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Suppose that calculating machines arose in 
nature, but that people could not break open their 
cases. Now suppose that these people use these devices in 
the manner that we use calculation, say, of which they 
know nothing. Thus, for example, they make predic­
tions with the help of these calculating machines, 
though for them manipulating these strange devices 
amounts to experimentation. 

These people lack the concepts we have; but 
what takes their place? — 

Ludwig Wittgenstein 
Remarks on the Foundations of Mathematics 

(From IV, §4, 1942-43, translated by the author.) 

Quantum mechanical calculations follow a 
simple two-step pattern: you write down the answer, 
and then you do the computation. 

Marvin Chester 
Primer of Quantum Mechanics 

(From the Epilogue.) 
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Preface 

The impulse behind this work was the naive but nagging ques­
tion of a mathematician upon contemplating—for years—the arcana 
of modern physics: namely, where do the fundamental Lagrangians 
come from? Thanks to the profound insights of Dirac and Feynman, 
these expressions are the starting points for the machinations (known 
as quantum field theory) by which physical content is extracted from 
theoretical input. The standard view of them seems to be that, once 
the correct symmetries associated with an interaction have been sur­
mised from experience (or guessed at on aesthetic grounds), then 
other criteria, such as a belief in gauge invariance, assumptions con­
cerning the nature of the ambient spacetime, renormalizability, etc., 
may be invoked to hammer out a particular form for the Lagrangian 
associated with that interaction. (In the case of arguments from 
gauge invariance one soon receives the heartbreaking news that the 
gauge must be fixed, and, a little later, that ghosts must be invoked.) 
The resulting expressions seem to resonate with distinctly geometric 
overtones that have mesmerized generations of mathematicians: there 
seem to be fibre bundles, connections, curvatures and worse. 

But all of this surely begs the question of origins. For one 
thing, these expressions start out classically, and then have to be 
dragged, kicking and screaming, into the quantum domain. Since 
everything is quantal at bottom, should we not be going in the other 
direction? And, if we do this, namely start from some quantum ori­
gin, should the beautiful geometry of the classical background not be 
relinquished as a Whiggish classical illusion, or red herring, since 
spacetime itself must also be quantal at bottom? It would seem that 
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Preface 

the bathtub itself must be thrown out, along with its contents. What­
ever it is we are left with must then provide a means to make a fresh 
computational start: a prior quantal structure, from which, through 
the application of easily apprehended primitive rules or axioms, a 
quantum precursor of at least one familiar Lagrangian should 
emerge. An algebraic machine should be built, according to some 
simple rules for combining quantum resources, that spits out La-
grangians as its handle is cranked. 

These fancies remained dormant until a chance reading, in 
1991, of David Finkelstein's "Space-Time Code" papers (Finkelstein 
1969, 1972a, b, 1974, Finkelstein et al. 197r4), their subsequent 
refinements and collateral descendants. The extraordinary first paper 
in this series (Finkelstein 1969) rather shockingly derives the basic 
elements of special relativity from quantum logical principles. 
Roughly speaking, it is shown that if the pointlike objects that are 
presumed to underlie the plenum are treated according to the rules of 
quantum logic—rather than classical (set theoretic) logic—then the 
basic elements of relativity emerge spontaneously. Quantum theory, 
far from being in conflict with relativity, is shown actually to under­
lie it. This compelling insight led Finkelstein and co-workers on a 
quest for a theory which fuses quantum theory with relativity at a 
deep level. An account of this work, as well as full references to relat­
ed literature, is to be found in Finkelstein's monograph "Quantum 
Relativity" (Springer 1996) which, as our primary source, will be ab­
breviated to QR in the sequel. Of course, the quest continues, and 
Finkelstein et al. have moved on from the work reported in QR. 
Nevertheless, for our purposes here, QR is still more than adequate 
as a general reference. 

Of the two major conceptual strands that contribute to the 
fabric of the Space-Time Code papers, namely spacetime causal struc­
ture and quantum logic, the first was very much on the minds of other 
relativists in the 1960s, the second less so, if at all. Combinatorial or 
discrete models of spacetime had also been toyed with since at least 
the 1940s. A mathematically sophisticated descendant of these was 
produced by R. Penrose in the late 1960s: namely, the spin net. 
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Among the innovations here was the weaving together of spinors and 
combinatorial structure to produce a spacetime antecedent, and 
Finkelstein acknowledges the strong influence of this work on his 
own ideas. (Penrose's spin nets have recently staged a dramatic come­
back in the theory of loop quantum gravity. See §12.5 for a very 
brief discussion of this topic.) On the other hand, some quantum 
physicists, perhaps working closer to the epistemological edge, had 
for decades been deeply suspicious of the classical spacetime with 
which necessity had saddled them. Occasional protests notwithstand­
ing, this union of convenience would not be seriously threatened 
until extremely high energies (and/or the incorporation of gravity) 
were contemplated. Nevertheless, at least one visionary had under­
stood early on (by the 1940s) the fundamental role that quantum 
logic should play at this level, and, among other remarkable insights, 
had explicitly suggested a connection between representations of 
SU(2) and possible quantum versions of the "binary alternative." 
This was C. F. von Weizsacker, another acknowledged influence on 
Finkelstein's synthesis. (See QR for references.) 

It seemed that Finkelstein's insights might be adapted to 
provide the kind of computational context I had been looking for: 
the present work is the result of that enterprise. 

Starting from a small subset of notions culled primarily from 
QR I aim to show here that it is possible in principle to reconstruct 
ab initio a fair slice of fundamental physics, as seen by a (relatively) 
macroscopic observer. Although I set out explicitly from (a subset of) 
Finkelstein's foundations, ignorance of physics at the scale considered 
often forces me to supply formal or mathematical arguments: never­
theless, such results as are obtained, are, I think, in striking agree­
ment with the Standard Model, at least for a massless world. 
Specifically, Finkelstein's suggestion that some sort of quantum set­
like structure, dubbed a "quantum net," should underlie our macro­
scopic perception of spacetime, is taken up in the context of the de­
ductive system developed in the first six chapters. It is used, in con­
junction with a fairly lengthily articulated correspondence principle, 
to deduce Lagrangian densities. The correspondence principle itself is 
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regarded as an interpretation, translation or valuation of a certain set 
of quantal expressions into a set of continuum-based expressions 
modeled upon elements of the Schrodinger representation. (Other 
continuum-based models could have been used to accommodate 
such a translation, a possibility not explored here.) The Lagrangian 
densities that emerge take the form of power series in a "net con­
stant" (having the dimension of length) whose lowest order terms re­
produce the standard forms for massless Dirac fermions, General 
Relativity, and Yang-Mills fields for the gauge groups U(l) X SU(2)L 

and SU(3). These Lagrangians emerge replete with (Feynman) 
gauge-fixing terms; the associated ghost fields are obtained at little 
extra cost. A comparison with the standard Lagrangians at the 
"grand-unified" scale then yields an estimate for the net constant of 
about 19/p, where lp(~\.6 XlO~33cm) denotes the Planck length. 

Neither a candidate for a Higgs-like field nor a mechanism to 
drive generational differences are immediately apparent, and many 
quantum numbers seem to be missing. In addition, the gravitational 
term is accompanied by an extra piece whose explicit computation I 
have found intractable. Thus, it is possible that I have avoided Pauli's 
Curse (of not even being wrong). On the other hand, a fairly con­
spicuous candidate for a chiral symmetry breaking mechanism for the 
SU(2) component does present itself. (Cf. the discussions following 
equations (11.2.1.6) and (11.2.1.33).) 

Since intuitions—both physical and geometrical—are likely 
to be unreliable at what turns out to be the Planck scale, some level 
of formality seems to be mandatory. Indeed, Finkelstein has advised 
the voyager into these submicroscopic regions to travel light. Igno­
rance has made this initial unburdening easier for me, while increas­
ing the dangers of the journey. Among the bulkier pieces I have car­
ried with me I should mention: 

• a fairly liberal use and interpretation of the alge­
braic notion of derivation, and what amounts to 
an associated Schwinger-like action principle, 
though expressed in path integral form; 

x 



Preface 

• certain macroscopic geometrical notions such as 
"infinitesimal" parallel transport (which is, how­
ever, globalized in a rather formal way in Chap­
ter 8), and a little Lie theory, used in Chapters 3 
and 11. 

(Other macroscopic or continuum-based notions have undoubtedly 
stowed away, despite earnest efforts to evict them.) 

On the other hand, among the baggage to be left behind at 
the outset I have tried to include: 

• prejudices concerning the invariances, gauge or 
otherwise, of the expressions that will emerge as 
Lagrangian densities; 

• prejudices concerning the role, or even the exis­
tence, of a spacetime metric. 

The first of these is required to avoid an obvious circ­
ularity—at the cost of having to derive BRST invariant expressions 
from first principles. The issues concerning the spacetime metric are 
perhaps more inflammatory. Briefly stated, macroscopic experi­
menters become aware of the existence and behavior of the metric in 
the continuum entirely as a result of the passage through it of physi­
cal probes, such as photons. Since I aim to deduce the existence and 
behavior of such probes from prior structures (in the form of their 
Lagrangian densities), I cannot make a priori assumptions concerning 
even the existence of the metric, let alone the nature of its entry into 
the Lagrangians. Instead, I must wait patiently for the emergent dy­
namics to reveal their metrical entanglements. (This conforms with 
the view adopted in modern canonical quantum gravity theories, 
such as loop quantum gravity (§12.5), that posit a manifold but do 
not specify a metric on it at the outset: following Finkelstein et al. I 
have tried to dispense with the manifold itself.) 

This second edition differs from the first primarily in the 
greatly extended treatment of the logical, or, rather, deductive under-
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pinnings of what was always intended to be merely a computation, 
and one, moreover, eschewing (as far as possible) philosophy, theory-
making and other such pursuits so disheartening to amateurs. There 
are three new chapters, including a very brief introduction to "natu­
ral deduction" (Chapter 4), a fairly comprehensive overview of cer­
tain parts of quantum logic (Chapter 5) and a new formalization 
(into a sequent calculus) of the deductive procedures that were less 
formal in the first edition (Chapter 6). This formalization has had 
the surprising benefit of producing an argument that helps to sew up 
the most embarrassing open seam in the entire structure as presented 
in the first edition and elsewhere: namely, the adoption at the outset 
of the "quantum version" of the classical logical unit or bit, now 
known as the qubit, which was clearly a retrograde step. For, if quan-
tal things underlie classical things, the bit should appear in the 
macrocosm because it is the degenerate macroscopic limit of the more 
fundamental qubit, and not vice versa. Thus, one should seek a more 
fundamental theory of deduction that yields up the qubit as the basic 
computational quantum unit, without explicit recourse to specific 
classical prototypes. This argument is produced in Chapter 6, and in­
volves the surprising but satisfying reappearance, from Chapter 2, of 
Finkelstein's Grassmannian quantum set theory. The argument is not 
watertight, since there seem to be no available uniqueness theorems, 
but it is, I think, logically compelling. (It would become watertight 
in the presence of a proof of a certain uniqueness theorem, to which 
there is no known counter-example.) The more refined interpretation 
of the qubit entailed by this analysis leads to an improved argument 
in favor of the fundamental SL(2,C) "logic" symmetry, and that por­
tion of the first edition has accordingly been completely re-
engineered (§7.1). 

The logical analysis also illuminates the process of "quantum 
duplication" as a kind of entangling operator that reappears later, via 
a different route, to give rise to what we perceive in the macrocosm 
as path composition (cf. §6.3.4 and the discussion at the end of 
Chapter 8). This operator arises independently yet again in our dis­
cussion of loop states in §12.5. Moreover, the logical formalization 
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provides in addition the means to specify a reasonable axiom (in 
§6.3.3) that encapsulates a kind of irreducible or atomic dynamical 
action, and the arguments leading to the fundamental quantum net 
construction have been recast accordingly (§7.1). Dynamics arises 
essentially by duplicating, or multiplexing, in the quantum sense, this 
primitive atomic action. 

Many of these arguments address exactly the foundational 
issues faced by the hotly pursued new discipline known as Quantum 
Computing, and the first six chapters have been designed to be read 
as a fairly self-contained introduction to that subject. 

Other changes from the first edition include: revisions and 
corrections permeating much of the text; updates and additions to 
the set of references; additional algebraic material in Chapters 3 and 
8; a new section on loop states in the last chapter (§12.5) and the 
provision of citation and notational indexes. 

Approximate minimal prerequisites for a reading of this work 
would include those necessary for first year graduate work in mathe­
matics or theoretical physics. For the mathematics: some knowledge 
of the usual abstract algebra, including a little experience in elemen­
tary finite dimensional multilinear algebra (mainly tensor and exteri­
or products), and elementary functional analysis, would be helpful. 
The language of categories is used from time to time, but no actual 
technical results in this area are invoked. The merest smattering of 
Lie group and Lie algebra theory is required in the penultimate chap­
ter. A very slight knowledge of vector bundle theory and cohomology 
would be helpful in the last chapter, but is not necessary for an un­
derstanding of the main arguments. For the logic: a slight acquain­
tance with the general notion of a lattice, and of Boolean algebra 
theory up to a statement of the Stone theorem, would be helpful. For 
the physics: an encounter with elementary quantum mechanics 
should have taken place, up to the notion of second quantization 
upon Fock and Fermi-Dirac spaces, though hardly more than the 
definitions of these last will be required. Since Relativity, in both its 
Special and General incarnations, is supposed to emerge from the 
formalism, knowledge of these is not actually required, but would, 
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needless to say, be helpful. I have tried to supply copious references 
to all the topics listed above at the relevant points in the text. (For 
superb modern treatments of general elementary quantum mechanics 
the reader may consult Isham 1995 and Chester 2003. An extremely 
clear but more traditional treatment may be found in Peebles 1992, 
which could be used along with the former pair of references for the 
purposes of triangulating this still contentious subject.) 

An overview of the layout of the work may, I hope, be derived 
by glancing at the table of contents. I have tried to proceed with the 
argument in a linear fashion, refraining from the use of footnotes and 
appendices. Nevertheless, certain nonlinearities and digressions have 
crept in, most of which may be ignored at a first reading—or forever. 
These are clearly marked within the text, but, for the record and as 
an enticement to the reader, the sections that may be skipped are as 
follows: the digression to prove a result of Finkelstein's in §1.2; 
§3.1.7, which is used only in §12.5 and has no bearing on the main 
calculation; §5.1.5, §5.2, §6.3.4, §7.3, §11.2.3 in their entireties. 
The argument essentially concludes with §12.2, subsequent sections 
of this last chapter being devoted to an account of superconduction, 
electroweak unification (§12.3) and other symmetry breaking mecha­
nisms that seem consistent with our model (§12.4). The so-called 
loop states are taken up briefly in §12.5, as noted earlier. Any or all 
of these sections may be skipped. It goes without saying that the 
proofs of theorems, where offered, may also all be skipped. 

Incidentally, the handle of the algebraic machine, whose 
cranking produces the Lagrangians, appears in equation (11.2.2). 

It is obvious that I owe a special debt of gratitude to David 
Finkelstein, not only for having inspired the vacuum in the first 
place, but also for his patience in attempting to share his deep in­
sights with a tyro, and his unstinting hospitality while doing so. My 
thanks to him also for cogent criticism of earlier versions, and to him 
and Springer—Verlag for permission to quote certain passages from 

QR. 
This second edition would not have appeared had it not been 

for the continued moral support and encouragement of Chris Isham, 
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Anastasios Mallios, and Ioannis Raptis: to all of them I will be eter­
nally grateful. If any of it is readable at all, the blame must lie with 
the polymathic Theresa Jeevanjee, who courageously subjected her­
self to a reading of every word and equation, and who did everything 
she could to heal the fractures in my English, my mathematics, etc.: 
my heartfelt thanks to her. For crucial exchanges on various issues 
that arose in the preparation of this edition I offer my grateful thanks 
also to John L. Bell, Richard Blute, Jeremy Butterfield, Marvin 
Chester, Maria Luisa Dalla Chiara, Prakash Panangaden, J. Piers 
Rawling, Ivan Selesnick, Gerald Teschl and Mingsheng Ying. 

Over a period of many years my outlook on these and mani­
fold other matters has been broadened and deepened through for­
tunate encounters with many other remarkable individuals, whose 
wisdom and generosity it is a pleasure to acknowledge here. These in­
clude: Michael Atiyah, the late K. T. Chen, W. Henson Graves, Karl 
Heinrich Hofmann, Theodore Jacobson, John Madore, Wolfgang 
Mantke, Christopher Mulvey, Ronald Munson, Prabhakar Rao, 
Kenneth A. Ross, Subramanian Sankaran, Dana Scott, Rafael Sorkin, 
Moss Sweedler, Zhong Tang, Morwen Thistlethwaite, Alexander 
Vlasov, Grant Welland, Josef Wichmann, and the late Eugene P. 
Wigner. My grateful thanks to all of them, and to the staff of World 
Scientific, particularly Daniel Cartin and Ms. E. H. Chionh, for al­
lowing me the opportunity to revisit this material. 

Finally, but primarily, I thank my wife Jenny, whose love and 
patience continue to defy rational explanation. 
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1 

Foundations 

The fundamental attribute of a quantum system, according to 
the standard elementary picture of quantum theory, is a Hilbert 
space of "states," or, more archaically, "wave functions." The "pure 
states" of the system are in one-to-one correspondence with the nor­
malized elements of the Hilbert space (hence in one-to-one corre­
spondence with the rays, or one-dimensional subspaces, of the said 
Hilbert space). A general "state" of the system is identifiable with a 
certain convex combination of such normalized elements or pure 
states (cf. §5.2). In the case of a classical system, the pure states may 
be (seductively) identified with the elements of a set, or "space," of 
actual physical states of the system, epitomized by the phase space of 
a particle. Consequently, the temptation to similarly interpret a nor­
malized vector in the Hilbert space of a quantum system as the repre-
senter of some kind of physical state of the system—to which certain 
attributes of objectivity may be presumed to adhere—seems irre­
sistible. Indeed, it is a temptation not often resisted. The primal non-
classical attribute of quantum states, namely the possibility of their 
superposition, then also acquires a pseudo-classical gloss, in which a 
superposition of "states" is construed as a kind of classical interfer­
ence of "wave functions." 

Physics, for the most part, is carried out against (or within) a 
classical backdrop: regardless of the degree to which the foreground 
fields, etc., are quantized, the ambient space or spacetime remains 
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classical. This statement embraces even those theories in which space-
time is subjected to mutilation, as in lattice theories, or to augmenta­
tion, as in string theories. In none of these theories are the actual 
points or regions of the spatio-temporal structures themselves quan­
tized: they, and their assemblages into manifolds, etc., are treated as 
entirely classical objects that do not themselves partake of any quantal 
attributes such as superposition, entanglement, etc. 

Under these circumstances, namely when the stage accommo­
dating the play of physics is not itself subjected to microscopic scruti­
ny, it seems relatively harmless to cling to a quasi-realist interpreta­
tion of quantum theory. (One price to be paid for this is the concep­
tual discomfort experienced when the non-objective nature of quan­
tum entities collides with classical preconceptions concerning the be­
havior of objects. Although we hope to show that it is possible to 
ameliorate this discomfort, it seems unlikely that gross macroscopic 
human thinkers will ever be able to dispel it entirely: evolution did 
not select for an appreciation of non-objects. We would not be here 
if it had.) However, a promiscuous maintenance of the conventional 
classical picture of spacetime as a highly structured continuous ob­
ject, such as a manifold, is not only in clear conflict with quantum 
principles, it also seems to preclude the kind of constructive compu­
tational procedure we propose to initiate here. 

Following the line of reasoning pioneered by Finkelstein, if 
classical spacetime is first of all a classical set (of "events," say), then 
quantum spacetime should at least be a quantum set of some kind. 
And "quantum sets," whatever they are, will not be objects in the 
classical sense. Nor, consequently, will the associated logic of propo­
sitions concerning such entities be classical logic: rather, it will be 
some kind of quantum logic, presumably closely related to, if not 
identical with, that elderly discipline known as Quantum Logic. 
Moreover, the proposal to found a theory of the Plenum upon so for­
mal a base demands a clear ontological commitment to be made at 
the outset. We shall follow Finkelstein in positing a thoroughgoing 
operational view of quantum theory, and present in this first chapter 
a brief account of this approach, its chief virtue being its strong non-
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objective flavor. This account will be continued in the next chapter. 

1.1 Physics without Objects 

Epistemology is destiny, and perhaps the most profound epis-
temological lesson of the Heisenbergian quantum revolution is that 
objects do not exist. A quantum entity may act, may have "coordi­
nates" and other attributes, but may not be said to have a state of 
being: that is, among other things, it may not possess a unique set of 
attributes that are independent of putative experiments or experi­
menters. Indeed, physical acts of selection of quanta may not com­
mute: for example, the outcome of an experiment in which light is 
passed through a pair of polarizers will, in general, depend upon the 
order of the polarizers. Here a single polarizer effects the initial (ex­
ternal) act of injecting a correspondingly polarized photon, and, dual­
ly, an analyzer effects a final (external) act of detection. A quantum 
system is then identified with a collection of ideal, maximally infor­
mative (i.e. "sharp") initial and final acts. These acts are attributes of 
putative experimenters or episystems. However, initial acts do not nec­
essarily commute and, moreover, two such acts performed in se­
quence do not necessarily yield another such act. This is to be con­
trasted with the (imagined) behavior of (non-existent) "classical sys­
tems": ideal physical acts of selection are infinitely gentle and do not 
change the things selected—they mutually commute. (For quanta, 
every effective physical selective act fails to commute with almost 
every other.) Thus, for a classical mechanical system consisting of a 
particle, say, an initial act places the particle into a certain state repre­
sented by a point in a "space" (or "phase space") of such states. Thus, 
sharp initial external acts correspond one-to-one with elements of the 
state space and, since nothing is changed by such an act, these are 
also in one-to-one correspondence with final acts. 

A sharp initial act a paired with a sharp final act a) consti­
tutes a minimal kind of experiment, and we distinguish two possible 
outcomes, namely success or failure. We may loosely express these by 
(oa ^ 0 and (oa = 0 respectively. In the first case the minimal experi-
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ment goes, and the transition a —> co is allowed; in the second the ex­
periment doesn't go and the transition a —> (o is forbidden. (In a po­
larization experiment for example, in which a corresponds to the ini­
tial act of polarization, and (o to the final act of analysis, (oa — 0 
when the analyzer is orthogonal to the polarizer.) One may classify 
and categorize general acts in various ways to reflect experimental sit­
uations. For example, for a closed system, which is insulated from all 
others between external acts, one might suppose that, for each initial 
act a, there corresponds a unique final act, denoted a , the adjoint 
of a, such that the transition a —» a1 is allowed: a'a & 0. For each 
act of importation there should correspond an act of exportation. For 
an open system, which is one that is not closed, every initial act need 
not have an adjoint, or, if it does, the adjoint need not be unique. 
Various rules may now be laid down for adjoints. (For example, the 
conventions of QR require that the adjoint be conjugate linear, so 
that the associated inner product is conjugate linear in the first vari­
able.) 

It is a remarkable fact that these simple ingredients, namely a 
given set of external acts for a closed system, in the presence of six 
further assumptions (some admittedly rather technical), are enough 
to produce (roughly speaking) a unique vector space W equipped 
with an inner product such that the initial acts correspond to the rays 
in W, the final acts to the rays in the dual space W of W, and the 
adjoint to the map W—>W induced in the obvious way by the 
inner product. The coefficient field is not completely specified by this 
theorem, the Strong Form of the Fundamental Theorem: QR, §6.9. 
We shall opt for the minimal choice of C, the complex numbers, for 
the coefficient field, for no better reasons than those of convenience 
and familiarity. 

Having neglected to precisely state the fundamental principles 
of quantum kinematics (for a closed system), we can now do so in 
vectorial form (QR, §2.4.3). 
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QO. The (sharp) initial acts of a system correspond bijec-

tively with the rays in a vector space; the final acts cor­

respond with the rays in the dual space. 

Q l . A transition is forbidden if and only if the correspond­

ing ray of final junctionals annuls the corresponding 

initial ray. 

If we use Dirac kets \a) ( e W, say) to denote initial action 
vectors, then it does not abuse the notation too much to use Dirac 
bras, {o)\, to denote elements of the dual space W . Then Q l is 
equivalent to the assertion that the transition \a) —¥ (co\ is forbidden 
if and only if ((o\a) = 0, where (a)\a) denotes the value of the func­
tional (<o\ at |a) . 

We shall assume also the existence of an adjoint operation 
(now expressible in the form |a) t = (a|, with the complex conjugate 
linearity of the operation being understood), but cannot afford to be 
too hidebound about the positive definiteness of the metric it defines, 
since indefiniteness inevitably encroaches in relativistic theories: cf. 
the problems with photon polarizations in ordinary QED, which is 
curable in various ways. In the absence of positive definiteness (and a 
cure for it), and anticipating the Born Law to be discussed below 
(from which it emerges that (a\a) should be interpretable in terms of 
the number of quanta in a sequence of trials with initial act \at)), one 
is faced with problems of interpretation for acts \a) for which 
(a\a) < 0. Finkelstein (QR, §4.2.2, §4.7) makes the compelling sug­
gestion that in these cases \a) represents not an act proper to an ex­
perimenter, that could in principle be carried out on the system, but 
rather an act pertaining to possible relations among experimenters. 
(The analogy is with spacelike vectors in relativity, that play precisely 
this role.) An act that cannot be carried out by an experimenter upon 
a system may nevertheless serve to establish relations among experi­
menters, as do spacelike vectors in relativity, that effect acts of separa­
tion, or ghosts in gauge theories, that effect acts of coordination: cf. 
§11.2.3. (This interpretation seems unavailable if one insists upon 
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investing kets with the state-like attributes of an underlying object.) 
Thus we need to qualify the notion of initial act in the presence of an 
indefinite metric: namely, a proper initial act is one performable on 
the system—these are the ones represented by the rays of vectors of 
positive norm: {a\a) > 0. It then becomes necessary to specify a sub-
space of such proper initial acts within the space of all initial acts. 

These two principles, Q0 and Q l , succinctly encapsulate the 
key non-classical aspects of quantum behavior, as Finkelstein points 
out (QR, §2.4.3). Namely, the integrity of quanta: a transition is 
made or it is not; and quantum interference: for each pair of initial 
acts |a) and |)3) that effect a transition to \(o), say—that is, 
(o>\a) ^0^ (<u|j8)—there exists an initial act | y) such that {(o\y) = 0. 
That is, there exists an initial act for which the transition is forbid­
den. Here, \y) is a linear combination of |a) and |)8), and represents 
the interference of alternate possible acts of an experimenter upon 
the same quantum system. To quote Finkelstein (QR, §2.6): 

"Opening a new path may block a transition. This 
is quantum interference, the root of all quantum 
paradoxes, a famous anomaly differentiating any 
quantum theory from any classical one. It is built 
into the action vector description and is an essential 
part of the quantum kinematics." 

An initial act | y) is said to be a coherent superposition of two 
others |a) and |j8) when 

((o)\ a) = 0 and (w| j8> = 0) implies ((<w| y) = 0). (1.1.1) 

Clearly, every ray in the plane spanned by |a) and |/3) qualifies as a 
coherent superposition, whereas in classical thought, if these vectors 
represented states of an object, one would conclude from 

(o) * a and co * /3) implies (a> ^ y) (1-1-2) 
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(which is the precise classical analog of equation (1.1.1)), or its logi­
cal equivalent: 

((o=y) implies ((a)=a) or (<y=j8)), (1.1.3) 

that y = a or y = (3. 
Classically, if (co being y) entails (((o being a) or (a) being 

/3)), then y must be a or y must be j8. This existential principle 
does not apply in the action vector picture (i.e. quantum theoretical­
ly) and it is this difference, as noted by Finkelstein (QR, §1.3.5), that 
seems to cause much of the disquiet experienced by the object-
intoxicated mind while contemplating quantum phenomena. It 
seems less disquieting in the action vector picture since the referents 
in equation (1.1.1) are associated with an experimenter or episystem, 
rather than with any presumed inherent attributes—such as those as­
sociated with the existence of states of being—of the system itself. 

1.2 Observables 

Classically, an "observable" is a value assumed or assumable 
by each state of a system: one often speaks of a value of the observ­
able "in" a certain state. That is, a classical observable is a (possibly 
complex) function on the state space. In the quantum case the term 
"observable" is a misnomer since it carries connotations of non­
intervention. Finkelstein (QR, §4.2.5) suggests the use of the terms 
"variable" or "coordinate" instead. 

Given the space of action vectors of some quantum system, 
what can possibly correspond with this classical notion? In answering 
this question we follow the more-or-less traditional path of rela-
tivizing from the classical case. The most general mathematically 
amenable model of an algebra of classical observables would seem to 
be the commutative C*-algebra CQ(X) of continuous complex func­
tions on a locally compact Hausdorff space X, vanishing at infinity. 
That is, the (commutative) algebra of continuous functions 
/ : X—>C having the property that for any e > 0 , there exists a 
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compact Ke^C such that | f(x)| < £ whenever x g KE, equipped 
with the uniform norm. In classical thinking, the act of assigning a 
value to a state does not change the state, whereas in the quantum 
case, that has no underlying states, all that can ever be affected are 
the initial and final acts. Although a classical coordinate, i.e. an ele­
ment / e C 0 ( X ) , affects no states, there are clearly vector spaces 
(C0(X) itself is one) upon which / does effect changes. For instance, 
/ acts linearly by multiplication upon C0(X). A consideration of the 
most general actions of CQ(X) upon Hilbert spaces then leads to the 
following Spectral Theorem. 

THEOREM 1.2.1 

T H E SPECTRAL THEOREM 

Let f h->Tf, / E C0(X), denote a ^representation by bounded 
operators on a Hilbert space fa. Then there exists a function E I—> P(E) 
from the Borelsets of X to projections on S$ such that: 

(i) P(X)=I, the identity operator on &, 
(ii) for El,E2,... pairwisedisjoint, 

P(E1vE2vEiKj...)Z=fjP(En)£ 
7 1 = 1 

for all fe£>, 
(i\i)P(E1nE2) = P(El)P(E2), 
(iv) the projections P(E) commute with all bounded 

operators that commute with all the T , . 

Moreover, for each f G C0(X) and any £,176^) 

<£W = f(\)d^(A) (1.2.1) 

where fxf is the complex measure on X given, for a Borelset E^M, by 

»l{E)={t\P{E)\r}) • 
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The last equation may also be written 

Tf=\ f(A)dP(Al (1.2.2) 

The equation (1.2.1) specifies the function P uniquely. 

The equations (1.2.1) and (1.2.2) express the fact that any 
Hilbert space ^representation of a commutative C*-algebra may be 
decomposed as a direct integral of one-dimensional representations 
with respect to a projection-valued measure, which is a function satis­
fying (i) - (ii) of the theorem. (Note that P ( 0 ) = O follows from (ii). 
It can also be shown that (iii) follows from (i) and (ii): see for exam­
ple Halmos 1957, Theorem 2, §36, where the terminology spectral 
measure is used. We have followed tradition in including (iii) among 
the hypotheses. We note that Teschl 2002 also contains a very careful 
treatment of this theorem and some of it ramifications. See also 
Arveson 2002, or Hewitt and Ross 1979, C. 40.) 

It is clear that, given such a measure, one may form a repre­
sentation of the algebra satisfying equation (1.2.1) and that this asso­
ciation of representations of C0(X) with projection valued measures 
is one-to-one. Now, if we identify the Boolean (or-) algebra of Borel 
subsets of X with the logic of the classical system whose state space 
purports to be X, then a projection valued measure clearly has the ef­
fect of interpreting this logic in the set of projections on ^>. More­
over, since projections correspond to closed subspaces, this is equiva­
lent to an interpretation of the Boolean algebra of the classical system 
in a certain family of closed subspaces of Q. But the family of all 
closed subspaces of a Hilbert space has its own structure as a (non-
distributive) lattice, and the family corresponding to the P{E) turns 
out to constitute a distributive, hence Boolean, sublattice. This is be­
cause the P(E) commute (cf. (iii) in the theorem statement above), 
that in turn causes the lattice of corresponding subspaces to be dis­
tributive. (The structure of this lattice is described in more detail in 
Chapter 5. Suffice it to note here that the lattice structure is given as 
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follows: the join (least upper bound) of a family E{ of closed sub-
spaces of a Hilbert space is the closure of their algebraic sum 1^Ei 

and their meet (greatest lower bound) is their ordinary intersection as 
sets. The operation corresponding to the Boolean complementation 
of a closed subspace is given by taking the orthogonal complement of 
the subspace.) Thus, any representation of the algebra of classical ob-
servables (or coordinates) gives rise to a Boolean sublattice of closed 
subspaces of a Hilbert space, and each operator in the representation 
has a (diagonal-like) spectral resolution (equation (1.2.2)) in terms of 
minimal (one-dimensional) commuting projections. The eigenvalues 
of T, are exactly the values of /—that is, the possible values of an 
observable appear as eigenvalues of the operator corresponding to it. 

Let us now artificially suppose that the Hilbert space carrying 
such a representation may be taken as the space of initial acts for the 
supposed underlying classical system. Then each projection ess­
entially performs an act of selection, the subspace it projects upon 
representing the system(s) selected. Thus, via its spectral resolution, 
each observable (or variable, or coordinate) is a superposition of such 
selective acts, the eigenvalue associated with each projection in the 
spectral resolution being the initial value ascribed by the variable to 
the systems selected by that projection. Since the selective acts (i.e. 
the projections) commute, there is no interference among them: 
think of the special case of projections onto orthogonal subspaces. 

This non-interference is characteristic of classical acts, so it is 
now easy to see how to relativize this situation to the quantum case: 
where there was no interference among selective acts, we must admit 
interference. That is, we must now consider families of non-
commuting projections. Since there is now no single underlying fam­
ily of Borel sets or projection-valued measure our burden shifts to the 
choice of an appropriate family or families of projections. If we wish 
to maintain the idea of a logic for the underlying system, we should 
choose a family of projections whose corresponding family of sub-
spaces forms at least a sublattice of the lattice of closed subspaces of a 
Hilbert space. The chosen lattice will be non-distributive in general, 
since the projections will be noncommutative in general. Since we 
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have assumed that the Hilbert space involved represents all the initial 
acts of the system, it seems that we should choose the entire lattice of 
closed subspaces. This is the prototypical example of an orthomodular 
lattice: a formal definition will be worked up to in Chapter 5, §5.1.4. 
(The question of which Hilbert space to choose in the first place is, 
of course, still begged.) 

Finally, with respect to general candidates for quantum vari­
ables (or coordinates), we preserve the analog of the spectral resolu­
tion so that our quest reduces to a search for those operators admit­
ting such a resolution. The broadest general class of such operators is 
the class of normal operators: namely, those that commute with their 
(Hilbert space) adjoints. (The smallest C*-algebra generated by such 
an operator is commutative, hence its good spectral behavior.) The 
corresponding eigenvalues then have the same interpretation as in the 
classical case. 

Following Finkelstein (QR, §4.3.2, §4.4.3) we can now rea­
sonably specify that any maximal algebra of normal operators on the 
space of initial vectors of a quantum system is the coordinate algebra 
of some experimenter. This is in marked contrast to the classical case 
where the maximal commutative algebra of Tfs is supposed to 
provide a unique, absolute coordinate frame, agreeable to all ob­
servers. In the quantum case there may be as many frames as experi­
menters, and these are generically incompatible (i.e. not necessarily 
mutually commuting). This is true, a fortiori, for open systems, in 
which adjoints may also vary with the experimenter. 

(This non-existence of an absolute frame is the essential rela­
tivity built into quantum theory, as emphasized by Finkelstein (QR, 
§4.3.1, §4.4.3), who was apparently the first to have done so.) 

Thus, we arrive at one of the founding principles of quantum 
theory: 

T H E EIGENVALUE PRINCIPLE 

The possible experimental values of a variable are exactly 

its eigenvalues. 
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Each of the relevant projections in a spectral resolution there­
fore functions as an idealized minimal "black box," capable of out-
putting its associated spectral value. The variable is then a super­
position of these "single channel" black boxes. The theory seems not 
to allow any finer specification of the idea of "experimental value" 
than this (cf. QR, §4.2.5). Nevertheless, this was enough for Finkel-
stein (Finkelstein 1963) to deduce a very close approximation (in­
deed, arbitrarily so) to that holy of holies, the Born Law, from QO, 
Q l , the Eigenvalue Principle, and an axiom of "assembly" (cf. Chap­
ter 2). This law states that, for normalized initial and final acts, \a) 
and (a>\ respectively, 

Prob«ft>|<-|a» = | H a > | 2 , (1.2.3) 

that was (and is) often regarded as an axiom of the theory. 
We digress to briefly review this important result. Certain no­

tions used here will themselves be reviewed in Chapter 2. Readers 
may prefer to delay a reading of the rest of this subsection, or to skip 
it entirely. 

The idea is to design a variable whose appropriate eigenvalue 
is the appropriate probability. We note first that since projections 
have only the eigenvalues 0 and 1 they may be regarded as binary 
variables or predicates. Choose and fix a normalized initial vector \a) 
and a normalized final vector (<w|. Then the projection Pa onto the 
ray spanned by \(o) (that may be expressed in Dirac notation as 
Pa =\(o)((o\) represents a predicate pertaining to (or a property of) 
the system. Specifically, the eigenvalue 1 of P^ is the initial value of 
the subsystem(s) selected by P^ precisely when a transition from 
those subsystems to (o)\ is allowed, and 0 otherwise. 

Now consider the experiment determined by these two acts 
| a) and {(o\. If we perform this experiment n times and assume that 
these trials are independent of each other, then the run can be con­
sidered as a single experiment conducted on a sequence of n replicas 
of the original system. The spaces of acts for such sequences are the 
n-fold tensor products of the spaces of acts for the single system (cf. 
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§2.2, or Mac Lane 1963, for the algebraic notion of tensor product). 
The initial vector for the repeated experiment is thus 

\an) = ma) (1.2.4) 

and similarly the final vector is 

<oiB|s®B<w|. (1.2.5) 

The predicate corresponding to Pa, but now considered as a property 
of the kx system in the sequence, is 

Pk =l®---®i^®---®l (1.2.6) 

where the Is denote identity operators and Pm is in the kc position 
from the right. 

Thus, since PM is the variable whose non-zero eigenvalue rep­
resents a successful transition to (<o\, Pk is the variable whose non­
zero eigenvalue represents a successful transition to (OJ\ of the appro­
priate subsystems of the kl system in the sequence. Then the vari­
able representing the number of successful such transitions in a se­
quence of n trials is ^kPh , and the variable representing the average 
number of successful transitions to (OJ\ in a sequence of n trials is 

F „ = ( 1 ) Z , P , . (1.2.7) 

If \an) were an eigenvector of Fn, then the corresponding 
eigenvalue would represent the initial value ascribed to it by Fn: that 
is, this eigenvalue would be exactly the average number of transitions 
\a)—)((o\ in a run of n trials. The probability Prob((<t>| <— \a)) for 
the transition to occur would then be the limit, in some sense, of 
these eigenvalues as n —> °°. 

The failure of \an) to be an eigenvector of Fn is measured by 
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the quantity (abusing the notation slightly): 

A ( / J = l l ( F n - / n K > | | 2 (1.2.8) 

where fn is some real number. 
But 

Mfn)=((Fn-fn)aJFn-fn)an) 

=<<a*;-/„)2K> 

= (0LnK\an)-2fn{an\Fn\<xn)+fn\an\an) 

= {^\{co\a)^[^)\{^\a)\ -2fJ(o\a)\ +fn
2. 

(1.2.9) 

Thus \an) approaches the condition of being an eigenvalue 
over increasingly long runs if 

l imA(/J=|Ha)r-2(lim/n) |(a>|a>|2 + ( l im/ J 2 

=0 (1.2.10) 

assuming lim fn exists. If it does, we then have 

lim/n=|(W |a>|2 . (1.2.11) 

So if we take each fn itself to be this limiting value / = |(o>| QJ)| , then 
equation (1.2.9) yields 
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A(/) = ( ^ - ) / ( l - / ) . (1-2.12) 

Thus, over a lengthening number of finite trials, \an) moves 
closer to being an eigenvector of Fn with eigenvalue \{a>\ a)\ . 

If \an) were to become an exact eigenvector of Fn in an ap­
propriate limit as n—»°°, then the Born Law (equation (1.2.3)) 
would follow from the Eigenvalue Principle. 

Alternatively, the theory of infinite tensor products of Hilbert 
spaces may apparently be invoked to define the F operator and per­
form the analogous calculations for genuinely infinite sequences. The 
result may then be obtained exactly. 

(This result is recounted in Chapter 8 of QR. For another il­
luminating account of it, and some of its ramifications, see Smolin 
1984.) 

1.3 Finite Dimensional Heuristics 

We shall be largely concerned with finite dimensional vector 
spaces of action vectors (always over C, except where otherwise 
specified), the idea being that the proliferation of the dimensions of 
the spaces involved in the quantum physics of the continuum is an 
artifact of this structure: these spaces (and the continuum itself) 
should be obtainable ultimately through some sort of limiting pro­
cess (or condensation) of underlying finite, or finitely generated, sub­
structure. 

Notable among the many algebraic simplifications unique to 
the finite dimensional case is the following. Let W denote a finite di­
mensional vector space with dual space (of linear maps of W into C) 
denoted W . Then an elementary tensor a <8>f € W®W * determi­
nes a linear transformation of W into itself in which w e W is sent 
to f(w)a (recalling that ® = <8>c). The linear map WEW*—> 
EndW so induced is easily seen to be an isomorphism, where 
EndJy denotes the space of endomorphisms of (i.e. operators on) 
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W. Moreover, this isomorphism is natural, meaning, among other 
things, that it does not depend upon any choice of bases. This has 
the interesting consequence that the space EndW is naturally iso­
morphic with its own dual, an unusual occurrence even for finite di­
mensional spaces. This follows from the chain of natural isomor­
phisms: 

End W= W®W*=W*® W= 

=W*Wr**=(W8W*)* = (EadW)*. (1.3.1) 

It is a simple matter to verify the commutativity of the following dia­
gram: 

W®W* ~ > EndW 

where c denotes contraction and tr is the ordinary trace. 
Also easily seen is the fact that ordinary multiplication of 

operators, considered as a map EndTy<S>EndW—*-EndVF, is equiv­
alent to (i.e. commutes, via the isomorphism End VF = WSM^ , 
with) the map: 

l®c®l :W®W*®W®W*-^W®C®VT*=W0VP*. (1.3.3) 

Suppose a positive definite sesquilinear form is given on W 
making it a finite dimensional Hilbert space. Then, as for any 
Hilbert space, the conjugate linear map (or adjoint) W—>W in­
duced by this form in the usual way, namely by sending w e W to 
{w\ ):W—*"C, is one-to-one and onto. (Recall that our conven­
tions require ( | ) to be conjugate linear in the first variable.) 

Thus, with the help of the adjoint map W—>W , contrac-

(1.3.2) 
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tion, inner product and trace all become equivalent. 
Upon resurrecting the Dirac notation, an elementary (or 

simple) tensor in W8>iy may now be written in the form \v)®(u\ 
because everything in W* is an adjoint. The operator in EndW cor­
responding to this tensor is the one sending \w) to (u\w)\v). That is, 
upon identifying the tensor with the operator it corresponds to, we 
have 

(\v)®(u\)\w) = (u\w)\v). (1.3.4) 

So \v)®{u\ is the syntactically correct form of the operator usually 
written \v){u\ in Dirac's notation. 

If W were the space of initial vectors for a quantum system, 
the trace of such an elementary operator, namely 

tv(\v)®(u\) = (u\v), (1.3.5) 

has the interpretation given it in the theory sketched above, namely, 
as the transition amplitude, whose modulus squared may be related to 
the probability that the transition occurs. 

A general element 6 of W8W* is of the form 

0 = I.\ij\ui)9(uj\ (1-3.6) 

which we may think of as a superposition of minimal experiments, or 
acts of selection, 1^)8(1^1, each comprising a sequence of one initial 
action and one final one (cf. §2.2). Contraction then produces a sum 
of transition amplitudes whose value is independent of the represen­
tation of 6 as a linear combination of the type shown in equation 
(1.3.6). (In the sequel we shall often regard operators as generalized 
acts of selection in this sense and refer to them as such.) 

A general element of W<8>W®Ty *<8>W * is similarly a super­
position of compound experiments of the form {u^^u -)<8>(uk \®(ut \ 
in which the inner pair may be thought to comprise a medial or in-
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ternal subexperiment whose contraction yields the amplitude for the 
relevant internal transition. Performing this inner contraction while 
holding the outer vectors fixed then yields the elementary experiment 

<uJ^K>®(U/|. (1-3-7) 

The isomorphism W®W®W*®W*= W®W*®W®W* al­
lows us to view this process in terms of operators: namely, it yields 
exactly the product of the pair of operators whose tensor product (in 
W®W ®W®W ) corresponds to the original element (equation 
(1.3.3)). Conversely, the product of any two operators may be inter­
preted as an inner contraction of this type. 

This inner contraction is exactly analogous to a (short!) path 
integral in that it effectively sums over allowed "internal" transitions 
that constitute alternate routes, or paths, between sets of outermost 
initial and final vectors. (See §10.3 for a minimal sketch of the no­
tion of path integral.) 

The contraction of the remaining "external" vectors in expres­
sions of the form (1.3.7) yields finally the amplitude for the inner 
and outer transitions both to occur: this is the transition amplitude 
associated with the entire compound experiment (or superposition of 
such experiments) represented by the pattern of initial and final ac­
tion vectors in a given element of W8>W8> W*®W*. 

On the other hand, this final contraction gives, as usual, the 
trace of the corresponding operator, that in this case is the product of 
a pair of operators. In sum, the general form of these fully contracted 
amplitudes is that of a trace of a product of operators. Conversely, a 
trace may be interpreted as a full contraction of this type. 

This type of inner-to-outer full contraction of appropriate 
general tensors is a paradigm of externality: internality-to-externality 
is established by the order of contractions within the tensor. This as­
sociation of the order of contraction with notions of externality 
seems to be in accord with intuition, since, if an experimenter is ex­
ternal in this sense to some compound experiment, all internal transi­
tions must be taken into account before a full transition across that 
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experiment's interface with the system, represented by the outermost 
action vectors, can be accounted for. 

Thus, maximally external experimenters—for instance macro­
scopic ones—are frequently confronted with amplitudes in the form 
of traces (of products) of operators. 

These ideas will be revisited in subsequent chapters. 
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2 

Quantum Sets 

It is the main purpose of this chapter to briefly describe the 
elements of Finkelstein's quantum set theory, which is a component 
of the enormous extension of quantum logic achieved in QR (Chap­
ters 7, 9, 10 and 14). The quantum set construct will be used later in 
fundamental ways: to motivate an approach to quantum symmetry 
(Chapter 3), to motivate an embedding of a fragment of quantum 
logic into a certain sequent calculus (Chapter 6), and to perform the 
construction of the quantum net (Chapter 7). Since our own use of it 
here will be fairly rudimentary, we confine our discussion according­
ly, digressing here and there on certain other related matters. 

In most respects, our mathematical treatment differs from 
that given in QR, though we always arrive at the same destination. 

2.1 Logics and Lattices 

An understanding that the correct relativization of the logic of 
a classical system to that of a quantum system corresponds to the re­
placement of the Boolean algebra of subsets of a set of states by the 
lattice of subspaces of a Hilbert space, was the cornerstone of a vast 
and ongoing program aimed at deriving the whole panoply of quan­
tum mechanics from this basic logical structure, suitably abstracted. 
This program, initiated by Birkhoffand von Neumann in the 1930s 
(Birkhoff and von Neumann 1936, and Chapter 3, §5 of von Neu-
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mann 1996), has resulted in a hugely impressive and convincing 
body of results, while having little discernible effect on the conduct 
of most working physicists. Although the mathematical results are of 
course unambiguous, the same cannot be said for some of their phys­
ical interpretations, and debate continues to rage hotly among the 
philosophically minded. (For superb accounts of this story see the 
references listed in the introduction to Chapter 5.) 

"Quantum Logic" proper (QL), as we shall understand it 
here, is that logic epitomized by (or modeled by—in a sense to be 
made precise later) the lattice of closed subspaces of a Hilbert space. 
Thus, these lattices replace in the quantum case the (Boolean) lattices 
of classes that epitomize (or model) classical Propositional Calculus 
(PC). (Technicalities will be discussed at length later.) It transpires 
that quantum logic exhibits certain fundamental and non-obvious 
differences from PC that are generally regarded by logicians as being 
anomalous or pathological. We shall adopt the view that these phe­
nomena are in fact revelatory of an actual deep quantum structure, 
that leaves its stamp indelibly even upon so denatured a description 
of it as is available through the use of purely logical constructs. (The 
attempt to interpret this evidence of deep structure will inform much 
of our work.) 

These so-called anomalies of quantum logic will be discussed 
later (Chapter 5). The major concern of the present chapter is with 
another problematical aspect of standard quantum logic that Finkel-
stein seems to have been the first to recognize and address. Namely, 
its failure to take account of extensionality. In the standard interpreta­
tion of QL quantum logical predicates (that would determine classes 
as their extensions in naive classical set theory) correspond to projec­
tions, or equivalently, closed subspaces of a Hilbert space (§1.2), but 
sets of quanta apparently do not. Thus, there is an asymmetry be­
tween quantum classes (i.e. quantum predicates, or closed subspaces 
of a Hilbert space) and quantum sets (represented by rays, not in the 
original space, but in a certain Fock space based upon it (§2.2.3)). 
This asymmetry is absent in (naive, finitary) classical set theory, 
where every class is a set. Finkelstein noted also that in considering 
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higher order set-theoretic constructs, such as sets of sets, there arises a 
concomitant problem: standard QL is necessarily only first order, 
dealing with predicates, but not with predicates whose subjects are 
predicates, etc. These matters are addressed in §2.3. 

Needless to say, both of these principles (namely the existence 
of higher order constructions such as sets of sets, etc., and the princi­
ple that sets may be formed as the "extensions" of predicates) are 
used with cavalier abandon, if not entirely unconsciously, not only in 
classical physics, but also in most current classical-quantum hybrid 
theories such as those coming under the rubric "quantum field 
theory," in which the points of a perfectly classical set, namely an un­
derlying spacetime manifold, are used, among other things, to index 
fields of operators. Thus Finkelstein's insistence upon repairing these 
defects in quantum logic, and restoring the symmetries that should 
underlie those witnessed by macroscopic wielders of classical (fini-
tary) logic, must be seen as an essential first step in the construction 
of a properly quantal description of the plenum. 

2.2 Some First-order Quantum Aggregates 

In classical thinking, combinations of units into various kinds 
of aggregates can be effected by carrying out higher-order set theoret­
ic operations. Thus, for instance, sequences are functions with the in­
tegers or the natural numbers as domain, Cartesian products are cer­
tain sets of functions from indexing sets into disjoint unions of the 
sets indexed (families of indexed sets and disjoint unions of sets being 
themselves describable by functions), etc. 

In contrast, the foundations of any version of quantum theory 
assume at least some version of set theory sufficient to support the 
mathematics used, and so already constitute in themselves vastly rich 
structures of high order from the point of view of classical logic. (We 
seem still to require a classical metalanguage to discuss quantum 
structure, a systemic cut parallel to the one advocated by Bohr but 
possibly deeper and more painful. Other classical (meaning non-
quantal) logical universes, or toposes, exist, that embody, for instance, 
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different models of set theory: so different metalanguages certainly 
exist. (See the references given in §5.2.2 and the discussion in 
§12.6.) 

This inherent expressivity of quantum theory makes it possi­
ble to specify certain quantum analogs of classical combinations in 
terms of the relatively "first-order" quantum (i.e. linear) structures al­
ready present, which is not to say that these quantum combinations 
necessarily exist physically, though some of them do. 

We now derive some of these descriptions that are, for the 
most part, based on templates taken directly from QR, Chapter 7. 
To complement the treatment in QR we shall approach the 
specification problem a little differently, however. 

All vector spaces of initial vectors for the individual systems 
may be taken to be finite dimensional in what follows, and we tem­
porarily drop the ket notation for reasons to appear. 

2.2.1 Finite Products 

Given a finite number of Hilbert spaces Wi, i = \,...,n, of 
initial action vectors for n quantum systems, the problem is to de­
scribe the Hilbert space appropriate to the "product" system. 

Let S*> denote a possible solution to this problem: that is, ele­
ments of !<Q are supposed to be initial vectors for the product system. 
Then, at the very least, some of the initial acts for the product system 
should be obtainable by arranging in some manner arrays of initial 
acts upon the individual systems. That is, n-tuples (al,...,an) 
should be interpretable in ^): namely, we should be able to construct 
a certain function 

t : W 1 x . . . x W r
n — • £ . (2.2.1.1) 

The interpretation t{ax,...,an) o£{ax,...,an) is then as that act, upon 
the product system, which injects/creates a quantum from each indi­
vidual system. If an individual action vector is replaced by a super­
position, then this interference among alternative acts should be in-
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herited by the interpreted act that should similarly produce a super­
position of the correspondingly interpreted acts upon the product 
system. Thus, t in equation (2.2.1.1) may be taken to be linear. That 
is, the acts corresponding to either side of the (vector) equation ex­
pressing linearity should be the same: therefore the corresponding 
vectors should be projectively related. Since the scalar involved in this 
projective ambiguity is physically irrelevant, we may choose it so that 
the two sides of the vector equation expressing linearity are the same. 

(In this case the argument above rather belabors the obvious 
fact that if acts upon the W-product system are to be interpreted as 
acts upon the Q̂ system, then the map from the H^-product space to 
fe implementing the interpretation should be multilinear. However, 
the principle that an equivalence of acts may be represented, in a 
hunt for a specimen, by an equality of the corresponding vectors, will 
be invoked below to impose further algebraic structure upon the can­
didate ^-spaces for other templates.) 

Now there is a "universal" solution to our problem. Given a 
finite number of vector spaces, Wt, i — l,...,n, say, there exists a vec­
tor space T and an n-linear map t: Wx X...xWn—>T such that, 
for any n-linear map / : Wl X... X Wn —> E, there exists a unique 
linear map / : T—>E making commutative the following diagram: 

w;x. . .xw;—-—*T 
(2.2.1.2) 

E 

It follows easily from the uniqueness requirement that T is unique 
with this property up to isomorphisms commuting with the maps 
corresponding to t. In fact, we may take 

T = ®llWi (2.2.1.3) 

with 
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t(a1,...,an) = al®...®an. (2.2.1.4) 

This is the "universal" property of the algebraic tensor product—it 
reduces the study of multilinearity to that of ordinary (uni-)linearity. 

For the case in which the W{ are Hilbert spaces, there is a 
similar universal diagram in the category of Banach spaces in which T 
is a Hilbert space. Namely, 

T = ®llWl, (2.2.1.5) 

the completion of ®nWi with respect to a canonical pre-Hilbert 
space inner product given on elementary tensors by 

(w®i7®... |a®j8®...) = (w|a)(i7l/3)... (2.2.1.6) 

If the W{ are all finite dimensional, ®nWt, also being finite dimen­
sional, is of course already complete. (There are various ways to see 
that equation (2.2.1.6) defines an inner product independently of the 
representation of general tensors as linear combinations of elemen­
tary ones. For very careful treatments see Palmer 1994 or Hewitt and 
Ross 1970. For greater generality see Ryan 2002 or Mallios 1986.) 

Returning to equation (2.2.1.1) it is now apparent that there 
is a unique solution (up to commuting isomorphisms), namely t in 
diagram (2.2.1.2), that is optimal in the sense that any other such so­
lution (such as the / in diagram (2.2.1.2)) "factors through" it: 

/ = / • * • 

Thus, one obtains (or defines) the space of initial action vec­
tors for the product system by tensoring the individual system spaces 
in the specified order. 

In particular, finite sequences of a single system are obtained 
by taking the appropriate tensor powers of the space of the individual 
system. 
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2.2.2 Sequences 

Here we wish to capture the idea of a system whose initial acts 
inject/create arbitrarily long sequences of the quanta of a given sys­
tem (with initial space W, say). In such sequences the order counts. 

As before, let us suppose that a solution, ^>, is to hand. Thus 
elements of $Q are supposed to represent the acts having the property 
specified. Since any two such elements represent initial acts for a pair 
of sequences of quanta, there should exist an element in fa corre­
sponding to the initial act of injecting the sequence obtained by con­
catenating these two sequences in a given order. Moreover, if either 
of the two chosen elements in fe is replaced by a superposition of al­
ternatives, the act corresponding to the concatenated sequence 
should maintain this interference of alternatives and decompose as a 
superposition of the appropriate acts for the concatenated sequences. 
In other words, !Q should admit a. product, corresponding to concate­
nation of sequences, that may be taken to be bilinear according to an 
analog of the superposition argument given above, and clearly also 
may be taken to be associative. Tha t is, fe should admit the structure 
of an associative algebra. The initial action vector corresponding to 
the act of injecting the null or empty sequence clearly acts as a unit 
for this algebra structure. Moreover the acts of the original system 
should be interpretable in $*> as sequences of length one, with super­
positions maintaining themselves as usual in this interpretation. That 
is to say, there should exist a linear map 

s:W-^& (2.2.2.1) 

of the space W into the associative unital algebra fe. 

It will come as no surprise that this problem, too, has an opti­
mal universal solution: for any vector space W there exists an associa­
tive unital algebra T(W) and a linear map s : W—>T(W) such 
that, if / : W—*-A is any linear map into an associative algebra A, 

there exists a unique algebra map / : T(W)—*~A making commuta­
tive the following diagram: 
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W—^-^T(W) 

(2.2.2.2) 

Again, T(W) is unique with this property up to algebra isomor­
phisms commuting with the maps corresponding to s. In this case, 
one may take for T(W) the tensor algebra over W: 

T(W)=fff ®kW 

= C®W®W®W@... (2.2.2.3) 

(Note that <8>°W = C, <8>lW = W.) The algebra product is given on 
simple (i.e. homogeneous) tensors by tensoring, the 1 in the first 
summand being the unit. (See for example Lang 1993, Knapp 1988, 
p.61, or Mac Lane 1963.) The map s in diagram (2.2.2.2) is the in­
clusion of W as the first-grade summand ® W = W. 

For W a Hilbert space, a universal diagram similar to 
(2.2.2.2) exists with A now a Banach algebra, / , / and s continu­
ous and T(W) replaced by its Hilbert space completion. 

Happily, this interpretation is consistent with our earlier one 
since we recover, as subspaces of the tensor algebra, finite sequences 
of arbitrary length. 

2.2.3 Sets 

Unlike sequences, sets should be insensitive to the order of 
their constituents. A more fundamental difference is that the repeat­
ed membership of an element is disallowed. 

For a given system (with initial space W) assume as usual that 
we have found a space fe whose elements represent acts of injection 
of sets of the quanta whose space of initial action vectors is W. Then 
exactly as in the previous case, since each element in & represents the 
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act of injecting a set of quanta, we obtain an associative unital algebra 
structure by supposing that these acts can be combined in such a way 
as to inject unions of the sets of quanta injected by the constituent 
acts. Again, the unit for this algebra structure corresponds to the act 
of injecting the null set (of quanta). As before, we should have a lin­
ear map 

i : W — • £ (2.2.3.1) 

that interprets elements of W in >̂ as initial action vectors for the in­
jection of singletons. That is, for a G W, t(a) represents the act of 
injecting the set whose sole member is the quantum injected by a. 

The difference now is that a repeated "unioning" of such a 
singleton must result in that null initial act on the system from which 
all transitions are forbidden, namely 0, since repeated set member­
ship is not allowed. That is, for all a e W 

i ( a ) 2 = 0 . (2.2.3.2) 

Once again (Lang 1993, Knapp 1988, p.65, Mac Lane 1963) 
there is a universal solution in the algebraic category. Specifically, for 
every vector space W, there exists an associative algebra E(W) and a 
linear map L:W—*-E(W) satisfying equation (2.2.3.2), such that 
for any linear map I: W—*-A into an algebra satisfying an analog of 
equation (2.2.3.2), there exists a unique algebra map / : E(W)—>A 
making commutative the diagram: 

W — * E { W ) 

(2.2.3.3) 

A 

The algebra E(W) is, as usual, unique up to appropriately commut­
ing algebra isomorphisms. It is called the exterior algebra over W and 
given explicitly by: 
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E(W)=@f tfW 

=C®W®W/\W®... (2.2.3.4) 

Here A denotes the usual exterior product, A W = C and A W = W, 
i is inclusion of W as the A -summand, and multiplication of ho­
mogeneous terms is by A-ing them together. 

In this case, if W is finite dimensional, of dimension n, say, 
since 

dimA*W = ( ™ \ (2.2.3.5) 

the series in equation (2.2.3.4) terminates at k = n, and 

dimE(W) = 2n. (2.2.3.6) 

So the exterior product emerges as the analog of the (disjoint) 
union connective for "quantum" sets. 

We note here one further property of the exterior algebra that 
will be of significance later. Namely, for finite dimensional vector 
spaces \^and W, the linear map 

Amy<8>AnW—>Km+n(V®W) (2.2.3.7) 

given in an obvious notation by 

( t ; ,A. . .A'y m )®(u) 1 A.. .AiuJl ->'u 1 A.. .Aj; m Aty 1 A.. .Aiy n 

(2.2.3.8) 

induces an isomorphism 
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/\p(V®W) = Q)P
kof\

hV®/\p-hW (2.2.3.9) 

whence an isomorphism of vector spaces (not algebras) 

E(V®W) = E(V)®E{W). (2.2.3.10) 

(Cf. Fulton and Harris 1991, Appendix B.) We will return to this 
topic in §3.1.8. 

2.2.4 Sibs 

A sib is an arrangement, like a sequence, but symmetric under 
all permutations. Given a system, with space W, our task is as usual 
to find a candidate >̂ to play the role of space of initial vectors for 
sibs of VT-quanta. Assuming $Q exists, each of its elements represents 
the initial act of injecting a "symmetrical arrangement" of W^-quanta. 
Two of these acts determine a third, namely the act of injecting the 
symmetrical arrangement of the union of their constituents, and the 
familiar argument yields an associative unital algebra structure for i£>. 
This time, however, the product may be taken to be commutative, 
since interchanging two given elements in & has the effect merely of 
subjecting the arrangement injected by the act represented by the 
product element to a permutation, to which it is impervious. There­
fore, we may use the same vector to represent the product act regard­
less of the order of the original factors. 

So the problem reduces to finding a commutative unital asso­
ciative algebra S(W) and a linear map 

b:W—>S(W). (2.2.4.1) 

Algebraists have once again supplied a universal solution to 

this problem, at least in the algebraic category (Lang 1993, Knapp 
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1988, p. 70, Mac Lane 1963). That is to say, if f:W^C is a linear 
map of W into any commutative algebra C, then there is a unique 
extension f:S(W)—>C, that is an algebra map rendering commu­
tative the following diagram: 

W b-^S(W) 
/ (2.2.4.2) 

C 

Up to isomorphism S(W) is the symmetric algebra over W: 

S(W) = ®~ ®kW 

=CeW®W©W®..., (2.2.4.3) 

where (D denotes the symmetric product (consisting of totally sym­
metrized tensors). 

We note that an isomorphism analogous to (2.2.3.10) obtains 
also for symmetric algebras: 

S(V®W) = S(V)®S{W) (2.2.4.4) 

that is in this case an isomorphism of algebras. This can be proved by 
showing that S(V)<2)S(W) satisfies the universal property for the 
map 

V®W-^S(V)®S(W) 

given by: 

(v,w) \-^v®\ + l®w. (2.2.4.5) 
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The unique extension to S(V)®S{W) of any linear map of 
V©W into a commutative algebra C is easily concocted and de­
pends on the fact that in the case of C being commutative—and only 
in this case—the algebra product C®C—>C is itself a map of alge­
bras (cf. §3.1.1). A naive attempt to prove (2.2.3.10) to be an algebra 
map—or an analogous result for T( )—by using the analogous uni­
versal property, would fail for this reason. 

2.3 Quantum Set Theory 

To each of the infinite quantum aggregates described above, 
namely sequences (T(W)), sets (E(W)) and sibs (S{W)), is associ­
ated a different statistics: the completed Hilbert space version of 
E(W) is exactly the Fermi-Dirac Fock space over W, that carries a 
representation of the CAR (canonical anticommutation relations), 
and the Hilbert space version of S(W) is exactly the Bose—Einstein 
Fock space, carrying a representation of the CCR (canonical commu­
tation relations). See for example Baez, Segal and Zhou, 1992, 
Thirring 1980 or Emch 1972. As Finkelstein points out (QR, §7.1) 
the statistics associated with sequences, or T(W), even though quan­
tized, is essentially the classical statistics of Maxwell-Boltzmann. No 
actual physical assemblies exhibit these statistics: rather, they exhibit 
one or other of the first mentioned pair. Roughly and colloquially 
speaking, quanta of "matter" obey the statistics of Fermi-Dirac, and 
those of "radiation," that of Bose-Einstein. 

Since the extension of quantum logic to a fully fledged quan­
tum set theory (as exposed in QR, and discussed briefly below) pro­
ceeds on the basis provided by exterior algebra, Finkelstein argues 
persuasively that Fermi-Dirac statistics is actually the fundamental 
one. To quote from one of the most telling and beautiful passages in 
QR (§7.4)—the term extensor refers to an element in an exterior alge­
bra: 

"When we write or speak we produce a se­
quence of symbols, not merely a set of them . . . 
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And whence these classical sequences? For all 
we know, the medium (say paper) supporting these 
sequences of symbols is made of fermions, best de­
scribed by extensors, not tensors. How does 
Fermi-Dirac statistics at the microscopic level give 
rise to Maxwell—Boltzmann at the macroscopic sur­
face? 

It seems that the underlying fermions have 
undergone a phase transition, a condensation (say 
into paper). They have been linked into a persistent 
pattern of fermions that is unaffected by an inter­
change of the basic fermions. Our symbols are not 
fermions themselves but changes in a pattern of 
linkages among equivalent fermions. 

Now one of the media on which we write is 
spacetime, as when we communicate by electro­
magnetic signals. If, so to speak, ordinary tensors 
can condense out of extensors, then spacetime too 
might be a condensation of fermionic constituents 
described by extensors, not tensors . . ." 

(Later, in Chapter 8, we will conflate this idea—namely that the pas­
sage from quantum sets to sequences reflects a "phase change" from 
microcosm to macrocosm—into a general correspondence principle.) 

Returning to the quantum set construction above we note 
again that the exterior algebra product is to be interpreted in this 
context as a sort of (disjoint) union for which Cartan's symbol A is a 
rather unfortunate misnomer. Finkelstein advocates a return to the 
earlier notation of Peano, that Cartan's inverts: v . This usage risks 
confusion with the disjunction of ordinary classical (or modal) logic, 
that we will be using later. However, since the latter operates only 
upon logical formulae, or elements of a Boolean lattice, confusion 
may be avoided. We shall in the meantime follow Finkelstein in 
using this notation for exterior product in quantum logical contexts, 
backsliding later in geometrical ones. Thus equation (2.2.3.4) is now 
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written 

E(W) = Qf \lkW 

=C®W®W\JW®... (2.3.1) 

Our next observation concerns the map t : W—*• E(W). 
This map interprets an element a eW as a (quantum) set i( a) in 
E(W), that is the analog of the classical set {a}. (This explains the 
iota, that was Peano's notation for the "unitizing" operation upon 
sets: lA = {A}.) Since t is linear, the ray determined by a is sent to 
the ray determined by i( a). (In ordinary set theory, the set {x} is the 
extension of the proposition " x = x," or "x is x." Analogously, the 
ray determined by t( a) is a quantum set, now interpretable, as in or­
dinary set theory, as the extension of a certain predicate about the 
predicate corresponding to a: namely, the predicate "being a," 
roughly speaking.) Moreover, as Grassmann noticed, this sort of as­
sociation can be extended so as to apply to all subspaces of W: merely 
choose a basis {ax,.. .,ak} for the given subspace and form the exteri­
or product i ( a , ) v . . . v i ( a t ) . Then doing this with another basis of 
the subspace merely replaces this exterior product by a scalar multiple 
of itself, this scalar being the determinant of the linear transforma­
tion induced by the basis change. Thus subspaces of W correspond 
bijectively with rays of homogeneous elements in E{W), and (finite) 
extensional symmetry is now restored to quantum logic. We note 
also that the ray C appearing as the first summand in E(W) repre­
sents the empty set 0—this follows from our original construction. 
It is the extension of no quantum predicate. 

Any homogeneous element i ( a l ) v . . . v t ( a t ) , say, in E(W) is 
a quantum analog of the (disjoint) union {c^ }u.. .u{aA .} = 
{al,...,ak}, but superpositions are allowed, which of course have no 

classical counterpart. In fact, E(W) contains a version of classical set 
theory—a realization that was not lost on Grassmann and some of 
his followers. 
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(The tangled story of Grassmann's famously puzzling "Aus-
dehnungslehre" (Kannenberg 1995, Barnabei, Brini and Rota 1985) 
and its influence on the likes of Peano and Clifford, as well as its 
non-influence on the nearly parallel work of Hamilton, Boole, etc., is 
well treated in QR. It is surprising but somehow fitting that Grass­
mann's ideas have eventually achieved their apotheosis in Finkel-
stein's dramatic extension of quantum logic, that we only touch on 
here. The deeper significance of Finkelstein's suggestion will emerge 
later, in Chapter 6, as a result of an entirely independent line of argu­
ment.) 

Quantum sets can be made by forming exterior products of 
"unitized" vectors t(a), but not out of the original elements of W. 
Thus we seem to be denied the very ability to form set-like aggregates 
out of the elements of W that we were seeking in the first place. The 
way out of this dilemma, as Finkelstein notes (QR, §10), is to realize 
that we should start from t(W), not W. Or, rather, that we have al­
ready started from t(W). This can be reinforced by noticing that the 
classical "definite descriptor," namely { }, plays exactly the role of 
Dirac's ket | ), so that (noting that | ) is linear) we should identify 
t ( ) with | ). That is, for a e W 

i(a) = \a). (2.3.2) 

In other words, we have been doing first-order set theory right 
from the beginning. All our spaces of initial action vectors may be re­
garded as being first-order extensions (|«)) of zeroth-order quantum 
predicates (a). 

The map t (= | )) together with its interpretation given above 
now opens the door to a higher-order quantum set theory (for a 
given finite dimensional W), in which we may form sets of sets, and 
so on, to any depth of nesting. The idea is to define a structure in 
which it is possible to iterate t. 

We start the construction with E(W) itself, writing 

El=E(W) = C®W®W\/W®... (2.3.3) 
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and recalling that El is finite dimensional. Writing the iota map for 
E as t,: 

t.-.E'-^EiE1), (2.3.4) 

we define E2 so as to avoid repeating 0 , while keeping the old 
quantum sets (El) and adding unitized versions of them {tx{E )): 

E2^®k>\Jk{ix{El)®El) 

= (il(K)®El)®\J2(i1(E
1)®E])®... 

(2.3.5) 

Continuing in this way, we define, for m = 2 ,3, . . . 

Em=a^ \ r ( t m - , ( £ ' " ) © £ ) • (2.3.6) 
\1S fc>0 

Notice that for each m there are two monomorphisms of 
Em~ into Em: namely, the inclusion of Em~ as the second sum-
mand in equation (2.3.6), and the map im_1 followed by the inclu­
sion of its image into Em as the first summand. Moreover, with the 
first mentioned unnamed inclusions running vertically, and the iota 
based maps running horizontally and bearing their corresponding 
names, we have commutation in the following diagram: 

El- •E2 

E1 
•E5 (2.3.7) 
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A finite dimensional Hilbert space structure on W determines 
a Hilbert space structure on each exterior product (via an analog of 
equation (2.2.1.6)) and therefore also on each (finite dimensional) 
Em. It follows that the (infinite dimensional) algebraic direct limit of 
the vertically nested inclusions of vector spaces in the diagram above 
admits a canonical pre-Hilbert space structure, and in this limit we 
obtain a continuous linear map 

limim : WmEm—>MmEm (2.3.8) 

commuting with all the tm. Completing this map, we obtain a map 
of Hilbert spaces that we write as 

I : S E T W — > S E T W . (2.3.9) 

(Such a limit, over a directed set of inclusions of Hilbert spaces, is 
also often referred to as the union of the spaces Em.) 

Clearly, t fulfils the requirement of enabling arbitrary nesting 
of sets within sets and we shall usually write it as | ). In this context 
we shall refer to these kets as quantum sets or qets. We shall return to 
a discussion of the physical significance of the map depicted in equa­
tion (2.3.9) in §7.2. 

This concludes our presentation of a snippet of the enormous­
ly richer structure revealed in QR. We have failed to discuss the 
analogs of other set theoretic operations such as intersection and 
complementation; many other symmetries; Hodge duality; operator, 
lattice, measure and geometric structure; functions; etc. (See QR, 
Chapters 7, 9, 10, 14.) 

We have also failed to pursue the connections with classical 
set theory. It is shown in QR (§7.2.4 and Chapter 14) how this ex­
tended quantum logic contains a version of classical logic as a sort 
classical limit or degeneration. There would appear to be a version of 
classical set theory, or type, for each initial space W. The issue of 
types will be taken up later. 
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In this chapter we touch on the subject of quantum replace­
ments for groups, that, as explained in §3.1.9, are objects more radi­
cally quantized than those currently bearing the name "quantum 
groups." The need to find such replacements, or quantizations, press­
es from various directions. On purely mathematical grounds, once 
we have even a rudimentary theory of quantum sets, a concomitant 
non-objective quantum theory of symmetries should follow, rela-
tivizing the classical theory. 

This need can also be seen on physical grounds. To quote 
Finkelstein (QR, §15.1, p. 447): 

"When we imagine that a microscopic agent acts 
on a quantum microsystem—for example when we 
rotate, boost or translate an electron—it is plausi­
ble to describe the agent, and act itself, by classical 
parameters, which commute and do not change 
during the action. Whenever we inspect closely 
what actually acts on a quantum, however, we al­
ways find another quantum. Then the parameters 
of the agent are also non-commuting quantum 
variables. . . If the actions still form a group at all 
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under such high resolution, it is at best a quantum 
group." 

Roughly speaking, groups enter physics via external (or physi­
cal) parameters, depending, for example, upon classically treated 
spatio-temporal coordinates. These external parameters should them­
selves exhibit quantum behavior at sufficiently high resolution and 
should be treated accordingly. 

A complete program to quantize general (finite) groups and 
semigroups using a paradigm based essentially on a quantized (or at­
omized) notion of categorial morphism, or arrow, is worked out in 
QR, Chapter 15. In the simplified model we discuss here, it turns 
out that quantum replacements are needed only for (finite) cyclic 
groups. Accordingly, we focus our attention on this special case. 

We approach this problem from two directions, one emanat­
ing from a consideration of the quantum set theory sketched in the 
previous chapter (§2.3), the other requiring a certain extrapolation of 
the classical theory of group duality, which is the subject of §3.1. For 
the case of cyclic actions, our rather heuristic treatment complements 
the one given in QR (Chapter 15), to which it is quite close in spirit 
if not in detail. For the cases considered, our final results will be 
identical at the complex infinitesimal level (i.e. qua complex Lie alge­
bras) with those obtained in QR. 

During the course of our treatment the important notion of 
coherence is found to arise fairly spontaneously (§3.2.2), and its 
physical significance is discussed briefly. This topic reappears in sub­
sequent chapters. 

