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Preface

The present lecture note is dedicated to the study of the optimality conditions and
the duality results for nonlinear vector optimization problems, in finite and infinite
dimensions. The problems include are nonlinear vector optimization problems, sym-
metric dual problems, continuous-time vector optimization problems, relationships
between vector optimization and variational inequality problems.

Nonlinear vector optimization problems arise in several contexts such as in the
building and interpretation of economic models; the study of various technologi-
cal processes; the development of optimal choices in finance; management science;
production processes; transportation problems and statistical decisions, etc.

In preparing this lecture note a special effort has been made to obtain a self-
contained treatment of the subjects; so we hope that this may be a suitable source
for a beginner in this fast growing area of research, a semester graduate course
in nonlinear programing, and a good reference book. This book may be useful to
theoretical economists, engineers, and applied researchers involved in this area of
active research.

The lecture note is divided into eight chapters:
Chapter 1 briefly deals with the notion of nonlinear programing problems with

basic notations and preliminaries.
Chapter 2 deals with various concepts of convex sets, convex functions, invex set,

invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized
type I functions, V-invex functions, and univex functions.

Chapter 3 covers some new type of generalized convex functions, such as
Type I univex functions, generalized type I univex functions, nondifferentiable
d-type I, nondifferentiable pseudo-d-type I, nondifferentiable quasi d-type I and
related functions, and similar concepts for continuous-time case, for nonsmooth
continuous-time case, and for n-set functions are introduced.

Chapter 4 deals with the optimality conditions for multiobjective programing
problems, nondifferentiable programing problems, minimax fractional programing
problems, mathematical programing problems in Banach spaces, in complex spaces,
continuous-time programing problems, nonsmooth continuous-time programing

v



vi Preface

problems, and multiobjective fractional subset programing problems under the
assumptions of some generalized convexity given in Chap. 3.

In Chap. 5 we give Mond–Weir type and General Mond–Weir type duality results
for primal problems given in Chap. 4. Moreover, duality results for nonsmooth
programing problems and control problems are also given in Chap. 5.

Chapter 6 deals with second and higher order duality results for minimax pro-
graming problems, nondifferentiable minimax programing problems, nondifferen-
tiable mathematical programing problems under assumptions generalized convexity
conditions.

Chapter 7 is about symmetric duality results for mathematical programing prob-
lems, mixed symmetric duality results for nondifferentiable multiobjective program-
ing problems, minimax mixed integer programing problems, and symmetric duality
results for nondifferentiable multiobjective fractional variational problems.

Chapter 8 is about relationships between vector variational-like inequality prob-
lems and vector optimization problems under various assumptions of generalized
convexity. Such relationships are also studied for nonsmooth vector optimization
problems as well. Some characterization of generalized univex functions using
generalized monotonicity are also given in this chapter.

Varanasi, India Shashi Kant Mishra
Beijing, China Shou-Yang Wang
Hong Kong Kin Keung Lai
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Chapter 1
Introduction

Nonlinear vector optimization (NVO) deals with optimization models with at least
one nonlinear function, also called continuous optimization or smooth optimization.
A general model is in the following form:

minimize f (x)
subject to

x ∈ X

gi (x) ≤ 0, i = 1, 2, . . . , m

h j (x) = 0, i = 1, 2, . . . , k.

Functions f : X → R, g : X → Rm and h : X → Rk are assumed to be continuously
differentiable (i.e., smooth functions), and X ⊆ Rn is assumed to be open.

Let K = {x : x ∈ X , g(x) ≤ 0, h(x) = 0} denote the set of all feasible solutions
of the problem (P).

Linear programming aroused interest in constraints in the form of inequalities
and in the theory of linear inequalities and convex sets. The study of Kuhn–Tucker
(Kuhn was a student of Tucker and became the principal investigator, worked
together on several projects dealing with linear and nonlinear programming prob-
lems under generous sponsorship of the Naval Research from 1948 until 1972)
appeared in the middle of this interest with a full recognition of such developments.

Kuhn–Tucker (1951) first used the name “Nonlinear Programming.” However,
the theory of nonlinear programming when the constraints are all in the form of
equalities has been known for a long time. The inequality constraints were treated in
a fairly satisfactory manner by Karush (1939) in his M.Sc. thesis, at the Department
of Mathematics, University of Chicago. A summary of the thesis was published
as an appendix to: Kuhn (1976). Karush’s work is apparently under the influence
of a similar work in the calculus of variations by Valentine (1937). As a struggling
graduate student meeting requirements for going on to his Ph.D., the thought of pub-
lication never occurred to Karush and he was not encouraged to publish his Master’s
thesis by his supervisor L.M. Graves. At that time, no one anticipated the future

S.K. Mishra et al., Generalized Convexity and Vector Optimization,
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2 1 Introduction

interest in these problems and their potential practical applications. The school of
classical calculus of variations at Chicago also popularized the theory of optimal
control under the name of the “Pontryagin’s maximum principle.”

It was not the calculus of variations, optimization or control theory that moti-
vated Fritz John, but rather the direct desire to find a method that would help to
prove inequalities as they occur in geometry. Next to Karush, but still prior to Kuhn
and Tucker, Fritz John (1948) considered the nonlinear programming problem with
inequality constraints.

In May of 1948, Dantzig visited von Neumann in Princeton to discuss poten-
tial connections between the then very new subject of linear programming and the
theory of games. Tucker happened to give Dantzig a lift to the train station for his
return trip to Washington DC. On the way, Dantzig gave a short exposition of what
linear programming was, using the transportation problem as a simple illustrative
example. This sounded like Kirkhoff’s Law to Tucker and he made this observation
during the ride, but thought little about it until September of 1949.

On leave at Stanford in the fall of 1949, Tucker had a chance to return to the
question: what was the relation between linear programming and the Kirkhoff-
Maxwell treatment of electrical networks. It was at this point that Tucker (1957)
recognized the parallel between Maxwell’s potentials and Lagrange multipliers, and
identified the underlying optimization problem of minimizing heat loss. Tucker
then wrote Gale and Kuhn, inviting them to do a sequel to (Gale et al. 1951).
Gale declined, Kuhn accepted and paper developed by correspondence between
Stanford and Princeton shifted emphasis from the quadratic case to the general non-
linear programming problem and to properties of convexity that imply the necessary
conditions for an optimum are also sufficient.

A convex nonlinear programing problem can be formulated as:
(P)

minimize f (x)
subject to

x ∈ X

gi (x) ≤ 0, i = 1, 2, . . . , m

h j (x) = 0, i = 1, 2, . . . , k.

Functions f , g and h are assumed to be convex.
Nicest among nonlinear programs, useful necessary and sufficient optimality

conditions for global minimum are only known for convex programming problems.
The Fritz John necessary condition (John 1948) for a feasible point x∗ to be

optimal for (P) is the existence of λ ∗
0 ∈ R, λ ∗ ∈ Rm such that

λ ∗
0∇ f (x∗)+λ ∗T

∇g(x∗) = 0

λ ∗T
g(x∗) = 0

(λ ∗
0 ,λ ∗) ≥ 0, (λ ∗

0 ,λ ∗) �= 0.
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There are no restrictions on the objective and constraint functions, apart from the
differentiability.

However, by imposing a regularity condition on the constraint function, the λ ∗
0

may, without loss of generality, be taken as 1, and we obtain the Kuhn–Tucker
necessary conditions (Kuhn–Tucker 1951): there exists λ ∗ ∈ Rm such that

∇ f (x∗)+λ ∗T
∇g(x∗) = 0

λ ∗T
g(x∗) = 0

λ ∗ ≥ 0, λ ∗ �= 0.

There are a variety of regularity conditions, or constraint qualifications, which
yield the Kuhn–Tucker necessary conditions. Some requires differentiability with
no notion of convexity, and some have an assumption of convexity.

If the functions involved in the problem are convex then the necessary conditions
for optimality are also sufficient.

In nonlinear programing, if the model is nonconvex, no efficient algorithm can
guarantee finding a global minimum. So, one has to compromise with various types
of solution expected. However, for convex programs, every local minimum is a
global minimum. For convex programs, any method finding a local minimum will
find a global minimum. Moreover, any stationary point is a global minimum in the
case of convex programs.

1.1 Nonlinear Symmetric Dual Pair of Programming Problems

It is well known that every linear program is symmetric in the sense that the dual
of the dual is the original problem. However, this is not the case with a general
nonlinear programming problem.

Dantzig et al. (1965) introduced the following problem:

minimize f (x,y)− yT∇y f (x,y)
subject to

∇y f (x,y) ≤ 0
x ≥ 0, y ≥ 0,

Its symmetric dual is

maximize f (u,v)−uT∇u f (u,v)
subject to

∇u f (u,v) ≤ 0
u ≥ 0, v ≥ 0.



4 1 Introduction

Mond and Weir (1981) proposed a relaxed version of the problems given by Dantzig
et al. (1965). The problem of Mond and Weir has an advantage that one can use more
generalized class of convex functions and the objective functions of the primal and
dual problems are similar:

minimize f (x,y)
subject to

yT∇y f (x,y) ≤ 0
x ≥ 0,

Its symmetric dual is
maximize f (u,v)
subject to

uT∇u f (u,v) ≤ 0
v ≥ 0.

These problems have direct connections with two person zero sum games.
The optimization problems discussed above are only finite-dimensional. How-

ever, a great deal of optimization theory is concerned with problems involving
infinite dimensional case. Two types of problems fitting into this scheme are vari-
ational and control problems. Hanson (1964) observed that variational and control
problems are continuous-time analogue of finite dimensional nonlinear program-
ming problems. Since then the fields of nonlinear programming and the calculus
of variations have to some extent merged together within optimization theory,
hence enhancing the potential for continued research in both fields. These types
of problems are studied in Sect. 4.6, 4.7, and 5.16–5.19.

1.2 Motivation

Convexity is one of the most frequently used hypotheses in optimization theory. It is
usually introduced to give global validity to propositions otherwise only locally true
(for convex functions, for instance, any local minimum is also a global minimum)
and to obtain sufficient conditions that are generally only necessary, as with the
Kuhn–Tucker conditions in nonlinear programing. In microeconomics, convexity
plays a fundamental role in general equilibrium theory and in duality results. In
particular, in consumer theory, the convexity of preference ensures the existence of a
demand function. In game theory, convexity ensures the existence of an equilibrium
solution.

Convexity assumptions are often not satisfied in real-world economic models;
see Arrow and Intriligator (1981). The necessary KKT conditions imply a maximum
under some condition weaker than convexity. It suffices if − f is pseudo-convex and
each −gi is pseudo-concave, or less restrictively if the vector−( f , g1, g2, . . . , gm) is
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invex. An economic model where an objective function is to be maximized, subject
to constraints on the economic processes involved, leads to a nonlinear program-
ming problem. It is well known that, under some restrictions, a maximum may
be described by a Lagrangian function. The Lagrangian has a zero gradient at a
maximum point, but this is not enough to imply a maximum, unless additional
restrictions, such as concavity or quasi-concavity are imposed, but these often do
not hold for many practical problems, so go for invexity, pseudo-invexity, etc.

In the past century, the notion of a convex function has been generalized in
various ways, either by an extension to abstract spaces, or by a change in the def-
inition of convexity. One of the more recent generalizations, for instance, is due
to Hanson, who introduced invex functions in 1981: f : Rn → R is invex when-
ever it is differentiable and there exists a function η : Rn × Rn → Rn such that
f (x)− f (y) ≥ ∇ f (x) η (x, y). Many important properties of convex functions are
preserved within a wider functional environment, for example, a local minimum is
also a global minimum if the function involved is invex.

However, invexity is not the only generalization of convexity. In fact, after the
work of Hanson (1981), mathematicians and other practiceners started attempting
to further weakening of the concept of invexity. This has finally led to a whole field
of research, known as “generalized convexity.” It is impossible to collect the entire
progress on the subject in one book, as there has been eight international confer-
ences on generalized convexity. However, there is no book on the topic dealing with
some generalized convexity and various nonlinear programing problems. This is a
desperate need of advanced level students or new researchers in this field.



Chapter 2
Generalized Convex Functions

Convexity is one of the most frequently used hypotheses in optimization theory. It
is usually introduced to give global validity to propositions otherwise only locally
true, for instance, a local minimum is also a global minimum for a convex function.
Moreover, convexity is also used to obtain sufficiency for conditions that are only
necessary, as with the classical Fermat theorem or with Kuhn-Tucker conditions in
nonlinear programming. In microeconomics, convexity plays a fundamental role in
general equilibrium theory and in duality theory. For more applications and histor-
ical reference, see, Arrow and Intriligator (1981), Guerraggio and Molho (2004),
Islam and Craven (2005). The convexity of sets and the convexity and concavity of
functions have been the object of many studies during the past one hundred years.
Early contributions to convex analysis were made by Holder (1889), Jensen (1906),
and Minkowski (1910, 1911). The importance of convex functions is well known
in optimization problems. Convex functions come up in many mathematical models
used in economics, engineering, etc. More often, convexity does not appear as a nat-
ural property of the various functions and domain encountered in such models. The
property of convexity is invariant with respect to certain operations and transfor-
mations. However, for many problems encountered in economics and engineering
the notion of convexity does no longer suffice. Hence, it is necessary to extend the
notion of convexity to the notions of pseudo-convexity, quasi-convexity, etc. We
should mention the early work by de de Finetti (1949), Fenchel (1953), Arrow and
Enthoven (1961), Mangasarian (1965), Ponstein (1967), and Karamardian (1967).
In the recent years, several extensions have been considered for the classical con-
vexity. A significant generalization of convex functions is that of invex functions
introduced by Hanson (1981). Hanson’s initial result inspired a great deal of sub-
sequent work which has greatly expanded the role and applications of invexity in
nonlinear optimization and other branches of pure and applied sciences.

In this chapter, we shall discuss about various concepts of generalized convex
functions introduced in the literature in last thirty years for the purpose of weak-
ening the limitations of convexity in mathematical programming. Hanson (1981)
introduced the concept of invexity as a generalization of convexity for scalar con-
strained optimization problems, and he showed that weak duality and sufficiency of

S.K. Mishra et al., Generalized Convexity and Vector Optimization,
Nonconvex Optimization and Its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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the Kuhn-Tucker optimality conditions hold when invexity is required instead of the
usual requirement of convexity of the functions involved in the problem.

2.1 Convex and Generalized Convex Functions

Definition 2.1.1. A subset X of Rn is convex if for every x1,x2 ∈ X and 0 < λ < 1,
we have

λx1 +(1−λ)x2 ∈ X .

Definition 2.1.2. A function f : X → R defined on a convex subset X of Rn is convex
if for any x1,x2 ∈ X and 0 < λ < 1, we have

f (λx1 +(1−λ)x2) ≤ λ f (x1)+ (1−λ) f (x2) .

If we have strict inequality for all x1 �= x2 in the above definition, the function is
said to be strictly convex.

Historically the first type of generalized convex function was considered by de
Finetti (1949) who first introduced the quasiconvex functions (a name given by
Fenchel (1953)) after 6 years.

Definition 2.1.3. A function f : X → R is quasiconvex on X if

f (x) ≤ f (y) ⇒ f (λx +(1−λ)y) ≤ f (y) , ∀x, y ∈ X , ∀ λ ∈ [0, 1]

or, equivalently, in non-Euclidean form

f (λx +(1−λ)y) ≤ max{ f (x) , f (y)} , ∀x, y ∈ X , ∀ λ ∈ [0, 1] .

For further study and characterization of quasiconvex functions, one can see
Giorgi et al. (2004).

In the differentiable case, we have the following definition given in Avriel
et al. (1988):

Definition 2.1.4. A function f : X → R is said to be quasiconvex on X if

f (x) ≤ f (y) ⇒ (x− y)∇ f (y) ≤ 0, ∀x, y ∈ X .

An important property of a differentiable convex function is that any stationary
point is also a global minimum point; however, this useful property is not restricted
to differentiable convex functions only. The family of pseudoconvex functions intro-
duced by Mangasarian (1965) and under the name of semiconvex functions by
Tuy (1964), strictly includes the family of differentiable convex functions and has
the above mentioned property as well.
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Definition 2.1.5. Let f : X → R be differentiable on the open set X ⊂ Rn; then f is
pseudoconvex on X if:

f (x) < f (y) ⇒ (x− y)∇ f (y) < 0, ∀x, y ∈ X

or equivalently if

(x− y)∇ f (y) ≥ 0 ⇒ f (x) ≥ f (y) , ∀x, y ∈ X .

From this definition it appears obvious that, if f is pseudoconvex and∇ f (y) = 0,
then y is a global minimum of f over X . Pseudoconvexity plays a key role in obtain-
ing sufficient optimality conditions for a nonlinear programming problem as, if a
differentiable objective function can be shown or assumed to be pseudoconvex, then
the usual first-order stationary conditions are able to produce a global minimum.

The function f : X → R is called pseudoconcave if − f is pseudoconvex.
Functions that are both pseudoconvex and pseudoconcave are called pseudolin-

ear. Pseudolinear functions are particularly important in certain optimization prob-
lems, both in scalar and vector cases; see Chew and Choo (1984), Komlosi (1993),
Rapcsak (1991), Kaul et al. (1993), and Mishra (1995).

The following result due to Chew and Choo (1984) characterizes the class of
pseudolinear functions.

Theorem 2.1.1. Let f : X → R, where X ⊂ Rn is an open convex set. Then the
following statements are equivalent:

(i) f is pseudolinear.
(ii) For any x,y ∈ X, it is (x− y)∇ f (y) = 0 if and only if f (x) = f (y).

(iii) There exists a function p : X ×X → R+ such that

f (x) = f (y)+ p(x, y) · (x− y)∇ f (y) .

The class of pseudolinear functions includes many classes of functions useful
for applications, e.g., the class of linear fractional functions (see, e.g., Chew and
Choo (1984)).

An example of a pseudolinear function is given by f (x) = x + x3, x ∈ R. More
generally, Kortanek and Evans (1967) observed that if f is pseudolinear on the
convex set X ⊂ Rn, then the function F = f (x) + [ f (x)]3 is also pseudolinear on X .

For characterization of the solution set of a pseudolinear program, one can see
Jeyakumar and Yang (1995).

Ponstein (1967) introduced the concept of strictly pseudoconvex functions for
differentiable functions.

Definition 2.1.6. A function f : X → R, differentiable on the open set X ⊂ Rn, is
strictly pseudoconvex on X if

f (x) ≤ f (y) ⇒ (x− y)∇ f (y) < 0, ∀ x, y ∈ X , x �= y,
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or equivalently if

(x− y)∇ f (y) ≥ 0 ⇒ f (x) > f (y) , ∀ x, y ∈ X , x �= y.

The comparison of the definitions of pseudoconvexity and strict pseudoconvexity
shows that strict pseudoconvexity implies pseudoconvexity. Ponstein (1967) showed
that pseudoconvexity plus strict quasiconvexity implies strict pseudoconvexity and
that strict pseudoconvexity implies strict quasiconvexity.

In a minimization problem, if the strict pseudoconvexity of the objective function
can be shown or assumed, then the solution to the first-order optimality conditions
is a unique global minimum. Many other characterization of strict pseudoconvex
functions are given by Diewert et al. (1981).

Convex functions play an important role in optimization theory. The optimization
problem:

minimize f (x) for x ∈ X ⊆ Rn, subject to g(x) � 0,

is called a convex program if the functions involved are convex on some subset X of
Rn. Convex programs have many useful properties:

1. The set of all feasible solutions is convex.
2. Any local minimum is a global minimum.
3. The Karush–Kuhn–Tucker optimality conditions are sufficient for a minimum.
4. Duality relations hold between the problem and its dual.
5. A minimum is unique if the objective function is strictly convex.

However, for many problems encountered in economics and engineering the
notion of convexity does no longer suffice. To meet this demand and the convexity
requirement to prove sufficient optimality conditions for a differentiable mathemat-
ical programming problem, the notion of invexity was introduced by Hanson (1981)
by substituting the linear term (x− y), appearing in the definition of differentiable
convex, pseudoconvex and quasiconvex functions, with an arbitrary vector-valued
function.

2.2 Invex and Generalized Invex Functions

Definition 2.2.1. A function f : X → R, X open subset of Rn, is said to be invex on
X with respect to η if there exists vector-valued function η : X ×X → Rn such that

f (x)− f (y) ≥ ηT (x,y)∇ f (y) , ∀x, y ∈ X .

The name “invex” was given by Craven (1981) and stands for “invariant convex.”
Similarly f is said to be pseudoinvex on X with respect to η if there exists vector-

valued function η : X ×X → Rn such that

ηT (x,y)∇ f (y) ≥ 0 ⇒ f (x) ≥ f (y) , ∀x, y ∈ X .
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The function f : X → R, X open subset of Rn, is said to be quasiinvex on X with
respect to η if there exists vector-valued function η : X ×X → Rn such that

f (x) ≤ f (y) ⇒ ηT (x,y)∇ f (y) ≤ 0, ∀x, y ∈ X .

Craven (1981) gave necessary and sufficient conditions for function f to be invex
assuming that the functions f and η are twice continuously differentiable.

Ben-Israel and Mond (1986) and Kaul and Kaur (1985) also studied some
relationships among the various classes of (generalized) invex functions and (gen-
eralized) convex functions. Let us list their results for the sake completion:

(1) A differentiable convex function is also invex, but not conversely, see example,
Kaul and Kaur (1985).

(2) A differentiable pseudo-convex function is also pseudo-invex, but not con-
versely, see example, Kaul and Kaur (1985).

(3) A differentiable quasi-convex function is also quasi-invex, but not conversely,
see example, Kaul and Kaur (1985).

(4) Any invex function is also pseudo-invex for the same function η (x, x̄), but not
conversely, see example, Kaul and Kaur (1985).

(5) Any pseudo-invex function is also quasi-invex, but not conversely.

Further insights on these relationships can be deduced by means of the following
characterizations of invex functions:

Theorem 2.2.1. (Ben-Israel and Mond (1986)) Let f : X → R be differentiable on
the open set X ⊂ Rn; then f is invex if and only if every stationary point of f is a
global minimum of f over X.

It is adequate, in order to apply invexity to the study of optimality and duality
conditions, to know that a function is invex without identifying an appropriate func-
tion η (x, x̄). However, Theorem 2.2.1 allows us to find a function η (x, x̄), when f (x)
is known to be invex; viz.

η (x, x̄) =

⎧
⎨

⎩

[ f (x)− f (x̄)]∇ f (x̄)
∇ f (x̄)∇ f (x̄)

, if ∇ f (x̄) �= 0

0, if ∇ f (x̄) = 0.

Remark 2.2.1. If we consider an invex function f on set X0 ⊆ X , with X0 not open,
it is not true that any local minimum of f on X0 is also a global minimum. Let us
consider the following example.

Example 2.2.1. Let f (x,y) = y
(
x2 −1

)2 and X0 = {(x,y) : (x,y) ∈ R2,x ≥ −1/2,
y ≥ 1}. Every stationary point of f on X0 is a global minimum of f on X0, and
therefore f is invex on X0. The point (−1/2,1) is a local minimum point of f on X0,
with f (−1/2,1) = 9/16, but the global minimum is f (1,y) = f (−1,y) = 0.

In order to consider some type of invexity for nondifferentiable functions, Ben-
Israel and Mond (1986) and Weir and Mond (1988) introduced the following
function:
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Definition 2.2.2. A function f : X → R is said to be pre-invex on X if there exists a
vector function η : X ×X → Rn such that

(y +λη (x, y)) ∈ X , ∀λ ∈ [0, 1] , ∀ x, y ∈ X

and

f (y +λη (x, y)) ≤ λ f (x)+ (1−λ) f (y) , ∀λ ∈ [0, 1] , ∀ x, y ∈ X .

Weir and Mond (1988a) gave the following example of a pre-invex function
which is not convex.

Example 2.2.2. f (x) = −|x| , x ∈ R. Then f is a pre-invex function with η given as
follows:

η (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x− y, if y ≤ 0 and x ≤ 0
x− y, if y ≥ 0 and x ≥ 0
y− x, if y > 0 and x < 0
y− x, if y < 0 and x > 0.

As for convex functions, any local minimum of a pre-invex function is a global
minimum and nonnegative linear combinations of pre-invex functions are pre-invex.
Pre-invex functions were utilized by Weir and Mond (1988a) to establish proper
efficiency results in multiple objective optimization problems.

2.3 Type I and Related Functions

Subsequently, Hanson and Mond (1982) introduced two new classes of functions
which are not only sufficient but are also necessary for optimality in primal and
dual problems, respectively. Let

P = {x : x ∈ X ,g(x) � 0} and D = {x : (x,y) ∈Y} ,

where Y = {(x,y) : x ∈ X ,y ∈ Rm,∇x f (x)+ yT∇xg(x) = 0;y � 0}.
Hanson and Mond (1982) defined:

Definition 2.3.1. f (x) and g(x) as Type I objective and constraint functions, respec-
tively, with respect to η (x) at x̄ if there exists an n-dimensional vector function η (x)
defined for all x ∈ P such that

f (x)− f (x̄) � [∇x f (x̄)]T η (x, x̄)

and
−g(x̄) � [∇xg(x̄)]T η (x, x̄) ,

the objective and constraint functions f (x) and g(x) are calledstrictly Type I if we
have strict inequalities in the above definition.
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Definition 2.3.2. f (x) and g(x) as Type II objective and constraint functions,
respectively, with respect to η (x) at x̄ if there exists an n-dimensional vector function
η (x) defined for all x ∈ P such that

f (x̄)− f (x) � [∇x f (x)]T η (x, x̄)

and
−g(x) � [∇xg(x)]T η (x, x̄) .

the objective and constraint functions f (x) and g(x) are called strictly Type II if we
have strict inequalities in the above definition.

Rueda and Hanson (1988) established the following relations:

1. If f (x) and g(x) are convex objective and constraint functions, respectively,
then f (x) and g(x) are Type I, but the converse is not necessarily true, as can be
seen from the following example.

Example 2.3.1. The functions f :
(
0, π2

)→ R and g :
(
0, π2

)→ R defined by f (x) =

x + sinx and g(x) = −sinx are Type I functions with respect to η(x) =
(

2√
3

)

(
sinx− 1

2

)
at x̄ = π/6, but f (x) and g(x) are not convex with respect to the same

η(x) =
(

2√
3

)(
sinx− 1

2

)
as can be seen by taking x = π/4 and x̄ = π/6.

2. If f (x) and g(x) are convex objective and constraint functions, respectively,
then f (x) and g(x) are Type II, but the converse is not necessarily true, as can be
seen from the following example.

Example 2.3.2. The functions f :
(
0, π2

)→ R and g :
(
0, π2

)→ R defined by f (x) =

x+ sinx and g(x) = −sinx are Type II functions with respect to η (x) = ( 1
2−sinx)

cosx at

x̄ = π
/

6, but f (x)andg(x) are not convex with respect to the same η (x) = ( 1
2−sinx)

cosx
at x̄ = π

/
6.

3. If f (x) and g(x) are strictly convex objective and constraint functions, respec-
tively, then f (x) and g(x) are strictly Type I, but the converse is not necessarily true,
as can be seen from the following example.

Example 2.3.3. The functions f :
(
0, π2

)→ R and g :
(
0, π2

)→ R defined by f (x) =
−x + cosx and g(x) = −cosx are strictly Type I functions with respect to η (x) =
1−

(
2√
2

)
cosx at x̄ = π

/
4, but f (x)andg(x) are not strictly convex with respect to

the same η (x) = 1−
(

2√
2

)
cosx.

4. If f (x) and g(x) are strictly convex objective and constraint functions, respec-
tively, then f (x) and g(x) are strictly Type II, but the converse is not necessarily
true, as can be seen from the following example.



14 2 Generalized Convex Functions

Example 2.3.4. The functions f :
(
0, π2

)→ R and g :
(
0, π2

)→ R defined by f (x) =
−x + cosx and g(x) = −cosx are strictly Type II functions with respect to η (x) =
(

cosx−
√

2
2

)

sinx at x̄ = π
/

4, but f (x) and g(x) are not strictly convex with respect to the

same η (x) = 1−
(

2√
2

)
cosx.

Rueda and Hanson (1988) defined:

Definition 2.3.3. f (x) and g(x) as pseudo-Type I objective and constraint func-
tions, respectively, with respect to η (x) at x̄ if there exists an n-dimensional vector
function η (x) defined for all x ∈ P such that

[∇x f (x)]T η (x, x̄) � 0 ⇒ f (x̄)− f (x) � 0

and
[∇xg(x)]T η (x, x̄) � 0 ⇒−g(x) � 0.

Definition 2.3.4. f (x) and g(x) as quasi-Type I objective and constraint functions,
respectively, with respect to η (x) at x̄ if there exists an n-dimensional vector function
η (x) defined for all x ∈ P such that

f (x)− f (x̄) � 0 ⇒ [∇x f (x̄)]T η (x, x̄) � 0.

and
−g(x) � 0 ⇒ [∇xg(x)]T η (x, x̄) � 0.

Pseudo-Type II and quasi-Type II objective and constraint functions are defined
similarly.

It was shown by Rueda and Hanson (1988) that:

1. Type I objective and constraint functions ⇒ pseudo-Type I objective and con-
straint functions, but the converse is not necessarily true, as can be seen from the
following example.

Example 2.3.5. The functions f :
(− π

2 , π2
) → R and g :

(− π
2 , π2

) → R defined by
f (x) = −cos2 x and g(x) = −cosx are pseudo-Type I functions with respect to
η (x) = − 1

2 +
(√

2
/

2
)

cosx at x̄ = −π/4, but f (x) and g(x) are not Type I with

respect to the same η (x) = − 1
2 +

(√
2
/

2
)

cosx as can be seen by taking x = 0.

2. Type II objective and constraint functions ⇒ pseudo-Type II objective and
constraint functions, but the converse is not necessarily true, as can be seen from the
following.

Example 2.3.6. The functions f :
(− π

2 , π2
) → R and g :

(− π
2 , π2

) → R defined by
f (x) = −cos2 x and g(x) = −cosx are pseudo-Type II functions with respect to
η (x) = sin x

(
cosx−√

2
/

2
)

at x̄ = −π/4, but f (x) and g(x) are not Type II with

respect to the same η (x) = sinx
(

cosx−√
2
/

2
)

as can be seen by taking x = π
/

3.
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3. Type I objective and constraint functions ⇒ quasi-Type I objective and con-
straint functions, but the converse is not necessarily true, as can be seen from the
following example.

Example 2.3.7. The functions f : (0,π) → R and g : (0,π) → R defined by f (x) =
sin3 x and g(x) = −cosx are quasi-Type I functions with respect to η (x) = −1 at
x̄ = π

/
2, but f (x) and g(x) are not Type I with respect to the same η (x) = −1 as

can be seen by taking x̄ = π
/

4.

4. Type II objective and constraint functions ⇒ quasi-Type II objective and con-
straint functions, but the converse is not necessarily true, as can be seen from the
following example.

Example 2.3.8. The functions f : (0,∞) → R and g : (0,∞) → R defined by f (x) =
− 1

x and g(x) = 1− x are quasi-Type II functions with respect to η (x) = 1− x at
x̄ = 1, but f (x) and g(x) are not Type II with respect to the same η (x) = 1− x as
can be seen by taking x = 2.

5. Strictly Type I objective and constraint functions ⇒ Type I objective and con-
straint functions, but the converse is not necessarily true, as can be seen from the
following example.

Example 2.3.9. The functions f :
(− π

2 , π2
) → R and g :

(− π
2 , π2

) → R defined by
f (x) =−sinx and g(x) =−cosx are Type I functions with respect to η (x) = sinx at
x̄ = 0, but f (x) and g(x) are not strictly Type I with respect to the same η (x) = sinx
at x̄ = 0.

6. Strictly Type II objective and constraint functions ⇒ Type II objective and
constraint functions, but the converse is not necessarily true, as can be seen from the
following example.

Example 2.3.10. The functions f :
(
0, π2

)→ R and g :
(
0, π2

)→ R defined by f (x) =
−sinx and g(x) = −e−x are Type II functions with respect to η (x) = 1 at x̄ = 0, but
f (x)andg(x) are not strictly Type I with respect to the same η (x) at x̄ = 0.

Kaul et al. (1994) further extended the concepts of Rueda and Hanson (1988)
to pseudo-quasi Type I, quasi-pseudo Type I objective and constraint functions as
follows.

Definition 2.3.5. f (x) and g(x) as quasi-pseudo-Type I objective and constraint
functions, respectively, with respect to η (x) at x̄ if there exists an n-dimensional
vector function η (x) defined for all x ∈ P such that

f (x)− f (x̄) � 0 ⇒ [∇x f (x̄)]T η (x, x̄) � 0

and
[∇xg(x)]T η (x, x̄) � 0 ⇒−g(x) � 0.
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Definition 2.3.6. f (x) and g(x) as pseudo-quasi-Type I objective and constraint
functions, respectively,with respect to η (x) at x̄ if there exists an n-dimensional
vector function η (x) defined for all x ∈ P such that

[∇x f (x̄)]T η (x, x̄) � 0 ⇒ f (x)− f (x̄) � 0

and
−g(x) � 0 ⇒ [∇xg(x)]T η (x, x̄) � 0.

2.4 Univex and Related Functions

Let f be a differentiable function defined on a nonempty subset X of Rn and let
φ : R → R and k : X ×X → R+. For x, x̄ ∈ X , we write k (x, x̄) = lim

λ→0
b(x, x̄,λ ) � 0.

Bector et al. (1992) defined b-invex functions as follows.

Definition 2.4.1. The function f is said to be B-invex with respect to η and k, at x̄
if for all x ∈ X, we have

k (x, x̄) [ f (x)− f (x̄)] � [∇x f (x̄)]T η (x, x̄) .

Bector et al. (1992) further extended this concept to univex functions as follows.

Definition 2.4.2. The function f is said to be univex with respect to η ,φ and k, at x̄
if for all x ∈ X, we have

k (x, x̄)φ [ f (x)− f (x̄)] � [∇x f (x̄)]T η (x, x̄) .

Definition 2.4.3. The function f is said to be quasi-univex with respect to η ,φ and
k, at x̄ if for all x ∈ X, we have

φ [ f (x)− f (x̄)] � 0 ⇒ k (x, x̄)η (x, x̄)T∇x f (x̄) � 0.

Definition 2.4.4. The function f is said to be pseudo-univex with respect to η ,φ and
k, at x̄ if for all x ∈ X, we have

η (x, x̄)T∇x f (x̄) � 0 ⇒ k (x, x̄)φ [ f (x)− f (x̄)] � 0.

Bector et al. (1992) gave the following relations with some other generalized
convex functions existing in the literature.

1. Every B-invex function is univex function with φ : R → R defined as φ (a) =
a,∀a ∈ R, but not conversely.

Example 2.4.1. Let f : R → R be defined by f (x) = x3, where,

η (x, x̄) =
{

x2 + x̄2 + xx̄, x > x̄
x− x̄,x � x̄
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and

k (x, x̄) =
{

x̄2/(x− x̄), x > x̄
0, x � x̄.

Let φ : R → R be defined by φ (a) = 3a. The function f is univex but not b-invex,
because for x = 1, x̄ = 1/2, k (x, x̄)φ [ f (x)− f (x̄)] < η (x, x̄)T∇x f (x̄) .

2. Every invex function is univex function with φ : R → R defined as φ (a) =
a,∀a ∈ R, and k (x, x̄) ≡ 1, but not conversely.

Example 2.4.2. The function considered in above example is univex but not invex,
because for x = −3, x̄ = 1, f (x)− f (x̄) < η (x, x̄)T∇x f (x̄) .

3. Every convex function is univex function with φ : R → R defined as φ (a) =
a,∀a ∈ R,k (x, x̄) ≡ 1, and η (x, x̄) ≡ x− x̄, but not conversely.

Example 2.4.3. The function considered in above example is univex but not convex,
because for x = −2, x̄ = 1, f (x)− f (x̄) < (x− x̄)T∇x f (x̄) .

4. Every b-vex function is univex function with φ : R → R defined as φ (a) =
a,∀a ∈ R, and η (x, x̄) ≡ x− x̄, but not conversely.

Example 2.4.4. The function considered in above example is univex but not b-vex,
because for x = 1

10 , x̄ = 1
100 ,k (x, x̄) [ f (x)− f (x̄)] < (x− x̄)T∇x f (x̄) .

Rueda et al. (1995) obtained optimality and duality results for several mathemat-
ical programs by combining the concepts of type I functions and univex functions.
They combined the Type I and univex functions as follows.

Definition 2.4.5. The differentiable functions f (x) and g(x) are called Type I univex
objective and constraint functions, respectively with respect to η ,φ0,φ1,b0,b1 at
x̄ ∈ X, if for all x ∈ X, we have

b0 (x, x̄)φ0 [ f (x)− f (x̄)] � η (x, x̄)T∇x f (x̄)

and
−b1 (x, x̄)φ1 [g(x̄)] � η (x, x̄)T∇xg(x̄) .

Rueda et al. (1995) gave examples of functions that are univex but not Type I
univex.

Example 2.4.5. The functions f ,g : [1,∞) → R, defined by f (x) = x3 and g(x) =
1− x, are univex at x̄ = 1 with respect to b0 = b1 = 1,η (x, x̄) = x − x̄,φ0 (a) =
3a,φ1 (a) = 1, but g does not satisfy the second inequality of the above definition at
x̄ = 1.

They also pointed out that there are functions which are Type I univex but not
univex.

Example 2.4.6. The functions f ,g : [1,∞) → R, defined by f (x) = −1/x and g(x) =
1−x, are Type I univex with respect to b0 = b1 = 1,η(x, x̄)=−1/(x− x̄), φ0(a) = a,
φ1(a) = −a, at x̄ = 1, but g is not univex at x̄ = 1.
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Following Rueda et al. (1995), Mishra (1998b) gave several sufficient optimality
conditions and duality results for multiobjective programming problems by combin-
ing the concepts of Pseudo-quasi-Type I, quasi-pseudo-Type I functions and univex
functions.

2.5 V-Invex and Related Functions

Jeyakumar and Mond (1992) introduced the notion of V-invexity for a vector func-
tion f = ( f1, f2, . . . , fp) and discussed its applications to a class of constrained
multiobjective optimization problems. We now give the definitions of Jeyakumar
and Mond (1992) as follows.

Definition 2.5.1. A vector function f : X → Rp is said to be V-invex if there exist
functions η : X ×X → Rn and αi : X ×X → R+ −{0} such that for each x, x̄ ∈ X
and for i = 1,2, . . . , p,

fi (x)− fi (x̄) � αi (x, x̄)∇ fi (x̄)η (x, x̄) .

for p = 1 and η̄ (x, x̄) = αi (x, x̄)η (x, x̄) the above definition reduces to the usual
definition of invexity given by Hanson (1981).

Definition 2.5.2. A vector function f : X → Rp is said to be V-pseudoinvex if there
exist functionsη : X×X →Rn and βi : X ×X →R+−{0} such that for each x, x̄ ∈X
and for i = 1,2, . . . , p,

p

∑
i=1
∇ fi (x̄)η (x, x̄) � 0 ⇒

p

∑
i=1
βi (x, x̄) fi (x) �

p

∑
i=1
βi (x, x̄) fi (x̄).

Definition 2.5.3. A vector function f : X → Rp is said to be V-quasiinvex if there
exist functions η : X ×X →Rn and δi : X ×X →R+−{0} such that for each x, x̄∈ X
and for i = 1,2, . . . , p,

p

∑
i=1
δi (x, x̄) fi (x) �

p

∑
i=1
δi (x, x̄) fi (x̄) ⇒

p

∑
i=1
∇ fi (x̄)η (x, x̄) � 0.

It is evident that every V-invex function is both V-pseudo-invex (with βi (x, x̄) =
1

αi(x,x̄)
) and V-quasi-invex (with δi (x, x̄) = 1

αi(x,x̄)
). Also if we set p = 1, αi (x, x̄) = 1,

βi (x, x̄) = 1, δi (x, x̄) = 1 and η (x, x̄) = x− x̄, then the above definitions reduce to
those of convexity, pseudo-convexity and quasi-convexity, respectively.

Definition 2.5.4. A vector optimization problem:

(VP) V −min( f1, f2, . . . , fp) subject to g(x) � 0,
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where fi : X → R, i = 1,2, . . . , p and g : X → Rm are differentiable functions on
X, is said to be V-invex vector optimization problem if each f1, f2, . . ., fp and
g1, g2, . . ., gm is a V-invex function.

Note that, invex vector optimization problems are necessarily V-invex, but not
conversely. As a simple example, we consider following example from Jeyakumar
and Mond (1992).

Example 2.5.1. Consider

min
x1,x2∈R

(
x2

1
x2

,
x1

x2

)

subject to 1− x1 ≤ 1,1− x2 ≤ 1.

Then it is easy to see that this problem is a V-invex vector optimization problem
with α1 = x̄2

x2
, α2 = x̄1

x1
, β1 = 1 = β2, and η (x, x̄) = x− x̄; but clearly, the problem

does not satisfy the invexity conditions with the same η .
It is also worth noticing that the functions involved in the above problem are

invex, but the problem is not necessarily invex.
It is known (see Craven (1981)) that invex problems can be constructed from

convex problems by certain nonlinear coordinate transformations. In the follow-
ing, we see that V-invex functions can be formed from certain nonconvex functions
(in particular from convex-concave or linear fractional functions) by coordinate
transformations.

Example 2.5.2. Consider function, h : Rn → Rp defined by h(x) = ( f1(φ(x)), . . . ,
fp(φ(x))), where fi : Rn → R, i = 1,2, . . . , p, are strongly pseudo-convex functions
with real positive functions αi,φ : Rn → Rn is surjective with φ ′ (x̄) onto for each
x̄ ∈ Rn. Then, the function h is V-invex.

Example 2.5.3. Consider the composite vector function h(x) = ( f1(F1(x)), . . . ,
fp(Fp(x))), where for each i = 1, 2, . . . , p, Fi : X0 →R is continuously differentiable
and pseudolinear with the positive proportional function αi (·, ·), and fi : R → R
is convex. Then, h(x) is V−invex with η (x, y) = x − y. This follows from the
following convex inequality and pseudolinearity conditions:

fi (Fi (x))− fi (Fi (y)) ≥ f ′i (Fi (y))(Fi (x)−Fi (y))
= f ′i (Fi (y))αi (x, y)F ′

i (y)(x− y)

= αi (x, y)( fi ◦Fi)′ (y)(x− y) .

For a simple example of a composite vector function, we consider

h(x1, x2) =
(

ex1/x2 ,
x1 − x2

x1 + x2

)

, where X0 =
{
(x1, x2) ∈ R2 : x1 ≥ 1, x2 ≥ 1

}
.

Example 2.5.4. Consider the function H(x)= (f1((g1◦ψ)(x)), . . . , fp((gp ◦ψ)(x))),
where each fi is pseudolinear on Rn with proportional functions αi (x, y) ,ψ is a
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differentiable mapping from Rn onto Rn such thatψ ′ (y) is surjective for each y∈Rn,
and fi : R → R is convex for each i. Then H is V -invex.

Jeyakumar and Mond (1992) have shown that the V -invexity is preserved under
a smooth convex transformation.

Proposition 2.5.1. Let ψ : R → R be differentiable and convex with positive deriva-
tive everywhere; let h : X0 → Rp be V-invex. Then, the function

hψ (x) = (ψ (h1 (x)) , . . . , ψ (hp (x))) , x ∈ X0

is V -invex.

The following very important property of V -invex functions was also established
by Jeyakumar and Mond (1992).

Proposition 2.5.2. Let f : Rn → Rp be V-invex. Then y ∈ Rn is a (global) weak

minimum of f if and only if there exists 0 �= τ ∈ Rp, τ ≥ 0,
p
∑

i=1
τi f ′i (y) = 0.

By Proposition 2.5.2, one can conclude that for a V -invex vector function every
critical point (i.e., f ′i (y) = 0, i = 1, . . . , p) is a global weak minimum.

Hanson et al. (2001) extended the (scalarized) generalized type-I invexity into a
vector (V-type-I) invexity.

Definition 2.5.5. The vector problem (VP) is said to be V-type-I at x̄∈ Xif there exist
positive real-valued functions αi and β j defined on X × X and an n-dimensional
vector-valued function η : X ×X → Rn such that

fi (x)− fi (x̄) � αi (x, x̄)∇ fi (x̄)η (x, x̄)

and
−g j (x̄) � β j (x, x̄)∇g j (x̄)η (x, x̄) ,

for every x ∈ X and for all i = 1,2, . . . , p and j = 1,2, . . . ,m.

Definition 2.5.6. The vector problem (VP) is said to be quasi-V-type-I at x̄ ∈ X if
there exist positive real-valued functions αi and β j defined on X × X and an n-
dimensional vector-valued function η : X ×X → Rn such that

p

∑
i=1
τiαi (x, x̄) [ fi (x)− fi (x̄)] � 0 ⇒

p

∑
i=1
τiη (x, x̄)∇ fi (x̄) � 0

and

−
m

∑
j=1
λ jβ j (x, x̄)g j (x̄) � 0 ⇒

m

∑
j=1
λ jη (x, x̄)∇g j (x̄) � 0,

for every x ∈ X.
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Definition 2.5.7. The vector problem (VP) is said to be pseudo-V-type-I at x̄ ∈ X
if there exist positive real-valued functions αiand β j defined on X × X and an
n-dimensional vector-valued function η : X ×X → Rn such that

p

∑
i=1
τiη (x, x̄)∇ fi (x̄) � 0 ⇒

p

∑
i=1
τiαi (x, x̄) [ fi (x)− fi (x̄)] � 0

and
m

∑
j=1
λ jη (x, x̄)∇g j (x̄) � 0 ⇒−

m

∑
j=1
λ jβ j (x, x̄)g j (x̄) � 0,

for every x ∈ X.

Definition 2.5.8. The vector problem (VP) is said to be quasi-pseudo-V-type-I at
x̄ ∈ X if there exist positive real-valued functions αi and β j defined on X ×X and an
n-dimensional vector-valued function η : X ×X → Rn such that

p

∑
i=1
τiαi (x, x̄) [ fi (x)− fi (x̄)] � 0 ⇒

p

∑
i=1
τiη (x, x̄)∇ fi (x̄) � 0

and
m

∑
j=1
λ jη (x, x̄)∇g j (x̄) � 0 ⇒−

m

∑
j=1
λ jβ j (x, x̄)g j (x̄) � 0,

for every x ∈ X.

Definition 2.5.9. The vector problem (VP) is said to be pseudo-quasi-V-type-I at
x̄ ∈ X if there exist positive real-valued functions αi and β j defined on X ×X and an
n-dimensional vector-valued function η : X ×X → Rn such that

p

∑
i=1
τiη (x, x̄)∇ fi (x̄) � 0 ⇒

p

∑
i=1
τiαi (x, x̄) [ fi (x)− fi (x̄)] � 0

and

−
m

∑
j=1
λ jβ j (x, x̄)g j (x̄) � 0 ⇒

m

∑
j=1
λ jη (x, x̄)∇g j (x̄) � 0,

for every x ∈ X.

Nevertheless the study of generalized convexity of a vector function is not yet
sufficiently explored and some classes of generalized convexity have been intro-
duced recently. Several attempts have been made by many authors to introduce
possibly a most wide class of generalized convex function, which can meet the
demand of a real life situation to formulate a nonlinear programming problem
and therefore get a best possible solution for the same. Recently, Aghezzaf and
Hachimi (2001) introduced a new class of functions, which we shall give in next
section.
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2.6 Further Generalized Convex Functions

Definition 2.6.1. f is said to be weak strictly pseudoinvex with respect to η at x̄ ∈ X
if there exists a vector function η (x, x̄) defined on X ×X such that, for all x ∈ X,

f (x) ≤ f (x̄) ⇒ ∇ f (x̄)η(x, x̄) < 0.

This definition is a slight extension of that of the pseudoinvex functions. This
class of functions does not contain the class of invex functions, but does contain the
class of strictly pseudoinvex functions.

Every strictly pseudoinvex function is weak strictly pseudoinvex with respect to
the same η . However, the converse is not necessarily true, as can be seen from the
following example.

Example 2.6.1. The function f = ( f1, f2) defined on X = R, by f1 (x) = x(x + 2) and
f2 (x) = x(x + 2)2 is weak strictly pseudoinvex function with respect to η (x, x̄) =
x + 2 at x̄ = 0, but it s not strictly pseudoinvex with respect to the same η (x, x̄) at x̄
because for x̄ = −2, we have

f (x) � f (x̄) but ∇ f (x̄)η (x, x̄) = 0 ≮ 0.

Definition 2.6.2. f is said to be strong pseudoinvex with respect to η at x̄ ∈X if there
exists a vector function η (x, x̄) defined on X ×X such that, for all x ∈ X,

f (x) ≤ f (x̄) ⇒ ∇ f (x̄)η (x, x̄) ≤ 0.

Instead of the class of weak strictly pseudoinvex, the class of strong pseudoinvex
functions does contain the class of invex functions. Also, every weak strictly pseu-
doinvex function is strong pseudoinvex with respect to the same η . However, the
converse is not necessarily true, as can be seen from the following example.

Example 2.6.2. The function f = ( f1, f2) defined on X = R, by f1 (x) = x3 and
f2 (x) = x(x + 2)2 is strongly pseudoinvex function with respect to η (x, x̄) = x at
x̄ = 0, but it is not weak strictly pseudoinvex with respect to the same η (x, x̄) at x̄
because for x̄ = −1

f (x) ≤ f (x̄) but ∇ f (x̄)η (x, x̄) = (0,−4)T
≮ 0,

also f is not invex with respect to the same η at x̄, as can be seen by taking x̄ = −2.

There exist functions f that are pseudoinvex but not strong pseudoinvex with
respect to the same η . Conversely, we can find functions that are strong pseudoinvex,
but they are not pseudoinvex with respect to the same η .

Example 2.6.3. The function f : R → R2, defined by f1 (x) = x(x−2)2 and f2 (x) =
x(x−3), is pseudoinvex with respect to η (x, x̄) = x− x̄ at x̄ = 0, but it is not weak
strictly pseudoinvex with respect to the same η (x, x̄) when x = 2.
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Example 2.6.4. The function f : R → R2, defined by f1 (x) = x(x−2) and f2 (x) =
x2 (x−1), is strong pseudoinvex with respect to η (x, x̄) = x− x̄ at x̄ = 0, but it is not
pseudoinvex with respect to the same η (x, x̄) at that point.

Remark 2.6.1. If f is both pseudoinvex and quasiinvex with respect to η at x̄ ∈ X ,
then it is strong pseudoinvex function with respect to the same η at x̄.

Definition 2.6.3. f is said to be weak quasiinvex with respect to η at x̄ ∈ X if there
exists a vector function η (x, x̄) defined on X ×X such that, for all x ∈ X,

f (x) ≤ f (x̄) ⇒ ∇ f (x̄)η (x, x̄) � 0.

Every quasiinvex function is weak quasiinvex with respect to the same η .
However, the converse is not necessarily true.

Example 2.6.5. Define a function f : R → R2, by f1 (x) = x(x−2)2 and f2 (x) =
x2 (x−2), then the function is weak quasiinvex with respect to η (x, x̄) = x− x̄ at
x̄ = 0, but it is not quasiinvex with respect to the same η (x, x̄) at x̄ = 0, because
f (x) � f (x̄) but ∇ f (x̄)η (x, x̄) � 0, for x = 2.

Definition 2.6.4. f is said to be weak pseudoinvex with respect to η at x̄ ∈ X if there
exists a vector function η (x, x̄) defined on X ×X such that, for all x ∈ X,

f (x) < f (x̄) ⇒ ∇ f (x̄)η (x, x̄) ≤ 0.

The class of weak pseudoinvex functions does contain the class of invex func-
tions, pseudoinvex functions, strong pseudoinvex functions and strong quasiinvex
functions.

Remark 2.6.2. Notice from Examples 2.6.1–2.6.4, that the concepts of weak strictly
pseudoinvex, strong pseudoinvex, weak pseudoinvex, and pseudoinvex vector-
valued functions are different, in general. However, they coincide in the scalar-
valued case.

Definition 2.6.5. f is said to be strong quasiinvex with respect to η at x̄ ∈ X if there
exists a vector function η (x, x̄) defined on X ×X such that, for all x ∈ X,

f (x) � f (x̄) ⇒ ∇ f (x̄)η (x, x̄) ≤ 0.

Every strong quasiinvex function s both quasiivex and strong pseudoinvex with
respect to the same η .

Aghezzaf and Hachimi (2001) introduced the class of weak prequasiinex func-
tions by generalzing the class of preinvex (Ben-Israel and Mond 1986) and the class
prequasiinvex functions (Suneja et al. 1993).

Definition 2.6.6. We say that f is weak prequasiinvex at x̄ ∈ X with respect to η if
X is invex at x̄ with respect to η and, for each x ∈ X,

f (x) ≤ f (x̄) ⇒ f (x̄ +λη (x, x̄)) � f (x̄) , 0 < λ � 0.
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Every prequasiinvex function is weak prequasiinvex with respect to the same η .
But the converse is not true.

Example 2.6.6. The function f : R → R2, defined by f1 (x) = x(x−2)2 and f2 (x) =
x(x−2), is weak prequasiivex at x̄ = 0 with respect to η (x, x̄) = x− x̄, but it is not
prequasiinvex with respect to the same η (x, x̄) at x̄ = 0, because f1 (x) = x(x−2)2

is not prequasiinvex at x̄ = 0 with respect to same η (x, x̄).



Chapter 3
Generalized Type I and Related Functions

3.1 Generalized Type I Univex Functions

Following Rueda et al. (1995) and Aghezzaf and Hachimi (2001), we define the
generalized type I univex problems. In the following definitions, b0,b1 : X ×X ×
[0,1]→R+, b(x,a)= lim

λ→0
b(x,a,λ )≥ 0, and b does not depend on λ if functions are

differentiable, φ0,φ1 : R → R and η : X ×X → Rn is an n-dimensional vector-valued
function.

Consider the following multiobjective programming problem:

(VP) minimize f (x)
subject to g(x) � 0,

x ∈ X ,

where f : X → Rk, g : X → Rm, X is a nonempty open subset of Rn.

Definition 3.1.1. We say the problem (VP) is of weak strictly pseudo type I univex
at a ∈ X0 if there exist a real-valued function b0,b1,φ0,φ1 and η such that

b0 (x,a)φ0 [ f (x)− f (a)] ≤ 0 ⇒ (∇ f (a))η (x,a) < 0,

−b1 (x,a)φ1 [g(a)] � 0 ⇒ (∇g(a))η (x,a) � 0,

for every x ∈ X0 and for all i = 1, . . . , p, and j = 1, . . . ,m.
If (VP) is weak strictly pseudo type I univex at each a∈ X, we say (VP) is of weak

strictly pseudo type I univex on X.

Remark 3.1.1. If in the above definition we set b0 (x,a) = 1 = b1 (x,a), φ0 and φ1 as
identity functions, we get the weak strictly pseudo quasi type I functions defined in
Aghezzaf and Hachimi (2001).

There exist functions which are weak strictly pseudoquasi type I univex, see the
following example.

S.K. Mishra et al., Generalized Convexity and Vector Optimization,
Nonconvex Optimization and Its Applications.
c© Springer-Verlag Berlin Heidelberg 2009

25



26 3 Generalized Type I and Related Functions

Example 3.1.1. The function f : R2 → R2 defined by f (x) =
(
x1esinx2 ,

x2(x2 −1)ecosx1
)

and g : R2 → R defined by g(x) = 2x1 + x2 − 2 are weak strictly
pseudoquasi type I univex with respect to b0 = 1 = b1,φ0, and φ1 are identity
function on R and η (x,a) = (x1 + x2 −1,x2 − x1) at a = (0,0).

Definition 3.1.2. We say the problem (VP) is of strong pseudoquasi type I univex at
a ∈ X0 if there exist a real-valued function b0,b1,φ0,φ1 and η such that

b0 (x,a)φ0 [ f (x)− f (a)] ≤ 0 ⇒ (∇ f (a))η (x,a) ≤ 0,

−b1 (x,a)φ1 [g(a)] � 0 ⇒ (∇g(a))η (x,a) � 0,

for every x ∈ X0 and for all i = 1, . . . , p, and j = 1, . . . ,m.

If (VP) is of strong pseudoquasi type I univex at each a ∈ X , we say (VP) is of
strong pseudoquasi type I univex on X.

Example 3.1.2. The function f : R2 →R2 and g : R2 →R defined by f (x) =
(
x1(x1−

1)2,x2(x2−1)2(x2
2 +2)

)
and g(x) = x2

1 +x2
2−9 are strong pseudoquasi type I univex

with respect to b0 = 1 = b1,φ0, and φ1 are identity function on R and η(x,a) =
(x1 − 1,x2 − 1) at a = (0,0), but ( f ,g) are not weak strictly pseudoquasi type I
univex with respect to same b0,b1,φ0,φ1 and η as can be seen by taking x = (1,−1).

Definition 3.1.3. We say the problem (VP) is of weak quasistrictly pseudo type I
univex b0,b1,φ0,φ1 and η at a ∈ X0 if there exist a real-valued function b0,b1,φ0,φ1
and η such that

b0 (x,a)φ0 [ f (x)− f (a)] ≤ 0 ⇒ (∇ f (a))η (x,a) � 0,

−b1 (x,a)φ1 [g(a)] � 0 ⇒ (∇g(a))η (x,a) ≤ 0,

for every x ∈ X0 and for all i = 1, . . . , p, and j = 1, . . . ,m.

If (VP) is of weak quasistrictly pseudo type I univex at each a ∈ X , we say (VP)
is of weak quasistrictly pseudo type I univex on X.

Example 3.1.3. The function f : R2 → R2 and g : R2 → R defined by f (x) =(
x3

1

(
x2

1 + 1
)
,x2

2
(x2 −1)3

)
and g(x) =

(
(2x1 −4)e−x2

2 ,(x1 + x2 −2)
(
x2

1 + 2x1 + 4
))

are weak quasistrictly pseudo type I univex with respect to b0 = 1 = b1,φ0, and φ1
are identity function on R and η (x,a) = (x1,x2 (1− x2)) at a = (0,0), but ( f ,g) are
not type I univex with respect to same b0,b1,φ0,φ1 and η as can be seen by taking
x = (1,0). Type I univex functions are defined in Rueda et al. (1995).

Definition 3.1.4. We say the problem (VP) is of weak strictly pseudo type I univex
with respect to b0,b1,φ0,φ1 and η at a ∈ X0 if there exist a real-valued function
b0,b1,φ0,φ1 and η such that

b0 (x,a)φ0 [ f (x)− f (a)] ≤ 0 ⇒ (∇ f (a))η (x,a) < 0,

−b1 (x,a)φ1 [g(a)] � 0 ⇒ (∇g(a))η (x,a) < 0,

for every x ∈ X0 and for all i = 1, . . . , p, and j = 1, . . . ,m.
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If (VP) is of weak strictly pseudo type I univex at each a ∈ X , we say (VP) is of
weak strictly pseudo type I univex on X.

3.2 Nondifferentiable d–Type I and Related Functions

Following Rueda et al. (1995), we define the generalized d-type I univex functions.
In the following definitions, b0,b1 : X ×X × [0,1] → R+, φ0,φ1 : R → R and η :
X ×X → Rn is an n-dimensional vector-valued function.

Definition 3.2.1. ( f ,g) is said to be d-type-I univex with respect to b0,b1,φ0,φ1 and
η at u ∈ X if there exist b0,b1, φ0,φ1 and η such that for all x ∈ X,

b0 (x,u)φ0 [ f (x)− f (u)] � f ′ (u,η (x,u))

and
−b1 (x,u)φ0 [g(u)] � g′ (u,η (x,u)) .

Definition 3.2.2. ( f ,g) is said to be weak strictly-pseudoquasi d-type-I univex with
respect to b0,b1,φ0,φ1 and η at u ∈ X if there exist b0,b1, φ0,φ1 and η such that for
all x ∈ X,

b0 (x,u)φ0 [ f (x)− f (u)] ≤ 0 ⇒ f ′ (u,η (x,u)) < 0

and
−b1 (x,u)φ1 [g(u)] � 0 ⇒ g′ (u,η (x,u)) � 0.

Definition 3.2.3. ( f ,g) is said to be strong pseudoquasi d-type-I univex with respect
to b0,b1,φ0,φ1 and η at u ∈ X if there exist b0,b1, φ0,φ1 and η such that for all
x ∈ X,

b0 (x,u)φ0 [ f (x)− f (u)] ≤ 0 ⇒ f ′ (u,η (x,u)) ≤ 0

and
−b1 (x,u)φ1 [g(u)] � 0 ⇒ g′ (u,η (x,u)) � 0.

Definition 3.2.4. ( f ,g) is said to be weak quasistrictly-pseudo d-type-I univex with
respect to b0,b1,φ0,φ1 and η at u ∈ X if there exist b0,b1, φ0,φ1 and η such that for
all x ∈ X,

b0 (x,u)φ0 [ f (x)− f (u)] ≤ 0 ⇒ f ′ (u,η (x,u)) � 0

and
−b1 (x,u)φ1 [g(u)] � 0 ⇒ g′ (u,η (x,u)) ≤ 0.

Definition 3.2.5. ( f ,g) is said to be weak strictly-pseudo d-type-I univex with
respect to b0,b1,φ0,φ1 and η at u ∈ X if there exist b0,b1, φ0,φ1 and η such that for
all x ∈ X,

b0 (x,u)φ0 [ f (x)− f (u)] ≤ 0 ⇒ f ′ (u,η (x,u)) < 0

and
−b1 (x,u)φ1 [g(u)] � 0 ⇒ g′ (u,η (x,u)) < 0.
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Remark 3.2.1. If we take b0 = b1 = 1 and φ0 and φ1 as the identity functions and if
functions f , and g are differentiable functions, then the above definitions reduce to
the definitions given in Aghezzaf and Hachimi (2001).

Remark 3.2.2. If we take b0 = b1 = 1 and φ0 and φ1 as the identity functions, the
functions defined in the above definitions extend the ones given in Suneja and Sri-
vastava (1997) to the directionally differentiable form of the functions given in
Aghezzaf and Hachimi (2001) and Antczak (2002a).

Remark 3.2.3. If functions are differentiable, then the above definitions are exten-
sions of the ones given in Rueda et al. (1995) and in Mishra (1998b).

For examples of differentiable generalized type functions, one can refer to
Aghezzaf and Hachimi (2001).

3.3 Continuous-Time Analogue of Generalized Type I Functions

Let I = [a,b] be a real interval and ψ : I ×Rn ×Rn → R be a continuously differ-
entiable function. In order to consider ψ (t,x, ẋ) , where x : I → Rn is differentiable
with derivative ẋ, we denote the partial derivatives of ψ by ψt ,

ψx =
[
∂ψ
∂x1 , . . . ,

∂ψ
∂xn

]

,ψẋ =
[
∂ψ
∂ ẋ1 , . . . ,

∂ψ
∂ ẋn

]

.

The partial derivatives of the other functions used will be written similarly. Let
C (I,Rn) denote the space of piecewise smooth functions x with norm ‖x‖= ‖x‖∞+
‖Dx‖∞ , where the differential operator D is given by

ui = Dxi ⇔ xi (t) = α+
t∫

a

ui (s)ds,

where α is a given boundary value. Therefore, D = d
dt except at discontinuities.

We consider the following continuous vector optimization problem
(MP)

minnimize
b∫

a

f (t,x, ẋ)dt =

⎛

⎝

b∫

a

f1 (t,x, ẋ)dt, . . . ,
b∫

a

fp (t,x, ẋ)dt

⎞

⎠

subject to x(a) = α, x(b) = β ,

g(t,x, ẋ) � 0, t ∈ I,

x ∈C (I,Rn) ,

where fi : I×Rn ×Rn → R, i ∈ P = {1, . . . , p} ,g : I×Rn×Rn → Rm are assumed to
be continuously differentiable functions.
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Definition 3.3.1. A pair ( f ,g) is said to be weak strictly pseudoquasi type I at u ∈
C (I,Rn) with respect to η if there exists a vector function η : I×Rn×Rn → Rn with
η (t,x,x) = 0 such that for ∀x ∈ K,

b∫

a

f (t,x, ẋ)dt ≤
b∫

a

f (t,u, u̇)dt

⇒
b∫

a

[

η (t,x,u)T fx (t,u, u̇)+
d
dt

(η (t,x,u))T fẋ (t,u, u̇)
]

dt < 0

and

−
b∫

a

g(t,u, u̇)dt � 0

⇒
b∫

a

[

η (t,x,u)T gx (t,u, u̇)+
d
dt

(
η (t,x,u)T gẋ (t,u, u̇)

)]

dt � 0.

Definition 3.3.2. A pair ( f ,g) is said to be strong pseudoquasi type I at u∈C (I,Rn)
with respect to η if there exists a vector function η : I × Rn × Rn → Rn with
η (t,x,x) = 0 such that for ∀x ∈ K,

b∫

a

f (t,x, ẋ)dt ≤
b∫

a

f (t,u, u̇)dt

⇒
b∫

a

[

η (t,x,u)T fx (t,u, u̇)+
d
dt

(η (t,x,u))T fẋ (t,u, u̇)
]

dt ≤ 0

and

−
b∫

a

g(t,u, u̇)dt � 0

⇒
b∫

a

[

η (t,x,u)T gx (t,u, u̇)+
d
dt

(
η (t,x,u)T gẋ (t,u, u̇)

)]

dt � 0.

Definition 3.3.3. A pair ( f ,g) is said to be weak quasistrictly pseudo type I at u ∈
C (I,Rn) with respect to η if there exists a vector function η : I×Rn×Rn → Rn with
η (t,x,x) = 0 such that for ∀x ∈ K,
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b∫

a

f (t,x, ẋ)dt ≤
b∫

a

f (t,u, u̇)dt

⇒
b∫

a

[

η (t,x,u)T fx (t,u, u̇)+
d
dt

(η (t,x,u))T fẋ (t,u, u̇)
]

dt � 0

and

−
b∫

a

g(t,u, u̇)dt � 0

⇒
b∫

a

[

η (t,x,u)T gx (t,u, u̇)+
d
dt

(
η (t,x,u)T gẋ (t,u, u̇)

)]

dt ≤ 0.

Definition 3.3.4. A pair ( f ,g) is said to be weak strictly pseudo type I at u ∈
C (I,Rn) with respect to η if there exists a vector function η : I × Rn × Rn → Rn

with η (t,x,x) = 0 such that for ∀x ∈ K,

b∫

a

f (t,x, ẋ)dt ≤
b∫

a

f (t,u, u̇)dt

⇒
b∫

a

[

η (t,x,u)T fx (t,u, u̇)+
d
dt

(η (t,x,u))T fẋ (t,u, u̇)
]

dt < 0

and

−
b∫

a

g(t,u, u̇)dt � 0

⇒
b∫

a

[

η (t,x,u)T gx (t,u, u̇)+
d
dt

(
η (t,x,u)T gẋ (t,u, u̇)

)]

dt < 0.

The following remark will be frequently used in the proofs of various theorems
throughout Chapter 4 and Chapter 5.

Remark 3.3.1. Let ψ : I ×Rn × Rn → R be a continuously differentiable function
with respect to each of its arguments. Let x,u : I → Rn be differentiable with x(a) =
u(a) = α and x(b) = u(b) = β . Then we have

b∫

a

d
dt

(η (t,x,u))T ψẋ (t,u, u̇)dt = −
b∫

a

η (t,x,u)T d
dt

(ψẋ (t,u, u̇))dt.
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3.4 Nondifferentiable Continuous-Time Analogue
of Generalized Type I Functions

Let U be a nonempty subset of Z and ψ : U → R be a locally Lipschitz function
on U .

Definition 3.4.1. The function ψ : U → R is called invex at z̄ ∈ U if there exists a
function η : U ×U → Z such that

ψ (z)−ψ (z̄) ≥ ψ0 (z̄;η (z, z̄)) for all z ∈U.

The function ψ is strictly invex if the above inequality is strict for z �= z̄.

We also need to use an invexity notion in the continuous-time context. Let U ⊂Rn

be a nonempty subset of Rn and x̄ ∈ X . Suppose that a given function ψ : [0,T ]×
U → R is locally Lipschitz throughout [0,T ].

Definition 3.4.2. The function ψ (t, ·) is said to be invex at x̄(t) if there exists η :
U ×U → Rn such that the function t → η (x(t) , x̄ (t)) is in Ln

∞ [0,T ] and

ψ (t,x(t))−ψ (t, x̄(t)) ≥ ψ0 (t, x̄(t) ;η (x(t) , x̄(t))) a.e. in [0,T ] for all x ∈ X .

We say that ψ is strictly invex if the above inequality is strict for x(t) �= x̄(t) a.e. in
[0,T ].

Definition 3.4.3. The pair of functions ψ : U → R and ϕ : U → R is said to be type
I at z̄ ∈U if there exists a function η : U ×U → Z such that

ψ (z)−ψ (z̄) ≥ ψ0 (z̄;η (z, z̄)) ∀z ∈U

and
−ϕ (z̄) ≥ ϕ0 (z̄;η (z, z̄)) ∀z ∈U.

We also need to use a type I notion in the continuous-time context. Let U ⊂ Rn be a
nonempty subset of Rn and x̄ ∈ X. Suppose that a given function ψ : [0,T ]×U → R
is locally Lipschitz throughout [0,T ].

Definition 3.4.4. The pair of functions ψ (t, ·) and ϕ (t, ·) is said to be type I at x̄ (t)
if there exists η : U ×U → Rn such that the function t → η (x(t) , x̄ (t)) is in Ln

∞ [0,T ]
with

ψ (t,x(t))−ψ (t, x̄(t)) ≥ ψ0 (t, x̄(t) ;η (x(t) , x̄(t))) a.e. in [0,T ] ∀x ∈ X

and

−ψ (t, x̄(t)) ≥ ψ0 (t, x̄(t) ;η (x(t) , x̄(t))) a.e. in [0,T ] ∀x ∈ X .
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3.5 Generalized Convex Functions in Complex Spaces

Let Cn (or Rn) denote an n-dimensional complex (or real) spaces, Cm×n (or
Rm×n) the collection of m × n complex matrices (or real) matrices, Rn

+ =
{x ∈ Rn : xi ≥ 0 for all i = 1,2, . . . ,n} the nonnegative orthant of Rn, and x ≥ y rep-
resent x − y ∈ Rn

+ for x,y ∈ Rn. For z ∈ Cn, let the real vectors Re(z) and Im(z)
denote real and imaginary parts of each component of z respectively, and write
z̄ = Re(z)− iIm(z) as the conjugate of z. Given a matrix A =

[
aij
] ∈ Cm×n, we use

Ā =
[
āij
]

to express its conjugate transpose. The inner product of x,y ∈Cn is 〈x,y〉=
yHx.

A nonempty subset S of Cm is said to be a polyhedral cone if there is an inte-
ger r and a matrix K ∈ Cr×m such that S = {z ∈Cm : Re (Kz) ≥ 0}. The dual (also
polar) of S is S∗ = {ω ∈Cm : z ∈ S ⇒ Re〈z,ω〉 ≥ 0}. It is clear that S = S∗∗ if S is

a polyhedral cone. Define the manifold Q =
{(

ω1
ω2

)

∈C2n : ω2 = ω̄1

}

.

For ξ = (z, z̄)∈ S0, we define W (ξ ) =
{
ς ∈W : Reφ(ξ ,ς) = supμ∈W Reφ(ξ ,μ)

}
,

and note that W (ξ ) is compact and nonempty. For each ς ∈W , the function φ (·, ·) :
C2n ×C2m →C, and g : C2n →Cp are differentiable with respect to ξ = (z, z̄) if

φ(z, z̄;ς)−φ(z0, z̄0;ς) = ηT (z,z0)∇zφ(z0, z̄0;ς)+ηH(z,z0)∇z̄φ(z0, z̄0;ς)+O(|z− z0|)

and

g(z, z̄)−g(z0, z̄0) = ηT (z,z0)∇zg(z0, z̄0)+ηH (z,z0)∇z̄g(z0, z̄0)+ O(|z− z0|) ,

where, ∇zφ , ∇z̄φ , ∇zg, and ∇z̄g denote, respectively, the vectors of partial deriva-
tives of φ and g with respect to z and z̄. Further O(|z− z0|)

/|z− z0| → 0 as z → z0.
Note that with u ∈Cp

∇z̄uHg(z,z0) ≡ ∇zg(z0, z̄0) ū.

We also need the following definitions, which are extensions of definitions given
by Smart (1990) and Smart and Mond (1991).

Definition 3.5.1. (1) The real part of φ (·,ς) is said to be invex with respect to R+on
the manifold Q ≡ {

(ω1,ω2) ∈C2n : ω2 = ω1
}

if there exists a function η : Cn ×
Cn →Cn such that

Re
[
ϕ (z2, z̄2;ς )−ϕ (z1, z̄1;ς )−ηT (z2,z1)∇zϕ (z1, z̄1;ς)−ηH (z2,z1)∇z̄ϕ (z1, z̄1;ς)

]≥ 0

for all z1,z2 ∈Cn.

The function −g is said to be invex with respect to the polyhedral cone S if there
exists a function η : Cn ×Cn →Cn such that

Re
〈
u,g(z2, z̄2)−g(z1, z̄1)−ηT (z2,z1)∇zg(z1, z̄1)−ηH (z2,z1)∇z̄g(z1, z̄1)

〉≥ 0,

for all z1,z2 ∈Cn.
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In the above definition, if the strict inequality holds, the real part of φ (·,ς) and −g
are said to be strict invex with respect to R+ and the polyhedral cone S, respectively.

(2) The real part of φ (·,ς) is said to be pseudoinvex with respect to R+ on the
manifold Q ≡ {

(ω1,ω2) ∈C2n : ω2 = ω1
}

if there exists a function η : Cn ×Cn →
Cn such that

Re
[
ηT (z2,z1)∇zϕ (z1, z̄1;ς)+ηH (z2,z1)∇z̄ϕ (z1, z̄1;ς)

]≥ 0
⇒ Re [ϕ (z2, z̄2;ς)−ϕ (z1, z̄1;ς)] ≥ 0, for all z1,z2 ∈Cn.

The function −g is said to be pseudoinvex with respect to the polyhedral cone S if
there exists a function η : Cn ×Cn →Cn such that

Re
〈
u,ηT (z2,z1)∇zg(z1, z̄1)+ηH (z2,z1)∇z̄g(z1, z̄1)

〉≥ 0
⇒ Re 〈u,g(z2, z̄2)−g(z1, z̄1)〉 ≥ 0, for all z1,z2 ∈Cn.

In the above definition, if the strict inequalities hold for all z2 �= z1, the real part of
φ (·,ς) and −g are said to be strict pseudoinvex with respect ot ηand R+ and the
polyhedral cone S, respectively.

(3) The real part of φ (·,ς) is said to be quasiinvex with respect to R+ on the
manifold Q ≡ {

(ω1,ω2) ∈C2n : ω2 = ω1
}

if there exists a function η : Cn ×Cn →
Cn such that

Re [ϕ (z2, z̄2;ς)−ϕ (z1, z̄1;ς)] ≤ 0

⇒ Re
[
ηT (z2,z1)∇zϕ(z1, z̄1;ς)+ηH(z2,z1)∇z̄ϕ(z1, z̄1;ς)

]
0, for all z1,z2 ∈Cn.

The function −g is said to be quasiinvex with respect to the polyhedral cone S if
there exists a function η : Cn ×Cn →Cn such that

Re 〈u,g(z2, z̄2)−g(z1, z̄1)〉 ≤ 0

⇒ Re
〈
u,ηT (z2,z1)∇zg(z1, z̄1)+ηH (z2,z1)∇z̄g(z1, z̄1)

〉≤ 0, for all z1,z2 ∈Cn.

3.6 Semilocally Connected Type I Functions

Let X0 ⊆ Rn be a set and η : X0 ×X0 → Rn be a vector application. We say that X0
is invex at x̄ ∈ X0 if x̄ +λη (x, x̄) ∈ X0 for any x ∈ X0 and λ ∈ [0,1]. We say that the
set X0 is invex if X0 is invex at any x ∈ X0.

We remark that if η (x, x̄) = x− x̄ for any x ∈ X0 then X0 is invex at x̄ iff X0 is a
convex set at x̄.

