolated hearts [61], cardiac 
muscle [44], and isolated cardiomyocytes [62]. These studies have also focused on 
cardiac functional changes induced by exhaustive exercise though echocardiogra-
phy [60] with changes in left ventricular hemodynamic recorded after an acute bout 
of exhaustive exercise using pressure-volume analysis [30].

A number of rodent models in exercise-induced cardiac hypertrophy have been 
made, and a number of endurance exercise trainings effectively induced animal car-
diac hypertrophy, such as treadmill running, voluntary wheel running, and swim 
training [1, 21, 51, 52]. When it comes to inducing physiological hypertrophy, swim 
training seems to be as effective as treadmill or voluntary wheel running programs 
[1, 51, 52]. Rat swimming model was used to study functional aspects of exercise- 
induced hypertrophy in athlete’s heart [40]. Authors had demonstrated the potential 
of assessing left ventricular function in exercise-induced cardiac hypertrophy. Data 
showed reversible physiological cardiac hypertrophy induced by exercise in rats and 
characterized cardiac systolic (improved contractility) and diastolic (improved 
active relaxation and unchanged left ventricular stiffness) functional improvement 
[40]. Although regular swim training was not associated with increased stress 
response in chosen rat model, the results from the previous research is limited to 
young male rats [40]. Rats were also chosen to develop animal model of swimming- 
trained cardiac hypertrophy to study arrhythmias during an acute period of ischemia 
[54]. In contrast, swim training of rats either reduced [54] or did not affect [49] the 
susceptibility to ventricular fibrillation brought about by coronary artery occlusion. 
Another study noted that endurance training protocols showed improvements as a 
result of ventricular remodeling, enhanced contraction, and improved Ca2+ handling 
in rats with experiment heart failure [63].

In mice, aerobic exercise may offer beneficial effects for coronary perfusion in 
the myocardial ischemia area via calcitonin gene-related peptide changes [34]. 
Mouse cardio-metabolic phenotype models were generated to assess functional 
 cardiovascular fitness via graded maximal exercise testing [43]. Investigators also 
developed a graded mouse maximal exercise test to improve testing sensitivity and 
develop translatable parameters to assess functions of cardiovascular fitness in 
healthy and dysfunctional mice with non-invasive and cost- effective methods [43]. 
microRNAs were previously found to be necessary players for cardiac growth 
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induced by exercise, and can serve as protection against pathological cardiac remodeling 
in mice. miR-222 expression were resistant to adverse wheel running-induced cardiac 
remodeling and dysfunction after ischemic injury [55]. Another study found that high 
intensity aerobic interval training (at 95% of peak heart rate) for about 10 weeks resulted 
in an increase mitochondrial density, suggesting higher intensity in exercise training is 
required to stimulate mitochondrial biogenesis and cardiac efficiency in the mice heart 
[42]. This study proved the importance of training intensity for provoking metabolic 
improvements in the myocardium, thus leading to therapeutic potential of high intensity 
aerobic interval training for heart failure patients [42]. In addition, gender differences in 
cardiac hypertrophy could be a factor, exhibiting significant changes in body weight in 
response to exercise [17]. Thus, there is still a need of assessing the possible influence of 
sex, age, or species [40].

Though regular exercise training plays a beneficial function in reducing cardio-
vascular risk, recent studies have documented elevated biomarker levels consistent 
with cardiac damage after bouts of prolonged exercise in apparently healthy indi-
viduals without cardiovascular disease [64–66]. In rat exercise study, elevated myo-
cardial injury-related markers after prolonged, exhaustive exercises exceeded those 
of in clinical myocardial infarction [66]. This elevation was accompanied with reac-
tive oxygen species generation-induced oxidative damage in rat myocardium [65]. 
Since potential limitations of a specific type of exercise and conditions of the exper-
iment can compromise the exercising rats and mice, appropriate exercise testing and 
prescription must be put in place to aid in the assessment and management of car-
diovascular disease [23, 43].

There are many inherent differences between rodent and human hearts, particu-
larly cardiac excitation and contractility, that need to be considered when using 
small rodents as animal exercise models [6]. These differences can serve as a hin-
drance in the clinical translation of rodent studies to humans [3, 6].

3.3.2  Rabbits

Rabbits are advantageous for research purposes both in cardiovascular health and dis-
ease [2]. Previous finding used rabbits documented that exercise training can increase 
rabbit heart rates from 71 to 112% during peak exercise [67]. Long term exercise 
modalities was applied for the rabbits in low-speed flat treadmill at a speed of 18–20 
meters per minute for 40–60 minutes per day to study hypertension and cardiac heart 
failure [68, 69]. The research described that in rabbit heart failure model, exercise 
training evokes an antioxidative effect [69], suggesting its possibility as a model to be 
used in studying myocardial effects of endurance training [70]. Moreover, endurance 
training is known to increase cardiac performance and decrease resting heart rate dur-
ing exercise. The less steep slope of end systolic pressure length relations acquired by 
occlusion of the descending aorta in the trained rabbits might indicate a structural 
myocardial remodeling and increased contractile reserve [1, 70].

A greater functional similarity of rabbit myocardium to humans compared to 
small rodents make them a closer representative of the human heart. In addition, 
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though other large species of animals such as canine, pigs, and sheep are more similar 
to the human heart, the cost for managing rabbits is significantly much lower [3]. 
Despite a close similarity to humans [71], the differences between rabbit and human 
myocardium result in differential effects in a particular study or therapeutic interven-
tion. Overall, rabbits are practical and efficient as a model for cardiovascular studies.

3.3.3  Canine Models

Canine and human hearts have similar characteristics both at organ and cellular 
levels. As previously summarized, canine heart rate, body weight, and heart weight 
which are more similar to humans than smaller models such as mice, rats, and rab-
bits [3, 6]. Importantly, changes in the heart rates and other hemodynamic parame-
ters are similar between canines and humans [3]. The shape of the force-frequency 
relationship is a lot closer to humans compared to mice, rats, and rabbits [5, 14, 15]. 
These characteristics make both myocardial models react similarly in response to 
exercise [6]. Typically, canines can significantly increase its heart rate of approxi-
mately 96–136% during maximal exercise [72, 73].

Moreover, canines are commonly used for studies utilizing exercise in cardiovas-
cular abnormalities, including ischemic heart disease [16, 36]. Endurance exercise 
training can enhance cardiac electrical stability in subjects at higher risk for sudden 
cardiac death [5, 16, 74]. Canines were also used for sudden death to study the 
effects of daily training on cardiac regulation and remodeling. In dogs, daily exer-
cise affects autonomic control of the heart and prevents ventricular filtration induced 
by acute myocardial ischemia [19]. Endurance exercise training (treadmill running) 
interestingly is the most effective antiarrhythmic therapy in the canine model of 
sudden death, the effect of which was conferred by the prevention of ventricular 
fibrillation after endurance training program [5, 74]. The amelioration of treadmill 
exercise-induced myocardial ischemia was brought about by the enhancement of 
coronary vasodilator reserve in dogs [72]. During resting state, coronary vasodilator 
reserve occurs even in the presence of myocardial ischemia [72]. Another study 
using calcium-entry blocker diltiazem in conscious dogs improved both regional 
myocardial flow and function during exercise, leading to a faster recovery of 
regional myocardial dysfunction in a chronic coronary stenosis model [73]. It also 
affects neuroendocrine transmitters partaking in autonomic regulation and signaling 
of canine heart [16]. The exercise-induced change in autonomic tone to the heart 
was different among species [16]. Overall, even considering the high cost disadvan-
tage, the canine myocardium serves as an appropriate model of human heart.

3.3.4  Swine

Many researches have used swine due to its similarity with excitation-contraction 
coupling with human myocardium [13, 16, 75–77].
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In dynamic exercise training, heart rate ranged from 62 ± 4 (beats per minute, 
minimum) to 254 ± 9 (beats per minute, maximum); while in untrained group, this 
value ranged between 91  ±  13 and 273  ±  6 (beats per minute) [77]. Swine can 
increase their heart rates from approximately 128–219% during exercise which can 
be attributed to a large heart rate [13, 76]; this value is very similar to the 140–170% 
which are available in humans [78]. Chronic exercise affects swine cardiac cate-
cholamines and enkephalins, suggesting responsiveness to autonomic control and 
its capability to alter cardiac function [16]. Another exercise research used mini 
swines (pigs) as study subjects. In this study, down-regulation of ß- adrenergic 
receptor was linked with training-associated decreases in heart rate [77]. In another 
research, swine were employed to test for the effects of post-infarction mitral regur-
gitation during surgical repair [79] revealing that chronic exercise suppressed ß- 
adrenergic receptors in the right atrium and is related with reduced chronotropic 
responses to exercise and isoproterenol stimulation [77]. Pigs have been well char-
acterized as an appropriate model for the study of coronary physiology. Pigs have 
been utilized as models of myocardial ischemia and myocardial infarction during 
graduated treadmill exercise training and increased oxygen demand [80]. These ani-
mals are also the best subjects for investigating the coronary collateral circulation 
and exercise physiology and pathophysiology [75, 80]. Taken together, the swine or 
pig has proven its value for pre-clinical research due to its similarities with the 
human cardiovascular system, and its characteristically large heart and body weight.

3.3.5  Sheep

Similarly with other large animals, the sheep share numerous similarities with 
humans which makes it a good pre-clinical model to study cardiovascular diseases 
[7], including myocardial infarction [81], gradual aortic constriction [82], and 
tachypacing induced heart failure [4].

Although disadvantageous when it comes to cost and maintenance, sheep- 
subjected disease models will generally better recapitulate changes in humans and 
efficacy of novel therapeutic avenues than small animal models [6]. The previous 
studies [45, 47, 83] demonstrated that maternal exercise (treadmill) decrease uterine 
blood flow [45] but does not pose a stressful (e.g. hypoxic) event to the fetus as 
evidenced by blood gases, temperatures, and fetal cardiovascular system assess-
ment [47]. The data proved that relatively constant oxygen delivery to the uterus 
was managed by means of hemoconcentration adaptation during exercise [45]. Thus 
redistribution flow towards the placenta after exercise might be a fetal compensa-
tory mechanism [83].

Because of their historical use in cardiovascular research and because of their 
suitability in investigating pathways involved in pediatric heart-valve calcification, 
sheep have been widely used as the model of choice for cardiopulmonary bypass 
procedures [7]. Also, sheep are appropriate subjects to study clinically ischemic 
mitral regurgitation occurring in myocardial infarction-induced left ventricular 
remodeling [35]. The evidence showed that annuloplasty provides durable relief 
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from ischemic mitral regurgitation during an extended follow-up period but does 
not significantly influence left ventricular remodeling in a clinically relevant ovine 
model of ischemic mitral regurgitation [35]. Overall, sheep can be a good pre- 
clinical animal model for cardiovascular research [7].

3.3.6  Other Animal Exercise Models (Horses, Goats)

As the quality of the overall response to exercise in the horse is very similar to that 
seen in human and laboratory animals, exercise studies on horses have dramatically 
increased knowledge of horse physiology and pathophysiology [46, 71, 84]. The 
responses of heart rate, blood lactate concentration, packed cell volume, and hemo-
globin after endurance exercise were evaluated in crossbreed horses [85]. 
Cardiorespiratory responses to submaximal treadmill exercise were investigated in 
thoroughbred racehorses [86]. After submaximal training, an increased aerobic 
power was associated with an increase in maximal cardiac output and stroke vol-
ume, a decrease in arteriovenous oxygen difference, and no change in heart rate 
[86]. In order to better understand the relationship between cardiac structure, 
mechanics, and overall function adaptation during athletic training, exercise- 
induced cardiac remodeling in racehorses was designed to study cardiac remodeling 
in aerobic exercise [36, 87]. A recent review has proposed that cardiac remodeling 
in response to athletic training in racehorses may provide greater insight into the 
potential for athletic activity to remodel the heart [36].

Goats, an alternate animal species, performed volitional aerobic exercise for 
food rewards [3] and was used to study the effects of diet and exercise on fatty 
lesion of the aorta in a model of high-fat diets [88]. Previous research using pygmy 
goat suggested that maternal cardiac output response to exercise appears normal, 
the post-exercise fall in stroke volume, presumed secondary to a reduction in pre-
load, could potentially be harmful to both mother and fetus [89]. Additionally, the 
elevations in heart rate and stroke volume in pregnancy are not primarily mediated 
via the autonomic nervous system.

4  Conclusion

Taken together, the positive influence of exercise on cardiovascular health to lifes-
pan has become a topic, and the choice of the animal models is an important deter-
minant of the relative disease model to the human situation [3]. Thus, studies in 
cardiovascular system should use varied animal models to achieve the scientific 
goals [6]. The research outcomes should answer whether a certain exercise protocol 
has produced expected adaptive responses, including detailed concerns related to it.
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Abstract Cardiac beneficial effects of chronic exercise is well admitted. These 
effects mainly studied at the organ and organism integrated levels find their origin 
in cardiomyocyte adaptation. This chapter try to highlight the main trends of the 
data related to the different parameters subject to such adaptations. This is addressed 
through cardiomyocytes size and structure, calcium and contractile properties, and 
finally electrophysiological alterations induced by training as they transpire from 
the literature. Despite the clarifications needed to decipher healthy cardiomyocyte 
remodeling, this overview clearly show that cardiac cell plasticity ensure the cardiac 
adaptation to exercise training and offers an interesting mean of action to counteract 
physiological disturbances induced by cardiac pathologies.
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In spite of decades of research work on effects of physical exercise training on the 
cardiac tissue, no actual consensus has been obtained on a clear view of such effects 
on cardiomyocytes.

There are many reasons for this, including the followings: one is the type of ani-
mals used for experiments. For evident reasons data from human are absent and the 
rat, for practical reasons was the only animal used in the long list of exercise effects 
publications. Furthermore, some authors have used females, others males, each of 
them having a reason making sense for his choice. The problem is further compli-
cated with the characteristics of the exercise, including the fact the exercise is vol-
untary (free access to swimming or running vertical wheel) or enforced (treadmill), 
and the age of the animal on which it was applied, both of them appearing to greatly 
differ  from  one  paper  to  another.  Finally  the  source  region  of  cardiomyocytes, 
mainly  the  ventricles,  also  sometimes  differed with  discrimination  between  sub- 
endo  and  sub-epicardium  origin  area  [1] which  have  different  electrical  [2] and 
mechanical [3] properties, as well as between sinus or ventricle origins.

1  Training Effects on Size, Structure and Proteins Content 
of Cardiomyocytes

Nevertheless, in the following parts, we will try to highlight the main trends of the 
data related to cardiomyocytes size and structure, calcium and contractile proper-
ties, and finally electrophysiological alterations induced by training as they tran-
spire from the literature. These data will be brought together in the Table 5.1 and 
tentatively summarized in the Fig. 5.1.

In the following text, chronic exercise and exercise training will be used indiffer-
ently and effects of acute exercise is not addressed.

1.1  Size and Structural Aspects

1.1.1  Left Ventricle Weight Increase

A majority of publications begins by reporting data related to the size, therefore the 
weight, of the ventricles and in particular of the left one. Although this is not directly 
related to the characteristics of cardiomyocytes, this value is necessary to get an 
idea of cardiac hypertrophy, which is the most undeniable effect of chronic exercise, 
and particularly of the type of hypertrophy (physiological or pathological).

While the right ventricle was more rarely measured and seems to be only slightly 
hypertrophied, the left ventricle weight appeared drastically increased with chronic 
exercise. Enhanced weight values were reported to range from 7 to 39% depending on 
characteristics of the applied exercise and on its intensity: 7% [4], 8% [5], 12% [6], 14% 
[7], 17% [8], 21% [9] or 39% [10]. Whatever was the reached weight amplitude it is 
clear this mainly explains the whole heart hypertrophy induced by chronic exercise.
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1.1.2  Cardiomyocytes Structures Content Changes Induced by Chronic 
Exercise

Before the enzymatic dissociation technique was routinely used, some precious data 
were derived from electron microscopy examination of cardiomyocytes content. 
Morphometric  analysis  revealed  that  training  leads  to  an  increase  in  the  volume 
density of mitochondria, which is explained by an increase of their number [9, 11] 
as well as a 55% enlargement of the surface density of the sarcoplasmic reticulum 
(SR) per unit of myofibrils (SR/myofibril ratio) and a pronounced hyperplasia of the 
Golgi apparatus.

Table 5.1 Structural, contractile and electrophysiological effect of exercise training on healthy 
cardiomyocytes

5  Structural, Contractile and Electrophysiological Adaptations of Cardiomyocytes…
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Some 35 years later, using a specific scoring technique, Nie and colleagues [12] 
compared the “injury score” of mitochondria from left ventricles of two groups of 
control and trained rats in a tentative to highlight some difference but without suc-
cess, demonstrating that training in healthy animals is not deleterious.

1.1.3  Cardiomyocytes Hypertrophy: Resulting Effects of Exercise 
on Length, Width and Depth

With the increased use of the enzymatic dissociation technique and the extensive 
implementation of confocal microscopy it became easier to address the length, 
width, depth and the resulting volume of isolated cardiomyocytes.

Cell length was generally found to be increased, ranging from 5% to 20%: 5% 
[4, 13], 6%  [5, 6], 10%  [14], 13%  [10], 20%  [7].  It  should be noted  this  length 
increase is reversible. In the latter paper, authors reported a detraining in 2 weeks, 
in  a  timing  similar  to  the  left  ventricle weight which  returned  to 2%  (over 14% 
increase) in 2–4 weeks of detraining.

With regards to regional differences it could be noted that cardiomyocytes origi-
nated from sub-endocardium wall left ventricle displayed a greater effect of training 
than the one from sub-epicardium wall: a 20% cellular hypertrophy (measured as 
cell volume) was seen in endocardium cardiomyocytes while the size increase was 
no significant in epicardium cardiomyocytes [1]. Similar results were obtained [8] 
in experiments where the depth was also measured or calculated.

Fig. 5.1  Graphical abstract of training effects on healthy cardiomyocytes. AP action potential, MP 
membrane potential, SR sarcoplasmic reticulum, T-Tubules transverse tubules
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Nevertheless results related to the increase of cardiomyocytes length is contro-
versial as these authors observed no differences in cardiomyocytes length whatever 
was the regional origin (endo- or epicardium) or sedentary or trained rats [8].

In this paper and others [7, 14, 15] the main observed effect of training is focused 
on the width (and by implication on depth) of cardiomyocytes with a greatest hyper-
trophy effect in endocardium wall region [8]. To further complicate the situation, 
other data [6] indicated a slight reduction of the cardiomyocytes width (−2%) under 
training.

1.1.4  Effects Dependence on Training Intensity

Clinical and epidemiological studies suggest that beneficial effects of regular 
exercise  depends  on  intensity  or  amount  of work  performed  (see  for  example 
[16]). So the group of Wisloff [15] have compared the effects of moderate versus 
high  intensity exercise on different parameters  in  rats  running on  treadmill.  In 
these experiments only high intensity type of chronic exercise was able to 
increase (4%) the left ventricle weight. Regarding the cardiomyocytes length the 
two types of intensity of training was able to enlarge the cells length but with a 
prominent  effect obtained with  the high  intensity  type  (14%) compared  to  the 
moderate intensity training (5%). The same trend was observed for the cardio-
myocytes width (as well as by implication for volume). By contrast, Wang and 
colleagues [17] also reported effects of both moderate and high intensity train-
ings on length and width of cardiomyocytes but without significant differences 
between the two modes.

1.1.5  T-Tubules: A Minimal Change

One  another morphologic  parameter  that  could  be  addressed  was  the  degree  of 
development and shape of T-Tubules network. Transverse tubules, which are invagi-
nations of the plasma membrane in close relation with the sarcoplasmic reticulum 
membrane, allows the membrane depolarization and calcium entry uniformly across 
to the whole cell and initiate coordinate contraction of the cardiomyocyte (see [18]). 
Alteration or changes of these structures involved in such an important mechanism 
would have certainly drastic impact on the physiological function of these cells.

Kemi and colleagues [14] studied, through Di-8-ANEPPS labelling, two param-
eters related to T-tubules membrane system: T-tubules density and T-tubules spac-
ing.  Except  a  slight  increase  of  the  T-tubules  density  at  the  center  (x-axis)  of 
cardiomyocytes,  no  difference  in T-tubules  density  or  spacing  could  be  detected 
between sedentary and trained animals.

5  Structural, Contractile and Electrophysiological Adaptations of Cardiomyocytes…
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1.2  Training Effects on Contractile Proteins Content

The contractile proteins, like myosin and actin present inside the cardiomyocytes play 
a key role in the contraction mechanism. Indeed, they are responsible for contraction 
and relaxation of the cell following the displacement of tropomyosin by troponin in 
the presence of calcium. Given the improvement in contractility observed following 
physical training, numerous studies have emerged in order to bring out a possible link 
between the expression of contractile proteins and the effects of chronic exercise.

1.2.1  Myosin Heavy Chain Protein: Increase in the α/βMHC Ratio

Myosin Heavy Chain protein (MHC), is the major contractile protein in the heart. 
The vertebrate myocardium presents two isoforms of these protein, α-MHC and 
β-MHC. The latter is predominant in the human heart but the first is thought to pre-
dominate in adult heart rat. These two proteins have an important role in the con-
tractile properties of cardiomyocytes. Changes in either of the α- or β-MHC proteins 
can be directly linked with cardiac contractility properties change.

Effects of  exercise  training at  the  level of  expression of  these  two contractile 
proteins diverge according to the studies. As previously noted, the observed differ-
ences may be due to several training-related parameters such as type of exercise and 
duration or study model such as age and sex of the animals and other parameters.

A number of studies using swimming training protocol, in healthy rats, have sug-
gested that exercise training induces an increase in α-MHC expression [19, 20]. A 
high intensity swimming training also allows to increase α-MHC expression by 1.2 
fold and the synthesis of the protein by 8.5 fold compared to the control group [21]. 
Others studies showed an increased in α-MHC isoform expression in rats trained by 
running, during 10 weeks, ranging from 30 to 75% [22, 23]. Moreover, in the latter 
paper, authors reported a 75% increase in the α-MHC expression of the gene and a 
60% increase of the protein expression following only 1 weeks of running exercises. 
All these studies suggest that adaptations of contractile elements like MHC proteins 
seems to be an early event and sustained during cardiac growth as training contin-
ued.  Nevertheless,  some  studies,  using  running  as  a  training  protocol  during 
11 weeks [24, 25] or resistance exercises during 5 weeks [26], have found no evi-
dence for a change in α-MHC expression. Results related to the level of α-MHC 
expression continue to be controversial.

On  another  side,  a  number  of  studies  using  treadmill  or  resistance  training, 
showed a decrease in β-MHC expression. A halving of the expression of this protein 
has been described following chronic aerobic exercise in rat myocytes isolated from 
the endocardium and epicardium [27] or after 5 weeks of resistance training [26]. 
However, another study using running as a training modality, suggested no change 
in the gene or protein expression of β-MHC [23].

Even  if  some  results  remained  divergent  in  absolute  values,  the  increase  of 
α-MHC expression  and  the decrease of β-MHC expression observed  in  some of 
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these studies are consistent with data from Soci and colleagues showing an increase 
in the ratio α/βMHC during long term swimming training at low intensity [28].

Otherwise, myosin also has a second chain called myosin light chain (MLC). A 
study using a treadmill training program showed an increase in the expression of 
atrial myosin light chain 1 (aMLC-1) in the trained ventricular tissue of healthy rats 
[29]. Same authors also suggested that the increase is greater in myocytes originat-
ing from the sub-endocardial region compared to the cardiomyocytes isolated from 
the sub-epicardium [30].

1.2.2  Troponin

Troponin is a protein complex that plays a predominant role in the contraction of the 
heart muscle and has three distinct subunits. The Troponin C which is responsible 
for binding to calcium, the troponin I allowing the inhibition of actin binding myo-
sin and the troponin T binding to tropomyosin.

Despite the few studies on this protein, the effect of physical training on the level 
of troponin expression appears to be divergent between rats and humans. A study 
using swimming training protocol, in healthy rats, has suggested that exercise train-
ing induces an increase in the expression of cardiac troponin and this increase is 
greater if the training protocol is carried out at high intensity [21]. By contrast, a 
study  in older men and women subjects,  following 12 or 24 weeks of  resistance 
training, suggests no difference in cardiac troponin T and I expressions with values 
of 6,4 and 4,1 ng/L before the protocol and 6,1 and 3,8 ng/L respectively for tropo-
nin T and I, after a 24 weeks training [31]. The observed differences between spe-
cies can be due either to the type of training or to the model of study used.

2  Calcium Homeostasis and Contractile Under Exercise 
Training

2.1  Contractility and Intracellular Ca2+ Transients

The initial results related to the effects of exercise training on cardiomyocytes con-
tractile function also were non-consensual. Laughlin and colleagues [32] first stud-
ied the effects of endurance training on cardiomyocytes function. After 16 weeks of 
progressive treadmill training, the shortening characteristics during a 0.2 Hz electri-
cal stimulation of ventricular myocytes of trained male rats did not differ from sed-
entary  ones.  Moore  and  colleagues  [13] observed an exercise training induced 
increase of shortening on rat cardiomyocytes stimulated at 0.07 Hz. Zhang and col-
leagues [33] demonstrated a decrease in maximal shortenings amplitude and veloc-
ity in ventricular myocytes of sprint trained-male rats during 8 weeks. Discrepancies 
of the results could be explained by different experimental conditions, e.g. different 
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type of exercise training, temperature, cell isolation protocol, regional cardiac 
differences or stimulation frequency. However, differences seem to be lesser in 
studies  using  aerobic  treadmill  controlled-training.  Thereby,  series  of  experi-
ments using mouse and rat models highlighted that endurance exercise training 
improves cardiomyocytes shortening, time to peak of contraction and time to half 
relaxation  [6, 7, 10, 15, 34, 35].  Interestingly,  the  groups  of Kemi  [7] and of 
Carneiro-Junior [36] demonstrated in rat ventricular myocytes that improvement 
of cardiomyocytes contractility induced by 10 or 8 weeks of endurance exercise 
training respectively reversed after 4 weeks of detraining. This demonstrates that 
aerobic exercise training induces adaptations of cardiomyocytes including their 
contractile characteristics.

At each cardiac cycle, a transient rise in intracellular Ca2+ occurs that will trigger 
contraction  (systole).  Immediately  thereafter,  the decay of  intracellular Ca2+ will 
cause relaxation (diastole) of cardiomyocytes. Several studies have examined the 
effects of exercise training on both cardiomyocytes shortening, and intracellular 
Ca2+ transients. Some authors reported a decrease in both systolic and diastolic 
intracellular Ca2+  in  cardiomyocytes  of  exercise  trained  rats  [10, 13, 37]. These 
results show that improvement of cardiomyocytes shortening by exercise training is 
not necessarily associated with an increase in systolic intracellular Ca2+. It can be 
also explained by a greater Ca2+ sensibility of myofilaments [10]. Moreover, if other 
studies showed no effect of physical training on both systolic and diastolic intracel-
lular Ca2+, reductions of time to peak and half-time of decay of intracellular Ca2+ 
transients [7, 15] reported in these works confirm the beneficial effect of training. 
Indeed, improvement of intracellular Ca2+ transients kinetics, also observed associ-
ated with increase in systolic intracellular Ca2+ in studies by the groups of Kemi [34] 
and Carneiro-Junior [6], reflect the improvement of Ca2+ cycling induced by exer-
cise training.

2.2  Calcium Homeostasis

2.2.1  Ca2+ Cycling

Cardiomyocytes contraction results from massive Ca2+ release from sarcoplasmic 
reticulum (SR), actin-myosin-Ca2+ binding interactions and eventually sarcomere 
shortening. The signal  for actin-myosin  interaction  is  the binding of  intracellular 
free Ca2+ on troponin C. Intracellular free Ca2+ is increased due to the known pro-
cess Ca2+ − induced Ca2+ release. The latter takes place as follow: 1/depolarization 
of both sarcolemma and T-tubules membrane activates L-type Ca2+ channels current 
which allows entry of a small quantity of Ca2+ by L-type Ca2+ channel and by Na+/
Ca2+  exchanger  (NCX) which works  in  the  so-called  reverse mode.  2/Free  Ca2+ 
stimulates the ryanodine receptor (RyR2) localized on membrane of SR. 3/A rapid 
transient of Ca2+- release via RyR2 produces the trigger signal for cardiomyocytes 
contraction. During the relaxation, Ca2+ is removed from the cytosol by both the 
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cardiac  isoform  of  SR Ca2+ ATPase  (SERCA2a)  and  sarcolemmal  extrusion  via 
NCX (in forward mode) and to a lesser extent via the sarcolemmal Ca-ATPase. In 
rats and mice SERCA2a accounts for about 90% of cytoplasmic Ca2+ removal [38]. 
SERCA2a  activity  is  regulated  by  phospholamban  (PLB).  Non-phosphorylated 
PLB  is  linked  to  SERCA2a  and  inhibits  its  activity;  phosphorylation  of  PLB 
removes it from SERCA2a which in turn is activated. Both cAMP-dependent pro-
tein kinase (PKA) and Ca2+/calmodulin-dependent kinase II (CaMKII) phosphory-
late PLB respectively at serine Ser-16 and at threonine Thr-17 [39].

2.2.2  Effect of Exercise Training on Ca2+ Cycling

Kinetics of both Ca2+ transients signal and contraction-relaxation signal are similar 
suggesting a close relationship, indicating that the change in contraction-relaxation 
rate induced by exercise training could originate from changes in rate of Ca2+ cycling 
[40]. Many stages of Ca2+ cycling have been identified as potential targets of physi-
cal training.

Several  studies have  shown an  increase  in SERCA2a protein  expression  after 
aerobic training of mice and rats [6, 10, 34, 36, 40, 41]. Thus, an increased Ca2+-
uptake capacity of the SR due to an increased SERCA2a expression could account 
for improvement of contractile cardiomyocytes function. Depending on the studies, 
the increase of SERCA2a expression originates from phosphorylation of PLB on 
Thr-17 by CaMKII or on Ser-16 by PKA. Kemi and colleagues [34] observed on 
cardiomyocytes trained mice an increase of SERCA2a expression associated with 
an increase of phosphorylation of PLB at the Thr-17 as well as with an increase of 
CaMKII  expression. Kaurstad  and  colleagues  [35]  showed  that  chronic CaMKII 
inhibition blunts the cardiac contractile response to exercise training of mice cardio-
myocytes.  On  the  contrary,  Carneiro-Junior  and  colleagues  [6, 36] reported an 
enhancement of SERCA2a expression and phosphorylation of PLB at the Ser-16 by 
PKA in cardiomyocytes of trained rats.

Some studies explored the effect of exercise training on the second system of 
cytosolic Ca2+ extrusion, the Na/Ca exchanger (NCX). No changes in NCX levels 
have been observed by Wisloff and co-workers [10] and Laughlin and associated 
[42] respectively on rat and porcine models. On the contrary, Tibbits and coworkers 
[43] demonstrated increase in the affinity of the exchanger for Ca2+ in rats.

Another  target  of  exercise  training-induced  improvement  of  calcium  cycling 
could be RyR2. Shao and colleagues [44] and Carneiro-Junior and colleagues [45] 
have highlighted an increase in RyR2 protein content and RyR2 gene expression 
induced by aerobic training respectively in rat cardiomyocytes. Clusters of RyR2 
constitute calcium release units (CRUs) [46]. The release of Ca2+ during excitation- 
contraction  coupling  is  determined  by CRUs  and  is  influenced  by  tight  junction 
protein-protein interactions with FKBP12.6. FKBP12.6 is anchored in RyR2, form-
ing a complex that stabilizes and regulates the closed state of the RyR2 preventing 
intracellular Ca2+  leak [47]. Carneiro-Junior and his group [45] in the same work 
highlighted no effect of exercise training in FKBP12.6 gene expression. Calcium 
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sparks are local increase of Ca2+ elicited by synchronized opening of RyR2, at rest, 
without excitation by L-type Ca2+ channels current. An excessive increase in spon-
taneous Ca2+ sparks could generate Ca2+ waves producing abnormal cardiac electri-
cal activity and reflected an impaired working of RyR2. Shao and colleagues [44] 
and Carneiro-Junior and co-workers [45] reported both a decrease in frequency and 
an increase in amplitude of spontaneous Ca2+ sparks in ventricular isolated myo-
cytes after moderate intensity continuous training of rats. Exercise training seems 
to promote the closed state of RyR2 which is participating to normal working of 
CRUs and is essential to local control of Ca2+ release during excitation-contraction 
coupling.

3  Electrophysiological Remodeling Under Exercise Trainings

In addition to adaptation of calcium homeostasis and structural remodeling, training 
induced physiological hypertrophy could also impact cardiac electrical activity [48, 
49]. It is therefore important to understand the cellular and molecular determinants 
that underlie these electrophysiological remodeling.

3.1  Electrophysiological Effects in Sinus

Chronic exercise is well known to induce sinus bradycardia, characterized by a 
decrease  in  resting  heart  rate  below  60  bpm  [50, 51]. Whereas bradycardia is 
widely attributed to autonomous nervous system adaptation to chronic exercise, 
experiments that block autonomous pathways or that use denervated sinus node 
still observed a decrease in resting heart rate [52, 53]. This suggest that the sinus 
node, the cardiac pacemaker, is also impacted by exercise. Many ion channels par-
ticipate to the action potential of nodal cells. Amongst them, HCN channels and 
particularly HCN4 support  the  funny current  (If) current  that control, at  least  in 
part, the pacemaker activity [54]. To date, only one study investigated electrophysi-
ological remodeling of nodal cells using trained rat and mice compared to seden-
tary animals [53]. Interestingly, D’Souza and colleagues [53] reported that chronic 
exercise induces a decrease in HCN4 channels. This decrease was observed at the 
mRNA, protein and  functional  levels  through a decrease  in  If current density in 
freshly isolated nodal cells of trained animal compared to the control group. 
Furthermore, they highlighted the correlation between the decrease in heart rate or 
in Vo2max and the decrease of HCN4 mRNA. These results were confirmed in vivo 
using Ivabradine, a specific blocker of If [55] that produced a less important reduc-
tion in heart rate for trained animals. Interestingly, the bradycardic effect of chronic 
exercise was reversed when mice were detrained for 2 weeks and this was associ-
ated to a marked increase in HCN4 mRNA. To date, this is the only study in our 
knowledge that investigated the bradycardic effect of chronic exercise on sinus 
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node electrophysiological remodeling. These authors also observed changes in 
transcripts of ion channels that participate in cardiac pacemaker activity such as T 
and L-type calcium channels. Further studies would therefore be exciting to deci-
pher this electrophysiological remodeling.

3.2  Electrophysiological Effects in Ventricle

Chronic exercise induces cardiac physiological hypertrophy that is observed in ven-
tricular tissue and particularly in left ventricle. As a consequence, different studies 
has focused their investigations on the impact of chronic exercise on ventricular 
cardiomyocytes electrophysiology. During the plateau of the action potential, a fine 
balance exists between inward calcium and sodium currents and outward potassium 
currents. This equilibrium controls the action potential duration (APD) and is there-
fore  crucial  for  the  excitation/contraction  coupling. To date,  further  studies have 
investigated the impact of chronic exercise on different potassium outward currents 
remodeling and APD [56–59].

ATP sensitive potassium channels  (KATP) are energy sensing channels  that are 
activated depending on the ATP/ADP ratio [60, 61]. They allow to connect meta-
bolic changes to an outward repolarizing potassium current that decrease the APD 
[61]. This characteristic is essential to ensure cardiac acute adaptation to energy 
demand increase during exercise. This occurs through APD shortening during heart 
rate  acceleration  that  balance  cardiac  contraction/relaxation  function  [62, 63]. 
Zingmann and co-workers [56] have observed that the decrease in APD associated 
to rhythm elevation was enhanced in trained mice. This was the consequence of an 
increased KATP current density without effects on gating properties or ATP sensitiv-
ity  of  the  channels.  Experiments  testing  the  expression  of  Kir6.2  and  SUR2A, 
respectively the channel pore subunit and the associated sulfonylurea receptor sub-
unit, indicate a 30–50% increase in both proteins whereas only SUR2A transcripts 
increased. A rise in Kir6.2 and SUR protein level (60–75%) were also observed in 
trained rats compared to sedentary animals [58].

Physiological hypertrophy associated to exercise does not necessarily lead to car-
diac electrophysiological disorders as observed in pathologic hypertrophy. Indeed, 
cardiac pathological hypertrophy is characterized by an increase in myocytes size 
associated to a decreased repolarizing potassium current density and an increase in 
APD [64, 65]. In contrast, using trained mice or a mouse model of physiological 
cardiac hypertrophy through PI3Kα expression, a study revealed that left ventricular 
cardiomyocytes  doesn’t  display  difference  in  resting membrane  potential,  action 
potential amplitude or APD [57]. Trained and PI3Kα animals presented an increase 
in left ventricular potassium currents mainly attributed to Ik1, Ito, Ikslow and Iss compo-
nents  that  were  correlated  to  an  increased  level  of mRNA  (e.g.:Kv4.2,  KChiP2, 
Kv2.1, TASK1, Kir 2.2) and proteins. Interestingly,  this rise  in potassium current 
was at least partially compensated by an increase in membrane capacitance. This 
lead to a less important but still significant 10–20% increase in Ik current density and 
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particularly for Iss and Ik1 in both animal models and for Ikslow PI3Kα mouse model. 
Ito current density was not impacted by training or in PI3Kα mouse model compared 
to control. In this study, this effect on repolarizing currents was accompanied by an 
increase in L-type calcium current density in physiological hypertrophy and tran-
script analysis revealed an increased level of mRNA for Cav1.3, Cav β2, Cavα2δ1. 
Other transcripts such as SCN5A and SCN1B coding for sodium channel alpha and 
beta subunits were also upregulated. Finally, their study revealed that physiological 
hypertrophy induces increase in repolarizing current without change in action poten-
tial properties. A hypothesis is that the increase in calcium current depolarizing cur-
rent balance the increased potassium current to maintain cardiomyocytes action 
potential. However, another study using rats revealed that training had no effect on 
ICaL  current  density  [5].  Moreover,  it  was  reported  that  trained  rat  displayed  a 
decreased APD, action potential amplitude and a slower dv/dt with a stable Ito potas-
sium current density [59]. This discrepancy clearly indicates that further studies are 
need. One possibility to explain these differences is the different species (mice ver-
sus rats) and training protocol used. An interesting point was raised by the study of 
Natali and colleagues [8]. Using trained rats, these authors highlighted the impor-
tance of the differences in cardiomyocytes electrophysiological properties depend-
ing on their tissue localization. They observed differences between the epicardium 
and the endocardium for APD adaptation to chronic exercise. Training induced an 
increase in APD in the epicardium and had no effects on the endocardium. This point 
is important and it could explained discrepancy between studies that do not discrimi-
nate between endocardic and epicardic cardiomyocytes. As a consequence, it would 
be very interesting to compare between these different cardiac locations the exercise 
induced electrophysiological remodeling.

4  Conclusions

As shown in Fig. 5.1, summarizing the data is very difficult as numerous results 
remain controversial. It should be noted that such a situation results from at least a 
fundamental difficulty: in spite of the fact that cardiac hypertrophy under training is 
a solid knowledge, this could not be true at the level of isolated cells (cardiomyo-
cytes) as other types of cells could contribute to the tissue hypertrophy. Despite the 
lack of consensus, it has been shown that exercise training induced cardiomyocyte 
hypertrophy (cell volume) although these changes were not clearly related to spe-
cific cell length or width modifications. Exercise training also induces contractile 
and electrophysiological adaptations of healthy cardiomyocytes. Indeed, it has for 
example been underlined an increase in the calcium transient kinetics or in the 
expression  of  many  proteins  of  the  excitation-contraction  coupling  (SERCA2a, 
PLB and RyR2) but also a decrease of the sparks frequency. Similarly, increased 
current amplitude is, at least in part, compensated by the increase in cardiomyocyte 
volume  ensuring  the  good  electrical  activity  of  this  remodeled  cells.  Beside,  an 
increase in repolarizing currents could also enhance the ability of the heart to 
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support heart rate acceleration by the reduction of the APD. However, number of 
calcium and electrophysiological remodeling remain controversial. Therefore it is 
highly recommended to scrutinize each article (Table 5.1 and other feature ones) 
with a particular attention on how the data are expressed and what were the training 
protocols.

In conclusion, despite the clarifications needed to decipher healthy cardiomyo-
cyte remodeling evoked by chronic exercise, training beneficial effects are well 
admitted. Cardiac cell plasticity ensure the cardiac adaptation to exercise training 
and offers an interesting mean of action to counteract physiological disturbances 
induced by cardiac pathologies.
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Chapter 6
Formation of New Cardiomyocytes in Exercise                                      

Liang Shen, Hui Wang, Yihua Bei, Dragos Cretoiu, Sanda Maria Cretoiu, 
and Junjie Xiao

Abstract Heart failure is a life-threatening disorder associated with the loss of 
cardiomyocytes. The heart has some endogenous although limited regenerative 
capacity, thus enhancing cardiac regeneration or stimulating endogenous repair 
mechanism after cardiac injury is of great interest. The benefits of exercise in heart 
diseases have been recognized for centuries. Besides the promotion of a favorable 
cardiac function, exercise is also associated with new cardiomyocytes formation. 
Exercise may lead to cardiomyocytes renewal from pre-existing cardiomyocytes 
proliferation or cardiac stem/progenitor cells differentiation. A deep understanding 
of exercise-induced formation of new cardiomyocytes will enable us to develop 
novel therapeutics for heart diseases.
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1  Introduction

Heart failure caused by ischemic cardiac diseases is a leading cause of death world-
wide [1, 2]. After the onset of coronary artery occlusion, cardiomyocytes undergo 
apoptosis and necrosis [3]. Myocardial infarction can wipe out one billion myocytes 
in a few hours [4]. The cardiomyocyte loss during ischemia is also accompanied by 
severe inflammatory response and local fibroblast activation [5]. As adult mamma-
lian heart has limited potential to regenerate, the self-repair mechanism in ischemic 
myocardium is largely associated with collagen-rich scar formation [6, 7], which 
may progressively lead to cardiac fibrosis and eventually develop into ventricular 
remodeling and heart failure [8, 9]. However, on the other hand, the heart is unable 
to compensate for cardiomyocyte loss occurring in myocardial ischemia and heart 
failure. Thus, enhancing cardiac endogenous regenerative capacity might offer 
novel strategies for heart failure treatment.

Exercise-induced cardiac growth has beneficial effects in the prevention and 
treatment of cardiac diseases [10–12]. Several studies have reported that exercise 
might lead to new cardiomyocytes formation by activating resident cardiac stem 
cells (CSCs) and progenitor cells (CPCs). Exercise has also been associated with 
enhanced endogenous regenerative capacity by promoting proliferation of pre- 
existing cardiomyocytes. This chapter will summarize recent findings on exercise- 
induced formation of new cardiomyocytes and the molecular basis of new 
cardiomyocytes formation in exercise, which may provide novel therapeutics for 
heart diseases.

2  Limited Cardiac Regenerative Capacity

The heart has long been recognized as a postmitotic non-regenerating organ [13, 
14]. Cardiomyocytes possess the proliferative capacity during fetal life but exit the 
cell cycle soon after birth in mammals [15]. It has been speculated that the changes 
to cardiomyocytes during this time period, including conversion of glycolysis to 
fatty acid metabolism, increase in cell size, and reduction of proliferative capacity, 
were an evolutionary advance [16–19]. Adult cardiomyocytes have very complex 
and well developed cytoskeleton, among which hundreds of sarcomeres are respon-
sible for generating sufficient myocyte contractility in mammals [19]. Furthermore, 
adult mammalian cardiomyocytes are often multinucleated and polyploid, which 
might prevent mitosis division. Based on these concepts, the adult mammalian heart 
has long been considered as having no potential to regenerate and cardiomyocytes 
were only presumed to undergo hypertrophy, senescence, and death after myocar-
dial infarction [20]. However, low rate of apoptosis exists in normal adult heart and 
is enhanced during ageing [21]. In this regard, cardiomyocyte renewal is speculated 
to be necessary to compensate for apoptosis-associated cardiomyocytes loss in 
order to balance the volume and function of heart.
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To date, increasing evidence has confirmed that the adult mammalian heart had a 
certain degree of self-renewal [22–25]. Different strategies were used to measure 
cardiomyocyte turnover. The 4-OH-tamoxifen-induced labeling of pre-existing car-
diomyocytes with green fluorescent protein (GFP) was utilized in double-transgenic 
MerCreMer-ZEG mice  [26]. This genetic fate-mapping strategy showed that the 
percentage of GFP-positive cardiomyocytes remained unchanged during 1 year of 
normal ageing, while significantly declined after experimental myocardial infarc-
tion or pressure overload [26]. The “dilution” of GFP-positive cardiomyocytes indi-
cates that stem or progenitor cells may refresh adult cardiomyocytes after injury 
[26]. However, scientists speculated that human may have different requirement for 
cardiomyocyte renewal due to their much longer life-span than rodents. Based on 
the high atmospheric level of carbon-14 generated by nuclear bomb tests during the 
Cold War,  convincing  evidence was  provided  for  human  cardiomyocyte  renewal 
[27]. Through examination of the integration of carbon-14 into DNA of myocardial 
cells, investigators demonstrated that about 1% of cardiomyocytes were renewed 
annually at the age of 25, which gradually declined to 0.45% at the age of 75 [27]. 
Overall, nearly 50% of cardiomyocytes would be renewed during a normal human 
life span, though whether the new cardiomyocytes were derived from pre-existing 
cardiomyocytes or cardiac stem cells was unclear [27]. More recently,  the multi- 
isotope imaging mass spectrometry (MIMS) was utilized to study cardiomyocyte 
turnover, which identified pre-existing cardiomyocytes as the dominant source of 
cardiomyocyte replacement during normal ageing [28].

3  Potential Cellular Sources of New Cardiomyocytes 
in the Adult Heart

The concept of very low rate of cardiomyocytes turnover in the adult mammalian 
heart has generated a broad focus on finding the potential cellular sources of new 
cardiomyocytes. Evidence has indicated that newly-formed cardiomyocytes may 
derive from CSCs/CPCs or pre-existing cardiomyocytes [28, 29] [30].

3.1  CSCs and CPCs

The activation and differentiation of stem cells and progenitor cells is essential to 
regulate tissue homeostasis in most human organs. CSCs, a group of undifferenti-
ated cells which have the ability to self-renew, are originally characterized by cell 
surface marker c-kit [31]. In general, stem cells settle in niches which constitute the 
microenvironment  to  keep  their  undifferentiated  state  [32–34].  Once  activated, 
CSCs divide symmetrically or asymmetrically to generate cells committed to new 
CSCs and differentiate into cardiac cell lineages [35]. Accompanying with further 
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investigation  of  CSCs,  several  additional  and  distinct  CSC  classes  have  been 
detected such as Sca-1 positive cells, Islet-1 positive cells, side population-Abcg2 
positive cells, and progenitors generating cardiospheres [36–40]. The c-kit positive 
CSCs are multipotent  to give rise  to cardiac myocytes, smooth muscle cells, and 
endothelial cells [41]. However,  the multipotentiality of Sca-1 positive or  Islet-1 
positive cells is an open issue to be addressed [42–45]. Compared with CSCs, CPCs 
are a group of immature but tissue-specific cells that can proliferate and develop 
into one of the main cardiac cell lineages (myocytes, vascular smooth cells, or endo-
thelial cells) [46]. However, it is difficult to discriminate between CSCs and CPCs, 
as they may represent different developmental stages of the same cell population 
and specific markers for CSCs and CPCs are still lacking [47].

Several studies have reported the critical roles of CSCs and CPCs in the turnover 
of cardiac myocytes during normal life-span [48, 49]. The activation and differen-
tiation of CSCs and CPCs to myocytes has also been shown in ischemic injury and 
pressure overload [50, 51]. However, other studies have  indicated  that CSCs and 
CPCs could not be effectively activated to promote endogenous tissue repair upon 
myocardial injury [52]. The benefits of CSCs and CPCs might also be due to a para-
crine effect [43]. Thus, the relative contribution of resident stem cells to newly- 
formed cardiomyocytes during ageing or in response to ischemic injury are still 
debated. To develop novel strategies to enhance the stem cell-derived cardiac myo-
cyte renewal will be of great interest.

3.2  Pre-existing Mature Cardiomyocytes

Although cardiac regeneration has been studied for a long time, little progress has 
been made in characterizing the mechanisms of mature cardiomyocyte prolifera-
tion. Cardiomyocytes undergo DNA synthesis and nuclear mitosis without cytoki-
nesis,  which  makes  a  substantial  proportion  of  cardiomyocytes  binucleated  and 
withdraw from the cell cycle [53, 54]. It has been proved that cardiomyocyte DNA 
synthesis activity and cell cycle activity were markedly decreased after birth, how-
ever, postnatal proliferation of cardiomyocytes does exist and has been documented 
in humans and rodents [55].

Investigators have used different methods to determine cardiomyocytes turnover. 
The 3H–thymidine, a material involved in DNA synthesis, was injected to MHC- 
nLAC mice  to mark  the  newly  generated myocytes,  showing  a  very  low  rate  of 
myocytes turnover less than 1% per year [25, 56]. The use of genetic fate-mapping 
with stable isotope labeling and multi-isotope imaging mass spectrometry (MIMS) 
demonstrated that the origin of newly-formed myocytes mainly derived from divi-
sion of pre-existing cardiomyocytes both in normal mammalian myocardial homeo-
stasis and after myocardial injury [28]. The turnover rate of cardiomyocytes is 
approximately 1% per year in adult mice. As the 15N tagging cardiomyocytes were 
predominantly GFP positive, the cellular origins of new cardiomyocytes were asso-
ciated with proliferation of pre-existing myocytes instead of cardiac progenitor cells 
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[28]. Furthermore, the low level of cardiomyocytes proliferation under normal cir-
cumstances could be increased in the border zone after myocardial injury [28]. 
Based  on  the  “mosaic  analysis with  double markers” mouse model,  it  was  also 
proved that the differentiated α-myosin heavy chain (α-MHC) expressing cardio-
myocytes were the cellular source of postnatal cardiomyogenesis, though cardio-
myocyte division is very limited during ageing and even after ischemic cardiac 
injury [57]. Indeed, a deep understanding of the mechanisms limiting adult cardio-
myocyte proliferation may raise the hope of promoting new cardiomyocyte forma-
tion after myocardial injury.

4  Exercise Activates Resident Cardiac Stem Cells

Under physiological myocardial ageing, cardiomyocytes undergo telomerase short-
ening and apoptosis. CSCs and CPCs were supposed, to some extent, to be activated 
and differentiated to replace the dying cardiomyocytes, and thus maintain the myo-
cardial homeostasis and cardiac function [58]. Equally important, a promotion of 
endogenous stem cell activation has been proved to protect the heart from cardiac 
remodeling and dysfunction after myocardial injury [50]. Increasing evidence has 
shown that exercise was an efficient physiological stimulus to activate and mobilize 
different  types of  stem cells,  such as cardiac  stem cells,  skeletal muscle  satellite 
cells, and endothelial progenitor cells [59].

The cardiomyocytes adaptations to exercise result in cardiac growth through both 
cardiomyocytes hypertrophy and hyperplasia, the former refers to the increase in 
cell size and the latter refers to the increase in cell number [60]. The potential roles 
of  c-kit  positive CSCs were  the first  being  identified  in  exercise-induced  cardiac 
growth [61]. It was demonstrated that the number of c-kit positive CSCs was signifi-
cantly increased after intensity-controlled exercise in rats [61]. Interestingly, approx-
imately 80% of the c-kit positive CSCs were either Nkx2.5 positive or Ets-1 positive, 
indicating that these CSCs were already committed to myocyte or endothelial cell 
lineage, which probably contributed to the balance between myogenesis and angio-
genesis [61]. Exercise also increased the myocardial expression levels of growth 
factors, such as insulin-like growth factor (IGF-1),  transforming growth factor-β1 
(TGF-β1), bone morphogenetic protein-10 (BMP-10), neuregulin-1 (NRG-1), and 
periostin (POSTN), among which IGF-1 and NRG-1 promoted CSC proliferation 
while BMP-10 and TGF-β1 stimulated CSC differentiation [61]. In addition to c-kit 
positive stem cells, the Sca-1 positive progenitor cells were also found to be increased 
in the left ventricle and outflow tract of mice swimming for 3 weeks, accompanied 
with an upregulation of IGF-1 and hepatocyte growth factor (HGF) [62].