The quantum replacements for the classical actions found 
here will play a fundamental role in what follows. We shall use them 
to specify quantum analogs of certain systems exhibiting symmetries 
with respect to these actions, or to resolve more finely the level of 
quantization of such systems. 
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3.1 The Duality of Groups and Hopf Algebras 

All known classical theories of group duality may be sub­
sumed somewhere or other within the theory of Hopf algebras. Since 
we shall require some of these notions later in various other contexts 
(§8.2) we devote this section to a brief outline of the rudiments of 
the theory, digressing slightly in places. The standard (and by now 
classical) references are Sweedler 1969 and Abe 1977. However, re­
cent interest in a subclass of Hopf algebras, the so-called "quantum 
groups," has led in the last couple of decades to a vast and exponen­
tially exploding literature on this subject. For two excellent examples 
among many, see Klymik and Schmiidgen 1997 and Shnider and 
Sternberg 1993. 

It will be convenient in this section to admit arbitrary base 
fields, so that unadorned ® will, for the duration of this section, 
stand for ®k, where k denotes an arbitrary field. For fc-vector spaces 
A and B, the twist isomorphism T:A®B —>B®A is the isomorphism 
determined by T(a<S>b) = b®a. The identity map on A will be de­
noted by \A or just 1 when the context is clear. References to k will 
also be dropped from time to time. 

First, we use the universal property of the tensor product to 
express the definition of an algebra in terms of maps within the cate­
gory of vector spaces. 

3.1.1 Algebras 

An associative k-algebra is a fc-vector space A together with a 
A>linear map TTA : A<S>A—>A, called the product (or multiplication) 
making the following diagram commute: 

A®A®A »• A® A 

I*®** 

A®A 

TTA 

A 

(3.1.1.1) 
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A unital fc-algebra is an algebra (A,TTA) equipped with a unit 
I which is a linear map I: k —>A making the following diagrams 
commute: 

I®\A \A®I 
k®A * A®A * A®k 

(3.1.1.2) 

A linear map / : A—>B of algebras (A,TTA), (B,TTB) is an 
algebra map if the following diagram commutes: 

M 
A®A B®B 

IT A TTB (3.1.1.3) 

A 
f 

B 

If these algebras have units IA and IB, then in order for / to consti­
tute a unital algebra map it is required in addition to make the fol­
lowing diagram commute: 

(3.1.1.4) 

If (A,TTA,IA), (B,TTB,IB) are unital algebras, so also is their tensor 
product A<S>B with product (TTA®ITB)O(IA(B)T®IB) and unit 
I A®I B. An algebra is said to be commutative if ITA oT = TTA. It is 
important to note that A being commutative is equivalent to 
TTA : A®A—>A itself being a map of algebras (with the above pro­
duct on A® A). 

AA 



Group Duality, Coherence and Cyclic Actions 

3-1.2 Coalgebras 

A (coassociative) k-coalgebra is a A;-vector space A equipped 
with a fc-linear map ifjA : A —>A®A called the coproduct (or ^multi­
plication} making commutative the following diagram: 

A 

<I>A 

1 

ASA 
h*»l>A 

•ASA 

ASASA 

(3.1.2.1) 

A counit is a linear map cA : A—>k making commutative the 
diagram(s) dual to diagram (3.1.1.2)—that is, the analogous diagram 
with arrows reversed: 

k®A 
cA*\ h*cA A®k 

(3.1.2.2) 

Maps, tensor products, etc., of coalgebras are similarly defined 
dually to those already described for algebras. Namely, a linear map 
/ : A—>B of coalgebras is a coalgebra map if the following diagram 
commutes: 

A 
f 

B 

*I>A 

ASA 
M 

4>B 

•BSB 

(3.1.2.3) 
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If these coalgebras have counits cA and CB, then / is a counital map 
if the following diagram commutes: 

(3.1.2.4) 

If (A,tffA,cA), (B,ifsB,cB) are counital coalgebras so also is their ten­
sor product with coproduct (1^®T®1B) o(ipA®ipB) and counit 
CA® CB- A- coalgebra is said to be cocommutative if if/A° T= I/JB. 

If (A, iff) is a coalgebra, the dual space A* may be given an al­
gebra structure by taking the composition: 

A*®A* ->(A®AY 4>* *A* (3.1.2.5) 

where the first map denotes the act of taking tensor products of lin­
ear functionals. (This product on A* is often called "convolution" for 
reasons explained below.) A similar construction cannot be used to 
equip the dual space of an algebra with a coalgebra structure because 
the first map is not in general (i.e. when the algebra is not finite di­
mensional) an isomorphism. Nevertheless, a functorial construction 
is available that assigns to each algebra a corresponding coalgebra, the 
latter reducing to the dual of equation (3.1.2.5) in case the algebra is 
finite dimensional. 

An important example is afforded by the algebra EndW, 
dim W = n, say. Choose a basis for EndlV consisting of matrices of 
the form vrs, whose (i, j) entry is 

( O i j s S r i $ y » i,j = l,...,n. (3.1.2.6) 

That is, vrs is the matrix with 1 in the (r,s) position and 0 else­
where. Then, upon identifying this basis with its dual in (EndWO*, 
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the coalgebra structure induced upon EndW is given by 

i(>(vj = ±vrk®vks. (3.1.2.7) 
4=1 

(For the elementary proof of an equivalent assertion see Selesnick 
1973a, Proposition 4.) 

We note the interesting fact that the ordinary trace acts as a 
counit for this coalgebra structure. 

It follows from general algebra-coalgebra duality theory that 
(EndPF, ijj) is a simple coalgebra: that is, one having no proper sub-
coalgebras. 

3.1.3 Bialgebras and Hopf Algebras 

A bialgebra is a vector space that carries both an algebra struc­
ture and a coalgebra structure in such a way that either structure re­
spects the other: it then transpires that this respect is mutual. 

In detail, a bialgebra is a vector space such that: 
(i) (A, IT, I) is a (unital) algebra, 
(ii) (A, ifj, c) is a (counital) coalgebra, 
(iii) c : A—>k is a map of algebras, 
(iv) \\): A —> A® A is a map of algebras. 

A glance at the relevant diagrams reveals that (iii) and (iv) can 
together be replaced by: 

(iii)' I :k —> A is a map of coalgebras, 
(iv)' 7T : A®A—*-A is a map coalgebras. 

If TT (respectively if/) is commutative (respectively cocommu-
tative) the bialgebra is said to be commutative (respectively cocom-
mutative). A bialgebra map is an algebra map that is simultaneously a 
coalgebra map. 

If A is a coalgebra and B is an algebra then the vector space 
Wom{A,B) of linear maps from A to B has the structure of an alge­
bra with product given by "convolution": 
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f*g = irBo(f&g)o$A. (3.1.3.1) 

(This coincides with (3.1.2.5) when B = k.) The unit element for 
this algebra is IB ° cA. If A is a bialgebra we may use its coalgebra 
structure in the first position and its algebra structure in the second 
to give EndA = Hom(A, A) an algebra structure. A (necessarily 
unique) two-sided inverse for 1^ in this algebra, if it exists, is called 
the antipode of the bialgebra A 

A Hopf algebra is a bialgebra equipped with an antipode (de­
noted f]A.A—*~A). A map of Hopf algebras is a map of the underly­
ing bialgebras that commutes with the antipodes. It can be shown 
that, among other things, the antipode is an anti-isomorphism for 
the algebra structure: r\A(ab) = 7)A{b)r)A(a). 

Now suppose that B is a commutative algebra and consider 
the set of algebra maps Hom^ (A,B), with A a Hopf algebra. This 
set can be shown to be a group under convolution, the inverse of any 
algebra map / : A—>B being f°f)A, an algebra map since B is 
commutative. 

We shall describe some pertinent examples below. 

3.1.4 The Additive Affine Group 

The ^-polynomial algebra k[x] is a commutative cocommuta-
tive Hopf algebra with its usual product and unit (/(l) = 1), with co-
product determined by 

if/(x) = l®x + x®\, (3.1.4.1) 

counit by 

c(x) = 0, (3.1.4.2) 

and antipode by 
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7]{x) = -x. (3.1.4.3) 

When k is algebraically closed the group Hom,(k[x],k) may 
be identified with the additive group of k. This example generalizes 
in the obvious way to any finite number of variables (Abe 1977, 
p. 172). 

3.1.5 Finite Group Algebras 

Let F denote a finite group and consider k , the set of all 
functions from F to k. This is a finite dimensional commutative alge­
bra with pointwise (or coordinatewise) operations. It becomes a Hopf 
algebra with 

iHf)(x,y) = f(xy) (3.1.5.1) 

for / ekF and x,y e F and noting that kF<8)kF = kFxF. 
The counit is given by 

c(/) = /(e), (3.1.5.2) 

where e is the identity of F, and the antipode by 

V(f)(x) = f(x-X). (3.1.5.3) 

In this case, since k is finite dimensional, we have—upon 
choosing as basis the characteristic functions of the elements of F, 
and associating this basis with its dual—an isomorphism 
"convolution" (equation (3.1.2.5)) induced on k by i/s* is exactly 
the usual convolution. Thus, k with this induced product is exactly 
the usual group algebra k[F] as this is usually defined. The (cocom-
mutative) coproduct on k[F] induced by the (commutative) point-
wise multiplication of functions in kF is just the "diagonal" copro-
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duct, given, in the usual representation of a basis in k[F] by ele­
ments of F, by x l-» x®x, x e F. The counit is given by x l—» 1 and 
the antipode by x I—> x_1. 

As a Hopf algebra k[F] is thus finite dimensional, cocommu-
tative, and in case k has characteristic 0 and is algebraically closed, 
cosemisimple: meaning that as a coalgebra it is a direct sum of simple 
subcoalgebras. (This is the dual form of a special case of Maschke's 
theorem.) Conversely, any such Hopf algebra (namely, a finite di­
mensional, cocommutative and cosemisimple one) is the group alge­
bra of some finite group. Moreover, this association extends to an 
equivalence of the relevant categories and constitutes a duality theory 
for finite groups (Abe 1977, p. 159). 

3-1.6 Topological Hopf and Coalgebras 

In this and the subsequent subsections k = C. 
For a compact topological group (or semigroup) G, the pro­

duct GxG-^G induces a C*-algebra map C(G)-^C(GxG). 
On recalling that there exists a canonical "cross-norm" on the alge­
braic tensor product of a pair of Banach spaces, namely the smallest, 
or e-norm, such that C{G xG) = C(G)%eC{G), where as usual the 
hat denotes completion, it becomes apparent that the notions of 
Hopf algebra, coalgebra, and, indeed, algebra, may be formulated in 
categories of Banach (or more general) spaces, with the ordinary ten­
sor product replaced with a (completed) topological one. For in­
stance, the above example may be refined to yield the classical Tan-
naka—Krein Duality Theorem, part of which is described in the next 
subsection (Sankaran and Selesnick 1971). The topological version of 
the dual algebra product (diagram (3.1.2.5)) gives in this case exactly 
the convolution of finite Borel measures on G. We note also that for 
G a compact group, the group product induces a Q^.-coalgebra 
structure on L (G), where the TT refers to the largest cross-norm: 
that is, L (G) is a Banach coalgebra. A complete theory of Banach 
coalgebras can be found in Wichmann 1975. (For background on 
topological tensor products of spaces and algebras see the references 
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given in §2.2.) 
At the time of writing, the last word on global duality theories 

of general locally compact groups via topological Hopf algebras 
seems to be contained in Enock and Schwartz 1992. Despite close 
similarities, this topic seems somewhat peripheral to the main thrust 
of the subject known as "quantum groups," that in a sense represents 
a local version of it: cf. §3.1.9 below. For a pioneering work on Hopf 
and coalgebras in the category of C*-algebras with applications to 
compact semigroups—a subject of much greater difficulty than the 
group case—we refer to Hofmann 1970, and note that this neglected 
masterpiece appeared nearly two decades before the advent of quan­
tum groups. Other kinds of applications of Hopf and bialgebras in 
analysis appear in Schurmann 1993 and Selesnick 1973b. 

3-1.7 The Algebra of Representative Functions on a Compact Group 

For a compact topological group G we denote by R{G) the 
subspace of the algebra C(G) spanned by matrix entries of continu­
ous irreducible unitary representations of G, each such entry being a 
continuous function on G. This space can be shown to be a *-
subalgebra of C(G). It is, moreover, a Hopf algebra with 

<Kf)(9l,92) = f(9l92) (3-1.7.1) 

for / G R(G) and gx, g2 e G , exactly as in the last pair of examples. 
We note that R(GxG) = R(G)®R(G) and that if/ has an explicit 
form when / is a matrix entry. That is, if 

ulj)(g) = ({l\U
M(9MJ), (3.1-7.2) 

where {£J is an orthonormal basis in the space carrying the irre­
ducible representation U , then 
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<A(<)) = Z < ® < ) (3.1-7.3) 
fc=i 

where n is the dimension of the representation and the index er 
ranges over the set G of equivalence classes of irreducible unitary 
representations of G. The counit and antipode are defined as in 
§3.1.5. It is worth noting here that R(G) is finitely generated as an 
algebra if and only if G is a Lie group. (Cf. Brocker and torn Dieck 
1985, Proposition 4.3, and the remark following it.) 

The group G can be recovered from R(G) both topologically 
and algebraically as the set of involution preserving algebra maps 
from R(G) to C: each such map is given by the evaluation of func­
tions in R(G) at unique elements of G. This assertion is one version 
of the Tannaka—Krein Duality Theorem, which may be reduced to 
the compact case of the Pontryagin Duality Theorem when G is 
abelian. (See Brocker and torn Dieck 1985 for the Lie case, and the 
references cited below for the general case.) 

The structure of R(G), both as an ordinary algebra and as a 
Hopf algebra, is well understood. See Brocker and torn Dieck 1985, 
Selesnick 1973a, Hewitt and Ross 1970, Hofmann 1967 or 
Hochschild 1965. This is not to say, however, that the relation be­
tween the equivalent objects G and R(G) is entirely understood, 
even in the most tractable (non-discrete) case in which G is Lie, 
which, as noted, is equivalent to R(G) being finitely generated as an 
algebra. For example, as a coalgebra, 

R(G) = (BaedH*\ (3.1.7.4) 

where H is a simple subcoalgebra isomorphic to the dual of the al­
gebra M(da,C) of complex d^xd^ matrices: compare equations 
(3.1.7.3) and (3.1.2.7). Therefore, the algebra structure induced on 
the algebraic dual is 
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On the other hand, since R(G) is dense in the (Hopf) C*-algebra 
C{G) by the theorem of Peter-Weyl, it is not hard to show that as 
algebras: 

M(G) = R(G)' (3.1.7.6) 

where M(G) denotes the convolution algebra of finite complex 
Borel measures on G, and the prime denotes the topological dual 
space of bounded linear functionals on R(G) when the latter is 
equipped with the uniform norm, that inherits an algebra structure 
from R(G) . From the inclusion of R(G)' in R(G) we obtain 
from the last two equations an algebra monomorphism 

M(G) — n ^ M ^ . C ) . (3.1.7.7) 

Thus, each measure in M(G) has a unique "decomposition" as a 
matrix-valued function on G, that is a section of the bundle over the 
(discrete) "base space" G, with non-discrete fibre M(d0.,C). This 
map turns out to be the noncommutative analog of the Fourier trans­
form for measures, to which it reduces in case G is abelian. See He­
witt and Ross 1970—the Fourier transform is not defined in this way 
in that work, however. Even though this transform allows a refined 
analysis of elements of M(G) (and some of its ideal theory) to be de­
rived, the extremely complicated algebraic structure of M(G) seems 
still to defy complete capture, even in simple cases, as does a charac­
terization of its image under the map in equation (3.1.7.7). 

If G is discrete, hence finite, then the Hopf algebra 
R(G) = R{G)' reduces to the group algebra C[G] considered in 
§3.1.5. 
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3.1.8 Tensor, Symmetric and Exterior Algebras 

For a finite dimensional vector space W, the algebras T(W) 
and S(W) are (cocommutative) Hopf algebras with definitions anal­
ogous to those given in §3.1.4, that example being a special case of 
both of these. 

For the tensor case, we note that the linear map 

W^>T(W)®T(W) 

given by: 

w H l ® w + w0l (3.1.8.1) 

may be extended by the universal property to an algebra map 

T(W)-+T(W)®T(W) 

that is easily seen to be coassociative, with counit as given. The an-
tipode rjT, being an algebra anti-isomorphism, is given, for W{GW, 
by 

rfT(wl<S...®wn) = (-l)nwn®...®wl (3.1.8.2) 

A similar argument may be made in the case of S(W). 
For the exterior algebra case we must proceed with caution. It 

was noted in §2.2.3 that the vector space isomorphism equation 
(2.2.3.10), which we shall now label, namely, 

Q:E(V®W) = E(V)®E(W), (3.1.8.3) 

does not preserve the algebra structure, where the ordinary tensor 
product multiplication, namely that given by (cf. §3.1.1) 

54 



Group Duality, Coherence and Cyclic Actions 

(a®b)(c®d) = ac®bd, (3.1.8.4) 

is understood on the right-hand side of equation (3.1.8.3). This 
right-hand side admits, however, an algebra product for which O 
does preserve the algebra structure. This is the graded product, given 
by 

(a®b)(c®d)=(-l)dcs{b)des{c)(ac®bd), (3.1.8.5) 

where the degree deg(/) of a homogeneous element / is the power of 
the exterior product it belongs to. 

To see this, note that equation (2.2.3.9) applied with p = l 
gives the effect of the isomorphism O on the degree 1 elements 
V®W=(k®W)®(V®k) of E(V®W): namely, 

(v,w)\-^\®w+v®\. (3.1.8.6) 

With the algebra product on E(V)(£>E(W) being given as in equa­
tion (3.1.8.5) we have 

(l®w+v®\)2 - (v®l)(l®w)+(l®w)(v®\) 

= (-l)°(v ®w)+(-\)l(v®w) 

= 0. (3.1.8.7) 

Thus, by the universal property of the exterior algebra, there 
is a unique extension of the map of V(BW into E(V)(&E(W) given 
by (3.1.8.6) to E{V@W) that is an algebra map (for the graded pro­
duct). One then observes (after a little work) that this extension coin­
cides with O, proving the assertion. 

Exterior algebras have a coalgebra structure (similar to that of 
tensor and symmetric algebras), that is preserved by O, with the or-
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dinary tensor coproduct on the right-hand side of equation (3.1.8.3) 
(cf. §3.1.2). To see this, we first define the coproduct on E(V). 
Note first that any linear map f:V—*-W composed with 
LW:W—*E(W) (diagram (2.2.3.3))yields a map Lwof:V-^E(W). 
By the universal property this extends to a unique algebra map 
E(V)—>E(W) rendering the obvious diagram commutative. De­
noting this map by E(f), we obtain a covariant functor E( ) from 
the category of vector spaces (over the relevant field) to a certain cate­
gory of algebras. (Similar considerations apply in the cases of T( ) 
and S( ) of course.) 

It is easily verified that for any appropriate / , g: 

E(f)®E(g)°® = &®<&°E(f®g) (3.1.8.8) 

for the appropriate Os. (The reader is encouraged to draw the dia­
gram.) 

For a vector space V the diagonal map 

AV:V—>V®V (3.1.8.9) 

is defined by 

Av(v) = (v,v). (3.1.8.10) 

It induces an algebra map 

E{AV):E{V)^E{V@V) = E{V)®E(V) (3.1.8.11) 

(with the graded product on E(V)®E(V)) whose coassociativity 
follows from the corresponding diagram for the ©-coassociativity of 
Av in the category of vector spaces, and the properties of E( ). 
Consequently, with this map, denoted ij/v, and counit induced by 
the map V—*• {0}, E(V) becomes a cocommutative coalgebra. Note 
that for veV, 
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if/v(v) = l®v+v®\. (3.1.8.12) 

That O is a coalgebra morphism for this coproduct now fol­
lows from the identification: 

Amw=(l®t®\)(Av®Aw), (3.1.8.13) 

where t:V®W—^W©!^ interchanges summands, and the proper­
ties of E( ). 

One may now observe that the algebra product on E(V) is 
actually induced by the addition map y © y — > V , with unit in­
duced by the map {0}—>V. Thus E(V) satisfies the definition of a 
Hopf algebra, with antipode induced by v\->— v, if the algebra struc­
ture on tensor products of (graded) algebras is taken in the graded 
sense of equation (3.1.8.5). That is to say, E(V) is a graded Hopf al­
gebra. 

This Hopf algebra has an unusual property: it is self-dual. 
That is to say, the linear duals of the product and unit maps for the 
algebra structure on E(V) are precisely the coproduct and counit, re­
spectively, for the coalgebra structure on E(V*)=E(V)*, while the 
linear duals of the coproduct and counit for the coalgebra structure 
on E(V) are precisely the product and unit for the algebra structure 
on E(V*) = E(V)*. This follows from the observation that the linear 
dual of Av is precisely the addition map V*(BV*—>V* and that 
the linear dual of the addition map V©\^—>V is precisely the diag­
onal map Av,. Similar remarks apply to the other structural maps 
defining units, counits, etc. 

3.1.9 The Universal Enveloping Algebra of a Lie Algebra 

Suppose A is an (associative) unital algebra over C. Then A 
becomes a Lie algebra with respect to the operation of taking the 
commutator of a pair of elements. That is, for a,be A, 
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[a,b] = ab-ba (3.1.9.1) 

gives A the structure of a (complex) Lie algebra. 
Now suppose that L is a Lie algebra, always assumed complex 

until further notice. Then there exists a unital algebra U(L) and a 
map i : L—>U(L) of Lie algebras (with the commutator Lie struc­
ture on U{L)) such that, if X:L—>A is a map of Lie algebras (with 
the commutator Lie structure on A always assumed), there exists a 
unique map \:U(L)—*• A of unital algebras making commutative 
the diagram: 

L—%-^U{L) 

A \ / X (3-1.9.2) 

V 
Clearly, U{L) is uniquely determined (up to algebra isomorphism) 
by this universal property and is called the universal enveloping alge­
bra of L. Its usefulness resides in the fact that representations of the 
Lie algebra L correspond one-to-one with representations of the asso­
ciative algebra U(L). (Knapp 1988, Abe 1977.) 

A deep theorem of Poincare, Birkhoff and Witt (PBW) asserts 
that i is injective and that its image generates U{L) as an algebra. 

Note that for Lie algebra maps such as A, if [a,b]=0, then 
A(a) commutes with A(6). 

In fact U(L) is a Hopf algebra. This is deducible entirely 
from its universal property. One notes first that for two Lie algebras 
L and M , with componentwise Lie product, the map 

i:L®M ^U(L)®U(M) 

defined by 

i(l,m) = iL(l)®l + \®iM(m), (3.1.9.3) 
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(where the subscripted V s are self explanatory) determines an alge­
bra isomorphism: 

U{L®M)=U{L)®U{M). (3.1.9.4) 

To show this, we observe first that the map (3.1.9.3) is a map 
of Lie algebras. Now let F:L(BM—>A be any map of Lie algebras 
and define Lie algebra maps FL:L—>A, FM:M—>A, respectively 
by FL(1)=F({1,0)), and FM(m)=F({0,m)) • Then define 

F:U{L)®U{M)^A 

by 

F = irAo(FLa>FM) (3.1.9.5) 

where TTA denotes the product map A®A—>A of A. It is easily 
checked that F °i = F. To show that F is an algebra map, despite 
the fact that A need not in general be commutative, it suffices to 
show that it acts multiplicatively upon generators of U{L)®U{M), 
which are given by the PBW theorem applied to each factor. That F 
is indeed multiplicative upon generators follows, since this condition 
reduces to the requirement that elements of the form F(l,0) com­
mute (in A) with elements of the form F(0,m). This they do, since 
[(Z,0),(0,m)] = 0. 

A similar application of the PBW theorem serves to establish 
the relevant uniqueness of F. In this connection note that 
iL(l)®iM(m)=i((l,0))i((0,m)). 

That the map (3.1.9.3) induces an algebra isomorphism 
(3.1.9.4) now follows from the uniqueness up to isomorphy of the 
universal object. 

Noting, again from the universal property, that 

U(0) = C (3.1.9.6) 
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and that U{ ) is a covariant functor, U(L) acquires a (cocommuta-
tive) Hopf algebra structure with coproduct induced from the diago­
nal L—>L@L, etc., as in §3.1.8. The antipode is the "principal 
anti-isomorphism" induced by the map L —>Lop given by l\-> —I. 
(Sweedler 1969, Abe 1977.) In general the antipode is given by the 
analog of equation (3.1.8.2). 

A beautiful characterization of these Hopf algebras is attribut­
ed by Sweedler to Kostant (Sweedler 1969, Chapter XIII). Namely, a 
Hopf algebra is the universal enveloping Hopf algebra of a Lie alge­
bra if and only if it is cocommutative and contains a unique simple 
subcoalgebra. (Cf. Abe 1977, §5.2, where the result is unattributed.) 

If the Lie algebra in question is the Lie algebra g of a Lie 
group G, then, unsurprisingly, U(Q) may be related to entities tied 
to G. For example, very roughly speaking, let H denote the local al­
gebra of germs of analytic functions at the identity of an analytic 
group G. Then H inherits a sufficiently Hopf-like structure from the 
global group operations of G that its continuous linear dual in a cer­
tain topology carries a legitimate cocommutative Hopf algebra struc­
ture. This dual is essentially identifiable with £/(g). (See Serre 1965 
for the precise context.) That is, U(Q) may be realized as a sort of lo­
calized version of the (measure-like) Hopf algebra dual to a Hopf al­
gebra of functions on the group. 

Now these enveloping Hopf algebras admit a deformation 
theory, qua Hopf algebras, yielding a richer structure than the defor­
mation theory of Lie groups, which are rather rigid objects: for in­
stance, one obtains noncocommutative coalgebras. These deformed 
Hopf algebras have acquired the name "quantum groups," an appel­
lation they seem to share with other similar objects. They are not en­
tirely quantum entities, however, since the compatibility between the 
coalgebra and the algebra structures (cf. §3.1.3) is still assumed. This 
bialgebra structure is a vestige of the compatibility between the alge­
braic and topological (or differentiable) structures in the original un­
derlying classical object, and need not be present in a complete 
"quantization." 
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3.2 Quantum Versions of Cyclic Groups 

As noted above, we shall approach this topic from opposite 
(and independent) directions, using analogies derived respectively 
from the q-set theory of Chapter 2 to go in the direction: (certain) q-
set symmetries —>• (classical) cyclic actions (§3.2.1), and from a 
consideration of Hopf-like structures, to go in the opposite direction 
(§3.2.3). 

3.2.1 Quantum Permutations: from §>\{n, C) to 7Ln 

First, some terminology. Let A denote an associative algebra 
and M an A-bimodule. A derivation d : A —*• M is a linear map sat­
isfying: 

d(ab)-da.b + a.db, (3.2.1.1) 

where the dot denotes the action of A upon the bimodule M. (We 
shall revisit this notion in a little more detail in §9.2.) 

Now let W denote a vector space of dimension n. Then the 
following result is not hard to prove. Any / e EndlV may be extend­
ed uniquely to a derivation df : E(W)—>E{W) that is of degree 0: 
i.e. df<ykW)cMkW, k = 0,...,n. (See Chevalley 1956, Chapter V, 
§11.) Thus, in particular, for a homogeneous element of the form 
wlv w2vw5...,we have 

df(w{vw2vwi...) = f(wl)vw2vwi... +wlv f(w2)vw5... + ... 

(3.2.1.2) 

Since \JnW is one dimensional, df reduces on it to multiplication by 
a constant. Choosing a basis in W and expressing / as a matrix rela­
tive to it, this constant is easily seen to be t r / . (In Chevalley 1956, 
Chapter V, §12, this is taken as the definition of the trace.) 

61 



Quanta, Logic and Spacetime 

If W is the initial space for a quantum system, then this obser­
vation may be given the following q-set interpretation. Each act 
/ € EndPF of selection by the experimenter among basic initial qets 
induces an "infinitesimal increment" or "small fluctuation" d} upon 
the entire system of qets E(W)—a typically quantum phenomenon, 
or "effect." (Classical selective acts upon classical sets do not necessar­
ily induce changes upon the whole Boolean algebra of subsets.) In 
particular, the initial value of the small fluctuation induced by a se­
lective act / upon the "whole" qet \lnW, namely the eigenvalue of 
df : \lnW—>\lnW, is precisely t r / . Consequently, those /s for 
which t r / = 0 correspond to selective acts with respect to which the 
whole qet V"W remains in a certain sense rigid: its initial "configu­
ration" remains impervious to the small fluctuations induced by / . 

What is the classical set-theoretic correspondent of this phe­
nomenon? The trace free /s represent selective acts that rigidly main­
tain the structure of the qet V"W. This latter qet corresponds to the 
whole classical set S, say, of n elements, and the "selective acts" 
maintaining the structure of S are just the set isomorphisms, or per­
mutations, of S. So the transformations of S corresponding to the 
trace free /s are the permutations of S with respect to which S re­
mains, in a sense, rigid: the whole set should be permuted by them as 
a unit. 

Now it is an elementary result that any permutation may be 
factored into a product of cyclic permutations, acting respectively 
upon disjoint subsets of the given set S. Thus the subcycles of a given 
permutation effect a partition of S into disjoint subsets, and each of 
these subsets is mapped upon itself by a cyclic action. Therefore, a 
non-trivial permutation maps the whole set upon itself as a unit pre­
cisely when the number of its disjoint subcycles is as small as possi­
ble—namely, when there is only one: S itself. Then the whole set is 
acted upon cyclically by the permutation. So the permutations we are 
seeking as classical analogs of trace free endomorphisms of W are pre­
cisely the cyclic permutations on n objects. In other words, the cyclic 
group Zn may be regarded as the classical analog of the space 
§I(n,C) of trace free endomorphisms of an n dimensional vector 

62 



Group Duality, Coherence and Cyclic Actions 

space, that happens also to be a Lie algebra. 

3.2.2 Condensation and Coherence 

There is a very general relationship between self-derivations 
and automorphisms of an algebra. One way of viewing this relation­
ship is to regard such a derivation as the "infinitesimal generator" of a 
one-parameter family of automorphisms. For an algebra A, such a 
one-parameter family may be expressed as the formal series 

®t=lA + t<pl+t2(p2+... (3.2.2.1) 

Then the condition for <&t to be an algebra map forces (pl to be a 
derivation. Moreover, given a derivation, D say, $ , s e is a one-
parameter family of automorphisms with <px= D. 

Alternatively, in case A is finite dimensional, one may note 
that the set DerA of derivations of A into itself is a Lie subalgebra of 
the Lie algebra EndA. This Lie algebra is in fact the Lie algebra of a 
group, namely the group of automorphisms of A, the automorphism 
corresponding to a derivation D being e (cf. Jacobson 1962). 

Thus, if D is a derivation the automorphism e is, in a sense, 
its globalization. 

Specializing to the case at hand, in which A = E(W), we 
note that for / 6 EndW, 

e
d> (0 V 0) = e' (d)vedf ((f)), (3.2.2.2) 

since e ' is an automorphism. 
If the unique derivation df on E(W) that extends 

/ G Endiy is interpreted, as above, as a small quantum increment 
induced on each element of E(W), presumably e ' should be inter­
preted as a corresponding large scale increment induced on qets, that 
distributes over disjoint union according to equation (3.2.2.2). This 
accords with intuition, since a large scale increment, or enlargement, 
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of a disjoint union of sets should be the union of the individually en­
larged sets. 

Thus, we conclude that operators of the form e ' are the ap­
propriate ones for macroscopic experimenters to implement the quan­
tum permutational effects of selective acts upon the whole qet algebra 
E(W). In particular, when this operator is restricted to W itself, we 
obtain e . In a sense the latter operator represents a coarsening of the 
operator / : if microscopic experimenters use / to implement a quan­
tum permutation, then macroscopic experimenters are bound to use 
e ', that reduces to e on W. (Such quantum permutations will be 
interpreted later as "allowable" changes of the experimenter's frame.) 

Thus, in the case at hand, namely / € §l(n,C), we obtain as 
the appropriate family of operators implementing the quantum 
analog of Zn actions for macroscopic experimenters, the (Lie) group 
SL(n,C). (The group structure follows from the Lie algebra struc­
ture §l(n,C) happens to possess.) 

The appearance of the exponential of an operator suggests the 
physical process of coherent state formation in many-particle sys­
tems. Often, in such systems, long-range order may be established. 
Typically, the long-range order parameter is an expectation value of 
some fundamental field operator: this occurs, for example, in theories 
of phonon interaction, ferromagnetism, superfluidity and supercon­
ductivity. The superconducting transition, for instance, may be re­
garded as the establishment of a macroscopic expectation value for 
the Cooper pair field operator. ( The BCS theory of superconduction 
will be described briefly in §12.3.) 

These ordered states, which are often superpositions of many-
particle condensates (and therefore do not contain a definite number 
of particles), do indeed exhibit macroscopic behaviors, thereby justi­
fying the use of the otherwise objectionable word "state." This phe­
nomenon is exemplified most simply by taking as "fundamental 
field" operators the annihilation operators ak in the Fock space of a 
Bose system of quanta of n kinds. Then we seek states 17 that maxi­
mize each "long-range order parameter" {T]\ak\ri). These are precisely 
the vectors 17 satisfying 
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akr] = zkr) (3.2.2.3) 

for some complex zk, which are called coherent states. They may be 
given, up to normalization, by 

T7 = [ c x p ( X ^ ) ] | 0 > (3.2.2.4) 
k 

where |0) denotes the Fock vacuum. One of their notable properties 
is that they are the states "closest" to being classical. (There are sever­
al different ways of expressing these vectors: see QR, §8.3, Feng, 
Gilmore and Zhang 1990 and Blaizot and Ripka 1986.) Note the 
vectorlike character of the exponent. 

It is a presumed transition to this sort of long range coher­
ence, giving rise to macroscopic vectorlike states, that Finkelstein 
refers to in the passage quoted in §2.3, and it is the specific example 
of superconduction that inspired the original construction of a quan­
tum net to be given in §7.2. The precise dynamical nature of the 
transition to such a state remains hidden from us at the level of our 
formulation. However, we shall find other, geometrical and logical 
routes to this paradigm in Chapters 7 and 8. 

Returning to the group context, it now appears that at least 
certain Lie group actions may be thought to cohere macroscopically, 
in a similar fashion, out of infinitesimal "creation" operators, namely 
their Lie algebra generators. 

3.2.3 Quantizing Cycles: from Zn to §I(n,C) 

In this subsection we shall attempt to produce an argument 
going in the direction opposite to the one taken in §3.2.1. Namely, 
starting from a cyclic group of order n, we shall attempt to produce a 
"quantum Lie algebra" analog of it. 

We note first that a Lie algebra is recoverable from the Hopf 
structure of its universal enveloping algebra as the (Lie algebra) of 
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primitive elements: namely, those elements satisfying: 

^(Z) = 1®Z + Z®1. (3.2.3.1) 

After attempting to find a quantum analog of a universal enveloping 
algebra, this criterion cannot be expected to be useful for extracting a 
corresponding Lie algebra analog, since a quantum coproduct can no 
longer be expected to reflect underlying (local) topological or differ-
entiable structure, that does not exist in the quantum case. Instead, 
we note that a Lie algebra L is contained in the kernel of the counit 
of its universal enveloping algebra. This follows from the last equa­
tion, but may also be seen directly from the following diagram: 

L - U(L) 
(3.2.3.2) 

o -t/(o)=c 
% 

in which the right-most vertical map is the counit and the horizontal 
maps are one-to-one, by the Poincare-Birkhoff-Witt theorem. So, 
once we have concocted a quantum version of the enveloping Hopf 
algebra, we should look at what Lie subalgebras the kernel of the 
counit may contain. Since we are aiming to capture all available 
infinitesimal symmetries of the quantum system, we should presum­
ably choose the largest of these Lie subalgebras. 

Returning to a cyclic group G of order n, our first task is to 
find an analog of the local structure "around" a typical element, that 
is to play the role of local (Hopf) algebra of germs of analytic func­
tions at a point (available in the analytic Lie case): then we must 
quantize it. In order to specify a "local" structure we must first iden­
tify a global structure. To this end, we note that any finite group of 
order n may be embedded as a subgroup of the group of permuta­
tions, denoted Sn, on its underlying set, simply by allowing each ele­
ment to act by multiplication. Writing G = {g,g ,...,gn], the per­
mutation induced in this way by the generator g is, of course, a cycle, 
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and may be decomposed further in Sn: namely, as a product 
rnrn_, . . .Tj, where Tk is the transposition that interchanges g with 
gk, while leaving all the other elements fixed. Thus the set 
T = {Tj,...,rn} may be thought to parametrize the cyclic action g, 
and therefore every other element of G within Sn. Note also that 
Tk = T~k in Sn for each k: that is, inversion in Sn, when restricted to 
T, coincides with the identity function on T. 

If these Tk are thought of as local parameters of G, then the 
commutative C*-algebra C(T) may be thought to represent a re­
placement for the algebra of functions in a "neighborhood" of a 
point. Its dual should then provide an analog of the universal en­
veloping algebra. But we have a candidate for the quantum version of 
the algebra C(T), namely EndW with its usual multiplication, where 
W is of dimension n (and may be thought of as L (T) taken relative 
to counting measure on T) . Therefore we have a candidate for the 
coalgebra structure of the quantum enveloping algebra, namely, 
EndW with the dual noncocommutative coproduct \\i given by equa­
tion (3.1.2.7), a counit for which is just the trace, whose kernel is 
§((n,C), itself a Lie algebra. 

Thus, we would be led again to £>l(n,C) as an infinitesimal 
quantum replacement for Z n , ifEndWis found to possess an analog 
of the algebra product reflecting the algebraic structure of the under­
lying "local" set T, in analogy with the enveloping algebra of the Lie 
algebra of a Lie group, that acquires its product structure from the 
local algebraic structure of the underlying group. This (unital) pro­
duct, TT say, on EndW, should capture the algebraic property of T 
mentioned earlier—namely that the identity map on T coincides 
with inversion (in Sn) restricted to T—since this condition may be 
expressed in non-objective terms, and therefore should survive quan­
tization. In fact, the condition is that the identity function on the al­
gebra should act as an antipode: 

7r°(l®l)o(/, = / o t r , (3.2.3.3) 

where I denotes the unit for 77 (cf. equation (3.1.3.1)). As noted 
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(§3.1.8), the product TT need not be compatible with the coproduct 
ip in the sense of bialgebras since this compatibility in the classical 
case is a vestige of an underlying topological object, that we must re­
linquish upon quantization. 

Now, Finkelstein observed that the opposite algebra structure 
on EndW, namely ir(a®b) = ba, satisfies this requirement. For, with 
v{- a matrix basis as in equation (3.1.2.7), we have: 

(TT O (1®1) O (/,)(<;..) = (TT O $)(Vij) 

= ir(£vikQvkj) 

k 

k 

k 

= t r(^.) /( l ) 

= ( /o t r ) ( i ; y ) . (3.2.3.4) 

Thus, EndW equipped with tft is a noncocommutative couni-
tal simple coalgebra (having no proper subcoalgebras), and equipped 
with TT it is a simple noncommutative unital algebra (having no 
proper two-sided ideals). These two structures are not compatible in 
the sense of bialgebras, but meet in equation (3.2.3.3). It is as if some 
classical proto-Hopf algebra has bifurcated or decoupled into separate 
algebra and coalgebra structures upon quantization, while the coalge­
bra and algebra structures have each localized, or become irreducible, 
in their respective categories. This seems fitting behavior for a quan­
tum grouplike entity. 

We note that a product ~2yn X 2„, say, of cyclic groups, may be 
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parametrized as above by the transpositions determined by a pair of 
generators, one from each group. Thus, the product group is 
parametrized by the disjoint union TmC)Tn of the respective sets of 
transpositions, leading to the algebra C(TmOTn)=C(Tm)(BC(TJ 
and thence, upon quantization, to EndW ( m )©Endiy . Thus, the 
appropriate infinitesimal quantum version of ZmxZn is §>l(m,C) 
©§l(n ,C) . One may also argue, in the spirit of similar discussions 
in Chapter 2, that the appropriate quantum algebra $~) for the pro­
duct 'Eyn X Z,, should accommodate interpretations of the individual 
algebras §I(m,C) and §I(n,C). That is, there should exist a diagram 
of the form: 

§I(m,C) >&< § l (n ,C) . (3.2.3.5) 

Then, 

£ s 3 l ( m , C ) © § I ( n , C ) (3.2.3.6) 

is the optimal universal solution to this diagram, in the sense that any 
other factors through it. 

Finally we note that for the trivial group, §1(1,C) = {0}, and 
that the coherent form of this is again the trivial group. Thus, the 
trivial group coincides with its quantum version, in our sense. 
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4 

Natural Deduction 

Our ultimate goal is to discover where the fundamental La-
grangians "come from." That is to say, we aim to find some sort of 
algorithmic or calculational procedure that will eventually produce 
these expressions from more primitive ones, whose provenance is, 
ideally, axiomatic, or at least more readily apprehended than the La-
grangians themselves. A minimum requirement for such a program is 
a set of rules that prescribe how expressions may be legally reduced to 
other expressions, and a set of expressions with which to start the 
process. Now, a prescribed set of expressions, together with a set of 
rules for manipulating or rewriting them, comprises the backbone of 
what is known as a deductive system. The study of such systems has 
come to occupy a significant sector of the modern theory of compu­
tation. 

A deduction (or derivation) in such a system is a sequence of 
rule-based replacements (or rewrites) of expressions starting from a 
set specified as axioms. One may view such a deduction geometrically 
in various ways: as tree-like, for example, with axioms as leaves and 
the concluding expression as the root. (Much mileage is obtained 
from the examination of such tree-like structures in the formal 
theory.) Although we have been vague about the nature of the "ex­
pressions" involved, it should already be clear that a deduction is very 
much like a (computer) program, which proceeds in steps to 
reconfigure patterns of data. 
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The expressions of interest are, of course, those to be found at 
the roots of deductions and it is important to remark on the obvious 
fact that these are produced by entirely constructive processes. A de­
rived expression may be specified—in the sense that it may be con­
structed—from the axioms together with the particular deduction tree 
at whose root it sits. Clearly, this association (of derived expression 
with deduction tree) is not one-to-one, since a given expression may 
have many deductions (or, indeed, none). From a constructivist 
view-point it would be better to associate a derived expression with 
the set of deductions leading to it. This kind of association lies at the 
heart of Heyting's interpretation of intuitionistic logic as that logic 
which arises from a wholesale adherence to constructivist principles: 
cf. §§4.1 and 4.2. 

(Insofar as we deal with logic per se in this work we shall deal 
only withpropositionallogic: that is, we ignore quantification (V, 3) 
entirely. However, there is no doubt that a full treatment along the 
lines to be advocated in this work should include quantification: cf. 

QR.) 
In this chapter we briefly discuss a standard minimal deduc­

tive system and some of the issues that arise out of it. 

4.1 Natural Deduction for a Minimal System 

In this section we informally explore some of the issues associ­
ated with deduction by examining a certain system known as natural 
deduction. Specifically, we shall discuss the natural deduction system 
for minimal implicational intuitionistic (propositional) logic. This 
treatment combines elements from the early chapters of both Girard 
etal. 1988 and Troelstra and Schwichtenberg 2000. 

The basic object of interest in this system is a deduction of a 
formula (or sentence) A, say, which, after Girard et al. 1988, we shall 
denote by: 
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The dots stand for subdeductions, and the whole structure is to be 
regarded as a finite tree, or at least as being tree-like, since the tree 
structure will soon be vitiated. 

The first rule of deduction, or inference, is that a single formu­
la by itself is a deduction (of itself)- Strictly speaking, this axiom 
should be asserted only for a set of atomic formulae: the result then 
follows for all formulae. We will follow custom in this abbreviated 
overview by omitting the complication of specifying the atoms at this 
stage. 

There are two other rules of inference, which enable new de­
ductions to be constructed from old ones. One rule introduces the 
implication sign => and the other rule eliminates it. The expression 
of these rules requires some notational preliminaries. Suppose A ap­
pears in a single top node (or leaf) of a deduction whose conclusion is 
B. Then we may unambiguously write: 

A 
\ (4.1.2) 

B 

In this case, the rule of introduction posits the new deduc­
tion: 

A 

A^>B 

(Here, the =>J labels the rule being used—namely " => introduc­
tion"—to extend the tree: it is frequently dropped when ambiguity 
does not threaten.) 

The occurrence of A is said to be open (or live) in (4.1.2) but 
considered to be closed (or killed, or discharged) by the application of 
=>/ in (4.1.3). The open occurrences of a formula like A in (4.1.3) 
are said to be hypotheses for the deduction. 
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Now, A may appear and be open in other places, for instance 
in ambient deductions, and in this case we would wish to keep track 
of which open occurrence of A is being discharged at the => J infer­
ence. This can be accomplished by labelling A and then invoking the 
label at the point of inference. Thus, in place of (4.1.3) we now 
write: 

Au 

B , <4-L4) 

A=>B 

This intuitionistic version of implication may be interpreted 
in light of the so-called Heytingparadigm, (Heyting 1956) which 
gives a semantics for formal intuitionistic logic (IL). (Cf. Troelstra 
and Schwichtenberg 2000, §2.5.1, p.55, where the attribution also 
includes Brouwer and Kolmogorov.) In this interpretation of IL, a 
formula is intuitionistically valid only if a deduction can be explicitly 
presented or constructed. The interpretation of A=^B in (4.1.4) 
then becomes: if a deduction of Au can be constructed then a deduc­
tion of B can be constructed, via the deduction above the inference 
line in (4.1.4). After this encapsulation of the whole process in the 
formula A=$>B, the open assumption Au is no longer needed and 
may be discharged (or closed), the deduction leading to it being, in a 
sense, discarded. 

Now, as noted, it is possible that open occurrences of A may 
appear a number of times in the deduction leading to B, and we may 
choose to discharge a collection of these at the inference. The deduc­
tions leading to those occurrences of A in the chosen collection are 
all then discarded simultaneously at the inference. Members of such a 
collection may be grouped under a single label, since there is no need 
to distinguish among these discarded deductions. The notation for 
such a collection of open occurrences of A is [A]u. Of course, there 
may be other collections of open occurrences of A that are not cho­
sen for discharge at the inference: these remain open after it. 
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The complete statement of the =>I rule now reads: 

[AT 

'•• (4 .1 .5) 
B 

u, =>/ A^B 

(Here the degenerate case of [A]u being empty is allowed. This 
empty case would still require a label at the inference. Thus, 

~J^V (4.1.6) 

is a legal deduction. The v labels the empty class of occurrences, 
which is discharged at the inference.) 

There is some linguistic awkwardness in referring to [A] since 
it denotes a pattern of occurrences of the formula A and is not, strictly 
speaking, a set. 

The deduction (4.1.5) should be understood as follows. Given 
a deduction of B with a (possibly empty) collection [A]u of open oc­
currences of A among its set of hypotheses—a set which could in­
clude other open occurrences of A—a new deduction is formed 
whose conclusion is A=>B, and in which the occurrences of A in 
[A]u have been discharged (or closed). (Other open occurrences of A 
are not discharged. That is to say, they remain open at the inference 
point.) 

The other rule of inference in this system, which is a rule for 
eliminating =>, is just modusponens, and may be rendered as: 

A A=$B 
— =>£ (4.1.7) B 

Here, two deductions—of A and A=>B—are combined to produce 
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a new deduction with conclusion B. The hypotheses of the two sub-
deductions above the inference line, taken together, are the hypothe­
ses of the new deduction (4.1.7). 

There are natural ways to simplify certain deductions. For in­
stance, a deduction of the form: 

[AT 

B 

A=>B u 
(4.1.8) 

B 

may be replaced by the following simpler direct deduction, consid­
ered to be equivalent to it: 

: (4.1.9) 

B 

The understanding here is that each (discharged) occurrence of A in 
[A]v (in (4.1.8)) has been replaced by a copy of the new deduction of 
A introduced on the left (in (4.1.8)). 

Note the pattern of discharges in the following two deduc­
tions of A=>(A=$A) (from Troelstra and Schwichtenberg 2000, 
p.25): 

Au Au 

v .,„ . . t u Aw A^A Aw A=*A 
A A (4.1.10) 

u —A rw A^A A^A 
-w v A=>C4=>A) A=>U=*A) 

(Cf. (4.1.6) for the label v in both cases.) 
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4.2 The Curry-Howard Isomorphism 

In the previous section labels were introduced merely to keep 
track of the flow of closings of collections of open formulae as the 
=>/ inference is enacted. (As Girard observes (Girard et al. 1988), 
the link this labelling scheme sets up between formula and inference 
point effectively destroys the illusion of a tree-like structure.) 

The significance of this apparently innocent labelling scheme 
may be realized by another appeal to the Heyting paradigm. In this 
interpretation of IL a formula is intuitionistically valid only if a de­
duction of it can be produced. Thus, a formula may be identified 
with its set of deductions. In more formal terms, a formula determi­
nes a type, A say, and a label u of A is considered to be a variable of 
type A, for which the standard notation is u:A. (Formal definitions 
of types, terms, variables, etc., may be found in the works cited 
above. For our purposes the informal intuitive notion of a type as 
being a special kind of set, while variables refer to elements of such 
sets, etc., will suffice.) Returning to the labelling scheme of the last 
section, we note that the label u in Au could be regarded as standing 
in for a generic deduction of A. it is in fact not merely A that is 
being labelled but a deduction of A. In view of the Heyting interpre­
tation, Au can be rewritten as u:A. Similarly, the u in [A]u stands 
in for generic deductions of the occurrences of A in the collection 
[A], which are all "discarded" simultaneously at the inference. 
Consequently, [A]u can be rewritten as [u:A|. 

Now that u is being regarded as a variable of type A, this sta­
tus should be recorded at the point of inference in (4.1.5). Likewise, 
the variable of type B corresponding to the deduction of B which 
appears above the inference line in (4.1.5), and which "depends" 
upon the deduction of A labelled by u, should also be explicitly an­
notated. Then, (4.1.5) may be rewritten as: 

79 



Quanta, Logic and Spacetime 

[u:A] 

'• (4.2.1) 
t:B 

\u.t:A-^-B 

Here, the symbol A serves to bindu within t. The type A—>B is 
the indicated "function" type, which, in terms of sets, is the set of 
functions from A into B. As noted in the last section, the Heyting 
paradigm interprets intuitionistic implication A=!>B as a function 
from the set of deductions of the formula A to the set of deductions 
of the formula B. 

The expression \u.t is the name of the function (of type 
A—>B) which produces t upon the "input" of u. 

Note also that the binding of u within t via the symbol A in 
the expression Xu.t recapitulates exactly the discharging of the associ­
ated formula occurrences. 

Similarly, the inference rule (4.1.7), which eliminates =>, 
may be rewritten in type theoretic terms as: 

s:A t:A—*B (4.2.2) 

ts:B 

where ts denotes application ofthe function type t to s. 
Using these translations of the inference rules, any deduction 

may be used to generate a "A-term" which completely describes, or 
encapsulates, the deduction. For example, the applications of these 
translations to the left-most deduction in (4.1.10) yields: 

u:A 

w-A kv.u'.A—*-A 

(Xv-uhv -A (4.2.3) 
ku.(hv-u)w-A—> A 

Xw.{^u.{kv.u)w):A-^-{A—>A) 
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The reader may check that the translation of the right-most 
deduction in (4.1.10) yields the non-equivalent A,-term: 

\v.(\w.(Xu.u)w):A-^(A—>A). (4.2.4) 

The calculus of A-terms (without explicit typing) was posited 
independently by Church in the 1930s as a means of investigating 
the computational and logical possibilities of pure functionality. 
Today the theory goes by the name "simply-typed A-calculus." The 
observation, by Curry (Curry and Feys 1958), that the translation 
given above induces a complete structural isomorphism between the 
minimal natural deduction system outlined in §4.1 and simply-typed 
A-calculus, apparently came as a surprise to logicians. 

Readers familiar with A-calculus may note that the contrac­
tion of deduction (4.1.8) to deduction (4.1.9) corresponds to the re­
placement of an expression of the form (Xu.t)s by the expression 
t[u/s], where the notation means that u is to be replaced by s in t. 
This is known as /3-conversion in the A-calculus context (modulo 
many glossed details) and is the basic rule for evaluating functions. 

The computational resources of simply-typed A-calculus (and 
other A-calculi) have been well studied: see for example Troelstra 
and Schwichtenberg 2000, Mitchell 1996, Gunter 1992, Asperti and 
Longo 1991, Girard etal. 1988 and Stoy 1977 among many others. 

The isomorphism sketched above may be extended to one 
that obtains between the minimal intuitionistic implicational deduc­
tive fragment of §4.1 with inference rules for conjunction ( A ) and 
disjunction (v) appended, and an appropriately supplemented ver­
sion of simply-typed A-calculus. 

The inference rules to be appended to the natural deduction 
system are as follows. Conjunction is introduced through three rules 
of inference (one Introduction and two Eliminations), namely: 

^nrAl (4-2-5) 

AAB 
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AAB AAB 
— - — A \ E A2E (4.2.6) 

There are identifications among certain deductions involving 
A. For example: 

B . • 
is identified with : (4.2.7) AAB "™ ^ A 

A 

and similarly for the other elimination rules. 
Disjunction in an intuitionistic system is independent of con­

junction (since De Morgan duality does not obtain) and is generally 
contentious, as we shall see. In our system there are two Introduction 
rules, namely 

A B 
v l J and v 2 J (4.2.8) 

AvB AvB 

and one problematical Elimination rule, namely: 

[A] [B] 

AvB C C 
(4.2.9) 

vE 
C 

The problem here is the extraneous C, which introduces an 
uncontrollable element into the business of deriving general theorems 
about deductions: see Girard etal. 1988, Chapter 10. 

To extend the Curry isomorphism to this supplemented natu­
ral deduction system, we again appeal to the Heyting paradigm. In 
order for the conjunction AAB to be intuitionistically valid, we 
must possess a deduction of A and a deduction of B, and know 
which deduction belongs to which formula. That is, we must possess 
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an ordered pair of deductions. If a formula is identified with its set of 
deductions, then the set of deductions of A/\B should be identified 
with the product of the set of deductions of A and the set of deduc­
tions of B. 

Thus, the A of formulae should be associated, in the extended 
correspondence, with the product, X, of the corresponding types. 

Similarly, AvB is intuitionistically valid only if we have de­
duction of A or a deduction of B, and an indication of which one of 
these formulae has been deduced. The collection of such pairs consti­
tutes the disjoint union (or direct sum in the category of sets) of the 
sets of deductions of the constituent formulae. 

Thus, the v of formulae should be associated, in the extended 
correspondence, with the sum, +, of the corresponding types. 

The Curry correspondence thus extended is part of W. A. 
Howard's contribution to the full isomorphism, which now bears the 
name Curry-Howard: cf. Troelstra and Schwichtenberg 2000, p. 59. 
(The other part of Howard's contribution to the isomorphism in­
volves quantifiers, which we are ignoring here.) 

The importance to computational theory of isomorphisms of 
the Curry-Howard type is that, since formulae may be regarded as 
types through their use, deductions may be concomitantly regarded as 
computations (or programs), which transform types (patterns of data) 
into types in stepwise fashion. Reversing this perspective, such iso­
morphisms allow us to regard the apparently static program repre­
sented by a A-term in a dynamical light, since such a term may be 
unfolded to reveal the underlying deductive structure, with its flow of 
openings and closings of assumptions. It is this aspect of the 
Curry-Howard isomorphism that arguably has had the most impact. 

4.3 The Gentzen Sequent Calculus 

The Gentzen sequent calculus may be regarded initially as a 
metacalculus for handling deductions in natural deduction systems, 
though it has been developed in various directions as a style of de­
ductive reasoning in its own right. In its guise as a metacalculus for 
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natural deduction, the sequent calculus delineates certain symmetries 
and structural aspects of the underlying deductive system which re­
main hidden, or at least less apparent, if one remains fixed at the nat­
ural deduction level. This organizing power of the style has had a 
major impact on the proof theoretic aspects of deductive logic. 

The basic object is the sequent: 

T h A (4.3.1) 

in which T and A stand for (possibly empty) finite sequences of for­
mulae. It is possible—and indeed advisable—to allow more general 
assemblages of formulae. This becomes apparent when natural de­
duction is used as the underlying model: then T, etc., would stand 
for collections of formula occurrences. The use of sequences will 
suffice for our purposes. (Upper case Greek characters will have this 
(standard) connotation in our discussions of sequents, risking possi­
ble confusion with their later use in other contexts: we beg the read­
er's indulgence in this matter of syntactic overload.) 

The informal reading of (4.3.1) is along the lines of: 
" Ar=>VA." This reading can be adduced from the natural deduc­
tion model, if (4.3.1) is supposed to describe a deduction with a set 
T of hypotheses and conclusion in A: it forces the interpretation of 
\— A as asserting the truth of VA and Y\— as asserting the falsity of 
A r . (Here we have adhered to the standard notational convention 
that the empty set, or null sequence, of formulae on either side of the 
turnstile is simply omitted.) 

In keeping with this model, and noting again the disruptive 
effects of disjunction in intuitionistic systems, sequents in which A 
consists of at most a single formula are termed "intuitionistic." 

In Gentzen calculi the inference rules are often divided into 
classes: structural rules, logical rules and an "identity group." A de­
duction in sequent calculus is usually referred to as a proof 

By way of example, we shall briefly describe the rules for a 
non-intuitionistic minimal propositional sequent calculus. (The hor­
izontal line in a rule represents the inference of the sequent below it 
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from the sequent or sequents appearing immediately above it.) 

STRUCTURAL RULES 

These refer to the management of formulae within sequents. 
(The appropriate label appears to the right of the inference line, as in 
natural deduction: LE for left exchange, etc.) 

EXCHANGE 

r , B , A r ' | - A Y\-A,B,A,A' 

WEAKENING 

r h A -LW F h A RW (4.3.3) 
A,T\-A T\-A,A 

CONTRACTION 

M I M L C nZ±AARC (4.3.4) 
A r h A r h A , A 

These rules appear quite innocent at first sight: they are what 
one would expect from the presumed properties of A and V in the 
informal reading of the sequent T \— A as " Ar=> VA." They appear 
less innocent in the reading of r|— A as a description of a deduction 
in a natural deduction system of the type described in the last sec­
tion. In this reading, Weakening corresponds to the possibility of in­
troducing spurious or null collections of occurrences of a formula A, 
while Contraction corresponds to the possibility of amalgamating 
certain collections of occurrences of A. Further innocence is lost, as 
Girard points out (Girard et al. 1988), in an operational reading of 
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the sequent calculus. In this reading, formulae, considered as types a 
la Curry-Howard, are regarded as resources, and T|—A has the infor­
mal interpretation: "Use up T to produce A." Then LC (4.3.4), for 
example, has the connotation that, while two As are required to pro­
duce A, we can get away with only one use of A to effect the pro­
duction of A. The "resource" A must then be storable and can be 
copied, or cloned, for reuse. One might say that A admits storage. 
Clearly, many real resources, like coins, do not have this convenient 
property: if an item requires two coins for its purchase, then one will 
not suffice. (We will always use the term "Contraction" in this con­
text so as not to confuse it with the term "contraction" used earlier: 
cf. diagram (1.3.2).) 

(End structural rules.) 

THE IDENTITY GROUP 

This terminology seems to be due to Girard (Girard et al. 
1988). 

AXIOM 

This is the analog of the first rule of inference for natural de­
duction, namely that a (well-formed) formula is by itself a deduction. 
The same provisos obtain: the axiom is properly stated only for 
atomic formula and then can be shown to obtain for general ones. 
Since we have continued to procrastinate on the issue of atomic for­
mulae, we shall state the axiom in the customary form, to wit: 

A \-A Ax (4.3.5) 
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CUT 

YhA,A A,T'hA' . . . -
CUT (4.3.6) 

r,r'hA,A' 

The CUT rule is an extremely reasonable meta-rule for the 
handling of natural deductions. Indeed, its natural deduction analog 
can be deduced from the other rules of natural deduction. The use of 
A in this rule is akin to the use of a lemma in a mathematical proof, 
or the use of a subroutine in a computer program. In these forms, the 
CUT rule would seem to be part and parcel of both of these august 
disciplines, among others. It is, however, problematical from the 
point of proof theory itself, since the appearance and disappearance 
of the possibly extraneous and uncontrollable A greatly complicates 
tree handling techniques. It may therefore come as a bitter-sweet sur­
prise to learn that, even in very general Gentzen calculi, cuts can be 
removed from any proof. That is to say, any proof involving uses of 
CUT may be recast without using CUT. This is the gist of Gentzen's 
justly famous "Hauptsatz": cf. references already cited. This centrally 
important result is rather counterintuitive at face value since it seems 
to imply that the usual modes of proof—for instance in mathemat­
ics—are somehow redundant. In the programming analogy the re­
movability of cuts seems more plausible: to "remove" the cuts—i.e. 
subroutine calls—from a program, compile it into runnable object 
code. Or, to put it more dynamically, run the program. This is, of 
course, simplistic, but encapsulates the main idea behind the proof. 

Girard notes {op. cit) that CUT is another way of expressing 
identity. To paraphrase him, the AXIOM asserts that A on the left of 
the turnstile (|—) is "less than" A on the right: resource A on the left 
is "consumed by" the A on the right. On the other hand, CUT asserts 
that if A has been produced—appears on the right of the 
turnstile—then it may be consumed by the A on the left of the sec­
ond turnstile: A on the right is less than A on the left. That this is a 
redundant expression of identity is demonstrated ultimately—i.e. 
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after the proof of a difficult theorem—by the fact of its eliminability. 
(End identity group.) 

LOGICAL RULES 

These rules introduce the logical operators {via the right rules) 
and eliminate them (viathe left rules). 

r , 4 h A r h A A r\-B,A'n „ . _ . 
— -LZA, ^ = 0,l. R A (4.3.7) r . i ^ A ^ h - A r , r ' h i A B , A , A ' 

-Lv - Riv, i=0,l. (4.3.8) 
r , r M v B | - A , A ' r h A 0 v ^ i ; A 

r,nA=>si-A,A/ n-4=>B,A 

For intuitionistic systems, all of these logical rules—with the 
exception of Lv—are restricted merely by allowing at most one for­
mula to the right of turnstiles. Only in the case of Lv is the intu­
itionistic version not just a restriction of this kind, since the A, A' is 
disallowed. Instead, the rule is replaced by: 

r ' A h A T ' B h A (4.3.10) 
T, T',AvBhA 

where A contains at most one formula. 
(End logical rules.) 

For an intuitionistic Gentzen sequent calculus it is generally 
possible to produce a natural deduction system that might be pre­
sumed to underlie it. This is done by judiciously (and recursively) as-
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signing terms to sequents, and then regarding these terms as A-
calculus-like descriptors of underlying deductions. (The correspon­
dence sending a sequent proof to its associated A-term is generally 
not one-to-one.) 

For instance, for the intuitionistic version of the CUT rule, 
which reads: 

T\-A A,A\-B 

r , A K B 

the term assignment takes the form: 

Tht:A x:A,Ahu:B 

T,A\-u[x/t]:B 

(4.3.11) 

(4.3.12) 

This is a formalized version of an obvious replacement of de­
ductions in natural deduction: t labels the deduction of A from T, 
and u labels the deduction of B from the deduction x of A and A. 
Thus, from T, A we may deduce B by using the deduction t in 
place of x, thereby cutting A out of the lower sequent. 

The term u[x/t]:B may be reducible. It turns out that the 
other sequent rules do not produce A-terms that are reducible. (For 
instance, the term assignment for intuitionistic L=> is: 

Tht:A T',x:B\-u:C 

r,f:A-*B,r\-u[x/ft]:B 
(4.3.13) 

Here, the term produced is not reducible since / i s a variable.) 
Readers familiar with A-calculus will recognize that sequent 

proofs conducted without the use of CUT will produce normal A-
terms: i.e. terms that are not reducible. 
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The eliminability of CUT is essentially equivalent to the fact 
that simply-typed A-calculus is (strongly) normalizable: every A-term 
is reducible to a unique normal form. (Cf. works already cited.) 

More to the point for our purposes is the observation (cf. 
Abramsky 1993) that the computational aspects of such deductive sys­
tems are seen to reside precisely in the process of cut elimination. 

The Gentzen sequent formalism reveals structural and behav­
ioral attributes of the underlying—or associated—natural deduction 
system and the equivalent term calculus. Among its lessons, we em­
phasize: 

• the critical importance of the structural rules, and their 
sensitivity to different semantic readings of the associat­
ed natural deduction system; 

• the fact, just noted, that all computation resides in the 
process of cut elimination; 

• the value—much appreciated by computer scientists—of 
the explicit typing of terms and the careful maintenance 
of such typing through the course of deductions. 

Soon we shall attempt to carry these lessons into the quantum 
domain. 
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To say that quantum logic was developed without any intu-
itionistic or constructivist paradigm in mind would be an understate­
ment: indeed, in their seminal paper Birkhoff and von Neumann 
1936, the authors go out of their way to launch an attack on intu-
itionistic logic, as it was then constituted, ostensibly on the issue of 
of the distributive law. Their archetype was ordinary classical logic, 
and even in this static arena classically conditioned students of quan­
tum logic are confronted at almost every turn with affronts to their 
thinking. This appropriately parallels the experiences of classically 
minded students of quantum physics itself. 

In this chapter we rehearse certain aspects of quantum logic 
with an eye towards its possible exploitation as a computational re­
source. In this respect it will be found wanting, though its apparent 
failures are instructive, and will inform our attempts in the next 
chapter to extend its intuitionistic core to a wider logic. 

For the sake of completeness we have included a brief account 
of how certain physical notions may be couched in quantum logical 
terms. These sections, namely §5.1.5, §5.2.1, and the discussion of 
the Kochen-Specker Theorem in §5.2.2, may be safely skipped. 

(The difficulty of the subject matter of this chapter is com­
pensated for by the excellence of the available texts. A list of these 
should include: Dalla Chiara et al. 2002, Redei 1998, Svozil 1998, 
Bub 1997, Isham 1995, Hughes 1989, Gibbins 1987, Varadarajan 
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1985, Kalmbach 1983 and its sequel Kalmbach 1985, Beltrametti 
and Cassinelli 1981, Holland 1970 and 1995. In particular, the en­
cyclopedic Kalmbach 1983 remains the standard reference to the as­
tonishingly rich mathematical theory.) 

Sections of this chapter began as joint work with J. P. Rawl-
ing (cf. Rawling and Selesnick 2000). 

5.1 Orthologic and its Model Theory 

The minimal core of quantum logic is known as orthologic 
(OL). This is simply the weakening of classical logic which results 
when one does not insist that AND distributes over OR: it is the 
logic which might have replaced classical logic had classical logicians 
failed to notice this distributivity in their ambient world of macro­
scopic objects. Indeed, they might have viewed this principle with 
more skepticism had they been capable of a cognitive resolution 
sufficiently fine to apprehend the kind of quantum interference that 
is revealed by the double slit experiment. 

In this experiment a source of quanta, electrons say, is placed 
behind a screen in which two slits have been made. With one slit 
covered up, a detector placed on the other side of the screen reveals a 
pattern of arrivals entirely consistent with the idea that electrons are 
"particles" in the classical sense: namely, there is a peak of intensity 
in front of the slit, tailing off smoothly in all directions. If these par­
ticles obeyed "classical" rules, then the effect of uncovering both slits 
should be to produce two peaks of intensity in front of the slits, tail­
ing off smoothly. But this is not at all what experiment reveals: in­
stead a wave-form appears, indicating that the electrons have inter­
fered with each other to produce cancellations at some places and re­
inforcements at others. This pattern persists, even when one reduces 
the intensity of the beam so that a single electron is emitted. Some­
how, the presence of the other slit has affected the behavior of even a 
single electron. A naive "quantum logicist's" view of this might pro­
ceed along the following lines. The way we think—our logic—has 
been conditioned by our necessarily macroscopic experience. When 
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we try to apply these rules to microscopic entities like electrons—to 
deduce the outcome of the double slit experiment for example—we 
should not expect them to work. Instead, we should infer their logic 
from experiment. In the experiment just described, for example, the 
statement: 

{electron A leaves the source) AND 
[(electron A goes through slit 1) OR [electron A goes through slit 2)] 

is verified—or at least not obviously falsified—while the statement: 

[(electron A leaves the source) AND (electron A goes through slit 1)] 
OR 

[ (electron A leaves the source) AND (electron A goes through slit 2) ] 

is not verified, for if it was verified, the arrival pattern would meet 
classical expectations. So the fundamental classical "distributive law," 
namely 

p AND (q OR r) = (p AND q) OR (p AND r) 

does not hold in the logic of these new entities called quanta. 
This argument against distributivity may be disputed by those 

with a prior knowledge of quantum physics, who will be quick to 
question the very meaning of certain constituent propositions: "elec­
tron A goes through slit 1," for example, which may not be inter-
pretable in light of the Uncertainty Principle. Regardless of the logi­
cal status of such refutations, they are surely not arguments in favor 
of distributivity, so that deep skepticism toward the validity of this 
principle in the quantum domain would still seem to be in order. 

In classical propositional calculus (PC) the material implica­
tion connective (—>) is expressed in terms of other connectives. 
Namely, p^>q = —ipvq, a problematic interpretation entailing cer­
tain anomalies of great antiquity. (Namely, p —>q is true for any q if 
p is false: round squares are round and square, as Lewis and Lang-
ford 1959 puts it.) In the absence of the distributive law, we might 

93 



Quanta, Logic and Spacetime 

expect further problems for an implication connective cobbled to­
gether out of other connectives. This expectation is maximally real­
ized, as we shall see later (§5.1.4). In fact no viable implication for 
orthologic can be manufactured out of the other connectives at all. 

5.1.1 Orthologic as a Deductive System 

The realization of (first-order) orthologic as a (non intuition-
istic) deductive system seems first to have been achieved by R. Gold-
blatt (Goldblatt 1974; see also Dalla Chiara et al. 2002). The atoms 
or primitive symbols are: 

(i) a denumerable collection O0 of propositional variables 

(ii) the connectives ~ ("negation") and n ("conjunction"); and 

(iii) parentheses. 

The set O of (well-formed) orthoformulae (or just formulae, 
until this designation becomes ambiguous) is constructed from these 
in the usual way. Elements of <t> will be denoted by lower case Greek 
characters a, /3,..., taken usually from the beginning of the alpha­
bet. (We shall try to reserve characters at the end of the alphabet for 
elements of sets of various kinds.) 

Since there is no implication sign in O a formal deductive 
calculus is based on sequents involving at most single formulae and 
written in the form: 

a h / 3 (5.1.1.1) 

for a, /3E<D, the intended reading of which is that (3 may be in­
ferred from a. Certain sequents are designated as axioms, and there 
are three rules of inference, namely, for any formulae a, /3: 
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AXIOMS 

0 1 . a\-a 

02. anp\-a 

0 3 . an(3\-(3 

0 4 . a\ a 

0 5 . — a h a 

06. ar\~a\—/3 

INFERENCE RULES 

a\-/3 (Shy 
0 7 . 

0 8 . 

0 9 . 

ahy 
ahfi ahy 

ah /3ny 
ah/3 

-01—a 

A conjunctive connective may be introduced according to the 
definition 

au j8 = ~((~a)n(~j3)) (5.1.1.2) 

and dual forms of 0 2 , 0 3 , 0 6 and 0 8 follow. 
A string s,; s2; . . . ; sn of sequents is called a proof of its last 

member sn if each si is either an axiom or follows from some pre­
ceding sequent through the use of one of the rules of inference. 

If there exists a proof of a sequent a h/3 we write 

ahQ(3 (5.1.1.3) 

and say that (3 is deducible from a in orthologic. 
If a h0 fi for any formula a, we say that /3 is a theorem ofor-
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thologic or an orthotheorem, and we write 

h 0 / 3 . (5.1.1.4) 

(Note that this condition is equivalent to au~a \—Q (3.) 
We recall that there are completeness theorems for ordinary 

propositional logic (PC) and intuitionistic logic (IL) which assert 
connections between the analogous forms of deducibility in these 
logics and the behavior of morphisms, or valuations, of formulae into 
certain classes of lattices: Boolean algebras in the case of PC and 
Heyting algebras in the case of IL. (Cf. Bell and Slomson 1969, 
Hughes and Cresswell 1968, inter alia) There is an analogous char­
acterization of orthologic, involving a class of lattices called ortholat-
tices. 

An ortholattice is a bounded lattice (L, u , n , 0L, lL, ' ) where 
( )' is a unary operation called orthocomplementation satisfying: 

complementarity: V a e L , ana' = 0L, aua' = lL 

unitarity: a" — a 

an ti tonicity: a^biffb'^a' 

It is easily shown that any ortholattice satisfies De Morgan's 
laws, e. g. 

aub = (a'nbj. (5.1.1.5) 

An ortholattice is said to be complete if arbitrary subsets have meets 
and joins: a complete ortholattice satisfies the complete generaliza­
tions of the De Morgan laws. 

Examples of ortholattices include all Boolean algebras and lat­
tices of closed subspaces of Hilbert spaces, with operations given in 
§1.2. 

Given an ortholattice L, a function vL:<$>0—
>L determines a 

valuation upon O via the recursive definitions: 
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vL(anp)=vL(a)nvL(p) (5.1.1.6) 

vL(~a)=vL(a)' (5.1.1.7) 

The algebraic characterization theorem for orthologic may be 
stated as follows. 

THEOREM 5.1.1.1 (Goldblatt 1974, Bell 1983) 

y ho a iff vL (y) C vL (a) for all ortholattices L and all valuations vL. 

COROLLARY 5.1.1.1 

ho a iff vL (a) = \L for all ortholattices L and all valuations vL. 

A pair S& = (L, vL) may be called an algebraic orthomodel (for 
orthologic), and a formula a deemed valid in this model if 
vL(a) — \L. Then the above corollary may be stated as: 

ho at iff a is valid in every algebraic orthomodel. (5.1.1.8) 

The following corollary follows immediately, since Boolean 
algebras are ortholattices. 

COROLLARY 5.1.1.2 

If ho a then a is a theorem of PC. 

(The converse is clearly false.) 
A canonical class of examples of ortholattices is obtained as 

follows. An orthogonality space F = (W, _l_) comprises a set W and a 
binary relation _L ^ W X W which is an orthogonality: namely, it is 
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irreflexive(not XJLX) and symmetric (xl.y iff yl-x). 
For x e W, y c W we write 

x ± y iff xLy \/y e F (5.1.1.9) 

and define 

y x = { r r : x _ L F } . (5.1.1.10) 

In Goldblatt's terminology (Goldblatt 1973) Y £ VF is said to 
be regular \£ 

YJ-1=Y. (5.1.1.11) 

Then the class R(F) of _L-regular subsets of Wis a complete ortho-
lattice under the partial order given by set inclusion, with the lattice 
meet given by set intersection and _L as orthocomplement. (A proof 
of this is contained in Lemma 5.1.2.1 given below.) This class of ex­
amples is canonical in light of Goldblatt's fundamental theorem a la 
Stone for ortholattices: 

THEOREM 5.1.1.2 (Goldblatt 1973, Bell 1983) 

GOLDBLATT'S STONEAN THEOREM 
Any ortholattice L is (completely) isomorphic to a sublattice of 

R(FL) for some orthogonality space FL. 