Definition 3.6.1. We say that the set X0 ⊆ Rn is an η-locally starshaped set at x, x̄ ∈
X0, if for any x ∈ X0, there exists 0 < aη (x, x̄) � 1 such that x̄ +λη (x, x̄) ∈ X0 for
any λ ∈ [0,aη (x, x̄)].
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Definition 3.6.2. (Preda 1996) Let f : X0 → Rn be a function, where X0 ⊆ Rn is an
η-locally starshaped set at x̄ ∈ X0. We say that f is

(a) Semilocally Pre-invex (slpi) at x̄ if, corresponding to x̄ and each x ∈ X0,
there exists a positive number dη (x, x̄) � aη (x, x̄) such that f (x̄ +λη (x, x̄)) �
λ f (x)+ (1−λ) f (x̄) for 0 < λ < dη (x, x̄) .

(b) Semilocally quasi-preinvex (slqpi) at x̄ if, corresponding to x̄ and each x ∈ X0,
there exists a positive number dη (x, x̄) � aη (x, x̄) such that f (x) � f (x̄) and
0 < λ < dη (x, x̄) implies f (x̄ +λη (x, x̄)) � f (x̄) .

Definition 3.6.3. Let f : X0 → Rn be a function, where X0 ⊆ Rn is an η-locally star-
shaped set at x̄ ∈ X0. We say that f is η-semidifferentiable at x̄ if (d f )+ (x̄,η (x, x̄))
exists for each x̄ ∈ X0, where

(d f )+ (x̄,η (x, x̄)) = lim
λ→0+

1
λ

[ f (x̄+λη (x, x̄))− f (x̄)]

(the right derivative at x̄ along the direction η (x, x̄)). If f is η-semidifferentiable at
any x̄ ∈ X0, then f is said to be η-semidifferentiable on X0.

Remark 3.6.1. If η (x, x̄) = x− x̄, the η-semidifferentiability is the semidifferentia-
bility notion. As is given by Preda (2003), if a function is directionally differentiable,
then it is semidifferentiable but the converse is not true.

Definition 3.6.4. (Preda 1996) We say that f is semilocally pseudo–preinvex (slppi)
at x̄ if for any x̄ ∈ X0, (d f )+ (x̄,η (x, x̄)) � 0 ⇒ f (x) � f (x̄) . If f is slppi at any
x̄ ∈ X0, then f is said to be slppi on X0.

Definition 3.6.5. Let X and Y be two subsets of X0 and ȳ ∈ Y. We say that Y is η-
locally starshaped at ȳ with respect to X if for any x∈ X there exists 0 < aη (x, ȳ) � 1
such that ȳ +λη (x, ȳ) ∈ Y for any 0 � λ � aη (x, ȳ).

Definition 3.6.6. Let Y be η-locally starshaped at ȳ with respect to X and f be an
η-semidifferentiable function at ȳ. We say that f is

(a) slppi at ȳ∈Y with respect to X, if for any x∈X ,(d f )+ (ȳ,η (x, ȳ)) � 0⇒ f (x) �
f (ȳ) .

(b) strictly semilocally pseudo-preinvex (sslppi) at ȳ ∈Y with respect to X, if for any
x ∈ X ,x �= y(d f )+ (ȳ,η (x, ȳ)) � 0 ⇒ f (x) > f (ȳ) .

We say that f is (slppi) sslppi on Y with respect to X , if f is (slppi) sslppi at any
point of Y with respect to X .

Definition 3.6.7. (Elster and Nehse 1980). A function f : X0 → Rk is a convexlike if
for any x,y ∈ X0 and 0 � λ � 1, there is z ∈ X0 such that

f (z) � λ f (x)+ (1−λ) f (y) .
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Remark 3.6.2. The convex and the peinvex functions are convexlike functions.
We consider the following vector fractional optimization problem:

(VFP) minimize
(

f1 (x)
g1 (x)

, . . . ,
fp (x)
gp (x)

)

subject to

{
h j (x) � 0, j = 1,2, . . . ,m.

x ∈ X0,

where X0 ⊆ Rn is a nonempty set and gi (x) > 0 for all x ∈ X0 and each i = 1, . . . , p.
Let f = ( f1, . . . , fp), g = (g1, . . . ,gp) and h = (h1, . . . ,hm).

We put X =
{

x ∈ X0 : h j (x) � 0, j = 1,2, . . . ,m
}

for the feasible set of problem
(VFP).

Definition 3.6.8. We say that the problem (VFP) is η-semidifferentiable Type I-
preinvex at x̄ if for any x̄ ∈ X0, we have

fi (x)− fi (x̄) � (d fi)+ (x̄,η (x, x̄)) , ∀i ∈ P,

gi (x)−gi (x̄) � (dgi)
+ (x̄,η (x, x̄)) , ∀i ∈ P,

−h j (x̄) � (dh j)+ (x̄,η (x, x̄)) , ∀ j ∈ M.

Definition 3.6.9. We say that the problem (VFP) is η-semidifferentiable pseudo-
quasi-Type I-preinvex at x̄ if for any x ∈ X0, we have

(d fi)
+ (x̄,η (x, x̄)) � 0 ⇒ fi (x) � fi (x̄) , ∀i ∈ P,

(dgi)+ (x̄,η (x, x̄)) � 0 ⇒ gi (x) � gi (x̄) ∀i ∈ P,

− h j (x̄) � 0 ⇒ (dh j)
+ (x̄,η (x, x̄)) � 0, ∀ j ∈ M.

The problem (VFP) is η-semidifferentiable pseudo-quasi-Type I-preinvex on X0
if it is η-semidifferentiable pseudo-quasi-Type I-preinvex at any x̄ ∈ X0.

Definition 3.6.10. We say that the problem (VFP) is η-semidifferentiable quasi-
pseudo-Type I-preinvex at x̄ if for any x ∈ X0, we have

fi (x) � fi (x̄) ⇒ (d fi)
+ (x̄,η (x, x̄)) � 0, ∀i ∈ P,

gi (x) � gi (x̄) ⇒ (dgi)+ (x̄,η (x, x̄)) � 0 ∀i ∈ P,

(dh j)
+ (x̄,η (x, x̄)) � 0 ⇒−h j (x̄) � 0, ∀ j ∈ M.

The problem (VFP) is η-semidifferentiable quasi-pseudo-Type I-preinvex on X0
if it is η-semidifferentiable pseudo-quasi-Type I-preinvex at any x̄ ∈ X0.
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3.7 (Γ, ρ , σ , θ )-V-Type-I and Related n-Set Functions

Let (X ,Λ ,μ) be a finite atomless measure space with L1 (X ,Λ ,μ) separable, and let
d be the pseudometric on Λn defined by

d (R,S) =

[
n

∑
i=1
μ2 (RiΔSi)

]1/2
, R = (R1,R2, . . . ,Rn) , S = (S1,S2, . . . ,Sn) ∈Λn,

where Δ denotes the symmetric difference; thus , (Λn,d) is a pseudometric space.
For h ∈ L1 (X ,Λ ,μ) and T ∈ Λ with characteristic function χT ∈ L∞ (X ,Λ ,μ), the
integral

∫

T hdμ will be denoted by 〈h,χT 〉.
Next we recall the notion of differentiability and convexity for n-set func-

tions. They were originally introduced by Morris (1979) for set functions, and
subsequently extended by Corley (1987) for n-set functions.

Definition 3.7.1. A function F :Λ→R is said to be differentiable at S∗ if there exists
DF (S∗) ∈ L1 (X ,Λ ,μ) ,called the derivative of F at S∗, such that for each S ∈Λ ,

F (S) = F (S∗)+ 〈DF (S∗) ,χS − χS∗〉+VF (S,S∗) ,

where VF (S,S∗) is o(d (S,S∗)) , that is, limd(S,S∗)→0 VF (S,S∗)
/

d (S,S∗) = 0.

Definition 3.7.2. A function G : Λn → R is said to have a partial derivative at
S∗ = (S∗1,S

∗
2, . . . ,S

∗
n) ∈ Λn with respect to its ith argument if the function F (Si) =

G
(

S∗1, . . . ,S
∗
i−1,S

∗
i ,S

∗
i+1, . . . ,S

∗
n

)
has derivative DF (S∗i ) , i ∈ n; in that case, the ith

partial derivative of G at S∗ is defined to be DiG(S∗) = DF (S∗i ) , i ∈ n.

Definition 3.7.3. A function G : Λn → R is said to be differentiable at S∗ if all the
partial derivatives DiG(S∗) , i ∈ n exist and

G(S) = G(S∗)+
n

∑
i=1

〈
DGi (S∗) ,χSi − χS∗i

〉
+WG (S,S∗) ,

where WG (S,S∗) is o(d (S,S∗)) , for all S ∈Λn.

It was shown by Morris (1979) that for any triplet (S,T,λ)∈Λ×Λ× [0,1] , there
exist sequences {Sk} and {Tk} ∈Λ such that

χSk

w∗→λχS\T and χTk

w∗→λχT\S

imply

χSk∪Tk∪(S∩T )
w∗→λχS +(1−λ)χT ,

where
w∗→ denotes the weak* convergence of elements in L∞ (X ,Λ ,μ) and S\T is

the complement of T relative to S. The sequence {Vk (λ )} = {Sk ∪Tk ∪ (S∩T )}
satisfying (2.1) and (2.2) is called the Morris sequence associated with (S,T,λ).
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It was shown by Corley (1987) and Morris (1979) that if a differentiable function
F :Λ → R is convex, then

F (S) � F (T )+
n

∑
i=1

〈DiF (T ) ,χSi − χTi〉, ∀S,T ∈Λn.

Following the introduction of the notion of convexity for set functions by Mor-
ris (1979) and its extension for n-set functions by Corley (1987), various gener-
alizations of convexity for set and n-set functions were proposed by Preda and
Stancu-Minasian (1997a).

For predecessors and point-function counterparts of these convexity concepts,
readers can refer to the original papers where the extensions to set and n-set func-
tions are discussed. A survey of some advances in the area of generalized convex
functions and their role in developing optimality conditions and duality relations for
optimization problems is given by Pini and Singh (1997).

For the purpose of formulating and proving various sufficiency criteria and dual-
ity results for (P), in this study we shall use a new class of generalized convex
n-set functions, called (Γ, ρ , σ , θ )-V-Type-I and related nonconvex functions, that
will be defined later in this section. This class of functions may be viewed as an
n-set version of a combination of three classes of point-functions: Γ-convex func-
tions, type-I functions and V-invex functions, which were introduced by Hanson
and Mond (1982), Jeyakumar and Mond (1992), and Tanaka and Maruyama (1984).

Let S,S∗ ∈ Λn, let the function F : Λn → Rp, with components Fi, i ∈ p, be dif-
ferentiable at S∗, let Γ(S,S∗; .) : Ln

1 (X ,Λ ,μ) → R be a sublinear function, and let
θ :Λn ×Λn →Λn ×Λn be a function such that S �= S∗ ⇒ θ (S,S∗) �= (0,0) .

Definition 3.7.4. The pair of functions (F,G) are said to be (Γ, ρ , σ , θ )-V-type-
I at S∗ if there exist functions αi : Λn ×Λn → R+\{0} , i ∈ p, β j : Λn ×Λn →
R+\{0} , j ∈ m, ρ ∈ R and ρ ∈ R such that for each S ∈Λn, i ∈ p and j ∈ m,

Fi (S)−Fi (S∗) ≥ Γ(S,S∗;αi (S,S∗)DFi (S∗))+ρd2 (θ (S,S∗))

and
−G j (S∗) � Γ(S,S∗;β j (S,S∗)DG j (S∗))+ ρ̄d2 (θ (S,S∗)) .

Definition 3.7.5. The pair of functions (F,G) are said to be (Γ, ρ , σ , θ )-V-pseudo-
quasi-type-I at S∗ if there exist functions αi : Λn ×Λn → R+\{0} , i ∈ p, β j : Λn ×
Λn → R+\{0} , j ∈ m, ρ ∈ R and ρ ∈ R such that for each S ∈Λn, i ∈ p and j ∈ m,

Γ

(

S,S∗;
p

∑
i=1

DFi (S∗)

)

�−ρd2 (θ (S,S∗))⇒
p

∑
i=1
αi (S,S∗)Fi (S)≥

p

∑
i=1
αi (S,S∗)Fi (S∗)

and

−
m

∑
j=1
β j (S,S∗)Gj (S∗) � 0 ⇒ Γ

(

S,S∗;
m

∑
j=1

DG j (S∗)

)

� −ρd2 (θ (S,S∗)) .
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Definition 3.7.6. The pair of functions (F,G) are said to be (Γ, ρ , σ , θ )-V-quasi-
pseudo-type-I at S∗ if there exist functions αi :Λn ×Λn → R+\{0} , i ∈ p, β j :Λn ×
Λn → R+\{0} , j ∈ m, ρ ∈ R and ρ ∈ R such that for each S ∈Λn, i ∈ p and j ∈ m,

p

∑
i=1
αi(S,S∗)Fi(S) �

p

∑
i=1
αi(S,S∗)Fi(S∗) ⇒ Γ

(

S,S∗;
p

∑
i=1

DFi(S∗)

)

� −ρd2(θ (S,S∗))

and

Γ

(

S,S∗;
m

∑
j=1

Dg j (S∗)

)

� −ρd2 (θ (S,S∗)) ⇒ −
m

∑
j=1
β j (S,S∗)G j (S∗) � 0.

3.8 Nondifferentiable d-V-Type-I and Related Functions

Consider the following vector optimization problem

(P) minimize f (x)
subject to g(x) � 0,

x ∈ X ,

where f : X → Rk, g : X → Rm, X is a nonempty open subset of Rn, η : X ×X → Rn

is a vector function. Through this paper, f (u,η (x,u)) = lim
λ→0+

f (u+λη(x,u))− f (u)
λ . A

similar notation is made for g(u,η (x,u)).
Let D = {x ∈ X : g(x) � 0} be the set of all the feasible solutions for (P) and

denote I = {1, . . . ,k},M = {1,2, . . . ,m}, J (x) =
{

j ∈ M : g j (x) = 0
}

, and J (x) ={
j ∈ M : g j (x) < 0

}
. It is obvious that J (x)∪ J (x) = M.

Definition 3.8.1. ( fi,g j) i = 1,2, . . . , p and j = 1,2 . . . ,m is said to be d-V-type-I
with respect to η , αi (x,u) and β j (x,u) at u ∈ X if there exist vector functions
η : X ×X → Rn,αi (x, u)X ×X → R+ and β j (x, u)X ×X → R+ such that for all
x ∈ X,

fi (x)− fi (u) � αi (x, u) fi (u,η (x,u))

and
−g j (u) � β j (x, u)g j (u,η (x,u)) .

Definition 3.8.2. ( fi,g j) i = 1,2, . . . , p and j = 1,2, . . . ,m is said to be weak strictly-
pseudoquasi d-V-type-I with respect to η ,αi (x, u) and β j (x,u) at u ∈ X if there
exist functions η : X ×X →Rn, αi (x, u)X ×X → R+ and β j (x, u)X ×X →R+ such
that for all x ∈ X,

p

∑
i=1
αi (x, u) fi (x) ≤

p

∑
i=1
αi (x, u) fi (u) ⇒

p

∑
i=1

fi
′ (u,η (x,u)) < 0
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and

−
m

∑
j=1
β j (x, u)g j (u) � 0 ⇒

m

∑
j=1

g j
′ (u,η (x,u)) � 0.

Definition 3.8.3. ( fi,g j) i = 1,2, . . . , p and j = 1,2, . . . ,m is said to be strong
pseudo-quasi d-V-type-I with respect to η , αi (x, u) and β j (x, u) at u ∈ X if there
exist functions η : X×X →Rn,αi (x, u)X×X →R+ and β j (x, u)X×X →R+ such
that for all x ∈ X,

p

∑
i=1
αi (x, u) fi (x) ≤

p

∑
i=1
αi (x, u) fi (u) ⇒

p

∑
i=1

f ′i (u,η (x,u)) ≤ 0

and

−
m

∑
j=1
β j (x, u)g j (u) � 0 ⇒

m

∑
j=1

g′j (u,η (x,u)) � 0.

Definition 3.8.4. ( fi,g j) i = 1,2, . . . , p and j = 1,2, . . . ,m is said to be weak quasi-
strictly-pseudo d-V-type-I with respect to η ,αi (x, u) and β j (x, u) at u ∈ X if there
exist functionsη : X×X →Rn, αi (x, u)X×X → R+ and β j (x, u)X×X →R+ such
that for all x ∈ X,

p

∑
i=1
αi (x, u) fi (x) ≤

p

∑
i=1
αi (x, u) fi (u) ⇒

p

∑
i=1

f ′i (u,η (x,u)) � 0

and

−
m

∑
j=1
β j (x, u)g j (u) � 0 ⇒

m

∑
j=1

g′j (u,η (x,u)) ≤ 0.

Definition 3.8.5. ( fi,g j) i = 1,2, . . . , p and j = 1,2, . . . ,m is said to be weak strictly-
pseudo d-V-type-I with respect to η ,αi (x, u) and β j (x, u) at u ∈ X if there exist
functions η : X ×X → Rn,αi (x, u)X ×X → R+ and β j (x, u)X ×X → R+ such that
for all x ∈ X,

p

∑
i=1
αi (x, u) fi (x) ≤

p

∑
i=1
αi (x, u) fi (u) ⇒

p

∑
i=1

f ′i (u,η (x,u)) < 0

and

−
m

∑
j=1
β j (x, u)g j (u) � 0 ⇒

m

∑
j=1

g′j (u,η (x,u)) < 0.

Remark 3.8.1. The functions defined above are different from those in Jeyakumar
and Mond (1992), Suneja and Srivastava (1997), Aghezzaf and Hachimi (2000),
Antczak (2002a), Hanson et al. (2001), and Mishra et al. (2005). For examples of
differentiable generalized type functions, one can refer to Aghezzaf and Hachimi
(2000).
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3.9 Nonsmooth Invex and Related Functions

we recall some notions of nonsmooth analysis. For more details, see Clarke (1983).
Let Rn be the n-dimensional Euclidean space and Rn

+ be its nonnegative octant. In
the sequel, X be a nonempty open subset of Rn.

Definition 3.9.1. A function f : X → R is said to be Lipschitz near x ∈ X if for some
K > 0,

| f (y)− f (z)| ≤ K ‖y− z‖ , ∀y, z within a neighborhood of x.
We say that f : X → R is locally Lipschitz on X if it is Lipschitz near any point of

X.

Definition 3.9.2. If f : X → R is Lipschitz at x ∈ X, the generalized derivative (in
the sense of Clarke) of f at x ∈ X in the direction v ∈ Rn, denoted by f 0 (x;v), is
given by

f 0 (x;v) = limsup
y→x
λ↓0

f (y +λv)− f (y)
λ

.

Definition 3.9.3. The Clarke’s generalized gradient of f at x∈X, denoted by ∂ f (x),
is defined as follows:

∂ f (x) =
{
ξ ∈ Rn : f 0 (x;v) ≥ ξ T v for all v ∈ Rn} .

It follows that, for any v ∈ Rn

f 0 (x;v) = max
{
ξ T v : ξ ∈ ∂ f (x)

}
.

Definition 3.9.4. The nondifferentiable function f : X → R is invex with respect to
η : X ×X → Rn if

f (x)− f (u) � ξ T η (x, u) , ∀ξ ∈ ∂ f (u) , ∀x, u ∈ X .

Definition 3.9.5. The nondifferentiable function f : X → R is strictly-invex with
respect to η : X ×X → Rn if

f (x)− f (u) > ξ T η (x, u) , ∀ξ ∈ ∂ f (u) , ∀x �= u ∈ X .

Definition 3.9.6. The nondifferentiable function f : X → R is pseudo-invex with
respect to η : X ×X → Rn if

f (x)− f (u) < 0 ⇒ ξ T η (x, u) < 0, ∀ξ ∈ ∂ f (u) , ∀x, u ∈ X .

Definition 3.9.7. Let X be an invex set in Rn with respect to η : X ×X → Rn. Then
F : X → Rn is said to be (strictly) pseudo-invex monotone with respect to η on X if
for every pair of distinct points x, y ∈ X,

〈u,η (y, x)〉 ≥ 0, ⇒ 〈v, η (y, x)〉 (>) ≥ 0, ∀u ∈ F (x) and v ∈ F (y) .
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Definition 3.9.8. The nondifferentiable function f : X → R is strictly pseudo-invex
with respect to η : X ×X → Rn if

ξ T η (x, u) ≥ 0 ⇒ f (x) > f (u) , ∀ξ ∈ ∂ f (u) , ∀x, u ∈ X .

3.10 Type I and Related Functions in Banach Spaces

Let E, F, and G be three Banach spaces. Consider the following mathematical
programming problem:

(P) minimize{ f (x) : x ∈C,−g(x) ∈ K},

where f and g are mappings from E into F and G, respectively, and C and K are two
subsets of E and G.

The Clarke generalized directional derivative of a locally Lipschitz function from
E into IR, as definition 3.9.8 at x in the direction d, denoted by f 0(x;d) (see Clarke
(1983), is given by

f 0(x ; d) = limsup
x→x0

t↓0

f (x + td)− f
(
x0)

t
.

The Clarke generalized gradient of φ at x is given by

∂φ(x̄) = {x∗ ∈ E∗ : φ0(x̄,d) ≥< x∗,d >,∀d ∈ X},

where E∗ denotes the topological dual of E and < •,• > is the duality pairing.
Let C be a nonempty subset of E and consider its distance function, i.e., the

function δC(.) : E → IR defined by

δC(x) = inf{||x− c|| : c ∈C}.

The distance function is not everywhere differentiable, but is globally Lipschitz.
Let x̄ ∈C. A vector d ∈ E is said to be tangent to C at x̄ if

δC
0(x̄,d) = 0.

The set of tangent vectors to C at x̄ is a closed convex cone in E, called the
(Clarke) tangent cone to C at x̄ and denoted by TC(x̄).

Definition 3.10.1. A mapping h: E → G is said to be strongly compact Lipschitzian
at x̄ ∈ E if there exist a multifunction R: E → comp(G) (comp(G) is the set of all
norm compact subsets of G) and a function r : ExE → IR+ satisfying the following
conditions:

(i) lim
x→x̄,d→0

r(x,d) = 0;
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(ii) There exists α > 0 such that t−1[h(x + td)− h(x)] ∈ R(d)+ ||d||r(x,t)BG, for
all x ∈ x +α BG and t ∈ (0,α), where BG denotes the closed unit ball around
the origin of G ;

(iii) R(0) = {0} and R is upper semicontinuous.

Remark 3.10.1. If G is finite-dimensional, then h is strongly compact Lipschitian at
x̄ if and only if it is locally Lipschitz near x̄. If h is strongly compact Lipschitzian,
then for all u∗ ∈ G∗,(u∗ ◦ f )(x) =< u∗,h(x) > is locally Lipschitz.

From now on, let Q ⊂ F and K ⊂ G denote pointed closed convex cones with
nonempty interior; let Q∗, K∗ be their respective dual cones. The cone Q induces a
partial order ≤ on F given by

z′ ≤ z if z–z′ ∈ Q
z′ ≤ z if z–z′ ∈ intQ

z′ ≥ z is the negation of the first one of the above relations and z′ > z is the negation
of the second one of the above relations. Analogously, K induces a partial order
on G.

Phuong et al. (1995) introduced the following notion of invexity for a locally
Lipschitz real-valued function φ : E → IR, with respect to a nonempty set C ⊂ E .

Definition 3.10.2. φ is said to be invex at x ∈C, with respect to C, if for every y ∈C,
there is η(y,x) ∈ TC (x) such that

φ(y)−φ(x) ≥ φ0(x; η (y,x)).

φ is invex on C if this inequality holds for every x, y ∈C.

Following Phuong et al. (1995), Brandao et al. (1999) extended the notion of
invexity for functions between Banach spaces in a broader sense, as follows.

Definition 3.10.3. f : E → F and g : E → G are invex if u∗ o f and v∗ o g are invex
in the sense of Definition 3.10.2, for all u∗ ∈ Q∗ and v∗ ∈ K∗.

We extend the notions of type-I function introduced by Hanson and Mond (1987a),
pseudotype I, quasitype I functions introduced by Rueda and Hanson (1988) and
pseudoquasitype-I and quasipseudotype-I functions introduced by Kaul et al. (1994)
to the sense of Phuong et al. (1995), as follows:

Definition 3.10.4. The locally Lipschitz real-valued functions f : E → IR and g: E →
IR are said to be type-I at x ∈ C, with respect to C, if for every y ∈ C, there is
η(y,x) ∈ TC(x) such that

f (y)− f (x) ≥ f 0 (x; η (y, x))

−g(x)≥ g0 (x; η (y, x)).

Definition 3.10.5. (f, g) is said to be quasitype-I at x ∈ C, with respect to C, if for
every y ∈C, there is η(y,x) ∈ TC(x) such that
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f (y) ≤ f (x) ⇒ f 0(x;η(y,x)) ≤ 0.

− g(x) ≤ 0 ⇒ g0(x;η(y,x)) ≤ 0.

Definition 3.10.6. ( f ,g) is said to be pseudo type I at x ∈C, with respect to C, if for
every y ∈C, there is η(y,x) ∈ TC(x) such that

f 0 (x; η (y,x)) ≥ 0 ⇒ f (y) ≥ f (x)

g0 (x; η (y, x)) ≥ 0 ⇒−g(x) ≤ 0.

Definition 3.10.7. ( f ,g) is said to be quasipseudo type I at x ∈ C, with respect to
C, if for every y ∈C, there is η (y,x) ∈ TC(x) such that

f (y) ≤ f (x) ⇒ f 0(x;η(y,x)) ≤ 0,

g0 (x;η(y,x)) ≥ 0 ⇒−g(x) ≥ 0.

If in the above definition, we have

g0 (x;η (y,x)) ≥ 0 ⇒−g(x) > 0.

Then, we say that ( f ,g) is quasistrictlypseudo type I at x ∈C.

Definition 3.10.8. ( f ,g) is said to be pseudoquasi type I at x ∈C, with respect to C,
if for every y ∈C, there is η (y,x) ∈ TC(x) such that

f 0 (x;η(y,x)) ≥ 0 ⇒ f (y) ≥ f (x)

− g(x) ≤ 0 ⇒ g0(x;η(y,x)) ≤ 0.

We use the notion of generalized invexity (type I, pseudo type I, quasi type I,
etc.) for functions between Banach spaces in a broad sense. Formally, in the fol-
lowing sense, we say f : E → F and g : E → G are type I, quasitype I, pseudotype
I, quasipseudo-type I, pseudoquasi type I at x ∈ C if u∗ ◦ f and v∗ ◦ g are type I,
quasitype-I, pseudo-type I, quasi-pseudotype I, pseudo quasi type I, in the sense of
Definitions 3.10.4, 3.10.5, 3.10.6, 3.10.7, and 3.10.8, respectively, for all u∗ ∈ Q∗
and v∗ ∈ K∗.



Chapter 4
Optimality Conditions

In this chapter, we study optimality conditions for several mathematical programs
involving type-I and other related functions.

Throughout this chapter, the following convention for vectors in Rn will be
followed:

x > y if and only if xi > yi, i = 1, 2, . . . , n,

x � y if and only if xi � yi, i = 1, 2, . . . , n,

x ≥ y if and only if xi � yi, i = 1, 2, . . . , n, but x �= y.

4.1 Optimality Conditions for Vector Optimization Problems

In this section, we establish some sufficient optimality conditions for an a ∈ X0 to
be an efficient solution of a vector optimization problem under various generalized
type I univex functions defined in the previous chapter.

We consider the following vector optimization problem:

(VP) minimize f (x) = ( f1 (x) , . . . , fp (x))
subject to g(x) ≤ 0,

x ∈ X ⊆ Rn,

where f : X → Rp and g : X → Rm are differentiable functions and X ⊆ Rn is an open
set. Here the minimization means finding the collection of efficient points defined
in previous chapter.

Let X0 be the set of all feasible solutions of (VP).

Theorem 4.1.1. (Sufficiency). Suppose that

(i) a ∈ X0;
(ii) There exist τ0 ∈ Rp, τ0 > 0, and λ ∈ Rm, λ 0 � 0, such that

S.K. Mishra et al., Generalized Convexity and Vector Optimization,
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(a) τ0∇ f (a)+λ 0∇g(a) = 0,
(b) λ 0g(a) = 0,
(c) τ0e = 1, where e = (1, . . . ,1)T ∈ Rp;

(iii) Problem (VP) is strong pseudoquasi type I univex at a∈ X0 with respect to some
b0, b1, φ0, φ1 and η;

(iv) u ≤ 0 ⇒ φ0 (u) ≤ 0 and u � 0 ⇒ φ1 (u) � 0,
(v) b0 (x,a) > 0, and b1 (x,a) � 0;

for all feasible x. Then a is an efficient solution to (VP).

Proof. Suppose contrary to the result that a is not an efficient solution to (VP). Then
there exists a feasible solution x to (VP) such that

f (x) ≤ f (a) .

By conditions (iv), (v) and the above inequality, we have

b0 (x,a)φ0 [ f (x)− f (a)] ≤ 0. (4.1.1)

By the feasibility of a, we have

−λ 0g(a) � 0.

By conditions (iv), (v) and the above inequality, we have

−b1 (x,a)φ1
[
λ 0g(a)

]
� 0. (4.1.2)

By inequalities (4.1.1), (4.1.2), and condition (iii), we have

(∇ f (a))η (x,a) ≤ 0, and λ 0∇g(a)η (x,a) � 0.

Since τ0 > 0, the above inequalities give
[
τ0∇ f (a)+λ 0∇g(a)

]
η (x,a) < 0. (4.1.3)

which contradicts condition (ii). This completes the proof. ��
Theorem 4.1.2. (Sufficiency). Suppose that

(i) a ∈ X0;
(ii) There exist τ0 ∈ Rp, τ0 ≥ 0, and λ ∈ Rm, λ 0 � 0, such that

(a) τ0∇ f (a)+λ 0∇g(a) = 0,
(b) λ 0g(a) = 0,
(c) τ0e = 1, where e = (1, . . . , 1)T ∈ Rp;

(iii) Problem (VP) is weak strictly pseudo quasi type I univex at a ∈ X0 with respect
to some b0, b1, φ0, φ1 and η;



4.1 Optimality Conditions for Vector Optimization Problems 47

(iv) u ≤ 0 ⇒ φ0 (u) ≤ 0 and u � 0 ⇒ φ1 (u) � 0,
(v) b0 (x,a) > 0, and b1 (x,a) � 0;

for all feasible x. Then a is an efficient solution to (VP).

Proof. Suppose contrary to the result that a is not an efficient solution to (VP). Then
there exists a feasible solution x to (VP) such that

f (x) ≤ f (a).

By conditions (iv), (v), and the above inequality, we get (4.1.1). By the feasibility
of a, conditions (iv) and (v), give (4.1.2).

By inequalities (4.1.1), (4.1.2), and condition (iii), we have

(∇ f (a))η (x,a) < 0, and λ 0∇g(a)η (x,a) � 0.

Since τ0 ≥ 0, the above inequalities give
[
τ0∇ f (a)+λ 0∇g(a)

]
η (x,a) < 0.

which contradicts condition (ii). This completes the proof. ��
Theorem 4.1.3. (Sufficiency). Suppose that

(i) a ∈ X0;
(ii) There exist τ0 ∈ Rp, τ0 � 0, and λ ∈ Rm, λ 0 � 0, such that

(a) τ0∇ f (a)+λ 0∇g(a) = 0,
(b) λ 0g(a) = 0,
(c) τ0e = 1, where e = (1, . . . ,1)T ∈ Rp;

(iii) Problem (VP) is weak strictly pseudo type I univex at a ∈ X0 with respect to
some b0, b1, φ0, φ1, and η;

(iv) u ≤ 0 ⇒ φ0 (u) ≤ 0 and u � 0 ⇒ φ1 (u) � 0,
(v) b0 (x,a) > 0 and b1 (x,a) � 0;

for all feasible x. Then a is an efficient solution to (VP).

Proof. Suppose contrary to the result that a is not an efficient solution to (VP). Then
there exists a feasible solution x to (VP) such that

f (x) ≤ f (a) .

By conditions (iv), (v), and the above inequality, we get (4.1.1). By the feasibility
of a, conditions (iv) and (v), give (4.1.2).
By inequalities (4.1.1), (4.1.2), and condition (iii), we have

(∇ f (a))η (x,a) < 0, and λ 0∇g(a)η (x,a) < 0.
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Since τ0 � 0, the above inequalities give
[
τ0∇ f (a)+λ 0∇g(a)

]
η (x,a) < 0.

which contradicts condition (ii). This completes the proof. ��

4.2 Optimality Conditions for Nondifferentiable Vector
Optimization Problems

In this section, we establish a Karush–Kuhn–Tucker sufficient optimality condition.
Consider the following vector optimization problem:

(P) minimize f (x)
subject to g(x) � 0,

x ∈ X ,

where f : X → Rk, g : X → Rm, X is a nonempty open subset of Rn. Let
η : X × X → Rn be a vector function. Throughout this section, f ′ (u,η (x,u)) =
lim
λ→0+

f (u+λη(x,u))− f (u)
λ .

Let D = {x ∈ X : g(x) � 0} be the set of all the feasible solutions for (P) and
denote, J (x) =

{
j ∈ M : g j (x) = 0

}
and J̃ (x) =

{
j ∈ M : g j (x) < 0

}
. It is obvious

that J (x)∪ J̃ (x) = M.
The following results from Antczak (2002a) and Weir and Mond (1988) will be

needed in the sequel of this section.

Lemma 4.2.1. If x̄ is a locally weak Pareto solution or a weak Pareto efficient solu-
tion of (P) and if g j is continuous at x̄ for j ∈ J̃ (x̄), then the following system of
inequalities

f ′ (x̄,η (x, x̄)) < 0,

g′J̃(x̄) (x̄,η (x, x̄)) < 0

has no solution for x ∈ X.

Lemma 4.2.2. Let S be a nonempty set in Rn and ψ : S → Rp be a preinvex function
on S. Then either ψ (x) < 0 has a solution x ∈ S, or λ Tψ (x) � 0 for all x ∈ S, or
some λ ∈ Rm

+, but both alternatives are never true.

Lemma 4.2.3. (Fritz John necessary optimality condition). Let x̄ be a weak Pareto
efficient solution for (P). Suppose that gj is continuous for j ∈ J̃ (x̄), f and g are
directionally differentiable at x̄ with f ′ (x̄,η (x, x̄)), and g′J(x) (x̄,η (x, x̄)) pre-invex

functions of x on X. Then there exist ξ̄ ∈ Rk
+, μ̄ ∈ Rm

+ such that
(
x̄, ξ̄ , μ̄

)
satisfies

the following conditions:
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ξ̄ T f ′ (x̄,η (x, x̄))+ μ̄T g′ (x̄,η (x, x̄)) � 0 ∀x ∈ X ,

μ̄T g(x̄) = 0,

g(x̄) � 0.

Lemma 4.2.4. (Karush–Kuhn–Tucker necessary optimality condition). Let x̄ be a
weak Pareto efficient solution for (P). Suppose that gj is continuous for j ∈ J̃ (x̄), f
and g are directionally differentiable at x̄ with f ′ (x̄, η (x, x̄)), and g′J(x̄) (x̄,η (x, x̄))
pre-invex functions of x on X. Moreover, suppose that g satisfies the general Slater’s
constraint qualification at x̄. Then there exists μ̄ ∈ Rm

+ such that (x̄, μ̄) satisfies the
following conditions:

f ′ (x̄,η (x, x̄))+ μT g′ (x̄,η (x, x̄)) � 0∀x ∈ X , (4.2.1)

μT g(x) = 0, (4.2.2)
g(x) � 0. (4.2.3)

Theorem 4.2.1. Let x̄ be a feasible solution for (P) at which conditions (4.2.1)–
(4.2.3) are satisfied. Moreover, if any of the following conditions are satisfied:

(a)
(

f ,μT g
)

is strong pseudo-quasi d-type-I univex at x̄ with respect to some
b0,b1,φ0,φ1 and η with b0 > 0, a < 0 ⇒ φ0 (a) < 0 and a = 0 ⇒ φ1 (a) � 0;

(b)
(

f ,μT g
)

is weak strictly pseudo-quasi d-type-I univex at x̄ with respect to some
b0,b1,φ0,φ1 and η with b0 ≥ 0, a < 0 ⇒ φ0 (a) ≤ 0 and a = 0 ⇒ φ1 (a) � 0;

(c)
(

f ,μT g
)

is weak strictly pseudo d-type-I univex at x̄ with respect to some
b0,b1,φ0,φ1 and η with b0 ≥ 0,a < 0 ⇒ φ0 (a) ≤ 0 and a = 0 ⇒ φ1 (a) � 0.

Then x̄ is a weak Pareto efficient solution for (P).

Proof. We proceed by contradiction. Assume that x̄ is not a weak Pareto efficient
solution of (P). Then there is a feasible solution x of (P) such that

fi (x) < fi (x̄) , for any i ∈ {1,2, ...,k} .

Since b0 > 0 and a < 0 ⇒ φ0 (a) < 0, from the above inequality, we get

b0 (x, x̄)φ0 [ fi (x)− fi (x̄)] < 0.

Since b1 � 0 and a = 0 ⇒ φ1 (a) � 0, from (2.2), we get

−b1 (x, x)φ1
[
μT g(x)

]
� 0.

By the generalized univexity type condition in (a) and the above two inequalities,
we get

f ′ (x, η (x,x)) < 0 (4.2.4)

and
μT g′ (x, η (x,x)) � 0. (4.2.5)
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By (4.2.4) and (4.2.5), we get

f ′ (x, η (x, x̄))+ μT g′ (x̄, η (x,x)) < 0,

which contradicts (4.2.1).
For the proof of part (b), we assume that x̄ is not a weak Pareto efficient solution

of (P). Then there is a feasible solution x of (P) such that

fi (x) < fi (x̄) , for any i ∈ {1, 2, ..., k} .

Since b0 ≥ 0, a < 0 ⇒ φ0 (a) ≤ 0, from the above inequality, we get

b0 (x, x)φ0 [ fi (x)− fi (x)] ≤ 0.

Since b1 � 0 and a = 0 ⇒ φ1 (a) � 0, from (2), we get

−b1 (x, x)φ1
[
μT g(x)

]
� 0.

By the generalized univexity type condition in (b) and the above two inequalities,
we get (4.2.4) and (4.2.5). From (4.2.4) and (4.2.5), we get

f ′ (x, η (x,x))+ μT g′ (x, η (x,x)) < 0,

again a contradiction to (4.2.1).
Assume that x is not a weak Pareto efficient solution of (P). Then there is a

feasible solution x of (P) such that

fi (x) < fi (x) , for any i ∈ {1, 2, ..., k} .

Since b0 ≥ 0 and a < 0 ⇒ φ0 (a) < 0, from the above inequality, we get

b0 (x, x)φ0 [ fi (x)− fi (x)] ≤ 0.

Since b1 � 0 and a = 0 ⇒ φ1 (a) � 0, from (4.2.2), we get

−b1 (x, x)φ1
[
μT g(x)

]
� 0.

By condition (c) and the above two inequalities, we get

f ′ (x, η (x,x)) < 0

and
μT g′ (x, η (x,x)) < 0.

By these two inequalities, we get

f ′ (x, η (x,x))+ μT g′ (x, η (x,x)) < 0,

which contradicts (4.2.1). This completes the proof. ��
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Example 4.2.1. Consider function f = ( f1 , f2) defined on X = R, by f1 = x2 and
f2 = x3 and function g defined on X = R, by

g =

{
−2x2, −1 ≤ x < 2
−x3, 2 ≤ x < 2.5.

Clearly, g is not differentiable at x = 2, but only directionally differentiable at x = 2.
The feasible set is nonempty. Let η (x,x) = (x− x)/2 and x = 0. We can easily show

(i) If x ∈ [−1,2) ,−g1 (x) = 0, implies that g′ (x,η) = 0.
(ii) The case x ∈ [2,4) can be verified similarly. We have

f (x) � f (x) ⇒ ∇ f (x)η (x,x) = 0, for all x.

Thus ( f ,g) is strong pseudo-quasi d-type I at x = 0. But, f and g are not d-invex
functions at x = 0 with respect to the same η (x,x) = (x− x)/2. Therefore, Theorem
13 of Antczak (2002a) is not applicable. Then, by part (a) of Theorem 4.2.1, x is a
weak Pareto solution for the vector optimization problem. ��

It may be interesting to extend an earlier work of Kim (2006) to the setting of the
problems considered above.

4.3 Optimality Conditions for Minimax Fractional Programs

Consider the following minimax fractional programming problem (see; Liu et al.
(1997a) and Bector (1994a)):

(P) minimize F (x) = sup
y∈Y

f (x, y)
h(x, y)

subject to g(x) � 0,

(4.3.1)

whereY is a compact subset of Rm, f (·, ·), and h(·, ·) : Rn×Rm �→R are differentiable
functions with f (x, y) � 0 and h(x, y) > 0, and g(·, ·) : Rn �→ Rp is a differentiable
function. Denote

Y (x) =
{

y ∈ Y :
f (x, y)
h(x, y)

= sup
z∈Y

f (x, z)
h(x, z)

}

, J = {1, 2, ..., p} , J (x) =
{

j ∈ J : g j (x) = 0
}

and

K =
{
(s, t, y) ∈ N ×Rs

+×Rms : 1 � s � n + 1, t = (t1, ..., ts) ∈ Rs
+ with

s

∑
i=1

ti = 1 and y = (y1, ..., ys) and yi ∈ Y (x) , i = 1, ..., s

}

.

Lemma 4.3.1. (Chandra and Kumar, 1995). Let x∗ be an optimal solution to (P)
and let ∇g j (x∗) , j ∈ J (x∗) be linearly independent. Then there exist (s∗, t∗, y) ∈ K,
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ν∗ ∈ R and μ∗ ∈ Rp
+ such that

s∗
∑
i=1

t∗i {∇ f (x∗, yi)−ν∇h(x∗,yi)}+∇
p

∑
j=1
μ∗

j g j (x∗) = 0, (4.3.2)

f (x∗, yi)−ν∗h(x∗, yi) = 0, i = 1, ..., s∗, (4.3.3)
p

∑
j=1
μ∗

j g j (x∗) = 0, (4.3.4)

μ∗ ∈ Rp
+, t∗i � 0,

s∗
∑
i=1

t∗i = 1, yi ∈ Y (x∗) , i = 1, ..., s∗. (4.3.5)

In order to relax the convexity assumption in the above lemma, we impose the
following definitions which are slight modifications of the vector type invexity
introduced in Hanson et al. (2001).

Theorem 4.3.1. (Sufficient Conditions). Assume that (x∗, μ∗, ν∗, s∗, t∗, y) satisfies

(4.3.2)–(4.3.5). If

(
s∗
∑

i=1
t∗i ( f (·,yi)−ν∗h(·,yi)) ,

p
∑
j=1
μ∗

j g j (·)
)

is pseudo quasi V-type

I at x∗ with respect to η , αi, β j, t, and μ , then x∗ is an optimal solution of (P).

Proof. From the positivity of β j, j = 1,2, ...,m and (4), we have

−
m

∑
j=1
μ∗

j β j (x, x∗)g j (x∗) � 0.

By the condition of quasi V-type I, we get

ηT (x, x∗)∇
m

∑
j=1
μ∗

j g j (x∗) � 0. (4.3.6)

From (4.3.6) and (4.3.2), we get

ηT (x, x∗)∇
s∗
∑
i=1

t∗i ( f (x∗, yi)−ν∗h(x∗, yi)) � 0. (4.3.7)

By the pseudo V-type I condition, (4.3.7) and (4.3.3), we get

s∗
∑
i=1

t∗i αi (x, x∗)( f (x, yi)−ν∗h(x, yi)) �
s∗
∑
i=1

t∗i αi (x, x∗)( f (x∗, yi)−ν∗h(x∗, yi))= 0.

That is,
s∗
∑
i=1

t∗i αi (x, x∗) ( f (x, yi)−ν∗h(x, yi)) � 0.
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Since αi (x, x∗) and ti are positive, there exists an i0 such that
(

f
(
x, yi0

)−ν∗h
(
x, yi0

))
� 0.

It follows that

sup
y∈Y

f (x, y)
h(x, y)

�
f
(
x, yi0

)

h
(
x, yi0

) � ν∗ = sup
y∈Y

f (x∗, y)
h(x∗, y)

.

Thus, the proof is completed. ��

Theorem 4.3.2. Assume that (x∗,μ∗,v∗,s∗,t∗,y) satisfies (4.3.2)–(4.3.5). If
(

s∗
∑

i=1
t∗i

( f (·,yi)− v∗h(·,yi)) ,
p
∑
j=1
μ∗

j g j (·)
)

is quasi strictly pseudo V-type I at x∗ with

respect to η ,αi,β j,t, and μ , then x∗ is an optimal solution of (P).

Proof. Assume that x∗ is not an optimal solution for (P). Then there exists an x
feasible for (P) such that

sup
y∈Y

f (x,y)
h(x,y)

� v∗ = sup
y∈Y

f (x∗,y)
h(x∗,y)

.

It follows that
s∗
∑
i=1

t∗i αi (x,x∗)( f (x,yi)− v∗h(x,yi)) � 0.

From (4.3.3), we have

s∗
∑
i=1

t∗i αi (x,x∗)( f (x∗,yi)− v∗h(x∗,yi)) = 0.

From the above inequalities, we get

s∗
∑
i=1

t∗i αi (x,x∗) ( f (x,yi)− v∗h(x,yi)) �
s∗
∑
i=1

t∗i αi (x,x∗)( f (x∗,yi)− v∗h(x∗,yi)).

By the quasi V-type I condition and the above inequality, we get

ηT (x,x∗)∇
s∗
∑
i=1

t∗i ( f (x∗,yi)− v∗h(x∗,yi)) � 0. (4.3.8)

From (4.3.8) and (4.3.2), we get

ηT (x,x∗)∇
m

∑
j=1
μ∗

j g j (x∗) � 0.
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By the strict pseudo V-type I condition and the above inequality, we get

m

∑
j=1
μ∗

j β j (x,x∗)g j (x∗) < 0.

Since β j is positive for j = 1, . . . ,m, the above inequality gives

m

∑
j=1
μ∗

j g j (x∗) < 0,

which contradicts (4.3.4). This completes the proof. ��

Theorem 4.3.3. Assume that (x∗,μ∗,v∗,s∗,t∗,y) satisfies (4.3.2)–(4.3.5). If
(

s∗
∑

i=1
t∗i

( f (·,yi)− v∗h(·,yi)) ,
p
∑
j=1
μ∗

j g j (·)
)

is semi-strictly quasi V-type I at x∗, with respect

to η , αi, β j, t, and μ . Then, x∗ is an optimal solution of (P).

Proof. Assume that x∗ is not an optimal solution for (P). Then there exists a feasible
x of (P) such that

sup
y∈Y

f (x, y)
h(x,y)

� v∗ = sup
y∈Y

f (x∗,y)
h(x∗,y)

.

It follows that
s∗
∑
i=1

t∗i αi (x,x∗)( f (x,yi)− v∗h(x,yi)) � 0.

From (4.3.3), we have

s∗
∑
i=1

t∗i αi (x,x∗)( f (x∗,yi)− v∗h(x∗,yi)) = 0.

From the above two inequalities, we get

s∗

∑
i=1

t∗i αi (x,x∗) ( f (x,yi)− v∗h(x,yi)) �
s∗

∑
i=1

t∗i αi (x,x∗)( f (x∗,yi)− v∗h(x∗,yi)).

By the semi strict quasi V-type I condition and the above inequality, we get

ηT (x,x∗)∇
s∗

∑
i=1

t∗i ( f (x∗,yi)− v∗h(x∗,yi)) < 0. (4.3.9)

Since β j is positive for j = 1, . . . ,m, from (4.3.4), we get

m

∑
j=1
μ∗

j β j (x,x∗)g j (x∗) = 0.
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By the quasi V-type I condition and the above inequality, we get

ηT (x,x∗)∇
m

∑
j=1
μ∗

j g j (x∗) � 0. (4.3.10)

From (4.3.9) and (4.3.10), we get a contradiction to (4.3.2). Hence, the conclusion
follows. ��
Theorem 4.3.4. Assume that (x∗,μ∗,v∗,s∗,t∗,y) satisfies (4.3.2)–(4.3.5). If

(
s∗
∑

i=1
t∗i

( f (·,yi)− v∗h(·,yi)) ,
p
∑
j=1
μ∗

j g j (·)
)

is strictly pseudo V-type I at x∗ with respect to

η , αi, β j, t, and μ . Then x∗ is an optimal solution of (P).

Proof. Since β j is positive for j = 1, . . . ,m, from (4.3.4), we get

m

∑
j=1
μ∗

j β j (x,x∗)g j (x∗) = 0.

By the strict pseudo V-type I condition and the above inequality, we get

ηT (x,x∗)∇
m

∑
j=1
μ∗

j g j (x∗) < 0. (4.3.11)

From (4.3.11) and (4.3.2), we get

ηT (x,x∗)∇
s∗

∑
i=1

t∗i ( f (x∗,yi)− v∗h(x∗,yi)) > 0.

By the strict pseudo V-type I condition and the above inequality, we get

s∗

∑
i=1

t∗i αi (x,x∗) ( f (x,yi)− v∗h(x,yi)) >
s∗

∑
i=1

t∗i αi (x,x∗)( f (x∗,yi)− v∗h(x∗,yi)).

From (4.3.3) and the above inequality, we get

s∗

∑
i=1

t∗i αi (x,x∗)( f (x,yi)− v∗h(x,yi)) > 0. (4.3.12)

Since αi is positive for i = 1, . . . ,s∗, from (4.3.12) it follows that there exists an i0
such that (

f
(
x,yi0

)− v∗h
(
x,yi0

))
> 0.

Therefore,

sup
y∈Y

f (x∗,y)
h(x∗,y)

= v∗ � sup
y∈Y

f (x,y)
h(x,y)

.

Hence, the result follows. ��
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4.4 Optimality Conditions for Vector Optimization Problems
on Banach Spaces

Consider the generalized vector optimization problem defined by

(P) minimize {f(x) : x ∈ C, −g(x) ∈ K},

where f : E → F and g : E → G are strongly compact Lipschitzian at x0 ∈ E, K ⊂ G
is a pointed closed convex cone with nonempty interior, and C is a nonempty subset
of E.

Let ℑ denote the set of all feasible solutions of problem (P), assumed to be
nonempty, that is,

ℑ= {x ∈ C : g(x) ≤ 0} �= φ .

The following proposition is from Abdouni and Thibault (1992).

Proposition 4.4.1. If x0 ∈ ℑ is a weak efficient solution for (P), then there exists a
nonzero pair of vectors (u∗, v∗) ∈ Q∗x K∗ such that, for some k > 0,

0 ∈ ∂ (u∗ of+ v∗ o g+ kδC)(x0),
< v∗,g(x0) >= 0.

We adopt the following Slater-type constraint qualification.
In the rest of this section, we suppose that the restriction of (P) satisfies the Slater

condition.

Theorem 4.4.1. (Sufficient Optimality): Suppose that there exist x0 ∈ ℑ and u∗ ∈
Q∗, u∗ �= 0, v∗ ∈ K∗, such that, for some k > 0,

0 ∈ ∂ (u∗o f+ v∗o g+ kδC)(x0), (4.4.1)

< v∗,g(x0) >= 0. (4.4.2)

If (u∗o f, v∗o g) is type-I at x0 ∈ ℑ with respect to C, then x0 is a weak efficient
solution of (P).

Proof. Suppose that x0 is not a weak efficient solution of (P), then there exists x̂ ∈ℑ
such that f(x̂)− f(x0) < 0. Since u∗ �= 0, we get

〈u∗, f (x̂)− f (x0)〉 < 0. (4.4.3)

By the type-I hypothesis on f at x0, there is η (x̂,x0) ∈ TC(x0), such that

(u∗ ◦ f )0 (x0;η (x̂,x0)) ≤ 〈u∗, f (x̂,x0)〉 .

Combining this inequality with (4.4.3), we obtain

(u∗ ◦ f )0 (x0;η (x̂,x0)) < 0. (4.4.4)
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Moreover, the type-I assumption on g at x0 implies that, for the same η (x̂,x0) ∈
TC(x0), we have

(v∗o g)0(x0;η (x̂,x0)) ≤< v∗,−g(x0) > .

Since x ∈ ℑ and (4.4.2) holds, we get

(v∗o g)0(x0;η (x̂,x0)) ≤ 0. (4.4.5)

From (4.4.4) and (4.4.5), we get

(u∗o f)0(x0;η (x̂,x0))+ (v∗o g)0(x0;η (x̂,x0) < 0. (4.4.6)

However, from (4.4.1), we get

0 ≤ (u∗o f)0(x0;η)+ (v∗o g)0(x0;η), ∀η ∈ TC(x0),

which contradicts (4.4.6). Therefore, x0 is a weak Pareto optimal solution of (P).
��

Theorem 4.4.2. Suppose that there exist x0 ∈ ℑ and u∗ ∈ Q∗, u∗ �= 0, v∗ ∈ K∗ such
that, for some k > 0, (4.4.1) and (4.4.2) of Theorem 4.4.1 hold. If (f, g) is pseudoqu-
asitype I at x0, with respect to C, for the same η , then x0 is a weak Pareto optimal
solution of (P).

Proof. Since, < v∗, g(x0) >= 0 and (f, g) is pseudoquasi-type I at x0, we have

(v∗o g)0(x0;η (x̂,x0)) ≤ 0.

On using the above inequality in (4.4.1), we get

(u∗o f)0(x0;η (x̂,x0)) ≥ 0, ∀η ∈ TC(x0)
⇒< u∗, f (x̂)− f (x0) >≥ 0
⇒ f (x̂)− f (x0) > 0(because u∗ �= 0)

Therefore, x0 is a weak efficient solution of (P). ��
The proof of the following theorem is easy and hence omitted.

Theorem 4.4.3. Suppose that there exist x0 ∈ ℑ and u∗ ∈ Q∗, u∗ �= 0, v∗ ∈ K∗ such
that, for some k > 0, (4.4.1) and (4.4.2) of Theorem 4.4.1, hold. If (f, g) is quasi-
strictly pseudo – type I at x0, with respect C, for same η ∈ TC(x0), then x0 is a weak
efficient solution of (P).
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4.5 Optimality Conditions for Complex Minimax Programs
on Complex Spaces

Mathematical programming in the complex space originated from Levinson’s (1966)
discussion of linear programming problems. See also Abrams (1972), Abrams
and Ben-Israel (1969, 1971), Hanson and Mond (1967), Mond (1973), Mond and
Craven (1975), and Mond and Hanson (1968b).

Several authors have been interested in the optimality conditions and dual-
ity theorems for complex nonlinear programming problems, see Ferrero (1992),
Lai et al. (2001), Lai and Liu (2002), Liu (1997, 1999b), Liu et al. (1997b),
Mishra (2001a), Mishra and Rueda (2003), Smart (1990), Smart and Mond (1991),
Stancu-Minasian (1997), Weir (1992) and Weir and Mond (1984).

In this section, we establish sufficient optimality criteria for the following opti-
mization problem under generalized invex complex functions:

(P) minimize f (ξ ) = sup
ς∈W

Reφ (ξ ,ς)

subject to ξ ∈ S0 =
{
ξ ∈C2n : −g(ξ ) ∈ S

}
,

where ξ = (z , z), ς = (ω ,ϖ) for z ∈Cn, ω ∈Cm, φ (·, ·) : C2n×C2m →C is analytic
with respect to ξ , W is a specified compact subset in C2m, S is a polyhedral cone in
Cp and g : C2n →Cp is analytic.

We shall use the following lemma for the problem (P).

Lemma 4.5.1. (Liu 1999b). Let φ (·, ·) :C2n×C2m →C be differentiable with respect
to ξ for each ς ∈W,g :C2n →Cp be differentiable with respect to ξ and let S⊂Cp be
a polyhedral cone with nonempty interior. Let ξ 0 = (z0,z0) be a solution to the min-
imax problem (P). Then there exist a positive integer s, scalars λi ≥ 0, i = 1,2, . . . ,s,
0 �= u ∈ S∗, and vectors ςi ∈W

(
ξ 0), i = 1,2, . . .¸ ,s, such that

s

∑
i=1
λi∇zφ (ξ 0,ςi)+

s

∑
i=1
λi∇zφ

(
ξ 0,ςi

)
+ uT∇zg(ξ 0)+ uH∇zg

(
ξ 0) , (4.5.1)

Re
〈
u,g

(
ξ 0)〉 = 0. (4.5.2)

Lemma 4.5.2. (Liu 1999b) (Necessary Optimality Conditions). Let ξ 0 = (z0,z0) be
an optimal solution of (P) and let φ (·, ·) : C2n ×C2m → C be differentiable with
respect to ξ for each ς ∈W,g : C2n →Cp be differentiable with respect to ξ and let
S ⊂ Cp be a polyhedral cone with nonempty interior. In addition, we suppose that
the following conditions (CQ) holds:

(CQ) uT∇zg(ξ 0)+ uH∇zg
(
ξ 0) = 0 imply u = 0 for all u ∈Cp.

Then there exist a positive integer s, scalars λi ≥ 0, i = 1,2, . . . ,s, 0 �= u ∈ S∗, and
vectors ςi ∈W

(
ξ 0), i = 1,2, . . . ,s such that the relations (2.1) and (2.2) hold and
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s

∑
i=1
λi = 1. (4.5.3)

Theorem 4.5.1. (Sufficient Optimality Conditions). Let ξ 0 = (z0, z̄0) ∈ S0 and
assume that there exist a positive integer S, scalars λi ≥ 0, i = 1,2, ...,s, 0 �= u ∈ S∗,
and vectors ςi ∈ W

(
ξ 0) , i = 1,2, ...,s satisfy conditions (4.5.1)–(4.5.3). If any one

of the following conditions hold:

(a) ∑s
i=1λiφ (·, ςi) has pseudoinvex real part with respect to η and R+ on the man-

ifold Q and g(·) is a quasi invex function with respect to the polyhedral cone
S ⊂Cp on the manifold Q;

(b) ∑s
i=1λiφ (·,ςi) has quasiinvex real part with respect to η and R+ on the manifold

Q and g(·) is a strictly pseudoinvex function with respect to the polyhedral cone
S ⊂Cp on the manifold Q;

(c) ∑s
i=1λiφ (·,ςi)+ uHg(·) has pseudoinvex real part with respect to η and R+ on

the manifold Q.

Then ξ 0 = (z0, z̄0) is an optimal solution of (P).

Proof. Suppose contrary that ξ 0 = (z0, z̄0) were not an optimal solution of (P).
Then there exists a feasible solution ξ = (z, z̄) ∈ S0 such that

sup
ς∈W

Reφ (ξ ,ς) < sup
ς∈W

Reφ
(
ξ 0,ς

)
.

Since ςi ∈W
(
ξ 0) , for all i = 1,2, ...,s, we have

Reφ (ξ ,ςi) < Reφ
(
ξ 0,ςi

)
, for all i = 1,2, ...,s.

With λi ≥ 0, i = 1,2, ...,s, and
s
∑

i=1
λi = 1, we have

Re

[
s

∑
i=1
λiφ (ξ ,ςi)−

s

∑
i=1
λiφ

(
ξ 0,ςi

)
]

< 0. (4.5.4)

Using the pseudoinvexity of
s
∑

i=1
λiφ (·, ςi), we get from the inequality (4.5.4), we

get

Re

〈

ηT (z,z0) ,
s

∑
ι=1
λι∇zϕ (ξ 0,ςi)+

s

∑
ι=1
λι∇z̄ϕ

(
ξ 0,ςi

)
〉

< 0. (4.5.5)

Consequently, expressions (4.5.1) and (4.5.5) yields

Re
〈
ηT (z,z0) ,uT∇zg(ξ 0)+ uH∇z̄g

(
ξ 0)

〉
> 0.
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It follows that

Re
〈
u,ηT (z,z0)∇zg

(
ξ 0)+ηH (z,z0)∇z̄g

(
ξ 0)〉 > 0. (4.5.6)

Utilizing the feasibility of ξ for (P), u ∈ S∗, and the equality (4.5.2), we obtain

Re〈u,g(ξ )〉 ≤ 0 = Re
〈
u,g

(
ξ 0)〉 . (4.5.7)

Using the quasiinvexity of g, we get from the inequality (4.5.7)

Re
〈
u,ηT (z,z0)∇zg

(
ξ 0)+ηH (z,z0)∇z̄g

(
ξ 0)〉≤ 0,

which contradicts the inequality (4.5.6). Therefore, ξ 0 ∈ S0 is an optimal solution
of (P). ��

Hypothesis (b) follows along the same lines as in (a).
If hypothesis (c) holds, from the inequality (4.5.4) and (4.5.7), we get

Re

[
s

∑
i=1
λiφ (ξ ,ςi)+ uHg(ξ )

]

< Re

[
s

∑
i=1
λiφ

(
ξ 0,ςi

)
+ uHg

(
ξ 0)

]

. (4.5.8)

Using the pseudoinvexity of
s
∑

i=1
λiφ (·, ςi)+ uHg(·) and (4.5.8), we get

Re

〈

ηT (z,z0) ,
s

∑
i=1
λi∇zφ

(
ξ 0,ςi

)
+

s

∑
i=1
λi∇z̄φ

(
ξ 0,ςi

)
+uH∇zg

(
ξ 0

)
+uH∇z̄g

(
ξ 0

)
〉

< 0,

which contradicts the equality (4.5.1). Therefore, ξ 0 ∈ S0 is an optimal solution of
(P). ��

4.6 Optimality Conditions for Continuous-Time Optimization
Problems

The Optimization problems discussed in the previous sections are only finite-
dimensional. However, a great deal of optimization theory is concerned with prob-
lems involving infinite dimensional case. Two types of problems fitting into this
scheme are variational problems and control problems. Hanson (1964) observed
that variational problems and control problems are continuous-time analogue of
finite dimensional nonlinear programming problems. Since then the fields of non-
linear programming problems and the calculus of variations have to some extent
merged together within optimization theory, hence enhancing the potential for con-
tinued research in both fields. See for example, Mond and Hanson (1967, 1968a,
1968c).

In the last two decades, many authors have been interested in the optimal-
ity conditions and duality results of continuous-time programming problems, see
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for example Bector and Husain (1992), Bhatia and Mehra (1999), Chen (1996,
2000), Kim and Kim (2002), Mishra (1996b), Mishra and Mukherjee (1994a, 1994b
1995a), Mond et al. (1988), Mond and Smart (1989), Mukherjee and Mishra (1994,
1995), Nahak and Nanda (1996, 1997a), and Zalmai (1985, 1990b).

Let I = [a, b] be a real interval and ψ : I×Rn ×Rn → R be a continuously differ-
entiable function. In order to consider ψ (t,x, ẋ), where x : I → Rn is differentiable
with derivative x, we denote the partial derivatives of ψ by ψt ,

ψx =
[
∂ψ
∂x1 , ...,

∂ψ
∂xn

]

,ψẋ =
[
∂ψ
∂ ẋ1 , ...,

∂ψ
∂ ẋn

]

.

The partial derivatives of the other functions used will be written similarly. Let
C (I, Rn) denote the space of piecewise smooth functions x with norm ‖x‖ =
‖x‖∞+‖Dx‖∞, where the differential operator D is given by

ui = Dxi ⇔ xi (t) = α+
t∫

a

ui (s) ds,

in which α is a given boundary value. Therefore, D = d
dt except at discontinuities.

We consider the following continuous vector optimization problem:

(MP) minimize
b∫

a

f (t,x, ẋ)dt =

⎛

⎝

b∫

a

f1 (t,x, ẋ)dt, ...,
b∫

a

fp (t,x, ẋ)dt

⎞

⎠

subject to x(a) = α, x(b) = β ,

g(t,x, ẋ) � 0, t ∈ I,

x ∈C (I, Rn) ,

where fi : I×Rn ×Rn → R, i ∈ P = {1, ..., p}, g : I×Rn ×Rn → Rm are assumed to
be continuously differentiable functions.

Let K denote the set of all feasible solutions for (MP), that is,

K = {x ∈C (I, Rn) : x(a) = α,x(b) = β , g(t,x(t) , ẋ(t)) � 0,t ∈ I} .

Craven (1993) obtained Kuhn-Tucker type necessary conditions for the above prob-
lem and proved that the necessary conditions are also sufficient if the objective
functions are pseudoconvex and the constraint functions are quasiconvex.

In relation to (MP), we introduce the following problems
(
P∗

k

)
for each k =

1, ..., p:
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(P∗
k ) minimize

b∫

a

fk (t,x, ẋ) dt

subject to x(a) = α, x(b) = β ,

b∫

a

fi (t,x, ẋ) dt �
b∫

a

fi (t,x∗, ẋ∗) dt, i ∈ P, i �= k,

g(t,x, ẋ) � 0, t ∈ I.

The following lemmacan be established in the lines of Chankong and Haimes(1983).

Lemma 4.6.1. x∗ is an efficient solution of (MP) if and only if x∗ is an optimal
solution of

(
P∗

k

)
for each k = 1, ..., p.

Lemma 4.6.2. (Chankong and Haimes 1983). For every optimal normal solution of(
P∗

k

)
, for each k = 1, ..., p, there exist real numbers λ1k, ...,λpk with λkk = 1 and

piecewise smooth function yk : I → Rm such that

fkx (t,x∗, ẋ∗)+
p

∑
i=1
i �=k

λik fik (t,x∗, ẋ∗)+ yk (t)T hk (t,x∗, ẋ∗)

=
d
dt

⎛

⎝ fk x• (t,x∗, ẋ∗)+
p

∑
i=1
i �=k

λik fix• (t,x∗, ẋ∗)+ yk (t)T gx• (t,x∗, ẋ∗)

⎞

⎠ ,

(4.6.1)

yk (t)T g(t,x∗, ẋ∗) = 0,t ∈ I, (4.6.2)
yk (t) � 0, t ∈ I, (4.6.3)
λik � 0, i = 1, ..., p, i �= k. (4.6.4)

Theorem 4.6.1. (Necessary Optimality Conditions). Let x∗ ∈ K be an efficient solu-
tion for (MP), which is assumed to be a normal solution for

(
P∗

k

)
for each k =

1, ..., p. Then there exist λ ∗ ∈ Rp and a piecewise smooth function y∗ : I → Rm such
that

λ ∗T fx (t,x∗, ẋ∗)+y∗ (t)T gx (t,x∗, ẋ∗)

=
d
dt

(
λ ∗T fẋ (t,x∗, ẋ∗)+ y∗ (t)T gẋ (t,x∗, ẋ∗)

)
, (4.6.5)
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y∗ (t)T g(t,x∗, ẋ∗) = 0, t ∈ I, (4.6.6)
y∗ (t) � 0, t ∈ I, (4.6.7)
λ ∗ � 0. (4.6.8)

Proof. It follows from Lemma 4.6.1 and Lemma 4.6.2. ��
The following theorems present various sufficient optimality conditions.

Theorem 4.6.2. Let x∗ be feasible for (MP). Suppose that there exist λ ∗ ∈ Rp,
λ ∗ > 0 and piecewise smooth function y∗ : I → Rm such that for ∀t ∈ I, (4.6.5)–

(4.6.8) hold. If
(
λ ∗T f , y∗T g

)
is strong pseudoquasi type I with respect to η , for

∀x ∈ K, then x∗ is an efficient solution for (MP).

Proof. Assume that x∗ is not an efficient solution for (MP). Thus, there exists an
x ∈ K such that

b∫

a

f (t,x, ẋ) dt ≤
b∫

a

f (t,x∗, ẋ∗) dt. (4.6.9)

In light of (4.6.6), we have

−
b∫

a

y∗T g(t,x∗, ẋ∗) dt = 0. (4.6.10)

From (4.6.9) and (4.6.10) along with that
(
λ ∗T f , y∗T g

)
is strong pseudoquasi type

I with respect to η , we have

b∫

a

[

η (t,x,x∗)T fx (t,x∗, ẋ∗)+
d
dt

(η (t,x,x∗))T fẋ (t,x∗, ẋ∗)
]

dt ≤ 0 (4.6.11)

and

b∫

a

[

η (t,x,x∗)T y∗T gx (t,x∗, ẋ∗)+
d
dt

(
η (t,x,x∗)T y∗T gẋ (t,x∗, ẋ∗)

)]

dt � 0.

(4.6.12)
Since λ ∗ > 0, from (4.6.11) and (4.6.12), we have

b∫

a

[

η (t,x,x∗)T λ ∗T fx (t,x∗, ẋ∗)+
d
dt

(η (t,x,x∗))T λ ∗T fẋ (t,x∗, ẋ∗)
]

dt < 0

and

b∫

a

[

η (t,x,x∗)T y∗T gx (t,x∗, ẋ∗)+
d
dt

(
η (t,x,x∗)T y∗T gẋ (t,x∗, ẋ∗)

)]

dt � 0.
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By the above two inequalities, we get

b∫

a

[
η (t,x,x∗)T (

λ ∗T fx (t,x∗, ẋ∗)+ y∗T gx (t,x∗, ẋ∗)
)

+
d
dt

(η (t,x∗, ẋ∗))T (
λ ∗T fẋ (t,x∗, ẋ∗)+ y∗T gẋ (t,x∗, ẋ∗)

)
]

dt < 0.

By the above inequality along with Remark 3.3.1, we get

b∫

a

[
η (t,x,x∗)T (

λ ∗T fx (t,x∗, ẋ∗)+ y∗T gx (t,x∗, ẋ∗)

− d
dt

(
λ ∗T fẋ (t,x∗, ẋ∗)+ y∗T gẋ (t,x∗, ẋ∗)

)
)]

dt < 0. (4.6.13)

which contradicts (4.6.5). This completes the proof. ��
Theorem 4.6.3. Let x∗ be feasible for (MP). Suppose that there exist λ ∗ ∈ Rp,
λ ∗ � 0 and piecewise smooth function y∗ : I → Rm such that for ∀t ∈ I, (4.6.5)–
(4.6.8) hold. If

(
λ ∗T f , y∗T g

)
is weak strictly pseudoquasi type I with respect to η ,

then x∗ is an efficient solution for (MP).

Proof. Proceeding by contradiction, using the condition on
(
λ ∗T f , y∗T g

)
, (4.6.9)

and (4.6.10), we get

b∫

a

[

η (t,x,x∗)T λ ∗T fx (t,x∗, ẋ∗)+
d
dt

(η (t,x,x∗))T λ ∗T fẋ (t,x∗, ẋ∗)
]

dt < 0

and

b∫

a

[

η (t,x,x∗)T y∗T gx (t,x∗, ẋ∗)+
d
dt

(
η (t,x,x∗)T y∗T gẋ (t,x∗, ẋ∗)

)]

dt � 0.

By the above two inequalities along with Remark 3.3.1, we get (4.6.13), which
contradicts (4.6.5). This completes the proof. ��
Theorem 4.6.4. Let x∗ be feasible for (MP). Suppose that there exist λ ∗ ∈ Rp, λ ∗ �
0 and piecewise smooth function y∗ : I → Rm such that for ∀t ∈ I,(4.6.5)–(4.6.8)
hold. If

(
λ ∗T f , y∗T g

)
is weak strictly pseudo type I with respect to η , then x∗ is an

efficient solution for (MP).

Proof. Proceeding by contradiction, using the condition on
(
λ ∗T f , y∗T g

)
, (4.6.9)

and (4.6.10), we get
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b∫

a

[

η (t,x,x∗)T λ ∗T fx (t,x∗, ẋ∗)+
d
dt

(η (t,x,x∗))T λ ∗T fẋ (t,x∗, ẋ∗)
]

dt < 0

and

b∫

a

[

η (t,x,x∗)T y∗T gx (t,x∗, ẋ∗)+
d
dt

(
η (t,x,x∗)T y∗T gẋ (t,x∗, ẋ∗)

)]

dt < 0.

By the above two inequalities along with Remark 3.3.1, we get (4.6.13), which
contradicts (4.6.5). This completes the proof. ��

In the following theorems, we establish various sufficient optimality conditions
for (MP) for a more general class of functions.

Theorem 4.6.5. Let x∗ be feasible for (MP) and let there exist λ ∗ ∈ Rp, λ ∗ > 0 and
piecewise smooth function y∗ : I → Rm such that for all t ∈ I, (4.6.5)–(4.6.8) hold.
Furthermore, if

(
λ ∗T f , y∗T g

)
is strong pseudo-quasi type I univex with respect to

b0, b1, φ0 , φ1 and η , with b0 > 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, and a = 0 ⇒ φ1 (a) ≤ 0, for
all x ∈ K, then x∗ is an efficient solution for (MP).

Proof. Assume that x∗ is not an efficient solution for (MP). Then there exists an
x ∈ K, such that

b∫

a

f (t,x, ẋ) dt ≤
b∫

a

f (t,x∗, ẋ∗) dt.

By b0 > 0, a ≤ 0 ⇒ φ0 (a) ≤ 0 and the above inequality, we get

b0 (x, u)φ0

⎡

⎣

b∫

a

f (t,x, ẋ) dt −
b∫

a

f (t,x∗, ẋ∗) dt

⎤

⎦≤ 0. (4.6.14)

In light of (4.6.6), we have

−
b∫

a

y∗T g(t,x∗, ẋ∗) dt = 0.

By b1 � 0, and a = 0 ⇒ φ1 (a) ≤ 0 and the above equality, we get

−b1 (x, u)φ1

⎡

⎣

b∫

a

y∗T g(t,x∗, ẋ∗) dt

⎤

⎦ = 0. (4.6.15)

From (4.6.14) and (4.6.15) along with the strong pseudo-quasi type-I univexity of(
λ ∗T f , y∗T g

)
with respect to b0, b1, φ0 , φ1 and η , we have



66 4 Optimality Conditions

b∫

a

[

η (t,x,x∗)T fx (t,x∗, ẋ∗)+
d
dt

(η (t,x,x∗))T fẋ (t,x∗, ẋ∗)
]

dt ≤ 0 (4.6.16)

and

b∫

a

[

η (t,x,x∗)T y∗T gx (t,x∗, ẋ∗)+
d
dt

(
η (t,x,x∗)T y∗T gẋ (t,x∗, ẋ∗)

)]

dt � 0.

(4.6.17)
Since λ ∗ > 0, from (4.6.16) and (4.6.17), we have

b∫

a

[

η (t,x,x∗)T λ ∗T fx (t,x∗, ẋ∗)+
d
dt

(η (t,x,x∗))T λ ∗T fẋ (t,x∗, ẋ∗)
]

dt < 0

and

b∫

a

[

η (t,x,x∗)T y∗T gx (t,x∗, ẋ∗)+
d
dt

(
η (t,x,x∗)T y∗T gẋ (t,x∗, ẋ∗)

)]

dt � 0.

By the above two inequalities, we get

b∫

a

[
η (t,x,x∗)T (

λ ∗T fx (t,x∗, ẋ∗)+ y∗T gx (t,x∗, ẋ∗)
)

+
d
dt

(η (t,x∗, ẋ∗))T (
λ ∗T fẋ (t,x∗, ẋ∗)+ y∗T gẋ (t,x∗, ẋ∗)

)
]

dt < 0.

The above inequality along with Remark 3.3.1 gives

b∫

a

[

η (t,x,x∗)T
(

λ ∗T fx (t,x∗, ẋ∗)+ y∗T gx (t,x∗, ẋ∗)− d
dt

(
λ ∗T fẋ (t,x∗, ẋ∗)

+y∗T gẋ (t,x∗, ẋ∗)
))]

dt < 0. (4.6.18)

which contradicts (4.6.5). This completes the proof. ��
Theorem 4.6.6. Let x∗ be feasible for (MP) and let there exist λ ∗ ∈ Rp λ ∗ � 0
and piecewise smooth function y∗ : I → Rm such that for all t ∈ I, (4.6.5)–(4.6.8)
hold. Furthermore, if

(
λ ∗T f , y∗T g

)
is weak strictly pseudo-quasi type I univex with

respect to b0, b1, φ0, φ1 and η with b0 > 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, and a = 0 ⇒
φ1 (a) ≤ 0, for all x ∈ K, then x∗ is an efficient solution for (MP).