Base  on  the  studies  above,  exercise-induced  activation  of  resident  CSCs  and 
CPCs is presumed to be a physiologic repair or compensation mechanism involved 
in the cardioprotective response to exercise. However, the mechanisms of stem cell 
activation and their relative contribution to cardiomyogenesis after cardiac injury 
need further investigation.
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5  Exercise Induces Proliferation of Pre-existing 
Cardiomyocytes

Increasing data have shown that endurance exercise can induce a proliferative 
response of adult cardiomyocytes, which is associated with cardioprotective effects. 
The limited proliferative capacity of cardiomyocytes was proved to be enhanced 
with endurance swimming [63]. Exercise leads to a reduction in C/EBPβ expression 
and an increase in CITED4 expression, which is sufficient to promote both hyper-
trophy and proliferation of primary neonatal rat cardiomyocytes in vitro [63] [64]. 
C/EBPβ knockdown mice develop physiological cardiac hypertrophy and cardio-
myocyte proliferation, and are also resistant to pressure overload [63]. However, 
forced cardiac expression of CITED4 produces physiological cardiac hypertrophy 
without increasing cardiomyocyte proliferation in adult hearts [64].

The  role  of microRNAs  (miRNAs, miRs),  a  large group of  small  non-coding 
RNAs, in exercise-induced cardiac growth has been extensively studied, and some 
of them were documented to contribute to exercise-induced cardiomyocyte prolif-
eration. Based on microarrays and qRT-PCRs, miR-222 is found to be significantly 
upregulated in the heart after swimming and voluntary wheel-running exercise [65]. 
Importantly, miR-222 promotes both hypertrophy and proliferation of neonatal rat 
cardiomyocytes in vitro, and is necessary for exercise-induced cardiomyocyte 
hypertrophy and proliferation in adult mice in vivo [65]. Additionally, miR-17-3p, a 
member of miR-17-92 cluster, is identified as a critical regulator of exercise-induced 
cardiac growth. miR-17-3p contributes to cardiomyocyte hypertrophy and prolifera-
tion [66]. Interestingly, overexpression of miR-222 and miR-17-3p are both able to 
protect the heart from cardiac remodeling and heart failure after ischemia- 
reperfusion injury [65, 66].

6  Potential Role of Exercise-Induced Cardiomyocyte 
Renewal in Treating Cardiac Diseases

Exercise-induced cardiac growth is a physiological adaptive response associated 
with myocyte hypertrophy and renewal and angiogenesis as well [67–69]. Clinical 
studies have proved the cardioprotective effects of exercise, which is now becoming 
an effective non-invasive adjuvant therapy for many cardiac diseases [70–72]. 
Exercise not only reduces cardiac risk factors [73–75], but also significantly reduces 
cardiovascular events [76, 77]. A study recruiting more than 1000 patients has docu-
mented that the more participants exercise, the less they will suffer cardiovascular 
death [78]. Experts recommend that regular physical activity to patients with heart 
failure is associated with better functional capacity, lower hospital admissions, and 
reduced all-cause mortality [79]. Although the cardiovascular benefits of exercise 
have been well established [80], the relative contribution of exercise-induced car-
diomyocyte renewal in it is largely unclear.
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After myocardial infarction or pressure overload, a large number of cardiomyo-
cytes undergo apoptosis and necrosis, leading to progressive cardiac remodeling 
and eventual heart failure. Exercise-induced downregulation of C/EBPβ and subse-
quent upregulation of CITED4 induces neonatal rat cardiomyocyte proliferation in 
vitro [63].  Interestingly,  knockdown  of  C/EBPβ induces physiological cardiac 
hypertrophy as well as cardiomyocyte proliferation, and also protects against patho-
logical cardiac remodeling after pressure overload in vivo [63]. Besides that, forced 
expression  of  miR-222  or  miR-17-3p,  although  not  sufficient  to  recapitulate 
exercise- induced cardiac growth, has been found to promote neonatal rat cardio-
myocyte proliferation in vitro and prevent cardiac remodeling and dysfunction after 
cardiac ischemia-reperfusion injury in vivo [65, 66]. These studies suggest that 
exercise-induced physiological cardiac growth and the contributors may provide 
novel therapeutic targets for cardiac diseases. However, direct evidence is still lack-
ing for the contribution of exercise-induced cardiomyocyte renewal to cardiac 
regeneration and repair.

Recently, the intraperitoneal injection of 5-Fluorouracil (5-FU) is performed in 
mice subjected to swimming exercise and ischemia-reperfusion injury to investigate 
the role of cardiomyocyte proliferation in exercise-induced cardiac growth and 
exercise-associated protection against ischemia-reperfusion injury [81].  5-FU  is 
used  to  attenuate  cell  proliferation.  Interestingly,  although  5-FU  significantly 
reduces exercise-induced cardiomyocyte proliferation, cardiomyocyte hypertrophy 
still develops, indicating that cardiac cell proliferation is not required for exercise 
induced cardiac physiological hypertrophy. However, the protective effect of exer-
cise against cardiac ischemia-reperfusion injury is totally abolished with 5-FU, sug-
gesting that cardiac cell proliferation is required for the benefits of exercise [81]. 
Noteworthy, as 5-FU is not specific to inhibit cardiomyocyte proliferation, the loss 
of benefits of exercise might also be associated with other cell types, such as resi-
dent stem and progenitor cells, endothelial cells, and circulating endothelial pro-
genitor cells [81].  It  is  highly  needed  to  block  cardiomyocytes  proliferation 
specifically to investigate the role of cardiomyocytes proliferation in exercise 
induced cardiac growth and cardiac protective effects.

7  Challenges in Studying Exercise-Induced Cardiomyocytes 
Renewal

For decades, the dogma was that cardiomyocytes were terminally differentiated 
cells and the adult mammalian heart was a non-regenerative organ. The capacity of 
cardiomyocyte renewal in adult heart has not been assessed until recently. With the 
development of methodology, the notion of cardiomyocytes renewal has been gen-
erally accepted by the public. Two main cellular sources for newly formed cardio-
myocytes  have  been  recognized  including  CSCs/CPCs  and  pre-existing 
cardiomyocytes [82]. However, the slow self-renewal rate is unable to replace the 
huge loss of cardiomyocytes after myocardial injury [83]. CSCs and CPCs based 
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strategies have been largely investigated in the treatment of myocardial ischemia 
and other cardiac diseases. However, low survival and less attachment of these stem 
cells after injected into the body may greatly influence the effectiveness of stem cell 
therapy. Therefore, stimulating endogenous cardiomyocytes proliferation might be 
an alternative strategy.

Exercise has multiple systemic beneficial effects, including the heart. Recently, 
exercise has also been demonstrated to promote myocardium self-renewal through 
activating resident stem and progenitor cells and increasing pre-existing 
 cardiomyocytes proliferation (Fig. 6.1). Although the relative contribution of exer-
cise-induced cardiomyocytes renewal to cardiac repair after myocardial ischemic 
injury is far from clear, some evidence has been provided that cardiac cell prolifera-
tion is necessary for mediating the beneficial effect of exercise against ischemia-
reperfusion injury [81].

Finally, the use of exercise as a therapeutic strategy to stimulate endogenous 
myocardial regeneration may be influenced by multiple variation factors, including 
patient population, exercise intensity, type, and duration [84]. In such conditions, 
experts need to define the patient population that benefits mostly from physical 
therapy, elaborate a personalized exercise program, and establish an effective evalu-
ation method. Importantly, this network will provide the basis for exercise as a use-
ful tool to promote cardiomyocytes proliferation and repair in patients.

Fig. 6.1 Exercise induces new cardiomyocytes formation through activating cardiac resident 
stem/progenitor cells or increasing pre-existing cardiomyocytes proliferation
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Chapter 7 
Physical Exercise Can Spur Beneficial 
Neoangiogenesis and Microvasculature 
Remodeling Within the Heart – Our 
Salvation?

Michal Miko and Ivan Varga

Abstract Economic and social burden of cardiovascular diseases remains enor-
mous and even still rising. There is not enough mass evidence in scientific journals 
that could describe the course of the process of neoangiogenesis in relatively 
“healthy” heart after regular endurance exercise. Even though, in this review, we are 
showing preliminary evidence that this can be one of really cheap and effective 
preventive means. We are elucidating some of the cellular signaling pathways how 
exercise could affect neoangiogenesis and ameliorate performance of the heart. Key 
roles in this process are mechanical forces (mainly increased velocity of blood flow 
and shear stress) and subsequent rise of angiogenic biological factors (mainly 
VEGFA).

Keywords Exercise • Neoangiogenesis • Microvasculature remodeling • Heart

1  Introduction

In recent years, we are witnesses of many improvements in treatment of cardiovas-
cular diseases. Nevertheless, economic and social burden remains enormous and 
even still rising [1]. That is why hopes are directed towards the prevention of such 
diseases. But effective and cheap cardiovascular preventive treatments remain lim-
ited. Concentration on neoangiogenesis within the coronary microvasculature as to 
one of the possible nodes that can be relatively easily affected by such a simple 
activity as moderate exercise can be one of these preventive means. It is well known 
that healthy lifestyle and a regular exercise regimen can help prevent many of 
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cardiovascular diseases [2–4]. Mechanisms of maintaining this cardioprotective 
phenotype are less known and here we want to elucidate some of the physiological 
processes behind it.

2  Neoangiogenesis in Healthy Heart

First, it is necessary to tell, that information about neoangiogenesis in the physio-
logical terrain of healthy myocardium is scarce. Most of the papers are not dealing 
with endothelium in myocardium (thus we are pushed only to prudently extrapolate 
the results for the myocardium) or study the neoangiogenesis in infarction region 
within the heart wall [5]. Transferring results obtained from skeletal muscle and 
hypothesize similar results for the heart is therefore speculative and questionable 
and further works are needed to get a foothold in near future. Other studies e.g [6, 7]. 
are proving functionality of several pathways with direct positive effect on neoan-
giogenesis, but they bear no relation to exercise. Recent studies have shown that 
angiogenesis in coronary microvasculature is caused by endogenous stem cell/
progenitor mobilization and participation, and its paracrine effects on endothelial 
cells function and microvascular distribution. Exercise could mobilize and activate 
the expression and secretion of endogenous stem cell and angiogenic factors, and 
affect the cardiac angiogenesis in epigenetics [8].

In this chapter, we are focusing on aerobic, endurance-based exercise (walking, 
jogging, swimming, skiing, or cycling 3 to 4 times a week or analogous physical 
activity in animal model [9]) and its role in coronary neoangiogenesis. It is sug-
gested that heavy resistance training in contrast to endurance training does not result 
in increased capillary density in skeletal muscle [10, 11]. The response of the heart 
is not dependent on the type of exercise applied, but rather on the duration and 
intensity at which the exercise is performed [12]. After regular exercise performed 
for longer period of time, typical functional and even morphological signs of adap-
tation in vasculature can be monitored. Without these, other morphological signs of 
adaptation of heart wall as physiological hyperthrophy of cardiomyocytes [13] 
could be counterproductive. Hyperthrophy (and even hyperplasia [14, 15]), together 
with neoangiogenesis has a protective effect against cardiovascular diseases [16].

Several cell populations play its role in neoangiogenesis  – endothelial cells, 
endothelial stem cells, pericytes, endocardial cells [17], telocytes [15, 18], partially 
fibroblasts, vascular smooth muscle cells [19] and cardiomyocytes [20].

Correct structural association between (hypertrophied) cardiomyocyte and newly 
formed capillaries after exercise is important for maintaining proper function of the 
myocardium. Each cardiomyocyte possess its own capillary, what can be seen in 
electron micrographs from scanning electron microscope as well after imunolabel-
ing of endothelial cells around (Figs. 7.1 and 7.2).
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Fig. 7.1 Electron micrograph of a human myocardium from a scanning electron microscope. Rich 
capillary bed (arrows) between cardiomyocytes (Orig. Magn. 671x)

Fig. 7.2 Rich capillary bed of human myocardium. Immunohistochemical labeling of endothelial 
cells (brown color) between cardiomyocytes – each cardiomyocyte possess its “own” capillary 
(Monoclonal anti-vimentin antibodies, Orig. Magn. 200x)
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3  Arteriogenesis

Arteriogenesis (enlargement of diameter of existing vessels) is typically conducted 
first after exercise. Important function plays increased blood pressure together with 
shear stress, which act as a mechanical stimulus for endothelial cells [21, 22]. These 
start to produce cocktail of cytokines as monocyte chemoattractant protein-1 (MCP- 
1), FGF2, vascular endothelial growth factor (VEGF) or TNF-α that all have posi-
tive effect on arteriogenesis [23, 24]. After arteriogenesis comes process of 
angiogenesis, mainly when arteriogenesis itself is not able to cover demands of tis-
sues. It is an angiogenesis, which is superior to arteriogenesis when talking about 
effective improvement of exchange properties between blood and tissue.

4  Angiogenesis

There are only few physiological circumstances prompting angiogenesis, notably 
ovarian cycling or placental development. And exercise is one of them [25]. 
Essentially, there are two basic pathways for creation of a new mass of functional 
vessels – sprouting angiogenesis and intussusceptive (non-sprouting) angiogenesis 
(intussusception). And in the same time, this is the only effective process which is 
apt to continuously establish improving exchange properties between blood and tis-
sue (Table 7.1).

Sprouting angiogenesis consists of the expansion and remodeling of existing 
vessels, where the vascular sprouts connect each other to form new vascular loops 
[26]. Intussusception allows a vast increase in the number of capillaries without a 
corresponding increase in the number of endothelial cells (no need for activation of 
endogenous endothelial stem cells). Blood vessels are generated more rapidly in an 
energetically and metabolically more economic manner, as extensive cell prolifera-
tion, basement membrane degradation, and invasion of the surrounding tissue are 
not required. Mechanical triggers for intussusception are similar as those for arterio-
genesis [27].

For those interested, the detailed process of intussusceptive angiogenesis, it is 
already excellently and comprehensively described elsewhere (e.g. [29]). There is a 
study from Prior et al. [25] telling that exercise with subsequent muscle contractions 

Table 7.1 Sequence of 
events in sprouting 
angiogenesis

1. Angiogenic growth factors
2. Activation of receptors on 
endothelial cells
3. Release of proteases 
(metalloproteinases like MMP-2) 
that destroy BM
4. Formation of solid sprouts 
from migrating endothelial cells
5. Luminization of sprouts
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create a powerful stimulus for structural remodeling of the vasculature within the 
random muscle. An increase in flow velocity through a vessel increases shear stress, 
a major stimulus for enlargement of conduit vessels. This leads to an endothelial- 
dependent, nitric oxide-dependent enlargement of the vessel. Increased flow within 
muscle, in the absence of contractions, leads to an enhanced capillarity by intus-
susceptive angiogenesis [25] and even sprouting angiogenesis [5] (Table 7.2).

5  Neoangiogenesis Promoting Factors Playing Role 
During Exercise

As a summary of the written, we try to give a closer look to main factors which stay 
behind neoangiogenesis in the heart wall during exercise. We present them in a logi-
cal sequence of steps.

5.1  Mechanical – Hemodynamic Forces

Shear stress acting on endothelial surface induced by elevated radial stress and 
increased blood flow are main factors which promote vessel caliber changes that 
tend to restore baseline wall shear stress and that have been reported to be 
endothelium- dependent [30] and, in the next step, they initiate consequent rise of 
other angiogenic factors as cytokines. Muscle stretching itself is huge pro- 
angiogenetic factor in skeletal muscle, however, for cardiac muscle; the role of its 
increased performance during exercise is a question of further studies.

5.2  Angiogenic Biological Factors

Current thinking is that angiogenesis is mediated by diffusible angiogenic factors 
and that angiogenic activity is regulated through the balance between stimulatory 
and inhibitory factors [31]. Recent studies have shown that up-regulation of angio-
genic factors occurs in response to increased muscle activity in skeletal muscle [32].

Here we want to discuss some of the chosen biological active molecules incorpo-
rated in pathways responsible for neoangiogenesis. We are also mentioning some 
agents with opposite effect on neoangiogenesis (PEDF) or agents with positive 

Table 7.2 Sequence of 
events in intussusceptive 
angiogenesis [28]

1. Extension of capillary wall into 
the lumen
2. Splitting of the vessel into two 
new
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effects, but generally regarded in negative connotations (chemerin), to show, that 
investigation is not finished yet and still exist a lot of controversies and that the 
results sometimes seems quite contradictory.

• Vascular endothelial growth factor (VEGF): it is a key and main molecule and 
it is present in many pathways responsible for neoangiogenesis. The VEGF 
family comprises in mammals five members: VEGF-A, placenta growth factor 
(PGF), VEGF-B, VEGF-C and VEGF-D [33]. The latter ones were discovered 
later than VEGF-A, and, before their discovery, VEGF-A was called just 
VEGF. A number of VEGF-related proteins encoded by viruses (VEGF-E) and 
in the venom of some snakes (VEGF-F) have also been discovered. There is 
evidence based on rat model that exercise training improves aging-induced 
downregulation of cardiac VEGF angiogenic signaling cascade, thereby contrib-
uting to the exercise-induced improvement of angiogenesis [34]. On other hand, 
a certain degree of restraint is appropriate as another result showed no increased 
VEGF synthesis after exercise in heart [35]. There are many triggers which can 
increase the concentration of VEGF that can be produced by several cell types 
that stimulates angiogenesis. One of the chemical triggers is prostaglandin E1 
[PGE(1)]; cardiac myocytes could be a cellular source of PGE(1)-induced VEGF 
expression [36]. Other trigger can be rise of testosterone levels mediated by exer-
cise. Model of diabetic rat proved that testosterone and exercise can promote 
neoangiogenesis. The proangiogenesis effect of testosterone and exercise is 
associated with the enhanced expression of VEGF-A and SDF-1a (stromal 
cell- derived factor 1) in heart tissue [37]. VEGF-A can act on several  
receptors – Neuropilin1 (NRP1) is important for coronary neoangiogenesis, it is 
transmembrane glycoprotein that serves as a receptor for the VEGF165 isoform 
[38]. Biochemical evidence supports a hypothesis of NRP1 function in which 
VEGF binding induces complex formation between NRP1 and tyrosine kinase 
receptor VEGF receptor 2 (VEGFR2) to mediate signal transduction of endothe-
lial VEGF signaling [38–40]. VEGF-induced activation of VEGFR2 stimulates 
endothelial cell proliferation, migration, and differentiation in most cell cultures 
[41]. From different point of view, VEGF is involved in many pathological con-
ditions as a tumorigenesis and/or atherosclerosis. Bailey with the colleagues 
demonstrated that after specified exercise, circulating soluble vascular endothe-
lial growth factor receptor-1 (sFlt-1) (an endogenous VEGF inhibitor) is signifi-
cantly increased in healthy volunteers, which is functionally associated with a 
transient decrease in circulating free VEGF [42]. From this example is clear that 
pleiotropic effects of VEGF must be perceived comprehensively and critically. 
Exercise affects condition of the heart in a positive way, but pathways behind are 
far more complex as we originally thought.

• Fibroblast growth factor: In humans, 22 members of the FGF family have been 
identified [43] and from these, mainly FGF2, event. FGF1 has neoangiogenic 
potential. They promote angiogenesis by physical organization of endothelial 
cells into tube-like structures. Thus, activity of FGFs is stem cells-independent. 
These multipotent FGFs are true pluripotent or promiscuous growth factors [44]. 
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During exercise, genes for FGF2 receptor are also activated (demonstrated on 
neutrophils [45]). However, there are signs that concentration of FGF2 is 
exercise- independent [46, 47]. FGF seem to be effective in initiating neoangio-
genesis in hypoxic or ischemic tissues [48].

• Angiopoietins: are members of the vascular endothelial growth factor family as 
the only known growth factors largely specific for vascular endothelium. They 
act via endothelial cell-specific receptors known as the Ties [49, 50]. There is 
another group of angiopoietin-like proteins, where at least some of their mem-
bers (ANGPTL2, ANGPTL8) are found guilty of proinflammatory and proath-
erogenic actions with effect in propagation of coronary artery disease 
(cardiovascular disease) [51–53]. We dispose with evidence that levels of these 
angiopoietins-lige proteins are acutely reduced after physical exercise. A sus-
tained reduction in circulating levels could contribute to the chronic beneficial 
cardiometabolic effects in patients with coronary artery disease [51].

• Endothelial NO: the competency of endothelial NO production is very impor-
tant in permitting vascular remodeling through arteriogenesis in skeletal muscle 
arteries. Recognition that chronic endurance exercise with regular bouts of 
increased laminar flow along the endothelium upregulates endothelial nitric 
oxide synthase (eNOS) implies that there is an improved responsiveness for 
vascular remodeling, compared with sedentary individuals [25, 54, 55]. Activity 
of eNOS in endothelial cells is triggered by pro-angiogenic factors, mainly 
VEGF. Higher occurrence of NO during physical activity has an antiapoptotic 
effect that could potentially underlie exercise-related beneficial effects on car-
diovascular diseases via increased production and circulating numbers of endo-
thelial stem cells [56].

• Circulating micro-RNAs (c-miRNAs): they are short, nonprotein coding RNA 
molecules. miRNA-126 is vascular endothelium specific and its levels are 
increased during and shortly after endurance training [57, 58]. miRNA-126, a 
miRNA located within the egfl7 gene (protein EGFL7 was described as a novel 
endothelial cell-derived factor involved in the regulation of the spatial arrange-
ment of cells during vascular tube assembly) may be related to exercise-induced 
cardiac angiogenesis and vascular integrity, by indirect regulation of the VEGF 
pathway and direct regulation of its targets that converged in an increase in 
angiogenic pathways, such as MAPK and PI3K/Akt/eNOS [58, 59]. However, 
experiments in 2015 on human umbilical vein endothelial cells showed exactly 
the opposite results: transfection with a miR-126 significantly downregulated 
VEGFA mRNA levels and transfection with a miR-126 inhibitor significantly 
upregulated VEGFA mRNA levels [60]. Equally, miRNA-129-1 and miRNA- 133 
act, to our knowledge, as anti-angiogenic factors [61], as well as miRNA- 26a [62].

• Anti-angiogenic factor pigment epithelium-derived factor (PEDF): human 
adult cardiac myocytes and fibroblasts constitutively secrete PEDF and inhibit 
VEGF-induced sprouting. PEDF expression is down-regulated by low oxygen 
levels [63], thus there is a theory, that PEDF plays a negative feedback-role in 
regular endurance exercise.
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• Chemerin: it is an adipokine associated with obesity and the metabolic syn-
drome, its levels in the bloodstream seems to be highly heritable. It significantly 
mediates the formation of blood vessels to a similar extent as vascular endothe-
lial growth factor [64].

5.3  Stem Cells Mobilization

In some papers regarding neoangiogenesis, there is no mention about the role of 
endothelial stem cells. Instead, they are talking about activation of endothelial 
cells – thus assuming mitotical potential of endothelial cells, both in sprouting and 
intussusceptive angiogenesis [25]. Exercise training activates circulating, as well as 
resident tissue-specific cardiac, stem/progenitor cells [65]. Exercise especially 
induces endothelial progenitor cells to proliferate [56, 66], migrate and differentiate 
into mature endothelial cells, giving rise to endothelial regeneration and angiogen-
esis [16]. Endothelial progenitor cells are a subtype of circulating stem cells origi-
nally formed in bone marrow, with high proliferative potential, able to differentiate 
into mature endothelial cells during the neoangiogenesis at trained people [67]. 
Several physiological and pathophysiological stimuli or drugs modulate endothelial 
progenitor cell mobilization. Nevertheless, to our knowledge, unequivocal defini-
tion of endothelial progenitor cells is lacking [68]. In addition to this direct struc-
tural role, endothelial progenitor cells improve neovascularization, also by secreting 
numerous pro-angiogenic factors able to enhance the proliferation [26, 69].

5.4  Hypoxemia

Findings indicate that lowered oxygen tension may play a role in exercise-induced 
angiogenesis in skeletal muscle. One of the possible mediating mechanisms could 
be action of angiogenic factors induced by muscle hypoxia during exercise [47, 70]. 
Effect of hypoxemia and the question of mere existence of exercise-induced hypox-
emia remain unknown and unresponded.

6  Conclusion

As a first thought is important to tell, that questions to which we do not know the 
answers prevail over those answered and others new are raising as we are trying to 
understand molecular signaling pathways and mechanisms behind beneficial effect 
of neoangiogenesis within the heart wall. We were reviewing some studies with 
similar methodologies and hypotheses, but with completely different outcome 
(effect of miRNA-126, VEGF levels after exercise, and so on).
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And there is not enough mass of evidence in scientific journals that could in more 
detail describe the course of the process of neoangiogenesis in relatively “healthy” 
heart. Our work often reflects the formation of new blood vessels in skeletal muscle, 
which could have a common signaling pathways and morphological manifestations 
as in both cases we are dealing with cross-striated muscles.

Other source of information are papers dealing with neoangiogenesis in heart 
suffering from cardiovascular disease. It is known that chronic diseases of the car-
diovascular system such as hypertension lead to remodeling of the heart wall, which 
runs in many ways similar to a physiological adaptation after regular workout.

Nevertheless, one must be extremely cautious and restrained with this approach. 
That is why presented results of today are at best preliminary and they must be con-
firmed in studies designed specially to give evidence of link between random (but 
strictly defined) type of exercise and beneficial neoangiogenesis (or arteriogenesis) 
within the injury-undisturbed wall of heart. When confirmed, only then one could 
speculate about the real gains of this process on performance of heart and of the 
whole organism consequently.

Exercise also induces preconditioning whereby the heart is more resistant to 
injury even long after the exercise has ceased. The proverbial “triggers” that induce 
cardioprotective signaling are clearly multi-factorial, and include neural, endocrine, 
and paracrine factors, as well as autocrine signaling and adaptations that arise from 
within the heart itself [4].

Important remark must be said to the “unpopularity” of neoangiogenesis. And in 
most cases, it is indeed well deserved reputation. Neoangiogenesis has been associ-
ated with increased aggressiveness of malignant tumors [71, 72] and with diseases 
as (diabetic) retinopathy [73, 74] or atherosclerotic plaque progression [75, 76]. 
VEGF as a common molecule of several signaling pathways is involved in many 
pathological conditions as a tumorigenesis and/or atherosclerosis. Only relatively 
small step lies between useful angiogenesis in heart and pathological formation of 
new vessels, mainly if we will have ambitions to interfere into this process affecting 
one or several molecular pathways. Are we ready to play with fire?

As was said above; there is no question exercise affects condition of the heart in 
a positive way, but pathways behind are far more complex as we originally thought.
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Chapter 8
The Non-cardiomyocyte Cells of the Heart. 
Their Possible Roles in Exercise-Induced 
Cardiac Regeneration and Remodeling

Ivan Varga, Jan Kyselovič, Paulina Galfiova, and Lubos Danisovic

Abstract The non-cardiomyocyte cellular microenvironment of the heart includes 
diverse types of cells of mesenchymal origin. During development, the majority of 
these cells derive from the epicardium, while a subset derives from the endothelium/
endocardium and neural crest derived mesenchyme. This subset includes cardiac 
fibroblasts and telocytes, the latter of which are a controversial type of “connecting 
cell” that support resident cardiac progenitors in the postnatal heart. Smooth muscle 
cells, pericytes, and endothelial cells are also present, in addition to adipocytes, 
which accumulate as epicardial adipose connective tissue. Furthermore, the heart 
harbors many cells of hematopoietic origin, such as mast cells, macrophages, and 
other immune cell populations. Most of these control immune reactions and inflam-
mation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute 
to this organ’s well-orchestrated physiology. These cells also contribute to regenera-
tion as a result of injury or age, in addition to tissue remodeling triggered by chronic 
disease or increased physical activity (exercise-induced cardiac growth). These pro-
cesses in the heart, the most important vital organ in the human body, are not only 
fascinating from a scientific standpoint, but they are also clinically important. It is 
well-known that regular exercise can help prevent many cardiovascular diseases. 
However, the precise mechanisms underpinning myocardial remodeling triggered 
by physical activity are still unknown. Surprisingly, exercise-induced adaptation 
mechanisms are often identical or very similar to tissue remodeling caused by 
 pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac 
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fibrosis. This review provides a summary of our current knowledge regarding the 
cardiac cellular microenvironment, focusing on the clinical applications this infor-
mation to the study of heart remodeling during regular physical exercise.

Keywords Non-cardiomyocyte Cells • Exercise • Regeneration • Remodeling

1  Introduction

Regeneration of tissues damaged by wear and tear or injury, in addition to tissue 
remodeling as a result of chronic disease or increased physical activity, modify tis-
sue architecture through coordinated cell proliferation, differentiation, dedifferen-
tiation, and apoptosis [1]. These processes in the heart, the most important vital 
organ in the human body, are not only a fascinating scientific problem, but they are 
also clinically important. Surprisingly, cardiomyocytes account for only 25–35% of 
all the cells in the heart. In fact, in the heart, morphologically and functionally dis-
tinct cardiac non-myocyte cells (all cells of the heart excluding cardiomyocytes) 
constitute the majority of cells in this organ [2]. Non-cardiomyocytes are a diverse 
group of cells and include fibroblasts, telocytes, mast cells, endothelial cells, white 
blood cells, and other immunologically active cells, such as smooth muscle cells, 
adipocytes, and pericytes. Exercise is a well-established intervention for the preven-
tion and treatment of cardiovascular diseases. The increase in the size of cardiomyo-
cytes is likely a central mechanism for exercise-induced cardiac growth, but other 
cardiac cell types also respond to exercise. Therefore, exercise-induced cardiac 
growth is a complex process that depends upon cross-talk between cardiomyocytes 
and non-cardiomyocyte cells of the heart [3].

This review summarizes our current understanding of the cardiac cellular micro-
environment. It also discusses how this research might be applied to help develop 
clinical treatments that promote heart regeneration and tissue remodeling. Expanding 
our knowledge of the diverse non-myocyte cell populations present in the heart is 
essential for understanding cardiac homeostasis during normal and pathological 
conditions. Here, we focus on exercise-induced cardiac remodeling.

2  Cardiac Fibroblasts and Myofibroblasts

Fibroblasts are the most abundant cells in connective tissue. They produce all com-
ponents of the extracellular matrix, including protein fibers and amorphous ground 
substance. They are also essential during wound healing.

Cardiac fibroblasts have been found in all compartments of the heart. They are 
mainly responsible for the production of major components of the extracellular 
matrix, including collagen (type I, III, V, and VI), periostin, vimentin, and fibronec-
tin. Thus, fibroblasts create a basic microenvironment for other cell types in the 
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heart. Moreover, they play a pivotal role in cardiac development, remodeling, and 
regeneration [4, 5].

It is well-known that cardiac fibroblasts are generated during embryogenesis 
through a process known as the epithelial-to-mesenchymal transition [6]. The dis-
covery of epicardium-specific genes in the mouse, such as Tcf21, Tbx18, and WT1, 
strongly support this theory [7].

Despite the fact that fibroblasts have been studied for many years, there is no 
universal molecular marker used to track them in vitro or in vivo. This is primarily 
because all known markers are also expressed by many other cell types within the 
heart. In pioneering studies, fibroblasts were originally characterized according to 
their morphological features, proliferation activity, gene expression, and develop-
mental origin [8–11]. This also applied to the fibroblasts of the heart, necessitating 
the combining of various markers for their identification. Several markers have been 
used recently to identify cardiac fibroblasts, such as CD90 (also known as Thy1), 
fibroblast-specific protein 1, discoidin domain receptor 2, fibronectin, vimentin, and 
collagen types I and III [12]. More recently, it was shown that activated fibroblasts 
are enriched for fibroblast-activating protein and alpha-smooth muscle actin [13, 
14]. Other suitable markers are Tcf21 and platelet-derived growth factor receptor 
alpha. These are responsible for fibroblast differentiation and are known to be 
expressed in adult fibroblasts [15, 16]. However, TCF21 expression is very difficult 
to detect by immunohistochemistry and platelet-derived growth factor receptor 
alpha is also expressed by several populations of stem cells within the heart [17]. 
Another robust marker of cardiac fibroblasts is mEF-SK4, but it must be colocalized 
with CD31 and CD34 to exclude hematopoietic and endothelial cells [2].

Cardiac fibroblasts play an important role in the synthesis and degradation of 
cardiac extracellular matrix. They also mediate many physiological and pathologi-
cal processes that contribute to the structural, biomechanical, biochemical, and 
electrical properties of the heart.

Cardiac fibroblasts are highly metabolically active cells and they produce an 
abundance of interstitial collagen, proteoglycans, glycoproteins, growth factors, 
cytokines, matrikines, and proteases, which influence the composition, function, 
and remodeling of the extracellular matrix [18]. They form a three-dimensional 
network for myocytes and other cardiac cells. Moreover, they are involved in the 
distribution of mechanical forces within the heart [19]. Cardiac fibroblasts respond 
to changes in the cellular environment caused by physical exercise by modulating 
integrin expression. This is associated with changes in cell migration [20]. 
Remodeling and other alterations in the organization of the myocardium are crucial 
processes that help the heart adapt to changes as a result of physiological or patho-
logical events [21]. Cardiac fibroblasts are the most influential cell types involved in 
this process. For example, after cardiac injury, fibroblasts are strongly influenced by 
various bioactive molecules, which promote changes in fibroblast gene expression. 
They also affect cell migration to damaged regions to promote regeneration and scar 
formation [22]. Moreover, cardiac fibroblasts differentiate into myofibroblasts, 
which produce collagen, fibronectin, and contractile proteins [23].

8 The Non-cardiomyocyte Cells of the Heart. Their Possible Roles…



120

Another major function of cardiac fibroblasts is to express different growth fac-
tors, cytokines, and other bioactive molecules. These factors exert autocrine and 
paracrine effects on the cardiac cells and, thus, promote their proliferation, contrac-
tion, and apoptosis [24].

Recent studies demonstrated that cardiac fibroblasts play critical roles in electri-
cal signaling because they possess a high membrane resistance, which makes them 
excellent conductors. It was shown that fibroblasts are physically coupled to other 
cells of the myocardium, including myocytes. The cell junctions forming these con-
nections are composed mainly of connexins CX40, CX43, and CX45 [25, 26]. 
Some studies indicate that cardiac fibroblasts act as bridges connecting myocytes 
that are normally electrically isolated by connective tissues [27].

Lastly, cardiac fibroblasts have an important role in angiogenesis. They affect 
this process by releasing several growth factors, such as fibroblast growth factor, 
vascular endothelial growth factor, and pigment epithelium-derived growth factor 
[28, 29].

3  Cardiac Telocytes

A telocyte is a type of connecting cell found in various organs in the human body. 
This includes the heart, which contains telocytes in all cardiac tissue layers. 
Telocytes create a cellular meshwork throughout the epicardium, endocardium, and 
myocardium. They can even be found in cardiac stem cell niches [30, 31]. They tend 
to have a small, rounded appearance, and can sometimes have a spindle-shaped cell 
body. Most display extremely long cytoplasmic protrusions called telopodes. Each 
telocyte sprouts 2–5 telopodes, and each of the prolongations can range from doz-
ens to hundreds of micrometers in length with an average thickness of 0.2 μm. Many 
telopodes form secondary and tertiary branching patterns, and this is what creates 
the three-dimensional network characteristic of cardiac telocytes. These networks 
envelop capillaries and connect neighboring telocytes with other tissue types in the 
heart [32]. Because telopodes are very thin cellular structures, telocytes and their 
networks must be visualized by transmission electron microscopy (Fig. 8.1) [33, 34] 
or immunohistochemical staining (Fig. 8.2). Several different antigens are expressed 
in telocytes, including CD34, CD117 (c-kit), vimentin, and PDGF receptor-alpha 
and receptor-beta. Unfortunately, all these antigens are also enriched in other non- 
telocyte cell types. For example, mast cells also express CD117. Therefore, research-
ers typically use a double-immunolabeling approach to distinguish telocytes from 
other interstitial cells. Telocytes are often defined as CD34+/vimentin+, CD34+/
PDGFR-beta+, or CD34+/CD117+ cells, effectively differentiating them from car-
diac fibroblasts [35, 36]. Unfortunately, telocytes cannot currently be distinguished 
during embryonic development because the maturing progenitors are negative for 
both CD117 and CD34 [37].

Telocytes are not typically recognized as a distinct cell population. Although the 
term “telocytes” yields over 240 references in PubMed, there are no official entries 
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for this cell type in Terminologia Histologica [38]. Díaz-Flores et al. [39] originally 
defined the telocyte cell population as stromal fibroblastic cells enriched for CD34. 
Meanwhile, Ivey and Tallquist [12] used “cardiac telocyte” interchangeably with 
“cardiac fibroblast.” Furthermore, Bei et al. [35] showed that cardiac telocytes have 
distinct morphologies and immunohistochemical properties when compared to 
fibroblasts cultured in vitro. Rusu et al. [40] also demonstrated that a subpopulation 
of cardiac telocytes are endothelial derived. Thus, whether telocytes represent a 
discrete cell population or whether are a special subtype of fibroblasts or endothelial 
cells remains to be determined.

Cardiac telocytes form a three-dimensional network and are connected to each 
other at cell-cell junctions. They also form these junctions with other cardiac cell 
types including cardiomyocytes, cardiomyocyte progenitors, mastocytes, pericytes, 
immune reactive cells, macrophages, Schwann cells, fibroblasts, and endothelial 

Fig. 8.1 Human myocardium visualized by transmission electron microscopy. Telocytes display 
long cytoplasmic prolongations in the loose connective tissue with collagen fibers (CF) between 
cardiac muscle cells (CMC). Thin segments are called podomers (1), and the thicker dilated seg-
ments containing membrane-bound cell organelles are podoms (2). Between the cardiac muscle 
cell and the prolongation of the telocyte, a direct junction (nanocontact) is visible (arrow) (Orig. 
Magn. 8900×)
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cells of the capillaries. Telocytes secrete a range of vesicles containing signaling 
molecules to facilitate intercellular communication, which has been well- 
documented in vitro [41]. These secreted factors likely regulate nearby cells (espe-
cially cardiac stem cells) via paracrine signaling [42].

Telocytes with different morphologies are found in various layers of the heart, 
and this cell type has discrete functions in different anatomical regions. For exam-
ple, epicardial telocytes secrete microvesicles as exosomes into the extracellular 
matrix [43]. Endocardial telocytes are the most abundant cells in the sub-endothelial 
layer of the endocardium, and they extend telopodes into the myocardium to form 
direct connections with cells in this region [44]. In fact, the abundance of cardiac 
telocytes in the subepicardium of rats is significantly higher when compared to the 
endocardium. The density is higher in the atria compared to the ventricles [45]. 
Electron microscopy and immunohistochemistry was used to show that telocytes 
are also present in the valves of the heart [46]. The telocyte meshwork that is formed 
inside the heart valves likely provides mechanical support and confers flexibility to 
this tissue, in addition to mediating communication amongst cells.

Faussone-Pellegrini and Bani [37] showed that telocytes are required during pre-
natal heart development. Immature cardiac muscle cells are interconnected and they 
are surrounded by telocytes, which provide a three-dimensional scaffold for the 
myocardium during morphogenesis. After birth, the number of telocytes steadily 
decrease until adulthood [47].

Fig. 8.2 Human myocardium visualized by light microscopy. Spindle-shaped cardiac telocytes 
(anti-CD117 antibody, brown color) between cardiomyocytes and different connective tissue cells 
inside a scar after a myocardial infarction. Diaminobenzidine was used as a chromogen. Cell 
nuclei were stained with Mayer’s hematoxylin (Orig. Magn. 400×)
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Telocytes are known to be present in or near stem cell niches in various human 
organs. This includes the subepicardial cardiac layer [48–50]. In this tissue layer, 
cardiac stem cell niches harboring cardiomyocyte progenitors are found surround-
ing the coronary arteries [51]. Each niche contains cardiac progenitors in various 
stages of differentiation, in addition to loose connective tissue that harbors mast 
cells, adipocytes, macrophages, fibroblasts, a rich capillary bed, telocytes, and nerve 
fibers [48]. Recent in vitro studies suggest that the telopodes of telocytes form com-
plex scaffolds that are required to organize the myocardium during tissue regenera-
tion [49]. Furthermore, telocytes are often referred to as “nurse cells” for cardiac 
stem cells because they aid the differentiation and integration of stem cell progeni-
tors into the developing or regenerating heart [50].

A few studies have investigated the contribution of telocytes to the etiology of 
cardiac diseases. Richter and Kostin [52] demonstrated that there is a reduction in the 
abundance of cardiac telocytes in patients suffering from end-stage heart failure fol-
lowing transplantation. The loss of telocytes also occurred in rats following myocar-
dial infarction [53]. In subsequent weeks of observation of these rats, cardiac telocytes 
also failed to migrate into the damaged heart tissue from nearby healthy myocar-
dium, which likely inhibited regeneration of the affected myocardium. Thus, telo-
cytes may contribute to neoangiogenesis following a myocardial infarction [54]. 
Interestingly, when cardiac telocytes were transplanted into sites of myocardial 
infarction in rats a reduction in the size of damaged tissue was observed. The animals 
also experienced significant improvements in heart function. It is therefore possible 
that the transplantation of healthy cardiac telocytes might increase overall vessel den-
sity and decrease myocardial fibrosis in hearts following an infarction [53]. Future 
cell-based therapeutic approaches of this nature might enhance cardiac regeneration, 
repair, and protection in patients suffering from various heart diseases [55, 56].

We are aware of only one report linking cardiac telocyte activity to physical exercise. 
Xiao et al. [57] used a ramp swimming exercise to study the connection between cardiac 
telocytes function and exercise-induced cardiac growth in mice. It was shown that the 
number of telocytes increased significantly in the heart following exercise, suggesting 
that this cell population might modulate the physiology of cardiac stem cells, cardiomyo-
cytes, and/or other endothelial cells. This lends further support to the idea that cardiac 
telocytes likely enhance cardiac regeneration following an injury or aging processes.

4  Cardiac Adipocytes and Epicardial Adipose Tissue

Adipose cells (fat cells, adipocytes) are specialized cells of the connective tissue 
that synthesize and store lipids as an energy reserve. Currently, white adipose tissue 
is considered to not only be an energy-storing organ, but it also acts as:

• an active endocrine organ with an intricate role in systemic homeostasis [58],
• a reservoir for a high number of adipose-tissue derived mesenchymal stem cells [59],
• a regulator of immune responses (e.g., obesity, which is associated with low- grade, 

sustained, and systemic inflammation, termed obesity-related inflammation) [60].
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Epicardial adipose tissue (or epicardial fat) is the adipose tissue depot mainly 
surrounding the epicardial coronary vessels (Figs.  8.3, 8.4, 8.5, and 8.6). It is a 
metabolically active part of the heart and it secretes numerous bioactive molecules, 
such as inflammatory adipokines, growth factors, and cardioprotective factors. A 
recent meta-analysis demonstrated that epicardial adipose tissue is significantly 
thicker in patients with coronary artery disease compared to healthy patients [61]. 
Numerous studies propose that interactions occur between the epicardial adipose 
tissue and the remodeling myocardium, which underpin the etiology of coronary 
artery disease, various metabolic syndromes, and atrial fibrillation [62–64]. A num-
ber of studies have shown that epicardial adipose tissue causes an overproduction of 
several pro- and anti-inflammatory cytokines and bioactive substances, including 
leptin, tumor necrosis factor-alpha, and adiponectin [65, 66]. The protein hormone 
adiponectin can be produced by other cell types, including cardiomyocytes. Under 
physiological conditions, its expression level in cardiomyocytes is significantly 
lower than in adipose tissue. The main source of plasma adiponectin is the adipose 
tissue [67]. Adiponectin is a protective factor for the heart. It is characterized by its 
anti-inflammatory, anti-atherogenic, anti-apoptotic, and anti-hypertrophic effects. 
Many studies show that adiponectin levels decrease in patients suffering from dia-
betes mellitus, coronary artery disease, hypertension, or dilated cardiomyopathy 
[68–70]. On the other hand, Takahashi et  al. [71] showed that adiponectin is 
expressed by injured cardiomyocytes in patients with myocardial infarction or 
dilated cardiomyopathy. Furthermore, Takano et al. [72] suggested that the heart 

Fig. 8.3 The epicardium of the human heart containing epicardial adipose tissue (EAT) visualized 
by light microscopy. Mes mesothelium, CV coronary vein, Myo myocardium (H&E stain, Orig. 
Magn. 50×)
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Fig. 8.4 Epicardium of the human heart containing epicardial adipose tissue (EAT) visualized by 
light microscopy. Mes mesothelium, CV smaller coronary vein or venule, Myo myocardium (H&E 
stain, Orig. Magn. 200×)

Fig. 8.5 A human heart visualized by scanning electron microscopy showing epicardial adipose 
tissue (Orig. Magn. 34×)
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releases adiponectin in response to left ventricular dysfunction, resulting in the ele-
vation of adiponectin plasma levels [73], which is a predictor of mortality in patients 
with chronic heart failure [74].

It should be noted that the effect of weight loss on the reduction of epicardial 
adipose tissue is still controversial. For example, Wu et al. [75] examined the vol-
ume of epicardial adipose tissue (measured using CT scans) in two groups of over-
weight or obese patients. The first group underwent bariatric surgery, and the second 
group participated in a 3-month aerobic exercise and low-calorie diet program. 
Surprisingly, the epicardial adipose tissue was found to be unaffected by weight loss 
in both groups of patients. A meta-analysis reported by Rabkin and Campbell [76] 
suggested that significant epicardial adipose tissue reduction only occurred with 
improved diet and bariatric surgery, but not with exercise.

5  Cardiac Mast Cells

Mast cells are connective tissue cells of hematopoietic origin. They originate from 
CD34+ hematopoietic progenitor cells of the bone marrow and differentiate in sites of 
connective tissue throughout the human body, including the heart. The internationally 
accepted histological nomenclature, the Terminologia Histologica [38], distinguish 

Fig. 8.6 A human heart visualized by scanning electron microscopy. A group of adipocytes from 
the epicardium surrounded by a delicate network of reticular fibers. The lumen of a small coronary 
vessel is observed (CV) (Orig. Magn. 372×)
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two basic types of mast cells. The first type is associated with loose connective tissue 
of the adventitia of blood vessels (the so-called perivascular mast cells). The second 
type is localized predominantly in the mucosa (mucosal mast cells), especially in the 
respiratory and digestive systems [77]. Over the last decades, many scientists have 
defined another resident population of mast cells: the cardiac mast cells. An increased 
number of cardiac mast cells have been reported in different chronic or acute diseases 
of the cardiovascular system, such as dilated cardiomyopathy, hypertension, chronic 
cardiac volume overload, and myocardial infarction [78]. It is assumed that cardiac 
mast cells probably participate in myocardial dysfunction and myocardial remodel-
ing, but the precise mechanisms are presently unknown.

Mast cells are easily identifiable in histological tissue sections (Fig. 8.7). They 
are ovoid with a single spherical nucleus and many cytoplasmic granules. These 
granules stain intensely and metachromatically (a characteristic change in the color 
of the applied dye) in the presence of basic dyes, such as toluidine blue or thionine. 
At the ultrastructural level, the cytoplasmic granules of mast cells are diverse. Some 
are electron-dense, and others form scrolls or crystals [79]. In recent decades, 
monoclonal antibodies have been commonly used for immunohistochemical identi-
fication of mast cells in tissue sections. Anti-tryptase antibodies represent the “gold 
standard” for identifying mast cells in human tissues. Tryptase, a trypsin-like serine 
protease, is specific for mast cells. Other markers enriched in human cardiac mast 
cells include IgE receptor, CD117 (c-kit), p24 antigen, Pgp-1 homing receptor 
(CD44), and ICAM-1 antigen (CD54). However, these can also be expressed by 

Fig. 8.7 A human heart visualized by light microscopy. Ovoid-shaped mast cells (arrows, anti-
 CD117 antibody, brown color) are observed between adipocytes in the epicardium. 
Diaminobenzidine was used as a chromogen (Orig. Magn. 400×)
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many other types of cells and, thus, are not mast cell-specific [80]. For example, 
CD117 is frequently used to identify not only mast cells, but also cardiac muscle 
progenitor cells [81] and telocytes [82].

Cardiac mast cells are frequently localized in close proximity to blood vessels. 
This suggests that circulating antigens or drugs used during disease treatment or 
diagnostic procedures can easily reach these cardiac mast cells [79]. Mast cells store 
and release a variety of biologically and pharmacologically active mediators. Some 
of these, such as histamine, heparin, and serine proteases (tryptase and chymase), 
are stored in cytoplasmic granules. Other vasoactive and cell signaling mediators, 
such as leukotriens, interleukins, and prostaglandin D2, are released from the cell 
membrane during mast cell activation [83]. Furthermore, cardiac mast cells contain 
and release renin, which initiates local angiotensin formation. This may result in 
coronary vasoconstriction, arrhythmias, and fibrosis [84].

In general, cardiac mast cells are responsible for immune reactions and inflam-
mation. Mast cells manufacture a wide variety of proteases, cytokines, growth fac-
tors, and vasoactive substances that may influence myocardial remodeling [85]. 
Mast cell proteases are capable of activating collagenase, and other mediators, such 
as tryptase and chymase, have the ability to activate metalloproteinases [86]. In 
recent years, numerous interesting studies have been published that focused on the 
role of cardiac mast cells during the pathogenesis of cardiac diseases (mostly in 
animal models). For example, Levick et al. [87] demonstrated a causal relationship 
between cardiac mast cells and the development of left ventricular fibrosis in 
response to hypertension. A significant increase in cardiac mast cell density was 
also observed to correlate with cardiac hypertrophy and heart failure. For these rea-
sons, mast cells may contribute to the development of cardiac hypertrophy and heart 
failure [88]. Finally, mast cells may play a role in the etiology of eosinophilic coro-
nary periarteritis, a rare eosinophil-induced inflammation associated with spontane-
ous coronary artery dissection and sudden cardiac death [89].

The activity of mast cells can be modulated be exercise. In a rat model, for exam-
ple, Phungphong et al. [90] found that regular exercise had a protective effect on the 
heart by inhibiting the degranulation of mast cells.

6  Cardiac Mononuclear Phagocytic Cells

In general, cardiac immune cells are gaining interest for the roles they play in patho-
logical remodeling in a number of cardiac diseases [91]. These immune cells include 
T-lymphocytes and macrophages. B-lymphocytes are less numerous in the human 
myocardium [92].

Macrophages belong to the mononuclear phagocytic system and are part of the 
innate immune system. They play a role in the maintenance of normal tissues by 
ingesting dead cells and cellular debris and breaking them down with lysosomal 
enzymes. Macrophages participate in the immunological response. They are the first 
line of defense against infection. There are two predominant hypotheses regarding 
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the origin of macrophages. The traditional model states that blood monocytes give 
rise to all tissue macrophages. The second hypothesis assumes a prenatal coloniza-
tion of tissues by resident macrophages derived from embryonic yolk sac progeni-
tors. These macrophages persist throughout adulthood and self-renew without input 
from circulating monocytes [93–95].