Since this theorem is the cornerstone of all the models we 
shall discuss, it is worth describing the construction. For a given or­
tholattice L, let FL — \WL,1.J where WL is the class of proper filters 
of L, and, for x,yeWL, 

xLy iff 3aeL such that a ' e x and a sy. 
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(A proper filter of L is an upward closed subset of L, closed also 
under finite meets, which does not contain 0L.) 

The map 

(f>:L^2WL, (5.1.1.12) 

where 2 denotes the two-element set (so that 2X for a set X may be, 
as usual, identified with the set of subsets of X) given, for asL, by 

<f>(a) = {x€\VL:aex}, (5.1.1.13) 

embeds L into R{FL). 
Goldblatt also characterizes the image of L under (j>: it coin­

cides with the family of those J_-regular subsets of WL which are 
clopen (closed and open) in that topology on WL that has as a sub-
base the sets </>(«.), a&L, and their complements. 

In case L is complete (f>, is onto R(FL). 
Clearly, we may restrict to the class of complete ortholattices 

in the algebraic characterization theorem (Theorem 5.1.1.1). 
Now a proper filter is like a "possible world" which "vali­

dates" each of its members: if the membership of a in a; is construed 
as "a is true in world x," then everything that can be inferred from a 
should also "be true in world x," which is the case if x is a filter, and 
E is read as a form of implication. Under this reading, each (f>(a) 
(equation (5.1.1.12)), being a set of worlds, could be interpreted as a 
proposition asserting the truth of a in a certain set of possible worlds. 
Indeed, Goldblatt's Stonean theorem (Theorem 5.1.1.2), taken to­
gether with the characterization theorem (Theorem 5.1.1.1), yields a 
class of models that also characterize orthologic, but that carry a 
rather more interesting semantic interpretation. 

The discussion of these will be facilitated by the introduction 
of some formal results that are the business of the next section. 

(As for the classical Stone Theorem, many accounts of it are 
available. A short, elegant one, requiring some assembly, may be 
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found in Atiyah and MacDonald 1969, p. 14, exercise 25.) 

5.1.2 Modal Logic and Kripke Models 

The problems with classical material implication, as defined 
by p—^q=—ipvq, were known to the ancients, and the idea that 
there could be a stronger kind of truth, necessary truth, which might 
validate implications in such a way that the anomalies were avoided, 
appears in the writings of Aristotle. In this approach, the truth of 
propositions may be modified, or modalized, and this can be done 
formally by introducing a unary operator into the usual sentential 
language of PC. This operator is often denoted by a box: • . Thus 
Dp is informally read as "necessarily p." There is another modality 
of "truth," namely possible truth, which it is convenient to have a sep­
arate symbol for, namely O . Thus Op may be read informally as 
"possibly p." Since "possibly p" is synonymous with "not necessarily 
not p," we may express O in terms of • as: 

0 = ^ D ^ (5.1.2.1) 

and concomitantly we have: 

•= - .<>- . . (5.1.2.2) 

Thus, we may regard either modality as primitive and derive the 
other. Various rules regarding the interaction of these new operators 
with the old ones may be laid down to produce a large array of new 
logical systems. 

This topic has had a tortuous (and tortured) history, having 
drifted in and out of fashion over the centuries. Interest in it 
intensified in the 1930s after Godel found an embedding of intu-
itionistic logic (IL) into the modal system that has come to be known 
as S4, following the appearance in 1932 of the first edition of Lewis 
and Langford 1959. (For references on modal logic see, among oth­
ers, Goldblatt 1992, Chellas 1980, Hughes and Cresswell 1968 and 
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1984.) Needless to say, the modal formalism admits more general in­
terpretations than those pertaining merely to modifications of no­
tions of truth and has found wide application, for instance in com­
puter science: cf. Goldblatt 1992. 

A compellingly intuitive model theory for a broad class of 
modal logics—namely the so-called normal ones—was developed by 
the teenaged Saul Kripke and announced in Kripke 1959, 1963. 
These models consist of sets W equipped with binary relations R 
(C W X W) and other structures to be described later for the particu­
lar modal logic we are interested in here. The pair (W, R) is often 
called a Kripke frame or just a frame. The elements of W are called 
"worlds" or "possible worlds," a terminology derived from Leibniz, 
and something of a misnomer for the application we have in mind. 
The relation R—and we write as usual vRw for (v,w)eR—is con­
strued as an accessibility relation among worlds. The intuitive basis 
for these models is the notion that if p is necessarily true at a world w 
then it will be true at all worlds accessible from w. This assumes that 
we have a means of testing the validity of modal formulae at each 
world. The technical means of doing this is exactly the part of the 
model we have not yet discussed. The completeness result for a typi­
cal modal logic states roughly that a formula may be deduced in the 
logic if and only if it is true at all worlds in all frames having accessi­
bility relations of a certain type, which depends upon the specifics of 
the modal logic involved. 

The frames of interest to us are of the type known as proximi­
ty spaces. A proximity space is a pair (W, ~) in which the relation " ~ " 
is reflexive (w~w) and symmetric (v~w iff w~v). Clearly each 
proximity space (W,~) determines an orthogonality space \W,±) 
where xl.y iff x*y, and, conversely, each orthogonality space 
(1^,-L) determines a proximity space (W,~) where x~y iff not 
xly. 

Given a proximity space (W,~J we define for each E £ W: 

OE = {w e W: 3 v e E such that w - v}, (5.1.2.3) 

101 



Quanta, Logic and Spacetime 

and note that E C OE. It will prove convenient to employ the no­
tation 

Sv = 0{v} = {w e W: w « v} (5.1.2.4) 

(the "sphere" around v, in the terminology of D. Lewis). Then one 
may also write 

OE=[jSv. (5.1.2.5) 
veE 

Dually, we write 

OE = (OEc)c, (5.1.2.6) 

where the superscript c denotes set complementation relative to W. 

PROPOSITION 5.1.2.1 

For (W, ~J a proximity space and E,F Q,W: 

Ml) 0{EKJF) = OE^JOF 

M2) For a family 9* of subsets of W: 

0([\F)c:[\{OF) 

M3) OE = (E1)e=EXc 

M4) DE = Ec± = {w e W: Sw e E) 

M5) E^ELL 

M6) £ £ F impUes FL c EL 

M7) ELLL = EL 
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M8) UOUE = UE 
M9) OE\OE = OE 
M\0) (EuF)1=E1nF± 

Mil) E±KjF±c(EnF)± 

PROOF 

The proofs of these elementary identities may be safely left to 
the interested reader. For instance, to prove (M3) we note that 
w £ OE implies w*x for all x e E so that wA.E showing that 
(OEYcE1 from which it follows that (Ex)c^OE. The converse 
inclusion is obvious. 

The proof of (M4) now follows, since 

UE=(OEcY 

=EcX 

={w:w±Ec} 

—{w.v^E implies v*w} 

={w. v~w implies v€.E } 

={w:Swc:E}. (5.1.2.7) 

From (M6) applied to (M5), we obtain (E1L)L^EL. But 
from (M5) we also have E1 £ (E1)11, and (M7) follows. 

(M8), (M9) and (M10) follow immediately from (M3) etc., 
and (Mi l ) follows from (M3) and (M2). I 
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The Kripke models for orthologic seem to have appeared first 
in Goldblatt 1974 and have been extensively elaborated upon by 
Dalla Chiara and others (cf. Dalla Chiara et al. 2002). 

Given a proximity space P = (W, ~) we follow Dalla Chiara 
et al. 2002 in defining a proposition of P (or just a proposition, if the 
context is clear) to be a subset X^W satisfying: 

if x has the property that for each y with y~x 
there exists a z e l such that y~ z, then x 6 X, 

or, equivalently, X is a proposition of P iff 

Sx E OX implies xeX. (5.1.2.8) 

(The reverse implication holds for any X C W since OX = [\SX .) 
xeX 

LEMMA 5.1.2.1 

1. For all l £ W , D O X = X 1 _ L and X is a proposition iff 

aox=xL1=x. 
2. X is a proposition iffxiX implies 3y =x with yLX. 

3. For any F c W, Y is a proposition. 

A.If% is a family of propositions, then \\%> is a proposition. 

5. If Y is a proposition, then X^Y iff OX^OY. 

PROOF 

1. The first assertion follows from (M3) and (M4). For the second, 
note that (M4) and the condition labelled (5.1.2.8) imply that 
OOX Q X, while (M5) gives the reverse inclusion. 

2. This follows immediately from (5.1.2.8) which is equivalent to: 
x£X implies Sx%OX = XLc. 

3. Immediate from (M7). 
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4. x i f]C implies 3C0e^ such that x £ C0. Thus SX£OC0, 

since C0 is a proposition (cf. the proof of (2) above). So 

Sx£ f](OC) from which it follows that S x £ 0 ( f | C ) in view 

of(M2). 

5. Implication in one direction is immediate; implication in the 
other follows from (M3), (M5) and (M6). • 

Thus, in view of Lemma 5.1.2.1(1), the family of proposi­
tions of a proximity space is exactly the family i?((W,X)) of regular 
sets of the associated orthogonality space and the existence of the 
complete ortholattice structure possessed by this family of subsets (al­
ready alluded to) may be read off from the result established above. 
(Note that W^and 0 are also propositions.) 

A Kripke orthomodel Ji = (W,~, g) is a proximity space 
P = (W,~) and a function (called a valuation) g: <D —>R((W,l)) 
satisfying: 

g(~a)=g(a)L (5.1.2.9) 

g(anP)=g(a)ng((3). (5.1.2.10) 

We will say that a formula a is: 

true at the "world" w e W, and write w^Ma, 
iff w e g(a); 

true on a set E ^W, and write E ^M&, 
iff wWMot for all weE—that is, iff E c g(a); 

true in the Kripke orthomodel M 
iff it is true at every world in M; 

Kripke valid, and write N ce, 
iff it is true in all Kripke orthomodels. 
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In the sequel we shall abbreviate R((W,A.)) to R(W), since 
the proximity and orthogonality relations will never be ambiguous. 

THEOREM 5.1.2.1 

h>a iff ^a-

PROOF 

Suppose ho a , and let M = (\V,~, Q) denote an arbitrary 
Kripke orthomodel. Then (i?(WO,£>) constitutes an algebraic ortho-
model and Corollary 5.1.1.1 (cf. statement (5.1.1.8)) implies that 
g(a) = W so that a is valid in the Kripke orthomodel M. But M 
was arbitrary, so a is Kripke valid. 

Conversely, suppose N « , and let si = \L,vL] denote an ar­
bitrary algebraic orthomodel. Then M = (WL,~L,(f)L°vL) (where 
WL,<f>L and A.L are the entities appearing in the discussion of Gold-
blatt's Stonean theorem (Theorem 5.1.1.2)) constitutes a Kripke or­
thomodel. Since a is assumed Kripke valid, it is true in M, so that 
<fiL{vL(a)) = WL. But then vL(a) = \L since (f>L is injective. Thus a 
is true in the arbitrarily chosen algebraic orthomodel si, so \—0<x by 
(5.1.1.8). I 

A question that now interposes itself (and that will occupy us 
in the next chapter) concerns the semantics of disjunction. In a Krip­
ke orthomodel we have, for formulae a and (3, and E(zW as 
above: 

E^auplffE^giaup) 

=(^(a) ± n^( ) 8) x ) ± 

=(0(a)ue(i3))x x by(M10) 
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^Q(a)VQ({3). (5.1.2.11) 

Thus, the interpretations of orthodisjuncts are, in a sense, 
double negations of ordinary disjuncts of propositions. These are not 
necessarily themselves ordinary disjuncts: there are generally more 
worlds in g(au(3) than there are in g(a)yj g(/3). That is, one could 
have w^MauP while neither w^Ma nor w^M(B holds. This cir­
cumstance embodies much of what seems anomalous to classical 
minds when confronted with "quantum" phenomena, and should be 
compared to a similar remark made at the end of § 1.1. 

5 .13 A Modal Translation Theorem 

It is evident, in light of the Kripke semantics for normal 
modal logics, that so-called proximity spaces are frames for some 
such logic. In fact, the particular modal logic supported by these 
frames has a history longer than that of quantum logic itself, having 
been introduced by O. Becker in 1930. 

A system of modal logic has as formulae the usual formulae of 
PC, with the ordinary Boolean connectives —i, A, v , supplemented 
with the unary (necessity) operator • . Material implication is 
defined in the usual way and O is defined as in equation (5.1.2.1). 
We will continue the use of lower case Greek characters to denote 
formulae in these systems. 

The axioms and inference rules for a system of modal logic in­
clude the usual ones for PC with some specifically modal additions. 
For instance, those systems which include the so-called Kripke axiom 
K: 

D(a -> j3 ) -KDa->a j8 ) ; 

the rule of "necessitation": 
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if a is deducible then D a is deducible; 

and modus ponens: 

if a and a—>/3 are deducible then ft is deducible, 

are said to be normal systems of modal logic. 
The system of Becker's of interest to us has two additional ax­

ioms, namely: 

D « - ) a 

and the "Brouwersche" axiom: 

a—»DOa:. 

The origin of the peculiar appellation for this last axiom— 
adopted by tradition directly from Becker's original German—is 
worth discussing here. Accordingly, we return to the constructivist 
interpretation of IL to discuss intuitionistic negation. In order for a 
formula —ig to be IL-valid in the constructivist interpretation, we 
must constructively prove that q is false. That is, we must produce a 
proof that q possesses no proof. If q is —\p, then in order for 
—i—ip = —1<7 to be IL-valid we must produce a proof that —\p possess­
es no proof: that is, we must produce a proof that no proof exists 
demonstrating the non-existence of proofs of p. Clearly, such a proof 
may be producible in the absence of any proof of p itself being in 
hand. That is to say, —•—<p could be IL-valid without p being IL-
valid. Thus, —i—\p=$p is IL- invalid. However, if we do have a proof 
of p, then no proof can exist demonstrating the non-existence of 
proofs of p. Thus, we have demonstrated the IL-validity of: 

p=>-r - ,p . (5.1.3.1) 

Now the Brouwersche axiom can be written: 
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p - > D - i D - i p 

and if •—i is read as some kind of strong form of negation ("neces­
sarily not") then the axiom looks like the corresponding IL-valid, or 
Brouwerian, axiom (5.1.3.1), hence the terminology. 

T h e set of modal formulae—i.e. the set of well-formed for­
mulae in the usual language of P C , with • and O now included 
—will be denoted by O M . A modal formula a which can be de­
duced from the axioms and inference rules listed above is called a the­

orem of the modal B-system, and we write: 

if a is a theorem of the modal B-system. 

A (Kripke) B-modelis a triple 2S = ( W , =, v ) , where W i s a set 
(of "worlds"), = a proximity relation on W and v : O M X W —> 2 is 
a function satisfying: 

V I . F o r each w € W, v( ,w):<$>M—>2 is a Boolean valuation 

with respect to —i and A . That is: 

v(—\Ot,w) = —iv(a,w), and 

v(aA/3,u ; ) =v(a,w) AV((3,W) ; 

V2.For any modal formula a, v(U\a,w) = 1 iff v(a,v) = 1 for 

every v such that v ~ w. 

It follows that: 

V 3 . v ( a v j 3 , w ) =v(a,w)v v((3,w), where v denotes the classi­

cal disjunct, and 

V4.For any modal formula a, v(Oa,w) = 1 iff 3v ~ w (i.e. 

3v with v ~ w) such that v(a,v) = 1. 
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(In general a Kripke model is a frame (W, J?) together with a 
set of valuations—indexed by worlds—of the type specified above: 
namely, they are Boolean valued, and act on modal formulae in the 
manner specified. Since each such valuation v( ,w) is determined by 
its behavior on atoms, a completely equivalent way of specifying the 
conditions listed above could be expressed in terms of a countable 
family of subsets of W, to be construed as the truth sets of atoms, the 
truth set of the atom a; being the set of worlds at which—please see 
below—at is declared true. Some authors prefer this formulation: cf. 
Chellas 1980.) 

A modal formula a is said to be: 

true at the world w in the B-modefSi, written w\=^a, 

iff v(a,w) = 1; 

true on the set EczW, written E\=^a, 

iff w^a for all w 6 E; 

true in the B-model S& iff W\=^a; 

B-valid, written \=a, if it is true in all B-models. 

These models characterize the B-system: 

THEOREM 5.1.3.1 

(This is proved in the references cited above.) 
That this resemblance between Kripke models for OL and 

models for the modal B-system goes deeper, seems to have been no­
ticed almost simultaneously by R. Goldblatt (Goldblatt 1974) and 
H. Dishkant (Dishkant 1977). Since the means are at our disposal, 
and since we wish to exploit this result as a springboard to a more 
constructive externalization of OL, we shall sketch a proof of a sim­
plified version of their result that OL may be interpreted within the 
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modal B-system. Specifically, we shall sketch below a proof that theo­
rems of O L admit a translation into theorems of the B-system. 

These results have provided important insights into the pecu­
liarities of O L when compared with classical logic, since properties of 
the ambient B-system were well-known. Extensive elaborations of 
these results were obtained by Dalla Chiara and others. Cf. references 
in Dalla Chiara et aL 2002 and Burghardt 1984. 

T h e translation recursively assigns to each orthoformula 
a 6 <J> a modal formula a ° e $ M as follows: 

T l ) For atomic formulae a^. 

a° =\JOa{ 

T2) (anP)0 = a0Ap° 

T3) (~a ) 0 = D - . a ° 

(Note that the "quantization" of at, namely D O G ^ , is really a 
kind of double negation of a{ since D O = •—iD—i, which amounts 
to a double J_ on sets of worlds: cf. the remark following equation 
(5.1.2.11).) 

W e will prove that a is an orthotheorem iff a° is a theorem 
of the B-system. 

Suppose a Kripke orthomodel M — \W,~, Q) is given. Then 
a B-model 

%=(W,~,ve) (5.1.3.2) 

may be constructed by defining, for w G W and atomic formulae a,•: 

\ \ ifweg(at) 
y(ai,w) = \ (5.1.3.3) 

which may then be inductively extended to O M according to the 
rules (V1)-(V4) given above. 
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Let us write, for each modal formula a and B-model 

\\a\L={weW:w\=*a}. (5.1.3.4) 

Then it is clear that: 

and 

l | t tAj3B9=H9n| j8|9 , (5.1.3.5) 

lb"la=IMIa. (5.1.3.6) 

IP«IL=n||«IL (5.1.3.7) 

«0«L = 0|«L. (5.1.3.8) 

where the right hand sides are as in equations (5.1.2.3), etc. (We will 
often drop the subscript when the context is clear.) 

Returning to the B-model 26^ we note that 

lkll9 ,= 0(<O- (5-1-3.9) 

LEMMA 5.1.3.1 

For atomic 8 , 6 $ 

L w^DOtti iffwegiaj 
2- w^P~^ai iffw^Qi-a,) 
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PROOF 

1. vff(DOa i,«;) = lifF 

w4nOal\\=nO\\ai\\=DOg(al) = g(ai)
±1=g(at). 

2. v e(D-1a i , iy) = lifF 

w e Ip- iaJI = D- , | | a J = D | | a J c = D^(a,)c = ^ a ^ = g^a,). I 

It follows easily from (T3) and (M8) that 

K-^rihln^aJi. 

In particular, 

ve((~ai)°,w) = 1 iff vg (n-,aitw) = 1 (5.1.3.10) 

so the last lemma can be restated as: 

COROLLARY 5.1.3.1 

L w^=»M
a° iffwegiaj 

PROPOSITION 5.1.3.1 

For any a £ $ 

w^mM
a° iffweg{a). 

The proof is an easy induction on the complexity (i.e. length) 

of a, the base case being covered by the last corollary. 
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PROPOSITION 5.1.3.2 

For a e $ 

\—Ba° implies \—QOL. 

PROOF 

Choose a Kripke orthomodel M — (W,~,g). Then, \—Bot° 
implies that a° is true in the B-model associated with M, namely, 
%i = (W,~,vg) (equation (5.1.3.2)): that is, w\=^a0 for all 
w e W. Then, by the last proposition, g(a) = W, so a is true in 
the arbitrarily chosen Kripke orthomodel M, hence in every such or­
thomodel, so \—Qa (Theorem 5.1.2.1). I 

Now, given a B-model 2S = (W, ~, v) we may construct a Krip­
ke orthomodel M = (W,~, gv), where gv is given on atoms by 

QM) S II <ll» = IPOaJa = \\a.C (5.1.3.11) 

(which is a proposition by Lemma 5.1.2.1 (3)), and defined induc­
tively on O. 

The following lemma is again an easy induction on complexi­

ty-

LEMMA 5.1.3.2 

For any a e $ 

2v(a) = i"°la-
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PROPOSITION 5.1.3.3 

For a e O 

\—Q a implies \—B a°. 

PROOF 

Choose any B-model 95 = (W, ~, v). Then if \—Qa, a is true 
in the associated Kripke orthomodel M (Theorem 5.1.2.1): that is, 
Qv(a) = W. So, by the last lemma, Ha 0^ = W showing that a° is 
true in the arbitrary B-model SS and hence B-valid. So \~B a°. I 

Thus, from the last two propositions, we obtain the modal 
translation theorem, namely: 

THEOREM 5.1.3.2 

For a G O 

h0aiffhBa°. 

We shall return to the modal interpretation of OL in the next 
chapter. 

It is to be remarked at this point that the Kripke frames that 
arise in the physics of quantum systems are of the following type. Let 
i£> denote a (complex) Hilbert space with inner product ( | ). 
Then, with f) denoting the set ^) — {0} of non-zero vectors in ^), and 
with £-Lr] iff (g\rj) = 0 for £, 17 e l ) , (fy-L) is an orthogonality 
space. 

Recall that if E is a subset of I) then the smallest closed sub-
space of $Q containing E, which we shall denote by [E], is just 
E U {0}, with terminology as in equation (5.1.1.10). Thus if E is 
a subset of I) we have 
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= [E]-{0} (5.1.3.12) 

so if E is a proposition (of ^) 

E=[E]-{0}. (5.1.3.13) 

Thus, a proposition of I) is a closed subspace of tQ with the zero ele­
ment removed. Conversely if .Fis a closed subspace of !g it is quickly 
seen that F — {0} is a proposition of I). So the propositions of I) 
correspond with the closed subspaces of & via the assignment 
£? I—> [£?], a correspondence immediately seen to be bijective. This 
bijection is also easily seen to preserve the respective ortholattice 
structures. (Note that in this correspondence 0 I—> [0 ] ={0}.) That 
is, the ortholattice R(fy) is isomorphic with the ortholattice of closed 
subspaces of S~). 

5-1.4 The Implication Problem and Orthomodular Logic 

In ordinary classical PC the interpretation of material impli­
cation, p—>q, as —\pvq has the consequence that for any Boolean 
algebra valued valuation v, 

v{p^q)=v(pYvv(q) = l iff v(p)<v(q). (5.1.4.1) 

This situation fails to hold in OL, however, as the following 
example shows: 
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(5.1.4.2) 

In this (nondistributive) ortholattice, known as the Chinese 
lantern, we have a'ub=\ but a[£6. Thus (5.1.4.1) would fail for 
certain valuations into this lattice of certain orthoformulae, showing 
that ~au/3 would not be a viable interpretation of a deduction 
(x\—QP in OL, in view of Theorem 5.1.1.1. 

There is another characterization of classical implication. In 
any Boolean algebra the element p—>q, defined as above, is charac­
terized by the property: 

r<p—»g iff r/\p<q (5.1.4.3) 

from which it follows that r=p—J>q is the largest element satisfying 
rAp<q. Such elements need not exist in nondistributive lattices, so 
this avenue of generalization seems to be closed to us: it will re-open 
later. 

The condition (5.1.4.3) is an expression of the fact that a 
Boolean algebra, when considered as a category whose objects are its 
elements and with morphisms given by <, is cartesian closed, p —> q 
being the exponential object usually denoted by qp: cf. Mac Lane 
andMoerdijkl991,p. 48. 

What we seek is an orthoformula (or orthopolynomial) in a, 
/3—denote itby a—f>(3—forwhich ct\—0(5 iff \—Qa—^p. For any 
orthovaluation v we would then have: 

v(a- r>/3)=t;(a)-^>v()3)=l iff v(a)^v(p). (5.1.4.4) 
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This is a problem involving only one pair of elements in the 
target lattice at a time. If these elements themselves lay inside a 
Boolean subalgebra of the target lattice then the condition 
v(a)£Zv((3) would be equivalent to the condition v(a)'uv(l3) = l and 
the hunt for —;-> (with the hope that, at least in this case, we would 
have v(a—r>(3)=v(aYuv(f3)) might be greatly simplified, albeit at 
the cost of specializing the logic itself. 

Let us then confine our choice of algebraic models to the sub­
class of ortholattices L satisfying the condition: 

For a,bsL, if a E 6 then the subortholattice 
of L generated by a and b is distributive, 
hence Boolean. 

(The subortholattice of L generated by a subset M^L is the small­
est subset of L containing M that is an ortholattice with respect to 
the operations of L. It is possible for a subset to be a sublattice with 
respect to n and u but not closed with respect to orthocomplemen-
tation.) 

Ortholattices satisfying this condition are precisely the ortho-
modular ones. The following result collects a few of the known equiv­
alent conditions. 

THEOREM 5.1.4.1 (Kalmbach 1983, Dalla Chiara et al 2002) 

Let L denote an ortholattice. The following are equivalent, for a,beL: 

1. if a^b then the subortholattice of L generated by a and b is dis­
tributive, hence Boolean; 

2. ifa^b then b=au(a'rib)—theorthomodular condition; 
3- ifa^b andbna'=0 then a = b; 
4. a E 6 ijfan(anby=0; 
5. for any a, b: an ( a ' u ( an6 ) )E&. 

Examples of orthomodular lattices include Boolean algebras, 
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which are just the distributive ones, and the lattice of projections in a 
W* -algebra, an example which includes the case of Hilbert lattices: 
namely, the lattices of closed subspaces of Hilbert spaces. The Chine­
se lantern, depicted above, is also orthomodular, as may be easily 
checked via the first condition listed in the theorem. 

There is an important notion of compatibility among elements 
in an ortholattice, an appellation having a physical origin: cf. §5.1.5. 
Namely, an element a is said to be compatible with an element b, 
written aCb, iff: 

a=(an6)u(anfe ' ) (5.1.4.5) 

It turns out that in an orthomodular lattice: 

aCb iff bCa (5.1.4.6) 

and that this condition also characterizes orthomodularity: it could 
be added to the list in Theorem 5.1.4.1. 

In a Hilbert lattice this condition is equivalent to the commit-
tativity of the corresponding projections and for this reason the com­
patibility relation is often called commutativity, and written more 
symmetrically as ai-^b. This symmetry is justified in an orthomodu­
lar lattice in view of (5.1.4.6). Note that a<r^b iff a<->6' and that if 
aEfc then a<->6. We can also define orthogonality (_L) in an ortho-
lattice: namely, al.b iff a E b ' . Thus, if al.b in an orthomodular 
lattice we also have o <-> b. 

An important result in the general theory of orthomodular 
lattices asserts that families of mutually commuting elements gener­
ate Boolean subalgebras (Varadarajan 1985). Thus, orthomodular 
lattices have a plentiful supply of Boolean subalgebras. 

Now we return to the search for an implicative connective in 
the subclass of orthomodular ortholattices. It can be shown (Kalm-
bach 1983, DallaChiara et al. 2002) that in an orthomodular lattice 
there are exactly five candidates for an implication —^> satisfying 
condition (5.1.4.4). Of these, only one satisfies the following "weak 
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cartesian closure" property (cf. (5.1.4.3)), also called the "weak 
import-export" property: 

if a<r>b, then c^a—^-b iff c n a E b (5.1.4.7) 

and is given by: 

a^>b = a'u(anb). (5.1.4.8) 

This connective has come to be called the Sasaki book, though 
the list of names of other pioneering toilers in this field include those 
of Finch, Mittelstaedt and Hardegree: please see the references al­
ready cited, particularly Dalla Chiara et al. 2002. By reason of 
(5-1.4.7) the Sasaki hook is often the implicative connective of 
choice for the logic that is characterized by algebraic models consist­
ing of orthomodular lattices and valuations into them. As Goldblatt 
has shown (Goldblatt 1974, Dalla Chiara et al. 2002) this logic may 
be axiomatized by adding a single axiom (labelled OM) to the list 
0 1 - 0 6 in §5.1.1, namely: 

OM. a n ( ~ a u ( a n / 3 ) ) h / 3 , 

which should be compared with Theorem 5.1.4.1 (5). 
Deducibility in this logic is defined as in OL, and will be de­

noted by r~oM. We will refer to this orthomodular logic as OML. 
(Warning: Dalla Chiara et al. 2002 labels it OQL.) 

Thus, we have the following theorem. 

THEOREM 5.1.4.2 

«|-oMiS iff hbM«-7>iS iff vL(a)tZvL((3) 

for all orthomodular lattice valued valuations vL. 
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Now it happens that the Sasaki hook, optimal though it may 
be, is, nevertheless, rather anomalous: it can be shown for instance 
that 

a-^((3^a) (5.1.4.9) 

is not always true. Insofar as —j» reflects deducibility in OML, it 
would appear from the invalidity of (5.1.4.9) that this type of de­
ducibility is far from being constructive in the sense of natural de­
duction: cf. equation (4.1.6) for instance. This intractability, unsur­
prisingly, shows up also in Gentzen calculi for OML. Here, CUT is 
generally not eliminable. 

Our conclusion is that standard OML is even less suited to 
the purpose of constructive deduction than is ordinary classical PC, 
over and above the obviously non-constructive axioms 0 5 and 06 
(§5-1.1). In the next chapter we attempt to redress this by extending 
the intuitionistic "formulae-as-types" paradigm into the quantum 
domain. 

The logic we have termed OML was almost universally adopt­
ed as the "quantum" logic until 1981, since it had been thought to 
embody the logic characterized by algebraic models based on Hilbert 
lattices. In Greechie 1981 an example of an orthomodular lattice was 
produced with logical properties distinctly different from those of 
Hilbert type. For this reason we will in this work reserve the term 
Quantum Logic (QL) for that logic determined by the class of 
Hilbert lattices. (Warning: this logic is termed HQL in Dalla Chiara 
et al. 2002.) We will return to a consideration of this logic in the 
next section. 

The presence of the orthomodular condition, though appar­
ently innocent, inflicts a surprising amount of damage upon logical 
preconceptions. Indeed, even the notion of orthomodularity itself is, 
in a certain sense, intractable, as Goldblatt 1984a stunningly demon­
strated. Specifically, although Kripkean models for OL can be ex­
tended to accommodate a characterization of OML, there is no first-
order characterization of the orthomodularity condition for or-
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thoframes. This has the consequence that the traditional method of 
proving that the relevant class of Kripke frames characterizes the 
logic—namely by showing that the canonical frame belongs to the 
class—fails for OML. That is, this method fails to determine a class 
of orthoframes which characterize OML. This characterization prob­
lem seems to remain open at the time of this writing. The orthomod-
ular condition somehow causes OML to escape the confines of this 
classically designed trap. 

5-1.5 Orthomodular Foundations for Quantum Mechanics 

It is possible to axiomatize the fundamentals of traditional 
quantum theory entirely within the context of orthomodular lat­
tices—a conceptually fruitful enterprise, which is the work of many 
hands. A mathematically rigorous, virtually seamless and physically 
convincing development of these ideas was set out in Mackey 1963. 
(See Varadarajan 1985 for an exquisitely detailed account of this pro­
gram.) A basic tenet of this approach is that the "logic" of a quantum 
system—i.e. the lattice of "propositions" concerning its "phase 
space"—should constitute an orthomodular lattice, in contradistinc­
tion to the Boolean logic of propositions that determine subsets of 
the phase space of a classical system. (This orthomodularity may be 
adduced from various assumptions concerning the measurement pro­
cess, inter alia) We will content ourselves here with a very brief 
recital of some of the basic definitions, most of which do not appear 
to have purely logically interpretations. 

In the following definitions, L will denote a countably com­
plete orthomodular lattice: that is, L contains meets and joins of 
countable families of elements. (As Theorem 5.1.1.2 shows, any or-
tholattice may be embedded into a complete one. The problem of 
whether or not an analogous result obtains for orthomodular lattices 
seems to be open at the time of this writing.) 
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DEFINITION 5.1.5.1 (Varadarajan 1985) 

An observable associated with L is a mapping 

x-M(M)^>L, (5.1.5.1) 

where 2S(!R) denotes the a-algebra of Borel sets of the real line, satisfy­
ing: 

1. x (0 ) = O, x(R) = l; 
2. for Borel sets E, FifEnF=0, then x{E)Lx{F); 
3. for a sequence E{ of mutually disjoint Borel sets: 

x(U£,) = U x ( ^ ) . (5.1.5.2) 

This generalizes the classical case, for which an observable is a 
real-valued function, f:X—>[R, measurable at least, on the space X 
of states of the system, with 

f-1:®(m—>2x (5.1.5.3) 

obeying properties exactly analogous to those listed in the definition. 
It is shown in Varadarajan 1985, Lemma 3.4, p. 46, that for 

any sequence Ei of Borel sets: 

x ( U ^ ) = U x ( ^ ) , (5.1.5.4) 

x ( n ^ ) = n x ( ^ ) , (5.1.5.5) 

and for any Borel set E: 

x(Ec)=x(EY. (5.1.5.6) 

123 



Quanta, Logic and Spacetime 

It follows from this that for any Borel sets E, F, x(E)<-:>x(F). 
There is a remarkable connection between the commutativity 

relation and the notion of an observable. Namely, it is shown in 
Varadarajan 1985, Lemma 3.7, that for a,beL, a<->6 iff there exists 
an observable x and Borel sets E, Fsuch that x(E)=a and x(F)=b. 
If we interpret x{E) as the quantum version of the proposition that 
"a value of x lies in E," then the proposition x(E) would be 
verifiable "by x." Consequently, by the result above, if a<->6 then 
the "propositions" a and b are verifiable by the same observable and 
are therefore said to be simultaneously verifiable, or—to avoid spuri­
ous and misleading temporal references—-jointly verifiable, or co-
verifiable. 

The notion of commutativity may be extended to observables 
in the obvious way: observables x and y are said to be simultaneously 
observable, or co-measurable, or compatible, if, for any Borel sets E, F, 
x(E)<r->y(F). Thus, two observables are compatible if, roughly 
speaking, they can be verified to jointly have values. 

Now we turn to the notion of states. In the standard formula­
tion of quantum mechanics a quantum system can only be ascer­
tained to be "in" a certain "state" probabilistically. Speaking roughly 
again, propositions concerning the system can only be assigned prob­
abilities of holding in a given "state." That is to say, a "state" induces 
a probability measure on L, whence the following definition. 

DEFINITION 5.1.5.2 

A state of L is a junction p:L—**[0,1] such that: 

1. p(0) = 0, p(l) = l; 

2. ifa{ is a sequence of mutually orthogonal elements of 
L, then p(l_lai) = Ep(a i) . 

Clearly, if pk is a sequence of states of L and ck is a sequence 
of real numbers with ck >0 for all k and Scfc =1, then 

124 



Quantum Logic 

P=*ckPk (5.1.5.7) 

is also a state of L, representing a statistical mixture of states pk, with 
ck playing the role of a probability—namely, the probability that the 
system will be "in" the state pk when it is "in" the mixed state p. 

Thus, the set of states of L is convex. The extreme points ofthis 
set—i.e. the states not expressible in the form shown in equation 
(5.1.5.7)—are called the pure states of L. 

(In a simplified version of the classical case, in which L is re­
placed by 2X for a set of classical states X, the measures correspond­
ing to the pure states are just the Dirac measures on points of X. 
That is, for xeX, the corresponding pure state is the measure on 
2X given, for Y^X, by: 

8AY)=\l [(XGY (5-1.5.8) 

Thus, elements of X may be identified with the pure states in the 
sense of the definition.) 

Given an observable x and a state p of L, we obtain a proba­
bility measure on 1R given, for -EG28(!R), by: 

Px
p(E)=p(x(E)). (5.1.5.9) 

This quantity may be interpreted, roughly speaking, as the 
probability that the value of the observable x, when the system is 
"in" the state p, lies in E. 

In the next section we will identify these entities in the case 
when L is a Hilbert lattice. 

5.2 Quantum Logic Proper: Hilbert Models 

Finally we come to the logic we have dubbed QL, namely the 
logic characterized by algebraic orthomodels consisting of Hilbert lat-
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tices and valuations into them. (As noted, Dalla Chiara et al. 2002 
calls this logic HQL.) Hilbert lattices being orthomodular, we have: 

a \-0 (3 implies a \-OM /3 implies a h^fi, 

where hx denotes deducibility in QL. Unfortunately, little seems to 
be known about deducibility in QL: even an axiomatization of it 
seems to be lacking. What is known is that the last implication can­
not be reversed, and proof of this fact had to wait until Greechie 
1981, in which it is shown that there is a QL deduction that is in­
valid in OML. 

Of course, the nonconstructive nature of OML is shared by 
QL, and is compounded with another highly non-classical aspect of 
Hilbert lattice models. This is the concern of the Kochen-Specker 
Theorem, which demonstrates the non-objective nature ofQL—and 
by extension, of quantum theory itself—in its most brutal form. We 
shall briefly outline a compelling recent reformulation of this result 
in §5-2.2, but first we return to the definitions of observable and state 
given in the last subsection to see how they manifest themselves in 
the Hilbertian case. 

5.2.1 Observables and States for Hilbert Lattices 

For a Hilbert space >̂ we shall habitually identify the lattice 
L(^>) of closed subspaces with the lattice of projections on ^>. The 
corresponding operations in this lattice of projections are given ex­
plicitly—for the indicated special cases—by: 

PMuPN = PM +PN -PMPN , (5.2.1.1) 

where PM denotes the projection upon the closed subspace M. 

If PMPN=PNPM then 
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^MnN—*M*N> (5.2.1.2) 

where recall that here Mr\N = MnN. 
Finally, 

P'M=PM,=I-PM. (5.2.1.3) 

The Spectral Theorem (Theorem 1.2.1) specializes in various 
ways. For instance, if A denotes a bounded self-adjoint operator on 
the Hilbert space & the unital C*-algebra generated by A—denoted 
by C*(A)—is commutative, and therefore isomorphic, via the 
Gelfand transform, with the algebra C((T(A)) of continuous complex 
functions on the maximal ideal space <J(A) of C* (A). This compact 
space is exactly the classical spectrum of the operator A, which is a 
subset of IR. Consequently, the naturally arising ^representation of 
C*(A) = C(cr(A)) upon & lifts to a ^representation of Co0R) upon 
^>, and the Spectral Theorem yields a projection-valued measure P 
for which: 

{£\A\7i) = \\dp£U) (5.2.1.4) 

for all £,176^, where \Jup is defined as in Theorem 1.2.1. 

The last equation may also be expressed in the form: 

KdP\X\ (5.2.1.5) 

This result generalizes to the case in which A is unbounded, 
and therefore definable only upon a dense subspace of $Q: in this case 
17 in equation (5.2.1.4) must be confined to the dense subspace in 
question. 

Conversely, given a projection-valued measure P, equation 
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(5.2.1.5) defines a unique, not necessarily bounded self-adjoint oper­
ator on a dense subspace Ql^lrje^Q: JHA2d/A^7)(A)<°o} of ^). 

Now, it follows from equations (5.1.5.5), (5-2.1.1), (5.2.1.2) 
and the mutual commutation of the lattice elements in the range of 
an observable, that an observable associated with L(!Q) in the sense 
of Definition 5.1.5.1 is exactly a projection valued measure. Thus, 
there is a one-to-one correspondence between observables associated 
with L{$Q) and not necessarily bounded self-adjoint operators on £>. 

The characterization of states on Hilbert lattices is the subject 
of a profound theorem of Gleason. Before stating it, we recall that a 
bounded operator A on the Hilbert space !g is said to be of trace class 
if: 

X|<£|A|£)|<oo (5.2.1.6) 
i 

for any orthonormal basis {£J. The trace of A is then defined as 

i 

a quantity independent of the choice of orthonormal basis {^}. 
A bounded self-adjoint operator p on ^) is a von Neumann 

operator (or density matrix) if: 

1. p is positive semi-definite: that is, for all £e^>, (f|p|£)>0; 
2. p is of trace class and tr(p) = l. 

For a closed subspace M of & and von Neumann operator p 
define: 

p p (M)mr(P M p) . (5.2.1.8) 

Then it is easily verified that pp is a state of L(S~)). (Cf. Definition 
5.1.5.2.) 
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THEOREM 5.2.1.1 (Gleason 1957) 

Let & denote a (separable) Hilbert space of dimension at least 3. 
Then the map p\—>p defined as in equation (5-2.2.8) is a convex iso­
morphism of the convex set of von Neumann operators on $Q onto the 
convex set of states of L($Qi). 

Lf p=|£)®(£| for fe^> with ||£||=1, then p is a pure state and 
all pure states are of this form. Moreover, the pure states determined by 
two such unit vectors, £,17 say, are equal iff there exists some complex 
number z with \z\ — \ such that r\—z^,. 

(For a detailed proof see Varadarajan 1985, and, for insight 
into the physical interpretation of density matrices, see Isham 1995.) 

It follows from the last part of the theorem that the pure 
states of L($~>) are in one-to-one correspondence with the rays—or 
one-dimensional subspaces—of ^>. We note also the significant fact 
that pure states can be superpositions of other pure states, in marked 
contradistinction to the case of a classical system. 

Given a von Neumann operator p and an observable A, the 
interpretation of equation (5.1.5.9) as giving the probability that the 
"value of A" lies in the Borel set E when the system is "in" the state 
p, reads, in the Hilbert case: 

prob(AsE;p) = tt(PA(E)p), (5.2.1.9) 

where P is the projection valued measure given by the Spectral 
Theorem. In particular, if p is pure, p=|£)®(f I for some unit vector 
£ and we have: 

prob(AeE;p) = tr(PA(E)\£)®({\) 

= (£\PA(E)\t) 
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= \\PA(E)£\(. (5.2.1.10) 

The expectation value of A "in" the state p may now be com­
puted via equations (5.2.1.9) and (5.2.1.5) as: 

(A)p^JJ\prob(Ae{\hp) 
AeR 

= l\dtr(P\A)p) 

= tr( \u\dPA{X)p) 

= ti(Ap). (5.2.1.11) 

If p=|£)®(£| is pure this yields 

(A)p = tx(A\&*(® 

= ($\A\i). (5.2.1.12) 

The equations (5.2.1.9) — (5-2.1.12) are fundamental to the standard 
interpretation of quantum mechanics. 

5-2.2 The Kochen—Specker Theorem a les Is ham and Butterfield 

Classical logic is non-contextual in the sense that PC is com­
plete with respect to valuations into the constant Boolean algebra 2, 
which plays a special role among Boolean algebras thanks to the 
Stone Theorem. This theorem may be interpreted as expressing any 
Boolean algebra as a (continuous) product of 2s indexed over the 
Stone space of the algebra or, equivalently, as the Boolean algebra of 
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continuous sections of the constant sheaf of 2s over the Stone space 
of the algebra. (For a generalization of this version of the theorem to 
orthomodular lattices, see Graves and Selesnick 1973, or Kalmbach 
1983, p. 82.) 

Al though or thomodular lattices have a copious supply of 
Boolean subalgebras, these subalgebras do not in general comport 
themselves in a classical manner within the ambient lattice. In fact, 
there is a sort of relative twisting among Boolean subalgebras of an 
orthomodular lattice which has the effect of confuting any attempt to 
impose a naive realist, objective, or non-contextual interpretation 
upon this collection of apparently classical sublogics. This is com-
pellingly revealed by a recent reformulation of the Kochen—Specker 
Theorem (Kochen and Specker 1967) by I shamand Butterfield et al. 

(Isham and Butterfield et al. 1998-2000) in terms of the theory of 
toposes. (References can be found below.) Before giving a very brief 
account of their important insight, we return to the issue of compati­
bility in Hilbert lattices. 

It is not hard to prove that for two elements M, N of the lat­
tice L(!Q), M<rJ>N iff the corresponding projections commute 
(Varadarajan 1985, Lemma 4 .9) . Moreover, two observables are 
compatible (as in §5.1.5) iff the corresponding operators commute, 
in the case in which these operators are bounded {ibid., Theorem 
4.11): thus they have a common set of eigenvectors. The exact physi­
cal import of this relation of compatibility among observables is, 
needless to say, a vexed question. For a lucid discussion of it, see 
Isham 1995, §6.3. 

As we have noted, Boolean subalgebras of the lattice L($Q) 

play a crucial role in the interpretation of the quantum theory of the 
system associated to the Hilbert space ^>. Every family of mutually 
compatible elements of L($Q)—i.e. jointly verifiable propositions 
about the system—generates a Boolean subalgebra, as we have noted, 
and, moreover, each observable gives rise to one via its spectral reso­
lution, as does every orthonormal basis. Each such subalgebra in a 
sense represents a "classical window" through which "states" of the 
system may be viewed. These "windows" are partially ordered by in-
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elusion, a relation that may be interpreted as a coarsening of the re­
solving power of the "view" afforded by the ambient algebra to that 
afforded by the included algebra. The classical-like "states" that can 
be viewed "through" a given Boolean subalgebra A of L(!Q) may be 
identified with the elements of that algebra's Stone space Spec A, 
which may in turn be identified with the set of valuations of A into 
2. Thus each "state" viewable through the classical window A corre­
sponds to a classical truth-value assignment to the elements of A. If 
such a "state" is to have any kind of objective reality, then it should 
be viewable through each classical window, and furthermore such 
views should be consistent with respect to common windows. 

Such a state will then give rise to a choice, for each Boolean 
subalgebra AC:L(!Q), of an element \A

 e Spec A, such that if 
A c: B, where B is another Boolean subalgebra of Life), then 

XA=XB\A, (5-2.2.1) 

the vertical line denoting restriction. 
As Isham and Butterfield (Isham and Butterfield 1998) point 

out, it is a consequence of the Kochen-Specker theorem that no such 
assignment exists, if the dimension of $Q is greater than two. That is 
to say, for the dimensions specified, that there are no states, or Krip-
kean worlds, at which classical truth values may be consistently as­
signed to the propositions represented by the elements of each 
Boolean subalgebra: there are no consistent classical views through all 
classical windows. 

Isham and Butterfield observe, furthermore, that an assign­
ment of the above type, namely A \—> \A, is precisely a global section 
of a certain presheaf, defined as follows. First, regard the set °W of 
Boolean subalgebras of L{!$)), partially ordered by inclusion, as a cat­
egory in the usual way. Then the assignment 

Spec-.W—^yet, (5.2.2.2) 
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where S'et denotes the category of sets, given for each A in I f by 
Spec (A) = Spec A, with morphisms in °W being sent to restrictions 
in yet, constitutes a contravariant functor, or presheaf, on °W. Now 
the category £/<?/trop of such presheaves is a simple example of the 
structure known as a topos (MacLarty 1992, Asperti and Longo 1991, 
Bell 1988, Lambek and Scott 1986, Goldblatt 1984b), and contains, 
among other objects, a terminal object, denoted 1: this is the 
presheaf that assigns to each object in °W the singleton set. For a 
presheaf S in this topos, a morphism 1—*-S is called a global section 
of S. It is clear that the global sections of Spec are exactly the assign­
ments of the form A \—> XA t n a t t ' e UP consistently relative to restric­
tions, whose existence is thwarted by the Kochen—Specker theorem. 

Isham and Butterfield et al. exploit this insight to reevaluate 
realism. Although global sections of Spec do not exist, local sections 
certainly do, and in abundance: these are sections over subobjects of 
the terminal object, and correspond to consistent choices of mor­
phisms XA f° r some objects A of °W. Now in every topos there is an 
object Q , the subobject classifier, with the property that subobjects 
of any object are classified by morphisms from that object into Q. 
(In the topos ifet it is the set 2.) Local sections of Spec give rise to 
subobjects of Spec and hence to ("global") presheaf morphisms 

Spec—> Q. (5.2.2.3) 

To interpret this in more mundane terms, let A now denote 
some arbitrary Boolean algebra. If we think of subsets of Spec .A as 
corresponding to, or being, Kripkean "A-propositions," then A is 
embedded by the Stone theorem as a subalgebra of the algebra of all 
possible A-propositions, namely 2Speo4. Functions of the form 

Spec A —>2 (5.2.2.4) 

correspond one-to-one with ^-propositions. In particular, the single­
tons {x}> X e Spec A, correspond to certain A-propositions, namely 
the atoms in the lattice of A-propositions. If we were now to allow A 
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to vary over the category °W, then we would not be able to select 
even an atomic proposition \XA^ ^or e a c h object A of °W in a con­
sistent manner if d im^)>2, by the Kochen-Specker theorem (a les 
Isham and Butterfield). One interpretation of this negative result 
might be that our notion of A-proposition, with truth-values in 2, is 
inappropriate to the context in which A varies over the category °W. 
Indeed, since we are working in a topos there is a more appropriate 
interpretation of the notion of a (varying per object) proposition, 
namely as a morphism of the type displayed in equation (5.2.2.3). 
Thus, for each object A of °W, propositions of the form equation 
(5.2.2.4) are replaced by those of the form 

SpecA—>QCA) (5.2.2.5) 

so that the static set of classical truth-values 2 in (5.2.2.4) is replaced 
by the context dependent set £l(A). 

It is a general result that the subobject classifier in a topos is 
an (internal) Heyting algebra (so that each £l(A) is a Heyting alge­
bra) and that the logic modelled by propositions of the form 
(5.2.2.3) is intuitionistic. 

Thus, Kochen—Specker prohibitions notwithstanding, certain 
aspects of realism—namely the existence of global valuations—may 
be reinstated in quantum theory, at the expense of requiring these 
valuations to lie in contextually dependent Heyting algebras. This is 
highly suggestive, since it shows that logical consistency among the 
classical sublogics can be maintained if the static Boolean proposi-
tional structure is traded, per subalgebra, for an essentially construc­
tive (i.e. intuitionistic) one. (In contrast, the logic of the ambient 
Hilbert lattice is highly non-constructive, as we note below.) 

In Isham and Butterfield et al. 1998-2000 a finely detailed 
theory of Heyting algebra valued valuations is developed and inter­
preted (very roughly along the lines of (5.2.2.3)) for various presheaf 
toposes associated with Hilbert spaces. 
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5.3 Critique of Quantum Logic 

Since its inception quantum logic has been roundly criti­
cized—rather unfairly, in this writer's opinion—for its various short­
comings vis-a-vis a chauvinistic classicism. Its status as a logic has 
been hotly debated by certain philosophers, with debatable results. 
Their problems are compounded for those physicists who gamely 
strive for an "interpretation" of quantum theory, and who often find 
pure quantum logic lacking certain attributes they would prefer it to 
have: for instance, it seems to be impossible to distinguish, on quan­
tum logical grounds, between composite systems and monolithic 
ones. (The category of orthomodular lattices does not have coprod-
ucts: see Svozil 1998 and Beltrametti and Cassinelli 1981.) At the 
same time, it must be said that quantum logical considerations have 
greatly clarified such subtle issues as the status of hidden variable the­
ories, theories of measurement, etc. (Bub 1997). 

It may be noted that certain criticisms leveled at quantum 
logic qua logic—such as the unpleasant behavior of the best available 
recipe for implication, namely the Sasaki hook—apply also to classi­
cal logic. Notable exceptions to this assertion include the intractabili­
ty of the orthomodular condition, the failure of CUT elimination in 
Gentzen calculi for quantum logic, and the failure of other classical 
principles involving deducibility (Dalla Chiara et al. 2002, §4). 
These failures compound the already obvious underlying non-
constructive aspects of the logic; thus it would appear that quantum 
logic is even more non-constructive than classical logic. This deeper 
difference should not be too surprising, given the ephemeral and 
non-objective nature of quantum "resources." 

The need of computational theorists to expand the expressive­
ness of ordinary logic led, via correspondences of the Curry-Howard 
type, to an appreciation that the logics most appropriate to the busi­
ness of computation are intuitionistic ones. With this model in mind, 
pace Birkhoff and von Neumann, we turn in the next chapter to an 
investigation of the possible computational resources available in the 
quantum case. 
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6 

The Computational Resources 
of Quantum Logic 

Standard quantum logic has been found wanting as a deduc­
tive system since deducibility in it is intrinsically non-constructive, a 
failing it shares with classical PC. In the classical case the path to a 
more expressive deductive logic led, through (intuitionistic) proof 
theoretic systems, to type theories like simply typed A-calculus and 
beyond. 

Since the introduction of orthomodularity apparently did 
nothing to ameliorate these non-constructive failings, we jettison this 
condition and return to a consideration of the core logic OL from a 
proof theoretic perspective as a step along the path—paralleling the 
route taken in the classical case—to a more expressive resource-
sensitive version of quantum logic. 

In detail, we first revisit the modal translation of OL in order 
to investigate possible relations between classical and quantum de­
ductions. Here we find a crucial difference, embodied in the quan­
tum phenomenon of superposition or "quantum parallelism," which 
is faithfully parodied in the Kripkean framework. It also becomes ap­
parent from these models that the classical Heyting paradigm would 
fail in the orthological case, even in principle. 

In the next section (§6.2) we introduce a purely syntactic 
minimal intuitionistic Gentzen sequent calculus based upon pre-
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sumed properties of quantum types, or resources, and show (§6.3) 
that a translation of the intuitionistic fragment of OL into this calcu­
lus may be effected simply by invoking a quantum version of the 
Heyting paradigm (§6.3.1). 

The calculus is then interpreted in the category of finite di­
mensional Hilbert spaces, which provides a model for it (§6.3.2). A 
one-step "quantum computation" is specified syntactically in the se­
quent calculus through the introduction of a single extra axiom. 
When this axiom is realized in the category of finite dimensional 
Hilbert spaces, the familiar qubit arises spontaneously as the irre­
ducible storage capable quantum computational unit (§6.3.3). 

The notion of quantum storage, accompanied by the con­
comitant dual notion of quantum copying or duplication, emerges 
directly from a consideration of the rule of Contraction as it is real­
ized in our sequent calculus, and the need to invoke quantum entan­
glement in the course of implementing it is immediately apparent. 
This is discussed briefly in §6.3.4, which may be skipped. 

In §6.4 we subvert our constructivist quantum principles in 
an attempt to accommodate classical time as the multiplexed storage 
capable version of the symbolic time quantum, or step, used in the 
newly added axiom. Although they are rather formal, these maneu­
vers reproduce (in a fairly natural manner) the standard picture of a 
quantum computation as being a one-parameter unitary dynamical 
group acting in the Schrodinger manner upon a tensor product of 
qubits. (We do not pursue the standard, classically timed, theory of 
quantum computation any further in this work.) 

With this chapter we close Part II and with it our purely logi­
cal considerations. In the final part of this work we will apply some 
of its lessons to our primary goal of computing the fundamental 
physical Lagrangians. 

6.1 An Orthological Toy 

The modal translation theorem (Theorem 5.1.3.2)—even in 
the restricted form in which we have presented it—can be used to re-
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veal an essential point of difference between (non-constructive) clas­
sical and quantum (or, rather, OL) deduction. 

To effect such a comparison we note that PC, which we may 
regard as the case of a modal system in which the modalities are col­
lapsed, is complete with respect to the class of degenerate Kripke or-
thomodels (S,=,v), in which every subset of S is a proposition. (For, 
Boolean lattices of subsets suffice to model PC, in view of the Stone 
Theorem.) We shall interpret the elements of S as the states of some 
classical "physical system" and, every theorem of PC being valid in 
this model, we have, for s&S and formula a (chosen to be atomic 
for simplicity): 

s\=av—id (6.1.1) 

(omitting the turnstile subscript). The "semantics" of this assertion 
reads: 

s\=a or s\=—M. (6.1.2) 

We may think of a as a variable describing some aspect of the 
system, such as a dial being lit on the front of the system's "case." 
Then equation (6.1.1) asserts the classical triviality that in each state 
of the system the dial light can be either on or off, and this limited 
repertoire exhausts the informational content provided in each state 
by the given theorem. 

This trivial classical example exhibits, upon quantization, de­
cidedly non-trivial behaviors, however. By "quantization" we mean 
that the trivial orthomodel (S,=,v) is suitably replaced by one in 
which the trivial proximity relation "=" is replaced by a more general 
one, " ~," to obtain a non-trivial B-model, 2S say, while the OL ver­
sion of the theorem in equation (6.1.1) is translated into its modal 
form. (This notion of quantization may be formalized: cf. Rawling 
and Selesnick 2000.) With <=> denoting logical equivalence in the B-
modal system, the modal translation (T1-T3, §5.1.3) of the or-
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thotheorem a u ~a yields: 

(au~a)° = (~(~ana))° 

= D ^ ( ~ a n a ) ° 

= D ^ ( D ^ a 0 A a ° ) 

s D ^ ( D ^ D O a A D O a ) 

» D n ( D O D ^ a A D O a ) 

o D ^ ( D ^ o A D O a ) 

(cf. (M8), Proposition 5.1.2.1) 

o Q ( n D - n a v - 1 D O a ) 

o D ( O a v O D ^ a ) 

» D O ( a v D n f l ) (6.1.3) 

(cf. (Ml), Proposition 5.1.2.1). 

Thus, at each "quantum state" w of the B-model we have 

w\=mDO(ava-,a), (6.1.4) 

which unfolds to read 

\/v~w3x~v such that x\=ma or x\=^\3—ia. (6.1.5) 
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In contrast to the classical case, a commitment to the truth of 
either a or —ia is not made at each w. Rather, it is made at certain 
granddaughter states, and both outcomes are possible: there may be 
some states accessible from states accessible from w at which a is true 
and others at which a is false. Thus, generic states, in a sense, carry 
attributes pertaining to both possible outcomes simultaneously. This 
property persists through any imagined evolution of states into other 
states, and is an expression of "quantum parallelism"—or super­
position—in the context of this model. It is precisely this notion that 
lies at the heart of the current interest in "quantum computing." Pro­
ponents of this idea hope to harness this massive and instantaneous 
quantum parallelism to computational ends. 

In the classical case the modalities are collapsed: there is no 
branching of accessibilities and therefore no parallelism. 

It may be noted also that there is a qualitative difference, ap­
parent even in this crude logical model, between the two possible 
outcomes at states like x in (6.1.5). Namely, in the case that 

x\=^n^a (6.1.6) 

obtains, we would have 

z\=^-na (6.1.7) 

for all z~x. This might not be the case if only the other outcome 
transpires: in that case there could be states accessible from x at 
which either condition obtains. If we were to extend the classical 
analogy we used earlier, then we might conclude that, if case (6.1.6) 
obtained, the dial light would be off, and stay off, whereas had only 
x\=^a obtained, the condition of the light would be in a sense inde­
terminate. Or, rather, in the absence of extraneous probabilistic as­
sumptions, its condition in the latter case would not be interpretable 
in classical terms, which are in any case inappropriate here. 

The case of an orthotheorem of the general form aujS may 
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be treated similarly. Namely, 

(auj6)°=(~(~an~jS))° 

s D - , ( ~ a n ~ j S ) 0 

= n - , ( D - , a 0 A n - , / 3 0 ) 

&n{Oa°vOpo) 

^ > D 0 ( a 0 v / 3 0 ) . (6.1.8) 

Thus, we have at each w (in each B-model <3i): 

w^nOi^vp0), (6.1.9) 

which is equivalent to 

Vv = w3x~v such that x^=ma° or x\=^l30. (6.1.10) 

Consequently, similar conclusions regarding quantum paral­
lelism apply to theorems which can be written as orthodisjuncts. 

This property is an aspect of the circumstance noted earlier 
(equation (5.1.2.11)) that, at a world u> in a Kripke orthomodel, one 
could have W\=CXLJ(3 without having either w\=a or w\=fi. With Q 
as before denoting a valuation in such a model, 

ty |=au(S iff weg(auf3) iff {w}LLc:g{auf3)=g(a)ug(f3) 

so that {w} may be regarded as representing a deduction of 
g{d)\-\g{(S) while not representing a deduction of either g{a) or 
g((3). Deductions of orthodisjuncts are not necessarily determined by 
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deductions of either component. Herein lies one of the highly non-
constructive aspects of quantum logic and one that stands in the way 
of a direct application of the standard Heyting paradigm (§4.2) to ef­
fect a transition to an intuitionistic "quantum" type theory, since, in 
this case, the classical set of deductions of a "quantum" disjunct can­
not be identified with the sum of the classical sets of deductions of 
the individual components. Rather, some quantum version of the 
paradigm is called for. 

6.2 GQ: A Minimal Intuitionistic Propositional Sequent 
Calculus for Quantum Resources 

In this section we initiate an entirely syntactic attempt to 
specify a "quantum" type theory in formal imitation of the Curry-
Howard correspondence. As we have learnt, the ordinary set theoret­
ic type combinators are inadequate as intuitionistic models here, so 
new ones must be introduced: this will be done by means of an intu­
itionistic Gentzen calculus that we shall dub GQ. Upper case Latin 
characters, A, B, ... shall be used to denote formulae (or, synony­
mously, types) in G Q and we leave the choice of atoms in abeyance. 

The multiplicative operation on types that is supposed to cor­
respond intuitionistically to the n of OL (as X corresponds to A in 
the ordinary Curry-Howard correspondence) will, for obvious rea­
sons, be denoted by ®. Similarly, the operation on types correspond­
ing intuitionistically to the u of OL will be denoted by ©, and that 
corresponding to ~( ) by ( ) * . These symbols (<8>, ©, ( )*) should 
not (yet!) be confused with their linear algebra counterparts: their use 
here is purely syntactic, the purpose being to bring to the fore the 
logical connections between the intuitionistic fragment of OL to be 
discussed below, and the Gentzen system at hand. Different symbols 
could (and probably should) be used, but this option seems specious. 

We shall discuss the rules of G Q informally first, collecting 
them together later in an official tabulation. Recall that an intuition­
istic sequent calculus is one which is supposed to be a metacalculus 
for some (notional or derivable) underlying natural deduction sys-
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tern, so that only single formulae—or none at all—are allowed on 
the right hand sides of sequents. We introduce the notation D to 
represent either a single formula or the absence of a formula (i.e. the 
null sequence). Otherwise, upper case Greeks will denote (possibly 
empty) sequences of formulae. 

In constructing these rules, we have taken seriously the notion 
of discharging hypotheses in natural deduction: cf. §4.2. The turnstile 
\— will be read as a kinematical interface through which formulae 
(quantum resources) may be discharged, this process being registered 
by the production of the starred version of the formula on the other 
side of the turnstile. The idea is that a deduction 

A 
\ (6.2.1) 

B 

in the notional underlying natural deduction system results in the 
discharge of A while B is produced. Put another way, A is dis­
charged in the presence ofB, resulting in the inference: 

A 

'• (6.2.2) 
B 

A*®B 

Here, A may be regarded informally as the discharged version of A 
and read "A discharged." In sequent language, this is expressed as 

(6.2.3) 
\-A*®B 

which may be read: if A produces B then it is the case that A is dis­
charged in the presence of B. 

If A produces nothing, as in 4̂.1—, then it may discharge by 
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itself: 

Ah 
, AT (6-2-4) 

Similarly, from the presumed behavior of the quantum inter­
face, a sequent of the form T,A\—B has the reading that A in the 
presence of T produces B, and may be discharged independently of 
r . This yields the rule: 

T-A^B, (6.2.5) 

We presume in addition that this interface is symmetrical to 
the extent allowed by the structural constraints of an intuitionistic 
calculus. For instance, if it is the case that A and B are "present," 
namely |—A0B, then A may be discharged to produce B and this 
process is also a deduction. This yields the rule: 

\-A®B „ „ 
(6.2.6) A*hB 

in which the lower sequent may be read: A discharged produces B. 
(Here, B may be absent.) 

Similarly, this may be done in the case in which T\—A®B. 
A discharged in the presence of T then produces B: 

^ ® B . (6.2.7) 

The rules (6.2.5) and (6.2.7) are the rules of negation in our 
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calculus. Here, negation is seen as a form of discharge, absorption or 
annihilation, and should not be confused with negation in OL, just 
as negation in PC should not be confused with IL-negation. (In fact, 
negation in IL may also be seen as a form of annihilation: to IL-
negate a formula one must deduce falsity from any purported proof 
of it. That is, identifying the formula A with its set of proofs, and de­
noting by f the falsum, or logical constant for falsity, the IL-negation 
of A may be written A => f. Thus A is consigned to the logical vac­
uum, or annihilated.) 

We now consider the structural rules. We shall retain the Ex­
change rules (cf. (4.3.2)), insofar as they may be applied under intu-
itionistic constraints, since there is no implicit logical ordering of the 
component formulae in OL conjuncts. (Issue could certainly be 
taken with this point, but we shall adopt this option here, if only for 
reasons of simplicity.) 

The other structural rules are more problematical. We will 
adopt as our informal guide in these considerations a quantum ver­
sion of the Heyting paradigm. Thus, we will think of the resource (or 
type) A as behaving like a "quantum set" of deductions of some un­
derlying OL formula. Thus, the terms of type A will be like deduc­
tions of some OL formula, but subject to quantum operations such 
as superposition. This should not be taken in any literal sense, since 
our purpose here is merely to arrive at a collection of logical or syn­
tactical rules. (Later, in §6.3, we will indeed take this quantum ver­
sion of the Heyting paradigm more literally.) 

Consider the rule of Contraction (cf. §4.3.4), which has only 
a left form in the intuitionistic calculus, namely: 

^ • r h ° . (6.2.8) 
A.ThD 

In the classical case of a notional underlying natural deduction sys­
tem this is justified, since the sets of labels for the two collections of 
deductions of the formula corresponding to the type A can be amal-
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gamated into a single set, while remaining intact, and discharged si­
multaneously: only a single invocation of A is therefore required. 
These resources are storage capable. Deductions associated with one 
occurrence of A can be copied, or duplicated for the benefit of other 
occurrences of A In our quantum case certain terms associated with 
one of the occurrences of the resource A may be annihilated in the 
course of a deduction while some of those associated with the other 
occurrence may remain. Thus, amalgamation into single collection 
may not be possible, owing to the evanescence of quantum processes, 
and we must jettison Contraction as a general rule. This has the con­
sequence that general quantum resources of this type are not storage 
capable. 

The meaning of Weakening (cf. (4.3.3)), which it will prove 
convenient to express in the form 

- 0 = 5 - . (6.2.9) 
r,A\-D 

may be interpreted analogously, in the natural deduction model, as 
the capability of introducing spurious, or null, collections of A oc­
currences which have no contextual side effects. This seems contrary 
to the general behavior of actual quantum resources: the introduction 
of new quantum acts into extant arrangements of acts may interfere 
with the behavior of those arrangements. (Consider, for example, the 
interposition of a filter between orthogonal polarizers on an optical 
bench. Photons previously blocked may now pass through the array.) 
Unless A is somehow insulated, its introduction might affect the 
context r by mixing or superposition so that Y,A\— D is not guar­
anteed. Thus, we must also relinquish Weakening as a general rule. 

If this were all that could be said about the structural rules, 
our investigation would end here. For, in the absence of storage capa­
ble elements, no useful computations could be carried out, even in 
principle: iterative processes would be blocked and the calculus 
would be useless. Consequently, inspired by Girard in a similar con-
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text (Girard etal. 1988), we will institute a search for possible special 
instances of quantum resources for which the structural rules might 
be reinstated: or, rather, we search for the logical rules which specify 
such resources. Before embarking on this, we note that, in light of 
the discussion above, if a storage capable resource could be found for 
which Contraction holds, then the annihilation or discharge of the 
terms belonging to separate instances of it in any sequent in which it 
appears more than once, must, in a sense, be coordinated. Thus 
quantum duplication would necessarily be associated with some kind 
of coordination or correlation of terms distributed over separate in­
stances of the resource. This observation will be confirmed in detail 
later, a circumstance that has profound consequences (cf. §6.3.4). 

We continue to adopt as our informal guide in this search a 
quantum version of the Heyting paradigm, which, curiously, will 
turn out to work formally as well, revealing better behavior than its 
non-quantum counterpart. Let us suppose, then, that a quantum 
type A is in fact the "quantum set" of deductions of some orthofor-
mula a. Then the terms of A denote deductions of a, so certain 
terms of A may be annihilated or discharged without affecting a it­
self. Thus, a may be used to regenerate A. So, in this case, reuses of 
the resource—and its concomitant storage capability—could be en­
visaged. Of course, A cannot generally be regarded as being of this 
type, but we could try this idea at the next level. Namely, let us as­
sume that the (quantum) set of proofs of A could itself be assembled 
into a quantum type, denoted \A (pronounced of course A: name and 
notation due to Girard). Then identical considerations apply to A 
rather than to a, with \A now being storage capable and, presum­
ably, subject to the rule of Contraction. 

Moreover, reverting to the case in which A models the quan­
tum set of deductions of some orthoformula a, there is a collection 
of deductions of a corresponding to instances of axiom 0 6 of 
§5.1.1. Each such deduction corresponds to the inclusion of the 
proposition 0 into any proposition in any Kripke orthomodel. We 
could introduce a spurious OL deduction of the form T>J\—Q OL, where 
VT denotes the quantum falsum, which is a logical constant sent to 0 

148 



The Computational Resources of Quantum Logic 

in any algebraic orthomodel. This spurious deduction of a would 
then give rise to a term of type A denoting in a sense the generic spu­
rious quantum collection associated with A. Recapitulating this at 
the higher level in which A replaces a and ! A replaces A, the exis­
tence of such a spurious quantum collection—associated now with 
! A—could presumably be used to implement Weakening for ! A in 
place of ,4 in (6.2.9). 

In addition to Contraction and Weakening—which we now 
posit for formulae of the form \A—we require two more rules per­
taining to the operator !. The first, 

r - A h D (6.2.10) 
r,\A\-D 

reads informally (continuing the strain of wishful thinking of the 
previous paragraph): if T in the presence of A can produce the re­
source D, then r in the presence of the type representing all proofs 
of A can also produce D. This would be reasonable if we were to 
adopt the axiom A\—A, which we shall be doing. 

The second rule asserts the basic defining property of the op­
erator ! : namely, in informal terms, it specifies the explicit circum­
stances under which a formula A may determine ! A. To wit: 

] F h A (6.2.11) 
IT\-\A 

(Here \T= ! A,, \A2,...,\An if TsA1,A2,... ,An) If A has been pro­
duced through the possibly repeated use of the storage capable re­
sources IT, then these resources may also be used to produce the 
multiplexed or repeatable version of A, namely ! A. In this rule a for­
mula A must actually be present. 

We can now dismantle the preceding verbal scaffolding and 
formally display the basic sequents of our calculus. Recall that D 
stands for a single formula or no formula (the empty sequence). 

149 



Quanta, Logic and Spacetime 

When it appears in the form ®D, the 0 sign is understood to be ab­
sent when D is empty. 

GQ 

STRUCTURAL RULES 

EXCHANGE 

T,AB,ri-DLE ThAVB^ 

r,B,A,Y'\-D ThB®A 

WEAKENING 

r h D LW NoRW (6.2.13) 

T,\AhD 

CONTRACTION 

'A ' A T\-D 

' ' ^ LC NoRC (6.2.14) 

\A,T\-D 

THE IDENTITY GROUP 

AXIOM 

A \-A Ax (6.2.15) 
CUT 

r,r'hD 
150 

CUT (6.2.16) 
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LOGICAL RULES 

CONJUNCTIVE (MULTIPLICATIVE) CONNECTIVE 

r,A,B^Dm r w j M R 8 (6.2,7) 
T,A®B\-D r,T'\-A®B 

DISJUNCTIVE (ADDITIVE) CONNECTIVE 

r.A^p r , g h c L e _ T K 4 _ R e ( 6 i l h ) 

T,A®B\-D T\-A®B 

T h B R0 2 (6.2.18b) 
T\-A@B 

NEGATION 

F h ^ L * T ^ ° R* (6.2.19) 

T>AhDU ^tAR[ (6 .2 .2o) 

The rule L<8> is a formation rule, while R<8> is inherited from 
0 8 , etc. (§5.1.1.) It is apparent that GQ. bears a close resemblance to 
a fragment of Linear Logic (LL) (cf.: Troelstra and Schwichtenberg 
2000, Abramsky 1993, Blute et al. 1993, Asperti and Longo 1991, 
Seely 1989, Girard et al. 1988 among many other references to this 
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vast subject.) It is in fact equivalent to a degenerate form of a frag­
ment of this logic: namely a version of LL in which the operators <8> 
and © coincide with their dual forms. (LL often flirts with miscon-
struals by using the sign _L for negation.) Various formal connections 
between versions of LL and versions of quantum logic have already 
been proposed: cf. the last part of Dalla Chiara et al. 2002 for an ac­
count of some of these and references to others. None of these seem 
to be obviously identical to what we have proposed here. 

Denoting proof in G Q by h™ we note the following. 

LEMMA 6.2.1 

1. A hGQ A** and A * hGQ A for any A. 

2 r,ihGQB 
r,B*hG(lA* 

PROOF 

1. For the first assertion apply Ax, then R* with T empty, then L*. 
Similarly for the second. 

2. Apply R*, then RE, then L*. I 

6.3 Intuitionistic Orthologic and GQ 

If the formal calculus we have posited above is to properly 
reflect deductions in the underlying deductive system it purports to 
describe, then we should be able to reproduce this underlying system 
within the calculus itself. Of course, the best that we could hope for 
would be to recover an intuitionistic version of this underlying sys­
tem, namely OL. 

We obtain an intuitionistic version of OL by discarding the 
IL invalid axioms—namely O5 and 0 6 (cf. §5.1.1)—and adding 
new ones for the disjunctive connective, since the De Morgan Law 
does not hold intuitionistically. We denote these connectives by the 
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same symbols as before. The rules for the resulting system—which 
we shall call IOL—are displayed below. 

AXIOMS 

IOL 

I02. 

103. 
104. 

I05. 
106. 

a\— a 

an(3\—a 

an(3\-(3 
a\—au(3 

phaufi 
a\ a 

INFERENCE RULES 

107. 

108. 

109. 

[O10. 

a\~P Phy 

a\-y 

a \~P a\-y 

a\—pny 

P\—a y |—a 

Puy\—a 

ahp 

i o -

~ j 8 | — a 

Deduction in IOL will be defined as it is in OL and denoted by hj, 

6.3-1 A Translation Theorem 

We now attempt to translate IOL formulae into G Q formu­
lae (assuming some common set of atoms) by reinstating some of the 
scaffolding used to arrive at the G Q rules. Specifically, we return to 
the informal reading of ! A as the "quantum set of proofs of A." 
Then we try a translation that is simply the (quantum) Heyting 
paradigm applied recursively to the logical operators. That is to say, if 
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ae denotes the G Q formula that is the translated version of the IOL 
formula a with 

ae = a for a atomic, (6.3.1.1) 

then the (quantum) Heyting paradigm yields exactly: 

{anPY =\ae®\pe, (6.3.1.2) 

( a u ) 8 ) e = ! a e e ! / 3 e , (6.3.1.3) 

( ~ a ) e = ( ! a e ) * . (6.3.1.4) 

Thus, equation (6.3.1.2) in this reading states: the GQtrans­
lation of an(3 is as (the quantum set of proofs of ae )®(the quan­
tum set of proofs of /3e). Equation (6.3.1.4) in this reading states: 
the translation of ~a is as the annihilator of all proofs of ae. This is 
the correct intuitionistic interpretation of falsity: every possible proof 
is refuted. 