Proof. Proceeding by contradiction, using the condition on
(
λ ∗T f , y∗T g

)
for

(4.6.14) and (4.6.15), we get
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b∫

a

[

η (t,x,x∗)T λ ∗T fx (t,x∗, ẋ∗)+
d
dt

(η (t,x,x∗))T λ ∗T fẋ (t,x∗, ẋ∗)
]

dt < 0

and

b∫

a

[

η (t,x,x∗)T y∗T gx (t,x∗, ẋ∗)+
d
dt

(
η (t,x,x∗)T y∗T gẋ (t,x∗, ẋ∗)

)]

dt � 0.

By the above two inequalities along with Remark 3.3.1, we get (4.6.18), which
contradicts (4.6.5). This completes the proof. ��
Theorem 4.6.7. Let x∗ be feasible for (MP) and let there exist λ ∗ ∈ Rp, λ ∗ � 0 and
piecewise smooth function y∗ : I → Rm such that for any t ∈ I, (4.6.5)–(4.6.8) hold.
Furthermore, if

(
λ ∗T f , y∗T g

)
is weak strictly pseudo type-I univex with respect to

b0, b1, φ0, φ1 and η with b0 > 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, and a = 0 ⇒ φ1 (a) ≤ 0, for
all x ∈ K, then x∗ is an efficient solution for (MP).

Proof. Proceeding by contradiction, using the condition on
(
λ ∗T f , y∗T g

)
for

(4.6.14) and (4.6.15), we get

b∫

a

[

η (t,x,x∗)T λ ∗T fx (t,x∗, ẋ∗)+
d
dt

(η (t,x,x∗))T λ ∗T fẋ (t,x∗, ẋ∗)
]

dt < 0,

b∫

a

[

η (t,x,x∗)T y∗T gx (t,x∗, ẋ∗)+
d
dt

(
η (t,x,x∗)T y∗T gẋ (t,x∗, ẋ∗)

)]

dt < 0.

By the above two inequalities along with Remark 3.3.1, we get (4.6.18), which
contradicts (4.6.5). This completes the proof. ��

4.7 Optimality Conditions for Nondifferentiable
Continuous-Time Optimization Problems

Consider the following continuous-time nondifferentiable vector optimization
problem:

(CNP) minimize φ (x) =
T∫

0

f (t, x(t)) dt,

subject to gi (t,x(t)) ≤ 0 a.e. in [0, T ] ,
i ∈ I = {1, ...,m} , x ∈ X

where X is an open, nonempty convex subset of the Banach space Ln
∞ [0, T ] of all

n-dimensional vector-valued Lebesgue measurable functions, which are essentially
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bounded, defined on the compact interval [0, T ]⊂ R, with the norm ‖·‖∞ defined by

‖x‖∞ = max
1≤ j≤n

ess sup
{∣
∣x j (t)

∣
∣ , 0 ≤ t ≤ T

}
,

where for each t ∈ [0, T ] , x j (t) is the jth component of x(t)∈ Rn, φ is a real-valued
function defined on X , g(t,x(t)) = γ (t)x(t), and f (t,x(t)) = Γ(x) (t), where γ is
a map from X into the normed space Λm

1 [0, T ] of all Lebesgue measurable essen-
tially bounded m-dimensional vector functions defined on [0, T ], with the norm ‖·‖1
defined by

‖x‖1 = max
1≤ j≤m

T∫

0

∣
∣y j (t)

∣
∣dt ,

and Γ is a map from X into the normed space Λ1
1 [0, T ].

We prove the sufficiency of Fritz John and Karush–Kuhn–Tucker conditions
of global optimality for (CNP) in the Lipschitz case, using the notion of Type I
functions and generalizations.

Firstly, we give some basic concepts and notations needed in this section. Let Z
be a Banach space andψ : Z → R be a locally Lipschitz function; i.e., for each x ∈ Z,
there exist ε > 0 and a constant K > 0, depending on ε , such that

|ψ (x1)−ψ (x2)| ≤ K ‖x1 − x2‖ ∀x1,x2 ∈ x + εB,

where B is the open unit ball of Z.
The Clarke generalized directional derivative of ψ at x in the direction of a given

ν ∈ Z, denoted by ψ0 (x;v), is defined by

ψ0 (x;v) = limsup
y→x

s→0+

ψ (y + sv)−ψ (y)
s

.

The generalized gradient of ψ at x, denoted by ∂ψ (x), is defined by

∂ψ (x) =
{
ξ ∈ Z∗ : 〈ξ ,v〉 ≤ ψ0 (x;v) ∀v ∈ Z

}
.

Here, Z∗ denotes the dual space of continuous linear functionals on Z, and 〈·, ·〉 :
Z∗ ×Z → R is the duality pairing. For more details, see Clarke (1983).

Let Ω be the set of all feasible solutions to (CNP) (we suppose nonempty), i.e.,

Ω= {x ∈ X : gi (t,x(t)) ≤ 0 a.e. in [0,T ] , i ∈ I} .

Let V be an open convex subset of Rn containing the set

{x(t) ∈ Rn : x ∈Ω,t ∈ [0, T ]} .
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We assume that f and gi, i ∈ I, are real functions defined on [0, T ]×V . The function
t → f (t,x(t)) is assumed to be Lebesgue measurable and integrable for all x ∈ X .

We assume that, given a ∈ V , there exist an ε > 0 and a positive number k such
that ∀t ∈ [0, T ], and ∀x1,x2 ∈ a + εB (B denotes the unit ball of Rn) we have

| f (t,x1)− f (t,x2)| ≤ k‖x1 − x2‖ .

Similar hypothesis are assumed for gi, i ∈ I. Hence, f (t, ·) and gi (t, ·) , i ∈ I, are
locally Lipschitz on V throughout [0, T ].

We can suppose the Lipschitz constant is (locally) the same for all functions
involved.

Now, assume x̄ ∈ X and h ∈ Ln
∞ [0, T ] are given. The continuous Clarke general-

ized directional derivatives of f and gi,s are given by

f 0 (t, x̄(t) ;h(t)) = Γ0 (x̄;h) (t) = limsup
y→x̄

s→0+

Γ(y + sh) (t)−Γ(y)(t)
s

and

g0
i (t, x̄(t) ;h(t)) = γ0

i (x̄;h) (t) = limsup
y→x̄

s→0+

γi (y + sh)(t)− γi (y)(t)
s

a.e. in [0, T ].
In this section we obtain Fritz John and Karush–Kuhn–Tucker global sufficient

optimality conditions for (CNP) in the Lipschitz case under type I assumptions on
the data of (CNP).

Theorem 4.7.1. Let x̄ ∈ Ω. Suppose that ( f (t, ·) ,gi (t, ·)) are strict type I at x̄ (t)
(with respect to V) throughout [0, T ] for each i ∈ I, with the same η (x(t) , x̄(t)) for
all functions. Suppose further that there exist λ̄0 ∈ R, λ̄ ∈ Lm

∞ [0, T ] such that

0 ≤
T∫

0

[

λ̄0 f 0 (t, x̄ (t) ;h(t))+
m

∑
i=1
λ̄i (t)g0

i (t, x̄(t) ;h(t))

]

dt ∀h ∈ Ln
∞ [0, T ] ,

(4.7.1)

λ̄0 ≥ 0, λ̄ (t) ≥ 0 a.e. in [0, T ] , (4.7.2)
(
λ̄0, λ̄ (t)

) �= 0 a.e. in [0, T ] , (4.7.3)

λ̄igi (t, x̄(t)) = 0 a.e. in [0, T ] , i ∈ I. (4.7.4)

Then x̄ is a global optimal solution of (CNP).

Proof. Suppose, to the contrary, that x̄ is not optimal for (CNP). Then there exists
x̃ ∈Ω, x̄ �= x̃, such that
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T∫

0

f (t, x̃ (t))dt <

T∫

0

f (t, x̄(t))dt. (4.7.5)

Since ( f (t, ·) ,gi (t, ·)) are type I at x̄ (t) throughout [0, T ] for each i ∈ I, we have
the inequalities

f (t, x̃(t))− f (t, x̄(t)) ≥ f 0 (t, x̄(t) ;η (x(t) , x̄(t))) a.e. in [0, T ] (4.7.6)

and

−gi (t, x̄(t)) > g0
i (t, x̄(t) ;η (x(t) , x̄(t))) a.e. in [0, T ] , i ∈ I, (4.7.7)

for some η (x̃ (t) , x̄(t)). Because x̄ ∈ Ω and λ̄i ≥ 0 a.e. in [0, T ] , i ∈ I, it is clear
from (4.7.4) that

λ̄igi (t, x̄(t)) = 0 a.e. in [0, T ] , i ∈ I. (4.7.8)

From (4.7.2)–(4.7.8), it follows that

0 >

T∫

0

[

λ̄0 f 0 (t, x̄(t) ;η (x̃ (t) , x̄ (t)))+
m

∑
i=1
λ̄i (t)g0

i (t, x̄(t) ;η (x̃(t) , x̄(t)))

]

dt ,

which, with h(t) = η (x̃(t) , x̄(t)), contradicts (4.7.1). Therefore, we conclude that
x̄ is a global optimal solution of (CNP). ��
Remark 4.7.1. From the above proof it is clear that if for each i ∈ I,( f (t, ·) ,gi (t, ·))
are type I, and at least one of these functions, say ( f (t, ·) , gk (t, ·)) is strictly type
I at x̄(t) throughout [0, T ] such that the corresponding multiplier function λ̄k is
nonzero on a subset of [0, T ] with positive Lebesgue measure, then the assertion of
the theorem remains valid.

Theorem 4.7.2. Let x̄ ∈ Ω. Suppose that ( f (t, ·) ,gi (t, ·)) are type I at x̄(t) (with
respect to V) throughout [0, T ] for each i ∈ I, with the same η (x(t) , x̄ (t)) for all
functions. Suppose further, that there exist λ̄ ∈ Lm

∞ [0, T ] such that

0 ≤
T∫

0

[

f 0 (t, x̄ (t) ;h(t))+
m

∑
i=1
λ̄i (t)g0

i (t, x̄(t) ;h(t))

]

dt ∀h ∈ Ln
∞ [0, T ] , (4.7.9)

λ̄i (t) ≥ 0 a.e. in [0, T ] , i ∈ I (4.7.10)

λ̄igi (t, x̄ (t)) = 0 a.e. in [0, T ] , i ∈ I. (4.7.11)

Then x̄ is a global optimal solution of (CNP).

Proof. Let x ∈ Ω be given. It follows from (4.7.11) and the second part of the type
I assumption that

λ̄ig0
i (t, x̄(t) ;η (x(t) , x̄(t))) ≤ 0 a.e. in [0, T ] , i ∈ I. (4.7.12)
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Now, setting h(t) = η (x(t) , x̄ (t)) in (4.7.9), we get

0 ≤
T∫

0

[

f 0 (t, x̄(t) ;η (x(t) , x̄(t)))+
m

∑
i=1
λ̄i (t)g0

i (t, x̄(t) ;η (x(t) , x̄ (t)))

]

dt.

(4.7.13)
Combining (4.7.12) and (4.7.13), we obtain

T∫

0

[
f 0 (t, x̄(t) ;η (x(t) , x̄(t)))

]
dt ≥ 0.

By the first part of the type I assumption, together with the last inequality, we get

φ (x̄) ≤ φ (x) .

Hence, because x∈Ω is arbitrary, we can conclude that x̄ is a global optimal solution
of (CNP). ��

Furthermore, we can obtain global sufficient optimality conditions for (CNP)
under generalized invexity and Clarke regularity assumptions. The theorems stated
below generalize the smooth case by Zalmai (1990b) and Rojas-Medar and Brandao
(1998).

Now, let us recall the notion of Clarke regularity which is assumed to hold
throughout this section. Let U ⊂ Z be a nonempty subset of Z and ψ be a real
locally Lipschitz function defined on some open subset of Z containing the set U .
We say that ψ is Clarke regular at x ∈ U if for all v ∈ Z, the usual one-sided direc-
tional derivative of ψ at x in the direction of v ∈ Z, denoted by ψ ′ (x;v), exists and
ψ ′ (x;v) = ψ0 (x;v).

We define the Lagrangian function L : X ×R×Lm
∞ [0, T ] → R by

L(x,λ0;λ ) =
T∫

0

[

λ0 f (t,x(t))+
m

∑
i=1
λi (t)gi (t,x(t))

]

dt.

When λ0 �= 0, we can assume that λ0 = 0 by normalizing the Lagrange multipliers.
In this case we denote L(x,1,λ ) by L(x,λ ).

In the sequel L′
x (x̄,λ0,λ ;h) denotes the usual directional derivative of L(·,λ0,λ )

at x̄ in the direction h ∈ Ln
∞ [0, T ], and ∂xL(x,λ0,λ ) means the generalized gradient

of L(·,λ0,λ ).
Rojas-Medar and Brandao (1998) have pointed out that conditions (4.7.1)–(4.7.4)

((4.7.9)–(4.7.11)) in Theorem 4.7.1 (Theorem 4.7.2) cannot be written in terms of
the Clarke generalized gradient of the Lagrangian function, in general. However,
under the Clarke regularity assumption, it is possible. In fact, if ( f (t, ·) , gi (t, ·)) are
Clarke regular, then condition (4.7.1) is equivalent to L′

x (x̄,λ0,λ ;h) ≥ 0 for all h ∈
Ln
∞ [0, T ], and therefore, 0 ∈ ∂xL

(
x̄, λ̄0, λ̄

)
. More precisely, we have the following

corollaries:

Corollary 4.7.1. Let x̄ ∈ Ω. Suppose that ( f (t, ·) , gi (t, ·)) are strict type I at x̄ (t)
(with respect to V) throughout [0, T ] for each i ∈ I, with the same η (x(t) , x̄(t)) for
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all functions. Suppose further that there exist λ̄0 ∈ R, λ̄ ∈ Lm
∞ [0, T ] such that

0 ∈ ∂xL
(
x̄, λ̄0, λ̄

)
, (4.7.14)

λ̄0 ≥ 0, λ̄ (t) ≥ 0 a.e.in [0, T ] , (4.7.15)
(
λ̄0, λ̄ (t)

) �= 0 a.e. in [0, T ] , (4.7.16)

λ̄igi (t, x̄(t)) = 0 a.e. in [0, T ] , i ∈ I. (4.7.17)

Then x̄ is a global optimal solution of (CNP).

Corollary 4.7.2. Let x̄ ∈ Ω. Suppose that ( f (t, ·) , gi (t, ·)) are type I at x̄(t) (with
respect to V) throughout [0, T ] for each i ∈ I, with the same η (x(t) , x̄ (t)) for all
functions. Suppose further that there exists λ̄ ∈ Lm

∞ [0, T ] such that

0 ∈ ∂xL
(
x̄, λ̄0, λ̄

)
, (4.7.18)

λ̄ (t) ≥ 0 a.e. in [0, T ] , (4.7.19)

λ̄igi (t, x̄(t)) = 0 a.e. in [0, T ] , i ∈ I. (4.7.20)

Then x̄ is a global optimal solution of (CNP).

We establish the following two results on the sufficiency of the Karush–Kuhn–
Tucker conditions. The first is obtained under the hypothesis of pseudo-quasi-type I
assumption and the second is under quasi-pseudo-type I assumption. These results
extend the Propositions 4.3 and 4.4 of Rojas-Medar and Brandao (1998).

Proposition 4.7.1. Let x̄ ∈ Ω. Suppose that (φ (·) , gi (t, ·)) are pseudo-quasi-type
I at x̄ (t) (with respect to V) throughout [0, T ] for each i ∈ I, with the same
η (x(t) , x̄ (t)) for all functions. If there exists λ̄ ∈ Lm

∞ [0, T ] such that

0 ∈ ∂xL
(
x̄, λ̄

)
, (4.7.21)

λ̄i (t) ≥ 0 a.e. in [0, T ] , i ∈ I, (4.7.22)

λ̄igi (t, x̄(t)) = 0 a.e. in [0, T ] , i ∈ I. (4.7.23)

Then x̄ is a global optimal solution of (CNP).

Proof. Since, for each x ∈Ω, from (4.7.23), we have

λ̄igi (t, x̄(t)) = 0 a.e. in [0, T ] , i ∈ I.

From (4.7.22) and the second part of the Pseudo-quasi-type I assumption, we get

λ̄i (t)g′i (t, x̄(t) ;η (x(t) , x̄ (t))) ≤ 0 a.e. in [0, T ] , i ∈ I.

Hence, we have

T∫

0

∑
i∈1
λ̄i (t)g′i (t, x̄(t) ;η (x(t) , x̄ (t))) ≤ 0 ∀x ∈Ω. (4.7.24)
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From (4.7.21), we get

0≤
T∫

0

[

f ′ (t, x̄(t) ;η (x(t) , x̄(t)))+∑
i∈I
λ̄i (t)g′i (t, x̄(t) ;η (x(t) , x̄ (t)))

]

dt ∀x ∈Ω.

(4.7.25)
From (4.7.25) and (4.7.24), we get

T∫

0

f ′ (t, x̄(t) ;η (x(t) , x̄ (t))) ≥ 0 ∀x ∈Ω.

By the first part of the Pseudo-quasi-type I assumption and the last inequality, we
get

φ (x̄) ≤ φ (x) ∀x ∈Ω.

Therefore, x̄ is a global optimal solution of (CNP). ��

Proposition 4.7.2. Let x̄ ∈ Ω. Suppose that
(

φ (·) ,
T∫

0

m
∑

i=1
λ̄i (t)gi (t, x̄(t))dt

)

are

pseudo-quasi-type I at x̄(t) (with respect to V) throughout [0,T ] for each i ∈ I,
with the same η (x(t) , x̄ (t)) for all functions. If there exists λ̄ ∈ Lm

∞ [0,T ], such that(
x̄, λ̄

)
satisfies (4.7.21)-(4.7.23). Then x̄ is a global optimal solution of (CNP).

Proof. Since, for each x ∈Ω, from (4.7.23), we have

T∫

0

m

∑
i=1
λ̄i (t)gi (t,x(t))dt = 0, ∀x ∈Ω.

From the second part of the Pseudo-quasi-type I assumption of the proposition and
the last equation, we get

T∫

0

m

∑
i=1
λ̄i (t)gi (t, x̄(t) ;η (x(t) , x̄(t))) ≤ 0 ∀x ∈Ω.

The rest of the proof follows by using the same argument as in the proof of the
previous proposition. ��

4.8 Optimality Conditions for Fractional Optimization Problems
with Semilocally Type I Pre-invex Functions

In this section, sufficient optimality conditions are obtained for a nonlinear multiple
objective fractional optimization problem involving η-semidifferentiable type-I-
preinvex and related functions. Furthermore, a general dual is formulated and
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duality results are proved under the assumptions of generalized semilocally type-
I-preinvex and related functions. Our results generalize the results of Preda (2003)
and Stancu-Minasian (2002).

Ewing (1977) introduced semilocally convex functions which were applied by
him to derive sufficient optimality conditions for variational and control problems.
Such functions have certain important convex type properties, e.g., local minima of
semilocally convex functions defined on locally starshaped sets are also global min-
ima, and nonnegative linear combinations of semilocally convex functions are also
semilocally convex. Some generalizations of semilocally convex functions and their
properties were investigated in Kaul and Kaur (1982a, 1982b), Preda et al. (1996,
2003), Preda et al. (1996), Stancu-Minasian (2002), Suneja and Gupta (1998),
Mukherjee and Mishra (1996). Kaul and Kaur (1982b) derived sufficient optimality
criteria for a class of nonlinear programming problems by using generalized semilo-
cally functions. Preda and Stancu-Minasian (1997a, 1997b) extended the results of
Preda et al. (1996) to the vector optimization problems.

Elster and Nehse (1980) considered a class of convexlike functions and obtained
a saddle point optimality conditions for mathematical programs involving such
functions.

In this section, we extend the work of Preda (2003) to the case of semilocally
type I and related functions. Our results generalize and unify the results obtained in
the literature on this topic.

For necessary back ground of definitions, please see Sect. 4.3.6.

Lemma 4.8.1. Let f : X0 → Rn be an η-semidifferentiable function at x̄ ∈ X0. If f is
slqpi at x̄ and f (x) � f (x̄) then (d f )+ (x̄,η (x, x̄)) � 0.

Lemma 4.8.2. (Hayashi and Komiya 1982). Let S be a nonempty set in Rn and ψ :
S → Rk be a convexlike function. Then either

ψ (x) < 0 has a solutionx ∈ S

or
λ Tψ (x) � 0 for all x ∈ S,

for some λ ∈ Rk,λ ≥ 0, but both alternatives are never true (the symbol T denotes
the transpose of a matrix).

Using Lemma 4.8.2 from above instead of Lemma 2.9 from Preda and Stancu-
Minasian (1997b), we have that the Theorems 3.4 and 3.5 stated there are still true.
Thus, in establishing our results we will use the following version of Theorem 3.5
from Preda and Stancu-Minasian (1997b).

Lemma 4.8.3. Let x̄ ∈ X be a (local) weak minimum solution for the following
problem:

minimize(ϕ1 (x) ,ϕ2 (x) , . . . ,ϕp (x))

subject to

{
h j (x) � 0, j ∈ M,

x ∈ X0,
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where ϕ = (ϕ1 (x) ,ϕ2 (x) , . . . ,ϕp (x)) : X0 → Rp and h1, . . . ,hm are η-
semidifferentiable at x̄. Also, assume that h j ( j ∈ N (x̄)) is a continuous function at
x̄ and (dϕ)+ (x̄,η (x, x̄)) and (dh)+ (x̄,η (x, x̄)) are convexlike functions of x̄ on X0.
If h satisfies a regularity condition at x̄ (see; Preda and Stancu-Minasian 1997b),
then there exist λ 0 ∈ Rp,u0 ∈ Rm such that

λ 0T
(dϕ)+ (x̄,η (x, x̄))+ u0T

(dh)+ (x̄,η (x, x̄)) � 0 for all x ∈ X0,

u0T
h(x̄) = 0, h(x̄) � 0,

λ 0T
e = 1, λ 0 ≥ 0, u0 � 0,

where e = (1,1, . . . ,1)T ∈ Rp.

In this section, we consider the following vector fractional optimization problem:

(VFP) minimize
(

f1 (x)
g1 (x)

, . . . ,
fp (x)
gp (x)

)

subject to

{
hi (x) � 0, j = 1,2, . . . ,m,

x ∈ X0,

where X0 ⊆ Rn is a nonempty set and gi (x) > 0 for all x ∈ X0 and each i = 1, . . . , p.
Let f = ( f1, . . . , fp), g = (g1, . . . ,gp) and h = (h1, . . . ,hm).

We put X =
{

x ∈ X0 : h j (x) � 0, j = 1,2, . . . ,m
}

for the feasible set of problem
(VFP). We say that (VFP) satisfies the generalized Slater’s constraint qualification
(GSCQ) at x̄ ∈ X if h0 is slppi at x̄ and there exists an

∧
x ∈ X such that h0(x̂) < 0.

Lemma 4.8.4. Let x̄ ∈ X be a (local) weak minimum solution for (VFP). Further,
we assume that h j is continuous at x̄ for any j ∈ N (x̄) and that f ,g,h0 are η-
semidifferentiable at x̄. Then, the system

⎧
⎪⎨

⎪⎩

(d f )+ (x̄,η (x, x̄)) < 0,

(dg)+ (x̄,η (x, x̄)) > 0,
(
dh0

)+ (x̄,η (x, x̄)) < 0

has no solution x ∈ X0.

Lemma 4.8.5. (Fritz-John Necessary Optimality Condition). Let us suppose that
h j ( j ∈ N (x̄)) is a continuous function at x̄ and (d f )+ (x̄,η (x, x̄)) , (dg)+ (x̄,η (x, x̄))
and

(
dh0)+ (x̄,η (x, x̄)) are convexlike functions of x on X0. If x̄ is a locally weak

minimum solution for (VFP), then there exist λ 0 ∈ Rp,u0 ∈ Rp,v0 ∈ Rm such that

λ 0T
(d f )+ (x̄,η (x, x̄))− u0T

(dg)+ (x̄,η (x, x̄))+ v0T (
dh0)+

(x̄,η (x, x̄))
� 0 for all x ∈ X0,
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v0T
h(x̄) = 0,

(
λ 0,u0,v0) �= 0,

(
λ 0,u0,v0) � 0.

For each u = (u1, . . . ,up) ∈ Rp
+, where Rp

+ denotes the positive orthant of Rp
+, we

consider

(VFPu) minimize( f1 (x)−u1g1 (x) , . . . , fp (x)−upgp (x))

subject to

{
h j (x) � 0, j ∈ M,

x ∈ X0.

The following lemma is easy to prove.

Lemma 4.8.6. If x̄ is a (local) weak minimum for (VFP) then x̄ is a (local) weak
minimum for (VFP0

u), where u0 = f (x̄) / g(x̄).
Using this lemma we can get the following Karush–Kuhn–Tucker necessary

optimality condition for the problem (VFP).

Lemma 4.8.7. (Karush–Kuhn–Tucker Necessary Optimality Condition). Let x̄ be a
locally weak minimum solution for (VFP), let h j be a continuous at x̄ for j ∈ N (x̄)
and let (d fi)+ (x̄,η (x, x̄)), (dgi)+ (x̄,η (x, x̄)), i ∈ P and

(
dh0)+ (x̄,η (x, x̄)) be con-

vexlike functions of x on X0. If g satisfies (GSCQ) at x̄, then there exist λ 0 ∈ Rp
+,u0 ∈

Rp
+,v0 ∈ Rm such that

p

∑
i=1
λ 0

i

(
(d f )+ (x̄,η (x, x̄))−u0T

(dg)+ (x̄,η (x, x̄))+ v0T (
dh0)+

(x̄,η (x, x̄))
)

� 0

for all x ∈ X0,

v0T
h(x̄) = 0,

h(x̄) � 0,

λ 0T
e = 1,

λ 0 ≥ 0,u0 � 0, v0 � 0,

where e = (1, . . . ,1)T ∈ Rp.

Remark 4.8.1. In the above theorem we can suppose, for any i ∈ P, that (d fi)
+

(x̄,η (x, x̄))− u0
i (dgi)+ (x̄,η (x, x̄)) is convexlike on X0, where u0

i = fi (x̄) / gi (x̄),
instead of considering that (d fi)

+ (x̄,η (x, x̄)) and (dgi)
+ (x̄,η (x, x̄)) , i ∈ P are

convexlike on X0, for any i ∈ P.
Now using the concept of locally weak optimality, we give some sufficient

optimality conditions for the problem (VFP).

Theorem 4.8.1. Let x̄ ∈ X and (VFP) be η-semilocally type I-preinvex at x̄. Further,
we assume that there exist λ 0 ∈ Rp,u0 ∈ Rp and v0 ∈ Rm such that
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p

∑
i=1
λ 0

i
(
(d fi)

+ (x̄,η (x, x̄))
)
+ v0T

(dh)+ (x̄,η (x, x̄)) � 0 for all x ∈ X , (4.8.1)

(dgi)
+ (x̄,η (x, x̄)) � 0, ∀x ∈ X , ∀i ∈ P, (4.8.2)

v0T
h(x̄) = 0, (4.8.3)

h(x̄) � 0, (4.8.4)

λ 0T
e = 1, (4.8.5)

λ 0 ≥ 0,u0 � 0, v0 � 0, (4.8.6)

where e = (1, . . . ,1)T ∈ Rp. Then x̄ is a weak minimum solution for (VFP).

Proof. Suppose that the result does not hold. Hence, there exists x̃ ∈ X such that

fi (x̃)
gi (x̃)

<
fi (x̄)
gi (x̄)

for any i ∈ P. (4.8.7)

Since (VFP) is η-semilocally type I-preinvex at x̄, we get

fi (x̃)− fi (x̄) � (d f )+ (x̄,η (x̃, x̄)) , i ∈ P, (4.8.8)

gi (x̃)−gi (x̄) � (dgi)+ (x̄,η (x̃, x̄)) , i ∈ P, (4.8.9)

−h j (x̄) � (dh j)
+ (x̄,η (x̃, x̄)) , j ∈ M. (4.8.10)

Multiplying (4.8.8) by λ 0
i � 0, i ∈ P,λ 0 ∈ Rp

+, (3.10) by v0
j � 0, j ∈ M, then

sumarizing the obtained relations and using (4.8.1), we get

p

∑
i=1
λ 0

i ( fi (x̃)− fi (x̄))−
m

∑
j=1

v0
j h j (x̄) �

p

∑
i=1
λ 0

i (d fi)
+ (x̄,η (x̃, x̄))

+
m

∑
J=1

v0
j (dh j)

+ (x̄,η (x̃, x̄)) � 0.

Hence,
p

∑
i=1
λ 0

i ( fi (x̃)− fi (x̄))−
m

∑
j=1

v0
j h j (x̄) � 0. (4.8.11)

Since x ∈ X ,v0 � 0, by (4.8.3) and (4.8.11), we get

p

∑
i=1
λ 0

i ( fi (x̃)− fi (x̄)) � 0. (4.8.12)

Using (4.8.5), (4.8.6), and (4.8.12), we obtain that there exists i0 ∈ P such that

fi0 (x̃) � fi0 (x̄) . (4.8.13)
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By (4.8.2) and (4.8.9) it follows that

gi (x̃) � gi (x̄) , i ∈ P. (4.8.14)

Now using (4.8.13), (4.8.14), and f � 0,g > 0, we obtain

fi0 (x̃)
gi0 (x̃)

� fi0 (x̄)
gi0 (x̄)

,

which is a contradiction to (4.8.7). Thus, the theorem is proved and x̄ is a weak
minimum solution for (VFP). ��
Theorem 4.8.2. Let x̄ ∈ X and (VFP) is η-semilocally type I-preinvex at x̄. Further,
we assume that there exists λ 0 ∈ Rp,u0

i = fi (x̄) / gi (x̄), i ∈ P and v0 ∈ Rm such that

p

∑
i=1
λ 0

i
(
(d fi)+ (x̄,η (x, x̄))−u0

i (dgi)+ (x̄,η (x, x̄))
)
+ v0T

(dh)+ (x̄,η (x, x̄)) � 0,

∀x ∈ X , (4.8.15)

v0T
h(x̄) = 0, (4.8.16)

h(x̄) � 0, (4.8.17)

λ 0T
e = 1, (4.8.18)

λ 0 ≥ 0,u0 � 0,v0 � 0, (4.8.19)

where e = (1, . . . ,1)T ∈ Rp. Then x̄ is a weak minimum solution for (VFP).

Proof. Suppose that the result does not hold. Then if x̄ is not a weak minimum
solution for (VFP), we have that there exists x̃ ∈ X such that

fi (x̃)
gi (x̃)

<
fi (x̄)
gi (x̄)

for any i ∈ P,

that is,
fi (x̃) < u0

i gi (x̃) for any i ∈ P. (4.8.20)

Since (VFP) is η-semilocally type I-preinvex at x̄, we get

fi (x̃)− fi (x̄) � (d f )+ (x̄,η (x̃, x̄)) , i ∈ P,

gi (x̃)−gi (x̄) � (dgi)+ (x̄,η (x̃, x̄)) , i ∈ P,

−h j (x̄) � (dh j)
+ (x̄,η (x̃, x̄)) , j ∈ M.

Using these inequalities (4.8.19) and (4.8.15), we get
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p

∑
i=1
λ 0

i ( fi (x̃)− fi (x̄))−
p

∑
i=1
λ 0

i u0
i (gi (x̃)−gi (x̄))−

m

∑
i=1

v0
j h j (x̄)

�
p

∑
i=1
λ 0

i
(
(d fi)+ (x̄,η (x̃, x̄))−u0

i (dgi)+ (x̄,η (x̃, x̄))
)

+
m

∑
i=1

v0
j (dh j)

+ (x̄,η (x̃, x̄)) � 0.

Therefore,

p

∑
i=1
λ 0

i
(

fi (x̃)−u0
i gi (x̃)

)− (
fi (x̄)−u0

i gi (x̄)
)−

m

∑
i=1

v0
j h j (x̄) � 0.

Since u0
i = fi (x̄) / gi (x̄), i ∈ P, we obtain

p

∑
i=1
λ 0

i
(

fi (x̃)−u0
i gi (x̃)

)−
m

∑
i=1

v0
jh j (x̄) � 0.

Since x̃ ∈ X ,v0 � 0, by (4.8.16) and (4.8.19), we get

p

∑
i=1
λ 0

i
(

fi (x̃)−u0
i gi (x̃)

)
� 0. (4.8.21)

Since λ 0
i � 0,λ 0T

e = 1, we obtain that there exists i0 ∈ P such that

fi0 (x̃)−u0
i0gi0 (x̃) � 0,

that is,
fi0 (x̃)
gi0 (x̃)

� fi0 (x̄)
gi0 (x̄)

,

which is a contradiction to (4.8.15). Thus, the theorem is proved and x̄ is a weak
minimum solution for (VFP). ��
Theorem 4.8.3. Let x̄∈X, λ 0 ∈Rp,u0

i = fi (x̄) / gi (x̄), i∈P and v0 ∈Rm be such that
the conditions (4.8.15)–(4.8.19) of Theorem 4.8.2 hold. Furthermore, we assume
that (VFPu) is η-semilocally pseudo-quasi-type I-preinvex at x̄. Then x̄ is a weak
minimum solution for (VFPu).

Proof. Suppose that x̄ is not a weak minimum solution for (VFPu). Then there exists
x̃ ∈ X such that

fi (x̃)
gi (x̃)

<
fi (x̄)
gi (x̄)

for any i ∈ P,

that is,
fi (x̃) < u0

i gi (x̃) for any i ∈ P,
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which is equivalent to

fi (x̃)−u0
i gi (x̃) < fi (x̄)−u0

i gi (x̄) for any i ∈ P.

By the η-semilocally pseudo-type I-preinvexity at x̄, of (VFPu), we get

(d fi)
+ (x̄,η (x̃, x̄))−u0

i (dgi)
+ (x̄,η (x̃, x̄)) < 0 for any i ∈ P.

Using λ 0
i ∈ Rp

+,λ 0T
e = 1, we obtain

p

∑
i=1
λ 0

i
(
(d fi)

+ (x̄,η (x̃, x̄))−u0
i (dgi)

+ (x̄,η (x̃, x̄))
)

< 0. (4.8.22)

By the η-semilocally quasi-type I-preinvexity at x̄, of (VFPu) and (4.8.16) and v0 ∈
Rm

+ we get
m

∑
j=1

v0
j (dh j)

+ (x̄,η (x̃, x̄)) � 0. (4.8.23)

Now, by (4.8.22) and (4.8.23) we obtain

p

∑
i=1
λ 0

i
(
(d fi)+ (x̄,η (x̃, x̄))−u0

i (dgi)+ (x̄,η (x̃, x̄))
)
+

m

∑
j=1

v0
j (dh j)+ (x̄,η (x̃, x̄)) < 0,

which is a contradiction to (4.8.20). Thus, the theorem is proved and x̄ is a weak
minimum solution for (VFPu). ��

4.9 Optimality Conditions for Vector Fractional Subset
Optimization Problems

In this section, we shall use a new class of generalized convex n-set functions,
the called (Γ, ρ , σ , θ )-V-Type-I and related non-convex functions, introduced in
Sect. 4.3.7 and then establish a number of parametric and semi-parametric sufficient
optimality conditions for the primal problem under the aforesaid assumptions. This
work partially extends an earlier work of Zalmai (2002) to a wider class of functions.

Consider the following vector fractional subset optimization problem:

(P) minimize
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

,

)

subject to Hj (S) � 0, j ∈ m,S ∈ Λn,

where Λn is the n-fold product of the σ -agebra Λ of the subsets of a given set
X , Fi,Gi, i ∈ p ≡ {1,2, . . . , p} Hj (S) � 0, j ∈ m ≡ {1,2, . . . ,m}, are real valued
functions defined on Λn, and for each Gi (S) > 0, for each i ∈ p, for all S ∈ Λn. The
necessary background is given in Sect. 4.3.7.
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The point-function counterparts of (P) are known in the area of mathemati-
cal programming as vector fractional optimization problems. These problems have
been the focus of intense interest in the past few years, which has resulted in
numerous publications the readers may consult a fairly extensive list of references
related to various aspects of fractional programming by Pini and Singh (1997). For
more information about general vector optimization problems with point-functions,
readers may consult Dinkelbach (1967), Antczak (2002a), Bector et al. (1994b),
Britan (1981), Egudo (1989), Hanson and Mond (1987a), Ivanov and Nehse (1985),
Mishra (1998b), Mishra and Mukherjee (1995b), Mishra and Mukherjee (1996),
Mishra et al. (2005), and Xu (1996).

In the area of subset optimization, vector optimization problems have been
investigated by Kim et al. (1998). Much attention has been paid to analysis of
optimization problems with set functions, for example, see Chou et al. (1985),
Corley (1987), Hsia and Lee (1987), Kim et al. (1998b), Lai and Lin (1989),
Lin (1990, 1991a, 1991b, 1992), Mazzoleni (1979), Morris (1979), Preda (1995),
Preda and Stancu-Minasian (2001), Rosenmuller and Weidner (1974), Tanaka and
Maruyama (1984), and Zalmai (1989, 1990a, 2001).

Notice that, all these results are also applicable, when appropriately specialized,
to the following three classes of problems with vector, fractional, and conventional
objective functions, which are particular cases of (P):

MinimizeS∈X (F1 (S) , F2 (S) , . . . ,Fp (S)) (P1)

MinimizeS∈X
F1 (S)
G1 (S)

(P2)

MinimizeS∈X F1 (S) (P3)

where X (assumed to be nonempty) is the feasible set of (P), that is,

X =
{

S ∈ Λn : Hj (S) � 0, j ∈ m
}

.

Throughout this section, we shall deal exclusively with efficient solutions of (P). We
recall that an S∗ ∈ Ξ is said to be an efficient solution (P) if there is no S ∈ Ξ such
that

(
F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

)

≤
(

F1 (S∗)
G1 (S∗)

,
F2 (S∗)
G2 (S∗)

, . . . ,
Fp (S∗)
Gp (S∗)

)

.

In order to derive a set of necessary conditions for (P), we employ a Dinkelbach-type
(1967) indirect approach via the following auxiliary problem:

(Pλ ) MinimizeS∈Ξ
(
F1 (S)−λ1G1 (S) , . . . ,Fp (S)−λpGp (S)

)
,

where λi, i ∈ p, are parameters. This problem is equivalent to (P) in the sense that
for particular choices of λi, i ∈ p, the two problems have the same set of efficient
solutions. This equivalence is stated more precisely in the following lemma whose
proof is straightforward, and hence, omitted.
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Lemma 4.9.1. An S∗ ∈ Ξ is an efficient solution of (P) if and only if it is an efficient
solution of (Pλ ∗) with λ ∗

i = Fi (S∗) / Gi (S∗) , i ∈ p.

Now applying Theorem 3.23 of Lin (1991b) to (Pλ ) and using Lemma 4.9.1, we
obtain the following necessary efficiency results for (P).

Lemma 4.9.2. Assume that Fi,Gi, i ∈ p, and Hj, j ∈ m, are differentiable at S∗ ∈Λn,
and that for each i ∈ p, there exists Ŝi ∈ Λn such that

Hj (S∗)+
n

∑
k=1

〈
DkHj (S∗) ,χŜi

k
− χ∗k

〉
< 0, j ∈ m,

and for each l ∈ p\{i},

n

∑
k=1

〈
DkFl (S∗)−λ ∗

l DkGl (S∗) ,χŜl
k
− χS∗k

〉
< 0.

If S∗ is an efficient solution of (P) and λ ∗
i = Fi (S∗) / Gi (S∗), i ∈ p, then there exist

u∗ ∈U =
{

u ∈ Rp : u > 0,
p
∑

i=1
ui = 1

}

and v∗ ∈ Rm
+ such that

n

∑
k=1

〈
p

∑
i=1

u∗i [DkFi (S∗)−λ ∗
i DkGi (S∗)]+

m

∑
j=1

v∗jDkHj (S∗) ,χSk − χS∗k

〉

� 0,∀S ∈ Λn,

v∗jHj (S∗) = 0, j ∈ m.

The above theorem contains two sets of parameters u∗i and λ ∗
i , i ∈ p. It is possible

to eliminate one of these two sets of parameters, and thus, obtain a semi-parametric
version of Lemma 4.9.2. Indeed, this can be accomplished by simply replacing λ ∗

i
by Fi (S∗) / Gi (S∗) , i ∈ p, and redefining u∗ and v∗. For further reference, we state
this next theorem.

Lemma 4.9.3. Assume that Fi,Gi, i ∈ p, and Hj, j ∈ m, are differentiable at S∗ ∈Λn,
and that for each i ∈ p, there exists Ŝi ∈ Λn such that

Hj (S∗)+
n

∑
k=1

〈
DkHj (S∗) ,χŜi

k
− χ∗k

〉
< 0, j ∈ m,

and for each l ∈ p\{i},

n

∑
k=1

〈
Gl (S∗)DkFl (S∗)−Fl (S∗)DkGl (S∗) ,χŜl

k
− χS∗k

〉
< 0.

If S∗ is an efficient solution of (P), then there exist u∗ ∈U and v∗ ∈ Rm
+ such that
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n

∑
k=1

〈
p

∑
i=1

u∗i [Gi (S∗)DkFi (S∗)−Fi (S∗)DkGi (S∗)]+
m

∑
j=1

v∗jDkHj (S∗) ,χSk − χS∗k

〉

� 0,∀S ∈ Λn, v∗jHj (S∗) = 0, j ∈ m.

The form and contents of the necessary efficiency conditions given in Lemma
4.9.3 are used by Zalmai (2002) to derive a number of semi-parametric sufficient
efficiency criteria as well as for constructing various duality models for (P).

We shall establish some other parametric sufficient optimality conditions for (P)
under various generalized (Γ, ρ , σ , θ )-V-type-I assumptions. In order to simplify
the statements and proofs of these sufficiency results, we shall introduce along the
way some additional notations. For stating our first sufficiency theorem, we use the
real-valued functions Ai (·;λ ,u) and B j (·,v) defined for fixed λ ,u and v on Λn by

Ai (·;λ ,u) = ui [Fi (S)−λiGi (S)] , i ∈ p,

and
B j (·,v) = v jHj (S) , j ∈ m.

Theorem 4.9.1. Let S∗ ∈ Ξ and assume that Fi,Gi, i ∈ p, and Hj, j ∈ m, are differ-
entiable at S∗ ∈ Λn, and there exist u∗ ∈U and v∗ ∈ Rm

+ such that

Γ

(

S,S∗;
p

∑
i=1

u∗i [DFi (S∗)−λ ∗
i DGi (S∗)]+

m

∑
j=1

v∗jDHj (S∗)

)

� 0,∀S ∈ Λn, (4.9.1)

Fi (S∗)−λ ∗
i Gi (S∗) = 0, i ∈ p, (4.9.2)

v∗jHj (S∗) = 0, j ∈ m, (4.9.3)

where Γ(S,S∗; ·) : Ln
1 (X ,Λ,μ)→ R is a sublinear function. Assume furthermore that

any one of the following sets of hypotheses is satisfied:

(a) (i) (Ai (·;λ ∗,u∗) ,B j (·,v∗))∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-
quasi-type-I at S∗;

(ii) ρ+σ � 0;
(b) (i) (Ai (·;λ ∗,u∗) ,B j (·,v∗))∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-

prestrict-quasi-type-I at S∗;
(ii) ρ+σ > 0;

(c) (i) (Ai (·;λ ∗,u∗) ,B j (·,v∗))∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-prestrict-
quasi-strict-pseudo-type-I at S∗;

(ii) ρ+σ � 0.
Then S∗ is an efficient solution of (P).

Proof. Let S be an arbitrary feasible solution of (P), then by the sublinearity of Γ
and (4.9.1) it follows that

Γ

(

S,S∗;
p

∑
i=1

u∗i [DFi (S∗)−λ ∗
i DGi (S∗)]

)

+ Γ

(

S,S∗;
m

∑
j=1

v∗jDHj (S∗)

)

� 0. (4.9.4)
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(a) Since v∗ � 0,S ∈ Ξ and (4.9.3) holds, it is clear that v∗jHj (S∗) = 0, ∀ j ∈ m, and
hence,

−
m

∑
j=1
β j (S,S∗)v∗jHj (S∗) � 0,

which by virtue of second part of (i) implies that

Γ

(

S,S∗;
m

∑
j=1

v∗jDHj (S∗)

)

� −σd2 (θ (S,S∗)) . (4.9.5)

From (4.9.4) and (4.9.5), we see that

Γ

(

S,S∗;
p

∑
i=1

u∗i [DFi (S∗)−λ ∗
i DGi (S∗)]

)

� σd2 (θ (S,S∗)) � −ρd2 (θ (S,S∗)) ,

where the second inequality follows from (ii). By first part of (i), the last inequality
implies that

p

∑
i=1
αi (S,S∗)u∗i [Fi (S)−λ ∗

i Gi (S)] �
p

∑
i=1
αi (S,S∗)u∗i [Fi (S∗)−λ ∗

i Gi (S∗)] ,

which in view of (4.9.2) becomes

p

∑
i=1
αi (S,S∗)u∗i [Fi (S)−λ ∗

i Gi (S)] � 0. (4.9.6)

Since αi (S,S∗)u∗i > 0 for each i ∈ p, (4.9.6) implies that (F1 (S)
−λ ∗

1 G1 (S) , . . . ,Fp (S)−λ ∗
pGp (S)

)
� (0, . . . ,0), which in turn implies that

φ (S) ≡
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

)

� λ ∗.

Because λ ∗ = φ (S∗) and S ∈ Ξ was arbitrary, we conclude that S∗ is an efficient
solution of (P).

Proofs of parts (b) and (c) are similar to that of part (a). ��
Next we discuss some sufficient optimality conditions for mixed type of com-

binations of the problem functions. For this we need to introduce some additional
notations.

Let
{

J0,J1, . . . ,Jq
}

be a partition of the index set m; thus, Jr ⊂ m for each r ∈
{0,1, . . . ,q} ,Jr ∩ Js =Φ for each r,s ∈ {0,1, . . . ,q} with r �= s, and

⋃q
r=0 Jr = m. In

addition we use the real-valued functions Γi (·;λ ,u,v) and Δt (·,v) defined for fixed
λ ,uandv on Λn as follows:
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Γi (·;λ ,u,v) = ui

[

Fi (S)−λiGi (S)+ ∑
j∈J0

v jHj (S)

]

, i ∈ p,

Δt (S,v) = ∑
j∈Jt

v jHj (S) , t ∈ q.

Making use of this notation, we next state some generalized sufficiency conditions
for (P).

Theorem 4.9.2. Let S∗ ∈Ξ and assume that Fi,Gi, i ∈ p, and Hj, j ∈ m, are differen-
tiable at S∗ ∈ Λn, and there exist u∗ ∈U and v∗ ∈ Rm

+ such that (4.9.1)–(4.9.3) hold.
Assume furthermore, that any one of the following sets of hypotheses is satisfied:

(d) (i) (Γi (·;λ ∗,u∗,v∗) ,Δ j (·,v∗)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-
quasi-type-I at S∗;

(ii) ρ+σ � 0;
(e) (i) (Γi (·;λ ∗,u∗,v∗) ,Δ j (·,v∗)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-

prestrict-quasi-type-I at S∗;
(ii) ρ+σ > 0;

(f) (i) (Γi (·;λ ∗,u∗,v∗) ,Δ j (·,v∗)) ∀ i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-
prestrict-quasi-strict-pseudo-type-I at S∗;

(ii) ρ+σ � 0.

Then S∗ is an efficient solution of (P).

Proof. Let S be an arbitrary feasible solution of (P), then by the sublinearity of Γ
and (4.9.1) it follows that

Γ

(

S,S∗;
p

∑
i=1

u∗i [DFi (S∗)−λ ∗
i DGi (S∗)] + ∑

j∈J0

v∗jDHj (S∗)

)

+Γ

(

S,S∗;
q

∑
t=1
∑
j∈Jt

v∗jDHj (S∗)

)

� 0.

(4.9.7)

(a) Since v∗ � 0,S ∈ Ξ it follows from (4.9.3) that for each t ∈ q:

−∑
t∈Jt

v∗t Ht (S∗) = 0,

and so

−
q

∑
t=1
βt (S,S∗)Δt (S∗,v∗) = 0,

which by virtue of second part of (i) implies that

Γ

(

S,S∗;
q

∑
t=1
∑
j∈Jt

v∗jDHj (S∗)

)

� −σd2 (θ (S,S∗)) . (4.9.8)
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From (4.9.7) and (4.9.8), we see that

Γ

(

S,S∗;
p

∑
i=1

u∗i [DFi (S∗)−λ ∗
i DGi (S∗)]+ ∑

j∈J0

v∗jDHj (S∗)

)

� σd2 (θ (S,S∗))

� −ρd2 (θ (S,S∗)) ,

where the second inequality follows from (ii). Since
p
∑

i=1
u∗i = 1, the above inequality

can be expressed as

Γ

(

S,S∗;
p

∑
i=1

u∗i

[

DFi (S∗)−λ ∗
i DGi (S∗)+ ∑

j∈J0

v∗jDHj (S∗)

])

� −ρd2 (θ (S,S∗)) ,

which by virtue of the first part of hypothesis (i) implies that

p

∑
i=1
αi (S,S∗)Γi (S,λ ∗,u∗,v∗) �

p

∑
i=1
αi (S,S∗)Γi (S∗,λ ∗,u∗,v∗) = 0, (4.9.9)

where the equality follows from (4.9.2) and (4.9.3). Since v∗jHj (S) � 0,∀ j ∈ m, and
αi (S,S∗) > 0, ∀ i ∈ p, we deduce from (4.9.9) that

p

∑
i=1
αi (S,S∗)u∗i [Fi (S)−λ ∗

i Gi (S)] � 0,

which is precisely (4.9.6). Therefore, the rest of the proof is identical to that of Part
(a) of Theorem 4.9.1.

Proofs of parts (e) and (f) are similar to that of part (d). ��
Remark 4.9.1. Note that Theorem 4.9.2 contains a number of special cases that can
easily be identified by appropriate choices of the partitioning sets J0, J1, . . . , Jq.

In the remaining part of this section, we present some additional sets of general
parametric sufficient optimality conditions using a variant of the partitioning scheme
employed in Theorem 4.9.2.

Let {I0 , I1 , . . . , Ik} be partitions of p such that K = {0,1, . . . ,k} ⊂ Q =
{0,1, . . . ,q} , k < q, and let the function Θt (·,λ ∗,u∗,v∗) : Λn → R be defined, for
fixed λ ∗,u∗ and v∗ by

Θt (S,λ ∗,u∗,v∗) =∑
i∈It

u∗i [Fi (S)−λ ∗
i Gi (S)]+∑

j∈Jt

v∗jHj (S),t ∈ K.

Theorem 4.9.3. Let S∗ ∈Ξ and assume that Fi,Gi, i ∈ p, and Hj, j ∈ m, are differen-
tiable at S∗ ∈ Λn, and there exist u∗ ∈U and v∗ ∈ Rm

+ such that (4.9.1)–(4.9.3) hold.
Assume furthermore, that any one of the following sets of hypotheses is satisfied:

(g) (i) (Θt (·,λ ∗,u∗,v∗) ,Δ j (·,v∗)) ∀ t ∈ K and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-strict
pseudo-quasi-type-I at S∗;

(ii) ρ+σ � 0;
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(h) (i) (Θt (·,λ ∗,u∗,v∗) ,Δ j (·,v∗)) ∀ t ∈ K and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-
pseudo-prestrict-quasi-type-I at S∗;

(ii) ρ+σ > 0;
(i) (i) (Θt (·,λ ∗,u∗,v∗) ,Δ j (·,v∗)) ∀ t ∈ K and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-

prestrict-quasi-strict-pseudo-type-I at S∗;
(ii) ρ+σ � 0.

Then S∗ is an efficient solution of (P).

Proof. Suppose to the contrary that S∗ is not an efficient solution of (P).
Then there is S∗ ∈ Ξ such that

(
F1

(
S̃
)

/ G1
(
S̃
)
, . . . ,Fp

(
S̃
)

/ Gp
(
S̃
)) ≤ (F1 (S∗) /

G1 (S∗) , . . . ,Fp (S∗) / Gp (S∗), which in view of (4.9.2) implies that Fi
(
S̃
) −

λ ∗
i Gi

(
S̃
)

� 0,∀i ∈ p, with strict inequality holding for at least one index l ∈ p.
Since u∗ > 0, these inequalities yield

∑
i∈It

u∗i
[
Fi
(
S̃
)−λ ∗

i Gi
(
S̃
)]

� 0,t ∈ K. (4.9.10)

Since v∗ � 0 and, S,S∗ ∈ Ξ, it follows from (4.9.2), (4.9.3), and (4.9.10) that for
each t ∈ K,

Θt
(
S̃,λ ∗,u∗,v∗

)
=∑

i∈It

u∗i
[
Fi
(
S̃
)−λ ∗

i Gi
(
S̃
)]

+ ∑
j∈JT

v∗jHj
(
S̃
)

�∑
i∈It

u∗i
[
Fi
(
S̃
)−λ ∗

i Gi
(
S̃
)]

� 0

=∑
i∈It

u∗i [Fi (S∗)−λ ∗
i Gi (S∗)]+ ∑

j∈JT

v∗jHj (S∗) =Θt (S∗,λ ∗,u∗,v∗)

and so

∑
t∈K
αt

(
S̃,S∗

)
Θt

(
S̃,λ ∗,u∗,v∗

)
< ∑

t∈K
αt

(
S̃,S∗

)
Θt (S∗,λ ∗,u∗,v∗) ,

which in view of first part of the hypotheses (i) implies that

Γ

(

S̃,S∗;
p

∑
i=1

u∗i [DFi (S∗)−λ ∗
i DGi (S∗)]+∑

t∈K
∑
j∈Jt

v∗jDHj (S∗)

)

< −ρd2 (θ
(
S̃,S∗

))
.

(4.9.11)
As for each t ∈ M\K, − ∑

t∈M\K
βt

(
S̃,S∗

)
Δt (S∗,v∗) = 0, and hence the second part of

the hypotheses g(i) implies that

Γ

(

S̃,S∗; ∑
t∈M\K

∑
j∈Jt

v∗jDHj (S∗)

)

� −σd2 (θ
(
S̃,S∗

))
. (4.9.12)
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Now from (4.9.11), (4.9.12), g(ii), and the sublinearity, we get

Γ

(

S̃,S∗;
p

∑
i=1

u∗i [DFi (S∗)−λ ∗
i DGi (S∗)]+

m

∑
j=1

v∗jDHj (S∗)

)

< −(ρ+σ)d2 (θ
(
S̃,S∗

))
< 0,

which contradicts (4.9.1). Hence, S∗ is an efficient solution of (P).
The proofs for (h) and (i) are similar to that of part (g). ��
Now we present the semi-parametric version of the general parametric sufficient

optimality conditions in the present section given above. These sufficient optimality
conditions are motivated by forms and features of Lemma 4.9.3.

In the statements and proofs of the sufficiency theorems, we use the functions
B j (·,v∗) defined above, Ei (·,S∗,u∗) and Hi (·,S∗,u∗,v∗) defined for fixed S∗,u∗,
and v∗ on Λn by

Ei (S,S∗,u∗) = u∗i [Gi (S∗)Fi (S)−Fi (S∗)Gi (S)]

and

Hi (S,S∗,u∗,v∗) = u∗i

[

Gi (S∗)Fi (S)−Fi (S∗)Gi (S)+ ∑
j∈J0

v∗jHj (S)

]

, i ∈ p.

Theorem 4.9.4. Let S∗ ∈ Ξ and assume that Fi,Gi, i ∈ p, and Hj, j ∈ m, are differ-
entiable at S∗ ∈ Λn, and there exist u∗ ∈U and v∗ ∈ Rm

+ such that

Γ

(

S,S∗;
p

∑
i=1

u∗i

[

Gi (S∗)DFi (S∗)−Fi (S∗)DGi (S∗)+ ∑
j∈J0

v∗jDHj (S∗)

])

� 0,∀S ∈ Λn, (4.9.13)

v∗jHj (S∗) = 0, j ∈ m, (4.9.14)

where Γ is a sublinear function. Assume furthermore that any one of the following
set of hypotheses is satisfied:

(j) (i) (Ei (·,S∗,u∗) ,B j (·,v∗)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-
quasi-type-I at S∗;

(ii) ρ+σ � 0;
(k) (i) (Ei (·,S∗,u∗) ,B j (·,v∗)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-

prestrict-quasi-type-I at S∗;
(ii) ρ+σ > 0;

(l) (i) (Ei (·,S∗,u∗) ,B j (·,v∗)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-prestrict-
quasi-strict-pseudo-type-I at S∗;

(ii) ρ+σ � 0.

Then S∗ is an efficient solution of (P).
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Proof. Let S be an arbitrary feasible solution of (P), then by the sublinearity of Γ
and (4.1) it follows that

Γ

(

S,S∗;
p

∑
i=1

u∗i [Gi (S∗)DFi (S∗)−Fi (S∗)DGi (S∗)]

)

+Γ

(

S,S∗;
m

∑
j=1

v∗jDHj (S∗)

)

� 0. (4.9.15)

(j) Combining (4.9.15) and (4.9.5), which is valid for the present case because of
our assumption specified in (i) and using (ii), we obtain

Γ

(

S,S∗;
p

∑
i=1

u∗i [Gi (S∗)DFi (S∗)−Fi (S∗)DGi (S∗)]

)

� −ρd2 (θ (S,S∗)) ,

which in the light of the hypotheses implies that

p

∑
i=1
αi (S,S∗)u∗i [Gi (S∗)Fi (S)−Fi (S∗)Gi (S)] �

p

∑
i=1
αi (S,S∗)u∗i [Gi (S∗)Fi (S∗)

−Fi (S∗)Gi (S∗)] = 0. (4.9.16)

Since αi (S,S∗)u∗i > 0 for each i ∈ p, (4.9.16) implies that (G1 (S∗)F1 (S)−F1 (S∗)
G1,(S) , . . . Gp (S∗)Fp (S)−Fp (S∗)Gp (S)

)
� (0, . . . ,0), which in turn implies that

φ(S) ≡
(

F1(S)
G1(S)

,
F2(S)
G2(S)

, . . . ,
Fp(S)
Gp(S)

)

�

(
F1(S∗)
G1(S∗)

,
F2(S∗)
G2(S∗)

, . . . ,
Fp(S∗)
Gp(S∗)

)

≡ φ(S∗).

Hence, we conclude that S∗ is an efficient solution of (P).
Proofs of parts (k) and (l) are similar to that of part (j).
The proof of the following theorem is easy, so we state it without any proof. ��

Theorem 4.9.5. Let S∗ ∈ Ξ and assume that Fi,Gi, i ∈ p, and Hj, j ∈ m, are dif-
ferentiable at S∗ ∈ Λn, and there exist u∗ ∈ U and v∗ ∈ Rm

+ such that (4.9.13) and
(4.9.14) hold. Assume furthermore that any one of the following set of hypotheses is
satisfied:

(m) (i) (Ei (·,S∗,u∗) ,B j (·,v∗)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-
quasi-type-I at S∗;

(ii) ρ+σ � 0;
(n) (i) (Ei (·,S∗,u∗) ,B j (·,v∗)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-

prestrict-quasi-type-I at S∗;
(ii) ρ+σ > 0;

(o) (i) (Ei (·,S∗,u∗) ,B j (·,v∗)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-prestrict-
quasi-strict-pseudo-type-I at S∗;

(ii) ρ+σ � 0.

Then S∗ is an efficient solution of (P).
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For the next Theorem let the function Πt (·,S∗,u∗,v∗) : Λn → R be defined for
fixed S∗,u∗ and v∗ by

Πt (S,S∗,u∗,v∗) =∑
i∈It

u∗i [Gi (S∗)Fi (S)−Fi (S∗)Gi (S)]+ ∑
j∈Jt

v∗jHj (S) , ∀t ∈ K.

Theorem 4.9.6. Let S∗ ∈Ξ and assume that Fi,Gi, i ∈ p, and Hj, j ∈ m, are differen-
tiable at S∗ ∈ Λn, and there exist u∗ ∈U and v∗ ∈ Rm

+ such that (4.9.1)–(4.9.3) hold.
Assume furthermore, that any one of the following sets of hypotheses is satisfied:

(p) (i) (Πt (·,S∗,u∗,v∗) ,Δ j (·,v∗)) ∀t ∈ K and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-
pseudo-quasi-type-I at S∗;

(ii) ρ+σ � 0;
(q) (i) (Θt (·,λ ∗,u∗,v∗) ,Δ j (·,v∗)) ∀t ∈ K and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-

pseudo-prestrict-quasi-type-I at S∗;
(ii) ρ+σ > 0;

(r) (i) (Θt (·,λ ∗,u∗,v∗) ,Δ j (·,v∗)) ∀t ∈ K and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-
prestrict-quasi-strict-pseudo-type-I at S∗;

(ii) ρ+σ � 0.

Then S∗ is an efficient solution of (P).

The proof can be given on similar lines to the above theorem.



Chapter 5
Duality Theory

The concept of duality is of fundamental importance in linear programming. Wolfe
(1961) used the Kuhn–Tucker conditions to formulate a dual program for a nonlinear
optimization problem in the spirit of duality in linear programming, that is, with the
aim of defining a problem whose objective value gives lower bound on the optimal
value of the original or primal problem and whose optimal solution yields an optimal
solution for the primal problem under certain regularity conditions. Wolfe (1961)
established the weak duality, that is, with the same convexity conditions as required
for the sufficiency of the Kuhn–Tucker conditions, every feasible solution of the
dual has an objective value less than or equal to the objective value of every feasible
solution of the primal problem.

Generalized convexity plays a crucial role in the study of the duality theory.
Mond and Weir (1981) proposed a new type of dual based on the Wolfe dual. The
advantage of Mond–Weir dual over the Wolfe dual is that the objective function in
Mond-Weir dual is the same as that of the primal problem and that duality results
are achieved by means of further relaxation of invexity requirements.

5.1 Mond–Weir Type Duality for Vector Optimization Problems

In this section, we give some weak, strong and converse duality theorems for (VP)
studied in Sect. 4.1 and the following Mond–Weir dual suggested by Egudo (1989).

(MWD) maximize f (y)
subject to τ∇ f (y)+λ∇g(y) = 0,

λg(y) � 0,

λ � 0, τ � 0 and τ e = 1;

where e = (1, . . . ,1)T ∈ Rp.

S.K. Mishra et al., Generalized Convexity and Vector Optimization,
Nonconvex Optimization and Its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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Let Y0 be the set of feasible solutions of problem (MWD); i.e.

Y 0 = {(y,τ,λ ) : τ∇ f (y)+λ∇g(y) = 0, λ g(y) � 0, τ ∈ Rp, λ ∈ Rm, λ � 0}

Theorem 5.1.1. (Weak Duality). Suppose that

(i) x ∈ X0;
(ii) (y,τ,λ ) ∈ Y 0 and τ > 0;

(iii) Problem (VP) is strong pseudo quasi type I univex at y with respect to some
b0, b1, φ0, φ1 and η;

(iv) u ≤ 0 ⇒ φ0 (u) ≤ 0 and u � 0 ⇒ φ1 (u) � 0,
(v) b0 (x, y) > 0, and b1 (x, y) � 0.

Then f (x) � f (y).

Proof. Suppose contrary to the result that, i.e.,

f (x) ≤ f (y) .

By conditions (iv), (v) and the above inequality, we have

b0 (x, y)φ0 [ f (x)− f (y)] ≤ 0. (5.1.1)

By the feasibility of (y, τ, λ ), we have

−λ 0 g(y) � 0.

By conditions (iv), (v) and the above inequality, we have

−b1 (x, y)φ1 [λ g (y)] � 0. (5.1.2)

By inequalities (5.1.1), (5.1.2) and condition (iii), we have

(∇ f (y)) η (x, y) ≤ 0, and λ∇g(y)η (x, y) � 0.

Since τ > 0, the above inequalities give

[τ∇ f (y)+λ∇g(y)]η (x, y) < 0.

which contradicts condition (iia). This completes the proof. ��
Theorem 5.1.2. (Weak Duality). Suppose that

(i) x ∈ X0;
(ii) (y, τ, λ ) ∈ Y 0, and τ0 ≥ 0;

(iii) The problem (VP) is weak strictly pseudo quasi type I univex at y with respect
to some b0, b1, φ0, φ1 and η;

(iv) u ≤ 0 ⇒ φ0 (u) ≤ 0 and u � 0 ⇒ φ1 (u) � 0;
(v) b0 (x, y) > 0, and b1 (x, y) � 0.

Then f (x) � f (y).
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Proof. Suppose contrary to the result that, i.e.,

f (x) ≤ f (y) .

By conditions (iv), (v) and the above inequality, we get (5.1.1). By the feasibility of
(y, τ, λ), conditions (iv) and (v), give (5.1.2).

By inequalities (5.1.1), (5.1.2) and condition (iii), we have

(∇ f (y)) η (x, y) < 0, and λ∇g(y) η (x, y) � 0.

Since τ0 ≥ 0, the above inequalities give

[τ∇ f (y)+λ∇g(y)]η (x, y) < 0.

which contradicts condition (iia). This completes the proof. ��
Theorem 5.1.3. (Weak Duality). Suppose that

(i) x ∈ X0;
(ii) (y, τ, λ ) ∈ Y 0;

(iii) The problem (VP) is weak strictly pseudo type I univex at y with respect to some
b0, b1, φ0, φ1 and η;

(iv) u ≤ 0 ⇒ φ0 (u) ≤ 0 and u � 0 ⇒ φ1 (u) � 0;
(v) b0 (x, y) > 0, and b1 (x, y) � 0.

Then f (x) � f (y).

Proof. Suppose contrary to the result that, i.e.,

f (x) ≤ f (y) .

By conditions (iv), (v) and the above inequality, we get (5.1.1). By the feasibility of
(y, τ, λ), conditions (iv) and (v), give (5.1.2).

By inequalities (5.1.1), (5.1.2) and condition (iii), we have

(∇ f (y))η (x, y) < 0, and λ∇g(y)η (x, y) < 0.

Since τ � 0, the above inequalities give

[τ∇ f (y)+λ∇g(y)]η (x, y) < 0.

which contradicts condition (iia). This completes the proof. ��
Theorem 5.1.4. (Strong Duality). Let x be an efficient solution for (VP) and x sat-
isfies a constraint qualification (Marusciac 1982) for (VP). Then there exist τ ∈ Rp

and λ ∈ Rm such that
(

x, τ, λ
)

is feasible for (MWD). If any of the weak duality

(Theorems 5.1.1–5.1.3) also holds, then
(

x, τ, λ
)

is efficient solution for (MWD).
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Proof. Since x is efficient for (VP) and satisfies a constraint qualification for (VP),
then from Kuhn–Tucker necessary optimality conditions, we obtain τ > 0, and λ � 0
such that

τ∇ f (x)+λ∇g(x) = 0,

λg(x) = 0.

The vector τ may be normalized according to τ e = 1, τ > 0, which gives that the
triplet

(
x,τ, λ

)
is feasible for (MWD). The efficiency of

(
x, τ,λ

)
for (MWD)

follows from weak duality theorem. This completes the proof. ��

5.2 General Mond–Weir Type Duality for Vector Optimization
Problems

In this section, we consider a general Mond–Weir type of dual to (VP) studied in
Sect. 4.1 and establish weak and strong duality theorems under the weaker type I
univexity.

We consider the following general Mond–Weir type dual problem:

(GMWD) maximize f (y)+λJ0gJ0 (y)e

subject to τ∇ f (y)+λ∇g(y) = 0, (5.2.1)
λJt gJt � 0, 1 � t � r, (5.2.2)
λ � 0, τ � 0 and τ e = 1;

where e = (1, . . . ,1)T ∈ Rp and Jt, 0 � t � r are partitions of the set M.

Theorem 5.2.1. (Weak Duality). Suppose that for all feasible x for (VP) and all
feasible (y, τ, λ) for (GMWD), we have

(a) τ > 0, and
(

f +λJ0gJ0 (·)e, λJt gJt (·)
)

is strong pseudoquasi type I univex at y
for any t, 1 � t � r with respect to b0, b1, φ0, φ1 and η with φ0 and φ1 increasing;

(b)
(

f +λJ0gJ0 (·)e, λJt gJt (·)
)

is weak strictly pseudoquasi type I univex at y for
any t, 1 � t � r with respect to b0, b1, φ0, φ1 and η with φ0 and φ1 increasing;

(c)
(

f +λJ0gJ0 (·)e, λJt gJt (·)
)

is weak strictly pseudo type I univex at y for any t,
1 � t � r with respect to b0, b1, φ0, φ1 and η with φ0 and φ1 increasing.

Then f (x) � f (y)+λJ0gJ0 (y)e.

Proof. Suppose contrary to the result. Then we have

f (x) ≤ f (y)+λJ0gJ0 (y)e.

Since x is feasible for (VP) and λ � 0, the above inequality implies that

f (x)+λJ0gJ0 (x)e ≤ f (y)+λJ0gJ0 (y)e. (5.2.3)
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By the feasibility of (y, τ, λ ) inequality (5.2.2) gives

−λJt gJt (y) � 0, for all 1 � t � r. (5.2.4)

Since φ0 and φ1 are increasing, from (5.2.3) and (5.2.4), we have

b0(x,y)φ0(( f (x)+λJ0gJ0 (x)e)− ( f (y)+λJ0gJ0 (y)e)) ≤ 0, (5.2.5)

−b1 (x,y)φ1(λJt gJt (y)) � 0, for all 1 � t � r. (5.2.6)

By condition (a), from (5.2.5) and (5.2.6), we have

(∇ f (y)+λJ0∇gJ0 (y)e)η (x,y) ≤ 0.

(λJt∇gJt (y))η (x, y) � 0, for all 1 � t � r.

Since τ > 0, the above inequalities give
[

τ∇ f (y)+
r

∑
t=0
λJt∇gJt (y)

]

η (x, y) < 0. (5.2.7)

Since Jt , 0 � t � r are partitions of the set M, (5.2.7) is equivalent to

[τ∇ f (y)+λ∇g(y)]η (x, y) < 0,

which contradicts (5.2.1).
By condition (b), from (5.2.5) and (5.2.6), we have

(∇ f (y)+λJ0∇gJ0 (y)e)η (x,y) < 0,

(λJt∇gJt (y))η (x, y) � 0, for all 1 � t � r.

Since τ ≥ 0, the above inequalities give (5.2.7), which again contradicts (5.2.1).
By condition (c), from (5.2.5) and (5.2.6), we have

(∇ f (y)+λJ0∇gJ0 (y)e)η (x,y) < 0,

(λJt∇gJt (y))η (x, y) < 0, for all 1 � t � r.

Since τ � 0, the above inequalities give (5.2.7), which again contradicts (5.2.1).
This completes the proof. ��
Theorem 5.2.2. (Strong Duality). Let x be an efficient solution for (VP) and let x
satisfy a constraint qualification (Maeda 1994) for (VP). Then there exist τ ∈ Rp

and λ ∈ Rm such that
(

x, τ,λ
)

is feasible for (GMWD). If any of the weak duality

in Theorem 5.2.1 also holds, then
(

x,τ,λ
)

is an efficient solution for (GMWD).

Proof. Since x is efficient for (VP) and satisfies a generalized constraint qualifi-
cation (Maeda 1994), by Kuhn–Tucker necessary conditions there exist τ > 0 and
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λ � 0 such that
τ∇ f (x)+λ∇g(x) = 0,

λ igi (x) = 0, 1 � i � p.

The vector τ may be normalized according to τ e = 1,τ > 0, which gives that the
triplet

(
x, τ, λ

)
is feasible for (GMWD). Efficiency follows from Theorem 5.2.1.

This completes the proof. ��

5.3 Mond–Weir Duality for Nondifferentiable Vector
Optimization Problems

Now, in relation to (P) given in Sect. 4.2, we consider the following dual problem,
which is in the format of Mond–Weir (1981):

(MWD) maximize f (y) = ( f1 (y) , f2 (y) , . . . , fk (y))

subject to
(
ξ T f ′ + μT g′

)
(y,η (x,y)) � 0, f or all x ∈ D, (5.3.1)

μ jg j (y) � 0, j = 1, . . . ,m, (5.3.2)

ξ T e = 1, (5.3.3)

ξ ∈ Rk
+,μ ∈ Rm

+,

where e = (1, 1, . . . , 1) ∈ Rk.
Let

W =
{

(y,ξ ,μ) ∈ X ×Rk ×Rm :
(
ξ T f ′ + μT g′

)
(y,η (x, y)) � 0,

μ jg j (y) � 0, j = 1, . . . ,m,ξ ∈ Rk
+,ξ T e = 1,μ ∈ Rm

+

}

denote the set of all the feasible solutions of (MWD). Throughout this section
functions are same as in Sect. 4.2.

We denote by prX W the projection of set W on X.

Theorem 5.3.1. (Weak Duality). Let x and (y, ξ , μ) be feasible solutions for (P) and
(MWD), respectively. Moreover, we assume that any one of the following conditions
holds:

(a)
(

f , μT g
)

is strong pseudo-quasi d−type-I at y with respect to η and ξ > 0;
(b)

(
f , μT g

)
is weak strictly pseudo-quasi d−type-I at y with respect to η;

(c)
(

f , μT g
)

is weak strictly pseudo d−type-I at y with respect to η at y on
D
⋃

prXW . Then the following can not hold:

f (x) ≤ f (y) .

Proof. We proceed by contradiction. Suppose that

f (x) ≤ f (y) . (5.3.4)



5.3 Mond–Weir Duality for Nondifferentiable Vector Optimization Problems 97

Since (y, ξ , μ) is feasible for (MWD), it follows that

−
m

∑
j=1
μ jg j (y) � 0. (5.3.5)

By condition (a), (5.3.4) and (5.3.5) imply

f ′ (y,η (x, y)) ≤ 0, (5.3.6)

m

∑
j=1
μ jg′j (y,η (x, y)) � 0. (5.3.7)

Since ξ > 0, the above two inequalities give

k

∑
i=1
ξi f ′i (y,η (x, y))+

m

∑
l=1
μ jg′j (y,η (x, y)) < 0, (5.3.8)

which contradicts (5.3.1).
By condition (b), (5.3.4) and (5.3.5) imply

f ′ (y,η (x,y)) < 0, (5.3.9)

−
m

∑
j=1
μ jg j (y) � 0. (5.3.10)

Since ξ � 0, (5.3.9) and (5.3.10) imply (5.3.8), again a contradiction to (5.3.1).
By condition (c), (5.3.4) and (5.3.5) imply

f ′ (y,η (x, y)) < 0, (5.3.11)

−
m

∑
j=1
μ jg j (y) < 0. (5.3.12)

Since ξ � 0, (5.3.11) and (5.3.12) imply (5.3.8), again a contradiction to (5.3.1).
This completes the proof. ��

Theorem 5.3.2. (Strong Duality). Let x be a locally weak Pareto efficient solution
or weak Pareto efficient solution for (P) at which the generalized Slater’s con-
straint qualification is satisfied, let f , g be directionally differentiable at x with
f ′ (x,η (x,x)), and g′ (x,η (x,x)) preinvex functions on X, and let g j be continu-
ous for j ∈ Ĵ (x). Then there exists μ ∈ Rm

+ such that (x, 1,μ) is feasible for (MWD).
If the weak duality between (P) and (MWD) in Theorem 5.3.1 holds, then (x, 1,μ)
is a locally weak Pareto efficient solution for (MWD).

Proof. Since x satisfies all the conditions of Lemma 4.2.4, there exists μ ∈ Rm
+, such

that (x, μ) satisfies the conditions (4.2.1)–(4.2.3) of Chap. 4. By conditions (4.2.1)–
(4.2.3), we have that (x, 1,μ) is feasible for (MWD). Also, by the weak duality, it
follows that (x, 1,μ) is a locally weak Pareto efficient solution for (MWD). ��
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Theorem 5.3.3. (Converse Duality). Let
(

y, ξ , μ
)

be a weak Pareto efficient solu-
tion for (MWD). Moreover, we assume that the hypothesis of Theorem 5.3.1 hold at
y in D

⋃
prXW, then y is a weak Pareto efficient solution for (P).