Macrophages secrete a variety of cytokines, pro-inflammatory molecules, and 
trophic mediators. Some of these have been suggested to inhibit apoptosis in 
hypoxic cardiomyocytes or promote neonatal heart regeneration [96]. In various 
cardiac diseases, such as ischemic heart disease and idiopathic dilated cardiomy-
opathy, the expansion of macrophage populations occurs [97]. Cardiac macrophages 
may contribute to tissue remodeling during chronic pressure-overload heart failure 
or heart fibrosis through the activation of myofibroblasts [98, 99]. The role of mac-
rophages in inflammation after a myocardial infarct indicates that these cells are 
absolutely necessary for adequate wound healing and scar formation [100].

There is only one scientific article that describes the link between cardiac macro-
phages and physical exercise. In a study by Botta et al. [101], the infiltration of the 
hearts of diabetic mice by F4/80+ macrophages was attenuated by exercise, which 
consisted of animals running on a motorized exercise wheel system.

7  Cardiac Endothelial Cells and Pericytes

Endothelial cells resemble simple squamous epithelial cells. They have their own 
basal lamina and line blood vessels. The internationally accepted Terminologia 
Histologica describes them as an epithelial tissue [38]. On the other hand, they are 
of mesodermal origin and can produce collagen type IV. Therefore, endothelial cells 
are also considered to be connective tissue cells. Inside the heart, there are two dif-
ferent populations of cardiac endothelial cells:

• vascular endothelium (lining the luminal surface of the coronary vessels; Fig. 8.8)
• endocardial endothelium (a continuous monolayer of cells that line the cavities 

of the heart; Fig. 8.9).

The differences between these types of endothelial cells are apparent only on the 
ultrastructural level. For example, endocardial endothelial cells have Weibel-Palade 
bodies in their cytoplasm, which contain von Willebrand factor [102]. Additionally, 
endocardial endothelium has a different cell shape, cytoskeletal organization, and 
permeability than vascular endothelium [103]. From an embryological point of 
view, vascular endothelium originates from the epicardium, and endocardial endo-
thelium originates from the cardiogenic plate [104].

Both vascular and endocardial endothelial cells play a role in controlling the 
contractility of cardiomyocytes by releasing various biologically active autocrine 
and paracrine agents. Cardiac endothelial cells produce nitric oxide, endothelin-1, 
prostaglandin I (2), angiotensin II, and other factors [104, 105]. All of these sub-
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Fig. 8.8 A human heart visualized by scanning electron microscopy. The lumen of a small thin- 
walled vessel (probably a venule) lined with vascular endothelium (VaEn) is observed. The endo-
thelial cell nuclei protrude into the lumen. Some cardiac muscle cells of the myocardium (Myo) 
are also observed (Orig. Magn. 1650×)

Fig. 8.9 A human heart visualized by scanning electron microscopy. Surface endocardial endothe-
lium is observed beneath a subendothelial layer of loose connective tissue and cardiac muscle cells 
in the myocardium (Myo). (Orig. Magn. 599×)
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stances directly influence cardiac metabolism, growth, contractile performance, and 
rhythmicity of the adult heart.

In recent years, endothelial progenitor cells that contribute to angiogenesis have 
been identified as a circulating cell population in the peripheral blood. They are 
derived from the bone marrow [106]. Endothelial progenitor cells are rare in the 
circulation, but they can be mobilized into the circulation from the bone marrow by 
vascular trauma or some types of cytokines. They may be associated with some 
degenerative diseases, such as progressive progenitor cell deficits that may contrib-
ute to the development of atherosclerosis [107]. The study of Rehman et al. [108] 
demonstrated that exercise can acutely increase two distinct cell populations that are 
known to be involved in angiogenesis and endothelial repair. These include circulat-
ing endothelial progenitor cells, which may supply new endothelial cells to the vas-
culature, and circulating angiogenic cells, which secrete growth factors that promote 
endothelial growth and angiogenesis. Furthermore, Adams et al. [109] confirmed 
that there is an increase in the number of circulating endothelial progenitor cells in 
patients who undergo exercise-induced myocardial ischemia after exercising on an 
electronically braked bicycle. It seems that an ischemic stimulus may trigger the 
release of endothelial progenitor cells from the bone marrow in the peripheral blood. 
These results are in accordance with a recently published meta-analysis of 16 differ-
ent studies [110]. This meta-analysis found that exercise training improved endo-
thelial function in patients suffering from heart failure. It is likely that bot, acute and 
chronic exercise have the potential to mobilize endothelial progenitor cells, which 
are important players in endothelial repair.

Pericytes (Rouget cells) are cells closely encircling endothelial cells in capillar-
ies and microvessels. They have a branched, flattened cytoplasm and oval nuclei. 
The antigenic profile is important for immunohistochemical identification, and it 
includes the expression of CD146, PDGFR-beta, and alkaline phosphatase [111]. In 
general, pericytes are involved in the preservation of vascular homeostasis, includ-
ing the regulation of blood flow, angiogenesis, structural stabilization of the vascu-
lature, and vascular permeability [112]. However, the functions of pericytes are 
varied. The initial hypothesis that pericytes are only supportive perivascular cells 
can now be considered obsolete. These cells should be considered to be 
 heterogeneous, tissue-specific, and multipotent populations with myogenic, osteo-
genic, chondrogenic, and adipogenic potentials. In myocardial ischemia, pericytes 
have been shown to be involved in fibrosis and scar formation [112]. In skeletal 
muscle, pericytes accumulate in muscle as a type of mesenchymal stem cells and 
they contribute to the formation of new muscle fibers and vessel remodeling follow-
ing exercise (which increases the diameter of vessels and arteriolar density) [113].
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Chapter 9      
Myocardial Infarction and Exercise Training: 
Evidence from Basic Science                                      

Ivana C. Moraes-Silva, Bruno Rodrigues, Hélio J. Coelho-Junior, 
Daniele Jardim Feriani, and Maria-Claudia Irigoyen

Abstract In 2016, cardiovascular disease remains the first cause of mortality 
worldwide [1]. Coronary artery disease, which is the most important precursor of 
myocardial infarction (MI), is the main component of total cardiovascular mortality, 
being responsible for approximately seven million of deaths [1]. In approximately 
20% of infarcted patients, MI is recurrent in the first year after the event [2]. 
Moreover, among cardiovascular disease, coronary artery disease accounts for the 
most increased index of life years lost due to morbidity and/or mortality [1]. 
Sedentarism highly contributes to cardiovascular disease burden, especially for 
coronary artery disease, and is also one of the MI risk factors [3]. For many years, 
it was recommended to avoid physical activity after a cardiovascular event; nowa-
days, it is a consensus that exercise training (ET) should be part of cardiac rehabili-
tation programs. There is increasing evidence confirming that, when adequately 
prescribed and supervised, ET after MI can prevent future complications and 
increase the quality of life and longevity of infarcted patients [4, 5]. ET after MI 
follows international specialized guidelines; however, there are different protocols 
adopted by several societies worldwide in cardiac rehabilitation [6], and there is still 
lack of information on which type and regimen of exercise may be the ideal after 
MI, as well as how these exercises act to promote beneficial effects to cardiovascu-
lar and other organic systems. Thus, experimental studies are important contributors 
to elicit mechanisms behind clinical results, and to test and compare different ET 
protocols. Therefore, exercise prescription can be optimized, individualized, and 
safely practiced by patients. In this chapter, we present a brief review of MI patho-
physiology followed by an updated discussion of the most relevant discoveries 
regarding ET and MI in basic science.
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1  Pathophysiology of Myocardial Infarction

Coronary artery disease is characterized by the formation of an atherosclerotic 
plaque following a long-term and complex process [7]. Briefly, when the atheroscle-
rotic plaque suffers a rupture, the disruption of the endothelium stimulates a coagu-
lation process, which results in the formation of a thrombus. MI occurs when the 
thrombus occludes coronary blood flow and the surrounding myocardium area lacks 
oxygen supply, thus leading to the necrosis of the cardiac tissue. Depending on the 
level of the occlusion, the extent of the necrotic area, and the presence of collateral 
circulation, MI can be fatal or not.

When the heart survives to the ischemia, several events occur at molecular, cellular, 
neurohumoral, hemodynamic, and morphological levels. Adaptive stimuli start at 
early (until 72 h after MI) and late stages (more than 72 h), going through a pathologi-
cal remodelling process. As MI occurs, inflammation takes place in the necrotic area, 
where matrix metalloproteinases (MMPs) stimulate the disintegration of intermyocyte 
collagen, resulting in the loss of support tissue. The cardiac wall of the infarcted area 
gets thinner and the ventricular cavity dilates, a phenomenon known as infarct expan-
sion [8, 9]. Functionally, because of myocyte loss, there is a decrease in ejection vol-
ume, thus increasing preload due to elevated diastolic final volume, and an increase in 
ventricular wall stress. The elevated cardiac wall stress is a stimulus to serial myocyte 
replication, resulting in ventricular hypertrophy [9, 10]. The survival heart can con-
tinue its pumping function facing this new morphofunctional pattern for a long term; 
nevertheless when cardiac hypertrophy cannot compensate the increased ventricular 
volume, it suffers progressive ventricular enlargement and dysfunction [10].

There are several mechanisms which are altered after MI as cause or conse-
quence of the pathological remodelling process. These altered mechanisms can be 
seen in both, humans and experimental models, and encompasses hemodynamics, 
the autonomic nervous system, the baroreflex sensitivity, the renin-angiotensin- 
aldosterone system (RAAS), the sarcoplasmic reticulum calcium transient, the beta- 
adrenergic pathway, and oxidative stress [9, 11, 12]. Among others, these 
mechanisms are the main targets of pharmacological and non-pharmacological 
therapeutic strategies to improve cardiac prognosis after MI.

2  Experimental Models of Myocardial Infarction

Studies using rats and mice as animal models are conducted to better understand the 
mechanisms involved in the pathophysiology of MI, to study cardioprotective inter-
ventions, as well as to evaluate the processes that occur during and after myocardial 

I.C. Moraes-Silva et al.



141

remodelling, allowing the development of possible therapeutic approaches [13–15]. 
In the following sections, the reader will find a brief description of the most used 
animal models of MI in the context of ET adaptations.

2.1  Left Anterior Descending Coronary Artery Ligation (LAD)

LAD is one of the most used models of MI, since its repercussion on the organic 
systems is similar to the observed in human beings. In fact, LAD-induced MI causes 
autonomic dysfunction, impairment of baroreflex sensitivity (BrS), impairment on 
cardiac functioning and morphology, exercise intolerance, increase in proinflamma-
tory cytokines (PICs), among others [13, 14, 16–19].

LAD is performed after animal anaesthesia (ketamine (80 mg/kg) and xylazine 
(12 mg/kg) are commonly used as anaesthetics. After intubation, the animals are 
positive-pressure ventilated with room air at 2.5  mL, 65 strokes/minute with a 
pressure- cycled rodent ventilator. For induction of MI, a 2-cm left lateral thoracot-
omy is performed in the third intercostal space, and the left anterior descending 
coronary artery is occluded with a nylon (6.0) suture at approximately 1 mm from 
its origin below the tip of the left atrium. When experimental protocols using this 
models are performed, the studies usually subject a control group to sham surgery, 
where animals receive the same invasive interventions but are not subjected to myo-
cardial ischemia [13, 14, 16–19].

2.2  Ischemia-Reperfusion Model

Ischemia-reperfusion model has been used, generally, to study the effects of reper-
fusion stress on reactive oxygen species (ROS) behaviour [20, 21].

After anaesthesia and intubation for mechanical ventilation, the rats are sub-
jected to a procedure similar to that described previously in LAD model, in which 
the proximal left anterior descending artery is identified and the artery is then tran-
siently ligated (or can be tied by a slipknot) using a 6.0 nylon suture for a 30-minute 
ischemic period, but without exteriorization of the heart. To allow cardiac reperfu-
sion, microsurgical scissors are used to cut the knot in the ligature (or by releasing 
the slipknot), made by the 6.0 nylon suture, 30 minutes following ligation of the 
artery. In sham control rats, the procedure is identical, except for the artery which is 
not transiently ligated. The outflow is then briefly (1–2  s) pinched off on the 
 respirator to allow re-inflation of the lungs. The chest retractor is then removed and 
the ribs are drawn together using a 2.0 nylon suture with an interrupted suture pat-
tern. Once the ribs are closed, the outflow of the ventilator is again briefly (1–2 s) 
pinched off to ensure proper breathing. The skin is closed using 6.0 nylon sutures 
with a continuous suture pattern [22].
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2.3  Myocardial Infarction Induced by Isoproterenol

The induction of MI is performed through subcutaneous administration of isopro-
terenol at a dose of 150 mg/kg/day diluted in 2 ml of saline on two consecutive days 
with an interval of 24 h between applications. The false induction of MI in the sham 
group is performed by subcutaneous administration of 2 ml of saline on two con-
secutive days, also with an interval of 24 hours between applications [23].

3  Physical Activity and Exercise Training in the Context 
of MI: General Concepts

Before beginning data presentation about the protective or regenerative effects of 
physical activity (PA) and/or ET on MI, it is necessary to clarify the main concepts 
and recommendations involving both kinds of body movement. In fact, although 
similar, PA and ET have different concepts and, generally, cause distinct body adap-
tations. Moreover, these tools are applied in different contexts, depending on the 
purpose chosen by the healthcare team (e.g., physical educator, physiotherapists, 
nurse, physician) after evaluation and patient agreement.

The American College of Sports Medicine (ACSM) has defined PA as any body 
movement performed in response to voluntary muscle contraction that increases 
energy expenditure [24]. Thus, it is important to understand that blinks or shivering are 
not considered PA, even if they are types of body movement. On the other hand, walk 
for some minutes in the park talking with a friend is a PA, once the contraction of leg 
muscles is voluntary and the energy expenditure increases exponentially from baseline 
levels. In turn, ET refers to a more elaborated concept, which concerns a planned and 
structured body movement aimed to improve one or more physical capacities. ET has 
different designs, and can be introduced as, for example, aerobic and strength/resis-
tance exercise, swimming training, yoga, among others, depending on the approach.

The American Heart Association (AHA) describes PA as an important tool to be 
used in the prevention of a variety of pathologies, as hypertension, diabetes mellitus 
type II, obesity, as physical inactivity is strongly associated with cardiovascular 
disease risk factors, morbidity and mortality [25, 26]. Moreover, AHA strongly 
encourages the inclusion of PA in the lifestyle changes of patients who aim to 
decrease cardiovascular disease risk factors [25, 26]. General recommendations 
indicate that adults should achieve, at least, 150  minutes of moderate-intensity 
activity or 75 min of vigorous-intensity activity per week to prevent cardiovascular 
disease [25, 26].

In the context of cardiac rehabilitation and secondary prevention, ET is generally 
the used approach. Surprisingly, epidemiological data about its preventive effects 
are not elucidated, since prescription of ET are dependent on some factors, as exer-
cise volume, intensity, cadence, which are difficult to control in observational stud-
ies (i.e., follow-up). However, the effects of ET on cardiovascular disease risk 

I.C. Moraes-Silva et al.



143

factors are widely elucidated in clinical trials, experimental studies and observa-
tional studies (i.e., cross-sectional). For now, ET should compose the rehabilitation 
programs of cardiac patients, since its practice has been demonstrated to improve 
exercise tolerance, quality of life, functional capacities and job-related physical 
tasks, as well as decrease cardiovascular risk factors and cardiac mortality [26].

4  Physical Activity and Myocardial Infarction

In animal studies, PA can be mimicked by the voluntary run performed by the ani-
mals in a running wheel during a determined period. In the context of MI, authors 
have studied the posterior and previous plus posterior effects of PA on cardiac 
remodelling and functioning in infarcted mice. However, just few evidence have 
been published in this issue and more experiments are necessary.

In this sense, Bito et al. [27] studied the effects of PA posterior to MI on cardiac 
remodelling of infarcted mice. Thus, after MI, animals had free access to the run-
ning wheel during 8 weeks. To investigate cardiac remodelling, myocytes from the 
non-infarcted left ventricle were isolated and investigated regarding morphological 
and functional aspects. After several analyses, authors observed that sedentary mice 
showed a cardiac remodelling phenotype, characterized by increased heart weight- 
body weight ratio and cell width. PA was not effective to inhibit such morphological 
alterations and both groups presented similar results. In turn, cell shortening elicited 
by electrical stimulation, which was decreased in infarcted sedentary mice, was 
restored in the cardiomyocyte of infarcted mice which had access to the running 
wheel [27]. Further analyses showed that calcium transient was increased in ani-
mals from the PA group due to an elevated capacity of Ca2+ removal by Na+-Ca2+ 
exchanger (NCX) [27].

In turn, Puhl et al. [28] not only studied the posterior effects of PA on MI, but 
also the previous effects. Firstly, mice could voluntary run in a running wheel for 
6 weeks mimicking a PA context. After this period, mice underwent experimental 
MI and, 5 days after the surgery, were allowed to use the running wheel for more 
4  weeks. Similar to Bito et  al. [27], results indicated that PA did not modulate 
MI-induced cardiac hypertrophy, since increased organ weight and cardiomyocyte 
diameter were equally observed in both PA and sedentary groups. However, histo-
logical and magnetic resonance imaging analyses indicated that PA decreased 
 collagen content and scar formation of the whole left ventricle and in the scar region 
after MI, as well as partially inhibited the formation of apical aneurysms associated 
with left ventricle dilation. Authors also observed decreased MMP activity and 
mRNA expression of proinflammatory citokynes (i.e., TNF-α, IL-6 and IL-1β). 
These alterations on inflammatory state seem to have impacted cardiac morphology, 
as the mRNA expression of TNF-α was positively correlated with infarct size and 
collagen mRNA expression in sedentary mice, whereas this phenomenon was 
blunted and not showed in the exercised group.
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It is important to mention that mice from Bito et al. [27] ran in a larger average 
daily distance (~11  km/day) than animals from Puhl et  al. (~5  km/day) [28]. 
However, animals from Puhl et al. [28] ran during 10 weeks versus 8 weeks from 
Bito et al. [27]. Therefore, more evidence about the effects of PA on experimental 
MI are still necessary. Figure  9.1 depicts the main alterations induced by PA in 
experimental models of MI.

5  Exercise Training and Myocardial Infarction

As aforementioned, ET has been used as a powerful tool in cardiac rehabilitation 
programs, collaborating to improve prognosis, once its practice can revert some 
impairments observed after MI. Either aerobic (endurance) and resistance ET can 
be prescribed as part of the rehabilitation program. Nevertheless, the majority of the 
experimental studies were conducted having the aerobic training (performed on a 
treadmill) as choice. This may be due to a higher similarity to cardiac rehabilitation 
programs for humans, as aerobic training is predominant. Other methods of ET have 
also been studied in experimental models of MI as detailed in this section.

The benefits of ET on cardiac remodelling seem to occur in both phases: early and 
late. The early remodelling phase is characterized by the expansion of the infarcted 
area induced by degradation of the structural collagen presented in the extracellular 
matrix (ECM) by MMPs, which are secreted by the immune cells in response to 
MI-induced inflammation [8, 29]. In addition, in an attempt to preserve cardiac out-
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put, biological system alters the autonomic control of the heart and vessels favouring 
the sympathetic activity, thus increasing cardiac chronotropism (frequency) and inot-
ropism (strength), as well as the activity of molecules associated with adrenergic 
control as catecholamines and RAAS [8]. Even if such alterations act beneficially in 
the first hours after MI – collaborating to maintain blood perfusion to the tissues, 
and, consequently, nutrients delivery - over time these compensatory alterations will 
cause several malefic alterations in cardiac functioning and structure [8, 30].

ROS activity is increased from the early remodelling phase to the late remodelling 
phase in response to cardiac ischemia with or without reperfusion [21, 31, 32]. ROS 
synthesis and release are induced by several elements showed in the ischemic myo-
cardium including, but not limited to proinflammatory citokynes and RAAS [29, 30, 
32]. Once activated, ROS pathway will act triggering alterations on  cardiomyocyte, 
collaborating, for example, with cardiac hypertrophy induced by proinflammatory 
citokynes and RAAS [30]. On the other hand, activity of different elements of the 
antioxidant milieu (e.g., vitamin E, catalase, superoxide dismutase [SOD]) seems to 
successfully inhibit such alterations induced by ROS [21, 30]. Indeed, the myocar-
dium of transgenic animals overexpressing SOD shows abolished free radical gen-
eration, ameliorated recovery of contraction function and lower infarcted area after 
ischemia-reperfusion, in comparison with wild-type animals [20, 21].

Even if there are no evidence indicating the effects of ET posterior to MI in the 
early remodelling phase, an isolated result showed that 12 weeks of low-to- moderate 
aerobic exercise performed during 50  min, 5  days per week previously to MI 
induced by isoproterenol was effective to decreased infarction degree and ROS 
expression and activity in the heart of the trained rats in comparison with sedentary 
animals. Concomitantly, the authors observed decreased activity of antioxidant 
enzymes, as superoxide dismutase and catalase in the heart of sedentary rats. 
However, ET could attenuate this phenomenon [31]. However, the study did not 
accomplish additional analyses, as cardiac functioning, and inferences about the 
data are limited.

As abovementioned, besides its association with ROS, proinflammatory cito-
kynes have a marked influence on MMPs [29, 33]. Immediately after myocardial 
injury caused by ischemia, neutrophils migrate to the MI area and recruit MMPs, 
which induce collagen breakdown [29]. This phenomenon will induce fibroblast 
migration and, posterior, differentiation in myofibroblasts, which are crucial to 
fibrotic tissue formation (i.e., scar) [29, 33]. In summary, myofibroblasts causes 
accumulation of matrix collagen fibers, glycoprotein fibronectin, type III collagen 
replaced by type I collagen, formation of the fibrin clot and collagen-based scar [33].

Experiments have been indicating that ET can modulate this response, since ET 
performed previous and after MI reduces the components of the ECM remodelling. 
Bozi et al. [34], for instance, observed that 8 weeks of moderate ET previous to 
experimental MI decreased collagen content in the heart of rats. In relation to post-
 MI effects, Xu et al. [22] and Yengo et al. [35], showed that moderate ET performed 
during 8 and 10 weeks, respectively, decrease the collagen volume and content in 
the infarcted area. Moreover, further analyses of Xu et  al. [22], evaluated non- 
reducible collagen cross-linking (hydroxylysyl pyridinoline, HP) content - a marker 
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of the strength and maturity of the collagen – and observed normalized levels in the 
non-infarcted area and in the right ventricle of MI rats after ET [22]. None of the 
studies investigated the possible mechanisms associated with ameliorated collagen 
deposition in the heart of MI rats.

In front of this lack, inferences can be made by other studies which used similar ET 
programs. Rodrigues et al. [14], showed decreased TNF-α protein content and TNF-α/
IL-10 ratio in the left ventricle of MI rats subjected to 3 months of moderate aerobic ET 
[14]. In addition, a study from Melo et al. [36], seems to offer a better elucidation trough 
microRNA analyses, once the authors report that swimming ET increases MiRNA-29a, 
b and c expression on border region and remote myocardial of MI rats. These results 
were associated with decreases on collagen expression and content in ~45% [36].

Once ET showed effectiveness to decrease the percentage of collagen deposition, 
as well as normalized the levels of HP in the heart of MI rats, several studies hypoth-
esized that ET could revert and normalize scar formation after MI. Most studies have 
been evaluating scar formation through ventricular wall thickness measurement by 
echocardiographic analyses. This evaluation has been demonstrating strong correla-
tion with histological data. Results regarding scar formation are uncertain and can be 
exercise-dependent, since evidence indicate that after treadmill ET it is possible to 
observe an increase in wall thickness [13, 14, 17], whereas 10 weeks of swimming 
ET (60 min; 5 days/week) seems not to proportionate the same effect [36].

A last repercussion elicited by collagen degradation is wall thinning ventricular 
dilation, which strongly elevates systolic and diastolic wall stress [8]. In conjunc-
tion with other cellular signalling mechanisms associated with cytokines, RAAS, 
increased sympathetic nerve activity, catecholamines, and fetal genes, this phenom-
enon induces pathological cardiac hypertrophy.

ET has been extensively studied in this context, believed as a stress capable to 
counteract the pathological cardiac signalling triggered by MI. Regarding wall thin-
ning ventricular dilation, studies have demonstrated that ET can increase ventricular 
dilation [13, 14, 16, 17, 37, 38]. However, different from post-MI pathological 
remodelling, the ejection fraction is also increased indicating a physiological 
remodelling [13, 14, 16, 17, 37, 38].

When studying the effects of ET on MI-induced cardiac hypertrophy, data have 
been demonstrating that ET can attenuate cardiac remodelling. Such as in the con-
text of wall ventricular dilation, cardiac hypertrophy seems to be observed in con-
junction with data from cardiac functional analyses. In the experiment of Bozi et al. 
[34], for example, rats underwent 8 weeks of moderate ET (5 days/week;) previous 
to experimental MI. Animals were kept alive for 15 days after MI surgery and, then, 
euthanized. Results demonstrated that MI rats showed left ventricular remodelling, 
indicated by increased heart weight (HW) and HW-body weight (BW) ratio. 
Interestingly, ET rats also showed elevated HW and HW-BW ratio concomitantly 
with greater myocyte length and width than sedentary-MI [34]. However, contrary 
to sedentary MI rats, trained MI rats showed elevated cardiac functioning [34].

Autonomic dysfunction is also an important issue observed after MI, which has 
been associated with cardiac inflammation, remodelling and functioning, as well as 
strongly associated with several poor outcomes, including more increased mortality 
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[11, 18]. Indeed, in a classical study of La Rovere et al. [39], impaired baroreflex 
sensitivity (BrS) increased the risk of mortality in MI patients. On the other hand, 
ET attenuated cardiac mortality in a 10-year follow-up [4].

Several evidence from animal studies have been demonstrating that ET improves 
BrS and normalizes autonomic dysfunction – favouring parasympathetic activity – 
in MI animals [16]. In addition, after MI, it is possible to observe cardiac sympa-
thetic nerve sprouting associated with imbalance of adrenergic receptor (AR) [40]. 
The sympathetic activity maintained over time causes downregulation of the β1-AR, 
desensitization of β2-AR, and upregulation of β3-AR [40]. In the experiment of 
Chen et al. [40], ET was capable to normalize autonomic control and AR balance. 
Furthermore, in conjunction with ameliorated autonomic functioning, authors 
observed improvement of ventricular function, regional blood flow, decrease on 
proinflammatory cytokines, and reduced mortality [13, 14, 16].

ET has been shown effective to improve cardiac hemodynamics and functioning 
after the ischemic event [13]. It is important to highlight that studies in animal models 
have shown that the earlier the exercise program begins, the greater were the benefits 
in ventricular remodelling due ameliorated cardiomyocyte proliferation, angiogene-
sis and reduced apoptosis in cardiomyocytes [40]. However, the better “window” to 
start ET in rodents seems to be after 1 week of MI induction [13, 14, 16] since rats 
subjected to ET in the first days after MI showed elevated mortality [28].

Regarding the protective effects of ET, studies have shown that ET previous to 
MI can protect cardiac function after the event. In fact, rats submitted to a swim-
ming protocol and subsequently induced to MI showed preserved left ventricle 
function, indicated by left ventricular end-systolic diameter, left ventricular end- 
diastolic diameter, and left ventricular shortening fraction [37, 38]. Moreover, 
results from treadmill ET added data and indicated that previous MI exercise can 
also improve echocardiographic parameters, prevent BrS impairment, as well as 
autonomic dysfunction [17]. Results from experiments performed after MI are not 
different and showed ameliorated cardiac functioning in MI rats after ET (50–70% 
VO2max, for 1 h a day, 5 days per week) [13, 14, 16, 17].

Lastly, results have demonstrated to be controversial in relation to the effects of 
ET on MI area. In summary, MI area is an evaluation that quantifies cardiomyocyte 
akinetic and kinetic area. Several studies have been demonstrating the effectiveness 
of ET to cause significant decrease on MI area, evaluated by echocardiographic 
(i.e., MI akinetic area) and histologic (i.e., fibrosis score) analyses [13, 14, 16, 19]. 
However, this phenomenon is not observed after swimming ET [36].

During the period of cardiac rehabilitation, some events can make the patient 
stop the practice of ET avoiding the ideal adherence to the rehabilitation program, 
such as vacation, travels, economical issues, or even the desire to “take a break”, 
although it is not advisable. In this sense, Barboza et al. [13] and Rodrigues et al. 
[17] investigated whether 1 month of detraining could reverse the beneficial effects 
of moderate ET after MI. Results showed that the reduction in MI area, fibrosis 
score, cardiac morphology and functioning, BrS, proinflammatory state and sur-
vival observed after ET did not vanish after 1  month of detraining in rats [17]. 
However, longer breaks were not studied.
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Resistance ET, also called as strength training, is being increasingly prescribed 
to patients with cardiovascular complications, from hypertensive to heart failure 
patients. Indeed, several evidence have been demonstrating that resistance ET can 
participate in conjunction with aerobic ET, or even alone, in the control of blood 
pressure values in hypertensive patients [41, 42]. Regarding MI, data from basic 
research are still very limited.

In front of this lack in the literature, Grans et  al. [19] subjected MI-rats to 
12 weeks of low to moderate (40–60% of the maximum strength) resistance ET   
program. After the resistance ET program, differences were not observed in the MI 
size between the infarcted groups. Further analyses showed similar increase in left 
ventricle mass and relative wall thickness  – an indicator of scar formation  – in 
trained groups (i.e., non-MI and MI rats), with significant differences observed 
between trained-infarcted and sedentary-infarcted rats, in favour of the trained 
group. These data suggest a positive cardiac remodelling elicited by resistance ET 
in MI rats. To verify whether data of cardiac function could corroborate with mor-
phological data and indicate a beneficial physiological hypertrophy after resistance 
ET, the cardiac function was analysed. However, results did not demonstrate altera-
tions on ejection fraction [19]. Moreover, data demonstrate ameliorated autonomic 
function, indicated by a decrease in both cardiac and vascular sympathetic modula-
tion, concomitantly with an increase in the parasympathetic modulation [19]. 
Therefore, more evidences regarding the effects of resistance ET on MI-induced 
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Fig. 9.2 Main effects of exercise training (ET) in experimental myocardial infarction (MI). 
Aerobic ET performed on a rodent-adapted treadmill is the most studied method. BrS baroreflex 
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cardiac remodelling are still necessary. Figure 9.2 summarizes the main positive 
effects of ET in experimental MI.

6  Exercise Training and MI Associated with Chronic 
Diseases or Conditions

MI can be associated with other pathophysiological conditions which are usually 
present previously to the cardiac event, acting, indeed, as a MI risk factor or as 
additional complication factors after MI.

6.1  Menopause

Menopause is characterized by several hormonal alterations in adult women, mainly 
in the estrogen levels, which declines around 60% [43]. Since estrogen is strongly 
associated with endothelial function, fat deposition, inhibition of vascular smooth 
cells growing, among others, its decrease during menopause collaborate to increase 
the cardiovascular risk during this period [44]. In fact, during this phase of life, 
women commonly show high blood pressure values, increased intima-media thick-
ness of the carotid and femoral arteries, increased arterial stiffness, as well as 
impairment of flow-mediated vasodilation [45]. Therefore, menopausal women 
show elevated risk to suffer from MI [46, 47]. Lifestyle changes, including the prac-
tice of ET, have been strongly suggested to this population, in an attempt to mitigate 
the risks and comorbidities associated with menopause [48].

In this sense, some experiments have been designed to identify the impact of ET 
on menopausal MI rats. In the experiment of Almeida et al. [47], authors underwent 
ovariectomized (OVX) rats to MI and, 2 weeks later, started ET. The protocol of 
exercise occurred 5 days per week, during 8 weeks. Results did not demonstrate 
effectiveness of ET to alter MI extension. Therefore, MI extension was similar 
between OVX MI sedentary and trained rats. Fluorescence analyses indicated that 
SOD production was increased in the heart of MI rats. However, ET could prevent 
this alteration. Protein expression of components of the RAAS system (i.e., AT1 
receptor) was increased in the heart of ovariectomized MI rats when compared to 
sham group. However, ET decreased the expression of  these proteins, as well as 
increased catalase. Lastly, ET decreased collagen deposition in the left ventricle, 
which was high in OVX MI rats [47]. Taken together, these data indicate that ET 
could modulate pathways associated with cardiac remodelling. However, the absence 
of a morphological alteration (i.e., MI) could indicate that, to this population, ET 
program must be different, using, for example, a longer time of intervention.

Nevertheless, another study, which also underwent OVX MI rats to ET, showed 
improved BrS, cardiac autonomic control and resting bradycardia in the animals 
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after ET [46]. Moreover, correlations were observed between autonomic improve-
ments (reduction of sympathetic activity and increased in vagal activity) and brady-
cardic response, which suggests that improvement in BrS would occur due to 
improvement of autonomic control [46].

6.2  Diabetes

Diabetes is related to several cardiovascular risk factors, such as: dyslipidemia, ath-
erosclerosis, diabetic autonomic neuropathy, inflammation, increased ROS forma-
tion, impairment of flow-mediated vasodilation, among others [49, 50].

When together with cardiovascular disease, as MI, additional complications are 
observed in diabetic rats, such as augmented autonomic impairment represented by 
reduced BrS and vagal tone. Moreover, cardiac autonomic dysfunction was associ-
ated with impaired hemodynamic function and cardiorespiratory capacity, as well 
as increased mortality rate [51]. On the other hand, when diabetic and infarcted rats 
underwent ET, animals showed increased mRNA and protein expression of vascular 
endothelial growth factor (VEGF), as well as regularization in the elements involved 
in calcium handling, to quote: SERCA2, Na+–Ca2+ exchanger, SERCA2/ 
phospholamban ratio and phosphor-thr17-phospholamban. In addition, authors 
observed normalization in the hemodynamic function and in regional blood flow, as 
well as improvement on autonomic function [51]. Lastly, ET collaborates to reduced 
mortality rate in diabetic infarcted rats [52].

6.3  Obesity

Obesity is another pathology associated with cardiovascular abnormalities. Besides 
its effects on metabolic profile, obesity also affects heart structure and function [53]. 
Moreover, adipose tissue is strongly associated with elevated inflammatory and 
ROS markers, both elements that collaborate to elevated cardiovascular disease and 
development of MI [54]. In this sense, in a study designed to identify the effects of 
ET on obese MI rats, authors observed that, after exercise, the heart of the animals 
showed decreased ROS protein expression and activity, as well as increased antioxi-
dant activity. These alterations were associated with increased survival rate [54].

7  Conclusions

Corroborating international guidelines for cardiac rehabilitation, experimental stud-
ies confirm that exercise is of great importance to optimize cardiovascular recovery 
after MI, and shed light on the mechanisms that may respond for cardiac alterations 
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after MI and for the beneficial adaptations promoted by ET. As seen in this chapter, 
ET acts in key mechanisms of cardiac remodelling and cardiovascular control after 
MI, thus contributing both to prevent or postpone harmful adaptations, and even to 
recover from negative alterations caused by cardiac ischemia. Translational studies 
regarding ET associated with MI should be performed in order to a build parallel 
knowledge between basic and clinical science.
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Chapter 10
Cardiac Ischemia/Reperfusion Injury:  
The Beneficial Effects of Exercise

Juliana Pereira Borges and Karine da Silva Verdoorn

Abstract Cardiac ischemia reperfusion injury (IRI) occurs when the myocardium is 
revascularized after an episode of limited or absent blood supply. Many changes, 
including free radical production, calcium overload, protease activation, altered mem-
brane lipids and leukocyte activation, contribute to IRI-induced myocardium damage. 
Aerobic exercise is the only countermeasure against IRI that can be sustained on a 
regular basis in clinical practice. Interestingly, both short-term (3–5 days) and long-
term (several weeks) exercise increase myocardial tolerance, reduce infarct size area 
and arrhythmias induced by IRI. Exercise protects the heart against IRI in a biphasic 
manner. The early phase of cardioprotection occurs between 30 min and 3 h following 
an acute exercise bout, whilst the late phase is achieved within 24 h after the exercise 
bout and persists for several days. As for the exercise intensity, although controversial 
data exists, it is feasible that the amount of cardioprotection is proportional to exercise 
intensity and only achieved above a critical threshold. It is known that aerobic exercise 
produces a cardioprotective phenotype, however the mechanisms responsible for this 
phenomenon remain unclear. Apparently, aerobic exercise-induced preconditioning is 
dependent on several factors that work together to protect the heart. Altered nitric 
oxide (NO) signaling, increased levels of heat shock proteins (HSPs), enhanced func-
tion of ATP-sensitive potassium channels, increased activation of opioids system, and 
enhanced antioxidant capacity may contribute to exercise-induced cardioprotection. 
Much has been discovered from animal models involving exercise-induced cardiopro-
tection against cardiac IRI, however translating these findings to clinical practice still 
represents the major challenge in this field.
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1  Introduction

Coronary artery disease (CAD) continues to be one of the major causes of debilitat-
ing disease and death worldwide, making up more than half of all cardiovascular 
events in men and women <75 years of age. In United States, on average, every 34 s 
an individual has a coronary event, and approximately every 1 min 24 s, someone 
will die of one [1].

Several CAD complications (e.g. heart failure and myocardial infarct) are pri-
marily caused by IRI damages on the myocardium [2]. Considering that duration 
and magnitude of the ischemic insult predict tissue injury level or death, restoring 
local blood supply is crucial to reduce infarct size area [3]. Despite this, reperfusion 
through thrombolytic therapies or percutaneous coronary intervention may induce 
further damages ranging from functional impairments to cell death [4].

In light of the severity of IRI clinical outcomes, several researchers around the 
world have focused on studying new strategies to protect the heart against 
IRI. Although effective strategies protecting the heart have been discovered, trans-
lating these findings to clinical setting has been challenging [2].

In this scenario, physical exercise plays a key role as it may be the unique cardio-
protective strategy that can be easily applied regularly in clinical practice and actu-
ally improve patient’s outcome. Indeed, several studies have demonstrated that 
exercise not only reduces cardiovascular risk factors, such as hypertension and obe-
sity, but also promotes cardioprotection against IRI through a direct effect on the 
myocardium [5, 6]. Previous data have shown that a 20-week exercise training in 
treadmill significantly improved the intraventricular pressure and reduced the infarct 
size by 25% of rats submitted to 1 h of ischemia followed by 2 h of reperfusion [5]. 
Interestingly, it has been demonstrated that performing as few as three to five aero-
bic exercise sessions prior to an ischemic event are also sufficient to promote incre-
ment in left ventricle function [7, 8], reduce ventricular arrhythmias [9] and infarct 
size area [10–12] upon reperfusion.

Although it is clear that aerobic exercise produces a cardioprotective phenotype, 
the mechanisms responsible for this phenomenon remain unclear. It is believed that 
these mechanisms are multifactorial and include: (1) changes in coronary arteries 
(i.e., increased collateral circulation) [13, 14], (2) altered NO signaling [15–18], (3) 
increased levels of HSPs [19–21], (4) amplified myocardial cyclooxygenase-2 
(COX-2) activity [22], (5) elevated endoplasmic reticulum stress proteins [23, 24], 
(6) enhanced function of sarcolemmal and/or mitochondrial ATP-sensitive potas-
sium channels (KATP) [25, 26], (7) increased activation of opioids system [10, 11], 
and/or (8) increased cytosolic/mitochondrial antioxidant capacity [12, 27, 28].

The following sections describe the pathophysiology of cardiac IRI and how 
short and long-term exercise could benefit the heart by attenuating damages induced 
by IRI.

J.P. Borges and K. da Silva Verdoorn



157

2  Ischemia/Reperfusion Injury Pathophysiology

Ischemia consists of a lack of blood supply to the tissue. It can result due to aug-
mented tissue metabolism (as in exercise) without accompanying blood flow 
increase or due flow obstruction resultant from vasoconstriction, thrombosis or 
embolism. These blood supply/demand imbalances cause varying degrees of tissue 
insult depending on intensity and duration of ischemia and intrinsic tissue metabo-
lism. Under normal circumstances cardiac myocyte metabolism is predominantly 
aerobic (~95%) and therefore these cells possess a high oxygen demand. Of the 
great amount of produced ATP, about 2/3 is used by the contractile apparatus to 
afford contraction and 1/3 by active ion transport proteins (mainly SERCA and 
Na++K+-ATPase) to maintain ion balance [29, 30]. Upon ischemia, these cell pro-
cesses, and consequently cell function, will be greatly affected.

Inadequate oxygen supply rapidly decreases mitochondrial ATP production and 
depletes the cells high energy phosphates (mainly creatine phosphate). The under- 
perfused cardiomyocytes switch from oxidative to anaerobic metabolism and imme-
diately downregulate contraction adapting its mechanical work to its energy supply. 
Underlying mechanisms that trigger these adaptations involve depletion of creatine 
phosphate pool, accumulation of lactate and intracellular acidosis [3, 31]. Perfusion- 
contraction match decreases energy consumption and oxygen demand. These work 
and metabolic changes consist of a short-term (about 15 min of severe ischemia) 
defense mechanism to postpone irreversible injury and avoid cell death.

Anaerobic glycolytic metabolism is not only far from sufficient to sustain con-
traction and ionic balance, but it also has a biphasic nature. While at the onset of 
ischemia glycolytic activity is stimulated, with prolonged or severe ischemia it 
decreases because of impaired glucose delivery, glycogen depletion and accumula-
tion of inhibitory metabolites (its end products pyruvate and reduced nicotinamide 
adenine nucleotide – NADH2).

The ATP-depleted cardiomyocytes have compromised ATPase activity causing 
ionic imbalance. Reduced Na++K+-ATPase activity increases intracellular Na+ and 
is unable to impede net K+ efflux due to the opening of the KATP channels (gated by 
intracellular ATP/ADP). Accumulated hydrogen ions (H+), produced during anaero-
bic glycolysis, are exchanged for Na+ by the Na+/H+ exchanger (NHE). This coun-
teracts further intracellular pH reduction but adds even more Na+ to the intracellular 
pool contributing to cell swelling. Calcium efflux via plasmatic membrane Ca2+ 
ATPase (PMCA) and reuptake by the endoplasmic reticulum Ca2+ ATPase (SERCA) 
are impaired and cytosolic Ca2+ overload ensues (see Fig. 10.1 and video 10.1).

As ischemia advances, mitochondria accumulates ischemic damage (cardiolipin 
and cytochrome c lose into the cytosol and oxidative phosphorylation becomes 
uncoupled). These damages are mediated by mitochondria themselves, that in the 
presence of residual oxygen present a reduced flow of electron transport activity and 
consequent production of reactive oxygen species (ROS). Studies have demonstrated 
that blocking mitochondria electron transport chain activity (with amobarbital or 
rotenone, both block complex I reversibly) immediately prior to ischemia prevents 
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mitochondrial damages and preserves its respiratory function and cardiac myocyte 
viability [32, 33], confirming mitochondrial damage occurs during the ischemic 
period. During ischemia, low intracellular pH precludes the opening of mitochon-
drial permeability transition pore (MPTP) [34, 35], which would be greatly favored 
by the accumulated mitochondrial injuries.

Although restitution of blood flow should halt and rescue cells form progressive 
ischemic injury it actually triggers an adverse cascade of events and may precipitate 
death of more severely damaged cardiomyocytes. Reperfusion restores oxygen and 
nutrient supply, necessary for aerobic ATP synthesis, unfortunately accumulated 
mitochondrial ischemic injuries impair electron transport chain activity and cause 
accelerated and profuse ROS formation. Reperfusion-induced oxidative stress 
aggravates cardiomyocyte injuries since all cellular components are affected by 
ROS. The sarcoplasmic membrane has its fluidity and permeability altered, sarco-
plasmic reticulum becomes stressed, enzymes dysfunctional and NO (important 
protective signaling molecule) bioavailability is reduced. Reflow washes out 
extruded ions and metabolites, and brings with it cells of the immune system. 
Because extracellular and intracellular pH are normalized by removal of accumu-
lated H+ and lactate, MPTP is activated and mitochondrial membrane potential dis-
sipated. MPTPs are located in the inner mitochondrial membrane and form 
nonselective pores that, when opened, cause mitochondrial membrane depolariza-
tion and can result in water entry into the matrix, swelling and outer mitochondrial 
membrane rupture. This culminates with mitochondrial proapoptotic molecules 

Fig. 10.1 Pathophysiology of ischemia reperfusion injury. (a) Normal cardiac myocyte cell func-
tion and ion distribution. (b) Ischemia-induced cell damage and ion balance disruption. (c) 
Reperfusion-induced aggravated cell damage. ROS (reactive oxygen species); MPTP (mitochon-
drial permeability transition pore); SERCA (sarcoendoplasmic reticulum Ca2+ ATPase); NHE 
(sodium/hydrogen exchanger); NCX (sodium/calcium exchanger)
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release and cell death via caspase-dependent and independent mechanisms [36] 
(Fig. 10.1 and Video 1).

Intracellular Ca2+ overload is exacerbated during reperfusion, because SERCA 
and PMCA are still inactive and now cytosolic sodium is extruded in exchange for 
calcium by the Na+/Ca2+ exchanger (NCX). To prevent lethal increase in cytosolic 
calcium, mitochondria import Ca2+ into its matrix (via a Ca2+ uniporter), paradoxi-
cally if in excess mitochondrial Ca2+ activates MPTP opening. Free intracellular 
calcium also activates proteases (calpains), which damage myofibrils, degrade cyto-
skeletal, endoplasmic reticulum and mitochondrial proteins, and trigger intracellu-
lar signaling pathways (Ca2+/calmodulin-dependent protein kinases) that may 
conduct to cell death. Furthermore, inflammatory response can be elicited with 
reperfusion, due to ischemic cardiomyocytes release of proteins (damage- associated 
molecular patterns  - DAMP) and expression of toll-like receptors (TLR) causing 
leucocyte recruitment [37]. Activated neutrophils secrete ROS and leukotrienes and 
reduce endothelial NO availability, leading to microvascular damage (vasomotor 
dysfunction, increased permeability and angiogenesis) and possibly new vascular 
occlusion (due to endothelial cell swelling and neutrophil or platelet plugging), 
which hamper complete coronary flow restoration or lead to subsequent new isch-
emic episode [38–40].

Ischemia and reperfusion-induced cardiomyocyte homeostatic derangements 
may culminate with cell death. Major patterns of cell death are necrosis (also called 
oncosis), apoptosis and autophagy. Necrosis is defined as an uncontrolled process, 
characterized by organelle and cell swelling (therefore the term oncosis – cell death 
by oncotic pressure), plasmatic membrane rupture and intracellular content leakage, 
giving rise to inflammation and scar tissue formation. Recent evidence of molecular 
pathways activating necrosis outdated the uncontrolled nature of this pattern of cell 
death, giving rise to the term necroptosis. Although its pathway shares upstream 
signaling elements with apoptosis (such as TNF), it is a caspase independent and 
morphologically distinct form of cell death [41]. Differently, apoptosis is a geneti-
cally programmed, energy-dependent (ATP consuming) process that involves 
nuclear condensation, DNA fragmentation, phagocytosis of apoptotic bodies in the 
absence of inflammatory reaction. Specific extracellular (involving activation of Fas 
and TNFα receptors) and intracellular (mitochondria mediated) pathways regulate 
the apoptotic process mediated by caspase proteases. Autophagy, the third mecha-
nism of cell death, is actually a housekeeping and cell survival mechanism, whereby 
cell components (including damaged or unnecessary organelles) are captured 
degraded and recycled through vesicles that fuse to lysosomes. It is a process regu-
lated by autophagy-related genes (Atg), however under pathological conditions 
uncontrolled autophagy may lead to cell death [42, 43].

All types of myocardial cell death have been identified after IRI, although rela-
tive contribution of each type, as well as the moment of its trigger (during ischemia 
or reperfusion), remain obscure issues [44]. Experimental evidence points to initial 
cell death during prolonged ischemia, with reperfusion greatly exacerbating the 
magnitude of cardiomyocyte loss [45]. Even after periods of non-lethal ischemia, 
reperfusion injury triggers cell death. Importantly, reperfusion can elicit two waves 
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of cell death: the first one in the acute initial phase of reperfusion injury and the 
second one in a more chronic period (days) post-reperfusion. While the mechanisms 
responsible for the acute phase of reperfusion cell death were described previously 
(excess ROS, Ca2+ overload and MPTP activation), the mechanisms in post- 
reperfusion cell death include reminiscent irreversibly injured myocytes (once cell 
death can take several hours to completion), regions of myocardial no-reflow and 
progressive inflammatory reaction [46].

Due to limited capacity of cardiac myocytes for proliferation, even low levels of 
cell death can result in myocardial functional impairment. Identification and quan-
tification of the different types of cell death may help to understand consequent 
myocardial structural composition and the resultant functional behavior.

2.1  Levels of Post-reperfusion Myocardial Dysfunction

In the previous section a spectrum of cell derangements elicited by ischemia and 
reperfusion was described. The level of myocardial function impairment that will 
ensue depends on duration of ischemia, extent of committed area and pattern of 
reperfusion.

Early and prompt restitution of coronary flow after an ischemic episode may 
result in reperfusion arrhythmia. It occurs immediately with the onset of reperfusion 
and is explained by large intracellular calcium oscillations. Short periods of isch-
emia followed by sudden reperfusion allow for cytosolic calcium overload and 
excess recycling upon restitution of ATP level. Repetitive extreme calcium oscilla-
tions result in transient ionic inward current and delayed after depolarizations [47]. 
This phenomenon is most likely to occur in the experimental setting where abrupt 
reversion of coronary occlusion takes place. To date, only preliminary antiarrhyth-
mic action of selective inhibitors of NCX have been published [48].

A second level of myocardial dysfunction despite fully restored coronary flow is 
stunning. In the stunned heart revascularization is complete and successfully 
achieved in the absence of permanent damage, notwithstanding myocardial contrac-
tile function remains depressed. Full mechanical recovery can take hours, days or 
even weeks to be accomplished [49, 50]. The reduced mechanical efficiency is 
explained by an intracellular functional remodeling resulting in decreased respon-
siveness of the contractile filaments to Ca2+. It is an adaptive response triggered by 
Ca2+ overload and ROS damages to the contractile apparatus [51, 52]. It has been 
proposed that full myocardial recovery is accomplished after the damaged contrac-
tile proteins have been resynthesized [52].

Repetitive ischemia and stunning episodes can lead to a condition called hiberna-
tion, also characterized by myocardial hypo-contractility. In this condition, 
depressed contractile function due to limited blood perfusion prevails. It is a vascu-
lar dysfunction in the absence of cell damage enabling cardiomyocytes to resume 
contractile activity when revascularization takes place. Nevertheless, with pro-
longed chronic hibernation cardiomyocyte may atrophy and dye. Although the two 
conditions, stunning and hibernation, can coexist, the first one is a hypo-contractile 
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period caused by full reperfusion and hibernation refers to hypo-contractile but 
viable myocardium under limited blood flow [53].

Periods of prolonged ischemia followed by revascularization elicit the most 
severe level of IRI. Cardiomyocytes become irreversibly damaged and substantial 
cell death can lead to tissue remodeling, progressive cardiac dysfunction and chronic 
ischemic cardiomyopathy.

3  Cardioprotection Against Ischemia/Reperfusion Injury

Due to this major clinical problem, investments in therapeutic approaches to treat 
IRI have been considered of importance in the research field [54]. On this matter, 
Murry et al. [55] showed infarct size reduction after submitting anesthetized dogs to 
4 periods of 5 min coronary artery occlusion interspaced by 5 min-periods of reper-
fusion before the onset of a 40 min sustained coronary occlusion. This phenomenon, 
known as ischemic preconditioning, is a method whereby repeated brief ischemia 
episodes confer cardioprotection against a subsequent longer ischemic insult (as 
represented in Fig. 10.2A). It has been speculated that the preconditioning stimuli 
triggers a signaling cascade of intracellular events and thus create a memory effect 
that attenuates IRI. Among the putative mediators of this cardioprotection signal are 
bradykinin, norepinephrine, adenosine, inhibitory guanine nucleotide binding pro-
teins, free radicals, opioids, protein kinase C (PKC), sarcolemmal and mitochon-
drial KATP channels [56]. Ischemic preconditioning is a biphasic phenomenon with 
two distinct windows of cardioprotection – the first one occurs within few minutes 
after the ischemic insult and persists for only 1–2 h, while the second one starts after 
12–24 h of IRI and lasts for 48–72 h [57].