This translation will be recognized immediately by readers 
conversant with LL as being almost identical with the Girard embed­
ding of IL into LL. It is worth noting that the Heyting paradigm in 
its simple pristine non-quantum form is not usually invoked to moti­
vate the Girard embedding, though presumably it lurks somewhere 
in the background. In the quantum case it seems to work perfectly 
and in explicit detail, and will soon restore us to the comforting arms 
of Finkelstein's extensor calculus, thus closing the circle and broaden­
ing certain perspectives in the process. 

Specifically, with the translation rules given above, we have 
the following. 
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THEOREM 6.3.1.1 

Ifa\-lo(3then\aehG(lP
e. 

PROOF 

Before embarking upon the proof, some motivational remarks 
are in order. We note first that the presence of the G Q formula ae 

may be fleeting, whereas the IOL formula a is static and repeatable. 
Consequently, to have any expectation that the deduction a hj0 )8 
may be translatable into a proof in GQ, we should render the "pro­
ducer" ae repeatable in GQ. Only then may deductions in IOL, 
which may require repeated uses of a, be done also in GQ: this ex­
plains the presence of ! ae in the translated version of the deduction. 

The proof of the theorem is by induction on the length of a 
deduction: that is, the number n of steps in a deduction sl;s1;...;sn 

of the sequent sn, where the axioms and inference rules used are 
those of IOL. 

A deduction with one step must be an axiom, and we first 
prove the theorem fi 
The proof for (IOl) 

For any a, 

For (102): 

For any a, 

each axiom in turn. 

e i e 

above and W! 
! « M / 3 e h G Q a e 

L<8> 
!a e®!/3 ehG Qa e 

!(!ae®!)6e)hG Oae 
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or \{an(3)eV-GQct 

For (103): Similar to (102), but using LE to interchange \<xe and 
!/Se after the second step. 

For (104): 
!"ehGQ>e 

! a e h G Q ! a e 0 ! j S e 
R 0 , 

For (I05): Similar, using R©2. 
For (106): 

For any a, 

But 

( ! t t T h G Q ( ! a T L , 

Lemma 6.2.1 (2) 
! ( ! a e r h G Q ( ! a e ) 

(!c*T*hGQ(!(!aef): 

!aehGQ(!(!«Tr 

(~~a)e=(K~a)T 

Lemma 6.2.1(1) 
and CUT. 

=(!(!ae)*)* 

which proves the theorem for (106). 
The inductive hypothesis for n is that the theorem holds for 

the last sequent in all IOL deductions of length less than n. (The 
base case has been covered above.) 

Consider a deduction sl;s1;...;sn of length n. If sn is an 
axiom then we are done, as above. If sn is not an axiom, then it fol­
lows from a rule of inference applied to preceding sequents. Each 
preceding sequent is itself the result of a shorter deduction, so the 
theorem holds for each of these, by the induction hypothesis. 

We consider each possible rule of inference in turn. 

(107): We suppose that sn is of the form a hf0 y and follows, via 
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(I07), from preceding deductions a\—lo /3 and /3hj0 y. Since, as re­
marked, these latter deductions are shorter than n, the theorem holds 
for them, namely !a eh^Q jSe and \fie\—G(i ye. It follows from R! that 
!ae|-gQ !/3e and then from CUT that !aeh[,L ye, so the theorem 
holds for this sn. 
(108): If sn is of the form a h j 0 / 3 n y and follows, via (108), from 
prior deductions a\~i0 (B and oi\-jQ y, then, as above, !ae|-gQ !/3e 

and !ae | -gQ ! ye. So 

! a e h G Q ! / r !« ehG Q !y 

!ae,!aehG(i!i3e®!7e 
R® 

LC 
!aehGQ!/3e®!ye 

!« e h G Q ( )8nyr 

so the theorem holds for this sn. 

(I09): If sn is of the form j 6 u y h j 0 a , etc., then we have 

!/3ehGQae ! y e h G Q « e 

! / 3 W h G O a 
L 0 

L! 
!(!/3e©!ye)hGQ«e 

! ( j8uyrh G Q « e , 

so the theorem holds for this s . 
n 

(IO10): If sn is of the form ~f3\—lo~a and follows, via (IO10), 
from the shorter deduction ot\-xo /3, then 
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\aehG0(3 

!aehG0!/r 

(!/3ThGQ(!aT 

!(!)8erh-G0(!«er 

R! 

Lemma 6.2.1 (2) 

L! 

GQ< 

which is !(~/3)e hco^""**)6 so the theorem holds for this sn. I 

6.3.2 The Model Category 

The pioneering efforts of J. Lambek (Lambek and Scott 1986 
and references therein)—who demonstrated a perfect correspondence 
between certain categories (namely the closed cartesian ones) and cer­
tain typed A- calculi (namely the A/3i7-calculi with surjective pair­
ing)—have led to a general appreciation that certain categories 
provide good models for certain type theories. In such a model, the 
types (or formulae) are interpreted as objects in an appropriate cate­
gory, and deductions are interpreted as morphisms going between 
the appropriate objects. 

In the case of our system G Q the choice of category in which 
to carry out such an interpretation would be clear on physical and 
constructive grounds, even if we had used a different notation: name­
ly, the category WF of finite dimensional (complex) Hilbert spaces. 
To carry out this interpretation, we need to specify, for each un­
named atomic G Q formula, a corresponding object in ^tF. Suppos­
ing this to be done, we then obtain for each G Q formula A an object 
of HCp merely by interpreting the occurrences of <8>, ©, ( ) * in A as 
carrying their usual meaning in the category <KF. We could now pro­
ceed informally by considering G Q formulae to be finite dimensional 
Hilbert spaces, and, leaving aside for a moment the interpretation of 
the operator !, we could replace each comma in a non-empty se­
quence r by ® and each empty sequence by C. G Q sequents 
A\—GQB are then interpreted inductively as elements of Horn (A, B) 
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according to the interpretations specified for the inference rules. For 
instance, -Ah-QQ-A (Ax) shall be interpreted as (or by) the identity 
map \A&Wom{A,A): the other rules hold in the category 3^F and 
linear maps may be built up which interpret G Q proofs in an obvi­
ous way. Thus, for example, in the case of CUT, if we have a proof in­
terpreted as an element of Hom(r,^4) = r ®A and a proof inter­
preted as an element of 

Uom{A®T',D)={A®TT®D=A*®{ry®D, 

then the tensor product of these two elements lies in 

T*®A®A*®{T')*®D. 

The A® A component may now be contracted (small c!) to yield an 
element in ( r ® r ' ) ®D. We specify this element as the interpreta­
tion in Htp of the proof r,r"|-QQ D given by the C U T rule applied 
to the original proofs. The other rules not involving ! can be treated 
similarly, using the properties of the connectives in 9fF, an exercise 
we leave to the interested reader. 

Now we turn to the question of how to model \A for a given 
finite dimensional Hilbert space A. To do this we resurrect the rele­
vant part of the scaffolding used to derive the rules of GQ: namely, 
we now take seriously the interpretation of \A as the "quantum set of 
proofs of A." Now, the lattice L(A) constitutes a model of OL and 
equivalence classes of OL deductions of A in the model L(A) corre­
spond with subspaces of A, by Theorem 5.1.1.1. These subspaces 
can be organized into a "quantum set," namely the exterior algebra 
E(A)—the quantum version of the set of subsets of the "set" A 
—which is an object in ^tF: this is exactly the substance of Finkel-
stein's extensorial calculus of quantum sets discussed in §2.3. Happi­
ly, this structure does, in fact, satisfy all the properties required of it 
by GQ, namely: 
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LW: Consider the counit cA:E(A)—*-C, given by projection upon 
the first component of E(A) (cf. §3.1.8). Then an interpretation of a 
proof ThcQ-D—namely, an element of Hom(T,D)—may be com­
posed with the map \(8>cA:T®E(A)—*-r<S>C = T to obtain an ele­
ment in Hom(V® E(A),D). 

This element is declared to be the interpretation of the proof 
obtained via LW of the original proof. 

LC: A similar argument using the coproduct E(A) —*-» E(A)® 
E{A) (equation (3.1.8.12)). We shall discuss the interpretation of 
this rule in a little more detail since it embodies the important notion 
of quantum copying—or duplication—of storage capable quantum 
resources. 

For the purposes of this discussion let us introduce labels (or 
terms) for G Q sequents. Thus, a sequent Y \—D may be labelled on 
the left as in / : T\—D. (This is equivalent to the notationally more 
standard expression \—f:T*®D.) Rules should now be introduced 
for the correct formation of terms as G Q proofs are constructed. We 
shall illustrate only a single short proof, in which these assignments 
are self-evident: namely 

f:\AhGOB g:\A\-~C 

(f,g):\AMhGOB®C 

dup lA(f,g):\AhGQB®C 

R® 

LC 

Read operationally, dup,A{f,g) labels the deduction obtained 
by "quantum duplicating" the storage capable resource \A in the 
preceding sequent, and then performing the deduction labelled by 
(/> 9)- When interpreted in 3 ^ , / and g may be regarded as the ap­
propriate linear maps, and we have: 

(/, g) is interpreted as f®g 
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and 

duplA(f,g) is interpreted as f®goij/A . (6.3.2.1) 

L!: A similar argument using the projection E(A)—>A upon first 
grade elements. 

R!: It suffices to show this for T containing at most a single formula, 
since, if T= Ax,A2,...,An, \T is interpreted as \Al®\A1®...®\An 

which is isomorphic as a coalgebra with \{AX®A2®...®An) 
(§3.1.8). Then !r|— A is interpreted as a map E{T)—>A. Dual­
izing this we obtain a map A* —*"i?(r)*= E(T*). From the universal 
property of E( ) this map lifts to a map E(A ) —>E(T ), and, du­
alizing again, we obtain a map -E'(r) —*-E(A). This is the interpreta­
tion of !r|— \A in the conclusion of R!. 

All of this could be done much more formally, with little gain 
in transparency as far as our endeavors in this work are concerned. 
That the category of finite dimensional vector spaces models full LL, 
with \A taken to be E(A ) , was shown in Blute et al. 1993. (In view 
of the remarks at the end §3.1.8 our use of E(A) is equivalent.) See 
also Seely 1989 for a clear discussion of more general categorical in­
terpretations of LL. 

Although we have fetched up essentially where we started, 
some valuable new perspectives have been revealed: 

• We have shown that, by means of the translation 
equations (6.3.1.1) — (6.3.1.4) and the interpre­
tation described above, IOL may be realized 
within the familiar category $CF via a literal use 
of a quantum version of the Heyting paradigm. 
This circumstance vindicates Finkelstein's earlier 
proposal to restore extensionality to quantum 
logic in a rather unexpected way. Moreover, the 
logic of 3 ^ , as specified by the rules of GQ, is 
seen to be an externalization of the intuitionistic 
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fragment of the logic of each of its object's 
"inner" subspace-lattice models of OL. 

• The correct notion of (intuitionistic) "quantum" 
implication is now seen to be interpretable in 
terms of morphisms in <MT: that is, in terms of 
ordinary linear transformations between the un­
derlying vector spaces, all of which are necessarily 
continuous for any chosen inner products. 

• These logical considerations have thrown up a 
formal specification of the notion of storage capa­
ble quantum resource. Such resources would be 
fundamental to any "quantum computational" 
endeavor, and the exploration of this notion in 
one form or another will occupy us for the re­
mainder of this work. 

6.33 A Model of Computation and the Emergence of the Qubit 

The systems GQ, OL, etc., are empty of physical content, 
embodying, rather, minimal rules for making certain deductions 
about abstract quantum "resources." The task before us is to supply 
physical input in the form of additional axioms, and additional rules 
pertaining to the "post-processing" of certain ensuing deductions. A 
system obtained by adding axioms to an existing system (such as 
GQ) is called by logicians a theory (or a GQ-theory). (Often, extra 
technical constraints are put upon these added axioms to ensure de­
sirable deductive behavior, but we shall not so constrain our (few) ax­
ioms here.) 

As a test of the formalism we shall (temporarily!) add an IOL 
axiom meant to simulate a single "time"-stepped deduction or com­
putation which preserves each type. Here we consider "time"-steps to 
be resources—necessarily constrained by our formalism to be "quan­
tum" resources—which are produced to accompany, or label, such a 
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transformation. This may be expressed in the static, resource insensi­
tive language of IOL by the axiom: 

a h i 0 t n a . (6.3.3.1) 

Here a is any IOL formula, and t is an atom. This is meant to cap­
ture the idea that a (re) produces a to the accompaniment (or pro­
duction) of a single time-step, time-quantum, or clock-tick. It is a 
crude attempt to force some preconceived notion of "time" upon the 
logical tabula rasa. 

The translation of this into G Q then yields the axiom to be 
added to GQ, namely: 

!a e h G Q ! t®!a e , (6.3-3.2) 

or, equivalently (in view of L*, LE and R*): 

(!t)*r-GQ(!ae)*®!ae. (6.3.3.3) 

Thus, the axiom amounts to the specification of a deduction 
from (!t)* to (!ae)*®!ae for each a. 

When realized in the category ^tF, the interpretation of ! t is 
somewhat problematical, but, whatever interpretation is given to it, 
ae will be interpreted as a finite dimensional Hilbert space, W say, of 
dimension n, say, and (\ae) ®lae will be interpreted as 

E{W)*®E{W) =EnAE{W). 

In view of equation (2.2.3.10) we have 

E(W) = E(@nQ 
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= <8>nE(C) (6.3.3.4) 

where E(C) — C®C the two-dimensional Hilbert space. This space, 
the irreducible quantum storage capable unit in ^tF, has come to be 
called (in the quantum computing literature) the qubit. In view of 
Finkelstein's Grassmannian interpretation of the functor E( ), the 
first C represents the empty quantum set (or the zero subspace of C) 
while the second C represents the subspace C of C, or the whole 
quantum set. If quantum superpositions were suppressed, we would 
have discovered the ordinary classical bit. Note that bit-based notions 
were not explicit in any of the considerations leading up to QG. 
Thus, the classical bit emerges, quite appropriately, as a classical de­
generation of the spontaneously arising qubit: quantum notions 
should indeed underlie classical ones. 

Equation (6.3.3.3) thus characterizes a "quantum computa­
tion," taking place in some version of "quantum time," as a map 
from a representer of the dual of the multiplexed quantum time-step 
resource t, namely (!t) , to a space of the form End(<8>n^>(2))> where 
>̂ denotes a Hilbert space of dimension n (<°°). That is: the an-

nihilators or absorbers of finite quantum sets of time-steps are 
mapped to endomorphisms of tensor products of qubits. 

The problem here is that the formalism seems to have worked 
too well in that "time" is also necessarily finitely or constructively 
quantized when forced into the picture, whereas the exigencies of 
macroscopic existence might require us to adopt a model of time that 
is infinite and classical. In order to attempt to redress this problem, 
and arrive at the standard notion of a quantum computation, we will 
need to step outside the categorical confines of 'MF. This will be done 
in §6.4. First, we are required to interpret rather more fully the no­
tion of quantum duplication. 

6.3.4 Quantum Duplication as Entanglement 

As we have noted, the general storage capable object in W,F is 
of the form E{$Q(n)) = ®n£>(2): such a tensor product of qubits has 
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come to be called a quantum register. 
The quantum duplication operator that interprets the G Q 

Contraction rule, namely 

ift(«> iftW r\-n 
• g ' - j p ' , (6.3.4.1) 

!£(n> T K D 

is the coproduct £(£ ( n ))—>£(© ( n ))®^(^0 , )) . Moreover, from the 
discussion at the end of §3.1.8, the isomorphism equation (6.3.3.4), 
which now reads E(!Q{n)) = <8>n^>(2), is a coalgebra isomorphism. 
Thus, it will be sufficient for our purposes to discuss the quantum 
duplication operator for the case of a single qubit ^?<2). 

At this point there arises an unfortunate clash of notations. 
When the qubit is realized as the (graded) Hopf algebra i?(C) = C 0 
C, the first component is generated by the unit of this algebra which 
is usually denoted by 1, and, since the coproduct i//:E(C)—>E(C)® 
E(C) preserves units, we have: 

«K1) = 1®1. (6.3.4.2) 

For an element x of the other C component we have (cf. 
equation (3.1.8.12)) 

ip(x)=\®x+x®l. (6.3.4.3) 

In the quantum computational context, a basis {1, x} of the 
qubit would be written, when normalized, as {|0), |1)}, a notation 
that is quite consistent with the earlier quantum set interpretation of 
the Dirac | ): as noted, the first element corresponds to the empty 
quantum set and the second to the whole quantum set. The duplica­
tion operations expressed by the above equations become 

165 



Quanta, Logic and Spacetime 

0(|O))=|O)®|O> (6.3.4.4) 

(K|1»=|0>®|1)+|1)®|0> (6.3.4.5) 

relative to the chosen so-called computational basis {|0),|1)}. 
Thus, quantum duplication applied to the "off" computation­

al basis element |0) produces a simple homogeneous pure state of the 
combined system ^) (2)®^) (2 ' , whereas duplication applied to the 
"on" basis element emphatically does not. Indeed, the state corre­
sponding to the right hand side of equation (6.3.4.5) is a maximally 
entangled state. We digress briefly to introduce the notion of entan­
glement. 

Let JQA and !QB denote the Hilbert spaces—assumed finite di­
mensional for simplicity—associated with "systems" A and B. Then 
the "combined" system has $)A®S3B as its associated Hilbert space. 
Consider a pure state of the combined system corresponding to a 
unit vector |0)e JQJ&IQB. This vector may be expressed as 

|0>=Xcyl£>®l^>, (6-3.4.6) 

where {|^)}and {|i7-)} are orthonormal bases for !QA and !QB respec­
tively: then Z | Cj • |2 = 1. 

The following question arises: what is the state of a compo­
nent system corresponding to this pure state of the combined system? 
Or, in reist terms, what state is the component system in when the 
combined system is in the pure state \ff)1 To answer this question we 
consider first a pure state of a general system with Hilbert space $~) of 
dimension greater than two (§5.2.1). This is of the form |£)®(£| for 
a unit vector |£) in &. In terms of the action vector picture of Chap­
ter 1, the operator |£)®(£| e £>*® >̂ may be thought to describe the 
primitive experiment in which a quantum is injected by the initial act 
|£) and absorbed by the final act (£|. 
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For \6) the associated density matrix \6)®{d\ is an element of 

( & ® & ) * ® & ® & = £ > £ £ ® & ® & , (6-3.4.7) 

and, as such, may be considered to describe a bipartite experiment 
along the lines of the discussion in §1.3. Namely, we may consider 
the possible acts upon the system B to be intermediary, or hidden, 
relative to those pertaining to system A (and vice versa). (For in­
stance, the two component systems could be spatially separated by 
arbitrarily large distances, though they are still combined in the man­
ner prescribed.) Then, the effect of the experiment \d)®{6\ upon the 
subsystem A may be obtained by taking into account all possible 
transitions associated with the B system, now considered to be "in­
ternal" (or hidden) relative to system A. That is to say, the effect 
upon A is obtained by performing the ^-contraction in equation 
(6.3.4.7) to obtain an element pA in IQA<8)(QA. This is called the trace 
over B (or the partial, or relative trace) and is denoted by: 

pA=trB(\dMd\) 

= Xq*ciJ£>o»<fi|. (6.3.4.8) 
i,j,k 

Now, it is easily checked that pA is in fact a density matrix for 
the A system (cf. §5.2.1) and so represents a mixed state thereof. A 
similar argument applies in the case of the B system. Thus, a pure 
state of the combined system entails, or induces, mixed states of the 
component systems. This highly non-classical behavior is the essence 
of the phenomenon known as quantum entanglement. 

Returning to equation (6.3.4.5), the pure state in ^)(2)®^)(2) 

(=&A<2)!gB) determined by 0(|1)) is represented by the unit vector 

|0>=^(|O)®|1)+|1>®|O)) (6.3.4.9) 
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and one quickly finds that 

pA=trB(\e)®(d\) = \IA (6.3.4.10a) 

pB = trA(\d)®(d\)=\IB (6.3.4.10b) 

(where the Is denote identity operators on the respective Hilbert 
spaces). Consequently, by equation (5.2.1.9), experiments to deter­
mine whether system A is in either state |0) or |1) will generate com­
pletely random outcomes, and similarly for system B. For this rea­
son, whenever the relative trace yields a multiple of the identity oper­
ator, as in this case, the state corresponding to \0) is said to be maxi­
mally entangled: no information about the internal constitution of the 
state—its preparation—can be obtained by separately performing 
"local" experiments upon the component subsystems. 

The duplication map if/ applied to any vector in ^)(2) will be a 
linear combination of the right hand sides of equations (6.3.4.4) and 
(6.3.4.5), and one of the upshots of our logical machinations is that 
quantum duplication—namely, that quantum process that corre­
sponds to the classical possibility of freely copying a resource—must 
in general entail quantum entanglement. This is borne out in the 
standard theory of quantum computing, where quantum entangle­
ment has been recognized as a fundamental resource and must be 
used in subtle ways—for instance to implement the transmission of 
quantum states by "teleportation." Naive attempts to copy such 
states would be confounded in view of the so-called "No Cloning" 
Theorem: see for example, Nielsen and Chuang 2000. 

It seems rather remarkable that "merely" logical considera­
tions have led directly to this subtlety regarding quantum duplica­
tion. 
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6.4 Quantum Computing in Classical Time: An Algebraic Model 

The interpretation of coproducts as quantum duplication-wVz-
entanglement may be extended to other relevant coalgebras that arise 
in similar contexts, such as those associated with T( ), S( ), U( ) 
and End( ) (cf. Chapter 3). Regarded as functors on appropriate 
categories, some of these coalgebras realize certain of the G Q axioms 
for !, etc., but generally not all of them: cf. Blute et al. 1993. We 
close this chapter with a treatment of quantum computation as em­
bodied in our axiom (6.3.3.2) but with the multiplexed time-step 
type !t now interpreted "classically." We do this for two reasons: 
firstly, as a limbering up exercise in preparation for what is to come 
in Part III—namely a less macroscopically chauvinistic treatment, in 
which classical "time" is replaced by something more intrinsic (which 
will turn out to be a quantum version of relativistic spacetime), and, 
secondly, as a means of arriving at the standard view of quantum 
computation as being performed in classical time. 

To render classical the type !t we need to interpret it in classi­
cal terms. This can be done by modelling! not by the exterior algebra 
but by the commutative algebra S{ ) . Thus, we now regard the "for­
mal parameter" t as the generator of a one-dimensional vector space 
Vso that S(V) may be identified with the one-dimensional affine al­
gebraic group C[t ] : this is just the usual complex polynomial algebra 
in the indeterminate t, equipped with the Hopf algebra structure de­
scribed in §3.1.4. Since it is only time that is being treated classically 
here, we maintain the quantum interpretation of ! in the other parts 
of axiom (6.3.3.3). 

Thus, we are required to specify a map 

4>:C[t]*-^End(<g>n£ (2)). (6.4.1) 

We shall make two assumptions concerning this map which 
together will yield the Schrbdinger option for describing the classically 
timed dynamics of a quantum register. The first of these concerns the 
notion of duplication. The quantum duplication of a resource corre-
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sponds to the classical operation of copying or repeating the resource. 
Our first requirement on (f) is that it should respect this type of 
repetitive behavior: in other words, (f> should be required to match 
the repetitive behavior of the resource "time" to that of the target re­
source—a sort of synchronization assumption. Thus, 0 is required 
to respect quantum duplication:Tor /,<7€<C[t] , we should have 

WfWig)) (6.4.2) 

or, from equation (6.3.2.1), 

<K/®0°<M=<M/)®0to)°^> (6-4.3) 

where iff and ij/B denote the coproducts respectively of C[t ] and 

End(<8>"<£>(2)). 
Equation (6.4.3) is exactly the requirement that <f> be an alge­

bra map for the algebra structures dual to the respective coalgebra 
structures. The dual algebra product on End (<8>n^>(2)) is, by design, 
just the usual one, while the commutative algebra product on C[t ] 
is easily described. 

First, we denote by Sm the element in C[t] dual to the basis 
element tm of the vector space C[ t ] , m = 0,1,... , so that 

Utn) = 8m,n, (6.4.4) 

where 8m n denotes the usual Kronecker delta. Then elements of 
C[t]* may be conveniently written as formal sums of the form 
£ c 8. 

n n 

PROPOSITION 6.4.1 

The commutative algebra product, denoted*, induced upon 
C[t]* by the dual of the coproduct if/ of the Hopf algebra C[t] is given 
by 
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8 *8 =(m + n)8 + 
m n \ m ) m+n 

_(m+n)\ 

mm 
, . m+n 5m+n- (6.4.5) 

PROOF 

For any m,n,k: 

(8m*8n)(t
k) = (8m®8nMtk)) 

=(Sm«fi„)(0(t)fc) 

=(Sm®SJ(l®t+t®l)* 

=I(*)8*,AJW (S-4-6) 

This sum can be non-zero only if m+n = k, and, when this is the 
case, the single surviving term occurs when m=l. 

Thus, 

(8m*Wtk) = (m+n)8m+n,k 

= ( ( m ^ n ) ^ ) ( t ^ ) . l (6.4.7) 
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It follows immediately from equation (6.4.5) that 

8m+n=-—-Sm*8n, (6.4.8) 
(ra + ?7,)! 

so that, for n > 0 , 

8n = — 8n-l* Sl 

^ 5j * . . . * 5j 

= -U". (6.4.9) 
n\ 

i " i 

Thus, general elements of C[t] may be expressed in the 
form 

^8? (6.4.10) 

and (f), being an algebra map, will be specified once (/KSj) is as­
signed. 

The second Schrodinger-like assumption on (f> concerns the 
interpretation of 5l. The logical atom t was introduced to represent 
the notional generic "time-step." Let us now take it more literally to 
represent the generic infinitesimal time differential dt. Then, its lin­
ear dual Sj should be interpreted as the dual of dt, which is the tan­
gent d/dt. As an operator, densely defined upon L2(R), it has the 
property that 
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dt) dt' 
(6.4.11) 

where the dagger denotes the Hilbert space adjoint. 
Our second assumption on (j) is that it should be chosen to 

preserve this (virtual) property of 5j. That is, 

# 5 ^ = - ^ ) . (6.4.12) 

Then we may choose 

WJ^-iH (6.4.13) 

for some Hermitian matrix H. 
Now, it is classical that the group Homa) (C[t], C), with 

group operation obtained as in equation (3.1.3.1), may be identified 
with the additive group of C. This identification is obtained by not­
ing that every element of Homa lg(C[t], C) is given by 

K(tn)=zn, (6.4.14) 

for some £ 6 C . That the association hz \—> z is a group morphism is 
immediate (cf. Abe 1977, Chapter 4). 

These hz are also elements of C[t ] , forming a subgroup 
with respect to the algebra product, and may be written (for each 
zeC) in the form 

hz = 50 + z8x + z282 + zi8i +... 

= § 0 + ^ 1 + ^ - 5 1
2 + | - 5 1

3 + ... (6.4.15) 

from equation (6.4.9). Thus we obtain a map 
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C ^ E n d ( ® n £ ( 2 ) ) (6.4.16) 

given formally by 

z^cf>(hz)=I + zcf)(8l)+^cf)(8l)
2 + ..., (6.4.17) 

since 50 is the unit for *. 
Supposing time to be real, we restrict to the additive subgroup 

M. of C to obtain the map 

R ^ E n d ( ® n £ ( 2 ) ) (6.4.18) 

given by t\—>exp(t(f)(8l)). Though defined formally, this series will 

always converge. 

Thus, the map realizing the action of time (or, rather, the ac­
tion of time intervals) that constitutes a "quantum computation" may 
be written, in view of equation (6.4.13), in the form t\-^e~lHt. (The 
physical interpretation of i f is, up to an additive real constant, as the 
operator Hamiltonian of the system.) 

Despite its formality, this model seems to have revealed the 
major qualitative aspects of those processes called quantum computa­
tions. To wit: 

• the unitarity and time reversibility of the processes; 
• the structure of the underlying Hilbert space as a 

quantum register, or tensor product of qubits; 
• the primary role of quantum entanglement as a re­

source in the implementation of quantum duplica­
tion. 

We note also that the unitarity of the action of the dynamical 
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operator entails the preservation, through the computation, of the as­
sociated Kripke orthomodel and subspace lattice structures. 

6.5 Conclusions 

We have arrived at the point at which the current treatments 
of the embryonic theory of quantum computation start, and interest­
ed readers could consult the vast and burgeoning list of works devot­
ed to this fascinating subject. We will leave it here, though, and, in 
the remainder of this work, will attempt a more general investigation 
into the nature of what it is that should replace that figment "classical 
time" as a universal labeller, and what it is that is labelled. In doing 
this, we will carry with us the qubit, and certain other quantum com­
putational resources culled from our logical considerations. 

In closing, we note some questions raised by the material in 
this chapter but not addressed here. Namely, 

1. Are there lattice characterizations of IOL? Such 
lattices might stand in relation to ortholattices as 
Heyting algebras do to Boolean algebras. 

2. Does the translation theorem (Theorem 6.3.1.1) 
have a converse? 

3. Is CUT eliminable from proofs in GQ? 
4. Do other categories exist in which GQ is real­

izable? 
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7 

A Quantum Net 

In this chapter we introduce an example of what Finkelstein 
has dubbed a quantum net. In general, this term refers to a quantum 
set-based construct exhibiting the kind of connective or causal struc­
ture that might be expected to yield a version of macroscopic space-
time in some kind of "classical" limit. This expectation is fed by the 
foreknowledge that the causal structure of a (classical) spacetime is its 
fundamental attribute, and essentially determines it completely. (For 
definitive results in a long line of development in this direction see 
Malament 1977, excellent background for which may be found in 
Naber 1992. For a sample of recent work on causal structure, that 
also addresses the quantization problem, see Raptis 2000a.) Finkel-
stein's innovation here is the introduction of quantum sets, and con­
comitant versions of causal notions. 

There is, inevitably, a profound disjunction between the 
terms of any spacetime theory founded upon a thorough-going non-
objective action vector interpretation of quantum theory, and the 
terms of cosmological theories of a more traditional stripe, in which 
the entire universe, or parts of it, are objectified, and may support 
collapsible wave-functions, C*-algebras, etc. In the non-objective ac­
tion vector view to which we aspire here, the net is not a "model" of 
spacetime or any such thing, but rather a collection of acts per-
formable by an experimenter—albeit an ideal one. It is the pattern of 
transitions associated with this act-structure that is supposed to coa-
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lesce ultimately into those amplitudes, etc., that a macroscopic ob­
server might associate with the plenum of her or his experience. Our 
problem is to devise a candidate for such a collection of acts. 

The particular net we adopt here is based on a somewhat phe-
nomenological "superconducting" model introduced in Finkelstein 
1988b. Our approach to the central pairing phenomenon will be 
through a logical analysis of qubit symmetries and the adoption of an 
axiom along the lines of §6.3.3. There are, however, intrinsic post hoc 
mathematical reasons for believing in the Cooper pair paradigm in 
the form used here. These are sketched in a final section (§7.3), 
which may be safely skipped. 

7.1 Symmetries of the Qubit 

For an n-dimensional Hilbert space—denoted for simplicity 
here by W—the one-dimensional n -grade component \lnW of 
E(W) represents the quantum set whose classical counterpart is the 
"whole set" regarded as an element of the set of subsets of a finite set. 
If we allow a quantum-classical correspondence of the form 
E{W) <-» 2X, where X is a finite set, then 

VnW<r*Xe2x. (7.1.1) 

In the Boolean model of ordinary PC that 2X (with its lattice 
structure) represents, X is the local truth—i.e. the value assigned to 
all PC theorems by valuations into the Boolean algebra 2X: namely, 
the upper bound 1—while 0 represents the local falsity, or lower 
bound 0. 

Now the choice of an isomorphism <p:\/nW—> C is entirely 
determined by a choice of generator for V"W and so corresponds, in 
the rough sense of equation (7.1.1), to a choice of "local truth" for 
the corresponding quantum set theory. 

Suppose now that n = 2. For any choice of basis, {ej,e2} say, 
of W, an experimenter may realize W as the qubit E(C) in two 
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ways: either e, is taken to determine the ray corresponding to the 
zero-th grade subspace generated by |0) and e2 as the first-grade ray 
(or local truth) |1), or vice versa. We can operationalize these choices 
as follows: first, choose and fix an isomorphism 

<p:\J2W—>C (7.1.2) 

(which fixes a local truth, or generator of V W, as that element sent 
to 1 by <p). Then we have a map 

WttW—^WVW^^C (7.1.3) 

which is non-degenerate in the sense that if (p(x v y) = 0 for all y, 
then x — 0. Consequently, there exists an isomorphism 

e-.W^W* (7.1.4) 

given by 

e(x)(y) = <p(xvy). (7.1.5) 

(The dependence of e upon <p is suppressed in our notation, but 
should be borne in mind. Note that any two such <ps are projectively 
related and so give rise to projectively related es.) 

Note that for any basis {epe2} C W: 

e(e1)(e1) = 0 (7.1.6) 

£(e1)(e2) = <p(e1ve2) (7.1.7) 

so that 

g(e,) = ^(e1ve2)e*, (7.1.8) 
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where e* denotes the basis element in W* dual to e2. 
Similarly, it is seen that 

e(e2) = <p(e2ve1)et. (7.1.9) 

First, we note that 

e(e ,) :W—>C (7.1.10) 

induces the splitting W= C © C corresponding to the operation of 
choosing e2 to act as the |1) component: it is mapped to the repre-
senter (p(exve2) in C of the local truth e,ve2 . Similarly, e(e2) may 
be interpreted as the splitter corresponding to the choice of el as the 
|1) component, etc. Indeed, all elements of W* are thus realized as 
superpositions of these two choices of splittings. 

The second observation is that equations (7.1.8) and (7.1.9) 
are completely symmetrical with respect to e1 and e2. Interchanging 
them leaves the pair of equations unchanged. This gives rise to the 
"logical" symmetry of the classical degeneration represented by the 
two-element set {e,,e2}. We could take one element to represent 0 
and the other to represent 1, or vice versa. Valuations of PC formulae 
into this set are intertranslatable among these two choices by means 
of Boolean duality, in which 0 and 1 are interchanged. Thus we re­
cover Z2 as the appropriate group of logic symmetries in the degener­
ate classical case. 

In the quantum case there is an infinite number of different 
choices of bases (thanks to the presence of superposition) and con­
comitantly a wider choice of "allowable" logical translations among 
them. Since a choice of basis corresponds to the choice of a family of 
commuting observables, or classical window, the basis changes we 
seek to identify as allowable should correspond to allowable transla­
tions among different choices of realizations of Was "the" qubit. The 
set of such transformations should form a group whose elements are 
akin to dictionary entries, translating among different basis choices. 
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It is expected to be a wordier dictionary than the simple classical one, 
which merely translates 0 as 1 and 1 as 0. 

A change from one basis to another is equivalent to having an 
invertible linear transformation, L:W—>W say. We shall deem 
such a basis change "allowable" if it preserves the operational choice 
structure (e) associated with the transformed basis. This amounts to 
the requirement that L renders commutative the following diagram: 

(7.1.11) 

That is, we require: 

L o g oL = s (7.1.12) 

or 

e°L = ( L T ° £ (7.1.13) 

Now, for x,yeW 

((soL)(x))(y) = s(Lx)(y) 

= (p(Lxvy), (7.1.14) 

hile wnile 

(((Lyioe)(x))(y) = ((Lyi(s(x)))(y) 

= ((L-r(e(x)))(y) 
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= e(x)(L-ly) 

= (p(xvL~1y) 

= <p(L-lLxvL-1y) 

= (det I7X) <p(Lx v y) 

= (dctLT\(eoL)(x))(y) (7.1.15) 

from equation (7.1.14). 
Thus, the diagram commutes only if detL = 1: that is to say, 

L G SL(2,C) and the latter group emerges as the group of allowable 
"logical" transformations of the qubit among macroscopic experi­
menters. This symmetry corresponds to the classical ^-symmetry of 
Boolean duality (to which it degenerates) and is a globalized version 
of the n = 2 case of the quantization of 'S^n as £>I(n,C) found in 
§3.2.3. 

Insofar as the qubit represents the non-objective quantum 
analog of the classical binary alternative, or bit system {0,1}, we have 
found that, as compared to classical experimenters, quantum experi­
menters are faced with a different and wordier dictionary—namely 
SL(2, C)—to effect logically allowable transformations, since, rough­
ly speaking, the firm ground of a common logical frame is no longer 
underfoot. 

A classical experimenter may ultimately boil down the result 
of any act of interrogation to a sequence of bits. The framing of such 
an atomic or irreducible act of interrogation corresponds to a certain 
initial act for a quantum theorist, and the classical registration of the 
resulting bit corresponds to a certain final act for the quantum theo­
rist. The space or spaces of such quantum acts are thus qubits admit-
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ting non-trivial representations of SL(2, C). 
It is appropriate at this juncture to recall a peculiar fact con­

cerning representations of the groups SL(n,C), which may be incon­
venient mathematically but is of special import to the (macroscopic) 
quantum relativist. Namely, these groups admit no non-trivial irre­
ducible finite dimensional unitary representations (cf. Hewitt and 
Ross 1979). Therefore, no candidate initial space for the "quantum 
binary alternative" chosen as above can admit a unitary representa­
tion of SL(2,C). Suppose an experimenter were to choose a candi­
date representation upon a space !Q, whose Hilbert space inner pro­
duct ( | ) is given, or determined, by the experimenter's choice of 
frame: i.e. a choice of basis assumed orthonormal. Then, if g \—> Tg 

for geSL(2,C) denotes the representation, for an initial vector £, 
Tg (f) will represent the corresponding initial vector for—or relative 
to—an allowable transformation of the frame. Since the representa­
tion cannot be unitary for any choice of inner product, there will 
exist for some geSL(2,C) an initial vector £ such that ||7^(f)||^||£||. 
Thus, the outcome of the simple ideal experiment |£)®(£| may de­
pend upon the experimenter's choice of allowably transformed frame: 
"Quantum transformations relate determinations which may express 
inequivalent, indeed incompatible, information." (QR, §4.3.1.) This 
seems to demonstrate an essential feature of Finkelstein's notion of 
quantum relativity. The passage just quoted continues: 

"Classical transformations relate experimenters 
who assign different names to equivalent actions. 
Thus a classical transformation is like a bilingual 
dictionary that has a unique equivalent in each of 
its two languages for every word in the other. 

Quantum transformations proper relate ideal 
experimenters who generically choose to perform 
incompatible actions. They change not merely our 
description but our conception of nature . . ." 

An analogous situation arises in classical relativity: an experi-
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ment—to determine the relative positions of spacetime events, 
say—may yield different results when an experimenter transforms to 
another (local) Lorentz frame. In this classical theory there are as­
sumed to be independent external objects, namely spacetime events, 
and an infinite multiplicity of "other" experimenters, or observers. 
The quantum experimenter, in contrast, may assume neither objects 
nor "other" experimenters, who would presumably also be objects, 
but may perform "allowable" SL(2,C) transformations between 
frames (and other acts of selection among initial vectors). Indeed, 
these allowable transformations, though as yet necessarily somewhat 
uninterpretable, will ultimately disclose their dynamical import in 
relativistic terms. 

To return to our quest for a suitable class of qubits, we recall 
that, up to equivalence, the irreducible finite dimensional representa­
tions of SL(2,C) are tensor products of the form HJ&Hn where Hm 

is a certain irreducible representation of dimension m and the repre­
sentation conjugate (Hewitt and Ross 1970)^to the representation Hn 

is denoted by superscripting with a tilde: Hn . One may think of the 
matrices implementing the conjugate representation as being the 
complex conjugates of those implementing the representation upon 
Hn. (See Knapp 1986, Chapter 2.) There is a unique such tensor 
product for each pair (m,n) of dimensions. In particular, there are 
exactly two inequivalent two-dimensional irreducible representations, 
S, say, and S. In S s equivalence class one finds the natural, or fun­
damental, representation of SL(2,C) upon C . Thus, it appears that 
there are two different "flavors" of quantum binary alternative, name­
ly the qubits having S and S, respectively, as initial spaces. Since 
these two representations are inequivalent we shall regard the under­
lying spaces as orthogonal: only the null transition between acts per­
taining to different truth-flavors should be allowed. 

It is worth digressing briefly to remark on a significant dis­
tinction between these two "truth-flavors." The representation whose 
representation space we have denoted by S, is, as a map SL(2,C) 
—*-GL(n,C), holomorphic, while that associated with S is antiholo-
morphic. This has the implication that S is determined by a complex 
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linear representation of §1(2, C) whereas S is not. Thus S might be 
thought of as arising as the coherent form of the infinitesimal or "mi­
croscopic" quantization of Z2, whereas S is entirely an artifact of the 
global or macroscopic construction performed to arrive at equation 
(7.1.15), etc. This may have implications for time asymmetry at the 
deepest quantum level: see the remark at the end of §12.4. 

If we interpret the elements of S and S as the basic interroga­
tive acts available to experimenters, then they may be used to label 
certain transformations of quantum resources, just as we tried to in­
troduce classical time as a label in §6.3.3. That is to say, an act of in­
terrogation may be used to label the transformation it induces upon a 
quantum resource. In this case, two different labels are available and 
we posit a naive static IOL axiom in the from 

a\-lo(tnt)na (7.1.16) 

in imitation of equation (6.3.3.1). Here, upon "interrogation," a 
(re)produces itself accompanied by the registration of a label of each 
of the two possible types, regarded as logical atoms. This yields upon 
translation into G Q the axiom 

!aeh-GQ!(!t®!t)€>!ae (7.1.17) 

or 

(!(!t®!t))*hGQ(!ae)*®!ae. (7.1.18) 

We may realize this axiom in 3 ^ by assigning finite dimen­
sional Hilbert spaces to the atoms in the usual way. To the atom t we 
assign the one-dimensional first-grade component of S for some 
choice of splitting which realizes S as the exterior algebra of this 
component, and to t we similarly assign the other truth-flavor's first-
grade component in some splitting of S. In such a realization, 
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(7.1.18) takes the form of a map 

E(S®S)* ~^End&2n). (7.1.19) 

Thus, annihilators or absorbers of (finite) quantum sets of S, 
S pairs are used up to produce transformations upon whatever sys­
tem is involved: cf. §6.3.3. The basic sets of pairs are like lists of 
Boolean questions—i.e. questionnaires—whose application induces 
transformations upon the system examined, as the instrument of in­
terrogation is itself used up. Unlike classical questionnaires, these 
admit superposition. 

As matters stand, the lengths of the questionnaires are severely 
restricted by the finite dimensionality of the spaces involved. An ac­
tual experimenter should be able to apply questionnaires of arbitrary 
length. Consequently, there is again a need to break out of the 
confines of the category Wp, at least as far as the multiplexing of 
S®S in the antecedents of the last pair of equations is concerned. 

Just such a structure was proposed by Finkelstein in Finkel-
stein 1988b. 

7.2 A Superconducting Quantum Net 

For historical reasons—a history that we will find ourselves re­
capitulating in miniature in later chapters—these representations S 
and S are known as spinor representations of SL(2,C) and their ele­
ments are referred to as spinors. It seems convenient to maintain this 
standard usage even though an explanation of its physical significance 
must be postponed. 

The appearance of the space of spinor—conjugate spinor pairs 
S®S as representers of the fundamental ideal (or "pure") interroga­
tive act available to a macroscopic experimenter is irresistibly reminis­
cent of Cooper pair formation in the BCS theory of superconductivi­
ty. In this theory, as a result of the complex dynamics within a crys­
talline solid such as a metal (or more general systems), electrons may 

188 



A Quantum Net 

pair up in a subtle way at a low enough temperature to form a 
macroscopic boson-like ground state. (This new vacuum sponta­
neously breaks the gauge symmetry of any ambient electromagnetic 
field and gives rise to the characteristic peculiarities of superconduc­
tors, such as the MeiEner effect, etc. A toy geometric model of this 
phenomenon is discussed in §12.3.) Thus, we might suspect that the 
space S<8)S of spinor pairs may similarly represent an intermediate 
Maxwell-Boltzmann stage in the progression (cf. §2.3): 

Underlying Fermi-Dirac *" S®S > macroscopic (7.2.1) 
structure (Maxwell-Boltzmann boson-like 

phase) "ground state" 

The arrows represent, possibly, collective effects such as phase 
changes and/or spontaneous breakages of symmetry, etc., whose de­
tails lie below the resolution we are able to address in this work. 
(There is another path to the Cooper pair analogy that goes in the 
other direction along the right-most arrow in the above diagram. 
This is discussed in §7.3.) 

For geSL(2,C), let g\-^Lg denote the natural representa­
tion whose representation space we have denoted by S. Then 
g I—> Lg denotes the corresponding operator in the conjugate repre­
sentation of SL(2, C) upon S. Now, the representation denoted by 

®(g) = Lg®L~ (7.2.2) 

is irreducible, and a candidate for the right-most entry in the diagram 
begins to heave into view when it is realized (by a macroscopic exper­
imenter) that the representation 2) has the property 

2)(±1) = Is®Is (7.2.3) 

and so extends to a representation of the quotient SL(2,C)/{—1,+1} 
—identifiable as the group of Lorentz transformations Aj with 
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det A = 1 and A°0 > 1 and known as the restricted or orthochronous 
Lorentz group L+: see, for example, Bogolubov, Logunov and 
Todorov 1975. (In this connection recall that SL(2,C) is the univer­
sal covering group of L+ and that we have an exact sequence 

0 >Z2= {-1,+1} >SL(2,C) >L\ >1, (7.2.4) 

where the map SL(2,C) >L+ is a local isomorphism.) 
Thus the elements of S®S "transform like" complex Lorentz 

vectors with respect to the representation 2). Consequently we may 
entertain the possibility that the macroscopic boson-like "ground 
state" figuring in diagram (7.2.1) will be an initial act (or aggregate of 
acts) pertaining to the continuous spacetime structure apprehended 
by macroscopic experimenters. 

The remainder of this work will be occupied mainly with the 
task of postulating and/or interpreting the various elements of the di­
agram (7.2.1), and certain associated structures. 

In Finkelstein 1988b a candidate for the left-most element in 
the diagram was put forward. (See also Finkelstein 1988a, 1989a and 
b, and 1991.) To describe it, we note first that, according to the dis­
cussion in §2.3, a first step toward a deeper level underlying the 
"Maxwell—Boltzmann phase" represented by the Cooper-like pairs 
S®S could be effected by replacing these pairs by q-sets. Since we 
require q-sets based on both S and S, we should base the qet struc­
ture on S(BS , obtaining SET(S(BS) . Now, as suggested earlier, in 
classical thinking the most general form of "interrogation" would 
seem to take the form of a questionnaire. This is an ordered set of 
propositions or deductions, the traversal of which may involve tree­
like branching. At each stage of a traversal the results up to that point 
are compiled, or "unitized," or "definitely described." In set theoretic 
terms we may see this as the placement of set-making braces { } 
around the result obtained so far. The next step would entail the in­
sertion {via set union) of another logical element, and this would be 
followed by bracing again, and so on. Thus, a hierarchical order is 
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imposed upon certain elements in the appropriate higher-order set al­
gebra. 

A similar construction may be carried out by a quantum ex­
perimenter using q-sets in the algebra SET(S@S) based upon initial 
(quantum) interrogative acts represented by S and S. Finkelstein ar­
gues that the hierarchical order imposed upon the qets involved, that 
breaks the permutational symmetry of the v operation appearing 
therein, should give rise ultimately to the local causal structure of 
macroscopic spacetime. The operation of v-ing an interrogative act, 
followed by unitizing the result by applying t = | ), then constitutes 
the basic microscopic synchronic step, creating the causally adjacent 
act. The pairing hypothesis then descends to the requirement that 
the causal insertions of interrogative acts via the v operation should 
occur in pairs to produce, from qets £ already unitized, causally adja­
cent acts of the form 

r£.-.(£) = ||r->v||i:>v£», (7.2.5) 

where E e 5 and E~eS. 
Starting with £ = | 0 ) , the space of qets generated by repeated 

applications of the T -operators is an example of a quantum net. 
(For a discussion of the general notion see QR, Chapter 16.) These 
are the qets obtained by operating upon | 0 ) with the complex alge­
bra generated by the T -operators. This latter algebra (of operators 
upon SET(Sm§)) shall be denoted by C[TN]. 

The assignment (X, IT) l—> T , considered as a map from 
SxS into the algebra C[T ], is bilinear, and therefore lifts uniquely 
to a linear map <f) of S®S into this algebra (§2.2.1). This latter map 
then itself lifts uniquely to a map <D : T(S®S) - ^ C [ T N ] of unital 
algebras (§2.2.2). It is then only a mild abuse of the notation to write 
4>{6) = Ye for 6eS®S. The horizontal map in the following com­
mutative diagram is the canonical inclusion of S®S into its tensor 
algebra: 
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(7.2.6) 

C[rN] 

Now, elements of S®S ( c T(S®3)) act on T(S®5) via the 
"left regular" representation, which we denote by T0, for 6eS®S. 
Namely, for dv...,dneS<8>S we have 

r8 l(02«...®0„) = 01®02®...®0n 

= rfiir92...ren(i), (7.2.7) 

where 1 is the unit in T(S®S). 
Thus, from (7.2.6), 

o(rer92...r()n(i)) = o(0I®02®...®0j 

= O(01)O)(02)...O(0J 

= 0(01)^(02) . . .0(0j 

= if1r.
N

2-it- <7-2-8> 

We shall denote the complex algebra generated by the 
operators Te, 6eS<8)S by C[r ] . Then, if {dk}

4
k=1 denotes a basis for 

S®S, it is easy to see that C[T] is freely generated by {re }fc=1 and 
that the algebra map C[T] >T(S®S) determined by the assign­
ments Tekl... Tekn h-> T6ki... Tgkn (1) = 0!®02®.. .®0„ (equation (7.2.7)) 
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is an isomorphism that is, in fact, independent of the choice of basis. 
(For: it is easily checked that the inverse of this isomorphism is the 
analog of O for the linear map S®S—>C[r] sending 6 to Te. This 
analog of O does not depend upon the basis chosen, and so its in­
verse doesn't either.) 

Composing this isomorphism C[r]—*-T(S®S) with O yields 
a surjective algebra map C[r ]—>C[r ] in which Te,...Tek is 
mapped to T6k ... V^ . (Although unproven, it seems quite likely 
that this map is also one-to-one.) 

As we have remarked, the hierarchical structure that results 
from the unitizations in equation (7.2.5) breaks the symmetry of the 
v operation, and this breaking constitutes, as it were, a partial traver­
sal of the left-most arrow in diagram (7.2.1). That is to say, the adop­
tion of the pairing hypothesis, taken in conjunction with the q-set 
construction, effects a partial "phase change" from a Grassmannian 
substructure to a Maxwell—Boltzmann aggregate, as postulated in 
§2.3: in a sense, v may be replaced by ®. Viewed in this light, the 
algebra C[T] represents a lifting of the "net" algebra C[T ] into the 
Maxwell—Boltzmann phase, i.e. along the first arrow in (7.2.1). 

(In the context of our sequent calculus considerations, net ele­
ments correspond to quantum sets of terms. The corresponding clas­
sical sets of terms may be obtained by reversing the quantization pro­
cess and replacing each | ) by { } and each V by a comma (while 
suppressing superposition). Then the "phase transition" in which v 
is replaced by ® may be viewed also as part of a quantum version of 
our earlier interpretation of GQ. in 9^ (§6.3.2), in which ordinary 
sequences of formulae are realized as tensor products of the corre­
sponding objects in Htp. The idea of viewing such a phase change 
(namely, the one associated with the right-most arrow in (7.2.1)) as a 
translation between expressions lying in different categories, will be 
used again in the subsequent chapters.) 

If the net and its algebra represent acts performable upon a 
"discontinuous" Fermi—Dirac-like quantum system by an ideal mi­
croscopic experimenter, then we may interpret the corresponding 
Maxwell-Boltzmann (tensor algebra) phase in terms of acts per-
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formable by an experimenter upon the macroscopic surface of this dis-
continuum: see §2.3. (Indeed, the Maxwell—Boltzmann operators Te 

reflect the (causal) linkages in the underlying Fermi-Dirac structure, 
which is the import of equation (7.2.8).) Such ideal macroscopic ex­
perimenters would, of course, be capable of vastly greater resolving 
power than is currently (or would conceivably ever be) available to 
human physicists—even those still funded. 

The second arrow in diagram (7.2.1) should then somehow 
interpret the pairs Z®X~ in terms of (Lorentz) vectors in the contin­
uum, which combine commutatively. Thus, the reticular operators 
Te —or their intermediate Maxwell-Boltzmann versions Te—should 
somehow acquire a continuum interpretation in terms of commuta­
tive operators in passing from the left of the diagram to the right, 
perhaps by undergoing some sort of phase change or condensation. 
We will begin to form such an association, or "correspondence prin­
ciple," in the next chapter. 

7.2.1 Some Remarks on Types and Reductions 

We shall continue to regard Hilbert spaces of action vectors as 
types in the sense of G Q (despite the fact that we will sometimes have 
to step beyond the category 3^), and will attempt to maintain the 
integrity of such typing as we proceed. Though the value of such at­
tention to typing is well known to computer scientists, it is usually 
absent from physical computations (except perhaps in the realm of 
dimensional analysis). We hope to show that it has surprising 
benefits in this arena also. 

So far, our fundamental types are 5" and S. Later it will prove 
convenient to incorporate (or insert) into the net structure other 
types besides S and S. (These insertions will arise out of an attempt 
to explicitly realize spaces of defects in the net.) In general, the un­
derstanding will be that, when circumstances require it, a new type 
may be amalgamated into the SET algebra as above, and made avail­
able for insertion into the net. This will have the effect, in the 
Maxwell-Boltzmann phase, in which v is replaced by ®, of intro-
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ducing tensors of mixed types. In keeping with the discussion in 
§1.3, contractions among matching types within multi-indexed ten­
sors of this kind (which yield amplitudes, traces, operator products, 
etc.) may be used to model externalized views of such compound acts 
or experiments. For example, the contraction of the inner pair in a 
segment of type ...V ®W®W <£)D ... yields an operator composi­
tion, contraction of the left-most pair in a segment of type 
W®W*®D yields the image (in D) of the left-most element via the 
operator corresponding to the right-most-pair, etc. 

Both of these reductions (or deductions) are interpretations of 
GQ. CUT executions or eliminations, the first being the interpretation 
of an inference of the form 

V\-GOW W\-GOD 
^ "—, (7.2.1.1) 

VhG(lD 

while the second is an interpretation of the special case 

hGOW WhGOD 
- ^ -^—, (7.2.1.2) 

cf. §6.3.2. (Note that our rules interpret h"™^ a s a m a P ^ — > D , 
which amounts to specifying an element of D.) 

As another special case, the contraction of W8>W* may be 
regarded as an interpretation of a CUT of the form 

- ^ - ^ . (7.2.1.3) 

Here, the naked h™ is interpreted according to the rules as an ele­
ment in Hom(C,C) = C: namely, the trace of the operator corre­
sponding to that element in W8>VF which is the interpretation of 
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the line above. 
Segments of mixed type, such as V ®W, may be viewed as 

spaces of compound experiments whose constituent acts pertain to 
different systems. These may be reduced if a transitional relationship 
between V and W is implicit or has been specified by the experi­
menter—for instance, by specifying a mapping from V to W (or 
equivalently from W to V) and then using the map to define the 
transitional structure in an obvious way. As a special case we could 
map V to 0 in W , or equivalently assume that V has been de­
clared orthogonal to W, meaning that transitions w —> v are express­
ly forbidden, as in the case of S and S. Then the contraction is 
defined, and yields the zero amplitude. 

This amounts to supplying a sequent of the form W h™ V 
in the presence of V ®W so that CUT may be applied to arrive at an 
element in V h™ V interpreted as a linear operator on V. After such 
a deduction we arrive at an amplitude by taking the trace. 

Elements of type V*®V®W*®W may be considered to be 
of the form P®Q for operators P on V&n&Q on W. Inner-to-outer 
contraction of the variety considered in §1.3 may not be defined for 
such elements: this would reflect the circumstance that the two 
subexperiments do not interface (since in this case internal transitions 
are not defined), and should be viewed externally as a pair of experi­
ments upon two separate systems. Then amplitudes can be obtained 
only by contracting like pairs, producing values of the form trPtrQ, 
which we note is exactly tr(P<8)Q): thus, for such compound experi­
ments upon such systems, transition amplitudes seen by maximally 
external experimenters must be of this type. 

The corresponding sequent deduction is of the form 
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V\-GQV W\-GOW 
— ^ ^ R<8> (7.2.1.4) 

v.wv-^vwr L 0 

with the trace of the resulting operator being taken as a final, or post 
processing, step. 

In summary, if a certain compound experiment is represented 
in the form P®Q, where P and Q are operators on not already suit­
ably related spaces—or, if they act upon already suitably related 
spaces but are assumed to represent independent or non-interfacing 
experimental acts—then the fully contracted amplitude, as seen by a 
maximally external experimenter, is 

t r(P®Q) = t rP t rQ. (7.2.1.5) 

On the other hand, for an act of the form P®Q, where P and 
Q act on the same space (or suitably related spaces), then (§1.3) the 
fully contracted amplitude, as seen by an external experimenter, may 
assume the form 

tr(PQ) (7.2.1.6) 

if the (now possible) internal transitions are assumed to take prece­
dence. Effectively, in the latter case, the internal contraction across 
the ® in equation (7.2.1.5) is possible because P and Q act on the 
same space. (This corresponds to the first case considered (7.2.1.1) 
with V — D = W, followed by the taking of the trace.) 

Thus, reductions of mixed tensors follow the pattern of CUT 
eliminations and the taking of traces, the latter process being itself a 
degenerate form of CUT elimination: cf. the remarks following equa­
tion (4.3.13) and those at the end of that chapter. 

Later, in Chapter 11, we will find that the presence of just 
such a mix of types serves, among other things, to distinguish the 
form of the gauge field interactions—that is, Yang-Mills—from that 
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of gravity—i.e. Einstein-Hilbert. (Cf. end of §11.2 and the discus­
sion preceding equation (11.2.2.47).) 

7.3 A Geometrical Approach to the Net 

In this section (which may be safely skipped) we sketch an ap­
proach to the derivation of a semi-quantum net-like structure that in 
essence predates the author's encounter with Finkelstein's ideas. It 
starts in the continuum and goes in the other direction: that is, we 
attempt to pull certain continuum notions backwards along the 
right-most arrow in diagram (7.2.1). We arrive at a (commutative) 
structure that is very similar locally to the (noncommutative) one ob­
tained by pushing the superconducting net forward along the left­
most arrow in the diagram (replacing v by ®). 

The idea is to suppose that an experimenter wishes to design a 
quantum mechanical initial act that injects an infinitesimal "quan­
tum" step in some direction away from some point, x say, in a model 
of classical spacetime, which we take to be a manifold M. Ultimately, 
the experimenter will want to build local path-like "questionnaire," 
or history, injectors by forming sequences of such initial acts. ("Local" 
here means tangential: these path-like acts will pertain to a quantum 
version of the tangent space at the point in question.) Now the "di­
rections" through the point x may be identified with rays in the tan­
gent space 2T at x, and an obvious candidate for the initial space of 
acts "injecting" such a ray would surely be the space <3X itself, assum­
ing an appropriate Hilbert space structure could be found for it. 
Such a structure could be imposed if M were actually a complex man­
ifold, an assumption we now make. 

Thus, starting with a complex manifold M we have interpret­
ed the fibres of the tangent bundle as spaces of initial vectors repre­
senting acts of injection of the corresponding directions through 
point in the manifold over which the fibre sits. Now the directions 
through a point x are parametrized by the projective space P(2T ) of 
the tangent space 2T . So effectively we have attached to each point 
x e M the projective space P(9^) and then associated with each ele-
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ment of P(9^.) the corresponding ray, which is interpreted as repre­
senting the initial act of injection of that direction (i.e. point of 
P(2T.)). This collection of projective spaces assembles into a bundle 
P(2T) over M called the projectivization of 2T. The collection of rays 
now associated with each element of this bundle space P(ST) consti­
tutes a line bundle over P(9~) called the tautological bundle (cf. Bott 
and Tu 1982). Each point of the manifold has in a sense been re­
placed by the projective space of directions through it to produce a 
new manifold P(2T), which is in fact a bundle over the original man­
ifold, with bundle projection map we shall denote by TT: P(2T)—>M. 
Over the manifold P(9~) sits the tautological line bundle, which, fol­
lowing geometrical usage, we shall denote by 0(—1). The fibre in this 
latter bundle over an element of P(2T), which is a direction through 
a point of M, is the ray corresponding to that direction: 

0 ( - l ) 9" 

(7.3.1) 

P(3~) M 
TT 

The vectors in this ray are interpreted as initial vectors for the injec­
tion of a generic "step" in the corresponding direction. 

For geometrical reasons it will be convenient to consider the 
dual of the tautological bundle, denoted 0(1). (This is the line 
bundle that generates the group of line bundles on the projectiviza­
tion: its Chern class is 1.) Since bundles are determined by their 
sheaves of germs of sections, it will be an additional convenience to 
identify a bundle with its equivalent (locally free) sheaf of germs of 
sections. In this language 0(1) is known as the twisting sheaf ot Serre. 
For us, the fibres of this bundle represent final acts of registration of 
the local steps alluded to above. Then the fibres of the bundle 
T(0(1)) (cf. §2.2.2) represent final acts of registration of sequences 
of such tangential steps: that is, final acts for paths in the tangent 
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spaces. Thus we have effected a partial quantization of the tangent 
bundle of M. In fact, tensor products of line bundles are symmetric, 
since the fibres are one-dimensional and bundles are determined by 
their sections which, in this case, are locally just ordinary functions 
into C. (See Selesnick 1983 for an algebraic view of this property.) 
Consequently, T((D(1)) is a bundle of commutative algebras. This 
commutativity is, as usual, a consequence of the initial positing of an 
underlying object, namely the manifold M. Thus the commutative al­
gebra bundle T(0(l)) is a sort of semi-quantum bosonic approxima­
tion to a quantum version of the tangent bundle. 

Now sheaves, unlike bundles, always have pushouts (or "di­
rect images") which are also sheaves, and pushing out along IT yields 
in this case sheaf isomorphisms (over M) for n > 0: 

7^(®"0(l ) )s© ng- , (7.3.2) 

so that 

7r,(T(0(l)))-(D2r, (7.3.3) 

as in the following diagram: 

T(0(D) 7^(T(0(l))) = (DSr 

\ / (7.3.4) 
" \ / 

P0") * M 

(For a proof in the algebraic category, see Hartshorne 1977.) 
The pushout TTJ, T(0(1))) = (s)1^ in a sense represents our 

semi-quantum tangent bundle as viewed in the continuum. A fibre of 
the right hand side of equation (7.3.3) is isomorphic with the poly­
nomial algebra in the generators of the corresponding tangent space 
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(considered as a set of commuting indeterminates). This latter alge­
bra serves as a model for a Bargmann representation of the CCR (in 
which it is dense) corresponding to the dimension of M. Here, the 
boson creation operators are implemented by multiplication by the 
appropriate generator: thus the tangent vectors are realized as boson 
creators. The peculiar relation between such Bargmannesque power 
series-like representations and the intuitive notion of a curve will be 
taken up in §8.2. 

Now there is a likely, indeed canonical candidate for M, 
namely the conformal compactification of Minkowski space, realized 
as the Grassmannian Gr2(C ) of two-dimensional subspaces of C 
(Manin 1988). This manifold has the interesting property that its 
tangent bundle admits a decomposition of the form: 

STs5*<8>5*, (7.3.5) 

where S and S here denote bundles of "Grassmannian" spinors. 
Thus T(0(1)) is in this case a (bundle of) commutative algebras gen­
erated locally by Cooper-like pairs of (dual) spinors. (Duals appear 
because we chose to work with the dual of the tautological bundle.) 

Our algebra C[T ] of T -operators, when pushed along the 
left-most arrow of diagram (7.2.1) and realized as the algebra C[T] 
of multiplications in the tensor algebra, yields an exact noncommuta-
tive tensorial analog of the (dual form of) the typical fibre of 
T(0(1)). (An attempt—not pursued further in these notes—to inter­
pret this chimerical model in reticular terms may be found in Se-
lesnickl991.) 
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8 

Towards a Correspondence 
Principle for the Quantum Net 

Three levels (or degrees) of resolution seem to have emerged 
from our considerations so far. At the deepest Fermi—Dirac quantum 
set level lies the quantum net itself, corresponding to hierarchical ar­
rangements of interrogative acts performable by highly idealized ex­
perimenters capable of such resolving power that they can detect the 
discontinuous underlying Fermi—Dirac structure of the system. For 
want of a better name we have referred to such experimenters as "mi­
croscopic," although even they have some macroscopic contamina­
tion, since we have chosen spaces of initial vectors that explicitly in­
corporate those global symmetries appropriate to "macroscopic" ex­
perimenters who implement the coherent, or Lie group, form of the 
transformations. (We remark again that the adoption of these coher­
ent forms entails the appearance of the antiholomorphic two-
dimensional representation of SL(2,C).) This incongruity can do no 
harm until we actually start investigating the consequences of adopt­
ing such transformations, and this we shall do mainly at the next and 
coarser level of resolution, which we consider to be macroscopic in 
any case. At this next level we find the Maxwell—Boltzmann "surface" 
phase, consisting of acts appropriate to somewhat less ideal experi­
menters with somewhat lower (but still unimaginably high) resolving 
power: a power insufficient, for example, to detect the underlying 

203 



Quanta, Logic and Spacetime 

Fermi-Dirac structure of the system though capable of course of de­
tecting its Maxwell—Boltzmann granularity. Finally, we have the 
macroscopic continuum of experience, idealized and reified as a man­
ifold of some kind. 

We may arrange these levels in a progression paralleling the 
one in diagram (7.2.1): 

Quantum Net: > Maxwell-Boltzmann > Spacetime Mani-

C[ r N ] surface: C [ r ] fold:? (8 .0 .1) 

(discontinuous; (discontinuous; (continuous; 

microscopic) macroscopic) macroscopic) 

In this chapter we prepare the ground for a later attempt to 
fling ourselves across the enormous gulf represented by the right­
most arrows in diagrams (7.2.1) and (8.0.1), and to fill in the ? ap­
pearing in the latter one. 

It is apparent that our algebras C[rN] and C[r ] are noncom-
mutative precursors of some commutative algebra of creation-like 
operators in some Fock-like representation. On the other hand, some 
version of ordinary spacetime is supposed to emerge on the right-
hand sides of the diagrams. Thus, in attempting to mathematically 
bridge the huge physical chasm represented by the right-most arrows, 
we confront the peculiar problem of having to find interpretations 
within a Fock-like formalism of certain aspects of ordinary geometry 
in a continuum. This is the task we apply ourselves to in the present 
chapter, and it is here that our classical continuum-based prejudices 
are most blatantly on display. Despite the weight of this classical bag­
gage it is comforting to see the fairly spontaneous reemergence of co­
herent states (as vector descriptors), this time coming out of two dif­
ferent attempts to marry geometry to many-body theory. 

In §8.1 we address what amounts to the local theory, and 
argue in favor of the main operators (along with their continuum 
correspondents) to be used in what follows. A certain globalization of 
one class of these operators is obtained in §8.2 by formulating a retic­
ular notion of "intrinsic parallel transport." An abstract algebraic 
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specification of the macroscopic operators which implement this 
kind of transport is found to include those arising from ordinary 
transport along classical curves, in an intrinsic form first investigated 
by Chen. These operators reduce to the coherent forms already 
found if the curve is a line segment: this closes a circle, since vectors 
are again, and by a different route, realized explicitly as coherent 
operators implementing parallel transport along the corresponding 
line segment. 

The connection is established between this geometrical ap­
proach to the specificaton of extended path-like entities and our ear­
lier attempt to build a logic-based dynamics around classical time, 
thereby closing another circle. 

8.1 Vectors 

Our ultimate aim is to associate elements of the discontinuous 
structures to the left and center of the diagrams (7.2.1) and (8.0.1) 
(which are associated with the "highly resolving" acts at the level of 
the net or its macroscopic Maxwell—Boltzmann surface) with corre­
sponding low resolution continuum elements. This reduces to a pas­
sage from a noncommutative Fock-like exterior or tensor algebra to a 
corresponding representation of the usual CCRs for bosons of four 
kinds, which may be realized, for instance, on the usual kinds of 
Fock space, which are commutative as algebras (§2.2.4). 

At the same time, such a correspondence should mediate be­
tween the more-or-less familiar local geometry of the continuum and 
some sort of "pre-geometry" in the discrete phases. We shall view 
such a correspondence as an interpretation—in the sense of type 
theory—of reticular expressions in terms of expressions pertaining to 
coarse, or low resolution macroscopic continuous entities. Presum­
ably, a coarse macroscopic experimenter immersed in an apparent 
continuum will be forced to design acts of injection, registration and 
selection which differ markedly from those that would be available to 
our ideal highly resolving experimenters. Indeed, such coarse macro­
scopic experimenters are likely to have certain designs thrust upon 
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them by the vagaries of local evolution. For example, corneas, retinal 
rods and cones, etc., have evolved in such a way that they perform 
certain specific acts of injection and registration and only them: acts 
of injection of gamma rays, for instance, effect null transitions. The 
sort of correspondence principle we have in mind will eventually pos­
tulate rules to interpret certain reticular acts in terms of certain con­
tinuum ones. We proffer this as (literally) a stop-gap measure until 
more refined methods of analyzing the arrows in those diagrams be­
come available. In this chapter we hope to make plausible the corre­
spondences we will formally adopt in the next chapter. 

Recall that the net comprises elements of the form p | 0 ) , with 
peC[T ]. We seek macroscopic continuum interpretations of cer­
tain elements of this type within the terms of a Fock representation 
of the CCR for quanta of four kinds, for reasons given. It would 
seem reasonable to start by associating the vacuum qet | 0 ) with the 
Fock vacuum, which, to avoid syntactically overloading the ket nota­
tion, we shall denote by VJ . That is to say, our continuum "interpre­
tation" of 10) shall be as vr. It will now prove convenient to borrow 
(and abuse) the logical notation for a semantic Junction, a procedure 
we glossed over when interpreting G Q in <MF. Accordingly, we de­
note the macroscopic continuum interpretation of some expression 
by enclosing that expression in hollow brackets: \ J . Thus, we may 
write: 

110)1 = ^ . (8.1.1) 

In this attempt to extract vectorial geometry from the net, it is 
clear that | 0 ) , and therefore VJ, should correspond to the zero vec­
tor, or origin. (This should be apparent also to readers of §7.3. There 
the tangent vectors to a classical model of the continuum were real­
ized as the creators of bosonic "steps" away from the point in ques­
tion. The vacuum must then be interpreted as the final act—in that 
dualized picture—of detection or registration of no steps: i.e. the tan­
gent space origin detector.) 

We now seek elements p (in C[T ] or some extension of it) 
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such that the net element p |0 ) maybe interpreted as a "geometrical" 
vector in the continuum. That is, with 

Ipl0>] = [p]III0>] (8-1.2) 

we are required to find simultaneously: an interpretation of the Fock 
space element [[pJ'Er as a geometrical vector (in view of equation 
(8.1.1)), and candidates for \p\ and p . 

Now, for deS®S, the operator Tfl
N (=0(0) , §7.2) may be 

thought of as an incrementation operator which extends its argument 
by (or along) the vector 8. Then, if p | 0 ) really were a "geometrical" 
vector, there would exist a corresponding vector difference in the 6 
direction, written A9

Np|0), such that the following virtual diagram of 
would-be vectors obtains: 

N (8-1.3) 
C P I 0 ) 

By virtuality we mean that this diagram is not to be construed 
as an actual diagram at the reticular level but rather in the continu­
um, since true vectorial behavior can be expected only there, where 
reticular acts are reinterpreted at low resolution (or "from afar"). 
Then, one way of expressing the virtual vector relation depicted 
above in the continuum is by asserting that the (low resolution) con­
tinuum version of the operator Ye — AN, when applied to the contin­
uum version of p | 0 ) , should yield this same act. That is, the associ­
ated Fock space vectors should be projectively related, or: 

[c-AaM^»MCT> (8-L4) 

for some complex number ze{p) . 
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If p = 1 the arrow labelled p |0 ) in diagram (8.1.3) disap­
pears, leaving the virtual (not actual) identity Te | 0 ) = A9

N|0), or, in 
the continuum: 

[ C - A ^ O , (8.1.5) 

whence, upon comparison with equation (8.1.4), we conclude that 
ze(\) = 0 and [[ 1J = 1 so that we may set 

[ r e
N - A » ] = Ka(0) (8.1.6) 

where a(6) denotes the appropriate Fock annihilation operator and 
K is an arbitrary non-zero complex constant. Moreover, equation 
(8.1.4) now specifies Upltcr as a coherent state independently of any 
explicit physical many-body phenomenology. 

Choosing a basis {6k} in S®S, and putting ak=a{6k), 
zk = zgk(p), this state may be expressed in a form in which 

M = cxp^[K-lzkal-K-%ak]. (8.1.7) 
k 

(See for example Feng, Gilmore and Zhang 1990, §11.1.) 
Note that if we insist upon the coefficients K~lzk being imagi­

nary, 

K-*zk=irk, (8.1.8) 

say, with rk real, then equation (8.1.7) assumes the form 

M = exp i^rk(al+ak) (8.1.9) 

For a certain real number r , whose significance is to be deter-
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mined, let us define self-adjoint operators 

V2 

and 

ft^K-"!) (8.1.1D 
ZTV2 

so that 

a'=i( -qt+irp„\ (8.1.12) 

anc 

al=-^[^qk-irpkj. (8.1.13) 

Note that if the chosen basis in S®S were orthogonal with 
respect to some Hilbert space inner product so that the usual com­
mutation relations obtained for the operators ak, ak, then: 

[P3,qk] = -i8jk. (8.1.14) 

So, if these operators bore their usual significance—in the 
Schrodinger representation for example—then the normalization 
chosen in equations (8.1.10) and (8.1.11) would be tantamount 
among other things to a choice of units in which ft = 1. 

Equation (8.1.9) now reads 
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M = exp (8.1.15) 

Assuming [[ ]] to be at least additive, and in an obvious nota­
tion, equations (8.1.6) and (8.1.12) yield 

l^hHh ^{^k^Pky (8.1.16) 

Thus, although we have not yet found candidates for the 
reticular operators AN , we may nonetheless adopt the interpretations 
expressed by: 

[ 1 ? ] = - ^ (8.1.17) 

anc 

K]= "Kpk, (8.1.18) 

where we recall that K is an arbitrary complex number and r is real. 
We have arrived at this point on the basis of the presumed 

coarse behavior in the continuum of certain interpretations of reticu­
lar elements, but have not yet put forth an explicit connection be­
tween the algebraic operations of the net and the geometrical (vector) 
operations we believe to underlie those apparent to coarse experi­
menters. 

To this end we fix an element 6 G S®S and return to the net 
to try to form a net element pe\0) which could be interpreted as a 
vector parallelto 6. A reticular expression for this may be written: 

pe\0)-\0) = cter?pg\0), (8.1.19) 
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where ae is a complex number. 
This equation explicitly asserts certain relations between retic­

ular acts and the low resolution geometry apparent to coarse experi­
menters. It defines the relation, for a would-be vector pe\0), of 
being parallel to 0: namely, that relative to the "vector" origin 10) 
(the left hand side of the equation) this element specifies the same 
initial act as does the Te increment of itself. The choice of constant 
ag is, as usual, not fixed. 