Proof. We proceed by contradiction. Suppose that y is not any weak Pareto efficient
solution for (P), that is, there exists x̃ ∈ D such that f (x̃) < f (y). Since condition
(a) of Theorem 5.3.1 holds, we get

k

∑
i=1
ξi f ′i (y,η (x̃,y)) < 0. (5.3.13)

From the feasibility of x̃ for (P) and
(

y,ξ ,μ
)

for (MWD) respectively, we have

−
m

∑
j=1
μ jg j (y) � 0,

which in light of condition (a) of Theorem 5.3.1 yields

m

∑
j=1
μ jg

′
j (y,η (x̃,y)) � 0. (5.3.14)

By (5.3.13) and (5.3.14), we get

k

∑
i=1
ξi f ′i (y,η (x̃,y))+

m

∑
j=1
μ jg

′
j (y,η (x̃,y)) < 0. (5.3.15)

This contradicts the dual constraint (5.3.1).
By condition (b), we get

k

∑
i=1

f ′i (y,η (x̃,y)) < 0

and
m

∑
j=1
μ jg

′
j (y,η (x̃,y)) � 0.

Since ξi � 0, the above two inequalities imply (5.3.15), again contradiction to
(5.3.1).

By condition (c), we have

k

∑
i=1

f ′i (y,η (x̃,y)) < 0
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and
m

∑
j=1
μ jg

′
j (y,η (x̃,y)) < 0.

Since ξi � 0, the above two inequalities imply (5.3.15), again a contradiction to
(5.3.1). This completes the proof. ��

5.4 General Mond–Weir Duality for Nondifferentiable Vector
Optimization Problems

In this section, we shall continue our discussion on duality for (P) given in Sect. 4.2,
by considering a general Mond–Weir type dual problem of (P) and proving weak
and strong duality theorems under an assumption of the generalized d-invexity
introduced in Chap. 3.

We consider the following general Mond–Weir type dual to (P)

(GMWD) maximize φ (y, ξ , μ) = f (y)+ μT
J0

gJ0 (y)e

subject to
(
ξ T f ′ + μT g′

)
(y,η (x, y)) � 0, f or all x ∈ D, (5.4.1)

μJt gJt (y) � 0,1 � t � r (5.4.2)

ξ T e = 1, (5.4.3)

ξ ∈ Rk
+,μ ∈ Rm

+,

where Jt, 0 � t � r are partitions of set M and e = (1,1, . . . ,1) ∈ Rk.
Let

W̃ =
{

(y, ξ , μ) ∈ X ×Rk ×Rm :
(
ξ T f ′ + μT g′

)
(y,η (x, y)) � 0,

μ jg j (y) � 0, j = 1, . . . ,m,ξ ∈ Rk
+,ξ T e = 1, μ ∈ Rm

+

}

denote the set of all the feasible solutions of (MWD).

Theorem 5.4.1. (Weak Duality). Let x and (y, ξ , μ) be feasible solutions for (P) and
(GMWD) respectively. If any one of the following conditions holds:

(a) ξ > 0, and
(

f + μJ0gJ0 ,μJt gJt

)
is strong pseudo d-type-I at y in D

⋃
prXW̃ , with

respect to η for any t, 1 � t � r;
(b)

(
f + μJ0gJ0 ,μJt gJt

)
is weak strictly pseudo-quasi d-type-I at y in D

⋃
prXW̃ ,

with respect to η for any t, 1 � t � r;
(c)

(
f + μJ0gJ0 ,μJt gJt

)
is weak strictly pseudo d-type-I at y in D

⋃
prXW̃ , with

respect to η for any t, 1 � t � r.

Then the following can not hold:

f (x) ≤ φ (y,ξ ,μ) .
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Proof. We proceed by contradiction. Suppose that

f (x) ≤ φ (y,ξ ,μ) . (5.4.4)

Since x is feasible for (P) and μ � 0, (5.4.4) implies that

f (x)+ μT
J0

gJ0 (x)e ≤ f (y)+ μT
J0

gJ0 (y)e. (5.4.5)

From (5.4.2), we have

−μT
Jt

gJt � 0, for all 1 � t � r. (5.4.6)

By condition (a), from (5.4.5) and (5.4.6), we have

( f ′ + μJ0g′J0
e)(y,η(x,y)) ≤ 0,

and
μJt g

′
Jt (y,η (x, y)) � 0, ∀1 � t � r.

Since ξ > 0, the above two inequalities yield
(

ξ T f ′ +
r

∑
t=0
μJt g

′
Jt

)

(y,η(x, y)) < 0. (5.4.7)

Since J0, . . . ,Jr are partitions of M, (5.4.7) is equivalent to
(
ξ T f ′ + μT g′

)
(y,η (x, y)) < 0, (5.4.8)

which contradicts dual constraint (5.4.1).
By condition (b), we have

(
f ′ + μJ0g′J0

e
)
(y,η (x, y)) < 0,

and
μJt g

′
Jt (y,η (x,y)) � 0, ∀1 � t � r.

Since ξ � 0, the above two inequalities yield
(

ξ T f ′ +
r

∑
t=0
μJt g

′
Jt

)

(y,η (x, y)) < 0.

The above inequality leads to (5.4.8), which contradicts (5.4.1).
By condition (c), we get

(
f ′ + μJ0g′J0

e
)
(y,η (x, y)) < 0,

and
μJt g

′
Jt

(y,η (x, y)) < 0, ∀1 � t � r.
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Since ξ � 0, the above two inequalities yield
(

ξ T f ′ +
r

∑
t=0
μJt g

′
Jt

)

(y,η (x,y)) < 0.

The above inequality leads to (5.4.8), which contradicts (5.4.1). This completes the
proof. ��
Theorem 5.4.2. (Strong Duality). Let x be a locally weak Pareto efficient solution
or weak Pareto efficient solution for (P) at which the generalized Slater’s con-
straint qualification is satisfied, let f and g be directionally differentiable at x with
f ′ (x,η (x,x)), and g′ (x,η (x,x)) preinvex functions on X, and let g j be continuous
for j ∈ Ĵ (x). Then, there exists μ ∈ Rm

+ such that (x,1,μ) is feasible for (GMWD).
Moreover, if the weak duality between (P) and (GMWD) in Theorem 5.4.1 holds,
then (x,1,μ) is a locally weak Pareto efficient solution or weak Pareto efficient
solution for (GMWD).

Proof. The proof of this theorem is similar to the proof of Theorem 4.2 in
Chap. 4. ��

5.5 Mond–Weir Duality for Nondifferentiable Vector
Optimization Problems with d−Univex Functions

In relation to (P) given in Sect. 4.2, we consider the following dual problem which
is in the form of Mond–Weir (1981):

(MWD) maximize f (y) = ( f1 (y) , f2 (y) , . . . , fk (y))

subject to
(
ξ T f ′ + μT g′

)
(y,η (x, y)) � 0, f or all x ∈ D, (5.5.1)

μ jg j (y) � 0, j = 1, . . . ,m, (5.5.2)

ξ T e = 1, (5.5.3)

ξ ∈ Rk
+,μ ∈ Rm

+,

where e = (1,1, . . . ,1) ∈ Rk.
Let

W =
{

(y,ξ ,μ) ∈ X ×Rk ×Rm :
(
ξ T f ′ + μT g′

)
(y,η (x,y)) � 0,

μ jg j (y) � 0, j = 1, . . . ,m,ξ ∈ Rk
+,ξ T e = 1,μ ∈ Rm

+

}

denote the set of all the feasible solutions of (MWD).
We denote by prXW the projection of set W on X.

Theorem 5.5.1. (Weak duality). Let x and (y, ξ , μ) be a feasible solution for (P)
and (MWD) respectively. Moreover, suppose that one of the following conditions
holds:
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(d) f is strong pseudo d-univex at y on D
⋃

prXW with respect to some b0, φ0 and
η with ξ > 0, b0 > 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, and μT g is quasi d-univex at y on
D
⋃

prXW with respect to b1, φ1 and η with a � 0 ⇒ φ1 (a) � 0;
(e) f is weak strictly pseudod-univex at y on D

⋃
prXW with respect to some b0,

φ0 and η with b0 ≥ 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, and μT g is quasi d-univex at y on
D
⋃

prXW with respect to b1, φ1 and η with a � 0 ⇒ φ1 (a) � 0;
(f) f is weak strictly pseudo d-univex at y on D

⋃
prXW with respect to some b0,

φ0 and η with b0 ≥ 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, and μT g is quasi d-univex at y on
D
⋃

prXW with respect to b1, φ1 and η with a � 0 ⇒ φ1 (a) � 0.

Then
f (x) � f (y) .

Proof. We proceed by contradiction. Assume that

f (x) ≤ f (y) .

Since b0 > 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, from the above inequality, we get

b0 (x, y)φ0 [ f (x)− f (y)] ≤ 0. (5.5.4)

Since x is feasible for (P) and (y, ξ , μ) is feasible for (MWD), it follows that

m

∑
j=1
μ jg j (x)−

m

∑
j=1
μ jg j (y) � 0.

Since b1 � 0, a � 0 ⇒ φ1 (a) ≤ 0, from the above inequality, we get

b1 (x, y)φ1

[
m

∑
j=1
μ jg j (x)−

m

∑
j=1
μ jg j (y)

]

� 0. (5.5.5)

By the generalized d-univex condition in (a), (5.5.4) and (5.5.5) imply

f ′ (y,η (x, y)) ≤ 0, (5.5.6)

and
m

∑
j=1
μ jg′j (y,η (x,y)) � 0. (5.5.7)

Since ξ > 0, from (5.5.6) and (5.5.7), we get

k

∑
i=1
ξi f ′i (y,η (x,y))+

m

∑
l=1
μ jg′j (y,η (x,y)) < 0, (5.5.8)

which contradicts (5.5.1).
For the proof of part (b), again assume that

f (x) ≤ f (y) .
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Since b0 ≥ 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, from the above inequality, we get

b0 (x,y)φ0 [ f (x)− f (y)] ≤ 0. (5.5.9)

Since x is feasible for (P) and (y, ξ , μ) is feasible for (MWD), it follows that

m

∑
j=1
μ jg j (x)−

m

∑
j=1
μ jg j (y) � 0.

Since b1 � 0, a � 0 ⇒ φ1 (a) � 0, from the above inequality, we get

b1 (x,y)φ1

[
m

∑
j=1
μ jg j (x)−

m

∑
j=1
μ jg j (y)

]

� 0. (5.5.10)

By the generalized d-univex condition in (b), (5.5.9) and (5.5.10) imply

f ′ (y,η (x,y)) < 0,

and
m

∑
j=1
μ jg′j (y,η (x,y)) � 0.

Since ξ � 0, the above two inequalities imply (5.5.8), again a contradiction to
(5.5.1).

For the proof of part (c), proceeding as in part (b), we get (5.5.9) and (5.5.10).
By the generalized univexity condition in part (c), (5.5.9) and (5.5.10) imply

f ′ (y,η (x,y)) < 0, (5.5.11)

and
m

∑
j=1
μ jg′j (y,η (x,y)) ≤ 0. (5.5.12)

Since ξ � 0, (5.5.11) and (5.5.12) imply (5.5.8), again a contradiction to (5.5.1).
This completes the proof. ��
Theorem 5.5.2. (Strong duality). Let x be a locally weak Pareto efficient solution
or a weak Pareto efficient solution for (P) at which the generalized Slater’s con-
straint qualification is satisfied. Let ( f , g) be directionally differentiable at x with
f ′ (x,η(x,x)), and (x,η(x,x)) preinvex functions on X, and let g j be continuous for
j ∈ Ĵ (x). Then there exists μ ∈ Rm

+ such that (x,1,μ) is feasible for (MWD). If the
weak duality between (P) and (MWD) in Theorem 5.5.1 holds, then (x,1,μ) is a
locally weak Pareto efficient solution for (MWD).

Proof. Since x satisfies all the conditions of Lemma 4.2.4, there exists μ ∈ Rm
+ such

that conditions (4.2.1)–(4.2.3) hold. By (4.2.1)–(4.2.3), we have that (x,1,μ) is fea-
sible for (MWD). By the weak duality, it follows that (x,1,μ) is a locally weak
Pareto efficient solution for (MWD). ��
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Theorem 5.5.3. (Converse duality). Let
(

y,ξ ,μ
)

be a weak Pareto efficient solution
for (MWD). If the hypothesis of Theorem 5.5.1 holds at y on D

⋃
prXW , then y is a

weak Pareto efficient solution for (P).

Proof. We proceed by contradiction. Assume that y is not any weak Pareto efficient
solution for (P), that is, there exists x̃ ∈ D such that

f (x̃) < f (y) .

We know from condition (a) of Theorem 5.5.1 that b0 > 0, and a < 0 ⇒ φ0 (a) < 0,
from this and the above inequality, we get

b0 (x̃,y)φ0 [ f (x̃)− f (y)] < 0.

By the generalized univexity condition (a) in Theorem 5.5.1, we get

k

∑
i=1
ξ i f ′i (y,η (x̃,y)) < 0. (5.5.13)

From the feasibility of x̃ for (P),
(

y,ξ ,μ
)

for (MWD), b1 � 0 and a � 0 ⇒ φ1

(a) � 0, we have

b1 (x̃,y)φ1

[
m

∑
j=1
μ jg j (x̃)−

m

∑
j=1
μ jg j (y)

]

� 0.

The above inequality in light of the generalized d-univexity condition (a) in Theo-
rem 5.5.1 yields

m

∑
j=1
μ jg

′
j (y,η (x̃,y)) � 0. (5.5.14)

By (5.5.13) and (5.5.14), we get

k

∑
i=1
ξ i f ′i (y,η (x̃,y))+

m

∑
j=1
μ jg

′
j (y,η (x̃,y)) < 0. (5.5.15)

This contradicts the dual constraint (5.5.1).
Similarly by condition (b) in Theorem 5.5.1, we get

k

∑
i=1

f ′i (y,η (x̃,y)) < 0

and m

∑
j=1
μ jg

′
j (y,η (x̃,y)) � 0.

Since ξ i � 0, the above two inequalities imply (5.5.15), again contradiction to
(5.5.1).
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Using condition (c) of Theorem 5.5.1, we have

k

∑
i=1

f ′i (y,η (x̃,y)) < 0

and
m

∑
j=1
μ jg

′
j (y,η (x̃,y)) ≤ 0.

Since ξi � 0, the above two inequalities imply (5.5.15), again a contradiction to
(5.5.1). This completes the proof. ��

5.6 General Mond–Weir Duality for Nondifferentiable Vector
Optimization Problems with d−Univex Functions

We shall continue our discussion on duality for (P) given in Sect. 4.2 in the present
section by considering a general Mond–Weir type dual problem and proving weak
and strong duality theorems under an assumption of the generalized d-univexity
introduced in Chap. 3.

We consider the following general Mond–Weir type dual to (P):

(GMWD) maximize φ (y,ξ ,μ) = f (y)+ μT
J0

gJ0 (y)e

subject to
(
ξ T f ′ + μT g′

)
(y,η (x,y)) � 0, f or all x ∈ D, (5.6.1)

μJt gJt (y) � 0,1 � t � r, (5.6.2)

ξ T e = 1, (5.6.3)

ξ ∈ Rk
+,μ ∈ Rm

+,

where Jt , 0 � t � r are partitions of set M and e = (1,1, . . . ,1) ∈ Rk.
Let

W̃ =
{

(y,ξ ,μ) ∈ X ×Rk ×Rm :
(
ξ T f ′ + μT g′

)
(y,η (x, y)) � 0,

μ jg j (y) � 0, j = 1, . . . ,m,ξ ∈ Rk
+,ξ T e = 1,μ ∈ Rm

+

}

denote the set of all the feasible solutions of (MWD).

Theorem 5.6.1. (Weak duality). Let x and (y,ξ ,μ) be a feasible solution for (P) and
(GMWD), respectively. Assume that one of the following conditions holds:

(d) ξ > 0, and f + μJ0gJ0 is strong pseudo d−univex and μJt gJt is quasi d−univex
at y on D

⋃
prXW with respect to some b0, b1, φ0, φ1 and η with b0 > 0, ξ > 0,

a ≤ 0 ⇒ φ0 (a) ≤ 0, and a � 0 ⇒ φ1 (a) � 0 for any t, 1 � t � r.
(e) f + μJ0 gJ0 is weak strictly pseudo d-univex and μJt gJt is quasi d−univex at y

on D
⋃

prXW with respect to some b0, b1, φ0, φ1 and η with b0 ≥ 0, a ≤ 0 ⇒
φ0 (a) ≤ 0, and a � 0 ⇒ φ1 (a) � 0 for any t, 1 � t � r.
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(f) f +μJ0 gJ0 is weak strictly pseudo d-univex and μJt gJt is strictly quasi d−univex
at y on D

⋃
prXW with respect to some b0, b1, φ0, φ1 and η with b0 ≥ 0, a ≤

0 ⇒ φ0 (a) ≤ 0, and a � 0 ⇒ φ1 (a) � 0 for any t, 1 � t � r.

Then the following can not hold:

f (x) ≤ φ (y,ξ ,μ) .

Proof. We proceed by contradiction. Suppose that

f (x) ≤ φ (y,ξ ,μ) . (5.6.4)

Since x is feasible for (P) and μ � 0, (5.6.4) implies that

f (x)+ μT
J0

gJ0 (x)e ≤ f (y)+ μT
J0

gJ0 (y)e.

Since b0 > 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, from the above inequality, we get

b0 (x,y)φ0
[

f (x)+ μT
J0

gJ0 (x)e− f (y)+μT
J0

gJ0 (y)e
]≤ 0. (5.6.5)

From the feasibility of x for (P) and (5.6.2), we have

μT
Jt gJt (x)− μT

Jt gJt (y) � 0, for all 1 � t � r.

Since b1 � 0, a � 0 ⇒ φ1 (a) � 0, from the above inequality, we get

b1 (x,y)φ1
[
μT

Jt
gJt (x)− μT

Jt
gJt (y)

]
� 0, for all 1 � t � r. (5.6.6)

By condition (a), from (5.6.5) and (5.6.6), we have
(

f ′ + μJ0g′J0
e
)
(y,η (x,y)) ≤ 0,

and
μJt g

′
Jt (y,η (x,y)) � 0, ∀1 � t � r.

Since ξ > 0, the above two inequalities yield
(

ξ T f ′ +
r

∑
t=0
μJt g

′
Jt

)

(y,η (x,y)) < 0. (5.6.7)

Since J0, . . . ,Jr are partitions of M, (5.6.7) is equivalent to
(
ξ T f ′ + μT g′

)
(y,η (x,y)) < 0, (5.6.8)

which contradicts the dual constraint (5.6.1).
Similarly, by condition (b), we have

(
f ′ + μJ0g′J0

e
)
(y,η (x,y)) < 0,
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and
μJt g

′
Jt

(y,η (x,y)) � 0, ∀1 � t � r.

Since ξ � 0, the above two inequalities yield
(

ξ T f ′ +
r

∑
t=0
μJt g

′
Jt

)

(y,η (x,y)) < 0.

The above inequality leads to (5.6.8), which contradicts (5.6.1).
By condition (c), we get

(
f ′ + μJ0g′J0

e
)
(y,η (x,y)) < 0,

and
μJt g

′
Jt (y,η (x,y)) < 0, ∀1 � t � r.

Since ξ � 0, the above two inequalities yield
(

ξ T f ′ +
r

∑
t=0
μJt g

′
Jt

)

(y,η (x,y)) < 0.

The above inequality leads to (5.6.8), which contradicts (5.6.1). This completes the
proof. ��
Theorem 5.6.2. (Strong duality). Let x be a locally weak Pareto efficient solution
or a weak Pareto efficient solution for (P) at which the generalized Slater’s con-
straint qualification is satisfied. Let f and g be directionally differentiable at x with
f ′ (x,η (x,x)) and g′ (x,η (x,x)) preinvex functions on X, and let g j be continuous
for j ∈ Ĵ (x). Then, there exists μ ∈ Rm

+ such that (x,1,μ) is feasible for (GMWD).
Moreover, if the weak duality between (P) and (GMWD) in Theorem 5.6.1 holds,
then (x,1,μ) is a locally weak Pareto efficient solution for (GMWD).

Proof. The proof of this theorem is similar to the proof of Theorem 5.5.2 in the
previous section. ��

5.7 Mond–Weir Duality for Nondifferentiable Vector
Optimization Problems with d–Type-I Univex Functions

In relation to (P) given in Sect. 4.2, we consider the following dual problem which
is in the format of Mond–Weir (1981):
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(MWD) maximize f (y) = ( f1 (y) , f2 (y) , . . . , fk (y))

subject to
(
ξ T f ′ + μT g′

)
(y,η (x,y)) � 0, f or all x ∈ D, (5.7.1)

μ jg j (y) � 0, j = 1, . . . ,m, (5.7.2)

ξ T e = 1, (5.7.3)

ξ ∈ Rk
+, μ ∈ Rm

+,

where e = (1,1, . . . ,1) ∈ Rk.
Let

W =
{

(y,ξ ,μ) ∈ X ×Rk ×Rm :
(
ξ T f ′ + μT g′

)
(y,η (x,y)) � 0,

μ jg j (y) � 0, j = 1, . . . ,m,ξ ∈ Rk
+,ξ T e = 1,μ ∈ Rm

+

}

denote the set of all the feasible solutions of (MWD).
We denote by prXW the projection of set W on X.

Theorem 5.7.1. (Weak Duality). Let x and (y, ξ , μ) be a feasible solution for (P)
and (MWD) respectively. Moreover, suppose that any one of the following conditions
holds:

(g)
(

f ,μT g
)

is strong pseudo-quasi d-type-I univex at y on D
⋃

prXW with respect
to some b0, b1, φ0, φ1 and η with b0 > 0, ξ > 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, and
a � 0 ⇒ φ1 (a) � 0.

(h)
(

f ,μT g
)

is weak strictly pseudo-quasi dz-type-I univex at y on D
⋃

prXW with
respect to some b0, b1,φ0, φ1 and η with b0 ≥ 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, and a �
0 ⇒ φ1 (a) � 0.

(i)
(

f ,μT g
)

is weak strictly pseudo d-type-I univex at y on D
⋃

prXW with respect
to some b0, b1, φ0, φ1 and η with b0 ≥ 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, and a � 0 ⇒
φ1 (a) � 0.

Then the following can not hold:

f (x) ≤ f (y) .

Proof. We proceed by contradiction. Assume that

f (x) ≤ f (y) .

Since b0 > 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, from the above inequality, we get

b0 (x, y)φ0 [ f (x)− f (y)] ≤ 0. (5.7.4)

Since (y, ξ , μ) is feasible for (MWD), it follows that

−
m

∑
j=1
μ jg j (y) � 0.
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Since b1 � 0,a � 0 ⇒ φ1 (a) � 0, from the above inequality, we get

−b1 (x,y)φ1

[
m

∑
j=1
μ jg j (y)

]

� 0. (5.7.5)

By the generalized univexity condition in (a), (5.7.4) and (5.7.5) imply

f ′ (y,η (x,y)) ≤ 0, (5.7.6)

and
m

∑
j=1
μ jg′j (y,η (x,y)) � 0. (5.7.7)

Since ξ > 0, from (5.7.6) and (5.7.7), we get

k

∑
i=1
ξi f ′i (y,η (x,y))+

m

∑
l=1
μ jg′j (y,η (x,y)) < 0, (5.7.8)

which contradicts (5.7.1).
For the proof of part (b), again assume that

f (x) ≤ f (y) .

Since b0 ≥ 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, from the above inequality, we get

b0 (x,y)φ0 [ f (x)− f (y)] ≤ 0. (5.7.9)

Since (y, ξ , μ) is feasible for (MWD), it follows that

−
m

∑
j=1
μ jg j (y) � 0.

Since b1 � 0, a � 0 ⇒ φ1 (a) � 0, from the above inequality, we get

−b1 (x,y)φ1

[
m

∑
j=1
μ jg j (y)

]

� 0. (5.7.10)

By the generalized univexity condition in (b), (5.7.9) and (5.7.10) imply

f ′ (y,η (x,y)) < 0,

and

−
m

∑
j=1
μ jg j (y) � 0.

Since ξ � 0, the above two inequalities imply (5.7.8), again a contradiction to
(5.7.1).
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For the proof of part (c), proceeding as in part (b), we get (5.7.9) and (5.7.10).
By the generalized univexity condition in part (c), (5.7.9) and (5.7.10) imply

f ′ (y,η (x,y)) < 0, (5.7.11)

and

−
m

∑
j=1
μ jg j (y) < 0. (5.7.12)

Since ξ � 0, (5.7.11) and (5.7.12) imply (5.7.8), again a contradiction to (5.7.1).
This completes the proof. ��
Theorem 5.7.2. (Strong Duality). Let x be a locally weak Pareto efficient solution
or a weak Pareto efficient solution for (P) at which the generalized Slater’s con-
straint qualification is satisfied. Let ( f ,g) be directionally differentiable at x with
f ′ (x,η (x,x)), and g′ (x,η (x,x)) preinvex functions on X, and let g j be continuous
for j ∈ J̃ (x),. Then there exists μ ∈ Rm

+ such that (x,1,μ) is feasible for (MWD). If
the weak duality between (P) and (MWD) in Theorem 5.7.1 holds, then (x,1,μ) is a
locally weak Pareto efficient solution for (MWD).

Proof. Since x satisfies all the conditions of Lemma 4.2.4, there exists μ ∈ Rm
+ such

that conditions (4.2.1)–(4.2.3) hold. By (4.2.1)–(4.2.3), we have that (x,1,μ) is fea-
sible for (MWD). Also, by the weak duality, it follows that (x,1,μ) is a locally weak
Pareto efficient solution for (MWD). ��

Theorem 5.7.3. (Converse Duality). Let
(

y,ξ ,μ
)

be a weak Pareto efficient solu-
tion for (MWD). If the hypothesis of Theorem 5.7.1 holds at y in D

⋃
prXW , then y

is a weak Pareto efficient solution for (P).

Proof. We proceed by contradiction. Assume that y is not any weak Pareto efficient
solution for (P), that is, there exists x̃ ∈ D such that

f (x̃) < f (y) .

From condition (a) of Theorem 5.7.1, we know that b0 > 0 and a < 0 ⇒ φ0 (a) < 0.
By this and the above inequality, we get

b0 (x̃,y)φ0 [ f (x̃)− f (y)] < 0.

By the generalized univexity condition (a) in Theorem 5.7.1, we get

k

∑
i=1
ξ i f ′i (y,η (x̃,y)) < 0. (5.7.13)
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From the feasibility of x̃ for (P),
(

y,ξ ,μ
)

for (MWD), b1 � 0 and a � 0 ⇒ φ1

(a) � 0, we have

−b1 (x̃,y)φ1

[
m

∑
j=1
μ jg j (y)

]

� 0.

The above inequality in light of the generalized univexity condition (a) in Theorem
5.7.1 yields

m

∑
j=1
μ jg

′
j (y,η (x̃,y)) � 0. (5.7.14)

By (5.7.13) and (5.7.14), we get

k

∑
i=1
ξ i f ′i (y,η (x̃,y))+

m

∑
j=1
μ jg

′
j (y,η (x̃,y)) < 0. (5.7.15)

This contradicts the dual constraint (5.7.1).
Similarly by condition (b) in Theorem 5.7.1, we get

k

∑
i=1

f ′i (y,η (x̃,y)) < 0

and m

∑
j=1
μ̄ jg′j (ȳ,η (x̃, ȳ)) � 0.

Since ξ̄i � 0, the above two inequalities imply (5.7.15), again a contradiction to
(5.7.1).

Using condition (c) of Theorem 5.7.1, we have

k

∑
i=1

f ′i (y,η (x̃,y)) < 0

and
m

∑
j=1
μ jg

′
j (y,η (x̃,y)) < 0.

Since ξi � 0, the above two inequalities imply (5.7.15), again a contradiction to
(5.7.1). This completes the proof. ��

5.8 General Mond–Weir Duality for Nondifferentiable Vector
Optimization Problems with d–Type-I Univex Functions

We continue our discussion on duality for (P) given in Sect. 4.2 in this section by
considering a general Mond–Weir type dual problem of (P) and proving weak and
strong duality theorems under an assumption of the generalized d−univexity.
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We consider the following general Mond–Weir type dual to (P):
(GMWD) maximize φ (y,ξ ,μ) = f (y)+ μT

J0
gJ0 (y)e

subject to
(
ξ T f ′ + μT g′

)
(y,η (x,y)) � 0, f or all x ∈ D, (5.8.1)

μJt gJt (y) � 0,1 � t � r, (5.8.2)

ξ T e = 1, (5.8.3)

ξ ∈ Rk
+, μ ∈ Rm

+,

where Jt , 0 � t � r are partitions of set M and e = (1,1, ...,1) ∈ Rk.
Let

W̃ =
{

(y,ξ ,μ) ∈ X ×Rk ×Rm :
(
ξ T f ′ + μT g′

)
(y,η (x,y)) � 0,

μ jg j (y) � 0, j = 1, . . . ,m,ξ ∈ Rk
+,ξ T e = 1,μ ∈ Rm

+

}

denote the set of all the feasible solutions of (GMWD).

Theorem 5.8.1. (Weak Duality). Let x and (y, ξ , μ) be a feasible solution for (P)
and (GMWD) respectively. If any one of the following conditions holds:

(g) ξ > 0, and
(

f + μJ0gJ0 ,μJt gJt

)
is strong pseudo-quasi d−type-I univex at y on

D∪ prXW with respect to some b0,b1,φ0,φ1 and η with b0 > 0,ξ > 0,a ≤ 0 ⇒
φ0 (a) ≤ 0, and a � 0 ⇒ φ1 (a) � 0 for any t, 1 � t � r.

(h)
(

f + μJ0gJ0 ,μJt gJt

)
is weak strictly pseudo-quasi d− type-I univex at y on

D∪ prXW with respect to some b0,b1,φ0,φ1 and η with b0 ≥ 0, a ≤ 0 ⇒
φ0 (a) ≤ 0, and a � 0 ⇒ φ1 (a) � 0 for any t, 1 � t � r.

(i)
(

f +μJ0gJ0 ,μJt gJt

)
is weak strictly pseudo d−type-I univex at y on D∪ prXW

with respect to some b0,b1,φ0,φ1 and η with b0 ≥ 0, a ≤ 0 ⇒ φ0 (a) ≤ 0, and
a � 0 ⇒ φ1 (a) � 0 for any t, 1 � t � r,
then the following cannot hold:

f (x) ≤ φ (y,ξ ,μ) .

Proof. We proceed by contradiction. Assume that

f (x) ≤ φ(y,ξ ,μ). (5.8.4)

Since x is feasible for (P) and μ � 0, (5.8.4) implies

f (x)+ μT
J0

gJ0 (x)e ≤ f (y)+ μT
J0

gJ0 (y)e.

Since b0 > 0,a ≤ 0 ⇒ φ0 (a) ≤ 0, from the above inequality, we get

b0(x,y)φ0
[

f (x)+ μT
J0

gJ0(x)e− f (y)+ μT
J0

gJ0(y)e
]≤ 0. (5.8.5)
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From (5.8.2), we have

−μT
Jt

gJt � 0, for all 1 � t � r.

Since b1 � 0,a � 0 ⇒ φ1 (a) � 0, from the above inequality, we get

−b1 (x,y)φ1
[
μT

Jt
gJt

]
� 0, for all 1 � t � r. (5.8.6)

By condition (a), from (5.8.5) and (5.8.6), we have
(

f ′ + μJ0g′J0
e
)
(y,η (x,y)) ≤ 0,

and
μJt g

′
Jt

(y,η (x,y)) � 0, ∀1 � t � r.

Since ξ > 0, the above two inequalities yield
(

ξ T f ′ +
r

∑
t=0
μJt g

′
Jt

)

(y,η (x,y)) < 0. (5.8.7)

Since J0, ...,Jr are partitions of M, (5.8.7) is equivalent to
(
ξ T f ′ + μT g′

)
(y,η (x,y)) < 0, (5.8.8)

which contradicts the dual constraint (5.8.1).
Similarly, by condition (b), we have

(
f ′ + μJ0g′J0

e
)
(y,η (x,y)) < 0,

and
μJt g

′
Jt (y,η (x,y)) � 0, ∀1 � t � r.

Since ξ � 0, the above two inequalities yield
(

ξ T f ′ +
r

∑
t=0
μJt g

′
Jt

)

(y,η (x,y)) < 0.

The above inequality leads to (5.8.8), which contradicts (5.8.1).
By condition (c), we get

(
f ′ + μJ0g′J0

e
)
(y,η (x,y)) < 0,

and
μJt g

′
Jt (y,η (x,y)) < 0, ∀1 � t � r.

Since ξ � 0, the above two inequalities yield
(

ξ T f ′ +
r

∑
t=0
μJt g

′
Jt

)

(y,η (x,y)) < 0.
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The above inequality leads to (5.8.8), which contradicts (5.8.1). This completes the
proof. ��
Theorem 5.8.2. (Strong Duality). Let x̄ be a locally weak Pareto efficient solution
or a weak Pareto efficient solution for (P) at which the generalized Slater’s con-
straint qualification is satisfied. Let f and g be directionally differentiable at x̄ with
f ′ (x̄,η (x, x̄)) and g′ (x̄,η (x, x̄)) preinvex functions on X, and let g j be continuous
for j ∈ J̃ (x̄). Then, there exists μ̄ ∈ Rm

+ such that (x̄,1, μ̄) is feasible for (GMWD).
Moreover, if the weak duality between (P) and (GMWD) in Theorem 5.8.1 holds,
then (x̄,1, μ̄) is a locally weak Pareto efficient solution for (GMWD).

Proof. The proof of this theorem is similar to the proof of Theorem 5.7.2. ��

5.9 First Duality Model for Fractional Minimax Programs

In this section, we consider the following dual to (P) considered in Sect. 4.3:
(DI) maximize(s,t,ȳ)∈Ksup(z,t,ȳ)∈H1(s,t,ȳ)ν

subject to
s

∑
i=1

ti {∇ f (z,yi)−ν∇h(z,yi)}+∇
m

∑
j=1
μ jg j (z) = 0, (5.9.1)

s

∑
i=1

ti { f (z,yi)−νh(z,yi)} � 0, (5.9.2)

m

∑
j=1
μ jg j (z) � 0, (5.9.3)

(s,t, ȳ) ∈ K,

where H1 (s,t, ȳ) denotes the set of all triplets (z,μ ,ν) ∈ Rn ×Rp
+ ×R+ satisfying

(5.9.1)–(5.9.3). For a triplet(s,t, ȳ)∈ K, if the set H1 (s,t, ȳ) is empty, then we define
the supremum over it to be −∞.

Theorem 5.9.1. (Weak Duality). Let x be feasible for (P) and let (z,μ ,ν,s,t, ȳ)

be feasible for (DI). Assume that t > 0,

(
s
∑

i=1
ti( f (·,yi)−νh(·,yi)),

m
∑
j=1
μ jg j(·)

)

is

pseudo quasi V-type I at z with respect to the same η ,αi,β j,t and μ . Then

sup
y∈Y

f (x,y)
h(x,y)

� ν.

Proof. Suppose contrary to the result, that is, sup
y∈Y

f (x,y)
h(x,y) ≤ ν holds. Then there exists

an i0 such that
f
(
x,yi0

)−νh
(
x,yi0

)≤ 0.
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Since t > 0 and αi (x,z) > 0, from the above inequality along with (5.9.2), we get

s

∑
i=1

tiαi (x,z) ( f (x,yi)−νh(x,yi)) <
s

∑
i=1

tiαi (x,z) ( f (z,yi)−νh(z,yi)) . (5.9.4)

From (5.9.3) and the positivity of β j (x,z), we get

−
m

∑
j=1
μ jβ j (x,z)g j (z) � 0.

Using the above inequality and the quasi V-type I condition, we get

ηT (x,z)∇
m

∑
j=1
μ jg j (z) � 0. (5.9.5)

From (5.9.5) and (5.9.1), we get

ηT (x,z)∇
s

∑
i=1

ti ( f (z,yi)−νh(z,yi)) � 0.

By the pseudo V-type I condition on
s
∑

i=1
ti ( f (·,yi)−νh(·,yi)) at z and the above

inequality, we get

s

∑
i=1

tiαi (x,z) ( f (x,yi)−νh(x,yi)) �
s

∑
i=1

tiαi (x,z) ( f (z,yi)−νh(z,yi)) ,

which contradicts (5.9.4). Hence, the result follows. ��
Theorem 5.9.2. (Weak Duality). Let x be feasible for (P) and let (z,μ ,ν,s,t, ȳ)

be feasible for (DI). Assume that

(
s
∑

i=1
ti ( f (·,yi)−νh(·,yi)) ,

m
∑
j=1
μ jg j (·)

)

is semi

strictly V-type I at z with respect to the same η ,αi,β j,t and μ . Then

sup
y∈Y

f (x,y)
h(x,y)

� ν.

Proof. From (5.9.3) and the positivity of β j (x,z), we get

−
m

∑
j=1
μ jβ j (x,z)g j (z) � 0.

By using the above inequality and the quasi V-type I condition, we get

ηT (x,z)∇
m

∑
j=1
μ jg j (z) � 0. (5.9.6)
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By (5.9.6) and (5.9.1), we get

ηT (x,z)∇
s

∑
i=1

ti ( f (z,yi)−νh(z,yi)) � 0.

By the semi strict pseudo V-type I condition and the above inequality, we get

s

∑
i=1

tiαi (x,z) ( f (x,yi)−νh(x,yi)) >
s

∑
i=1

tiαi (x,z) ( f (z,yi)−νh(z,yi)) . (5.9.7)

Now suppose contrary to the result, that is, sup
y∈Y

f (x,y)
h(x,y) ≤ ν holds. Then there exists

an i0 such that
f
(
x,yi0

)−νh
(
x,yi0

)≤ 0.

Since ti � 0 and αi (x,z) > 0, from the above inequality along with (5.9.2), we get

s

∑
i=1

tiαi (x,z) ( f (x,yi)−νh(x,yi)) �
s

∑
i=1

tiαi (x,z) ( f (z,yi)−νh(z,yi)) ,

which contradicts (5.9.7). Hence, the result follows. ��
Theorem 5.9.3. (Strong Duality). Assume that x∗ is an optimal solution to (P) and
∇g j (x) , j ∈ J (x∗) are linearly independent. If in addition the hypothesis of Theo-
rems 5.9.1 or 5.9.2 holds for all feasible solutions (z,μ ,ν,s,t, ȳ) of (DI), then the
two problems (P) and (DI) have the same extremal values.

Proof. By Lemma 4.3.1, there exist (s∗,t∗, ȳ) ∈ K,(x∗,μ∗,ν∗) ∈ H1 (s∗,t∗, ȳ) such
that (x∗,μ∗,ν∗,s∗,t∗, ȳ) is a feasible solution to (DI). Since ν∗ = f (x∗,yi)

h(x∗,yi)
, the opti-

mality of this feasible solution for (DI) follows from Theorem 5.9.1 or Theorem
5.9.2. ��
Theorem 5.9.4. (Strict Converse Duality). Let x̄ be optimal to (P) and let

(z,μ ,ν,s,t, ȳ) be optimal to (DI). Assume that

(
s
∑

i=1
ti( f (·,yi)−νh(·,yi)),

m
∑
j=1
μ jg j(·)

)

is strictly pseudo quasi V-type at z with respect to the same η ,αi,β j,t and μ for all
(s,t, ȳ) ∈ K,(z,μ ,ν) ∈ H1(s,t, ȳ), and ∇g j(x̄), j ∈ J(x̄) are linearly independent.
Then x̄ = z, that is, z is an optimal solution to (P) and sup

y∈Y

f (z,y)
h(z,y) = ν .

Proof. Assume that x̄ �= z. From Theorem 5.9.3, we have

sup
y∈Y

f (x̄,y)
h(x̄,y)

= ν. (5.9.8)

From (5.9.3) and the positivity of β j (x,z), we get

−
m

∑
j=1
μ jβ j (x,z)g j (z) � 0.
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By the quasi V-type I condition and the above inequality, we get

ηT (x,z)∇
m

∑
j=1
μ jg j (z) � 0. (5.9.9)

From (5.9.9) and (5.9.1), we get

ηT (x,z)∇
s

∑
i=1

ti ( f (z,yi)−νh(z,yi)) � 0.

By the strict pseudo V-type I condition and the above inequality, we get

s

∑
i=1

tiαi(x,z)( f (x,yi)−νh(x,yi)) >
s

∑
i=1

tiαi(x,z)( f (z,yi)−νh(z,yi)).

The above inequality along with (5.9.2) gives

s

∑
i=1

tiαi(x,z)( f (x,yi)−νh(x,yi)) > 0.

Since αi(x,z) > 0, there exists an i0 such that

f (x,yi0 )−νh(x,yi0) > 0.

It follows that

sup
y∈Y

f (x,y)
h(x,y)

� f (x,yi0)
h(x,yi0)

> ν = sup
y∈Y

f (z,y)
h(z,y)

,

which contradicts (5.9.8). The proof is completed. ��

5.10 Second Duality Model for Fractional Minimax Programs

In order to discuss a parameter free model for (P) considered in Sect. 4.3, we
state another version of Lemma 4.3.1. This is done by replacing the parameter
ν∗ with f (x∗,yi)

/
h(x∗,yi) and by rewriting the multiplier functions associated with

inequality constraints. The result of Lemma 4.3.1 can be stated as follows.

Lemma 5.10.1. Let x∗ be an optimal solution to (P) and let ∇g j(x∗), j ∈ J(x∗) be
linearly independent. Then there exist (s∗,t∗, ȳ) ∈ K and μ∗ ∈ Rp

+ such that

s∗
∑
i=1

t∗i {h(x∗,yi)∇ f (x∗,yi)− f (x∗,yi)∇h(x∗,yi)}+∇
p

∑
j=1
μ∗

j g j(x∗) = 0, (5.10.1)

p

∑
j=1
μ∗

j g j(x∗) = 0, (5.10.2)

μ∗ ∈ Rp
+,t∗i � 0,

s∗
∑
i=1

t∗i = 1,yi ∈ Y (x∗), i = 1, . . . ,s∗.
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Now we consider the dual (DII) given by Liu and Wu (1998), to the problem (P)
considered in Sect. 4.3.

(DII) maximize(s,t,ȳ)∈K sup(z,μy)∈H2(s,t,ȳ) F(z)

subject to
s

∑
i=1

ti{h(z,yi)∇ f (z,yi)− f (z,yi)∇h(z,yi)}+∇
p

∑
j=1
μ jg j(z) = 0, (5.10.3)

p

∑
j=1
μ jg j(z) � 0, (5.10.4)

F(z) = sup
y∈Y

f (z,y)
h(z,y)

, (5.10.5)

where yi ∈ Y (z), H2 (s,t, ȳ) denotes the set of all (z,μ) ∈ Rm × Rp
+ satisfying

(5.10.3)–(5.10.5). If the set H2 (s,t, ȳ) is empty, then we define the supremum over it

to be−∞. Throughout this section, we denoteψ1 (·) as
s
∑

i=1
ti {h(z,yi) f (·,yi)− f (z,yi)

h(·,yi)}.

Theorem 5.10.1. (Weak Duality). Let x be feasible for (P) and let (z,μ ,s,t, ȳ) be

feasible for (DII). Assume that

(

ψ1(·),
m
∑
j=1
μ jg j(·)

)

is pseudo quasi V-type I with

respect to the same η ,αi,β j,t and μ . Then

sup
y∈Y

f (x,y)
h(x,y)

� F(z).

Proof. From 5.10.4 and the positivity of β j(x,z), we get

−
m

∑
j=1
μ jβ j(x,z)g j(z) � 0.

By the quasi V-type I condition and the above inequality, we get

ηT (x,z)∇
m

∑
j=1
μ jg j(z) � 0. (5.10.6)

From 5.10.6 and 5.10.3, we get

ηT (x,z)∇ψ1(z) � 0.

By the pseudo V-type I condition, the above inequality gives

h(z,yi0) f (x,yi0 )− f (z,yi0)h(·,yi0) � 0.
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It follows that

sup
y∈Y

f (x,y)
h(x,y)

� f (x,yi0 )
h(x,yi0)

� f (z,yi0 )
h(z,yi0)

.

Since yi0 ∈Y (z), we have

F(z) =
f (z,yi0 )
h(x,yi0)

.

This completes the proof. ��
Similarly, one can establish strong and strict converse duality theorems for (P)

and (DII), so we state without proof.

Theorem 5.10.2. (Strong Duality). Assume that x∗ is an optimal solution to (P) and
∇g j (x) , j ∈ J (x∗) are linearly independent. If in addition the hypothesis of Theorem
5.10.1 holds for all feasible solutions (z,μ ,s,t, ȳ) of (DII), then the two problems (P)
and (DII) have the same extremal values.

Theorem 5.10.3. (Strict Converse Duality). Let x̄ be optimal to (P) and let

(z,μ ,v,s,t, ȳ) be optimal to (DII). Assume that

(

ψ1 (·) ,
m
∑
j=1
μ jg j (·)

)

is pseudo

quasi V-type I with respect to the same η ,αi,β j,t and μ at z and ∇g j (x̄) , j ∈ J (x̄)
are linearly independent. Then x̄ = z, that is, z is an optimal solution to (P).

5.11 Third Duality Model for Fractional Minimax Programs

Following Liu and Wu (1998), based on (4.3.2) and (4.3.3), we get

∇
s∗
∑
i=1

t∗i f (x∗,yi)− f (x∗,yi)
h(x∗,yi)

∇
s∗
∑
i=1

t∗i h(x∗,yi)+∇
p

∑
j=1
μ∗

j g j(x∗) = 0, forall i = 1, . . . ,s∗.

Multiplying the above equations respectively by tih(x∗,yi), i = 1, . . . ,s∗, and adding
them, we get

∇
s∗
∑
i=1

t∗i h(x∗,yi)∇

[
s∗
∑
i=1

t∗i f (x∗,yi)+
p

∑
j=1
μ∗

j g j(x∗)

]

−
s∗
∑
i=1

t∗i f (x∗,yi)∇
s∗
∑
i=1

t∗i h(x∗,yi) = 0.

From the above equation and 4.3.4, we get the following lemma from Liu and
Wu (1998).

Lemma 5.11.1. Let x∗ be an optimal solution to (P) and let ∇g j (x∗) , j ∈ J (x∗) be
linearly independent. Then there exist (s∗,t∗, ȳ) ∈ K and μ∗ ∈ Rp

+ such that
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∇

⎛

⎜
⎜
⎜
⎝

s∗
∑

i=1
t∗i f (x∗,yi)+

p
∑
j=1
μ∗

j g j (x∗)

s∗
∑

i=1
t∗i h(x∗,yi)

⎞

⎟
⎟
⎟
⎠

= 0, (5.11.1)

p

∑
j=1
μ∗

j g j (x∗) = 0, (5.11.2)

μ∗ ∈ Rp
+,t∗i � 0,

s∗

∑
i=1

t∗i = 1,yi ∈Y (x∗) , i = 1, . . . ,s∗.

In this section, we consider the following parameter free dual problem for (P):

(DIII) maximize(s,t,ȳ)∈K sup(z,μ)∈H3(s,t,ȳ)

⎛

⎜
⎜
⎝

s
∑

i=1
ti f (z,yi)+

p
∑
j=1
μ jg j (z)

s
∑

i=1
tih(z,yi)

⎞

⎟
⎟
⎠

subject to ∇

⎛

⎜
⎜
⎝

s
∑

i=1
ti f (z,yi)+

p
∑
j=1
μ jg j (z)

s
∑

i=1
tih(z,yi)

⎞

⎟
⎟
⎠ = 0, (5.11.3)

where H3 (s,t, ȳ) denotes the set of all (z,μ) ∈ Rm ×Rp
+ satisfying 5.11.3, If the set

H3 (s,t, ȳ) is empty, then we define the supremum over it to be −∞. Throughout this
section for the sake of simplicity, we denote by ψ2 (·) as

s

∑
i=1

tih(z,yi)

[
s

∑
i=1

ti f (·,yi)+
p

∑
j=1
μ jg j (·)

]

−
[

s

∑
i=1

ti f (z,yi)+
p

∑
j=1
μ jg j (z)

]
s

∑
i=1

tih(·,yi).

We shall give weak, strong and converse duality theorems without any proof
as they can be proved in light of Theorems 5.9.1 – 5.10.1 proved in the previous
sections and Theorems 5.2 and 5.3 of Liu and Wu (1998).

Theorem 5.11.1. (Weak Duality). Let x be feasible for (P) and let (z,μ ,s,t, ȳ) be

feasible for (DIII). Assume that

(

ψ1 (·) ,
m
∑
j=1
μ jg j (·)

)

is pseudo quasi V-type I with

respect to the same η ,αi,β j,t and μ at z. Then

sup
y∈Y

f (x,y)
h(x,y)

�

⎛

⎜
⎜
⎝

s
∑

i=1
ti f (z,yi)+

p
∑
j=1
μ jg j (z)

s
∑

i=1
tih(z,yi)

⎞

⎟
⎟
⎠ .

Theorem 5.11.2. (Strong Duality). Assume that x∗ is an optimal solution to (P)
and ∇g j (x∗) , j ∈ J (x∗) are linearly independent. If in addition the hypothesis of
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Theorem 5.11.1 holds for any feasible solution (z,μ ,s,t, ȳ) of (DIII), then the two
problems (P) and (DII) have the same extremal values.

Theorem 5.11.3. (Converse Duality). Let x̄ be optimal to (P) and let (z,μ ,v,s,t, ȳ)

be optimal to (DIII). Assume that

(

ψ1 (·) ,
m
∑
j=1
μ jg j (·)

)

is pseudo quasi V-type I

with respect to the same η ,αi,β j,t and μ at z and ∇g j (x̄) , j ∈ J (x̄) are linearly
independent. Then x̄ = z, that is, z is an optimal solution to (P).

5.12 Mond–Weir Duality for Nondifferentiable Vector
Optimization Problems

Nondifferentiable optimization problems have been studied by many authors, see
for example, Antczak (2002b), Brandao et al. (1999), Craven (1989), Giorgi and
Guerraggio (1996), Giorgi et al. (2004), Kim and Lee (2001), Lee (1994), Minami
(1983), Mishra (1996a, 1996c, 1997b), Mishra and Giorgi (2000), Mishra et al.
(2004) and Mishra and Mukherjee (1995b, 1996), The purpose of this section is to
give some duality results for a nondifferentiable vector optimization problem using
the Clarke derivatives.

Consider the following pair of vector optimization problems:

(VP) minimize f (x) = ( f1 (x) , . . . , fp (x))
subject to g j (x) � 0, j = 1, . . . ,m,

(VD) maximize f (x) = ( f1 (u) , . . . , fp (u))

subject to 0 ∈
p

∑
i=1
μi∂ c fi (u)+

m

∑
j=1
λ j∂ cg j (u), (5.12.1)

λ jg j (u) � 0, j = 1, . . . ,m, (5.12.2)
(μ1, . . . ,μp,λ1, . . . ,λm) ≥ 0, (5.12.3)

where fi : X → R, i = 1, . . . , p, and g j : X → R, j = 1, . . . ,m, are locally Lipschitz
functions.

Remark 5.12.1. In formulating (VD), we do not use the Kuhn–Tucher type neces-
sary optimality condition (see Clarke 1983).

It is worth noticing that in the proof of the following duality theorems, we do
not require a constraint qualification as in Kim and Lee (2001), and the class of
functions used in this section are wider enough.

We establish the following weak and strong duality theorems between (VP) and
(VD).
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Theorem 5.12.1. (Weak Duality). Suppose that ( f ,g) is weak strictly pseudo type
I with respect to η . Then, for any (VP)-feasible solution x and any (VD)-feasible
solution (u,μ ,λ ), it follows that f (x) ≮ f (u).

Proof. Suppose that there exists a (VP)-feasible solution x and a (VD)-feasible
solution (u,μ ,λ ) such that

fi (x) < fi (u) ,∀i = 1, . . . , p. (5.12.4)

By the condition on f and (5.12.4), we get

〈ξi,η (x,u)〉 < 0, for anyξi ∈ ∂ c fi (u) , i = 1, . . . , p. (5.12.5)

We consider two cases.
Case (I): λ = 0. From (5.12.3) and (5.12.5), we have

p

∑
i=1

〈μiξi,η (x,u)〉 < 0, for anyξi ∈ ∂ c fi (u) .

This contradicts 5.12.1.
Case (II): λ �= 0. Let M =

{
j : λ j > 0

}
. From (5.12.2), we get

−g j (u) � 0, j ∈ M.

By the condition and the above inequality, we get
〈
ς j,η (x,u)

〉
< 0, j ∈ M and ς j ∈ ∂ cg j (u) .

Since λ j = 0, for any j /∈ M, we have

m

∑
j=1

〈
λ jς j,η (x,u)

〉
< 0, j ∈ {1, . . . ,m} and anyς j ∈ ∂ cg j (u) .

On the other hand, (5.12.5) implies that

p

∑
i=1

〈μiξi,η (x,u)〉 � 0, for anyξi ∈ ∂ c fi (u) .

By the above two inequalities, we get
〈

p

∑
i=1
μiξi +

m

∑
j=1
λ jς j,η (x,u)

〉

< 0, for anyξi ∈ ∂ c fi (u) andς j ∈ ∂ cg j (u) .

This contradicts (5.12.1). The proof is completes. ��
We can further extend the above weak duality theorem to the class of type I

functions.
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Theorem 5.12.2. (Weak Duality). Suppose that ( f ,g) is weak strictly pseudo type I
univex with respect to η ,b0 > 0,b1 � 0,φ0 and φ1 are increasing. Then, for any
(VP)-feasible solution x and any (VD)-feasible solution (u,μ ,λ), it follows that
f (x) ≮ f (u).

Proof. Suppose that there exist a (VP)-feasible solution x and a (VD)-feasible
solution (u,μ ,λ ) such that

fi (x) < fi (u) ,∀i = 1, . . . , p. (5.12.6)

By the condition on φ0, b0 > 0 and (5.12.6), we get

b0 (x,u)φ0 [ fi (x)− fi (u)] < 0, i = 1, . . . , p.

By the condition on f , from the above inequality, we get

〈ξi,η (x,u)〉 < 0, for anyξi ∈ ∂ c fi (u) , i = 1, . . . , p. (5.12.7)

We consider two cases.
Case (I): λ = 0. From (5.12.3) and (5.12.7), we have

p

∑
i=1

〈μiξi,η (x,u)〉 < 0, for anyξi ∈ ∂ c fi (u) .

This contradicts (5.12.1).
Case (II): λ �= 0. Let M =

{
j : λ j > 0

}
. From (5.12.2), we get

−g j (u) � 0, j ∈ M.

By the condition on φ1 and b1 � 0, from the above inequality, we get

−b1 (x,u)φ1 [g j (u)] � 0, j ∈ M.

By the condition on g and the above inequality, we get
〈
ς j,η (x,u)

〉
< 0, j ∈ M andς j ∈ ∂ cg j (u) .

Since λ j = 0, for any j /∈ M, we have

m

∑
j=1

〈
λ jς j,η (x,u)

〉
< 0, j ∈ {1, . . . ,m} and anyς j ∈ ∂ cg j (u) .

On the other hand, (5.12.7) implies that

p

∑
i=1

〈μiξi,η (x,u)〉 � 0, for anyξi ∈ ∂ c fi (u) .
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By above two inequalities, we get
〈

p

∑
i=1
μiξi +

m

∑
j=1
λ jς j,η (x,u)

〉

< 0, for anyξi ∈ ∂ c fi (u) andς j ∈ ∂ cg j (u) .

This contradicts (5.12.1). This completes the proof. ��
Theorem 5.12.3. (Strong Duality). Let x be a weakly efficient solution for (VP).
Then, there exist μ ∈ Rp and λ ∈ Rm such that

(
x,μ ,λ

)
is a (VD)-feasible solution

and their objective values are equal. Moreover, if ( f ,g) is weak strictly pseudo type

I with respect to η , then
(

x,μ ,λ
)

is a weakly efficient solution for (VD).

The proof is similar to the proof of Theorem 2.2 in Kim and Lee (2001) in the
light of the above Theorem 5.12.1.

Theorem 5.12.4. (Strong Duality). Let x be a weakly efficient solution for (VP).
Then, there exist μ ∈ Rp and λ ∈ Rm such that

(
x,μ ,λ

)
is a (VD)-feasible solution

and their objective values are equal. Moreover, if ( f ,g) is weak strictly pseudo type

I univex with respect to η ,b0,b1,φ0 and φ1, then
(

x,μ ,λ
)

is a weakly efficient
solution for (VD).

The proof is similar to the proof of Theorem 2.2 in Kim and Lee (2001) in the
light of the above Theorem 5.12.2.

Now, we give an example illustrating Theorems 5.12.1 and 5.12.3.

Example 5.12.1. Let f1 (x) = x, f2 (x) = x(x + 1) and g(x) = x2 − 1, where x ∈ R.
Then, f1, f2 and g are locally Lipschitz and ∂ c fi (x)= { f ′i (x)} , i = 1,2, and ∂ cg(x)=
{g′ (x)}, where f ′i , i = 1,2, and g′ are the derivatives of fi, i = 1,2, and g, respec-
tively. Consider the vector optimization problem:

(VP) minimize ( f1 (x) , f2 (x))
subject to x ∈ X = {x ∈ R : g(x) � 0}

Its Mond–Weir dual problem is

(VD) maximize ( f1 (u) , f2 (u))
subject to (u,μ1,μ2,λ ) ∈Ω,

where

Ω=
{

(u,μ1,μ2,λ ) ∈ R4 : 0 = μ1 f ′1 (u)+ μ2 f ′2 (u)+λg′ (u) ,λg(u) � 0,
(μ1,μ2,λ ) � 0,(μ1,μ2,λ ) �= 0

}

.

Then, ( f ,g) is weak strictly pseudo type I with η (x,u) = x−u−1. Let

Γ= {u ∈ R : ∃(μ1,μ2,λ ) ∈ R3,s.t.(u,μ1,μ2,λ ) ∈Ω}.Then,X = [−1,1] and

Γ= (−∞,0]
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For any x ∈ X and any (u,μ1,μ2,λ ) ∈Ω,

( f1 (x) , f2 (x)) ≮ ( f1 (u) , f2 (u))

equivalently, for any x ∈ [−1,1] and any u ∈ (−∞,0],

(x,x(x + 1)) ≮ (u,u(u + 1)) , (5.12.8)

So, the weak duality in Theorem 5.12.1 between (VP) and (VD) holds. Moreover,
[−1,0] is the set of all weakly efficient solutions of (VP).

Since Γ = (−∞,0], for any u ∈ [−1,0], there exist (μu
1 ,μu

2 ,λ u) ∈ R3 and
(u,μu

1 ,μu
2 ,λ u) ∈Ω. By (5.12.8), for any u ∈ [−1,0] ,(u,μu

1 ,μu
2 ,λ u) is a weakly effi-

cient solution of (VD). Thus, the strong duality in Theorem 5.12.3 holds between
(VP) and (VD).

Example 5.12.2. Let f1 (x) = x, f2 (x) = x(x + 1) and g(x) = x2 − 1, where x ∈
R. Then, f1, f2 and g are locally Lipschitz and ∂ c fi (x) = { f ′i (x)} , i = 1,2, and
∂ cg(x) = {g′ (x)}, where f ′i , i = 1,2, and g′ are the derivatives of fi, i = 1,2, and
g, respectively.

Consider the vector optimization problem:

(VP) minimize ( f1 (x) , f2 (x))
subject to x ∈ X = {x ∈ R : g(x) � 0} ,

and its Mond–Weir dual problem

(VD) maximize ( f1 (u) , f2 (u))
subject to (u,μ1,μ2,λ ) ∈Ω,

where

Ω = {(u,μ1,μ2,λ ) ∈ R4 : 0 = μ1 f ′1(u)+ μ2 f ′2(u)+λg′(u),λg(u) � 0,(μ1,μ2,λ )
� 0,(μ1,μ2,λ ) �= 0}.

Then, ( f ,g) is weak strictly pseudo type I univex with φ0,φ1 identity functions on
R, η (x,u) = x−u− 1, and b0 = b1 = 1. Let

Γ= {u ∈ R : ∃(μ1,μ2,λ ) ∈ R3,s.t.(u,μ1,μ2,λ ) ∈Ω}.
Then,X = [−1,1] and Γ= (−∞,0]

For any x ∈ X and any (u,μ1,μ2,λ ) ∈Ω,

( f1 (x) , f2 (x)) ≮ ( f1 (u) , f2 (u)) .

equivalently, for any x ∈ [−1,1] and any u ∈ (−∞,0],

(x,x(x + 1)) ≮ (u,u(u + 1)) . (5.12.9)
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So, weak duality Theorem 5.12.2 between (VP) and (VD) holds. Moreover, [−1,0]
is the solution of all weakly efficient solution of (VP).

Since Γ= (−∞,0], for any u ∈ [−1,0] ,∃(μ1,μ2,λ ) ∈ R3 and (u,μ1,μ2,λ ) ∈Ω.
So by (5.12.9), for any u ∈ [−1,0] ,(u,μ1,μ2,λ ) is a weakly efficient solution of
(VD). Thus, the strong duality Theorem 5.12.4 holds between (VP) and (VD).

5.13 Duality for Vector Optimization Problems on Banach
Spaces

We consider the following dual of problem (P):

(D) maximize f(w)
subject to w ∈ C,u∗ ∈ Q∗,u∗ �= 0,v∗ ∈ K∗,

< v∗,g(w) ≥ 0,0g ∈ ∂ (u∗of + v∗og + kδC)(w).

In this section, we provide weak and strong duality relations between Problems
(P) and (D).

Theorem 5.13.1. (Weak Duality). Let x and (w,u∗,v∗) be feasible solutions for
problems (P) and (D), respectively. Suppose that (f, g) is type – I at w with respect
to C, for the same η . Then,

f(x) < f(w).

Proof. Contrary to the result, suppose that there are feasible solutions x̂ and
(w,u∗,v∗) for problems (P) and (D), respectively, such that f(x̂)− f(w) < 0.

Since, u∗ �=, we obtain

< u∗, f ˆ(x)−−f(w) >< 0.

By the first part of the assumption, there is η(x̂,w) ∈ TC(w) such that

(u∗of)0(w,η(x̂,w)) ≤< u∗, f(x̂)−−f(w) > .

Hence,
(u∗of)0(w,η(x̂,w)) < 0. (5.13.1)

Since < v∗,g(w) >≥ 0, we get

< v∗,g(w) >≤ 0

⇒ (v∗og)0(w,η(x̂,w)) ≤ 0 (5.13.2)

by using the second part of the hypothesis of type – I function.
Then, from (5.13.1) and (5.13.2), we have

(u∗of)0(w,η(x,w))+ (v∗og)0(w,η(x, w)) < 0. (5.13.3)



5.13 Duality for Vector Optimization Problems on Banach Spaces 127

On the other hand, since 0 ∈ ∂ (u∗o f+ v∗o g+ kδC)(w) we have

0 ≤ (u∗of)0(w;η)+ (v∗og)0(w,η),∀η ∈ TC(w),

which contradicts (5.13.3) Therefore, f(x) < f(w). ��
Theorem 5.13.2. (Weak Duality). Let x and (w,u∗, v∗) be feasible solutions for
Problems (P) and (D), respectively. Suppose that (f, g) is pseudo – quasi – type I
at w with respect to C, for the same η . Then, f(x) < f(w).

Proof. Contrary to the conclusion, suppose that there are feasible solutions x̂ and
(w, u∗, v∗) for problems (P) and (D), respectively such that f(x̂)− f(w) < 0.

Since u∗ �= 0, we obtain

< u∗, f(x̂)− f(w) >< 0.

By the first part of the assumption on f at w, there is η(x̂, w) ∈ TC(w) such that

(u∗o f)0(w,η(x̂,w)) ≤< u∗, f(x̂)− f(w) > .

Hence
(u∗o f)0(w,η(x̂,w)) < 0. (5.13.4)

Since, − < (v∗,g(w) >≤ 0, we have

(v∗o g)0(w,η(x̂,w)) ≤ 0. (5.13.5)

Adding (5.13.4) and (5.13.5), we get

(u∗o f)0(w,η(x̂,w))+ (v∗o g)0(w,η(x̂,w)) < 0. (5.13.6)

On the other hand, since 0 ∈ ∂ (u∗o f+ v∗o g+ kδC)(w), we have

0 ≤ (u∗o f)0(w;η)+ (v∗o g)0(w,η),∀η ∈ TC(w),

which contradicts (5.13.6). Therefore, f(x) < f(w). ��
It is not hard to prove the following theorem.

Theorem 5.13.3. (Weak Duality). Let x and (w, u∗, v∗) be feasible solutions for
Problems (P) and (D), respectively. Suppose that (f, g) is quasistrictly–pseudo–type
I at w, with respect to C, for the same η . Then, f(x) < f(w).

Theorem 5.13.4. (Strong Duality). Suppose that (f, g) is type I at any feasible point x
of (P), with respect to C, and assume that Problem (P) satisfies the Slater condition.
If x0 is a weak efficient solution of (P), then there exists (ū∗, v̄∗) ∈ Q∗xK∗ such that
< v̄∗, g(x0) >= 0, (x0, ū∗, v̄∗) is a weak efficient solution for (D), and the objective
values of the two problems are same.
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Proof. Since the Slater condition is satisfied, from Proposition 4.4.1, it follows that
there exist ū∗, v̄∗ such that < v̄∗, g(x0) > = 0 and (x0, ū∗, v̄∗) is feasible for (D).
Suppose that (x0, u∗, v∗) is not any weak efficient solution for (D). So there exists a
feasible point (x, u∗, v∗) for (D) such that f(x) > f(x0), which contradicts Theorem
5.13.1. Hence, (x0, ū∗, v∗) is a weak efficient solution for (D). It is obvious that the
objective function values of (P) and (D) are equal at their respective weak efficient
solutions. ��
Theorem 5.13.5. (Strong Duality). Suppose that (f, g) is pseudo–quasi type I at any
feasible solution x of (P), with respect to C, and assume that (P) satisfies the Slater
condition. If x0 is a weak efficient solution of (P), then there exists (ū∗, v̄∗) ∈ Q∗ xK∗
such that < v̄∗, g(x0) > = 0, (x0, ū∗, v̄∗) is a weak efficient solution for (D), and the
optimal objective values of the two problems are same.

Proof. The proof of this theorem is similar to that of Theorem 5.13.4, except that
here we invoke Theorem 5.13.2. ��

In the proof of the following strong duality theorem, we need Theorem 5.13.3.
The rest of the proof is similar to the proof of Theorem 5.13.4.

Theorem 5.13.6. (Strong Duality). Suppose that (f, g) is quasi-strictly– pseudo-type
I at any feasible point x of (P), with respect to C, and assume that (P) satisfies the
Slater condition. If x0 is a weak efficient solution of (P), then there exists (ū∗, v̄∗)
∈ Q∗ xK∗ such that < v̄∗, g(x0) > = 0, (x0, u∗, v̄∗) is a weak efficient solution for
(D), and the optimal objective values of the two problems are same.

5.14 First Dual Model for Complex Minimax Programs

In this section and onwards, for ξ = (z1, z̄1) ∈C2n, we let

Y (ξ )=

⎧
⎨

⎩

(s,λ ,υ) ∈ N ×Rs
+×C2ms :λ = (λ1,λ2, . . . ,λs) ∈ Rs

+ with
s
∑

i=1
λi = 1,and

υ = (υ1,υ2, . . . ,υs)withυi ∈W (ξ ), i = 1,2, . . . ,s

⎫
⎬

⎭
.

By the optimality conditions of the preceding section, we will show that the
following formulation is a dual problem to the minimax complex (P) discussed in
Sect. 4.5.

(DI) maximize(s,λ ,ς)∈Y(ξ ) sup(ξ ,u,ū,t)∈X(s,λ ,ς) t
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where X (s,λ ,ς) denotes the set of all (ξ ,u.ū,t) ∈C2n ×Cp ×Cp ×R to satisfy

s

∑
i=1
λi∇zφ (ξ ,ςi)+

s

∑
i=1
λi∇z̄φ (ξ ,ςi)+ uT∇zg(ξ )+ uH∇z̄g(ξ ) = 0, (5.14.1)

s

∑
i=1
λi [Reφ (ξ ,ςi)− t] ≥ 0, (5.14.2)

Re 〈u,g(ξ )〉 ≥ 0, (5.14.3)
(s,λ ,ς) ∈ Y (ξ ) , (5.14.4)
0 �= u ∈ S∗. (5.14.5)

We define the supremum over X (s,λ ,ς) to be −∞ if for a triplet (s,λ ,ς) ∈ Y (ξ )
the set X (s,λ ,ς) = φ .

Then, we can derive the following weak duality theorem for (P) and (DI).

Theorem 5.14.1. (Weak Duality). Let ξ = (z, z̄) ∈ S0 be a feasible solution of (P)
and (s,λ ,ς ,ξ ,u, ū,t) be a feasible solution of (DI). If any one of the following holds:

(a)
s
∑

i=1
λiφ(·,ςi) has pseudo-invex real part with respect to η and R+ on the manifold

Q and g(·) is a quasi-invex function with respect to the polyhedral cone S ⊂Cp

on the manifold Q;

(b)
s
∑

i=1
λiφ(·,ςi) has quasi-invex real part with respect to η and R+ on the manifold

Q and g(·) is a strictly pseudo-invex function with respect to the polyhedral cone
S ⊂Cp on the manifold Q;

(c)
s
∑

i=1
λiφ(·,ςi)+ uHg(·) has pseudo-invex real part with respect to η and R+ on

the manifold Q,
then

sup
ς∈W

Reφ(ξ ,ς) ≥ t .

Proof. Suppose contrary that

sup
ς∈W

Reφ(ξ ,ς) < t .

Then, we have
Reφ(ξ ,ς) < t for all ς ∈ W .

It follows that
Re [λiφ (ξ ,ςi)] ≤ λit for all i = 1,2, . . . ,s, (5.14.6)

with at least one strict inequality since λ �= 0.
From the inequalities (5.14.2) and (5.14.6), we have

s

∑
i=1

Re [λiφ (ξ ,ςi)] <
s

∑
i=1
λit ≤

s

∑
i=1

Re [λiφ (ξ ,ςi)]. (5.14.7)
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If hypothesis (a) holds, using the pseudo-invexity of
s
∑

i=1
λiφ(·,ςi) and inequality

(5.14.7), we get

Re

〈

η (z,z1) ,
s

∑
i=1
λi∇zφ (ξ ,ςi)+

s

∑
i=1
λi∇z̄φ (ξ ,ςi)

〉

< 0. (5.14.8)

From (5.14.8) and (5.14.1), we get

Re
〈
η (z,z1) ,uT∇zg(ξ )+ uH∇z̄g(ξ )

〉
> 0.

It follows that

Re
〈
u,ηT (z,z1)∇zg(ξ )+ηH (z,z1)∇z̄g(ξ )

〉
> 0. (5.14.9)

Utilizing the feasibility of ξ for (P), u ∈ S∗, and the inequality (5.14.3), we get

Re 〈u,g(ς)〉 ≤ 0 ≤ Re〈u,g(ξ )〉 . (5.14.10)

Using the quasi-invexity of g and inequality (5.14.10), we get

Re
〈
u,ηT (z,z1)∇zg(ξ )+ηH (z,z1)∇z̄g(ξ )

〉≤ 0,

which contradicts the inequality (5.14.9). Hence, the result holds.
Hypothesis (b) follows along with the same lines as (a).
If hypothesis (c) holds, from the inequality (5.14.7) and (5.14.10), we get

Re

[
s

∑
i=1
λiφ (ξ ,ςi)+ uHg(ξ )

]

< Re

[
s

∑
i=1
λiφ (ξ ,ςi)+ uHg(ξ )

]

. (5.14.11)

Using the pseudo-invexity of
s
∑

i=1
λiφ (·,ςi)+ uHg(·) and (5.14.11), we get

Re

〈

η (z,z1) ,
s

∑
i=1
λi∇zφ (ξ ,ςi)+

s

∑
i=1
λi∇z̄φ (ξ ,ςi)+ uT∇zg(ξ )+ uH∇z̄g(ξ )

〉

< 0,

which contradicts the inequality (5.14.1). Hence the proof is complete. ��
Theorem 5.14.2. (Strong Duality). Let ξ 0 be an optimal solution of the problem (P)
and the condition (CQ) as defined in Lemma 4.5.2 is satisfied at ξ 0. Then there
exist (s,λ ,ς) ∈ Y

(
ξ 0) and (ξ ,u.ū,t) ∈ X (s,λ ,ς) such that

(
s,λ ,ς ,ξ 0,u, ū,t

)
is a

feasible solution of (DI). If the hypothesis of Theorem 5.14.1 is also satisfied, then(
s,λ ,ς ,ξ 0,u, ū,t

)
is an optimal solution of (DI), and the two problems (P) and (DI)

have the same optimal value.
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Proof. Since ξ 0 is an optimal solution of (P) and the condition (CQ) is satisfied,
then Lemma 4.5.2 guarantees the existence of a positive s, scalars λi ≥ 0, i =
1,2, . . . ,s,0 �= u ∈ S∗, and vectors ςi ∈ W (ξ 0) = {ς ∈ W : Reφ(ξ 0,ς) = supμ∈W

Reφ(ξ 0,μ)}, i = 1,2, . . . ,s such that

s

∑
i=1
λi∇zφ (ξ 0,ςi)+

s

∑
i=1
λi∇z̄φ

(
ξ 0,ςi

)
+ uT∇zg(ξ 0)+ uH∇z̄g

(
ξ 0) = 0,

Re
〈
u,g

(
ξ 0)〉 = 0,

and t = Reφ
(
ξ 0,ςi

)
, i = 1,2, . . . ,s. Thus,

(
s,λ ,ς ,ξ 0,u, ū,t

)
is a feasible solution of

(DI). The optimality of
(
s,λ ,ς ,ξ 0,u, ū,t

)
for (DI) follows from Theorem 5.14.1. ��

Theorem 5.14.3. (Strict Converse Duality). Let ξ̂ and
(

ŝ, λ̂ , ς̂ , ξ̂ , û, ˆ̄u, t̂
)

be optimal
solution of (P) and (DI) respectively, and assume that the assumptions of Theorem

5.14.2 are fulfilled. If
ŝ
∑

i=1
λ̂iφ (·, ς̂i) has strictly pseudo-invex real part with respect

to η and R+ and g is quasi-invex with respect to the polyhedral cone S, then ξ̂ = ς̂ ;
that is, ς̂ is an optimal solution of (P).

Proof. We assume that
(
ẑ, ˆ̄z

)
= ξ̂ �= ς̂ =

(
ẑ1, ¯̂z1

)
for getting a contradiction. From

Theorem 5.14.2, we know that

sup
ν∈W

Reφ(ξ̂ ,ν) = t̂. (5.14.12)

Utilizing the feasibility of ξ̂ for (P), û ∈ S∗, and the inequality (5.14.3), we have

Re〈û,g(ξ̂ )〉 ≤ 0 ≤ Re〈û,g(ς̂)〉.

Using the quasi-invexity of g, we get from the above inequality

Re
〈

û,ηT (ẑ, ẑ1)∇zg
(
ξ̂
)

+ηH (ẑ, ẑ1)∇z̄g
(
ξ̂
)〉

≤ 0. (5.14.13)

From relation (5.14.13) and (5.14.1), we obtain

Re

〈

η (ẑ, ẑ1) ,
ŝ

∑
i=1
λ̂i∇zφ

(
ξ̂ , ν̂i

)
+

ŝ

∑
i=1
λ̂i∇z̄φ

(
ξ̂ , ν̂i

)
〉

≥ 0. (5.14.14)

Using the strict pseudo-invexity of
ŝ
∑

i=1
λ̂iφ (·, ν̂i), the inequalities (5.14.14) and

(5.14.2), we get

ŝ

∑
i=1

Re
[
λ̂iφ

(
ξ̂ , ν̂i

)]
>

ŝ

∑
i=1

Re
[
λ̂iφ (ς̂ , ν̂i)

] ŝ

∑
i=1
λ̂it̂.
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Therefore, there exists a certain i0, such that

Reφ
(
ξ̂ , ν̂i0

)
> t̂.