The initial observation of ischemic preconditioning has encouraged innumerous 
scientists to investigate other possible cardioprotective strategies [4, 54]. The major 
strategies developed so far are briefly presented below:

• Ischemic post-conditioning: in contrast to unimpeded reperfusion, slowly bring-
ing the heart out of ischemia salvages myocardial cells (Fig. 10.2B). This inter-
mittent reperfusion interspaced with brief periods of myocardial ischemia after a 
prolonged ischemic insult has been reported to attenuate IRI by reducing the 
infarct size [58, 59].

• Remote ischemic preconditioning: it was first described in 1993 [60] that brief 
episodes of ischemia in circumflex branch reduced the infarct size induced by 1 h 
of sustained left anterior descending coronary artery occlusion and 4.5  h of 
reflow. In other words, brief episodes of ischemia in one vascular bed protect 
remote myocardium from subsequent sustained coronary artery occlusion of 
another vascular bed. Unfortunately, the difficulty of accessing the heart’s arter-
ies may hinder the use of such strategy in most clinical interventions. On the 
other hand, cardioprotection has also been achieved by applying brief periods of 
ischemia to tissues or organs other than the heart, which could be easier for clini-
cal application [61].
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• Pharmacological preconditioning: volatile anesthetics used for analgesia during 
surgeries have been found to improve tolerance to myocardial ischemia and post- 
ischemic recovery [56]. Since then, these agents have been extensively used in 
patients undergoing surgery, especially when ischemia and reperfusion periods 
are planned [56].

• Exercise preconditioning: previous studies indicate that aerobic exercise prior to 
ischemia reperfusion improves myocardial tolerance to IRI [62] (Fig. 10.2C).

Repetitive exposure of the myocardium to ischemia eventually leads to cardiac 
dysfunction, while prolonged pharmacotherapy leads to tissue desensitization [63]. 
Aerobic exercise therapy, by contrast, is pragmatic in that it is cost effective and 
sustainable for extended treatment. Therefore, exercise preconditioning is consid-
ered the only viable therapy that may provide long-term protection against IRI from 
a scientific perspective [64]. Several studies have demonstrated that exercise not 
only reduces cardiovascular risk factors, such as hypertension and obesity, but also 
promotes a direct effect on the myocardium protecting against IRI-induced arrhyth-
mias [9, 65, 66], myocardial stunning [67–69], and myocardial infarction [10, 12, 70].

4  Exercise-Induced Cardioprotection Against Ischemia/
Reperfusion Injury

Cardioprotection afforded by exercise represents an increasing field of research. 
As seen in Fig.  10.3, the number of citations found on pubmed using the terms 
“exercise” AND “cardioprotection” has risen significantly since 1987.

Fig. 10.2 Representative diagrams of strategies developed to counteract ischemia reperfusion 
injury. (a) Ischemic preconditioning: repeated short episodes of ischemia followed by a subsequent 
prolonged ischemic insult. (b) Ischemic post-conditioning: intermittent reperfusion interspaced 
with brief periods of myocardial ischemia after a prolonged ischemic insult. (c) Exercise precon-
ditioning: aerobic exercise performed before ischemia reperfusion protects myocardium
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The notion that exercise training is cardioprotective against IRI is well estab-
lished in animal models [71, 72] and human epidemiological studies [73–75]. In 
fact, physically active individuals are less susceptible to cardiovascular events and 
have a greater survival rate following a heart attack in comparison with their inac-
tive counterparts [71, 73]. As for experimental settings, well-controlled animal stud-
ies beginning in the late 1970s have provided convincing evidence that long and 
short-term aerobic exercise elicit cardioprotection against coronary artery occlusion 
[5–8, 10–12, 76, 77].

Data on the cardioprotective effect of long-term (weeks to months) and short- 
term exercise (1–5 days) against IRI as well as its time course and the influence of 
exercise intensity are presented in the next sections.

4.1  Long-Term Exercise

The study of McElroy et al. [76] was one of the first to demonstrate that regular 
bouts of exercise training were capable to confer cardioprotection. In their study, 
rats were submitted to swimming 1 h/day, 5 days/week for 5 weeks and 24 h after 
the end of the training the rats underwent left coronary occlusion. Following 48 h 
after surgery, the authors observed a reduction in infarct size by 30% of exercised 
rats in comparison to controls (21.5 ± 1.9% vs 31.3 ± 2.6%; P < 0.05). Similarly, 
Brown et  al. [5] observed an enhanced cardiac function and 25% reduction in  
the infarcted area among animals trained for 20-week after 1 h of ischemia and  

Fig. 10.3 Number of citations per year since 1987 found on pubmed using the terms “exercise” 
and “cardioprotection”
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2  h of reperfusion. In addition, Powers et  al. [6] showed that, compared with 
untrained, exercised animals kept a higher systolic blood pressure throughout 
regional ischemia and reperfusion protocol after a 10-week endurance exercise train-
ing program.

Apart from these data, several other studies have underpinned that long-term 
exercise benefits the heart against all three levels of IRI [22, 67, 68, 78–81]. 
However, a criticism exists - most studies applied ischemia within 48 h after the last 
exercise session [6, 67, 78, 80, 81] and acute bouts of exercise have been demon-
strated to protect the heart against IRI for at least 48 h [12]. Therefore, this choice 
of interval between the last exercise bout and ischemia may have jeopardized the 
assessment of cardioprotection afforded exclusively by chronic training.

4.2  Short-Term Exercise

After the first evidence in the late 1970s that exercise training for several weeks 
provided cardioprotection against coronary occlusion [76], investigating the cardio-
protective effect of acute exercise was just a matter of time. Discovering if an intrin-
sic cardioprotective response could be rapidly acquired had crucial impact to 
understand the underlying mechanism and the exercise “dosage” required for opti-
mum protection [8].

In this sense, Locke et al. [82], using the retrograde perfused Langendorff heart 
preparation, observed that rats exercising for only three consecutive days also had 
improved post-ischemic developed pressure following IRI. However, just a single 
bout did not change any measure of post-ischemic cardiac function. Data from 
Yamashita et al. [12] partially concur with the results found by Locke et al. In this 
study, untrained rats and those exercised for a single bout of 30 min at 30 m/min 
were submitted to regional ischemia and reperfusion. The authors have demon-
strated that the rate–pressure product showed no significant difference among the 
groups after 20 min of ischemia or 30 min after reperfusion. However, exercised rats 
exhibited a marked decrease relative to control in the size of myocardial infarct.

On the other hand, Taylor et al. [8] after submitting 1 and 3 days trained rats to 
IRI found that cardiac output of both groups was equally superior than untrained 
rats. Several differences between the adopted experimental protocols in these stud-
ies, especially regarding the measured outcomes, ischemia/reperfusion protocol or 
exercise duration and intensity, could account for the discrepancy seen in the results. 
Nonetheless, although some authors advocate the opposite [82], most studies argue 
that a single exercise session would be enough to provide some degree of cardiopro-
tection against IRI [8, 12]. It is clearer, however, that at least three consecutive 
exercise sessions benefit the heart against IRI, as data in this sense accumulates in 
the literature [7, 10, 11, 77, 83].

The question that remains to be answered is whether short-term exercise provide 
cardioprotection against IRI just as effective as long-term exercise or not. Despite 
the lack of interventional settings focused in this specific matter, previous reviews 
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claim that exercise-induced cardioprotection following few exercise sessions is 
similar to long-term physical training [24, 62]. Given that exercise-induced cardio-
protection is a multifactorial process, it is tempting to assume that it involves differ-
ent mediators and magnitude according to the exercise protocol duration. Clarifying 
this issue would be important considering that the potential mechanisms involved in 
this response are still largely debated.

4.3  Exercise Training Intensity

When it comes to exercise intensity, the first question we ask is how much exercise 
is needed to protect the heart. Is there a minimum amount of exercise to achieve 
cardioprotection? Many researchers have been trying to answer this question, as the 
dose-response impact of aerobic exercise intensity on cardioprotection is extremely 
important. And the truth is that although findings from several studies provide 
insight into this matter [24], definitive answers remain unknown.

Before reviewing existing data on the effect of exercise intensity over cardiopro-
tection, it is important to revisit a concept of exercise prescription. There are two 
different methodologies to deal with aerobic exercise intensity: continuous or inter-
val exercise. Continuous exercise consists of maintaining submaximal power output 
and VO2 constant throughout the entire session, whilst interval exercise alternates 
periods of greater and lower intensity within an exercise session [84].

In one of the first investigations into the role of long-term exercise intensity in 
providing cardioprotection [85], rats were treadmill trained for 11–16 week at low 
intensity (20  m/min, 0% grade, 60  min/day), moderate (30  m/min, 5% grade, 
60 min/day) or intense (10 bouts of alternating 2-min runs at 16 and 60 m/min, 5% 
grade). After submitted to 25 min of global ischemia, all trained groups presented 
significantly greater post-ischemic cardiac output and work compared to sedentary 
rats. However, as intensity increased the greater was myocardial recovery.

Interestingly, a previous study [67] exercised rats daily for 6 week at low (20 m/
min, 0% grade, 60 min/day) or high intensity (5 bouts of alternating 1-min runs at 
75 and 20 m/min, 15% grade, 10 min/day). The high-intensity protocol improved 
myocardial functional recovery following 20 min of global ischemia in an isolated 
Langendorff perfusion model, but the low-intensity program did not. The same 
result was found by Starnes et al. [81], who showed that exercise training for 16 
week, 5 days/week 40 min/day below 55–60% VO2max did not achieve protection 
against IRI. Unfortunately, the earlier studies did not provide information regarding 
exercise intensity used in terms of VO2max. Regardless, it is feasible that there may 
be an exercise intensity threshold above which cardioprotection is achieved and that 
the amount of cardioprotection is proportional to exercise intensity [24, 86].

Controversially, Lennon et al. [87] concluded that both moderate- (i.e., 60 min/
day at 50% VO2max) and relatively high-intensity exercise (i.e., 60 min/day at 70% 
VO2max) performed during three consecutive days appear to be equally protective 
against IR-induced myocardial stunning. The discrepancy in results may be due to 
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the use of different exercise protocols in regards to: a) exercise training duration 
(long or short-term) that possibly alters the underlying mechanisms for cardiopro-
tection; and b) methodology for imposing intensity (continuous or interval) that 
could interfere in the amount of cardioprotection afforded. Besides investigating 
these issues, it would be interesting to assess the effects of exercise intensity follow-
ing different levels of IRI other than myocardial stunning, as all previous data in this 
matter were found after applying ischemia up to 25 min [67, 81, 85, 87].

Recently, to overload the physiological system and stimulate greater adaptations 
due to an increased shear stress, high intensity interval training (HIIT) has been 
increasingly prescribed to patients with cardiovascular diseases. Indeed, well- 
controlled clinical studies in patients with heart failure indicated that interval exer-
cise affords greater benefits in mitochondrial biogenesis, insulin sensitivity [88], 
and body fat reduction [89] than continuous exercise training. However, the poten-
tial role of HIIT in providing protection against IRI is still little understood.

Importantly, regardless of the choice for interval or continuous exercise, studies 
investigating the influence of training intensity on cardioprotection should use exer-
cise bouts with equal volume (understood as the interaction between training inten-
sity, duration and frequency) [90]. Otherwise, exercise sessions performed with a 
higher intensity might have a greater volume, which introduces bias in such experi-
ments designed to determine whether a given outcome was exclusively produced by 
exercise intensity or not. Unfortunately, exercise induced-cardioprotection has 
never been studied in exercise sessions with different intensities but equal volume.

4.4  Time Course for Exercise Cardioprotection

Similar to the ischemic preconditioning phenomenon, an interesting study revealed 
that exercise-induced cardioprotection is biphasic [12]. In this study, rats were exer-
cised for a single bout for 30 min at 30 m/min and then underwent regional cardiac 
ischemia/reperfusion (20 min/48 h) at 0.5, 3, 24, 36, 48, 60, and 72 h after exercise. 
The authors observed that the size of myocardial infarct after IRI in rats at 3, 24 and 
72 h after exercise was similar to untrained rats. However, rats subjected to ischemia 
at 0.5, 36, 48, and 60 h after the exercise session exhibited a significantly decrease 
in infarcted area in comparison to control rats. Thus, the first phase of cardioprotec-
tion is believed to start rapidly following an acute exercise bout (i.e., 0.5 h after 
exercise). Nonetheless, this early cardioprotection is quickly lost within 3 h post-
exercise. The second or late phase of exercise-induced cardioprotection is acquired 
within 24 h after the exercise bout and persists for several days.

As important as the time required to achieve cardioprotection is for how long 
after detraining the acquired phenotype is maintained. In Lennon’s study, short-term 
exercised animals (3 days of 60 min/day at 30 m/min) kept a higher cardiac work 
after global ischemia/reperfusion (20.5 min/30 min) at 1, 3, and 9 days post- exercise. 
The exercise-induced cardioprotection vanished by 18 days after exercise cessation 
[20]. As for long-term exercise, cardioprotection against IRI seems to persist for a 
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little longer. Esposito et al. have demonstrated that, although some cardioprotection 
was kept, 10-week trained rats had higher infarct size after 4 weeks of detraining [86].

4.5  Resistance Exercise Preconditioning

It is well established that resistance training induces cardiac hypertrophy due to 
pressure overload during training [91]. Although there is a notion that concentric 
and eccentric cardiac hypertrophy occurs in response to resistance and endurance 
training, respectively; more recent evidence cast some doubts over this proposal 
[92, 93]. In addition, previous data reported benefits of resistance exercise on car-
diac performance in patients with heart failure [94]. Even though it is not clear 
whether significant adaptation in cardiac structure is possible in individuals under-
going resistance exercise training, investigating the impact of this type of training 
on IRI is crucial.

Although convincing evidence exists that short and long-term aerobic exercise 
induce cardioprotection against IRI, the role of resistance training in protecting the 
heart in this sense is little understood. In this matter, only two studies from the same 
group have been developed so far [91, 95]. In the first one [95], rats were exercised 
in a squat-training apparatus (12 repetitions/set, 4 sets/day and 5  days/wk. for 
12 weeks) and after the training cessation underwent transient regional ischemia of 
left anterior descending coronary artery (40 min) followed by 80 min of reperfu-
sion. The authors observed that diastolic pressure and infarct size were smaller in 
trained rats whereas coronary flow and developed pressure were higher in trained 
than untrained rats during and after the cardiac insult.

Interestingly, the second study included identical protocol, except for the shorter 
resistance training duration, but found different results. Four weeks of resistance 
training did not significantly change the infarct size, apoptosis rate and myocardial 
tolerance against IRI. Therefore, the duration of resistance training seems to play a 
key role in inducing cardioprotection. This may be due to a required longer period 
to adaptations after resistance training to occur. Nevertheless, a precise conclusion 
about this issue needs more investigations.

5  Mechanisms Involved in Cardioprotection 
Against Ischemia/Reperfusion Injury

As described earlier, many changes that include calcium overload, free radical pro-
duction, altered membrane lipids, protease activation, and leukocyte activation, 
contribute to IRI-induced myocyte damage. In theory, any physiological effect elic-
ited by exercise that influences one or more of these events and attenuates myocyte 
damage, acts as a mechanism of cardioprotection. In this sense, exercise induces 
cardioprotection by multifactorial processes.
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The reported major mechanisms of exercise-induced cardioprotection include 
(Fig.  10.4): (1) increased antioxidant capacity, (2) increased levels of HSPs, (3) 
altered NO signaling pathway, (4) enhanced function of KATP channels, and (5) 
increased activation of the opioids system [54]. Other possible underlying mecha-
nisms such as: adaptations in coronary arteries (increased arteriolar diameter and 
density), elevated endoplasmic reticulum stress proteins, and amplified myocardial 
COX-2 activity are not manifested after an acute bout of exercise [23, 24, 62] and, 
although can contribute to chronic exercise cardioprotection, are not considered of 
critical importance.

When the body is under stress, such as hypoxia, hyperthermia, acidosis and isch-
emia, the synthesis of several important proteins that maintain homeostasis is com-
promised [23]. Our organism responds  to these stresses by synthetizing proteins 
termed HSPs that help maintaining homeostasis [71].

HSPs are classified into groups according to its molecular weight. Although 
many of them are related to cardioprotection, the HSP70 family deserves attention 
[23], especially HSP73 and 72. HSP73 is constitutively synthetized in all cells, and 
its level increase slightly after a stressful condition. Conversely, HSP72 is found 
only after stressful events, particularly IRI [96].

Not surprisingly, HSP70 is significantly increased in hearts of animals submitted 
to a single bout of aerobic exercise of at least 40 min [97] due to increased body 
temperature. In theory, elevated cellular levels of HSP72 can protect the myocar-
dium against IRI by repairing unfolded proteins and/or by stabilizing the function 
of endoplasmic reticulum via HSP70-related autophagy [98].

Indeed, Locke et al. [82] have demonstrated that three consecutive days of exer-
cise or heat stress increased HSP72 content and promoted greater myocardial recov-
ery after IRI than controls and rats exercised only once. Others support the hypothesis 
that cardioprotection induced by long-term [19, 21, 86] and short-term exercise [7] 
can be mediated by exercise-induced increase in HSP72 levels. Controversially, 
many studies compared animals submitted to exercise in a cold environment and 
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room temperature and found that, regardless of the amount of HSP72, cardioprotec-
tion was similar between groups [8, 70, 99]. In addition, Starnes et al. [81] stated 
that elevated myocardial HSP70 does not necessarily imply in improved protection 
against myocardial dysfunction, as they observed that exercise training increased 
HSP70 2.7-fold, but did not provide enhanced protection following 20  min of 
 ischemia. Therefore, although an increased HSP72 level may confer protection, this 
does not seem to be a prerequisite for exercise-induced cardioprotection [20].

5.1  Altered Nitric Oxide Signaling

The observations that exercise cardioprotective effect lasts longer than the return of 
antioxidant enzymes and HSP72 to pre-exercise levels suggested that another cyto-
protective molecule was responsible for providing protection during IRI [20]. This 
conclusion has stimulated studies focused in the involvement of NO in exercise- 
induced cardioprotection given that exercise induces an increase in NO that lasts for 
at least 1 week after the end of training [100, 101].

Exercise causes high vascular wall shear stress throughout the body, which in 
turn increases the expression and activity of eNOS [102] and iNOS [16], resulting 
in an increase in NO and its metabolites (nitrate and nitrosothiols) [100, 101]. The 
exact cardioprotective effects attributed to NO and its metabolites during IRI is a 
subject of much debate; however, hypothesized mechanisms include reduction in 
ROS, augmented coronary flow due to increased vasodilation, inhibition of calcium 
influx into myocytes, antagonism of β-adrenergic stimulation, reduction in cardiac 
oxygen consumption, and actions on sarcolemmal KATP channels through cGMP- 
PKG signaling [23]. Together, these changes could protect cardiac myocytes against 
IRI. Babai et  al. [16], for instance, showed that exercise reduced the severity of 
arrhythmias during IRI that was abolished after using a nitric oxide inhibitor. 
Although evidence of the involvement of NO in the cardioprotective effect of exer-
cise accumulates in literature [15, 17, 18], it should be mentioned that controversial 
data exist. Eventually, exercise may produce excessive NO that could react with 
anion superoxide, forming peroxynitrite, which is cytotoxic [103]. In addition, 
Taylor et al. [104] reported that exercise induced cardioprotection against IRI, even 
when NO production was blocked. Therefore, although the putative importance of 
NO signaling in providing cardioprotetion cannot be ruled out, it should be better 
addressed.

5.2  Antioxidant Capacity

Imbalance between oxidation-reduction reactions and cellular antioxidant defense 
mechanisms is called oxidative stress. ROS and other oxidants (including NO) are 
generated as by-products and intermediates of normal cell metabolism, these 
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chemicals also act as important molecules in signal transduction and gene regula-
tion. Therefore, oxidative stress involves not only direct damages to cellular compo-
nents (proteins, lipids, DNA and others) but also altered signaling pathways and 
control mechanisms [3, 105, 106].

As one of the hallmarks of IRI is the huge ROS production, especially at reperfu-
sion, exercise-induced adaptations of the myocardial antioxidant buffering system 
have been widely investigated. Superoxide dismutases (SOD) are molecules that 
promote dismutation of the superoxide radical (.O2

−) forming hydrogen peroxide 
(H2O2) and oxygen. Although not a free radical, H2O2 is also a potentially cytotoxic 
oxygen-derived molecule, that can be reduced by the enzyme glutathione peroxi-
dase (GPx) or converted into oxygen and water by catalase [107]. Strong evidence 
associate increased activity of the mitochondrial form of SOD (manganese SOD - 
MnSOD) to exercise-induced cardioprotection [12, 27, 99]. Importantly, French 
et al. [27] showed that the exercise-induced increase in MnSOD activity attenuated 
IR-induced oxidative modification of Ca2+-handling proteins and resulted in 
decreased calpain activation and ultimately cardiomyocyte death. The link between 
increased MnSOD activity and attenuated calpain activation was confirmed using 
MnSOD antisense oligonucleotide treatment. With the knockdown of MnSOD, 
protection against calpain activation was abolished and the cardioprotective effect 
lost [27].

Exercise-induced modulation of other antioxidants (such as catalase and gluta-
thione peroxidase) and synergistic action of these with different adaptations (stimu-
lation of heat shock proteins, for instance) can also be involved in the cardioprotective 
response [107, 108]. In addition, exercise variables as intensity and time of detrain-
ing should be considered when evaluating antioxidants involvement in cardiopro-
tection, since each bout of exercise benefits the myocardium for a limited period of 
time [12, 20, 86].

5.3  Sarcolemmal and/or Mitochondrial ATP-Sensitive 
Potassium Channels

Activity of KATP channels, highly expressed in the sarcolemma and mitochondria, is 
governed by intracellular nucleotides (ATP and ADP) concentration. KATP channels 
remain closed with stable ATP levels; however, metabolic stress-induced (e.g. 
hypoxia or ischemia) ATP reduction triggers the channel opening. Cardiomyocytes 
K+ efflux hyperpolarizes the cardiac cells and decreases the number of action 
potentials. This would limit Ca2+ entrance through L-type channels and prevent 
intracellular Ca2+ overload and the MPTP from opening [26, 109]. As a result, 
cardiac metabolic demand and electron transport chain activity decrease, thereby 
preventing ROS production and necrotic cell death. Therefore, KATP channels are 
thought to function as sensors monitoring cellular ionic and bioenergetic balance in 
order to preserve cardiac homeostasis during metabolic stress situations [23, 54].
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More recently, a great deal of interest has focused on KATP channels as underlying 
mechanism for exercise-induced cardioprotection. Convincing data exist demon-
strating that short-term [26] and long-term exercise [25, 110] increase the expres-
sion of cardiac sarcolemmal KATP, and that pharmacological blockage of 
mitochondrial and sarcolemmal KATP channels impairs cardioprotection [25, 
111–114].

Interestingly, sex specific levels of KATP channel expression were reported [115], 
suggesting varying degrees of exercise-induced cardioprotection between genders. 
Due to estrogen, female animals have higher levels of KATP channels, which subse-
quently provide enhanced cardioprotection against IRI following exercise [23].

Although association of exercise-induced cardioprotection and KATP channel 
opening is well established, the intracellular signaling cascade triggered by exercise 
and responsible for the opening of these channels remains unclear [54]. It is believed 
that phosphorylation of KATP channels by protein kinases, especially PKC via acti-
vation of opioid receptors, results in channel activity modulation [116, 117]. 
Previous data indicate that inhibiting both KATP channels and PKC do not provide 
additional protection, suggesting that activation of PKC and KATP channels are dif-
ferent components of the same signaling pathway [23].

5.4  Opioids System

Opioid receptors belong to the G-protein coupled receptor family and are tradition-
ally known by their anti-nociceptive effect. However, more recently, it was discov-
ered that an exogenous opioid ligand (morphine) apart from treating pain associated 
with myocardial infarct, may also help in reducing myocardial infarct size area. 
Since then, the putative negative inotropic action of opioid receptors has gained 
importance [116].

Interestingly, it is well established that stressful situations (e.g. ischemia and 
exercise) increase endogenous opioid peptide levels [11, 118–121]. Howlett et al. 
[122], for instance, observed that an acute bout of treadmill exercise markedly 
increased beta-endorphin (an opioid ligand) levels in young women either before 
and after an 8-week exercise training. In theory, this response could act as a com-
pensatory mechanism aiming to counteract the high levels of catecholamines 
released during these stressful situation, and thus minimize potential damage in the 
heart.

Recent and exciting literature has provided evidence that opioid receptors may 
be another limb of exercise preconditioning [107]. Opioid receptor blockage pre-
cluded short [11] and long-term [80] exercise-induced ischemic tolerance. Posterior 
data [10, 77] have demonstrated that delta opioid receptor plays a key role in this 
response. Borges et al. [10] revealed that four consecutive days of exercise reduced 
the myocardial infarct size by approximately 34%. Exercise-induced cardiopro-
tection against IRI was not blunted by pharmacological blockade of the kappa or mu 
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opioid receptors subtypes, whereas treating animals with nonselective (naloxone) 
and selective delta opioid receptor antagonist (naltrindole) abolished it (as seen  
in Fig. 10.5).

The protective effects of delta opioid receptor may be linked to the activation of 
PKC, which, in turn, opens sarcolemma/mitochondrial KATP channels [116], and 
triggers the cascade described in the previous section. Therefore, through a PKC- 
KATP channel pathway, delta opioid receptors would reduce mitochondrial electron 
chain damage, oxidative stress, MPTP opening and morphological changes in mito-
chondria [107].

Fig. 10.5 Infarct size after 
ischemia reperfusion injury 
following non-selective (a) 
and selective (b) opioid 
receptor antagonists. CT 
(control group); Exe 
(exercised group); 
Exe + Nal (non-specific 
antagonist group); 
Exe + KOR (kappa opioid 
receptor antagonist group); 
Exe + MOR (mu opioid 
receptor antagonist group); 
and Exe + DOR (delta 
opioid receptor antagonist 
group). * P < 0.05 vs. CT 
(Source: DOI 10.1371/
journal.pone.0113541.
g002)

J.P. Borges and K. da Silva Verdoorn

https://doi.org/10.1371/journal.pone.0113541.g002
https://doi.org/10.1371/journal.pone.0113541.g002
https://doi.org/10.1371/journal.pone.0113541.g002
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6  Challenges

6.1  Animals Models

Notably, most studies available on exercise-induced cardioprotection are under-
taken in experimental settings, where myocardium injury is caused in animals with-
out established cardiovascular diseases. In other words, so far the cardioprotective 
effect of exercise against IRI has never been studied in animals presenting cardio-
vascular risk factors or diseases, such as hypertension, CAD or previous myocardial 
infarct. On the other hand, ischemic heart disease in humans is a complex disorder, 
which is usually caused by the combination of several cardiovascular risk factors 
and comorbidities (e.g. diabetes, heart failure, hypertension, altered coronary circu-
lation and hyperlipidemia). These conditions together with the medications used 
against them lead to important changes in cellular signaling cascades that interfere 
in IRI and physiological responses to cardioprotective interventions, including exer-
cise [123].

Importantly, it has been shown in animal models of myocardial infarction that 
various comorbidities, including hyperlipidemia and heart failure, can limit the effi-
cacy of ischemic preconditioning and postconditioning [59, 123, 124]. Therefore, it 
is reasonable to assume that exercise-induced cardioprotection could also be 
affected in the presence of comorbidities. However, data in this sense are scarce. To 
the best of our knowledge, there is only one study that has focused on this issue 
[125]. In this study, rats with type 1 diabetes mellitus underwent global ischemia 
and reperfusion following resistance training or low-intensity aerobic training or 
high-intensity aerobic training. The authors concluded that exercise-related cardio-
vascular protection was dependent on the exercise modality, whereby high-intensity 
aerobic-exercised diabetic rats demonstrated the greatest myocardial recovery 
against IRI. Unfortunately, as the authors did not include a nondiabetic exercised 
group, conclusions regarding the changes in exercise-induced cardioprotection due 
to diabetes per se cannot be made.

6.2  Translating Exercise-Induced Cardioprotection to Clinical 
Practice

To achieve exercise-induced cardioprotection, exercise intervention is required 
before a cardiac insult, which obviously cannot be predicted in humans, making 
clinical research even more difficult. This explains why most data on this matter is 
based on experimental research with animals.

However, to establish associations and clinical implications, a bulk of evidence 
has demonstrated a phenomenon known as “warm-up” or exercise-induced isch-
emic preconditioning, in which exercise-induced ST-segment changes of patients 
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with CAD is markedly attenuated in the second of sequential maximal exercise ses-
sions [126, 127]. An interesting finding was reported by Lambiase et al. [57], who 
submitted CAD patients to several maximal exercise tests prior to percutaneous 
coronary intervention and observed that the expected ST-segment elevation was 
attenuated.

Taken together, these data suggest that exercise preconditioning might be effi-
cient in the promotion of clinical cardioprotection, reducing cardiac damage of 
patients under cardiovascular risk factors as well as those who suffered a cardiac 
event.
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Chapter 11
Experimental Evidences Supporting 
the Benefits of Exercise Training  
in Heart Failure

Marcelo H.A. Ichige, Marcelo G. Pereira, Patrícia C. Brum, 
and Lisete C. Michelini

Abstract Heart Failure (HF), a common end point for many cardiovascular dis-
eases, is a syndrome with a very poor prognosis. Although clinical trials in HF have 
achieved important outcomes in reducing mortality, little is known about functional 
mechanisms conditioning health improvement in HF patients. In parallel with clini-
cal studies, basic science has been providing important discoveries to understand 
the mechanisms underlying the pathophysiology of HF, as well as to identify poten-
tial targets for the treatment of this syndrome. In spite of being the end-point of 
cardiovascular derangements caused by different etiologies, autonomic dysfunc-
tion, sympathetic hyperactivity, oxidative stress, inflammation and hormonal 
 activation are common factors involved in the progression of this syndrome. 
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Together these causal factors create a closed link between three important organs: 
brain, heart and the skeletal muscle. In the past few years, we and other groups have 
studied the beneficial effects of aerobic exercise training as a safe therapy to avoid 
the  progression of HF.  As summarized in this chapter, exercise training, a non-
pharmacological tool without side effects, corrects most of the HF-induced neuro-
hormonal and local dysfunctions within the brain, heart and skeletal muscles. These 
adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neuro-
hormonal control and improve both cardiovascular and skeletal muscle function, 
thus increasing the quality of life and reducing patients’ morbimortality.

Keywords Benefit • Exercise • Heart failure • Mortality • Outcomes

1  Introduction

Heart failure (HF) is a syndrome of poor prognosis in which patients present dys-
pnea and exercise intolerance due to the lack of the heart capacity of in maintaining 
the cardiac output required to preserve the metabolic needs of the organism. As a 
common end point for many cardiovascular diseases, more than 20 million people 
worldwide are estimated to have HF. This scenario tends to worse mainly because 
of the higher life expectancy and the increasing mean age of the population. The 
impairment of the cardiac function is the most classical mechanism described in this 
syndrome. Cardiac dysfunction can be of two types: a systolic and/or a diastolic 
dysfunction. Whilst most patients show both dysfunctions, there is usually a pre-
dominant pattern. The predominance of the systolic dysfunction, characterized by 
an inadequate emptying of the ventricle, defines a HF with reduced ejection fraction 
(HFREF). When the diastolic dysfunction (characterized by an inadequate relax-
ation and filling of the ventricle) predominates, it is called HF with preserved ejec-
tion fraction (HFPEF). Nowadays, our knowledge regarding HFREF is much wider 
when compared to that of HFPEF. HFPEF, however, is showing an increasing preva-
lence, being usually predominant in the elderly people and women. Around half of 
the HF patients experience HFPEF; unfortunately, none of the current therapies 
used to treat HFREF have shown good results in treating HFPEF patients. Besides 
the pharmacological therapies, aerobic exercise training has also been used to treat 
HF. Similar to other treatments, the current knowledge of the effects of exercise 
training in HF is predominantly focused in HFREF, which will be the focus of the 
present chapter.

This chapter will start with a brief overview on the pathophysiology of HF. Then, 
the effects of aerobic exercise training with focus on its benefits on neurohormonal 
control as well as its effects to improve cardiac and skeletal muscles functions will 
be discussed.
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2  Overview on the Pathophysiology of the HF

The immediate response to a myocardial aggression, leading to decreased cardiac 
output, is the activation of compensatory neurohormonal mechanisms. Peripheral 
sensors, such as the baroreceptors and the cardiopulmonary receptors detect the 
alterations in arterial pressure, atrial distention and ventricular contractile function, 
which are integrated in central autonomic areas triggering the activation of several 
neurohormonal systems, the most important being the sympathetic nervous system, 
the renin-angiotensin-aldosterone system and the secretion of vasopressin [23]. In 
the early HF phase, these compensatory mechanisms aim to increase cardiac con-
tractility and heart rate, in order to normalize the reduced cardiac output. However, 
their continuous activation induces an elevated peripheral resistance, with a conse-
quent increase in the arterial blood pressure. Simultaneously an increased venous 
constriction and water/salt retention activated by the neurohormonal mechanisms, 
coupled with angiotensin II-induced increase in water intake, will result in a higher 
pre-load, activation of the Frank-Starling mechanism and increased ventricular con-
tractility, which characterize the initial compensated phase of HF [23].

While the Frank-Starling mechanism is critically important in regulating cardiac 
output in normal conditions, in the presence of myocardial dysfunction its effects 
are greatly impaired. As the ventricle is incapable of ejecting proper volume during 
the systolic phase of the cardiac cycle, the heart will enter in the subsequent dia-
stolic phase with increased residual blood volume, which, in addition to increased 
venous return, results in an even high pre-load. In the next cycle, again the heart is 
incapable of ejecting the proper systolic volume, leading the ventricle to work con-
tinuously under elevated filling pressures. In this condition, the heart works con-
stantly in the right end of the Frank-Starling curve, showing minimal alterations in 
the cardiac output in response to increases in the pre-load. Additionally, the failing 
heart shows a decrease in the peak cardiac output of the Frank-Starling curve, fur-
ther decreasing the relevance of this mechanism for the compensation of cardiac 
failure [147].

Along with the neurohormonal activation and the Frank-Starling mechanism, a 
third compensatory mechanism in HF is the ventricular hypertrophy. Left ventricle 
dilatation and/or sustained elevations in after-load result in higher wall stress. Both 
neurohormonal signaling and wall stress induce a hypertrophic response in cardio-
myocytes and fibroblasts, thus leading to hypertrophy and extracellular matrix 
deposition. The pattern of this response depends on the type of stimulus applied to 
the ventricle: volume overload will result in eccentric hypertrophy with the mainte-
nance of the wall thickness, while pressure overload results in concentric hypertro-
phy with increase in wall thickness [59]. While these adaptations at the beginning 
might help to reduce wall stress and maintain ventricular function, the exhaustion of 
this mechanism by the persistence of the injury triggers the chamber dilation and the 
reduction of its contractile function.
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In spite of the importance of these mechanisms in the maintenance of the organ-
ism homeostasis in the acute HF, the persistence of such aggression, leading to a 
chronic activation of neurohormonal systems, will result in further deterioration of 
the cardiac function. The excessive activation of sympathetic, renin-angiotensin- 
aldosterone and vasopressin systems results in maladaptive responses of the myo-
cardium, inducing apoptosis [79] and abnormal function even in the viable 
myocardium. Otherwise, the viable myocardium subjected to chronic neurohor-
monal stimulation shows impaired calcium handling and abnormal production and 
use of high-energy phosphates and reactive oxygen species [23, 41]. Sympathetic 
hyperactivation induces desensitization, thus reducing the capacity of the heart to 
respond adequately to autonomic stimuli. Catecholamines, angiotensin II, aldoste-
rone and inflammatory cytokines altogether can trigger apoptotic responses in car-
diomyocytes [79]. The worsening of cardiac function causes further stimulation of 
the neurohumoral systems, resulting in a deleterious positive feedback mechanism. 
This feedback loop of progressive worsening in cardiac function and compensatory 
increases of neurohumoral activation will eventually reach a limit when the cardio-
vascular system can no longer maintain an adequate perfusion of the organism, 
resulting in the HF syndrome.

3  Mechanisms Conditioning the Benefits of Exercise 
Training in HF-Neurohormonal Systems

3.1  Autonomic Nervous System

Autonomic nervous system dysfunction is a hallmark for HF. The exaggerated sym-
pathetic activation simultaneously with withdrawal of vagal outflow drives the 
organism towards progressive worsening of cardiac function. Several methods and 
models of HF have been used to assess and confirm sympathetic nervous system 
(SNS) hyperactivity in animal models of HF: sympathetic nerve recordings [39, 
135], dosage of plasma cathecolamines [123], norepinephrine turnover [122], 
immunohistochemistry in brain autonomic areas [69], as well as functional record-
ings [69]. The relevance of SNS in the pathophysiology of the HF is highlighted by 
the great impact of blocking sympathetic hyperactivity in reducing the mortality of 
HF patients [22, 53]. Exercise training, on the other hand, is capable of reducing or 
even normalizing SNS activity in HF animals [69, 185]. Even in patients that are 
already in the use of β-blockers, exercise training can induce further reductions in 
sympathetic nerve activity [48].

Many mechanisms have been proposed to explain the SNS dysfunction in 
HF. Impairment of inhibitory and hyperactivation of excitatory reflexes controlling 
the SNS outflow were pointed as important mechanisms leading to sympathetic 
hyperactivity in HF. Indeed, reduced sensitivity of the sympathoinhibitory arterial 
baroreflex [39] and cardiopulmonary reflexes [128] and increased sensitivity from 
exercise pressor reflex [164] and other sympathoexcitatory reflexes such as the 
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carotid body chemoreflex [145] and the cardiac afferent sympathetic reflex [163] 
were found in animal models of HF. Exercise training can attenuate several of these 
reflex dysfunctions. HF animals submitted to chronic exercise training show 
increased baroreflex sensitivity [94, 111] through a mechanism that seems to be 
dependent on the parasympathetic nervous system [95]. Exercise training also ame-
liorates cardiopulmonary reflexes [128], attenuates carotid body afferent activity 
and normalizes the chemoreflex through mechanisms dependent on NO and angio-
tensin signalling [91]. The exercise pressor reflex driven by metaboreceptors and 
mechanoreceptors afferents is also attenuated by exercise training, which prevents 
the sensitization of those receptors [164, 165].

Second order neurons in the nucleus tractus solitarii (NTS), the first synaptic 
relay of peripheral receptors in the central nervous system, receive barosensitive 
and chemosensitive inputs and project to brainstem areas controlling vagal (nucleus 
ambiguus, NA, and dorsal motor of the vagus, DMV) and sympathetic (caudal and 
rostral ventrolateral medulla, CVLM and RVLM, respectively) outflow to heart and 
vessels [36, 106]. Upon loading of baroreceptors, NTS is activated and increases the 
firing of NA and DMV pre-ganglionic parasympathetic neurons projecting to the 
heart; NTS also activates gabaergic inhibitory neurons within the CVLM that proj-
ect and inhibit RVLM premotor neurons projecting to sympathetic pre- and post- 
ganglionar neurons innervating the heart and vessels [108]. As a consequence, 
venous return, cardiac output and peripheral resistance are reduced decreasing arte-
rial pressure, which returns to control levels [107, 108]. When peripheral chemore-
ceptors are activated (reduced PO2 and pH, increased PCO2), the firing of NTS 
chemosensitive neurons directly excite the RVLM premotor neurons augmenting 
sympathetic outflow and increasing blood pressure [130, 171]. Opposed responses 
are observed to baroreceptors unload and during reduced activation of peripheral 
chemoreceptors, respectively. Brainstem integration of cardiovascular control is 
continuously modulated by preautonomic neurons located in the paraventricular 
nucleus of hypothalamus (PVN) and other supramedullary pathways [108, 149]. 
Considering the role of brainstem and supramedullary autonomic nuclei in the con-
trol of sympathetic and parasympathetic activity, it makes sense that plastic and 
functional changes in these nuclei could condition both deleterious and benefic 
autonomic adaptations to HF and training, respectively.

Studies in HF animals described significant reductions in the nitric oxide content 
(NO, a sympathoinhibitory molecule) within the NTS [67, 140], increased expres-
sion and higher functional response to AT1 receptors blockade [166]. Indeed, aug-
mented availability of angiotensin II was proposed to be one of the mediators of 
sympatoexcitation in the brain. Indeed, angiotensin converting enzyme (ACE, 
responsible for the conversion of angiotensin I to angiotensin II) gene and protein 
expression is elevated and that of angiotensin converting enzyme 2 (ACE2, which 
metabolizes angiotensin II to angiotensin-(1–7)) is reduced in autonomic areas of 
the hypothalamus (PVN) and brainstem (NTS, RVLM) of chronic HF rabbits [73]. 
Coherently, exercise training, by reversing ACE/ACE2 ratio, is able to attenuate the 
increased angiotensinergic signaling in these nuclei [73]. Other experimental studies 
investigating the sympathetic hyperactivity in HF found increased angiotensinergic 
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[182] and glutamatergic [90] and decreased GABAergic [30] and NO [177] signal-
ing within the PVN.  Again exercise training reduced sympathetic overactivity 
simultaneously with decreased angiotensinergic [73, 182] and glutamatergic [77] 
and increased GABAergic [121] and NO [181] signaling in the PVN. Similar profile 
was observed within the RVLM, the main nucleus controlling the sympathetic out-
flow to the cardiovascular system: increased glutamatergic [167] and decreased NO 
signaling [67] simultaneously with an imbalance between AT1 and AT2 receptors 
[51], which contribute to sympatoexcitation in HF animals. All these alterations are 
attenuated by exercise training [73].

Apart of numerous studies confirming the role of sympathetic outflow in the 
genesis of cardiovascular deficits in HF, as well its withdrawal in the improvement 
of circulatory control in trained HF animals, the parasympathetic, the counter- 
regulatory axis of the autonomic nervous system whose activity is depressed in HF 
patients and animals [18, 69] has received much less attention. Although there is 
evidence that low vagal activity is a predictor of high mortality rates [34, 82], phar-
macological activation of vagal outflow is not generally recommended given the 
several side effects of cholinergic drugs and the lack of drugs capable of specifically 
stimulating the vagal activity to the heart. So, the impact of the parasympathetic 
nervous system is not as clear as the effects of the sympathetic activity in 
HF.  Pharmacological stimulation of parasympathetic tonus with pyridostigmine 
improves cardiac and circulatory parameters in HF rats [84, 137]. In chronic HF the 
increased vagal activity through parasympathetic nerve stimulation has shown to be 
effective to improve prognosis in animals [89, 179] and patients [37, 146]. However, 
in large randomized trials this intervention failed to show significant results [57].

Besides knowing that HF animals show alterations in parasympathetic ganglia 
and depressed parasympathetic activity [17], information regarding the mechanisms 
leading to vagal dysfunction in HF are lacking. In a recent paper we observed that 
decreased parasympathetic tonus in HF rats is positively correlated with the reduc-
tion of choline acetyl transferase (ChAT) positive neurons in the NA and DMV and 
that training-induced improvement of parasympathetic control of the heart is 
accompanied by a significant increase in the number and density of ChAT-positive 
neurons within these nuclei [69]. Figure 11.1 illustrates these findings showing in 
addition that elevated basal heart rate, which is driven by the increased sympathetic 
outflow to the heart in HF sedentary rats, is reduced and driven by the augmented 
parasympathetic tonus in trained HF rats. Our data also confirmed that increased 
sympathetic activity in HF sedentary rats is accompanied by augmented dopamine 
β-hydroxylase immunoreactivity (DBHir) within the RVLM and that exercise train-
ing reduces both [69]. However, the correlation between sympathetic tonus and 
DBHir within the RVLM does not attain significance [69]. These observations rein-
force the potentiality of training to improve vagal control of the heart in HF indi-
viduals, with the advantage to avoid noxious side effects that accompanied 
pharmacological therapies. In spite of our still limited knowledge regarding the 
parasympathetic axis of autonomic nervous system in the treatment of chronic HF, 
exercise training seems to be an essential therapeutic tool to normalize vagal dys-
function in this syndrome.
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Therefore, by attenuating sympathoexcitation and by restoring the vagal control 
of the heart, exercise training is able to restore autonomic balance in HF individuals, 
even in the persistence of ventricular deficits, therefore improving its prognosis 
besides reducing mortality rates.

3.2  Renin-Angiotensin-Aldosterone System (RAAS)

Along with the autonomic nervous system, the RAAS is an essential key in the 
understanding of HF pathophysiology. The RAAS is a complex system composed 
of several regulatory and counter-regulatory molecules that act in order to control 
the water and salt balance and the arterial blood pressure. Viewed in the past as a 
hormonal circulating system, it is now accepted as an important local regulatory 
system present in all tissues, able to control specific tissue functions independently 
of the circulating RAAS. This hormonal/local system exerts its functions through 2 
axes: the ACE-angiotensin II-AT1 receptor axis with vasoconstrictor, proliferative 
and pro-inflammatory effects and the ACE2-angiotensis-(1–7)-Mas receptor axis, 
with opposite vasodilator, anti-proliferative and anti-inflammatory effects. In 

Fig. 11.1 (a) Comparison of cardiac sympathetic (ST, open bars) and parasympathetic tonus (PT, 
filled bars), intrinsic heart rate (intersection between ST and PT) and resting heart rate (indicated 
by arrows) in infarcted (HF) and SHAM rats submitted to sedentary (Sed) and training (ET) pro-
tocols. Significances (P  <  0.05) * vs. SHAM; † vs. Sed. (b) Photomicrographs comparing the 
effects of heart failure and exercise training on Choline Acetyl Transferase (ChAT) immunoreac-
tivity within the nucleus ambiguus pars sub-compacta of SHAM and HF rats submitted to seden-
tary (Sed) or training (ET) protocols. (c) Number of ChAT-positive neurones in pars sub-compacta 
of the nucleus ambiguus. Significant difference (P  <  0.05): * vs. SHAM; † vs. respective Sed 
controls (Modified with permission from Ref. [69]
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addition to increased angiotensin II availability within the brain leading to increased 
sympathetic outflow [94, 111], ACE-angiotensin II-AT1 receptor axis is hyperacti-
vated in HF [13, 58, 73, 94, 125], the increased angiotensin II levels being respon-
sible for fibroblasts’ proliferation and myocardium hypertrophy, thus facilitating the 
worsening of cardiac function in an already dysfunctional heart [139].

The efficacy of RAAS blockade (renin and ACE inhibitors, AT1 receptors’ 
antagonists, aldosterone receptors’ antagonists) in reducing the neurohormonal acti-
vation of the heart and reducing mortality [83] highlight the importance of these 
therapeutic tools to improve prognosis in HF patients. Importantly, exercise training 
is effective in attenuating RAAS activity not only in the brain, but also in peripheral 
tissues, thus avoiding additive deleterious effects in the progression of HF. Indeed, 
HF animals submitted to exercise training show decreased plasma angiotensin II 
concentration [94] simultaneously with reduced tissue content in the heart [125], 
skeletal muscle [58] and brain [51, 73, 182]. Despite accumulating evidence for the 
importance of RAAS in HF and the benefits of exercise training in reducing its acti-
vation in several peripheral tissues, the most abundant information available was 
obtained in the central nervous system. Exercise training, by modulating RAAS 
activity can correct/normalize blunted reflexes that regulate autonomic circulatory 
control, such as the baroreflex [111] and the carotid body chemoreflex [91]. In addi-
tion, as described before, the enhanced angiotensinergic signaling in autonomic 
areas of HF individuals (increased AT1 receptors and ACE expression, decreased 
ACE2 expression, etc.) [61, 73, 182] determining sympathoexcitation is corrected 
by exercise training.

Angiotensin II-induced increases in sympathetic activity are mediated, at least in 
part, by increases in oxidative stress [49, 183] and exercise training has been shown 
to decrease sympathetic hyperactivity by reducing oxidative stress: it increases the 
expression of antioxidant enzymes in the brain and other tissues [50, 85, 93, 154], 
thus attenuating intracellular signaling triggered by angiotensin II.

Aldosterone, a mineralocorticoid secreted in response to angiotensin II signaling 
that is mostly known for its role in sodium reabsorption in the kidney. Nonetheless, 
aldosterone receptors are present in the heart [96, 124], as well as in vessels [96, 
104] and brain [176]. In the heart of HF individuals, aldosterone induces marked 
cardiac fibrosis worsening the cardiac function [24, 133]. On the other hand, block-
ade of aldosterone effects by mineralocorticoid receptors antagonists has been 
shown to reduce mortality of HF patients [103]. There is scarce information regard-
ing the effects of exercise training on aldosterone effects in HF. Braith et al. [21] and 
Wan et al. [162] have shown that exercise training reduces circulating levels of aldo-
sterone, thus contributing to attenuate its deleterious effects in HF.

3.3  Inflammatory Response

The increased inflammatory profile also plays an important role in the pathophysiol-
ogy of the HF. Plasma levels of pro-inflammatory cytokynes, such as tumor necrosis 
factor - alpha (TNF-α) and interleukins (IL) as IL-1β, IL-6 and IL-18, are elevated 
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in several tissues of HF individuals while anti-inflammatory cytokines, such as the 
IL-10, are reduced [60]. Intact rats chronically infused with TNF-α showed 
depressed cardiac function and left ventricle dilatation, a pattern that resembles the 
effects induced by HF [20]. These effects are partially reversed by stopping the 
TNFα infusion [20]. A murine model that overexpresses TNF-α in the heart also 
develops cardiac hypertrophy and dilatation, with reduced ejection fraction and pul-
monary congestion, a phenotype very similar to HF [81]. Elevated levels of TNF-α 
is also related to the skeletal muscle apoptosis found in HF rats [35]. Dysfunction of 
human cardiomyocytes submitted to ischemia-reperfusion injury is attenuated by 
simultaneous inhibition of IL-1β and IL-18 [129]. In rats the chronic exposure to 
IL-6 induces myocardial fibrosis, cardiac concentric hypertrophy and diastolic dys-
function [102] while IL-6 knockout mice submitted to pressure overload show 
attenuation of both left ventricle hypertrophy and cardiac dysfunction [180].

While the relevance of the immune response in the context of HF is clear, studies 
aiming to modulate it with drugs administration are still ensuing. A trial using anti- 
TNF- α antibodies showed no improvement and had to be stopped because of 
increased mortality in the group receiving the higher doses of the drug [32]. As 
reviewed by Gullestad et al. [60], other studies using different approaches to modu-
late the immune response in HF showed that with few exceptions those treatments 
are neutral or even harmful, calling our attention for the need to expand the knowl-
edge in this field. In contrast exercise training has shown significant effects in reduc-
ing pro-inflammatory profile in HF in rats and patients. HF rats submitted to exercise 
training show increases in plasma levels of the anti-inflammatory cytokine IL-10 
[119] and reduction of LPS-stimulated TNFα production by macrophages [15]. 
Exercised HF patients show reduced plasma levels of TNF-α and its receptors 
(sTNF-RI and sTNF-RII), IL-6 and its receptor (sIL-6R) and of the apoptosis 
inducer sFasL [3]. Markers of the monocyte/macrophage system granulocyte- 
macrophage colony-stimulating factor (GM-CSF) and macrophage chemoattractant 
protein-1 (MCP-1) are also reduced [2]. These findings indicate that exercise train-
ing is a better choice than recombinant antibodies and/or pharmacological blockade 
to modulate immune response in HF.