From this equation one obtains 

pe\0) = \0) + a9T^pe\0) 

= \0) + agr?(\0) + aer?(\0) + ... 

= \0) + aer?\0) + (aer?)2\0)+... 

= (l + a er e
N+(a er f l

N)2+.. . ) |0) . (8.1.20) 

If we put 0 = ^H,oikdk and now extend our algebra C[T ] to 
the associated algebra C[[T ]] of formal series in the T s this equa­
tion will be satisfied with 

Pe = l + cteJjakr^+a2
e^akamT^+... (8.1.21) 

Since C[T ] has not been shown to be free, our grip upon 
C[[T ]] is somewhat tenuous. The corresponding algebra C[T] is 
free on the Ts, and so the algebra C[[T]] of formal T-series may be 
identified as a vector space with the linear dual of CDT]. Moreover, 
the original algebra C[T] may be embedded into C[[r]] in the obvi­
ous way (and is dense in it in a certain topology). These relations will 
be of significance later. 

Proceeding formally from equation (8.1.21), and assuming 
[[ JJ now to be linear in the T -monomials, we obtain 
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IpJ = l+«.Z« t[l^] + aJXataU|[l]K:] + ... (8.1.22) 

On the other hand, rewriting equation (8.1.15) with p = pg and rk 

chosen accordingly, we have 

ttpj=i+[^Jx^+—(^j x ^ ^ , +. 

(8.1.23) 

Comparing first order terms in the last two equations, and using 
equation (8.1.17), we find satisfaction if 

Kaeak=2irk. (8.1.24) 

The constant K, being arbitrary (equation (8.1.6)), may now 
be fixed by choosing 

K = W 2 , (8.1.25) 

so that from equation (8.1.24) 

rk=-^oteak. (8.1.26) 

Then equation (8.1.17) becomes 

p?H* (8.1.27) 

while equation (8.1.18) becomes 
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Kl= TPk (8.1.28) 

A comparison of higher order terms in equations (8.1.22) and 
(8.1.23), and the use of equation (8.1.26), now gives satisfaction if: 

n [T-rN rNH 1 \i\/2 
a^1-°5t„llr*i-rJ=^[— *! " *7i *-l * *n 

UiW 
n\[ T ) 1^2 %--<xkn%---<lkn-

(8.1.29) 

So, finally, we conclude that we may take 

for n > 0, noting that for n = 0 we recover 

111 = 1. 

(8.1.30) 

(8.1.31) 

Our assumptions concerning various constants, namely that 
K and K~ zk are to be chosen imaginary (equations (8.1.8) and 
(8.1.25)), carry the implication that the "coordinates" zk should be 
real, and therefore that the vector space underlying the apparent geo­
metry of the continuum should be considered to be a real vector 
space. This assumption is part of the experiential burden we carry 
with us from the continuum, and the problem of focusing this as­
sumed spontaneous breakdown to a real subspace will be taken up in 
the next chapter. 

Likewise, an analysis of the operators AN will be postponed 
until the next chapter. It may suffice to say here that these operators 
carry dynamical connotations, in the sense that they destructively 
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change, or "use up," the experimenter's net qets, which, as hierarchi­
cal arrangements of initial acts, may be thought of as idealized "mea­
suring" devices, or "instruments." (Cf. §10.1.) The Tk perform the 
dual or complementary acts of forming new "instruments." If the AN 

correspond to dynamical acts, then the Tk correspond to kinematical 
ones: their algebra provides a means of describing the possible reticu­
lar acts the experimenter may choose to perform, regardless of the 
pattern of ensuing transitions. 

In the next section we attempt to specify a basic class of such 
kinematical entities, namely those associated with the idea of parallel 
transport. When interpreted in the continuum this class turns out to 
contain the classical notion of path, or curve. 

8.2 Transport, Curves and a little Chenism 

In this concluding section we attempt to formulate an intrin­
sic notion of parallel transport, for simplicity in the algebraic tensori-
al language of the Maxwell—Boltzmann phase. (This phase is slightly 
more tractable mathematically than the net phase, entailing little or 
no loss of information. Some of our conclusions will be pulled back 
to the net later with the help of the map O of §7.2.) 

First we consider the infinitesimal notion. In an ordinary 
affine space the "infinitesimal" transport of a point consists in trans­
lating the point through an "infinitesimal" distance. Once an origin 
is chosen (so that we have a vector space) such a translation may be 
effected by the vector addition of an "infinitesimal" vector to the 
("radius") vector emanating from the origin and ending at the point 
in question. 

We now try to imitate this in the context of the algebra 
T(S®S). We fix some 17 in this algebra and regard it as a choice of 
"origin." Then any other element, £ say, may be "attached" to 17 via 
® (which is standing in for v ) , producing the sequence f®^, in anal­
ogy with the way in which a radius vector is attached to the origin in 
an ordinary vector space. Thus the family of elements of the form 
£<8>i7, with 17 fixed and £ varying over a set of generators in T(S<S)S), 

214 



Towards a Correspondence for the Quantum Net 

functions rather like a basis in a vector space, albeit a "noncommuta-
tive" one in the sense that the acts of attachment comprising the sub­
structure of would-be vectors do not commute. (Varying 17 then cor­
responds to varying the origin of the virtual space: that is, varying the 
space itself. One might also regard a variation in 17 as variation of the 
frame defined by the family £j®7].) 

Pursuing the analogy in which £ corresponds with a radius 
vector (with "origin" 17 ), and retaining the basis chosen for S®S in 
§8.1, we may advance its end-point by one chrononic step in the kth 

direction, say, by applying the operator Tk, and attaching the result­
ing virtual vector Tk(ij) to the virtual origin 17, to obtain the se­
quence Tk(^)®7]. But there is another virtual vectorial route, or mode 
of advancement, for this end-point: namely, advance the origin (end-
point of 17) through one unit in the kl direction, and attach £ to 
the result. We then obtain the sequence ^®Tk(rf). As proper quan­
tum experimenters we should now superpose these two alternatives 
to obtain 

rk(£)vn+terk{rj). (8.2.1) 

This (superposition of sequences of acts) is a representation of 
the act resulting from the "infinitesimal" transport of £ as a virtual 
vector in the k direction. Note that the first term encodes the ad­
vancement of the "head" of £, while its "foot" remains rooted at the 
head of 17, while the second term encodes the parallel advancement 
of this foot, as depicted in the following diagrammatic rendition of 
the expression (8.2.1), in which k labels the "infinitesimal" vector in 
the A;th direction: 

V 
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Suppose now that we wished to translate £ through two 
chrononic steps: Tk and Tk , say. In this case more virtual vectorial 
routes are available and should be included in the superposition anal­
ogous to the one in expression (8.2.1): 

(rkrk2 + rkrkim®r)+rki({)®rk2(ri)+ 

+rk2({)®rki(v)+te(rkrk2 + rkrki)(v). (8.2.3) 

The inner terms encode the possible virtual vectorial routes 
obtained by advancing the head and foot of £ through substeps of 

r r 
Thus, if we conflate the two diagrams in (8.2.2) so as to de­

pict expression (8.2.1) in the vector form 

k 

(8.2.4) 

then the corresponding diagram for expression (8.2.3) is 

(8.2.5) 

with the term Tk (^)<S>Tk (17), for example, corresponding to the pat­
tern of arrows drawn with heavier lines, and with the <8> inserted ap­
propriately. (The left-most term in expression (8.2.3) corresponds to 
the advancement of the head of £ around the top face of the paral-
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lelepiped and the attachment of the result to 17, while the right-most 
corresponds to the attachment of £ to the result of advancing its 
foot—which is the head of 17—around the bottom face.) 

For a general transportation through n steps, Tk ,...,Tk say, 
we obtain the superposition corresponding to all partitions of all per­
mutations of {A;j,...,A;n} into two subsets (corresponding to the 
placement of the ®). With symm(r t ••.rfc ) denoting the sum of 
products of all permutations of Tk ,.. ,,Tk we may write this general 
transportation in the symbolic form: 

^(rfci,...,rfen)(^77)^symm(r,i...r,n)(^r,+ 

n—1 n-2 

+Xsymm(r .. . r . ) (0® r.(r?) +£symm(r . . . . r )(0®symmCr.r.)(TJ)+ 

... + f®symm(i; i . . .r f c n)(7j), (8.2.6) 

where the summations are over those permutations of the subscripts 
that maintain the original order within each partition induced by the 
presence of the tensor sign. 

For example, with n = 3we obtain: 

*(rvr t 2 ,r t 3) = 

symm ( I ^ r ^ r ^ ) ®1 + symm ( I ^ i y ® I \ 3 + symm ( 1 ^ 1 ^ ) ® ^ + 

+symm ( 1 ^ 1 ^ ) ® ! ^ + r ^ s y m m ( 1 ^ 1 ^ ) + r ^ s y m m (TkTk3) + 

+r,3®symm ( I ^ i y + l®symm {TkTkTk5). (8.2.7) 

To interpret this in the continuum we apply the version of 
equation (8.1.30) lifted up to the (Maxwell-Boltzmann phase) tensor 
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algebra by replacing the T s by Ts. With cr denoting a permutation 
of {kx,..., kn} we note first that: 

[symm(rv..r,n)l=[i:r^)...r(KJ 

f • A " 

'r ?<U i )"-'M*n) 

f • M 
l_ 

T 
V. J %-K 

= | [ r j . . . | [ r j , (8.2.8) 

the last line following upon equation (8.1.27). 
It will prove convenient to write 

(8.2.9) 

Then, from equations (8.2.6), (8.2.8) and (8.2.9) we obtain 

[*crtI,...,rj]= v . q # i + 

n - 1 n -2 

+X(q.-q.)®q. + Xfa.-q.)®q.<T. + -. 

•• + 1 ® ^ , - ^ 

•.(qkfl + l*qki)(qk9l + 19qk2)...(qkQl + l9qkn). (8.2.10) 
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But the right hand side of the last equation defines exactly the copro-
duct specifying the additive affine algebraic (vector) group structure 
of the algebra generated by the Cfs: see §3.1.4. That is to say, the 
map defined by 

*l>K'-^k) = <A([symm(TV. .I\)]) 

= [^ (T f c l , . . . , r j ] (8.2.11) 

induces the additive vector structure. In this way we recover the oper­
ation of vector addition in the continuum from an underlying quan-
tal structure, though not yet the acts corresponding to the (injectors 
of) the vectors themselves. 

The interpretation of the coproduct i/f implied by equation 
(8.2.11), namely, as the continuum version of an act of discrete 
infinitesimal transport, may itself be carried into the continuum. The 
act of transport shown in equation (8.2.11), insofar as it is such an 
act, is along the segmented infinitesimal "path" whose steps are en­
coded by the product Ĉ  ... Ck . This product is the continuum ver­
sion of the path-like entity specified by superposing all possible dis­
crete "paths" of the form Tk ...Tk : this is the import of equation 
(8.2.8). 

Now we turn to the problem of specifying vectors and other 
classical objects in the continuum. (That dreaded word may be used 
in the continuum with perfect consistency: fictions may be embed­
ded within the larger fiction that is the continuum, and a correspon­
dence principle should be able to account for them.) Note first that 
we may regard a (geometrical, continuum) vector as an act of trans­
port. Specifically, we carry an object (a point, frame or another vec­
tor) along a line segment. Moreover, we may regard such transport to 
be done parallelly: lengths are preserved during the course of the 
transport. 

In terms of selective acts, or operations, this macroscopic par­
allel transport—of a vector, say—along a track in the continuum is 
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tantamount to performing the pair of acts comprising the act of ad­
vancing the head of the vector along the track and the act of advanc­
ing the foot of the vector along an identical track. That is to say, the 
act of transporting a vector parallelly along a macroscopic track in the 
continuum should be equivalent to the act of performing, in se­
quence, the act of advancing the head of the vector along the track 
and the act of advancing the foot of the vector along an identical par­
allel track. 

If P denotes an element in the algebra of operators (upon the 
space accommodating our chosen representation of the CCR) speci­
fying the structure of such a track—namely one admitting parallel 
transport along itself—then il/(P)(f<S>g) represents the result of 
transporting the "virtual" vector / "along" P, and P(f) (respectively 
P(g)) represents the result of advancing the head (respectively foot) 
of the virtual vector / "along" P. Then the condition for P to admit 
parallel transport along itself may be expressed as 

*KP)(f99) = P(f)9P(9) (8.2.12) 

or 

if/(P) = P®P. (8.2.13) 

(Note that this may be interpreted as asserting that P is char­
acterized by the property that, for it, quantum duplication—the left-
hand side of the last equation—coincides with "macroscopic" dupli­
cation, namely the right-hand side.) 

Thus, the elementary "infinitesimal" act of transport repre­
sented by iff(c\k) is not macroscopically parallel in this sense: it 
reflects the underlying (reticular, quantum) superposition of the two 
discrete acts, Cffc®l and l®Cffc, of head and tail advancement, rather 
than their (continuum, macroscopic) sequencing. 

Solutions to equation (8.2.13) will then in a sense represent 
the selective acts whose performance will construct injectors for those 
macroscopic "tracks" through the continuum which admit the paral-
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lei transport of vectors along themselves in the above sense. 
Now we note that if S satisfies 

i/KS) = S®l + l®S (8.2.14) 

then e satisfies equation (8.2.13). For 

«Kes) = e*(S) 

S ® 1 + 1 ® S r 

= e rrom equation 
(8.2.14) 

S®1 1®S • A 

— e e since the exponents 
commute 

= (e s®l)(l®e s) 

= es®es. (8.2.15) 

In particular, for any linear combination Zam C\m, exp (£am C|m) 
is a solution to equation (8.2.13). With the am real, we recover our 
earlier vector representation (equation (8.1.15)) and at the same time 
guarantee that, in case the Schrodinger representation is chosen, 
exp(Zamqm), which is exp((i/T)Ea?mgm), is a sufficiently well-
defined operator on L (IR ). If K had had a real part, the operator ap­
pearing instead of the last named one would carry a non-oscillatory 
factor which would send certain L functions to non- L functions. 

There are more general solutions to equation (8.2.13). In­
deed, it follows from work of Chen (Chen 1958) that unique de­
scriptors for curves in manifolds may be found among such solu­
tions. (See also Hain and Tondeur 1990 and Tavares 1994.) We 
briefly describe the mechanism involved, tailoring the discussion to 
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the case at hand. 
A curve C is defined by specifying a continuous function 

/ : [ a , 6 ] ^ R 4 . Writing f(t) = (f1(t),...,fi(t)), we assume each fk 

to be of bounded variation as a function on the interval. For each in­
teger m>0 and te.[a,b] we define an iterated integral (over the 
curve C) recursively by 

1 = 1 (8.2.16) 

dx, ...dx, = dx, ...dx, 
k\ % - 1 

dfkJ>). (8.2.17) 

The associated Chen series is then the formal series 

0(C) = 1 + Z E ( dx,...dxk )q....q. (8.2.18) 

/here stands for 

As first noted by Ree (Ree 1958) these iterated integrals have 
the property that they preserve—that is, are R.-valued homomor-
phisms for—the shuffle product of their arguments. This commuta­
tive product, of a pair of multi-indexed symbols say, is obtained by 
summing over all shuffles of the pair of sets of indices, a shuffle being 
a permutation of the union of the two sets of indices which preserves 
the initial order of each set. Thus for instance, 

(dxldx2 + dx2dx j) = dx x dx. (8.2.19) 
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(dxldx2dxi + dx2dx {dx5 + dx2dx3dx,) = dx, Hub •jtXiJU i ) 

c 

(8.2.20) 

etc. 
As the reader may check, this immediately implies that Chen 

series are formal solutions to equation (8.2.13). (By way of illustra­
tion, let us compare third-order terms in i/K©) and 0 ® 0 , where we 
write 

© = l + Z5/V.*J)cui...qJt (8.2.21) 
P =i 

= 1 + l ^ k l +I*cklk2%% +• • • (8-2.22) 

and the coefficients preserve the shuffle product, as above. The third-
order term in if/(0) is: 

Zctlt2t3(qJfciqJt2qt3®l + qfciqt2®qt3+qfciqfc3«»qt2+qfc2qt3®qfci+ 

+ <Tfc®q*2<u3+ %® <\kl%+ %3® %%+i® qkpk2%) 

= Y(cklk2kiqkpk2%®l + cklk2ki<\k{\k®% +cklkik2Qk{\k®% + 

+c*3*,*2 v * 2 ® %+•• •+ck,k2k^® %%%) 

= l,(%k2k^kl%%^ + (%k2ki + %kik2 + %k1k2)^kf\k2®% +•••) 

= K v ^ f t ^ ® 1 + cklk2chqkiqk® q,3 +...) (8.2.23) 

223 



Quanta, Logic and Spacetime 

where we have used the shuffle product preservation property of the 
cs on the internal terms in the last step. The right hand side is now 
easily seen to be exactly the third-order term in 0®0 . ) 

Note that if C is the line segment from the origin to 
(«!,...,ar4) given by fk(t) = akt, te[0,l], then 

dxkx---
dxkp = -fi/*kx---

akp (8.2.24) 

so that in this case 

©(C) = i+!>*,<?*,+-X«t,ak2 v 2 +• 

= cxp(X«fcPfc) 

= « P ( 7 X 0 W * ) (8-2-25) 

and we recover our elementary coherent operator solution. 
Our version of passive or intrinsic parallel transportabili­

ty—that is, the property of admitting parallel transport—in its con­
tinuum interpretation thus encompasses at least the notion of a 
curve, a la Chen. (In the full version of Chen's theory noncommuta-
tive series of this type are found to completely specify sufficiently 
nice curves, and therefore contain all the geometrical information in­
herent in such a curve: cf. Chen 1958. In a sense, the iterated inte­
grals, though constrained by the shuffle product preservation proper­
ty, function as coordinates for curves, and as such have reappeared in 
the modern theory of loop representations of gauge theories: see 
Gambini and Pullin 1996, Chapter 2, Tavares 1994 and our §12.5.) 

The significance of the Chen series solutions to equation 
(8.2.13) is presumably that they describe extended macroscopic clas­
sical geometrical objects in the continuum as infinite superpositions 
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of finitely-occupied ("n-body") quantum condensates: this is one of 
the ways in which quantum behavior gives rise to classical, and bears 
out the idea that spacetime itself should be realizable as such a con­
densate (cf. §2.3). When the curve is a line segment we recover a fa­
miliar form of coherence. In general, this coherence is lost: presum­
ably some attribute related to the curvature of a curve is a measure of 
the departure from coherence of its Chen series. 

Using equation (8.1.30) we may now pull a Chen series back 
to formal series in the algebras C[[r]] and C[[r ]], obtaining in the 
latter case a formal series of the form 

I + S Z P K 

(In case the curve is the line segment considered earlier, this reduces 
to 

i + X ^ +Z«*1«*2if1rt
l
2 + • • •) (8-2.27) 

A formal series of this type embodies instructions for building 
the sequences of selective acts whose macroscopic continuum corre­
spondents tend, upon superposition, toward the operator effecting 
"intrinsic" parallel transport along the curve. 

The terms of such a series may be parsed on the net and inter­
preted in terms of our original "infinitesimal transport" paradigm in 
its r or reticular form. Thus, suppose we restrict ourselves first to 
(all) infinitesimal transports along the curve which consist of only one 
step. That is, partition the curve into a large number of very small 
segments corresponding to a partition of the parameter interval [a, b] 
into subintervals of typical length At-. Then a typical one-step 
(infinitesimal) transport along the curve is approximately effected by 
an operator of the form Axk(j)Tk , where Axk(j) is the appropriate 
tangential component at t = t-\ 

dxh...dxk)T"k{..Tl. (8.2.26) 
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Axk(j) = fk%)At k\ j> j ' (8.2.28) 

A superposition over k and all curve segments yields 

SAxt(j)lf, (8.2.29) 

which approaches 

X( dxJlt, (8.2.30) 

the first degree term in the series (8.2.26), as we refine the partition 
of the curve: we regard such an integral as just another superposition, 
as in the ordinary theory of (Feynman) path integrals, for example. 

Note that the factors p\ multiplying the iterated integral 
(which integral amounts to an ordinary integral over a simplex of the 
form {(tk ,.. .tkp): a<tk < ... < tk < b}) make it possible to regard 
the coefficients in (8.2.26) as products of the individual contour inte­
grals. Thus, the degree p term in the series may similarly be interpret­
ed as a superposition over all available infinitesimal transports taken 
locally along the curve that consist of p elementary steps. Maintain­
ing the interpretation of integration-as-superposition we may obtain 
the series (8.2.26) by superposing all possible outputs from the fol­
lowing simple program: 

begin 

Effect a finite-step local infinitesimal reticular 
transport along the curve C 

end 

Note that the null "finite-step infinitesimal transport," com­
prising no r transports along the curve, leaves any argument un-
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touched and so yields 1, the first term of the series. 
The one-line "program" exhibited above appears to embody a 

remnant of the original classical object, while the reticular Chen se­
ries (8.2.26) itself describes the selective act resulting from quantum 
interference among the program's outputs. 

We note once again that the line segment special case, namely 
equation (8.2.25), reproduces the coherent operator that was posited 
earlier and independently as the operator with which to implement 
vector transport in the continuum: that is, as transport along a direct­
ed line segment. So it would appear legitimate to adopt this type of 
solution as fundamental, and note that products of solutions to equa­
tion (8.2.13) are also solutions. In this way one might justify the or­
dered building up of exponentials of path integrals and invest them 
with dynamical significance (cf. Chapter 10). 

The pattern that has emerged above is in fact consistent with 
our earlier naive attempt, in §6.4, to incorporate classical time via 
the axiom (6.3.3.1) and to implement quantum multiplexing via the 
coproduct of the one-dimensional additive affine group. To see this, 
consider the coproduct if/ on C [ Q ] , the complex polynomial algebra 
in the CJ s, namely that given by 

i(f(qk) = l<s>qk+qk®l (8.2.31) 

and extended to be an algebra map (equation (8.2.11)). 

PROPOSITION 8.2.1 

The dual of iff is the shuffle product on C[cj] = C[[cf]]. 

PROOF 

Monomials Q....Q, in C[[C|]] act on monomials Q ...a 
I K1 'Kn _ T l 'Pm 

in CLqJ in the obvious way, expressed by the dual pairing: 
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(<V"<W<V"<U = {1 tf^->=^.-^ (8.2.32) 
10 otherwise 

So, with the asterisk denoting the dual product, 

( % • • • < ) £ % • ••%>%•••%„) 

= (c?fcl---qfc7l®qJ1---qjV«A(qPl)'A(qP2)---'A(QPJ) 

+ K-*kn>%)(%•••%>%•••%J+- ( 8 - 2 - 3 3 ) 

Clearly, only one term in this sum can survive (to give the 
value 1) and this occurs when and if the A; monomial equals the p 
monomial to the left of the tensor sign, while the j monomial equals 
the p monomial to the right of it. This can only happen when the 
number of p indices equals the sum of the number of k indices and 
the number of j indices. It will certainly happen if 

<W--<W= V-<VV-% (8-2-34) 

for then the term 
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will occur exactly once in the expansion of iff(C\ ... q ) giving 

(qk...qk*qn...qJi,qk...qknqn...qJi) = \. (8.2.36) 

Now, the expansion of tf/(q ...CI ) consists of the sum of all 
tensors of the following form: to the left of the tensor sign appears 
products of a certain number (including 0, corresponding to the ap­
pearance of 1) of the CJS taken strictly in the order of their appear­
ance in the original monomial, while to the right of the tensor sign in 
each of these tensors the remaining q s appear, also in the order of 
their occurrence in the original monomial. For example 

<A(q,C?2<l3 ) = ! ® 91^3+ Pi® < W 3 + W & + W l Q 2 + 

+ q,q2® q3 + q2q3® q1+q1q3®q2+q1q2q3® 1. (8.2.37) 

The term qk .. .Cffc ® q̂  • • .q^ will thus appear (once) in the \\i 
expansion of a monomial exactly when that monomial is a permuta­
tion of qk ...qk q^ ...q within which the original orderings, respec­
tively of the fc-tuple and the j-tuple, are maintained. For, the expan­
sion of any such monomial produces (uniquely) all such pairs of or­
derings, and so must contain the expression (8.2.35). 

These permutations are precisely the shuffles. Thus, the 
monomial qk ...q^j ...q^ may be replaced in equation (8.2.36) by 
monomials in which {kl,...,kn) is shuffled with 0 P . . . , J ; ) . This 
shows that qk ...CJ^C^. ...q. , considered as an element in the algebra 
of formal series, is exactly the sum of all the shuffled versions of 

Since the shuffle product of two monomials is a finite sum of 
other monomials, it is clear that C[q], realized as the subspace of 
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finite formal series, is a subalgebra of the shuffle algebra, which, we 
recall, is commutative. Then, the "path-like" elements P o f C[[q]](s 
C[q] ) satisfying equation (8.2.13) are exactly the complex valued 
algebra homomorphisms of C[q] when it is equipped with the 
shuffle product. To see this, note that for any monomial C\k ...C\k in 
C[[cf]] and / , g e C [ q ] , where C[q] is regarded as a subalgebra of 
C[[q]] with the shuffle product, we have 

(qkr.qkn,f*g) = (f*g,qkr.qkn) 

= (/®0.«M<?fcl-<U) 

= *l>(%...c\kn)<j9g) (8.2.38) 

from which it follows that for any F e C[[q]] 

(FJ*g) = if,(F)(f®g). (8.2.39) 

Then, for Psatisfying equation (8.2.13), 

(P,f*g) = *KP)(f*9) 

= (P®P)(/®<?) 

= (P,f)(P,g) (8.2.40) 

showing that P is a homomorphism for the shuffle product. 
Conversely, if Pis such a homomorphism, then, from the last 

set of equations, we would have 

il>(P)(f®g) = (P®P)(f®g) (8.2.41) 
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for all f,g e C[q], and equation (8.2.13) would follow. 
Thus, we arrive at a higher dimensional generalization of the 

structure that emerged in our attempt to simulate the multiplexing of 
the classical time step in §6.4. The product given in equation (6.4.5) 
is exactly the shuffle product for the case of a single variable, the ht 

in equation (6.4.12), for real t, being the Chen series corresponding 
to curves in IR, which are just intervals. 

Interestingly, the structure demanded by our original axiom 
(6.3.3.3) to sit on the left of the turnstile—namely, the dual of what 
we interpreted as a tensor algebra—seems to have emerged here inde­
pendently through a consideration of geometrical paradigms. This 
perception is presumably a Whiggish illusion, since it is the logical 
structure itself that must underlie these geometrical paradigms. 

In closing this chapter, we note the fundamental role played 
by the quantum duplication operator: it is this form of quantum en­
tanglement that presumably gives rise to what we perceive macro-
scopically as vector addition, or, more generally, as path composition. 
(A version of the operator appears again, independently, in §12.5.) 
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9 

A Correspondence Principle for 
the Quantum Net 

We continue and complete the search for a correspondence 
principle of the kind envisaged in the last chapter. The first section is 
devoted to an index-free account of familiar material on spinor duali­
ty, which is now amenable to a perhaps less familiar quantum inter­
pretation. 

In the following section (§9.2) we exploit the algebraic expres­
sivity of the various structures inherent in our basic quantum types to 
introduce a notion of infinitesimal variation for action vectors and 
operators belonging to these types. When applied to the basic reticu­
lar variables, this brings in its wake the appearance of a new 
type—which we interpret in terms of defects—and certain associated 
selective acts. It is perhaps surprising that these latter operators turn 
out to be exactly the Dirac matrices (in a complex, basis independent 
form), which thereby acquire an apparently new derivation and a 
new interpretation. The expressions obtained for these maps reveal 
their internal structure in a rather transparent manner, and various 
properties are easily obtained using this new representation. 

In §9.3 we return to the A operators of §8.1 and complete 
the search for them. We also discuss some related matters concerning 
the defect type, Dirac maps, and their continuum interpretations. 

In §9.4 we give vent once again to our continuum prejudices 
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in directing the choice of spinorial frames so as to make matters of 
interpretation easier for macroscopic experimenters. (In fact, these 
choices, and the "correspondence principle" itself, are all merely mat­
ters of convenience. Other frame choices would merely render a 
macroscopic interpretation—at least by means of this correspondence 
principle—more difficult.) 

At last, in §9.5, we put forth our final choice of correspon­
dence principle. 

During the course of this chapter we discover how various 
"collective" quantum effects—traceable ultimately to the ubiquitous 
phenomenon of coherence—might conspire to tempt a macroscopic 
experimenter into a belief in the classical fiction of an objective reali­
ty-

9.1 Spinor Duality 

The association (§7.1) of two-dimensional spaces of initial ac­
tion vectors with quantum "binary alternatives" has further interest­
ing epistemological consequences. We return to the isomorphism 
<p:WVW—>C chosen in §7.1 and its concomitant s:W—>W*. 
The isomorphism <p determines a similar one for W, namely 

<p#:W*VW*^C, (9.1.1) 

as follows. Note that the map defined by (f,h)\-> f®h — h®f of 
i y * x W * into (W8>iy)* is bilinear and alternating. Consequently, 
it extends uniquely to a map of W*VW* into (W<8>W0* by the 
universal property of exterior products. This lifted map sends / v h 
in W*\IW* to {f®h-h®f) in {W®W)*.T\i\s last named map is 
itself alternating on Wx W and so it now lifts to a map of WVW 
into C, under which xvy is sent to f(x)h(y) — h(x)f(y). Thus we 
obtain finally a map 

a:W*\IW*-^{W\JW)* (9.1.2) 
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given by 

a(fvh)(xvy) = f(x)h(y) - h(x)f(y). (9.1.3) 

The map <p# is now defined by the following composition: 

(p#:W*VW*—2-^(WVWT (y"l)* )C* = C. (9.1.4) 

Using this <p# as in §7.1, there is a corresponding isomor­
phism 

s#:W*^W**. (9.1.5) 

SPINOR DUALITY THEOREM 

With notation as above: 

(i) Let {e,, e2} d W be a basis and suppose that cp (ex v e2) = A. 
Then 

e(e1) = Ae* (9.1.6) 

and 

e(e2) = -Ae*, (9.1.7) 

where e* is the element dual to e{, i — 1,2. 

(ii) Let ( ):W^W** ' denote the natural isomorphism given by 
x\f) = f(x). Then 

e # o e = - ( ) A . (9.1.8) 
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(in)For all g e SL(2,C), and with Lg denoting as before the natural 
action ofg upon W: 

e ° L 5 = L * - i ° e . (9.1.9) 

PROOF 

Parts (i) and (iii) have already been proven in §7.1, so it re­
mains to prove (ii). 

To this end, we first show that 

<p#(eye*2) = <p(elve2T
l. (9.1.10) 

With <p(e,ve2) = A, and for ae C, (9.1.4) gives: 

<p#(e1*ve*)(a) = (((<p-1)*oa)(e1*ve*))(a) 

= ((<p-1)*(a(e1*vef)))(«) 

= a(e1*ve*)0p-1(a)) 

= a(e* ve*)(aA"1e1ve2) 

= a)C\e*{ex)e*(e2) - e* (e^e* (e2)) 

= a\~\ (9.1.11) 

which proves our assertion. Then, from (i), 

(e#oe)(e i) = e#(Ae*) 
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= Ae#(e*) 

= A(-A-1e1**) 

from equation (9.1.7) applied 
to W*, 

= - e , (9.1.12) 

and similarly 

(s#oe)(e2) = e#(-Aei*) 

= -Ae#(er) 

= -A(A"Ie**) 

= - e 2 , (9.1.13) 

as required. I 

The third assertion expresses the invariance of e with respect 
to SL(2,C) transformations, and admits an "epistemological" inter­
pretation. First we recall that the natural allowable transformation 
upon W associated with the transformation Lg upon W is exactly 
Lg-\. In light of our interpretation of W as a space of final action 
vectors, we may now view e as a one-to-one association of initial vec­
tors x with final vectors e(x). The corresponding transition 
x—> s(x) is forbidden, so e establishes a pattern of null transitions 
among the acts performable upon the system, namely the set of pairs 
of acts (x, s(x)). (Clearly, this pattern is independent of the choice of 
<p, by the remark following equation (7.1.5).) If we now apply a 
SL(2,C) transformation Lg to a pair (x,e(x)), we obtain the pair 
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(Lg(x),L*g-i(s(x))), which is (Lg(x),s(Lg(x))) from equation (9.1.9). 
That is, 

Lg(x,e(x)) = (L9(x),s(Lg(x))), (9.1.14) 

so that the pattern of null transitions established by s is respected by 
SL(2,C) actions. This is one of the ways our hitherto rather conven­
tional term "allowable" may be imbued with meaning. Indeed, since 
a certain pattern of null transitions remains invariant with respect to 
these transformations, it begins to seem possible to forgive a macro­
scopic experimenter for believing in the existence of some kind of ob­
jective reality. Such an experimenter might be tempted to associate al­
lowably transformed frames with equivalent views of the same ob­
ject—a pattern of null transitions, in this instance. We note that since 
SL(2,C) is the coherent version of the microscopic algebra §1(2, C) of 
allowable transformations, the emergence of this aspect of classical 
epistemology bears out once again the fundamental role this type of 
coherence seems to play in mediating the transition from the object­
less quantum microcosm to the object-laden macrocosm of experi­
ence (cf. Chapter 8). 

9.2 Variation, Derivation and the Dirac Maps 

We come now to a major conceit, or piece of baggage to be 
dragged back from the macrocosm: namely, the idea that experi­
menters should be able to subject their various action vectors, selec­
tive acts, etc., to variations within the parameters allowed. We have 
already assumed a form of this in our use—under the rubric "allow­
able"—of the transformations induced by quantum symmetries or 
permutations (Chapter 3). As in that case, we shall find that the 
(rather reasonable) granting of this freedom to experimenters leads to 
the introduction of certain selective acts to be interpreted as dynami­
cal; it also leads to the appearance of certain amalgams of spinorial 
types, whose significance will emerge later. 
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To see how this comes about, let us consider the general ques­
tion of how a structure comprising elements of the same type may be 
varied. One may vary the structure itself with respect to its con­
stituent elemental type (by deletions or additions of these elements, 
for instance), and/or one may vary the elemental type itself, to the 
extent that it admits variation. The most general variation is obtained 
by carrying out these variations—namely, the variation of the struc­
ture with respect to its elements, and the variation of the elemental 
type itself—in sequence. For "small" variations this is reminiscent of 
the expression 

A / - l | f A x f c . (9.2.1) 
k axk 

Here, the xk correspond to the "elemental subtypes" of/, the partial 
derivatives to the variations of / with respect to these elements, and 
the Axk to the variations of the elements themselves. 

Now there is a far-reaching exact algebraic analog of this last 
expression. Namely, suppose A is an algebra and M an A-bimodule. 
Recall from equation (3.2.1.1) that a linear map D: A—>M is 
called a derivation if 

D{ab) = Da.b + a.Db. (9.2.2) 

For any A there exists a so-called universal derivation 
d : A—>Q.A with the following property. If D : A—>M is any 
derivation, there exists a unique bimodule map D : Q.A —>M mak­
ing commutative the following diagram: 

(9.2.3) 
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Thus for each M there is an A-bimodule isomorphism: 

Dcr(A,M) = HomA(QA,M), (9.2.4) 

where Der(?,?) denotes the .A-bimodule of derivations, and 
Hom/1(?,?) the bimodule of bimodule maps, from the first argument 
into the second in both cases. (If A is commutative QA is the famil­
iar module of Kahler differentials, whereas if A is noncommutative, 
Q,A is entirely different. This difference is highly significant for the 
development of "noncommutative geometry": see Gracia-Bondfa et 
al. 2001, Loday 1998, Landi 1997, Madore 1995, Connes 1994, 
Karoubi and Leruste 1989, Karoubi 1987.) 

If A is finitely generated, with {xk} a set of commuting gen­
erators, then Q.A is generated as an A-bimodule by {dxk}. More­
over, noting that we may write d : A—>A<8>AQ.A =QA , we have, in 
an obvious notation, 

df = ^^-®dxk. (9.2.5) 
k °xk 

This is the advertised algebraic analog of equation (9.2.1). 
Usually, the generators of an algebra (such as the xk in the 

last example) are regarded as indecomposable monoliths, and the al­
gebraic pseudo-variation represented by dxk cannot be carried fur­
ther. This is not the case, however, for our algebras C[TN] and C[T], 
whose generators contain (or hide) a very significant substructure: 
namely, the spinors and conjugate-spinors comprising the underlying 
chrononic pairs. Only by carrying forward and including the variabil­
ity of these fundamental constituent interrogative acts can an experi­
menter hope to capture the possible underlying dynamics of the net. 

For an arbitrary pair, (E^E") say, in SxS, we consider the 
operators TUIdj; similar considerations will always apply to the 
operators VZiZ^, often without comment: cf. §7.2. Since these 
operators depend bilinearly upon their spinor arguments we may for-
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mally pursue their variability by writing, for instance (see diagram 
(7.2.6)): 

= 1 ^ ) , (9-2.6) 

with 

d(I&Zj) = d'Li.X~ + 'Li.dIl~. (9.2.7) 

This last equation may be considered to hold in the algebraic 
category by noting that E;, EJ- and Ei®EJ are all elements of the 
noncommutative tensor algebra T(S®S). Then d may be taken as 
the universal derivation for this algebra, with the dots on the right 
hand side denoting the appropriate bimodule action upon the uni­
versal module of differentials for this tensor algebra. For typographi­
cal reasons we shall denote it with an unadorned Q . 

To open up the underlying spinor variables to variation be­
yond this formal algebraic level, we must interpret the right hand 
side of equation (9.2.7) in terms of selective acts. It will prove conve­
nient to start with the second term, namely Ej.dX~. Then we ob­
serve that each d~LJ already admits an interpretation as a differential, 
since the function (X~)*: S*—>£• is holomorphic with respect to 
the underlying (trivial) complex manifold structure of S . Thus its 
ordinary differential <i(X~)A is an element of the dual space of the 
(holomorphic) tangent space, at 0, say, in S . But this tangent space 
may be identified with S itself, upon which the differential, by its 
definition, acts via duality. Thus, we identify d~LJ first with d{L~)", 
and then the latter with (LjY itself, upon identifying S* with its 
(holomorphic) tangent space at 0. Consequently, Ej.dE~ determines 
a linear map 
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<rm:S*->S, (9.2.8) 

given by 

= (27)A()2, 

= 0 ( 2 7 ) ^ . (9.2.9) 

Alternatively, one may note that the association (D;,Z~) 
I—»2i.dZ~ is bilinear and so lifts to a linear map S®S—*-Q. , in 
which 'Li®I.~\-^'Zi.d'L~. Since the map Z~l—> (2~)A is a natural iso­
morphism, we may lift 'Z^d'EJ from Q.1 up to 5 0 5 = 5<8>5** 
= Horn ( 5 ,5) (f/'/2 the map just described) to obtain Ej®Z~, which 
may then be identified with Ei®(E~)A. In this way, 'Li.d'L~ may be 
realized as the same map given in equation (9.2.9), namely: 

a^~ = 'Ll®CZ~y. (9.2.10) 

If we were now to proceed similarly with the other term in 
equation (9.2.7), we would obtain an analogous map 5 —>S. We 
could then interpret the + in equation (9.2.7) as the additive G Q 
connective 0 (§6.2.17) to obtain a map S*®S*^S®S =S®S. 
A selective act, or operator, would then result from a careful choice of 
identifications of certain spaces with their duals. Various choices of 
such identifications are available and perhaps they yield physically 
equivalent results. There is an essentially canonical choice, however, 
obtained as follows. Arguing as above with the first term on the right 
hand side of equation (9.2.7), we obtain the association 

dTLi.-L-^CLiY^i;, (9.2.11) 
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the latter being realizable as a map S —>S, as noted above. How­
ever, we may embed spinors into their dual spaces in such a way that 
allowable SL(2,C) transformations are respected: cf. equation (9.1.9). 
Here we may assume that (p and <p have been supplied, with con­
comitant (p , <p% s, s etc., now being defined (§9.1), the tildes hav­
ing an obvious connotation. Then we may carry the assignment 
(9.2.11) further, obtaining 

(E tr®E~h^(e(E i))A®e(E7)h-»e(I t)®e(I7) (9.2.12) 

which is realizable as a map denoted 

o - W : S ^ 5 * (9.2.13) 

and given by 

<7^7()=sai)()Sa~) (9.2.14a) 

= <p(Z1v())e(2:~). (9.2.14b) 

Here we should emphasize that the purpose of this "raising" 
of (Xj)A®Z~ through the use of the e-isomorphisms is to respect a 
quantum symmetry—a symmetry among choices of acts. This dis­
tinction is important since classically conditioned experimenters may 
have become habituated to viewing this SL(2,C) symmetry as classi­
cal, pertaining perhaps to underlying states. 

It is interesting to note that <JZiẐ - has a similar expression. By 
the second assertion of the spinor duality theorem (equation (9.1.8)): 

()(x~)=d~n) 

= ((-e#og)(z~))( ) 
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= -<p # ( e ( I~ )v ( )) (9.2.15) 

so that (equation (9.2.8) repeated here for convenience) 

is given by (equation (9.2.9)) 

< W ) = ( )(Z7)2; (9.2.16a) 

= - £ # ( e ( 2 ~ ) v ( ) ) I , (9.2.16b) 

from equation (9.2.15). 
The symmetry exhibited by the equation sets (9.2.14) and 

(9.2.16) may be noted. 
We now obtain, without further ado, the family of linear 

maps 

yliZJ:S®S*—>S®S*, (9.2.17) 

given by 

r ^ M o - W e c r ^ - ) , (9.2.18) 

where t is the isomorphism that interchanges direct summands. We 
shall refer to them as Dirac maps. (This invocation will be justified 
shortly: cf. §9.4.) 

It is a simple matter to check that these maps depend bilinear-
ly upon their index pairs: therefore, the assignment ( 2 ; , ^ ) ^ T ^ x -
lifts to a unique linear map S®S —**Endl^ by the universal property 
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of tensor product. As usual, we shall write this map as 61—> ye, for 

6eS®S. 
T o interpret these maps, let us return to equation (9.2.6) and 

write formally, 

If r ^ is thought of as the operator that inserts 6 into the net, then 
the right hand side of the last equation should be interpreted as the 
operator effecting the insertion into the net of the act y ^ x j , belong­
ing to a new type. 

Writing 

V = S®S* (9.2.20) 

for this space of bispinors, we note that the Dirac maps are of type 
V®V*. Moreover, since the implication is that the "increment" in 
r z . z ^ occasioned by the variation is TZi^ + dTTiZj, we find that the 
effect of the variation is to introduce alternative net insertions of type 
V 0 V * . Roughly speaking, the selective acts r £ i 5 ; j of chrononic pair 
insertion may undergo minimal changes only through quan tum in­
terference with alternative insertions of certain acts of type V®V . 

These latter pairs represent the minimal selective acts for quanta 
whose initial action vectors are of type V(§1.3) . Since the net inser­
tions of the form Ty are alternatives to the "normal" acts TJJ_~ of in­
sertion of chrononic pairs, we presume that the new selective acts (of 
type V®V ) are to be used instead of these normal pairs when such a 
pair is varied. Since single spinors represent absences of pairs, gaps, or 
defects in the reticular pair structure, the initial acts represented by 
the elements of V, if inserted into the net, may be interpreted as retic­

ular defect injectors. T h e Dirac maps then represent certain selective 
acts upon this defect type which arise as a result of varying chrononic 
pairs as above. (Cf. the discussion following equation (9.3.15).) 

Dirac bispinors arise here as experimental acts, not as "wave-
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functions" of particles. To paraphrase a remark of Finkelstein's: it is 
physicists, not electrons, who emit wave-functions. Bispinors are in­
terpreted here as initial action vectors for a new type of quantum, 
which, in a sense, encodes the possible response of this particular col­
lection of "instruments," or experimental arrangements—namely, the 
net—to small changes in its basic constituent chrononic acts. We will 
return to this notion in subsequent chapters. 

We return to the Dirac maps and note some of their elemen­
tary properties. First, we note the trivial fact, which follows immedi­
ately from the definition (equation (9.2.18)), that 

" ( 7 ^ = 0 . (9.2.21) 

Then, we notice the only slightly less trivial fact that y^z~ 7Z z~ may 
be expressed as a direct sum of maps in EndS and EndS* respec­
tively. Namely, for Z[©I1^*G V, (using variously the equation sets 
(9.2.14) and (9.2.16)): 

= y Z j Z r ( f ( < p ( Z , v I 1 ) £ ( i p e X ~ * a 7 ) £ J ) 
1 j 

= t(^*(i:;)a^J(ik)®<p(i:kvi,1)(rZiZ~(s(z;))) 

= ^ (Z ,v I 1 )<p(5 :7vE7)Z i e l~*(X7) (p (Z l vI f c ) e (E~) 

=[^arvz~)e(zfc)( )zi©<p(z,vi,)(Er)A( jeapK^ez-*). 

(9.2.22) 

That is, 
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r w r w = <p(^rvS7)(e(i,)®xi)e<P(i!vi:fc)((srr®g(E~))) 

(9.2.23) 

so that the trace is obtained simply by adding the contractions of the 
summands on the right hand side of the last equation: 

t r ( 7 i i i 5 - y w ) = ^ ( 2 : r v 2 ~ ) e ( Z t ) ( Z i ) + < p ( E t v I j £ ( I ~ ) ( Z 7 ) 

= <p(E7vI~)<p(Z f c v! ! )+(p( I 1 vZ f c ) (p(Z7vZ~) 

= 2 < p ( I I v I J ( p ( I ~ v E 7 ) . (9.2.24) 

The trace of any product of these Dirac maps may now be ob­
tained in fairly short order. For example, the presence of an odd 
number of twists t in the product of an odd number of these maps 
will nullify the trace of such a product, whereas the product of an 
even number of them may be obtained, from equation (9.2.23), by 
contracting tensorial expressions: the trace may then be obtained, as 
in equation (9.2.24), by summing further contractions (§1.3). 

We have sought (§1.3) to interpret such traces as amplitudes 
associated with certain compound experiments of "maximally exter­
nal" experimenters, so we are forced to similarly interpret the traces 
of these so-called Dirac maps. The system that is the subject of these 
experiments must then be some sort of reticular defect structure, ac­
cording to our earlier discussion. Only the transitions associated with 
an even number of Dirac maps then survive to be detected by maxi­
mally external experimenters. For such an experimenter to be able to 
detect the transitions associated with an odd number of these maps, 
more refined acts of amplification must be interposed among them: 
cf. §10.2. 

Since we may also vary spinorial parameters via (logically) al-
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lowable SL(2,C) transformations, it is clearly of acute interest to in­
vestigate how the Dirac maps themselves behave with respect to such 
transformations. Recall (from the discussion following equation 
(9.1.23)) that the natural action of g E SL(2,C) upon S is L~g-\. 

Therefore, the naturally associated action of g upon T îs: 

y{g) = Lg®L~-x. (9.2.25) 

Noting that we may write (in an obvious notation) Lg = Lg~ 
and L~g-\ =Lg~-i, and that the latter map reduces to the complex 
conjugate transpose of L~g when expressed in matricial form, we find 
that y(g) is exactly the standard bispinor representation of SL(2,C) 
(Bogolubov, Logunov and Todorov 1975, equation (7.3), p. 170, 
Bjorken and Drell 1964, §2.2.) Then we have an independent proof 
of the following fundamental result. 

DIRAC MAP TRANSFORMATION THEOREM 

W W x y ^ ) = 7 ^ . (9-2.26) 

PROOF 

We have 

= ()(<7~£~ )gTi from equation (9.2.16a) 

= ( ( 4 ~ ( ) ) ( 2 ~ ) ) 5 Z P (9.2.27) 

and 
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= s{gLi){)s( <?~£~) from equation (9.2.14a) 

= ( (eoL f l ) (Z i ) ) ( ) (goV)(Z~) 

= ( (L*_io e ) (Z i ) ) ( ) (4~- ,og) (E~) 

from equation (9.1.13) 

= (L*-,(S(Z i)))( ) 4 ~ - i ( e ( I ~ ) ) , (9.2.28) 

whence 

(L>94~-,)( ) = i ;V s (^- i ( ) ) ) 

= L-1((4~(4~-I())(^7))^) 

from equation (9.2.27) 

= /£«( xz;))^) 

= 0 ( ^ ) 2 , 

= o"IX~( ), from equation (9.2.16a) 

(9.2.29) 
and 
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(L*±lcr9Lg)() = (Lp-l(<r9(Lg( )))) 

= L*~ ([£;-,(£(!,)) (g( ))] L*~-i (e(X~))) 

from equation (9.2.28) 

= L*~( [e ( I i ) ( ) ]L^- i ( s (Z~) ) ) 

= e(2 : i ) ( )e (Z~) 

_ cr£iZj'() from equation (9.2.14a). 

(9.2.30) 

Equation (9.2.26) now follows immediately from equations 
(9.2.29) and (9.2.30) and the definition of the Dirac maps, equation 
(9.2.18). I 

One immediate consequence of this result is that the traces of 
products of Dirac maps are seen to be invariant with respect to allow­
able transformations of the basic chrononic 22T- pairs, which, in 
view of §7.2 (equation (7.2.4)), we need not be shy to identify with 
Lorentz transformations. In fact, equation (9.2.26) shows that the 
Dirac maps behave with respect to these transformations exactly as 
complex Lorentz (cotangent) vectors should. (That is, when these 
differential forms are realized, via Clifford algebra, as automorphisms 
of the spinor bundle over a Lorentz spin manifold: see for example 
Lawson and Michelsohn 1989.) As a result of this behavior the con­
clusions arrived at by macroscopic experimenters through their 
use—conclusions concerning, for instance, matters of Lorentz covari-
ance or invariance, as with the Dirac traces—would tend to confirm 
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their belief in independent eventlike objects. For this is exactly the be­
havior to be expected if there actually was an independent set of 
eventlike objects which each putative experimenter may make a 
"state-space" valued map of, these maps being locally transformable 
among themselves via Lorentz transformations. Then a macroscopic 
experimenter would be tempted to interpret these transformations as 
taking place between equivalent observers of an objective plenum hav­
ing the aspect of a (Lorentz, spin) manifold. This view could provide 
a conceptual starting point for the promulgation of classical relativi­
ty: needless to say, this was not the path followed by history. 

We note here that if we had started out from the first term in 
equation (9.2.7), and had "e-raised" the map coming from the sec­
ond, the physical conclusions we eventually reach will remain unal­
tered. The choice we have made above will however lead to an imme­
diately recognizable representation of familiar items, namely the 
Dirac matrices: see §9.4. 

9.3 The A Operators 

We now return to the context of §8.1 to resume our search 
for the reticular precursors of the operators rpk (equation (8.1.28)). 
Note first that in the Schrodinger representation 

Pk=
1-^- (9-3.1) 

idqk 

so that equation (8.1.28) would read 

K]=^-. (9-3.2) 

Now the partial derivative appearing on the right hand side of 
the last equation, which acts upon certain elements of L2(U4), is re­
alizable as—or is extendible to—one of the basic self-derivations of 
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the algebra of formal series in the qs. Thus it seems reasonable to as­
sume that AN is similarly realizable as an operator upon the algebra 
of formal series in the I s in such a way that when interpreted 
macroscopically it acts in the specified manner upon the g-algebra. 
That is to say, for a formal series £ in the I s : 

In particular, with 

so that (equation (8.1.30)) 

[£] =exp ^£amg r 

(9.3.3) 

(9.3.4) 

(9.3.5) 

and from equation (9.3.2), we obtain, for the right hand side of 
equation (9.3.3): 

*aui idqk 
exp ^am<ln 

= «Jf] 

So equation (9.3.3) may be satisfied if 

(9.3.6) 

(9.3.7) 
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It is now a simple matter to check that the last equation is 
satisfied by the linear operator defined by 

<(rm
N

i . . .r^)^l^r(rm
N

i . . .r:p)> (9.3.8) 

and that with this definition of AN equation (9.3.3) is satisfied in 
general. (The partial differentiation in this definition is to be carried 
out on its noncommuting arguments according to the product rule, 
while the order of the factors is maintained.) 

As usual, analogous remarks apply when the Maxwell-
Boltzmann phase is considered and the Ns are left off. 

Now the new bispinor type Vwas introduced in the last sec­
tion in order to implement "small" variations in the basic chrononic 
EE~- pairs: elements of V were then found to be interpretable as acts 
of injection of reticular "defects." How should experimenters insert 
such defectlike acts into their nets so as to implement these varia­
tions? 

Moving for simplicity to the Maxwell-Boltzmann phase, we 
note that for an arbitrary £ in C[T], [[£]] may be thought of as a 
function of the [[T^J . Adopting the convention that repeated indices 
are to be summed over except where the contrary is specified, we may 
then write 

4rJ 

4 llil - j - ^ - ^ i r j (9.3.9) 

from equation (8.1.27). But 

4rj=(fW (9.3.io) 
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is, strictly speaking, not defined as a recognizable type in the coarse 
domain of the Schrodinger representation, whereas dTk has been 
defined in a fairly canonical manner in the last section in terms of the 
corresponding Dirac map yk. 

Moreover, since bispinorial acts are interpretable as defect in­
jectors at the lowest level of the net itself, this type would seem not to 
be an artifact of the various condensation processes presumed to con­
tribute to the types apparent to macroscopic experimenters, but is, 
rather, available to them in pristine condition. That is to say, 
bispinorial acts should be interpretable in the same way by all experi­
menters, whatever their presumed level of resolution. (Later, we will 
compromise this principle slightly. As remarked earlier, macroscopic 
experimenters will need to "amplify" these acts in order to register 
certain transitions. See §10.2.) 

Consequently, we set 

= yk. (9.3.H) 

Then, in view of equations (9.3.9), (9.3.11) and (9.3.3): 

* l"( f )¥ # d | r J 

=mm®yk 

= [ A ^ ® y J . (9.3.12) 

We distribute [[ J over <g> in the last step because the notion 
of sequence is the same at all resolutions (§2.2): the macroscopic in-
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terpretation of a sequence should be as the sequence of individual in­
terpretations. 

The upshot of the last equation is that the expression 

d£ = Ak£®yk (9.3.13) 

should be regarded as the precursor (in the Maxwell-Boltzmann 
phase) of the continuum expression 

4£J=(f)^]]®n, (9.3.14) 

where 8 = , for then we would have 

M=4fll. (9-3.15) 

(It may be noted that the adoption of equation (9.3.13) bears 
out our earlier interpretation of "quantum" variation of reticular ele­
ments as entailing the replacement of the varied LIT- pair by a yzz~: 
see the discussion following equation (9.2.20). Thus, the equation 
(9.3.13) may be interpreted as asserting the identification of the se­
lective act associated with a (small) variation of £ with a super­
position of pairs of acts of the following type: each pair comprises an 
act of destruction of a EIT-pair {via the action of A12" ) and an in­
sertion of a yZI~ in its stead. Readers who find the argument follow­
ing equation (9.2.20) convincing may presumably use it to motivate 
the choice of an equation like (9.3.13): then they will discover its 
continuum correspondent (equation (9.3.14)), which will turn out to 
be the usual Dirac operator. Such readers will then have derived this 
operator entirely at the reticular level, without contaminating the ar­
gument, as we have, by pulling back from the continuum equation 
(9.3.9).) 

Applying d to an element of the form £®s e C[r]<8>V, and as-
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suming for the time being that the "defect" injector s does not itself 
partake of that (small) variation its insertion is supposed to imple­
ment, we obtain: 

d(£; ®s) = dg ®s 

= A*£<8>yfc®s. (9.3.16) 

Now, since yke V®V* and s eV, a. macroscopic external ex­
perimenter would presumably have access only to the contracted 
form of this act so, effectively, 

[d(f«S)]=[Afcf«ytH 

=l*kl€hbM 

= 4^H- (9.3.17) 

In this way, we arrive at a Diraclike operator which will soon 
be shown to be the usual one. Its reticular precursor, namely the 
reticular analog of the d in equation (9.3.13), has a quite specific in­
terpretation in terms of infinitesimal reverse parallel transport of de­
fects through the net. We shall return to these matters in the next 
chapter. 

For later use we remark that a second variation applied to 
equation (9.3.16) yields 
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d(d{) = d(Ak£®yk) 

= d(Ak£)®Yk 

= AlAh^eryl®yk. (9.3.18) 

In this case, reductions to the forms appropriate to macroscopic or 
external experimenters may proceed, for the spinorial factor Ji®yk, 
through two contractive steps. The first yields 

ld(dd} = lAlAk{]®lyi®yk} 

= [ A ' A ^ ] » | [ y / r J 

= [ A ' A ^ ] ® r ; T f c . (9.3.19) 

A further contraction is possible, yielding tr(yijk) instead of 
Jijk on the right hand side of the last equation. Macroscopic experi­
menters who perform this final contraction increase to the maximum 
their degree of externality with respect to the defect structure. 

We note in passing that some care is required in the handling 
of the A operators (equation (9.3.8))—they are not derivations on 
their domain algebras, for example. 

9.4 The Real Subspace, Frame Choices and Dirac Matrices 

We return to the quantum-logical context of our original 
choice of the space S®S to represent pairs of interrogative acts 
(§7.1) to ask the following question: what should be the effect of 
changing the "flavor" of each factor in each pair? Noting that these 
flavors are changed by the action of the conjugate linear involutions 
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( ) ~ S - » S , (9.4.1) 

and 

( )~ S ^ S (9.4.2) 

(which amount to complex conjugations, once a basis is fixed) we 
find that the flavor-changing operation for pairs is 

()~®()~: S®S—>S®S, (9.4.3) 

an operation that also has the effect of changing the flavor order, or 
sequence, of the constituent acts within a pair. So, to discuss proper­
ties of the flavor-changing operation without the side effect of se­
quence reversal, we should restore the order of pairs by following the 
map in equation (9.4.3) by a twist. The result is a conjugate linear 
involution on S®S, which we shall also call ( )~: 

()~: S®S^S®S, (9.4.4) 

given by 

(a®j§)~ = j8®5. (9.4.5) 

This involution changes constituent truth-flavors while maintaining 
the sequential order of flavors within a pair. 

Since the pair substructure is apparently macroscopically in­
visible, being presumably far below the resolution available to 
habitues of the continuum, it would seem that macroscopic interpre­
tations \Vk^ of the basic microscopic chrononic selective acts rjtN 

should be impervious to this truth-flavor interchange operation and 
therefore taken to be truth-flavor neutral. Consequently, it will be as­
sumed that macroscopic continuum experimenters may interpret 
only those net generators lit = T6k having the property 
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FN~ = r N 

= r£. (9.4.6) 

For such a basis {6k} of S<8S the set {Tk
N} will of course still 

generate the algebra C|TN] and all our considerations concerning it 
remain unaffected. The above assumption, in a sense, serves merely 
to restrict the availability to macroscopic continuum experimenters 
of net generators. Although this assumption may be regarded as an 
intervention at the macroscopic level, it will inform our choice 
(below) of a convenient basis {0k}. This basis will then determine a 
correspondence principle of the type contemplated in the last chap­
ter: namely, as a certain linear map from the algebra C[TN] (or 
COT]) into the algebra generated by the position operators of a cer­
tain Schrodinger representation (with concomitant interpretations 
for the A operators). 

Note that the set 

M = {0eS<g>5:0~=0} (9.4.7) 

is a realspace, easily seen to be of dimension four, and that it is stable 
under the action of the representation 2) of SL(2,C) (equation 
(7.2.2)), which therefore lifts to a representation of L+ upon it 
(equation (7.2.3)). This means that any element of L+ acts upon M 
as follows. Choose an element g e SL(2,C) that maps to the chosen 
element in L+ via the surjection in (7.2.3). Then define the action of 
the chosen element in L+ as 2)(g). This choice will be independent 
of the choice of g. We shall abuse the notation slightly (in the usual 
way) by denoting both a general element of L+, and its action upon 
M, by A(g). Thus A(g) will denote the Lorentz transformation cor­
responding to g e SL(2,C) acting upon M via 2). 

We are now ready to allow an experimenter to choose an ini-
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tialframe in S, which, we recall, will be determined by a pair of vec­
tors orthogonal relative to a Hilbert space inner product, and may it­
self be frame (and experimenter) dependent. Once a frame (and 
Hilbert space structure) is chosen for S however, we shall assume 
that the following symmetry obtains between the S- and the S-
amplitudes—here ( | ) denotes the inner product in either space S 
or S: 

(a\fl = (p~\a~). (9.4.8) 

This assumption embodies the notion that a -importers (ex­
porters) are, in a sense, equivalent to a ~-exporters (importers), and 
that corresponding amplitudes are the same: this reversal of roles be­
tween truth-flavors seems to be a reasonable interpretation of the ~-
operation. 

The experimenter establishes an initial frame in S, then, by 
choosing a pair of algebraically independent initial action vectors, t 
and I, say, to serve as a (computational) basis for S, as in §7.1, and 
declaring them to be orthonormal. Then the Hilbert space structure, 
and consequently also the adjoint operation, will depend upon this 
initial choice. The adjoint is then not unique, and these systems are 
open (§1.1). That is to say, initial acts may now have different al­
lowed final acts, depending upon the choice of frame (or experi­
menter). This openness seems not inappropriate to these smallest 
nontrivial quantum systems. 

Supposing now that some isomorphism if/:SVS—>C has 
been supplied, we may choose a new isomorphism 

<p = . / , ( ! v i ) " V (9.4.9) 

so that 

<p(Tvl) = l. (9.4.10) 
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Then s, (p#, e* (§9.1) are determined. 
Having chosen a frame for S, there seems no reason, a priori, 

for an experimenter not to choose a similar but unrelated frame for 
S. From here on, however, we shall make such choices explicitly to 
ameliorate the macroscopic experimenter's task of interpretation. As 
macroscopic experimenters (or at least theorists), prone to reification, 
we may be tempted to assume that other choices would not affect the 
resulting physical conclusions. Whether or not this is true, it is cer­
tain that other choices would make their macroscopic interpretation 
much more difficult, if not impossible. (In making these choices, we 
undoubtedly ride roughshod over many subtle and difficult issues 
whose resolution must await the advent of a more refined principle of 
correspondence.) Consequently, we note from equation (9.4.8) that a 
choice of orthonormal basis {T,4} in S determines one in S, namely 

{T , I }, the tilde, as usual in this context, denoting the conjugating 
involution (equation (9.4.2)). Likewise, an isomorphism <p: SVS 

—> C is determined by <p as follows: 

£ ( a v j 3 ) s (p(a~v(3~) . (9.4.11) 

Thus 

<p(t~vl ) = (p(Tvl) 

= 1. (9.4.12) 

The maps e, (f>, e # are now also determined. (Similarly, we could 
have started with the latter space.) 

A Hilbert space structure is now determined for S®S (§2.2) 
as is the orthonormal basis 

{T®r,T®i~, 4 ® t ; i ® r } , (9.4.13) 

261 



Quanta, Logic and Spacetime 

two elements of which are not in M. To choose a convenient basis for 
S®S all of whose elements lie in M, "convenient" here meaning 
"convenient for the purposes of macroscopic interpretation," we pro­
ceed as follows. First, consider an ordinary numerical matrix of the 
form 

A = a z 
KZ b) 

(9'.4.14) 

in which a and b are real and z is complex. Then the matrix 

B = a z 

\z b) 2 {.0 \) 
(9.4.15) 

is clearly trace free and Hermitian: that is, iB is in §ll(2). Now 
there is a convenient basis {icrl,i(J2,i(Ti) for §ll(2), the crk being 
known as the Pauli matrices, namely: 

'0 1 

a o. an 

0 -i 

i Oj 
°"3 = 

1 0 

0 -1 
. (9.4.16) 

Thus there exist constants c.,k = 1,2,3, such that 

fc=i 

(9.4.17) 

From the (well-known) tracial properties of the Pauli matrices it is 
easy to see that 

c fc=Ttr(o- ti4), (9.4.18) 

k — 1,2,3, which are real numbers. One may then express the origi-
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nal matrix as 

2 l0 l) 
+ B 

k=0 

(9.4.19) 

wnere 

°"o = 
1 0 

0 1 
(9.4.20) 

and now 

ck=\^(o-kA), (9.4.21) 

for k = 0,1,2,3-
It is immediate that these four matrices crk are linearly inde­

pendent over C and hence span the space of 2 X 2 complex matrices. 
Consequently our maps cr^i, 0"ZiXj- will be expressible in terms of 
them, once bases have been chosen in S and S . Moreover, pseudo-
matricial arrays of the form 

an~ cr4-t~ (9.4.22) 

are formally similar in structure to the matrix A in equation (9.4.14). 
Thus, by expressing each (T^J, crZiI:~ in terms of the matrices ak , 
one should be able to formally express the pseudo-matrix in (9.4.22), 
and its companion having raised indices, as linear combinations of 
the Paulis. The coefficients in such an expansion, being linear combi-
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nations of the pseudo-matrix entries, will be 2 x 2 matrices, and, 
moreover, will be "formally real" with respect to their arrow index 
structure. Thence, one may express the corresponding pseudo-matrix 
of Dirac maps similarly in terms of the Paulis, likewise with "formal­
ly real" coefficients, which will now be 4 x 4 matrices. T h e arrow 
index structure of these coefficients should then provide a template 
for a basis for S®S whose elements reside in M, which will corre­
spond in a one-to-one fashion with the basis just found for the Dirac 
maps. T h a t is to say, the conventional and macroscopically condi­
t ioned choice of the Pauli basis, together with our frame choices, 
conspires to determine a "formally self-adjoint" and linearly indepen­
dent set of Dirac maps. Since these maps represent a cotangentlike 
structure in the sense of equation (9.2.5) an appropriate matching 
basis for S®S can be chosen by lifting to this latter space the index 
structure appearing in the set of Dirac maps just obtained. 

T o implement this plan we note that a basis for V = S@S is 
determined by our frame choices, namely {T, -l, T , -l }. Then, 
using equation (9.2.16a) we obtain 

0 - T r (T~*) = (T~*)(T~)T=T (9.4.23a) 

o - t r ( i~* ) = (i~* )(T~) T= 0 (9.4.23b) 

o - i r ( r * ) = ( r * ) ( T ~ ) i = , l (9.4.23c) 

o r i r ( i ~ * ) = ( i ~ * ) ( T ~ ) i = 0 (9.4.23d) 

< r r r ( r * ) = ( T ~ * ) a ~ ) T = 0 (9.4.23c) 

rTI" ( r * ) = ( r * ) ( D T = T (9.4.23f) 
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<rn~(r*)=(r*)a~u=o (9.4.23g) 

o-,ra~*)=a~*)(ru=i. (9.4.23h) 

So, using column vectors, these maps acquire the following matricial 
representations relative to the bases chosen for S and 5": 

<T-[-[-~ — 
1 Q\ 

o oJ 
= 1(0-0+0-3) (9.4.24a) 

°Vr 
0 0 

1 0 
= i(o-j-zo-2) (9.4.24b) 

°u~ = 

°u~ = 

1° 
.0 

(° 
lo 

n 
07 

°) J 

= |(o-!+io-2) (9.4.24c) 

j = I(o-0-o-3) (9.4.24d) 

or 

°"TT~ °"IT~ 

'u~ uir 

\( a0+cr3 crl — ^c^2^ 

2VO-J+ZO-2 (T0—(T3J 
(9.4.25) 

For the raised maps, we use equations (9.2.14b), (9.4.11) and 
the first assertion of the spinor duality theorem, equations (9.1.10) 
and (9.1.11), to obtain: 

o-"(T) = <p(TvT)e(T ) =0 (9.4.26a) 
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o-tT~(i) = <p(Tvi)s(T~) =l~ 

For the others, in short, we obtain: 

o-4T(t) = - r 

o- iT (l) = 0 

(9.4.26b) 

(9.4.26c) 

(9.4.26d) 

an (T) = 0 

o-n~(i) = - r 

(9.4.26c) 

(9.4.26f) 

so 

cr 
/ ^ x ^~ 

(TU ( l ) = 0 

.rr 0 0 

,0 1 
= iK-°"3) 

Ul 0 

,0 0> 
0" t r -U<r, +ia2) 2 v " i 

(9.4.26g) 

(9.4.26h) 

(9.4.27a) 

= -Ual-io-2) (9.4.27b) 

(9.4.27c) 
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(\ 0^ 
a11' = 

vo o) 
= \{aQ+<ri). (9.4.27d) 

That is, 

/ V T ( r w , \ _ l f <r0-<r3 - (o-!- io- 2 )^ 

\crU~ <rU~ J 2V.-(tr1+icr2) cr0 + o"3 7 
(9.4.28) 

Using the definition of the Dirac maps (equation (9.2.18)) 
and equations (9.4.25) and (9.4.28) one finds 

7 t r 
0 a 

Tf 
t r 

a 0 

' 0 a 

\p-0 0 ) + 
r 0 a 

V-o-, 0)_ 
(9.4.29a) 

7ir = 
Vo" 

.it~ 0 

0 cr, ' 0 o-2 

V-o-2 0 
(9.4.29b) 

etc. 
Thus, with 

To 
0 V 

an ̂  Jk = 
0 <rfc 

for k = 1,2,3, we obtain 

(9.4.30) 

y = 
vrrr rir^ 2V7i+*r2 y0-73 

(9.4.31) 

from which it immediately follows that 

7o = yn~+yu- (9.4.32a) 
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7:=7n~+yir (9.4.32b) 

7 2 = * ( n r ~ - 7 u ~ ) (9.4.32c) 

7 3 = y t r - y u ~ (9.4.32d) 

or 

y, = tr(o-ty), (9.4.33) 

for A; = 0,1,2,3. 

The matrices yk (equation (9.4.30)) constitute a representa­
tion of the usual Dirac matrices in a chirally diagonalized form. (See 
for instance Pokorski 1987, equation (C.4), Appendix C.) 

We note that, as anticipated, the arrow index structures of the 
expressions on the right hand sides of the equations (9.4.32) do in­
deed render them formally self-adjoint. The set of vectors in M so de­
termined is 

or, with 

60 = T®T~ + 4®1~ 

dx = T®4~ + i®V 

0 2=i( l®T~-T®D 

03 =T®T~- 1®4~, 

'T®T~ i®T~ î 
v T®4~ 4,® JT / 

(9.4.34a) 

(9.4.34b) 

(9.4.34c) 

(9.4.34d) 

(9.4.35) e = 
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we have 

6k = tr(akd), (9.4.36) 

and 

7* = V (9-4-37) 

It is immediate that the 6k are linearly independent (indeed 
orthogonal) over C and hence constitute a basis both for S®S and 
for the real space M. 

We leave as an exercise the calculation of the quantities 
tr(yfey;) (viaequation (9.2.24)), whose significance will emerge later. 

Note also that in terms of the basis {6k} and the lifted repre­
sentation of L+ discussed above, equation (9.2.26) now reads 

Jk ~ yek 

= y(9)-lyAr«{9)ey(9) (9-4.38) 

or 

^ig)y^i9y1 = K(9)7m> (9-4-39) 

where A™(g) denotes the matrix representation of A(g): M—*-M 
relative to the basis {6k}. 

9-4.1 General Transformations 

Our discussion has been predicated upon an initial choice by 
the experimenter of a frame in S. This initial choice of frame was ar­
bitrary, and so we should allow the experimenter a more general form 
of transformation that takes this initial freedom of choice into ac-
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count. Suppose, for instance, that the experimenter had chosen an­
other initial frame in S, as above. Denoting the transformation in­
duced on S by mapping the "old" initial frame to this new one by 

u:S^S, (9.4.1.1) 

we note that the corresponding transformation on S is not arbitrary, 
being given, according to the construction, by 

u:S—>S, (9.4.1.2) 

where 

u(s~) = u(s)~. (9.4.1.3) 

Similarly, we have associated transformations 

u*:S*~^S*, (9.4.1.4) 

u®u:S®S—*>S<&S, (9.4.1.5) 

and 

u®u*: S®S*-^ S@S*. (9.4.1.6) 

It is an elementary matter (cf. equation (9.4.8)) to show that 
the inner product on S®S is real-valued when restricted to M, and 
it is quickly seen that u®u preserves M. We denote the transforma­
tion it induces by 

F-.M^M. (9.4.1.7) 

The experimenter is free to change the new initial frame by 
applying another such map, or by subjecting the new frame to an al-
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lowable transformation indexed by some element of SL(2,C). How­
ever, once such an allowable SL(2,C) transformation has been per­
formed, the resulting associated dual frames are no longer candidates 
for "initial frame"-hood since, for instance, the natural SL(2,C) ac­
tion upon S is I7g-\, which is not J7g unless g is the identity: this 
conflicts in general with the starred version of equation (9.4.1.3). 
Thus, since the resulting "new" collective frame does not give rise to 
the form we are allowing for an initial dual frame, only further 
SL(2,C) transformations should be permitted. Then, on M, the most 
general such transformation takes, the form: 

E = A(g0)F, (9.4.1.8) 

for some F induced as above, and some g0 in SL(2,C). This has the 
consequence that a new E, E' say, must be of the form 

Ef = A(g)E, (9.4.1.9) 

for some g in SL(2,C), which is the "transformation law" for the ma­
trices E. Matrices obeying such a transformation law arise classically 
and for historical reasons are called vierbeins. 

The new basis for M may be expressed in the form 

E(e„) = %=e% (9.4.1.10) 

for real numbers e^. The horrible and non-standard notation ap­
pearing in the middle of this equation is intended to effect a compro­
mise with physics usage that, under similar circumstances, usually 
omits reference to E, relying instead on the Greekness of the sub­
script to identify the transformed entity, thus: 

0»=eX (9.4.1.11) 

This notation, though highly efficient, flirts with disaster when 
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specific values are assigned to fx (and also under other circum­
stances); nevertheless, we shall generally adopt it here. (Please see the 
remark at the end of this subsection.) Thus it follows from the last 
equation that 

= < y „ (9.4.1.12) 

and, denoting the transposed matrix inverse of E by e^, we have in 
addition 

A"=e£A*. (9.4.1.13) 

The "transformation law" for the vierbein e^ (equation (9.4.1.9)) 
now takes the form 

(ekJ = Kn(9K- (9.4.1.14) 

In summary, the most general change of initial frame is en­
coded as a matrix of the form shown in equation (9.4.1.8), that 
transforms as a vierbein (equation (9.4.1.9)). By allowing such trans­
formations (as E) among the experimenter's own collection of 
acts—and please note that pure Lorentz transformations are included 
as special cases—we are able to resist the temptation to interpret 
them in terms of the views of "other" putative experimenters or ob­
servers, whose existence remains in any case unacknowledgeable. 

The following remark may prove helpful to readers unused to 
the compact index notation often used in physics to express linear 
transformations. We adopt the usual mathematical conventions in 
which matrices act on the left upon column vectors, and Mjk refers 
to the element in row j and column k of the matrix M. Then 
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et=Ek)l, (9.4.1.15) 

< = £ ; ! > (9.4.1.16) 

where the right hand side of the last equation denotes the (fJL,k) 
entry in the matrix E~ . 

Thus, for instance, 

e^e = E~l E 

= E P_ 1 

= 8l
k, (9.4.1.17) 

(Kronecker delta) a concatenation which arises when showing that 
combinations of the form d^ftdx,, transform as scalars. 