It follows that
sup
ν∈W

Reφ
(
ξ̂ ,ν

)
≥ Reφ

(
ξ̂ , ν̂i0

)
> t̂,

which contradicts (5.14.12). Therefore, we conclude that ξ̂ = ς̂ . Hence the proof is
complete. ��

5.15 Second Dual Model for Complex Minimax Programs

We shall continue our discussion of duality model for (P) considered in Sect. 4.5 by
showing that the following problem (DII) is also a dual problem for (P).

(DII) maximize(s,λ ,ς)∈Y (ξ ) sup(ξ ,u,ū,t)∈X(s,λ ,ς) f (ξ )

where X (s,λ ,ς) denotes the set of all (ξ ,u.ū) ∈C2n ×Cp ×Cp to satisfy

s

∑
i=1
λi∇zφ (ξ ,ςi)+

s

∑
i=1
λi∇z̄φ (ξ ,ςi)+ uT∇zg(ξ )+ uH∇z̄g(ξ ) = 0, (5.15.1)

Re 〈u,g(ξ )〉 ≥ 0, (5.15.2)
f (ξ ) = sup

ν∈W
Reφ (ξ ,ν) , (5.15.3)

(s,λ ,ς) ∈ Y (ξ ) , (5.15.4)
0 �= u ∈ S∗. (5.15.5)

We define the supremum over X (s,λ ,ς) to be −∞ if for a triplet (s,λ ,ς) ∈Y (ξ )
the set X (s,λ ,ς) = φ .

Now we establish the following weak, strong and strict converse duality theorem
for (P) and (DII).

Theorem 5.15.1. (Weak Duality). Let ς = (z, z̄) ∈ S0 be a feasible solution of (P)
and (s,λ ,ν,ξ ,u, ū,t) be a feasible solution of (DII). If any one of the following
holds:

(a)
s
∑

i=1
λiφ (·,νi) has pseudo-invex real part with respect to η and R+ on the man-

ifold Q and g(·) is a quasi-invex function with respect to the polyhedral cone
S ⊂Cp on the manifold Q;

(b)
s
∑

i=1
λiφ (·,νi) has quasi-invex real part with respect to η and R+ on the manifold

Q and g(·) is a strictly pseudo-invex function with respect to the polyhedral cone
S ⊂Cp on the manifold Q;
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(c)
s
∑

i=1
λiφ (·,νi)+ uHg(·) has pseudoinvex real part with respect to η and R+ on

the manifold Q,
then

f (ς) ≥ f (ξ ) .

Proof. Suppose contrary to the result, we then have

f (ς) < f (ξ ) ;

that is,
sup
ν∈W

Reφ (ς ,ν) < sup
ν∈W

Reφ (ξ ,ν) .

Then, we have
Reφ(ς ,ν) < sup

ν∈W
Reφ(ξ ,ν) for all ν ∈ W. (5.15.6)

Since νi ∈W (ξ ) for all i = 1,2, . . . ,s, we obtain

sup
ν∈W

Reφ(ξ ,ν) = Reφ(ξ ,νi), for all i = 1,2, . . . ,s. (5.15.7)

From relation (5.15.6) and (5.15.7), we obtain

Reφ (ς ,ν) < Reφ (ξ ,νi) , for all i = 1,2, . . . ,s,ν ∈W.

It follows that

Re [λiφ (ς ,νi)] ≤ Re [λiφ (ξ ,νi)] for all i = 1,2, . . . ,s,

with at least one strict inequality since λ �= 0.
Thus, we have

s

∑
i=1

Re [λiφ (ς ,νi)] <
s

∑
i=1

Re [λiφ (ξ ,νi)]. (5.15.8)

Using the pseudo-invexity of the real part of
s
∑

i=1
λiφ (ς ,νi) and the above inequality,

we get

Re

〈

η (z,z1) ,
s

∑
i=1
λi∇zφ (ξ ,νi)+

s

∑
i=1
λi∇z̄φ (ξ ,νi)

〉

< 0. (5.15.9)

From inequalities (5.15.9) and (5.15.1), we get

Re〈η(z,z1),uT∇zg(ξ )+ uH∇z̄g(ξ )〉 > 0. (5.15.10)

Thus, we have

Re〈u,ηT (z,z1)∇zg(ξ )+ηH(z,z1)∇z̄g(ξ )〉 > 0. (5.15.11)
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By the feasibility of ς for (P), u ∈ S∗, and the inequality (5.2), we get

Re〈u,g(ς)〉 ≤ 0 ≤ Re〈u,g(ξ )〉. (5.15.12)

Using the quasi-invexity of g and the inequality (5.15.12) we get

Re〈u,ηT (z,z1)∇zg(ξ )+ηH(z,z1)∇z̄g(ξ )〉 ≤ 0,

which contradicts the inequality (5.15.11) Hence the result is true.
Hypothesis (b) follows along with the same lines as (a).
If hypothesis (c) holds, from the inequalities (5.15.8)and (5.15.12), we get

s

∑
i=1

Re
[
λiφ (ς ,νi)+ uHg(ς)

]
<

s

∑
i=1

Re
[
λiφ (ξ ,νi)+ uHg(ξ )

]
. (5.15.13)

By the pseudo-invexity of
s
∑

i=1
λiφ (·,νi)+ uHg(·) and the above inequality, we get

Re

〈

η (z,z1) ,
s

∑
i=1
λi∇zφ (ξ ,νi)+

s

∑
i=1
λi∇z̄φ (ξ ,νi)+ uT∇zg(ξ )+ uH∇z̄g(ξ )

〉

< 0,

which contradicts the inequality (5.15.1). Hence the result of Theorem holds. ��
Theorem 5.15.2. (Strong Duality). Let ς0 be an optimal solution of the problem (P)
and the condition (CQ) as defined in Lemma 4.5.2 is satisfied at ς0. Then there
exist (s,λ ,ν) ∈ Y

(
ς0) and

(
ς0,u.ū

) ∈ X (s,λ ,ν) such that
(
s,λ ,ν,ς0,u, ū

)
is a

feasible solution of (DII). If the hypothesis of Theorem 5.15.1 is also satisfied, then(
s,λ ,ν,ς0,u, ū

)
is an optimal solution of (DII), and the two problems (P) and (DII)

have the same optimal value.

Proof. By Lemma 4.5.2, there exist (s,λ ,ν) ∈ Y
(
ς0) and

(
ς0,u.ū

) ∈ X (s,λ ,ν)
such that

(
s,λ ,ν,ς0,u, ū

)
is a feasible solution of (DII). Since (P) and (DII) have

the same objective function, the optimality of
(
s,λ ,ν,ς0,u, ū

)
for (DII) follows

from Theorem 5.15.1. ��
Theorem 5.15.3. (Strict Converse Duality). Let ς̂ and

(
ŝ, λ̂ , ν̂, ς̂ , û, ˆ̄u

)
be an opti-

mal solution of (P) and (DII) respectively, and assume that the assumptions of

Theorem 5.15.2 are fulfilled. If
ŝ
∑

i=1
λ̂iφ (·, ν̂i) has strictly pseudo-invex real part with

respect to η and R+ and g is quasi-invex with respect to the polyhedral cone S, then
ς̂ = ξ̂ ; that is, ξ̂ is an optimal solution of (P).

Proof. We assume that
(
ẑ, ˆ̄z

)
= ς̂ �= ξ̂ =

(
ẑ1, ¯̂z1

)
and would like to reach a contra-

diction. From Theorem 5.15.2, we know that

sup
ν∈W

Reφ (ς̂ ,ν) = sup
ν∈W

Reφ
(
ξ̂ ,ν

)
. (5.15.14)
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Utilizing the feasibility of ς̂ for (P), û ∈ S∗, and the inequality (5.15.2), we have

Re 〈û,g(ς̂)〉 ≤ 0 ≤ Re
〈

û,g
(
ξ̂
)〉

.

Using the quasi-invexity of g, we get from the above inequality

Re
〈

û,ηT (ẑ, ẑ1)∇zg
(
ξ̂
)

+ηH (ẑ, ẑ1)∇z̄g
(
ξ̂
)〉

≤ 0. (5.15.15)

From relation (5.15.15) and (5.15.1), we obtain

Re

〈

η (ẑ, ẑ1) ,
ŝ

∑
i=1
λ̂i∇zφ

(
ξ̂ , ν̂i

)
+

ŝ

∑
i=1
λ̂i∇z̄φ

(
ξ̂ , ν̂i

)
〉

≥ 0. (5.15.16)

Using the strict pseudo-invexity of
ŝ
∑

i=1
λ̂iφ (·, ν̂i) and the above inequalities, we get

ŝ

∑
i=1

Re
[
λ̂iφ (ς̂ , ν̂i)

]
>

ŝ

∑
i=1

Re
[
λ̂iφ

(
ξ̂ , ν̂i

)]
.

Therefore, there exists a certain i0, such that

Reφ
(
ς̂ , ν̂i0

)
> Reφ

(
ξ̂ , ν̂i0

)
.

It follows that

sup
ν∈W

Reφ (ς̂ ,ν) ≥ Reφ
(
ς̂ , ν̂i0

)
> Reφ

(
ξ̂ , ν̂i0

)
= sup
ν∈W

Reφ
(
ξ̂ ,ν

)
,

which contradicts (5.15.14). Therefore, we conclude that ξ̂ = ς̂ . Hence the proof is
complete. ��

5.16 Mond–Weir Duality for Continuous–Time Vector
Optimization Problems

The Mond–Weir type dual problem associated to (MP) considered in Sect. 4.6 is
given by

(MWD) maximize
b∫

a

f (t,u, u̇)dt =

⎛

⎝

b∫

a

f1 (t,u, u̇)dt, . . . ,
b∫

a

fp (t,u, u̇)dt

⎞

⎠

subject to u(a) = α, u(b) = β , (5.16.1)

λ T fx (t,u, u̇)+ y(t)T gx (t,u, u̇)

=
d
dt

(
λ T fẋ (t,u, u̇)+ y(t)T gẋ (t,u, u̇)

)
, (5.16.2)
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y(t)T g(t,u, u̇) � 0, t ∈ I, (5.16.3)
y(t) � 0, t ∈ I, (5.16.4)

λ ∈ Rp,λ � 0, λTe = 1, e = (1, . . . ,1) ∈ Rp. (5.16.5)

Theorem 5.16.1. (Weak Duality). Let x be a feasible solution for (MP) and (u,λ ,y)
be feasible for (MWD). Let either of the following conditions hold:

(i) λ > 0 and
(
λ T f , yT g

)
is strong pseudo-quasi type I with respect to η;

(ii)
(
λ T f , yT g

)
is weak strictly pseudo-quasi type I with respect to η;

(iii)
(
λ T f ,yT g

)
is weak strictly pseudo type I with respect to η ,

then
b∫

a

f (t,x, ẋ)dt �

b∫

a

f (t,u, u̇)dt.

Proof. Let
b∫

a

f (t,x, ẋ)dt ≤
b∫

a

f (t,u, u̇)dt. (5.16.6)

Since (u,λ ,y) is feasible for (MWD), it follows that

−
b∫

a

yT g(t,u, u̇)dt � 0. (5.16.7)

By the condition (i), (5.16.6) and (5.16.7) imply

b∫

a

[

η (t,x,u)T λ T fx (t,u, u̇)+
d
dt

(η (t,x,u))T λ T fẋ (t,u, u̇)
]

dt < 0,

b∫

a

[

η (t,x,u)T λ T gx (t,u, u̇)+
d
dt

(η (t,x,u))T λ T gẋ (t,u, u̇)
]

dt � 0,

By the above two inequalities, we get

b∫

a

[

η (t,x,u)T λ T fx (t,u, u̇)+
d
dt

(η (t,x,u))T λ T fẋ (t,u, u̇)
]

dt

+
b∫

a

[

η (t,x,u)T λ T gx (t,u, u̇)+
d
dt

(η (t,x,u))T λ T gẋ (t,u, u̇)
]

dt < 0,
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The above inequality in light of Remark 3.3.1 is

b∫

a

[

η (t,x,u)T
(

λT fx (t,u, u̇)+yT gx (t,u, u̇)− d
dt

(
λT fẋ (t,u, u̇)+yT gẋ (t,u, u̇)

))]

dt < 0.

This contradicts (5.16.2).
By the condition (ii), (5.16.6) and (5.16.7) imply

b∫

a

[

η (t,x,u)T λ T fx (t,u, u̇)+
d
dt

(η (t,x,u))T λ T fẋ (t,u, u̇)
]

dt < 0,

b∫

a

[

η (t,x,u)T λ T gx (t,u, u̇)+
d
dt

(η (t,x,u))T λ T gẋ (t,u, u̇)
]

dt � 0.

By the above two inequalities in light of Remark 3.3.1, we get

b∫

a

[

η (t,x,u)T
(

λT fx (t,u, u̇)+yT gx (t,u, u̇)− d
dt

(
λT fẋ (t,u, u̇)+yT gẋ (t,u, u̇)

))]

dt < 0,

which contradicts (5.16.2).
By the condition (iii), (5.16.6) and (5.16.7) imply

b∫

a

[

η (t,x,u)T λ T fx (t,u, u̇)+
d
dt

(η (t,x,u))T λ T fẋ (t,u, u̇)
]

dt < 0,

b∫

a

[

η (t,x,u)T λ T gx (t,u, u̇)+
d
dt

(η (t,x,u))T λ T gẋ (t,u, u̇)
]

dt < 0.

By the above two inequalities in light of Remark 3.3.1, we get

b∫

a

[

η (t,x,u)T
(

λT fx (t,u, u̇)+yT gx (t,u, u̇)− d
dt

(
λT fẋ (t,u, u̇)+yT gẋ (t,u, u̇)

))]

dt < 0,

which contradicts (5.16.2). The proof is complete. ��
Theorem 5.16.2. (Strong Duality). Let x∗ be an efficient solution for (MP). Assume
that x∗ is normal for each

(
P∗

k

)
, k = 1, . . . , p. Then there exist λ ∗ ∈ Rp and a piece-

wise smooth function y∗ : I → Rm such that (x∗,λ ∗,y∗) is feasible for (MWD).
Furthermore, if for each feasible (u,λ ,y) of (MWD) any of the conditions of
Theorem 5.16.1 holds, then (x∗,λ ∗,y∗) is an efficient solution for (MWD).

Proof. Since x∗ is efficient solution for (MP), it follows from Theorem 4.6.1 that
there exist λ ∗ ∈ Rp and a piecewise smooth function y∗ : I → Rm such that
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(4.6.5)–(4.6.8) hold. Moreover, x∗ ∈ K, hence the feasibility of (x∗,λ ∗,y∗) for
(MWD) follows and efficiency follows from weak duality Theorem 5.16.1. ��

5.17 General Mond–Weir Duality for Continuous–Time Vector
Optimization Problems

In this section, we consider general Mond–Weir type dual to (MP) considered in
Sect. 4.6, and establish weak and strong duality theorems.

(GMWD) maximize
b∫

a

[
f (t,u, u̇)+ yT

J0
g(t,u, u̇)

]
dt

=

⎛

⎝

b∫

a

[
f1 (t,u, u̇)+ yT

J0
gJ0 (t,u, u̇)

]
dt, . . . ,

b∫

a

[
fp (t,u, u̇)+ yT

J0
gJ0 (t,u, u̇)

]
dt

⎞

⎠

subject to u(a) = α, u(b) = β (5.17.1)

λ T fx(t,u, u̇)+ y(t)T gx(t,u, u̇)

=
d
dt

(λ T fẋ(t,u, u̇)+ y(t)T gẋ(t,u, u̇)),

(5.17.2)

y(t)T
Jt

gJt (t,u, u̇) � 0, 1 � t � r, (5.17.3)

y(t) � 0, t ∈ I, (5.17.4)

λ ∈ Rp,λ � 0, λTe = 1,e = (1, . . . ,1) ∈ Rp. (5.17.5)

where Jt, Jt ,0 � t � r are partitions of the set M.

Theorem 5.17.1. (Weak Duality). Let x be a feasible solution for (MP) and let
(u,λ ,y) be feasible for (GMWD). Let either of the following conditions holds:

(i) λ > 0 and
(
λ T f + yT

J0
gJ0 ,y

T
Jt

gJt

)
is strong pseudo-quasi type I with respect to

η for any t,1 � t � r;

(ii)
(
λ T f + yT

J0
gJ0 ,y

T
Jt

gJt

)
is weak strictly pseudo-quasi type I with respect to η for

any t,1 � t � r;

(iii)
(
λ T f + yT

J0
gJ0 ,y

T
Jt

gJt

)
is weak strictly pseudo type I with respect to η for any

t,1 � t � r. Then

b∫

a

f (t,x, ẋ)dt �

b∫

a

[
f (t,u, u̇)+ yT

J0
g(t,u, u̇)

]
dt. (5.17.6)
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Proof. Let
b∫

a

f (t,x, ẋ)dt ≤
b∫

a

[
f (t,u, u̇)+ yT

J0
g(t,u, u̇)

]
dt.

Since x is feasible for (MP) and y(t) � 0, (5.17.6) implies

b∫

a

[
f (t,x, ẋ)+ yT

J0
g(t,x, ẋ)

]
dt ≤

b∫

a

[
f (t,u, u̇)+ yT

J0
g(t,u, u̇)

]
dt. (5.17.7)

Since (u,λ ,y) is feasible for (MWD), it follows that

−
b∫

a

yT g(t,u, u̇)dt � 0. (5.17.8)

By the condition (i), (5.17.7) and (5.17.8) imply

b∫

a

[
η (t,x,u)T (

fx (t,x,u)+ yT
J0

gxJ0 (t,x,u)
)

+
d
dt

(η (t,x,u))T (
fẋ (t,x,u)+ yT

J0
gẋJ0 (t,x,u)

)
]

dt ≤ 0,

and

b∫

a

[
η (t,x,u)T (

yT
Jt

gxJt (t,x,u)
)

+
d
dt

(η (t,x,u))T (
yT

Jt gẋJt (t,x,u)
)
]

dt � 0, ∀1 � t � r.

Since λ > 0, the above two inequalities give

b∫

a

[

η (t,x,u)T

(

λ T fx (t,x,u)+
r

∑
t=0

yT
Jt

gxJt (t,x,u)

)

+
d
dt

(η (t,x,u))T

(

λ T fẋ (t,x,u)+
r

∑
t=0

yT gẋJt (t,x,u)

)]

dt < 0.

Since J0,J1, . . . ,Jr are partitions of M, the above inequality is equivalent to

b∫

a

[

η (t,x,u)T (
λ T fx (t,u, u̇)+ yT gx (t,x,u)

)
+

d
dt

(η (t,x,u))T

(
λ T fẋ (t,x,u)+ yT gẋ (t,x,u)

)]
dt < 0.
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The above inequality in light of Remark 3.3.1 is

b∫

a

[

η (t,x,u)T
(

λT fx (t,u, u̇)+yT gx (t,u, u̇)− d
dt

(
λT fẋ (t,u, u̇)+yT gẋ (t,u, u̇)

))]

dt < 0.

This contradicts (5.17.2).
By the condition (ii), (5.17.7) and (5.17.8) imply

b∫

a

[
η (t,x,u)T (

fx (t,x,u)+ yT
J0

gxJ0 (t,x,u)
)

+
d
dt

(η (t,x,u))T (
fẋ (t,x,u)+ yT

J0
gẋJ0 (t,x,u)

)
]

dt < 0,

and

b∫

a

[
η (t,x,u)T (

yT
Jt

gxJt (t,x,u)
)

+
d
dt

(η (t,x,u))T (
yT

Jt gẋJt (t,x,u)
)
]

dt � 0, ∀1 � t � r.

Since λ � 0, the above two inequalities give

b∫

a

[

η (t,x,u)T

(

λ T fx (t,x,u)+
r

∑
t=0

yT
Jt

gxJt (t,x,u)

)

+
d
dt

(η (t,x,u))T

(

λ T fẋ (t,x,u)+
r

∑
t=0

yT gẋJt (t,x,u)

)]

dt < 0.

Since J0,J1, ...,Jr are partitions of M, the above inequality is equivalent to

b∫

a

[

η (t,x,u)T (
λ T fx (t,u, u̇)+ yT gx (t,x,u)

)
+

d
dt

(η (t,x,u))T

(
λ T fẋ (t,x,u)+ yT gẋ (t,x,u)

)]
dt < 0.

The above inequality in light of Remark 3.3.1 is

b∫

a

[

η (t,x,u)T
(

λT fx (t,u, u̇)+yT gx (t,u, u̇)− d
dt

(
λT fẋ (t,u, u̇)+yT gẋ (t,u, u̇)

))]

dt < 0.

This contradicts (5.17.2).
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By the condition (iii), (5.17.7) and (5.17.8) imply

b∫

a

[
η (t,x,u)T (

fx (t,x,u)+ yT
J0

gxJ0 (t,x,u)
)

d +
d
dt

(η (t,x,u))T (
fẋ (t,x,u)+ yJ0

T gẋJ0 (t,x,u)
)
]

dt < 0,

and

b∫

a

[
η (t,x,u)T (

yT
Jt

gxJt (t,x,u)
)

+
d
dt

(η (t,x,u))T (
yT

Jt gẋJt (t,x,u)
)
]

dt < 0,∀1 � t � r.

Since λ � 0, the above two inequalities give

b∫

a

[

η (t,x,u)T

(

λ T fx (t,x,u)+
r

∑
t=0

yT
Jt

gxJt (t,x,u)

)

+
d
dt

(η (t,x,u))T

(

λ T fẋ (t,x,u)+
r

∑
t=0

yT gẋJt (t,x,u)

)]

dt < 0.

Since J0,J1, . . . ,Jr are partitions of M, the above inequality is equivalent to

b∫

a

[

η (t,x,u)T (
λ T fx (t,u, u̇)+ yT gx (t,x,u)

)
+

d
dt

(η (t,x,u))T

(
λ T fẋ (t,x,u)+ yT gẋ (t,x,u)

)]
dt < 0.

The above inequality in light of Remark 3.3.1 is

b∫

a

[

η (t,x,u)T
(

λT fx (t,u, u̇)+yT gx (t,u, u̇)− d
dt

(
λT fẋ (t,u, u̇)+yT gẋ (t,u, u̇)

))]

dt < 0.

This contradicts (5.17.2). The proof is complete. ��

5.18 Duality for Nondifferentiable Continuous–Time
Optimization Problems

In this section, we introduce the following two duals to the problem (CNP) consid-
ered in Sect. 4.7.
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(1) Wolfe dual

(WCD) maximize ϕ (t) =

⎛

⎝

T∫

0

[ f (t,u(t))+λ (t)g(t,u(t))]dt

⎞

⎠

subject to

0 ≤
T∫

0

[
f 0 (t,u(t) ;h(t)) +

m

∑
i=1
λi (t)g0

i (t,u(t) ;h(t))

]

dt∀h ∈ Ln
∞ [0,T ] ,

(5.18.1)

λ (t) ≥ 0,a.e.in [0,T ] , (5.18.2)
u ∈ X .

Let W1 denote the set of all feasible solutions of (WCD).
(2) Mond–Weir dual

(MWCD) maximizeψ (t) =
T∫

0

f (t,u(t))dt

subject to

0 ≤
T∫

0

[
f 0 (t,u(t) ;h(t)) +

m

∑
i=1
λi (t)g0

i (t,u(t) ;h(t))

]

dt ∀h ∈ Ln
∞ [0,T ] ,

(5.18.3)

λ (t)g(t,u(t)) ≥ 0, a.e.in [0,T ] (5.18.4)
λ (t) ≥ 0, a.e.in [0,T ] , (5.18.5)
u ∈ X .

Let W2 denote the set of all feasible solutions of (MWCD).

Maximization in (WCD) and (MWCD) means obtaining efficient solutions of the
problems. Recall from Sect. 4.7 that Ω is the set of all feasible solutions to (CNP).

Theorem 5.18.1. (Weak Duality). Assume that for all x ∈Ω and for all (u,λ) ∈W1,
and ( f (·) ,λ (t)g(·)) are type I with respect to the same η then, φ (t) � ϕ (t).

Proof. Suppose, to the contrary, that φ (t) ≤ ϕ (t). Then there exist x ∈ Ω and
(u,λ ) ∈W1, such that

T∫

0

f (t,x(t))dt <

T∫

0

f (t,u(t)+λ (t)g(t,u(t)))dt. (5.18.6)
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Since ( f (t, ·) ,gi (t, ·)) are type I at x̄ (t) throughout [0,T ] for each i ∈ I, we have the
inequalities

f (t,x(t))− f (t,u(t)) ≥ f 0 (t,u(t) ;η (x(t) ,u(t))) a.e.in [0,T ] , (5.18.7)

and

−gi (t,u(t)) ≥ g0
i (t, x̄(t) ;η (x(t) ,u(t))) a.e.in [0,T ] , i ∈ I, (5.18.8)

for some η (x(t) ,u(t)). Because x ∈Ω, (u,λ) ∈W1 and λ̄i ≥ 0 a.e. in [0,T ] , i ∈ I, it
is clear from (5.18.6)–(5.18.8) that

0 >

T∫

0

[
f 0 (t,u(t) ;η (x(t) ,u(t))) +

m

∑
i=1
λi (t)g0

i (t,u(t) ;η (x(t) ,u(t)))

]

dt,

which, with h(t) = η (x(t) , u(t)), contradicts (5.18.1). Therefore, we conclude that
φ (t) � ϕ (t). ��
Theorem 5.18.2. (Weak Duality). Assume that for all x ∈ Ω and for all (u,λ ) ∈
W2, and ( f (·) ,λ (t)g(·)) are pseudo-quasi-type I with respect to the same η then,
φ (t) � ψ (t).

Proof. Since for each x ∈Ω, from (5.18.4), we have

−λi (t)gi (t,u(t)) ≤ 0 a.e.in [0,T ] , i ∈ I.

From (5.18.5) and the second part of the Pseudo-quasi-type I assumption, we get

λi (t)g0
i (t,u(t) ;η (x(t) ,u(t))) ≤ 0, a.e.in [0,T ] , i ∈ I.

Hence, we have

T∫

0

∑
i∈I
λi (t)g0

i (t,u(t) ;η (x(t) ,u(t))) ≤ 0, ∀u ∈W2. (5.18.9)

From (5.18.3), we get

0≤
T∫

0

[
f 0 (t,u(t) ;η (x(t) ,u(t))) +

m

∑
i=1
λi (t)g0

i (t,u(t) ;η (x(t) ,u(t)))

]

dt,∀u∈W2.

(5.18.10)
From (5.18.9) and (5.18.10), we get

T∫

0

f 0 (t,u(t) ;η (x(t) ,u(t))) ≥ 0, ∀u ∈W2.
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By the first part of the Pseudo-quasi-type I assumption and the last inequality, we
get

φ (x) ≤ ψ (u) , ∀u ∈W2.

��
Theorem 5.18.3. (Strong Duality). Let x∗ be an efficient solution for (WCD) and
let ( f (t, ·) ,g(t, ·)) be uniformly Lipschitz. Further, if the constraint qualification
in Cravens (1995) holds at x∗, then there exists λ such that (x∗,λ ) is feasible
for (WCD). Moreover, if the weak duality in Theorem 5.18.1 holds, then (x∗,λ )
is efficient for (WCD).

Proof. The feasibility of (x∗,λ ) for (WCD) follows from Theorem 4.7.2. The effi-
ciency of (x∗,λ ) for (WCD) follows from the weak duality in Theorem 5.18.1. ��

5.19 Duality for Vector Control Problems

Hanson (1964) observed that variational problems and control problems are
continuous–time analogue of finite dimensional nonlinear programming problems.
Since then the fields of nonlinear programming and the calculus of variations have
to some extent merged together within optimization theory. Several authors have
been interested in these problems, see for example, Bhatia and Kumar (1995),
Chen (2002), Craven (1978, 1995), Kim et al. (1993), Ledzewicz-Kowalwski (1985),
Mishra and Mukherjee (1999), Mond and Hansen (1968a), Mond and Smart (1988),
Nahak and Nanda (1997b) and Zhian (2001).

Consider the vector control problem:

(VCP) minimize

t f∫

t0

f (t,x,u)dt =

⎛

⎝

t f∫

t0

f1 (t,x,u)dt, . . . ,

t f∫

t0

fp (t,x,u)dt

⎞

⎠

subject to x(t0) = α,x
(
t f
)

= β , (5.19.1)
ẋ = h(t,x,u) , t ∈ I, (5.19.2)

g(t,x,u) = (g1 (t,x,u) , . . . , .gl (t,x,u))T ≤ 0,t ∈ I. (5.19.3)

For any partition {Σ ,Σ ′} of {1,2, . . . , l}, i.e., Σ ∪Σ ′ = {1,2, . . . , l} and Σ ∩Σ ′ = φ ,
we propose two types of general duals for (VCP).

(VCD1)

maximize

⎛

⎝

t f∫

t0

[
f1 (t,y,v)+ μ (t)T

Σ gΣ (t,y,v)
]
dt, . . . ,

t f∫

t0

[
fp (t,y,v)+ μ (t)T

Σ gΣ (t,y,v)
]

dt

⎞

⎠
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subject to y(t0) = α,y
(
t f
)

= β , (5.19.4)
p

∑
i=1
λi fiy (t,y,v)+ gy (t,y,v)μ (t)+ hy (t,y,v)γ (t)+ γ̇ (t) = 0, t ∈ I,

(5.19.5)
p

∑
i=1
λi fiv (t,y,v)+ gv (t,y,v)μ (t)+ hv (t,y,v)γ (t) = 0, t ∈ I, (5.19.6)

t f∫

t0

γ (t)T [h(t,y,v)− ẏ]dt ≥ 0, (5.19.7)

t f∫

t0

μ (t)T
Σ ′ gΣ ′ (t,y,v)dt ≥ 0, (5.19.8)

μ (t) ≥ 0, t ∈ I, (5.19.9)

λi ≥ 0, i = 1,2, . . . , p,
p

∑
i=1
λi = 1, (5.19.10)

where μ (t)Σ denotes the |Σ | column vector function with the component indices in
Σ , and similar notations have the same meanings.

(VCD2)

max

⎛

⎝

t f∫

t0

{
f1 (t,y,v)+ μ (t)T

Σ gΣ (t,y,v)+ γ (t)T [h(t,y,v)− ẏ]
}

dt, . . . ,

t f∫

t0

{
fp (t,y,v)+ μ (t)T

Σ gΣ (t,y,v)+ γ (t)T [h(t,y,v)− ẏ]
}

dt

⎞

⎠

subject to y(t0) = α,y
(
t f
)

= β ,
p

∑
i=1
λi fiy (t,y,v)+ gy (t,y,v)μ (t)+ hy (t,y,v)γ (t)+ γ̇ (t) = 0, t ∈ I,

p

∑
i=1
λi fiv (t,y,v)+ gv (t,y,v)μ (t)+ hv (t,y,v)γ (t) = 0, t ∈ I,

t f∫

t0

μ (t)T
Σ ′ gΣ ′ (t,y,v)dt ≥ 0,

μ (t) ≥ 0, t ∈ I,

λi ≥ 0, i = 1,2, . . . , p,
p

∑
i=1
λi = 1.
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Theorem 5.19.1. (Weak Duality). Assume that for any feasible (x̄, ū) for (VCP)
and any feasible (ȳ, v̄, λ̄ , μ̄ , γ̄) for (VCD1),

∫ t f
t0 [ fi(t,y,v)+ μ̄(t)T

ΣgΣ (t,y,v)]dt is
strictly quasi-univex at (ȳ, v̄) on X × U with respect to η , ξ , b0 and φ0,
∫ t f

t0 γ̄(t)
T [h(t,y,v)− ẏ]dt is quasi-univex at (ȳ, v̄) on X ×U with respect to η , ξ ,

b1 and φ1 and
∫ t f

t0 μ̄(t)T
Σ ′gΣ ′ (t,y,v)dt is quasi-univex at (ȳ, v̄) on X ×U with respect

to η , ξ , b2 and φ2 with b0 > 0, and a ≤ 0 ⇒ φr(a)≤ 0,r = 0,1,2, then the following
can not hold simultaneously,

t f∫

t0

fi (t, x̄, ū)dt ≤
t f∫

t0

[
fi (t, ȳ, v̄)+ μ̄ (t)T

Σ gΣ (t, ȳ, v̄)
]
dt, ∀i ∈ {1,2, . . . , p},

(5.19.11)
t f∫

t0

f j (t, x̄, ū)dt <

t f∫

t0

[
f j (t, ȳ, v̄)+ μ̄ (t)T

Σ gΣ (t, ȳ, v̄)
]
dt, for some j ∈ {1,2, . . . , p}.

(5.19.12)

Proof. Suppose to the contrary that (5.19.11) and (5.19.12) hold for some feasible
(x̄, ū) for (VCP) and some feasible

(
ȳ, v̄, λ̄ , μ̄ , γ̄

)
for (VCD1), then by (2.3), (2.9)

and (5.19.11)

t f∫

t0

[
fi (t, x̄, ū)+ μ̄ (t)T

Σ gΣ (t, x̄, ū)
]

dt ≤
t f∫

t0

[
fi (t, ȳ, v̄)+ μ̄ (t)T

Σ gΣ (t, ȳ, v̄)
]
dt,

∀i ∈ {1,2, . . . , p} .

By b0 > 0, and a ≤ 0 ⇒ φ0 (a) ≤ 0, we get

b0 (x̄, ȳ)φ0

⎡

⎣

t f∫

t0

[
fi (t, x̄, ū)+ μ̄ (t)T

Σ gΣ (t, x̄, ū)
]

dt

⎤

⎦

≤ b0 (x̄, ȳ)φ0

⎡

⎣

t f∫

t0

[
fi (t, ȳ, v̄)+ μ̄ (t)T

Σ gΣ (t, ȳ, v̄)
]

dt

⎤

⎦ , ∀i ∈ {1,2, . . . , p} .

By the strictly quasi-univexity of
t f∫

t0

[
fi (t,y,v)+ μ̄ (t)T

Σ gΣ (t,y,v)
]

dt, when (x̄, ū) �=
(ȳ, v̄),
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t f∫

t0

{
ηT (t, x̄, ū, ȳ, v̄) [ fiy (t, ȳ, v̄)+ gΣy (t, ȳ, v̄) μ̄ (t)Σ ]

+ξT (t, x̄, ū, ȳ, v̄) [ fiv (t, ȳ, v̄)+ gΣv (t, ȳ, v̄) μ̄ (t)Σ ]
}

dt < 0.

Multiplying each inequality in the above inequality by λ̄i ≥ 0, i = 1,2, . . . , p, and
then adding the resulting inequalities, we get

t f∫

t0

{

ηT (t, x̄, ū, ȳ, v̄)

[
p

∑
i=1
λ̄i fiy (t, ȳ, v̄)+ gΣy (t, ȳ, v̄) μ̄ (t)Σ

]

+ ξT (t, x̄, ū, ȳ, v̄)

[
p

∑
i=1
λ̄i fiv (t, ȳ, v̄)+ gΣv (t, ȳ, v̄) μ̄ (t)Σ

]}

dt < 0. (5.19.13)

By (5.19.2) and (5.19.7), we get

t f∫

t0

γ̄ (t)T [h(t, x̄, ū)− ˙̄x]dt ≤
t f∫

t0

γ̄ (t)T [h(t, ȳ, v̄)− ˙̄y]dt.

By b1 ≥ 0, and a ≤ 0 ⇒ φ1 (a) ≤ 0, we get

b1 (x̄, ȳ)φ1

⎡

⎣

t f∫

t0

γ̄ (t)T [h(t, x̄, ū)− ˙̄x]dt

⎤

⎦≤ b1 (x̄, ȳ)φ1

⎡

⎣

t f∫

t0

γ̄ (t)T [h(t, ȳ, v̄)− ˙̄y]dt

⎤

⎦ .

The quasi-univexity of
t f∫

t0
γ̄ (t)T [h(t,y,v)− ẏ]dt implies that

t f∫

t0

[

ηT (t, x̄, ū, ȳ, v̄) hy(t, ȳ, v̄) γ̄(t)− dηT

dt
γ̄(t)+ ξ T (t, x̄, ū, ȳ, v̄) hv(t, ȳ, v̄) γ̄(t)

]

dt ≤ 0.

(5.19.14)
By integrating d

dtη (t, x̄, ū, ȳ, v̄) γ̄ (t) from t0 to t f by parts and applying the boundary
conditions (5.19.1), we get

−
t f∫

t0

dηT

dt
γ̄ (t)dt =

t f∫

t0

ηT ˙̄γ (t)dt. (5.19.15)
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Using (5.19.15) in (5.19.14), we get

t f∫

t0

[
ηT (t, x̄, ū, ȳ, v̄)

[
hy (t, ȳ, v̄) γ̄ (t)+ ˙̄γ (t)

]
+ ξ T (t, x̄, ū, ȳ, v̄)hv (t, ȳ, v̄) γ̄ (t)

]
dt ≤ 0.

(5.19.16)
By (5.19.3), (5.19.8) and (5.19.9), we get

t f∫

t0

μ (t)T
Σ ′ gΣ ′ (t,x,u)dt ≤

t f∫

t0

μ (t)T
Σ ′ gΣ ′ (t,y,v)dt.

By b2 ≥ 0, and a ≤ 0 ⇒ φ2 (a) ≤ 0, from the above inequality, we get

b2 (x,y)φ2

⎡

⎣

t f∫

t0

μ (t)T
Σ ′ gΣ ′ (t,x,u)dt

⎤

⎦≤ b2 (x,y)φ2

⎡

⎣

t f∫

t0

μ (t)T
Σ ′ gΣ ′ (t,y,v)dt

⎤

⎦ .

It follows from the quasi-univexity of
t f∫

t0
μ (t)T

Σ ′ gΣ ′ (t,y,v)dt that

t f∫

t0

[
ηT (t,x,u,y,v)gΣ ′y (t,y,v)μ (t)Σ ′ + ξ T (t,x,u,y,v)gΣ ′v (t,y,v)μ (t)Σ ′

]
dt ≤ 0.

(5.19.17)
By (5.19.13), (5.19.16) and (5.19.17), we get

t f∫

t0

{

ηT (t,x,u,y,v)

[
p

∑
i=1
λ i fiy (t,y,v)+ gΣy (t,y,v)μ (t)Σ

+gΣ ′y (t,y,v)μ (t)Σ ′ + hy (t,y,v)γ (t)+ γ̇ (t)

]

+ ξ T (t,x,u,y,v)

[
p

∑
i=1
λ i fiv (t,y,v)+ gΣv (t,y,v)μ (t)Σ

+gΣ ′v (t,y,v)μ (t)Σ ′ + hv (t,y,v)γ (t)

]}

dt

=

t f∫

t0

{

ηT (t,x,u,y,v)

[
p

∑
i=1
λ i fiy (t,y,v)+ gy (t,y,v)μ (t) +hy (t,y,v)γ (t)+ γ̇ (t)

]

+ ξ T (t,x,u,y,v)

[
p

∑
i=1
λ i fiv (t,y,v)+ gv (t,y,v)μ (t)+ hv (t,y,v)γ (t)

]}

dt < 0,

which contradicts (5.19.5) and (5.19.6). ��
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Theorem 5.19.2. (Weak Duality). Assume that for any feasible (x,u) for (VCP)
and any feasible (y,v,λ ,μ ,γ) for (VCD1), one of the functionals

∫ t f
t0 [ fi(t,y,v)

+μ(t)T
ΣgΣ (t,y,v)]dt,

∫ t f
t0 γ (t)T [h(t,y,v)− ẏ]dt or

∫ t f
t0 μ (t)T

Σ ′ gΣ ′ (t,y,v)dt is strictly
quasi-univex at (y,v) on X ×U with respect to η ,ξ , br and φr, for r = 0,1,2 with
br > 0, and the other two are quasi-univex at (y,v) on X ×U with respect to η , ξ ,
br and φr, for remaining r, and a ≤ 0 ⇒ φr (a) ≤ 0,r = 0,1,2, then (5.19.11) and
(5.19.12) can not hold simultaneously.

Proof. Suppose to the contrary that (5.19.11) and (5.19.12) hold for some fea-
sible (x,u) for (VCP) and some feasible

(
y,v,λ ,μ ,γ

)
for (VCD1). Multiplying

each inequality of (5.19.11) by λ i ≥ 0, i = 1,2, ..., p, and then adding the resulting
inequalities, we get

t f∫

t0

p

∑
i=1
λ i fi (t,x,u)dt ≤

t f∫

t0

[
p

∑
i=1
λ i fi (t,y,v)+ μ (t)T

Σ gΣ (t,y,v)

]

dt.

By (5.19.3) and (5.19.9), we get

t f∫

t0

[
p

∑
i=1
λ i fi(t,x,u)+ μ(t)T

ΣgΣ(t,x,u)

]

dt ≤
t f∫

t0

[
p

∑
i=1
λ i fi(t,y,v)+ μ(t)T

ΣgΣ(t,y,v)

]

dt.

The remaining part of the proof is similar to the proof of Theorem 5.19.1. ��
Theorem 5.19.3. (Weak Duality). Assume that for any feasible (x,u) for (VCP) and

any feasible (y,v,λ ,μ ,γ) for (VCD1),
t f∫

t0

{
p
∑

i=1
λ i fi (t,y,v)+ μ (t)T g(t,y,v)

+γ (t)T [h(t,y,v)− ẏ]
}

dt is strictly pseudo-univex at (y,v) on X ×U with respect

to η ,ξ , b0 andφ0 with b0 > 0 and φ0 (a) > 0 ⇒ a > 0, then (5.19.11) and (5.19.12)
cannot hold simultaneously.

Proof. Multiply (5.19.5) from left by ηT and integrate from t0 to t f on both sides,

t f∫

t0

ηT (t,x,u,y,v)

[
p

∑
i=1
λ i fiy (t,y,v)+ gy (t,y,v)μ (t)+ hy (t,y,v)γ (t)+ γ̇ (t)

]

dt = 0.

Integrate
t f∫

t0
ηT γ̇ (t)dt by parts,

t f∫

t0

{

ηT

[
p

∑
i=1
λ i fiy (t,y,v)+ gy (t,y,v)μ (t)+ hy (t,y,v)γ (t)

]

− dηT

dt
γ (t)

}

dt = 0,
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So we have

t f∫

t0

{

ηT

[
p

∑
i=1
λ i fiy (t,y,v)+ gy (t,y,v)μ (t)+ hy (t,y,v)γ (t)

]

+
dηT

dt

[
p

∑
i=1
λ i fiẏ (t,y,v)+ gẏ (t,y,v)μ (t)+

[
h(t,y,v)− ẏ

]

ẏ γ (t)

]}

dt = 0.

(5.19.18)
Multiply (5.19.6) from left by ξ T , and integrate from t0 to t f , we get

t f∫

t0

ξ T

[
p

∑
i=1
λ i fiv (t,y,v)+ gv (t,y,v)μ (t)+ hv (t,y,v)γ (t)

]

dt = 0. (5.19.19)

By (5.19.18) and (5.19.19), we get

t f∫

t0

{

ηT

[
p

∑
i=1
λ i fiy (t,y,v)+ gy (t,y,v)μ (t)+ hy (t,y,v)γ (t)

]

+
dηT

dt

[
p

∑
i=1
λ i fiẏ (t,y,v)+ gẏ (t,y,v)μ (t)+

[
h(t,y,v)− ẏ

]

ẏ γ (t)

]

+ ξ T

[
p

∑
i=1
λ i fiv (t,y,v)+ gv (t,y,v)μ (t)+ hv (t,y,v)γ (t)

]}

dt = 0.

(5.19.20)
By the strictly pseudo-univexity of

t f∫

t0

{
p

∑
i=1
λ i fi(t,y,v)+ μ(t)T g(t,y,v)+ γ(t)T [h(t,y,v)− ẏ]

}

dt,we get

b0(x,y)φ0

⎡

⎣

t f∫

t0

[
p

∑
i=1
λ i fi(t,x,u)+ μ(t)T g(t,x,u)+ γ(t)T [h(t,x,u)− ẋ]]dt

⎤

⎦

> b0(x,y)φ0

⎡

⎣

t f∫

t0

[
p

∑
i=1
λ i fi(t,y,v)+ μ(t)T g(t,y,v)+ γ(t)T [h(t,y,v)− ẏ]]dt

⎤

⎦ .
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By b0 > 0 and φ0(a) > 0 ⇒ a > 0, we get

t f∫

t0

[
p

∑
i=1
λ i fi (t,x,u)+ μ (t)T g(t,x,u)+ γ (t)T [

h(t,x,u)− ẋ
]
]

dt

>

t f∫

t0

[
p

∑
i=1
λ i fi (t,y,v)+ μ (t)T g(t,y,v)+ γ (t)T [

h(t,y,v)− ẏ
]
]

dt.

By (5.19.2), (5.19.3), (5.19.7) and (5.19.8), we get

t f∫

t0

p

∑
i=1
λ i fi (t,x,u)dt >

t f∫

t0

[
p

∑
i=1
λ i fi (t,y,v)+ μ (t)T

Σ gΣ (t,y,v)

]

dt.

It follows that (5.19.11) and (5.19.12) cannot hold simultaneously. ��
Theorem 5.19.4. (Weak Duality). Assume that for any feasible (x̄, ū) for (VCP)
and any feasible (ȳ, v̄, λ̄ , μ̄ , γ̄) for (VCD1),

∫ t f
t0

[
fi(t,y,v)+ μ̄(t)T

ΣgΣ (t,y,v)
]

dt is

strictly pseudo-univex at (ȳ, v̄) on X ×U with respect to η , ξ , b0 and φ0,
∫ t f

t0 γ̄(t)
T

[h(t,y,v)− ẏ]dt is quasi-univex at (ȳ, v̄) on X ×U with respect to η , ξ , b1 and φ1

and
∫ t f

t0 μ̄ (t)T
Σ ′ gΣ ′ (t,y,v)dt is quasi-univex at (ȳ, v̄) on X ×U with respect to η , ξ , b2

and φ2 with b0 > 0, and a ≤ 0 ⇒ φr (a)≤ 0,r = 0,1,2, then (5.19.11) and (5.19.12)
cannot hold simultaneously.

Proof. As in the proof of the above theorem, we obtain (5.19.20). From (5.19.20),
we get

t f∫

t0

{

ηT

[
p

∑
i=1
λ̄i fiy (t, ȳ, v̄)+ gΣy (t, ȳ, v̄) μ̄ (t)Σ

]

+
dηT

dt

[
p

∑
i=1
λ̄i fiẏ (t, ȳ, v̄)+ gΣẏ (t, ȳ, v̄) μ̄ (t)Σ

]

+ ξ T

[
p

∑
i=1
λ̄i fiv (t, ȳ, v̄)+ gΣv (t, ȳ, v̄) μ̄ (t)Σ

]}

dt

= −
t f∫

t0

[
ηT gΣ ′

y
(t, ȳ, v̄) μ̄ (t)Σ ′ +

dηT

dt
gΣ ′̇

y
(t, ȳ, v̄) μ̄ (t)Σ ′ ��

Further, it will be interesting to extend the work of the present section to the type of
problem considered by Arana-Jimenez et al. (2008).
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5.20 Duality for Vector Fractional Subset Optimization Problems

In this section, we shall establish certain duality theorems for three parametric and
three semi-parametric dual models to the primal problem discussed in Sect. 4.9.

Consider the following vector fractional subset optimization problem given in
Sect. 4.9.

(P) minimize
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

,

)

subject to Hj (S) � 0, j ∈ m,S ∈Λn,

where Λn is the n-fold product of the σ -algebra Λ of the subsets of a given set
X , Fi,Gi,i ∈ p ≡ {1,2, . . . , p} Hj (S) � 0, j ∈ m ≡ {1,2, . . . ,m} , are real valued
functions defined on Λn, and for each Gi (S) > 0, for eachi ∈ p, for all S ∈Λn.

The necessary preliminaries and definitions are already given in Sect. 3.7.

Dual Model I

We consider the following dual problem for (P):

(DI) maximize λ = (λ1,λ2, . . . ,λp)
subject to

Γ

(

S,T ;
p

∑
i=1

ui [DFi (T )−λiDGi (T )]+
m

∑
j=1

v jDHj (T )

)

�0,∀S ∈Λn, (5.20.1)

ui�Fi (T )−λiGi (T )� � 0, i ∈ p, (5.20.2)

v jHj (T ) � 0, j ∈ m, (5.20.3)
T ∈Λn, λ ∈ R+, u ∈U, v ∈ Rm

+,

where Γ(S,T ; ·) : Ln
1 (X ,Λ ,μ) → R is a sublinear function. Throughout our discus-

sion, we assume that the functions Fi,Gi, i ∈ p, and Hj, j ∈ m, are differentiable on
Λn. We shall introduce along the way some additional notations. For stating our first
duality theorem, we use the real-valued functions Ai (·;λ ,u) and B j (·,v) defined for
fixed λ ,u and v on Λn by

Ai (·;λ ,u) = ui [Fi (S)−λiGi (S)] , i ∈ p,

and
B j (·,v) = v jHj (S) , j ∈ m.

Theorem 5.20.1. Let S and (T, λ , u, v) be an arbitrary feasible solution of (P) and
(DI), respectively, and assume that any one of the following sets of hypotheses is
satisfied:
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(a) (i) (Ai (·;λ ,u) ,B j (·,v)) ∀i ∈ p and j ∈ m, are (Γ, α,β, ρ , σ , θ )-V-pseudo-
quasi-type-I at T ;

(ii) ρ+σ � 0;
(b) (i) (Ai (·;λ ,u) ,B j (·,v)) ∀i ∈ p and j ∈ m, are (Γ, α,β, ρ , σ , θ )-V-pseudo-

prestrict-quasi-type-I at T ;
(ii) ρ+σ > 0;

(c) (i) (Ai (·;λ ,u) ,B j (·,v)) ∀i ∈ p and j ∈ m, are (Γ, α,β, ρ , σ , θ )-V-prestrict-
quasi-strict-pseudo-type-I at T ;

(ii) ρ+σ � 0.

Then,

φ (S) ≡
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

)

� λ .

Proof. Let S be an arbitrary feasible solution of (P), then by the sublinearity of Γ
and (5.20.1) it follows that

Γ

(

S,T ;
p

∑
i=1

ui [DFi (T )−λiDGi (T )]

)

+ Γ

(

S,T ;
m

∑
j=1

v jDHj (T )

)

�0. (5.20.4)

(a) From (5.20.3) that −v jHj (T ) � 0, and hence,

−
m

∑
j=1
β j (S,T )v jHj (T ) � 0,

which by virtue of second part of (i) implies that

Γ

(

S,T ;
m

∑
j=1

v jDHj (T )

)

� −σ d2 (θ (S,T )) . (5.20.5)

From (5.20.4) and (5.20.5), we see that

Γ

(

S,T ;
p

∑
i=1

ui [DFi (T )−λiDGi (T )]

)

� σ d2 (θ (S,T ))�−ρd2 (θ (S,T )) ,

where the second inequality follows from (ii). By first part of (i), the last inequality
implies that

p

∑
i=1
αi (S,T )ui [Fi (S)−λiGi (S)] �

p

∑
i=1
αi (S,T )ui [Fi (T )−λiGi (T )]

which in view of (5.20.2) becomes

p

∑
i=1
αi (S,T )ui [Fi (S)−λiGi (S)] � 0. (5.20.6)
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Since uiαi (S,T ) > 0 for each i ∈ p, (5.20.6) implies that (F1(S)− λ1G1(S), . . . ,
Fp(S)−λpGp(S)) � (0, . . . ,0), which in turn implies that

φ (S) ≡
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

)

� λ .

The proofs for part (b) and (c) are similar to that of part (a). ��
Theorem 5.20.2. (Strong Duality). Let S∗ be a regular efficient solution of (P), let

Γ(S,S∗; DF (S∗)) =
n
∑

k=1

〈
DkF (S∗) , χSk − χS∗k

〉
for any differentiable function F :

Λn →R and S∈Λn, and assume that ant one of the three sets of hypotheses specified
in Theorem 5.20.1 holds for all feasible solutions of (DI). Then there exist u∗ ∈ U
and v∗ ∈ Rm

+ such that (S∗, u∗, v∗ ) is an efficient solution of (DI) and the objective
values of (P) and (DI) are same.

Proof. By Lemma 4.9.2, there exist u∗ ∈ U and v∗ ∈ Rm
+ such that (S∗, u∗, v∗) is

an feasible solution of (DI). That it is an efficient solution follows from Theorem
5.20.1. ��

Dual Model II

We shall formulate a relatively more general parametric duality model than the Dual
Model I by making use of the partitioning scheme introduced as follows:

Let
{

J0,J1, . . . ,Jq
}

be a partition of the index set m. Thus, Jr ⊂ m for each r ∈
{0,1, . . . ,q} ,Jr ∩ Js =Φ for each r,s ∈ {0,1, . . . ,q} with r �= s, and

⋃q
r=0 Jr = m.

The duality model considered in this section is in the form:

(DII) maximize λ = (λ1,λ2, . . . , λp)
subject to

Γ

(

S,T ;
p

∑
i=1

ui [DFi (T )−λiDGi (T )]+
m

∑
j=1

v jDHj (T )

)

� 0,∀S ∈Λn, (5.20.7)

ui

[

Fi (T )−λiGi (T )+ ∑
j∈J0

v j Hj (T )

]

� 0, i ∈ p, (5.20.8)

∑
j∈Jt

v jHj (T ) � 0, t ∈ m (5.20.9)

T ∈Λn, λ ∈ Rp
+, u ∈U, v ∈ Rm

+,

where Γ(S,T ; ·) : Ln
1 (X ,Λ ,μ) → R is a sublinear function.

We will show that (DII) is a dual problem for (P) by establishing weak and strong
duality theorems. In this section, we also use the notations
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Γi (·;λ ,u,v) = ui

[

Fi (S)−λiGi (S)+ ∑
j∈J0

v jHj (S)

]

, i ∈ p

and
Δt (S,v) = ∑

j∈Jt

v jHj (S) , t ∈ m.

Theorem 5.20.3. (Weak Duality). Let S and (T,λ ,u,v) be an arbitrary feasible solu-
tion of (P) and (DII), respectively. Assume that any one of the following three sets
of hypotheses is satisfied:

(a) (i) (Γi (·;λ ,u,v) , Δ j (·,v)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-
quasi-type-I at T ;

(ii) ρ+σ � 0;
(b) (i) (Γi (·;λ ,u,v) , Δ j (·,v)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-

prestrict-quasi-type-I at T ;
(ii) ρ+σ > 0;

(c) (i) (Γi (·;λ ,u,v) , Δ j (·,v)) ∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-prestrict-
quasi-strict-pseudo-type-I at T ;

(ii) ρ+σ � 0.

Then,

φ (S) ≡
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

)

� λ .

Proof. Let S be an arbitrary feasible solution of (P), then by the sublinearity of Γ
and (5.20.7) it follows that

Γ

(

S,T ;
p

∑
i=1

ui [DFi (T )−λiDGi (T )]+ ∑
j∈J0

v jDHj (T )

)

+ Γ

(

S,T ;
m

∑
t=1
∑
j∈Jt

v jDHj (T )

)

� 0. (5.20.10)

(a) Since v � 0,S ∈ Ξ it follows from (5.20.9) that for each t ∈ m :

−∑
t∈Jt

vtHt (T ) = −Δt (T,v) � 0,

and

−
q

∑
t=1
βt (S,T )Δt (T,v) � 0,

which by virtue of second part of (i) implies that

Γ

(

S,T ;
q

∑
t=1
∑
j∈Jt

v jDHj (T )

)

� −σ d2 (θ (S,T )) . (5.20.11)
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From (5.20.10) and (5.20.11), we see that

Γ

(

S,T ;
p

∑
i=1

ui [DFi (T )−λiDGi (T )]+ ∑
j∈J0

v jDHj (T )

)

� σ d2 (θ (S,T )) � −ρd2 (θ (S,T )) ,

where the second inequality follows from (ii). By virtue of the first part of hypothesis
(i), the above inequality implies that

p

∑
i=1
αi (S,T )Γi (S,λ ,u,v) �

p

∑
i=1
αi (S,T )Γi (T,λ ,u,v) . (5.20.12)

Since αi (S,T ) > 0, ui � 0 ∀ i ∈ p, and (5.20.8) holds, we deduce from (5.20.12)
that

p

∑
i=1
αi (S,T )Γi (S,λ ,u,v) � 0,

which simplifies to

p

∑
i=1
αi (S,T )ui [Fi (S)−λiGi (S)] � 0.

which is precisely (5.20.6). Therefore, the rest of the proof is identical to that of Part
(a) of Theorem 5.20.1.

The proofs of parts (b) and (c) are similar to that of part (a). ��
Remark 5.20.1. Note that Theorem 5.20.3 contains a number of special cases that
can easily be identified by appropriate choices of the partitioning sets J0,J1, . . . ,Jq.

Theorem 5.20.4. (Strong Duality). Let S∗ be a regular efficient solution of (P), let
Γ(S,S∗;DF (S∗)) = ∑n

k=1

〈
DkF (S∗) ,χSk − χS∗k

〉
for any differentiable function F :

Λn → R and S ∈ Λn. Assume that ant one of the three sets of hypotheses specified
in Theorem 5.20.3 holds for all feasible solutions of (DII). Then there exist u∗ ∈ U
and v∗ ∈ Rm

+ such that (S∗,u∗,v∗) is an efficient solution of (DII) and the objective
values of (P) and (DII) are same.

Proof. By Lemma 4.9.2, there exist u∗ ∈ U and v∗ ∈ Rm
+ such that (S∗,u∗,v∗) is

an feasible solution of (DII). That it is an efficient solution follows from Theorem
5.20.3. ��

Dual Model III

We present another general parametric duality model for (P). It is again based on the
partitioning scheme employed in the previous section. The dual model can be given
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as follows:

(DIII) maximize λ = (λ1,λ2, . . .λp)
subject to

Γ

(

S,T ;
p

∑
i=1

ui [DFi (T )−λiDGi (T )]+
m

∑
j=1

v jDHj (T )

)

� 0,∀S ∈Λn,

(5.20.13)

Fi (T )−λiGi (T ) � 0, i ∈ p, (5.20.14)

∑
j∈Jt

v jHj (T ) � 0, t ∈ m∪{0} , (5.20.15)

T ∈Λn, λ ∈ Rp
+, u ∈U,v ∈ Rm

+,

where Γ(S,T ; ·) : Ln
1 (X ,Λ ,μ) → R is a sublinear function.

We will show that (DIII) is a dual problem for (P) by establishing weak and strong
duality theorems. Let {I0, I1, . . . , Ik} be partitions of p such that K = {0,1, . . . ,k} ⊂
Q = {0,1, . . . ,q} ,k < q, and let the function Θt (·,λ ,u,v) : Λn → R be defined, for
fixed λ ,u and v by

Θt (S,λ ,u,v) =∑
i∈It

ui [Fi (S)−λiGi (S)]+∑
j∈Jt

v jHj (S),t ∈ K.

and Δt (S,v) = ∑
j∈Jt

v jHj (S) ,t ∈ m.

Theorem 5.20.5. (Weak Duality). Let S and (T,λ ,u,v) be an arbitrary feasible solu-
tion of (P) and (DIII), respectively. Assume that any one of the following three sets
of hypotheses is satisfied:

(a) (i) (Θt (·,λ ,u,v) , Δ j (·,v)) ∀t ∈ K and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-strict
pseudo-quasi-type-I at T ;

(ii) ρ+σ � 0;
(b) (i) (Θt (·,λ ,u,v) , Δ j (·,v)) ∀t ∈ K and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-

prestrict-quasi-type-I at T ;
(ii) ρ+σ > 0;

(c) (i) (Θt (·,λ ,u,v) , Δ j (·,v)) ∀t ∈ K and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-prestrict-
quasi-strict-pseudo-type-I at T ;

(ii) ρ+σ � 0.

Then,

φ (S) ≡
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

)

� λ .

Proof. Suppose to the contrary that φ(S)≤λ . This implies that Fi(S)−λiGi(S) � 0,
∀i ∈ p, with strict inequality holding for at least one l ∈ p. From these inequalities,
non-negativity of v, primal feasibility of S, and (5.20.14) it is easily seen that for
each t ∈ K,
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Θt (S,λ ,u,v) =∑
i∈It

ui [Fi (S)−λiGi (S)]+∑
j∈Jt

v jHj (S)

�∑
i∈It

ui [Fi (S)−λiGi (S)]

� 0

=∑
i∈It

ui [Fi (S)−λiGi (S)]+∑
j∈Jt

v jHj (S) =Θt (S,λ ,u,v)

and hence,

∑
t∈K
αt (S,T )Θt (S,λ ,u,v) < ∑

t∈K
αt (S,T )Θt (T,λ ,u,v) ,

which in view of first part of the hypotheses (i) implies that

Γ

(

S,T ;
p

∑
i=1

ui [DFi (T )−λiDGi (T )]+∑
t∈K
∑
j∈Jt

v jDHj (T )

)

< −ρd2 (θ (S,T )) .

(5.20.16)
As for each t ∈ M\K,− ∑

t∈M\K
βt (S,T )Δt (S,v) � 0, and hence, the second part of

the hypotheses a(i) implies that

Γ

(

S,T ; ∑
t∈M\K

∑
j∈Jt

v jDHj (T )

)

� −σd2 (θ (S,T )) . (5.20.17)

Now from (5.20.16), (5.20.17), a(ii) and the sublinearity, we get

Γ

(

S,T ;
p

∑
i=1

ui[DFi(T )−λiDGi(T )]+
m

∑
j=1

v jDHj(T )

)

<−(ρ+σ)d2(θ (S,T ))<0,

which contradicts (5.20.13). Hence,

φ (S) ≡
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

)

� λ .

The proofs of parts (b) and (c) are similar to that of part (a). ��
Theorem 5.20.6. (Strong Duality). Let S∗ be a regular efficient solution of (P),

let Γ(S,S∗;DF (S∗)) =
n
∑

k=1

〈
DkF (S∗) ,χSk − χS∗k

〉
for any differentiable function

F :Λn →R and S∈Λn. Assume that any one of the three sets of hypotheses specified
in Theorem 5.20.5 holds for all feasible solutions of (DIII). Then there exist u∗ ∈U
and v∗ ∈ Rm

+ such that (S∗u∗,v∗) is an efficient solution of (DIII) and the objective
values of (P) and (DIII) are same.
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Proof. By Lemma 4.9.2, there exist u∗ ∈ U and v∗ ∈ Rm
+ such that (S∗,u∗,v∗) is

an feasible solution of (DIII). That it is an efficient solution follows from Theorem
5.20.5. ��

Dual Model IV

We will investigate the following duality model for (P), which may be written as the
semi-parametric counterpart of (DI):

(DIV) maximize
(

F1 (T )
G1 (T )

, . . . ,
Fp (T )
Gp (T )

)

subject to

Γ

(

S,T ;
p

∑
i=1

ui [Gi (T )DFi (T )−Fi (T )DGi (T )]+
m

∑
j=1

v jDHj (T )

)

� 0,∀S ∈Λn,

(5.20.18)

v jHj (T ) � 0, t ∈ m, (5.20.19)
T ∈Λn, u ∈U,v ∈ Rm

+,

where Γ(S,T ; ·) : Ln
1 (X ,Λ ,μ) → R is a sublinear function. In the remaining part of

this section, we assume that Gi (T ) > 0 and Fi (T ) � 0 i ∈ p, for all T andu such that
(T,u,v) is a feasible solution of the dual problem under consideration. In addition, in
the statements and proofs of theorems to follow in this section, we use the notations,
Ei (·,T,u), B j (·,v) and Li (·,T,u,v) defined for fixed S,u, and v on Λn by

Ei (S,T,u) = ui [Gi (T )Fi (S)−Fi (T )Gi (S)] ∀i ∈ p,

Bi (S,v) = v jHj (S) , j ∈ m,

and

Li (S,T,u,v) = ui

[

Gi (T )Fi (S)−Fi (T )Gi (S)+ ∑
j∈J0

v jHj (S)

]

, i ∈ p.

Now we can establish weak, strong and strict converse duality theorem for (P) and
(DIV).

Theorem 5.20.7. (Weak Duality). Let S and (T,u,v) be an arbitrary feasible solu-
tion for (P) and (DIV), respectively. Assume that any one of the following three sets
of hypotheses is satisfied:

(a) (i) (Ei,B j),∀i ∈ p and ∀ j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-quasi-type-I
at T ;

(ii) ρ+σ � 0;
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(b) (i) (Ei (·,T,u),B j (·,v))∀i ∈ p and j ∈ m, are (Γ, α, β, ρ , σ , θ )-V-pseudo-
prestrict-quasi-type-I at T ;

(ii) ρ+σ > 0;
(c) (i) (Ei (·,T,u),B j (·,v))∀i∈ p and j ∈m, are (Γ, α, β, ρ , σ , θ )-V-prestrict-quasi-

strict-pseudo-type-I at T ;
(ii) ρ+σ � 0.

Then,
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

)

�

(
F1 (T )
G1 (T )

,
F2 (T )
G2 (T )

, . . . ,
Fp (T )
Gp (T )

)

.

Proof. Let S be an arbitrary feasible solution of (P), then by the sublinearity of Γ
and (6.1) it follows that
(

S,T ;
p

∑
i=1

ui [Gi (T )DFi (T )−Fi (T )DGi (T )]

)

+ Γ

(

S,T ;
m

∑
j=1

v jDHj (T )

)

� 0.

(5.20.20)
Following as in the proof of Theorem 5.20.1, from the second part of the assumption
a(i) and (5.20.2), we get

Γ

(

S,T ;
p

∑
i=1

ui [Gi (T )DFi (T )−Fi (T )DGi (T )]

)

� −ρ d2 (θ (S,T )) ,

which in the light of the hypotheses implies that

p

∑
i=1
αi (S,T )ui [Gi (T )Fi (S)−Fi (T )Gi (S)]

�
p

∑
i=1
αi (S,T )ui [Gi (T )Fi (T )−Fi (T )Gi (T )] = 0. (5.20.21)

Since αi (S,T )ui > 0 for each i ∈ p, (5.20.21) implies that

(G1 (T )F1 (S)−F1 (T )G1 (S) , . . . ,Gp (T )Fp (S)−Fp (T )Gp (S)) � (0, . . . ,0) ,

which in turn implies that
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

)

�

(
F1 (T )
G1 (T )

,
F2 (T )
G2 (T )

, . . . ,
Fp (T )
Gp (T )

)

.

The proofs of parts (b) and (c) are similar to that of part (a). ��
Theorem 5.20.8. (Strong Duality). Let S∗ be a regular efficient solution of (P),

let Γ(S,S∗;DF (S∗)) =
n
∑

k=1

〈
DkF (S∗) ,χSk − χS∗k

〉
for any differentiable function

F :Λn →R and S∈Λn. Assume that any one of the three sets of hypotheses specified
in Theorem 5.20.7 holds for all feasible solutions of (DIV). Then there exist u∗ ∈U
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and v∗ ∈ Rm
+ such that (S∗,u∗,v∗) is an efficient solution of (DIV) and the objective

values of (P) and (DIV) are same.

Proof. By Lemma 4.9.3, there exist u∗ ∈ U and v∗ ∈ Rm
+ such that (S∗,u∗,v∗) is

an feasible solution of (DIV). That it is an efficient solution follows from Theorem
5.20.7. ��

Dual Model V

We will present a more general semi-parametric duality model for (P):

(DV) maximize

⎛

⎝

F1 (T )+ ∑
j∈J0

v jHj (T )

G1 (T )
, . . . ,

Fp (T )+ ∑
j∈J0

v jHj (T )

Gp (T )

⎞

⎠

subject to

Γ

⎛

⎜
⎝S,T ;

p

∑
i=1

ui

⎡

⎢
⎣

Gi (T )

[

DFi (T )+ ∑
j∈J0

v jDHj (T )

]

− [Fi (T )+Δ0 (T,v)]DGi (T )

⎤

⎥
⎦

+
m

∑
j∈m\J0

v jDHj(T )

)

� 0,∀S ∈Λn, (5.20.22)

∑
j ∈ Jt

v jHj (T ) � 0,t ∈ m ∪{0} , (5.20.23)

T ∈Λn, u ∈U,v ∈ Rm
+,

where Γ(S,T ; ·) : Ln
1 (X ,Λ ,μ) → R is a sublinear function. In addition, in the state-

ments and proofs of theorems to follow in this section, we use the following notation
defined for fixed S,u, and v on Λn by:

Πi(S,T,u,v) = ui

[

Gi(T)

{

Fi(S)+ ∑
j∈J0

v jDHj(S)

}

−{Fi(T )+Δ0(T,v)}Gi(S)

]

, ∀i ∈ p .

Theorem 5.20.9. (Weak Duality). Let S and (T,u,v) be an arbitrary feasible solu-
tion for (P) and (DV), respectively. Assume that any one of the following three sets
of hypotheses is satisfied:

(a) (i) (Πi (·,T,v) ,Δ j (·,v)) ,∀i ∈ p,and∀ j ∈ m are (Γ, α, β, ρ , σ , θ )-V-pseudo-
quasi-type-I at T ;

(ii) ρ+σ � 0;
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(b) (i) (Πi (·,T,v) ,Δ j (·,v)) ,∀i ∈ p and ∀ j ∈ m are (Γ, α, β, ρ , σ , θ )-V-pseudo-
prestrict-quasi-type-I at T ;

(ii) ρ+σ > 0;
(c) (i) (Πi (·,T,v) ,Δ j (·,v)) ,∀i ∈ p, and ∀ j ∈ m are (Γ, α, β, ρ , σ , θ )-V-prestrict-

quasi-strict-pseudo-type-I at T ;
(ii) ρ+σ � 0.

Then,

(
F1(S)
G1(S)

,
F2(S)
G2(S)

, . . . ,
Fp(S)
Gp(S)

)

�

⎛

⎝

F1(T )+ ∑
j∈J0

v jHj(T )

G1(T )
,

F2(T )+ ∑
j∈J0

v jHj(T )

G2(T )
, . . . ,

Fp(T )+ ∑
j∈J0

v jHj(T )

Gp(T )

⎞

⎠ .

Proof. (a) Let S be an arbitrary feasible solution of (P), then by the sublinearity of
Γ and (5.20.22), it follows that

Γ

(

S,T ;
p

∑
i=1

ui

[

Gi(T )

{

DFi(T )+ ∑
j∈J0

v jDHj(T )

}

−{Fi(T )+Δ0(T,v)}DGi(T )

])

+Γ

(

S,T ;
m

∑
t=1
∑
j∈Jt

v jDHj (T )

)

� 0. (5.20.24)

Following as in the proof of Theorem 5.20.1, from the second part of the assumption
a(i) and (5.20.24), we get

Γ

(

S,T ;
p

∑
i=1

ui

[

Gi(T )

{

DFi(T )+ ∑
j∈J0

v jDHj(T )

}

−{Fi(T )+Δ0 (T,v)}DGi(T )

])

�−ρ d2 (θ (S,T )) ,

which in the light of the hypotheses implies that

p

∑
i=1
αi (S,T )Πi (S,T,u,v) �

p

∑
i=1
αi (S,T )Πi (T,T,u,v) = 0. (5.20.25)

The equality holds due to the fact that Πi (T,T,u,v) = 0. Since αi (S,T ) ui > 0 for
each i ∈ p, (7.4) implies that

G1(T )F1(S)− [F1(T )+Δ0(T,v)]G1(S), . . . ,Gp(T )Fp(S)− [
Fp(T )+Δ0(T,v)

]

Gp(S) � (0, . . . ,0),
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which in turn implies that

(
F1(S)
G1(S)

,
F2(S)
G2(S)

, . . . ,
Fp(S)
Gp(S)

)

�

⎛

⎝

F1(T)+ ∑
j∈J0

v jHj(T )

G1(T)
,

F2(T)+ ∑
j∈J0

v jHj(T )

G2(T)
, . . . ,

Fp(T )+ ∑
j∈J0

v jHj(T)

Gp(T )

⎞

⎠ .

The proofs of parts (b) and (c) are similar to that of part (a). ��
Theorem 5.20.10. (Strong Duality). Let S∗ be a regular efficient solution of (P) and

let Γ(S,S∗;DF (S∗)) =
n
∑

k=1

〈
DkF (S∗) ,χSk − χS∗k

〉
for any differentiable function F :

Λn → R and S ∈ Λn. Assume that ant one of the three sets of hypotheses specified
in Theorem 5.20.9 holds for all feasible solutions of (DV). Then there exist u∗ ∈ U
and v∗ ∈ Rm

+ such that (S∗,u∗,v∗) is an efficient solution of (DV) and the objective
values of (P) and (DV) are same.

Proof. By Lemma 4.9.3, there exist u∗ ∈ U and v∗ ∈ Rm
+ such that (S∗,u∗,v∗) is

an feasible solution of (DV), using the arguments as in the proof of Theorem 9.2
from Zalmai (2002). That (S∗,u∗,v∗) is an efficient solution follows from Theorem
5.20.9. ��

Dual Model VI

Finally, we will discuss another general duality model for (P) which may be viewed
as the semi-parametric version of (DIII). It can be stated as follows:

(DVI) maximize
(

F1 (T )
G1 (T )

,
Fp (T )
Gp (T )

)

subject to

Γ

(

S,T ;
p

∑
i=1

ui [Gi (T )DFi (T )−Fi (T )DGi (T )]+
m

∑
j=1

v jDHj (T )

)

� 0, ∀ S ∈Λn,

(5.20.26)

∑
j∈Jt

v jHj (T ) � 0, t ∈ m∪{0} ,T ∈Λn, (5.20.27)

u ∈U,v ∈ Rm
+,

where Γ(S,T ; ·) : Ln
1 (X ,Λ ,μ) → R is a sublinear function.

We shall show that (DVI) is a dual problem to (P) by proving weak and strong
duality theorems.
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Theorem 5.20.11. (Weak Duality). Let S and (T,u,v) be an arbitrary feasible solu-
tion for (P) and (DVI), respectively. Assume that any one of the following three sets
of hypotheses is satisfied:

(d) (i) (Πi (·,T,v) ,Δ j (·,v)) ,∀i ∈ {1, . . . ,k} and ∀ j ∈ {k + 1, . . . ,m} are (Γ, α, β, ρ ,
σ , θ )-V-pseudo-quasi-type-I at T;

(ii) ρ+σ � 0;
(e) (i) (Πi (·,T,v) ,Δ j (·,v)) ,∀i ∈ {1, . . . ,k} and ∀ j ∈ {k + 1, . . . ,m} are (Γ, α, β, ρ ,

σ , θ )-V-pseudo-prestrict-quasi-type-I at T ;
(ii) ρ+σ > 0;

(f) (i) (Πi (·,T,v) ,Δ j (·,v)) ,∀i ∈ {1, . . . ,k} and ∀ j ∈ {k + 1, . . . ,m} are (Γ, α, β, ρ ,
σ , θ )-V-prestrict-quasi-strict-pseudo-type-I at T ;

(ii) ρ+σ � 0.

Then,
(

F1 (S)
G1 (S)

,
F2 (S)
G2 (S)

, . . . ,
Fp (S)
Gp (S)

)

�

(
F1 (T )
G1 (T )

,
F2 (T )
G2 (T )

, . . . ,
Fp (T )
Gp (T )

)

.

Proof. The proof can be done following the discussions above in this section and
the proof of the Theorem 10.1 in Zalmai (2002). ��
Theorem 5.20.12. (Strong Duality). Let S∗ be a regular efficient solution of (P) and

let Γ(S,S∗;DF (S∗)) =
n
∑

k=1

〈
DkF (S∗) ,χSk − χS∗k

〉
for any differentiable function F :

Λn → R and S ∈ Λn. Assume that ant one of the three sets of hypotheses specified
in Theorem 5.20.11 holds for all feasible solutions of (DVI). Then there exist u∗ ∈U
and v∗ ∈ Rm

+ such that (S∗,u∗,v∗) is an efficient solution of (DVI) and the objective
values of (P) and (DVI) are same.