4  Mechanisms Conditioning the Benefits of Exercise 
Training in HF – Cardiovascular System

4.1  Heart

As commented above, impairment of cardiac function is a hallmark of HF.  The 
progression of the syndrome induces progressive deleterious remodeling of the 
heart leading to dilation of the chambers and loss of its elliptical shape [78]. Exercise 
training is able to prevent most of these alterations. Some studies have shown ame-
lioration of cardiac function or reverse remodeling in trained HF animals [77, 182] 
and patients [42, 64, 157]. Others have found no significant effects in both animals 
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and patients [61, 73, 94, 136, 143]. These discrepancies could result from differ-
ences in the intensity, duration and type of the exercise protocol used [169]. 
Therefore, the beneficial effects of exercise training on myocardial remodeling and 
function seems to be only mild. Nonetheless, exercise training is capable improve 
other deficits induced by HF.

The impaired coronary blood flow and coronary reserve in HF are improved by 
exercise training, which activates myocardial angiogenesis [87, 143]. This finding is 
of relevance since the high coronary flow reserve has significant prognostic value in 
the context of HF [132]. Decreased coronary blood flow in HF is related to an 
increased production of reactive oxygen species in the coronary arteries and 
decreased levels of antioxidant enzymes [31], leading to increased NO scavenging 
and impaired endothelial NO synthase (NOS) function [16, 168]. Excessive oxida-
tive stress, as demonstrated by increased levels of reactive oxygen species and 
decreased levels of antioxidant enzymes, also affects the myocardium itself [65, 66, 
70]. The consequences of this dysfunction is the injury of cardiomyocytes, with 
contractile abnormalities [72], impairment of the proteasome, leading to accumula-
tion of misfolded proteins [46], and eventually culminating in cell death. Exercise 
training induces cardioprotection through the reduction in oxidative stress simulta-
neously with the increase of antioxidant enzymes [12], thus restoring the cellular 
protein quality control [29].

Another feature of HF is impaired Ca2+ handling. The calcium homeostasis 
within cardiomyocytes is regulated by several proteins. Special attention has been 
given to those responsible for the control of the Ca2+ uptake and release within the 
sarcoplasm and sarcolemma. Those include the sarcoplasmic reticulum Ca2+ATPase 
(SERCA2) and its regulator phospholamban (PLN), the ryanodine receptor, Ca2+ 
channels, and the Na+/Ca2+ exchanger. While it is consensual that HF leads to Ca2+ 
handling dysfunction and excitation-contraction uncoupling, the mechanisms lead-
ing to those alterations are very complex and studies show conflicting results [11, 
98]. Nonetheless, it seems that exercise training is able to ameliorate the HF-induced 
Ca2+ handling alterations, whichever directions they occur [76, 101, 134, 152, 170].

The heart in HF, submitted to excessive sympathetic signaling, show β-adrenergic 
receptor desensitization [56]. This results from a reduction in the density of β1- 
adrenergic receptor, a decreased β1 / β2 ratio [26] and uncoupling of β1-adrenergic 
receptor from the Gs protein caused by enhanced βARK expression [156]. Exercise 
training can attenuate this desensitization thus increasing β-adrenergic response 
[87], likely through increases in the expression of β1-adrenergic receptors and 
cAMP levels [38, 87]. Therefore, exercise training can restore cardiac contractility 
reserve in HF.

HF also results in a dysfunction of the sinus node pacemaker cells leading to 
decreased intrinsic pacemaker heart rate (see Fig. 11.1) [69, 141, 174]. This sinus 
node dysfunction is characterized by increased recovery time and intrinsic cycle 
length, a caudal shift of the pacemaker location and slower sinoatrial conduction 
[141]. Molecular alterations that might explain these alterations include widespread 
changes in the expression of ion channels, gap junction channels, Ca2+, Na+, and 
H+-handling proteins and receptors [174]. This sinus node dysfunction, along with 
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the β-adrenergic desensitization, lead the organism to require a higher sympathetic 
activation to maintain a similar heart rate when compared to normal subjects [69]. 
Exercise training also reverses this dysfunction, restoring intrinsic pacemaker heart 
rate of HF rats to similar levels when compared to control animals [69]. Whether the 
other mechanisms (for instance the anatomical change in the pacemaker location) 
are also corrected it remains to be investigated.

4.2  Endothelium

Impaired endothelium-derived vasodilatation is characteristic of HF [80]. This dys-
function is caused by reduced production of endothelial-derived relaxing factors, 
most notably NO [74, 131] and increased levels of endothelin [88]. Increased pro-
duction of both reactive oxygen species (that inactivates NO) [16] and pro- 
inflammatory cytokines (such as the TNF-α that decreases endothelial NOS activity) 
[4, 172] are among the mechanisms that lead to the depletion of NO. The relevance 
of endothelial dysfunction in HF is of great importance and its severity can predict 
deleterious outcomes [105]. Exercise training increases NOS expression, restores 
NO production and decreases oxidative stress [75, 158] improving endothelium- 
mediated dilation and attenuating deleterious alterations. Exercise can also restore 
the number and function of endothelial progenitor cells [142, 144] and increase the 
levels of proangiogenic cytokines, such as the vascular endothelial growth factor 
(VEGF) and the stromal cell-derived factor (SDF-1) [144], suggesting that exercise 
also ameliorates angiogenesis.

5  Mechanisms Conditioning the Benefits of Exercise 
Training in HF – Skeletal Muscle

5.1  Skeletal Myopathy

The HF-related skeletal myopathy can induce a severe syndrome known as cardiac 
cachexia. This syndrome is defined by an ongoing loss of skeletal muscle mass that 
cannot be fully reversed by conventional nutritional support and that leads to pro-
gressive muscle functional impairment. This severe clinical complication is also 
observed in many other chronic disease conditions, such as cancer, diabetes and 
HIV infection, affecting different types of skeletal muscles that are involved not 
only in force production, but also in posture maintenance and respiration. 
Epidemiological data demonstrate that in comparison with non-cachectic patients, 
the average stay at the hospital for cachectic patients is twice longer, and cost 70% 
more [7]. Thus, the reduced muscle mass and muscle dysfunction in HF are strongly 
associated with a reduced quality of life and a poor prognosis. Curiously, no specific 
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therapy are current available to block or attenuate the process of HF-related skeletal 
myopathy, leading the patients to develop cardiac cachexia.

In addition to muscle mass loss and decreased muscle function, HF-related skel-
etal myopathy has been characterized by capillary rarefaction, mitochondrial dys-
function, altered myofiber phenotype (causing a shift from type I slow twitch toward 
type II fast twitch myofibers) and reduced muscle endurance [160]. Together, these 
features contribute to the increased fatigability leading patients to dyspnea, fatigue 
and exercise intolerance.

The sustained hyperactivities of SNS and RAAS, described in the previous top-
ics are directly associated with the pathogenesis of HF, can directly contribute to the 
changes in morphofunctional features related to skeletal myopathy. One of the main 
pharmacological therapies of HF is the blockade of the sympathetic and RAAS 
hyperactivity, through the use of β-blockers and ACE inhibitors or AT1 receptor 
antagonists, respectively; however, the effect of these treatments on skeletal myopa-
thy has not been clarified yet. In contrast, it was already demonstrated that aerobic 
exercise training (AET) emerges as a potent non-pharmacological strategy to coun-
teract HF-related skeletal myopathy and the evidences from basic science are strong 
enough to recommend it as an adjuvant therapy.

5.2  Sympathetic Hyperactivity and Skeletal Myopathy

The sympathetic activation in skeletal muscle tissue is mediated by β-adrenergic 
receptors (β-AR) and this activation can improve muscle regeneration process 
[151], increase force production, promote a shift toward type II glycolytic myofi-
bers and increase muscle mass [99]. This hypertrophic response was described by 
studies which used β-AR agonists, such as clenbuterol and formoterol (selective 
β2-AR agonists) and isoproterenol (a nonselective β-AR agonist) [71, 99, 173]. The 
cellular mechanisms involved in this process include, an inhibition in muscle prote-
olysis, mainly by  ubiquitin-proteasome system (UPS), concomitantly with an 
increased protein synthesis, mainly associated with Insulin Like Growth Factor1/
Phosphoinositide-3-kinase/Akt-protein kinase B/mammalian-mechanistic Target 
Of Rapamycin (IGF-1/PI3K/Akt/mTOR) signaling pathway [114–116].

Based on aforementioned hypertrophic effect, β-AR activators were prescribed 
to counteract the HF-related muscle myopathy in late 80’s decade. In fact, some 
beneficial effects of β-AR agonists on muscle mass were observed; however, tachy-
cardia was reported as a side effect [110]. Tachycardia occurred due to the β1-AR 
related cardiac effect, while the hypertrophic effect of β-AR activators was demon-
strated to be specific to selective β2-AR agonists which would be more efficient to 
combat skeletal myopathy [52]. In this sense, our group observed that β2-AR knock-
out mice displayed exercise intolerance and a severe muscle atrophy after myocar-
dial infarction induced-HF [161]. One possible explanation is that in previous stages 
of HF, increased sympathetic activity through the activation of β2-AR could be able 
to delay the onset of muscle proteolysis.
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This seems to be the case in a mice model of sympathetic hyperactivity induced-
 HF, which was largely used in many studies of our group. At 3  months of age, 
although no signs of HF were present, these animals displayed sympathetic hyper-
activity associated with plantaris muscle hypertrophy mediated by β2-AR activation 
[10]. In the same mouse model, when HF syndrome turned severe, the plantaris 
atrophy and skeletal myopathy became evident. Therefore, while activation of β2- 
AR by β2-agonists seems to counteract skeletal myopathy in early stages of the 
syndrome, long-term and sustained activation of SNS leads to HF-related skeletal 
myopathy, which might be related to β2-AR desensitization and downregulation 
reducing its anabolic effects. In fact, sympathetic hyperactivity besides being one 
hallmark of HF, it also contributes to the development of the skeletal myopathy [136].

5.3  Renin-Angiotensin-Aldosterone System Hyperactivity 
and Skeletal Myopathy

Angiotensin II (Ang II) is the main effector molecule of the system and its high 
levels are also a hallmark of HF leading to vasoconstriction, pro-inflammatory 
effects and reduced muscle regenerative capacity [45, 175]. High levels of Ang II 
induce protein breakdown and decrease the levels of skeletal muscle protein synthe-
sis, leading to cardiac cachexia [47]. In addition to its direct effects on skeletal 
muscle, the indirect effects of Ang II can also contribute to muscle atrophy, due to 
its role in regulating circulating hormones and inflammatory cytokines. In this 
sense, Ang II increases interleukine-6 (IL-6) cytokine levels leading to an imbal-
ance in the ratio between skeletal muscle protein synthesis and protein degradation 
by inhibiting IGF-I/Akt/mTOR signaling pathway while activating UPS [178]. It 
was observed that Ang II, when infused in rodents through osmotic pumps for up to 
2 weeks, significantly decreased systemic IGF-I levels. In addition, the animals pre-
sented reduction in body weight and daily food intake, which are directly related to 
cardiac cachexia [25].

In addition to ACE inhibitors or AT1 receptor blockers, vasodilator agents are 
commonly used as hypertensive therapy in HF syndrome. However, it was shown 
that only the compounds that act directly in RAAS are able to block the changes in 
circulating IGF-I and body weight reduction, indicating that Ang II induces cardiac 
cachexia through a pressor-independent mechanism [5, 25].

Thus, pharmacological inhibition of RAAS can be recommended to avoid exer-
cise intolerance and increasing the quality of life related to an attenuated skeletal 
muscle myopathy. In fact, HF treatment with ACE inhibitors increases respiratory 
muscle strength in humans [33] and partially prevents HF-induced muscle myopa-
thy in rodents [184]. The same features were observed for AT1 receptor blockers 
which, at least in part, can attenuate the reduced muscle force in HF syndrome [44].

Even though the therapy with inhibitors of RAAS has demonstrated some posi-
tive outcomes in HF-related skeletal myopathy, AET also emerges as a potential 
non-pharmacological adjuvant therapy modulating RAAS.
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5.4  Aerobic Exercise Training: An Important Non- 
pharmacological Treatment for HF-Induced Skeletal 
Myopathy

The aerobic exercise training (AET) have been studied in its basis for more than 
50 years and nowadays it is recognized as an efficient and safe strategy in order to 
prevent and/or treat several cardiovascular diseases [43]. The beneficial effects of 
AET in HF have been demonstrated in heart, neurohumoral systems and skeletal 
muscle tissue. Therefore, both European [40] and American [68] guidelines have 
agreed upon the recommendation of AET in combination with an adequate pharma-
cological treatment. Interestingly, the responsiveness of skeletal muscle to AET is 
higher than to pharmacological therapy, which highlights the importance of the 
AET as strategy to counteract HF-related muscle myopathy. As will be described 
below, data from basic science provide strong evidence for AET as a prominent 
strategy to prevent and/or revert muscle metabolic and contractile dysfunction in HF.

5.5  Effects of AET in the Metabolism and Function 
of the Skeletal Muscle

HF causes many metabolic changes in the skeletal muscle tissue [100, 127]. Those 
changes, such as a switch toward type II glycolytic myofibers and decreased mito-
chondrial density and function, trigger a reduced aerobic capacity leading to muscle 
fatigue and exercise intolerance. Indeed, a decrease in protein expression of PGC-1α 
(peroxisome proliferator-activated receptor gamma), a potent regulator of mito-
chondrial biogenesis, was observed in animal models of HF [159]. In contrast,  
AET is able to modulate those metabolic changes due to its capacity to improve the 
production and the utilization of energy substrates by the muscle cells in a more 
efficient way. Such improvements in muscle substrate supply and uptake are opti-
mized by the enhanced blood supply to skeletal muscle tissue, once AET prevents 
HF-induced capillary rarefaction [62]. In addition, AET promotes a shift toward 
oxidative type I myofibers in skeletal muscle tissue, which improves its oxidative 
features [10].

Due to the HF-related cachexia, the skeletal muscle contractile function is also 
impaired in HF and these features are strongly associated with changes in Ca2+ han-
dling. In fact, rodents with HF displayed low levels of sarcoplasmic Ca2+ associated 
with reduced rate of sarcoplasmic reticulum Ca2+ release and reuptake [97, 126]. 
These findings are also observed in patients, since a reduced Ca2+ release and reup-
take associated with decreased dihydropyridine receptors and sarco(endo)plasmic 
reticulum Ca2+-ATPase (SERCA)2a protein expression in vastus lateralis was 
observed [109].

Herein, AET shows its effectiveness by improving skeletal muscle Ca2+ handling. 
In fact, our group have demonstrated that AET at moderate intensity can improve 
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the net balance of Ca2+ handling proteins in soleus and plantaris muscle from 
 sympathetic hyperactivity induced-HF mice, culminating in a better muscle func-
tion [28]. Interestingly, Ca2+ handling is also observed in HF patients since leg 
extension training was able to reduce Ca2+ leaking through ryanodine receptors in 
vastus lateralis muscle [112].

5.6  Effects of AET in Neurohumoral Hyperactivity and for the 
Control of Skeletal Muscle Mass

As previously mentioned, cardiac cachexia is considered an independent predictor 
of morbidity and mortality in HF patients and animal models. This syndrome is trig-
gered by neurohumoral hyperactivity in association with impaired muscle function. 
Besides no specific therapy is available until now for treating muscle wasting in HF 
syndrome, AET can counteract the muscle myopathy by improving muscle function 
and metabolism (direct effect) or by attenuating neurohumoral hyperactivity (indi-
rect effect).

Regarding neurohumoral hyperactivity, it was demonstrated that a 4-month 
period of moderate intensity AET leads to a significant reduction in muscle sympa-
thetic nerve activity in HF patients [136]. Although the mechanisms behind this 
reduction are a topic under current investigation, some potential candidates were 
identified, such as afferent autonomic control coordinated by arterial baroreceptors, 
cardiopulmonary receptors and chemoreceptors [27, 150]. In fact, it was observed 
that AET is able to improve metaboreflex and mechanoreflex [6]. In addition, 
reduced AT1 receptors and normalized ACE levels in the brain of HF rodent models 
have been proposed as one of the possible mechanisms of reducing sympathetic 
hyperactivity by AET [186]. Indeed, it was demonstrated that AET reduces serum 
Ang II levels, and such effect is related to a lower sympathetic activity in HF [58, 117].

The neurohumoral hyperactivity is also associated with high concentrations of 
pro-inflammatory cytokines and muscle redox imbalance, which are involved in 
muscle catabolism. In fact, increased circulating TNF-α levels (a pro-inflamatory 
cytokine) were observed in patients with atrophy and muscle weakness [118]. 
Moreover, the increased muscle TNF-α expression contributes to the local protein 
degradation. The effects of TNF-α on HF-related skeletal muscle myopathy are 
mediated through the activation of a family of transcription factors known as nuclear 
factor kappa B (NF-kB), which regulate UPS [1]. Interestingly, AET is able to 
reduce serum TNF-α levels and plasma inflammatory markers in HF patients [2]. 
This response is accompanied by a reduced atrophy and improved muscle function. 
In addition, AET also reduces muscle expression of pro-inflammatory cytokines in 
HF patients [54].

The high levels of TNF-α in HF triggers an increase in reactive oxygen species 
(ROS) production which will ultimately lead to protein degradation by the UPS 
[92]. UPS is up regulated in HF due to its action in degradation of damaged proteins 
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in skeletal muscle [8]. The key effectors of the UPS are the enzymes known as 
E3-ligases (ubiquitin ligases), which couples activated ubiquitin to lysine residues 
on protein substrates conferring specificity to the system [92]. Two of these 
E3-ligases (Atrogin-1 and MuRF1) were already well described and their transcrip-
tional activities are elevated in skeletal muscle tissue under various atrophic condi-
tions; therefore, making them good markers of atrophy being known as atrogenes 
[86]. In fact, it was observed that AET reduces Atrogin-1 mRNA levels and normal-
izes proteasome activity in skeletal muscle from both rodent models and HF patients, 
highlighting the importance of AET to prevent UPS hyperactivity in HF [55].

On the other hand, protein synthesis is essential to the positive control of the 
skeletal muscle mass. Since IGF-I muscle levels are reduced in HF [63], the activa-
tion of IGF-I/Akt/mTOR signaling pathway could be considered a good strategy to 
counteract HF-induced muscle atrophy. In fact, it was demonstrated that muscle- 
specific IGF-I transgenic expression or gene transfer procedure in muscles can sus-
tain muscle hypertrophy [113] and prevent muscle mass loss in different animal 
models of muscle atrophy, such as Duchenne dystrophy [14], dexamethasone injec-
tion [138], immobilization [155], Ang II infusion [153], and HF [148]. In this same 
line, it is known that Akt gene transfer procedure in skeletal muscles from rodents 
can induce hypertrophy and improve the regenerative process [120]. In addition, 
transgenic mice with muscle-specific overexpression of Akt displayed around 40% 
of increase in skeletal muscle mass accompanied by an improvement in force devel-
opment [19]. Therefore, another possible strategy to increase the expression of ele-
ments from IGF-I/Akt/mTOR could be through AET, since it is able to revert the 
reduced muscle IGF-I expression in HF patients [148].

These results highlight the fact that AET re-establishes the skeletal muscle 
homeostasis attenuating atrophy, and this was recently demonstrated by our group 
using a mice model of sympathetic hyperactivity induced-HF.  In order to verify 
whether AET could ameliorate the HF-related skeletal muscle myopathy, mice 
underwent to moderate intensity AET (5 days a week for 8 weeks) were evaluated. 
As expected, HF mice displayed atrophic soleus muscle in both type I and type IIa 
myofibers. Interestingly, AET was effective in attenuating this atrophy. This protec-
tive effect against muscle atrophy was associated with a reversion in exercise intol-
erance and an increase in motor performance. In addition, it was suggested, at least 
in part, that one of the possible mechanisms related with that improvement in skel-
etal muscle mass and function was the reestablished level of some components of 
IGF-I/Akt/mTOR signaling pathway [9]. However, up to now, no study investigated 
the real role of Akt, mTOR and any other downstream related proteins of that signal-
ing pathway in skeletal muscle tissue during the development of HF.

Collectively, it has been demonstrated that AET is able to promote remarkable 
beneficial adaptations in skeletal muscle tissue during the development of HF syn-
drome. Therefore, it can be considered the hypothesis that AET is a powerful non- 
pharmacological therapy in order to prevent the onset of the HF-related skeletal 
myopathy and to avoid cardiac cachexia.
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6  Conclusions

HF syndrome in different experimental models is accompanied by autonomic dys-
function, neurohormonal hyperactivity, oxidative stress and inflammation that trig-
ger progressive worsening of the cardiac function and a severe skeletal myopathy, 
that leads to the loss of functional capacity and poor quality of life. These chronic 
deleterious HF-induced alterations are responsible for the high mortality rates 
exhibited by HF patients. Experimental studies have provided ample evidence 
regarding the benefits of aerobic exercise training in this pathology, as summarized 
in Fig. 11.2. Exercise training is highly efficient in ameliorating HF-induced dys-
functions by acting in the same pathways targeted by current standard pharmaco-
logical care (i.e. β-blockers, ACE inhibitors and angiotensin receptor blockers, 
aldosterone-receptor antagonists). In addition, exercise training has been shown to 
correct vagal outflow, inflammatory response and skeletal myopathy, improvements 
not yet obtained through available pharmacological therapy. These findings support 
the efficacy of aerobic exercise training in the treatment of chronic HF with of the 
advantage of avoiding side effects.

Fig. 11.2 The effects of aerobic exercise training on heart failure patients. eNOS, endothelial 
nitric oxide synthase, RAAS, renin-angiotensin-aldosterone system
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Chapter 12   
Exercise Amaliorates Metabolic  
Disturbances and Oxidative Stress  
in Diabetic Cardiomyopathy: Possible 
Underlying Mechanisms             

Ayman M. Mahmoud

Abstract Cardiomyopathy is a serious complication of diabetes mellitus and 
occurs independently of coronary artery disease or hypertension. It manifests as 
systolic/diastolic dysfunction and hypertrophy of the left ventricle and can lead to 
heart failure. Hyperglycemia can trigger a series of maladaptive stimuli and result in 
cardiac hypertrophy, fibrosis and reduced performance and contractility. The patho-
genesis of diabetic cardiomyopathy is a multifactorial process that includes meta-
bolic derangements such as increased oxidative stress, and altered non-oxidative 
glucose pathways and lipid metabolism. Exercise is a useful non-pharmacological 
strategy effective in the reduction of diabetes and obesity risk factors, and improve-
ment of antioxidant defenses, mitochondrial function and physiological cardiac 
growth. It can amend multiple metabolic derangements and alterations in the dia-
betic heart. Therefore, figuring out the underlying mechanisms of exercise-induced 
beneficial effects could help to develop new treatment strategies for diabetic 
cardiomyopathy.

Keywords  Oxidative stress • Cardiomyopathy • AGEs • Lipids

1  Introduction

Diabetes mellitus (DM) is one of the well-known risk factors for cardiovascular 
disease (CVD) and heart failure [1], and CVD has been reported to be the leading 
cause of morbidity and mortality in diabetic patients [2]. Forty-five years ago, 
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Rubler et al. [3] have first described cardiomyopathy in a small cohort of diabetics 
with post-mortem adverse myocardial structural changes in the absence of hyper-
tension, valvular complications or coronary arterial disease. Several experimental 
and clinical evidence suggested high predisposition of the diabetic subjects to car-
diomyopathy [2]. Early impairments in diastolic function, and cardiomyocyte 
hypertrophy, apoptosis and fibrosis represent the characteristic features of diabetic 
cardiomyopathy (DCM) [2]. DCM manifests as systolic/diastolic dysfunction and 
hypertrophy of the left ventricle, therefore, increases the chances of heart failure [4, 
5]. In addition, the higher occurrence of biventricular dysfunction in diabetic 
patients suggests that DM is an independent factor for cardiomyopathy [6, 7].

Exercise represents a useful non-pharmacological strategy for the prevention of 
type 2 DM and obesity [8, 9], and therefore of cardiovascular diseases. It is well 
established that exercise induces cardioprotective effect in the normal heart through 
several molecular mechanisms [10]. Multiple studies have demonstrated the benefi-
cial effects of appropriate volume and intensity of exercise on cardiac dysfunction 
through the amelioration of left ventricle (LV) diastolic and systolic volumes, LV 
ejection fraction, ventilatory threshold, cardiac output and maximum oxygen con-
sumption (VO2max) [11–17]. The beneficial effects of exercise are not only linked 
to the reduced risk factors, but also associated with improved mitochondrial viabil-
ity and antioxidant defenses, and activated physiological cardiac growth through 
cellular mechanisms other than those of pathological hypertrophy [18, 19]. This 
chapter highlights the metabolic derangements in the diabetic heart and how exer-
cise training may influence the progression of diabetic cardiomyopathy, focusing on 
myocardial metabolism, and hyperglycemia-induced pathways and oxidative stress.

2  Exercise Improves Myocardial Metabolism

Metabolic flexibility and the ability to ensure adequate adenosine triphosphate 
(ATP) production rate are important features of the normal heart [20]. Lack of this 
flexibility contributes to the development of DCM, but the exact mechanism remains 
unclear [20]. Oxidation of fatty acids (FA) is the primary energy source for diabetic 
heart, despite the presence of hyperglycemia [21, 22]. In diabetes and obesity, myo-
cardial  FA  uptake  and  oxidation  increase  while  glucose  oxidation  decreases. 
Increased FA oxidation  occurs  through  the  activation  of  peroxisome  proliferator 
activated receptor-α (PPAR-α) and induction of enzymes involved in transport and 
β-oxidation of FA [21–23]. Genetically modified mice mimicking the diabetic met-
abolic phenotype have been demonstrated to develop cardiac dysfunction [24, 25]. 
In addition, experimental and clinical studies have shown that altered cardiac sub-
strate metabolism precedes ventricular dysfunction [22, 23]. Moreover, mainte-
nance of FA oxidation has been reported to have beneficial effects in the diabetic 
heart [26–28]. Therefore, targeting myocardial metabolism may represent a thera-
peutic intervention for attenuating DCM [29].
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Several studies have demonstrated the effect of exercise on substrate utilization 
in normal, obese and diabetic myocardium. In diet-induced obese rats, exercise 
increased insulin-stimulated phosphorylation of insulin receptor (IR), protein kinase 
B (PKB/Akt) and insulin receptor substrates (IRS-1 & -2) [30, 31]. However, the 
effect of exercise on myocardial substrate utilization has not been investigated in 
these studies [20]. Streptozotocin (STZ)-induced type 1 diabetic rats exposed to 
exercise training showed unaltered oxidation rate of FAs in the myocardium [32], 
despite the increased rates of glucose oxidation and glycolysis [12]. In agreement 
with these findings, Hafstad et al. [33] reported increased myocardial glucose oxi-
dation with no changes in the rate of FAs oxidation after treadmill running in diet- 
induced insulin-resistant mice. On the contrary, treadmill running didn’t affect 
glucose oxidation and glycolysis in the normal myocardium [12]. Another  study 
conducted by Burelle et al. [34] demonstrated an increase in the oxidation rate of 
glucose and FAs and a decrease in glycolysis in the heart of normal rats subjected to 
treadmill running.

Studies on the effect of exercise on metabolism in other organs show diverging 
findings. Katsumura et al. [35] reported no influence of exercise on the expression 
of lipid metabolism-related enzymes mRNA in the liver, epididymal adipose tissue 
and gastrocnemius muscle of high-fat diet-fed mice. High-altitude deer mice accli-
matized to hypoxia showed increased muscular capacity for the uptake and oxida-
tion of circulatory glucose during exercise [36]. In the brain of aged rats, exercise 
improved mitochondrial function without increasing mitochondrial biogenesis [37]. 
As a response to exercise, skeletal muscles showed increased expression of genes 
involved in mitochondrial biogenesis, oxidative phosphorylation and FA oxidation 
through inducing the transcription factor EB [38].

3  Exercise Attenuates Myocardial Lipotoxicity

Free fatty acids (FFAs), the primary energy substrate utilized by the cardiac cells, 
are supplied via lipolysis of triacylglycerols (TAG) or from blood [39]. The diabetic 
heart is known to have changes in both glucose and FFAs availability [29]. In diabe-
tes,  the  intracellular accumulation of TAG and non-esterified  fatty acids  (NEFA) 
contributes to apoptosis and build-up of toxic intermediates which result in lipotox-
icity. These harmful effects can impair the cardiac function and remodeling in the 
diabetic myocardium [40, 41].

In type 2 diabetic patients, cardiac dysfunction has been associated with intra-
myocardial TAG accumulation [42]. In addition, accumulation of TAG and shunting 
of fatty acids into non-oxidative pathways can trigger accumulation of ceramide and 
diacylglycerol  (DAG).  At  high  concentrations,  these  intermediates  may  disrupt 
insulin signaling [43], induce apoptosis [44] and increase fibrosis of cardiomyo-
cytes through activation of protein kinases (PKCβ) [45].

In normal mice, short-term intensive swim training reduced cardiac levels of 
ceramide and DAG, and up-regulated diacylglycerol transferase 1 (DGAT1) (TAG 
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storage enzyme) [46]. Bilet et  al. [47] demonstrated that acute bout of exercise 
increased plasma FFAs levels and cardiac lipid, without hampering systolic func-
tion in healthy subjects. On the other hand, endurance training reduced myocardial 
TAG and improved ejection fraction in obese subjects [48]. However, in obese type 
2 diabetic patients, endurance training didn’t alter myocardial TAG [49]. A recent 
study conducted by Hojan et  al. [50] showed significant improvement in cardio-
metabolic markers in prostate cancer men after a trial of a 12-month exercise pro-
gram. In addition, Mandrup et al. [51] demonstrated reduced risk factors for type 2 
DM and cardiovascular disease after high-intensity aerobic training in premeno-
pausal  and  postmenopausal  women.  Furthermore,  myocardial  TAG  content  has 
been reduced in diet-induced obese mice subjected to exercise [33]. Of note, acute 
exercise has been reported to increase the  expression of Perilipin-5 (Plin-5) in 
human skeletal muscle [52]. Plin-5 is believed to facilitate and stabilize lipolysis in 
the cardiomyocyte and to play a role in the direct transfer of fatty acids between 
lipid droplets and mitochondria [53]. Plin-5 knockout mice showed resistance to 
STZ-induced cardiac dysfunction [54]. However, the role of exercise on Plin-5 in 
the diabetic heart remains to be explored.

4  Exercise Alleviates Cardiac Insulin Signaling and Glucose 
Metabolism

Type 2 DM is characterized by insulin resistance which manifests the heart and 
provokes cardiac contractile dysfunction [55]. However, less is known about the 
mechanisms underlying the impact of insulin resistance on cardiac dysfunction 
[56]. This poor understanding is attributed to the association of insulin resistance 
and hyperglycemia with hyperlipidemia, fluctuations in hormones and obesity in the 
available type 2 DM models. Therefore, teasing out the direct effects of insulin 
resistance on cardiac function is difficult [57]. Boudina et al. [58] stated that insulin 
receptor deletion in cardiomyocyte of the CIRKO mouse model would help to trace 
out the exact impact of insulin resistance on cardiac function.

Diabetes has been reported to preserve the Ras-mitogen-activated protein kinase 
(Ras/MAPK)-dependent  pathway, while  impairing  the  phosphoinositide  3-kinase 
(PI3K)-mediated pro-survival signaling cascade [59–61], favoring the atherogenic 
and mitogenic actions of insulin [62]. Through activation of the c-Jun N-terminal 
kinase (JNK), p38 MAPK and extracellular signal-regulated kinase (ERK) [63, 64], 
the Ras/MAPK-dependent pathway can promote cell differentiation and apoptosis 
[65]. On the other hand, impaired phosphorylation of IRS-1 in diabetes and insulin 
resistance negatively affects the PI3K/PDK1/Akt/aPKC pathway and consequently 
decreased nitric oxide (NO) bioavailability [66], lipid metabolism [67] and translo-
cation of the glucose transporters (GLUT) -1 and -4 [68].
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5  Effect of Exercise on Hyperglycemia-Induced Cellular 
Pathways in the Myocardium

Hyperglycemia can aggravate cardiovascular dysfunction in diabetes via altering 
different cellular pathways, including PKC pathway, advanced glycation end prod-
ucts (AGEs) pathway, polyol pathway and hexosamine pathway. All of these path-
ways have a strong potential to increase oxidative stress in the myocardium [69, 70].

5.1  DAG/PKC Pathway

Hyperglycemia increases the synthesis of DAG from glycerol-3-phosphate (G3P), 
which then triggers activation of PKC pathway in the diabetic myocardium [71]. 
Activated PKC-β and -δ isoforms inhibit endothelial nitric oxide synthase (eNOS) 
and NO bioavailability, impair vascular permeability, and induce pro-inflammatory 
pathway and microvascular matrix remodelling [72–76]. Activated PKC pathway 
has been reported to induce cardiac hypertrophy, fibrosis and adverse Ca2+ handling 
[77]. In addition, the activity of PKC pathway was associated with reduced cardiac 
performance [77] and increased reactive oxygen species (ROS) production through 
activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases [78, 
79]. These finding has been supported from studies on type 1 diabetic hearts where 
pharmacological PKC-β inhibition reduced collagen deposition and preserve the 
diastolic function [80]. Moreover, transgenic mice overexpressing cardiac PKC-β2 
showed increased cardiomyocytes death, dystrophic calcification, cardiac hypertro-
phy and fibrosis [77].

The role of PKC pathway in exercise-induced improvement of cardiac function 
in  diabetes  is  not-fully  understood. The  study  of Loganathan  et  al.  [81] showed 
reduction in myocardial DAG levels following exercise in autoimmune type 1 dia-
betic rats. However, the reduced DAG in this study was not associated with PKC-β2 
both expression and activity.

5.2  Polyol Pathway

Activation of the polyol pathway occurs when the intracellular glucose concentra-
tion increases. This pathway is marked by the increased activity of aldose reductase 
which  converts  glucose  to  sorbitol  using NADPH  as  a  cofactor.  The  activity  of 
aldose reductase results in depletion of the intracellular NADPH [82] and can thus 
impair the myocardial antioxidant capacity [20]. Studies have demonstrated 
increased activity of aldose reductase in the myocardium of type 1 diabetic mice 
[83]. Isolated hearts exposed to hyperglycemia showed increased activity of aldose 
reductase, impaired left ventricular diastolic function and excessive production of 
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ROS [84]. In addition, activation of the polyol pathway has been reported to predis-
pose the cardiac tissue to ischemic insult. This notion has been supported by the 
study of Ramasamy et al. [85] where inhibition of aldose reductase protected iso-
lated type 1 diabetic hearts from ischemia reperfusion injury. The impact of exercise 
on hyperglycemia-induced activation of the polyol pathway in the diabetic myocar-
dium hasn’t been investigated yet. Therefore, studies are required to uncover any 
possible effect of exercise on myocardial aldose reductase.

5.3  AGE/RAGE Axis

In hyperglycemia, intracellular and extracellular proteins and lipids are exposed to 
high concentrations of glucose and glycolytic intermediates. Proteins, lipids and 
nucleic acids undergo a non-enzymatic reaction with sugars to produce AGEs [86]. 
AGEs can alter the elastic properties of blood vessels and modify the extracellular 
matrix, rendering the tissues less compliant and consequently induce myocardial 
stiffness [86]. Binding of AGEs to their receptors (RAGEs) on smooth muscle cells, 
macrophages and endothelium contributes to increased vascular permeability, vaso-
constriction, atherogenesis, production of ROS and pro-inflammatory cytokines 
[87–90], and reduced NO bioavailability [91].

Studies have introduced evidences on the role of AGEs in the development of 
cardiomyopathy in diabetes [86, 92]. In this context, treatment of STZ-induced dia-
betic rodents with ALT-711, an AGE cross-link breaker, reduced levels of AGE in 
the myocardium, improved Ca2+ handling, normalize collagen III deposition and 
attenuated myocardial structural changes [86, 92]. High levels of circulating AGEs 
have been positively correlated with type 2 diabetes [93] and heart failure [94]. In 
addition, type 2 diabetic patients exhibited inverse correlation between glycated 
hemoglobin  (HbA1c)  and  soluble  RAGEs  (sRAGEs)  [95]. This soluble form 
RAGEs are known to work as scavengers for AGEs [96].

Few studies have demonstrated the effects of exercise on the AGEs/RAGEs axis. 
Exercise has been reported to increase circulating levels of sRAGEs and reduced 
cardiometabolic risk factors in type 2 diabetic patients [97]. In aged rats, exercise 
produced  a  significant  decline  in  the  ventricular  AGE  levels  [98]. In addition, 
 reduction in obesity-induced inflammatory responses and transcription factors in 
the myocardium [30, 99].  On  the  contrary,  exercise  decreased  plasma AGEs  in 
obese Zucker rats, whereas exerted no effect on the inflammatory markers [100].

5.4  Hexosamine Pathway

In the hexosamine pathway, the enzyme glutamine:fructose-6-phosphate 
 amidotransferase  (GFAT)  converts  fructose-6-phosphate  to  glucosamine-
6-phosphate (GlcN-6-P). GlcN-6-P is metabolized to produce uridine diphosphate 
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(UDP)-N- acetylglucosamine which is used by the enzyme O-linked 
N-acetylglucosamine  transferase  (O-GlcNAc)  to modify  serine  and  threonine  on 
cellular proteins [101]. Hyperglycemia induces the expression of O-GlcNAc [102] 
which was reported to correlate with cardiomyocyte hypertrophy [103], fibrosis, 
and impaired Ca2+ handling [104] and insulin signaling [2].

Exercise was shown to affect the hexosamine pathway in different ways. In lean 
[105] and STZ-induced diabetic mice [106], long-term intensive swim-training 
markedly decreased protein O-GlcNAcylation in the heart. On the other hand, tread-
mill running increased cardiac protein OGlcNAcylation in db/db mice [107]. The 
study of Medford et al. [108] showed very time- and spatial-restricted cardiac pro-
tein  O-GlcNAcylation  in  response  to  acute  exercise  training.  Therefore,  further 
studies are required to explore the exercise-induced changes in cardiac 
O-GlcNAcylation.

6  Role of ROS in the Progression of Diabetic 
Cardiomyopathy and Beneficial Effects of Exercise

6.1  Sources of ROS in the Diabetic Myocardium

ROS are generated and degraded during the physiological and homeostatic func-
tions of the living cells [109, 110]. Excessive ROS production leads to oxidative 
stress and modifications in DNA, lipids, proteins and other cellular molecules [109, 
110]. Diabetes and its complications are well-known to be associated with excessive 
ROS and oxidative stress [109, 110]. Several experimental and clinical studies dem-
onstrated increased oxidative stress in diabetes [111–113].

Oxidative stress mediates the pathogenesis of DCM and increases ischemic sus-
ceptibility in the heart of diabetics [115, 116]. Induction of diabetes using STZ led 
to oxidative stress and abnormal cardiac contraction and relaxation in guinea pigs 
[117]. In rats with pre-diabetes induced by a single low dose of STZ, diastolic dys-
function, and increased left ventricular mass and wall thickness were recorded 
[118].

Impaired insulin-mediated glucose uptake, glycogenolysis and gluconeogenesis 
in peripheral tissues in diabetes lead to hyperglycemia and increased ROS produc-
tion in the heart [70]. Several pathways are implicated in excessive production of 
ROS in the diabetic heart, including leakage of the mitochondrial electron transport 
chain,  uncoupling  of  nitric  oxide  synthase  (eNOS),  interaction  of  AGEs  with 
RAGEs,  increased  activity  of  xanthine  oxidase,  12/15-lipoxygenase  (LOX)  and 
NADPH oxidases [110] (Fig. 12.1).
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6.2  Exercise Attenuates ROS Generation via Mitochondrial 
Electron Leakage

In oxidative phosphorylation, the transfer of electrons into the electron transport 
chain located on the inner mitochondrial membrane is directly related to the con-
centration of intracellular glucose. Under hyperglycemic conditions, the electron 
transport chain become saturated and electrons are forced to be transferred to oxy-
gen and generates superoxide anions (O2•) [119] (Fig. 12.2).

Superoxide dismutase (SOD) catalyzes conversion of the generated O2• to hydro-
gen peroxide (H2O2) which is  then decomposed by glutathione peroxidase (GPx) 
and  catalase  (CAT).  H2O2  decomposition  can  produce  hydroxyl  radicals  (OH•) 
which are highly damaging. OH• radicals induce the formation of the mitochondrial 
permeability transition pore (MPTP). In oxidative stress conditions, H+ passes down 
the electrochemical gradient through pores in the inner mitochondrial membrane 
into the mitochondrial matrix without ATP generation. This uncoupling of the elec-
tron transport chain leads to further generation of O2•, swelling of the mitochondrial 
matrix and leakage of cytochrome C into the cytosol causing apoptosis [120]. 
Experimental [26, 27, 111] and clinical studies [112] have reported excessive 
 mitochondrial ROS generation which contributes to mitochondrial dysfunction. 
Mitochondrial ROS can damage membranes and DNA, and impair the activity of 
electron transport chain, generating more ROS [121]. This notion was supported by 
the findings of Shen et al. [122] who reported reduced ROS and normalized mito-
chondrial function via overexpression of the mitochondrial manganese SOD 
(MnSOD) in the heart.

Regarding the effect of exercise on ROS-induced mitochondrial dysfunction, a 
transient increase in cardiac ROS has been reported after acute bout of exercise 

Fig. 12.1 Hyperglycemia- 
induced superoxide (O2•) 
generating pathways. ETC 
electron transport chain, 
MPTP mitochondrial 
permeability transition 
pore, NADPH nicotinamide 
adenine dinucleotide 
phosphate, AGEs advanced 
glycation end-products, 
eNOS endothelial nitric 
oxide synthase, PKC 
protein kinase C
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[123–125].  Although  not  fully  understood,  this  transient  increase  has  been 
 suggested to be mediated through rigorous cardiac contractions which increase the 
flow of electrons through the electron transport chain and formation of O2•.  It 
seems that this burst of ROS is critical in the cardiac response to exercise. In line 
with this, the beneficial cardiac responses in rodents [126] as well as health pro-
moting effects of exercise in humans [127] have been impaired on antioxidant 
therapies. Prolonged acute exercise increases ROS production, uncoupled respira-
tion and mitochondrial membrane potential in mitochondria isolated from rat 
hearts as described by Bo et al. [124]. Continued exercise resulted in normalization 
of the mitochondrial ROS levels.

6.3  Benefits of Exercise on NADPH Oxidase-Dependent ROS 
Production

NADPH  oxidases  (NOXs)  represent  a  major  source  of  ROS  in  cardiomyocytes 
[128]. NOXs generate ROS physiologically as a mean of cellular defense against 
pathogens [129]. NOX2  and NOX4  are  the  primary  cardiac  isoforms  [130] that 

Fig. 12.2 Superoxide (O2•) production through electron transport chain leakage. Under hypergly-
cemic conditions, the electron transport chain become saturated and electrons are forced to be 
transferred to oxygen and generates O2•. NAD nicotinamide adenine dinucleotide, FAD flavin 
adenine dinucleotide, SOD superoxide dismutase, GPx glutathione peroxidase
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modulates multiple redox-sensitive proteins and signaling pathways [131]. The 
interaction  between  cytochrome  b558  and  the  cytosolic  components  of NADPH 
oxidase generates O2• through catalyzing the transfer of electrons to molecular oxy-
gen [110] (Fig. 12.3). Therefore, increased expression and activation of NOXs have 
been reported in animal models of type 1 and type 2 DM [114, 132] and were asso-
ciated with the pathogenesis of diabetes-associated vascular disease [133]. In this 
context,  rats  with  left  ventricular  hypertrophy  (LVH)  [134] and human diabetic 
patients with cardiomyopathy [135] showed increased activity and expression of 
NOXs. In guinea pig with LVH, NOX-dependent O2• production and expression of 
NOX2 were significantly increased in the cardiomyocytes [136]. Overexpression of 
NOX4 increased O2• generation, cardiac dysfunction and apoptosis of cardiac cells 
[137]. Recently, Sharma et al. [138] demonstrated that STZ-induced diabetes in rats 
significantly increased left ventricular p47phox and p67phox both mRNA and pro-
tein expression.

Studies  on  the  genetic  and  pharmacological  inhibition  of NOXs  have  further 
highlighted the role of these ROS-generating enzymes in mediating cardiomyopa-
thy. In type 1 diabetic mice, the inhibition of NOX2 reduced myocardial fibrosis and 
improved cardiac function [139]. Treatment of type 2 diabetic rodents with angio-
tensin receptor blocker reduced NOX2 expression, ROS production and fibrosis of 
cardiomyocytes [114, 132]. Specific deletion of rac1, a cytosolic component of 
many  NOX  isoforms,  in  cardiomyocytes  significantly  reduced  hyperglycemia- 
induced myocardial dysfunction, up-regulation of NADPH oxidase activity, ROS 
generation and cardiomyocyte apoptosis [140]. The hyperglycemic db/db mice 
exhibited marked inhibition of cardiomyocyte NADPH oxidase activity and apopto-
sis following treatment with a rac1 inhibitor [140]. Collectively, these data show the 
critical contribution of NADPH oxidase-dependent ROS production in DCM.

The effect of exercise training on the expression and activity of NADPH oxidase 
in the diabetic myocardium has been demonstrated in several studies. Grijalva et al. 
[141] reported a significant reduction in NOX2 activity in the myocardium of type 

Fig. 12.3  Components of NADPH oxidase
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2 diabetic rats after long-term endurance training. In the study of Sharma et  al. 
[138], type 2 diabetic rats underwent a 3 week treadmill endurance exercise proto-
col exhibited significantly  reduced expression of NADPH oxidase  subunits. This 
study added support to the findings of Bidasee et al. [142] and suggested how exer-
cise  training  improves cardiac  function  in diabetes. A recent study conducted by 
Veeranki et al. [143] showed that moderate intensity exercise improved mitochon-
drial function through restoration of connexin 43 (Cx43) networks and mitochon-
drial trans-membrane potential in db/db mice.

6.4  Effect of Exercise on eNOS Uncoupling

Cardiovascular endothelial function depends on the physiological coupling of eNOS 
haem group with the substrate L-arginine, using the co-factor tetrahydrobiopterin 
(BH4) during NO synthesis [144]. Under oxidative stress conditions (Fig. 12.4), 
BH4 is converted to 7,8-dihydrobiopterin (BH2), which promote uncoupling of 
eNOS and induce the synthesis of O2• instead of NO [144]. O2• can react with NO 
produced by the activity the inducible form of NOS (iNOS) to form the versatile 
oxidant peroxynitrite [145]. In diabetes, hyperglycemia favors the expression of 
iNOS and uncoupling of eNOS leading to increased production of O2• [146]. The 
resultant NO bioavailability and formation of peroxynitrite are associated with the 
progression of DCM and increase in myocardiocytes cell death [147, 148]. The 
study of Jo et al. [149] showed up-regulation of iNOS, increased levels of the reac-
tive nitrogen species, 4-hydroxy-2-nonenal (4-HNE) and nitrotyrosine, in the heart 
of diabetic mice.

Fig. 12.4 Uncoupling  
of eNOS and generation  
of superoxide (O2•) rather 
than nitric oxide (NO) 
under oxidative stress 
conditions. eNOS 
endothelial nitric oxide 
synthase, BH4 
tetrahydrobiopterin, BH2 
7,8-dihydrobiopterin, 
GTPCH GTP- 
cyclohydrolase-I
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The acute effects of exercise on cardiac NOS isoforms in diabetes are not fully 
understood. However, long-term exercise has been reported to increase NO avail-
ability in hearts of health rats [150]. In addition, low-intensity endurance training 
increased myocardial eNOS expression and NO availability in type 2 diabetic Goto- 
Kakizaki rat [141]. On the contrary, Kleindienst et al. [151] showed that regular 
exercise reduce iNOS expression and nitro-oxidative stress in the heart of obese 
diabetic mice with no effect of β3-adrenergic receptor eNOS pathway.

6.5  Effect of Exercise on Xanthine Oxidase

Xanthine oxidase plays an important role in the pathogenesis of non-diabetic car-
diac pathologies; however, its contribution to DCM is not well established [152]. It 
is an extra-mitochondrial enzyme located in the cytosol of cardiomyocytes and pro-
duces H2O2 and O2• during the metabolism of xanthine and hypoxanthine into uric 
acid [110]. In dogs with induced dilated cardiomyopathy, a fourfold increase in 
xanthine oxidase mRNA has been reported [153]. In this animal model, xanthine 
oxidase inhibition resulted in significantly improved myocardial contractility and 
performance [153]. In C57/BL6 diabetic mice, inhibition of xanthine oxidase 
improved cardiac dysfunction by decreasing fibrosis and oxidative/nitrosative stress 
[154]. In addition, xanthine oxidase inhibition attenuated left ventricular dysfunc-
tion in STZ-induced diabetic rats [155]. Till now, nothing in known about the effect 
of exercise on xanthine oxidase in the diabetic heart. Therefore, studies investigat-
ing the effect of acute and long-term exercise on the expression and/or activity of 
xanthine oxidase in DCM are required.

6.6  Effect of Exercise on 12/15 Lipoxygenase (LOX)

12-LOX and 15-LOX are members of a family of enzymes that oxidatively metabo-
lize arachidonic acid into 12- and 15-hydroxyeicosatetraenoic acids. ROS are 
released during the metabolism of arachidonic acid by 12- and 15-LOX. Activation 
of these enzymes has been reported to be induced by hyperglycemia and to be asso-
ciated with cardiac oxidative stress and DCM [110].  12/15-LOX-knockout mice 
with STZ-induced diabetes exhibited reduced cardiac fibrosis when compared with 
the wild-type mice, suggesting the role of 12/15-LOX in DCM [156]. In addition, 
deletion of 12/15-LOX in diabetic mice resulted in decreased cardiac lipid peroxi-
dation [156]. These findings  suggest  that  12/15-LOX  inhibition may  represent  a 
therapeutic target against DCM. As yet, no studies have investigated the effect of 
exercise on 12/15-LOX in the diabetic heart.
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6.7  Effects of Exercise on AGEs-Induced ROS

Glycation is the non-enzymatic covalent bonding to glucose to proteins and lipids. 
Chronic hyperglycemia induces glycation and cross-linking of the glycation prod-
ucts  to produce AGEs. AGEs can bind to RAGE on endothelial cells and macro-
phages, triggering excessive production of ROS and pro-inflammatory cytokines 
[157]. The exact mechanism of AGE/RAGE-induced ROS generation in not fully 
explored;  however,  evidences  suggest  an  involvement  of  NADPH  oxidase  [158, 
159]. AGE/RAGE-derived ROS can induce NADPH oxidases and provoke further 
ROS production [159]. It has been also hypothesized that NADPH oxidase-derived 
ROS can have similar effect on AGE/RAGE-derived ROS  in a positive  feedback 
loop [159].

RAGE-expressing human endothelial cells exposed to AGEs exhibited increased 
ROS production and expression of tissue factor, pointing to the presence of inflam-
mation [158]. A  recent  study by Hou et  al.  [160] showed significantly increased 
expression of RAGE, nuclear factor-kappa B (NF-κB) and inflammatory cytokines 
in the myocardium of diabetic rats.

There are currently scarce data available on the effect of exercise on AGEs and 
RAGE  in  DCM.  However,  exercise  training  has  been  reported  to  reduce  lipid 
 peroxidation, ROS, activation of NFκB, interleukin-6 (IL-6) and advanced glyca-
tion in the aortas of aged rats [161] (Fig.  12.5). This study explained that the 

Fig. 12.5  Effect of exercise on hyperglycemia-induced formation of cross-linked AGEs. RAGE 
receptor for advanced glycation endproducts, AGEs advanced glycation end-products, NF-κB 
nuclear factor-kappa B, sRAGE soluble receptor for advanced glycation endproducts, O2• 
superoxide
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vasculature- protecting effects of exercise are mediated, at least in part, through sup-
pression of glycation. Another study conducted by Santilli et al. [162] showed the 
beneficial effects of regular high-intensity exercise training on platelet activation 
markers,  lipid  peroxidation  and AGE/RAGE  axis.  Therefore,  further  studies  are 
required  to  highlight  the  effects  of  exercise  training  on  the AGE/RAGE  axis  in 
DCM.