9.5 The Correspondence Principle 

Evidence in favor of a correspondence principle of the sort 
contemplated in §8.1 has accumulated over the last pair of chapters. 
For the sake of simplicity (and mathematical safety) we shall frame it 
in terms of the Maxwell-Boltzmann phase: that is, in terms of the al­
gebra C[T]. 

A macroscopic experimenter, then, is assumed merely to 
choose an arbitrary pair of orthonormal vectors in S (or S). With a 
basis for S®S chosen as in equations (9.4.34), and with operators 
qk and dk having their usual connotations in the Schrodinger repre­
sentation upon L (R ), we could posit a correspondence principle 
comprising the two equations (8.1.28) and (8.1.30), with the N su­
perscripts removed: 
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[ r * . - r J = i(i)"«*i-«*,. (9.5.1) 

[A*J= -irdk. (9.5.2) 

The first of these equations specifies a linear transformation 
from the (complex) algebra of formal series in the Tk s to the (com­
plex) algebra of formal series in the qks, which depends upon the 
choice of basis {6k}. 

The operators A (which act upon the algebra of formal series 
in the Tk) are defined in equation (9.3.8), and satisfy an equation 
like (9.3.3). 

Having chosen an initial frame, however, a macroscopic ex­
perimenter may parametrize the general change of that frame by 
choosing a vierbein as in equation (9.4.1.8) and defining the corre­
sponding general frame as in equation (9.4.1.11). From the linearity 
of [[ ]] , and with the choices just made, we then arrive at a more gen­
eral 

CORRESPONDENCE PRINCIPLE 

[fr ...T H =—(-*-Tg ...q , (9.5.3) 

| [ A 1 = -iTd». (9.5.4) 

(We have briefly discussed the correspondence principle for 
the defect structure in §9.3, and will return to this topic in subse­
quent chapters. Note that as far as the correspondence principle itself 
is concerned, the sole purpose served by the introduction of the 
Dirac maps, and the entire discussion of the defect structure in pre­
ceding sections, was to motivate the choice of the basis {6k}. Since 
the defect structure in a sense encodes the response of the net to 
small changes, it must be deeply implicated in the way in which "dy-
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namics" enters the experimenter's lexicon. These considerations will 
occupy us for most of the remainder of this work.) 

As for the real constant T, we note that the basic spinorial in­
terrogative acts, and the pairs of them that comprise the net, appar­
ently have no inherent dimensional content: such content must come 
rather from macroscopic use, once some kind of dynamics, and stan­
dards of comparison, have been developed. That is to say, dimen­
sional attributes are part of the macroscopic continuum experi­
menter's interpretative burden. Consequently, we shall assume that 
the right hand sides of the equations appearing in the correspon­
dences given above remain dimensionless. Since the q eigenvalues cor­
respond to (continuous) determinations of position, we assume that 
these operators themselves carry the dimensional attribute of length. 
It then follows that T also carries this dimensional attribute. 

To interpret T, we note that the value assigned by a macro­
scopic experimenter to j (TM ) |, the modulus of the expectation value 
of r^ in some macroscopic state, is presumably 

KKJ)|=!M (9.5.5) 
|T| 

in that state. So, in a state in which the latter value is unity, a macro­
scopic experimenter finds 

I M = |T|. (9.5.6) 

That is, the "unit chronon"—i.e. the value assigned to \(q )| by a 
macroscopic experimenter in a state in which | ([[1^ J ) | is unity—is 
\T\. Consequently, |T | is interpretable as the size ascribed by a 
macroscopic experimenter to one reticular unit, or chronon. Thus 
\T\ coincides with a version of Finkelstein's net constant (Finkelstein 
1988b—1991). As a consequence, the expression " | r | —> 0" signifies a 
passage to the "continuum limit" in the same sense that "ft—>0" 
signifies a passage to the "classical limit" in ordinary quantum me-
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chanics. Thus, relative to "macroscopic" scales, we expect \T\ to be 
very small indeed. 

The vexing issue of what sign a macroscopic experimenter 
should ascribe to r will be taken up in §10.1. 

There is a further step to be taken towards the right-most 
sides of the diagrams (7.2.1) and (8.0.1): namely, the replacement 
q \—>x , where x^ has its usual connotation as the "generic" value of 
a coordinate on the classical manifold, which must then be given a 
physical interpretation. In ordinary quantum mechanics (and field 
theory), in which a classical manifold is assumed, an algebraic expres­
sion involving the classical coordinates x^ is quantized into an opera­
tor by replacing each x^ by q^. The idea is that the classical value of 
xM—the position of a classical particle, say—is approximated by the 
expectation values of q^ in certain states, namely those sharply 
peaked around the value of x^. Thus the reverse assignment qll\-^x 
may be left ambiguous, in which case x^ may be regarded as a vari­
able or "indeterminate," or it may be assigned an expectation value of 
q^ depending upon the context it inherits from the latter. In the 
general (ambiguous) case, in which the context is not specified, so 
that the x^ may remain generic variables or indeterminates, a candi­
date for the ? in diagram (8.0.1) becomes available: namely the alge­
bra C[x ] of complex polynomials in the indeterminates xM. This al­
gebra may be considered, if necessary, to be a subalgebra of its associ­
ated algebra of formal series. We shall generally denote the classical 
version of an expression embraced by [[ J , in which q has been re­
placed by x^ or by a particular value thereof, by [[ | c . 

The very last step, in which the x^ are associated with specific 
physical arrangements, must await the availability of some physical 
notions (cf. §10.3.1). 

We note finally that, as in §8.1 (cf. equation (8.1.14)), our as­
sumptions already incorporate a choice of macroscopic units in 
which ti — \. In the next chapter we shall develop a dynamics 
sufficient to justify a choice of units in which c = 1 in addition. 

(For the theory of spinors in classical relativity upon mani­
folds, and a lot more besides, the reader may consult the epic Penrose 
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and Rindler 1984, 1989. For related material see also Ward and 
Wells 1990, Manin 1988, and for terser but still illuminating treat­
ments see de Felice and Clarke 1990 and Stewart 1990. A definitive 
account of the mathematical theory appears in Lawson and Michel-
sohn 1989.) 
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Dynamics I 

The d operator introduced in §9.3 effects changes in the se­
lective acts represented by elements of the algebras C[r N ] ,C[r ] . Act­
ing on monomials—interpreted as the creators of "questionnaires," 
or lists of interrogative acts, or "history" injectors—the A compo­
nents of d perform certain truncations of the list. The operator d then 
pairs each such truncation with a corresponding Dirac map. This 
change to net element creators—which, according to the analysis in 
the last chapter, is the generic small variation admitted by the struc­
ture—is presumably in some sense an infinitesimal precursor to what 
macroscopic experimenters understand by the term "dynamical 
change": that which legislates changes to histories is what we, as 
macroscopic experimenters, interpret as "dynamics," or even "dy­
namical law." For instance, in classical mechanics the coordinates of 
a point particle represent a kind of history since these values must be 
determined (or be determinable) by some tacitly assumed procedure, 
or sequence of actions. The term "dynamics" in this classical context 
then pertains to possible changes in these determinations. 

We may realize the operator d as an operator upon C[r]<8>\^ 
if we supplement each element f in C[T], say, by pairing it {via ®) 
with an element of V, as in equation (9.3.16)—which, for a general 
choice of basis as in §9.4.1, reads 

d(f ®s) = AM£ soyas (10.0.1) 
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—and carrying out the right-most contraction at this level to obtain 
an operator upon C[r]<8>V, namely 

M ( f ® s ) , (10.0.2) 

abusing the notation only slightly by maintaining the same symbol, 
d, on the left hand side. We note that if we were to proceed to the 
continuum by means of the correspondence rules from this 
point—namely from the right hand side of the last equation—we 
would arrive at the same result as before: cf. equation (9.3.17). 

As remarked earlier, the bispinor s in a pair of the form £®s 
functions rather like a place-holding act, which is not itself an 
interrogative-pair creator: rather, it implements a kind of gap or ab­
sence of basic pairs. The fundamental reticular operator A" is the op­
erator (or selective act, or deduction in the sense of GQ) implement­
ing generic "quantum" variation of net elements, and at the same 
time performs an act of generic parallel transport of defect injectors 
through one chrononic unit. Thus, the right hand side of equation 
(10.0.2) is a superposition over all possible pairs of acts comprising a 
truncation of the net element and a corresponding Dirac map ap­
plied to s. This latter Dirac map is an operator version of the cotan­
gent corresponding to—that is, "parallel" to—the atomic piece of net 
removed by its accompanying A. We will argue that, at the reticular 
level, the application of this operator is somewhat akin to the tick of 
a clock in that it implements the fundamental generic "expenditure" 
of one chrononic unit. This operator is in a sense the dynamical 
"quantum," or generic causal synchronic step, which induces the 
minimal "dynamical" change in the experimenter's repertoire of 
reticular acts. 

Our interpretation of this operator in terms of infinitesimal 
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variations has been predicated upon the assumption that the "gaps" 
of type V, which have been invoked in order to implement such a 
variation, do not themselves participate in the variation: see the re­
mark preceding equation (9.3.16). We shall continue to maintain 
this assumption during the course of this chapter, our conclusions 
here being accordingly provisional or "first-order." The attempt to 
include possible variations of the V -̂defect itself would seem to re­
quire the invocation of an infinite hierarchy of new "internal" types 
to implement first the gaps between the s-gaps engendered by a small 
variation of the latter, then to implement the gaps between these gaps 
engendered by a small variation of these, which must now also be 
taken into account, and so on. The result is a "clothing," or renor-
malization, of the original V^defect, in a sense to be made explicit in 
the next chapter. In these terms the first-order defect we deal with in 
this chapter is "bare," and we shall sometimes refer to it as such. 

In §10.1 we attempt to introduce dynamics into the net by 
"dynamically activating" each net element creator: that is, each 
monomial in C[T] is paired with an appropriate sequence of selective 
acts, each implementing, in a sense, the most fundamental generic 
dynamical change conceivable. In a dangerously reist analogy such 
concatenations of selective acts correspond with the result of carrying 
the generic measuring device—a clock, say—along the "path" 
specified by the monomial. Actual paths correspond to reticular Chen 
series, however, and extending this notion of dynamic activation to 
such series in an obvious way leads to the activation of the associated 
transport operator (§8.2). The structure of the amplitude associated 
with the corresponding macroscopic selective act leads to the 
identification of a candidate for the macroscopic Lagrangian in this 
bare defect case. 

Unfortunately, this quantity is not well defined, the reason 
being, ultimately, that there is no classical theory of a single defect. 
Attempts to come to terms with this problem lead, in §10.2, to a sec­
ond quantized operator form for the Lagrangian we are seeking 
which reproduces exactly the usual Weyl Lagrangian describing the 
dynamics of a free neutral massless fermion. 
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In §10.3 we give a thumbnail sketch of the sequence: Feyn-
man path integral —> Schwinger action principle —> field equa­
tions, so as to produce the Weyl equations from the Lagrangian just 
found. Then, in §10.3.1, we pull these equations back to the net and 
derive solutions for them there by quantum-logically exploiting the 
representation of the Dirac matrices derived in the last chapter. 
These solutions then necessarily give rise, via the correspondence 
principle, to solutions of the usual equations with an added interpre­
tation in terms of transport operators. This subsection also contains a 
discussion of chirality that will be needed in the sequel. 

10.1 Dynamic Transport and the Lagrangian 

The questionnaire (or history)-c«w-defect injector i;®s can 
undergo a generic small variation by superposing the results of re­
moving certain "questions" (or interrogative acts) from the list f 
while simultaneously changing the appended bispinorial act s 
through the action of the appropriate Dirac map. These alternative 
selective acts (namely AMf ®yM , not summed) each shorten the ques­
tionnaire by one interrogative act, or chrononic unit, though the net 
grows in the direction of lengthening questionnaires. If the net were a 
model of any thing, it would be a model of the resource, or medium, 
used by an ideal measuring device (or set of such devices) whose sub­
stance gets used up as the fundamental dynamical act, $ , is per­
formed upon it: the effect of such an act—regarded as an act of mea­
surement—upon the resource is, in a sense, complementary to the ef­
fect upon the stuff measured. (This using up of the "instrument of in­
terrogation" in the course of an "interrogation" is actually implicit in 
our original axiom: cf. equation (7.1.19) and the discussion following 
it.) A dangerous but irresistible classical analogy is to the operation of 
a clock. Most of these operate by using up some kind of physical 
reservoir: potential-, kinetic-, chemical- or radiative energy, for in­
stance. We consider time to move forward as the reservoir decreases, 
the direction depleted reservoir —> full reservoir signifying the transi­
tion later —> earlier. The reservoir, or some attribute of it, consti-
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tutes a collection of finite "histories" of the process, and corresponds 
to our collection of net elements. (Tape-measures act similarly: dis­
tances may be measured by the depletion of the tape inside the de­
vice.) For net elements also, short —> long signifies a transition from 
fewer interrogative acts being available to more of them being avail­
able, and therefore corresponds to the transition (for a macroscopic 
experimenter) later —>• earlier, relative to the contrary effect of the 
fundamental dynamical destructive act &, which transports defects 
causally, or in a "forward" direction. 

This view of the net and its operators has the important con­
sequence that a macroscopic experimenter should ascribe a negative 
value to the net constant T, since the macroscopic sense of causal in­
crease is opposite to the direction of reticular growth: macroscopic ex­
perimenters should measure backwards from more stuff measured xa 
less stuff measured, or, in the case of time, from later to earlier. 

Another classical analogy to the operation of $. upon net ele­
ments, in the same dangerous vein, is afforded by the device known 
as an hour-glass: as usual, causal progress, or increase, is measured by 
the decrease of the amount of sand in the upper bulb. A history injec­
tor £ corresponds to some sequence of sand grains embedded within 
the volume of sand in the upper bulb, and s to an interstitial gap be­
tween the grains. As the sequence of grains falls through the neck of 
the device the gap moves with it. Of course, net elements are experi­
mental acts, not objects, and the operator $. prescribes how these 
acts may be changed: we are still very far from being able to describe 
a macroscopic physical measuring device such as a clock. Moreover, 
we do not claim that this analogy holds for macroscopic interpreta­
tions of &. 

One way of introducing "dynamics" into the net is by at­
tempting to insinuate the fundamental causal selective act, fi (which 
may also be regarded as a compound experiment) in such a way that 
net creators are (causally) "timed." Thus (in the Maxwell-Boltzmann 
phase) a questionnaire consisting of one "question," 1^ say, would 
now be paired with a single synchronic step implementor, or stamp, 
to yield $®r^ . Similarly, a questionnaire consisting of the p ques-
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tions I^ j . . . r^p would acquire a stamp consisting of a sequence of p 
synchronic step implementors, namely 

p 
A 

£®--®£®rlll...rflp=(®pS)®rn...rflp. (10.1.1) 

If $. is analogous to the operation of a generic measuring de­
vice (such as a clock) marking off one unit of "time"—this marking 
off being implemented by the shift through one chrononic unit of a 
defect injector—then the expression (10.1.1) is similarly analogous to 
the operation of a sequence of independent clocks—one for each Y^ 
—paired with the monomial Tn ... I~L of net element creators. Such 
a sequence may also be thought of as analogous to the operation of a 
single clock (cf. §1.2), each operation, or tick, being independent of 
its neighbors. In this sense the associated pathlike monomial is 
"timed." We remark here that this presumed mutual independence 
of the members of the sequence ® p $ carries the implication that the 
members of the sequence do not interface as experimental acts (cf. 
§1.3) so that possible transitions occur only within each compound 
act S and not between adjacent members of the sequence. This in 
turn implies that the contractions invoked in coarsening the resolu­
tion of such acts for use by external experimenters should proceed 
term-wise as in equation (7.2.1.5) without first composing the 
operators. 

To explore the consequences of this dynamical activation of 
net elements, let us consider its effect on the (pulled-back 
Maxwell-Boltzmann phase) Chen series for transport along a curve, 
C, in IR , which may be written (cf. equation (8.2.26)) 

dxk)Tk...Tkp. (10.1.2) 

Dynamically "activating" such a formal series according to 
equation (10.1.1) amounts to replacing the assignments 

1 + E5X 
7 3 = 1 

dxu 
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r„...nh» dxk 
c ' 

dxL (10.1.3) 

with those of the form 

$. dx, ® ... ® fidx (10.1.4) 

in which each corresponding infinitesimal step along the curve is 
"timed" by the presence of a $ and the resulting contributions are se­
quenced by tensoring them together. 

For the case in which C is a line segment from the origin to 
(a0 , . . . ,a3) the activated series is (cf. equation (8.2.27)) 

(10.1.5) 

This series, we recall (§8.2), represents an operation of trans­
port in the sense in which the net grows. As noted, this sense is oppo­
site to the corresponding macroscopic ones, the direction short net el­
ement —> long net element corresponding, for instance, to the macro­
scopic sense later —> earlier. This mismatch has been compensated 
for by taking T to be negative. 

The right hand side of the last equation is the superposition 
over all possible outputs of the program obtained from the program 
appearing after equation (8.2.30) by replacing the expression ". . . 
finite-step . . ." by the expression ". . . 'timed'finite-step . . . " A sugges­
tive analogy for the act represented by equation (10.1.5) is that it 
embodies instructions for effecting the transport of the generic mea­
suring device—or clock, or chronon-expender—along C. (Perhaps a 
better analogy, though again dangerous, would be to the operation of 
a measuring wheel: this is a monocycle-like device that measures dis­
tances over bumpy terrain, or maps thereof, by keeping a count of 
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the revolutions of the wheel as it is rolled along a curve.) 
Now we try to determine the amplitude of the macroscopic 

continuum correspondent (or interpretation) of the selective act 
P(C). A first step in this direction would be to apply the correspon­
dence principle (§9.5) to obtain the operator 

^(C)] c4 a i ( i)>^lP«,fe>r- do.i.6) 

Then we should "fully contract" |[P(C)]]C keeping in mind that the 
presumed mutual independence of the activators entails taking traces 
as in equation (7.2.1.5): 

tr[p(o]c=i:o^^]trM;(E^^)r 

] £ ) * [ 4 L ( Z « M & > ) ] . (10.1.7) = exp 

Here we encounter rather profound difficulties, which expose 
the essential crudity of our Schrodinger operator based correspon­
dence principle: namely, the quantity on the right hand side of the 
last equation is not well-defined since, firstly, the trace is to be taken 
over an infinite dimensional space, and, secondly, the values of the 
(q^) have not been specified. 

Temporarily setting aside the first problem, let us address the 
second. In the context of the Schrodinger operator precursor to equa­
tion (10.1.7) the operators q^ appearing in the expression T.a^q^ 
play the role of infinitesimal generators for the vectorial component 
of the transport operator that the whole expression represents. They 
may be associated with a unit basis for the abelian Lie alge bra R4 in 
the appropriate units. That is to say, we shall interpret {q ) as the ex­
pectation value in a state in which the "microscopic" quantity |(I^ )| 
is unity. The absolute value of this quantity (q^) is determined in 
§9.5 (equations (9.5.5) and (9.5.6)), leaving us with an ambiguity in 
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its sign. To resolve it, we note that the macroscopic directional mis­
match has already been taken into account in the choice of sign for r 
so that we may select the q^ to reference the usual "forward" point­
ing basis, and therefore to be positive: 

(q,) = \r\ = -r. (10.1.8) 

Now we specialize C so that it lies along one axis, the 0-axis, 
say, and is as short as possible in the "chrononic" units just chosen 
for the basis, namely one: that is, C is the line segment from the ori­
gin to (1,0,0,0). With these choices, equation (10.1.7) becomes 

t r [ [TO]] c = e x p ( - n r [ 4 c ) . (10.1.9) 

Now the original operator P(C) (equation (10.1.5)) acts on 
sets of defect injectors paired with reticular elements and effects the 
joint action of parallel transportation of vectorlike elements—this ac­
tion coming from the sequences of 1^ s a la Chen—while causally 
"timing" these infinitesimal transports via the accompanying selective 
acts of the form ® p $ . Macroscopically, then, the effect of [[P(C)J , 
for the choices just made, is to causally transport through one 
chrononic unit in the x0 direction, states of the form \if/(crt)), where 
i// labels sets (or fields) of defect injectors, and, for 0<t<l, 
crt = (r(xQ = t\r\) denotes a 3-surface (corresponding to x0=t\r\) 
upon which ifj is supposedly defined. 

Thus we may put 

IP(P)JC oc^ia^blsMl (10.1.10) 

the right hand side denoting the operator sending \iff(cr0)) 
\i// (o"j)). Thus, taking traces, 

((A(o-0)|iA((71))^exp(-nr[4lc) , (10.1.11) 
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or 

( i ^ J W O ^ e x p t i t r M c ) • (10.1.12) 

This may be compared with the famous Dirac-Feynman expression 
for an exactly similar amplitude, namely 

(il,((Tt+At)\ilj((rt)) * exp(iLwM), (10.1.13) 

where Lw denotes an appropriate function of the fields, etc., known 
for historical reasons as the Lagrangian. (This relation is the corner­
stone of the edifice known as the Feynman Path Integral. For brief 
treatments see, among a vast number of others, Ryder 1999, Ramond 
1989, Pokorski 1987 and Mandelstam and Yourgrau 1979. For ex­
tended treatments the reader may consult Weinberg 1995, Roep-
storff 1994, Swanson 1992, Schulman 1981 and Feynman and 
Hibbs 1965. A very brief sketch also appears below in §10.3. For a 
very interesting non-standard treatment of path integrals involving 
spinors, quite close in spirit to our efforts here, see Jacobson 1984.) 

It is a useful convention at this point to introduce in place of 
Lw, a localized density !£w, such that 

£wdv, (10.1.14) 

where dv denotes an appropriate volume form and AV is an "ele­
ment" of 4-volume. To choose dv we note that the integration in 
the last equation is to be carried out in the macroscopic domain, 
whose coordinate frame has been chosen via the correspondence 
principle. That is, the volume form should be expressed in Greek co­
ordinates (backsliding notationally by temporarily using the old exte­
rior product wedge): 

dv = A/xdxix 

LwAt = 
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= d4x.. (10.1.15) 

Then, since 

we have 

rfa> =eldxk> (10.1.16) 

d4x^=(detE)d4xk. 

So, with AV sufficiently small (in d a^-measure), 

%jdv = ^ d \ 

(10.1.17) 

• = % 
dx„ 

= %, (detE)d4xk 

= ywdictE)\ d \ . (10.1.18) 
JAV 

Now the smallest d xk -volume an experimenter can ascribe 
to AV is presumably T : but, putting 

, 4 4 

d xk = T (10.1.19) 
AV 

in the last line of equation (10.1.18) would be consistent with the ex­
traction of SEw from under the integral further up only if (det.E)T4 
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were still sufficiently small for the classical quantity !£w not to vary 
appreciably within a region of that size. Since we expect T to be very 
small indeed compared with classical length scales, the adoption of 
equation (10.1.19) would seem to place a restriction upon the choice 
of vierbein E: namely, its determinant should not be too large com­
pared with r~4 at macroscopic scales. This restriction is an artifact 
and measure of the coarseness of our method, and signals a circum­
stance under which our conclusions might be expected to be unreli­
able, for what we are then interpreting as !£w will only be an aver­
age. It is a not unexpected penalty for fraternizing too closely with 
the classical continuum structure that must break down under ex­
treme circumstances. (The attempt to physically resolve distances 
below \T\ would presumably require so much energy that some dis­
ruption, such as the formation of black holes or singularities, would 
destroy the manifold structure.) However, since we are in fact aiming 
for a macroscopic description, we shall adopt equation (10.1.19) 
here, obtaining from equations (10.1.14) and (10.1.18): 

LwAt = £w(deiE)T4 . (10.1.20) 

Now, comparing equations (10.1.12) and (10.1.13), we may 
identify the corresponding terms to obtain 

5 ^ = T - 4 ( d e t £ ; r 1 t r M ; . (10.1.21) 

Thus, up to a measure-related factor, tr |[$]|c appears to func­
tion as a localized Lagrangian density describing the dynamic behav­
ior—or "motion," perhaps—of a defect, as seen by a (maximally ex­
ternal) macroscopic observer in the continuum. 

In arriving at this correspondence, we have explicitly assumed 
that what we have been calling x0 should be identified with the 
macroscopic experimenter's (local) time. This is not easy to justify on 
intrinsic grounds except to point out that, at least in Latin coordi­
nates, this direction corresponds to the identity map in the system of 
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Pauli matrices (§9.4): it is the direction not associated with any spin 
matrix. 

Implicit in our identification of a Lagrangian density (equa­
tion (10.1.21)) is the adoption of units in which c = l, which we 
now append to our earlier choice, in which ti = \, leaving T as our 
remaining dimensional parameter. 

We turn now to the problem of interpreting the right hand 
side of this equation. 

10.2 Problems with the Dirac Operator 

The emergence of fi as our fundamental dynamical operator 
somewhat vitiates the simplicity of our interpretation of selective acts 
as "compound experiments" made by superposing sequences of ini­
tial and final acts represented by vectors in finite dimensional spaces. 
As a vector space C[r] is infinite dimensional so that both the inter­
pretation of contraction via the trace, etc., and the contracted value 
in this case, are called into question. (The macroscopic continuum 
version of N1, namely —iTd11, is in fact defined only on a dense sub-
space of L (R ) and is unbounded there, so these remarks apply to it 
a fortiori.) 

A way out of this quandary may be found if the differentia­
tion operators could somehow be lifted, or deflected, so as to operate 
in a finite dimensional space. Thus, in an expression of the form 
f ®s, if £ were to be regarded as a variable index, then the expres­
sion may be regarded as a bispinor-valued function of the index £. A 
formal algebraic way of accomplishing this is by regarding the do­
main of $ , namely 

v r = C [ r w , (10.2.1) 

as a C[T]-module, the module action of C[T] upon Vr being given 
simply by multiplication of the left-most factor. This gives 
V r ( s © C[T]) the structure of a free C[r]-module of rank four. 
Given that the classical continuum interpretation of C[r] is C[a;M] 
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(§9.5), these considerations yield, as the continuum version of V r , 
the free C[x^] -module C[x / lJ®V. Now this module may be (trivial­
ly) realized as the module of sections of the trivial algebraic bundle 
with fibre V over C4(= R4®RC = M <8>RC) regarded as an affine alge­
braic variety. (The points of this variety correspond with maximal 
ideals of Cfa^] and the fibre of the bundle at a point is the direct 
sum of four copies of the quotient of C[xM] by the corresponding 
maximal ideal. This quotient field is always isomorphic with C. We 
remark in passing that this bundle structure may be intuited at the 
reticular level: think of ^defects inserted between every chrononic 
pair. As we coarsen the resolution the pairs condense into what we 
see as the spacetime manifold while the defects remain attached fibre­
like at each "point.") 

From this perspective it seems appropriate to define the oper­
ator |[$JC as a bundle endomorphism—that is, one that acts fibre-
wise—of the trivial bundle (over the "local model" M) whose fibre is 
V. Then the trace of such an endomorphism may in principle be 
defined fibre-wise—that is, for the fibre over each point—and gives 
rise to a numerical function defined on the manifold. But such classi­
cal functions should arise as the expectation values of quantum 
operators, so the upshot of these considerations is that we may regard 
V as being "indexed" by C[T] if we then realize t r | [$J c as an opera­
tor. 

To be specific, we have 

= -ird,L®ylx , (10.2.2) 

and, in view of the discussion above, we should put 

= -ir$. (10.2.3) 
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That is, |$]JC is interpreted as the usual Dirac operator regarded lo­
cally as an operator upon sections of the (bi)spinor bundle up to the 
factor — ir. 

In this case the classical function involved when the trace is 
taken seems to be identically zero, since each Dirac map has vanish­
ing trace. This we interpret as an indication that the transitions per­
taining to the dynamic activity of single defects are invisible to classi­
cal observers: there is no classical, or maximally external theory of 
single reticular defects. In fact, as we have noted, the bundle struc­
ture entails a multiplexing of the single space V, over a manifold, and 
concomitant replacements: constant —> function, function —> op­
erator, as above. These in turn entail the replacement "wave-
function" —> operator which characterizes the transition from first 
to "second" quantization, and the appearance of a field theory (cf. Se-
lesnick 1983). 

Despite the non-existence of a classical theory of single defects 
we shall find, rather remarkably, that a natural second quantization 
of the bispinor space V undoes the twist in the Dirac maps, and 
yields a sensible replacement for the trace we are seeking. To accom­
plish this we note first that for a general operator P acting on some 
n-dimensional Hilbert space $Q, 

k=\ 

= 1 ^ * . (10-2-4) 
jt=i 

where the k labels an orthonormal basis. Upon "second quantiza­
tion" each basis element £k is replaced by an operator 

*KQ = <l>(k) (10.2.5) 

so that the right hand side of equation (10.2.5) is replaced by the op-
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erator 

t^P^ky (10.2.6) 
k=l 

The operator P is supposed to act in imitation of its action 
upon ^): namely Pi/s^ is the same linear combination of the if/s 
that P[k is of the £s. If ifj is linear, this is equivalent to 

P«A(<D = <A(P£>. (10.2.7) 

If we regard the operators tf/^k) as annihilation operators (for 
quanta, or "particles") in the standard sense, then an expression of 
the form 

•&,*>(*) (10-2.8) 

parses as the sequence of operations: 

annihilate a k-particle; 
apply P to the result; 
create a k-particle 

In the action vector language, which refers to experimental ar­
rangements, this assumes the form: 

remove a k-particle injector ; 
perform the selective act P; 
insert a k -particle injector 

(This second sequence of operations, when interpreted on the 
net with P = $., would yield something like 
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remove a defect injector; 
transport the result (which now has a hole in it) 

through one generic step; 
insert a defect injector 

These are instructions for moving a defect injector one step through 
the net.) 

This observation is rather suggestive when we turn to the 
problem at hand, namely, to find an operator interpretation of trgf. 
Since we have been led, via second quantization, to "particle" inter­
pretations, we are required to examine Vwith a view to determining 
its particle content. This defect space emerged as an ©-amalgam of 
the two types S and S , a structure that is preserved under allowed 
transformations. Consequently, it would seem that we have two de­
fect subtypes, corresponding to the two summands, and defects are 
amalgams of these two unpaired spinor types: thus we should decide 
on independent second quantizations for S and S . Moreover, since 
these components originate within the deepest level of the net, they 
should maintain their pristine Fermi-Dirac character. This means 
that the elements of S, say, should be represented as operators obey­
ing the CAR (canonical anticommutation relations), and, since such 
representations are essentially unique, it is unnecessary to specify a 
choice. Similarly, the elements of S should also be represented in 
this way. 

These choices now entail a conflict with our plans to use the 
Dirac operator as in equation (10.2.6). Namely, since the a--matrices 
(equations (9.2.8) and (9.2.13)) will map operators belonging to one 
of these representations of the CAR to operators belonging to the 
other, concatenations of the form (10.2.8) will not be defined since 
they will involve operators belonging to different representations. 

There is a rather natural way out of this dilemma, apparently 
available only upon second quantization. Let us denote by x¥l the 
representation of the CAR chosen for S. That is to say, x¥i is a faith­
ful map of the space S into an algebra of operators which satisfies the 
CAR (and certain other requirements). Now, usually, the linear map 
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that implements this representation sends elements of S to creation 
operators for "S-quanta." Our interpretation of S in terms of defects, 
however, compels us to associate the creation of 5-quanta with the 
annihilation of "physical" particle injectors, and vice versa. Therefore 
we shall regard x¥l as being linear, the operators y¥1 (s) representing 
creators of defect injectors, and interpreted therefore as annihilators of 
particle injectors. Similarly, we denote the representation of S by 

% • 

Now whichever representations of the CAR are chosen (re­
spectively) for the spaces S, S , it is possible to associate the adjoints 
of operators in either one of them with operators in the other. Thus, 
for any s in S we may define 

0»CP1
+(s)) = »P2(s~*), (10.2.9) 

where the basis choice already made in S may be used to determine 
the dual element. A similar definition applies with the subscripts in­
terchanged. Both of these maps are immediately seen to be linear 
(*¥i and ^ being conjugate linear) and reversible, with 

®-l(x¥2(t)) = x¥t
l(t*~). (10.2.10) 

(It is an elementary exercise to check that they are also compatible 
with the appropriate SL(2,C) transformations.) 

Any offending expressions arising from the "Dirac-like" mis­
match described above may now be replaced by well-defined ones, if 
we replace adjoint operators by their correspondents under O. To ef­
fect this, we drop the references to the variables seS, teS and 
write a general element in the space ^ /

1(5)©xi ,
2(5*), the operator 

version of V, as 

x¥si/fleif/2. (10.2.11) 

This, then, is the second quantized version of the bare defect injec-
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tor. 
In view of the discussion above, if/1 may be interpreted as an 

element of the second component, and should be so interpreted when 
used in conjunction with the Dirac maps in the manner contemplat­
ed. Similarly, \f/\ may be interpreted as an element of the first com­
ponent, and should be so interpreted under similar circumstances. 
Consequently, this pair of replacement (or identification) operations 
may be accomplished simply by defining a new adjoint operation on 
pairs of the form *P for use in this context (the O identifications 
being understood), namely: 

^ = if/\®if/\. (10.2.12) 

This operation—namely, ordinary adjoint plus flip—is 
known in the literature variously as the Pauli or Dirac adjoint. 
(Needless to say, this is not exactly the way it is usually introduced.) 

Returning now to equation (10.2.3) and using the 
Pauli—Dirac adjoint for the defect type in the form analogous to 
equation (10.2.8), we obtain an operator interpretation for tr[[$]]c 

in the form 

-ir%$% , (10.2.13) 

where 4 ^ denotes the "classical interpretation" of the field *¥, which 
merely supplies a dimensional factor to be chosen so that the density 
acquires the correct dimension, namely that of inverse four-volume. 
Thus, a candidate for the Lagrangian density we are seeking emerges 
from equation (10.1.21): 

%w = T-4(detEY\-iT%dVcy 

= T-3(detE)-\-i%$Vcy. (10.2.14) 

Recalling that T is negative, and writing 
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T c = ( - r ) % , (10.2.15) 

this assumes the form 

SEw = (^x¥)\dctE)-1. (10.2.16) 

Noting, in an obvious and fairly standard notation, that y 
may be written in the form (equation (9.4.30)): 

y M = t o ( ^ e < r M ) (10.2.17) 

and that % 3M and crM are Hermitian, we obtain 

(det̂ )igH,= [z(^Ie^2)ao(a;ec7-^))OV1e9>2)]
t 

^ ( • ^ V ^ e ^ d ^ ) ] ' 

= i(^>^>2e )A1
t^a>1) 

= i ¥ ? * F . (10.2.18) 

(Note that, with the choices made above, the components of 
the right hand side of the last equation parse as: 

annihilate afermion: \p2 for example; 

causally transport the result infinitesimally: crjd1*, 
create an identical fermion: if/2f. 
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Thus is the infinitesimal transport of free fermions effected in 
the continuum.) 

In standard treatments ^F etc. are invariably written in vector 
form with 

* - ( ° ; - ) . 0 0 . 2 , 9 ) 

Then equation (10.2.18) comes out with + in place of ©, a natural 
result of the use of vector notation, as exemplified by the following 
sequence of identifications: 

P®Q<r* = \ + \ <->P + Q (10.2.20 
U Q) U Oj VO Q) 

This vector notation, whose blandishments are apparently virtually 
impossible to resist, tends to obscure the provenance (domains, 
ranges, etc.)—that is to say, the types—of the various maps involved. 

!£w (equation (10.2.18)) is precisely the Weyl Lagrangian 
which ordinarily describes the dynamics of neutral massless fermions 
(cf. §10.3). It is incomplete in our formulation since we have not 
properly clothed or renormalized the bare defect. The clothed defect 
admits further symmetry whose presence will generate additional 
terms, as we shall see in the next chapter. 

The Lagrangian !£w has an important property that can best 
be seen in our context by explicitly writing the vierbein—tacitly as­
sumed in our use of the correspondence principle—in the form: 

E = A(g)F, (10.2.21) 

where g is some element in SL(2,C) and F is as in equation 
(9.4.1.7): recall that underlying Fare the maps u, u, etc. In particu­
lar, the initial-frame changing map u®u* acting on Vshould now be 
assumed to have been applied. These maps have the effect merely of 
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relabelling the spinor variables underlying the CAR representations 
employed in each component of V, in a manner consistent with the 
definition of the O maps. Consequently we may ignore the action of 
F upon the spinor fields *P. 

The map on ^associated with the g in equation (10.2.21), 
namely if{g) (equation (9.2.25)), is not ignorable however, since, as 
noted in §9.4.1, it does not qualify as an initial frame changer and 
consequently does not merely relabel the spinor variables underlying 
*P. Thus, making explicit the reference to E, and ignoring the effect 
of F upon *P, we obtain 

¥B=9W, (10.2.22) 

so, succumbing to vector notation, 

%=9W 

ih ° Y<M 
0 Ll w2J 1AV2 

••^Ih-u^Ll) 

= W(g-1). (10.2.23) 

Noting that since $ transforms as a scalar we may put 

r=ykd
k 

=r, (10.2.24) 

where / denotes the identity map or vierbein, obtaining 
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(detE)<£%=i%#EVE 

= iV&>(g-l)yky
,(g)dkxi' 

= WAm
k(g-1)ymdkV 

from equation (9.4.39) 

••WymAm
k(g-l)dkV 

= i C (10.2.25) 

^=^v(dctE)-1. (10.2.26) 

Thus, a macroscopic experimenter would have obtained the 
same Lagrangian, up to a factor of (detE)'1, if she or he had used 
the original choice of frame, an observation which will be exploited 
in the next section. 
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10.3 Feynman Path Integral and Field Equations 

Let us write equation (10.1.13) for a general L in the form 

(<A(^+A< )|<M^)) = a(At)exp(iL(t) At), (10.3.1) 

where L is some numerical, or "c-number" valued function of the 
"fields" if/, and a(At) is some number depending upon At. If the 
field configurations ip((rt) may be chosen to be sufficiently character­
istic, in the sense that eigenvectors are, the last equation may be ex­
pressed alternatively in the form 

tiR(t + At,t) = a(At)exp(iLAt), (10.3.2) 

where R(t,s) is the selective act 

W,s)=\*lt(frs))*(*l/((rt)\. (10.3.3) 

For each "history" of iff starting at t = tx and ending at t = t2 

—which consists of a finite sequence if/(crs ) , k = \,...,n, with 
si =^i> sn =ti> of configurations of the field i]s on the surface 0"Sfc 

—we associate the sequence of independent selective acts 

R(t2,sn_1)9R(sn_l,sn_2)9...9R(s2,t1), (10.3.4) 

which effects a sequence of transformations of field configurations 
along the history. Since the constituent selective acts are assumed to 
be mutually independent, the "fully contracted" amplitude associated 
with the act depicted in (10.3.4) is 

trR(t2,sn_l)...trR(s2,tl) = a(As1)...a(Asn_1)exp(x£L(sk)Ask). 

(10.3.5) 
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Now if it were permissible to extend this notion of a history 
to a more general one, in which arbitrarily fine subdivisions were al­
lowed, then, for one such history, the left-hand side of the last equa­
tion would retain its interpretation as the amplitude for a certain 
"flow" of the fields if/ along the history, while the right-hand side 
might optimistically be expressed in the form 

exp(z Ldt)<3)i{/ (10.3.6) 

where the as have been collected into a factor 2)(/f which depends 
on the history. (The history involved is a history of the fields hence 
their appearance in this notation.) 

The selective act whose amplitude is {if/(crt2)\il/(crtl)) is ob­
tained by superposing over all the selective acts analogous to the one 
shown in equation (10.3.4) but now pertaining to arbitrary histories, 
or paths. Thus the amplitude for this transition is the sum, over all 
histories, of expressions of the form (10.3.6), and is usually expressed 
in the symbolic form 

0Koi2)Wo-tl)> = 
Ldt -̂v , 

(10.3.7) 

where normalization constants have been absorbed into the history, 
or path, "measure" 2)i/f. 

Expressions of this form, with all their attendant problems of 
definition, are known as Feynman Path Integrals. (References already 
cited.) 

Let us apply a general variation, 8, to it, keeping the terminal 
surfaces fixed: 

8(^(at2)mcrtl)) = i 8( Ldt)e\LdtQ)if,. (10.3.8) 
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(Here we assume also that the functional form of L remains fixed 
through this variation.) If we assume that the field configurations on 
the terminal surfaces remain fixed during this variation, then the left 
hand side of the last equation vanishes. It can be shown, by making 
sufficiently characteristic (or eigen-) choices for the | if/(crt)), that the 
vanishing of the right hand side of this equation for variations of this 
type entails 

«( Ldt) = 0 , (10.3.9) 

leading to the conclusion that the appropriate Euler-Lagrange equa­
tions hold for L. (cf. Mandelstam and Yourgrau 1979.) 

Writing the integral in the last equation in terms of a localized 
density i£, for which, following equation (10.1.14), 

LAt = £dv (10.3.10) 
AV 

we obt; ain 

Ldt- £dv (10.3.11) 

in expression (10.3.6), where V is some four-dimensional region 
whose t = tk surface lies in atf, for k = 1,2. Then equation (10.3.9) 
becomes 

S( £dv) = 0 (10.3.12) 

for variations of the same type vanishing on the boundaries of V, 
leading to the conclusion that !£ also satisfies the appropriate 
Euler-Lagrange equations, dubbed, in this context, the field equa-
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tions. 
In cases like the one at hand, namely the Weyl Lagrangian, 

where L is replaced by matrix elements of an operator Lagrangian 
taken between sufficiently characteristic field configurations obtain­
ing upon terminal surfaces, all of these matrix elements now satisfy 
equation (10.3.12). We conclude that the same equation and con­
comitant Euler-Lagrange field equations hold also for "purely" quan­
tum 0/>fratorLagrangians. 

(In this operator formulation, in which L is replaced by the 
matrix elements of an operator we shall continue to write as L, equa­
tion (10.3.8) may be continued a step further to assume the form 

8<«Koi7)W0-tl)> = iW(0iJ|5( ft2Ldt)\if,(<rtl)), (10.3.13) 

where the operator appearing on the right hand side is defined appro­
priately (cf. Mandelstam and Yourgrau 1979). In this "action princi­
ple" form the last equation was posited independently by Schwinger. 
For a very careful treatment of these matters in a context very close to 
ours, see Mantke 1992 and 1995.) 

Varying the fields *F and *P independently in the Weyl La­
grangian (equation (10.2.26)) leads to the field equation(s) 

^ ¥ = 0 (10.3.14) 

and an adjoint version of the same equation(s). This equation for the 
doublet *P is the Dirac equation for massless fields. (Variation with 
respect to the elements of E produces an expression readers might 
recognize as being formally identical to the energy-momentum tensor 
of the field: its vanishing in this case is a measure of the incomplete­
ness of our picture so far.) 

The equations for (/̂  and if/2 resulting from the last equation, 
namely (cf. equations (9.4.30) et al.) 
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o^atyi = (a^-a^1 - o - 2 a 2 - o - 3 a 3 ) ^ = 0 (10.3.15a) 

<rkd
kiff2 = (cr^+afi1 +cr2d

2 + 0-33
3)<A2 = 0 (10.3.15b) 

are named for Weyl. 

10.3.1 Solving the Weyl Equations by (Quantum) Thinking! 

The continuum Weyl operators akd and (Tkd appearing on 
the left-hand sides of the Weyl equations above are the "classical" 
continuum versions of the operators d ®cfk and 3 ®a"fc, and may be 
pulled back to the (Maxwell—Boltzmann phase of the) net, to yield 

lA%d-k}=-ird-kd
k (10.3.1.1a) 

lA%(Tk}=-iTcrkd
k . (10.3.1.1b) 

Moreover, it is immediate from the relevant formulae in §9.4 
that, as operators on C[r]<8>V, 

A*® ak = A n ® 0>T~ + . . . = Axz ® a^- = ASI ® o-zz~ 

(10.3.1.2a) 

and similarly 

A W f c =AZE®crIS~, (10.3.1.2b) 

the Z sub- and superscripts running through the original arrow 
choices (cf. Selesnick 1994, equation (7.21)). 

Now, (reticular) solutions, •&l and # 2 say, to the reticular 
versions of the Weyl equations must yield solutions \ ^ JJ and |[ t?21 
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to the continuum Weyl equations, modulo issues of convergence, by 
virtue of equation (9.3.3). 

In fact, we may exploit the reticular interpretation of the 
Weyl operators arrived at earlier, in conjunction with the representa­
tions found in §9.2 for the er-maps, to specify reticular solutions for 
the Weyl equations. These specifications will be done first in terms of 
utterly trivial algorithms using classical logic. These classical pro­
grams are entirely useless, but, upon the "quantization" of their logic, 
they produce as outputs solutions to the Weyl equations whose con­
tinuum correspondents converge: we solve the equations by think­
ing—albeit quantum logically. In this way, various apparently wildly 
disparate notions seem to have been harmoniously brought together. 

We sketch the argument: further related quantum programs 
may be found in Selesnick 1994, an otherwise obsolete precursor to 
some of the material appearing here. 

(The computational steps we are about to informally describe 
refer to manipulations performed upon elements of various spaces of 
acts and therefore do not fit into the context of GQ, which operates 
only at the level of the ambient spaces, or quantum resources, and 
does not refer to their elements. What is needed to formally bridge 
the gap is a full term calculus for GQ, an issue we do not take up in 
this work.) 

First, we consider the action of the operator (10.3.1.2a) upon 
an element of the form f ®sx where sx is an element of S, and £ is a 
monomial in C[T]: 

( A ^ W 2 ^ )(f«S l) = Aar(f)®o-II~(s1). (10.3.1.3) 

Since this is exactly the result of applying $. to the element 
£®(s,©0), the usual interpretation obtains. Namely, the expression 
above represents the result of superposing the individual selective acts 
of removing a r s i ~ from £ and pairing the result with the corre­
sponding spinor 7xz~(s1©0), which is the version of (S[©0) that has 
been "parallely transported" by the cotangent representer y ^ - back 
"along" the TLZ~ removed. (If £ contains no rx i~ , then it is 1 and 
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the equation is trivially satisfied.) 
Moreover, using equation (9.2.14b), 

tr*i*7(sl)=<p{Z.ivsl)s(I.;). (10.3.1.4) 

In order to exploit the inherent quantum set/logical structure 
during the course of the arguments to follow, we shall freely embed 
spinors as first grade unitized qets in their associated Grassmannian 
qet algebra (s I—> \s), cf. §2.3) de-embedding them later. 

We observe from the last equation that, on being pulled back, 
Sj is forced to V with those elements of similar type. Thus, return­
ing to equation (10.3.1.3), if we could design a qet which somehow 
represents the creation of all possible Es and inserted this after £, 
the application of the Weyl operator in equation (10.3.1.2a) should 
result in this qet being pulled back to nullify each Z; in each occur­
rence of the right hand side of equation (10.3.1.4). 

A simple, and useless, c-logic program to construct such a qet 
and insert it after the monomial £ might run as follows: 

begin 

form the set {X}; 
insert appropriately after f; 
return the result 

end 

Quantization of this program entails the appropriate replace­
ment of sets by qets and the requirement that superpositions over al­
ternatives be taken. Thus, we superpose over all the returns from the 
following "quantum" program: 

308 



Dynamics I 

begin 

form the qet | Z), superposing alternatives; 

insert after £; 
return the result of this insertion 

end 

Here f ranges over the monomials in C[T] and X can be ei­
ther T or 1. For any f the first statement produces |T) + |4) and the 
second produces £®(|T) + |1)), which is returned (to the experi­
menter). 

Thus, if the degree of £ is 0: 

1®(|T) + |4» is returned. (10.3.1.5) 

The superposition over all returns when the degree of £ is 1 is: 

O V + . . . + ru~)®(|T> + |4,». (10.3.1.6) 

The superposition over all returns when the degree of £ is 2 is: 

(r^~ + rn~rn~...+r^~)«(|T> + |4,>) 

= ( r n ~ + . . . + r u ~ ) 2 ® ( | T ) + | i » ) (10.3.1.7) 

and the superposition over all returns when the degree of £ is n is 

( r v + ...+ru~r®(|T>+|l». do.3.1.8) 

It is quickly established that each of these returns does indeed 
satisfy the Weyl equation corresponding to equation (10.3.1.2a). 
Moreover, we note from equations (9.4.34) that 
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rn~+...+ru~=r0 + rI. (10.3.1.9) 

Thus, the superposition over all returns may be written for­
mally, using vector notation for the spinor part, as 

^ K r o + r ^ H . (10.3.1.10) 
n=0 \\J 

Then, from the correspondence principle (equation (9.5.3)), 

i*-i".?.s(^+*r'(!) 

According to our earlier interpretation (§8.2) this expression 
represents parallel transport along the vector (1,1,0,0) of the bispinor 
shown. This vector lies along a generator of the cone in IR whose 
major axis lies along the 0-axis and whose slope is 1. Since T is nega­
tive, the direction of the macroscopic transport opposes, as before, 
the direction of the reticular increase, and so, since we have identified 
the 0-component with time, lies in the direction earlier to later: i.e. 
the "motion" is causal. 

Its classical correspondent, which may be written 

M c = ( } ) <*P[^ (*o +£.)) > (10.3.1.12) 

is easily checked to be a solution of the standard Weyl equation 
(10.3.15a). Its standard interpretation, in terms of positive energy 
(T < 0) fermion states moving with unit speed along one of the spa­
tial axes, seems to accord well with the conclusions we have just ar-

(10.3.1.11) 
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rived at independently. We note also that these particles have 
sufficient energy to resolve distances down to |T | . 

We turn now to the other Weyl equation corresponding to 
equation (10.3.1.2b). In this case, with s~* in S , in place of equa­
tion (10.3.1.4) we choose equation (9.2.16a): 

^x~(s~*) = ( s ~ * ) a j ) ^ . (10.3.1.13) 

Here, the pulled back s~* meets its match differently: namely, it 
represents an act of registration or absorption of the argument stand­
ing to its right in the right hand side of the last equation. Whereas in 
the case of equation (10.3.1.4) we sought a representer of the "gener­
ic" creator of possible pulled back acts, here we should seek a repre­
senter of the "generic" annihilator of possible absorbers. For then, 
pulling back via this Weyl operator should result in the failure to ab­
sorb any ZJ and produce the null transition. 

A classical program to implement this might run as follows: 

begin 

destroy all X~*: that is, destroy each 

element of the set {J } KJ {I }; 
form the resulting set; 
insert after £; 
return the result of this insertion 

end 

Quantization produces the superposition over all £ of the re­
turns from: 
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begin 

destroy each element of the qet | T } v | -l ); 
form the resulting qet, superposing alternatives; 
insert after £; 
return the result of this insertion 

end 

To execute this program we note that the appropriate destruc­
tion operators to use in the first step are the fermion Fock space ones, 
namely: 

a ( T ~ * ) ( | T ~ * > v | j r * » = |4T*> (10.3.1.14) 

and 

aa~*)(ir*)v|r*)) = -ir*>, (10.3.1.15) 

resulting, at the second step, in | d- ) — |T ). Proceeding as before, 
in this case we end up with: 

M c = I Upfi^o+ *,)), (10.3.1.16) 

which is a solution to the second Weyl equation. 
By inserting these solutions (equations (10.3.1.16) and 

(10.3.1.12)) into equations (10.3.15), it is immediately seen that 
they are eigenvectors of the operator 

G-,31 +cr2^2+o-3^3 , (10.3.1.17) 

having eigenvalues differing only in sign. Eigenvalues of this operator 
are interpreted "classically"—that is, in the continuum—as the helic-

312 



Dynamics I 

ity of the associated particle: roughly speaking, this is the scalar pro­
duct of the spin 3-vector with the momentum vector. A difference in 
sign thus implies opposite spin directions relative to the direction of 
motion. For massless particles the sign of this eigenvalue is a measure 
also of the chirality, or handedness, of the particle. Our solutions 
therefore represent fermions of opposite chirality. 

The question of which chirality is which is easily settled. Since 
we have carefully chosen the sign of T so as to ensure that our 
macroscopic admeasurements are made in the forward-pointing di­
rection, we can make explicit the identification 

(x0,xl,x2,x3) = (t,x,y,z). (10.3.1.18) 

Then equation (10.3.15a) reads 

( J H s - ^ i ^ ) ^ 0 ' (10-3U9) 

wh ence 

( i ^ - + cr.p)iA1=0 ) (10.3.1.20) 
v ot ' 

where p denotes the three-dimensional momentum operator 

Mr"* #• '# • ) • (10.3.1.21) 

i\ox ay ozl 

and 

o- = (o-1,or2,o-3). (10.3.1.22) 

Similarly, equation (10.3.15b) yields 
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j | - ( r . p k = 0 . (10.3.1.23) 
at ' 

The chirality associated with the negative (positive) eigenvalue 
of the helicity operator cr.p in equation (10.3.1.20) (equation 
(10.3.1.23)) for positive energy solutions is, by convention, called left 
(right) or left-handed (right-handed). For this reason, when used in a 
Lagrangian, elements of 

S may be assigned the left-handed chirality; 

while elements of 

S may be assigned the right-handed chirality. 

In the sequel, therefore, we shall replace the subscript 1 (2) we 
have been using to label the S( S*) component of bispinors with the 
subscript L(R). 

We note that an earlier notational choice—specifically the de­
cision to subscript rather than superscript the T operators—has led 
us into conflict with the current convention regarding the placement 
of indices, which would have x^ =(t,x,y,z). In this, we retroactively 
and accidentally do honor to R. Feynman, who also employed this 
now unconventional convention. 
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In this chapter we clothe the defect and redo the dynamics of 
the last chapter accordingly (§11.1). The Lagrangian we found there 
is now replaced (in §11.2) by a power series in the net constant T 
whose lowest order terms yield massless versions of the standard 
Yang—Mills Lagrangians for the gauge groups SU(2) and SU(3), and 
the Einstein-Hilbert Lagrangian for gravity (with an added higher 
order term). These forms emerge with Feynman gauge-fixing terms 
already included. 

The interaction terms are discussed in §11.2.1 where careful 
attention to the typing of terms highlights certain peculiarities in the 
SU(2) component caused, essentially, by the indistinguishability of 
the complexification of its Lie algebra from the §1(2, C) we have al­
ready used to build the bare defect space (and indeed the whole 
structure). This results in the turning off of the SU(2) interaction 
with right-handed spinors, and, at the same time, in the appearance 
of a U(l) component adhering to the SU(2) one. 

The kinetic terms already mentioned are the subject of 
§11.2.2, the SU(2) component having now become a U(l) xSU(2) 
one. In §11.2.3 we find that an additional "unphysical" term must be 
added if the quantum symmetry of the clothed defect is to be proper­
ly maintained when an attempt is made to quantize the fields. This 
term is identical with the (Faddeev-Popov) ghost term, which thus 
acquires an apparently new and rather simple interpretation. 
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Unfortunately, the process by which we clothe the defect 
leads to the macroscopic contamination of some of our conclusions 
and produces a mismatch between the levels of resolution of certain 
terms in the resulting Lagrangian. Although we have taken care to 
suppress this contamination wherever possible, penalties are never­
theless exacted, among which is included the need to redress the im­
balance in the degree of resolution mentioned above, which occurs in 
the non-gravitational sector of the emerging Lagrangian. This is the 
business of §11.3. 

Throughout this chapter we continue to take pains to main­
tain the integrity of the emerging type structures throughout the 
GQ-like deductions to which they are subjected in the course of ap­
proaching the continuum limit. 

11.1 The Defect's New Clothes 

We aim now to take into account possible variations of the 
defect itself. Returning to equation (9.3.16) we may naively write: 

d(f®s) = £(f)®s + f®ds. (11.1.1) 

Then we are confronted with the problem of interpreting ds. On the 
net, £®s represents the result of attaching the act s to the element 
f, so s may be regarded as having T-indices (cf. §10.2). Then it 
would be tempting to write, in analogy with equation (9.3.13), 

ds = AfLs®y u. (11.1.2) 

However, the argument in §9.2 leading up to equation (9.3.13) does 
not seem to apply here. The "subtypes" or parameters of s, whatever 
they may be, are certainly not the 1^ (cf. the discussion following 
equation (9.2.1)). Thus y is inappropriate on the right-hand side of 
equation (11.1.2). As mentioned in §10.0, our plight is even more 
serious than this since, even if we could find an s-subtype to play the 
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role of Ax^ , the variation of this new subtype itself would have to be 
taken into account (just as we are presently in the act of trying to 
take the variation of s into account), requiring the introduction of 
yet another subtype, and so on ad infinitum. Since s was reistically 
interpreted as a defect or gap in the net structure, the first new sub­
type would be interpreted as a gap between the primary s-gaps (or as 
a defect within the primary defect), and so on. 

We shall approach the problem of supplying this infinite hier­
archy of subtypes in the spirit of "renormalization."That is, we shall 
try to infer from the presumed macroscopic result of this infinite piling 
up of defect subtypes the structure of a space of macroscopic candi­
date acts that subsumes the hierarchy. Specifically, we shall attempt 
to quantize the classical symmetries of the macroscopic descendant of 
the defect, using the paradigms of Chapter 3. The crudity of our 
method has serious drawbacks entailing significant loss of physical in­
formation. Nevertheless, enough survives to encourage the view that 
these methods are worth refining. 

To find a candidate for the macroscopic descendant of the de­
fect that bypasses the infinite subtype regress problem, we revert to 
the original position taken in §8.1. There we macroscopically inter­
preted the act that injected the empty set, containing no chrononic 
pairs, namely the qet | 0 ) , as an "appropriate" Fock vacuum m 
(equation (8.1.1)). Thus the appropriate Fock vacuum—which, in 
view of the correspondence principle we have adopted, we take to be 
the one in L (R )—may be interpreted as a macroscopic model of 
the reticular defect. The idea is that its residual symmetries should 
have microscopic precursors which we attempt to recover by the 
group quantization process to follow. 

In the Schrodinger representation (which we have chosen to 
accommodate our correspondence principle) the annihilation 
operators are given by equation (8.1.12), so the vacuum -nr satisfies 

atim^-j=\-qii+iTp\v7=0 (11.1.3) 
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or 

3^+- ,i% 1 ^ = 0 . (11.1.4) 

Thus w is of the form 

tn=N exp 
1 / 2 

2TlX ° 
2 , 2 , 2 , 2 

(11.1.5) 

where iV is a constant, normalized if N = (4-7T r )~ . 
This vacuum has various "classical" symmetries. First, at the 

outer-most level, there is symmetry with respect to arbitrary permu­
tations of the x^. That is to say, it is invariant under the action of 
S4, the symmetric group (of permutations) upon four elements. This 
symmetry is ignorable and is ignored at the classical level. Neverthe­
less, by quantizing this group of symmetries, and seeking representa­
tions of the resulting algebra of quantum symmetries, we may gain 
access to a more finely resolved vacuum structure. Unfortunately, we 
are able to achieve here only a partial quantization of S4, which ad­
mits a well-known semifactorization (see for instance QR, §16.7): 

S4=ZJX(Z3 lx(Z2xZ2)). (11.1.6) 

A partial quantum replacement for this group is obtained by first ig­
noring the interrelationships implied by the internal actions of the 
constituent subgroups that give rise to the semidirect factorization, 
and then replacing each remaining subgroup by the appropriate Lie 
algebra according to the argument in §3.2. Important attributes of 
the original classical symmetry group are thereby lost. In particular, if 
it is supposed that upon quantization, condensation, etc., the cyclic 
subgroups listed in equation (11.1.6) give rise ultimately to the gauge 
symmetries of experience, then the lost information might be sup­
posed to pertain to such matters as the mutual interaction of the as-
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sociated fields. One may note in this connection that the quantized 
actions, interpreted as actions of algebra-coalgebra "double algebra" 
structures of the type considered in §3.2.3 upon other such double 
algebras, are circumscribed in ways which differ from the ways in 
which the underlying classical groups interact. (To properly quantize 
SA one would require at least an analog of the notion of semidirect 
product for double algebras, and a concomitant theory of actions of 
double algebras upon other double algebras.) It will suffice for our 
purposes to effect the partial quantization of SA by ignoring these in­
ternal semidirect actions: we merely replace each constituent sub­
group in (11.1.6) by its "quantum replacement" Lie algebra accord­
ing to §3.2. Namely, we replace: 

Z, by §1(2, C), 

Z 3by §1(3,C), and 

I^xl^ by §I(2,C)e§I(2,C) = §0(4,C). 

Thus, a "refined" vacuum, for this restricted quantization of SA, 
would be represented by a vector (or ray) in a representation space of 
the Lie algebra 

a = § l (2 ,C)0§l (3 ,C)e§o(4 ,C) . (11.1.7) 

However, the vacuum VJ (equation (11.1.5)) has a further 
"internal" symmetry which should also be taken into account, and 
will serve to restrict further the algebra of quantum symmetries 
found above. Specifically, w has the internal parameters x^ , and is 
invariant with respect to a certain transformation of these parameters: 
namely, the joint actions x^h-> x^ (complex conjugation of the real 
x^), and x^Y-^—x^. (Note that these two symmetries commute.) 
The x^ are eigenvalues of the operators q which in turn are macro­
scopic continuum correspondents of reticular variables. Hence, this 
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symmetry of m may be attributed ultimately to reticular circum­
stances: namely, the breakdown to the real subspace M conjoined 
with the directional reflection, with respect to which the defect is 
presumed to be independent. If we assume that a similar internal 
symmetry is present in the presumed spaces of precursors of m and 
is preserved by some subalgebra of the algebra CI (equation (11.1.7)) 
of "outer" symmetries, then we should seek a pair of corresponding 
symmetries of Q whose joint fixed set will constitute the subalgebra 
we seek. 

By this kind of preservation we mean the following. Let us de­
note by a superscripted O" some transformation of variables "inter­
nal" to both the elements of a vector space W and to operators upon 
W: for example, the complex conjugation of entries in vectors—i.e. 
tuples—and matrices of complex numbers. Then, if A is an operator 
upon W, and w in W is a-symmetric, meaning that vf=w, we 
would have 

{Awf = A'vf 

= A(rw, (11.1.8) 

so that if A is to preserve the <J- symmetric elements of W we should 
have A°=A. 

The algebra (X is the direct sum of complex semisimple Lie al­
gebras, a class whose structure is well in hand (see for example Fulton 
and Harris 1991), and we may seek candidates for the two presumed 
ancestral symmetry operations for each component. Specifically, each 
complex semisimple Lie algebra CJ has a family of maximal abelian 
subalgebras each of whose natural (or "adjoint") action upon Q is di-
agonalizable. Choosing one such Cartan subalgebra I), say, we then 
have a so-called Cartan decomposition 

9 = ^)©®9a> (11-1-9) 
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where R d h* and ga is the subspace 

g a= { Xs g : [H,X] = a(H)X for all H^ }. (11.1.10) 

The non-zero as, which constitute the set named R, are 
called the roots of g, and the spaces ga (which turn out to be one-
dimensional) are called the root spaces. It can be shown that the 
eigenspace corresponding to zero is precisely h. 

The set of roots R functions in many ways like a set of "inter­
nal" parameters for the algebra, which is realized, in the decomposi­
tion (11.1.9), as the space of global sections of the "bundle" over 
R KJ {0} with fibre g a . In particular, since we are seeking a break­
down to realness in a set of such parameters, our gaze is drawn to 
those Cartan subalgebras whose roots are all real-valued. It turns out 
that there is a unique teal subalgebra g0 of g such that g is the com-
plexification of g0, that is, 

g 0 ® K C=g ( l l . l . l l ) 

and g0 has a Cartan subalgebra h0 acting upon it with real-valued 
roots. (In addition, it turns out that !)0<8>RC is a Cartan subalgebra 
of g0<8>KC= g.) A real subalgebra of g having the property that its 
complexification is g, as in equation (11.1.11), is called a real form of 
g. The unique real form g0 is called the splitform. 

Using equation (11.1.11) we may now define a conjugate lin­
ear involutional Lie morphism, ~, upon g, determined for x s g and 
zeC by 

{x®z)~ = x®z. (11.1.12) 

At the same time there is defined a unique automorphism 

< p : g ^ g , (n . i . 13 ) 
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that sends J)( = 0̂<S>RC) to — I) and ga to Q_a, and that commutes 
with ~. Thus, for each component of the Cartan decomposition of 
Q, we have imitated the two internal symmetries of the Fock vacuum 
trr, with the roots playing the role of "microscopic" internal parame­
ters. The algebra of quantum symmetries we seek is then the direct 
sum of the algebras of elements in each component of (X left fixed by 
the joint action of ~ and (p. In the general case of a semisimple Lie 
algebra g it is not hard to show that the subalgebra of fi left fixed by 
this joint action is the real subalgebra 

\=i\ (11.1.14) 

and that the subalgebra of Q left fixed is a real form, denoted gc, 
having \ as a Cartan subalgebra. The subscript here stands for com­
pact, and the terminology stems from the fact that the associated Lie 
group is indeed compact. (The Killing form on \ is negative 
definite, from equation (11.1.14).) 

Thus we have landed squarely upon the direct sum of the 
(unique) compact real forms of the complex semisimple Lie algebras 
that form the components of Q. These are well-known: namely, the 
compact form of 

§I(n,C) is §ll(n), 

and the compact form of 

§o(4,C) = §I(2,C)e§I(2,C) is §o(4) = §u(2)0§u(2). 

Thus, 

ac = §u(2)®§u(3)®§o(4) (11.1.15) 

is the algebra we seek. 
This reduction to the compact forms has, of course, been 
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predicated upon a presumed association between the roots of the 
components of a and the precursors of the macroscopic internal pa­
rameters Xp. But these precursors are presumed to be reticular ele­
ments: consequently, there should be some sort of association be­
tween the root systems of Ct and reticular elements, which we have 
not followed up here. Such an association, if one exists, is likely to be 
rather loose, since we have completely ignored essential information 
inherent in the semidirect product structure in equation (11.1.6). 
Presumably, the true defect, if it could be found, would reflect the 
local symmetries of the ambient structure. Consequently, a more 
refined group quantization scheme, which captures at least the 
semidirect product information, may impose sufficiently stringent 
conditions upon the resulting defect that the local symmetries of a 
presumed ambient structure may be recaptured. (In this connection, 
the reader may consult Finkelstein et al. 1997, and later work of the 
Finkelstein school, which seems to be aiming at just such a program, 
though employing methods different from ours.) 

As matters stand here, our group quantization procedure, 
crude as it is, has in fact recaptured an "internal" instance of our ear­
lier bare defect structure, which resides in the choice of representa­
tion for the §0(4) component of (Xc (equation (11.1.15)). To see 
this, we note that another real form of §0(4,C) is given by 

§0(3,1)= §1(2, C) (11.1.16) 

and that the infinitesimal generators of the bispinor representation if 
(equation (9.2.25)) of §1(2,C), namely 

^ ^ [ T m . T j . (11.1.17) 

constitute a representation of §0(3,1) upon the bare defect space V 
of bispinors. In this representation a basis for the real algebra 
§0(3,1) is mapped to icrmn, where the crmn obey the §0(3,1) or 
"angular momentum" commutation relations: 
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(11.1.18) 

where the diagonal matrix 17 is given by 

77 = diag (1,-1,-1,-1). (11.1.19) 

Since the space Vaccommodating the representation is complex, 
this representation may be lifted uniquely to the complexification of 
§0(3,1), namely §o(4,C), and then restricted down to §0(4). Simi­
larly, any complex representation of §0 (4) may be lifted to £>0 (4, C) 
and then restricted to £>o(3,l). This argument applies to any com­
plex representation of any real subalgebra: the complex representa­
tions of such subalgebras are essentially equivalent. 

At this point it may be expedient to recall that the coherent 
form of 3o(3,l), namely, the proper Lorentz group SO(3,l) is ex­
pressible as a union of two connected subsets, 

SO(3,l) = Z j u L i , (11.1.20) 

where L+, the orthochronous or restricted Lorentz group, has already 
been met (after equation (7.2.3)) and L+ consists of Lorentz transfor­
mations Aj with detA = l and A0 < 1 . The orthochronous Lorentz 
group emerged earlier essentially as a result of inherent causal struc­
ture going back to the pairing on the right-hand side of the turnstile 
in the axiom (7.1.18). Here, the full proper Lorentz group has 
emerged as the coherent from of an algebra of quantized symmetries 
of a vacuum having no underlying directional attributes and there­
fore a wider repertoire of symmetries. 

Since the bispinor representation recaptures the space of bare de­
fect injectors it is clearly the one to choose as the space of acts carry-
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ing the quantum symmetry represented by the £>0(4) component of 
the clothed defect. There is no such unambiguous criterion to decide 
the choices of representations for the other components, and such 
choices will remain somewhat in abeyance: another possible mark 
against the crudity of our group quantization process. However, the 
simplest possible choice for these representations will lead almost im­
mediately to the conclusion that the interaction associated with the 
£>U(2) component of Ctc affects fermions of only one chirality: that 
is, the §U(2) interaction breaks chiral symmetry (§11.2.1). 

In summary, then, our approximation to the space of clothed 
defects (i.e. defect injectors, or initial acts) emerges as an appropriate 
representation space for the Lie algebra Ctc, where we choose the 
bispinor representation for the §0(4) component thereby recovering 
the original bare defect space. T h e other components could be 
thought to represent the effect of taking into account a virtual nest­
ing of intermediate defect subtypes all the way up to the continuum 
level. The effect has been to amalgamate the original bare defect type 
with new types whose significance will emerge when we redo the dy­
namics of the last chapter with the clothed defect type. These new 
types must be expected to carry the degree of macroscopic contami­
nat ion inherent in our method . (Despite this contamination, the 
reappearance of our original bare defect encourages us to believe that 
the process has at least led us back to the correct degree of resolution 
for this component, if not necessarily for the others.) 

Suppose now that an appropriate representation space, W , 
say, of clothed defects, has been chosen for <XC. In order to imple­
ment small variations in some £ as before, an experimenter must 
choose an element, v, say, in W , representing an initial act of injec­
tion of a clothed defect, and attach it to £. Now, however, con­
straints are imposed on the choice of V by the "quantum" symmetry 
inherent in the clothed defect system. Thus , since the problem of the 
variability of the unknown internal subtypes has presumably been 
taken care of by our choice of W , only the "external" reticular posi­
tional attributes are left to vary. T h u s , the analog of equation 
(11.1.2) is now justified: namely, 
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dv = dtv^yIL. (11.1.21) 

Recalling that the effect of AM upon reticular variables is to 
truncate them by removing occurrences of 1^, we interpret the ac­
tion of A*1 upon v as the selection of an equivalent defect act for at­
tachment to that net element truncated by the action of AM. But 
equivalent acts of this type are connected by elements of CLC, the alge­
bra of allowable defect symmetries. Thus we may write 

A»v = /\'lv (11.1.22) 

for certain choices of fit in CLc. That is, 

dv = d?v®y„ 

= Jftv. (11.1.23) 

We may solve this equation, at least formally, by noting that 
that the l& selected for use in the last equation is being interpreted in 
an infinitesimal sense. Thus, for instance, when $ is extended as in 
§3.2.2 to a derivation on the exterior (or Grassmann) algebra over 
W®V, it correctly reproduces the behavior of the putative deriva­
tion d on first grade elements. Then, as in §3.2.2, the exterior algebra 
automorphism whose differential is $ reduces to the "coarsened" op­
erator exp /$ on the first grade elements W®V. In a sense this oper­
ator is an integrated version of $S, the latter being regarded as the 
infinitesimal generator of a quantum symmetry. Then, by adopting a 
general clothed defect injecting act of the form 

e^(w®s) (11.1.24) 

for AM in Ctc, w in W, and s in V, we incorporate the CL-, or gauge-
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symmetry inherent in such a choice. (The expression (11.1.24), in­
volving as it does the coarsened operator exp$ , reflects some of the 
inherent macroscopic contamination promised earlier.) 

The original or first-order defect type (s) is still required here 
to implement the variation with respect to the still variable reticular 
elements. This s is used in its earlier sense as a static place-holder: it 
is not here subject to the fluctuations allowed to w by the presence of 
the Ctc symmetries, which were originally invoked precisely to carry 
over from s the possible variability of the defect structure. That the 
invocation of these <XC symmetries apparently succeeds in this pur­
pose is shown by its incorporation as a component of W of the other 
version, or occurrence, of the V defect space, namely the one acted 
upon by the §0(4) component of Ctc, which is accordingly active, 
movable, or, slightly more accurately whilst we are succumbing to 
such reist terminology, spinnable. 

These contextually different occurrences of the same resource 
within what we may regard as a G Q formula merely reflect a certain 
sequencing of various experimental acts pertaining to the same sys­
tem. What will be of significance here is the mode of G Q reduction 
of such formulae. Indeed, as we shall soon discover, it is exactly the 
transitional structure which results from this particular sequencing 
(namely static <-> spinnable) according to the GQ-based rules derived 
in §7.2.1, that serves to distinguish that interaction which appears 
macroscopically as gravitation from the other gauge interactions: cf. 
§11.2.2. 

We note that in the manipulations to follow, it is possible to 
omit explicit reference to the s in expression (11.1.23) and regard 
exp $ as a kind of operator in the earlier sense. A slight problem 
then arises since, if this is done, the leading term in the expansion 

e^w = w + /\>lw®ylx + ... (11.1.25) 

differs in type from the rest of the series, and the interpretation of the 
first plus sign is called into question. The contortions required to re­
solve this clash of types hardly justify the slight gain in compactness 
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that may result. 

11.2 Dynamic Transport and the Lagrangian, Revisited 

We now redo the dynamics of §10.1 using the clothed defect. 
Elements of the form f ®s are now replaced by those of the form 

£®e\w®s), (11.2.1) 

so that 

d{t;®e^{w<s>s)) = d%®e\w<s>s)+ t;®(de^){w<B)s) + %®e^{dw<8>s) 

(11.2.2) 

noting in the last summand that s is static: effectively, ds — 0. 
Before turning to an analysis of the right-hand side of this 

equation, a few anticipatory remarks are in order. The operator that 
will eventually emerge will be a replacement for the "dynamical 
quantum" $ used in the last chapter. The transport argument used 
there can be applied to this operator to yield a formula analogous to 
equation (10.1.21) for a "unified" Lagrangian density, in the form of 
a power series in r . The middle summand in the right-hand side of 
equation (11.2.2), which accounts for variability in the choice of 
equivalent defect injectors, gives rise to U(l)xSU(2), SU(3) gauge 
fields—almost exactly as in the (massless) Standard Model—and 
gravity, the latter coming from the remaining component of <XC. The 
Lagrangians emerge to lowest order in r in their familiar forms, 
namely Yang-Mills for the first two, and Einstein-Hilbert for gravi­
ty. Feynman gauge-fixing terms are included free of charge, and the 
Faddeev-Popov ghost term will be supplied at little extra cost. (No 
actual values for couplings can be expected in general, since we start­
ed from an essentially projective theory: these values, arising ulti­
mately from transition amplitudes—cf. §11.2.1—must presumably 
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be obtained as the result of some of the experiments the experimenter 
will actually perform.) 

The outer terms must be treated as in §10.2 and give rise to 
the usual "minimally coupled" interaction terms for fermions living 
in the chosen representations. (The identification of the two-
dimensional portion with the weak interaction of the Standard 
Model is encouraged by the appearance of a rather conspicuous chiral 
symmetry breaking mechanism: cf. §11.2.1.) 