Proof. By Lemma 4.9.3, there exist u∗ ∈ U and v∗ ∈ Rm
+ such that (S∗,u∗,v∗) is

an feasible solution of (DVI). That it is an efficient solution follows from Theorem
5.20.11. ��

Theorems 5.20.1–5.20.12 can be further extended to the class of functions intro-
duced by Hachimi and Aghezzaf (2004). Furthermore, it might be interesting to
see if the work can be extended to the class of (p, r)-invex functions introduced by
Antczak (2001). Moreover, the second order and higher order duality results for the
class of n-set functions are still open.



Chapter 6
Second and Higher Order Duality

The purpose of this chapter is to show that the duality theory, which has evolved
with the traditional (first order) duals and convexity assumptions, can be developed
further in two ways: one is in a more general setting of a modified dual (namely, a
second order and a higher order dual), the other is in the generalized convexity. The
benefit of doing this not only that results obtained by these kinds of duals under gen-
eralized convexity extend some well-known classical results of (first order) duality
for convex optimization problems, but also that higher order duality can provide a
lower bound to the infimum of a primal optimization problem when it is difficult to
find a feasible solution for the first order dual.

6.1 Second Order Duality for Nonlinear Optimization Problems

Consider the nonlinear optimization problem

(P) minimize f (x)
subject to g(x) ≥ 0,

where f and g are twice differentiable functions from Rn to R and Rm, respectively.
Mangasarian (1975) formulated the following second order dual to (P).

(MD2) maximize f (u)− yT g(u)− 1
2

pT∇2 [
f (u)− yT g(u)

]
p

subject to ∇
[

f (u)− yT g(u)
]
+∇2 [ f (u)− yT g(u)

]
= 0,

y ≥ 0.

Mangasarian (1975) established duality theorems under somewhat complicated
assumptions. Mond (1974a) gave simpler conditions than those of Mangasarian.
A different form of second order duality was given by Mond and Weir (1981–
1983). Following Mond and Weir (1981–1983), Egudo and Hanson (1993) extended

S.K. Mishra et al., Generalized Convexity and Vector Optimization,
Nonconvex Optimization and Its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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the work of Mond (1974a) by defining a class of functions called second order
invexity. Subsequently, Hanson (1993) defined second order type-I functions and
Mishra (1997a) defined second order pseudo-type-I, second order quasi-type-I,
second order quasi-pseudo-type-I and second order pseudo-quasi-type-I functions.
Second order duality results for several nonlinear optimization problems were
obtained by Mishra (1997a). Mond (1974b) considered the following class of
nondifferentiable optimization problem:

(P) minimize f (x)+ (xT Bx)1/2

subject to g(x) ≥ 0, (6.1.1)

where f and g are differentiable functions from Rn to R and Rm, respectively, and B
is an n×n symmetric positive semidefinite matrix.

Zhang and Mond (1997) introduced a generalized dual to the problem (P) and
established duality results under pseudo-invexity and quasi-invexity of the objective
and constraint functions involved in the problem (P) and further extended these
results to the second-order case.

In this section, we consider the Zhang and Mond (1997) type general dual to
(P) and establish the duality theorems under the assumption of type I functions and
its generalizations. A general second-order dual to (P) will also be presented as an
extension of the dual studied in Mishra (1997a). These results extend the work of
Zhang and Mond (1997) to the type I functions and its generalizations.

Let

Z0 = {z : zT∇gi(x0) ≥ 0(∀i ∈ Q0) and zT∇ f (x0)+ zT Bx0/(xT
0 Bx0)1/2 < 0

i f xT
0 Bx0 > 0,zT∇ f (x0)+ (zT Bz)1/2 < 0 i f xT

0 Bx0 = 0},

where Q0 = {i : gi(x0) = 0}. Mond (1974b) gave the following necessary conditions
for x0 to be an optimal solution to (P).

Lemma 6.1.1. If x0 is an optimal solution of (P) and the corresponding set Z0 is
empty, then there exist y ∈ Rm, y ≥ 0 and w ∈ Rn such that

yT g(x0) = 0, ∇yT g(x0) = ∇ f (x0)+ Bw, wT Bw ≤ 1, (xT
0 Bx0)1/2 = xT

0 Bw.

We shall make use of the generalized Schwarz inequality from Riesz and Nagy
(1955):

(xT Bw) ≤ (xT Bx)1/2(wT Bw)1/2. (6.1.2)

Note that in (6.1.2) equality holds if, for λ ≥ 0, Bx = λBw.
Now we present a more general nondifferentiable second-order dual to (P).
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Zhang and Mond (1997) presented the second-order dual to (P) as the following
problem:

(2GD) maximize f (u)− ∑
i∈ I0

yi gi(u)+ uT Bw− 1
2

pT

[

∇2 f (u)−∇2 ∑
i∈I0

yi gi(u)

]

p

subject to ∇ f (u)−∇yT g(u)+ Bw+[∇2 f (u)]p− [∇2 yT g(u)]p = 0,

∑
i∈Iα

yi gi(u)− 1
2

pT [∇2 ∑
i∈Iα

yi gi(u)]p ≤ 0, α = 1,2, . . . ,s,

wT Bw ≤ 1,

y ≥ 0.

By introducing two additional vectors q and r ∈ Rn, as in Hanson (1993) and
Mishra (1997a), we formulate the following second-order dual:

(2MGD) maximize f (u)−∑
i∈I0

yigi(u)+ uT Bw

−1
2

qT

[

∇2 f (u)−∇2 ∑
i∈I0

yi gi(u)

]

r

subject to ∇ f (u)−∇yT g(u)+ Bw+[∇2 f (u)]p− [∇2 yT g(u)]p = 0, (6.1.3)

∑
i∈Iα

yi gi(u)− 1
2

qT [∇2 ∑
i∈Iα

yi gi(u)]r ≤ 0, α = 1,2, . . . ,s,

wT Bw ≤ 1,

y ≥ 0.

Let K1 = {u/(u,y,w, p,q,r) be the set of all feasible solutions for (2MGD)}.

Definition 6.1.1. (Mishra 1997a). For i = 1,2, . . .,m, ( f ,−gi) is said to be second-
order pseudo-quasi type I at u ∈ K1 with respect to the functions η(x,u), p(x,u),
q(x,u) and r(x,u) if for all x ∈ K1

η(x,u)T �∇ f (u)+ [∇2 f (u)]p(x,u)� ≥ 0

⇒ f (x) ≥ f (u)− 1
2

q(x,u)T [∇2 f (u)]r(x,u),

and
gi(u) ≤ 1

2
q(x,u)T [∇2 gi(u)]r(x,u)

⇒ η(x,u)T [
∇gi(u)+ [∇2 gi(u)]p(x,u)

]≥ 0, i = 1,2, . . . ,m.
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Theorem 6.1.1. (Weak Duality). Let x be feasible for (P) and (u,y,w,p,q,r) be feasi-
ble for (2MGD). If ( f (.)−∑i∈I0 yi gi(.)+(.)T Bw,−∑i∈Iα yi gi(.)), α = 1,2, . . . ,s, is
second-order pseudo-quasi type I at u with respect to η , p,q, and r, then

inf(P) ≥ sup(2MGD).

Proof. Since x is feasible for (P) and (u,y,w,p,q,r) is feasible for (2MGD), from the
second part of the hypothesis, we have

η(x,u)T

[

∇ ∑
i∈Iα

yi gi(u)+

[

∇2 ∑
i∈Iα

yi gi(u)

]

p

]

≥ 0, α = 1,2, . . . ,s.

Hence, η(x,u)T

[

∇ ∑
i∈M\I0

yi gi(u)+

[

∇2 ∑
i∈M\I0

yi gi(u)

]

p

]

≥ 0. (6.1.4)

From (6.1.4) and (6.1.3), we have

η(x,u)T

[

∇ f (u)+
[
∇2 f (u)

]
p−∇ ∑

i∈I0

yi gi(u)−
[

∇2 ∑
i∈I0

yi gi(u)

]

p + Bw

]

≥ 0.

By the first part of the hypothesis, we have

f (x)−∑
i∈I0

yi gi(x)+ xT Bw

≥ f (u)−∑
i∈I0

yi gi(u)+ uT Bw− 1
2

qT∇2

[

f (u)−∑
i∈I0

yi gi(u)+ uT Bw

]

r.

Thus, from y ≥ 0, g(x) ≥ 0, we have

f (x)+ xT Bw ≥ f (u)−∑
i∈I0

yi gi(u)+ uT Bw

− 1
2

qT∇2

[

f (u)−∑
i∈I0

yi gi(u)+ uT Bw

]

r.
(6.1.5)

Since wT Bw ≤ 1, it follows from the generalized Schwarz inequality, (6.1.2) and
(6.1.5) that

f (x)+ (xT Bx)1/2 ≥ f (u)−∑
i∈I0

yi gi(u)+ uT Bw− 1
2

qT∇2

[

f (u)−∑
i∈I0

yi gi(u)

]

r.

��

Theorem 6.1.2. (Strong Duality). If x0 is an optimal solution of (P) and the corre-
sponding set Z0 is empty, then there exist y ∈ Rm and w ∈ Rn such that (x0,y,w, p =
q = r = 0) is feasible for (2MGD) and the objective values of (P) and (2MGD) are
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equal. If for any feasible (u,y,w,p,q,r),

(

f (.)− ∑
i∈I0

yi gi(.)+ (.)T Bw,− ∑
i∈Iα

yi gi(.)

)

,

α = 1,2, . . . ,s, is second-order pseudo-quasi type I at u with respect to η , p,q, and
r, then (x0,y,w, p = q = r = 0) is an optimal solution for (2MGD).

Proof. Since x0 is an optimal solution of (P) and the corresponding set Z0 is empty,
from Lemma 6.1.1, there exist y ∈ Rm and w ∈ Rn such that

yT g(x0) = 0, ∇yT g(x0) = ∇ f (x0)+ Bw, wT Bw ≤ 1, (xT
0 Bx0)1/2 = xT

0 Bw, y ≥ 0.

So, (x0,y,w, p = q = r = 0) is feasible for (2MGD) and the corresponding values

of (P) and (2MGD) are equal. If

(

f (.)− ∑
i∈I0

yi gi(.)+ (.)T Bw,− ∑
i∈Iα

yi gi(.)

)

,α =

1,2, . . . ,s, is second-order pseudo-quasi type I with respect to η , p,q, and r, then
from Theorem 6.1.1, (x0,y,w, p = q = r = 0) is an optimal solution for (2MGD). ��

6.2 Second Order Duality for Minimax Programs

We will apply the optimality conditions of minimax programming to formulate a
general second order Mond–Weir dual to the minimax program involving second
order pseudo-b-type I, second order quasi-b-type I, second order pseudo-quasi-b-
type I and second order quasi-pseudo-b-type I functions. We also establish weak,
strong and strict converse duality theorems in this section.

We consider the following minimax optimization problem:

(P) minimize f (x) = sup
y∈Y
φ(x,y)

subject to g(x) � 0, (6.2.1)

where Y is a compact subset of Rm,φ (·, ·) : Rn ×Rm �→ R is twice differentiable
function in x ∈ Rn, and g(·) : Rn �→ Rp is twice differentiable function in x ∈ Rn.

Schmitendorf (1977) established some necessary and sufficient optimality con-
ditions for (P) under the conditions of convexity. Tanimoto (1981) applied the
optimality conditions of Mond (1974a) to define a first order dual problem and
derived the duality theorems for convex minimax optimization problems consid-
ered by Schmitendorf. Weir (1992) relaxed convexity assumptions in the sufficient
optimality of Mond (1974a) and also employed the optimality conditions to con-
struct several first order dual problems for (P) which involve pseudoconvex and
quasiconvex functions, and established weak and strong duality results. There are
many other authors investigated the optimality and first order duality theorems for
minimax optimization problems. For details, one can refer to Lai and Lee (2002a),
Lai et al. (1999), Liu (1999a), Liu and Wu (1998) and Mishra (1995, 1998a).

By introducing an additional vector p ∈ Rn, Mangasarian (1975) was the first
to formulate the second order dual to nonlinear optimization problem. Instead of
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imposing explicit condition on p, Mond (1974a) included p in a second order
type convexity. Mishra and Rueda (2000) introduced the concepts of higher order
type I, higher order pseudo type I and higher order quasi type I functions and
established various higher order duality results involving these functions. Further-
more, higher order duality results are obtained for nondifferentiable optimization
problems by Mishra and Rueda (2002). Zhang and Mond (1996) introduced the
concepts of second order B-invex, second order pseudo B-invex and second order
quasi B-invex functions, and constructed general second order Mond–Weir dual to
a nonlinear optimization problem and proved duality theorems. Liu (1999b) estab-
lished a second order duality theorem for minimax optimization problem using the
concepts of the second order B-invex and related functions introduced by Zhang and
Mond (1996).

In this section, we will establish second and higher order duality theorems for
minimax optimization problem considered above.

Throughout this section, let Rn be the n-dimensional Euclidean space and Rn
+ be

its non-negative orthant.
Let

Y (x) =
{

y ∈ Y : φ (x,y) = sup
z∈Y
φ (x,z)

}

, J = {1,2, ..., p} ,

J (x) =
{

j ∈ J : g j (x) = 0
}

and

K =
{
(s,t, ȳ) ∈ N ×Rs

+×Rms : 1 ≤ s ≤ n + 1, t = (t1, ...,ts) ∈ Rs
+ with

s

∑
i=1

ti = 1 and ȳ = (y1, ...,ys) and yi ∈ Y (x) , i = 1, ...,s

}

.

Schmitendorf (1977) established the following necessary conditions for (P):

Lemma 6.2.1. (Necessary Conditions). Let x∗ be an optimal solution to (P) and
∇g j (x∗) , j ∈ J (x∗) be linearly independent. Then there exist (s∗, t∗, ȳ∗) ∈ K and
μ∗ ∈ Rp

+ such that

s∗
∑
i=1

t∗i ∇φ (x∗, y∗i )+∇
p

∑
j=1
μ∗

j g j (x∗) = 0, (6.2.2)

μ∗
j g j (x∗) = 0, (6.2.3)

μ∗ ∈ Rp
+, t∗i ≥ 0,

s∗
∑
i=1

t∗i = 1, yi ∈ Y (x∗) , i = 1, ...,s∗. (6.2.4)

Definition 6.2.1. ( f ,g) is said to be second order type I at x̄ ∈ X with respect to η
and b if there exists a vector function η : X ×X → Rn such that, for all x ∈ X , p ∈
Rn,yi ∈ Y (x) , i = 1,2, ...,s and j = 1, ...,m
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f (x,yi)− f (x̄,yi)+
1
2

pT∇2 f (x̄,yi) p ≥ ηT (x, x̄)
[
∇ f (x̄,yi)+∇2 f (x̄,yi) p

]

(6.2.5)
and

−g j (x̄)+
1
2

pT∇2 g j (x̄) p ≥ ηT (x, x̄)
[
∇g j (x̄)+∇2g j (x̄) p

]
. (6.2.6)

Definition 6.2.2. ( f ,g) is said to be second order-quasi type I at x̄ ∈ X with respect
to η if there exists a vector function η : X ×X → Rn such that, for all x ∈ X , p ∈
Rn,yi ∈ Y (x) , i = 1,2, ...,s and j = 1, ...,m

f (x,yi)− f (x̄,yi)+
1
2

pT∇2 f (x̄,yi) p≤ 0⇒ηT (x, x̄)
[
∇ f (x̄,yi)+∇2 f (x̄,yi) p

]≤ 0
(6.2.7)

and

−g j (x̄)+
1
2

pT∇2g j (x̄) p ≤ 0 ⇒ ηT (x, x̄)
[
∇g j (x̄)+∇2g j (x̄) p

]≤ 0. (6.2.8)

If the second (implied) inequality in (6.2.7) is strict when x �= x̄, then ( f ,g) is
said to be semi strictly quasi type I at x̄ ∈ X.

Definition 6.2.3. ( f ,g) is said to be second order-pseudo-type I at x̄ ∈ X with
respect to η if there exists a vector function η : X × X → Rn such that, for all
x ∈ X , p ∈ Rn,yi ∈ Y (x) , i = 1,2, ...,s and j = 1, ...,m

ηT (x, x̄)
[
∇ f (x̄,yi)+∇2 f (x̄,yi) p

]≥ 0⇒ f (x,yi)− f (x̄,yi)+
1
2

pT∇2 f (x̄,yi) p≥ 0
(6.2.9)

and

ηT (x, x̄)
[
∇g j (x̄)+∇2g j (x̄) p

]≥ 0 ⇒−g j (x̄)+
1
2

pT∇2g j (x̄) p ≥ 0. (6.2.10)

If the second (implied) inequality in (6.2.9) (or (6.2.10)) is strict, then ( f ,g) is
said to be semi strictly pseudo type I in f (or in g) at x̄ ∈ X. If the second (implied)
inequalities in (6.2.9) and (6.2.10) both are strict, then ( f ,g) is said to be strictly
pseudo type I at x̄ ∈ X.

Definition 6.2.4. ( f ,g) is said to be second order quasi-pseudo-type I at x̄ ∈ X
with respect to η if there exists a vector function η : X × X → Rn such that, for
all x ∈ X,p ∈ Rn, yi ∈Y (x) , i = 1,2, ...,s and j = 1, ...,m

f (x,yi)− f (x̄,yi)+
1
2

pT∇2 f (x̄,yi) p≤ 0⇒ηT (x, x̄)
[
∇ f (x̄,yi)+∇2 f (x̄,yi) p

]≤ 0
(6.2.11)

and

ηT (x, x̄)
[
∇g j (x̄)+∇2g j (x̄) p

]≥ 0 ⇒−g j (x̄)+
1
2

pT∇2g j (x̄) p ≥ 0. (6.2.12)
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If the second (implied) inequality in (6.2.11) (or (6.2.12)) is strict, then ( f ,g) is
said to be semi strictly pseudo type I in f (in g) at x̄ ∈ X . If the second (implied)
inequalities in (6.2.11) and (6.2.12) both are strict, then ( f ,g) is said to be strictly
pseudo-type I at x̄ ∈ X . If the second (implied) inequality in (6.2.12) is strict, ( f ,g)
is said to be quasi strictly pseudo-type I at x̄ ∈ X .

Definition 6.2.5. ( f ,g) is said to be Second order pseudo-quasi-type I at x̄ ∈ X
with respect to η if there exists a vector function η : X × X → Rn such that, for
all x ∈ X,p ∈ Rn, yi ∈Y (x) , i = 1,2, ...,s and j = 1, ...,m

ηT (x, x̄)
[
∇ f (x̄,yi)+∇2 f (x̄,yi) p

]≥ 0⇒ f (x,yi)− f (x̄,yi)+
1
2

pT∇2 f (x̄,yi) p≥ 0
(6.2.13)

and

−g j (x̄)+
1
2

pT∇2g j (x̄) p ≤ 0 ⇒ ηT (x, x̄)
[
∇g j (x̄)+∇2g j (x̄) p

]≤ 0. (6.2.14)

If the second (implied) inequality in (6.2.13) is strict, then ( f ,g) is said to be
strictly pseudo quasi-type I at x̄ ∈ X.

Making use of the optimality conditions, we consider the general second order
Mond–Weir dual (D) to the minimax optimization problem (P) as follows:

(DI) maximize(s,t,ȳ)∈K sup(z,t,ȳ)∈H1(s,t,ȳ)ϕ (z,μ)− 1
2

pT∇2ϕ (z,μ) p

subject to
s

∑
i=1

ti∇φ (z,yi)+∇
p

∑
j=1
μ jg j (z)+∇2

[
s

∑
i=1

tiφ (z,yi)

]

p +∇2

[
p

∑
j=1
μ jg j (z)

]

p = 0,

(6.2.15)

p

∑
j∈Jα

μ jg j (z)− 1
2

pT∇2 ∑
j∈Jα

μ jg j (z) p ≥ 0, α = 1,2, ...,k, (6.2.16)

ϕ (z,μ) =
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

where Jα ⊆ P = {1,2, ..., p} ,α = 0,1,2, ...,k with Jα ∩ Jβ = Φ, if α �= β and
∪k
α=0Jα = P, H1 (s,t, ȳ) denotes the set of all triplets (z,μ ,v) ∈ Rn ×Rp

+ ×R+. If
for a triplet (s,t, ȳ) ∈ K the set H1 (s,t, ȳ) is empty, then we define the supremum
over it to be −∞.

Theorem 6.2.1. (Weak Duality). Let x be feasible for (P) and let (z,μ ,s,t, ȳ, p) be

feasible for (D). Assume that

(
s
∑

i=1
tiφ (·,yi)+ ∑

j∈J0

μ jg j (·) , ∑
j∈Jα

μ jg j (·)
)

is second

order pseudo-quasi-type I at z with respect to the same η . Then
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sup
y∈Y
φ (x,y) ≥ ϕ (z,μ)− 1

2
pT∇2ϕ (z,μ) p.

Proof. Suppose contrary to the result, that is, sup
y∈Y
φ (x,y) < ϕ (z,μ) − 1

2 pT∇2

ϕ (z,μ) p holds. Thus, we have

φ (x,y) <
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)− 1
2

pT∇2

[
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

]

p for all y ∈ Y.

Since
s
∑

i=1
ti = 1, we have

s

∑
i=1

tiφ (x,yi) <
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)− 1
2

pT∇2

[
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

]

p.

By the first part of the second order pseudo-quasi-type I assumption, we get

ηT (x,z)

{

∇

[
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

]

+∇2

[
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

]

p

}

< 0.

(6.2.17)
From (6.2.17) and (6.2.15), we get

ηT (x,z)

{

∇ ∑
j∈PJ0

μ jg j (z)+∇2 ∑
j∈PJ0

μ jg j (z)p

}

> 0.

Since ∪k
α=0Jα = P, we have

ηT (x,z)

{

∇
k

∑
α=1
∑

j∈PJ0

μ jg j (z)+∇2
k

∑
α=1
∑

j∈PJ0

μ jg j (z)p

}

> 0. (6.2.18)

From inequality (6.2.16) and the second part of the second order pseudo-quasi-type
I assumption, we get

ηT (x,z)

{

∇ ∑
j∈Jα

μ jg j (z)+∇2 ∑
j∈Jα

μ jg j (z)p

}

≤ 0,α = 1,2, ...,k.

Thus, we have

ηT (x,z)

{

∇
k

∑
α=1
∑
j∈Jα

μ jg j (z)+∇2
k

∑
α=1
∑
j∈Jα

μ jg j (z)p

}

≤ 0,

which contradicts the inequality (6.2.18). The proof is completed. ��



174 6 Second and Higher Order Duality

Theorem 6.2.2. (Strong Duality). Assume that x∗ is an optimal solution to (P)
and ∇g j (x∗) , j ∈ J (x∗) is linearly independent. Then there exist (s∗,t∗, ȳ∗) ∈ K,
(x∗,μ∗, p∗ = 0) ∈ H1 (s∗,t∗, ȳ∗) such that (x∗,μ∗,s∗,t∗, ȳ∗, p∗ = 0) is feasible for
(D). If in addition the hypothesis of the Theorem 6.2.1 holds for any feasible solu-
tion (z,μ ,s,t, ȳ, p) of (D), then (x∗,μ∗,s∗,t∗, ȳ∗, p∗ = 0) is an optimal solution of
(D), and problems (P) and (D) have the same extremal values.

Proof. By Lemma 6.2.1 there exist (s∗,t∗, ȳ∗) ∈ K,(x∗,μ∗, p∗ = 0) ∈ H1 (s∗,t∗, ȳ∗)
such that (x∗,μ∗,s∗,t∗, ȳ) is feasible for (D). Optimality of (x∗,μ∗,s∗,t∗, ȳ∗, p∗ = 0)
for (D) follows from weak duality Theorem 6.2.1. ��
Theorem 6.2.3. (Strict Converse Duality). Let x̄ be an optimal solution for (P) and
(x∗,μ∗,s∗,t∗, ȳ∗, p∗ = 0) be an optimal solution for (D). Assume that(

s
∑

i=1
t∗i φ (·,y∗i )+ ∑

j∈J0

μ∗
j g j (·) , ∑

j∈Jα
μ jg j (·)

)

is second order pseudo-quasi-type I at

x∗ with respect to the same η for all (z,μ ,s,t, ȳ, p) and ∇g j (x̄) , j ∈ J (x̄) is linearly
independent. Then x̄ = x∗, that is, x∗ is an optimal solution for (P).

Proof. Assume that x̄ �= x∗ for getting a contradiction. From Theorem 6.2.2, we
have,

φ (x̄,y) ≤
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)− 1

2
p∗T∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

p∗

for all y ∈ Y. From
s
∑

i=1
t∗i = 1 and y∗i ∈ Y (x∗) , i = 1,2, ...,s∗, we have

s∗
∑
i=1

t∗i φ (x̄,y∗i ) ≤
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)− 1

2
p∗T∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

p∗.

From the feasibility of x̄ and μ∗ ≥ 0, we have

s∗
∑
i=1

t∗i φ (x̄,y∗i )+ ∑
j∈J0

μ∗
j g j (x̄) ≥

s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

− 1
2

p∗T∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

p∗.

(6.2.19)
On the other hand, from the duality constraint and second part of the second order
pseudo-quasi-type I assumption, we get

ηT (x̄,x∗)

{

∇ ∑
j∈Jα

μ∗
j g j (x∗)+∇2 ∑

j∈Jα

μ∗
j g j (x∗)p∗

}

≤ 0,α = 1,2, ...,k..
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Thus, we have

ηT (x̄,x∗)

{

∇
k

∑
α=1
∑
j∈Jα

μ∗
j g j (x∗)+∇2

k

∑
α=1
∑

j∈Jα

μ∗
j g j (x∗)p∗

}

≤ 0.

Since ∪k
α=0Jα = P, we have

ηT (x̄,x∗)

{

∇
k

∑
α=1
∑

j∈Jα

μ∗
j g j (x∗)+∇2

k

∑
α=1
∑
j∈Jα

μ∗
j g j (x∗)p∗

}

≤ 0. (6.2.20)

From (6.2.20) and (6.2.15), we have

ηT (x̄,x∗)

{

∇

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

+ ∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

p∗
}

≥ 0.

By the first part of second order pseudo-quasi-type I assumption, we get

s∗
∑
i=1

t∗i φ (x̄,y∗i )+ ∑
j∈J0

μ∗
j g j (x̄) ≥

s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

− 1
2

p∗T∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

p∗

(6.2.21)
which contradicts (6.2.19). ��
Remark 6.2.1. A question arises as to whether the second order duality results
developed in this section hold for the following minimax fractional optimization
problem:

minimize F (x) = sup
y∈Y

f (x,y)
h(x,y)

subject to g(x) � 0,

where Y is a compact subset of Rm, and the following complex minimax optimiza-
tion problem:

minimize f (ξ ) = sup
ν∈W

Reφ (ξ ,ν)

subject to ξ ∈ S0 =
{
ξ ∈C2n : −g(ξ ) ∈ S

}

where ξ = (z, z̄) ,ν = (ω ,ϖ) for z ∈Cn,ω ∈Cm,φ (·, ·) : C2n ×C2m →C is analytic
with respect to ξ ,W is a specified compact subset in C2m,S is a polyhedral cone in
Cp, and g : C2n →Cp is analytic.

Another question also arises as to whether the second order duality results devel-
oped in this section can be extended to the case of higher order duality. Moreover,



176 6 Second and Higher Order Duality

is it possible to obtain higher order duality results for the two problems posed in the
Remark 6.2.1 above in the present section?

6.3 Second Order Duality for Nondifferentiable Minimax
Programs

In this section, we consider the general second order Mond–Weir dual to the
nondifferentiable minimax optimization problem:

(P) minimize f (x) = sup
y∈Y
φ (x,y)+ 〈x,Ax〉1/2

subject to g(x) ≤ 0, (6.3.1)

where Y is a compact subset of Rm, φ (·, ·) : Rn ×Rm �→ R is a twice differentiable
function in x ∈ Rn, g(·) : Rn �→ Rr is a twice differentiable function in x ∈ Rn, and A
is an n×n positive semi-definite (symmetric) matrix.

The second order nondifferentiable dual to the above problem (P) is given as
follows:

(D) maximize(s,t,ȳ)∈K sup(z,u,μ,p)∈H(s,t,ȳ)ϕ (z,u,μ)− 1
2

pT∇2ϕ (z,u,μ) p

subject to

s

∑
i=1

ti∇φ (z,yi)+ Au +∇
r

∑
j=1
μ jg j (z)+∇2

[
s

∑
i=1

tiφ (z,yi)

]

p +∇2

[
r

∑
j=1
μ jg j (z)

]

p = 0,

(6.3.2)

∑
j∈Jα

μ jg j (z)− 1
2

pT∇2 ∑
j∈Jα

μ jg j (z) p ≥ 0, α = 1,2, ...,k, (6.3.3)

〈u,Au〉 ≤ 1,〈z,Az〉1/2 = 〈z,Au〉 , (6.3.4)

ϕ (z,u,μ) =
s

∑
i=1

tiφ (z,yi)+ 〈z,Au〉+ ∑
j∈J0

μ jg j (z)

where Jα ⊆ P = {1,2, ...,r} ,α = 0,1,2, ...,k, with Jα ∩Jβ = φ , if α �= β ,∪k
α=0Jα =

P, and H (s,t, ȳ) denotes the set of all (z,u,μ , p) ∈ Rn × Rn × Rr
+ × R+ . If for a

triplet (s,t, ȳ) ∈ K the set H (s,t, ȳ) is empty, then we define the supremum over it to
be −∞.

The following necessary conditions for (P) are a particular case of the necessary
conditions given in Lai et al. (1999) which will be needed in the sequel.

Lemma 6.3.1. (Necessary Conditions). Let x∗ be an optimal solution of (P) satisfy-
ing 〈x∗,Ax∗〉1/2 > 0 and let ∇g j (x∗) , j ∈ J (x∗), be linearly independent. Then there
exist (s∗,t∗,y∗) ∈ K,u ∈ Rn and μ∗ ∈ Rr

+ such that
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s∗
∑
i=1

t∗i ∇φ (x∗,y∗i )+ Au +∇
r

∑
j=1
μ∗

j g j (x∗) = 0,

μ∗
j g j (x∗) = 0,

μ∗ ∈ Rr
+, t∗i ≥ 0,

s∗

∑
i=1

t∗i = 1, y∗
i
∈ Y (x∗) , i = 1, ...,s∗,

〈u,Au〉 ≤ 1,〈x∗,Au〉 = 〈x∗,Ax∗〉1/2 .

Theorem 6.3.1. (Weak Duality). Let x be feasible to (P) and let (z,u,μ ,s,t, ȳ, p)
be feasible to (D). If for any feasible (x,z,u,μ ,s,t, ȳ, p) there exists a function η :
Rn ×Rn → Rn such that

ηT (x,z)

{

∇
s

∑
i=1

tiφ (z,yi)+Au+∇ ∑
j∈J0

μ jg j (z)+∇2

[
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

]

p

}

≥ 0

⇒
s

∑
i=1

tiφ (x,yi)+ 〈x,Au〉+ ∑
j∈J0

μ jg j (x)−
{

s

∑
i=1

tiφ (z,yi)+ 〈z,Au〉+ ∑
j∈J0

μ jg j (z)

}

− 1
2

pT∇2

[
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

]

p ≥ 0

and

∑
j∈Jα

μ jg j (z)− 1
2

pT∇2 ∑
j∈Jα

μ jg j (z) p ≥ 0

⇒ ηT (x,z)

{

∇ ∑
j∈Jα

μ jg j (z)+∇2 ∑
j∈Jα

μ jg j (z)p

}

≤ 0,α = 1,2, ...,k.

Then
sup
y∈Y
φ (x,y)+ 〈x,Au〉1/2 ≥ ϕ (z,u,μ)− 1

2
pT∇2ϕ (z,u,μ) p.

Proof. Suppose, contrary to the result, that sup
y∈Y
φ(x,y)+ 〈x,Au〉1/2 < ϕ(z,u,μ)−

1
2 pT∇2ϕ(z,u,μ)p holds. Thus, we have φ(x,y)+〈x,Au〉1/2 <

s
∑

i=1
tiφ(z,yi)+〈z,Au〉+

∑
j∈J0

μ jg j(z)− 1
2 pT∇2

[
s
∑

i=1
tiφ(z,yi)+ ∑

j∈J0

μ jg j(z)

]

p for all y ∈ Y . Since
s
∑

i=1
ti = 1,

we have

s

∑
i=1

tiφ (x,yi)+ 〈x,Au〉1/2 <
s

∑
i=1

tiφ (z,yi)+ 〈z,Au〉+ ∑
j∈J0

μ jg j (z)

− 1
2

pT∇2

[
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

]

p.
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By (6.3.1) and μ ∈ Rr
+, we have

s

∑
i=1

tiφ (x,yi)+ 〈x,Au〉1/2 + ∑
j∈J0

μ jg j (x) <
s

∑
i=1

tiφ (z,yi)+ 〈z,Au〉+ ∑
j∈J0

μ jg j (z)

− 1
2

pT∇2

[
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

]

p.

Using the generalized Schwarz inequality 〈x,Au〉1/2 ≤ 〈x,Ax〉1/2 〈u,Au〉1/2 and
〈u,Au〉1/2 ≤ 1, we get

s

∑
i=1

tiφ (x,yi)+ 〈x,Au〉+ ∑
j∈J0

μ jg j (x) <
s

∑
i=1

tiφ (z,yi)+ 〈z,Au〉+ ∑
j∈J0

μ jg j (z)

− 1
2

pT∇2

[
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

]

p.

By the first part of the second order pseudo-quasi type I assumption, we get

ηT (x,z)

{

∇
s

∑
i=1

tiφ (z,yi)+Au+∇ ∑
j∈J0

μ jg j (z)+∇2

[
s

∑
i=1

tiφ (z,yi)+ ∑
j∈J0

μ jg j (z)

]

p

}

< 0.

(6.3.5)

From (6.3.2) and (6.3.5), we get

ηT (x,z)

{

∇ ∑
j∈P\J0

μ jg j (z)+∇2 ∑
j∈P\J0

μ jg j (z)p

}

> 0.

Since ∪k
α=0Jα = P, we have

ηT (x,z)

{

∇
k

∑
α=1
∑

j∈Jα

μ jg j (z)+∇2
k

∑
α=1
∑

j∈Jα

μ jg j (z)p

}

> 0. (6.3.6)

From (6.3.3) and the second part of the second order pseudo-quasi type I assump-
tion, we get

ηT (x,z)

{

∇ ∑
j∈Jα

μ jg j (z)+∇2 ∑
j∈Jα

μ jg j (z)p

}

≤ 0,α = 1,2, ...,k.

Thus, we have

ηT (x,z)

{

∇
k

∑
α=1
∑
j∈Jα

μ jg j (z)+∇2
k

∑
α=1
∑
j∈Jα

μ jg j (z)p

}

≤ 0,

which contradicts (6.3.6). ��
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Theorem 6.3.2. (Strong Duality). Assume that x∗ is an optimal solution to (P)
and ∇g j (x∗) , j ∈ J (x∗), is linearly independent. Then there exist (s∗,t∗, ȳ∗) ∈ K,
(x∗,u∗,μ∗, p∗ = 0) ∈ H (s∗,t∗, ȳ∗) such that (x∗,u∗,μ∗,s∗,t∗, ȳ∗, p∗ = 0) is feasible
for (D). If, in addition, the hypothesis of Theorem 6.3.1 holds for any feasible solu-
tion (z,u,μ ,s,t, ȳ, p) of (D), then (x∗,u∗,μ∗,s∗,t∗, ȳ∗, p∗ = 0) is an optimal solution
of (D) and problems (P) and (D) have the same extremal values.

Proof. By Lemma 6.3.1 there exists (s∗,t∗, ȳ∗) ∈ K,(x∗,u∗,μ∗, p∗ = 0) ∈ H
(s∗,t∗, ȳ∗) such that (x∗,u∗,μ∗,s∗,t∗, ȳ) is feasible for (D). The optimality of (x∗,u∗,
μ∗,s∗,t∗, ȳ∗, p∗ = 0) for (D) follows from Theorem 6.3.1. ��
Theorem 6.3.3. (Strict Converse Duality). Let x̄ be optimal to (P) and let (x∗,u∗,μ∗,

s∗,t∗, ȳ∗, p∗ = 0) be optimal to (D). Assume that
(

s
∑

i=1
t∗i φ (·,y∗i )+ 〈.,Au∗〉+

∑
j∈J0

μ∗
j g j (·) , ∑

j∈Jα
μ∗

j g j (·)
)

is second order strictly pseudo-quasi type I at x∗ with

respect to the same η for any feasible solution, and ∇g j (x̄) , j ∈ J (x̄), is linearly
independent. Then x̄ = x∗, that is, x∗ is an optimal solution to (P).

Proof. We assume that x̄ �= x∗ and prove a contradiction. From Theorem 6.3.2,
we have,

φ (x̄,y)+ 〈x̄,Au∗〉1/2 ≤
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ 〈x∗,Au∗〉+ ∑
j∈J0

μ∗
j g j (x∗)

− 1
2

p∗T∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

p∗

for all y ∈ Y.

From
s
∑

i=1
t∗i = 1 and y∗i ∈ Y (x∗) , i = 1,2, ...,s∗, we have

s∗
∑
i=1

t∗i φ (x̄,y∗i )+ 〈x̄,Au∗〉1/2 ≤
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ 〈x∗,Au∗〉+ ∑
j∈J0

μ∗
j g j (x∗)

− 1
2

p∗T∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

p∗.

From the feasibility of x̄ and μ∗ ≥ 0, we have

s∗
∑
i=1

t∗i φ (x̄,y∗i )+ 〈x̄,Au∗〉1/2 + ∑
j∈J0

μ∗j g j (x̄) ≤
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ 〈x∗,Au∗〉+ ∑
j∈J0

μ∗j g j (x∗)

− 1
2

p∗T∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗j g j (x∗)

]

p∗.
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Using the generalized Schwarz inequality 〈x,Au∗〉1/2 ≤ 〈x,Ax〉1/2 〈u,Au〉1/2 and
〈u,Au〉1/2 ≤ 1, we get

s∗
∑
i=1

t∗i φ (x̄,y∗i )+ 〈x̄,Au∗〉+ ∑
j∈J0

μ∗
j g j (x̄) ≤

s∗
∑
i=1

t∗i φ (x∗,y∗i )+ 〈x∗,Au〉∗ + ∑
j∈J0

μ∗
j g j (x∗)

− 1
2

p∗T∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

p∗.

(6.3.7)
On the other hand, from the duality constraint and the second part of the second
order strictly pseudo-quasi type I assumption, we get

ηT (x̄,x∗)

{

∇ ∑
j∈Jα

μ∗
j g j (x∗)+∇2 ∑

j∈Jα

μ∗
j g j (x∗)p∗

}

≤ 0, α = 1,2, ...,k.

Therefore, we have

ηT (x̄,x∗)

{

∇
k

∑
α=1
∑
j∈Jα

μ∗
j g j (x∗)+∇2

k

∑
α=1
∑

j∈Jα

μ∗
j g j (x∗)p∗

}

≤ 0.

Since ∪k
α=0Jα = P, we have

ηT (x̄,x∗)

{

∇ ∑
j∈P\J0

μ∗
j g j (x∗)+∇2 ∑

j∈P\J0

μ∗
j g j (x∗)p∗

}

≤ 0. (6.3.8)

From (6.3.2) and (6.3.8), we have

ηT (x̄,x∗)

{

∇
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ Au∗+∇ ∑
j∈J0

μ∗
j g j (x∗)+

∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

p∗
}

≥ 0.

By the first part of the second order strictly pseudo-quasi type I assumption, we get

s∗
∑
i=1

t∗i φ (x̄,y∗i )+ 〈x̄,Au∗〉+ ∑
j∈J0

μ∗
j g j (x̄) >

s∗
∑
i=1

t∗i φ (x∗,y∗i )+ 〈x∗,Au∗〉+ ∑
j∈J0

μ∗
j g j (x∗)

− 1
2

p∗T∇2

[
s∗
∑
i=1

t∗i φ (x∗,y∗i )+ ∑
j∈J0

μ∗
j g j (x∗)

]

p∗,

which contradicts (6.3.7). ��
Remark 6.3.1. We conclude this section with some ideas for future development in
the research area. A question arises as to whether the second order duality results
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developed in this section hold for the following minimax fractional optimization
problem:

minimize F (x) = sup
y∈Y

f (x,y)
h(x,y)

subject to g(x) ≤ 0,

where Y is a compact subset of Rm, and the following complex minimax optimiza-
tion problem:

minimize f (ξ ) = sup
ν∈W

Reφ (ξ ,ν)

subject to ξ ∈ S0 =
{
ξ ∈C2n : −g(ξ ) ∈ S

}

where ξ = (z, z̄) ,ν = (ω ,ω) for z ∈Cn,ω ∈Cm,φ (·, ·) : C2n ×C2m →C is analytic
with respect to ξ ,W is a specified compact subset in C2m,S is a polyhedral cone in
Cp, and g : C2n →Cp is analytic.

Other questions also arise as to whether the second order duality results devel-
oped in this section can be extended to the case of higher order duality and whether
it is possible to obtain higher order duality results for the two optimization problems
posed in Remark 6.3.1.

6.4 Higher Order Duality for Nonlinear Optimization Problems

Consider the following nonlinear optimization problem:

(P) minimize f (x)
subject to g(x) ≥ 0, (6.4.1)

where f : Rn → R and g : Rn → Rm are twice differentiable functions.
The Mangasarian second-order dual given by Mangasarian (1975) is

(MD) maximize f (u)− yT g(u)− 1
2

pT∇2[ f (u)− yT g(u)] p

subject to ∇[ f (u)− yT g(u)]+∇2[ f (u)− yT g(u)] = 0,

y ≥ 0.

Mangasarian (1975) formulated the following higher-order dual by introducing
two differentiable functions h : Rn ×Rn → R and k : Rn ×Rn → Rm.

(HD1) maximize f (u)+ h(u, p)− yT g(u)− yT k(u, p)

subject to ∇ph(u, p) = ∇p(yT k(u, p)), (6.4.2)
y ≥ 0, (6.4.3)
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where∇ph(u, p) denotes the n×1 gradient of h with respect to p and∇p(yT k(u, p))
denotes the n×1 gradients of yT k with respect to p.

If

h(u, p) = pT∇ f (u)+
1
2

pT∇2 f (u)p and k(u, p) = pT∇g(u)+
1
2

pT∇2g(u)p

then (HD1) becomes (MD).
Mond and Zhang (1998) obtained duality results for various higher-order dual

problems under higher-order invexity assumptions. They also considered the fol-
lowing higher-order dual to (P):

(HD) maximize f (u)+ h(u, p)− pT∇ph(u, p)

subject to ∇ph(u, p) = ∇p(yT k(u, p)), (6.4.4)

yigi(u)+ yiki(u, p)− pT∇p(yiki(u, p)) ≤ 0, i = 1, 2, . . . , m,
(6.4.5)

y ≥ 0. (6.4.6)

In this section, we will give more general invexity-type conditions, such as
higher-order type I, higher-order pseudo type I, and higher-order quasi type I
conditions and establish various duality results under these conditions.

Mond and Zhang (1998) proved duality results between (P) and (HD) assuming
that there exists a function η :Rn ×Rn → Rn such that

f (x)− f (u) ≥ α(x,u)∇ph(u, p)η(x,u)+ h(u, p)− pT(∇ph(u, p)), (6.4.7)

and

gi(x)−gi(u)≤ βi(x,u)∇pki(u, p)η(x,u)+ki(u, p)−pT(∇pki(u, p)), i = 1, 2, . . . , m,
(6.4.8)

where α:Rn×Rn →R+\{0}, and βi:Rn×Rn →R+\{0}, i = 1,2, . . . ,m, are positive
functions.

Combining the concept of type I functions and conditions (6.4.7) and (6.4.8)
when h(u, p) = pT∇ f (u), and ki(u, p) = pT∇gi(u), i = 1,2, . . . ,m, we say that
( f ,−gi), i = 1,2, . . . ,m, is V-type I at the point u with respect to functions η , α ,
and βi,

if f (x)− f (u) ≥ α(x,u)∇ f (u)η(x,u),

and
−gi(u) ≤ βi(x,u)∇gi(u)η(x,u), i = 1,2, . . . ,m.

Mond and Zhang (1995) extended the notion of V-invexity to the second-order
case and established duality theorems under generalized second-order V-invexity
conditions.

If ( f ,−gi), i = 1,2, . . . ,m, satisfies conditions (6.4.7) and (6.4.8) with h(u, p) =
pT∇ f (u)+ 1

2 pT∇2 f (u)p and ki(u, p) = pT∇gi(u)+ 1
2 pT∇2gi(u)p, then ( f ,−gi) is

said to be second-order V-type I.
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Theorem 6.4.1. (Weak Duality). Let x be feasible for (P) and let (u,y, p) feasible for
(HD1). If, for any feasible (x,u,y, p), there exists a function η :Rn ×Rn → Rn such
that

f (x)− f (u) ≥ η(x,u)T∇ph(u, p)+ h(u, p)− pT(∇ph(u, p)) (6.4.9)

and

−gi(u) ≤ η(x,u)T∇pki(u, p)+ ki(u, p)− pT (∇pki(u, p)), i = 1, 2, . . . ,m, (6.4.10)

then

infimum(P) ≥ supremum(HD1).

Proof. By (6.4.9), (6.4.2), (6.4.3) and (6.4.10), we have

f (x)− f (u)−h(u, p)+ yTg(u)+ yT k(u, p)

≥ η(x,u)T∇ph(u, p)− pT(∇ph(u, p))+ yT g(u)+ yT k(u, p),

= η(x,u)T∇p(yT k(u, p))− pT (∇pyT k(u, p))+ yT g(u)+ yT k(u, p)
≥ 0.

The proof is completed. ��
The following strong duality theorem is similar to Theorem 2 of Mond and

Zhang (1998).

Theorem 6.4.2. (Strong Duality). Let x0 be a local or global optimal solution of (P)
at which a constraint qualification is satisfied, and let

h(x0,0) = 0, k(x0,0) = 0, ∇ph(x0,0) = ∇ f (x0), ∇pk(x0,0) = ∇g(x0).
(6.4.11)

Then there exists y ∈ Rm such that (x0,y, p = 0) is feasible for (HD1), and the cor-
responding objective values of (P) and (HD1) are equal. If (6.4.9) and (6.4.10) are
satisfied for any feasible (x,u,y, p), then x0 and (x0,y, p = 0) are a global optimal
solution for (P) and (HD1), respectively.

Remark 6.4.1. If h(u, p) = pT∇ f (u) and ki(u, p) = pT∇gi(u), i = 1,2, . . . ,m, then
(6.4.9) and (6.4.10) become the conditions given by Hanson and Mond (1987)
to define a type I function. If h(u, p) = pT f (u) + 1

2 pT∇2 f (u) p, and ki(u, p) =
pT∇gi(u) + 1

2 pT∇2gi(u)p, i = 1,2, . . . ,m, then (6.4.9) and (6.4.10) become the
second-order type I conditions given by Hanson (1993) when p = q = r.
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6.5 Mond–Weir Higher Order Duality for Nonlinear
Optimization Problems

In this section, we shall establish higher order duality results for (P) and (HD) given
in the previous section

Theorem 6.5.1. (Weak Duality). Let x be feasible for (P) and let (u,y, p) be feasible
for (HD). If, for all feasible (x,u,y, p), there exists a function η :Rn ×Rn → Rn such
that

f (x)− f (u) ≥ α(x,u)∇ph(u, p)η(x,u)+ h(u, p)− pT(∇ph(u, p)) (6.5.1)

and

−gi(u) ≤ βi(x,u)∇pki(u, p)η(x,u)+ ki(u, p)− pT (∇pki(u, p)), i = 1, 2, . . . , m,
(6.5.2)

where α : Rn × Rn → R+\{0}, and βi : Rn × Rn → R+\{0}, i = 1,2, . . . ,m, are
positive functions, then

infimum(P) ≥ supremum(HD).

Proof. Since x is feasible for (P) and (u,y, p) is feasible for (HD), we have

−yigi(u)− yiki(u, p)+ pT∇p(yiki(u, p)) ≥ 0, i = 1,2, . . . ,m.

By (6.5.2) and yi ≥ 0, we obtain

βi(x,u)∇p(yiki(u, p))η(x,u) ≥ 0, i = 1,2, . . . ,m.

Since βi(x,u) > 0, we have

∇p(yiki(u, p))η(x,u) ≥ 0, i = 1,2, . . . ,m,

hence,

∇p(yT k(u, p))η(x,u) ≥ 0. (6.5.3)

By (6.5.1), (6.4.4), (6.5.3) and α(x,u) > 0, we have t

f (x)− f (u)−h(u, p)+ pT∇ph(u, p)
≥ α(x,u)∇ph(u, p)η(x,u)

= α(x,u)∇p(yT k(u, p))η(x,u),
≥ 0.

The proof is completed. ��



6.5 Mond–Weir Higher Order Duality for Nonlinear Optimization Problems 185

Theorem 6.5.2. (Strong Duality). Let x0 be local or global optimal solution of (P) at
which a constraint qualification is satisfied, and let conditions (6.4.11) be satisfied.
Then there exists y ∈ Rm such that (x0, y, p = 0) is feasible for (HD) and the corre-
sponding objective values of (P) and (HD) are equal. If (6.5.1) and (6.5.2) are also
satisfied for all feasible (x,u,y, p), then x0 and (x0, y, p = 0) are a global optimal
solution for (P) and (HD), respectively.

Proof. It follows on the lines of the proof of Theorem 5 of Mond and Zhang
(1998). ��
Remark 6.5.1. If h(u, p) = pT∇ f (u), and ki(u, p) = pT∇gi(u), i = 1,2, . . . ,m, then
( f ,−gi), i = 1,2, . . . ,m, satisfying conditions (6.5.1) and (6.5.2), is V-type I, and the
higher-order dual (HD) reduces to the Mond–Weir dual:

(D) maximize f (u)

subject to ∇ f (u)−∇yT g(u) = 0
yigi(u) ≤ 0, i = 1,2, . . . ,m,

y ≥ 0.

If

h(u, p) = pT∇ f (u)+
1
2

pT∇2 f (u)p and ki(u, p) = pT∇gi(u)+
1
2

pT∇2gi(u)p,

i = 1,2, . . . ,m, then ( f ,−gi), i = 1,2, . . . ,m, satisfying conditions (6.5.1) and (6.5.2),
is second-order V-type I, and the higher-order dual (HD) reduces to the second-order
Mond–Weir dual:

(2D) maximize f (u)− 1
2

pT∇2 f (u)p

subject to ∇ f (u)+∇2 f (u)p = ∇yT g(u)+∇2yT g(u)p,

yigi(u)− 1
2

pT∇2yigi(u)p ≤ 0, i = 1, 2, . . . , m,

y ≥ 0.

The conditions (6.4.9) and (6.4.10) are some special cases of the conditions
(6.5.1) and (6.5.2), where α(x,u) = 1, and βi(x,u) = 1, i = 1,2, . . . , m.

We can also show that (HD) is a dual to (P) under some weaker conditions.

Theorem 6.5.3. (Weak Duality). Let x be feasible for (P) and let (u,y, p) be feasible
for (HD). If, for any feasible (x,u,y, p), there exists a function η :Rn×Rn → Rn such
that

η(x,u)T∇ph(u, p) ≥ 0 ⇒ f (x)− f (u)−h(u, p)+ pT∇ph(u, p) ≥ 0 (6.5.4)
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and

−
m

∑
i=1
φi(x,u){yigi(u)+ yiki(u, p)−pT∇p(yiki(u, p))} ≥ 0

⇒ η(x,u)T∇p(yT k(u, p)) ≥ 0,

(6.5.5)

where φi:Rn ×Rn → R+\{0}, i = 1,2, . . . ,m, are positive functions, then

infimum(P) ≥ supremum(HD).

Proof. Since x is feasible for (P) and (u,y, p) is feasible for (HD), by (6.4.1), (6.4.5)
and (6.4.6), we have

−yigi(u)− yiki(u, p)+ pT∇p(yiki(u, p)) ≥ 0, i = 1,2, . . . ,m.

Since φi(x,u) > 0, it follows that

−
m

∑
i=1
φi(x,u){yigi(u)+ yiki(u, p)− pT∇p(yiki(u, p))} ≥ 0,

and by (6.5.5), we obtain

η(x,u)T∇p(yT k(u, p)) ≥ 0.

Using (6.4.4), it follows that

η(x,u)T∇ph(u, p)≥ 0.

Therefore, by (6.5.4), we have

f (x) ≥ f (u)+ h(u, p)− pT∇ph(u, p).

The proof is completed. ��
Remark 6.5.2. If h(u, p) = pT∇ f (u), and ki(u, p) = pT∇gi(u), i = 1,2, . . . ,m, then
(6.5.4) becomes the condition for f to be pseudo-type I (See, Rueda and Hanson
1988), and if φ = 1, (6.5.5) becomes the condition for −g to be quasi-type I (see,
Rueda and Hanson 1988). If

h(u, p) = pT∇ f (u)+
1
2

pT∇2 f (u)p

and

ki(u, p) = pT∇gi(u)p, i = 1, 2, . . . , m,

then (6.5.4) becomes the condition for f to be second-order pseudo-type I (see,
Mishra 1997a). If φ = 1, (6.5.5) becomes the condition for −yT g to be second-order
quasi-type I (see, Mishra 1997a).
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Strong duality between (P) and (HD) holds if (6.5.1) and (6.5.2) are replaced by
(6.5.4) and (6.5.5), respectively.

Theorem 6.5.4. (Strict Converse Duality). Let x0 be an optimal solution of (P) at
which a constraint qualification is satisfied. Let condition (2.3) be satisfied at x0, and
let conditions (6.5.4) and (6.5.5) be satisfied for all feasible (x,u,y, p). If (x∗,y∗, p∗)
is an optimal solution of (HD), and if, for all x �= x∗

η(x,x∗)T∇ph(x∗p∗)≥ 0⇒ f (x)− f (x∗)−h(x∗, p∗)+ p∗T∇ph(x∗, p∗) > 0, (6.5.6)

then x0 = x∗, i.e., x∗ solves (P) and

f (x0) = f (x∗)+ h(x∗, p∗)− p∗T∇ph(x∗, p∗).

Proof. We suppose that x0 �= x∗ and exhibit a contradiction. Since x0 is an opti-
mal solution of (P) at which a constraint qualification is satisfied, it follows by
strong duality, that there exists y0 ∈ Rm such that (x0,y0, p = 0) solves (HD) and
the corresponding objective values of (P) and (HD) are equal. Therefore,

f (x0) = f (x∗)+ h(x∗, p∗)− p∗T∇ph(x∗, p∗). (6.5.7)

Since x0 is feasible for (P) and (x∗,y∗, p∗) is feasible for (HD), we have

−yigi(x∗)− y∗i ki(x∗, p∗)+ p∗T∇p(y∗ii ki(x∗, p∗)) ≥ 0, i = 1, 2, . . . , m,

Since φi(x0,x∗) > 0, it follows that

−
m

∑
i=1
φi(x0,x∗){y∗

i
gi(x∗)+ y∗

i
ki(x∗, p∗)− p∗T∇p(y∗i ki(x∗, p∗))} ≥ 0.

By (6.5.5), we obtain

η(x0,x∗)T∇p(y∗T k(x∗, p∗)) ≥ 0,

and by (6.4.4), we have

η(x0,x∗)T∇ph(x∗, p∗) ≥ 0.

From (6.5.6), it follows that

f (x0)− f (x∗)−h(x∗, p∗)+ p∗T∇ph(x∗, p∗) > 0,

which is a contradiction to (6.5.7). This completes the proof. ��
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6.6 General Mond–Weir Higher Order Duality for Nonlinear
Optimization Problems

In this section, we consider the following general Mond–Weir type higher-order
dual to (P) as given by Mond and Zhang (1998).

(M−WHD) maximize f (u)+ h(u, p)− pT∇ph(u, p)−∑
i∈I0

yigi(u)−∑
i∈I0

yiki(u, p)

+pT∇p[∑
i∈I0

yiki(u, p)]

subject to ∇ph(u, p) = ∇p(yT k(u, p))

∑
i∈Iα

yigi(u)+ ∑
i∈Iα

yiki(u, p)− pT∇p[∑
i∈Iα

yiki(u, p)] ≤ 0, α = 1, 2, . . . , r,

y ≥ 0,

where Iα ⊆ M = {1,2, . . . ,m},α = 0,1,2, . . . ,r with
r⋃

α=0
Iα = M and Iα

⋂
Iβ = Ø,

if α �= β .
Mond and Zhang (1998) showed that (M-WHD) is a dual to (P) under the

following conditions:

η(x,u)T
[
∇ph(u, p)−∇p

(

∑
i∈I0

yiki(u, p)
)]

≥ 0

⇒ f (x)−∑
i∈I0

yigi(x)− ( f (u)−∑
i∈I0

yigi(u))− (h(u, p)−∑
i∈I0

yiki(u, p))

+ pT
[
∇ph(u, p)−∇p

(

∑
i∈I0

yiki(u, p)
)]

≥ 0

(6.6.1)
and

∑
i∈Iα

yigi(x)− ∑
i∈Iα

yigi(u)− ∑
i∈Iα

yiki(u, p)+ pT∇p

(

∑
i∈Iα

yiki(u, p)
)
≥ 0

⇒ η(x,u)T∇p

(

∑
i∈Iα

yiki(u, p)
)
≥ 0, α = 1, 2, . . . , r.

(6.6.2)

We can generalize (6.6.1) and (6.6.2) under which (M-WHD) is a dual to (P), to
generalized type I conditions, i.e., pseudo-type I and quasi-type I conditions. Since
the proof follows along the lines of the one in Mond and Zhang (1998), we give the
theorem without proof.
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Theorem 6.6.1. (Weak Duality). Let x be feasible for (P) and let (u,y, p) be feasible
for (M-WHD). If for any feasible (x,u,y, p),

η(x,u)T
[
∇ph(u, p)−∇p(∑

i∈I0

yiki(u, p))
]
≥ 0

⇒ f (x)−∑
i∈I0

yigi(x)− ( f (u)−∑
i∈I0

yigi(u))− (h(u, p)−∑
i∈I0

yiki(u, p))

+ pT [∇ph(u, p)−∇p(∑
i∈I0

yiki(u, p))] ≥ 0

(6.6.3)
and

− ∑
i∈Iα

yigi(u)− ∑
i∈Iα

yiki(u, p)+ pT∇p(∑
i∈Iα

yiki(u, p)) ≥ 0

⇒ η(x,u)T∇p(∑
i∈Iα

yiki(u, p)) ≥ 0, α = 1,2, . . . ,r,
(6.6.4)

then
infimum (P) ≥ supremum(M−WHD).

Remark 6.6.1. If I0 = Ø, and Ii = {i}, i = 1,2, . . . ,m,(r = m), then (M-WHD) be-
comes (HD) and the conditions (6.6.3) and (6.6.4) reduce to the conditions (6.5.4)
and (6.5.5), respectively.

6.7 Mangasarian Type Higher Order Duality
for Nondifferentiable Optimization Problems

In this section, we consider several higher-order duals to a nondifferentiable opti-
mization problem and establish duality theorems under the higher-order generalized
invexity conditions introduced in an earlier work by Mishra and Rueda (2000).

Mond (1974b) considered the following nondifferentiable optimization problem:

(NDP) minimize f (x)+ (xT Bx)1/2

subject to g(x) ≥ 0, (6.7.1)

where f and g are twice differentiable functions from Rn to R and Rm, respectively,
and B is an n×n positive semi-definite (symmetric) matrix.

Let x0 satisfy (6.7.1). Mond (1974b) defined the set

Z0 =
{

z : zT∇gi(x0) ≥ 0(∀ i ∈ Q0) and

zT∇ f (x0)+ zT Bx0/(xT
0 Bx0)1/2 < 0 i f xT

0 Bx0 > 0,

zT∇ f (x0)+ (zT Bz)1/2 < 0 i f xT
0 Bx0 = 0 } ,

where Q0 = {i : gi(x0) = 0}, and established the following necessary conditions
for x0 to be an optimal solution to (NDP).
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Proposition 6.7.1. If x0 is an optimal solution of (NDP) and the corresponding set
Z0 is empty, then there exist y ∈ Rm, y ≥ 0 and w ∈ Rn such that

yT g(x0) = 0, ∇yT g(x0) = ∇ f (x0)+ Bw, wT Bw ≤ 1, (xT
0 Bx0)1/2 = xT

0 Bw.

We shall make use of the generalized Schwarz inequality from Reisz and Nagy
(1955):

(xT Bw) ≤ (xT Bx)1/2(wT Bw)1/2. (6.7.2)

The second-order Mangasarian type (Mangasarian 1975) and Mond–Weir type
(1981–1983) duals to (NDP) were given by Bector and Chandra (1997) as the
following problems:

(ND2MD) maximize f (u)− yT g(u)+ uT Bw− 1
2

pT∇2[ f (u)− yT g(u)] p

subject to ∇ f (u)−∇yT g(u)+ Bw+∇2 f (u)p−∇2yT g(u)p = 0,

wT Bw ≤ 1, y ≥ 0,

where u,w, p ∈ Rn and y ∈ Rm;

(ND2D) maximize f (u)+ uT Bw− 1
2

pT∇2 f (u) p

subject to ∇ f (u)−∇yT g(u)+ Bw+∇2 f (u)p−∇2yT g(u)p = 0,

yT g(u)− 1
2

pT∇2 yT g(u)p ≤ 0,

wT Bw ≤ 1, y ≥ 0.

Using the second-order convexity condition Bector and Chandra (1997) estab-
lished duality theorems between (NDP) and (ND2MD) and (ND2D), respectively.

The Mangasarian type (1975) and Mond–Weir type (1981–1983) higher-order
dual to (NDP) were given by Zhang (1998) as follows:

(NDHMD) maximize f (u)+ h(u, p)+ (u + p)T Bw− yT g(u)− yT k(u, p)

subject to ∇ph(u, p)+ Bw = ∇p(yT k(u, p))

wT Bw ≤ 1, y ≥ 0,
(6.7.3)

where u,w, p ∈ Rn and y ∈ Rm;

(NDHD) maximize f (u)+ h(u, p)+ uTBw− pT∇ph(u, p)

subject to ∇ph(u, p)+ Bw = ∇p(yT k(u, p)),

yT g(u)+ yT k(u, p)− pT∇p(yT k(u, p)) ≤ 0,

wT Bw ≤ 1, y ≥ 0.
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Duality results have been established under higher-order invexity and generalized
higher-order invexity assumptions between (NDP) and (NDHMD) and (NDHD), as
in Zhang (1998).

Definition 6.7.1. The function f and the constraint functions gi, i = 1,2, . . . ,m, are
said to be higher-order type I at u with respect to a function η if, for all x, the
following inequalities hold:

f (x)+xT Bw− f (u)−uT Bw ≥ η(x,u)T [∇ph(u, p)+Bw]+h(u, p)− pT (∇ph(u, p))

and

−gi(u) ≤ η(x,u)T ∇pki(u, p)+ ki(u, p)− pT (∇pki(u, p)), i = 1,2, . . . , m.

Definition 6.7.2. The objective function f and the constraint functions gi, i = 1,
2, . . . , m, are said to be higher-order pseudo-quasi type I at u with respect to a
function η if, for all x, the following implications hold:

η(x,u)T [∇ph(u, p)+ Bw]≥ 0

⇒ f (x)+ xT Bw− f (u)−h(u, p)−uTBw+ pT∇ph(u, p) ≥ 0

and

−gi(u) ≥ ki(u, p)− pT∇pki(u, p)

⇒ η(x,u)T∇pki(u, p) ≥ 0, i = 1, 2, . . . , m.

In this section, we will establish some duality results between (NDP) and
(NDHMD). The following Theorem generalizes Theorem 4.4.1 in Zhang (1998)
to higher-order type I functions.

Theorem 6.7.1. (Weak Duality). Let x be feasible for (NDP) and let (u,y,w, p)
be feasible for (NDHMD). If, for all feasible (x,u,y,w, p), there exists a function
η : Rn ×Rn → Rn such that

f (x)+xT Bw− f (u)−uT Bw≥η(x,u)T [∇ph(u, p)+Bw]+h(u, p)− pT (∇ph(u, p))
(6.7.4)

and

−gi(u) ≤ η(x,u)T ∇pki(u, p)+ ki(u, p)− pT (∇pki(u, p)), i = 1,2, . . . ,m, (6.7.5)

then
infimum(NDP) ≥ supremum(NDHMD).
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Proof.

f (x)+ xT Bw− f (u)− h(u, p)− (u + p)T Bw+ yT g(u)+ yT k(u, p)

≥ η(x,u)T [∇ph(u, p)+ Bw]− pT [∇ph(u, p)+ Bw]+ yTg(u)+ yT k(u, p)

= η(x,u)T [∇p(yT k(u, p))]− pT [∇pyT k(u, p)]+ yT g(u)+ yT k(u, p) ≥ 0.

The first inequality follows from (6.7.4), the equality follows from (6.7.3), and the
second inequality follows from (6.7.5) and y ≥ 0.

Since wT Bw ≤ 1, by the generalized Schwarz inequality (6.7.2), it follows that

f (x)+ (xT Bx)1/2 ≥ f (u)+ h(u, p)+ (u + p)T Bw− yT g(u)− yT k(u, p).

The proof is completed. ��

Theorem 6.7.2. (Strong Duality). Let x0 be a local or global optimal solution of
(NDP) with corresponding set Z0 empty and

h(x0,0) = 0, k(x0,0) = 0, ∇ph(x0,0) = ∇ f (x0), ∇pk(x0,0) = ∇g(x0). (6.7.6)

Then there exist y ∈ Rm and w ∈ Rn such that (x0, y, w, p = 0) is feasible for
(NDHMD) and the corresponding objective values of (NDP) and (NDHMD) are
equal. If (6.7.4) and (6.7.5) are also satisfied at x0 for any feasible (x,u,y,w, p),
then x0 and (x0, y, w, p = 0) are a global optimal solution for (NDP) and (NDHMD),
respectively.

Proof. Since x0 is an optimal solution to (NDP) and the corresponding set Z0 is
empty, then from Proposition 6.7.1, there exist y ∈ Rm and w ∈ Rn such that

yT g(x0) = 0, ∇yT g(x0) = ∇ f (x0)+ Bw, wT Bw ≤ 1, (xT
0 Bx0)1/2 = xT

0 Bw, y ≥ 0.

Then, using (6.7.6), we have that (x0, y, w, p = 0) is feasible for (NDHMD) and the
corresponding objective values of (NDP) and (NDHMD) are equal.

If (6.7.4) and (6.7.5) are also satisfied, then from Theorem 6.7.1, (x0, y, w, p = 0)
is an optimal solution for (NDHMD). This completes the proof. ��

Now we turn to show that weak duality between (NDP) and (NDHMD) holds
under weaker higher-order type I conditions than those given in Theorem 6.7.1. The
following theorem is a generalization of Theorem 4.4.3 in Zhang (1998). ��
Theorem 6.7.3. (Weak Duality). Let x be feasible for (NDP) and let (u,y,w, p)
be feasible for (NDHMD). If, for all feasible (x,u,y,w, p), there exists a function
η : Rn ×Rn → Rn such that

η(x,u)T [∇ph(u, p)+ Bw−∇p(yT k(u, p))] ≥ 0,

⇒ f (x)+ xT Bw− ( f (u)+ uT Bw− yT g(u))

− (h(u, p)− yT k(u, p))+ pT [∇ph(u, p)−∇pyT k(u, p)] ≥ 0,
(6.7.7)
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then
infimum(NDP) ≥ supremum(NDHMD).

Proof. From ∇ph(u, p)+ Bw = ∇p(yT k(u, p)), we have

η(x,u)T [∇ph(u, p)+ Bw−∇p(yT k(u, p))] = 0.

Hence, by (6.7.7), we have

f (x)+ xT Bw− ( f (u)+ uT Bw− yT g(u))

− (h(u, p)− yT k(u, p))+ pT [∇ph(u, p)−∇pyT k(u, p)] ≥ 0.

Since (u,y,w, p) is feasible for (NDHMD), we get

f (x)+ xT Bw ≥ f (u)+ (u + p)T Bw− yT g(u)+ h(u, p)− yT k(u, p).

Then, by wT Bw ≤ 1 and the generalized Schwarz inequality (6.7.2) it follows that

f (x)+ (xT Bx)1/2 ≥ f (u)+ (u + p)T Bw− yT g(u)+ h(u, p)− yT k(u, p).

The proof is completed. ��
Remark 6.7.1. If h(u, p) = pT ∇ f (u) + 1

2 pT ∇2 f (u) p, and ki(u, p) = pT ∇gi(u) +
1
2 pT ∇2 gi(u)p, i = 1,2, . . . ,m, then the conditions (6.7.4) and (6.7.5) are sufficient
for ( f (.)+ .T Bw,−gi(.)) to be second-order type I.

Remark 6.7.2. The following example given in Mishra (1997a) shows that condition
(6.7.7) is weaker than (6.7.4) and (6.7.5).

Consider f (x1,x2) = x1x2 + x1 + x2,g1(x1,x2) = x2 − x3
1,g2(x1,x2) = 1− x1x2,

g3(x1,x2) = x1 − x2
2,B ≡ 0, p = 0, and h and k defined as in Remark 6.7.1. It is not

hard to verify that condition (6.7.7) is satisfied at (0,0) for any η , while conditions
(6.7.4) and (6.7.5) are satisfied only when the components of η are non-negative.

6.8 Mond–Weir Type Higher Order Duality for
Nondifferentiable Optimization Problems

We consider a Mond–Weir type higher-order dual to (NDP) as in Zhang (1998).

(NDHD) maximize f (u)+ h(u, p)+ uT Bw− pT ∇ph(u, p)

subject to ∇ph(u, p)+ Bw = ∇p(yT k(u, p)), (6.8.1)

yT g(u)+ yT k(u, p)− pT ∇p(yT k(u, p)) ≤ 0, (6.8.2)

wT Bw ≤ 1, y ≥ 0.
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The following theorem is a generalization of Theorem 4.4.4 in Zhang (1998)
to higher-order type I functions.

Theorem 6.8.1. (Weak Duality). Let x be feasible for (NDP) and let (u,y,w, p) be
feasible for (NDHD). If, for all feasible (x,u,y,w, p), f (.)+ .T Bw and g(.) satisfy
the conditions (6.7.4) and (6.7.5) of Theorem 6.7.1, respectively, then

infimum (NDP) ≥ supremum (NDHD).

Proof. By (6.7.4), (6.8.1), (6.7.5), (6.8.2) and y ≥ 0, we have

f (x)+ xT Bw− f (u)−h(u, p)−uT Bw+ pT ∇ph(u, p)

≥ η(x,u)T [∇ph(u, p)+ Bw]

= η(x,u)T [∇p(yT k(u, p))]

≥−yT g(u)− yT k(u, p)+ pT (∇p(yT k(u, p)))
≥ 0.

Since wT Bw ≤ 1, by the generalized Schwarz inequality (6.7.2), it follows that

f (x)+ (xT Bx)1/2 ≥ f (u)+ h(u, p)+ uT Bw− pT ∇ph(u, p).

The proof is completed. ��
The following strong duality theorem follows along the lines of Theorem 6.7.2.

Theorem 6.8.2. (Strong Duality). Let x0 be a local or global optimal solution of
(NDP) with corresponding set Z0 empty and let condition (6.7.6) be satisfied.
Then there exist y ∈ Rm and w ∈ Rn such that (x0, y, w, p = 0) is feasible for
(NDHD) and the corresponding objective values of (NDP) and (NDHD) are equal.
If (6.7.4) and (6.7.5) are also satisfied at x0 for all feasible (x,u,y,w, p), then x0 and
(x0, y, w, p = 0) are a global optimal solution for (NDP) and (NDHD), respectively.

Weaker conditions under which (NDHD) is a dual to (NDP) can also be obtained.
The following is a generalization of Theorem 4.4.6 in Zhang (1998) to higher-order
pseudo-quasi type I functions.

Theorem 6.8.3. (Weak Duality). Let x be feasible for (NDP) and let (u,y,w, p)
be feasible for (NDHD). If, for any feasible (x,u,y,w, p), there exists a function
η :Rn ×Rn → Rn such that

η(x,u)T [∇ph(u, p)+ Bw]≥ 0

⇒ f (x)+ xT Bw− f (u)−h(u, p)−uT Bw+ pT ∇ph(u, p) ≥ 0 (6.8.3)
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and

−yT g(u) ≥ yT k(u, p)− pT ∇pyT k(u, p) ⇒ η(x,u)T [∇p(yT k(u, p))] ≥ 0, (6.8.4)

then

infimum(NDP) ≥ supremum(NDHD).

Proof. Since (u,y,w, p) is feasible for (NDHD), by (6.8.1)–(6.8.4), we have

− yT g(u) ≥ yT k(u, p)− pT ∇pyT k(u, p)

⇒ η(x,u)T [∇p(yT k(u, p))] ≥ 0

⇒ η(x,u)T [∇ph(u, p)+ Bw]≥ 0

⇒ f (x)+ xT Bw ≥ f (u)+ h(u, p)+ uT Bw− pT ∇ph(u, p).

Since wT Bw ≤ 1, by the generalized Schwarz inequality (6.7.2), it follows that

f (x)+ (xT Bx)1/2 ≥ f (u)+ h(u, p)+ uT Bw− pT∇ph(u, p).

The proof is completed. ��
Remark 6.8.1. If h(u, p) = pT∇ f (u) + 1

2 pT∇2 f (u)p, and ki(u, p) = pT∇gi(u) +
1
2 pT∇2gi(u)p, i = 1,2, . . . ,m, then (NDHD) becomes (ND2D).

6.9 General Mond–Weir Type Higher Order Duality
for Nondifferentiable Optimization Problems

In this section, we consider the following general higher-order dual to (NDP).

(NDHGD) maximize f (u)+ h(u, p)+ uT Bw− pT ∇ph(u, p)− ∑
i∈I0

yi gi(u)

−∑
i∈I0

yiki(u, p)+ pT ∇p

[

∑
i∈I0

yiki(u, p)
]

subject to ∇ph(u, p)+ Bw = ∇p(yT k(u, p))

∑
i∈Iα

yi gi(u)+ ∑
i∈Iα

yiki(u, p)− pT
[
∇p

(

∑
i∈Iα

yi ki(u, p)
)]

≤ 0,

α = 1,2, . . . ,r,

wT Bw ≤ 1, y ≥ 0,

where Iα ⊆ M = {1,2, . . .,m},α = 0,1,2, . . .,r, with
r∪

α=0
Iα = M and Iα ∩ Iβ = Ø

if α �= β .
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Theorem 6.9.1. (Weak Duality). Let x be feasible for (NDP) and let (u,y,w, p)
be feasible for (NDHGD). If, for any feasible (x,u,y,w, p), there exists a function
η :Rn ×Rn → Rn such that

η(x,u)T
[
∇ph(u, p)+ Bw−∇p

(

∑
i∈I0

yiki(u, p)
)]

≥ 0

⇒ f (x)+ xT Bw−
(

f (u)+ uT Bw−∑
i∈I0

yigi(u)
)

− (h(u, p)−∑
i∈I0

yiki(u, p))+ pT
[
∇ph(u, p)−∇p

(

∑
i∈I0

yiki(u, p)
)]

≥ 0

(6.9.1)

and

−∑
i∈Iα

yi gi(u)− ∑
i∈Iα

yi ki(u, p)+ pT
[
∇p

(

∑
i∈Iα

yi ki(u, p)
)]

≥ 0

⇒ η(x,u)T
[
∇p

(

∑
i∈Iα

yi ki(u, p)
)]

≥ 0, α = 1,2, . . . ,r, (6.9.2)

then
infimum(NDP) ≥ supremum(NDHGD).