7  Exercise Increases Myocardial Antioxidant Capacity

Impairment of antioxidant defenses is a feature of the diabetic myocardium; there-
fore, enhancement of the antioxidant system in the heart could exert beneficial 
effect against DCM.  In this context, exercise training has been reported to up- 
regulate gene and protein expression of the antioxidant defenses in the heart of 
diabetic and obese animal models [33, 163]. The study of Bo et al. [124] showed 
increased expression and activity of myocardial MnSOD in response to acute exer-
cise. A recent study showed  increased cardiac SOD-2 and catalase expression  in 
response to swimming training in ovariectomized rats [164]. Hyatt et al. [165] dem-
onstrated increased protein levels of SOD-2  in the heart of Sprague-Dawley rats 
following endurance exercise training. In addition, exercise reduced lipid peroxida-
tion and increased the abundance of antioxidant defenses in cardiac tissues of 
hypertensive ovariectomized rats undergoing fructose overload [166].

The mechanism behind the beneficial effect of exercise on the myocardium anti-
oxidant defenses involves up-regulation of the transcription factor nuclear factor 
erythroid 2-related factor 2 (Nrf2), a master regulator of cellular antioxidants 
(Fig. 12.6). Tan et al. [167] reported exercise-induced increase in insulin sensitivity 
and subsequently Nrf2 activity through the PI3K pathway in myocardial cells both 
in vivo and in vitro. To mimic acute exercise, Horie et al. [168] applied electrical 
pulse stimulation (EPS) in C2CL2 myotubes and showed that the increased expres-
sion of Nrf2 and its related antioxidant genes was correlated to intensity and dura-
tion of the stimulus. Interestingly, this induced antioxidant gene expression was 
blunted in response to Nrf2 knockdown. Moreover, mice showed increased Nrf2 
gene [169, 170] and protein expression [170], and Nrf2-dependent phase II enzymes 
[169, 171]  following  a  single  bout  of  acute  exercise. Accordingly,  exercise  up- 
regulated Nrf2 signaling in mouse myocardium as demonstrated in different studies 
[125, 172]. Furthermore, Muthusamy et al. [125] reported increased nuclear accu-
mulation of Nrf2 and expression of phase II antioxidants in response to exercise in 
the myocardium of wild-type mice when compared with Nrf2−/− mice. These data 
highlight that exercise exerts its benefits through activation of Nrf2 signaling. 
However, more studies are needed to explore the possible role of exercise on Nrf2 
signaling in the diabetic myocardium.
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8  Concluding Remarks

Exercise exerts beneficial cardiac effects and influences several metabolic changes 
associated with diabetes. Different molecular mechanisms are obviously involved in 
the myocardial responses to exercise. Evidence in the literature advocate that exer-
cise intervention is a potent tool in attenuating diabetic cardiomyopathy. The benefi-
cial effects of exercise on the diabetic myocardium include amendment of the 
metabolic derangements, lipotoxicity and hyperglycemia-induced ROS-generating 
pathways. Although  studies  have  demonstrated  the  effect  of  exercise  on  several 
pathways, other pathways have not yet been investigated. Experimental animal 
models of diabetes can help in understanding the molecular pathways of the cardiac 
responses to exercise and to develop new treatment strategies for diabetic 
cardiomyopathy.

Conflict of Interest None

Fig. 12.6 Effects of exercise on Nrf2 and endogenous antioxidant defenses in the diabetic myo-
cardium. Sustained ROS in long-term diabetes impairs insulin signaling, reduces PI3K activity and 
triggers ERK phosphorylation [20]. ROS reactive oxygen species, Nrf2 nuclear factor erythroid 2 
related factor 2, ARE antioxidant responsive element, PI3K phosphoinositol 3-kinase, ERK extra-
cellular signal related kinase
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Chapter 13
Cardiac Aging – Benefits of Exercise, Nrf2 
Activation and Antioxidant Signaling

Madhusudhanan Narasimhan and Namakkal-Soorappan Rajasekaran

Abstract Cardiovascular dysfunction and heart failure associated with aging not 
only impairs the cardiac function but also the quality of life eventually decreasing 
the life expectancy of the elderly. Notably, cardiac tissue can prematurely age under 
certain conditions such as genetic mutation, persistent redox stress and overload, 
aberrant molecular signaling, DNA damage, telomere attrition, and other pathologi-
cal insults. While cardiovascular-related morbidity and mortality is on the rise and 
remains a global health threat, there has been only little to moderate improvements 
in its medical management. This is due to the fact that the lifestyle changes to 
molecular mechanisms underlying age-related myocardial structure and functional 
remodeling are multifactorial and intricately operate at different levels. Along these 
lines, the intrinsic redox mechanisms and oxidative stress (OS) are widely studied 
in the myocardium. The accumulation of reactive oxygen species (ROS) with age 
and the resultant oxidative damage has been shown to increase the susceptibility of 
the myocardium to multiple complications such as atherosclerosis, hypertension, 
ischemic heart disease, cardiac myopathy, and heart failure. There has been growing 
interest in trying to enhance the mechanisms that neutralize the ROS and curtailing 
OS as a possible anti-aging intervention and as a treatment for age-related disorders. 
Natural defense system to fight against OS involves a master transcription factor 
named nuclear erythroid-2-p45-related factor-2 (Nrf2) that regulates several anti-
oxidant genes. Compelling evidence exists on the Nrf2 gain of function through 
pharmacological interventions in counteracting the oxidative damage and affords 
cytoprotection in several organs including but not limited to lung, liver, kidney, 
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brain, etc. Nevertheless, thus far, only a few studies have described the potential role 
of Nrf2 and its non-pharmacological induction in cardiac aging. This chapter 
explores the effects of various modes of exercise on Nrf2 signaling along with its 
responses and ramifications on the cascade of OS in the aging heart.

Keywords  Cardiovascular dysfunction • Aging • Exercise

1  What Is Cardiac Aging?

Any abnormal change that occurs in cardiovascular structure and function below or 
above the optimal clinical threshold with age is termed as “Cardiac Aging”.

2  What If Cardiac Aging Is Unattended?

Like systemic aging, myocardial aging also occurs ubiquitously and inevitably. 
Interesting is the fact that each organ can age at different a pace and at times, cardiac 
aging can be independent of systemic aging. While the aging that results out of 
natural deterioration of (i) myocardial structure-function, (ii) cardioprotective, and 
(iii) repair processes is termed as normal or physiological cardiac aging, the patho-
logical cardiac aging refers to the one that is a resultant of non-normative events 
such as stress, disease and/or any toxic challenges. It is to be noted that the normal 
myocardial aging does not itself culminate in heart failure. At the same time, the 
effect of normal (healthy) aging need not always be recognized and differentiated 
from the effect of pathology, a thought set forth by Sobel [1]. In other words, the 
two need not be looked independently either where one can aggravate the other. 
Notably, certain normal age-related changes besides increasing the risk of develop-
ing CVD and CHD produces clinical heart complications such as amyloid heart 
disease, protein aggregation disease, hypertrophic cardiomyopathy, aortic stenosis 
and several others [2–4].

If both the normal and pathological cardiac aging is overlooked, over time, they 
can progress and cannot be effectively managed leading to irreversible and com-
plete damage. This can pose economic burden not only at the individual level but 
also at the societal level as well as the whole nation level. In addition to a decline in 
the integrity of the cardiovascular system, if unattended, the financial burdens and 
psychological complications due to disruption in maintaining independence in the 
daily living of the affected individuals will emerge. This will lead to the feeling of 
helplessness and other series of emotional disturbances that could cause an indirect 
aggravating source of the existing cardiac complication leading to irreversible dam-
age in the aged population. Further, the individuals’ physical limitation in the form 
of heart disease can extend to impact mental health that in turn, can seep into society 
and burdening the latter in many forms including but not limited to (i) direct health 
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care costs due to spending on emergency care, hospital care, treatment, rehabilita-
tion etc. for the patients and the dependents (ii) employees requiring additional days 
off in the workplace leading to lack of productivity, (iii) workplace errors and traffic 
accidents leading to financial loss (iv) creating a strain in the financing for Medicaid 
and Medicare that originates from tax dollars.

3  Why Is Cardiac Aging Important and What Does Cardiac 
Aging Research Mean?

The American Heart Association has estimated that 83.6 million Americans to have 
been diagnosed with at least one CVD [5]. Among that population, 42.2 million is 
approximately 60 years of age or older, with the mortality rate of those above the 
age of 75 being 66% [5]. Given that the elderly population (>65 years) of the United 
States that numbered ~46.2 million in 2014 is estimated to be more than doubled to 
98 million by the year 2060 [6], there is a huge risk in the emergence of a large seg-
ment of elderly individuals with age-associated cardiac dysfunction. Another 
important reason as to why cardiac aging studies are critical is that there are no 
uniform clinical characteristics of CVD and importantly, the course of CVD varies 
and increases dramatically with advancing age [7]. Further, many of the physiologi-
cal alterations in the aging cardiovascular system and the underlying reasons are not 
yet fully understood and solved. The cardiac aging research means (i) identifying 
and quantifying potential areas of normative, age-related decline in the cardiac fit-
ness and determining if and how these changes are relevant in the pathological 
aging process, (ii) address specific gaps in knowledge and construct improvised 
heart disease knowledge utilizing the information derived from the interplay of 
aging and what, and how, cardiac risk factors contribute to the development of 
symptoms/heart failure, and (iii) glean crucial insights to improve the predictive 
power of the disease and aid the scientific community to devise appropriate inter-
vention and management tools. Thus, relevant and rigorous evidence-based under-
standing of the aged heart is highly essential not only to inform the clinicians to 
judiciously manage and treat the failing, senescent hearts but also to extend healthy 
and independent living of the growing older population.

Although drug-based interventions against cardiac complications in the older 
people is still a choice, for the group of aged individuals with borderline to mild 
heart disease risk, due to their age-associated inherent decline in the body metabolic 
and excretory functions, pharmacological interventions remain the second line of 
treatment. Instead, lifestyle changes are the preferred choice of the prevention strat-
egy. Abundant data suggest that physical activity in combination with healthy 
dietary consumptions and avoiding risk factors such as smoking, drinking etc., as a 
lifestyle change for reducing the risk of cardiovascular disease (CVD) and coronary 
heart disease (CHD) and improving the heart health [8–10]. In particular, exercise, 
a term that includes both exercise training and physical activity has been shown to 
elicit structural and functional benefits to the human cardiovascular system and 
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reduces the risk of CVD [11, 12]. Further, exercise training and physical activity 
have been shown to increase the longevity [13–16]. Understandably the effect of 
exercise varies significantly among different individuals and also in comparison to 
certain drug based treatments, exercise as an intervention has been shown to exert 
comparably fewer benefits [17, 18]. This depends on several factors including but 
not limited to age, type of exercise, environmental conditions in which exercise is 
being performed, individuals metabolic capacity and several others [19–25]. 
Importantly, an elaborative prospective study with ~27,000 human subjects indi-
cated that, although significant, only ~40 ∼ 60% of the risk reduction of CHD and 
CVD is contributed by exercise and physical activity-related modification of tradi-
tional risk factors such as inflammatory, homeostatic factors, blood pressure, tradi-
tional lipids, BMI, HbA1c, homocysteine etc. [26, 27]. Notably, physical inactivity 
has been identified as the fourth leading risk factor for global mortality by the World 
Health Organization [28]. Although much remains to be learned as to how and why 
the exercise exerts differential effects, given the relatively less harmful effects 
(unless and until appropriate type and the right amount of exercise are performed), 
the positive benefits of exercise to the cardiovascular system cannot be denied.

Though several investigations have attempted towards understanding the cardio-
vascular aging and aging-cardiovascular pathway, an apparent translational divide 
still prevails between the basic mechanistic elucidations and clinical investigations 
and/or approaches. Growing evidence from basic and clinical studies suggest that 
an optimal level of endogenous reactive oxygen species and redox signaling path-
ways govern cardiovascular physiology (Fig.  13.1). Specifically, disrupted redox 

Fig. 13.1 Types of stress and their impact on cardiac health. Aging or any stress initially triggers 
physiological alterations (representing stress – red). In response to oxidative stress, system evokes 
Nrf2-antioxidant signaling to maintain homeostatic redox and restores the normal function (repre-
senting eustress – green). Uncontrolled and/or chronic stress conditions impair the defense mecha-
nisms leading to pathological remodeling and cardiac dysfunction (representing distress – black)
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signaling being a common denominator for aging and several cardiovascular dis-
eases such as heart failure, stroke, myocardial infarction (MI), cardiomyopathies, 
hypertension, coronary heart disease etc. [29–32], in this chapter, we will discuss on 
how cellular antioxidant signaling influence cardiac aging and its associated pheno-
type in the cardiovascular system in response to different types of exercise.

4  Relevance of Redox to Aging and Cardiac Health

Accumulation of evidence indicates that redox state of a cell and their responses to 
stress plays a critical role in aging and cardiovascular health [29, 30, 32]. In fact, 
redox signaling has a close relationship to the oldest free radical theory of aging 
[33] as well as the recently reviewed genetic mutation theory, the wear and tear 
theory, and the cellular waste accumulation theory [34]. Several clinical and pre- 
clinical studies have shown an age-related oxidative shift in the thiol/disulfide redox 
status, particularly in the ratio of reduced to oxidized glutathione, which is a major 
cellular antioxidant [35–37]. Further, age-related oxidative stress can inactivate the 
conformation, stability, molecular interactions, and activity of several signal trans-
ducers such as phosphatases, ion transporters, receptors, kinases that participate in 
diverse processes namely gene transcription, proteasome inactivation, loss of repair 
mechanisms etc., suggesting that there is an unavoidable alteration in the most, if 
not all, of the physiological mechanisms and set points concerning the redox homeo-
stasis [38–40]. This can sustain the aging-oxidative stress cyclical process. At the 
same time, it is also to be reminded that the oxyradicals or oxidants may not always 
cause damage and perturb the aging process. In other words, the redox signaling 
cannot be completely viewed as a mechanism similar to on-off switch (presence of 
oxidants/absence of oxidants), rather it must be viewed as a specific and/or precise 
balancing of the oxidation-reduction process and the levels of redox messengers 
lying within the physiological range [41]. However, an ambiguity in the field still 
exists as to whether or not redox stress plays an important role in the aging process 
[42, 43]. But, given the fact that oxygen is essential for life with an accrual and 
increased rate of oxidative damage and its associated physiological impairments 
with age, it is not surprising to believe that any exogenous or endogenous mecha-
nisms that alter the oxygen metabolism perturbing the redox homeostasis either 
largely or continuously can derange the health maintenance processes and can 
impact both the longevity as well as the quality of aging [44–46].

Effective heart function also chiefly depends on the oxidative energy production 
which is evident from the fact that it consumes approximately 8–15  ml O2/
min/100  g tissue at resting state. While this can be increased to >70  ml O2/
min/100  g myocardial tissue during vigorous exercise [47, 48]. In short, heart 
exhibits high oxygen consumption. Further, the heart is composed of array of cell 
types such as  cardiomyocytes (essential for heart contraction contributes by gener-
ating and conduct electrical signals), fibroblasts (ensures proper cardiac form and 
cell-cell communication), endothelial cells (functions in nutrient intake, oxygen 
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transport, maintenance of barrier function and permeability), smooth muscle cells 
(responsible for peripheral resistance to blood flow generated by the beating heart 
and regulation of blood pressure), cardiac mast cells (store and release a variety of 
biologically active mediators), cardiac macrophages (functioning in remodeling, 
wound healing and regeneration) [43, 49–54], all of which rely on redox reactions 
and redox signaling messengers to send physiological inputs to perform these fun-
damental processes.

While, the redox homeostasis is a precise balance between the endogenous levels 
of oxidants and antioxidants, in today’s situation our human system is persistently 
challenged to maintain it due to continuous fluctuations in the environment, dietary 
styles, exposure to toxic chemicals coupled with less physical activity, chronic stress 
and other unhealthy lifestyle choices. In addition, heart being a vital organ abundant 
in mitochondria, a major site of reactive oxygen species (ROS) production, the pro-
cesses involving oxygen could generate highly reactive oxyradicals within the cardiac 
cells and this when uncontrolled can cause an imbalance in the redox equilibrium 
towards oxidant that can have far-reaching consequences on the basic metabolic pro-
cesses. This can mount oxidative stress (OS) driving the processes related to oxidative 
damage eventually leading to cardiac dysfunction and heart failure [55, 56]. Loss of 
redox control within the cell and the resultant OS can disrupt numerous physiological 
functions including but not limited to gene expression, cell survival/apoptosis, cardio-
myocyte differentiation, impaired functions of enzymes, proteins and transcription 
factors, excitation-contraction coupling of heart, regulation of blood flow etc., and 
perturb cellular integrity and organ homeostasis [55–60]. These effects vary in mag-
nitude depending on the cellular context and the extent of redox disturbance. It has 
long been recognized that an acute toxic and chronic “disruption of oxygen metabo-
lism and redox regulation” is a crucial determinant to major cardiovascular problems, 
if left untreated, the disease can advance to chronic phase and cause multi-organ fail-
ure eventually proving fatal [61]. In short, the obligatory redox mechanisms crucial 
for basic life-sustaining processes can turn into devastating life-events.

Recent epidemiological studies indicate an increased incidence of CVD among 
the aged population (>65 years) in the United States in the past years [5, 62–64]. 
Strikingly, the recent health status of the United States compiled by Centers for 
Disease Control and Prevention’s (CDC) National Center for Health Statistics 
(NCHS) reports that mortality due to cardiac diseases occupy 5th, 3rd, 2nd and 1st 
spot in the age group <25, 25–44, 45–64 and over 65  years of age, respectively 
(CDC-National Center for Health Statistics, 2015). This provides a compelling point 
that the diseases of the heart has a strong correlation with age and is the number one 
cause of death in the elderly population. Relevant to these facts, an uncontrolled OS 
has been associated strongly with the etiology of stroke, coronary heart disease, isch-
emia/reperfusion injury, atherosclerosis, and hypertension [57, 65–67]. Further, due 
to inherent nature of the heart cells to undergo limited mitosis coupled with the attri-
tion of biosynthetic processes and increased oxidative burden in aging, the ability of 
the heart to sustain its structure-function relationships and keeping up the cardiac 
performance can be remarkably affected. Thus, age-associated OS has been regarded 
as an independent factor to profoundly impact CVD and heart failure [55, 68, 69].
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Notably, cardiac aging in the murine model is highly consistent with the age- 
related cardiac changes observed in a healthy human population [70]. Indeed, histo-
pathological, echocardiographic and signaling studies indicate that the murine heart 
undergoes subendocardial, interstitial fibrotic changes, amyloid deposition along 
with hypertrophy, diastolic dysfunction, reduced functional reserve and molecular 
alterations with age parallels that of elderly humans [70–75]. Like other tissues, a 
human heart also has the replicative potential [76, 77] and thus myocardial aging 
can also be accompanied by an imbalance between the reduction of myocyte growth 
and death. Along these lines, an interesting study demonstrated that the endomyo-
cardial biopsies from patients with heart failure revealed shortened telomeres, 
increased cellular senescence and cell death [78]. In addition, telomeric length in 
circulating leukocytes has been shown to be a representative of that in the cardiac 
myocytes and role of oxidant stress in telomere attrition in this context is well 
known [79–81]. Using telomerase ablation, researchers were also able to generate 
a premature aging animal model that was characterized by an enhanced apoptotic 
myocyte death along with poor myocyte growth [82]. Interestingly, lack of telomer-
ase and the subsequent telomere erosion also led to increased oxidative stress in 
cardiomyocytes [83] thus hinting at the fact that the redox-telomere axis can operate 
in a loop perpetuating each other in the myocardium. Further, the redox perturba-
tions associated with an aged heart can particularly induce a functional loss of either 
cardiomyocyte and/or the supporting cells eventually accruing and/or eliminating 
those from the system [84–86]. Very recently, under steady state conditions, physi-
ological aging is shown to be accompanied by shifts in the composition of heart- 
associated leukocyte populations has been reported [87]. Further, the same study 
demonstrated that heart-directed immune responses along with myocardial func-
tional and structural alterations may spontaneously occur in the elderly, without the 
presence of any apparent tissue damage or infection. These shifts in the cardiac- 
resident cells can influence the local milieu modulating several events and affecting 
the heart regenerative capacity with age progression [78, 88, 89]. At this juncture, it 
is noteworthy that the age-accompanied oxidative changes and certain clinical man-
ifestations observed in humans are also recapitulated in the myocardium of murine 
models [70, 90–93]. Thus, the more we appreciate and comprehend the redox con-
trol and environment, the better we will understand the biology of the heart and thus 
on the crosstalk of aging and cardiovascular health.

5  Response to Redox Stress – Nrf2 Signaling and Relevance 
to Cardiac Aging

In general, the cellular system is inherently endowed with several antioxidants 
based counteracting mechanisms to respond to and balance the increase in oxidative 
burden. They either individually or in combination eliminate the free radicals, scav-
enge and neutralize ROS and their precursor, inhibit ROS generation or sequester 
the redox-active metal ions required to catalyze the Fenton-type ROS generating 
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reactions [94]. These antioxidant factors are supplied to the human system either by 
endogenous process or through the dietary sources. Endogenously, the activation of 
several signaling proteins and transcription factors such as NFκB, AP1, HIF1α, p53 
and Nrf2 (nuclear factor (erythroid-derived 2)-like 2) exerts transcriptional control 
of antioxidant signaling by regulating the expression of genes that encode antioxi-
dant enzymes, phase-2 enzymes, protein chaperones, and other cytoprotective 
machinery [95, 96]. Although antioxidants protect the system from the attack of 
oxidative stress and associated damage, the hypothesis that organismal lifespan can 
be enhanced by increasing antioxidant defenses is still vague due to conflicting 
results in certain aging models. For instance, studies in mammals in which levels of 
endogenous antioxidant genes are experimentally increased have shown that maxi-
mum longevity either is minimally increased or not affected [43, 97, 98]. In fact, 
double transgenic mice overexpressing both CuZnSOD and catalase did not show 
a significant change in the lifespan [43]. These lifespan studies understandably used 
the survival of the organism as their endpoint measurement and the possibility that 
overexpression of these antioxidant genes in slowing down the rate of aging of indi-
vidual organs are not focused. At this juncture, it is to be considered that certain 
intrinsic changes always co-occur with age, however, all organs need not age alike 
and a specific organ can show signs of aging phenotypes before the other. Particularly, 
organism and organ age need not always proceed concomitantly [99–101]. 
Especially, this can be true in the case of heart as this is a nonstop working organ 
with remarkable plasticity besides facing a continuous challenge to its organ reserve, 
an ability to adjust and function beyond the typical needs. A recent large-scale study 
revealed that how cellular proteins (that determines the function) age differently in 
different niches indicating that the cellular property and the physiology of a specific 
organ can drive its course of aging [102]. Thus, the amplitude of response can vary 
depending on the severity of oxidant/antioxidant imbalance, inherent tolerance to 
alterations, cellular context and physiology of the specific organ and several other 
regulatory factors resulting in either adaptation/advantage (Eustress), stress and/or 
unresolved stress (Distress or Destruction) [103] (Fig. 13.2).

It is widely agreed that with age there is an apparent decline in the production 
and activity of biological antioxidants resulting in an overburden of ROS/RNS [56]. 
A component of the cellular antioxidant and detoxification pathway is the battery of 
genes bearing the antioxidant response element (AREs) such as NAD(P)H-quinone 
oxidase-1 (NQO1), heme oxygenase (HO1), ϓ-glutamyl cysteine ligase-catalytic 
(GCLC), ϓ-glutamyl ligase-modulatory (GCLM), glucose-6-phosphate 
 dehydrogenase (G6PD), glutathione peroxidase-1 (GPX1), glutathione peroxi-
dase-2 (GPX2), glutathione reductase (GSR), catalase (CAT) to scavenge the 
endogenous reactive intermediates and toxin export genes (multidrug response 
transporter family, MDR) [96, 104, 105], all of which are regulated by nuclear fac-
tor erythroid-2-p45-related factor-2 (Nrf2). It is originally discovered as a Cap ‘n’ 
Collar (CNC) family of basic leucine zipper (bZip)-DNA binding protein that can 
bind to erythroid transcription factor 2 (NF-E2) binding motif [106]. Later it has 
been established as a major transcription factor that heterodimerizes with small 
musculoaponeurotic fibrosarcoma (Maf) proteins and drives the expression of 
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several genes containing the antioxidant response element (ARE) binding motif due 
to the high similarity of consensus sequence between them [106–108]. Apart from 
the classical antioxidant targets, Nrf2 regulates genes involved in anti-inflamma-
tory, Autophagy, Proteasomal pathway [109–111].

Nrf2 is regulated by several mechanisms. Under normal redox environment, 
Nrf2 protein is sequestered in the cytoplasm by its inhibitor protein, Kelch-like 
ECH associating protein 1 (Keap1) in a hinge and latch model and is targeted for 
Cullin 3 /Ring-box 1 protein (Cul3/Rbx1)-based ubiquitination and degradation 
[112–115]. However, upon conditions of oxidative stress or electrophilic stress, 
Keap1 becomes oxidized at critical cysteine residues inducing a conformational 
change resulting in dissociation of Nrf2 from Keap1. Subsequently, Nrf2 translo-
cates to the nucleus, partners with Maf and additional proteins, binds to cis-acting 
ARE sequence and promotes gene transcription. In addition to the classical Keap1 
based control, the stability of Nrf2 is regulated by E3 ubiquitin ligase based degra-
dation by Skp, Cullin, F-box/β-transducin repeat-containing protein (SCF/β-TrCP) 
complex independent of Keap1 [116]. Particularly, this has been shown to be medi-
ated by glycogen synthase kinase 3 (GSK-3) that phosphorylates specific serine 
residues in the Neh6 domain of Nrf2 corresponding to the β-TrCP recognition motif 
and directs it for degradation [116]. Further, Nrf2 activation may occur following its 
phosphorylation by several kinases such as mitogen activated protein kinase, phos-
phatidylinositol 3-kinase, protein kinase C, and protein kinase RNA-like endoplas-
mic reticulum kinase (PERK) [117, 118]. In a feed-forward manner, Nrf2 protein 
transcriptionally regulates its own gene expression by binding to two ARE-like 
motifs that are present in its promoter region [119]. Nrf2 is also regulated by the 
epigenetics and miRNA-based post-transcriptional mechanisms [120, 121].

Nrf2 possess an evolutionarily conserved role in protection against OS [122]. Of 
note, the intensive function and relatively minimal and slow rate of replacement of 

Fig. 13.2 Redox-dependent regulation of cardiac function. Oxidant to antioxidant balance is cru-
cial for optimal cardiac function. The decrease in either oxidants or antioxidants leads to ineffec-
tive cardiac function. Abnormal increase of either will result in supra-normal (pathological) 
function and heart failure
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cardiomyocytes can make the myocardium more susceptible to stress, aging, 
diseases and other toxic insults [123–125]. A mild to moderate increase in ROS 
level is shown to activate Nrf2 and subsequent antioxidant and detoxification 
mechanisms in the vasculature of young animals as an adaptive response [64, 
126]. In contrast, under circumstances of strong oxidation as in a 5-month 
chronic hyperglycemia mice model, Nrf2 and its response in the heart is found 
to be severely dampened compared to a 2-month old hyperglycemic model that 
can represent a modest redox perturbation [127]. Notably, nuclear Nrf2 levels 
were significantly decreased in the autopsied heart specimens from diabetic 
patients compared to control hearts [127]. This indicates that the intracellular 
level of ROS in the heart, i.e. low to mild representing physiological and strong 
to the  persistent representing pathological scenario can bi-modally regulate 
Nrf2 thus making it as an attractive candidate for further studies.

Previous reports suggest that aged mice display a similar reduction in cellular 
redox capacity as that of Nrf2 knockout mice [118, 128]. In contrast, augmented 
activity of Nrf2 and ARE-responsive genes has been observed in long-lived rodents 
such as naked mole rats and Snell Dwarf mice [129–131]. Interestingly a classical 
study that compared eight rodent species with vastly differing longevities ranging 
from 4 to 31 years observed a strong correlation between Nrf2-ARE binding activ-
ity and maximum lifespan potential [130]. The role of Nrf2  in aging and human 
disease is extensively reviewed elsewhere [132]. Several mechanistic studies have 
elaborately demonstrated that age-related deficiency and/or insufficient activity of 
Nrf2 impairs cell’s ability to mount an adaptive response and detoxify the oxygen 
radicals affecting the redox homeostasis leading to OS and/or oxidant sensitivity in 
the myocardium and heart failure [56, 69, 126, 133, 134]. Moreover, disturbances in 
redox homeostasis are reported to induce apoptosis and/or necrosis of myocyte 
resulting in decreased myocyte number, a hallmark of aging heart that in turn, 
results in remodeling and hypertrophy [66]. Thus, an increase in ROS concentration 
that can stem from a combination of two intrinsic sources namely aging and myo-
cardium, an organ that is rich in mitochondria which are a seat of oxidative metabo-
lism has the high likelihood of weakening the heart-directed stress responses in the 
elderly even in the absence of any pathology. While, in the presence of any pathol-
ogy, the ability of the cells to respond and restore from toxic challenges could be 
greatly debilitated. In this connection, such a mechanism involving Nrf2 to control 
the oxidative burden in the aging heart can be highly relevant. Of note, these lines 
of evidence and thoughts clearly point out that Nrf2 pathway is at the intersection of 
both aging and cardiac physiology wherein, a decline in Nrf2-antioxidant signaling 
during aging can predispose the cardiac tissues to various adverse etiologies of dis-
ease development [56, 67]. Taking these facts into account, Nrf2 may be regarded 
as a “gatekeeper of cardiac longevity and myocardial health”.

More complex, yet interesting is the fact that in physically fit who undergoes 
progressive training, there is a decreased incidence of OS based pathologies. This is 
due to the reinforcement of adaptive resistance to OS along with induction of tro-
phic factors and activation of oxidative-damage repairing systems [135–140]. 
Hence, in the next section we will discuss the systematic functions (up and down 
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regulation) of Nrf2 with respect to different mode of exercises such as acute 
exercise stress (AES), endurance exercise stress (EES) and moderate exercise 
training (MET), and outline the importance of ‘OPTIMAL’ Nrf2 sustenance for 
the healthy regulation of redox homeostasis under diverse challenges in the car-
diac system (Fig. 13.3). Different modes exercise protocols and their effects are 
summarized in Table 13.1.

6  Benefits of Acute Exercise on Nrf2 Antioxidant Signaling

Exercise is recognized for maximal oxygen uptake by tissues to elevate and improve 
the metabolism, thereby enhance myocardial fitness [141]. However, the expansion 
of cardiac fitness correlates well with the degree of the physical action [142]. In 
examining the underlying mechanisms for exercise-induced benefits in myocardial 
health, it has been demonstrated that ROS can activate redox-sensitive transcription 
factors, including Nrf2, NF-κB and strengthen the antioxidant signaling [96, 120, 
143–146]. Prior studies indicated that impairment of the Nrf2-related antioxidant 

Fig. 13.3 Effects of metabolic and physical stresses on patho(physio)logical cardiac aging. 
Metabolic and chronic conditions such as obesity, diabetes, hypertension, inflammation, etc. pro-
mote hyper-oxidative condition, and structural and functional (systolic/diastolic) remodeling leads 
to accelerating aging of the myocardium. While endurance exercise stress exacerbates oxidative 
stress and cardiac remodeling, acute or moderate exercise training preserves cardiac health and 
prevents remodeling by maintaining myocardial defense system through stabilizing Nrf2- 
antioxidant signaling
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defense mechanisms leads to reduced cardiac performance, dysfunction, fibrotic 
remodeling, and inflammation through sustained oxidative stress [75, 133, 147]. 
Accordingly, our previous study demonstrated that acute exercise training stimu-
lated nuclear translocation of Nrf2 and transcriptional activation of its target anti-
oxidants in the heart of WT, while the Nrf2 ablated mice suffered from severe OS 
upon acute exercise [96]. Overall findings reveal that exercise may exert a beneficial 
effect in protecting the myocardium through Nrf2-dependent EpRE/ARE signaling 
pathway, but benefits to exercise differ with age. Aged individuals display several 
cardiac structural and functional impairments and are increasingly vulnerable to 
develop pathological remodeling relative to younger ones.

Age-related diminution in myocardial performance and tolerance to exercise are 
known [2] with the peak maximal oxygen capacity (VO2) impairs either in the nor-
mal or highly active healthy but older people influencing the cardio-respiratory 
health [148–153]. Recent reports indicate that the physiological level of Nrf2 and its 
transactivation ability is reduced in aging [75, 154]. An earlier report from our labo-
ratory has shown that the aging mice develop maladaptive oxidative stress and dia-
stolic dysfunction due to exhaustion of existing antioxidant pool to overcome the 
endurance stress (Fig. 13.4) [155, 156]. Studies in healthy older men indicated a 
reduced response to acute exercise due to decreased β-adrenergic responses [157]. 
Recent reports on β1-adrenergic mediated Nrf2/HO-1/HMGB1 axis demonstrated 
hypoxia/reoxygenation (H/R)- injury in neonatal rat cardiomyocytes [158]. Future 
investigation on the cross-talk between Nrf2 and β-adrenergic signaling pathways in 
acute exercise training during aging would be fascinating.

Fig. 13.4 Chronic endurance exercise induces diastolic dysfunction. Mitral valve inflow measure-
ments using pulse wave Doppler (Visual Sonics, Vevo2100 Echocardiography Imager) illustrates 
the prolonged endurance exercise cause diastolic dysfunction in WT or Nrf2−/− mice on aging
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7  Moderate Exercise Training (MET) and Stabilization 
of Nrf2-Antioxidant Signaling in the Myocardium

Given the role of Nrf2 during short sub-maximal (acute) and maximal endurance 
stress in aging animals, a moderate exercise training (MET) for a longer duration 
(6 weeks) seems to significantly augment nuclear Nrf2 level in both the young and 
aging heart. Subsequent to MET-induced Nrf2 stabilization, an increase in the tran-
script and protein levels of major Nrf2-targets (i.e. glutathione reductase, hemoxy-
genase- 1, glucose 6-phosphate dehydrogenase and glutamyl cysteine ligase) was 
also demonstrated [75]. Prior studies have established that a short- and long-term 
MET promoted myocardial perfusion and functional capacity in animals and 
humans with ischemic heart disease, and heart failure [152, 156, 159–166]. Notably, 
MET has been beneficial in preventing age-related cardiovascular diseases [15, 
167]. We along with others have shown that, although there was an MET-induced 
protection seen in aged animals the magnitude of benefits was not as strong as that 
noted in the younger group [75, 168]. However, the precise mechanisms are still 
elusive. Based on our previous study, it can be agreed upon that moderate exercise 
training in aging animals can escalate Nrf2 signaling and restore redox homeostasis 
[75], but the inherently high oxidative burden that exists during aging could require 
a much stronger Nrf2 activation and its associated antioxidant signaling than that is 
currently offered by MET. In other words, optimal benefits of MET could depend 
on the optimization of redox and this could be one of the crucial points where the 
young and old diverge with respect to MET’s effect. Further, an interesting finding 
has demonstrated that when animals were subjected to swimming in warm water at 
30–32 °C with a duration of 60 min (5 days/week) for 10 weeks that represents 
MET, showed neovascularization along with improved structure and function of the 
cardiovascular system [169–171]. Although MET can enhance Nrf2 signaling in the 
aging model, how far MET can be effective in improving the proangiogenic process 
in aging is unclear currently. Since, it has been reported that Nrf2 can activate 
HIF-1α/VEGF pathway [172, 173], investigating the molecular cross-talk between 
Nrf2 with angiogenesis in response to MET in young and aged hearts could also be 
worthwhile to narrow the gap in our understanding along these lines. Nevertheless, 
moderate exercise training is still the most preferred and applied training modality 
for improving cardiac fitness. However, new training modes and/or strategies are in 
need for the aged segment. With the current understanding, we suppose an in-depth 
animal study involving a combination of MET along with a titrated nutraceutical or 
dietary mode of Nrf2 activation through Protandim or Broccoli, that contains sul-
foraphane (an activator of Nrf2) respectively will be an ideal starting point. And, 
hopefully, more studies in this line of thought can provide impetus to explore an 
effective strategy to improve the cardiac fitness in the elderly.

M. Narasimhan and N.-S. Rajasekaran



245

8  Endurance Exercise Impairs Nrf2-Antioxidant Signaling 
in the Aging Heart

The strategy of endurance exercise has been proposed to mitigate the onset of sar-
copenia with age [174] and sustain the mitochondrial function in aging and related 
comorbidities [175]. In addition, endurance training has been shown to exert anti- 
inflammatory effects, increase insulin sensitivity and counteracts the loss of skeletal 
muscle mass and strength [176–179]. Although, endurance exercise is considered to 
be a feasible and effective method in older adults [180–182], a continued elevation 
of oxidative damage of proteins associated with an inability to improve skeletal 
muscle and mitochondrial protein quality is seen in older people after 8 weeks of 
endurance training aging [183]. Further, a randomized, single-blinded clinical trial 
demonstrated that endurance exercise was either ‘neutral’ or ‘negative’ with an 
unaltered rate of oxygen consumption (VO2), left ventricular (LV) structure and 
function [184, 185]. Given the inconsistent effects of endurance training besides the 
duration and intensity of exercise regimen, we also observed that endurance exer-
cise can evoke stress that leads to a hyper-oxidative condition in the heart of aged 
mice [75]. When the young-adult (~6 months old) mice were stressed to their endur-
ance capacity, an activation of Nrf2 signaling along with augmented myocardial 
antioxidant response was detected. In contrast, the old mice exhibited a significant 
decline in Nrf2 and downregulation of its target genes after EES [75]. In particular, 
the Nrf2 targets such as Nqo1 and Ho1 along with the genes encoding the subunits 
of γ-glutamyl cysteine ligase (Gcl – Gclm and Gclc), the rate-limiting enzyme for 
GSH biosynthesis, were significantly decreased in the heart of aging when com-
pared to young mice following EES. Gene expression levels for the ROS scavenging 
enzymes such as Sod2, catalase and Gpx1 were also blunted in the old mice. 
Induction of mRNA levels for G6PD and GSR, key enzymes responsible for recy-
cling oxidized glutathione (GSSG) back into its reduced form (GSH), revealed a 
parallel trend, being increased in young, but blunted in old mice following 
EES. Comparable protein levels of antioxidant enzymes correlated with their tran-
script levels indicating a tight regulation of Nrf2 signaling, which is diminished in 
the aging heart after EES. These results indicate that aged hearts were unable to 
combat EES-induced oxidative stress and hence become susceptible to pathological 
remodeling. Further, our data using genetically modified Nrf2 mice indicate that a 
loss of Nrf2 signaling could have detrimental effects besides antioxidant regulation 
in that it might either directly or indirectly be involved in pathological remodeling 
of myocardial structure and functional disintegration of the heart in response to 
intense endurance exercise training (Figs. 13.3 and 13.4). This denotes that a dis-
crete Nrf2 gene content (either presence or absence) might significantly influence 
the outcome of the endurance training. Consequently, these findings from our labo-
ratory underscores that there might be persisting effects and/or burden of age on 
Nrf2 dependent redox mechanisms in the heart that can increase cardiovascular 
disease risk upon endurance training thereby affecting the quality of life, despite the 
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endurance training is considered to be safe in aging and regarded as a countermea-
sure for aging [186].

Typically, endurance exercise can increase the physiological demands of the 
heart and of note, a meta-analysis from 23 studies comprising a total of 294 cases 
reported that following endurance exercise, there was a 2% reduction in left ven-
tricular ejection fraction (LVEF) transiently [187]. Strikingly, a small change of 1% 
reduction in LVEF has been shown to increase the risk of fatal and nonfatal cardio-
vascular events in asymptomatic dialysis patients [188]. Diminution of right ven-
tricle function is also observed with endurance exercise [189]. In another study, rats 
subjected to long term treadmill running protocol for 18 weeks (2 weeks of progres-
sive training +16 weeks of steady state 1-hour running), a time approximately trans-
lates to 10  years of endurance exercise training in humans, exhibited eccentric 
myocardial hypertrophy, diastolic dysfunction, atrial dilation, together with colla-
gen deposition and higher fibrotic marker expression in both atria and right ventricle 
[153, 190–193]. These morphological and functional changes are essentially a close 
mimic of the “athlete’s heart” as described in humans. Thus, given the increasing 
trend of endurance exercise at an alarming rate over the past decades [194, 195], 
there is an immediate need for detailed understanding of endurance training in the 
context of the myocardium. Further, since it was reported that an acute reduction in 
LVEF and myocardial dysfunction could follow a prolonged strenuous exercise due 
to increased oxidative signaling [196, 197], the relevance of endurance exercise to 
Nrf2-antioxidant signaling which is intrinsically disrupted in the aged myocardium 
can be highly important from the standpoint of cardiovascular fitness. More detailed 
studies with different aged animals spawning 6–24 months subjected to endurance 
training (mild, moderate, intense) over prolonged period of time in the presence and 
absence of Nrf2 will comprehensively determine the impact of endurance exercise 
stress on normal and forced (redox stressed) cardiac aging.

9  Conclusions and Perspectives

Overall, the central theme presented here suggests that Nrf2 is crucial to avail bene-
fits of exercise. Discrete modes of exercise result in a differing degree of favorable 
effects on cardiac health. Considerable evidence indicates that the cellular redox sta-
tus and signaling per se can shift a physiological adaptation to the pathological event 
and vice-versa in response to any exercise training. Specifically, endurance exercise 
stress may provoke cardiac exertion and instability in the aged animals. Since Nrf2 
and its function progressively declines over age, within a specific segment (age 
group), for instance, older segment, distinct individuals will likely possess varying 
levels of redox control. In addition, no two individuals will present themselves with 
stress levels to a similar extent. Relevant to the real time setting, in certain healthy 
individuals with lower Nrf2 levels and antioxidant threshold who do not manifest 
any apparent symptoms, an abstinence of competitive exercise may be required. 
Further, exercise and Nrf2-dependent redox alterations either individually or in 
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combination can affect catecholamine regulation that when inappropriately managed, 
can result in improper calcium handling leading to negative exercise response. Thus, 
an exercise intervention and its effect must be viewed contextually and more studies 
focusing on the adverse effects must be welcomed in the future to obtain a complete 
picture. At the same time, we do not propose that an incomplete picture of redox 
status as a definite detractor of existing intervention protocol. Considerations to these 
subtle yet important mechanistic details could confer better outcome with respect to 
cardiovascular adaptations and avoid any possible risks in the asymptomatic aged 
group. Nonetheless, to put more prosaically and simply, “Manage Nrf2, Balance the 
redox, Exercise smarter, Build a healthy heart”.
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Chapter 14  
Cardiac Fibrosis: The Beneficial Effects 
of Exercise in Cardiac Fibrosis

Jan Kyselovič and John J. Leddy

Abstract Numerous scientific findings have concluded that individuals who are 
active tend to develop less cardiovascular disease than those who enjoy more seden-
tary lifestyles. Animal models have further demonstrated that the beneficial effects 
of training on the heart effects of training are related to the signaling pathways of 
myocardial hypertrophy and fibrosis. As such, fibroblasts represent a very important 
population of cells within the myocardium as they play a crucial role in both cardiac 
development and response to injury. Fibroblasts establish and maintain the biochem-
ical, electrical and mechanical environment of the heart through their complex inter-
actions with cardiomyocytes. Cardiac injury disrupts the balance between fibroblasts 
and cardiomyocytes and creates a state favouring inflammation and fibrosis. 
Although this adaptive response initially serves to increase wound healing, it may 
eventually lead to increased cardiac damage and cardiac failure if homeostasis is not 
restored. Myofibroblasts are mediators of both the adaptive and maladaptive compo-
nents of this reaction. This review focuses on the beneficial effects of exercise in 
cardiac fibrosis as demonstrated in basic research studies. Attention will be given to 
the characterisation of the relationship between exercise and cardiac remodelling, 
including the cellular and molecular adaptations of the heart in response to exercise 
as well as benefits of exercise in preventing or reversing the pathological remodel-
ling of the fibrotic heart. By furthering our understanding of the beneficial and del-
eterious roles of cardiac fibroblasts and myofibroblasts and how these roles are 
related to each other in cardiac development and in heart disease, we may be able to 
design interventions to prevent the progression of cardiac fibrosis.
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1  Introduction

Over the last half-century, numerous scientific and clinical reports have examined 
the relationship between cardiovascular health and physical fitness. The prevailing 
findings of these studies have concluded that more active individuals tend to develop 
less cardiovascular disease than their less active counterparts [1]. All types of exer-
cise training have been shown to foster the health and performance of the cardiovas-
cular system. The beneficial effects of exercise can best be explained by the 
reduction of cardiovascular risk factors as well as the modification of molecular and 
cellular remodelling pathways in the heart [2]. This review focuses on the beneficial 
effects of exercise in cardiac fibrosis as demonstrated in basic research studies. 
Attention will be given to the characterisation of the relationship between exercise 
and cardiac remodelling, including the molecular and cellular adaptations of the 
heart in response to exercise as well as benefits of exercise in preventing or revers-
ing the pathological remodelling of the heart [3].

Cardiomyocytes, fibroblasts, and vascular cells in the heart are connected by a 
complex matrix principally composed of fibrillary collagen. This collagen is instru-
mental in preserving the structural integrity and plasticity of the cardiac tissue. A 
cardiac fibroblast is typically described as a cell that synthesizes and secretes pro-
teins that contribute to connective tissue. The heart’s matrix, unlike the highly orga-
nized connective tissue of bone and tendon, is dense, irregular, and composed of 
collagens, proteoglycans and glycoproteins. Collagen types I, III, V and VI, as well 
as fibronectin, periostin and vimentin are some of the structural molecules that are 
synthesized by cardiac fibroblasts [19]. In the diseased heart, the matrix undergoes 
structural and subcellular changes that progressively impair cardiac function. Under 
physiological conditions, fibroblasts secrete extracellular procollagen chains that 
assemble into cross-linked fibrils in the interstitium. Under pathological conditions, 
changes in the matrix environment, increased release of cytokines and growth fac-
tors, as well as increases in mechanical stress dynamically modulate fibroblast 
transdifferentiation into myofibroblasts. Higher levels of cross-linking of collagen 
ensue, leading to increases in myocardial tensile strength [4].

Thus, cardiac fibrosis is characterized by the systolic or diastolic dysfunction 
that results from the accumulation of extracellular connective tissue proteins in the 
heart’s interstitium. Both clinical evidence and experimental studies have suggested 
that fibrotic changes in the heart are reversible [5]. Animal models have shown that 
the beneficial cardiac effects of training are related to signaling pathways involved 
in hypertrophy and fibrosis. Given our understanding of these signaling pathways, 
the selection of the animal model that is most appropriate for the proposed research 
project is of crucial importance to the quality and the eventual translational applica-
tions of the research outcomes. From this perspective, this review will focus on 
providing better insight into the current state of basic research relating to the benefi-
cial effects of exercise in cardiac fibrosis.
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2  Cardiac Remodelling and Fibrosis

Cardiomyocytes, fibroblasts, and vascular cells in the heart are connected by an 
elaborate matrix composed mostly of fibrillary collagen which is instrumental in 
preserving the plasticity and structural integrity of the heart. Cardiac fibroblasts, 
which are the most abundant cells in the mammalian heart, have a dynamic but bal-
anced interaction with cardiomyocytes. Historically, the most recognized role of 
fibroblasts has been their contribution to secretion, maintenance and remodelling of 
the extracellular matrix. However, fibroblasts have been proposed to participate in 
many other aspects of myocardial function and dysfunction. For example, the 
mechanical and electrical contributions of myofibroblasts to the heart before and 
after injury could be critical [8].

All aspects of these homeostatic interactions are affected in any cardiac injury. 
Under pathophysiological conditions, the heart’s matrix displays significant restruc-
turing and subcellular modification that result in progressively decreased cardiac 
function. It is now accepted that alterations of the cardiac extracellular matrix and 
cardiac remodelling play a major role in the development and evolution of cardiac 
diseases leading to heart failure [6]. Fibrosis is a commonly observed pathological 
feature of most chronic inflammatory diseases. It normally involves three overlap-
ping inflammatory phases: proliferation, granulation, and maturation. Each of these 
phases involves the participation of cardiac fibroblasts. The process is characterised 
by the accumulation of excessive extracellular matrix components, whereby 
increased synthesis predominates over unchanged or decreased degradation of col-
lagens resulting in excessive, diffuse collagen accumulation in the interstitial and 
perivascular tissues [4]. Fibrotic remodelling of the heart involves several cell types 
that participate either directly by producing matrix proteins (fibroblasts), or indi-
rectly by secreting mediators of fibrogenic activity. Part of the secretome that trig-
gers and maintains fibrosis includes myocytes, myofibroblasts, and macrophages/
leucocytes/mast cells [4, 11, 12]. This dysregulation of collagen turnover takes 
place mainly in phenotypically transformed fibroblasts, termed myofibroblasts. In 
advanced disease, the fibrotic process eventually leads to severe organ dysfunction 
and death.

In the initial pathophysiology, a significant increase in the release of pro- 
inflammatory cytokines can be detected from injured cardiac fibroblasts. These 
cytokines are involved in a feed-forward loop that results in accelerated prolifera-
tion, re-expression and upregulation of many of the markers initially expressed 
within the embryonic and homeostatic stages (see Table 14.1). Eventually, the trans-
formation culminates with the differentiation of fibroblasts into highly proliferative 
migratory activated myofibroblasts [6, 8].

Myofibroblasts are not only derived from cardiac fibroblasts but can also origi-
nate from epithelial cells, endothelial cells, bone marrow-derived cells (fibrocytes), 
pericytes, and smooth muscle cells [9, 10]. Myofibroblasts have been shown to have 
important structural, paracrine, and electrical interactions with cardiomyocytes in 
both development and disease. Acute focal fibrotic scarring follows myocardial 
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infarctions, and due to the limited regenerative capacity of the heart muscle, repre-
sents myocardial healing. In contrast, persistent increases in preload or afterload 
attributable to hypertension, metabolic disorders, valvular disease, ischaemic injury 
and cardiomyopathies result in chronic diffuse or focal reactive myocardial fibrosis 
[4, 7]. The dysregulation of distinct pro- and anti- fibrotic factors (i.e. hormones, 
growth factors, cytokines, chemokines, proteases and reactive oxygen species) is 
responsible for the alteration of the collagen matrix [13]. The conversion of fibro-
blasts into active myofibroblasts involves the expression of different cellular markers 
(see Table 14.1). The conversion of phenotype begins with changes in the subcellular 
structure such as the onset of expression of α-smooth muscle actin and the increased 
secretion and assembly of extracellular procollagen chains into collagen type I and 
type III fibrils that become cross-linked to form the final fibres. The cross-linking of 
collagen represents a significant post-translational modification as it results in 
increased myocardial tensile strength and increased resistance of collagen fibres to 
degradation by matrix metalloproteinases [12, 14]. Fibrosis of cardiac tissue disrupts 
the myocardial architecture, contributes to myofibrils disarray, and determines 
mechanical, electrical, and vasomotor dysfunction, thus promoting the progression of 
cardiac diseases to heart failure [15]. Clinical studies have shown that the severity of 
histologically-confirmed myocardial fibrosis is associated with higher long-term mor-
tality in patients with cardiac diseases, particularly those with heart failure. From this 
perspective, detecting, preventing, and reversing myocardial fibrosis have emerged as 
important novel strategies in the approach to heart failure therapy. Of note, fibrosis 
persists in the myocardium of heart failure patients under the current treatment regi-
mens recommended by the official guidelines. Thus, the current treatment of heart 
failure patients, although improving clinical symptoms, does not appear to reverse the 
underlying fibrosis. In aortic stenosis patients, aortic valve replacements result in 
regression of left hypertrophy, providing further evidence that hypertrophy and fibro-
sis appear to be reversible for many cardiovascular diseases [4, 15–18].