Returning to the first term on the right-hand side of equation 
(11.2.2), noting that the first-order static defect type s stands on the 
right, and denoting by a subscripted 1 the identity map on the sub­
script, we have 

d£®e\w®s)= A*£ ®(lw«y,J(eA(w®s)) 

= (A"®lw®yM)(£®eV®s)). (11.2.3) 

The right-most term (of equation (11.2.2)) yields 

£ ®e\dw®s)= £ ®e^/&(w®s) 

= £®$e^(u ;®s) 

= Q C [ r ] ® $ ) ( | ® e V ® s ) ) , (11.2.4) 

which should be compared with equation (10.2.3). 
The d in the middle term on the right-hand side of equation 

(11.2.2) requires some interpretation since the exponentiated map is 
a coarsened, or macroscopic, version of the microscopic reticular $&. 

We shall take the view that this d should act to produce an ac­
tual small difference in its macroscopic argument exp $& of the form: 
(incremented(exp^))—exp^S. But how should exp$S be "incre-
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merited?" The experimenter regards exp $£ as a selective act, and a 
natural way to "increment" such an act of selection is to increment in 
a uniform way those acts selected by it. This entails following the se­
lective act exp$ by another equally coarse selective act which we 
shall write in the form exp 5 ^ , with the reticular "increment" 8$ 
still to be found. This selective act exp 8/$. is thus the coarsened ver­
sion of the small reticular change 8$. It is supposed to induce in 
acts selected by exp $ the increment we seek. Thus, we have shifted 
the burden of interpretation back to the net, where it properly be­
longs. Then we have 

= ( e 8 * - W ) e * . (11-2-5) 

and the middle term in equation (10.2.2) becomes 

£ ®(de*)(w®s) = £ ®((es* - W ) e " ) ( u ; ® s ) 

= (lC[r]®(em-lmv))(£ ® e V ® s ) ) , 

(11.2.6) 

which should be compared with the right-hand sides of equations 
(10.2.3) and (10.2.4). 

Rewriting equation (11.2.2) with the right-hand side rear­
ranged in the order considered above, we obtain 

d(€®e\w®sj) = 

(11.2.7) 
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or 

d = A ' i ® l w ® r M + l C [ r ] ® ^ + l C [ r ] ® ( e ^ - l w w ) . (11.2.8) 

The operator appearing on the right-hand side of the last equation is 
thus the replacement for the operator $ appearing in equation 
(10.0.2). This operator now represents the dynamical quantum, or 
generic synchronic step, when the defect is clothed. The argument 
leading to an identification of the appropriate localized continuum 
Lagrangian density, as given in equation (10.1.21), may now be re­
peated with this operator in place of $ . 

11.2.1 The Interaction Term 

Before moving on to find the continuum correspondent of 
this operator, it is worth considering, while still in its pristine form, 
the second term; specifically the right-most factor of this term, name-

ly 

# = A*®y„. (11.2.1.1) 

This is an element of type 

W<8>WW<8>^* (11.2.1.2) 

and represents a compound act comprising superpositions of bispinor 
injections/ejections paired with w-defect injections/ejections. This 
pairing is replaced, for macroscopic maximally external experi­
menters, by an associated amplitude whose modulus will yield a mea­
sure of the "strength" of the CLC quanta interactions with fermions. 
Even though (as already remarked) the strengths of these couplings 
seem not to be calculable within a projective theory such as ours, cer­
tain qualitative conclusions may yet be drawn. 

To see these, we need to specify the AM and W a little more 
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precisely. We have already made a choice for the spin component of 
Ctc: namely, the bispinor representation acting on V. Let us denote 
the corresponding component of A'1 by A£. For the §U(n) compo­
nents we choose the simplest irreducible representations, namely the 
fundamental ones, given by the defining matrix actions, namely 

§u(n) = {Ae§l(n,C):A1+A = 0}. (11.2.1.3) 

We denote the vector spaces accommodating these representa­
tions by Wn and the corresponding components of an A in CLC by 
An. Thus 

W = W2®Wi®V, (11.2.1.4) 

and 

A" = ^ e ^ e ^ (n.2.1.5) 

for A* in §u(n), n= 2,3, and A% in §0(3,1) = §1(2, C). 
Thus we have 

& = (A2®Af®Ag)Qyll 

= ( ^ ® 7 / i ) e ( ^ ® y M ) e ( ^ ® ^ ) 

= 42®A3®AS. (n.2.1.6) 

Now we note something immediately striking about Jt2. 
Namely, since the complexification of £>il(2) is §1(2,C), the repre­
sentation of §tt(2) upon W2 lifts to the fundamental complex two-
dimensional representation of <§l(2,C). This representation in turn 
exponentiates up to that (holomorphic) representation of SL(2,C) 
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we have been calling S. In other words 

W2 = S. (11.2.1.7) 

Thus A2 is actually of type 

S®S*®V®V* (11.2.1.8) 

and internal transitions must now be allowed since V = S®S . But 
then surviving interaction amplitudes can only involve S, since S 
(the anti-holomorphic irreducible two-dimensional representation of 
SL(2,C)) is orthogonal to it. In other words, an external experi­
menter can only register couplings between A2 and fermions of one 
chirality (in view of the remarks at the end of §10.3), namely the left-
handed one associated with the S component of V, since the transi­
tions giving rise to the interaction with the right-handed S compo­
nent are null. Thus the §Il(2) interaction breaks the chiral symmetry 
of the fermions involved. (Cf. equation (11.2.1.34) et seq. for more 
detail.) 

There is another peculiarity associated with the fact that the 
complexification of 2>ll(2) is §1(2, C): namely, the circumstance that 
the chosen representation for §u(2) (as a quantum symmetry of 
W2 = S), when extended via complexification to §1(2,C), is already 
in use (by the experimenter) as the algebra of symmetries giving rise 
to the S spinor structure. Moreover, this action of <§ll(2) necessarily 
extends to the action of £>((2,C) that is in use, since no operational 
distinction between these two actions could be made, se ipse, by the 
experimenter at the level of the acts represented by the elements of 
the underlying complex space S. Presumably this double use of the 
underlying space should be taken into account in our dealings with 
this action of £>U(2). Thus, since the action of £>ll(2) upon W2 ex­
tends "spontaneously" to the action of C®R£>U(2)s <§I(2,C) upon 
C®RI^>, such account-taking would entail the replacement of a 
"seized" defect w2 in W2 by an equivalent one of the form e*e®w2, 
0elR, in which the now explicit parameter 6 must be allowed to vary 
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independently of the §ll(2) -symmetric part w2 .Then 

d(e' ®w2<g>s) = ie'edd®w2<8>s + e*e®d(w2®s) 

= (idO®\w<g> lv + lc<&A2)(e
ie<8>w2<8>s) 

= (Af® V<g> yM + l c ® A2)(e
e®w2®s), 

(11.2.1.9) 

where 

i d 0 ® V 2 = j4?0®V2®yM (11.2.1.10) 

for imaginary numbers Af. 
Thus, the effect upon the interaction term of spontaneously 

complexifying the £>it(2) action is that the interaction term A*2 ac­
quires an additive term of the form A*x\w , where the Af are imagi­
nary numbers. (This Ax interaction term does not share the chiral 
breaking, of course.) In going spontaneously from §U(2) to its com-
plexification we are compelled to incorporate into defect acts the 
symmetry coming from the £>U(2) -independent C factor. Ordinarily 
negligible, the independent variation of this factor must nevertheless 
be taken into account. The §VL(3) action could also be so compro­
mised, but this is not required for consistency with any prior or si­
multaneous uses of §1(3, C) since there are none, and therefore no 
complexification is entailed. 

By the same token, there is also something striking about the 
spin component &s. This term is of type 

V*®V®V*®V, (11.2.1.11) 

and internal transitions may now be assumed to take precedence, as 
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in equation (7.2.1.6). These transitions take place between static and 
spinnable bispinorial acts and so presumably register macroscopically 
as a kind of spin-flow. The ramifications of this will be taken up 
later. 

Now we attempt the passage to the continuum limit. We shall 
continue to assume that both CLC and W consist of entities that are 
"reticular" in the sense that their components may ultimately be ex­
pressed in terms of reticular variables. Then, from equation (9.3.15), 
we would have, for instance, with «jin W , 

[AWyJ = |[dHI 

= 4 ^ 1 (11.2.1.12) 

or 

[ A ^ ] ® ^ = - 2 T 3 1 W ] ® ^ . (11.2.1.13) 

Now \ Aj| is supposed to represent the macroscopic continu­
um interpretation of the selective act A , so should act to satisfy 

M H H A w ] (11.2.1.14) 

and may be so defined. Then it follows immediately that [[ J pre­
serves products of As. 

With A c defined so that 

a i M - A S M (n.2.1.15) 

we obtain, from equations (11.2.1.13) through (11.2.1.15) 

[ A " ] c = - i r A £ (11.2.1.16) 
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where the C subscript as usual merely connotes the replacement ev­
erywhere of q^ by one of its classical correspondents such as x^. 

From equation (11.2.1.15) it would appear that A£ is a con­
tinuum analog of A**, still acting upon W . In keeping with our ear­
lier assumption that defect acts should maintain their pristine condi­
tion even when employed by macroscopic experimenters, we shall as­
sume that an operator of the form A c reflects the same symmetries 
as A, lying therefore in the same Lie algebra, namely Ctc. In particu­
lar, considering each component of AA in turn, we have 

= - ^ W \ (11.2.1.17) 

for some trace free Hermitian W1, {A^)c lying in §ll(2) (cf. equa­
tion (11.2.1.3)), and with the factor )/2 appearing for cosmetic rea­
sons: thus, 

(A$)c = -i-W11. (11.2.1.18) 

For the three-dimensional component: 

lA$ld=-ir{A$)c 

= - | G M (11.2.1.19) 

for some trace free Hermitian G*1, (A*)c lying in §lt(3), etc., giv­
ing 

U P c = - i - G " . (11.2.1.20) 
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For the spin component 

M S L = - * T ( A £ ) C , (11.2.1.21) 

where (Ag)c lies in the Lie algebra generated by the (infinitesimal 
version of) the bispinor representation whose generators are iamn 

and may therefore be expressed in the form 

( A S ) c = i ( i t < < r H ) , (11.2.1.22) 

where the "spin connection" coefficients OJ^1 are real and antisym­
metric in their lower indices. Thus 

[ ^ S L = - f « £ " * . (11.2.1.23) 

Finally, for the A? term we have 

IA^C= - i T ( A ? ) c (11.2.1.24) 

with (Af)c also imaginary, 

(A»)C = - ^ B \ (11.2.1.25) 

say, where i?^ is real. Then 

[ A f l ^ - p " . (11.2.1.26) 

Returning to the interaction term $5, with &x appended as in 
equation (11.2.1.9), we note that its trace vanishes at least because of 
the presence of the y^ s, apparently denying the registration of any 
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interaction to an external experimenter, as in the treatment of the 
bare Dirac operator in the last chapter. Also similar to the discussion 
there is the presence of the lC[rj in the second term in equation 
(11.2.8), whose trace is undefined. Both problems maybe resolved in 
exactly the same way in the continuum. Namely, we multiplex the 
space W<8>Vupon which /$ acts to obtain a bundle over the mani­
fold with fibre W<8)V. Now, elements of the latter space may be 
thought of as tuples of bispinors, with one entry for each dimension 
of W . Thus, in a sense, each basis element of W may be replaced by 
a bispinor, and Lie algebra actions on W may now be thought of as 
acting upon tuples of spinors. The next step is to replace each spinor 
by its operator version as in the last chapter, and proceed to the ap­
propriate operator version of the trace. Ignoring for a moment the 
complications of the two-dimensional component, the result in the 
continuum is a contribution to the full Lagrangian density of an ex­
pression of the form (cf. equations (10.2.14) through (10.2.16), and 
(11.2.1.16)): 

r - ^ d e t ^ - ' f ^ ^ J ^ J ^ T - ^ d e t ^ r ^ - Z T ^ ) ^ ^ ^ ^ / 

= ( d e t ^ r 1 ( z ¥ w ^ c ^ F w ) t 

= (detE)~1(Wwyfl/\£Vwf 

(11.2.1.27) 

where *PW
 ls a tuple of bispinor operator versions of components of 

w. 
The presence of the l w in the first term on the right-hand 

side of equation (11.2.8) similarly gives rise to a continuum expres­
sion of the form (ignoring the determinantal factor) 

(WwtfVw)\ (11.2.1.28) 
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for the same ^ v s used in equation (11.2.1.27), and maybe added 
to the previous term to yield 

(Wwg+/&C)VW)\ (11.2.1.29) 

This expression may be broken down further into a sum of its 
individual components. Starting with the apparently less complicated 
three-dimensional component, its contribution to the expression 
(11.2.1.29) is, from equation (11.2.1.20), the self-adjoint operator 

i%{$-^0^G, (11.2.1.30) 

where *FG in this context denotes a triplet of bispinor fields in the 
fundamental representation of £>ll(3). 

The spin "connection" (equation (11.2.1.22)) contributes the 
term 

WyJfT+fav")*, (11.2.1.31) 

where *F here denotes the basic bispinor operator considered in the 
last chapter. Since the spin connection operator appearing in the last 
expression acts in the space of bispinors itself, it should properly be 
incorporated into all the interaction terms. That is to say, 3M, which 
acts on individual spinors within tuples, should be, strictly speaking, 
universally replaced by 3M + ('Ajct^cr*'. 

Finally, we turn to the complexified £>Il(2) interaction arising 
from the operator appearing in the right-hand side of equation 
(11.2.1.9). Its continuum version is, from equations (11.2.1.18) and 
(11.2.1.25), and writing the identity function on W2 as I2: 

(Al)cI2+(A2)c=-^(0I2 + ̂ ). (11.2.1.32) 
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A further complication here is the non-coupling found earlier 
of the <§ll(2) field with the right-handed (S*) component of each 
bispinor pair. This has the consequence in the case of W that it can 
only appear in the Lagrangian (cf. equation (10.2.18)) acting upon 
left-handed spinors. The resulting contribution to the Lagrangian 
thus assumes the form 

^ W 3 " - f # % ) f e ® ^ ^ - { B * I 2 - i w * ) 4 , W t L . 

(11.2.1.33) 

Here tf/w>k, k = L,R, denotes an §li(2) doublet whose en­
tries are the Weyl spinors, which are the appropriate chiral compo­
nents of V. 

To see the non-coupling in situ, as it were, we note that W^ 
is actually of type S®S* so that its action on a right-handed W2 

spinor doublet—i.e. an element of W2®S*= S®S*—would entail 
contractions of the middle pairs in a G Q formula, or sequence, of 
type 

S®S*®S®S* (11.2.1.34) 

leading to an element of type 

5®5* . (11.2.1.35) 

But now a further contraction is possible and gives zero, since S is 
orthogonal to 5 (cf. §4.2.1). Thus, external experimenters will de­
tect no interaction of W 1 with fermions of the chirality correspond­
ing with the 5* component of V. 
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11.2.2 The Kinetic Term 

Now we turn to the problem of macroscopically interpreting 
the remaining term in the operator on the right-hand side of equa­
tion (11.2.8), namely 

l C [ n ® ( e 8 * - W ) - (11.2.2.1) 

Here, again, the appearance of the identity function upon 
C[r] signifies the presence over the macroscopic continuum of the 
same bundle as before, with fibre W<8>V, upon which the other fac­
tor acts as a bundle endomorphism. 

Our first task is to interpret 5 A*, which should appear to give 
rise to an increment, when interpreted macroscopically in the contin­
uum. Supposing 5 to act as a derivation on End(W<8>V), we have 

S ^ = 5((A"«l)(l®y / i)) 

= (S(AM®l))(l®yM) + (AM®l)(S(l®yM)). 

(11.2.2.2) 

For the first term on the right-hand side of equation (11.2.2.2) we 
may put 

8fY=8"/\,l®yv (11.2.2.3) 

so that it remains to interpret the incrementing operator 8". An ob­
vious candidate for 8" is of course A". Now, as a consequence of our 
standing and unverifiable assumption that elements A, say, in the 
chosen representation of <XC may be expressed ultimately in reticular 
terms—for example by being realizable as matrices with entries in 
C[rN]—it follows from equations (9.3.3) and (11.2.1.14) that 
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[A"A] = [A1[A]. (11.2.2.4) 

= -iTd"(-tTA£) 

from equation (11.2.1.16) 

= - T 2 3 " A ^ , (11.2.2.5) 

which shows that, independently of any presumed directional encod­
ing of T, A" must be interpreted macroscopically as a decrementation 
operator when acting upon elements of Ctc. Consequently, the correct 
choice in equation (11.2.2.3) is 

8"=-A\ (11.2.2.6) 

For the second term in equation (11.2.2.2) we may take, as 
usual, 

8w = dw 

= A V (11.2.2.7) 

so 

(8 (l®yAt))(iu®s) = 8 ((l®y/x)(tw®s)) - (1®7^)6 (w®s) 

= 8(w8yll(s))-(l9yll)(/YwQyv(s)) 
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(cf. equation (9.3.19) for the first term in the last line) 

= (A"®[y„,y,J)(™®s). (11.2.2.8) 

Putting all this together yields, from equations (11.2.2.2) through 
(11.2.2.8), 

8/X = (8 A ^ D d ® ^ ) + ( A ^ l X A ^ b / , , , y j ) 

^ A ' A ^ y ^ + A ' A ' a b ^ y J . (11.2.2.9) 

At this point we may note that the quantity known as the 
metric now makes an appearance when the trace of 5A" is taken. 
Readers who have taken the exercise suggested in the paragraph fol­
lowing equation (9.4.37) will not be surprised to learn that 

t r ( r m 7 n ) = 4r/mn) (11.2.2.10) 

where r\mn is given in equation (11.1.19). This matrix is known for 
historical reasons as the Minkowski metric, and its well-known trans­
formation properties now follow from equation (9.4.39). The matrix 
r]mn, which is the inverse of 7}mn, may be used to raise and lower 
Latin indices in a way familiar to students of relativity, namely: 

[T = Vmk[]k (11.2.2.11) 

etc. (Of course, 17™ = rjmn.) 
We define a Greek metric by 
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9„v
 s-tr(yMy„) 

1 -,kl 
4<e>(r f c7/) 

= « r ? H . (11.2.2.12) 

Denoting by g'1" the matrix inverse of the matrix g , it is an 
elementary exercise to show that 

p ^ e f o V - (11.2.2.13) 

These may be used to raise and lower Greek indices. 
We note in passing how the last equation may be used to re­

late deti? to the metric. First, recalling §9.4, write this equation in 
matrix form: 

M = E-lr](E-1)T. (11.2.2.14) 

Here, M denotes the matrix whose entries are g^v and r\ the matrix 
whose entries are 17"™ = r\mn. Taking determinants we obtain 

d e t M = - (de t^" 1 ) 2 (11.2.2.15) 

so 

( d e t £ r ' = ( - d e t M ) ^ . (11.2.2.16) 

In the literature one often finds det M denoted by g. 
Thus, the measure that arises when a macroscopic experi­

menter integrates a Lagrangian density of the form equation 
(10.1.21) against d x^ may be written 
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{-g)^d\. (11.2.2.17) 

This measure is invariant with respect to transformations of 
the vierbein itself: cf. equation (9.4.1.9). For, d x^ acquires the fac­
tor detA while at the same time (detE)~ acquires the factor 
(detA)"1. 

Now we note that the well-known and easily checked anti-
commutation relations 

and the definition 

yk7i + yiyk = 2riaiv (11.2.2.18) 

ykyi-yiyk = -2io'ki (11.2.2.19) 

imply 

Jk)'^VkiK-iVu (11.2.2.20) 

from which it follows that 

y j ^ v V - ^ ' (11.2.2.21) 

where 

k I 

a = e e a., 
t±v ix v kl 

= ^ [ y M , y J . (11.2.2.22) 

These last two identities may be used to reexpress the right-
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hand side of equation (11.2.2.9) as follows: 

8% = -A>/\»®(giiv\v + i(rixv) + /\»/\v®2iaflv 

= - A " A ^ ® V V + i ( - A ' ' A ' i + 2 A ' t A ' ' ) ® o V 

= -A" A" ®g^ lv + - (AM A" - A" AA + 2[AM, A" ]) ®o-M„ 

(11.2.2.23) 

using the skew-symmetry of the o"M„ in the second term. 
From equation (11.2.1.16) and the correspondence principle, 

we find (dropping the ^subscript from the 1) 

l8^jc=(irdl(-irJ\^9flvl + 

+ j ( ( - ird^)(- zrA*1) + 2 ( - ir)2[/\»c, A^.])®cr„ 

(11.2.2.24) 

That is, defining 

F ^ = a 1 ' l A ^ 1 + 2 [ A ^ , A y (11.2.2.25) 

we have 

l 5 A ' l c = y ( 2 ^ A > V 1 ~KV®^ ) • (H.2.2.26) 

346 



Dynamics II 

The "kinetic" quantity of interest (from the analog of equa­
tion (10.1.21), with the operator on the right-hand side of equation 
(11.2.8) replacing $) is 

(11.2.2.27) 
c 

Here we encounter a fork in the road, which, being quantum 
experimenters, we are compelled to take. Recall that the second 
quantized version of V, with Pauli-Dirac adjointness, etc., was origi­
nally invoked in §10.2 in order to amplify a macroscopic experi­
menter's registration of the dynamics associated with the bare defect, 
which would otherwise be invisible. That is to say, the use of these 
devices (namely second quantization, etc.) had the effect of increas­
ing the experimenter's degree of resolution (or correspondingly low­
ering the degree of externality): indeed, we were left with operators, 
not amplitudes. In §11.2 we extended these methods to achieve a 
similar effect for the case of the clothed defect. This led to the inter­
action terms displayed there, which are similarly operators, or selec­
tive acts, representing amplifications of acts pertaining to a deeper 
level. If we proceed at this resolution (or non-maximal degree of ex­
ternality) then equation (11.2.2.27) supplies us with a power series in 
r of extra interaction terms starting with 

-r5%(^(/\c)-i^a-J^w. (11.2.2.28) 

Thus we find spin couplings and their higher order correspondents. 
Some of these terms may supply ignorable total derivatives that 
would be eliminated by a suitable path integration, some may not. 
On the other hand, if we are prepared to believe that T is very small 
indeed at the relatively macroscopic scales that we are expressly inter­
ested in, then we may ignore these terms from a certain point on in 
the series, and 0(T5) seems a good place to perform this Procrustean 
process, since the Lagrangian density we obtain from the analog of 

t r [ e « * - l ] r c = tr 8%+±m2+... 
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equation (10.1.21) would in any case be too full of dimensions if any 
of these terms were retained. 

The other branch of the fork appears when we view equation 
(11.2.2.27) back at the maximally external resolution, which was too 
coarse to reveal any contributions from the lower order terms with­
out amplification. This is the resolution at which we originally de­
rived our Lagrangian and at which W and V^are considered as repre­
senting two non-interfacing (or non-interacting) quantum systems, 
except where a possible internal interface may be assumed to take 
precedence. This latter situation obtains for the right-most compo­
nent of W, as mentioned earlier. Except in this case, the amplitudes 
so produced will yield a macroscopic experimenter's Lagrangian de­
scribing the dynamics of the field A c itself, decoupled from the asso­
ciated fermionic selective acts which are elements of End V .̂ In the 
former case, namely that of the right-most component, where inner-
to-outer full contraction is presumed to take precedence, the result­
ing Lagrangian must pertain to the transitions—or (self) interac­
tions—between static and spinnable defect systems, and presumably 
describes locally possible flows of spin, as remarked earlier. On the 
other hand, our original models for the Dirac maps were cotangent 
representers, and we realized them as infinitesimal "parallel trans­
porters," so this spin-flow must in a sense contain the sort of infor­
mation macroscopic experimenters might interpret as geometrical. 
(In fact, there is a certain strong sense in which EndV^, where Vnow 
denotes the spinor bundle over a spin manifold, and the associated 
Dirac operator, contains all the geometrical information inherent in 
the manifold: cf. Connes 1994, VI.) Moreover, since we already have 
an interaction term in this case, namely equation (11.2.1.31), the ad­
ditional interactive contribution resulting from this internal contrac­
tion is sure to lead to an extremely nonlinear field, which, we recall, 
couples to everything in sight. Macroscopic continuum-dwelling ex­
perimenters will recognize in it the hallmarks of the field known to 
them as gravitational. 

Before we launch into the computations of the factors con­
tributing to the right-hand side of equation (11.2.2.27), some further 
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remarks are in order. These concern the degree of resolution associat­
ed with the acts represented by the elements of W. Since we have in­
terpreted its spin component as V itself, we may assume that the de­
gree of resolution attributable to this component is as we have al­
ready interpreted it: namely, that high degree of resolution associated 
with the pristine reticular defect whose space of initial acts it repre­
sents. The degree of resolution embodied in our choices of W2 and 
W3 are, on the other hand, conditioned by macroscopic desiderata, 
since their symmetries derived from the dragged-back continuum-
based Schrodinger vacuum. (These symmetries were employed, a for­
tiori, as coarsened macroscopic operators upon W in equation 
(11.1.23).) Consequently we should assume that acts represented by 
elements in W2 and W3 are associated with a coarser degree of reso­
lution, relative to the resolution of the acts represented by elements 
of V. This resolutional mismatch does little harm when the associated 
interaction and "kinetic" terms (shortly to be derived) are considered 
separately, but presents a problem if these terms are to be combined, 
since the kinetic terms represent amplitudes associated with selective 
acts upon W2 and W3 which are decoupled from those associated 
with spinors, and therefore remain at a presumably coarser level of 
resolution. This issue will be addressed in §11.3. It is worth noting 
again that the problem does not arise for the spin component. 

Once the correct acts and selective acts have been determined 
so as to redress this resolutional imbalance, an experimenter will still 
be faced with the problem of second quantizing the c-number expres­
sions which emerge as kinetic terms. Since W was derived from a 
bosonic vacuum, one might be forgiven for believing that the A 
fields become boson creators. In fact, we have now met up with 
standard physics and may refer the reader to works already or to be 
cited, many of which start at, or near, this point. 

Returning to the right-hand side of equation (11.2.2.27) it is 
clear that it decomposes into a sum of corresponding traces for each 
component. We shall consider each in turn, starting with the three-
dimensional component. 
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From equations (11.2.1.20) and (11.2.2.25) 

{Fnc^WX +2[(A*)C,(A1)C] 

= --d[,iGv]+2i--\ [G\GV] 

\d[,lGv]-i[G,x,Gv]) 

_ l>_/~tiiv 

2 
(11.2.2.29) 

so that from equation (11.2.2.26) 

M c = j(WW)c®g^-i(F3nc®<T,v) 

T 

T 
idvGv9l + ±G'"'9(Tliy (11.2.2.30) 

Th us 

4s^ic=° (11.2.2.31) 

ind 

[ ( ^ 3 ) 2 ] C = M ; 
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-(dvG y®l + -GlxvGpT®crilv(TOT+ trace free terms 

(11.2.2.32) 

so 

tr «/ , + ̂ (5rf,)2 + 

_T 

2!4 
-4tr(d"G,)2 + ^{G^GpT)xv{a^anJ fJLV pT 

+ 0(T6). 

(11.2.2.33) 

It remains to compute tr (a"̂ „ crpT ) . To this end we note 
(Weinberg 1995, p. 372) that 

K(ykyiymyn) = 4(vkivmn + vknVim - vkmvJ> 
(11.2.2.34) 

an identity that depends only upon the anticommutation relations 
equation (11.2.2.18), from which it follows immediately that 

t r (7A^T, rp ) = 4 ( S A ^ P + £ A P V ~ 9^9^)-

(11.2.2.35) 

A tedious calculation now yields 

r rK„°-pT) = Mg^g^ - gUTgJ, (l 1.2.2.36) 

which is real, so that 
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^Kva^ = xsKva^ 

= tr(<w)- (11.2.2.37) 

Th us 

i t r ( G - G - ) t r ( ^ c r p T )t = tr (G^G^Kg^ -g^gj 

= tr(G^GJ-tr(G^G^) 

= - 2 t r ( G ^ G A J . (11.2.2.38) 

Putting all this together, and retaining only the terms up to 
T4, we obtain as our Lagrangian density (cf. equation (10.1.21)) for 
the £>il(3) contribution 

^T-\-g/^[-4tr(dvGv)
2-2tr(G^GliV)fj 

= (-9) X ±tr(dvGv)
2-±tr(G>"'GflJ . (11.2.2.39) 

The second term in this expression is exactly the famous 
Yang-Mills Lagrangian for the (§u(3)-) Yang-Mills fields G"v. The 
central role played by this particular form of Lagrangian in modern 
physics, its geometrical underpinnings (which we seem to have man­
aged to avoid), physical and mathematical ramifications, etc., are well 
and oft-told tales. The reader may consult, among many others: 
Ryder 1996, Weinberg 1996, Sterman 1993, Nachtmann 1990, 
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Collins, Martin and Squires 1989, Shuryak 1988, Pokorski 1987, 
Commins and Bucksbaum 1983, Yndurain 1983, Aitchison 1982, 
Aitchison and Hey 1982, Ramond 1981, and Taylor 1976. 

The Yang-Mills Lagrangian's most significant attribute is its 
invariance with respect to certain transformations of the "potentials," 
proportional to C1 in this case, called gauge transformations. (Please 
see §12.5 for a discussion of these.) Since path integrals must now be 
taken over possible histories of these fields, vast and divergent over­
counting would result if the first term in ££3 were absent, for then 
the gauge invariance of the Yang—Mills term would permit contribu­
tions to the path integral from histories of gauge equivalent fields, 
though these are physically indistinguishable. As it happens, the first 
term in ££3, a gauge-fixing term, famously suppresses this over­
counting, at the (affordable and necessary) cost of gauge-invariance 
of the whole expression. This particular gauge-fixing term—which is 
usually put in "by hand," but which we seem to have obtained free of 
charge—is named for Feynman: see the references cited above. 

For the complexified 3ll(2) contribution, we have (cf. equa­
tion (11.2.1.32)) the following component of A£ : 

{A?)CI2+{A*)C =-i(B'iI2 + Wl) (11.2.2.40) 

so the appropriate component of equation (11.2.2.25) reads (cf. 
equation (11.2.2.29)): 

2 

- a l M ( - ( S " 1 / 2 + W 1 ) ) + 2 ( - - ) {B»I2 + W\BVI2 + WV} 

= --dl,xB,']I2--(d
[lxW]-i[W'x,W'/]) 

2 2 
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•-(B^Iz + W^) (11.2.2.41) 

so that the appropriate component of equation (11.2.2.26) is (cf. 
equation (11.2.2.30)): 

«*uL-
2 r 

id*(BvI2 + Wv)®l+±(B>"'I2 + Wn®% 

(11.2.2.42) 

Th us 

tr *K f = — [8id"Bv] 
c 2 

= 4iT2d"Bv, (11.2.2.43) 

which, being a total derivative, may be discarded from the La-
grangian. 

The remaining contribution (up to T ) is 

-MM)'= 
= tr — f - 0 " (BvI2 + Wv ))

2®1 + - ( 5 ^ + W1" )(BpTI2 + W pT)< 
.2!4v 4 

> cr or + trace free terms 
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= tr 2!4 
-{®"Bv)

1I2 + 2{dvBv){d*Wll) + {d»Wliy)®\ + 

+ -(B^BPTI2 + W^W^Qo-^a^ + trace free terms") 

= T -Q>BV)2 - I t r O " ^ ) 2 --^B^ -itr(W^W^) 

(11.2.2.44) 

Thus we obtain the Lagrangian density 

%^{-g)y\^Bvf -\u{dvWvf -^B^-^xiW^W^) 

(11.2.2.45) 

It is worth noting that the fields B* and W1 contribute sepa­
rately (with the B1* contribution doubled). The B* part of this La­
grangian exhibits the gauge symmetry associated with the group 
U(l). 

Finally, we turn to the remaining §0(3,1) component. Here, 
from equation (11.2.1.22), the appropriate component of equation 
(11.2.2.26) is 

23 *^Vj®vi. 

355 



Quanta, Logic and Spacetime 

— % M\i4^Y\A 

/ -\2 

[-) Lw!> 'Mrs*? \ ®cr. )XV 

z 3 X > w ® V 1 + 

+ ( ± 3 * coll <rkl +1[<^ o , r >"f)® V 

(11.2.2.46) 

At this point, as we have noted a few times, an internal con­
traction (across the ®s) is possible and will be assumed to take prece­
dence. Then we obtain 

- ~\v a kl -i , A ~\[u v] kl . 1 \ a kl , ^v rsl 

(11.2.2.47) 

The trace of only the first term vanishes: to compute the other 
traces, we note, from equation (11.2.2.36) that 

/ kl \ ^ / kl m n \ 

m n / kl st\ 

= elievu{a r)msr)nt(T ) 

= ^e
vVmsVnttn(r & ) 
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= Ke:^n-VnlL)- (H-2.2.48) 

Thus 

a[* ̂  Mo- X , ) = 4e;e;o
[- tofahl - a[- ufayj 

= 4Cx(-a [ M»^+a [ M^0 

= 4exo['i<i-a['i<i) 

= 8 e l e ; a l ^ : i . (11.2.2.49) 

For the trace of the third term we have, from equation 
(11.1.18), 

t r (Ka* ' , a>> r S K„) = i « s t r ( ( - r ;V s + r ,V t s - r / V r + r / W ^ ) 

(11.2.2.50) 

In view of equation (11.2.2.48) the first term gives 

, . M „ m v fcr / Is \ it v kr r Is \ 

-OkiOrsV tr(<r o-llv) = G>£a>ji tr(<r o ^ ) 

u vk / / m n / I s I s \\ 

= O s (4eMe, (r)mrin -r]nr]J) 
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= 4 e X « m < * - < < * ) • (H.2.2.51) 

The second term may now be obtained by interchanging the k and / 
labels in the last equation to obtain 

- « 7 7 M c r X , ) = Ae-e: ( « ' - « ' ) (11.2.2.52) 

or 

« r ? V ( c r ^ ) = 4 e X K m < ' - < o > ; ' ) . (11.2.2.53) 

It follows similarly that the other terms also have this value so that 

tr([o,fio*,<ir"]o-MJ = l 6 i c ; e : ( a , r m < - - < < ) . 

(11.2.2.54) 

Putting all this together we obtain, from equation (11.2.2.47) 

*l**slc= ^ (^<»1 - 4 « X ' -<<€))<< 

= T2(3 ["W" ] - a y a/- + a/ af)emen. 

\ rnn *m n *m n / fi v 

(11.2.2.55) 

The quantity 

R;q
n=(d[»a>;]

q - « + « ) e X (11.2.2.56) 
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arises classically where it is known as the Riemann curvature tensor. Its 
contracted form 

R = RZ> (11.2.2.57) 

which appears in equation (11.2.2.55), is known as the scalar curva­
ture. (See Ramond 1981, equation (9.4.62), or Collins, Martin and 
Squires 1989, §11.5. There seems to be an annoying sign ambiguity 
in the definition of R in the literature. Here we are consistent with 
Ramond 1981; the other reference just quoted adopts the other sign.) 

Our rather formal view of dynamics has given rise to recog­
nizable expressions of geometrical curvature. (The fields Fc of equa­
tion (11.2.2.25) are also expressions of curvature—of bundles, in 
fact: cf. §12.3.) Although it must be admitted that our development 
has been beset by macroscopic archetypes in numerous places, it still 
seems striking that spatial curvature should have made so explicit an 
appearance. Our major macroscopic geometrical interpolations con­
cerned the notion of parallel transport: in its infinitesimal form via 
the Dirac operator, and independently in a globalized form via Chen 
series—though only in their simplest line-segment form, which, in 
any case, arose elsewhere as an aspect of the ubiquitous coherence 
phenomenon. Nowhere did we explicitly transport any ideal instru­
ment around a spatial loop, such holonomies being the usual physical 
method for probing curvature. (See Ryder 1996, §3.6, for a particu­
larly illuminating account of the relevant geometry.) Thus, although 
it would be too much to claim that we have achieved geometry with­
out geometry, we do seem to have obtained curvature as a purely dy­
namic effect without having built any curvature explicitly into the 
prior structure, i.e. the net. (This must mean that the Dirac operator 
contains geometrical information: cf. Connes 1994, VI.) 

This having been said, there is still the next T 4 term in this 
component of equation (11.2.2.27) to contend with. Now we must 
square the right-hand side of equation (11.2.2.46), contract across 
the tensor signs, take the adjoint, and finally take a half of the trace. 
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This computation has turned out to be intractable as far as this writer 
is concerned, involving the expansion of traces of products of up to 
twelve Dirac matrices. The result is a gauge dependent second degree 
polynomial in the spin coefficients, their first derivatives, and the 
metric. It will be interpreted in the next chapter as an uncalculated 
correction to the first term, which is essentially the Einstein-Hilbert 
Lagrangian for gravity. 

11.2.3 Ghosts 

(This subsection may be skipped.) 
In this subsection we shall assume that elements of Qc have 

been second quantized and are now realized as operators not upon 
W but upon a bosonic second quantized version of it. That is to say, 
W is replaced by the space 2B of putative "physical" gauge bosons, 
undoubtedly an extremely large space, known to contain a multiplici­
ty of complicated vacua: cf. the references already cited, particularly 
Shuryak 1988. The only formal difference from our previous consid­
erations is that the w appearing for example in the expression w®s 
should now be considered to represent the act of injection of a possi­
ble bosonic vacuum. Since the putative vacuum w no longer inhabits 
W, the possibility arises that an act w may be inadvertently chosen 
(or seized) by the experimenter that kills, or fails to register, the 
quantum symmetry we have taken such pains to expose. That is to 
say, it might happen that 

/\w = 0 (11.2.3.1) 

for all A in (Xc. Then, since 

e (w®s) = w®s, (11.2.3.2) 

the experimenter would find that the fundamental dynamical selec­
tive act, namely the operator emerging from equation (11.2.2), 
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would, on the space of such vacua, collapse back essentially to the 
bare case, and no transitions involving A-quanta could be registered. 

Thus, if experimenters embark upon an attempt to quantize 
the fields A*1 in the presence of the quantum symmetry of the 
clothed defect, it behooves them to take some action at the outset to 
avoid the initial selection of a putative vacuum-injecting act from 
among those inessential acts satisfying equation (11.2.3.1). 

Consider now the general case of a representation of a finite 
dimensional Lie algebra g upon a not necessarily finite dimensional 
space SB. With 

SBa={w€2B:L.w = 0 forallLeg} (11.2.3.3) 

and 

0 :SB-^Hom(g ,SB) (11.2.3.4) 

defined by 

4>(w)(L) = L.w, (11.2.3.5) 

where Hom(g,SB) denotes the g-module of linear maps from g 
into SB, we have an exact sequence of g - modules 

0 >SB9 > S B ^ - * H o m ( g , 2 B ) . (11.2.3.6) 

It may be helpful to recall at this point that the g-module 
structure on Hom(.E,.F), for g-modules E, F is given, for 
/ 6 H o m ( £ , F ) , LeQ, and xeE by the derivation-based formula 

(L.f)(x) = L.f(x)-f(L.x). (11.2.3.7) 

The tensor product E®F of spaces becomes a g-module 
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with respect to the action determined, for L e g and x®yeE®F, by 
the derivation-like recipe: 

L.(x®y) = (L.x) ®y + x®(L.y). (11.2.3.8) 

Since g is finite dimensional we have the usual vector space 
isomorphism (cf. Mac Lane 1963, Proposition 4.2, p. 147): 

g*®2BsHom(g,2B) (11.2.3.9) 

in which f®w e g*®2B is sent to the function L\-^f(L)w, Lsq. It 
is easily checked that this is also an isomorphism of g-modules when 
each side of equation (11.2.3.9) is given its appropriate g-module 
structure as described above, and where the action on C is always the 
trivial one: g.C = 0. 

Thus, by slightly abusing the notation, the exact sequence 
(11.2.3.6) of g-modules may be written 

0 >2B9 > S B ^ - > g * ® 2 B (11.2.3.10) 

so we have a splitting 

SB=2B90<£(2B), (11.2.3.11) 

with </>(2B)cg*<8>2B: the initial acts of injection of the essential 
vacua of interest may thus be realized as elements of g*<8>2B. Project­
ing out the inessential vacua lands us squarely inside the latter mod­
ule. 

If an experimenter were to go through this process of project­
ing out the inessential vacua at the reticular level, the effect on his or 
her dynamical considerations would be that the chosen vacuum w 
would have to be replaced by some element in </>(2B), which, since 
the latter module may be regarded as a subspace of g*<8>2B, can be 
expressed as a finite sum of tensors of the form fi®w, with Hjj an ele-
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ment of CL*. Thus, where previously we had dw, we now would have 
a sum of elements of the form 

d(vfl®w) = diffl<8)W+ifi®dw. (11.2.3.12) 

Now, for a fixed L e a * , we have 

(dnj)(L) = d(ii(l.)) - f»(dl) (11.2.3.13) 

where 

= (A^)(L)®7V (11.2.3.14) 

and where, for v in 2B, 

(dl)(v) = d(Uv))-l(dv) 

= ([AML]®y,J(i;). (11.2.3.15) 

Thus (equation (11.2.3.13)) 

(d7®)(U = (A^)(L)®yM-*a([A' i ,IL])®y / 4 

= ( A ^ ) ( L ) ® y / i + ( A ^ ) ( L ) ® y ; 4 

from equation (11.2.3.7) for the module action of Ctc upon Ct* 
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= {{tf+f\».)<Z>yjmL), (11.2.3.16) 

where we have left the dot in as a reminder of the <XC-module action 
of the As in this context. 

Writing 

4 = ^ + ^ ) 8 7 , (11.2.3.17) 

equation (11.2.3.12) now reads 

d{ti®w) = S/\('V]i)(S>w+ Ttfl®JXw 

= ( £ A ® 1 + 1 ® $ ) ( T 0 ® W ) . (11.2.3.18) 

Thus, the introduction of the elements "Ŝ eCt* would entail 
the replacement of A'1 in our earlier dynamical considerations by the 
operator 

A ; 0 l + 1 ® A ' . (11.2.3.19) 

This operator is supposed to act in second quantized form upon 
some second quantized version of Ct*<8>2B. Since SB is already as­
sumed to be second quantized (as a space of bosonic quanta) we are 
confronted by the problem of second quantizing (X*. Now, if a Lie 
algebra g is the Lie algebra of a compact Lie group, then g* may be 
identified with certain differential 1-forms on the group, namely 
those which remain invariant under a naturally defined ("left") action 
of the group upon forms. These 1-forms are named for 
Maurer—Cartan (cf. for instance Goldberg 1982). Moreover, the exte­
rior algebra over g* comprises all left-invariant forms on the group 
(and is in fact a subcomplex of the de Rham complex). This observa­
tion seems to suggest that the appropriate second quantization of Ct * 
is the Fermi—Dirac one, namely this space of all left-invariant forms. 
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To redo the Lagrangian with (11.2.3.19) in place of AM we 
note first that we now have an interaction term that requires an inter­
pretation of 

t rP A ® lBfc + tr(la. ) t r M t
c . (11.2.3.20) 

We may cope with the first term by regarding the operator in second 
quantization and then defining the trace as an operator as in §10.2. 
In this case, however, we may leave the Dirac matrices intact (since 
the A'1 here act on CL*) and they may be used to kill the trace. The 
second term reproduces the earlier interaction term, but now carries 
the numerical factor 

t r ( l a . ) . (11.2.3.21) 

Moving on to the kinetic term, we note that the 8V acting on 
elements of a * should be adjoint to the 8" used for operators upon 
Ctc. To see in a formal way how an adjoint should be chosen, we note 
that the "coarsened" operator 

es"-.ac-^ac (11.2.3.22) 

represents the macroscopic version of the selective act 8", which is 
presumed to perform infinitesimal increments upon the elements of 
Ctc. If a macroscopic experimenter were to demand that exp5" pre­
serve the entire quantum symmetry structure then exp5" would be 
required to be unitary and it would follow that 

(8vy=-dv. (11.2.3.23) 

(In a sense this requirement is tantamount to a requirement that 8 
preserve the algebra Ctc of quantum symmetries in a strong sense: 
namely, "at all stages.") 

With this choice, instead of equation (11.2.2.6), we would 
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have 

(S")t(A'A) = A,'(A'A). (11.2.3.24) 

Then the analog of equation (11.2.2.23) is 

8(£/K) = A*(tfA)*gluvl + Q"'8<rllv, (11.2.3.25) 

where G^" is the appropriate "curvature" of AA . Thus 

= (-V(3'0"+ A^.)®V1 + 1 6 - 1 ^ ^ ) ^ 1 ^ + 

+ W » [ & f l ] c . (11.2.3.26) 

In addition to the new first term, the old one acquires a factor 
la.. So, with 

£>*=& + &$.., (11.2.3.27) 

t r [ 5 ( 4 ® l + l ® ^ ) ] t
c = -r2trO"L'J,)

t.4 + ( d i m a ; ) t r [ 5 ^ ] t
c . 

(11.2.3.28) 

Here we must interpret the first term as an operator, as in 
§10.2. Since the operators that will play the role analogous to the 
operators ifs{k) in equation (10.2.8) and that we shall denote by Tfjja, 
are actually second quantized versions of elements of a*, we shall as­
sume their macroscopic correspondents acquire factors similar to the 
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factors acquired by elements of Ctc (up to arbitrary extractable real 
constants): namely (cf. equation (11.2.1.16)) 

W c = -y(dimcO>Sa. (11.2.3.29) 

Then 

= tr((-d")(-Dv)) 

= trO"DJ 

= (dima c*)(-^^) t(a"^)(-^^) 

= (dima*c)
T-^v]ldvDsf]a, (11.2.3.30) 
4 

where the Vjia constitute a basis of Maurer-Cartan forms regarded as 
Fermi-Dirac operators. Thus equation (11.2.3.28) becomes 

tr[fi(^»l +l«/«)]; = (d im^)[Vi / / l?^ a + t r [^ l t
c | . 

(11.2.3.31) 

The next term contributing to the new Lagrangian is obtained 
by squaring equation (11.2.3.26) and taking half the trace. The first 
term on the right-hand side of this equation, when squared, yields a 
term in T 4 . Since the act of taking the trace of the macroscopic 
operators acting on a* supplies an additional T (equation 
(11.2.3.29)), the trace of this squared first term is of order T6 and 
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may be discarded. The mixed terms similarly yield traces of order r : 
T4 from the trace of the first term and r from tr[[5/$Jc (equation 
(11.2.2.26)). Thus the only term to keep here is the contribution 
from the trace of the square of the last term—which we computed 
earlier—multiplied by the dimension of the space a*. 

Summing the relevant terms yields (to order T 4 ) a new La-
grangian which may be obtained by multiplying the old one by 
dim a* and adding one new term, namely 

( - < ^ (dim ctc*) ( - n\ VDV na). (11.2.3.32) 

The overall constant is irrelevant to the field equations and 
may be discarded. 

The fields Hfla, vfa were, from the outset, merely bookkeeping 
devices concomitant with the joint activities of second quantization 
and the attempt to avoid inessential vacua. They did not emanate 
from the net itself and do not share any of the symmetries associated 
with the latter; moreover, they are invariant under the defect's sym­
metries. In particular, they ignore Lorentz transformations: that is, 
they are Lorentz scalars. On the other hand, they apparently obey 
Fermi-Dirac statistics, and therefore, as far as macroscopic experi­
menters who are convinced of the truth of the Spin-Statistics Theo­
rem are concerned, they defy "physicality" and are called ghosts. 

In fact, the expression appearing in (11.2.3.32) arises in vari­
ous ways (different from ours) in standard treatments of the quanti­
zation problem for gauge theories where the ghosts are needed, 
roughly speaking, because there is a mismatch between the numbers 
of degrees of freedom available upon fixing the gauge while still al­
lowing covariance in, for instance, the propagators of the theory. 
This has the effect (among others) of allowing an over-count of inter­
mediate states—since gauge equivalences are included—in scattering 
calculations involving such propagators, thereby destroying unitarity. 
The inclusion of the unphysical ghost fields as in (11.2.3.32), which 
only appear as internal loops, has the apparently miraculous effect of 
exactly canceling this unphysical over-count. They were originally 
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cooked up in special cases expressly for this purpose by Feynman 
(and independently by de Witt) in the early 1960s, so, from this per­
spective, their appearance seems somewhat less than miraculous. 
However, what really does seem miraculous is their reappearance in a 
natural and elegant general form in the path integral formulation of 
Faddeev-Popov. (In addition to the references on gauge theories al­
ready cited, an extremely lucid account of these matters, and many 
others, may be found in Coleman 1985. The subject of gauge quan­
tization has reached a high degree of maturity and technical complex­
ity. For advanced accounts, see Henneaux and Teitelboim 1992 and 
Nakanishi and Ojima 1990.) 

The ghosts have arisen in our context entirely differently, as a 
byproduct of an experimenter's attempt to avoid the use of inessen­
tial vacua: i.e. the use of non-injecting initial acts for gauge bosons. 
(Equation (11.2.3.1) involves an "incoming" quantum undergoing a 
null transition.) The spontaneous appearance of ghosts almost as 
soon as an experimenter acts to ensure the effective behavior of her or 
his "instrumentation" vis a vis the detection of gauge quanta is pre­
sumably a reward for the attempt to maintain "at all stages" at least 
some of the quantum symmetry of the defect. In a sense, by invoking 
the ghosts and thereby making canonical the implicit choice of an ef­
fective vacuum, an experimenter is "coordinating" his or her experi­
mental arrangement with all "other" putative experimenters who do 
the same. How ghosts may be interpreted as parametrizing con­
straints pertaining to other experimenters (in the presence of gauge 
invariance) is beautifully explained by Finkelstein in an elementary 
fashion—and one quite different from ours—in QR, §4.11.9. 

The full symmetry of the Lagrangian we have obtained (with 
the spin terms omitted), namely BRST symmetry, is named for Bec-
chi, Rouet, Stora and, independently, Tyutin: see the references al­
ready cited. 
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11.3 Resolution and Reseating 

As noted, we have examined the individual terms that emerge 
from equation (11.2.8) at different resolutions: the interaction terms 
were considered at the degree of resolution that required the modu­
larization and second quantization of V to show them up, while the 
kinetic terms for §iU{2) and 2>ll(3) were left at the presumably lower 
resolution determined by the macroscopically contaminated choice 
of spaces W2 and W3. The §0(3,1) component of W was chosen to 
be (the microscopic) V îtself, so the problem of a possible resolutional 
mismatch between its kinetic term(s) and its interaction term did not 
arise. 

This mismatch must be resolved (for £>ll(2) and £>tl(3)) at 
the algebraic level even before any presumed second quantization of 
the kinetic terms is contemplated. Let us attempt to address this in 
the £>ll(3) case. Recall that the triplet *FG appearing in the interac­
tion term equation (11.2.1.30) is actually a condensed version of an 
act of type Wj®^, in which the G^'s action upon W3 has in a sense 
been lifted to an action upon the triplet of second quantized spinor 
operators. In this sense the "covariant" Dirac operator $ — i0/2 is to 
be regarded as operating at the higher degree of resolution embodied 
in the second quantized version of V, though W3 has been left at its 
original macroscopically contaminated resolution. 

This brings us to an issue we were able to evade earlier, name­
ly the nature of the macroscopic interpretation of elements of W5. 
Since this is a defect type we shall assume, as in the case of the bare 
defect type, that its macroscopic continuum interpretation differs 
from it only by a real scaling factor, which we take here to be dimen-
sionless since the dimensional attributes of *FG are already accounted 
for in its bispinor factor. Such a rescaling of a vector does not of 
course change the act it represents but will affect amplitudes derived 
from it. Thus a change in "resolution" carries the implication that 
certain amplitudes may have a resolution dependency. (This observa­
tion will enable us to give a precise interpretation to the notion of 
"resolution": cf. §12.2.) Thus, a change in the resolution at which 
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the acts represented by elements of W3 are used will register simply 
as a rescaling w \-^\w for all win W3, for some real number A. 

Thus , we can rectify the resolutional mismatch within the in­
teraction term by making a replacement 4 G I—> A ^ while leaving in­
tact the "microscopic" covariant operator wi thin the interaction 
term. Tha t is to say, we adopt the resolutional level determined by 
the operator 0/2 as the base level, and change the resolutional level 
of *FG to meet it. 

In contrast, the operators GM that enter into the kinetic term 
act on the macroscopically contaminated Wd wi thout any of the 
spinorial intimacy enjoyed by the covariant derivative in the interac­
tion term: this difference is part and parcel of our assumption con­
cerning the non-interfacing of W5 and V in this case (cf. the first 
paragraph following equation (11.2.2.28)). Consequently, to bring 
the level of resolution of this term up to that of the now resolutional-
ly consistent interaction term, we should, as before, replace each w 

by \w, or, equivalently, apply the operator A J3 before applying GM. 
This has the effect of replacing C1 by AGM, an operation to be per­
formed before the computat ion of the kinetic term is effected. If 
these two rescalings are performed, namely 

^c I—> A ^ G in the interaction term (11.3.1) 

and 

GAi-> AG" in the kinetic term, (11.3.2) 

then both resulting contributions to the Lagrangian pertain to the 
same level of resolution and may therefore be added together. 

But if our interpretation of resolution-change as rescaling is 
correct, then, since 0/2 is a rescaled version of 0 which at the same 
time embodies by definition the correct base level of resolution of 0, 

it must be X0 for the A we seek. Thus A = ^ . 

Using (11.3.1), and temporarily ignoring the (—g) factor, 
the interaction term (equation (11.2.1.30)) becomes 
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1 ™J?-{0 (11.3.3) 

while in view of (11.3.2), equation (11.2.2.29) now reads 

(Ff")c =- r f r l d["G"] - r^ -G" ' ] 
2V2 

(11.3.4) 

In order to avoid further typographical proliferation, let us 
redefine C1" as the expression appearing in inner parentheses in the 
last equation. That is, we now write 

G"v sdlltGv] --[C.G"]. (11.3.5) 

Then the expression in equation (11.2.2.39) becomes 

fa* - ± t r ( 3 ' G J 2 - ± t r ( G ^ G M , ) (11.3.6) 

with C1" now given by equation (11.3.5). Consequently, the total 
§lt(3) Lagrangian obtained by adding the interaction term to the ki­
netic term becomes 

\ ^ 'i^-i0^G-^r(d"Gv)
2-^tr(G^G^ 

(11.3.7) 

(We shall ignore the ghost terms, which may be accommodated by 
rescaling the ghost fields as in (11.3.1).) 
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The complexified §ll(2) component, which we will label as 
§Il(2)c, may be treated in an exactly similar fashion, and the chiral 
breaking is unaffected. The interaction term (11.2.1.3) similarly ac­
quires the factor ]/A, while the expression in equation (11.2.2.45) is 
changed by the replacement of W1" by the analog of the right-hand 
side of equation (11.3.5) and the acquisition of the factor %, a factor 
acquired also by the term B^B^ (inherited from the replacement 
I2\->\I2 taking place in equation (11.2.2.41)), which is otherwise 
unchanged. 

The spin term component remains unaffected by these activi­
ties, as noted. 

Having equalized the degree of resolution of each component 
we may now add them up to obtain (from equations (11.2.1.30), 
(11.2.1.33), (11.2.2.39), (11.2.2.44), etc.) 

T- 4 ( -5 ) / 2 (T 2
J R) + ? + ^ ( - ^ WG(iT-i0)^,-Itr(G'"G|iV)-

~trO"G,) 2 4(-^ i ^ y ^ - ' - B ' I ^ 

+Wwj.y,>(r - | ^ % -{w*)*Wj. -Q'BJ 
2 -B^B -

2 "" 

-±tt{d'Wy)
2-±tr{W'"'Wllv) 

\(-9* 
L \T Z 

R + ?+ (3u(3) term) + (3ll(2)c term) 

(11.3.8) 

where the question mark denotes the uncalculated higher order spin 
term, where the indicated chiral doublets are defined by 
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ni = 
*W,R — 

f 0 ^ 
(11.3.9a) 

^ V . L = f ^ | . (H.3.9b) 

and where W1" and G^v are now given as in equation (11.3.5). 
One more rescaling of W2 and W3 is required before we can 

begin a comparison with experiment. This rescaling will allow for the 
degree of resolution an experimenter might be expected to attain 
through the use of the macroscopically contaminated acts represented 
by these spaces. 

In the preceding discussion we have taken pains to equalize 
the degree of resolution of the two species of terms in the contribu­
tions to the total Lagrangian associated with these acts. Having 
achieved this, we must now allow for a rescaling (applicable to all rel­
evant terms) of these spaces in order to accommodate the absolute 
resolutional ambiguity in our choices of the fields G11, W 1 and B*. 
The (possibly experimenter-dependent) constant involved will reflect 
the (coarser) degree of resolution at which an experimenter may be 
attributed the status appropriate to the use of the correspondence 
principle and to which we have attached the name "macroscopic." 
This is actually something of a misnomer, however, since the degree 
of resolution will turn out to be very high indeed by the standards of 
terrestrial experimenters. At this resolution we will have passed be­
yond the Maxwell-Boltzmann phase into the realm of "objective" 
geometry, though we may not yet be confronted by a manifold. As 
usual, the bispinor space (assumed to emanate unscathed from the 
deepest recesses of the net) remains untouched at its base level of res­
olution. 

We consider such an overall rescaling in the £>lt(3) case. As 
above we envisage a rescaling that effects, for some (real) constant g, 
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the following replacements: 

% ^ g % (11.3.10) 

G ^ g G * 1 (11.3.11) 

where the latter replacement is now to be made in all relevant terms 
on the right-hand side of equation (11.3.8), not just in the kinetic 
term. The interaction term becomes 

i ^ G ^ - f ^ y ^ (n-3.12) 

while GM" is replaced by 

g ( a [ ' i G " 1 - % ^ G n ) = gG'"', (n.3.13) 

where we have yet again redefined C1", this time as 

G" ' s a ^ C ' - ^ t C . G " ] . (11.3.14) 

Thus, the kinetic term (on the right-hand side of equation 
(11.3.8)) yields 

- ^ t r 0 1 ' G J 2 - ^ t r ( G ^ G „ ) , (11.3.15) 

where GM" is now given by equation (11.3.14). 
Since W2 is presumably engaged by a macroscopic experi­

menter at the same degree of resolution as W3, we should repeat this 
rescaling for it using the same constant g. Then an exactly similar 
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transformation of the £>lt(2)c terms occurs, with gB^ and g l f ap­
pearing in the interaction term, which acquires a factor of g2, with 
W1" being replaced as in equation (11.3.14), and with the kinetic 
terms also acquiring the g2 factor. 

Factoring out the g2, the right-hand side of equation (11.3.8) 
now becomes 

t("^ 2_2 
g T 

,i?+?+ie(§u(3))+^(§u(2)c) , (11.3.16) 

w. here 

2@u(3)) = MG(2-^0^G-jti(dvGJ2-±tx(G'>''Gllv) 

(11.3.17) 

with C1" given by equation (11.3.14), and where 

2(SU(2)C) - MW,RJI\ d» -fB"I2 f¥WiR + 

+ Ww*y*{P-*B*I2-*W*yWiL-(d'Bv)
2-±B*'Bl„-

-ttO'W^-^triW^W^), (11.3.18) 

with W1" being analogous to the right-hand side of equation 
(11.3.14). 

The Lagrangian (11.3.16) is now ripe for comparison with the 
Standard Model, which is the subject of the next and final chapter. 
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Comparisons, Interpretations 
and Speculations 

In this final chapter we seek an accommodation with the 
Standard Model, a very brief outline of which is given in §12.1. 

In §12.2 we compare our results with the Standard Model La-
grangian at the scale of "grand-unification" and give an estimate for 
|r|. 

Section §12.3 contains a brief discussion of the spontaneous 
symmetry breaking mechanism that underlies the BCS theory of 
superconduction, an analog of which is believed to drive electroweak 
unification. This latter phenomenon is supposed to occur at a coarser 
resolution (or lower energy) than the one—it turns out—we have 
been primarily concerned with here: an account of it is included for 
the sake of completeness and also because we have appealed to the 
superconduction paradigm on earlier occasions. 

In §12.4 we summarize certain implications for low-energy 
particle physics of the minimal kind of topological complexity one 
might expect to find in the manifold if there were pockets of non-
manifold—such as Maxwell-Boltzmann surfaces—embedded within 
it. 

In §12.5 we discuss very briefly a topic of central current in­
terest, namely the so-called loop state approach to gauge quantization. 
This circle of ideas has culminated recently in a very significant ad-
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vance in the search for a quantum theory of gravity. This theory 
starts from the traditional assumption of a manifold—albeit devoid 
of an explicit a priori background metric—and proceeds to the quan­
tization through subtle methods. A basic relation between paths and 
connections lies at the heart of this approach: we indicate an entirely 
algebraic origin for this relation in the local or tangential picture af­
forded by the net algebra. It is interesting to note the appearance yet 
again of the "quantum duplication" coproduct operator. 

In a final section we offer some comparisons with related cur­
rent work and speculations about further developments. 

12.1 An Abbreviated Sketch of the Standard Model 

We very briefly review the main ingredients of the Standard 
Model, referring the reader to many excellent and complete treat­
ments, some of which may be found in the references cited in 
§11.2.2. 

In this model, three families, or generations, of fermion dou­
blets are posited: 

Family Leptons Quarks 

First (e~,ve) (d, u) 

Second (/jf, v^) (s, c) 

Third (T-VT) (b,t) 

(The classification into families, or generations, is determined 
by such attributes as similarities in masses or, equivalently, dominant 
decay modes.) 

Each quark can exist in three forms distinguished by an at­
tribute that has come to be called "color." This attribute is associated 
with an interaction among such quark color triplets, called the strong 
interaction, that is mediated by an SU(3) octet of massless gauge 
bosons called gluons. The leptons—reading down the first column: 
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electron, muon, tau particle, with the second entry in each case de­
noting the corresponding neutrino—are blind to this interaction. 

The members within each quark pair in the above list of fami­
lies is distinguished by an attribute called flavor. These flavors have 
come to be named down, up, strange, charm, bottom, top. The exis­
tence of all of them is now well established. 

The left-handed component of each quark flavor pair consti­
tutes the fermion doublet associated with an SU(2) gauge boson me­
diated interaction called the weak interaction, that is ignored by the 
right-handed components. The left-handed components of the lepton 
doublets similarly partake of this weak interaction, while the right-
handed components ignore it entirely. 

In addition to the " SU(2)L " attributes of these doublets, the 
model also requires an additional U(l) attribute, called "weak hyper-
charge" so that the full gauge group for weakly interacting systems 
becomes U(l) X SU^)^ . One reason for thus supplementing the 
SU(2)L symmetry in the standard theory is so as to be in a position 
to implement the process known as spontaneous symmetry breaking at 
energies lower than about 10 GeV (or length scales larger than 
about 10-1 cm) that brings into being the electromagnetic interac­
tion of macroscopic experience while simultaneously supplying mass­
es to the fermions and the weak gauge bosons. We describe a toy geo­
metrical model of this phenomenon in §12.3. 

There is a large and complex system of other quantum num­
bers assigned to these particles and fields that we shall neglect here. 

Comparing this abbreviated description of the Standard 
Model with our results in the previous chapter it seems that we have 
succeeded in deriving a reasonable analog of its basic architecture in 
Lagrangian form, prior to electroweak spontaneous symmetry break­
ing (with an additional gravitation-like term) even though we find no 
masses, no distinction between lepton and quark, no differentiation 
among possible coupling strengths, and no trace of fermion 
family/generational structure. With the exception of the last men­
tioned, these omissions may be expected to occur at a certain (high) 
energy scale (or (short) length scale) and their non-appearance will be 
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used shortly to infer an estimate for the length scale below which the 
Maxwell-Boltzmann phase may be presumed to set in, and an esti­
mate for the value of |T | . This will be done by comparing our La-
grangian with the one given by the Standard Model at a certain ener­
gy (or length) scale. 

Before such a comparison can be attempted, we must 
parametrize the Lie algebra representations used in the last chapter to 
consist with those used in the Standard Model. We start with SU(3). 
As a real Lie algebra it is 3 — 1 = 8-dimensional and is parametrized 
in the Standard Model by a choice of basis, namely the one denoted 
by {iAQ}, a = 1,...,8, where the (Hermitian, trace-free) Aa are called 
the Gell—Mann matrices, which satisfy 

[Aa,AJ = 2*LcAc (12.1.1) 

with certain real structure constants fabc that are totally antisymmet­
ric in their indices, and 

tr(AaA6) = 2Sot. (12.1.2) 

Returning to the definition of GA given in equation 
(11.2.1.19) we note that it may be expanded in terms of the 
Gell-Mann basis as 

G» = G:\a, (12.1.3) 

say, for real G%. The "covariant derivative" in equation (11.3.12) 
then assumes the form 

3 " - f G £ A 0 (12-1-4) 

while the field G1*" in its latter incarnation, namely equation 
(11.3.14), may be written 
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a^G'1 - ^ [ C . G * ] = d[flG:] - l-^G£Gv
c [\,AJ 

= 0[^;]
 + g/6caG;G;)Aa 

from equation (12.1.1) 

=&"G:]
+gfabcG^G:)xa 

- G - A . (12.1.5) 

Th us 
tt(G""G,„) = t r (GrVVA) 

= G r ^ t r ( A A ) 

= 2G;"G a | l r , (12.1.6) 

from equation (12.1.2), and 

trO"GJ2 = tr[(o-G AJ0"G6A)] 

= 0-Ga/i)0"G6Jtr(AA) 

= 20"GaJ2 , (12.1.7) 

the summation over a being implicit in the last line. 
Consequently, the §U(3) contribution assumes the form 
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(equation (11.3.17)) 

2(3ll(3)) = 2 ifaJ^ -l-fG»\a)fG -\G^Gallv -hd'GJ2 

= 2 2(G), (12.1.8) 

where the basic Standard Model bispinor variable / is related to ours, 
¥,by 

/ = 
4i 

(12.1.9) 

(cf. proviso 3, below). 
Similar considerations apply to the £>it(2)c contribution, the 

analog of the Gell-Mann matrices being in the case of £>u(2) just the 
22 — 1 = 3 Pauli matrices, that satisfy 

[cr ,ab] = 2is.(rc (12.1.10) 

(the totally antisymmetric symbol e having its usual connotation, i.e. 
e123= 1, etc.). Thus, with 

W1 = W?a (12.1.11) 

and 

Wr = a 1 ^ ; 1 + geabc WfW: (12.1.12) 

we have from equation (11.3.18) 

i£(§U(2)c) = 2 ifw,Ry.[^-%^I2]fWtR + 
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+ ^, ir,l3"-f^72-^w-J/w , ; L- iwr^-^(3''^)2 

--B*VB --{dvBf 
4 M" 2 " 

= 2^£{W). (12.1.13) 

It is worth noting that the jB-kinetic terms inside the square 
brackets have now acquired a factor of Y2 giving these contributions 
the same form as the others. 

Putting these contributions together with the spin term in 
equation (11.3.16) yields 

-(-<?) 
Vg T 

R + ?+£(G) + £(W) 

2 
(12.1.14) 

We may now discard the overall constant g / 2 , whose ab­
sence will not affect the field equations, and adopt what remains as 
our final Lagrangian. Then we note that, with the following provisos, 
we have a perfect fit of the individual terms in the square brackets 
with the corresponding (un-ghosted) Lagrangians of the Standard 
Model: 

1. All the coupling constants are the same, namely g. 
2. There are no mass terms, no generational distinc­

tions among fermion multiplets, and no distinctions 
among leptons and quarks: thus the couplings in 
!£(W) are missing some of the quantum numbers 
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that reflect this distinction. 
3. The basic bispinor field of the Standard Model has 

been identified with *F Hi. This seems harmless 
since any positive constant dimensionless factor 
could be used to adjust our definition of *FC in 
equation (10.2.15). 

4. The gauge-fixing terms are supplied ad hoc in the 
Standard Model, and may be chosen differently to 
fulfill various technical demands without altering the 
physical content of the theory. 

5. The Lagrangian for (classical) General Relativistic 
gravity is expressible in the Einstein—Hilbert form, 
namely 

%EH = (-9)h ~?—;R, (12.1.15) 
lbirLr 

where G is Newton's constant, that is related to the 
so-called Planck length lp via the equation 

iP=(fl 
•P 1 3 J 

= 1.6xl0"33cm. (12.1.16) 

In natural units h = c = 1 and 

G = l2
P. (12.1.17) 

The problem of quantizing this theory is notoriously 
vexing and has repulsed all attacks until very recent­
ly: cf. §12.5, Isham 1989 and Butterfield and Isham 
2001 for penetrating analyses of the major issues. 
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Despite these difficulties, the Einstein-Hilber t La-
grangian seems to be generally acceptable as a low 
energy (or long distance) leading term even in those 
theories in which extra terms come into play at high 
energy (cf. Weinberg 1979). It may be noted in this 
connection that no short distance (high energy) grav­
itational experimental data is actually available. 

Thus it seems reasonable to assume that the 
constant factor accompanying (—g) R in equation 
(12.1.15) is still there (or approximately there) at the 
short length scales we will soon find ourselves con­
templat ing, whatever the nature of the unknown 
higher order term. 

Wi th these provisos in place we are led to institute a search for 
g, since, if it could be found, a comparison of our lowest order spin 
term with the Einstein-Hilbert Lagrangian would yield a value for 

|T | . 

12.2 Asymptotic Freedom and Grand Unification 

Physical couplings (of fields to fermions) arise in the action 
vector view espoused here as amplitudes associated with certain tran­
sitions, namely those represented by internal contractions among acts 
of the type exhibited in §11 .2 .1 . Since the acts employed depend 
upon the degree of resolution available to the putative "external" ex­
perimenter, it would appear that the couplings themselves should de­
pend upon the degree of resolution of the experimenter. N o w the 
"physical" Yang-Mills couplings of the Standard Model—here we 
exclude the gravity term, which is not renormalizable—do indeed de­
pend upon the energy (or length scale) at which they are measured, 
so we may interpret the "degree of resolution of the experimenter" as 
" the energy (or length scale) at which the experiments are 
performed." Consequently, our Lagrangian ££ (equation (12.1.14)), 
absenting the uncomputed spin term, conforms exactly with the La-
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grangian of the Standard Model when the latter is considered at an 
energy sufficiently high that the Yang—Mills couplings become equal 
(to g) and relative to which all masses become negligible, assuming 
such an energy exists. If it does, we would have, at that energy, com­
plete agreement between the Standard Model Lagrangian and the 
Yang—Mills portion of ours. The energy at which this occurs would 
then also establish a degree of resolution corresponding to a point at 
which the Maxwell—Boltzmann phase has given way to the "objec­
tive" geometry implicit in the interpretation and use of the corre­
spondence principle by macroscopic external experimenters. 

The precise delineation of the nature of the energy depen­
dence of the coupling strength of a Yang-Mills gauge theory, due to 
Gross and Wilczek and, independently Politzer, in 1973, is one of 
the triumphs of the subject. Roughly speaking, they found that for 
gauge theories with a non-abelian gauge group, such as SU(2) or 
SU(3), the coupling strength increases with distance (or as the energy 
scale decreases) whereas for an abelian gauge group, such as the U(l) 
of the S-field, or electromagnetism, just the opposite happens. This 
difference is due to the presence of the commutator term (cf. equa­
tion (11.3.14)), which indicates self-interaction among the quanta of 
the field that is absent in the U(l) case. Since the effective coupling 
gets weaker as distance decreases in the non-abelian case, this phe­
nomenon goes by the name "asymptotic freedom." 

(Even more roughly speaking, the difference may be seen as 
follows. Consider a localized electric charge viewed from a distance 
in vacuo. The charge will polarize the vacuum in its vicinity by pro­
moting the creation of electron-positron pairs. This polarized cloud 
will appear from a distance to screen the central charge and weaken 
the strength of the effective coupling to a charged probe. As the 
cloud is probed, there will be less screening and the effective coupling 
strength will increase. In the non-abelian case, since there is now 
available a multiplet of mutually interacting gauge bosons emanating 
from branching multilegged boson vertices, each boson line contain­
ing fermion loops, the vacuum is provoked into producing a cloud 
containing fermion-antifermion loops with the whole multiplicity of 
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different varieties (or colors, or flavors) of charge allowed to members 
of the multiplet. These do not cancel each other. Indeed, the further 
a probe is from the central charge the more charge it sees in the cloud 
surrounding the latter, and the stronger the effective coupling 
strength becomes: this is "antiscreening." As it moves closer the 
probe is surrounded by more cloud, and therefore the coupling 
strength becomes weaker, the interaction becoming "asymptotically 
free.") 

This means that as we lower the energy scale (or degree of res­
olution) at which our Lagrangian 5£ (equation (12.1.14)) is em­
ployed, relative to the value that corresponds to our unknown g, the 
B, W and G couplings will go their separate ways, those for W and 
G increasing, while that for B, decreasing. Indeed, at energies some­
what less than about 10 GeV (or length scales somewhat greater 
than about 10" cm) the Standard Model is supposed to yield a G 
coupling that is strong, a W coupling that is weak and a B coupling 
that is weaker still. 

In fact, something peculiar is supposed to happen at approxi­
mately this energy (10 GeV) which we discuss briefly in the next 
section since it will involve a treatment of the superconduction 
paradigm that was invoked earlier. 

Using the experimental values of the couplings obtained at 
the relatively low energies available to terrestrial experimenters, and 
the known energy dependence of the couplings, the point at which 
these three couplings coalesce may be estimated: see, for example, 
Weinberg 1996, Nachtmann 1990 or Collins, Martin and Squires 
1989. The current estimate for the "grand-unified" energy at which 
this occurs seems to be about 10 GeV (corresponding to a length 
scale of about 10" cm). 

The so-called Grand Unified Theories (or GUTs: Georgi and 
Glashow, circa 1974) posit the existence of a single simple Lie group 
that dominates all symmetries at energies greater than the grand-
unified scale, and that breaks down to U(l) X SU(2)LX SU(3) at 
lower energy scales. Remarkably, there are numerous candidate 
groups, the simplest being SU(5). These theories have a truly impres-
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sive explanatory power, but unfortunately also suffer from fairly de­
bilitating diseases, and predict a lifetime for the proton that seems 
too short. Nevertheless, their successes are extremely compelling. 