Proof. Since (u,y,w, p) is feasible for (NDHGD), we have, for all α = 0,1,2, . . .,r,

−∑
i∈Iα

yi gi(u)− ∑
i∈Iα

yiki(u, p)+ pT
[
∇p(∑

i∈ Iα

yi ki(u, p))
]
≥ 0,

by (4.2), it

⇒ η(x,u)T [∇p(∑
i∈Iα

yi ki(u, p))] ≥ 0,

⇒ η(x,u)T [∇p( ∑
i∈M\I0

yi ki(u, p))] ≥ 0,

Since (u,y,w, p) is feasible for (NDHGD), it

⇒ η(x,u)T [∇ph(u, p)+ Bw−∇p(∑
i∈I0

yiki(u, p))] ≥ 0,

⇒ f (x)+ xT Bw− ( f (u)+ uT Bw−∑
i∈I0

yigi(u))

− (h(u, p)−∑
i∈I0

yiki(u, p))+ pT [∇ph(u, p)−∇p(∑
i∈I0

yiki(u, p))] ≥ 0.

Since wT Bw ≤ 1, by the generalized Schwarz inequality (6.7.2), it follows that
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f (x)+ (xT Bx)1/2 ≥ f (u)+ uT Bw−∑
i∈I0

yigi(u)

+ h(u, p)− (∑
i∈I0

yiki(u, p))+ pT [∇ph(u, p)−∇p(∑
i∈I0

yiki(u, p))].

The proof is completed. ��
The proof of the following strong duality theorem follows along the lines of

Theorem 6.7.2, therefore we state the result but omit the proof.

Theorem 6.9.2. (Strong Duality). Let x0 be a local or global optimal solution of
(NDP) with corresponding set Z0 empty and let condition (6.7.6) be satisfied.
Then there exist y ∈ Rm and w ∈ Rn such that (x0, y, w, p = 0) is feasible for
(NDHGD) and the corresponding objective values of (NDP) and (NDHGD) are
equal. If (6.9.1) and (6.9.2) are also satisfied at x0 for all feasible (x,u,y,w, p), then
x0 and (x0, y, w, p = 0) are a global optimal solution for (NDP) and (NDHGD),
respectively.

Remark 6.9.1. If I0 = M, then (NDHGD) becomes (NDHMD) and the conditions
(6.9.1) and (6.9.2) of Theorem 6.9.1 reduce to the condition (6.7.7) of Theorem
6.7.3. If I0 = Ø and Iα = M for some α ∈ {1,2, . . . ,r}, then (NDHGD) becomes
(NDHD) and the conditions (6.9.1) and (6.9.2) reduce to the conditions (6.8.3) and
(6.8.4), respectively, of Theorem 6.8.3.

Theorem 6.9.3. (Strict Converse Duality). Let x0 be an optimal solution of (NDP)
with the corresponding set Z0 empty. Let conditions (6.7.6) be satisfied at x0, and
let conditions (6.9.1) and (6.9.2) of Theorem 6.9.1 be satisfied for all feasible
(x,u,y,w, p). If (x∗,y∗,w∗, p∗) is an optimal solution of (NDHGD) and if, for all
x �= x∗

η(x,x∗)T [∇ph(x∗, p∗)+ Bw∗−∇p(∑
i∈I0

y∗i ki(x∗, p∗))] ≥ 0

⇒ f (x)+ xT Bw∗ − ( f (x∗)+ x∗T Bw∗ −∑
i∈I0

y∗i gi(x∗))

− (h(x∗, p∗)−∑
i∈I0

y∗i ki(x∗, p∗))+ p∗T [∇ph(x∗, p∗)

−∇p(∑
i∈I0

y∗i ki(x∗, p∗))] > 0

then x0 = x∗, i.e., x∗ solves (NDP) and

f (x0)+ (xT
0 Bx0)1/2 = f (x∗)+ h(x∗, p∗)+ x∗T Bw∗ − p∗T∇ph(x∗, p∗)−∑

i∈I0

y∗i gi(x∗)

−∑
i∈I0

y∗i ki(x∗, p∗)+ p∗T∇p[∑
i∈I0

y∗i ki(x∗, p∗)].



Chapter 7
Symmetric Duality

Dorn (1960) introduced symmetric duality as a program and its dual to be sym-
metric if the dual of the dual is the original problem. A linear program and
its dual are symmetric in this sense. However, this is not the case in nonlinear
programs in general. Following Dorn (1960) many authors have contributed to
symmetric duality, see Dantzig et al. (1965), Bazaraa and Goode (1973), Chandra
et al. (1985), Cottle (1963), Hou and Yang (2001), Kim et al. (1998a), Mond (1965),
Mond and Weir (1981), Mond et al. (1987), Nanda and Das (1996), Devi (1998),
Mishra (2000a, 2000b, 2001b), Mishra and Wang (2005) and Weir and Mond
(1988b).

Balas (1991) generalized symmetric duality of Dantzig et al. (1965) by con-
straining some of the primal and dual variables to belong to arbitrary sets and thus
introduced formulated a distinct pair of minimax symmetric dual programs on the
lines of Mond and Weir (1981). Following Balas (1991) many results have appeared
in the literature see for example, Kim et al. (1998a), Mishra (2000a, 2000b), Mishra
and Wang (2005).

In this chapter, we formulate various pairs of higher-order multiobjective sym-
metric dual models and establish higher-order symmetric duality results under
higher-order invexity and higher-order incavity assumptions on the functions
involved. Results of Suneja et al. (2003), Hou and Yang (2001), Mishra (2000b)
and Mond and Schechter (1996) are special cases of the results obtained in this
chapter.

7.1 Higher Order Symmetric Duality

Throughout this section, we denote by Rn the n-dimensional Euclidean space and
Rn

+ the non-negative orthant of Rn, respectively.
Let C be a compact convex set in Rn. The support function of C is defined by

s(x|C) = max{xT y : y ∈C}.

S.K. Mishra et al., Generalized Convexity and Vector Optimization,
Nonconvex Optimization and Its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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A support function, being convex and everywhere finite, has a subdifferential (see
Clarke 1983), that is, there exists z ∈ Rn such that

s(y|C) ≥ s(x|C)+ zT (y− x)∀y ∈C.

The subdifferential of s(x|C) is given by

∂ s(x|C) = {z ∈C : zT x = s(x|C)}.

For any set D ⊂ Rn, the normal cone to D at a point x ∈ D is defined by

ND(x) = {y ∈ Rn : yT (z− x) ≤ 0 ∀z ∈ D}.

It is obvious that for a compact convex set C, y ∈ NC(x) if and only if s(y|C) = xT y,
or equivalently, x ∈ ∂ s(y|C).

For a real-valued twice differentiable function g(x,y) defined on an open set
in Rn × Rm, we denote by ∇xg(x̄, ȳ) the gradient of g with respect to x at (x̄, ȳ),
∇xxg(x̄, ȳ) the Hessian matrix with respect to x at (x̄, ȳ). ∇yg(x̄, ȳ), ∇xyg(x̄, ȳ) and
∇yyg(x̄, ȳ) can be similarly defined.

Definition 7.1.1. A function f is said to higher-order-invex at u ∈ X with respect to
η : Rn ×Rn → Rn and h : X ×Rn → R, if for all (x, p) ∈ X ×Rn

f (x)− f (u) ≥ η(x,u)T [∇u f (u)+∇ph(u, p)]+ h(u, p)− pT∇ph(u, p).

Definition 7.1.2. A function f is said to higher-order-pseudo-invex at u ∈ X with
respect to η : Rn ×Rn → Rn and h : X ×Rn → R, if for all (x, p) ∈ X ×Rn

η(x,u)T [∇u f (u)+∇ph(u, p)] ≥ 0 ⇒ f (x)− f (u)−h(u, p)+ pT∇ph(u, p) ≥ 0.

Consider the following vector optimization problem:

(MP) minimize f (x)
subject to x ∈ X0,

where f is a k-dimensional vector function defined on Rn and X0 ⊆ Rn.

Definition 7.1.3. A feasible point x∗ is said to be a weak minimum (efficient solu-
tion) of (MP) if there does not exist any feasible x such that f (x) < (≤) f (x∗).

Definition 7.1.4. A feasible point x∗ is said to be a properly efficient solutionof (MP)
if it is an efficient solution of (MP) and if there exists a scalar M > 0 such that for
each i and x ∈ X0 satisfying fi(x) < fi(x∗) we have

fi(x∗)− fi(x)
f j(x)− f j(x∗) ≤ M

for some j, satisfying f j(x) > f j(x∗).
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We consider the following higher-order symmetric duality problem:

(SHP) minimize f (x,y)+ s(x|C)− yT z+ h(x,y, p)− pT∇ph(x,y, p)
subject to ∇y f (x,y)− z+∇ph(x,y, p) ≤ 0, (7.1.1)

yT [∇y f (x,y)− z+∇ph(x,y, p)] ≥ 0, (7.1.2)
z ∈ D, (7.1.3)

(SHD) maximize f (u,v)− s(v|D)+ uT w+ g(u,v,q)−qT∇qg(u,v,q)
subject to ∇u f (u,v)+ w+∇qg(u,v,q) ≥ 0, (7.1.4)

uT [∇u f (u,v)+ w+∇qg(u,v,q)] ≤ 0, (7.1.5)
w ∈C, (7.1.6)

where C and D are two compact convex sets in Rn and Rm, respectively, and f : Rn×
Rm → R; both h : Rn ×Rm ×Rm → R; and g : Rn ×Rm ×Rn → R are differentiable
functions.

Theorem 7.1.1. (Weak Duality). For each feasible solution (x,y,z, p) of (SHP) and
for each feasible solution (u,v,w,q) of (SHD), if f (.,v)+ .T w is higher-order-η1 -
invex in the first variable at u with respect to η1 and g(u,v,q) and −[ f (x., .)− .T z] is
higher-order-η2 -invex in the second variable at y with respect to η2 and −h(x,y, p)
and

η1(x,u)+ u ≥ 0 (7.1.7)
η2(v,y)+ y ≥ 0. (7.1.8)

Then
inf(SHP) ≥ sup(SHD).

Proof. Since (u,v,w,q) is feasible for (SHD), from (7.1.4) and (7.1.7), it follows
that

[η1(x,u)+ u]T [∇u f (u,v)+ w+∇qg(u,v,q)] ≥ 0.

From (7.1.5), we get

η1(x,u)T [∇u f (u,v)+ w+∇qg(u,v,q)] ≥ 0. (7.1.9)

Since (x,y,z, p) is feasible for (SHP), from (7.1.1) and (7.1.8), it follows that

[η2(v,y)+ y]T [∇y f (x,y)− z+∇ph(x,y, p)] ≤ 0.

Using (7.1.2), we get

η2(v,y)T [∇y f (x,y)− z+∇ph(x,y, p)] ≤ 0. (7.1.10)
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By the higher-order-η1-invexity of f (.,v)+ .T w with respect to η1 and g(u,v,q), and
from (7.1.9), we get

[ f (x,v)+ xT w]− [ f (u,v)+ uTw] ≥ g(u,v,q)−qT∇qg(u,v,q),

that is,

f (x,v) ≥ f (u,v)− xT w−+uT w+g(u,v,q)−qT∇qg(u,v,q). (7.1.11)

On the other hand, by the higher-order-η2 -invexity of −[ f (x., .).T z] with respect to
η2 and −h(x,y, p) and from (7.1.10), we get

−[ f (x,v)− vT z]+ [ f (x,y)− yT z] ≥−h(x,y, p)+ pT∇ph(x,y, p),

that is,

f (x,v) ≤ f (x,y)+ vT z− yT z+h(x,y, p)− pT∇ph(x,y, p). (7.1.12)

From (7.1.11) and (7.1.12), we obtain

f (u,v)− xT w−+uT w+g(u,v,q)−qT∇qg(u,v,q)

≤ f (x,y)+ vT z− yT z+h(x,y, p)− pT∇ph(x,y, p). (7.1.13)

Noting that xT w ≤ s(x|C) and vT z ≤ s(v|D), (7.1.13) yields

f (u,v)− s(v|D)−+uT w+g(u,v,q)−qT∇qg(u,v,q)

≤ f (x,y)+ s(x|C)− yT z+h(x,y, p)− pT∇ph(x,y, p),

that is, sup(SHD) ≤ inf(SHP). This completes the proof. ��
Theorem 7.1.2. (Weak Duality). For each feasible solution (x,y,z, p) of (SHP) and
for each feasible solution (u,v,w,q) of (SHD), if f (.,v) + .T w is higher-order-
η1 – pseudo-invex in the first variable at u with respect to η1 and g(u,v,q) and
−[

f (x., .)− .T z
]

is higher-order-η2 –pseudo-invex in the second variable at y with
respect to η2 and −h(x,y, p) and

η1(x,u)+ u ≥ 0
η2(v,y)+ y ≥ 0,

then
inf(SHP) ≥ sup(SHD).

Proof. Because f (.,v) + .T w is higher-order-η1 – pseudo-invex in the first vari-
able at u with respect to η1 and k(u,v,q), from (7.1.9), we get (7.1.11). Since
−[

f (x., .)− .T z
]

is higher-order-η2 – pseudo-invex in the second variable at y with
respect to η2 and −h(x,y, p), from (7.1.10), we get (7.1.12). From (7.1.11) and
(7.1.12), we arrive at the result as in Theorem 7.1.1. ��
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Theorem 7.1.3. (Strong Duality). Let (x̄, ȳ, z̄, p̄) be a local or global optimal solu-
tion of (SHP). Assume that f :Rn ×Rn → R is differentiable at (x̄, ȳ),h:Rn ×Rn ×
Rn → R is twice differentiable at (x̄, ȳ, p̄), and g:Rn ×Rn ×Rn → R is differentiable
at (x̄, ȳ, q̄). If h and g satisfy the conditions:

(1) h(x̄, ȳ, p̄ = 0) = 0, g(x̄, ȳ, p̄ = 0) = 0, ∇xh(x̄, ȳ, p̄ = 0) = ∇qg(x̄, ȳ, p̄ = 0),
(2) the Hessian matrix ∇pph(x̄, ȳ, p̄) is positive definite;
(3) ∇y f (x̄, ȳ)− z̄+∇ph(x̄, ȳ, p̄) �= 0, and for each p̄ �= 0,

pT [∇y f (x̄, ȳ)− z̄+∇ph(x̄, ȳ, p̄)] �= 0,

then (i) p̄ = 0, (ii) there exists w̄ ∈ C such that (x̄, ȳ, w̄, p̄ = 0) is a feasible solution
of (SHD) and the corresponding objective values of (SHP) and (SHD) are equal.
Furthermore, if the hypotheses of Theorem 7.1.1 or 7.1.2 are satisfied for all feasible
solutions (x,y,z, p) of (SHP) and (u,v,w,q) of (SHD), then (x̄, ȳ, w̄, p̄ = 0) is a global
optimal solution of (SHD).

Proof. The proof follows similar to the proof of Theorem 2 of Yang et al. (2003b)
in light of the formulation of the problems in this section and the Theorem 7.1.1 or
Theorem 7.1.2 above. ��

Similarly, we have the following converse duality.

Theorem 7.1.4. (Converse Duality). Let (ū, v̄, w̄, q̄) be a local or global optimal
solution of (SHD), f :Rn ×Rn → R is differentiable at (ū, v̄),h:Rn ×Rn ×Rn → R
is twice differentiable at (ū, v̄, q̄),g:Rn ×Rn ×Rn → R is differentiable at (ū, v̄, q̄). If
h and g satisfy the conditions:

(1) h(ū, v̄,0) = 0,g(ū, v̄,0) = 0,∇ph(ū, v̄,0) = ∇ug(ū, v̄,0);
(2) the Hessian matrix ∇qqg(ū, v̄, q̄) is positive definite;
(3) ∇x f (ū, v̄)− w̄+∇qg(ū, v̄, q̄) �= 0, and for each q̄ �= 0,

qT [∇x f (ū, v̄)− w̄+∇qg(ū, v̄, q̄)] �= 0,

then (i) q̄ = 0; (ii) there exists z̄ ∈ D such that (ū, v̄, w̄, q̄ = 0) is a feasible solution of
(SHP) and the corresponding objective values of (SHP) and (SHD) are equal. Fur-
thermore, if the hypotheses of Theorem 7.1.1 or Theorem 7.1.2 are satisfied for all
feasible solutions (x,y,z, p) of (SHP) and (u,v,w,q) of (SHD), then (ū, v̄, w̄, q̄ = 0),
is a global optimal solution of (SHP).

7.2 Mond–Weir Type Higher Order Symmetric Duality

Consider the following pair of higher-order vector optimization problems:

(SP) minimize F(x,y, p) = (F1(x,y, p),F2(x,y, p), . . . ,Fk(x,y, p))
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subject to
k

∑
i=1
λi[∇y fi(x,y)+∇phi(x,y, p)] � 0, (7.2.1)

yT
k

∑
i=1
λi[∇y fi(x,y)+∇phi(x,y, p)] ≥ 0, (7.2.2)

λ > 0,

(SD) maximize G(u,v,q) = (G1(u,v,q),G2(u,v,q), . . . ,Gk(u,v,q))
subject to

k

∑
i=1
λi[∇x fi(u,v)+∇qgi(u,v,q)] � 0, (7.2.3)

uT
k

∑
i=1
λi[∇x fi(u,v)+∇qgi(u,v,q)] ≤ 0, (7.2.4)

λ > 0,

where Fi(x,y, p) = fi(x,y)+ hi(x,y, p)−hT∇phi(x,y, p),

Gi(u,v,q) = fi(u,v)+ gi(u,v,q)−qT∇qgi(u,v,q),

fi : Rn ×Rm → R, i = 1, 2, . . . , k are differentiable functions; and h,g : Rn ×Rm ×
Rn → R are differentiable functions.

Theorem 7.2.1. (Weak Duality). For each feasible solution (x,y, p) of (SP) and for
each feasible solution (u,v,q) of (SD), let either of the following conditions hold:

(a) for i = 1, 2, . . . , k, fi is higher-order invex with respect to η1 in the first variable
at u and − fi is higher-order invex with respect to η2 in the second variable at y.

(b) ∑k
i=1λi fi is higher-order pseudo-invex with respect to η1 in the first variable at

u and −∑k
i=1λi fi is higher-order pseudo-invex with respect to η2 in the second

variable at y, and

η1(x,u)+ u � 0, (7.2.5)
η2(v,y)+ y � 0. (7.2.6)

Then
F(x,y, p) � G(u,v,q).

Proof. Since (u,v,q) is feasible for (SD), from (7.2.3) and (7.2.5), we get

[η1(x,u)+ u]T
k

∑
i=1
λi[∇x fi(u,v)+∇qgi(u,v,q)] ≥ 0.

Using (7.2.4), we get

ηT
1 (x,u)

k

∑
i=1
λi[∇x fi(u,v)+∇qgi(u,v,q)] ≥ 0. (7.2.7)
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Since (x,y, p) is feasible for (SP), from (7.2.1) and (7.2.6), we get

[η2(v,y)+ y]T
k

∑
i=1
λi[∇y fi(x,y)+∇phi(x,y, p)] ≤ 0.

Using (7.2.2), we get

ηT
2 (v,y)

k

∑
i=1
λi[∇y fi(x,y)+∇phi(x,y, p)] ≤ 0. (7.2.8)

(a) Since fi is higher-order invex with respect to η1 in the first variable at u we have
for i = 1,2, . . . ,k,

fi(x,v)− fi(u,v) ≥ ηT
1 (x,u)[∇qgi(u,v,q)+∇x fi(u,v)]+gi(u,v,q)−qT∇qgi(u,v,q).

Since λi > 0, i = 1,2, . . . ,k, using (7.2.7), we get

k

∑
i=1
λi[ fi(x,v)− fi(u,v)−gi(u,v,q)+ qT∇qgi(u,v,q)] ≥ 0. (7.2.9)

Since − fi is higher-order invex with respect to η2 in the second variable at y, we
have for i = 1,2, . . . ,k,

− fi(x,v)+ fi(x,y) ≥ ηT
2 (v,y)[−∇y fi(x,y)−∇phi(x,y, p)]−hi(x,y, p)

+ pT∇phi(x,y, p).

Since λi > 0, i = 1,2, . . . ,k, using (7.2.8), we have

−
k

∑
i=1
λi[ fi(x,v)− fi(x,y)+ pT∇phi(x,y, p)−hi(x,y, p)] ≥ 0. (7.2.10)

Adding (7.2.9) and (7.2.10), we get

k

∑
i=1
λi[ fi(x,y)+ hi(x,y, p)− pT∇phi(x,y, p)]

≥
k

∑
i=1
λi[ fi(u,v)+ gi(u,v,q)−qT∇qgi(u,v,q)].

Hence,
F(x,y, p) � G(u,v,q).

(b) Since ∑k
i=1λi fi is higher-order pseudo-invex with respect to η1 in the first vari-

able, from (7.2.7) we get (7.2.9). Since −∑k
i=1λi fi is higher-order pseudo-invex

with respect to η2 in the second variable, from (7.2.8) we get (7.2.10). Adding
(7.2.9) and (7.2.10), we obtain the result as in part (a). ��
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Theorem 7.2.2. (Strong Duality). Let (x̄, ȳ, p̄) be a weak minimum of (SP). Fix λ =
λ̄ in (SD) and suppose that

(a) hi(x̄, ȳ,0) = 0 = gi(x̄, ȳ,0), ∇phi(x̄, ȳ,0) = ∇qgi(x̄, ȳ,0) = 0,

(b) the Hessian matrix
k
∑

i=1
∇pyhi(x̄, ȳ, p̄) is positive definite,

(c)
k
∑

i=1
λi[∇y fi(x̄, ȳ)+∇phi(x,y, p)] �= 0 and for each p �= 0,

pT [∇y fi(x̄, ȳ)+∇phi(x̄, ȳ, p̄)] �= 0,

and
(d) ∇p fi is non-singular for i = 1,2, . . . ,k.

Then (i) p̄ = 0; (ii) (x̄, ȳ, p̄ = 0) is a feasible solution of (SD), and the corresponding
objective values of (SP) and (SD) are equal. Furthermore, if the hypothesis of The-
orem 7.2.1 is satisfied for all feasible solutions (x,y, p) of (SP) and (u,v,q) of (SD),
then (x̄, ȳ, p̄ = 0) is a global optimal solution for (SD).

Proof. Since (x̄, ȳ, p̄) is a weak minimum of (SP), by Fritz–John optimality condi-
tions, there exist α ∈ Rk,β ∈ Rm,γ ∈ R and δ ∈ Rk, such that

k

∑
i=1
αi[∇x fi −∇px fi(p̄)]+

k

∑
i=1
λ̄i[∇yx fi +∇px fi(p̄)](β − γ ȳ) = 0, (7.2.11)

k

∑
i=1
αi[∇y fi −∇py fi(p̄)]+

k

∑
i=1
λ̄i[∇yy fi +∇py fi(p̄)](β − γ ȳ)

− γ
k

∑
i=1
λ̄i[∇y fi −∇p fi(p̄)] = 0,

(7.2.12)

(β − γ ȳ)T (∇y fi +∇p fi(p̄))− δi = 0, i = 1,2, . . . ,k, (7.2.13)

[(β − γ ȳ)λ̄i −αi p̄]T∇p fi = 0, i = 1, 2, . . . ,k, (7.2.14)

β T
k

∑
i=1
λ̄i[∇y fi +∇p fi(p̄)] = 0, (7.2.15)

γ ȳ
k

∑
i=1
λ̄i[∇y fi +∇p fi(p̄)] = 0, (7.2.16)

δT λ̄ = 0, (7.2.17)
(α,β ,γ,δ ) � 0, (α,β ,γ,δ ) �= 0. (7.2.18)

Since λ̄ > 0, from (7.2.17), we get

δ = 0.

Therefore, from (7.2.13), we get

(β − γ ȳ)T (∇y fi +∇p fi(p̄)) = 0, i = 1,2, . . . , k. (7.2.19)
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Since ∇p fi is non-singular for i = 1,2, . . . ,k, from (7.2.14), we get

(β − γ ȳ)λ̄i = αi p̄, i = 1,2, . . . , k. (7.2.20)

From (7.2.12), we get

k

∑
i=1

(αi − γλ̄i)∇y fi +
k

∑
i=1
λ̄i∇p fi(β − γ ȳ− γ p̄))

−
k

∑
i=1
∇py fi(p̄)[(β − γ ȳ)λ̄i −αi p̄] = 0.

Using (7.2.20), we get

k

∑
i=1

(αi − γλ̄i)[∇y fi +∇p fi(p̄)]+
k

∑
i=1
λ̄i∇py fi(p̄)(β − γ ȳ) = 0. (7.2.21)

Premultiplying by (β − γ ȳ)T and using (7.2.19), we get

(β − γ ȳ)T
k

∑
i=1
λ̄i[∇py fi(p̄)](β − γ ȳ) = 0.

Using the fact that
k
∑

i=1
λ̄i∇py fi(p̄) is positive definite, we get

β = γ ȳ. (7.2.22)

Using (7.2.22) in (7.2.21), we get

k

∑
i=1

(αi − γλ̄i)[∇y fi +∇p fi( p̄)] = 0.

By condition (b), we get
αi = γ λ̄i, i = 1,2, . . . ,k. (7.2.23)

If γ = 0, from (7.2.22) and (7.2.23), it follows that β = 0 = α , which contradicts
(7.2.18). Hence, γ > 0. Since λ̄i > 0, i = 1,2, . . . ,k, from (7.2.23), we have αi > 0,
i = 1,2, . . . ,k. Using (7.2.22) in (7.2.20), we have αi p̄ = 0, i = 1,2, . . . ,k, and hence,
p̄ = 0. Using (7.2.22), and the fact that p̄ = 0 in (7.2.11), it follows that

k

∑
i=1
αi∇x fi = 0,

which by (7.2.23) gives
k

∑
i=1
λ̄i∇x fi = 0,
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and hence, we have

x̄T
k

∑
i=1
λ̄i∇x fi = 0.

Thus, it follows that (x̄, ȳ, p̄ = 0) is a feasible solution of (SD) and

F(x̄, ȳ, p̄) = G(x̄, ȳ, q̄). (7.2.24)

If (x̄, ȳ, q̄) is not efficient for (SD), then there exists a feasible solution (u,v,q) of
(SD) such that

G(x̄, ȳ, p̄) ≤ G(u,v,q),

which by (7.2.24) gives
F(x̄, ȳ, p̄) ≤ G(u,v,q),

which is a contradiction to Theorem 7.2.1.
If (x̄, ȳ, q̄) is not properly efficient for (SD), then for some feasible (u,v,q) of

(SD) and some i,

fi(u,v)−qT∇q fi(u,v,q) > fi(x̄, ȳ)− p̄T∇p fi(x̄, ȳ, p̄)

and

fi(u,v)−qT∇q fi(u,v,q)− fi(x̄, ȳ)+ p̄T∇p fi(x̄, ȳ, p̄)

> M[ f j(x̄, ȳ)− p̄T∇p f j(x̄, ȳ, p̄)− f j(u,v)+ qT∇q f j(u,v,q)]

for all M > 0 and all j satisfying

f j(x̄, ȳ)− p̄T∇p f j(x̄, ȳ, p̄) > f j(u,v)−qT∇q f j(u,v,q).

This means that fi(u,v)− qT∇q fi(u,v,q)− fi(x̄, ȳ) + p̄T∇p fi(x̄, ȳ, p̄) can be made
arbitrarily large. Therefore, for any λ̄ > 0,

k

∑
i=1
λ̄i[ fi(u,v)−qT∇q fi(u,v,q)] >

k

∑
i=1
λ̄i[ fi(x̄, ȳ)− p̄T∇p fi(x̄, ȳ, p̄)],

which again contradicts Theorem 7.2.1. ��
Theorem 7.2.3. (Converse Duality). Let (ū, v̄, p̄ = 0) be a weak minimum of (SD).
Fix λ = λ̄ in (SD) and suppose that

(a) hi(x̄, ȳ,0) = 0 = gi(x̄, ȳ,0), ∇phi(x̄, ȳ,0) = ∇qgi(x̄, ȳ,0) = 0,

(b) the Hessian matrix
k
∑

i=1
∇pyhi(x̄, ȳ, p̄) is positive definite,

(c)
k
∑

i=1
λi[∇y fi(x̄, ȳ)+∇phi(x,y, p)] �= 0 and for each p �= 0,

pT [∇y fi(x̄, ȳ)+∇phi(x̄, ȳ, p̄)] �= 0,
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and
(d) ∇p fi is non-singular for i = 1,2, . . . ,k.

Then (ū, v̄, p̄ = 0) is feasible for (SP) and F(ū, v̄, p̄) = G(ū, v̄, q̄).

Proof. The proof is similar to that of Theorem 7.2.2. ��

7.3 Self Duality

An optimization problem is said to be self-dual if it is formally identical to its dual,
that is, the dual can be recast in the form of the primal. If we assume the functions
fi to be skew-symmetric, that is

fi(x,y) = − fi(y,x), i = 1,2, . . . ,k,

then we can show that the problems (SP) and (SD) are self-dual. By recasting the
dual problem (SD) as a minimization problem, we have

minimize −G(u,v,q) = (−G1(u,v,q),−G2(u,v,q), . . . ,−Gk(u,v,q))

subject to −
k

∑
i=1
λi[∇x fi(u,v)+∇qgi(u,v,q)] � 0,

− uT
k

∑
i=1
λi[∇x fi(u,v)+∇qgi(u,v,q)] ≥ 0,

λ > 0,

where Gi(u,v,q) = fi(u,v)+ gi(u,v,q)−qT∇qgi(u,v,q).
Since fi is skew-symmetric,

∇x fi(u,v) = −∇y fi(v,u),∇qgi(u,v,q) = −∇phi(v,u, p)

for each i = 1,2, . . . ,k. Therefore, the dual problem (SD) can be rewritten as

minimize H(v,u,q) = (H1(v,u,q),H2(v,u,q), . . . ,Hk(v,u,q))

subject to
k

∑
i=1
λi[∇y fi(v,u)+∇phi(v,u, p)] � 0,

uT
k

∑
i=1
λi[∇y fi(v,u)+∇phi(v,u, p)] ≥ 0,

λ > 0,

where Hi(v,u,q) = fi(v,u)+ hi(v,u, p)− pT∇phi(v,u, p).
This shows that the dual problem (SD) is identical to (SP). Hence, if (u,v,q) is

feasible for (SD), then (v,u,q) is feasible for (SP) and conversely.



210 7 Symmetric Duality

Theorem 7.3.1. (Self Duality). Let fi, i = 1,2, . . . ,k, be skew-symmetric. Then (SP)
is self-dual. If (SP) and (SD) are dual problems, and (x̄, ȳ, p̄) is a joint optimal
solution, then so is (ȳ, x̄, p̄) and

F(x̄, ȳ, p̄) = G(ȳ, x̄, p̄) = 0.

Proof. It follows along the lines of the corresponding result by Weir and Mond
(1988b). ��

7.4 Higher Order Vector Nondifferentiable Symmetric Duality

Throughout this section, we denote by Rn the n-dimensional Euclidean space and
Rn

+ the non-negative orthant of Rn, respectively. Let x and y∈Rn. We denote x � y⇔
xi � yi, i = 1,2, . . . ,n; x ≥ y ⇔ x � y and x �= y; x > y ⇔ xi > yi, i = 1,2, . . . ,n; x ≯ y
is the negation of x > y. Let X ⊆ Rn.

Definition 7.4.1. A functional F : X ×X ×Rn → R is said to be sublinear if for any
x,u ∈ X, any α,α1,α2 ∈ Rn and any a ∈ R,a ≥ 0,

F(x,u,α1 +α2) � F(x,u,α1)+ F(x,u,α2)

and
F(x,u,aα) = aF(x,u,α).

Let F be a sublinear functional, f :X →R be a twice differentiable function at u∈X.

Definition 7.4.2. Suppose that h : X ×Rn → R is a differentiable function, and F is
sublinear with respect to third variable. The function f is said to higher-order-F-
convex at u ∈ X with respect to h:X ×Rn → R, if for all (x, p) ∈ X ×Rn

fi(x)− fi(u) � η(x,u)T F(x,u;∇u fi(u)+∇phi(u, p))+ hi(u, p)− pT∇phi(u, p),
∀i ∈ {1,2, . . . ,k}.

If for all (x, p) ∈ X ×Rn

F(x,u;∇u fi(u)+∇phi(u, p)) � 0 ⇒ fi(x)− fi(u)−hi(u, p)+ pT∇phi(u, p) � 0,

∀i ∈ {1,2, . . . ,k}

then f is said to be higher-order F–pseudo-convex at u ∈ X with respect to h.

The following notations are for the vector case of the notions given in Sect. 7.7.1.
Let Ci,∀i ∈ {1,2, . . . ,k}, be compact convex sets in Rn. The support function of

Ci is defined by

s(x |C i) = max{xT y : y ∈Ci},∀i ∈ {1,2, . . . ,k}.
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A support function, being convex and everywhere finite, has a subdifferential (see
Clarke 1983), that is, there exists z ∈ Rn such that

s(y|Ci) ≥ s(x|Ci)+ zT (y− x)∀y ∈Ci,∀i ∈ {1,2, . . . ,k}.

The subdifferential of s(x|Ci) is given by

∂ s(x|Ci) = {z ∈Ci : zT x = s(x|Ci)},∀i ∈ {1,2, . . . ,k}.

For any set Di ⊂ Rn,∀i ∈ {1,2, . . . ,k}, the normal cone to Di at a point x ∈ Di is
defined by

NDi(x) = {y ∈ Rn : yT (z− x) ≤ 0 ∀z ∈ Di},∀i ∈ {1,2, . . . ,k}.

It is obvious that for compact convex sets Ci,y ∈ NCi(x) if and only if s(y|Ci) = xT y,
or equivalently, x ∈ ∂ s(y|Ci),∀i ∈ {1,2, . . . ,k}.

For a real-valued twice differentiable function g(x,y) defined on an open set in
Rn ×Rm, denote by ∇xg(x̄, ȳ) the gradient of g with respect to x at (x̄, ȳ),∇xxg(x̄, ȳ)
the Hessian matrix with respect to x at (x̄, ȳ). Similarly, ∇yg(x̄, ȳ), ∇xyg(x̄, ȳ) and
∇yyg(x̄, ȳ) are also defined.

We consider the following optimization problems:

(MSHP) minimize φ(x,y, p) =( f1(x,y)+ s(x|C1)− yT z1 + h1(x,y, p)

− pT∇ph1(x,y, p), . . . , fk(x,y)+ s(x|Ck)− yT zk

+ hk(x,y, p)− pT∇phk(x,y, p))

subject to
k

∑
i=1
λi[∇y fi(x,y)− zi +∇phi(x,y, p)] � 0, (7.4.1)

yT
k

∑
i=1
λi[∇y fi(x,y)− zi +∇phi(x,y, p)] � 0, (7.4.2)

λ > 0,zi ∈ Di, i = 1,2, . . . ,k. (7.4.3)

(MSHD) maximize ψ(u,ν,q) = ( f1(u,ν)− s(ν|D1)+ uT w1 + g1(u,ν,q)

− qT∇qg1(u,ν,q), . . . , fk(u,ν)− s(ν|Dk)

+ uT wk + gk(u,ν,q)−qT∇qgk(u,ν,q))

subject to
k

∑
i=1
λi[∇u fi(u,ν)+ wi +∇qgi(u,ν,q)] � 0, (7.4.4)

uT
k

∑
i=1
λi[∇u fi(u,ν)+ wi +∇qgi(u,ν,q)] � 0, (7.4.5)

λ > 0,wi ∈Ci, i = 1,2, . . . ,k. (7.4.6)
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where Ci and Di, i = 1,2, . . . ,k are compact convex sets in Rn and Rm, respectively
and fi : Rn × Rm → R; both hi : Rn × Rm × Rm → R; and gi : Rn ×Rm × Rn → R,
i = 1,2, . . . ,k are differentiable functions.

Theorem 7.4.1. (Weak Duality). For each feasible solution (x,y,λ ,z, p) of (MSHP)
and for each feasible solution (u,ν,λ ,w,q) of (MSHD), let either of the following
conditions hold:

(a) For i = 1,2, . . . ,k, fi(.,ν)+ .T wi is higher-order-G – convex in the first variable
at u with respect to gi(u,ν,q) and −[ fi(x., .)− .T zi] is higher-order-F – convex
in the second variable at y with respect to −hi(x,y, p);

(b) ∑k
i=1λi[ fi(.,ν)+ .T wi] is higher-order-G – convex in the first variable at u with

respect to gi(u,ν,q) and −∑k
i=1λi[ fi(x., .)− .T zi] is higher-order-F – convex in

the second variable at y with respect to −hi(x,y, p) and the sublinear functions
G:Rn ×Rm ×Rn → R and F :Rn ×Rm ×Rn → R satisfy

F(x,y;a)+ aT y � 0,∀a ∈ Rn
+ (7.4.7)

G(u,v;a)+ aT u � 0,∀a ∈ Rn
+. (7.4.8)

Then
φ(x,y, p) � ψ(u,v,q).

Proof. Since (u,v,λ ,w,q) is feasible for (MSHD), from (7.4.4) and (7.4.8), it
follows that

G

(

u,v;
k

∑
i=1
λi[∇u fi(u,v)+ wi +∇qgi(u,v,q)]

)

+
k

∑
i=1
λi[∇u fi(u,v)+ wi +∇qgi(u,v,q)]T u � 0.

From (7.4.5), we get

G

(

u,v;
k

∑
i=1
λi[∇u fi(u,v)+ wi +∇qgi(u,v,q)]

)

≥ 0. (7.4.9)

Since (x,y,λ ,z, p) is feasible for (MSHP), from (7.4.1) and (7.4.7), it follows that

F

(

x,y;−
k

∑
i=1
λi[∇y fi(x,y)− zi +∇phi(x,y, p)]

)

−
k

∑
i=1
λi[∇y fi(x,y)− zi +∇phi(x,y, p)]T y � 0.
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Using (7.4.2), we get

F

(

x,y;−
k

∑
i=1
λi[∇y fi(x,y)− zi +∇phi(x,y, p)]

)

≥ 0. (7.4.10)

(a) By the higher-order-G – convexity of fi(.,v) + .T wi with respect to gi(u,v,q),
for i = 1,2, . . . ,k, and from (7.4.9), we get

fi(x,v) ≥ fi(u,v)− xT wi + uT wi +gi(u,v,q)−qT∇qgi(u,v,q).

Since λi > 0, i = 1,2, . . . ,k, we get

k

∑
i=1
λi[ fi(x,v)− fi(u,v)+ xT wi −uT wi −gi(u,v,q)+ qT∇qgi(u,v,q)] ≥ 0. (7.4.11)

On the other hand, by the higher-order-F – convexity of −[ fi(x., .)− .T zi] with
respect to −hi(x,y, p) for i = 1,2, . . . ,k, from (7.4.10), we get

fi(x,v) ≤ fi(x,y)+ vT zi − yT zi + hi(x,y, p)− pT∇phi(x,y, p).

Since λi > 0, i = 1,2, . . . ,k, we get

k

∑
i=1
λi[ fi(x,v)− fi(x,y)− vT zi + yT zi −hi(x,y, p)+ pT∇phi(x,y, p)] ≤ 0. (7.4.12)

From (7.4.11) and (7.4.12), we obtain
k

∑
i=1
λi[ fi(x,y)+ xT wi − yT zi + hi(x,y, p)− pT∇phi(x,y, p)]

≥
k

∑
i=1
λi[ fi(u,v)− vT zi + uT wi + gi(u,v,q)−qT∇qgi(u,v,q)].

(7.4.13)

Note that xT wi ≤ s(x|Ci) and vT zi ≤ s(v|Di), for i = 1,2, . . . ,k, (7.4.13) yields
k

∑
i=1
λi[ fi(x,y)+ s(x|Ci)− yT zi + hi(x,y, p)− pT∇phi(x,y, p)]

≥
k

∑
i=1
λi[ fi(u,v)− s(v|Di)+ uT wi + gi(u,v,q)−qT∇qgi(u,v,q)].

Hence, φ(x,y, p) � ψ(u,v,q).

(b) Since ∑k
i=1λi[ fi(.,v)+ .T wi] is higher-order-G – convex in the first variable at u

with respect to gi(u,v,q) from (7.4.9), we get (7.4.11). Because −∑k
i=1λi[ fi(x., .)

− .T zi] is higher-order-F – convex in the second variable at y with respect to
−hi(x,y, p), from (7.4.10), we get (7.4.12). From (7.4.11) and (7.4.12), we arrive
at the result as in part (a). ��
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7.5 Minimax Mixed Integer Optimization Problems

Let U and V be two arbitrary sets of integers in Rn and Rm, respectively. Throughout
this section, x and y are integer variables, i.e., the components of x and y are integers.
Suppose that the first n1(0 ≤ n1 ≤ n) components of x belong to U and that the
first m1(0 ≤ m1 ≤ m) components of y belong to V . Thus, we can write (x,y) =
(x1,x2,y1,y2), where x1 = (x1,x2, . . . ,xn1) and y1 = (y1,y2, . . . ,ym1) with x2 and y2

being the remaining components of x and y, respectively.
The following concepts of separability (see Balas 1991) will be needed in the

sequel.

Definition 7.5.1. Let z1,z2, . . . zr be elements of an arbitrary vector space. A vector
function θ (z1,z2, . . . zr) is called additively separable with respect to z1 if there exist
vector functions ϕ(z1) (independent of z2, . . . zr) andψ(z2, . . . zr) (independent of z1)
such that θ (z1,z2, . . . zr) = ϕ(z1)+ψ(z2, . . .zr).

We consider the following pair of non-differentiable minmax mixed integer
higher order symmetric primal and dual programs:

(SHMP) max
x1

min
x2,y,z

f (x,y)+ s(x2|C)− y2T
z+ h(x,y, p)− pT∇ph(x,y, p)

subject to ∇y2 f (x,y)− z+∇ph(x,y, p) ≤ 0,

y2T
[∇y2 f (x,y)− z+∇ph(x,y, p)] ≥ 0,

x2 ≥ 0,z ∈ D,

x1 ∈U,y1 ∈V,

p ∈ Rm−m1 .

(SHMD) min
v1

max
u,v2,w

f (u,v)− s(v2|D)−u2T
w+ g(u,v,q)−qT∇qg(u,v,q)

subject to ∇u2 f (u,v)+ w+∇qg(u,v,q) ≥ 0,

u2T
[∇u2 f (u,v)+ w+∇qg(u,v,q)] ≤ 0,

u2 ≥ 0,w ∈C,

u1 ∈U,v1 ∈V,

q ∈ Rn−n1 .

Theorem 7.5.1. (Symmetric Duality). Let (x̄, ȳ, z̄, p̄) be an optimal solution f
(SHMP). Suppose that the following conditions are satisfied:

(i) f (x,y) is additively separable with respect to x1 or y1;
(ii) for any feasible solution (x,y,z, p) for (SHMP) and any feasible solution

(u,v,w,q) for (SHMD), f (u,v)+ (u2)T w is higher-order-η1 – invex in the first
variable at u2 with respect to η1 and g(u,v,q) with q ∈ Rn−n1 for each (u1,v)
and −[ f (x,y)− (y2)T z] is higher-order-η2 – invex in the second variable at y2

with respect to η2 and −h(x,y, p) with p ∈ Rm−m1 for each (x,y1);
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(iii) f (x,y) is
(iv) ∇y2y2 f (x̄, ȳ) is non-singular
(v) the vector pT∇p f (x,y, p) = 0 ⇒ p = 0; and

(vi) for any (x,y,u,v) feasible for (SHMP) and (SHMD),

η1(x2,u2)+ (u2)T a ≥ 0∀a ∈ Rn−n1
+ ,

η2(v2,y2)+ (y2)T b ≥ 0∀b ∈ Rm−m1
+ .

Then, there exists w such that (x,y,w,q = 0) is optimal for (SHMD) and the two
optimal objective values are equal.

Proof. The proof follows along similar lines as that given in the proof of Theorem 5
from Mishra (2001b) in light of the formulation of the problems above and
Theorem 1 from Gulati et al. (1997) by using Theorem 7.2.1 or Theorem 7.2.2 and
Theorem 7.2.3. ��
Remark 7.5.1. The above theorem holds for more general convexity conditions as
well, namely, if f (u,v)+(u2)T w is higher-order-η1 – pseudo-invex in the first vari-
able at u2 with respect to η1 and g(u,v,q) with q ∈ Rn−n1 for each (u1,v) and
−[ f (x,y)− (y2)T z] is higher-order-η2 – pseudo-invex in the second variable at y2

with respect to η2 and −h(x,y, p) with p ∈ Rm−m1 for each (x,y1); then the result of
Theorem 7.5.1 remains true.

7.6 Mixed Symmetric Duality in Nondifferentiable Vector
Optimization Problems

In this section, we introduce two models of mixed symmetric duality for a class of
nondifferentiable vector optimization problems. The first model is a vector case of
the model given by Yang et al. (2003a). However, the second model is new. Mixed
symmetric duality for this model has not been given so far by any other author. The
advantage of the second model over the first one is that it allows further weakening
of convexity on the functions involved. We establish weak and strong duality the-
orems for these two models and discuss several special cases of these models. The
results of Yang et al. (2003a) as well as that of Bector et al. (1999) are particular
cases of the results obtained in the present section.

Let f (x,y) be real valued twice differentiable function defined on Rn ×Rm. Let
∇x f (x̄,y) and ∇y f (x,y) denote the partial derivatives of f (x,y) with respect to x
and y at (x,y). The symbols ∇xy f (x,y), ∇yx f (x,y) and ∇y2 f (x,y) can be defined
similarly.

Consider the following vector optimization problem:

(VP) minimize ( f1(x), f2(x), . . . , fp(x))
subject to h(x) � 0,

where fi : Rn → R, i = 1,2, . . . , p and h : Rn → Rm.
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Let us denote the feasible region of problem (VP) by X0 = {x ∈ Rn : h j(x) = 0,
j = 1,2, . . . ,m}. For problem (VP), an efficient solution and a properly efficient
solution are as in Sect. 7.7.1. The concept of support function and the concept of
sublinearity from Sect. 7.7.1 will also be needed in this section.

Definition 7.6.1. Let X ⊂ Rn,Y ⊂ Rm and F : X ×Y ×Rn → R be sublinear with
respect to its third argument. f (·,y) is said to be F – convex at x ∈ X , for fixed
y ∈ Y, if

f (x,y)− f (x,y) ≥ F(x,x;∇x f (x,y)),∀x ∈ X .

Definition 7.6.2. Let X ⊂ Rn,Y ⊂ Rm and F : X ×Y ×Rn → R be sublinear with
respect to its third argument. f (x, ·) is said to be F – concave at y ∈ Y, for fixed
x ∈ X, if

f (x,y)− f (x,y) ≥ F(y,y;−∇y f (x,y)),∀y ∈ Y.

Definition 7.6.3. Let X ⊂ Rn,Y ⊂ Rm and F : X ×Y ×Rn → R be sublinear with
respect to its third argument. f (·,y) is said to be F – pseudoconvex at x ∈ X , for
fixed y ∈Y, if

F(x,x;∇x f (x,y)) ≥ 0 ⇒ f (x,y) ≥ f (x̄,y),∀x ∈ X .

Definition 7.6.4. Let X ⊂ Rn,Y ⊂ Rm and F : X ×Y ×Rn → R be sublinear with
respect to its third argument. f (x, ·) is said to be F – pseudoconcave at y ∈ Y, for
fixed x ∈ X, if

F(y,y;∇y f (x,y)) ≥ 0 ⇒ f (x,y) ≥ f (x,y),∀y ∈ Y.

For N = {1,2, . . . ,n} and M = {1,2, . . . ,m} let J1 ⊂ N,K1 ⊂ M and J2 = N\J1

and K2 = M\K1. Let |J1| denote the number of elements in the set J1. The num-
bers |J2|,|K1| and |K2| are defined similarly. Notice that if J1 = Φ, then J2 = N,
that is, |J1| = 0 and |J2| = n. Hence, R|J1| is zero dimensional Euclidean space and
R|J2| is n-dimensional Euclidean space. It is clear that any x ∈ Rn can be writ-
ten as x = (x1,x2),x1 ∈ R|J1|,x2 ∈ R|J2|. Similarly, any y ∈ Rm can be written as
y = (y1,y2),y1 ∈ R|K1|,y2 ∈ R|K2|. Let f : R|J1| ×R|K1| → Rl and g : R|J2| ×R|K2| → Rl

be twice differentiable functions and e = (1,1, . . . ,1)T ∈ Rl.
Now we can introduce the following two pairs of nondifferentiable vector opti-

mization problems and discuss their duality theorems under some mild assumptions
of generalized convexity.



7.6 Mixed Symmetric Duality in Nondifferentiable Vector Optimization Problems 217

First Model

Primal Problem (MP1)

minimize H(x1,x2,y1,y2,z1,z2,λ ) = (H1(x1,x2,y1,y2,z1,z2,λ ), . . . ,

Hl(x1,x2,y1,y2,z1,z2,λ ))

subject to (x1,x2,y1,y2,z1,z2,λ ) ∈ R|J1| ×R|J2| ×R|K1| ×R|K2| ×R|K1| ×R|K2| ×Rl
+

l

∑
i=1
λi[∇y1 fi(x1,y1)− z1

i ] ≤ 0 (7.6.1)

l

∑
i=1
λi[∇y2 gi(x2,y2)− z2

i ] ≤ 0 (7.6.2)

(y2)T
l

∑
i=1
λi[∇y2gi(x2,y2)− z2

i ] ≥ 0 (7.6.3)

(x1,x2) ≥ 0, (7.6.4)

z1
i ∈ D1

i , and z2
i ∈ D2

i , i = 1,2, . . . , l (7.6.5)

λ > 0,
l

∑
i=1
λi = 1 (7.6.6)

Dual Problem (MD1)

maximize G(u1,u2,v1,v2,w1,w2,λ ) = (G1(u1,u2,v1,v2,w1,w2,λ ), . . . ,

Gl(u1,u2,v1,v2,w1,w2,λ ))

subject to (u1,u2,v1,v2,w1,w2,λ ) ∈ R|J1| ×R|J2| ×R|K1| ×R|K2| ×R|K1| ×R|K2| ×Rl
+

l

∑
i=1
λi[∇x1 fi(u1,v1)+ w1

i ] ≥ 0 (7.6.7)

l

∑
i=1
λi[∇x2 gi(u2,v2)+ w2

i ] ≥ 0 (7.6.8)

(u2)T
l

∑
i=1
λi[∇x2 gi(u2,v2)+ w2

i ] ≤ 0 (7.6.9)

(v1,v2) ≥ 0, (7.6.10)

w1
i ∈C1

i , and w2
i ∈C2

i , i = 1,2, . . . , l (7.6.11)

λ > 0,
l

∑
i=1
λi = 1 (7.6.12)
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where

Hi(x1,x2,y1,y2,z,λ ) = fi(x1,y1)+ gi(x2,y2)+ s(x1|C1
i )+ s(x2|C2

i )

− (y1)T∇y1 fi(x1,y1)− (y2)T z2
i

Gi(u1,u2,v1,v2,w,λ ) = fi(u1,v1)+ gi(u2,v2)− s(v1|D1
i )− s(v2|D2

i )

− (u1)T∇x1 fi(u1,v1)+ (u2)T w2
i

and C1
i is a compact and convex subsets of R|J1| for i = 1,2, . . . l, and C2

i is a compact
and convex subsets of R|J2| for i = 1,2, . . . , l, similarly, D1

i is a compact and convex
subsets of R|K1| for i = 1,2, . . . , l and D2

i is a compact and convex subsets of R|K2|
for i = 1,2, . . . , l.

Second Model

Primal Problem (MP2)

minimize H∗(x1,x2,y1,y2,z1,z2,λ ) = (H∗
1 (x1,x2,y1,y2,z1,z2,λ ), . . . ,

H∗
l (x1,x2,y1,y2,z1,z2,λ ))

subject to (x1,x2,y1,y2,z1,z2,λ ) ∈ R|J1| ×R|J2| ×R|K1| ×R|K2| ×R|K1| ×R|K2| ×Rl
+

l

∑
i=1
λi[∇y1 fi(x1,y1)− z1

i ] ≤ 0 (7.6.13)

l

∑
i=1
λi[∇y2 gi(x2,y2)− z2

i ] ≤ 0 (7.6.14)

(y1)T
l

∑
i=1
λi[∇y1 fi(x1,y1)− z1

i ] ≥ 0 (7.6.15)

(y2)T
l

∑
i=1
λi[∇y2gi(x2,y2)− z2

i ] ≥ 0 (7.6.16)

(x1,x2) ≥ 0, (7.6.17)

z1
i ∈ D1

i , and z2
i ∈ D2

i , i = 1,2, . . . , l (7.6.18)

λ > 0,
l

∑
i=1
λi = 1 (7.6.19)

Dual Problem (MD2)

maximize G∗(u1,u2,v1,v2,w1,w2,λ ) = (G∗
1(u

1,u2,v1,v2,w1,w2,λ ), . . . ,

G∗
l (u

1,u2,v1,v2,w1,w2,λ ))

subject to (u1,u2,v1,v2,w1,w2,λ ) ∈ R|J1| ×R|J2| ×R|K1| ×R|K2| ×R|K1| ×R|K2| ×Rl
+
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l

∑
i=1
λi[∇x1 fi(u1,v1)+ w1

i ] ≥ 0 (7.6.20)

l

∑
i=1
λi[∇x2 gi(u2,v2)+ w2

i ] ≥ 0 (7.6.21)

(u1)T
l

∑
i=1
λi[∇x1 fi(u1,v1)+ w1

i ] ≤ 0 (7.6.22)

(u2)T
l

∑
i=1
λi[∇x2gi(u2,v2)+ w2

i ] ≤ 0 (7.6.23)

(v1,v2) ≥ 0, (7.6.24)

w1
i ∈C1

i , and w2
i ∈C2

i , i = 1,2, . . . , l (7.6.25)

λ > 0,
l

∑
i=1
λi = 1 (7.6.26)

where

H∗
i (x1,x2,y1,y2,z,λ ) = fi(x1,y1)+ gi(x2,y2)+ s(x1|C1

i )+ s(x2|C2
i )

− (y1)T z1
i − (y2)T z2

i

G∗
i (u

1,u2,v1,v2,w,λ ) = fi(u1,v1)+ gi(u2,v2)− s(v1|D1
i )− s(v2|D2

i )

− (u1)T w1
i +(u2)T w2

i

and C1
i is a compact and convex subsets of R|J1| for i = 1,2, . . . , l and C2

i is a compact
and convex subsets of R|J2| for i = 1,2, . . . , l, similarly, D1

i is a compact and convex
subsets of R|K1| for i = 1,2, . . . , l and D2

i is a compact and convex subsets of R|K2|
for i = 1,2, . . . , l.

For the first model, we can prove the following weak duality theorem.

Theorem 7.6.1. (Weak Duality). Let (x1,x2,y1,y2,z1,z2,λ ) be feasible for (MP1)
and (u1,u2,v1,v2,w1,w2,λ ) be feasible for (MD1). Suppose that for i = 1,2, . . . , l,
fi(·,y1) is F1− convex for fixed y1, fi(x1, ·) is F2− concave for fixed x1 , gi(·,y2)
+ ·T w2

i is G1− convex for fixed y2 and gi(y2, ·)−·T z2
i is G2− concave for fixed x2,

and the following conditions are satisfied:

(i) F1(x1,u1;∇x1 fi(u1,v1))+ (u1)T∇x1 fi(u1,v1)++(x1)T w1
i ≥ 0;

(ii) G1(x2,u2;∇x2 gi(u2,v2)+ w2
i )+ (u2)T (∇x2 gi(u2,v2)+ w2

i ) ≥ 0;
(iii) F2(y1,v1;∇y1 fi(x1,y1))+ (y1)T∇y1 fi(x1,y1)− (v1)T z1

i ≤ 0;
(iv) G2(y2,v2;∇y2 gi(x2,y2)− z2

i )+ (y2)T (∇y2gi(x2,y2)− z2
i ) ≤ 0.

Then
Hi(x1,x2,y1,y2,z,λ ) � Gi(u1,u2,v1,v2,w,λ ).

Proof. Suppose that (x1,x2,y1,y2,z1,z2,λ ) is feasible for (MP1) and (u1,u2,v1,
v2,w1,w2,λ ) is feasible for (MD1). By the F1− convexity of fi(·,v1) and the
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F2− concavity of fi(x1, ·), for i = 1,2, . . . , l, we have

fi(x1,v1)− fi(u1,v1) ≥ F1
(
x1,u1;∇x1 fi(u1,v1)

)
, for i = 1,2, . . . , l

and
fi(x1,v1)− fi(x1,y1) ≤ F2(v1,y1;∇y1 fi(x1,y1)), for i = 1,2, . . . , l.

Rearranging the above two inequalities, and by using the conditions (i) and (iii),
we obtain

fi(x1,y1)− fi(u1,v1)

≥−(u1)T ∇x1 fi(u1,v1)− (x1)T w1
i +(y1)T ∇y1 fi(x1,y1)− (v1)T z1

i ,

for i = 1,2, . . . , l.
Using (v1)T z1

i ≤ s(v1|D1
i ) and (x1)T w1

i ≤ s(x1|C1
i ), for i = 1,2, . . . , l, we have

fi(x1,y1)+ s(x1|C1
i )− (y1)T ∇y1 fi(x1,y1)

≥ fi(u1,v1)− s(v1|D1
i )− (u1)T ∇x1 fi(u1,v1),

for i = 1,2, . . . , l.
Because of (7.6.6) and (7.6.12), the above inequalities yield

l

∑
i=1
λi[ fi(x1,y1)+ s(x1|C1

i )− (y1)T ∇y1 fi(x1,y1)]

≥
l

∑
i=1
λi[ fi(u1,v1)− s(v1|D1

i )− (u1)T∇x1 fi(u1,v1)].

(7.6.27)

By the G1− convexity of gi(·,v2)+ ·T w2
i , and condition (ii), we get

[gi(x2,v2)+ (x2)T w2
i ]− [gi(u2,v2)+ (u2)T w2

i ]≥ Gi(x2,u2;∇x2 gi(u2,v2)+ w2
i )

≥−(u2)T (∇x2 gi(u2,v2)+ w2
i ).

(7.6.28)
Using (7.6.6), (7.6.12) and (7.6.28), we get

l

∑
i=1
λi[gi(x2,v2)+ (x2)T w2

i ]−
l

∑
i=1
λi[gi(u2,v2)+ (u2)T w2

i ]

≥−(u2)T
l

∑
i=1
λi(∇x2 gi(u2,v2)+ w2

i ).

(7.6.29)

From (7.6.29) and (7.6.9), we get

l

∑
i=1
λi[gi(x2,v2)+ (x2)T w2

i ]−
l

∑
i=1
λi[gi(u2,v2)+ (u2)T w2

i ] ≥ 0. (7.6.30)
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Similarly, by G2− concavity of gi(x2, ·)−·T z2
i and condition (iv), we get

[gi(x2,v2)− (v2)T z2
i ]− [gi(x2,y2)− (y2)T z2

i ]≤ G2(y2,v2;∇y2 gi(x2,y2)− z2
i )

≤−(y2)T [∇y2gi(x2,y2)− z2
i ].

Using (7.6.6), (7.6.12) and (7.6.3) the above inequality yields

l

∑
i=1
λi[gi(x2,v2)− (v2)T z2

i ]−
l

∑
i=1
λi[gi(x2,y2)− (y2)T z2

i ] ≤ 0. (7.6.31)

Rearranging (7.6.30) and (7.6.31), we get

l

∑
i=1
λi[gi(x2,y2)−gi(u2,v2)+ (x2)T w2

i − (u2)T w2
i − (y2)T z2

i +(v2)T z2
i ] ≥ 0.

Using (x2)T w2
i ≤ s(x2|C2

i ) and (v2)T z2
i ≤ s(v2|D2

i ), for i = 1,2, . . . , l, we have

l

∑
i=1
λi[gi(x2,y2)+ s(x2|C2

i )− (y2)T z2
i −gi(u2,v2)+ s(v2|D2

i )− (u2)T w2
i ] ≥ 0.

(7.6.32)
Finally, from (7.6.6), (7.6.12), (7.6.27) and (7.6.32), we have

H(x1,x2,y1,y2,z1,z2,λ ) � G(u1,u2,v1,v2,w1,w2,λ ). ��

Corollary 7.6.1. Let
(
x1,x2,y1,y2,z1,z2,λ

)
be feasible for (MP1) and let

(
u1,u2,v1,

v2,w1,w2,λ
)

be feasible for (MD1) with the corresponding objective function val-
ues being equal. If the convexity and concavity assumptions and conditions (i)-(iv) of
Theorem 7.6.1 are satisfied, then

(
x1,x2,y1,y2,z1,z2,λ

)
and

(
u1,u2,v1,v2,w1,w2,λ

)

are an efficient solution for (MP1) and (MD1), respectively.

Theorem 7.6.2. (Weak Duality). Let (x1,x2,y1,y2,z1,z2,λ ) be feasible for (MP2)
and (u1,u2,v1,v2,w1,w2,λ ) be feasible for (MD2). Suppose that for i = 1,2, . . . , l,
fi(·,y1)+ ·T w1

i is F1− convex for fixed y1, fi(x1, ·)−·T z1
i is F2− concave for fixed

x1, gi(·,y2)+ ·T w2
i is G1− convex for fixed y2 and gi(y2, ·)− ·T z2

i is G2− concave
for fixed x2, and the following conditions are satisfied:

(i) F1(x1,u1;a)+ (u1)T a ≥ 0, ifa ≥ 0;
(ii) G1(x2,u2;b)+ (u2)T b ≥ 0, ifb ≥ 0;

(iii) F2(y1,v1;c)+ (y1)T c ≤ 0, ifc ≤ 0; and
(iv) G2(y2,v2;d)+ (y2)T d ≤ 0, ifd ≤ 0.

Then
H∗

i (x1,x2,y1,y2,z,λ ) � G∗
i (u

1,u2,v1,v2,w,λ ).

Proof. Suppose (x1,x2,y1,y2,z1,z2,λ ) be feasible for (MP2) and (u1,u2,v1,v2,
w1,w2,λ ) be feasible for (MD2). Then using the F1− convexity of fi(·,y1)+ ·T w1

i
and F2− concavity of fi(x1, ·)−·T z1

i , for i = 1,2, . . . , l, we have
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fi(x1,v1)+ (x1)T w1
i − fi(u1,v1)− (u1)T w1

i ≥ F1(x1,u1;∇x1 fi(u1,v1)+ w1
i ),

and

fi(x1,v1)− (v1)T z1
i − fi(x1,y1)+ (y1)T z1

i ≤ F2(v1,y1;∇y1 fi(x1,y1)− z1
i ).

From (7.6.19), (7.6.26), the sublinearity of F1 and F2 and the above inequalities, we
get

l

∑
i=1
λi
[

fi(x1,v1)+ (x1)T w1
i − fi(u1,v1)− (u1)T w1

i
]

≥ F1

(

x1,u1;
l

∑
i=1
λi[∇x1 fi(u1,v1)+ w1

i ]

)

,

and

l

∑
i=1
λi[ fi(x1,v1)− (v1)T z1

i − fi(x1,y1)+ (y1)T z1
i ]

≤ F2

(

v1,y1;
l

∑
i=1
λi[∇y1 fi(x1,y1)− z1

i ]

)

.

From constraints (7.6.13), (7.6.20), conditions (i), (iii) and the above inequalities,
we get

l

∑
i=1
λi[ fi(x1,v1)+ (x1)T w1

i − fi(u1,v1)− (u1)T w1
i ] ≥ 0,

l

∑
i=1
λi[ fi(x1,v1)− (v1)T z1

i − fi(x1,y1)+ (y1)T z1
i ] ≤ 0.

Rearranging the above two inequalities, we obtain

l

∑
i=1
λi[ fi(x1,y1)− fi(u1,v1)+ (x1)T w1

i − (u1)T w1
i +(v1)T z1

i − (y1)T z1
i ] ≥ 0.

Using (v1)T z1
i ≤ s(v1|D1

i ) and (x1)T w1
i ≤ s(x1|C1

i ), for i = 1,2, . . . , l, we have

l

∑
i=1
λi[ fi(x1,y1)− fi(u1,v1)+ s(x1|C1

i )− (u1)T w1
i + s(v1|D1

i )− (y1)T z1
i ] ≥ 0.

(7.6.33)
Following as in the proof of Theorem 7.6.1, we get

l

∑
i=1
λi
[
gi(x2,y2)+ s(x2|C2

i )− (y2)T z2
i −gi(u2,v2)+ s(v2|D2

i )− (u2)T w2
i
]≥ 0.

(7.6.34)
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Finally, from (7.6.19), (7.6.26), (7.6.33) and (7.6.34), we have

H∗(x1,x2,y1,y2,z1,z2,λ ) � G∗ (u1,u2,v1,v2,w1,w2,λ
)
. ��

Corollary 7.6.2. Let (x1,x2,y1,y2,z1,z2,λ ) be feasible for (MP2) and let (u1,u2,

v1,v2,w1,w2,λ ) be feasible for (MD2) with the corresponding objective function
values being equal. Let the convexity and concavity assumptions and conditions (i)–
(iv) in Theorem 7.6.2 are satisfied, then (x1,x2,y1,y2,z1,z2,λ ) and (u1,u2,v1,v2,

w1,w2,λ ) are an efficient solution for (MP2) and (MD2), respectively.

Remark 7.6.1. Theorems 7.6.1 and 7.6.2 can be established for more general classes
of functions such as F1− pseudoconvexity and F2− pseudoconcavity, and G1−
pseudoconvexity and G2− pseudoconcavity on the functions involved in the cor-
responding theorems. The proofs will follow the same lines as that of Theorems
7.6.1 and 7.6.2.

Strong duality theorems for the given models can be established on the lines of
the proof of Theorem 2 of Yang et al. (2003a) in light of the discussions given above
in this section.

Theorem 7.6.3. (Strong Duality). Let (x1,x2,y1,y2,z1,z2,λ ) be a properly efficient
solution for (MP1). Let λ = λ be fixed in (MD1) and the Hessian matrices
∇2

x1λ T f (x1,y1) and ∇2
y2λ T g(x2,y2) be either positive definite or negative definite

and ∇x1λ
T

g(x2,y2) �= λ̄ T z2. Also let the set {∇y2g1 − z2
1, . . . ,∇y2 gl − z2

l } is linearly
independent. If the generalized convexity hypotheses and conditions (i)-(iv) of The-
orem 7.6.1 are satisfied, then (x1,x2,y1,y2,z1,z2,λ ) is a properly efficient solution
for (MD1).

Theorem 7.6.4. (Strong Duality). Let (x1,x2,y1,y2,z1,z2,λ ) be a properly efficient
solution for (MP2). Let λ = λ be fixed in (MD2). Suppose that the Hessian matrix
∇2

x1 fi(x1,y1) is positive definite for i = 1,2, . . . , l and ∑l
i=1λi[∇y1 fi − z̄1

i ] ≥ 0; and

∇2
y2 gi(x2,y2) is positive definite for i = 1,2, . . . , l and ∑l

i=1λi[∇y2 gi − z̄2
i ] ≥ 0; or

∇2
x1 fi(x1,y1) is negative definite for i = 1,2, . . . , l and ∑l

i=1λi[∇y1 fi − z̄1
i ] ≤ 0; and

∇2
y2 gi(x2,y2) is negative definite for i = 1,2, . . . , l and ∑l

i=1λi[∇y2 gi − z̄2
i ] ≤ 0. Also

suppose that the sets {∇y1 f1 − z̄2
1, . . . ,∇y1 fl − z̄2

l } and {∇y2 g1 − z̄2
1, . . . ,∇y2gl − z̄2

l }
are linearly independent. If the generalized convexity hypotheses and conditions (i)–
(iv) of Theorem 7.6.2 are satisfied, then (x1,x2,y1,y2,z1,z2,λ ) is a properly efficient
solution for (MD2).

Remark 7.6.2. We consider some special cases of problems (MP1), (MD1), (MP2)
and (MD2) by choosing particular forms of compact convex sets, and the number of
objective and constraint functions.

(i) If C1
i = C2

i = D1
i = D2

i = {0}, i = 1,2, . . . , l, then (MP1) and (MD1) reduce to
the pair of problems studied in Bector et al. (1999).
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(ii) If l = 1, then (MP1) and (MD1) reduce to the pair of problems studied in Yang
et al. (2003a), and (MP2) and (MD2) become an extension of problems studied
in Yang et al. (2003a).

(iii) If |J2| = 0, |K2| = 0 and l = 1, then (MP1) and (MD1) reduce to the pair of
problems (P) and (D) of Mond and Schechter (1996), and (MP2) and (MD2)
reduce to the pair of problems (P1) and (D1) of Mond and Schechter (1996).

(iv) If |J2| = 0, |K2| = 0, then (MP1) and (MD1) become multiobjective extension
of the pair of problems (P) and (D) of Mond and Schechter (1996), and (MP2)
and (MD2) becomes the multiobjective extension of the pair of problems (P1)
and (D1) of Mond and Schechter (1996).

(v) If l = 1, then (MP2) and (MD2) are an extension of the pair of problems studied
in Yang et al. (2003a).

These results can be extended to second and higher order case as well as to other
classes of generalized convexity.

7.7 Mond–Weir Type Mixed Symmetric First and Second Order
Duality in Nondifferentiable Optimization Problems

In this section, we introduce two models of mixed symmetric duality for a class of
non-differentiable multiobjective programming problems with multiple arguments.
The first model is Mond–Weir type mixed symmetric dual model for a class of
non-differentiable mathematical programming problems and the second model is
second order case of the first model. Mixed symmetric duality for this model has
not been given so far by any other author. The advantage of the first model over the
model given by Yang et al. (2003) is that it allows further weakening of convex-
ity on the functions involved. Furthermore, Mangasarian (1975) and Mond (1974a)
have indicated possible computational advantages of the second order duals over
the first order duals. We establish weak duality theorems for these two models
under generalized pseudo-convexity and generalized second order pseudo-convexity
assumptions and discuss several special cases of these models. The results of Hou
and Yang (2001), Mishra (2000a, b, 2001b), Mond and Schechter (1996), Nanda
and Das (1996), as well as Yang et al. (2003b) are particular cases of the results
obtained in the present paper.

The concepts of sublinearity and support functions from previous sections will
also be needed in the present section.

Definition 7.7.1. Let X ⊂ Rn,Y ⊂ Rm and F : X ×Y ×Rn → R be sublinear with
respect to its third argument. f (·,y) is said to be second order F-convex at x̄ ∈ X ,
with respect to p ∈ Rn, for fixed y ∈ Y, if

f (x,y)− f (x̄,y)+
1
2

pT∇xx f (x̄,y)p ≥ F(x, x̄;∇x f (x̄,y)+∇xx f (x̄,y)p),∀x ∈ X .

f is said to be second order F-concave at x̄ ∈ X , with respect to p ∈ Rn, for fixed
y ∈ Y, if − f is second order F-convex at x̄ ∈ X , with respect to p ∈ Rn.
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Definition 7.7.2. Let X ⊂ Rn,Y ⊂ Rm and F : X ×Y ×Rn → R be sublinear with
respect to its third argument. f (x, ·) is said to be second order F–pseudo-convex at
x̄ ∈ X ,with respect to p ∈ Rn, for fixed y ∈ Y, if

F(x, x̄;∇x f (x̄,y)+∇xx f (x̄,y)p) ≥ 0 ⇒ f (x,y) ≥ f (x̄,y)+
1
2

pT∇xx f (x̄,y)p,∀x ∈ X .

f is said to be second order F – pseudo-concave at x̄ ∈ X, with respect to p ∈ Rn,
for fixed y ∈ Y, if – f is second order F – pseudo-convex at x̄ ∈ X, with respect to
p ∈ Rn.

Remark 7.7.1. (i) The second order F - pseudo-convexity reduces to the F – pseudo-
convexity introduced by Hanson and Mond (1987b) when p = 0.

(ii) For F(x, x̄;a) = η(x, x̄)T a, where η : X ×X → Rn, the second order F – con-
vexity reduces to the second order invexity introduced by Hanson (1993), and
second order F – pseudo-convexity reduces to the second order pseudo-invexity
introduced by Yang (1995).

(iii) For F(x, x̄;a) = η(x, x̄)T a, and p = 0, where η : X ×X → Rn, the second order
F – convexity reduces to the invexity introduced by Hanson (1993), and second
order F – pseudo-convexity reduces to the pseudo-invexity introduced by Kaul
and Kaur (1985).

Now we state two Mond–Weir type mixed symmetric dual pairs and establish
duality theorems under generalized convexity assumptions. The advantage of these
models are that they allow further weakening of the convexity assumptions and the
advantage of the second order dual may be used to give a tighter bound than the first
order dual for the value of the primal objective function, one can see Mishra (1997a).

First Order Model

Primal problem

(NMP) minimize f (x1,y1)+ g(x2,y2)+ s(x1|C1)+ s(x2|C2)− (y1)T z1 − (y2)T z2

subject to (x1,x2,y1,y2,z1,z2) ∈ R|J1| ×R|J2| ×R|K1| ×R|K2| ×R|K1| ×R|K2|

∇y1 f (x1,y1)− z1 ≤ 0, (7.7.1)

∇y2 g(x2,y2)− z2 ≤ 0, (7.7.2)

(y1)T [∇y1 f (x1,y1)− z1] ≥ 0, (7.7.3)

(y2)T [∇y2g(x2,y2)− z2] ≥ 0, (7.7.4)

z1 ∈ D1,z2 ∈ D2. (7.7.5)
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Dual Problem (NMD)

maximize f (u1,v1)+ g(u2,v2)− s
(
v1 ∣∣D1 )− s

(
v2 ∣∣D2 )+

(
u1)T

w1 +
(
u2)T

w2

subject to
(
u1,u2,v1,v2,w1,w2) ∈ R|J1| ×R|J2| ×R|K1| ×R|K2| ×R|J1| ×R|J2|

∇x1 f
(
u1,v1)+ w1 ≥ 0, (7.7.6)

∇x2 g
(
u2,v2)+ w2 ≥ 0, (7.7.7)

(
u1)T [

∇x1 f
(
u1,v1)+ w1]≤ 0, (7.7.8)

(
u2)T [

∇x2g
(
u2,v2)+ w2]≤ 0, (7.7.9)

w1 ∈C1,andw2 ∈C2, (7.7.10)

where C1 is a compact and convex subsets of R|J1| and C2 is a compact and convex
subsets of R|J2|, similarly, D1 is a compact and convex subsets of R|K1| and D2 is a
compact and convex subsets of R|K2| .

The following model is Mond–Weir type second order mixed symmetric dual
model for a class of nondifferentiable optimization problems:

Second Order Model

Primal Problem (SNP)

minimize f (x1,y1)+ g
(
x2,y2)+ s(x1|C1)+ s

(
x2 ∣∣C2 )− (y1)T z1 − (

y2)T
z2

− 1
2
(

p1)T ∇y1y1 f (x1,y1)p1 − 1
2
(

p2)T ∇y2y2 g
(
x2,y2) p2

subject to
(
x1,x2,y1,y2,z1,z2, p1, p2) ∈ R|J1| ×R|J2| ×R|K1| ×R|K2| ×R|K1| ×R|K2|

×R|K1| ×R|K2|

[
∇y1 f (x1,y1)− z1 +∇y1y1 f (x1,y1)p1

]
≤ 0, (7.7.11)

[
∇y2g

(
x2,y2)− z2 +∇y2y2g

(
x2,y2) p2

]
≤ 0, (7.7.12)

(y1)T
[
∇y1 f (x1,y1)− z1 +∇y1y1 f (x1,y1)p1

]
≥ 0, (7.7.13)

(
y2)T

[
∇y2g

(
x2,y2)− z2 +∇y2y2g

(
x2,y2) p2

]
≥ 0, (7.7.14)

z1 ∈ D1, and z2 ∈ D2, (7.7.15)
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Dual Problem (SND)

maximize f
(
u1,v1)+g

(
u2,v2)− s

(
v1 ∣∣D1 )− s

(
v2 ∣∣D2 )+

(
u1)T

w1 +
(
u2)T

w2

− 1
2
(
q1)T ∇y2y2 f

(
u1,v1)q1 − 1

2
(
q2)T ∇y2y2 g

(
u2,v2)q2

subject to
(
u1,u2,v1,v2,w1,w2,q1,q2) ∈ R|J1| ×R|J2| ×R|K1| ×R|K2| ×R|J1| ×R|J2|

×R|J1| ×R|J2|
[
∇x1 f

(
u1,v1)+ w1 +∇x1x1 f

(
u1,v1)q1]≥ 0, (7.7.16)

[
∇x2 g

(
u2,v2)+ w2 +∇x2x2 g

(
u2,v2)q2]≥ 0, (7.7.17)

(
u1)T [

∇x1 f
(
u1,v1)+ w1 +∇x1x1 f

(
u1,v1)q1]≤ 0, (7.7.18)

(
u2)T [

∇x2 g
(
u2,v2)+ w2 +∇x2x2 g

(
u2,v2)q2]≤ 0, (7.7.19)

w1 ∈C1,andw2 ∈C2, (7.7.20)

where C1 is a compact and convex subsets of R|J1| and C2 is a compact and convex
subsets of R|J2|, similarly, D1 is a compact and convex subsets of R|K1| and D2 is
a compact and convex subsets of R|K2|.