Table 14.1 The relative expression of fibroblast markers in cardiac fibroblast and myofibroblast

Fibroblast marker Adult cardiac fibroblast Myofibroblast

Thymus cell antigen-1/CD90 ++ ++
Vimentin ++ ++
Periostin +/− ++
Discoidin domain receptor 2 + ++
Fibroblast specific protein-1 +/− +++
α-smooth muscle actin +/− +++
Platelet derived growth receptor β ++ ++
Fibroblast activation protein ++ ++
Stem cells antigen-1 ++ ++
ADAM metallopeptidase domain 12 + ++
Lysine 6-oxidase + +++
Wnt-1-induced secreted protein ++ +++

Adapted from Refs. [8, 19]
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3  Molecular Biology of Cardiac Remodelling and Fibrosis

Fibroblasts represent an essential and dynamic cell population in the heart in that 
they play critical roles in both physiology (development) and pathology (injury). A 
broad range of molecular signal cascades regulate/modulate the triggering, progres-
sion and regression of the fibrotic response. The complexity of the interactions 
between these signaling cascades greatly complicate the elucidation and understand-
ing of fibrosis at the molecular level, especially given that the relative significance of 
each pathway varies according to the underlying cause of the fibrotic reaction [25]. 
The innate and adaptive immune responses of white blood cells and mast cells, along 
with hormones and growth factors, as well as para/ autocrine (myo)fibroblast and 
cardiomyocytes signaling all contribute to the intrinsic cellular changes in myocar-
dium. These changes can sustain fibrosis by differentiating, recruiting, activating 
and stimulating the proliferation of the extracellular matrix–producing myofibro-
blasts. Differentiating between myofibroblasts and fibroblasts is key to the develop-
ment of effective therapeutic interventions. Cardiac myofibroblasts were first 
described in the literature in the 1970s [20]. Distinguishing features of these cells 
include expanded cytoplasm, microfilament bundles, serrated nuclei and highly 
defined Golgi complex and endoplasmic reticulum [21, 22]. Recent studies have 
further contributed by identifying transcription factors associated with various func-
tions of activated cardiac fibroblasts. Two such proteins are sclerosis and myocardin-
related transcription factors. Scleraxis plays a role downstream of transforming 
growth factor beta (TGFβ) and is involved in the synthesis of the extracellular matrix. 
Myocardin-related transcription factors initiate changes in the cytoskeleton and also 
upregulate expression of alpha-smooth muscle actin (αSMA) during fibroblast acti-
vation [19, 23]. In response to stress signals, the stimulation of gene expression 
associated with fibrosis requires the intervention of sequence- specific DNA-binding 
transcription factors. These factors include the transforming growth factor beta sig-
naling proteins SMAD2/ SMAD3, nuclear factor of activated T cells (NFAT), myo-
cardin-related transcription factors (MRTF) and serum response factor (SRF) [29].
To date, the strongest signature discovered in cardiac fibroblasts are the transcription 
factors the T-box transcription factor Tbx20 and the zinc finger transcription factor 
Gata4, as opposed to the heterogeneous expression found for the epicardial markers 
such as Wilms’ tumor-1 (Wt1) and epicardin (or transcription factor 21, Tcf21). 
Other cardiac fibroblasts transcription factors that are shared with both cardiomyo-
cytes and cardiac progenitor cells include members of the T-box family (Tbx2, Tbx5 
and Tbx20), members of the GATA family (Gata4, Gata4, Gata6) the muscle marker 
Myocyte-specific enhancer factor 2C (Mef2c), and the more heart-specific marker 
Heart and neural crest derivatives-expressed protein-2 (Hand2) [24]. The consider-
able overlap of gene expression signatures that are shared between cardiac fibro-
blasts and cardiomyocytes (Table 14.2) are highly suggestive that both cell types 
could share similar pathways in fibrotic processes and/or that the cardiac fibroblasts 
could naturally be reprogrammed into cardiomyocytes, were it not for the likely 
presence of strong endogenous repressors of such transdifferentiation [28].
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Gene expression often requires the participation of specific transcription factors. 
Transcription factors are a wide variety of proteins that either stimulate or suppress 
the transcription of genomic DNA into messenger RNA (mRNA). MicroRNAs 
(miRNA) are small non coding RNA molecules that are of great importance in the 
regulation of gene expression. The important roles played by miRNAs in the patho-
logical process of cardiac diseases have recently been elucidated and represent one 
of the most rapidly growing areas of research in cellular and molecular medicine 
[35, 36]. A growing body of research findings are suggesting that miRNAs regulate 
many processes observed in the development of cardiac fibrosis such as prolifera-
tion, cell death or changes in metabolism, structure, and function. It appears that 
multiple miRNAs (e.g. the muscle-specific miRNAs miR-1, miR-133 and miR-208, 
as well as other miRNAs including miR-18b, miR-21 and miR-195) play a role in 
cardiac fibrosis and that each one of them can determine pathological processes in 
an independent fashion [36, 37].

On the other hand, recent studies have also clearly suggested a pivotal role for the 
epigenetic control of gene expression in the pathogenesis of cardiac fibrosis although 
major knowledge gaps still exist. Epigenetics is a type of gene regulation that results 
in changes being imparted to DNA or proteins in nucleosomes, without modifica-
tions to the underlying sequence of nucleotides. A number of post-translational mod-
ification can target histone tails. These modifications can have drastic effects on the 
expression of genes and are central to the processes of epigenetic control [30–33]. 
The possibility of epigenetic involvement in the regulation of cardiac fibrosis  - 
through histone deacetylases (HDACs), histone acetyltransferases (HATs), acetyl-

Table 14.2 Cardiogenic signature of transcription factors expressed in fibroblasts, cardiac 
progenitor cells and adult cardiomyocytes

Type of cardiac cells Transcription factors Overlap in cellular expression

Fibroblasts Tbx2/5/20; Nkx2–5; Hand2; 
Gata4/5/6; Mef2c; Wt1; Tbx18

With cardiac progenitor cells and 
cardiomyocytes

Tcf21 With cardiac progenitor cells only
Lbh With cardiomyocytes only
Heyl No overlap

Cardiac progenitor cells Tbx2/5/20; Nkx2–5; Hand2; 
Gata4/5/6; Mef2c; Wt1; Tbx18

With fibroblasts and 
cardiomyocytes

Tcf21 With fibroblasts only
Hand1; Mesp1; Isl1; Tead1; 
Mef2a

With cardiomyocytes only

Oct4; Nanog No overlap
Adult cardiomyocytes Tbx2/5/20; Nkx2–5; Hand2; 

Gata4/5/6; Mef2c; Wt1; Tbx18
With fibroblasts and cardiac 
progenitor cells

Hand1; Mesp1; Isl1; Tead1; 
Mef2a;

With cardiac progenitor cells only

Lbh With fibroblasts only
Tbx1/3; Srf; Elk1/3/4; Foxh1 No overlap

Adapted from Ref. [24]
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lysine readers, and histone methylation  - are reviewed in Stratton and McKinsey 
(2016) [34]. It is worth noting that, to date, there are no relevant data regarding the 
effects of exercise in cardiac fibrosis occurring via interactions with epigenetic con-
trol mechanisms.

The molecular biology of cardiac remodelling and fibrosis is complicated by the 
fact that there exists no single signaling pathway specific to cardiac fibroblasts. 
Furthermore, a better understanding of the communication between cardiac fibro-
blasts and cardiomyocytes is further complicated by the complex nature of their 
interactions (not only paracrine signals but structural and electrical signals as well). 
Inflammatory signals appear to be more important in reparative and ischemic fibro-
ses. These fibroses are associated with significant activation of cytokine and chemo-
kine signaling cascades [26, 27]. The renin-angiotensin II-aldosterone system and 
fibrogenic growth factors (such as TGF-β and PDGF) appear to be involved in most 
fibrotic cardiac conditions regardless of aetiology. For a more thorough review of 
the molecular pathogenesis of cardiac fibrosis, please consult Kong et  al. which 
describes the cellular effectors and molecular pathways contributing to cardiac 
fibrosis along with a detailed review of the various mediators involved in the fibrotic 
process: fibrogenic growth factors, matricellular proteins, mast cell-derived prote-
ases, reactive oxygen species, inflammatory cytokines and chemokines, renin- 
angiotensin II-aldosterone signaling cascade and endothelin-1 [11].

The significant and close relationship that exists between cardiomyocytes and 
cardiac fibroblasts suggests that it would probably be beneficial to consider both of 
these cell populations when designing therapeutic interventions that seek to activate 
regenerative processes. Targeted signals that modulate the activity of myofibro-
blasts or that seek to activate the survival pathways of cardiomyocytes should be 
developed in combination to promote better cardiac regeneration and avoid the 
potential clinical complications of current therapeutic approaches. It is important to 
underline that both clinical and experimental evidence support the notion that 
changes resulting from cardiac fibrosis may be reversible.

4  The Beneficial Effects of Exercise in Cardiac Fibrosis

Historically, the treatment of heart disease included rest and strict limitations of 
physical activity. The past 20 years have seen an almost complete reversal in this 
way of thinking. It is now commonplace for moderate to vigorous exercise to be 
highly recommended not only for the prevention but also for the treatment of isch-
aemic heart disease. Focusing on myocardial fibrosis may potentially improve 
patient care through the targeted diagnosis and treatment of emerging fibrotic path-
ways [3]. It is therefore of utmost importance to better comprehend the mechanisms 
involved in the initial changes, subsequent progression, and eventual resolution of 
cardiac fibrosis in order to devise the most effective therapeutic approaches. Animal 
models have allowed researchers to make significant inroads in studying the impact 
of physical activity on cardiovascular and overall health. In such studies, exercise 
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has been demonstrated to make important improvements in skeletal muscle function, 
glucose homeostasis, respiratory muscle strength, locomotor coordination, bone sta-
bility and psychological well-being among many others findings. The intensity- 
controlled treadmill exercise in adult rats produces improved cardiac function and 
increased myocardial mass through cardiomyocyte hypertrophy as well as new car-
diomyocyte and capillary formation. In models of systolic heart failure, endurance 
training has been shown to promote the reversal of remodeling accompanied by 
marked improvements in both systolic and diastolic left ventricle functions as well 
as decreases in diameters measured at the of end of diastole. The reversal of the 
negative remodeling is attributed to the effects of endurance exercise These exercise-
induced improvements include reductions in cardiomyocyte apoptosis and cardiac 
fibrosis, increases in phosphoinositide 3-kinase (PI3K) activity, improvements in the 
cardiac handling of calcium, improvements in endothelial function resulting from 
increases in nitric oxide (NO) production, increases in parasympathetic tone and 
marked improvements in the antioxidative protection mechanisms of the cardiac 
muscle [38–40]. Reductions in cardiomyocyte apoptosis can be explained by the 
activation and subsequent differentiation of cardiac stem cells and progenitors [43]. 
The signaling cascade most often characterized as mediating physiological cardiac 
growth is the insulin-like growth factor-1 (IGF-1)-PI3K(p110α)-Akt pathway. The 
activity of this pathway and ensuing downstream phosphorylation of Akt substrates 
were increased in the hypertrophic hearts of transgenic mice overexpressing the 
IGF-1 receptor (IGF-1R). Akt, (also known as protein kinase B), is a well-character-
ized serine/threonine kinase that is targeted by PI3K.  Of the three Akt isoforms, 
Akt1 and Akt2 are expressed at high levels in cardiac tissue [45–47]. Moreover, in 
mice that had undergone endurance swim training, cardiomyocyte hypertrophy and 
renewal were observed. These beneficial changes were dependent on decreased 
expression of the transcription factor CCAAT/enhancer-binding protein beta 
(CEBPβ). Interestingly, expression of Akt that was specifically targeted to the 
nucleus of cardiac tissue of transgenic mice resulted in prolonged cycling of postna-
tal cardiomyocytes and expansion of the c-kitpos-Nkx-2.5pos cardiac progenitor cell 
population [44].

Clearly, animal models have provided researchers with solid evidence that sup-
ports a direct link between the beneficial effects of training and intracellular signal-
ing pathways responsible for hypertrophy and fibrosis in the heart. At the molecular 
level, recent studies in animals have suggested that activation of the PI3K (p110) 
pathway could be implicated in exercise-induced cardioprotection. In one study, 
levels of interstitial fibrosis were significantly reduced thereby improving survival 
by approximately 20% [41]. In a rat model of ischemic heart failure, exercise train-
ing resulted in a marked decrease in the expression of angiotensin-converting 
enzyme mRNA as well as angiotensin II-1 receptors (AT1) in myocardial tissue 
after a 2 month training regimen with a treadmill. Given that almost all of the angio-
tensin II found in the heart (>90%) is produced locally within the cardiac muscle, 
this particularly important finding implies that angiotensin II levels are significantly 
reduced locally, in the heart, as a consequence of exercise training. This local 
decrease in angiotensin II activity also results in decreased fibrosis. The evidence 
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supporting their conclusion of reduced fibrogenesis included decreased expression 
of tissue inhibitor of metalloproteinase-1 (TIMP-1) with unchanged expression of 
matrix metalloproteinase-1 (MMP-1) as well as reduction of the collagen volume 
fraction in the exercised animals [42].

One of the most significant advancements in the study of gene expression regula-
tion has been the recent elucidation of the important roles of miRNAs. A compila-
tion of studies has concluded that a single miRNA can target hundreds of different 
mRNA species, each with a varying degree of efficacy. Since an individual mRNA 
can be affected by many different miRNAs, one can only imagine the very elaborate 
and complex nature of the regulatory control systems that miRNA could impose on 
gene expression programs. A number of miRNAs have also been shown to modulate 
intracellular events such as hypertrophy, muscle recovery, the metabolism of mito-
chondria as well as inflammatory processes. They are therefore an interesting and 
relevant way of evaluating the body’s response to physical exercise. The character-
ization of patterns of miRNA expression that are most associated with the effects of 
exercise and training could prove useful in the estimation of physical performance 
capacity and the tracking of muscle fatigue and recovery [52]. Two miRNAs, miR-1 
and miR-133, were found to be decreased in two models of physiological cardiac 
hypertrophy. One model used transgenic mice with the selective cardiac overexpres-
sion of a constitutively-active Akt kinase and the other model displayed cardiac 
hypertrophy that was induced in exercised trained rats [48, 49]. In rats undergoing a 
training program of aerobic swimming, the expression of miR-29c was increased. 
Furthermore, downregulation of miR-29 increased the accumulation of collagen 
and worsened fibrosis in the heart whereas the overexpression of miR-29 resulted in 
the opposite effects [50, 51]. Some newly described microRNA molecules such as 
miR-17-3p might serve as a novel therapy in association with exercise for enhanc-
ing cardiac survival and regeneration [53].

5  Conclusion

Fibroblasts are essential and dynamic cells in the mammalian heart. They are cru-
cial to cardiac development and to the response to injury. Fibroblasts establish and 
maintain the mechanical, biochemical, and electrical environment of the heart 
through their intricate interactions with cardiomyocytes. Cardiac injury disrupts the 
balance between fibroblasts and cardiomyocytes and creates a state favouring 
inflammation and fibrosis. This adaptive response initially serves to increase wound 
healing. If homeostasis is not regained, however, the heart may be damaged and 
heart failure may ensue.

Myofibroblasts are mediators of both the adaptive and maladaptive components 
of this reaction. By furthering our understanding of the beneficial and deleterious 
roles of cardiac fibroblasts and myofibroblasts and how these roles are related to 
each other in cardiac development and in heart disease, we may be able to design 
interventions to prevent the progression of cardiac fibrosis.
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Exercise is a potent stimulator that activates numerous downstream cascades at 
the molecular and cellular levels. When exercise is sufficiently intensive and sus-
tained, it results in cardiac remodeling. This remodeling increases cardiac func-
tional capacity in both healthy and diseased individuals.

Aerobic exercise capacity is a prognostic marker of heart disease. Clinicians 
should promote the benefits of exercise for patients with all levels of cardiac fitness 
including those who exercise casually, sedentary individuals and patients with 
established cardiovascular disease.
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Chapter 15   
Physical Exercise Is a Potential “Medicine” 
for Atherosclerosis             

Jian Yang, Richard Y. Cao, Rongrong Gao, Qiongyao Mi,  
Qiying Dai, and Fu Zhu

Abstract Cardiovascular disease (CVD) has been recognized as the number one 
killer for decades. The most well-known risk factor is atherosclerosis. Unlike the 
acuity of CVD, atherosclerosis is a chronic, progressive pathological change. This 
process involves inflammatory response, oxidative reaction, macrophage activity, 
and different interaction of inflammatory factors. Physical exercise has long been 
known as good for health in general. In recent studies, physical exercise has been 
demonstrated to be a therapeutic tool for atherosclerosis. However, its therapeutic 
effect has dosage-dependent effect. Un-proper over exercise might also cause dam-
age to the heart. Here we summarize the mechanism of Physical exercise’s benefi-
cial effects and its potential clinical use.
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1  Introduction

Cardiovascular disease (CVD) remains the leading cause of death in the world. The 
dramatic clinical events, such as unstable angina (UA), myocardial infarction (MI) 
and stroke are all caused by atherosclerotic process. Atherosclerosis can start to form 
as early as childhood, and progress to adulthood [1]. Over the last several decades, 
people have become more obese and less physically active. Thus, the incidence of 
disease related to metabolic dysfunction, such as diabetes, hypertension and hyper-
lipidemuia, has been increased dramatically. In addition, according to the WHO data-
base, about 80% of CVD related mortalities are caused by unhealthy behaviors, such 
as high fat diets, physical inactivity, alcohol abuse and so on. It has been accepted that 
changing lifestyle could reduce the incidence of these disease. One of the most cost-
effective intervention is physical exercise [2, 3]. Recent studies have revealed that 
physical exercise decreases CVD related morbidity and mortality through systemic 
and cardiac-specific adaptations. Furthermore, physical exercise has been proven to 
be a very promising tool in both primary and secondary prevention of CVD [4–6].

Atherosclerosis  has  been  considered  as  a  chronic  inflammatory  artery  disease, 
which is responsible for approximate 50% of deaths worldwide. Risk factors to ath-
erosclerotic diseases include smoking, diabetes, hypertension, hyperlipidemia and 
lack of physical activity [7]. This process is initiated by circulating plasma low- 
density lipoprotein (LDL) entering the sub-endothelial space in the blood vessel. In 
artery with normal endothelial function, LDL would be cleared. However, if endothe-
lial malfunction exists, the balance of entering and clearance would be broken and 
LDL would  keep  accumulating. With  time  goes  by,  the  accumulated LDL would 
build up plaque inside the arterial wall, which could result in narrowing of the lumen. 
Consequently, the narrowed lumen reduces blood supply to the end organs. In some 
circumstances, the plaque could become vulnerable and finally ruptures. The ruptured 
plaque could lead to thrombus formation, which critically obstructs the blood flow.

To date, it has been well established that atherosclerosis is the result of interac-
tions of increased oxidative stress, inflammation, macrophage dysfunction, endo-
thelial injury, lipid deposition, and genetic predisposition [8, 9]. Physical inactivity 
has been widely believed to be an independent risk factor for atherosclerosis and 
cardiovascular complications [10]. It contributes to the accumulation of visceral fat 
and the activation of inflammatory pathways that promote the development of meta-
bolic disorders [11–13]. Nevertheless,  evidence  suggested  that  physical  exercise 
was able to reverse this pathological changes [14, 15].

2  Physical Activity and Atherosclerosis

Atherosclerosis  is a complicated process  involving various reactions.  It  is started 
from LDL entering  the  sub-endothelial  space  in  the  blood vessel, which  is  later 
oxidized by  reactive oxygen species  (ROS). Oxidized LDL upregulates adhesion 
molecules and induces the expression of chemotactic agents in endothelial cells 
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[16]. These factors are able to recruit inflammatory cells to the vessel wall, which in 
turn can induce cascade expression of inflammatory factors, such as MCP-1, and 
cytokines  including  interferon Gamma (IFN-y),  tumor necrosis  factor-α  (TNF-α) 
and  interleukin-6  (IL-6)  [17, 18]. Later  on,  smooth muscle  cells  (SMC) migrate 
from the tunica media into the intimal or sub-endothelial space and participate in the 
reaction. Finally, a fibrous cap would be built [19].

Recent studies demonstrated that physical inactivity can lead to the accumula-
tion of visceral fat and consequently result in the activation of oxidative stress and 
inflammation cascade, which eventually enhances the progression of atherosclero-
sis [20]. Regular physical exercise confers plentiful effects in restraining the athero-
genic process, which involved arterial wall remodeling, plaque size modulation, 
macrophage function regulation and inflammatory reaction control [21]. In animal 
study, regular physical exercise corrects cardiovascular and metabolic risk factors to 
baseline level in obese rats that were fed on a high-fat diet [22]. On the other hand, 
exercise can prevent the conversion of plaques into a vulnerable phenotype [23], 
which is the main trigger of acute coronary syndrome. Randomized clinical trials 
have validated the role of physical exercise in primary and secondary prevention of 
atherosclerosis, CVD, and decrease mortality among adults [24, 25].

2.1  Physical Exercise Reduces Atherosclerosis Process

Physical exercise prevents atherosclerotic plaque development and induces the 
regression of coronary stenosis possibly by preventing and reducing inflammatory 
reaction, oxidative stress and regulating endothelial function. Besides, physical 
exercise can normalize blood pressure, insulin resistance, serum lipid level [15], 
which all are crucial factors during atherosclerosis development.

2.2  Physical Exercise Exerts Anti-inflammatory Effects

Chronic inflammation is one of the most important features of atherosclerosis and 
persists throughout the whole process. It starts with the release of pro-inflammatory 
factors including cytokines and nuclear factor-κB  (NF-κB).  NF-κB, a pro- 
inflammatory transcription factor, can upregulate the transcription of other pro- 
inflammatory molecules, such as tumor necrosis factor-α  (TNF-α), interleukins 
(IL-1β, and IL-6), cyclo-oxygenase-2 (COX-2), and nitric oxide synthase (iNOS). 
Apart from this, it is also associated with oxidative stress production and disease 
related to aging [26–28]. One study showed that combination of exercise and Korean 
red ginseng supplement or exercise alone could decrease serum CRP, NF-kB, TNF- 
α, COX-2, IL-6, ICAM-1 and VCAM-1 in aorta of D-gal induced aging atheroscle-
rotic rats [29].  Another  report  showed  that  higher  intensity  exercise  enhanced 
NF-κB activation, which consequently bring adverse effect to CVD [30, 31].

15  Physical Exercise Is a Potential “Medicine” for Atherosclerosis
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Being able to regulate the activity of cytokines may contribute to the protective 
effect of physical exercise [32, 33].  TNF-α levels are found to be increased in 
patients with atherosclerosis [34–36]. It activates and accelerates atherogenesis pro-
cess by promoting thrombosis, vascular remodeling, inflammation, endothelium 
apoptosis,  oxidative  stress  and  impairing NO  bioavailability  [35, 37, 38]. Apart 
from that, TNF-α precipitates in the secretion of adhesive molecules, thus encourag-
ing recruitment of inflammatory cells [36]. Overexpression of TNF-α is implicated 
in damaged arterial wall and unstable plaque [39]. The reduction of TNF-α could be 
achieved by lipopolysaccharide-stimulated monocytes in whole blood from healthy 
subjects [40]. Further study looking into physical exercise and TNF-α found that 
physical exercise could prevent the elevation of circulating TNF-α [41]. Other stud-
ies  also  showed  that  physical  exercise  decreases  cytokines,  in  particular  TNF-α 
[42–44], which is a crucial risk actor in atherosclerosis development and vascular 
function. TNF-α plays a central role in vascular inflammation, involved in oxidative 
stress, apoptosis and also thrombogenesis [45–47].

IL-6 has received increasing attention as it interprets the anti-inflammatory effect 
of physical exercise in patients with CVD [48, 49]. In contrast to TNF-α, IL-6 inhib-
its  the endotoxin-induced  increase of TNF-α [41], induces concentrations of two 
other  anti-inflammatory  cytokines:  IL-1Ra  (IL-1  receptor  antagonist)  and  IL-10, 
and has a central role in exercise-induced leukocyte trafficking [50]. Furthermore, 
IL-6 has vital effect on atherosclerosis by producing CRP. CRP can  increase  the 
levels of reactive oxygen species (ROS) and NF-κB. Both of them can precipitate 
inflammation [32, 51]. Also, CRP is associated with higher cardiovascular risks [32, 
52]. A recent review has summarized that physical exercise could lower the effects 
of CRP on inflammation of atherosclerosis [53]. Increasing evidence has clarified 
that physical activity ameliorated activation of inflammation, by decreasing level of 
TNF-α, IL-1β, and IL-6. In addition, it activates matrix metalloproteinase 9, thus in 
turn attenuates fibrosis, in an MI animal model [50, 54].

IL-18  is  another  pleiotropic  inflammatory  cytokine,  which  was  found  to  be 
increased in the serum of type II diabetes patients. It revealed itself a predictor of 
cardiovascular death and future CVD [55]. Besides, it worsens the plaque burden 
and is related to left ventricular myocardial dysfunction [56]. IL-18 can be reduced 
by an exercise intervention without weight change [57, 58].

In summary, physical exercise is an effective way to decrease the key inflamma-
tory factors like TNF-α, CRP, IL-6 and IL-18, suppressing atherosclerosis from a 
molecular level.

2.3  Physical Exercise Exerts Antioxidant Effects

Oxidative stress is another important pathology change in atherosclerosis. It has 
been well established that physical exercise has a strong negative effect on oxidative 
stress [59–62]. Oxidative stress is defined as an imbalance between the excessive 
production of oxidant compounds plus the insufficient anti-oxidant defense 
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systems, which may cause tissue injury. It can produce endothelial dysfunction and 
accelerate atherosclerosis in patients with CVD.

Oxidized LDL (OxLDL), formed under oxidative stimulation, can enhance local 
inflammatory  response.  Lots  of  factors  contributing  to  the  formation  of 
OxLDL. Systemic diseases like diabetes, chronic kidney disease are well known to 
induce  OxLDL  [63]. Air  pollution,  which  is  usually  neglected,  is  also  a  strong 
inducer for systemic oxidative stress [64]. Physical exercise has been proven to 
ameliorate systemic inflammation and oxidative burden via acting on NO [65, 66].

It has been well studied that NO is involved in the oxidation of LDL-cholesterol 
[67, 68]. Decreased endothelial NO bioavailability may be the earliest indication of 
atherosclerosis [69]. Reduction of endothelial NO bioavailability is closely related 
to vasoconstriction, platelet adherence and aggregation, leukocytes adherence, and 
increased proliferation of SMC [70]. These effects all contribute to the pathogenesis 
of atherosclerosis. Decreased expression of endothelial NO synthase (eNOS), loss 
of eNOS activity, and accelerated NO degradation by ROS are associated with sup-
pressed NO bioactivity [71, 72]. Exercise readjusts the balance between NO genera-
tion  and NO  inactivation  [73]. Among many  enzymatic  systems  that  are  able  to 
produce ROS, NADPH oxidase  appears  to  be  the most  significant  one  [74, 75]. 
Physical inactivity increases the activity of NADPH oxidase, followed by enhanced 
O2− and ROS production. It finally will lead to endothelial dysfunction and athero-
sclerotic lesion progression [76]. To sum up, the mechanism of exercise modulating 
oxidative stress are as follows: (1) increases eNOS expression and/or eNOS Ser1177 
phosphorylation [mediated by an  increase  in Akt expression and/or phosphoryla-
tion];  (2)  increases  antioxidant  superoxide  dismutase  (SOD)  expression;  (3) 
decreases  NADPH  oxidase  activity  and  expression  of  its  subunits  (gp91phox, 
p22phox and nox4), leading to reduced ROS generation [77–82].

Last  but  not  the  least,  hyperhomocysteinemia(HHcy)  is  an  unneglectable  risk 
factor for atherosclerosis and oxidative stress. HHcy also involved in vascular 
responses and endothelial injury [83]. It could enhance propensity for plaque rup-
ture and promote vascular SMCs proliferation [84–87]. Studies have elucidated that 
HHcy induces oxidative stress/ROS through induction of thrombin and activation of 
PAR-4 and NADPH oxidase 1,  or oxidation of  reactive  sulfhydryl groups  in  the 
presence of molecular oxygen [83, 88, 89]. Exercise is found to be effective in sup-
pressing HHcy  induced  destruction.  Firstly,  exercise  can  reduce HHcy-mediated 
oxidative stress and atherogenesis, either directly by reducing Hcy levels or indi-
rectly by enhancing PON1 levels. PON1 is a calcium-dependent esterase belonging 
to the PON family of proteins and is strongly associated with HDL level. PON1 can 
reduce cellular oxidative stress as well as the rate of cholesterol biosynthesis after 
entry into the macrophages [90–92]. Secondly, exercise can upregulate kidney beta-
ine homocysteine S-methyltransferase level, which removes Hcy through the non-
classical remethylation pathway [93]. In turn, HHcy can also restrict the physical 
activity capacity. Therefore, it is inevitable to correct the HHcy before the exercise 
regimen to exert its full potential [94–96].

Physical Exercise Regulates Endothelial Function

15  Physical Exercise Is a Potential “Medicine” for Atherosclerosis
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Endothelial cell integrity is crucial for preserving vascular homeostasis. It allows 
the continuous adjustment of vascular tone, regulation of leukocyte traffic, and also 
maintenance of blood fluidity [97]. Endothelial dysfunction refers to an injury of 
endothelium-dependent vasorelaxation. Vulnerable plaques are sites of active 
inflammation and oxidative stress. They are most likely to locate where there is 
impaired endothelial function. Endothelial dysfunction presents in all stages of ath-
erosclerosis  process. The  impaired  endothelial  cells  release  lower  levels  of NO, 
thrombomodulin, prostacyclin and tissue plasminogen activator but increase the 
release of endothelin-1, angiotensin II, plasminogen activator inhibitor (PAI)-1 [98, 
99]. However, clinical and experimental findings clearly demonstrate that physical 
exercise can counteract these destructive effects [100, 101]. Researchers found that 
a primary target of the physical exercise intervention appears to be the impaired 
endothelial function [102, 103].

Inflammatory factors like NO and CRP are crucial in endothelial homeostasis. 
Loss of NO bioactivity seems as an early event in the pathogenesis of atherosclero-
sis [69]. CRP is produced in response to IL-6, and its pro-atherogenic effects are 
applied through damaging the endothelial function. Both of them could be down-
regulated by physical exercise.

Interestingly, researchers also found that endothelial impairment is accompanied 
by increased blood pressure, insulin resistance and dyslipidemia [104, 105]. This 
suggests that the concurrent appearance of these risk factors might share a common 
mechanism. Given this information, physical exercise preserves endothelial func-
tion by controlling blood pressure through regulation of AII receptor (type I) and 
increasing skeletal muscle endothelial nitric oxide synthase content [106, 107]. By 
controlling one factor, physical exercise helps to decrease the risk for all other 
chronic metabolic disease. Besides, another study demonstrated that acute dynamic 
resistance exercise can decrease resting blood pressure and reactivity to phenyleph-
rine and increased endothelium-dependent relaxation [108].

In patients with CVD, physical exercise reverses endothelial dysfunction and 
increases CBF [109–111]. While in patients with Type 2 diabetes and obesity, simi-
lar results have been observed [112, 113] but without concomitant changes in tradi-
tional risk factors. All these results encourage physical exercise for both treatment 
and prevention of these endothelial function-centered disease [114–117].

2.4  Physical Exercise Reduces Endothelial Adhesiveness

Endothelial adhesiveness plays important role in the development of atherosclero-
sis. Within a week after the initiation of a high-cholesterol diet, monocytes adher-
ence to the endothelium and starts to migrate. It leads to the development of intimal 
lesions, which contain sub-endothelial macrophage-derived foam cells, small num-
bers of non-lipid-filled macrophages and T lymphocytes [118, 119]. Under normal 
physiologic conditions, endothelial cell does not secrete factors that induce the 
adhesion molecules. Once activated by cytokines, oxLDL, or ROS, endothelial cells 
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will start to express cell adhesion molecules (CAMs), such as ICAM-1, VCAM-1, 
E-selectin, and P-selectin. They are all essential to the recruitment of inflammatory 
cells [120]. While physical exercise has a positive effect in the circulating CAMs. 
Circulating  ICAM-1,  VCAM-1,  and  P-selectin  are  found  to  be  significantly 
decreased after 2 weeks of exercise training [121–123]. Similarly, physical exercise 
performed 5 times per week for 6–8 weeks decreases circulating P-selectin andV-
CAM- 1 levels [124]. Shear stress induced during physical exercise could probably 
contribute to these effects [125]. Besides, apart from the direct  impact on CAMs 
expression, physical exercise might also have indirect beneficial effects throughout 
the reduction of agonists of CAM synthesis [43, 126, 127].

Endothelin-1 (ET-1), which is expressed by vascular endothelial cells, has strong 
constrictor and proliferative activity on SMCs. Because of this, it has been implicated 
in modulation of vascular contraction and progression of atherosclerosis. Its produc-
tion has been found to be elevated in human atherosclerotic lesions [128–130]. It was 
found that in healthy adults, physical exercise is able to suppress its level [131, 132].

In all, by reducing the soluble adhesion molecules which may represent the inter-
action between activated monocytes/macrophages and endothelial cells and ET-1 
concentration, physical exercise might be considered as an effective non- 
pharmacological intervention to reduce endothelial adhesiveness.

2.5  Physical Exercise Regulates Macrophages Function

Macrophage has been studied for centuries for its role in inflammatory response. In 
addition to modulating immune reaction, it is also noticed to take great part in the 
atherosclerotic process. Macrophage is able to modulate lipid metabolism. During 
the early phase of plaque formation, macrophages become foam cells when it can 
not process OxLDL. Foam cells  are  the hallmarks of  atherosclerotic  lesions  and 
vulnerability [133, 134].  Macrophages  have  been  parsed  into  at  least  two 
subtypes(M1 and M2), each of which have specific roles in atherosclerosis [135–
138]. M1 macrophages produce high levels of pro-inflammatory factors like CD40, 
CD80, IL-6, TNF-α, iNOS [139]. While M2 macrophages leads to more foam cell 
formation with higher phagocytic nature and greater ability to import OxLDL. Foam 
cell–prone M2 macrophages level is higher than pro-inflammatory M1 macrophages 
in the early atherosclerotic lesions; but the ratio reverses as the lesion progresses 
[140]. In addition, macrophages express MMPs to stable plaques during atherogen-
esis [141–143]. Additionally, HHcy may be a primary cause for the macrophages 
dysfunction that leads to the effect on atherosclerosis [142, 144].

Physical exercise prevents foam cell formation. It accelerates the transportation 
of cholesterol from macrophages to the liver which has been considered as the ini-
tial step of atherosclerosis [145]. Moreover, physical exercise encourages accumu-
lation of collagen and elastin by modulating serum level of MMPs and TIMP-1. 
This greatly keep the plaque stability and reduce in lesion incidence and arterial 
stenosis [146–148].

15  Physical Exercise Is a Potential “Medicine” for Atherosclerosis
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2.6  Physical Exercise Preserves Atherosclerotic Plaque 
Stability

Most  of  the  acute  coronary  syndrome  (ACS)  occurs  because  of  plaque  rupture. 
Plaque rupture exposes sub-endothelial to various of thrombogenic factors in the 
blood. Thrombus forms immediately after the exposure, leading to acute myocar-
dial infarction or stroke [16, 18]. The vulnerability renders plaques  to rupture. A 
vulnerable atherosclerotic plaque has thin fibrous cap, large lipid core (>50% total 
plaque surface), high inflammatory cell burden but low volume of SMCs [149].

Physical exercise has shown its capacity to slow the progression of atherosclero-
sis via promoting plaque stability and preventing plaque rupture in animal studies 
[76, 106, 150, 151]. ApoE −/− mouse model has been commonly used in athero-
sclerosis studies. Using this model, swimming training was applied to study its 
effect on the plaque. After swimming training, it  is observed that the plaques are 
more stable by thicker fibrous cap, less adventitia inflammation, decreased media 
degeneration and inflammatory macrophage plaque content [106]. Physical exercise 
regulates plaque size and its rupturing potential through regulation of matrix con-
tent and matrix regulators [151]. Physical exercise decreases MMP-2, MMP-3, and 
MMP-8 levels as well as IL-6. Besides, collagen, elastin, and TIMP-2 (inhibitor of 
MMP-2 and MMP-9) were also found to be increased in parallel with the change of 
fibrous cap thickness [147, 151]. In other studies, MMPs, TIMP-1 are also found to 
be modulated by physical exercise [152].

Apart from the ability to modifying lipoproteins, macrophages can worsen the 
plaque status by producing MMPs, which is known to degrade collagen in plaque 
[153]. Collagen is the basic structure to keep the atherosclerotic plaque well-formed. 
Destruction of the collagen would lead to thrombogenic disasters as mentioned 
above. Physical exercise could prevent this from happening by modifying macro-
phage function.

Pro-inflammatory enzyme lipoprotein-associated phospholipase A2 (Lp-PLA2) 
is a novel marker for plaque inflammation and rupture-prone plaques [154]. 
Lp-PLA2 binds to ApoB-containing lipoproteins and degrades oxidized phospho-
lipids  in LDL-cholesterol. Elevated level of Lp-PLA2 can be detected within  the 
necrotic core and macrophages of vulnerable plaques, but not in early stable plaques 
[154]. Furthermore, Lp-PLA2 predicts mortality in MI and post-MI patients [155]. 
Physical exercise has negative effects on this new biomarker, however, clinical evi-
dence remains insufficient [156, 157]. In one clinical study, patients with dyslipid-
emia have suppressed level of Lp-PLA2 after strict lifestyle modification [158].

High plasma Hcy concentration is associated with atherosclerotic plaque rupture 
and morbidity in type 2 diabetes patients, and is considered as an independent risk 
factor for CVD [84–86, 159–161]. It encourages plaque maturation by activating 
SMCs  and  promoting  macrophage  differentiation.  While  physical  exercise  can 
potentially reduce the detrimental effects of HHcy on macrophages. It should be 
noted that this effect has not be tested in vivo so far.
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3  Physical Exercise, Can One Overdose?

With all the evidence above, the agreement that physical exercise can be applied to 
treat atherosclerosis can be reached. Like regular medicine, physical exercise also 
has dosage effect. Different dosage of physical exercise refers to the time and 
strength  spent  on  exercise.  Regular  intense  exercise  brings  cardiac  adaptations 
which comprises the clinical constellation of findings known as the athlete’s heart 
[162–165]. However, increasing studied found that these adaptations may also have 
deleterious  effects.  For  example,  some  reports  have  claimed  that  atherosclerotic 
plaques are present in the carotid or peripheral arteries of 90% of marathon runners 
at the age of 50–75 [166, 167].

Regular and moderate-intensity exercise, on the other hand, reduces cardiovas-
cular morbidity and mortality. It could be served as primary and secondary preven-
tion of CVD [165, 168–171]. Vigorous exercise training will cause sport-specific 
hemodynamic alterations, leading to profitable structural and functional adaptations 
in athletes [172–174]. Chronic exposure to high levels of exercise training, which is 
equivalent to “exercise overdose”, may bring some adverse effects. Long term stress 
on the heart will cause cardiac remodeling. The clinical presentation could be atrial 
fibrillation and cardiomyopathy [175, 176]. “Overdosed” exercise does more harm 
than good. To testify this, 40 elite endurance athletes were included in one study. A 
decreased right ventricular systolic function and increased cardiac injury biomark-
ers were detected right after completion of an ultra-endurance exercise. Although in 
this study short-term recovery appears complete, chronic structural changes and 
reduced RV function have been observed in some athletes [176, 177].

4  Summary

In summary, regular physical exercise is highly beneficial in reducing the risk of 
atherosclerosis development, and the underlying mechanism could be concluded as 
followings: (1) reducing of pro-inflammatory cytokines; (2) counteracting oxidative 
stress  via  decreasing  ROS  production,  Hcy  level,  NADPH  oxidase  activity  and 
increasing  NO  availability;  (3)  improving  endothelial  function;  (4)  decreasing 
endothelial  adhesiveness  by  modulating  the  expression  of  ICAM-1,  VCAM-1, 
E-selectin, P-selectin and ET-1; (5) regulating macrophage function and suppress-
ing the foam cell formation; (6) lowering LDL and triglyceride levels. (7) preserv-
ing atherosclerotic plaque stability. Similar to medicine, the beneficial effect of PE 
has dosage effect. Overdosing would also bring “toxicity”. Vigorous exercise train-
ing could adversely affect cardiac function and ameliorate all these beneficial 
effects. More clinical trials regarding to the proper exercise training are needed to 
establish a more mature physical exercising treatment system.
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Chapter 16
Experimental Evidences Supporting Training- 
Induced Benefits in Spontaneously 
Hypertensive Rats

Gustavo S. Masson and Lisete C. Michelini

Abstract It is well known that chronic hypertension is accompanied by several 
functional deficits in the central nervous system and peripheral tissues, most of 
which are corrected by exercise training. However, the biological mechanisms 
underlying these effects are not yet well understood. In the present chapter we sum-
marize recent experimental evidence on cellular/molecular mechanisms supporting 
not only the deleterious effects of hypertension on autonomic control and peripheral 
circulatory deficits, but also their reversion by low to moderate aerobic exercise 
training. Interestingly, both hypertension and aerobic training exert their effects by 
acting exactly on the same pathways/mechanisms but in opposed directions.

Keywords  Training-induced • Spontaneously hypertensive rats • Exercise

1  Introduction

The development of experimental models of hypertension allowed researchers to 
reveal several pathophysiological mechanisms and to discover new therapeutic 
strategies. Several  pharmacological  as well  as  life  style modifications have been 
extensively used to overcome many of the deleterious effects caused by the mainte-
nance of elevated pressure levels. Hypertensive animals submitted to aerobic exer-
cise training, an important life style change, developed numerous cardiovascular 
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benefits opening the possibility for its usage in the clinical practice. For instance, 
clinical studies demonstrated that central autonomic adaptations induced by aerobic 
training are the main cause of baroreflex sensitivity improvement in hypertensive 
patients [1]. Indeed, experimental studies in spontaneously hypertensive rats (SHR) 
identified that normalization of baroreflex function and improvement of cardiac 
vagal activity are timely correlated with both the downregulation of brain renin- 
angiotensin system and the reduction of oxidative stress and inflammatory profile in 
autonomic control areas [2, 3]. The present chapter, reviewing these data and others 
focused in the cross-talking between tissue dysfunction and molecular/cellular 
responses, allows the physical training prescribers to understand the physiological 
mechanisms that attenuate autonomic dysfunction and how the improvement of 
autonomic regulation contributes to a better circulatory control in hypertension.

2  Central Nervous System and Autonomic Dysfunction 
in Hypertension

Directly coupled to cardiovascular system, central nervous system drives both acute 
and chronic hemodynamic adjustments during distinct environmental conditions. 
For this purpose, the brain continuously monitors the cardiovascular parameters and 
integrates these signals in order to reflexly codify cardiovascular and metabolic 
parameters through the sympathetic and parasympathetic divisions of the autonomic 
nervous system. There are three major sets for afferent signaling of cardiovascular 
parameters: arterial baroreceptors, peripheral chemoreceptors and cardiopulmonary 
receptors. These intrinsic receptors of the cardiovascular system codify pressure 
levels, circulating blood gases and cardiac function, respectively, whose signals are 
integrated in central autonomic areas, triggering appropriate parasympathetic and 
sympathetic outflow to heart and vessels [4, 5]. In hypertension, peripheral signal-
ing mainly by baroreceptors and chemoreceptors are dysfunctional and central inte-
grative autonomic mechanisms are abnormal, contributing to increased sympathetic 
nerve activity and suppressed parasympathetic nerve activity, which characterizes 
the concept of autonomic dysfunction [6–8].

Baroreflex is recognized as the most important beat-to-beat regulatory mecha-
nism of arterial pressure. Baroreceptors are located in the adventitial and media 
tunica of aortic arch and carotid sinus. These mechanoreceptors present channels of 
Degenerin/Epithelial Na + channel, Acid sensing ion channel 2 [9], and transient 
receptor potential cations channels superfamilies, as the transient receptor potential 
channel 5 [10]. Once the pressure wave strains the vascular wall in the aortic arch 
and carotid sinus, the baroreceptors are stretched and the mechanosensitive chan-
nels induce a cationic influx, which depolarizes Na + channels and increases aortic 
depressor nerve activity. In the brainstem, second order neurons located at nucleus 
tractus solitarii (NTS) are stimulated, activating parasympathetic areas, as the nucleus 
ambiguus  (NA)  and  the  dorsal  nucleus  of  vagus  nerve  (DMV)  [4]. Also,  these 
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glutamatergic second order neurons activate caudal ventrolateral medulla’s (CVLM) 
neurons, which are gabaergic and inhibit the sympathetic premotor neurons within 
the  rostral  ventrolateral  medulla  (RVLM).  These  neuronal  connections  activate 
parasympathetic preganglionic neurons and restrain sympathetic outflow to produce 
acute cardiovascular adjustments as cardiac output reduction, peripheral vasodila-
tion and decrease in circulating catecholamines, renin and vasopressin, which con-
tribute to reduce and stabilize arterial pressure. On the other hand, during blood 
pressure reduction, baroreceptors’ depolarization is attenuated and, consequently, 
NTS  stimulation.  Then,  parasympathetic  pre-ganglionic  neurons  of  the  NA  and 
DMV are not activated, as well as the sympathetic premotor neurons of the RVLM 
(which  received  continuous  stimulation  from  higher  integrative  centers)  are  not 
inhibited. Therefore, the arterial pressure fall reflexly leads to unload of parasympa-
thetic and increase of sympathetic activity to bring pressure back to control levels. 
It is also known that brainstem integrative autonomic areas are continuously modu-
lated by hypothalamic neuronal circuitries within the paraventricular nucleus (PVN) 
and other supramedullary pathways [5, 7, 11]. Vasopressinergic and oxytocinergic 
projections from the PVN to the NTS/DMV area are shown to decrease and increase 
baroreflex sensitivity, respectively [12–16].

Baroreflex sensitivity is attenuated in both pre-hypertensive and hypertensive 
animals [17, 18]. In other words, the magnitude of cardiovascular adjustments, as 
changes in heart rate and peripheral vascular resistance, evoked by arterial pressure 
oscillations are depressed. Stiffening of the arterial wall, oxidative stress and inflam-
mation in autonomic areas are the main mechanisms that generate baroreflex dys-
function [6, 8, 19, 20]. As described in the following sections, hypertensive subjects 
exhibit several morphological alterations in the wall of arteries resulting in a stiff 
vascular wall. As a direct consequence, each pressure wave reduces its mechanical 
deformation  leading  to  an  attenuated  activation  of  NTS’  second  order  neurons, 
reduced reflex responses to load/unload of baroreceptors and elevated pressure vari-
ability [21, 22]. The increased pressure variability augments hydrostatic pressure 
oscillations in the capillaries, exposing tissues to short periods of hypoxia and 
hyperoxia. These repetitive ischemia-reperfusion episodes activate local renin- 
angiotensin system, increase reactive oxygen species availability and pro- 
inflammatory cytokines production facilitating the development of end-organ 
injuries in several tissues [20, 23–26]. In addition to increased pressure variability, 
autonomic dysfunction promotes end-organ damage through elevated adrenergic 
signaling. Beta-adrenergic signaling in the myocardium induces cardiac hypertro-
phy, augments matrix metalloproteinase-2 activity and enhances TGF-β expression 
and collagen I and III synthesis. Increased cardiac sympathetic signaling has been 
shown to intensify reactive oxygen species production and infiltration of hemato-
poietic mononuclear cells [27–29]. Adrenergic hyperactivation also modifies renin 
secretion and sodium/water reabsorption determining abnormal renal function [30]. 
Indirectly,  renal  adrenergic  signaling  elevates  renin  release  and,  consequently, 
increases plasma angiotensin II, which, as described subsequently, promotes several 
tissue injuries through activated oxidative stress and inflammation.
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Peripheral chemoreflex, one of the most important regulatory mechanisms for 
respiratory responses [31], is also crucial for the regulation of autonomic control. 
Chemoreceptors are located bilaterally in the carotid body, at the bifurcation of 
common carotid artery. Within the carotid body chemosensitive type I cells are 
responsible for the transduction of PO2 (most important), PCO2 and pH levels in 
action  potentials’  frequency. Acute  reduction  of  PO2  increases AMP/ATP  ratio 
leading to AMP-activated protein kinase (AMPK) activation, which inhibits oxygen- 
sensitivity potassium channels inducing the chemoreceptor depolarization [32]. The 
hypoxic environment also attenuates nitric oxide and carbon monoxide production 
and intensifies reactive oxygen species formation, which promotes further type 1 
cell depolarization [33, 34]. From the carotid body’s cells, afferents fibers stimulate 
chemosensitive second order neurons located in the NTS, which project and activate 
rostral ventrolateral medulla sympathetic pre-motor neurons [35] producing reflex 
cardiovascular adjustment to hypoxia, as the elevation of peripheral vascular resis-
tance, cardiac contractility, cardiac output and arterial pressure.

Chemoreflex dysfunction in hypertension was described since early 80’s in SHRs 
[36]. In the last years, the role of chronic chemoreceptor activation in the establish-
ment and maintenance of autonomic dysfunction and elevated arterial pressure was 
demonstrated in experimental studies. Juvenile SHRs in the pre-hypertensive phase 
already exhibit hyperactivity of carotid body cells [37–39]. Interesting, selective 
denervation of the carotid bodies in SHRs decreases both sympathetic activity and 
arterial pressure [37, 40].

2.1  Brain Cellular/Molecular Mechanisms Generating 
Autonomic Dysfunction

Besides the previously mentioned vascular abnormalities, hyperactivity of the 
renin-angiotensin system, increased availability of reactive oxygen species and pro- 
inflammatory cytokines were described in the brain of hypertensive individuals. In 
angiotensin II-induced hypertension, angiotensinergic and inflammatory signaling 
are  shown  to  increase NADPH oxidase  activation,  superoxide  anion  release  and 
neuronal calcium influx in circumventricular areas as the subfornical organ. Since 
the subfornical neurons project and activate sympathetic pre-motor neurons located 
in the PVN, increased neuronal activity in the subfornical organ leads to baroreflex 
dysfunction, increased sympathetic outflow and elevated blood pressure [41–45]. In 
several models of hypertension, such as the SHR [2, 3, 46], angiotensin II-induced 
[44, 47–51], renovascular [52–54] and high salt diet hypertension [55], in addition 
to areas outside the blood-brain barrier, angiotensinergic, oxidative and inflamma-
tory signaling were also observed in autonomic brain areas inside the blood brain 
barrier as the PVN, RVLM and NTS.
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There  are many  cellular/molecular mechanisms by which RAS hyperactivity 
and oxidative stress promote neural inflammation and autonomic unbalance. 
Increased gene and protein expression of different components of the vasoconstrictor 
axis of the renin-angiotensin system as the angiotensinogen, angiotensin converting 
enzyme and AT1 receptor were described  in  the brain of hypertensive animals 
[49, 53, 56, 57].  Both  angiotensin  II,  via AT1  receptor,  and  the  availability  of  
pro- inflammatory cytokines increase cytosolic calcium concentration through the 
activation of phospholipase A2, which leads to inositol 3-phosphate production and, 
subsequently, calcium release from the endoplasmatic reticulum. Elevated cytosolic 
calcium concentration induces protein kinase C activation that phosphorylates ser-
ine 303, 304 and 328 autoinhibitory domains of p47phox, a regulatory subunit of 
NADPH oxidase. These post-translational modifications allow p47phox migration 
from cytosol to cell membrane, where it is assembled to others NADPH oxidase’s 
subunits, as the catalytic subunit gp91phox, releasing superoxide anions [44, 50, 58, 
59] and causing neuronal activation.