Our approach seems to leave no room for a grand-unified 
group, since our quantization of S4 gives rise to an already broken 
symmetry, with no intermediate group or algebra being apparent. 
This may be an artifact of the crudity of our quantization process 
and/or the macroscopic contamination introduced through our at­
tempt to clothe the defect; or it may indicate that it is not a group 
that dominates the symmetries beyond the GUT scale but some, 
more subtle, quantum replacement for a group or Lie algebra: per­
haps the correct quantum symmetry algebra of the true reticular de­
fect, if there is one. In any event, our ££ coincides almost exactly 
with a snapshot of the Standard Model Lagrangian taken at the pre­
cise point of grand-unification: the ancestral symmetry has been bro­
ken down to the various gauge groups, yet the couplings are the 
same. On this assumption, we have 

g2 = 47r«(M^), (12.2.1) 

where Mx is the grand-unified mass scale. Estimates based on SU(5) 
GUT considerations (see for instance Nachtmann 1990, p. 464) ob­
tain 

a ( M £ ) = 0.022, (12.2.2) 

which yields the estimate 

| g |«0 .53 . (12.2.3) 

Then from equations (12.1.14), (12.1.15) and (12.1.17) we 
find 
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g V I6irl2
p' 

(12.2.4) 

or 

, . V32^ ; 
T = L 

|g| 

«19ZP 

= 3xl(T3 2cm. (12.2.5) 

Our model also seems to incorporate certain kinds of break­
down as we coarsen the resolution (or increase the length scale, or de­
crease the energy scale), namely the resolutional change from the net 
phase to the Maxwell—Boltzmann phase and then from the latter 
phase to some kind of objective geometry or manifold. Since the out­
put from our correspondence principle is supposed to operate 
relatively macroscopically, in the presence at least of an objective geo­
metry, we shall assume that an objective manifold-like structure is 
certainly present at and above the GUT scale (circa 10" cm), and 
possibly well below this scale. However, in our picture, below the 
chrononic r-scale (circa 10" cm) length becomes a meaningless 
concept: at these scales we must be impinging therefore upon some 
sort of non-objective geometrical phase. Consequently, the onset of 
the semi-classical objective phase must follow rapidly after the T-scale 
is reached, occurring presumably within the Maxwell—Boltzmann in­
terregnum between these two scales. That is to say, the transition 
from "quantum" or non-objective geometry to objective (possibly 
manifold-like) geometry takes place at some scale between 19 lP and 

lP. 106L 
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12.3 Superconduction and Electroweak Unification 

In this section we give a brief account of the topics listed in its 
title, from a rather geometrical point of view. The phenomenon we 
are aiming to describe is believed to occur at length scales greater 
than or equal to 10~ cm, corresponding to energy scales less than or 
equal to 10 GeV. If our estimate in the last section of the scale at 
which we have emerged from the Maxwell-Boltzmann phase, namely 
10 cm, is even approximately correct, then we may expect an ex­
perimenter to be confronted by at least a rudimentary manifold 
structure at these length scales (i.e. greater than or equal to 10~16cm) 
and we may start using in earnest notions appropriate to such a geo­
metry to describe such an experimenter's findings. 

We suppose, then, that we are effectively confronted by a 
manifold, or a structure sufficiently close to being a manifold that we 
may discuss the notion of a connection on a bundle over it. (For de­
tails the reader is referred to one or more of the following, among 
many others: Darling 1994, Kobayashi 1987, Vaisman 1973 and 
Ward and Wells 1990. A rather abstract analytical treatment of the 
line bundle case maybe found in Selesnick 1976, and a complete ac­
count of the geometry of arbitrary vector bundles from a similar but 
vastly more general point of view may be found in Mallios 1998.) 

We briefly recall the notion of a connection on a vector 
bundle, a topic we will revisit in §12.5. One way they arise is when 
one tries to differentiate a section of such a bundle: it is found that 
the possible twisting of the fibre must be taken into account. Thus 
suppose E denotes a complex vector bundle defined for simplicity 
over a manifold M. A general derivation-like operation defined on 
the bundle must take the form of an additive bundle map 

D:E^E®Q\ (12.3.1) 

where Q. denotes the bundle of (complex) 1-forms, satisfying 

D(sf) = sD(f) + f<8>ds, (12.3.2) 
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where s is a complex differentiable function on M, f a section of E, 
and d denotes exterior differentiation. Such maps can always be 
found. In a coordinate patch Ua of M over which E is trivial D must 
assume the form 

Da=d + i/ra, (12.3.3) 

where if/a is a linear bundle map ij/a:E—>E®Q. (restricted to Ua) 
which, when a local basis for E (restricted to Ua) is chosen, is re­
ferred to collectively as a connection matrix. Since 

Hom{E,E®Q}) = Wom(E,E)®Q}, (12.3.4) 

each if/a may be considered to be a matrix of local 1-forms. (In gen­
eral there may be many candidates for such maps and consequently 
many choices of connection.) 

Given a connection D there is defined a bundle map 

Dl: E®& ~^E®£12 (12.3.5) 

(where Q,p = APQ : is the bundle of p-forms on M) satisfying 

D\f®co) = f®dl<D+DfA<D. (12.3.6) 

It is easy and standard that 

DlD-.E^>E®£l2 (12.3.7) 

is in fact a linear map of bundles. That is, DlD is a global section of 
the bundle Horn (E, E®Q2) s Horn {E,E)®Q.2 and hence may be 
thought of as a matrix of globally defined 2-forms whose coefficients 
may be chosen to lie in the Lie algebra of the structure group of the 
bundle. This is the curvature matrix of the connection D. 
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If E is a line bundle, i.e. if E is one-dimensional, we have 

Y\om{E,E®Cl2) = Hom(E,E)®Q2= Q 2 , (12.3.8) 

so that a curvature "matrix" for E is represented simply by a global 
2-form. 

The last isomorphism in equation (12.3.8) follows from the 
fact that if E is a line bundle then Hom(E,E) has a nowhere van­
ishing global section, namely the bundle map that is the identity on 
each fibre, and is therefore (isomorphic with) the trivial bundle, 
which is the identity for the <g> operation in this context. There are at 
least two ways to see that a line bundle that admits a nowhere vanish­
ing global section must be trivial. One is to note that in this case the 
associated principal bundle has a section and is therefore trivial (since 
a principal bundle admits a section if and only if it is trivial), which 
implies the result. Another is to consider a specific trivialization of 
the bundle: that is, we consider an open covering {Ua } of the base 
manifold over each element of which the restriction of the bundle is 
trivial, as in the discussion leading to equation (12.3.3). Then a sec­
tion is represented by a family {sa : Ua—**C } of differentiable func­
tions satisfying (on each UaC\Up) 

9apsa=sp, (12.3.9) 

V 

where {gaA is a Cech cocycle of transition functions for the bundle 
(defined on each Uar\U„). Then, if each sa is nowhere zero, 

9ap=sps;1 (12.3.10) 

and this shows that each sa(x) ~ , for x in Ua , regarded as an isomor­
phism C—*-C, is actually an isomorphism of the original bundle 
with the line bundle whose transition functions are constantly 1, i.e. 
the trivial line bundle. To see this, merely check that a section of E 
when multiplied by s~ yields a globally defined function, that is a 
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section of the trivial line bundle. 
The curvature form of a line bundle is closed: that is to say, 

writing 

D1D(f) = f®®E, (12.3.11) 

where / is a section of E and Ofi denotes the curvature form of 
some connection, we have 

d2OE = 0. (12.3.12) 

Thus, a curvature form 0 £ of a line bundle determines a 2-
dimensional de Rham cohomology class [OE] that is easily shown to 
be independent of the connection that determines it. Moreover, the 
de Rham class [— (2m)~ 0 £ ] is the image of an integral cohomology 
class, called the Chern class of the line bundle E. The Chern class is 
zero if and only if the bundle is trivial. 

The reader will no doubt have noticed that we have already 
encountered connections in a form suitable to a single experimenter 
confined to a single trivializing patch: they have arisen as the 
operators within the terms we have called interaction terms 
(§11.2.1), where the differentials (or cotangents) dx^ have been re­
placed by their "quantum versions" yM . If our single experimenter 
were to regard him or herself as one objective observer among a po­
tentially infinite multiplicity of other equivalent observers, then he or 
she would expect objective consistency to obtain when appropriately 
transforming among connections belonging to different observers. 
When these consistency conditions are imposed we arrive at exactly 
the requirement that the manifold formed by collating all the puta­
tive experimenters' local patches has the structure of a Lorentz (spin) 
manifold, and that the local connections patch together on this man­
ifold to form global connections (i.e. bundle maps, as in equation 
(12.3.1)) on the bundles involved. Moreover, the coefficient matrices 
of the curvature forms of these connections are proportional to the 

393 



Quanta, Logic and Spacetime 

tensor fields appearing in the Yang-Mills components of the kinetic 
terms for §u(3) and §U(2)C. 

We are now ready to follow historical precedent by consider­
ing the phenomenon of superconduction {a la BCS), albeit in a 
much simplified geometrical form, as a stepping-stone to the notion 
of spontaneous symmetry breaking. Thus, we wish to consider the as­
semblage of electrons within a (macroscopic!) superconductor. For 
simplicity, we shall consider such electrons to be adequately repre­
sented by just their pair of helicity states so that single electrons in 
the superconductor are represented by initial action vectors, (or 
wave-functions) belonging at each spacetime point to a two-
dimensional space. Thus we obtain a two-dimensional vector bundle 
E, say, whose sections represent the wave-fields of single idealized 
electrons in the superconductor. We may think of this bundle as 
being supported on the world-tube of the interior of the physical 
superconductor considered as a spacelike three-dimensional subdo-
main of the spacetime manifold, from which we exclude a certain 
boundary layer in which we might expect to find diamagnetic screen­
ing or other surface effects that would perturb our idealized electron 
fields and destroy the bundle structure. 

To obtain a bundle corresponding to an assemblage of such 
fermions we take the Fermi-Dirac Fock bundle, in other words the 
exterior algebra of the bundle, which is also a bundle, namely 

1®E®/\2E, (12.3.13) 

where 1 denotes the trivial line bundle. The series terminates at this 
point with the dimension of the last component being one. (Al­
though this is a finite dimensional bundle, its space of sections is 
not.) Let us denote the line bundle A E by L. The sections of this 
line bundle represent fields of pairs of idealized electrons within the 
superconductor. If the repulsive Coulombic interaction between the 
would-be electrons were switched on, these pairs would disappear 
into the Fermi sea of noninteracting states, in the absence of other ef­
fects. In a superconductor, however, thermodynamic and ionic ef-
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fects conspire to counteract part of the interaction in such a way that 
the paired states near the Fermi surface are p romoted ou t of the 
Fermi sea: the filled Fermi sea becomes unstable toward pair forma­
tion. These are the Cooper pairs, and the sections of L represent pos­
sible Cooper pair condensates. Now, the structure group of any com­
plex bundle over a manifold can always be reduced to the appropriate 
unitary group. T h a t is, representative transitions functions for the 
bundle can always be chosen to have values in the appropriate uni­
tary group: for line bundles this group is U ( l ) . (As noted in §7.3 ten­
sor powers of line bundles are necessarily symmetric so their spaces of 
sections describe systems satisfying Bose—Einstein statistics. Thus , in 
this idealization, the Cooper pair condensates have this character.) 

Let the section <p of L represent a Cooper pair condensate. 
Then , as above, <p can be represented on some trivialization of the 
bundle by a family {(pa } of complex functions satisfying the transfor­
mation law 

9ae<Pa=<Pp. (12.3.14) 

where the scalar functions ga„ are transition functions for L that 
may be taken to have modulus one. Thus , cp has the appearance of 
an ordinary charged scalar field, and moreover 

<Pl<Pfi=<Pi<Pa- (12.3.15) 

In other words, <p <p is globally defined as a function on the support 
of the bundle, and we may write 

<P*ip = p \ (12.3.16) 

where p represents the charge density of <p, and we may write locally 

<pa=pexp(-ida) (12.3.17) 
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for some real 6a. 
Which of these Cooper pair condensates, emerging from the 

Fermi sea, can represent a new ground state? In such a state the 
superconductor should be electrically neutral, and to counteract the 
constant uniform ambient ionic charge we must then have 

p = p0, (12.3.18) 

where p0 is a nonzero constant. Thus, from equation (12.3.17) the 
possible ground states are U(l) degenerate in each neighborhood 
constituting a trivialization of the bundle, being parametrized by the 
fields da. If the local U(l) symmetry of the bundle had instead been 
a global symmetry, we might have expected, in accordance with the 
Goldstone theorem, the "seizing" of the "vacuum" in equation 
(12.3.18) to be accompanied by the generation of a massless Gold-
stone boson tunneling between the possible ground states, all of 
which have the same energy. (This theorem asserts the existence of 
massless, spinless excitations in the presence of the spontaneous 
breakdown of a global gauge symmetry: cf. Taylor 1976, §5-4, for 
an account of a short, elegant proof in the relativistic case due to W. 
Gilbert.) 

Indeed, the general Goldstone argument simplifies in this 
context as follows. To say that the symmetry is global is the same 
thing as saying that our trivialization has only one element, so we 
may drop the subscripted index. Then, noting that 

Vp0 = i V ( p V ) = 0, (12.3.19) 

the current produced in a ground state <p of charge 2e is 

j = -2ie(<pV(pf - <pfV<p) 

= — 4iecpV(pf 

396 



Comparisons, Interpretations and Speculations 

= 4po
2eV0. (12.3.20) 

Thus 

V20=(4P o
2e)-1V-j 

= -(4p0
2e)_1 — P 0 

= 0, (12.3.21) 

which expresses the masslessness of the (static) field 6 that imple­
ments the vacuum "tunneling" in this case. 

However, this result is subverted in the case of the local sym­
metry of the bundle structure, if we are allowed to physically identify 
isomorphic bundles. For, as we have noted, the existence of a 
nowhere vanishing section of a line bundle implies that the bundle is 
trivializable. In particular, in the case at hand, any section of L repre­
sented locally by the family {sa }, say, is mapped to a section of the 
trivial bundle by the isomorphism given locally by 

sah»saexp(i0a) (12.3.22) 

since, from equations (12.3.14), (12.3.17) and (12.3.18), 

0a„=exp(-i0p)e)cp(i0J (12.3.23) 

(cf. equation (12.3.10)). 
A transformation of the type shown in equation (12.3.22) is 

called a local gauge transformation and to identify equivalent bundles 
implies that fields connected by such transformations should also be 
physically identified. In particular, from equation (12.3.17), it is ap-
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parent that our ground state <p is gauge equivalent to 

<paexp(ida) = Po. (12.3.24) 

Thus the Goldstone-like 0s vanish in this "gauge," and can have no 
physical significance. That is to say, the production of such bosons is 
suppressed if all local gauge transformations are allowed. By passing 
from the bundle L to the isomorphic bundle 1, the section of L, 
whose local angular variation represented the Goldstone tunneling 
between ostensibly different states, has been frozen in direction, be­
coming the constant real section p0 that has no angular variation, 
hence there are no "transverse" Goldstones. 

This evasion of the conclusions of the Goldstone theorem in 
the presence of local gauge invariance was the circumstance that drew 
the attention of particle theorists to the BCS theory of super­
conduction as a mass-generation device, since the degree of freedom 
sacrificed by the 6-field goes into contributing mass to impinging 
photons instead of generating massless Goldstones. To see this, we 
suppose our superconductor to be in the presence of an external elec­
tromagnetic field with four-potential A*1, which we shall assume to 
be sufficiently weak to not perturb the ground state, so that the 
bundle remains trivial. Then 9M must be replaced by d*1— ieA11 and 
produces a change in the current (equation (12.3-20)), which now 
becomes 

j = 4p o
2 e(V0-eA) 

= - 4 p 0 V A , (12.3.25) 

since 0 has been "gauged away." This last is a basic equation of su­
perconductivity known as the London equation. Since the super­
conductor is assumed to be in equilibrium, it is immediate from the 
last equation that the electric field vanishes: 
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E = - ^ - A = 0. (12.3.26) 
at 

But, by Ohm's law 

E = Rj, (12.3.27) 

R here denoting the resistance, so 

R = 0. (12.3.28) 

That is, the resistance in a superconductor is (eponymously) zero. 
Moreover, on taking the curl of Ampere's equation, namely 

curlB = j , (12.3.29) 

we get from equation (12.3.25), in transverse (electromagnetic) 
gauge, 

V2B = 4p 0VB, (12.3.30) 

which is a screened wave equation. Its exponentially decaying solution 
shows that the magnetic field dies out after penetrating a "character­
istic" depth of (4p0e )~ into the superconductor. This expulsion of 
an impinging magnetic field is called the Meifiner effect. In Lorentz 
covariant form the last equation reads 

(D + 4 p 0
2 e 2 ) ^ = 0 , (12.3.31) 

which may be interpreted as asserting that the incoming photons ac­
quire the mass 2p0e as they fail to penetrate into the superconductor. 

The MeiEner effect has a simple geometrical interpretation. 
Since the external field must couple minimally to the condensate 
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fields, 

IT=d^-ieA'L (12.3.32) 

is required to be Lorentz covariant when applied to the fields (p that 
are sections of the bundle E. That is, D* defines a connection on E 
whose curvature is the applied field. Moreover, the correct gauge co-
variant condition for (p to represent a ground state is 

Dlx<p = 0 (12.3.33) 

or 

3*V = i e A V (12.3.34) 

or 

Afl=(ieyld,lln<p (12.3.35) 

which is well defined since such a <p can vanish nowhere. The im­
pinging field, which is identical to a curvature of the bundle, is thus 
expelled from the support of the bundle, that is the interior of the 
superconductor excluding a certain boundary layer. 

This in all essentials is the Higgs mechanism (in the scalar case) 
with <p acting as Higgs field. In our formulation it has evolved from 
the single circumstance that the line bundle L has a nowhere vanish­
ing section that happens to represent a ground state. The choice, or 
seizure, of such a ground state constitutes a spontaneous breaking of 
the symmetry that in this case is a local gauge symmetry. Once 
seized, such a field contributes mass to those gauge bosons impinging 
upon the region in which the symmetry breaking takes place, and 
there are no massless Goldstones. The mass is acquired by the gauge 
bosons as they fail to tunnel into the symmetry breaking region that 
is the support of the bundle beyond the boundary layer: the force 
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mediated by such bosons becomes short ranged. The gauge bosons 
fail to tunnel into the support of the bundle because the structure of 
the bundle imposes flatness (i.e. vanishing curvature) upon the exter­
nally imposed connection. (This geometrical view of superconductiv­
ity as a spontaneous symmetry breaking of electromagnetic gauge in-
variance was put forward in Selesnick 1984. A masterful and properly 
physical treatment of this topic from a similar point of view may be 
found in Weinberg 1996.) 

In the general case of a non-abelian gauge field associated with 
a bundle (over some subdomain of spacetime) of dimension greater 
than one, the Higgs field would be a section of the bundle and spon­
taneous symmetry breaking would occur if this field were to have a 
nowhere vanishing expectation value. Then the Higgs section would 
itself have to vanish nowhere and consequently its image in the 
bundle space would contain at least one flatness-imposing bundle 
that is split off from the original bundle. That is to say, the original 
bundle decomposes as the direct sum of at least one flatness-
imposing trivial line bundle and another bundle of dimension one 
less than the original bundle. We conclude that spontaneous symme­
try breaking of this type can occur only if the bundle involved admits 
a nowhere vanishing section. 

To add to the peculiarities we have already found to be associ­
ated with the §ll(2)c term, it is believed that a similar spontaneous 
symmetry breakdown phenomenon occurs in this sector at energies 
less than about 10 GeV. (It would be interesting if the appearance 
of yet another quirk in this sector were not coincidence but could 
somehow be linked to the others.) Here we note that the bundle in­
volved has as fibre the space we have written as C®CW2, where an 
independent U(l) action upon the first factor has been introduced 
(by complexifying §lt(2)). The bundle may therefore be written as 
Y(&W, where Yis a line bundle and W is a two-dimensional bundle 
with structure group SU(2). We have already found the general con­
nection matrix (or gauge potential) for this bundle at the grand-
unification scale. It appears in the left-handed interaction term in 
equation (12.1.13). At the energy scale we are now considering the 
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couplings are different: we follow custom by denoting the B-
coupling by g' and the iy-coupling by g. Then, written out explicit­
ly in terms of the Pauli basis, the connection matrix on K ^ W as­
sumes the form 

.( 
W M = : - -

2 

g'B' + gW^ 

gw* 
gw: 

g'B'-gW^j 
(12.3.36) 

where 

W£ = W& + W& (2)- (12.3.37) 

The theory of spontaneous symmetry breaking in this sec­
tor—called electroweak unification and named for Glashow, Salam 
and Weinberg—calls, in our language, for a Higgs section for this 
bundle that splits off one "flattening" trivial line bundle. In the asso­
ciated symmetry breaking region—i.e. the support of the Higgs sec­
tion—we then have a bundle isomorphism 

Y®W=L®\ (12.3.38) 

where L is some line bundle and 1 is the trivial bundle that imposes 
flatness upon an appropriate impinging field. 

The bundle on the right-hand side of equation (12.3.38) then 
has a connection matrix that may be written 

fieA» (A 

0 0 
(12.3.39) 

for real A'1, which the theory identifies with the electromagnetic po­
tential. (The zero entry in the lower right corner is a result of the flat­
ness imposed by the bundle 1.) But from the isomorphism (12.3.38) 
the potentials WM (equation (12.3.36)) and (12.3.39) are gauge 
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equivalent in the symmetry breaking region. Consequently the fields 
W+, W* and g'B* — gW^ can be gauged away in this region and 
this signifies that the corresponding gauge bosons acquire mass as 
they fail to tunnel into the region and have the ranges of the forces 
they mediate curtailed. The other field survives in this region and is 
gauge equivalent there to electromagnetism so that we may write 

g'B" + gW{% = leAr (12.3.40) 

The fields B1* and W^ thus appear only in combination. 
They may be uncoupled, as Weinberg noticed, by choosing a special 
normalization for the massive neutral field. Thus, outside the sym­
metry breaking region we may write 

kZ^g'B^-gW{%, (12.3.41) 

where ZM denotes a neutral field that acquires mass through the sym­
metry breaking mechanism, and 

k2=g'2 + g2. (12.3.42) 

Then, with the Weinberg angle 6W defined by 

tzn6w = -^, (12.3.43) 

and taking k < 0, 

Z» = W{
,;)cosdw-BfLsinew. (12.3.44) 

Let X*1 denote the linear combination of B*1 and W ^ that is 
orthogonal to Z^. Then 
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B" = X A c o s 0 ^ - Z M n < V (12.3.45) 

and 

W& = I M n 6W + Z»cosdw. (12.3.46) 

In the symmetry breaking region equation (12.3.40) gives 

(g,cosdw + gslndw)X'1 =2eAfl (12.3.47) 

up to a gauge transformation since Z11 can be gauged away there. W e 

may therefore make the identifications 

Alx=X^W(
lt)sm6w + BIMcosew (12.3.48) 

anc 

e ^ ' c o s f l j ^ ^ s i n f l ^ . (12.3.49) 

Thus , ordinary electromagnetism, with its massless photon, is 
the remnant of this spontaneous symmetry breaking mechanism that 
produces massive gauge bosons mediating the short range weak force. 
These bosons are supposed to acquire mass as they fail to penetrate 
into the symmetry breaking region: that is, as they meet and interact 
with the Higgs field. W e can model this process by choosing an ap­
propriate Higgs section for the broken bundle L®\, applying to it 
the unbroken " impinging" connect ion matr ix WM (equation 
(12.3.36)), and calculating the resulting mass term. An appropriate 
choice of Higgs is clearly 

cp = 
KPO) 

(12.3.50) 
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p0 nonzero, giving a mass term proportional to 

(12.3.51) 

The squared mass Mw of the charged boson(s) is proportion­
al to the coefficient of the W term on the right-hand side of the last 
equation, whereas the squared mass Mz of the neutral boson is pro­
portional to the coefficient of the Z term. Thus, 

^ = c o s V (12.3.52) 

The conclusions of this amazing theory, that also furnishes 
the fermions with masses, have been verified experimentally, with the 
mass of the Ws being found to be about 80 GeV, and that of the Z 
to be about 91 GeV, the latter to great accuracy. Higgs parameters 
are uncertain and so far apparently undetected. 

12.4 Long Distance Topological Implications 

Might macroscopic experimenters be able to discern at lower 
energies (or longer distance scales) effects attributable to ultra-short 
distance singular behavior? If so, it would seem that such effects 
might be associated with purely topological properties of the classical 
manifold with which a macroscopic experimenter is confronted at 
long distance scales, since these would be independent of the dis­
tances and sizes involved. (Such effects are analogous to those in­
duced in solutions to differential equations by their boundary condi-
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tions: namely, the solutions are generally affected by these conditions 
at arbitrary distances from the boundary.) Here we make the simpli­
fying assumption that these singularities—such as pockets of 
Maxwell-Boltzmann surface—may be smoothly, or at least continu­
ously, excised so that we may still be left with a reasonable spacetime 
manifold when we avoid them. 

Then we are faced with the topological problem of exploring 
the possible bundle structures a classical spacetime can support. For­
tunately, this fundamental problem is completely solved in Avis and 
Isham 1978, that is at the same time a masterpiece of exposition, 
providing the reader with all necessary (and still current) topological 
background. 

Low energy physics is dominated by the residual symmetries 
of the strong interaction, namely (SU(3)) QCD, with some weak 
remnants, such as fermion masses, electromagnetic effects, etc. There 
are several variations on the theme that low energy QCD may be de-
scribable by a phenomenological field theory of mesons, the idea 
being that at low energy mesonic degrees of freedom should dictate 
baryonic ones: when the color degrees of freedom are integrated out, 
one should be left with a non-linear theory of meson fields in terms 
of which baryons themselves should emerge as large scale, or topolog­
ical, features in the mesonic landscape. (For a sampling of such theo­
ries the reader may consult Alkofer and Reinhardt 1995, Bhaduri 
1988 and Shuryak 1988.) 

We shall very briefly describe a slight variation of one such 
theory, namely the non-linear cr-model, and summarize some results 
that seem to implicate the topology in ways consistent with the kind 
of small scale topological distortions we have envisaged. 

For Uf flavors of massless quark the cr- model is rooted in the 
assumption that the SU(n^)LX S\J(nf)R symmetry of the vacuum 
that would ordinarily obtain is, in nature, spontaneously broken 
down to the diagonal (axial) SU(ri/) action. Thus the diagonal axial 
group, denoted S\J(nf)A, acts principally upon the manifold of de­
generate vacua to generate nf — 1 massless 0 -Goldstone bosons that 
tunnel between these degenerate vacua. These particles are identified 
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with the lightest physical n] — 1 O--mesons. There is an inherent lo-
calness in this scheme, since a vacuum at a point in spacetime is de­
termined there only up to an S\J(nf) phase that may differ at anoth­
er point. This freedom to choose the vacuum is exploited in the non­
linear cr-model to introduce parameters specifying a certain vacuum 
orientation at each point relative to a spontaneously seized global 
vacuum—namely that vacuum which sets the Goldstone fields locally 
to zero. Then a general axial rotation of the seized vacuum can be ex­
pressed in terms of (non-linear) functions of these parameters to fur­
nish a non-linear realization of the original symmetry group out of 
which the basic dynamical field is constructed (cf. Pokorski 1987). 

There is an equivalent formulation of this construction that 
exposes the possible involvement of the dynamics with an underlying 
topological structure. Namely, we regard the manifold of Goldstone 
vacua at each spacetime point, which is essentially a copy of SU(riy) 
since the group action is principal, as the fibre of a bundle over M, 
the spacetime manifold. (In this language, the "non-linear realiza­
tion" is just the image of a global section of the principal SU(n^) 
bundle associated to the vacuum bundle: that is, the bundle obtained 
by replacing each fibre by the group SU(n^). This bundle is neces­
sarily trivial for reasons to be explained, so such sections exist.) 

How does this picture need to be adjusted in order to incor­
porate massive quarks? Let us denote the massless, or "gauge," quark 
eigenstates by u, d', sf, Then if the quark masses arise from Higgs 
interactions there is a natural way to incorporate the generational 
structure into the flavor bundle. Thus, the left-handed doublets (cf. 
the table in §12.1) 

\.d'jL 

(c'\ 

\ s
 JL 

(t'\ 
(12.4.1) 

corresponding, respectively, to the lepton doublets, with charge su­
perscripts dropped from the lower entries 
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yk 
fV\ ] , (12.4.2) 
\T h 

can each be regarded as the doublet of a gauge symmetry whose 
spontaneous breaking gives mass to the quarks. That is, in the pres­
ence of the electroweak interaction the gauge symmetry of these dou­
blets experiences a spontaneous breaking so that they can each be re­
garded as forming the fibres of a bundle of the form \@L (where the 
summands carry the same connotations as they did in equation 
(12.3.38), though taken in a different order for conventional reasons) 
while at the same time the quarks acquire mass. Thus, the line 
bundles whose fibres are spanned by the massive eigenstates u, c, t are 
in fact trivial and flattening. Then the flavor bundle that incorporates 
the massive quark eigenstates—i.e. in the presence of the spontaneous 
symmetry breaking—may be expressed, for fibres spanned by u, d, s, 
c, b,t, in the form 

F = Fd>s<b®l®im, (12.4.3) 

where Fdsb denotes the direct sum of the line bundles L corre­
sponding to the indices shown. Now this latter three-dimensional 
bundle, being a sum of line bundles, need not admit an SU(3) struc­
ture group (or s§ll(3) connection matrix). However, any complex 
bundle admits a reduction of its structure group to the associated 
unitary group so one may certainly adopt U(3) as the structure group 
of Fd^b . Thus U(3) may act nontrivially on (d, s, b) in the presence 
of the mass-inducing spontaneous symmetry breaking, whereas (u, c, 
t), belonging as they do to the trivial part of the bundle, are left 
fixed. If this unitary action did not occur, the flavor bundle would re­
main unchanged in the presence of the symmetry breaking and no 
distinction could be made between massive quark eigenstates and 
massless ones. If the above rotation does occur, however, experi­
menters who seek to diagonalize their quark mass matrix relative to 
the massless gauge eigenstates or who otherwise effectively neglect to 
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distinguish between these two sets of eigenstates, would find, upon 
transforming to other Lorentz frames, that the actual mass eigenstates 
(d, s, b) had undergone a unitary transformation relative to their ini­
tial choice of massless gauge eigenstates (d', s', b'). Thus, the original 
quark eigenstates, that were presumed massless and should remain 
unmoved, would have to be reexpressed in terms of the rotated mass 
eigenstates in order to maintain their apparent masslessness or gauge 
properties in the presence of the weak interaction. That is, the mass­
less eigenstates would appear to rotate relative to the massive ones, in 
the presence of the weak interaction. The fact that exactly such an ef­
fect, namely the Cabibbo—Kobayashi—Maskawa (or CKM) rotation is 
actually observed, would seem to support this view of flavor symme­
try breaking. (Note that if the u, c, t masses are attributable to the 
bundle structure being trivial, then the neutrinos—i.e. the top entries 
of the doublets shown in equation (12.4.2)—should also acquire 
mass through this mechanism, since they couple in exactly the same 
way to the same bundle.) 

It is at this point that topological considerations enter the dis­
cussion. The mechanism described above fails to drive the CKM ro­
tation if all the bundles are trivial: for then the structure group of 
Fd>Stb may be reduced further to the identity, and no CKM rotation 
can be guaranteed. Indeed, this is exactly what happens in the mass­
less SU(3) case, by a deep result of Avis and Isham 1978 (equation 
(4.28)). This result asserts that complex bundles over reasonable 
(non-compact) spacetimes are classified by their first Chern class: that 
is, such a bundle is trivial if and only if its first Chern class vanishes. 
The first Chern class of a complex bundle E, over M, denoted 
cx{E), is an element in the two-dimensional integral cohomology 
group H ( M , Z ) . We have briefly discussed one way of interpreting 
it if E is a line bundle (§12.3). For a general bundle E of dimension 
n, its first Chern class may in fact be realized as the (first) Chern class 
of an associated line bundle, namely 

Cl(E) = Cl(A
nE). (12.4.4) 
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Moreover, it is not hard to see that the structure group of E may be 
reduced to SU(n) if and only if cx{hCE) = 0. Putting this observation 
together with the result of Avis and Isham we conclude that an 
SU(n) bundle must be trivial. Consequently, in order to be non-
trivial, a bundle E cannot be an SU(n) bundle, and, moreover, its 
departure from triviality—which is simultaneously a departure from 
SU(n) symmetry—is encapsulated in, and measured by, the curva­
ture form of the bundle ft?E (that represents its first Chern class). 

Returning to the bundle Fd^b it appears that a small CKM 
rotation could then be guaranteed if this bundle was in fact topologi­
cal^ slightly non-trivial, corresponding to a slight breaking of the 
SU(3) symmetry, a hypothesis for which we shall marshal some sup­
port shortly. The additional topological requirement on M entailed 
by this assumption is simply that H (M, Z ) ^ 0. Under the reason­
able assumption that M is simply connected it follows that 

# 2 ( M , Z ) = H o m ( # 2 ( M , Z ) , Z ) (12.4.5) 

and then a theorem of Hurewicz (Spanier 1966) asserting that 
7T2(M) = i / 2 ( M , Z ) applies to produce at least one non-bounding 2-
cycle in M, that is a nomotopic image of the 2-sphere, supporting a 
nonzero cohomology class. Thus, for instance, just one such 2-cycle, 
surrounding perhaps an "initial" singularity, or pocket of Maxwell-
Boltzmann surface, would suffice. 

Certain consequences of this non-triviality assumption may 
be found in Selesnick 1984—1989. We briefly summarize some of 
these results. 

Consider first the flavor bundle in the one and a half genera­
tion approximation: that is, we consider just u, d, and 5. In this case 
a connection matrix for the bundle A3F assumes the form tr (RA), 
where A is the original unbroken §VL(3) connection matrix and R is 
the matrix 
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R = 

f\ 0 

0 cos0, 

V 

0 ^ 

c sin0r 

0 0 

(12.4.6) 

appropriate to this approximation: the angle dc, that emerges here as 
the (small) symmetry breaking parameter, is identifiable as the 
Cabibbo angle. (R contains the appropriate CKM matrix, or just the 
Cabibbo matrix in this case.) Then, since 6C is assumed to be small, 
and A is in §ll(3) 

tr(iL4) = An + A22 cosdc + A33 + A32s'mdc 

A52sindc. (12.4.7) 

The exterior derivative of the associated connection form is a 
curvature form of the line bundle A5F and may be presumed to in­
terfere with the Goldstone ( 0 ) boson generating mechanism that 
would otherwise be going on in the associated physical channels. 
Since Ai2 corresponds to the neutral K Goldstone field, a PCAC-
like analysis (Selesnick 1985) yields the following formula: 

sin dc-
ml0 

2mKo 
(12.4.8) 

Wi hich gives 

sin 6C - 0.22804 [0.2205 ± 0.0018], (12.4.9) 

a recent experimental value appearing in square brackets. 
Another formula to emerge from this analysis is 

2 D 2 
rn ~ J—m 

* «2 
Ko, 
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which yields 

mv= 550.8 MeV [548.8 McV], (12.4.11) 

where 17 denotes the physical meson of that name (a mixture of r]l 

and 178). 
More striking effects are seen in the two generation approxi­

mation that includes c. The appropriate rotation matrix, acting on 
columns of the form (u, d, s, c) is now 

' 1 0 0 

0 cos dc sin dc 
R — 

0 — sin0 c cos0c 

,0 0 0 

and the analog of equation (12.4.7) is 

tr(RA)~(Ai2-A23)smdc. (12.4.13) 

The Goldstone field now appearing in the expression on the 
right-hand side of the last equation is the one associated with the CP-
even neutral kaon eigenstate (K2) and if this field is to be associated 
with a hard topological component that cannot be rotated away, then 
it must, in its own right, acquire a topological charge, as must the ex­
terior square of the 2-form it represents, whose coefficient (an axial 
"anomaly") contributes to the axial charge in the appropriate Gold-
stone channel. The same remark holds for the entire expression, with 
the sin 6C included. The upshot of such considerations is the "ratio­
nality" formula 

sm2ec~-^(^), (12.4.14) 

0^ 

0 

0 
(12.4.12) 
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where m and n are integers. It is argued in Selesnick 1989 that 
m — 2n, giving 

sin0 c -0 .2251 [0.2205 ±0.0018]. (12.4.15) 

The CP-odd kaon eigenstate Kx remains untouched by this 
topological effect and this dichotomy between Kx and K2 has inter­
esting consequences when the "Goldstone" vacuum is identified with 
the QCD "0-vacuum." Namely, the topological K2 acts on the 9-
vacuum so as to induce a CP violating tunneling amplitude between 
Ks and KL, a crude estimate of which may be found in Selesnick 
1989. The result is 

(KS\KL)~ 3.39x10-* [3.27(±0.12)xl0"3]. (12.4.16) 

This model may also be used to crudely estimate direct CP vi­
olation in kaon decays by taking into account the tunneling between 
inserted vacua. 

The peculiar connections that may or may not obtain be­
tween spacetime singularities and T violation in physical processes 
are discussed in the fascinating Penrose 1978 and 1979. Note that in 
our picture there are only left-handers (associated with the spinor 
space S) at the deepest quantum level: cf. §7.1. 

12.5 Quantization, Connections and Loop Quantum Gravity 

As already noted, it has not been our purpose here to give an 
account of the full quantization of the field theories that arise from 
the Lagrangians. Such accounts may be found in the references al­
ready cited, at least for the particle spectrum excluding gravity. How­
ever, it appears that within even our minimalist scheme there is 
sufficient context to motivate a discussion of one important aspect of 
such a quantization program. 

A fundamental step in the quantization of a gauge theory is 
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the specification of a viable measure on the "space" of gauge poten­
tials (modulo gauge equivalence: see on), so that the path integrals of 
the theory may acquire a degree of credibility. For the purposes of 
canonical quantization an essentially equivalent problem is the 
specification of a viable Hilbert space to accommodate representa­
tions of the appropriate operator algebra. (Such a Hilbert space may 
be derived by suitably manipulating the L -space relative to the mea­
sure, assuming this to have been found.) 

In the traditional context, in which one assumes an underly­
ing manifold, the problem amounts to finding a measure on the 
space of connection forms (modulo gauge transformations) on a vec­
tor bundle defined over the manifold. In this form, the problem has 
proven to be immensely challenging, and its investigation has, within 
the last two decades, spawned vast tracts of noteworthy research in­
cluding the opening up of new fields. We briefly review some of the 
relevant notions. 

Let E, F denote vector bundles defined over a manifold, 
sufficient smoothness being assumed for all concerned. Vector 
bundle isomorphisms E—*~F, where E, F have the same structure 
group G, are called gauge transformations if a map of the associated 
principal bundles is induced by it. Equivalently, a gauge transforma­
tion E—>F is a vector bundle isomorphism that may be given lo­
cally upon sections of the respective bundles by actions lying locally 
in the structure group G. Two such bundles are equivalent as far as 
the physical fields they determine are concerned. (This generalizes 
the definition in the one-dimensional case treated in §12.3: namely, 
equation (12.3.22). We now drop the appellation "local.") 

If (f):E—>F is a gauge transformation and DE :E—>E®Q. 
is a connection on E, then a connection DF on F is physically 
equivalent to DE if, for any section s of E, 

DF(4>s) = {<f>*l)DEs. (12.5.1) 

(Here (f> is given locally by G-valued functions on the manifold.) 
Writing locally, in an obvious notation, 
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£>E= (9*+A£ )«<&", (12.5.2) 

DF=(d»+A£)®dxfl, (12.5.3) 

where the A* may be taken to lie in the Lie algebra of G, equation 
(12.5.1) yields 

A*=<f>-ld*4> + <l>-lA*<l>. (12.5.4) 

The right-hand side of this equation specifies the action of the 
"gauge group" upon the connection matrix Ap: it is this action that 
must be divided out of the set of connections on a given bundle, 
since elements in the same orbit are physically indistinguishable. 
Two such connections are said to be gauge equivalent. 

The transformation shown on the right-hand side of equation 
(12.5.4) has, for obvious reasons, exactly the same form as that which 
obtains between local connection matrices on the overlap of two triv­
ializing neighborhoods of a single bundle. The distinction between 
these local gauge equivalences within the same bundle, and those that 
arise in the case of a global isomorphism between ostensibly different 
bundles, is sometimes obscured in the physics literature. (For con­
nections in general, see the references cited in the second paragraph 
of §12.3. In particular, Volume II of Mallios 1998 contains a trea­
sure trove of detailed computations, conducted within a very general 
unified framework.) 

The set of connections on a given bundle over a manifold 
may be parametrized in various ways, such a parametrization being 
the first step in the search for a measure and/or a Hilbert space. One 
such parametrization exploits a remarkable and deeply significant cir­
cumstance: namely, that connections on bundles upon manifolds are, 
in a sense, supported by one-dimensional polymer-like structures 
lying within the manifold. This rather surprising phenomenon is so 
fundamental that primitive traces of it can be found even among the 
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simple algebraic structures we have encountered here, and encoun­
tered, moreover, in the absence of an underlying manifold. 

To motivate this, let us return to the context of § 11.1. There 
we were concerned with actions upon elements in a representation 
space W of a Lie algebra Ctc induced by the unit truncations of net 
elements effected by the operators AM. Specifically, we associated an 
element of <XC with each dt: cf. equation (11.1.22). This Lie algebra 
element represents, in a sense, the change in the "fibre" W as we 
"move" one chrononic unit in the /x-direction. We now generalize 
this as follows. Let G denote a compact Lie group with Lie algebra Q. 
Then the data specifying a "connection matrix" with values in g in 
the reticular context is simply an assignment of the form 

Hth^A", (12.5.5) 

where A^ lies in Q. This is a local version of the data specifying a 
connection matrix on vector bundle, E say, with structure group G, 
over a manifold M, with the space spanned by the AM playing the 
role of the tangent space at a generic point of M. In this case, a con­
nection form is an element in the space of bundle maps 

Uom{E,E®Q}) = Hom(E,E)®nl 

= End£®3~* 

= Hom(2T, EndE), (12.5.6) 

where 2T denotes the tangent bundle on M, which is dual to the 
bundle Q1 of 1-forms on M. At each point x of M the image of the 
map corresponding to the connection in the right-hand side of the 
last equation lies in g, regarded as a subspace of End-E^, where Ex is 
the fibre of E over x. This is in exact analogy with equation (12.5.5), 
at least locally at each point of M. 
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Suppose now that such a "reticular" connection, equation 
(12.5.5), is given. Let i:Q—*"£^(Q) denote the canonical map of g 
into its universal enveloping algebra (§3.1.9). Since U(Q) is an asso­
ciative algebra, the composition of i with the linear map determined 
by equation (12.5.5) lifts to a map of associative algebras 

<pA:C[An^U($ (12.5.7) 

given by 

<pA(^... dtn) = i(A^)...i(A,ln), (12.5.8) 

where C[N1 ] is the algebra freely generated by the symbols N1: that 
is, it is the tensor algebra of the vector space generated by the sym­
bols A'1. To avoid confusion, since the N1 enter these considerations 
only formally (losing their original interpretation as operators), we 
shall replace them hereafter by (noncommuting) indeterminates de­
noted by X1*. 

Now, it is easily verified that ^ : C [ X M ] — > U(Q) is also a 
map of coalgebras: one merely checks that the maps traversing both 
circuits of the relevant diagram, which are maps of algebras, coincide 
on the generators X11 of C[XM ], rendering the diagram commuta­
tive. Consequently, we obtain a map of the dual algebras: 

£ | : t f ( g ) * — • Q X ' T . (12.5.9) 

The space C[XM] may be identified with the space of for­
mal power series C[[XM]] in the noncommutative indeterminates 
X*1, and the algebra structure on the latter space that is dual to the 
coalgebra structure on C[XM] coincides with that given by shuffle 
products of monomials. The proof of this assertion is identical to the 
proof of Proposition 8.2.1. We shall denote by Sh(XM) this space 
equipped with the algebra structure given by the shuffle product. 

Now we turn to the "gauge" group G. For a continuous 
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(hence analytic) representation a-.G—>GL(V ), where V is 
finite dimensional, denote by dcr.Q —*~QI(V ) its differential (a Lie 
map). The Lie algebra gI(V(<r)) of GL(y ( t r )) is just the associative al­
gebra EndV^(<r) with Lie product given by the commutator. Thus, by 
the universal property for U( ), d<J lifts uniquely to a map of alge­
bras, which, for notational reasons, we shall write 

La:U(Q)-+EndVM. (12.5.10) 

If T:G—*-GL(V ) is another representation of G, then the 
differential of <T®T:G^GL(V{(T)®V{r)) is the Lie map 

d(<T®T):Q-^Ql(V{ir)®VM) 

given by 

d(<r®T)() = do-()®l + \®dT()eQl(V{'T)®V{T)). (12.5.11) 

Now note that, with if/ denoting the coproduct in t/(g) , we 
have, for Ae Q: 

{La®LTo iftMA)) = (LJ»LT)(l9i(A) + i(A)91) 

= MT(i(A)) + La(i(A))®l 

= (l9dT+da-9l)(A). (12.5.12) 

Thus, Lj®LT° ijs satisfies the commutation property uniquely 
satisfied by La%T so we have proved 
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PROPOSITION 12.5.1 

L^LJ&L*^. (12.5.13) 

For a representation cr of G we define a linear map 

Oy.V^V^* —>U(QT (12.5.14) 

determined, for v®f e y ( , r )®y w * and w e t/(g), by 

0(r(t;®/)(«;) = /(L(r(«;)t;). (12.5.15) 

Now consider R(G), the Hopf algebra of representative func­
tions on G (§3.1.7). As noted, there is a coalgebra isomorphism 
(equation (3.1.7.4)) which may be reexpressed as 

R{G) = Q(T^V(,T)®VW*, (12.5.16) 

where G denotes the set of equivalence classes of irreducible (neces­
sarily finite dimensional) unitary representations of G. This isomor­
phism assigns to the element u^ of R(G) (where 

^\g)^^MgM3), (12.5.17) 

g&G and {£;} is an orthonormal basis of V(cr)) the matrix 
I ^ X ^ I in y«"<g>y(tr)*. 

Composing this isomorphism with ®a 6„ (equation (12.5.15)) 
yields a map 

6:R(G)^U(Q)* (12.5.18) 

which, for w G U(Q), reads 
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6(u^)(w)= 0„(|£X£|)(u;) 

= (€im,b»)\€i). (12.5.19) 

PROPOSITION 12.5.2 

With the dual algebra structure on U(Q) induced from the co-
product if/ O/U(Q), 6 is a map of commutative algebras. 

PROOF 

Since R(G) is finitely generated as an algebra by elements of 
the form given by equation (12.5.17) it suffices to show that 6 acts 
multiplicatively on products of elements of this form. But, for exam­
ple, 

«!f «L T ) to)=(^V^I^X^ \rig)\€lr)) 

= (£>& \(^T)(gMf^T)). (12.5.20) 

The result now follows immediately from equation (12.5.13). 
(Hint: for w € U(Q) write i|>(w) = Iw(1)®w(21 and compare 

e(u^u^)(w) with (6 (u^*e (u^))(w) inequation (12.5.13).) I 

Composition of the algebra maps <pA (equation (12.5-9)) and 
6 (equation (12.5.7)) yields a map of commutative algebras 

Z(A) = <p*AoO:R(G)-±Sh(Xlx). (12.5.21) 

Now consider an algebra map 

yiShtY'1)—HR. (12.5.22) 
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Composing it with E(A) yields an algebra map 

hA=y°3(A):R(G)^U (12.5.23) 

trivially satisfying the property 

\A(f) = hy
A(f), (12.5.24) 

/ € R(G), the bar denoting complex conjugation. Consequently, by 
the Tannaka-Krein Duality Theorem (§3.1.7), there exists a unique 
element g sG such that for all / € R(G), 

\A(f) = f(g). (12.5.25) 

Thus, for a given "connection matrix"—that is, an assignment 
of the form (12.5-5)—each real-valued shuffle homomorphism y 
may be assigned an element of G. Now, given a curve (or path) C in 
M. , the assignment 

X^.-.X^Y^ d\rAx»n (12.5.26) 

of iterated integrals, as noted in §8.2, determines such an algebra 
map (that will also be denoted C), 

C:Sh(X,l)—>R. (12.5.27) 

This map, which may also be described by the appropriate 
Chen series, essentially determines the curve completely up to trans­
lation, by the classical results of Chen (Chen 1958). In this case, the 
group element determined by hc according to the Tannaka—Krein 
theorem is exactly the standard holonomy along C of the (constant) 
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connection 3*1 \-^A^ on the tangent bundle of U. . (The holonomy 
of a connection along a path in the base manifold is that element of 
the structure group that effects parallel transport of fibres along the 
path: cf. Baez and Muniain 1994, Barrett 1991 among others.) To 
see this, merely unfold the above definitions and evaluate hc on ele­
ments of the form given by equation (12.5.17). 

Thus, we obtain, through entirely algebraic means, a local ver­
sion of the geometric notion of the holonomy of a connection along 
a path in a base manifold. In the case of an actual manifold M we 
have, roughly speaking, for each connection (denoted A for simplici­
ty) on a given bundle on M with structure group G, a holonomy 
map 

hol^ iPM—>G, (12.5.28) 

where VM denotes the space of paths in M, that takes path compo­
sition to group multiplication. (G need not be compact here.) Part of 
the roughness in our speaking has to do with the proper definition of 
the word "path," which we will leave in abeyance in this brief 
overview. The assignment A \—> hol^ effects a parametrization of the 
set of connections, which, if care is taken, is in fact faithful: the 
bundle may be reconstructed from the set of data symbolized by 
equation (12.5.28). A very careful and comprehensive treatment of 
this topic may be found in Barrett 1991. 

Thus, the set of connections may be, in a sense, embedded 
into the group GFM, which, as a sort of product of Gs, carries a sort 
of product of the Haar measure on G, and hope is raised that a prop­
erly (7-invariant measure may be found here. The implementation of 
such a plan has proven to be extremely challenging. 

A complementary approach (in the context of canonical quan­
tization) is to try to specify directly a family of functions, or "states," 
that might form a basis for the relevant Hilbert space itself, thereby 
circumventing (or postponing) the problem of finding a measure. To 
motivate this, let us return to equation (12.5.21) and take linear 
duals: 
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E(A)*:Sh(X'l)*—>R(G)* = Tla£V{'T)®V{(r)*, 

(12.5.29) 

so that we may regard the holonomy map as a map 

hol̂ PR4 ̂ Yl^V^^V^*. (12.5.30) 

Equivalently, each connection gives rise to a map expressible 
in the form 

T>M4xG^i)VM®V{cr)* (12.5.31) 

(the dot signifying disjoint union) given by 

(C,T)^r(ho\A(C))eV{T)<S>V(r)*. (12.5.32) 

A numerical value may now be attached to A by exploiting 
this map. For instance, one may fix a set of paths lying in the base 
manifold and assign an irreducible representation of G to each path 
in the set in such a way that the assignments of operators to the re­
sulting pairs (path, representation) via equation (12.5.32) may be 
composed and contracted to produce a number (for each .A) in the 
appropriately G-invariant fashion. For example, a loop L in the man­
ifold (a set comprising one path), and choice of irreducible represen­
tation O", produces a G-invariant function on connections via the as­
signment 

,4h^tr(o-(hol^L))) . (12.5.33) 
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Such functions generate interesting states (the Wilson loops) but these 
are not the most general, and are in fact over-determined. More gen­
eral graph-like patterns embedded in the manifold, embellished with 
irreducible representations attached to the paths constituting the 
edges, and with appropriate intertwiners for the representations in­
volved provided at the vertices, may be used to produce functions, 
via equation (12.5.32), on the set of connections, which do indeed 
provide a basis for the relevant Hilbert space. These graph-like struc­
tures are called spin nets, a terminology stemming from the use of the 
group SL(2,C) in their original construction by Penrose in the late 
1960s (cf. Baez 1996). During the last decade and a half, dramatic 
progress has been made in this area, particularly as it applies to the 
effort to quantize (pure) gravity. (A list of names associated with this 
effort should include those of Ashtekar, Baez, Barrett, Bojowald, 
Isham, Jacobson, Rovelli, Smolin, Thiemann and many others. The 
reader may consult the superb overviews Rovelli and Upadhya 2002, 
Rovelli 1998, and Ashtekar 2002, 1999 and their references. The text 
Gambini and Pullin 1996 gives a comprehensive account of the loop 
representation in other gauge theoretic contexts in addition to gravi­
ty. For an encyclopedic account of the foundations of the gravita­
tional theory, see the text Thiemann 2001.) 

Since experimental data in the quantum regime of gravity 
would seem well beyond current technology, success in this context 
must be measured relative to criteria of consistency, either externally 
with respect to other parts of physics, or internally, in the sense that 
internal inconsistencies are convincingly removed. The infant quan­
tum theory of gravity that has emerged through the application of 
these methods, dubbed loop quantum gravity (LQG), has recently 
scored on both counts. It gives rise spontaneously to a kind of "quan­
tum geometry" in which operators corresponding to the measure­
ment of certain geometrical quantities, namely area and volume, have 
discrete spectra. These sets of eigenvalues generally have a non­
uniform structure, and tend to crowd together to yield back the con­
tinuum in semi-classical regimes. The smallest eigenvalues are on the 
scale of powers of the Planck length, rendering meaningless the at-
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tempt to "observe" areas or volumes below this scale. Curiously, the 
operator corresponding to determinations of length itself does not 
seem to fit very comfortably into this picture: cf. Rovelli 1998. 

Among the physical implications of the theory is a completely 
rigorous and satisfying account of the formerly heuristic and some­
what puzzling results dating from the 1970s concerning the extreme­
ly large entropy associated with black hole (and cosmological) 
horizons, which comes ultimately from quantum "microstates." 

An even more impressive achievement of the theory is the 
miraculous resolution of the big bang singularity by M. Bojowald 
(Bojowald 2001, Ashtekar 2002). Big bang models emerge in classi­
cal general relativity when it is assumed, for instance, that the four-
manifold representing spacetime is foliated by three-dimensional spa­
tial leaves or slices, each of constant positive curvature. Each spatial 
leaf is therefore a three-sphere whose radius, a, characterizes the cur­
vature at the corresponding instant of time. Solutions of the classical 
Einstein field equations with these symmetries predict a big bang ori­
gin: the scale factor a goes to zero as time is reversed in the solution, 
and the curvature goes to infinity as a~2. It is generally conceded that 
classical physics breaks down in some neighborhood of this singulari­
ty and the hope has been nursed by many over a number of decades 
that "quantum effects" might intercede to alleviate this difficulty. Bo-
jowald's work seems to have fulfilled this hope, and has done so in a 
particularly beautiful manner. In his treatment the scale factor a be­
comes an operator with discrete spectrum, whose values crowd to­
gether extremely rapidly beyond the Planck scale. Curvature becomes 
an observable that is bounded from above by the immense (but 
finite) value of about 1077 times the curvature of a solar mass black 
hole. The classical geometrical relation (curvature) o2 = 1 breaks 
down in the quantum region—giving some inkling of the strangeness 
of actual "quantum geometry"—but is recovered in the semi-classical 
regime. Quantum evolution is well defined even at the big bang it­
self. 

A particularly striking general feature of these calculations is 
the rapid onset of the semi-classical regime. This seems to occur at 
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hundreds of Planck lengths rather than many orders of magnitude 
greater, as has sometimes been proposed. Considering our use in 
§12.2 of a rather phenomenological GUT model, which includes 
other fields besides gravity, this conclusion is not inconsistent with 
our findings regarding the onset of the "objective" geometrical phase, 
such as they are. 

12.6 Outlook 

The hallmark of quantum experimentation is its non-
objective nature: experimenters/observers generically disagree. For this 
reason, it would seem that accounts of the macroworld that start 
from quantum premises can at best only describe local, or per quan­
tum experimenter, coordinatizations of the World, since that which 
may lie outside a quantum experimenter's purview—including 
knowledge of other experimenters—is intractable. (This circumstance 
is analogous to—indeed, the root cause of—the phenomenon of 
spacelike separation in classical relativity.) For such a quantum-based 
theory to encompass the full panoply of macroscopic physics in a 
semi-classical approximation it would seem necessary for it to effect, 
in some manner, a consistent piecing together of these local patches. 
How may this be done without introducing non-quantal macroscop-
ically chauvinistic assumptions concerning other experimenters and 
their mutual relations? Ecumenical or democratic principles, such as 
general covariance a la classical general relativity, seem to fit the 
macroscopic evidence, but the assumption of such edicts would beg 
the question as to whether or not the World really is quantal at bot­
tom. 

Such theories as LQG (and the various string theories) start 
with global classical manifold assumptions emphatically and explicit­
ly in place. Indeed, one of the critical assumptions of LQG is the 
presence of invariance with respect to diffeomorphisms of the base 
manifold—a rather strong form of the principle of democracy among 
local observers. 

A somewhat less classically based approach is afforded by the 
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now highly developed methods of noncommutative geometry: cf. 
Gracia-Bondia et al. 2001, Loday 1998, Landi 1997, Madore 1995, 
Connes 1994, Karoubi and Leruste 1989, Karoubi 1987. However, 
the effective application of these methods to fundamental physics still 
seems to entail the assumption at the outset of certain global mani­
fold structures. Indeed, a local version of the theory, together with a 
means of mediating between local and global—a noncommutative 
version of sheaf theory, for example—seems to remain underdevel­
oped at the time of this writing (but see for instance Mallios and 
Raptis 2001, 2002 and Raptis 2000b). 

As noted, theories that start from the quantum end of the 
spectrum must address the issue of globalization if they are to viably 
reproduce the macrocosm of experience in their semi-classical 
regimes. Recent attempts to effect such a globalization center on the 
notion of a topos. This notion (due to A. Grothendieck), which we 
have already encountered, has wide and deep ramifications, amazing­
ly drawing together both logic and geometry. Topos theory, which 
may be viewed from one perspective as a generalization of sheaf 
theory, provides a means of describing consistencies among "local" 
entities that are much more general than the kind of consistencies re­
quired among the local coordinate patches of a manifold. Very 
promising results have been obtained in a causal context close to that 
of our work here: cf. Mallios and Raptis 2001, 2002 and Raptis 
1996. For other applications, see Butterfield and Isham 2000, Isham 
and Butterfield et al. 1998-2000, and the work of A. Guts, who 
maintains a valuable list of papers on this topic at the website: 
http://users.univer.omsk.su/-topoi/index.html. 

In this work we have skirted the globalization issue, since our 
aim here—which seems to have been accomplished—was merely to 
compute Lagrangian densities, which are intrinsically local. The 
quantum net represents a generic local quantum structure whose lo-
calness is no impediment to such an endeavor. 

The Lagrangian that has emerged from our macroscopically 
somewhat compromised non-objective considerations coincides al­
most exactly with a snapshot of the Standard Model taken at the 
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grand-unified scale. Compared to this scale the masses of the quanta 
involved are likely to be negligible, so their absence from our picture 
may not be a catastrophe. Of greater concern is the extra uncalculat-
ed gravitational term. This term, whose ramifications lie beyond the 
intellectual capacities of this writer to ascertain, would surely vitiate 
the standard gravitational equations (at least at small length scales), 
supplying a "cosmological" term near the big bang. 

Our specification of the reticular vacuum is certainly a weak 
link in the chain, compounding macroscopic intrusions with an over­
simplified group quantization scheme. One result seems to be that 
spaces of initial acts and their multiplicities are insufficiently restrict­
ed, and no generational structure is apparent. 

On the other hand, we have found a rapid onset of the semi-
classical regime, presumably mediated via a Maxwell-Boltzmann 
phase: a conclusion which seems to be consistent with recent results 
in LQG. Here we meet the symmetry- or group-quantization prob­
lem again in an acutely interesting form. At some point below the 
grand-unified (length) scale, we can no longer effectively speak of a 
manifold structure but must invoke instead some sort of non-
objective Maxwell-Boltzmann phase. What, then, is the appropriate 
quantized grand-unified symmetry algebra replacing the Lie algebra 
we have used? Whatever it is, it should preserve the virtues of the 
simple Lie group based GUTs and related inflationary scenarios. 

As remarked, in the absence for the foreseeable future of ex­
perimental data pertaining to the quantum gravity regime, internal 
consistencies should be highly prized. It will be of great interest, 
therefore, to see whether or not these two classes of theory—local vs. 
global, each starting from diametrically opposing premises—might 
be engineered to meet upon some middle ground. 
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Notational Index and Glossary 

T h e alphabetizable portion of this (partial) list of notations 

appears first. 

ac: equation (11.1.5). 
bijective: injective and surjective, i.e. one-to-one and onto. 

C[rN]: 7.2, see after equation (7.2.5). 
C [ r ] : 7.2, see after equation (7.2.8). 
C[[r ] ] : 8.1, see after equation (8.1.21). 
C0( ) : C*-algebra of cont inuous complex functions vanishing at 

infinity on the locally compact Hausdorff argument, 1.2. 
C : field of complex numbers. 

A"N : diagram (8.1.3). 

A*N : equation (9.3.8). 

5- , 5* : Kronecker delta, which has the value 1 when i — j and 0 

otherwise. 

det( ) : determinant of the argument. 

dim( ) : dimension of the vector space argument. 

E( ) : exterior algebra of the argument, equation (2.2.3 A), 3.1.8. 

End( ) : algebra of linear transformations of the vector space argu­

ment into itself, 1.3. 

7] : Minkowski metric in diagonal matrix form, equation (11.1.19); 

entries in this matrix expressed as traces, equation (11.2.2.10). 
A 

G : set of equivalence classes of irreducible unitary representations of 

the compact group G, 3.1.7. 
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Notational Index and Glossary 

GL( ) : group of isomorphisms of the vector space argument, inden-
tifiable with the group of invertible nXn matrices, where n 
is the dimension of the argument. 

g : unified coupling constant, equations (11.3.10), (11.3.11). 
g : dctg"", equations (11.2.2.14) - (11.2.2.16). 
%v 9*v '• equations (11.2.2.12), (11.2.2.13). 

r ~ : equation (7.2.5) 

r r • 7 2 
y z z~ : equation (9.2.18); in terms of the %s, equation (9.4.31). 
yk : equation (9.4.30); in terms of the yz s~s, equations (9.4.32a—d). 
7M : equation (9.4.1.12). 
Hom( , ) : space of linear maps from first argument into second; 

similar notation for set of morphisms in other categories. 
<fflF : category of finite dimensional complex Hilbert spaces, 6.3.2. 
iff: if and only if. 
injective : one-to-one 
Lorentzian transformations : an extended Lorentz transformation A is 

a transformation on M. leaving invariant the bilinear form 
x\-x\—x\—x\, or equivalently satisfying the condition 

2 2 2 2 

ATi7A = 7], 
: A is proper if det A = 1, 
: A is orthochronous if it is proper and 

A°0>1. 
Note: The appellation Lorentz transformation is often reserved 
for the orthochronous ones. 

L+ : the group of orthochronous Lorentz transformations, called the 
restricted^ Lorentz group. 

L{ ) : Hilbert lattice: the lattice of closed subspaces of the Hilbert 
space argument, 1.2, 5.1.4; for operations on projections see 
5.2.1. 

A(...) : A-term, 4.2. 
Aa: Gell-Mann matrices, 12.1. 

lP : Planck length (= 1.6x 10"33cm), equation (12.1.16). 

pk : equations (8.1.11), (9.3.1). 
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qk : equation (8.1.10). 

qk : equation (8.2.9). 

IR : field of real numbers. 

R : scalar curvature, equation (11.2.2.57); also used briefly to denote 

electrical resistance, 12.3, and a certain rotation matrix, equation 

(12.4.6). 

surjective : onto. 

© : symmetric product, 3.1.8. 

S( ) : symmetric algebra of the argument, equation (2.2.4.3), 3.1.8. 

if(g): bispinor representation, equation (9.2.25). 

crk : Pauli matrices, equations (9.4.16), (9.4.20) 

^ i j : equations (9.2.9), (9.2.10), (9 .2 . l6a,b) ; in terms of Paulis, 

equations (9.4.24a-d). 

°" * j: equations (9.2.13), (9 .2. l4a,b) ; in terms of Paulis, equations 

(9.4.27a-d). 

(Tmn : equation (11.1.7). 
0"M„ : equation (11.2.2.22). 
SL(n ,C) : group of linear transformations of C n having unit deter­

minant. 

§l(n,C) : Lie algebra of SL(n, C ) , identifiable with the Lie algebra of 
linear transformations on C n having zero trace, 3.2.1. 

SO(m,n) : group of linear transformations of [Rm+" with unit deter­
minant preserving the form 

2 , , 2 _ 2 _ _ 2 
Xj + ... + Xm Xm+l ... Xm+n • 

SO(n) : group of orthogonal transformations of W1, indentifiable as 
the group of real nxn matrices A with unit determinant 
satisfying A A — I. 

SO(n,C) : group of linear transformations of C n with unit deter­
minant preserving the quadratic form zx + ... + zn. 

§0(n ,C) : Lie algebra of SO(n ,C) . 
§ 0 ( m , n ) : Lie algebra of SO(m,ri). 

SU(n) : subgroup of U(n) whose elements have unit determinant. 

§U(n) : Lie algebra of SU(n) , identifiable wi th the set of A in 
§ l ( n , C ) satisfying Af+A = 0. 
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SU(n) : subgroup of U(n) whose elements have unit determinant. 
T : Finkelstein's net constant, equation (8.1.10). 
T: twist isomorphism, 3.1. 
T( ) : tensor algebra of the argument, equation (2.2.2.3), 3.1.8. 
tr( ) : trace of the argument, 1.3. 
U( ) : universal enveloping of the Lie algebra argument, 3.1.9. 
U(n) : group of unitary linear transformations of C", identifiable 

with the group o f n X n complex matrices U with UfU = I. 
V: space of bispinors, equation (9.2.20). 
W : representation space for CLC, equation (11.2.1.4). 

X : set of functions from set y in to set X. 

xM : equation (10.3.1.18). 

ILn: cyclic group of order n, 3.2.1. 
Z : ring of integers. 

2 : the two-element set. 
I : end of proof. 
°= : proportional to. 
= : definition, usually of the left-hand side by the right-hand side; 

equal by definition. 
3 : there exists. 
V : for all. 
!( ) : of course operator, 6.2. 
( ) f : adjoint, 1.1; Hilbert space adjoint for operator argument, re­

ducing to complex conjugate transpose on matrix arguments. 

( )*: linear dual of argument reducing to transpose on matrix argu­
ments. 

( )A: natural linear embedding of a vector space into its second dual; 
an isomorphism in the finite dimensional case. 

( ) : complex conjugate for a complex argument; Pauli-Dirac adj-
joint for a bispinorial argument, 10.2. 

( )°: modal translation of orthoformula argument, 6.3.1. 
( )e: translation into a G Q formula of the IOL formula argument, 
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6.3.1. 
( )c : relative set complementation of the argument, 5.1.2. 
( )x : set orthogonal to the argument, 5.1.2; subspace orthogonal to 

the argument, 5.1.3. 
( / ) : Dirac slashed vector argument a la Feynman: e. g. $, equation 

(10.0.2). 

( ) , ( y1: Greek, or curved, indexing, 9.4.1. 

| ) : Dirac ket, 1.1. 
( | : Dirac bra, 1.1. 
[[ J : semantic function, 8.1. 
[[ | c : classical version of, 9.5. 

[a,b] : commutator ab — ba of elements in an algebra (not to be 
confused with the closed interval this notation describes if 
a,beU). 

* : convolution, or algebra product dual to a certain coproduct, 

equation (3.1.3.1). 
IX : semi-direct product (of groups), equation (11.1.6). 

dx^ ...dx^^ : Chen iterated integral, defined in equations (8.2.16) 

and (8.2.17). 

A : (non-quantum ) logical conjunction, 4.2; meet or greatest lower 
bound in a distributive lattice; also E. Cartan's notation for exte­
rior product, 2.3. 

v : (non-quantum) logical disjunction, 4.2; join or least upper 
bound in a distributive lattice; also Peano's notation for exterior 
product, 2.3. 

—i : (non-quantum) negation. 
n : conjunction in OL, IOL, etc.; meet, or greatest lower bound, in 

ortholattices, 5-1.1, 5.2.1. 
i_i : disjunction in OL, IOL, etc.; join, or least upper bound, in or­

tholattices, 5.1.1, 5.2.1. 
~ : negation in OL, IOL, etc., 5.1.1, 5.2.1. 
• , 0 : modal operators, 5.1.2. 
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—> : material implication, 5.1.2. 
=» : intuitionistic implication, 4.1. 
7* : Sasaki hook, equation (5.1.4.8). 
aCb: compatibility in an ortholattice, equation (5.1.4.5). 
a < 4 6: commutativity in an orthomodular lattice, 5.1.4; double 

arrow sign also used to indicate informal correspondences at 
various places in the text. 

N : validity in Kripke orthomodels, 5.1.2. 
|= : validity in Kripke B-models, 5-1.3. 
\— : turnstile, in sequent calculus, 4.1. 
|—B : deducibility in the modal B-system, 5.1.3. 
HGQ: provability in GQ_, 6.2. 
b j 0 : deducibility in intuitionistic orthologic (IOL), 6.3. 
\—Q : deducibility in orthologic (OL), 5.1.1. 
h-QM : deducibility in orthomodular logic (OML), 5.1.4. 
|-Q : deducibility in Quantum Logic (QL), 5.1.4. 
0 : empty set. 
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action principle, 305 
acts, 

final, 5 
initial, 5 
selective, 12 

adjoint, 6, 260 
Pauli-Dirac, 297 

algebra, 
associative, 43 
Boolean, 11,23 
C*-, 9, 50 
exterior, 31, 35, 54 
Grassmann, see exterior 
group, 49 
Heyting, 96, 134 
Hopf, 47 

graded, 57 
topological, 50 

Lie, 
complex semisimple, 320 
universal enveloping of, 57 

measure, 53 
shuffle, 222, 227, 230, 417 
symmetric, 34, 54 
tensor, 30, 54 
universal enveloping, 57 
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amplitude, see transition amplitude 
antipode, 48 
asymptotic freedom, 386 

BCS theory of superconduction, see superconduction 
bialgebra (see also Hopf algebra), 47 
big bang models, 425 
bispinor, 245 

representation, 248 
Born Law, 7, 14 
Bose—Einstein statistics, 35 
BRST symmetry, 369 

Cabibbo angle, 411,413 
Cabibbo-Kobayashi-Maskawa (CKM) rotation, 409 
Cartan subalgebra, 320 
Chen, 

iterated integral, 222 
series, 222 

Chern classes, 199,393 
chiral breaking, 333 
chirality, 313 
classes, 24 
closed system, 6 
coalgebra (see also Hopf algebra), 45 
coherence, 63, 225 
coherent state, 64, 204 
color, 378 
compatibility (of elements in an ortholattice), 119, 124 
connection, connection matrix, (see also covariant derivative), 339, 

390, 391 
contraction, 18 
CONTRACTION, 85, 150 

convolution, 46, 48, 49 
Cooper pairs, 395 
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coordinates, 5 
covariant derivative (see also connection), 380 
CP violation, 413 
Curry—Howard isomorphism, 79 
curvature, 359 

Riemann curvature tensor, 358 
form, 391,392 
matrix, 391 

CUT, 

rules, 87, 150 
elimination, 87 

De Morgan's Law(s), 96 
defect, 

bare, 245 
clothed, 317 

density matrix, 128 
derivation, 61, 239 
Dirac, 

bras, 7 
equation (see alsoWeyl equations), 305 
kets, 7 
maps, 244 
matrices, 268 
operator (see also Weyl operators), 255, 293 

discharge, 
of formulae,75 
of quantum formulae, 144 

dual (vector) space, 6 

eigenvalue principle, 13 
electroweak unification, 402 
extensionality, 24 
exterior product, see algebra, exterior 
externality, 20 
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families, 378 
Fermi-Dirac statistics, 35 
Finkelstein's net constant (T), 209, 385, 389 
flavor, 379 
Fock space, 24, 35 
frame, 233 

initial, 260, 270 

gauge, 
equivalence, 398, 415 
fixing, 353 
transformation, 397, 414 

Gell—Mann matrices, 380 
generations, see families 
Gentzen sequent calculus, see sequent calculus 
ghosts, 368 
gluon field, 378 
grand unified theories, 837 
gravitation, 327, 348, 384 
group, 

additive affine algebraic, 48 
compact, 50 
cyclic, 61 
proper Lorentz, 324 
quantum, 43, 60 
restricted or orthochronous Lorentz, 190 

Glashow—Salam-Weinberg theory of electroweak unification, 402 
GUTs, see grand unified theories 

helicity, 312 
Heyting paradigm, 76, 82, 137 

failure of classical version of, for orthologic, 143 
quantum version of, 146, 148, 153 

Higgs mechanism, 400 
holonomy, 422 
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IL, see logic 
implication, 

intuitionistic, 75 
material, 93, 100, 116 
quantum logical (see also Sasaki hook), 120 

initial space, 6 
invariant measure, 345 
IOL, see logic 

ket, 7 
Kripke, 

axiom, 107 
frame, 101 
model, 104 
orthomodel, 105 

A-calculus, 79 
Lagrangian, 288 

density, 288 
Einstein-Hilbert, 360, 384 
Weyl, 299 
Yang-Mills, 352 

lattice (see also ortholattice), 
Boolean, 11, 23 
Hilbert, 11, 121, 126 
orthomodular, 13, 118 

leptons, 378 
logic, 

intuitionistic (IL),74, 76 
modal, 100 

systems of, 107 
orthologic (OL), 94 

intuitionistic (IOL), 153 
orthomodular (OML), 120 
propositional, 74 
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Quantum (QL), 121, 125 
London equation, 398 
loop quantum gravity (LQG), 424 
Lorentz group, see group 

Maurer-Cartan forms, 364 
Maxwell-Boltzmann, 

phase, 189, 190, 193 
statistics, 35 

measure, 
invariant, 345 
projection-valued, 11, 127 
spectral, 11 

metric, 343 
modal logic, see logic 
modalities, 100 

Newton's constant, 384 
noncommutative geometry, 240, 427 

observables, 9, 123, 128 
OL, see logic 
OML, see logic 
open system, 6 
orthogonality space, 97 
ortholattice, 96 
orthologic, see logic 
orthomodel, 

algebraic, 97 
Kripke, 105 

path integral, 303 
Pauli matrices, 262, 382 
PC (propositional calculus), 93, 96 
Planck length, 384 
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predicates, 24 
proper filter, 99 
proposition (in a proximity space: see also regular set), 104 
proximity space, 101 

qet, 40 
QL, see logic 
quantum, 

computation, 164 
duplication, 160 
entanglement, 138, 164, 167 
interference, see superposition 
logic, see logic 
parallelism, see superposition 

quarks, 378 
qubit, 138, 164, 180, 182, 184 

symmetries of, 180 

regular set (in an orthogonality space: see also proposition), 104 
Riemann curvature tensor, 358 
root spaces, 321 

cr-model, 406 
Sasaki hook, 120 
sequences, 25, 29 
sequent, 84, 94 

calculus, 84 
intuitionistic calculus, 88 

set theory, 24 
sets, 24 
shuffle product, 222 
spacetime metric, see metric 
spin connection, 337 
spin net, 424 
spinor representations, 188 
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spinors, 188 
spontaneous symmetry breaking, 378, 400 
Standard Model, 378 
state, 124, 129 
strong interaction, 387 
superconduction, 394 
superposition, or interference, 3, 8, 137, 141 

tensor product (see also algebra, tensor), 27 
Theorem, 

of Avis and Isham, 409 
Dirac map transformation, 248 
of Hurewicz, 410 
of Gleason, 129 
Goldblatt's Stonean, 98 
of Kostant, 60 
Modal Translation, 115 
of Peter-Weyl, 53 
of Poincare-Birkhoff-Witt, 58 
Pontryagin Duality, 52 
Spectral, 10, 127 
spinor duality, 235 
of Stone, 99, 130 
Tannaka-Krein Duality, 52 
Translation, of IOL into GQ, 155 

topos theory, 25, 131, 427 
transition amplitude, 19 
type, 40, 79, 194 

valuation (logical), 96, 105 
variables, 13 
vierbein, 271 
von Neumann operator (see also density matrix), 128 
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weak, 
bosons, 382 
interaction, 387 

WEAKENING, 85, 147, 150 

Weinberg angle, 403 
Weyl, 

equations, 306, 313, 314 
operators, 306 

Wilson loop, 414 

Yang-Mills field, 352 
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