In addition to increase the neuronal activity, reactive oxygen species also stimu-
late redox-sensitive signaling pathways, the mitogen-activated protein kinases 
(MAPK). In the PVN and RVLM angiotensin II induces p42/44 MAPK phosphory-
lation therefore increasing the activity of several transcriptional factors, such as 
CREB, AP-1  and NF-kB. Upregulation  of  these  transcriptional  factors  trigger  a 
positive feedback mechanism between oxidative stress, inflammation and angio-
tensin  II,  since  it  increases  gene  expression  of NADPH oxidase’s  subunits,  pro- 
inflammatory  cytokines  (Tumor  necrosis  factor-alpha,  Interleukine-6  and 
Interleukine-1beta) as well as the gene expression of RAS’s components (angioten-
sinogen, angiotensin converting enzyme and AT1 receptor), amplifying the deleteri-
ous effect on autonomic areas.

In  the NTS,  reactive  oxygen  species  are  shown  to  attenuate NA’  stimulation, 
since these neural connections are positively modulated by nitric oxide and the reac-
tive oxygen species reduce nitric oxide availability by nitric oxide synthase uncou-
pling (see sections below). Within the PVN preautonomic neurons, reactive oxygen 
species reduce nitric oxide availability and, consequently, NR1 subunit of NMDA 
receptor nitrosylation, an important mechanism for the inactivation of local gluta-
matergic signaling. Thus, reactive oxygen species increase neuronal activity, lead-
ing to baroreflex dysfunction and sympathetic hyperactivity [45, 48, 60–62].

Directly related to the angiotensin II-induced neuronal inflammation, microglia 
activation was shown to be an important source for pro-inflammatory cytokines and 
reactive oxygen species in the brain of hypertensive individuals [63, 64]. In the 
neurogenic hypertension induced by chronic angiotensin II infusion or systemic 
inflammation, Shi et al. [64] and Wu et al. [65] have shown microglial activation 
within the PVN and RVLM, marked generation of pro-inflammatory cytokines and 
augmentation of both plasma norepinephrine content and blood pressure levels. In 
the  PVN  of  the  adult  SHR we  recently  showed  robust microglia  activation  and 
marked increase in the local synthesis of pro-inflammatory cytokines, which are 

16 Experimental Evidences Supporting Training-Induced Benefits in Spontaneously…



292

accompanied by reduced baroreflex sensitivity, increased sympathetic and reduced 
parasympathetic activity and increased blood pressure variability, important mark-
ers of autonomic dysfunction [66].

2.2  Correction of Autonomic Dysfunction by Exercise 
Training

Aerobic  exercise  training  is  recognized  as  one  of  the  most  efficient  non- 
pharmacological therapeutic strategies, producing in hypertensive patients an arte-
rial pressure  reduction  in  the  range of 8–5 mmHg  [67, 68]. In the 3-months old 
SHR, 6–8 weeks of moderate aerobic exercise training (5 sessions per week, 1 h per 
session  and  50–60%  of  maximum  exercise  capacity)  are  able  to  significantly 
decrease mean arterial pressure by approximately 5–15% [3, 46, 69, 70]. However, 
pressure fall is partial and pressure levels are still higher in the trained SHR when 
compared  to  sedentary  age-matched  normotensive  controls.  Similar  data  were 
observed in the renovascular model of hypertension [71, 72].

Besides the beneficial remodeling of the microcirculation in exercised tissues 
(capillary angiogenesis, wall/lumen ratio normalization of the hypertrophied arteri-
oles, increased conductance of small venules, [73–77]), training-induced regression 
of autonomic dysfunction is considered one of the most important mechanism for 
the correction of hypertension-induced deleterious adjustments, in addition to the 
partial blood pressure fall. In the adult SHR only 1–2 weeks of aerobic training are 
able to downregulate brain RAS [2] and to reduce oxidative stress and inflammatory 
profile in brain autonomic areas [3, 66], therefore normalizing baroreflex control of 
the heart simultaneously with the reduction of pressure variability and augmenta-
tion of heart rate variability [2, 3, 66]. These autonomic benefits of exercise training 
occur before the appearance of resting bradycardia and pressure fall (~5–8%, usu-
ally around the 4th week of training) and are significantly correlated with the reduc-
tion  of  angiotensinogen  expression  in  the  PVN  [2, 3, 66]. Normalization of 
baroreflex function associated to increased vagal cardiac activity contributes to rest-
ing  bradycardia  in  hypertensive-trained  rats. As  a  consequence,  2-weeks  trained 
SHRs present a near normal autonomic control, reduced sympathetic and elevated 
cardiac vagal activity, even exhibiting high-pressure levels [2, 3]. Improvement of 
reflex bradycardia and decreased level of both oxidative stress and pressure were 
also observed in the left ventricle and kidney of renovascular hypertensive rats sub-
mitted to 4 weeks of swimming training [71].

Previous experiments from our and other laboratories have shown that aerobic 
training in SHR increases the sensitivity of aortic baroreceptors [78], augments the 
density of noradrenergic ascending projections from NTS to preautonomic neurons 
in the PVN [79], induces plastic changes and increases the density of oxytocinergic 
neurons within autonomic PVN subnuclei  [80, 81], augments the intrinsic excit-
ability of these preautonomic neurons projecting to brainstem areas involved in the 

G.S. Masson and L.C. Michelini



293

primary integration of baroreceptors reflex [82], increases density of oxytocinergic 
projections to the NTS/DMV area and the local synaptic release of oxytocin [7, 15], 
thus facilitating the vagal outflow and the appearance of resting bradycardia [7, 80] 
as well as the slowdown of the heart of trained rats during submaximal exercise 
[83]. These effects were abolished by sinoaortic denervation or oxytocin receptor 
blockage in the NTS [84–86]. Taken together, these data demonstrate that increased 
pressure during repeated daily exercise sessions activates baroreceptors and the 
supramedullary modulatory oxytocinergic pathway that increases the parasympa-
thetic control of the heart.

Together with this effect, data from our laboratory also showed marked reduction 
of  sympathetic  vasomotor  activity  in  the  trained  SHR,  a  response  completely 
blocked by sinoaortic denervation [85]. Knowing that the generation of sympathetic 
activity involves the activation of excitatory glutamatergic neurons in autonomic 
areas and that oxidative stress and inflammation are potent activators of neuronal 
discharge [41–46, 50, 87], next we evaluate the effects of exercise training on the 
availability of reactive oxygen species and pro-inflammatory cytokines within the 
PVN. We observed in the trained SHR a prompt (2 weeks) and marked reduction in 
the expression of different NADPH oxidase subunits, normalization of the oxidative 
stress, decrease of p42/44 MAPK phosphorylation and NF-kB transcriptional activ-
ity, with a great reduction of interleukin-6 (IL-6) and tumor necrosis factor-alpha 
(TNFα) expression in the PVN [3]. These responses were accompanied by decreased 
neuronal activity within this area as documented by Stern et al. [88]. Again, trained- 
induced changes in the PVN occurred simultaneously with normalization of barore-
ceptor reflex control of heart rate and preceded the appearance of resting bradycardia 
and pressure fall [3]. Training-induced blockade of oxidative stress, attenuation of 
the inflammatory profile accompanied by reduction of sympathetic nerve activity 
and a partial blood pressure fall are also observed in other autonomic areas, such as 
the RVLM [46, 89].

Besides the direct effect on pro-inflammatory cytokines expression, aerobic 
exercise training is also able to normalize high mobility group box protein 1 
(HMGB1) availability in the PVN of the trained SHR. HMGB1, a damage- associated 
molecular pattern, acts through toll-like receptor 4 (TLR4) or CXCR4, a chemokine 
receptor type 4 in microglial cells, promoting pro-inflammatory cytokines expres-
sion and autonomic dysfunction [66]. Interestingly, 2-weeks of exercise training 
reduces the expression of both HMGB1 and CXCR4, normalizes the elevated trans-
location of NF-kB to the nucleus, restores the activated microglia to the inactive 
state, normalizes protein expression of TNFα  and  IL-6  in  the PVN of  the SHR, 
reduces pressure variability and corrects the autonomic dysfunction without any 
change in pressure levels [66].

Since  the most  important  factor  to  avoid  end-organ  damage  and mortality  in 
hypertensive individuals is the reduction of pressure variability, the above- mentioned 
findings revealing a close relationship between training-induced cellular/molecular 
mechanisms and autonomic benefits show that training is able to interrupt the del-
eterious  positive  feedback  between  hyperactive  brain  RAS,  oxidative  stress  and 
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inflammation observed in autonomic areas. Indeed, several experimental studies 
revealed reduced end-organ injuries in trained hypertensive animals. For instance, 
8 weeks of aerobic training attenuate myocardial collagen accumulation and fibrosis 
in adult [69, 90] and aged SHR [22], contributing to restore the depressed diastolic 
function.  Also,  training  decreases  cytosolic  calcium  concentration,  attenuates 
calcineurin- NFAT  pathway  and  decreases  left  ventricle wall  thickness,  therefore 
correcting the deleterious hypertension-induced cardiac remodeling [69, 90].  
The functional benefits of exercise training are also associated to the decrease of 
either NADPH oxidase-generated  superoxide, NF-kB activity  and pro-inflamma-
tory cytokines expression in the heart, kidney and brain, thus contributing to reduce 
the local end-organ damage in hypertensive animals [46, 69, 91].

3  Mechanisms Contributing to Deleterious Remodeling 
of Peripheral Circulation

Drawing up the pathophysiological picture of hypertension, vascular deleterious 
remodeling contributes to establishment and maintenance of essential or primary 
hypertension [92, 93]. Vessels’ adaptations in hypertensive subjects occur in differ-
ent segments of the vascular tree: stiffness in conducting and muscular arteries, 
marked hypertrophy in small arteries and arterioles and capillary/small veins rar-
efaction in the microcirculation. Experimental studies demonstrated that increased 
arterial stiffness (defined as the decreased capacity of the vascular wall to convert 
kinetic energy in elastic potential energy) precedes the onset of blood pressure ele-
vation in salt-sensitive [94], essential [95] and high fat diet hypertension [96]. Two 
well-characterized mechanisms promote arterial stiffness in hypertension: reduc-
tion of fenestrae’s density in the internal elastic lamina and disorganization of the 
vascular  tissue.  Juvenile  pre-hypertensive  SHRs  (30  days-old)  already  exhibit 
decreased fenestrae area and elastin deposition when compared to age-matched 
Wistar-Kyoto rats. These two structural factors promote a left shift of stress x strain 
curve, a mechanical abnormality that increases wall stiffness in conductance vessels 
of the juvenile SHRs [97, 98].

Vascular  tissue disorganization results from cellular/molecular dysfunctions in 
endothelial and smooth muscle cells. In hypertensive subjects, endothelium pres-
ents marked imbalances between vasodilator and vasoconstrictor factors, antioxi-
dant enzymes and pro-inflammatory agents. The major endothelial molecular 
mediator, the nitric oxide (NO), is produced in a reaction catalyzed by endothelial 
NO synthase (eNOS). This reaction converts L-arginine into L-citrulline, releasing 
nitric oxide, NADP+ and a water molecule. Tetrahydrobiopterin (BH4) is a impor-
tant co-factor for nitric oxide production. In a hypertensive endothelial environ-
ment, BH4 is oxidized to dihydrobiopterin (BH2, a biologically inactive form) by 
the abundant reactive oxygen species, such as superoxide and hydrogen peroxide. In 
the absence of BH4, eNOS still releases NO, but also superoxide, which reacts with 
NO producing the peroxynitrite (eNOS uncoupling). In addition to BH4 oxidation, 
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endothelial cells from hypertensive subjects exhibit increased expression of induc-
ible NO synthase (iNOS), which is calcium independent and, consequently, pres-
ents a higher activity when compared to eNOS. Therefore, iNOS reacts with BH4 
and reduces its bioavailability for eNOS, increasing its uncoupled state [99].

Similar to the effects observed in the brain, the presence of reactive oxygen spe-
cies, pro-inflammatory cytokines and activated tissue renin-angiotensin system 
 triggers a positive feedback mechanism in the vessel wall. Elevated reactive oxygen 
species inactivate protein tyrosine phosphatases through irreversible catalytic 
cysteine oxidation [100, 101]. This post-translational modification increases MAPK 
signaling pathway and the transcriptional activity of several factors [NF-kB, cAMP 
response  element-binding  protein  (CREB)  and  activator  protein-1  (AP-1)]  that 
intensify gene expression of many pro-inflammatory cytokines, NADPH oxidase 
subunits and several RAS components amplifying both endothelial dysfunction and 
vascular remodeling.

In  the  smooth muscle  cells  of  the  arteriolar wall, Angiotensin  II  exerts  direct 
vasoconstrictor and trophic effects. In smooth muscle cells isolated from rat arter-
ies, angiotensin II modulates several types of ionic channels, activates protein kinase 
C and inhibits protein kinase A [102–104]. These effects inhibit voltage-gated K+, 
delayed rectifier K+ and ATP-sensitive K+ channels causing a subsequent vasocon-
striction, which increase vasomotor tonus and the total peripheral vascular resis-
tance [102–104].

In the conductance arteries, angiotensin II, via AT1 receptor signaling, also pro-
motes  monocyte  chemotactic  protein-1  (MCP-1)  and  transforming  growing 
factor-β1 (TGF-β1) gene expression in smooth muscle cells, which act autocrinally 
through C-C chemokine receptor type 2 (CCR2) and type II TGFβ receptor (TβRII), 
respectively. These molecular signaling pathways increase MCP-1, matrix metallo-
proteinase- 2 (MMP2), fibronectin and collagen [105–107]. Although collagen accu-
mulation is identified in adult hypertensive animals, it is not observed in 
pre-hypertensive SHRs that already demonstrate increased arterial stiffness, exclud-
ing the causative role of collagen in arterial stiffness [97, 98]. MMP2 cleaves the 
latent TGF-β1 form (TGF-β1 associated with Latency Associated Protein) releasing 
TGF-β1 active form. MMP2 also cleaves pro-endothelin-1  to endothelin-1 active 
form, which mimics angiotensin II’s molecular effects. Additionally  to activating 
peptides, MMP2 is able to digest elastin and, consequently, induces internal elastic 
lamina fragmentation, all these effects contributing to increase arterial stiffness.

In hypertensive individuals, augmented arterial stiffness increases pulse wave 
velocity, facilitating the return of reflective waves to left ventricle during the systole, 
which increase the systolic pressure. Then, the myocardium has to increase ven-
tricular pressure to overcome the higher resistance to left ventricle ejection. As a 
result, left ventricle hypertrophies [108], compromising its perfusion and leading to 
myocardium ischemia especially during elevated metabolic demand, as the sub-
maximal  exercise.  Arterial  stiffness-induced  increased  pulsatility  also  promotes 
smooth muscle cells hypertrophy in arterioles and a further increase in total periph-
eral resistance and the consequent elevation of diastolic arterial pressure [108].
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3.1  Exercise Training in the Amelioration of Peripheral 
Circulatory Deficits

The peripheral vascular adaptations are the best well-documented exercise training 
benefits. Old experimental studies have already identified the improvement of both 
endothelial function in conductance vessels and capillary density in a variety of 
tissues [109, 110]. The main mechanism suggested to explain training-induced vas-
cular benefits is the shear stress [111, 112]. During an acute bout of exercise, car-
diac  output  raises  in  order  to  achieve  the  increased  metabolic  demand.  As  a 
consequence, the augmented frictional force generated by the increased blood flow 
triggers calcium influx from extracellular into the cytosol of endothelial cells 
through mechanosensing ion channels. Mechanical deformation of endothelial cells 
also increases the calcium flux from endoplasmatic reticulum to cytosol. Calcium 
not only is a required cofactor for eNOS catalytic effect, but also triggers calcium-
calmodulin kinase activity, which phosphorylates eNOS and causes NO release. A 
further increase in cytosolic calcium is mediated through integrins’ activation by the 
shear stress, which activates phosphatidylinositide 3-kinases/protein kinase B 
(PI3K/Akt) signaling pathway [113]. This signaling pathway directly phosphory-
lates eNOS, increasing NO production.

NO exhibits a wide variety of cellular/molecular actions, many of them modulat-
ing the benefic vascular remodeling induced by exercise training. NO diffuses from 
the endothelial membrane to smooth muscle cells, where it activates soluble guanyl-
ate cyclase increasing local cGMP levels. cGMP activates cGMP-dependent kinases 
that decrease cytosolic calcium, inducing the vasodilation. In addition to the direct 
vasodilator effect, NO attenuates NADPH oxidase activity through S-nitrosylation 
of p47phox. NO, via S-nitrosylation, also elicits the inhibition of the highly revers-
ible protein tyrosine phosphatases protecting them from the irreversible cysteine 
oxidation and inactivation [114]. Taken together, these data indicate that NO inhib-
its the production of reactive oxygen species by the NADPH oxidase and induces 
potent vasodilation.

During the acute bout of exercise, endothelial cells produce reactive oxygen spe-
cies, which oxidize a critical cysteine of Keap-1 (a Nrf2 repressor protein) causing 
the translocation of Nrf2 to the cellular nucleus where it binds to ARE (antioxidant 
responsive element) inducing gene expression of several antioxidant enzymes, such 
as heme oxygenase-1 and thioredoxin reductase-1 [115–117]. In the thoracic aorta 
and small mesenteric arteries training attenuates thromboxane A2-induced vasocon-
striction and  increased  the vasodilation  to acetylcholine  in SHRs  [118, 119] and 
obesity-induced hypertension [120]. Together, these mechanisms improve 
endothelial- induced reduction of the vasomotor tonus in arteries. Exercise intensity 
is shown to affect vascular response to training. Battault and colleagues [121] com-
pared moderate  vs.  high  intensity  (55%  vs.  80%  of maximal  exercise  capacity) 
showing  that  high  intensity  induces  oxidative  stress  (and  the  consequent  eNOS 
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uncoupling), the endothelial function in SHR aortas being improved only by moder-
ate exercise intensity. Similar results were observed in health individuals [122].

Both high NO bioavailability and increased antioxidant enzymatic system are 
proposed as the main mechanisms to reduce the expression of the vasoconstrictor 
RAS axis and attenuate angiotensin II effects in vessel wall. In fact, gene and pro-
tein expression of angiotensinogen, angiotensin converting enzyme and AT1 recep-
tor  are  decreased  in  the  aorta  of  trained  SHR  [118],  training  also  attenuated 
angiotensin  II’s  vasoconstrictor  effects  in  aorta  of  ovariectomized  spontaneously 
hypertensive rats independently of estrogen therapy [123]. Sequential measurements 
of angiotensinogen expression (western blotting) and of the content of angiotensin II 
and angiotensin (1–7) in the renal, femoral, carotid and thoracic aorta (high perfor-
mance liquid chomatrography) in adult SHR submitted to aerobic training revealed 
that only 1–2 weeks are able to normalize the elevated angiotensinogen content in 
the renal artery, which is accompanied by a parallel robust reduction of angiotensin 
II concentration and a mild decrease  in angiotensin-(1–7) content  in  renal artery 
[70]. The differential  responses of  the vasoconstrictor  and vasodilator RAS axes 
result in a complete normalization of the angiotensin II/angiotensin-(1–7) ratio in 
the renal arteries of the SHR at the 4th week of training, coinciding with the partial 
but  significant  decrease  in  arterial  pressure  (5–6%). These  vascular  changes  are 
accompanied by similar  responses of  the  intra-renal RAS axes  [70]. In the other 
SHR arteries, RAS expression is also depressed but training-induced decreases are 
smaller and similar for both angiotensin II and angiotensin-(1-7) with unchanged 
vasoconstrictor/vasodilator ratio within the femoral, carotid and thoracic aortas 
[70].  Together  these  results  showing  similar  training-induced  time  course  RAS 
changes  for  peripheral  tissues  and  brain  (previous  section)  indicate  a  broad  and 
prompt response to exercise in order to overcome the deleterious circulatory and 
autonomic responses triggered by hypertension; they also suggest a wide effect of 
aerobic training to downregulate both RAS axes, in order to maintain its equilibrium 
in a lower level. The higher expression of angiotensin II and angiotensin-(1-7) in 
renal arteries of sedentary SHR (over 30-fold when compared to other territories, 
[70]) and the its marked reduction in trained rats confirm the important role of kid-
ney RAS changes in both the development as well as the regression of deleterious 
hypertension-induced changes. Exercise training is also able to correct in the vascu-
lature  the  cellular  responses  associated with RAS  hyperactivity  as  the  oxidative 
stress and pro-inflammatory profile [70, 118, 119].

Long-term  exercise  training  (12  weeks)  is  effective  in  normalizing  collagen 
accumulation,  MMP9  expression  and  fenestrae  density  therefore  correcting  the 
stress  x  strain  relationship  in  coronary  and mesenteric  arteries  from SHR  [119]. 
Also,  trained SHRs present  intact  internal elastic  lamina and attenuated collagen 
gene expression in the aorta [124]. Although based on associative data, normaliza-
tion of mechanical properties (which reduces pulse wave velocity and pulsatility in 
hypertensive arteries, [119]) seems to be related with cardiovascular benefits 
observed in trained rats.
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Aerobic training is also able to reduce total peripheral resistance by normalizing 
the vascular resistance of exercised tissues. A complete regression of increased arte-
riolar wall/lumen ratio in skeletal muscles, myocardium and diaphragm is observed 
in  trained  SHRs,  the  decrease  in  arterioles  wall/lumen  ratio  being  positively 
 correlated with the reduction in both skeletal muscle vascular resistance and blood 
pressure [73–75, 77, 125]. Data from these studies showing unchanged arterioles 
wall/lumen ratio in tissues that respond with vasoconstriction to acute bouts of exer-
cise thus maintained elevated local vascular resistance [73, 77] highlighted why 
training reduce but does not normalize blood pressure levels. These vascular adapta-
tions combined with improved autonomic control and decreased sympathetic out-
flow, contribute to decrease the vascular response during lumbar nerve stimulation, 
muscle contraction and dynamic submaximal exercise in trained hypertensive rats 
[75, 126, 127]. Indeed, exercised-muscles in old trained rats exhibit attenuated 
angiotensin II-induced vasoconstriction when compared to age-matched sedentary 
controls [128].

Besides arterial and arteriolar adaptations, exercise training also increases the 
density of small venules (cross-sectional area < 300 μm) in skeletal muscles [74, 76] 
and causes robust capillary angiogenesis in trained hypertensive animals [73–77, 
109, 129–132].  VEGF  is  recognized  as  the  main  molecular  player  in  training- 
induced angiogenesis and is rapidly (~3 days) activated by exercise training [129, 
130]. Post-transcriptional  regulation by miRNAs  is  also  involved  in  the vascular 
response to training: compared to sedentary hypertensive controls swimming- 
training  reduced  the  increased expression of miRNAs-16 and  -21,  and  increased 
that of miRNA-126 [130]. miRNA-16 and -126 interact directly and regulate  the 
activity of VEGF and PI3KR2 (a negative regulator of PI3K/Akt/eNOS pathway), 
respectively [133, 134].  In agreement with miRNAs’ changes, swimming-trained 
hypertensive rats exhibit increased VEGF and eNOS protein levels, inhibiting capil-
lary apoptosis and restoring its density [130]. In fact, additional rise of capillary/
fiber ratio contributes to hypotensive additive effect in angiotensin-converting 
enzyme inhibitor treated and trained hypertensive rats [131, 132].

4  Conclusions

Development of hypertension in different experimental models is accompanied by 
unbalance of the renin-angiotensin system, oxidative stress and inflammation that 
trigger several autonomic and peripheral deficits. These deleterious hypertension- 
induced cardiovascular deficits condition end-organ damage being important risk 
factors  for  increased morbimortality  in  hypertensive  subjects. As  summarized  in 
Fig.  16.1, experimental studies provided extensive data demonstrating that 
moderate- intensity exercise training is a crucial therapeutic tool to overcome most 
of the deleterious hypertension-induced effects. It has potent and wide effects coun-
teracting/normalizing the cellular/molecular pathological mechanisms induced by 
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hypertension not only in the brain, but also in peripheral tissues. Trained hyperten-
sive individuals show a normal autonomic balance, improved control of the circula-
tion and reduced both end-organ injuries and cardiovascular mortality.
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Chapter 17
Exercise Training in Pulmonary Hypertension 
and Right Heart Failure: Insights from Pre- 
clinical Studies  

Daniel Moreira-Gonçalves, Rita Ferreira-Nogueira, Mário Santos, 
Ana Filipa Silva, Rita Ferreira, Adelino Leite-Moreira, José Alberto Duarte, 
and Tiago Henriques-Coelho

Abstract Exercise training (ExT) is widely used for the prevention and treatment of 
several chronic cardiovascular diseases. However, only recently it started to be recog-
nized as safe and beneficial in pulmonary arterial hypertension. Despite the consis-
tency of its favorable effects on exercise tolerance and quality of life, the mechanisms 
underlying these meaningful clinical improvements remain unclear. Current studies 
emphasize the exercise-induced changes on skeletal muscle but the impact of ExT at 
the level of the pulmonary circulation and right ventricle should not be overlooked. 
In this chapter, we summarize the main findings from pre- clinical studies analyzing 
the impact of exercise in pulmonary hypertension and right heart failure.
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1  Introduction

Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary circulation 
and it is defined by hemodynamic criteria: a mean pulmonary arterial pressure 
(PAPm) ≥ 25 mmHg at rest, a pulmonary artery wedge pressure < 15 mmHg and a 
pulmonary vascular resistance (PVR) > =3 Wood units [1]. It is characterized by a 
gradual increase in PVR reflecting the progressive obliteration of small pulmonary 
arteries. Consequently, PAH increases the right ventricle (RV) afterload, resulting 
in maladaptive remodeling and failure, leading to premature death [2]. PAH may 
arise in association with a broad range of diseases and its prevalence is estimated to 
be 10–15 cases per million with a mortality rate of 15% per year but information 
may differ through registries [1, 3]. Regardless of the etiology, symptoms are non- 
specific and mainly reflect the deterioration of the coupling between the RV and 
pulmonary circulation. They can include shortness of breath, fatigue, weakness, 
angina and syncope [1]. Over the past two decades, advances in PAH-specific thera-
pies have improved survival and slowed disease progression [4–6]. However, most 
patients remain symptomatic with significant exercise intolerance, reduced quality 
of life and still have an ominous prognosis.

Exercise training (ExT) has preventive and therapeutic effects in several chronic 
diseases [7, 8] but only recently it started to be recognized as safe and beneficial in 
PAH.  In fact, PAH treatment guidelines used to advise that any physical activity 
should be limited as it could aggravate the disease progression and increase the risk 
of sudden cardiac death [9]. However, accumulating evidence suggests a positive 
effect of supervised ExT in functional capacity and quality of life, when added to 
the best standard of care with approved medications. Importantly, ExT seems to 
have a reassuring safety profile [10, 11]. The physiological mechanisms that explain 
the increased exercise tolerance attained by PAH patients enrolled in structured ExT 
programs are still unclear. Beneficial changes in cardiac output, PVR, chronotropic 
response to exercise and peripheral skeletal muscle have all been described [10]. 
Accordingly, current guidelines now recommend that PAH patients should be 
encouraged to be active within symptom limits and, when physically deconditioned, 
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they should undertake supervised ExT under medical therapy [1]. Despite this major 
change regarding the role of exercise in the management of PAH patients, the mech-
anisms underlying these clinical improvements remain unclear. In this chapter, we 
will summarize the main findings from pre-clinical studies analyzing the impact of 
exercise in PAH and right heart failure.

2  Pre-clinical Models to Study the Impact of Exercise 
Training in Pulmonary Hypertension and Right Heart 
Failure

There are various pre-clinical models of PAH based on physical, chemical, genetic 
or a combination of insults that had been useful in the last decades to study both the 
impact of drugs and non-pharmacological interventions such as exercise. None of 
them fully recapitulates all features of human PAH and they exhibit specific advan-
tages and limitations described elsewhere [12–14]. The most commonly used PAH 
pre-clinical models to study the effects of ExT are monocrotaline (MCT; 12 stud-
ies) and chronic hypoxia (4 studies). Of note, these models also grounded the 
development of therapies currently available for this condition [13]. The MCT 
model mimics human PAH in terms of hemodynamic and histopathological sever-
ity, and high mortality; it differs on the early presentation of lung edema, loss of the 
endothelial barrier and prominent inflammatory adventitial proliferation [15]. The 
phenotypical changes induced by MCT are dose-dependent (60 mg/kg for severe 
PAH or 30 mg/kg for stable PAH) and only require one single administration (sub-
cutaneous or intraperitoneal). Signs of illness start to occur within 3–7 days, with 
animals presenting anorexia, failure to gain weight and tachypnea [15]. As lung 
injury and vascular remodeling progresses, animals develop variable degrees of 
dyspnea, weakness, diarrhea, and peripheral cyanosis. PAPm is increased 2 weeks 
after MCT injection, leading to RV hypertrophy by the third week. By 5–6th week, 
half of the injected rats usually die [15]. PAH due to chronic hypoxia model con-
sists on exposing animals to normal air at hypobaric pressure or to oxygen-poor air 
at normal pressure [16]. The decrease in oxygen pressure causes a strong pulmo-
nary vasoconstrictor response followed by progressive hypertrophy (but little pro-
liferation) and muscularization of medial pulmonary arterioles, endothelial 
dysfunction and a doubling of PAPm [13]. A proinflammatory microenvironment 
capable of promoting recruitment, retention and differentiation of circulating 
monocytic cell populations, possibly contributing to vascular remodeling, has also 
been described [17]. Hypertrophy of the RV occurs just after 2 weeks of exposure 
to chronic hypoxia but RV failure, which is the main cause of death in PAH patients, 
does not occur in this model [17].
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3  Exercise Training and the Right Heart in Pulmonary 
Arterial Hypertension

The primary cause of death in patients with PAH is right heart failure, which is pre-
ceded by RV dysfunction [18]. Right heart failure can be reversed by interventions 
that normalize RV afterload such as lung transplantation and pulmonary endarterec-
tomy but there is no specific therapy directly targeting RV. If available, such strategy 
could have tremendous clinical implications because RV function is a major inde-
pendent prognostic determinant of PAH patients [18]. Aerobic exercise training was 
shown to improve cardiac function and reverse ventricular remodeling in clinically 
stable individuals with left heart failure and left ventricular (LV) systolic dysfunc-
tion [19]. Despite the intimately related function of both ventricles, there are strik-
ing differences about how they respond and adapt to physiological or pathological 
stimuli [20–22]. In addition, the response of pulmonary and systemic circulation to 
exercise is also very different. Together, these distinctive features preclude any rec-
ommendation of ExT to PAH patients based on the evidence from LV failure. While 
the data derived from clinical studies is scarce [23], the first insights about the 
impact of ExT in RV function and remodeling came from pre-clinical studies.

3.1  Exercise Training and Right Ventricular Function

A detailed characterization of training programs, animal models and changes induced 
by ExT in PAH is provided in Tables 17.1, 17.2 and Fig. 17.1. Overall, studies differ 
in terms of MCT’s concentration, animals’ weigh, age and species, exercise intensity 
and duration, and time point of the disease when ExT was initiated. The majority of 
the studies argue that ExT can prevent RV systolic [24–32] and diastolic dysfunction 
[25, 27, 29] while a minority shows no change (nor beneficial nor deleterious) [30, 
33, 34], and two studies report aggravation [33, 35]. RV function was assessed by a 
variety of invasive and non-invasive parameters such as cardiac output (CO), stroke 
volume (SV), fractional shortening (FS), myocardial acceleration during isovolumic 
contraction (AIV), isovolumic relaxation time (IVRT), tricuspid annular plane maxi-
mal systolic velocity (E’), tricuspid annular plane systolic excursion (TAPSE), end-
diastolic pressure (EDP), time constant of ventricular pressure decay (Tau), 
end-diastolic (EDPVR) and end-systolic pressure- volume relationship (ESPVR). 
Those studies reporting enhancement of RV function have in common the use of 
higher exercise intensities [25, 27–30, 32], suggesting that the benefit may be inten-
sity-dependent. Similarly, it is accepted that training- related cardiac adaptations to 
the LV are dependent on training intensity [36–38]. Regarding the RV, this hypothe-
sis was specifically evaluated in one study, where high intensity interval training 
(HIIT), but not continuous aerobic training, was able to improve RV cardiac index 
[30]. Likewise, it is interesting to note that free wheel running that is characterized 
by intermittent, high intensity but short bouts of running throughout the day [39], 
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Table 17.1 Characterization of training programs used to evaluate the impact of exercise training 
in pre-clinical models of Pulmonary Arterial Hypertension

References

Mode 
of 
exercise Intensity

Session 
duration 
(min)

Days 
per 
week

Total 
duration 
(weeks)

[35] AET FT 0.9 km/h 60 5 2
TP 40% Vmax 60 5 3

[34] AET1 FT 15 cm/s 5 3 2
TP 50% Vmax, −15° slope 30 5 4

[33] AET FT 13.3 m/min 1 5 3
TP 13.3 m/min 30 5 4

[30] FT 6–15 m/min, 0–15° slope 5 5 5
HIIT TP 5x(2 min at 85–90% VO2R 

and 3 min at 30% VO2R)
30 5 6

AET TP 50% VO2R 60 5 6
[26] AET FT 0.6 km/h–0.9 km/h 15–60 5 2

TP 60% VO2max 60 5 3
[32] AET FT 0.6 km/h–0.9 km/h 15–60 5 2

TP 60% VO2max 60 5 3
[25] AET FT 0.6 km/h–0.9 km/h 15–60 5 2

TP 60% VO2max 60 5 3
[28] FWR TP Free access to running 

wheel
– 7 4

[31] AET FP Progressive increase from 
0.6 km/h to 0.9 km/h

15–45 5 2

TP Progressive increase until 
1.1 km/h by the 10th week; 
0.8 km/h from 11th to 12th 
week; 0.9 km/h in 13th 
week

60 5 11

[86] AET FT NA NA 5 2
TP 0.6 km/h–0.9 km/h 50 5 5

[27] FT 20 m/min 20–60 5 1
AET TP-early 30 m/min 60 5 4
AET TP-late 30 m/min 60 5 2

[29] AET FT 20 m/min 20–60 5 1
TP 25 m/min 60 5 4

[81] AET TP 30 m/min, 10° slope 60 5 10
[24] AET TP 30 m/min, 10° slope 60 5 5
[85] AET TP 80% of Vmax 60 5 5
[84] AET TP 60% Vmax 30 5 3

FT familiarization to treadmill; TP training protocol; HIIT high intensity interval training; AET 
continuous aerobic ExT; AET1 downhill (negative slope) aerobic ExT; Vmax maximal running 
speed; VO2R oxygen consumption reserve; NA information not available
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was able to delay the onset of RV failure [28]. The impact of ExT on the cardiovas-
cular system is also dependent on the exercise modality [40]. While concentric ExT 
(running in a treadmill with a slope ≥0°) conferred cardiac protection in different 
studies using either MCT or hypoxia, it seems that eccentric exercise (running in a 
treadmill with a negative slope), despite being safe in PAH, does not improve RV 
function [34]. Future studies should address the impact of different modalities and 
intensities in order to determine which exercise program provides better benefits.

Another important aspect to consider is the time point where ExT is initiated. 
Table 17.2 and Fig. 17.1 show that while starting ExT before [24, 29, 31] or at early 
disease stages of PAH [25, 27, 32] may be required for maximal benefits, beginning 
in latter stages may limit [27] or even worsen cardiac function [33]. Three possible 
implications emerge from these observations. First, ExT can be useful as a preven-
tive strategy for the management of the disease since its early diagnosis and could 
be prescribed to those patients with less severe hemodynamic derangement and 
right ventricle dysfunction. Second, this could be particularly important for those at 
increased risk, such as in the familial form of PAH. The familial form is inherited as 
an autosomal dominant trait and is associated with a pattern of “genetic anticipa-
tion,” a worsening of disease in subsequent generations, manifested by greater 
severity or earlier onset [9]. Finally, clinical trials looking at the impact of exercise 

Fig. 17.1 Distribution of exercise sessions in relation to the time point where the stimulus for 
Pulmonary Arterial Hypertension was induced
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in PAH should enroll patients in different stages of the disease, so that we could 
have solid evidence over the entire spectrum of the disease.

The current strategy to preserve RV function in PAH is by attempting to reduce 
the RV afterload. This strategy is effective when loading conditions can be normal-
ized, as it is the case with lung transplantation or with pulmonary endarterectomy in 
PAH and chronic thromboembolic pulmonary hypertension (CTEPH), respectively 
[41]. However, in a subset of patients, it was noted that RV dysfunction might prog-
ress despite a reduced PVR with targeted medical therapies. A deterioration of RV 
function was associated with poor outcome, irrespective of any changes in PVR [41]. 
Similarly, Eisenmenger syndrome [42] and congenital pulmonary stenosis [43] 
patients usually present a severe increase in RV chronic pressure-overloaded and a 
relatively good prognosis explained by adaptive remodeling of the RV to those bur-
densome hemodynamic conditions [44, 45]. The beneficial effects of ExT on RV 
function were not always mirrored by a reduction in RV afterload. As illustrated in 
Table 17.2, except for one [30], all studies showed an improvement of cardiac perfor-
mance despite the presence of persistent RV pressure-overload [24, 25, 27, 29, 31, 
32]. Measures of RV overload ranged from PVR, PAP, RV peak systolic pressure 
(RVSP), pulmonary artery acceleration time (PAAT), acceleration time to ejection 
time ratio (AT/ET) and, less frequently, arterial elastance (Ea). This unrelated change 
between RV afterload and RV function in response to ExT further strengthen the 
hypothesis that other factors, beyond afterload, are important modulators of RV func-
tion in PAH [46, 47]. More importantly, ExT seems to influence some of those factors 
and, consequently, might be used to increase tolerance to an increased afterload.

3.2  Exercise Training, Right Ventricular Hypertrophy 
and Remodeling

RV hypertrophy is a compensatory mechanism that modulates RV function within 
the homeostatic range. Following the law of Laplace, increased RV wall thickness 
(concentric hypertrophy) lowers RV wall stress and, together with changes in mus-
cle properties, improves pumping effectiveness [18]. This compensatory stage is 
called “adaptive remodeling”. However, if the disease progresses, the hypertrophic 
process will be halted and CO falls [18]. In an attempt to restore CO, the RV dilates 
(eccentric hypertrophy) and heart rate (HR) increases, leading to RV uncoupling and 
reduced output in advanced stages of disease [48]. Thus, while RV dilatation might 
be beneficial in the acute phase (Frank-Starling mechanism), it will lead to increased 
RV wall stress, energy exhaustion, reduced RV function and failure in the long term 
[18]. This failing stage is called “maladaptive remodeling” [18]. As shown in 
Table 17.2, RV hypertrophy was not changed with ExT in 11 studies, which together 
with the improved RV function, suggests that ExT was capable to promote adaptive 
RV remodeling (or delay maladaptive remodeling). Further corroborating this 
notion, it was reported in one study that ExT prevented the RV to develop a spherical 

D. Moreira-Gonçalves et al.
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shape, the leftward septal bowing and the enlargement of the right atrium [27], all of 
which are classical features of maladaptive remodeling [48]. Of note, this effect was 
observed when the ExT program was started in early stages of PAH [27], while in 
the most severe stages it seemed to exacerbate RV dilation [33]. On the other five 
studies that we analyzed, the RV mass decreased with ExT, a change that apparently 
was related to a protective effect of exercise on the lung vasculature as pulmonary 
resistance [30] and pulmonary artery hypertrophy [29] were shown to be decreased.

There are several changes in the myocardium, caused by chronic RV pressure 
overload and/or by the effects of circulating factors released from the sick lung 
circulation, possibly contributing for the transition from adaptive to maladaptive 
remodeling. Excellent reviews about this topic have been published elsewhere [21, 
49]. Briefly, inflammation [50, 51], alpha to beta myosin heavy chain (alpha/beta- 
MHC) shift [52, 53], apoptosis [54], neurohumoral activation [55, 56], oxidative 
stress [57–59], mitochondrial dysfunction [60, 61], impaired metabolism [62–64], 
and disturbed angiogenesis and capillary rarefaction [65] were all identified to be 
present in the failing RV of animals and/or patients with PAH. According to the data 
collected from pre-clinical studies, ExT may prevent or delay maladaptive remodel-
ing by modulating these changes. An integrative illustration of the molecular path-
ways affected by ExT is provided in Fig. 17.2.

Exercise training, when initiated before [29] or at an early disease stage [27], lead 
to a normalization of the levels of myocardial fibrosis, which likely contributed to 
restore diastolic stiffness and filling pattern [66]. Moreover, it prevented metallopro-
teinase (MMP)-9 activity and promoted an increase of MMP-2 activity, which might 
have decreased the accumulation of fibrosis [29]. The antifibrotic effect of exercise 
can also be related to its anti-inflammatory properties. Exercise training was reported 
to reduce the expression of TNF-alpha/IL-10 and TWEAK, and to modulate down-
stream regulators of the NF-κB pathway in MCT-treated rats [27, 29]. Also, no evi-
dence of tissue inflammatory cell infiltration or cell death was noted following an 
acute bout of exercise [67], chronic continuous aerobic exercise [26] or high intensity 
interval training [30] in MCT-induced PAH rats. However, in the more severe form 
of MCT-induced PAH, ExT seems to result in widespread leucocyte infiltration of the 
RV [33]. It will be important to disclose if this contrasting results are because RV 
wall stress was detrimentally elevated during the exercise bouts (and thus ExT should 
not be recommended at advanced stages) or because animals were all exercising at 
the same absolute workload (rather than at a relative exercise intensity) [67].

Endothelin 1 (ET-1) antagonism is a mainstay of the actual therapeutic algorithm 
for PAH and seems to attenuate deterioration of cardiac function [68–71]. MCT- 
trained animals exhibited down-regulation of ET-1 mRNA in the RV [27]. B-type 
natriuretic peptide (BNP) is a dynamic measurement of the degree of RV dysfunc-
tion in PAH [72] and its expression was favorably modulated by ExT [27]. Apelin is 
a potent inotropic, anti-apoptotic, anti-inflammatory and pro-angiogenic neurohu-
moral mediator [73], and its expression was increased in the RV of rats with PAH 
after HIIT [30]. Finally, ExT-induced neurohumoral modulation was evident by the 
prevention of vascular endothelial growth factor (VEGF) mRNA down-regulation 
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[27], which may have contributed to improve cardiac capillary density in MCT- 
induced PAH [32, 33].

Oxidative stress has been implicated in RV maladaptive remodeling and dysfunc-
tion [57, 74]. By decreasing hydrogen peroxide production (H2O2), ExT  training 
modulated the apoptosis regulator BAX/B-cell lymphoma 2 (Bax/Bcl-2) and cas-
pase-3, thus decreasing apoptotic signaling in RV myocardium of MCT rats [26]. As 
major sources of reactive oxygen and nitrogen species (RONS), mitochondria them-
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Legend:
1 ExT seems to worsen RV function in severe decompensated PAH. 
2 ExT seems to worsen RV dilation in severe decompensated PAH. 
3 ExT was shown to decrease RV mass in a few studies, which is probably 
related to a decrease in pulmonary resistance and pulmonary artery 
hypertrophy. In the majority of the studies, RV hypertrophy remained 
increased after ExT.
4 ExT induced an increase in RV leucocyte infiltration only in severe 
decompensated PAH.

Fig. 17.2 Summary of the main changes induced by Exercise Training in the Right Ventricle of 
animals with Pulmonary Arterial Hypertension
1ExT seems to worsen RV function in severe decompensated PAH
2ExT seems to worsen RV dilation in severe decompensated PAH
3ExT was shown to decrease RV mass in a few studies, which is probably related to a decrease in 
pulmonary resistance and pulmonary artery hypertrophy. In the majority of the studies, RV hyper-
trophy remained increased after ExT
4ExT induced an increase in RV leucocyte infiltration only in severe decompensated PAH
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selves, and particularly oxidative phosphorylation complexes, are highly susceptible 
to oxidative and nitrative damage [75]. ExT performed in early or late PAH happened 
to prevent protein nitration of mitochondrial complex V and restore its activity [27]. 
ExT also improved RV myocardial metabolism by preventing the shift from mito-
chondria-based fatty acid oxidation to glycolysis found in PAH [30]. This is impor-
tant as the switch from aerobic to anaerobic metabolism that occurs with mitochondrial 
dysfunction is involved in the transition to maladaptive remodeling [49].

Similar to the LV, down-regulation of fast alpha–myosin heavy chain together 
with overexpression of slow beta-isoform is present in the pressure-overloaded RV, 
but its long-term consequences remain unknown [21]. RV remodeling with ExT was 
associated with higher expression levels of alpha-MHC isoform [27, 29], which is in 
line with the beneficial effects of exercise training previously reported in LV failure 
[76, 77]. Exercise training, in the form of preconditioning, prevented the MCT-related 
overexpression of atrogin-1 [29]. When activated, this prominent ubiquitin ligase 
controls degradation of proteins contributing to cardiac muscle wasting and ventricu-
lar dysfunction [78]. Moreover, ExT stimulated the activation of protein kinase B 
(Akt) [26] that is associated with improved contractile function, cytoprotection, and 
increased synthesis of normal contractile proteins and metabolic enzymes [79].

RV failure is also associated with abnormalities in calcium handling proteins, 
including ryanodine receptor (RyR) and Ca2+ ATPase of sarcoplasmic reticulum 
(SERCA2a). Expression levels of SERCA2a [27], but not RyR [31] were restored 
in MCT-trained animals, possibly contributing to preserve relaxation rate. In humans 
and animals with PAH and RV failure, alpha and beta-adrenergic receptors density 
is decreased, which limits their response to inotropic agents and impairs exertional 
contractile reserve [80]. Exercise training was shown to suppress the downregula-
tion of alpha-1 adrenergic receptors, to attenuate beta-adrenergic receptors decrease, 
and to lower muscarinic acetylcholine receptors in the rat model of hypoxia-induced 
PAH, eventually correcting chronotropic incompetence [81].

4  The Impact of Exercise Training on Pulmonary Artery 
Structure and Function

It is clear that the different forms of pulmonary hypertension can present with a 
predominance of pulmonary arterial remodeling, vein remodeling or a mixed con-
tribution of both. While PAH is a classical example of the former, pure pulmonary 
venoocclusive disease and pulmonary hypertension due to left heart dysfunction are 
characterized predominantly by venous remodeling [82]. Virtually all forms of pul-
monary hypertension, including those caused by interstitial lung disease, thrombo-
embolic, hypoxia, and sarcoidosis may involve elements of both arterial and venous 
remodeling [82]. Remodeling of pulmonary blood vessels comprises thickening of 
the intimal and/or muscular vessels and the presence of cells expressing smooth 
muscle specific markers in pre-capillary arterioles (distal muscularization), caused 
by proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) 
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and possibly cellular trans-differentiation (i.e., endothelial- mesenchymal transfor-
mation) [83]. In addition, severe forms of PAH often present with vaso- occlusive 
lesions, involving PASMCs, endothelial cells and possibly cells of non- vascular 
origin. The greatest influence on PVR comes from changes in small arterioles; how-
ever, decreased compliance (i.e., increased stiffness) in the elastic proximal pulmo-
nary arteries may also contribute for RV afterload [83].

Current knowledge about the impact of ExT on pulmonary architecture and/or 
vascular function is far more limited than for RV. From the 16 studies addressing ExT 
in PAH, only 6 reported measurements of pulmonary artery thickness (Table 17.2). 
The hypertrophy of the arteries was found to be reduced [25, 29, 84], to suffer no 
significant changes [27, 30, 33], or to be aggravated [33] after ExT. The worst outcome 
occurred when ExT was performed in the setting of advanced disease [33]. Regarding 

PAH without ExT

Structural changes
ÝßÛ pulmonary artery wall thickness 
ßpulmonary vessel muscularization
Functional changes
ßÛpulmonary vascular resistance
Molecular changes
ÝNO-mediated pulmonary vasodilatation
Û responsiveness to vasoconstrictors 
Û responsiveness to vasodilators 
ÝH2O2/VEGF/p-Akt

PAH with ExT

Structural changes
Ýpulmonary artery wall thickness 
Ýpulmonary vessel muscularization
Functional changes
Ýpulmonary vascular resistance
Molecular changes
ßNO-mediated pulmonary vasodilatation
Ý responsiveness to vasoconstrictors 
ß responsiveness to vasodilators 
ßH2O2/VEGF/p-Akt

Healthy

Fig. 17.3 Summary of the main changes induced by Exercise Training in the lungs of animals 
with Pulmonary Arterial Hypertension (Note: The impact of ExT on pulmonary artery wall thick-
ness is inconclusive. Arrows in the blue box denote the direction of changes in comparison to 
sedentary healthy animals. Arrows in the green box denote the direction of changes in comparison 
to sedentary animals with PAH)
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to respiratory functional parameters, higher PaO2 and lung diffusing capacity at rest 
and during maximal exercise were described after ExT in hypoxia-induced PAH [24]. 
Concerning to vascular function, a single bout of exercise was able to transiently nor-
malize PAP in MCT-induced PAH, revealing an exercise-induced “window” of pulmo-
nary hypertension alleviation [67]. This effect was associated with increased lung 
nitric oxide synthase (eNOS) activation, supporting a mechanism of acute NO-mediated 
pulmonary vasodilatation [67]. A greater increase in total eNOS expression was also 
observed after chronic HIIT, paralleled by a decrease in total PVR [30]. In contrast, 
eNOS expression and activity was reduced in lung tissue homogenates after less 
intense but continuous ExT [30, 35]. The exposure of the pulmonary vasculature to a 
pulsatile flow-shear stimulus was proposed to explain the greater levels of eNOS 
obtained with HIIT [30]. In hypoxia-induced PAH, despite decreasing small pulmonary 
vessel muscularization, chronic exercise failed to properly modulate the nitric oxide 
synthase-soluble guanylyl cyclase-cyclic guanosine monophosphate-phosphodiester-
ase (NOS-sGC- cGMP-PDE) axis (at the mRNA level), in order to promote vasodilation 
[84]. Moreover, ExT failed to improve pulmonary artery vascular reactivity in hypoxia- 
induced PAH, as the responsiveness to vasoconstrictor (ET-1, epinephrine or potassium 
chloride) or vasodilator (acetylcholine or sodium nitro-prusside) substances remained 
increased and decreased, respectively, as in their sedentary counterparts [85]. The dif-
ferences in the animal models as well as in the exercise training protocols (imposing 
variable flow-mediated shear force) may partially explain the different results. Besides 
NO pathway, ExT was shown to increase H2O2/VEGF/p-Akt axis in the lungs of MCT 
rats after training [32], suggesting a beneficial role of exercise in angiogenesis and col-
lateral blood flow. However, no change in RV afterload estimated by AT/ET ratio was 
noted. Figure 17.3 summarizes the main changes modulated by ExT in the lungs.

5  Conclusion

Despite the obvious differences between animal models and exercise training pro-
grams, the available pre-clinical data consistently signal a beneficial effect of ExT 
on RV function in PAH that is mainly dependent on the stage of the disease, exercise 
intensity and mode. These benefits occurred even in the presence of persistent RV 
afterload and were associated with the development of an adaptive cardiac pheno-
type. Regarding the impact of ExT on the lungs, the evidence is very limited and it 
is not clear if exercise improves pulmonary vascular resistance through NO-mediated 
pulmonary vasodilatation, modulation of pulmonary artery architecture or both.
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