Now we establish duality theorems for the pair of problems (NMP) and (NMD)
as well as (SNP) and (SND) under the F – pseudo-convexity and second order F –
pseudo-convexity assumptions.

Theorem 7.7.1. (Weak Duality). Let
(
x1,x2,y1,y2,z1,z2) be feasible for (NMP) and

(
u1,u2,v1,v2,w1,w2) be feasible for (NMD). Suppose that f

(·,v1)+ ·T w1 is F1

– pseudo-convex for fixed v1, f
(
x1, ·)− ·T z1 is F2 – pseudo-concave for fixed x1,

g
(·,y2) + ·T w2 is G1 – pseudo-convex for fixed v2 and g(y2, ·) − ·T z2 is G2 –

pseudo-concave for fixed x2, and the following conditions are satisfied:

(i) F1
(
x1,u1;∇x1 f

(
u1,v1)+ w1)+

(
u1)T (

∇x1 f
(
u1,v1)+ w1)≥ 0;

(ii) G1
(
x2,u2;∇x2 g

(
u2,v2)+ w2)+

(
u2)T (

∇x2 g
(
u2,v2)+ w2)≥ 0;

(iii) F2

(
y1,v1;∇y1 f (x1,y1)− z1

)
+(y1)T

(
∇y1 f (x1,y1)− z1

)
≤ 0; and

(iv) G2

(
y2,v2;∇y2 g

(
x2,y2)− z2

)
+
(
y2)T

(
∇y2 g

(
x2,y2)− z2

)
≤ 0.

Then
inf(NMP) ≥ sup(NMD) .

Proof. Suppose that
(
x1,x2,y1,y2,z1,z2) is feasible for (NMP) and

(
u1,u2,v1,v2,

w1,w2) is feasible for (NMD). By the dual constraint (7.7.6), we have ∇x1 f
(
u1,v1)

+ w1 ≥ 0, and by condition (i), we get

F1
(
x1,u1;∇x1 f

(
u1,v1)+ w1)≥−(

u1)T [
∇x1 f (u1,v1)+ w1]≥ 0,(using (7.7.8)).
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Then by the F1 – pseudo-convexity of f
(·,v1)+ ·T w1, we get

f
(
x1,v1)+

(
x1)T

w1 ≥ f (u1,v1)+
(
u1)T

w1. (7.7.21)

Similarly, by using the constraint (7.7.1), condition (iii) and constraint (7.7.3), we
get

F2

(
y1,v1;∇y1 f (x1,y1)− z1

)
≤−(y1)T

[
∇y1 f (x1,y1)− y1

]
≤ 0.

Then by the F2 – pseudo-concavity of f
(
x1, ·)−·T z1, we get

f
(
x1,v1)− (

v1)T
z1 ≤ f (x1,y1)− (y1)T z1. (7.7.22)

Now rearranging (7.7.21) and (7.7.22), we get

f (x1,y1)+
(
x1)T

w1 − (y1)T z1 ≥ f
(
u1,v1)+

(
u1)T

w1 − (
v1)T

z1.

Using
(
v1
)T z1 ≤ s

(
v1

∣
∣D1

)
and

(
x1
)T w1 ≤ s(x1|C1), we have

f (x1,y1)+ s(x1|C1)− (y1)T z1 ≥ f
(
u1,v1)− s

(
v1 ∣∣D1 )+

(
u1)T

w1. (7.7.23)

Similarly, using constraints (7.7.7), condition (ii), constraint (7.7.9) and G1 –
pseudo-convexity of the function g

(·,y2)+ ·T w2 and constraint (7.7.2), condition
(iv), constraint (7.7.4) and G2 – pseudo-concavity of g

(
y2, ·)− ·T z2 and using

(
x2)T w2 ≤ s

(
x2

∣
∣C2 ) and

(
v2)T z2 ≤ s

(
v2

∣
∣D2 ), finally rearranging the resultants,

we get

g
(
x2,y2)+ s

(
x2 ∣∣C2 )− (

y2)T
z2 ≥ g

(
u2,v2)− s

(
v2 ∣∣D2 )+

(
u2)T

w2. (7.7.24)

Finally, from (7.7.23) and (7.7.24), we have

f (x1,y1)+ g
(
x2,y2)+ s(x1|C1)+ s

(
x2 ∣∣C2 )− (y1)T z1 − (

y2)T
z2

≥ f
(
u1,v1)+ g

(
u2,v2)− s

(
v1 ∣∣D1 )− s

(
v2 ∣∣D2 )+

(
u1)T

w1 +
(
u2)T

w2.

That is, inf(NMP) ≥ sup(NMD) ��
The weak duality for the pair (SNP) and (SND) is established in the following

theorem.

Theorem 7.7.2. (Weak Duality). Let (x1,x2,y1,y2,z1,z2, p1, p2) be feasible for
(SNP) and (u1,u2,v1,v2,w1,w2,q1,q2) be feasible for (NMD). Suppose there exist
sub-linear functionals F1,F2, G1 and G2 atisfying:

(i) F1
(
x1,u1;∇x1 f

(
u1,v1)+ w1 + ∇x1x1 f

(
u1,v1)q1)

+
(
u1)T (

∇x1 f
(
u1,v1)+ w1 +∇x1x1 f

(
u1,v1)q1)≥ 0;

(ii) G1
(
x2,u2;∇x2 g

(
u2,v2)+ w2 +∇x2x2g

(
u2,v2)q2)

+
(
u2)T (

∇x2 g
(
u2,v2)+ w2 +∇x2x2 g

(
u2,v2)q2)≥ 0;
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(iii) F2

(
y1,v1;∇y1 f (x1,y1)− z1+ ∇y1y1 f (x1,y1)p1

)

+(y1)T
(
∇y1 f (x1,y1)− z1 +∇y1y1 f (x1,y1)p1

)
≤ 0;

and

(iv) G2

(
y2,v2;∇y2 g

(
x2,y2)− z2 +∇y2y2g

(
x2,y2) p2

)

+
(
y2)T

(
∇y2 g

(
x2,y2)− z2 +∇y2y2 g

(
x2,y2) p2

)
≤ 0.

Furthermore, assume that f
(·,v1) + ·T w1 is second order F1 – pseudo-convex

for fixed v1, f
(
x1, ·)− ·T z1 is second order F2 – pseudo-concave for fixed x1,

g
(·,y2

)
+ ·T w2 is second order G1 – pseudo-convex for fixed v2 and g(y2, ·)− ·T z2

is second order G2 – pseudo-concave for fixed x2, with respect to q1, p1,q2 and p2,
respectively. Then

inf(SNP) ≥ sup(SND).

Proof. Suppose
(
x1,x2,y1,y2,z1,z2, p1, p2) be feasible for (SNP) and

(
u1,u2,v1,v2,

w1,w2,q1,q2) be feasible for (NMD). By the dual constraint (7.7.16), we have
[∇x1 f (u1,v1) + w1 +∇x1x1 f (u1,v1)q1] ≥ 0, and by condition (i) and (7.7.18), we
get

F1
(
x1,u1;∇x1 f

(
u1,v1) + w1 +∇x1x1 f

(
u1,v1)q1)

≥−(
u1)T (

∇x1 f
(
u1,v1)+ w1 +∇x1x1 f

(
u1,v1)q1)≥ 0,

Then by the second order F1 – pseudo-convexity of f
(·,v1)+ ·T w1, we get

f
(
x1,v1)+

(
x1)T

w1 ≥ f (u1,v1)+
(
u1)T

w1 − 1
2
(
q1)T ∇x1x1 f

(
u1,v1)q1. (7.7.25)

Similarly, by using the constraint (7.7.11), condition (iii) and constraint (7.7.13), we
get

F2

(
y1,v1;∇y1 f (x1,y1)− z1 +∇y1y1 f (x1,y1)p1

)

≤−(y1)T
[
∇y1 f (x1,y1)− y1 +∇y1y1 f (x1,y1)p1

]
≤ 0.

Then by the second order F2 – pseudo-concavity of f
(
x1, ·)−·T z1, we get

f
(
x1,v1)− (

v1)T
z1 ≤ f (x1,y1)− (y1)T z1 − 1

2
(

p1)T ∇y1y1 f (x1,y1)p1. (7.7.26)

Now rearranging (7.7.25) and (7.7.26), we get

f (x1,y1)+
(
x1)T

w1 − (y1)T z1 − 1
2
(

p1)T ∇y1y1 f (x1,y1)p1

≥ f
(
u1,v1)+

(
u1)T

w1 − (v1)T z1 − 1
2
(
q1)T ∇x1x1 f

(
u1,v1)q1.
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Using
(
v1)T z1 ≤ s

(
v1

∣
∣D1 ) and

(
x1)T w1 ≤ s(x1|C1), we have

f (x1,y1)+ s(x1|C1)− (y1)T z1 − 1
2
(

p1)T ∇y1y1 f (x1,y1)p1

≥ f
(
u1,v1)− s

(
v1 ∣∣D1 )+

(
u1)T

w1 − 1
2
(
q1)T ∇x1x1 f

(
u1,v1)q1. (7.7.27)

Similarly, using constraints (7.7.17), condition (ii), constraint (7.7.19) and sec-
ond order G1 – pseudo-convexity of the function g

(·,y2
)
+ ·T w2 and constraint

(7.7.12), condition (iv), constraint (7.7.14) and second order G2 – pseudo-concavity
of g(y2, ·)−·T z2 and using

(
x2)T w2 ≤ s

(
x2

∣
∣C2 ) and

(
v2)T z2 ≤ s

(
v2

∣
∣D2 ), finally

rearranging the resultants, we get

g
(
x2,y2)+ s

(
x2 ∣∣C2 )− (

y2)T
z2 − 1

2
(

p2)T ∇y2y2g(x2,y2)p2

≥ g
(
u2,v2)− s

(
v2 ∣∣D2 )+

(
u2)T

w2 − 1
2
(
q2)T ∇x2x2g

(
u2,v2)q2. (7.7.28)

Finally, from (7.7.27) and (7.7.28), we have

f (x1,y1)+ g
(
x2,y2)+ s(x1|C1)+ s

(
x2 ∣∣C2 )− (y1)T z1 − (

y2)T
z2

− 1
2
(

p1)T ∇y1y1 f (x1,y1)p1 − 1
2
(

p2)T ∇y2y2 g
(
x2,y2) p2

≥ f
(
u1,v1)+ g

(
u2,v2)− s

(
v1 ∣∣D1 )− s

(
v2 ∣∣D2 )+

(
u1)T

w1 +
(
u2)T

w2

− 1
2
(
q1)T ∇x1x1 f (u1,v1)q1 − 1

2
(
q2)T ∇x2x2g

(
u2,v2)q2.

That is,

inf(SNP)≥ sup(SND). ��

Theorem 7.7.3. (Strong Duality). Let
(

x1,x2,y1,y2,z1,z2
)

be an optimal solution

for (NMP). Suppose that the Hessian matrix ∇2
x1 f

(
x1,y1

)
is positive definite

and ∇y1 f − z̄1 ≥ 0; and ∇2
y2 g

(
x2,y2

)
is positive definite and ∇y2g − z̄2 ≥ 0; or

∇2
x1 f

(
x1,y1

)
is negative definite and ∇y1 f − z̄1 ≤ 0; and ∇2

y2 g
(

x2,y2
)

is negative

definite and ∇y2g − z̄2 ≤ 0. If the generalized convexity hypotheses and condi-

tions (i)-(iv) of Theorem 7.7.1 are satisfied, then
(

x1,x2,y1,y2,z1,z2
)

is an optimal
solution for (NMD).

Proof. The proof of this theorem can be established in light of the above Theorem
7.7.1. ��
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Theorem 7.7.4. (Strong Duality). Let
(

x1,x2,y1,y2,z1,z2, p1, p2
)

be an optimal
solution for (SNP) such that

∇y1 f
(

x1,y1
)

+∇y1y1 f
(

x1,y1
)

p1 �= z1;

and
∇y2g

(
x2,y2

)
+∇y2y2 g

(
x2,y2

)
p2 �= z2.

Suppose that the Hessian matrix ∇2
x1 f

(
x1,y1

)
is positive definite and

(
p1
)T

[
∇y1 f − z̄1]≥ 0; and ∇2

y2g
(
x2,y2

)
is positive definite and

(
p2
)T [∇y2g− z̄2]≥ 0; or

∇2
x1 f

(
x1,y1

)
is negative definite and (p1)T

[
∇y1 f − z̄1]≤ 0; and∇2

y2g(x2,y2) is neg-

ative definite and
(

p2
)T [∇y2 g− z̄2]≤ 0. If the generalized convexity hypotheses and

conditions (i)-(iv) of Theorem 7.7.2 are satisfied, then (x1,x2,y1,y2,z1,z2, p1, p2) is
an optimal solution for (SND).

Proof. The proof of this theorem can be established on the lines of the proof of
strong duality Theorem 3.2 given by Hou and Yang (2001) in light of the above
Theorem 7.7.2. ��
Remark 7.7.2. We consider some special cases of our problems (NMP) and (NMD)
as well as (SNP) and (SND) by choosing particular forms of the compact sets
involved in the problems.

(vi) If C1 = C2 = D1 = D2 = {0}, then (NMP) and (NMD) reduce to the pair of
problems studied in Chandra et al. (1999).

(vii) If |J2| = 0, |K2| = 0, then (NMP) and (NMD) reduce to the pair of problems
(P1) and (D1) of Mond and Schechter (1996).

(viii) If |J2| = 0, |K2| = 0, then the second order dual pairs (SNP) and (SND) reduce
to the pair of problems studied by Hou and Yang (2001).

(ix) If |J2| = 0, |K2| = 0, and C1 = C2 = D1 = D2 = {0},then (SNP) and (SND)
become pair of problems (MP) and (MD) studied by Mishra (2000b).

The results discussed in this section can be extended to the higher order case
as well as to other generalized convexity assumptions. Some other possible
extensions are as follows.

(x) These results can be extended to the case of multi-objective problems.
(xi) These results can be extended to the case of continuous-time problems as well.

(xii) In light of the results established by Mishra and Rueda (2003), the results of
this section can further be extended to the case of complex spaces also.
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7.8 Second Order Mixed Symmetric Duality
in Nondifferentiable Vector Optimization Problems

In this section, a pair of Mond–Weir type second order mixed symmetric dual, is
presented for a class of nondifferentiable vector optimization problems. We estab-
lish duality theorems for the new pair of dual models under second order generalized
convexity assumptions. This mixed second order dual formulation unifies the two
existing second order symmetric dual formulations in the literature. Several results
including almost every recent work on symmetric duality are obtained as special
cases of the results established in the present paper.

Consider the following vector optimization problem:

(VP) minimize ( f1(x), f2(x), . . . , fp(x))
subject to x ∈ X0,

where fi : Rn → R, i = 1,2, . . . , p and X0 ⊆ Rn.
For problem (VP), an efficient solution and a properly efficient solution are as in

Sect. 7.1.
For N = {1,2, . . . ,n} and M = {1,2, . . . ,m} let J1 ⊂ N,K1 ⊂ M and J2 = N\J1

and K2 = M\K1. Let |J1| denote the number of elements in the set J1. The num-
bers |J2|, |K1| and |K2| are defined similarly. Notice that if J1 = Φ, then J2 = N,
that is, |J1| = 0 and |J2| = n. Hence, R|J1| is zero dimensional Euclidean space and
R|J2| is n—dimensional Euclidean space. It is clear that any x ∈ Rn can be writ-
ten as x =

(
x1,x2) ,x1 ∈ R|J1|,x2 ∈ R|J2|. Similarly, any y ∈ Rm can be written as

y =
(
y1,y2) ,y1 ∈ R|K1|,y2 ∈ R|K2|. Let f : R|J1| ×R|K1| → Rl and g : R|J2| ×R|K2| → Rl

be twice differentiable functions and e = (1,1, . . . ,1)T ∈ Rl .
Now we can introduce the following pair of non-differentiable multi-objective

programs and discuss duality theorems under some mild assumptions of generalized
convexity.

Primal Problem (SMP)

minimize H
(
x1,x2,y1,y2,z1,z2, p1, p2λ

)

=
(
H1

(
x1,x2,y1,y2,z1,z2, p1, p2λ

)
, . . . ,Hl

(
x1,x2,y1,y2,z1,z2, p1, p2λ

))

subject to
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

) ∈ R|J1| ×R|J2| ×R|K1| ×R|K2| ×R|K1| ×R|K2|

×R|K1| ×R|K2| ×Rl
+

l

∑
i=1
λi

[
∇y1 fi(x1,y1)− z1

i +∇y1y1 fi(x1,y1)p1
i

]
≤ 0 (7.8.1)

l

∑
i=1
λi

[
∇y2 gi(x2,y2)− z2

i +∇y2y2gi(x2,y2)p2
i

]
≤ 0 (7.8.2)
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(y1)T
l

∑
i=1
λi

[
∇y1 fi(x1,y1)− z1

i +∇y1y1 fi(x1,y1)p1
i

]
≥ 0 (7.8.3)

(y2)T
l

∑
i=1
λi

[
∇y2 gi(x2,y2)− z2

i +∇y2y2gi(x2,y2)p2
i

]
≥ 0 (7.8.4)

(
x1,x2)≥ 0, (7.8.5)

z1
i ∈ D1

i , and z2
i ∈ D2

i , i = 1,2, . . . , l (7.8.6)

λ > 0,
l

∑
i=1
λi = 1 (7.8.7)

Dual Problem (SMD)

maximize G
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)

=
(
G1

(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)
, . . . ,Gl

(
u1,u2,v1,v2,w1,w2,q1,q2,λ

))

subject to
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

) ∈ R|J1| ×R|J2| ×R|K1| ×R|K2| ×R|J1| ×R|J2|

×R|J1| ×R|J2| ×Rl
+

l

∑
i=1
λi
[
∇x1 fi

(
u1,v1)+ w1

i +∇x1x1 fi
(
u1,v1)q1

i
]≥ 0 (7.8.8)

l

∑
i=1
λi
[
∇x2 gi

(
u2,v2)+ w2

i +∇x2x2 gi
(
u2,v2)q2

i
]≥ 0 (7.8.9)

(u1)T
l

∑
i=1
λi
[
∇x1 fi

(
u1,v1)+ w1

i +∇x1x1 fi
(
u1,v1)q1

i
]≤ 0 (7.8.10)

(u2)T
l

∑
i=1
λi
[
∇x2 gi(u2,v2)+ w2

i +∇x2x2 gi(u2,v2)q2
i
]≤ 0 (7.8.11)

(
v1,v2)≥ 0, (7.8.12)

w1
i ∈C1

i , and w2
i ∈C2

i , i = 1,2, . . . , l (7.8.13)

λ > 0,
l

∑
i=1
λi = 1 (7.8.14)
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where

H∗
i
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

)

= fi(x1,y1)+ gi
(
x2,y2)+ s

(
x1 ∣∣C1

i
)
+ s

(
x2 ∣∣C2

i
)− (y1)T z1

i

− (y2)T z2
i −

1
2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i −
1
2
(
q2

i
)T ∇y2y2gi

(
x2,y2)q2

i

G∗
i
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)

= fi(u1,v1)+ gi(u2,v2)− s
(
v1 ∣∣D1

i
)− s

(
v2 ∣∣D2

i
)− (

u1)T
w1

i

+(u2)T w2
i −

1
2
(
q1

i
)T ∇x1x1 fi(u1,v1)q1

i −
1
2
(
q2

i
)T ∇x2x2 gi

(
u2,v2)q2

i

and C1
i is a compact and convex subsets of R|J1| for i = 1,2, . . . , l and C2

i is a compact
and convex subsets of R|J2| for i = 1,2, . . . , l, similarly, D1

i is a compact and convex
subsets of R|K1| for i = 1,2, . . . , l and D2

i is a compact and convex subsets of R|K2|
for i = 1,2, . . . , l.

For the first model, we can prove the following weak duality theorem.

Theorem 7.8.1. (Weak Duality). Let
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

)
be feasible for

(SMP) and
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)
be feasible for (SMD). Suppose there

exist sublinear functionals F1, F2, G1 and G2 satisfying the following conditions
are satisfied:

(i) F1(x1,u1;a)+ (u1)T a ≥ 0; if a ≥ 0;
(ii) G1

(
x2,u2;b

)
+(u2)T b ≥ 0; if b ≥ 0;

(iii) F2
(
y1,v1;c

)
+
(
y1)T c ≤ 0; if c ≤ 0;

(iv) G2
(
y2,v2;d

)
+(y2)T d ≤ 0; if d ≤ 0.

Furthermore, assume that for i = 1,2, . . . , l, assume that fi
(·,v1)+ ·T w1

i is second
order F1 – convex for fixed v1, with respect to q1

i ∈ R|J1|, fi(x1, ·)− ·T z1
i is sec-

ond order F2 – concave for fixed x1, with respect to p1
i ∈ R|K1|, gi

(·,v2)+ ·T w2
i

is second order G1 – convex for fixed v2 with respect to q2
i ∈ R|J2| and gi

(
x2, ·)−

·T z2
i is second order G2 – concave for fixed x2, with respect to p2

i ∈ R|K2|. Then
H∗

i
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

)
� G∗

i
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)
.

Proof. Assume that the result is not true, that is,

H∗
i
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

)≤ G∗
i
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)
.
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Then, since λ > 0, we have

l

∑
i=1
λi

[

fi (x1,y1)+ gi
(
x2,y2)+ s

(
x1|C1

i
)
+ s(x2|C2

i )− (y1)T z1
i − (y2)T z2

i

−1
2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i −
1
2
(

p2
i
)T ∇y2y2 gi(x2,y2)p2

i

]

<
l

∑
i=1
λi

[

fi(u1,v1)+ gi(u2,v2)− s
(
v1 ∣∣D1

i
)− s

(
v2 ∣∣D2

i
)
+(u1)T w1

i

+(u2)T w2
i −

1
2
(
q1

i
)T ∇x1x1 fi

(
u1,v1)q1

i −
1
2
(
q2

i
)T ∇x2x2gi

(
u2,v2)q2

i

]

(7.8.15)
By the second order F1 – convexity of fi

(·,v1)+ ·T w1
i at x1 with respect to q1

i ∈R|J1|,
we have

fi
(
x1,v1)+(x1)T w1

i − fi
(
u1,v1)− (u1)T w1

i +
1
2
(q1

i )
T∇u1u1 fi

(
u1,v1)q1

i

> F1
(
x1,u1;∇u1 fi

(
u1,v1)+ w1

i +∇u1u1 fi
(
u1,v1)q1

i
)
.

for i = 1,2, . . . , l
From λ > 0 and sublinearity of F1, we have

l

∑
i=1
λi

[

fi
(
x1,v1)+(x1)T w1

i − fi
(
u1,v1)− (u1)T w1

i +
1
2
(q1

i )
T∇u1u1 fi

(
u1,v1)q1

i

]

≥ F1

(

x1,u1;
l

∑
i=1
λi
[
∇u1 fi

(
u1,v1)+ w1

i +∇u1u1 fi
(
u1,v1)q1

i
]
)

.

(7.8.16)
By the duality constraint (7.8.8), it follows that

a =
l

∑
i=1
λi
[
∇x1 fi

(
u1,v1)+ w1

i +∇x1x1 fi
(
u1,v1)q1

i
] ∈ R|J1|

+ .

Thus, by condition (i) given in the Theorem, we have

F1(x1,u1;a)+ (u1)T a ≥ 0,

that is,

F1

(

x1,u1;
l

∑
i=1
λi
[
∇u1 fi

(
u1,v1)+ w1

i +∇u1u1 fi
(
u1,v1)q1

i
]
)

≥−(u1)T
l

∑
i=1
λi
[
∇u1 fi

(
u1,v1)+ w1

i +∇u1u1 fi
(
u1,v1)q1

i
]
.

(7.8.17)
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From (7.8.10), (7.8.16) and (7.8.17), we get

l

∑
i=1
λi

[
fi(x1,v1)+ (x1)T w1

i − fi(u1,v1)− (u1)T w1
i +

1
2
(q1

i )
T∇u1u1 fi(u1,v1)q1

i

]
≥ 0.

(7.8.18)
By second order F2 – concavity of fi(x1, ·)−·T z1

i for fixed x1, with respect to p1
i ∈

R|K1|, we have

− fi(x1,v1)+ (v1)T z1
i + fi(x1,y1)− (y1)T z1

i −
1
2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i

≥ F2

(
v1,y1;−∇y1 fi

(
x1,y1)+ z1

i −∇y1y1 fi(x1,y1)p1
i

)
.

From λ > 0 and the sublinearity of F2, we have

l

∑
i=1
λi

[

fi
(
x1,y1)− (y1)T z1

i +(v1)T z1
i − fi(x1,v1)− 1

2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i

]

≥ F2

(

v1,y1;
l

∑
i=1
λi

[
−∇y1 fi(x1,y1)+ z1

i −∇y1y1 fi(x1,y1)p1
i

]
)

.

(7.8.19)
By the primal constraint (7.8.1), it follows that

c = −
l

∑
i=1
λi

[
∇y1 fi(x1,y1)− z1

i +∇y1y1 fi(x1,y1)p1
i

]
∈ R|K1|

+ .

Thus, by condition (iii) given in the Theorem, we have

F2
(
y1,v1;c

)
+(y1)T c ≤ 0,

that is,

F2

(

v1,y1;−
l

∑
i=1
λi

[
∇y1 fi(x1,y1)− z1

i +∇y1y1 fi(x1,y1)p1
i

]
)

≥ (y1)T
l

∑
i=1
λi

[
∇y1 fi(x1,y1)− z1

i +∇y1y1 fi(x1,y1)p1
i

]
.

(7.8.20)

From (7.8.3), (7.8.19) and (7.8.20), we get

l

∑
i=1
λi

[

fi
(
x1,y1)− (y1)T z1

i +(v1)T z1
i − fi(x1,v1)− 1

2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i

]

≥ 0.

(7.8.21)
Using (x1)T w1

i ≤ s(x1|C1
i ) and (v1)T z1

i ≤ s(v1|D1
i ), it follows from (7.8.18) and

(7.8.21), that
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l

∑
i=1
λi

[

fi(x1,y1)+ s
(
x1 ∣∣C1

i
)− (

y1)T
z1

i −
1
2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i

]

≥
l

∑
i=1
λi

[

fi(u1,v1)− s
(
v1 ∣∣D1

i
)
+(u1)T w1

i −
1
2
(
q1

i
)T ∇u1u1 fi(u1,v1)q1

i

]

.

(7.8.22)
Similarly, using remaining hypotheses and conditions given in the theorem and
using constraints of the primal and dual problems for functions gi

(·,v2)+ ·T w2
i

and gi
(
x2, ·)−·T z2

i , we get

l

∑
i=1
λi

[

gi(x2,y2)+ s(x2|C2
i )− (

y2)T
z2

i −
1
2
(

p2
i
)T ∇y2y2gi(x2,y2)p2

i

]

≥
l

∑
i=1
λi

[

gi
(
u2,v2)− s

(
v2 ∣∣D2

i
)
+
(
u2)T

w2
i −

1
2
(
q2

i
)T ∇u2u2 fi(u2,v2)q2

i

]

.

(7.8.23)
From (7.8.22) and (7.8.23), we get

l

∑
i=1
λi

[

fi(x1,y1)+ gi
(
x2,y2)+ s

(
x1 ∣∣C1

i
)
+ s(x2|C2

i )− (
y1)T

z1
i − (y2)T z2

i

−1
2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i −
1
2
(

p2
i
)T ∇y2y2 gi(x2,y2)p2

i

]

≥
l

∑
i=1
λi

[

fi
(
u1,v1)+ gi(u2,v2)− s

(
v1 ∣∣D1

i
)− s

(
v2 ∣∣D2

i
)
+(u1)T w1

i

+(u2)T w2
i −

1
2
(
q1

i
)T ∇u1u1 fi(u1,v1)q1

i −
1
2
(
q2

i
)T ∇u2u2gi

(
u2,v2)q2

i

]

,

which is a contradiction to (7.8.15).
Hence H∗

i
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

)
� G∗

i
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)
. ��

Theorem 7.8.2. (Weak Duality). Let
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

)
be feasible for

(SMP) and
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)
be feasible for (SMD). Suppose there

exist sublinear functionals F1, F2, G1 and G2 satisfying the following conditions
are satisfied:

(i) F1(x1,u1;a)+ (u1)T a ≥ 0; if a ≥ 0;
(ii) G1

(
x2,u2;b

)
+(u2)T b ≥ 0; if b ≥ 0;

(iii) F2
(
y1,v1;c

)
+
(
y1)T c ≤ 0; if c ≤ 0;

(iv) G2
(
y2,v2;d

)
+
(
y2)T d ≤ 0; if d ≤ 0.

Furthermore, assume that for i = 1,2, . . . , l, assume that fi
(·,v1

)
+ ·T w1

i is second
order F1 – pseudo-convex for fixed v1, with respect to q1

i ∈ R|J1|, fi(x1, ·)− ·T z1
i is

second order F2 – pseudo-concave for fixed x1, with respect to p1
i ∈ R|K1|, gi(·,v2)+

·T w2
i is second order G1 – pseudo-convex for fixed v2 with respect to q2

i ∈ R|J2|



238 7 Symmetric Duality

and gi
(
x2, ·)−·T z2

i is second order G2 – pseudo-concave for fixed x2, with respect
to p2

i ∈ R|K2|. Then H∗
i
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

)
� G∗

i
(
u1,u2,v1,v2,w1,w2,q1,

q2,λ
)
.

Proof. Assume that the result is not true, that is,

H∗
i
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

)≤ G∗
i
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)
.

Then, since λ > 0, we have

l

∑
i=1
λi

[

fi (x1,y1)+ gi
(
x2,y2)+ s

(
x1|C1

i
)
+ s

(
x2 ∣∣C2

i
)− (

y1)T
z1

i − (y2)T z2
i

− 1
2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i −
1
2
(

p2
i
)T ∇y2y2gi(x2,y2)p2

i

]

<
l

∑
i=1
λi

[

fi
(
u1,v1)+ gi(u2,v2)− s

(
v1 ∣∣D1

i
)− s

(
v2 ∣∣D2

i
)
+(u1)T w1

i

+(u2)T w2
i −

1
2
(q1

i )
T∇x1x1 fi(u1,v1)q1

i −
1
2
(
q2

i
)T ∇x2x2gi

(
u2,v2)q2

i

]

(7.8.24)
By the duality constraint (7.8.8), it follows that

a =
l

∑
i=1
λi
[
∇x1 fi

(
u1,v1)+ w1

i +∇x1x1 fi
(
u1,v1)q1

i
] ∈ R|J1|

+ .

Thus, by condition (i) given in the theorem, we have

F1(x1,u1;a)+ (u1)T a ≥ 0,

that is,

F1

(

x1,u1;
l

∑
i=1
λi
[
∇u1 fi(u1,v1)+ w1

i +∇u1u1 fi
(
u1,v1)q1

i
]
)

≥−(u1)T
l

∑
i=1
λi
[
∇u1 fi(u1,v1)+ w1

i +∇u1u1 fi(u1,v1)q1
i
]
.

(7.8.25)

From (7.8.10) and (7.8.25), we get

F1

(

x1,u1;
l

∑
i=1
λi
[
∇u1 fi(u1,v1)+ w1

i +∇u1u1 fi(u1,v1)q1
i
]
)

≥ 0. (7.8.26)

From (7.8.26) and second order F1 – pseudo-convexity of fi
(·,v1

)
+ ·T w1

i for fixed
v1, with respect to q1

i ∈ R|J1|, we get
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l

∑
i=1
λi

[
fi(x1,v1)+ (x1)T w1

i − fi(u1,v1)− (u1)T w1
i +

1
2
(q1

i )
T∇u1u1 fi(u1,v1)q1

i

]
≥ 0.

(7.8.27)
By primal constraint (7.8.1), it follows that

c = −
l

∑
i=1
λi

[
∇y1 fi(x1,y1)− z1

i +∇y1y1 fi(x1,y1)p1
i

]
∈ R|K1|

+ .

Thus, by condition (iii) given in the Theorem, we have

F2
(
y1,v1;c

)
+
(
y1)T

c ≤ 0,

that is,

F2

(

v1,y1;−
l

∑
i=1
λi

[
∇y1 fi(x1,y1)− z1

i +∇y1y1 fi(x1,y1)p1
i

]
)

≥ (y1)T
l

∑
i=1
λi

[
∇y1 fi(x1,y1)− z1

i +∇y1y1 fi(x1,y1)p1
i

]
.

(7.8.28)

From (7.8.3) and (7.8.28), we get

F2

(

v1,y1;−
l

∑
i=1
λi

[
∇y1 fi(x1,y1)− z1

i +∇y1y1 fi(x1,y1)p1
i

]
)

≥ 0. (7.8.29)

From (7.8.29) and the second order F2 – pseudo-concavity of fi(x1, ·)− ·T z1
i for

fixed x1, with respect to p1
i ∈ R|K1|, we have

l

∑
i=1
λi

[

fi(x1,y1)− (
y1)T

z1
i +(v1)T z1

i − fi(x1,v1)− 1
2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i

]

≥ 0.

(7.8.30)
Using (x1)T w1

i ≤ s
(
x1|C1

i
)

and (v1)T z1
i ≤ s

(
v1

∣
∣D1

i
)
, it follows from (7.8.27) and

(7.8.30), that

l

∑
i=1
λi

[

fi(x1,y1)+ s
(
x1 ∣∣C1

i
)− (y1)T z1

i −
1
2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i

]

≥
l

∑
i=1
λi

[

fi(u1,v1)− s
(
v1 ∣∣D1

i
)
+(u1)T w1

i −
1
2
(
q1

i
)T ∇u1u1 fi(u1,v1)q1

i

]

.

(7.8.31)
��

Similarly, using remaining hypotheses and conditions given in the Theorem and
using constraints of the primal and dual problems for functions gi(·,v2)+ ·T w2

i and
gi
(
x2, ·)−·T z2

i , we get
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l

∑
i=1
λi

[

gi(x2,y2)+ s(x2|C2
i )− (y2)T z2

i −
1
2
(

p2
i
)T ∇y2y2gi(x2,y2)p2

i

]

≥
l

∑
i=1
λi

[

gi(u2,v2)− s
(
v2 ∣∣D2

i
)
+(u2)T w2

i −
1
2
(
q2

i
)T ∇u2u2 fi(u2,v2)q2

i

]

.

(7.8.32)
From (7.8.31) and (7.8.32), we get

l

∑
i=1
λi

[

fi(x1,y1)+ gi(x2,y2)+ s(x1|C1
i )+ s(x2|C2

i )− (
y1)T

z1
i − (y2)T z2

i

− 1
2
(

p1
i
)T ∇y1y1 fi(x1,y1)p1

i −
1
2
(

p2
i
)T ∇y2y2 gi(x2,y2)p2

i

]

≥
l

∑
i=1
λi

[

fi(u1,v1)+ gi(u2,v2)− s
(
v1 ∣∣D1

i
)− s

(
v2 ∣∣D2

i
)
+(u1)T w1

i

+(u2)T w2
i −

1
2
(
q1

i
)T ∇u1u1 fi(u1,v1)q1

i −
1
2
(
q2

i
)T ∇u2u2gi(u2,v2)q2

i

]

,

which is a contradiction to (7.8.24).
Hence H∗

i
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

)
� G∗

i
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)
. ��

Theorem 7.8.3. (Strong Duality). Let
(
x1,x2,y1,y2,z1,z2, p1, p2,λ

)
be a properly

efficient solution for (SMP). Let λ = λ be fixed in (SMD). Suppose that the Hessian
matrix ∇2

y1 fi
(
x1,y1

)
is positive definite for i = 1,2, . . . , l and ∑l

i=1λi(p1
i )

T
[
∇y1 fi −

z̄1
i
] ≥ 0; and ∇2

y2gi
(
x2,y2

)
is positive definite for i = 1,2, . . . , l and ∑l

i=1λi(p2
i )

T

[
∇y2 gi − z̄2

i
] ≥ 0; or ∇2

y1 fi
(
x1,y1

)
is negative definite for i = 1,2, . . . , l and

∑l
i=1λi(p1

i )
T
[
∇y1 fi − z̄1

i
]≤ 0; and∇2

y2 gi
(
x2,y2

)
is negative definite for i = 1,2, . . . , l

and ∑l
i=1λi(p2

i )
T
[
∇y2 gi − z̄2

i
] ≤ 0. Also suppose that the sets {∇y1 f1 − z̄2

1 +
∇y1y1 f1 p̄1

1, . . . ,∇y1 fl − z̄2
l +∇y1y1 fl p̄1

l } and
{
∇y2g1 − z̄2

1 +∇y2y2 g1 p̄2
1, . . . ,∇y2gl −

z̄2
l +∇y2y2gl p̄2

l

}
are linearly independent. Then there exists w1

i ∈ C1
i and w2

i ∈ C2
i

such that
(
x1,x2,y1,y2,w1,w2,q1 = q2 = 0,λ

)
is feasible for (SMD) and H∗

i (x1,x2,

y1,y2,z1,z2, p1, p2,λ ) = G∗
i
(
u1,u2,v1,v2,w1,w2,q1,q2,λ

)
. Moreover, if the gener-

alized convexity hypotheses and conditions (i)–(iv) of Theorem 7.8.1 or 7.8.2 are
satisfied, then

(
x1,x2,y1,y2,w1,w2,q1,q2,λ

)
is a properly efficient solution for

(SMD).

Proof. The proof follows the lines of the proof of Theorem 2 in Yang et al. (2005)
in light of the discussions above in this section. ��
Remark 7.8.1. . The converse duality theorem can also be established for the prob-
lems considered in this section.

Remark 7.8.2. We can obtain some special cases of the problem (SMP) and (SMD)
by choosing particular forms of the sublinear functionals and the compact convex
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sets involved in the problems, as follows:

(xiii) If |J2|= |K2|= 0, then (SMP) and (SMD) reduce to the problems (P) and (D)
studied by Yang et al. (2005).

(xiv) If |J2| = |K2| = 0, and C1
i = C2

i = D1
i = D2

i = {0}, i = 1,2, . . . , l, then
(SMP) and (SMD) reduce to the problems (P) and (D) studied by Suneja
et al. (2003).

(xv) If C1
i =C2

i = D1
i = D2

i = {0}, i = 1,2, . . . , l, and l = 1, then (SMP) and (SMD)
reduce to the problems (MP) and (MD) studied by Mishra (2000b).

(xvi) If |J2| = |K2| = 0, and l = 1, then (SMP) and (SMD) reduce to the pair of
problems studied by Hou and Yang (2001).

(xvii) If |J2|= |K2|= 0, l = 1, and p1 = p2 = q1 = q2 = 0 then (SMP) and (SMD)
reduce to the problems (P1) and (D1) studied by Mond and Schechter (1996).

(xviii) If l = 1, p1 = p2 = q1 = q2 = 0 and∇2 f (x1,y1) = z1, then (SMP) and (SMD)
reduce to the problems (MP) and (MD) studied by Yang et al. (2003a).

(xix) If p1
i = p2

i = q1
i = q2

i = 0 and C1
i = C2

i = D1
i = D2

i = {0}, i = 1,2, . . . , l, and
then (SMP) and (SMD) reduce to a general form of the problems (P1) and
(D1) studied by Bector et al. (1999).

The results obtained in the present section can be extended to the class of
functions introduced by Antczak (2001) and Aghezaaf and Hachimi (2001). More-
over, these results can be further extended to higher order case as an extension of
the results of Chen (2004), to the case of complex functions and to the case of
continuous-time problems as well.

7.9 Symmetric Duality for a Class of Nondifferentiable Vector
Fractional Variational problems

It is well known due to the works of Schaible (1976a, 1995) that duality results for
convex optimization do not apply to fractional programs in general. Duality con-
cepts for such problems had to be defined separately Weir (1991), Yang et al. (2002a,
2002b).

Recently, Kim et al. (2004) introduced a symmetric dual for vector fractional
variational problems which is different from the one proposed by Chen (2004). Kim
et al. (2004) established weak, strong, converse and self-duality theorems under
invexity assumptions.

In this section, we focus on symmetric duality for a class of nondifferentiable
fractional variational problems. We introduced a symmetric dual pair for a class of
nondifferentiable vector fractional variational problems. We establish duality and
self-duality theorems under certain invexity assumptions. The results obtained in
this paper extend the very recent results established by Kim et al. (2004) to the
nondifferentiable case and also extend an earlier work of Yang et al. (2002b) to the
dynamic case. Moreover, these results also include, as special cases, the symmetric
duality results of Mond and Schechter (1996), Weir and Mond (1988b) and others.
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Let I = [a,b] be a real interval, f : I ×Rn ×Rn ×Rm ×Rm → ×Rk and g : I ×
Rn×Rn×Rm×Rm →×Rk. Consider the vector-valued function f (t,x, ẋ,y, ẏ), where
t ∈ I,x and y are functions of t with x(t) ∈ Rn and y(t) ∈ Rm and ẋ and ẏ denote the
derivatives of x and y, respectively, with respect to t.

Assume that f has continuous fourth-order partial derivatives with respect to
x, ẋ,y and ẏ. Let fx and fẋ denote the k×n matrices of first-order partial derivatives
with respect to x and ẋ; i.e.,

fix =
(
∂ fi

∂x1
, . . . ,

∂ fi

∂xn
,

)

and fiẋ =
(
∂ fi

∂ ẋ1
, . . . ,

∂ fi

∂ ẋn
,

)

, i = 1,2, . . . ,k.

Similarly, fy and fẏ denote the k×m matrices of first-order partial derivatives with
respect to yandẏ.

We consider the following vector fractional variational problem:

(FVP) minmize
∫ b

a f (t,x(t), ẋ(t))dt
∫ b

a g(t,x(t), ẋ(t))dt

=

(∫ b
a f1 (t,x(t), ẋ(t))dt

∫ b
a g1 (t,x(t), ẋ(t))dt

, . . . ,

∫ b
a fk (t,x(t), ẋ(t))dt

∫ b
a gk (t,x(t), ẋ(t))dt

)

subject to x(a) = α, x(b) = β ,

h(t,x(t), ẋ(t)) � 0,

where h : I×Rn ×Rn → Rl .
Assume that gi (t,x, ẋ) > 0 and fi (t,x, ẋ) � 0 for all i = 1,2, . . . ,k. Let X denote

the set of all feasible solutions of (FVP).

Definition 7.9.1. A point x∗ ∈ X is said to be an efficient (Pareto optimal) solution
of (FVP) if for all x ∈ X,

∫ b
a f (t,x, ẋ)dt
∫ b

a g(t,x, ẋ)dt
�

∫ b
a f (t,x∗, ẋ∗)dt
∫ b

a g(t,x∗, ẋ∗)dt
.

Definition 7.9.2. A point x∗ ∈ X is said to be a properly efficient solution of (FVP)
if is efficient for (FVP) and if there exists a scalar M > 0 such that, for all i ∈
{1,2, . . . ,k} ,

∫ b
a fi (t,x∗, ẋ∗)dt

∫ b
a gi (t,x∗, ẋ∗)dt

−
∫ b

a fi (t,x, ẋ)dt
∫ b

a gi (t,x, ẋ)dt
� M

(∫ b
a f j (t,x, ẋ)dt

∫ b
a g j (t,x, ẋ)dt

−
∫ b

a f j (t,x∗, ẋ∗)dt
∫ b

a g j (t,x∗, ẋ∗)dt

)

for some j, such that

∫ b
a f j (t,x, ẋ)dt

∫ b
a g j (t,x, ẋ)dt

>

∫ b
a f j (t,x∗, ẋ∗)dt

∫ b
a g j (t,x∗, ẋ∗)dt
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whenever x ∈ X, and
∫ b

a fi (t,x, ẋ)dt
∫ b

a gi (t,x, ẋ)dt
<

∫ b
a fi (t,x∗, ẋ∗)dt

∫ b
a gi (t,x∗, ẋ∗)dt

.

Definition 7.9.3. A point x∗ ∈ X is said to be a weakly efficient solution of (FVP) if
there exists no other feasible point x for which

∫ b
a f (t,x∗, ẋ∗)dt
∫ b

a g(t,x∗, ẋ∗)dt
>

∫ b
a f (t,x, ẋ)dt
∫ b

a g(t,x, ẋ)dt
.

Now we recall the invexity for continuous case as follows:

Definition 7.9.4. The vector of functionals
∫ b

a f =
(∫ b

a f1, . . . ,
∫ b

a fk

)
is said to be

invex in x and ẋ if for each y : [a,b] → Rm, with ẏ piecewise smooth, there exists a
function η : [a,b]×Rn ×Rn ×Rn ×Rn → Rn such that ∀ i = 1,2, . . . ,k,

∫ b

a
{ fi (t,x, ẋ,y, ẏ)− fi (t,u, u̇,y, ẏ)}dt

�
∫ b

a
η (t,x, ẋ,u, u̇)T

[

fi (t,u, u̇,y, ẏ)− d
dt

fiẋ (t,u, u̇,y, ẏ)
]

dt

for all x : [a,b]→ Rn,u : [a,b]→ Rn, where (ẋ(t), u̇(t)) is piecewise smooth on [a,b].

Definition 7.9.5. The vector of functionals −∫ b
a f is said to be invex in y and ẏ if for

each x : [a,b]→ Rn, with ẋ piecewise smooth, there exists a function ξ : [a,b]×Rm×
Rm ×Rm×Rm → Rm such that ∀ i = 1,2, . . . ,k,

−
∫ b

a
{ fi (t,x, ẋ,v, v̇)− fi (t,x, ẋ,y, ẏ)}dt

� −
∫ b

a
ξ (t,v, v̇,y, ẏ)T

[

fiy (t,x, ẋ,y, ẏ)− d
dt

fiẏ (t,x, ẋ,y, ẏ)
]

dt

for all v : [a,b]→ Rm,y : [a,b]→ Rm, where (v̇(t), ẏ(t)) is piecewise smooth on [a,b].

In the sequel, we will write η(x,u) for η (t,x, ẋ,u, u̇) and ξ (v,y) for ξ (t,v, v̇,y, ẏ).
We consider the problem of finding functions x : [a,b] → Rn, and y : [a,b] →

Rm, where (ẋ(t), ẏ(t)) is piecewise smooth on [a,b], to solve the following pair o
symmetric dual vector nondifferentiable fractional variational problems introduced
as follows:
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(MNFP) minimize
∫ b

a
{

f (t,x(t), ẋ(t),y(t), ẏ(t))+ s(x(t)C)− y(t)T z
}

dt
∫ b

a {g(t,x(t), ẋ(t),y(t), ẏ(t))− s(x(t)|E)+ y(t)T r}dt

=

(∫ b
a
{

f1 (t,x(t), ẋ(t),y(t), ẏ(t))+ s(x(t) |C1 )− y(t)T z1
}

dt
∫ b

a {g1 (t,x(t), ẋ(t),y(t), ẏ(t))− s(x(t)|E1)+ y(t)T r1}dt
, . . .

∫ b
a
{

fk (t,x(t), ẋ(t),y(t), ẏ(t))+ s(x(t) |Ck )− y(t)T zk
}

dt
∫ b

a {gk (t,x(t), ẋ(t),y(t), ẏ(t))− s(x(t) |Ek )+ y(t)T rk}dt

)

subject to x(a) = 0 = x(b), y(a) = 0 = y(b),
ẋ(a) = 0 = ẋ(b), ẏ(a) = 0 = ẏ(b),

k

∑
i=1
τi
{
[ fiy −D fiẏ − zi]Gi(x,y)− [giy −Dgiẏ + ri]Fi(x,y)

}
� 0,

∫ b

a
y(t)T

k

∑
i=1
τi
{
[ fiy −D fiẏ − zi]Gi(x,y)− [giy −Dgiẏ + ri]Fi(x,y)

}
dt � 0,

τ > 0, τT e = 1, t ∈ I

zi ∈ Di, ri ∈ Fi, i = 1,2, . . . ,k.

(MNFD) maximize
∫ b

a
{

f (t,u(t), u̇(t),v(t), v̇(t))− s(v(t) |D )+ u(t)T w
}

dt
∫ b

a {g(t,u(t), u̇(t),v(t), v̇(t))+ s(v(t) |H )−u(t)T s}dt

=

(∫ b
a
{

f1 (t,u(t), u̇(t),v(t), v̇(t))− s(v(t) |D1 )+ u(t)T w1
}

dt
∫ b

a {g1 (t,u(t), u̇(t),v(t), v̇(t))+ s(v(t) |H1 )−u(t)T s1}dt
, . . .

∫ b
a
{

fk (t,u(t), u̇(t),v(t), v̇(t))− s(v(t) |Dk )+ u(t)T wk
}

dt
∫ b

a {gk (t,u(t), u̇(t),v(t), v̇(t))+ s(v(t) |Hk )−u(t)T sk}dt

)

subject to u(a) = 0 = u(b), v(a) = 0 = v(b),
u̇(a) = 0 = u̇(b), v̇(a) = 0 = v̇(b),

k

∑
i=1
τi {[ fiu −D fiu̇ + wi]Gi(u,v)− [giu −Dgiu̇ − si]Fi(u,v)} � 0,

∫ b

a
u(t)T

k

∑
i=1
τi{[ fiu −D fiu̇ + wi]Gi(u,v)− [giu −Dgiu̇ − si]Fi(u,v)} � 0,

τ > 0, τT e = 1, t ∈ I,

wi ∈Ci, si ∈ Ei, i = 1,2, . . . ,k, .
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where fi : I ×Rn ×Rn ×Rm ×Rm → R+ and gi : I ×Rn ×Rn ×Rm ×Rm → R+\{0}
are continuously differentiable functions and

Fi(x,y) =
∫ b

a

{
fi (t,x, ẋ,y, ẏ)+ s(x(t) |Ci )− y(t)T zi

}
dt;

Gi(x,y) =
∫ b

a

{
gi (t,x, ẋ,y, ẏ)− s(x(t) |Ei )+ y(t)T ri

}
dt;

F∗
i (u,v) =

∫ b

a

{
fi (t,u, u̇,v, v̇)− s(v(t)|Di)+ u(t)T wi

}
dt;

and

G∗
i (u,v) =

∫ b

a

{
gi (t,u, u̇,v, v̇)+ s(v(t|Hi)−u(t)T si

}
dt.

In the above problems (MNFP) and (MNFD), the numerators are nonnegative and
denominators are positive; the differential operator D is given by

y = Dx ⇔ x(t) = α+
∫ t

a
y(s)ds,

and x(a) = α, x(b) = β are given boundary values; thus D = d
/

dt except at
discontinuities. Let

fx = fx (t,x(t), ẋ(t),y(t), ẏ(t)) ,
fẋ = fẋ (t,x(t), ẋ(t),y(t), ẏ(t)) etc.

All the above statements for Fi, Gi, F∗
i and G∗

i will be assumed to hold for subse-
quent results. It is to be noted that

D fiẏ = fiẏt + fiẏyẏ + fiẏẏÿ+ fiẏxẋ + fiẏẋẍ

and consequently

∂
∂y

D fiẏ = D fiẏy,
∂
∂ ẏ

D fiẏ = D fiẏẏ + fiẏy,
∂
∂ ÿ

D fiẏ = fiẏẏ,

∂
∂x

D fiẏ = D fiẏx,
∂
∂ ẋ

D fiẏ = D fiẏẋ + fiẏx,
∂
∂ ẍ

D fiẏ = fiẏẋ.

In order to simplify the notations we introduce

pi =
Fi(x,y)
Gi(x,y)

=
∫ b

a
{

fi (t,x, ẋ,y, ẏ)+ s(x(t) |Ci )− y(t)T zi
}

dt
∫ b

a {gi (t,x, ẋ,y, ẏ)− s(x(t) |Ei )+ y(t)T ri}dt

and

qi =
F∗

i (u,v)
G∗

i (u,v)
=

∫ b
a
{

fi (t,u, u̇,v, v̇)− s(v(t) |Di )+ u(t)T wi
}

dt;
∫ b

a {gi (t,u, u̇,v, v̇)+ s(v(t) |Hi )−u(t)T si}dt.
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and express problems (MNFP) and (MNFD) equivalent as follows:
(EMSP) minimize p = (p1, . . . , pk)

T

subject to
x(a) = 0 = x(b), y(a) = 0 = y(b), (7.9.1)

ẋ(a) = 0 = ẋ(b), ẏ(a) = 0 = ẏ(b), (7.9.2)

∫ b

a

{
fi (t,x, ẋ,y, ẏ)+ s(x |Ci )− yT zi

}
dt

− pi

∫ b

a

{
gi (t,x, ẋ,y, ẏ)− s(x |Ei )+ yT ri

}
dt = 0; (7.9.3)

k

∑
i=1
τi
{
[ fiy −D fiẏ − zi]− pi [giy −Dgiẏ + ri]

}
� 0, t ∈ I, (7.9.4)

∫ b

a
y(t)T

k

∑
i=1
τi
{
[ fiy −D fiẏ − zi]− pi [giy −Dgiẏ + ri]

}
� 0, t ∈ I, (7.9.5)

τ > 0,τT e = 1, t ∈ I, (7.9.6)

zi ∈ Di,ri ∈ Hi, i = 1,2, . . . ,k. (7.9.7)

(EMSD) maximize q = (q1, . . . ,qk)
T

subject to

u(a) = 0 = u(b), v(a) = 0 = v(b), (7.9.8)

u̇(a) = 0 = u̇(b), v̇(a) = 0 = v̇(b), (7.9.9)

∫ b

a

{
fi (t,u, u̇,v, v̇)− s(v |Di )+ uT wi

}
dt

− qi

∫ b

a

{
gi (t,u, u̇,v, v̇)+ s(v |Hi )−uT si

}
dt = 0; (7.9.10)

k

∑
i=1
τi {[ fiu −D fiu̇ + wi]−qi [giu −Dgiu̇ − si]} � 0, t ∈ I (7.9.11)

∫ b

a
u(t)T

k

∑
i=1
τi {[ fiu −D fiu̇ + wi]−qi [giu −Dgiu̇ − si]} � 0, t ∈ I (7.9.12)

τ > 0,τT e = 1, t ∈ I, (7.9.13)
wi ∈Ci,si ∈ Ei, i = 1,2, . . . ,k.. (7.9.14)
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In the above problems (EMSP) and (EMSD), it is to be noted that p and q are
also nonnegative.

Now we state duality theorems for problems (EMSP) and (EMSD) which lead to
corresponding relations between (MNFP) and (MNFD). We establish weak, strong
and converse duality as well as self-duality relations between (EMSP) and (EMSD).

Theorem 7.9.1. (Weak Duality). Let (x(t),y(t), p,τ,z1,z2, . . . ,zk,r1,r2, . . . ,rk) be
feasible for (EMSP) and let (u(t),v(t),q,τ,w1,w2, . . . ,wk,s1,s2, . . . ,sk) be feasible
for (EMSD). Assume that

∫ b
a
(

fi + ·T wi
)

dt and −∫ b
a
(
gi −·T si

)
dt are invex in x and

ẋ with respect to η (x,u), and −∫ b
a
(

fi −·T zi
)

dt and
∫ b

a
(
gi + ·T ri

)
dt are invex in y

and ẏ, with respect to ξ (v,y), and η(x,u)+ u(t) � 0 and ξ (v,y)+ y(t) � 0, ∀t ∈ I,
except possibly at corners of (ẋ(t), ẏ(t)) or (u̇(t), v̇(t)). Then one has p � q.

Proof. Since
∫ b

a
(

fi + ·T wi
)

dt and −∫ b
a
(
gi −·T si

)
dt are invex in x and ẋ with

respect to η(x,u), we have

∫ b

a

[{
fi (t,x(t), ẋ(t),v(t), v̇(t))+ xT wi

}−qi
{

gi (t,x(t), ẋ(t),v(t), v̇(t))− xT si
}]

dt

−
∫ b

a
[{ fi(t,u(t), u̇(t),v(t), v̇(t))+ uT wi}−qi{gi(t,u(t), u̇(t),v(t), v̇(t))−uT si}]dt

�
∫ b

a
η(x,u)T [{ fix(t,u(t), u̇(t),v(t), v̇(t))+ wi}

−qi{gix(t,u(t), u̇(t),v(t), v̇(t))− si}−D{ fiẋ(t,u(t), u̇(t),v(t), v̇(t))+ wi}
−qi{giẋ(t,u(t), u̇(t),v(t), v̇(t))− si}]dt

=
∫ b

a
η(x,u)T [{( fix(t,u(t), u̇(t),v(t), v̇(t))+ wi)

−D( fiẋ(t,u(t), u̇(t),v(t), v̇(t))+ wi)}
−qi{(gix(t,u(t), u̇(t),v(t), v̇(t))− si)−D(giẋ(t,u(t), u̇(t),v(t), v̇(t))− si)}]dt.

From (7.9.6), (7.9.11) and (7.9.12) with η (x,u)+ u(t) � 0, we obtain

k

∑
i=1
τi

∫ b

a
[{ fi(t,x(t), ẋ(t),v(t), v̇(t))+ xT wi}

−qi{gi(t,x(t), ẋ(t),v(t), v̇(t))− xT si}]dt

�
k

∑
i=1
τi

∫ b

a
[{ fi(t,u(t), u̇(t),v(t), v̇(t))+ uT wi}

−qi{gi(t,u(t), u̇(t),v(t), v̇(t))−uT si}]dt.

(7.9.15)
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Since xT si ≤ s(x |Ei ) ,si ∈ Ei and xT wi ≤ s(x |Ci ) ,wi ∈ Ci, (7.9.15) can be written
as

k

∑
i=1
τi

∫ b

a
[{ fi(t,x(t), ẋ(t),v(t), v̇(t))+ s(x|Ci)}

− qi{gi(t,x(t), ẋ(t),v(t), v̇(t))− s(x|Ei)}]dt

�
k

∑
i=1
τi

∫ b

a
[{ fi(t,u(t), u̇(t),v(t), v̇(t))+ uT wi}

−qi{gi(t,u(t), u̇(t),v(t), v̇(t))−uT si}]dt.

(7.9.16)

By the invexity of −∫ b
a
(

fi −·T zi
)

dt and
∫ b

a
(
gi + ·T ri

)
dt are invex in y and ẏ, with

respect to ξ (v,y), for fixed x, we have

∫ b

a
[{ fi(t,x(t), ẋ(t),v(t), v̇(t))− vT zi}− pi{gi(t,x(t), ẋ(t),v(t), v̇(t))+ vT ri}]dt

−
∫ b

a
[{ fi(t,x(t), ẋ(t),y(t), ẏ(t))− yT zi}− pi{gi(t,x(t), ẋ(t),y(t), ẏ(t))+ yT ri}]dt

�
∫ b

a
ξ (v,y)T [{( fiy(t,x(t), ẋ(t),y(t), ẏ(t))− zi)

−D( fiẏ(t,x(t), ẋ(t),y(t), ẏ(t))− zi)}
− pi{(giy(t,x(t), ẋ(t),y(t), ẏ(t))+ ri)−D(giẏ(t,x(t), ẋ(t),y(t), ẏ(t))+ ri)}]dt.

From (7.9.4), (7.9.5) and (7.9.13) along with ξ (v,y)+ y(t) � 0, ∀t ∈ I, we obtain

k

∑
i=1
τi

∫ b

a
[{ fi(t,x(t), ẋ(t),v(t), v̇(t))− vT zi}− pi{gi(t,x(t), ẋ(t),v(t), v̇(t))+ vT ri}]dt

�
k

∑
i=1
τi

∫ b

a
[{ fi(t,x(t), ẋ(t),y(t), ẏ(t))− yT zi}

− pi{gi(t,x(t), ẋ(t),y(t), ẏ(t))+ yT ri}]dt.
(7.9.17)

Since vT ri ≤ s(v |Hi ) , ri ∈Hi and vT zi ≤ s(v |Di ) , zi ∈Di, (7.9.17) can be written as

k

∑
i=1
τi

∫ b

a
[{ fi(t,x(t), ẋ(t),v(t), v̇(t))− s(v|Di)}

− pi{gi(t,x(t), ẋ(t),v(t), v̇(t))+ s(v|Hi)}]dt

�
k

∑
i=1
τi

∫ b

a
[{ fi(t,x(t), ẋ(t),y(t), ẏ(t))− yT zi}

− pi{gi(t,x(t), ẋ(t),y(t), ẏ(t))+ yT ri}]dt.

(7.9.18)

From (7.9.16) and (7.9.18), we get
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k

∑
i=1
τi

∫ b

a
(pi −qi)gi (t,x, ẋ,v, v̇)dt

�
k

∑
i=1
τi

[∫ b

a

{
fi (t,u, u̇,v, v̇)− s(v |Di )+ uT wi

}
dt

−qi

∫ b

a

{
gi (t,u, u̇,v, v̇)+ s(v |Hi )−uT si

}
dt
]

(7.9.19)

−
k

∑
i=1
τi

[∫ b

a

{
fi (t,x, ẋ,y, ẏ)+ s(x |Ci )− yT zi

}
dt

− pi

∫ b

a

{
gi (t,x, ẋ,y, ẏ)− s(x |Ei )+ yT ri

}
dt
]
.

From (7.9.3) and (7.9.10), (7.9.19) yields

k

∑
i=1
τi (pi −qi)

∫ b

a
gi (t,x, ẋ,v, v̇)dt � 0. (7.9.20)

If for some i, pi < qi and ∀ j �= i, pi � qi, then
∫ b

a gi (t,x, ẋ,v, v̇)dt > 0, i = 1,2, . . . ,k,
implies that

k

∑
i=1
τi (pi −qi)

∫ b

a
gi (t,x, ẋ,v, v̇)dt < 0,

which contradicts (7.9.20). Hence p � q. ��
Theorem 7.9.2. (Weak Duality). Let (x(t),y(t), p,τ,z1,z2, . . . ,zk,r1,r2, . . . ,rk) be
feasible for (EMSP) and let (u(t),v(t),q,τ,w1,w2, . . . ,wk,s1,s2, . . . ,sk) be feasible
for (EMSD). Assume that∑k

i=1 τi
∫ b

a
{(

fi + ·T wi
)− qi

(
gi −·T si

)}
dt is pseudo-invex

in x and ẋ with respect to η(x,u), and −∑k
i=1 τi

∫ b
a

{(
fi −·T zi

)− pi
(
gi + ·T ri

)}
dt

is pseudo-invex in y and ẏ, with respect to ξ (v,y), with η(x,u) + u(t) � 0 and
ξ (v,y) + y(t) � 0,∀t ∈ I, except possibly at corners of (ẋ(t), ẏ(t)) or (u̇(t), v̇(t)).
Then one has p � q.

Proof. Using the conditionη(x,u)+u(t)� 0∀ t ∈ I, and duality constraint (7.9.12),
we get

∫ b

a
η(x,u)T

k

∑
i=1
τi {[ fiu −D fiu̇ + wi]−qi [giu −Dgiu̇ − si]}dt

= −
∫ b

a
u(t)T

k

∑
i=1
τi {[ fiu −D fiu̇ + wi]−qi [giu −Dgiu̇ − si]}dt � 0.
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Since ∑k
i=1 τi

∫ b
a
{(

fi + ·T wi
) − qi

(
gi −·T si

)}
dt is pseudo-invex with respect to

η(x,u), it follows that

k

∑
i=1
τi

∫ b

a

[{
fi (t,x(t), ẋ(t),v(t), v̇(t))+ xT wi

}

−qi
{

gi (t,x(t), ẋ(t),v(t), v̇(t))− xT si
}]

dt

�
k

∑
i=1
τi

∫ b

a

[{
fi (t,u(t), u̇(t),v(t), v̇(t))+ uT wi

}

−qi
{

gi (t,u(t), u̇(t),v(t), v̇(t))−uT si
}]

dt. (7.9.21)

Since xT si ≤ s(x |Ei ) ,si ∈ Ei and xT wi ≤ s(x |Ci ) ,wi ∈ Ci, (7.9.21) can be written
as

k

∑
i=1
τi

∫ b

a
[{ fi(t,x(t), ẋ(t),v(t), v̇(t))+ s(x|Ci)}

− qi{gi(t,x(t), ẋ(t),v(t), v̇(t))− s(x|Ei)}]dt

�
k

∑
i=1
τi

∫ b

a
[{ fi(t,u(t), u̇(t),v(t), v̇(t))+ uT wi}

−qi{gi(t,u(t), u̇(t),v(t), v̇(t))−uT si}]dt. (7.9.22)

By ξ (v,y)+ y(t) � 0,∀t ∈ I, and primal constraint (7.9.5), we get

∫ b

a
ξ (x,u)T

k

∑
i=1
τi
{

[ fiy −D fiẏ − zi]− pi [giy −Dgiẏ + ri]
}

dt

= −
∫ b

a
y(t)T

k

∑
i=1
τi
{

[ fiy −D fiẏ − zi]− pi [giy −Dgiẏ + ri]
}

dt � 0.

By the pseudo-invexity of −∑k
i=1 τi

∫ b
a
{(

fi −·T zi
)− pi

(
gi + ·T ri

)}
dt with respect

to ξ (v,y), we get

k

∑
i=1
τi

∫ b

a
[
{

fi (t,x(t), ẋ(t),v(t), v̇(t))− vT zi
}

− pi
{

gi (t,x(t), ẋ(t),v(t), v̇(t))+ vT ri
}
]dt

�
k

∑
i=1
τi

∫ b

a
[
{

fi (t,x(t), ẋ(t),y(t), ẏ(t))− yT zi
}

− pi
{

gi (t,x(t), ẋ(t),y(t), ẏ(t))+ yT ri
}
]dt. (7.9.23)
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Since vT ri ≤ s(v |Hi ) ,ri ∈ Hi and vT zi ≤ s(v |Di ) , zi ∈ Di, (7.9.23) can be written as

k

∑
i=1
τi

∫ b

a
[{ fi (t,x(t), ẋ(t),v(t), v̇(t))− s(v |Di )}

− pi{gi (t,x(t), ẋ(t),v(t), v̇(t))+ s(v |Hi )}]dt

�
k

∑
i=1
τi

∫ b

a
[
{

fi (t,x(t), ẋ(t),y(t), ẏ(t))− yT zi
}

− pi
{

gi (t,x(t), ẋ(t),y(t), ẏ(t))+ yT ri
}
]dt. (7.9.24)

From (7.9.22) and (7.9.24), we get

k

∑
i=1
τi

∫ b

a
(pi −qi)gi (t,x, ẋ,v, v̇)dt

�
k

∑
i=1
τi

[∫ b

a

{
fi (t,u, u̇,v, v̇)− s(v |Di )+ uT wi

}
dt

−qi

∫ b

a

{
gi (t,u, u̇,v, v̇)+ s(v |Hi )−uT si

}
dt
]

−
k

∑
i=1
τi

[∫ b

a

{
fi (t,x, ẋ,y, ẏ)+ s(x |Ci )− yT zi

}
dt

− pi

∫ b

a

{
gi (t,x, ẋ,y, ẏ)− s(x |Ei )+ yT ri

}
dt
]
. (7.9.25)

From (7.9.3) and (7.9.10), (7.9.25) yields

k

∑
i=1
τi (pi −qi)

∫ b

a
gi (t,x, ẋ,v, v̇)dt � 0. (7.9.26)

If for some i, pi < qi and ∀ j �= i, pi � qi, then
∫ b

a gi (t,x, ẋ,v, v̇)dt > 0, i = 1,2, . . . ,k,
implies that

k

∑
i=1
τi (pi −qi)

∫ b

a
gi (t,x, ẋ,v, v̇)dt < 0,

which contradicts (7.9.26). Hence p � q. ��
The following Theorems 7.9.3 and 7.9.4 can be established on the lines of the

proofs of Theorems 3.2 and 3.3 given by Kim et al. (2004) in the light of the
discussions given above in this section.
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Theorem 7.9.3. (Strong Duality) Let (x̄(t), ȳ(t), p̄, τ̄, z̄1, z̄2, . . . , z̄k, r̄1, r̄2, . . . , r̄k) be a
properly efficient solution for (EMSP) and fix τ = τ̄ in (EMSD), and define

p̄i =
∫ b

a

{
fi (t, x̄, ˙̄x, ȳ, ˙̄y)+ s(x̄(t) |Ci )− ȳ(t)T z̄i

}
dt

∫ b
a {gi (t, x̄, ˙̄x, ȳ, ˙̄y)− s(x̄(t) |Ei )+ ȳ(t)T r̄i}dt

, i = 1,2, . . . ,k

Suppose that all the conditions in Theorem 7.9.1 or Theorem 7.9.2 are fulfilled.
Furthermore, assume that

(I)
k

∑
i=1
τ̄i

∫ b

a
ψ(t)T [{

[( fiyy − zi)− p̄i (giyy + ri)]−D [( fiẏy − zi)− p̄i (giẏy + ri)]
}

−D
{
[( fiyẏ − zi −D fiẏẏ − fiẏy)− p̄i (giyẏ + ri −Dgiẏẏ −giẏy)]

}

+D2{− [( fiẏẏ − zi)− p̄i (giẏẏ + ri)]
}]
ψ(t)T dt = 0

implies that ψ(t) = 0,∀t ∈ I, and

(II)
[∫ b

a

{
( f1y − z1)− p̄1 (g1y + r1)

}
dt, . . . ,

∫ b

a

{(
fky − zk

)− p̄k
(
gky + rk

)}
dt
]

is linearly independent. Then there exist w̄i ∈ Rn, s̄i ∈ Rm, i = 1,2, . . . ,k such that
(x̄(t), ȳ(t), p̄, τ̄ , w̄1, w̄2, . . . , w̄k, s̄1, s̄2, . . . , s̄k) is a properly efficient solution of
(EMSD).

Theorem 7.9.4. (Converse Duality). Let (x̄(t), ȳ(t), p̄, τ̄, z̄1, z̄2, . . . , z̄k, r̄1, r̄2, . . . , r̄k)
be a properly efficient solution for (EMSD) and fix τ = τ̄ in (EMSP), and define p̄i
as in Theorem 7.9.3. Suppose that all the conditions in Theorem 7.9.1 or 7.9.2 are
fulfilled. Furthermore, assume that (I) and (II) of Theorem 7.9.3 are satisfied. Then
there exist w̄i ∈ Rn, s̄i ∈ Rm, i = 1,2, . . . ,k such that (x̄(t), ȳ(t), p̄, τ̄ , w̄1, w̄2, . . . , w̄k,
s̄1, s̄2, . . . , s̄k) is a properly efficient solution of (EMSP).

Remark 7.9.1. (i) If the time dependence of problems (MNFP) and (MNFD) is
removed and the functions involved are considered to have domain Rn ×Rm, we
obtain the symmetric dual fractional pair given by

(SNMFP) minimize
(

f1(x,y)+ s (x |C1 )− yT z1

g1(x,y)− s (x|E1)+ yT r1
, . . . ,

fk(x,y)+ s (x |Ck )− yT zk

gk(x,y)− s (x |Ek )+ yT rk

)

subject to
k

∑
i=1
τi

[

∇y fi(x,y)− zi − fi(x,y)+ s(x|Ci)− yT zi

gi(x,y)− s(x|Ei)+ yT ri
(∇ygi(x,y)+ ri)

]

≤ 0,

yT
k

∑
i=1
τi

[

∇y fi(x,y)− zi − fi(x,y)+ s(x|Ci)− yT zi

gi(x,y)− s(x|Ei)+ yT ri
(∇ygi(x,y)+ ri)

]

≥ 0,

zi ∈ Di, ri ∈ Fi, 1 ≤ i ≤ k,

τ > 0, τT e = 1, x ≥ 0
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(SNMFD) maximize
(

f1(u,v)− s(v|D1)+uT w1

g1(u,v)+ s(v|F1)−uT t1
, . . . ,

fk(u,v)− s(v|Dk)+uT wk

gk(u,v)+ s(v|Fk)−uT tk

)

subject to
k

∑
i=1
τi

[

∇u fi(u,v)+wi − fi(u,v)− s(v|Di)+uT wi

gi(u,v)+ s(v|Fi)−uT ti
(∇ugi(u,v)− ti)

]

≥ 0,

uT
k

∑
i=1
τi

[

∇u fi(u,v)+wi − fi(u,v)− s(v|Di)+uT wi

gi(u,v)+ s(v|Fi)−uT ti
(∇ugi(u,v)− ti)

]

≤ 0,

wi ∈Ci, ti ∈ Ei, 1 ≤ i ≤ k,

τ > 0, τT e = 1, v ≥ 0.

The pair of problems (SNMFP) and (SNMFD) obtained above is exactly the pair
of problems (FP) and (FD) considered by Yang et al. (2002b).

(ii) If we set k = 1, and our problems are time independent, we get the following
pair of problems:

(SNFP) minimize
(

f (x,y)+ s(x|C)− yT z
g(x,y)− s (x |E )+ yT r

)

subject to
[

∇y f (x,y)− z− f (x,y)+ s(x|C)− yT z
g(x,y)− s (x |E )+ yT r

(∇yg(x,y)+ r)
]

≤ 0,

yT
[

∇y f (x,y)− z− f (x,y)+ s(x|C)− yT z
g(x,y)− s (x |E )+ yT r

(∇yg(x,y)+ r)
]

≥ 0,

z ∈ D, r ∈ F,

x ≥ 0.

(SNFD) maximize
(

f (u,v)− s(v|D)+uT w
g(u,v)+ s (v |F )−uT t

)

subject to
[

∇u f (u,v)+w− f (u,v)− s(v|D)+uT w
g(u,v)+ s (v |F )−uT t

(∇ug(u,v)− t)
]

≥ 0,

uT
[

∇u f (u,v)+w− f (u,v)− s(v|D)+uT w
g(u,v)+ s (v |F )−uT t

(∇ug(u,v)− t)
]

≤ 0,

w ∈C, t ∈ E,

v ≥ 0.

The pair of problems (SNFP) and (SNFD) are exactly the pair of problems (FP)
and (FD) considered by Yang et al. (2002a).

(iii) If we remove the nondifferentiable terms of the problems discussed in this
section, we get the problems discussed in Sect. 7.4 of Kim et al. (2004).



Chapter 8
Vector Variational-like Inequality Problems

8.1 Relationships Between Vector Variational-Like Inequalities
and Vector Optimization Problems

In this section, we will establish some relationships between vector variational-like
inequalities and vector optimization problems under the assumptions of α− invex
functions. We will identify the vector critical points, the weakly efficient solutions
and the solutions of the weak vector variational-like inequality problems, under
pseudo-α− invexity assumptions. These conditions are more general than those
of existing ones in the literature. In particular, this work extends an earlier work
of Ruiz-Garzon et al. (2004) to a wider class of functions, namely the pseudo-α−
invex functions introduced recently in Noor (2004a).

The concept of a vector variational inequality was introduced by Giannessi
(1980). Since it has shown applications to a wide range of problems in various disci-
plines in the natural and social sciences, vector variational inequality problems have
been generalized in various directions; in particular, vector variational-like inequal-
ity problems, see Gianessi (2000), Noor (1990, 1994a,b 1995, 2004a), Yang (1993,
1997). Several authors Chen and Cheng (1998), Ruiz-Garzon et al. (2003, 2004)
have discussed relationships between vector variational inequalities and vector opti-
mization problems under some convexity or generalized convexity assumptions.
However, as it can be expected, such rather rigid conditions are not always met
in applications.

The role of generalized monotonicity of the operator in vector variational inequal-
ity problems corresponds to the role of generalized convexity of the objective
function in the optimization problem. In recent years, several extensions and gener-
alizations have been considered for classical convexity. A significant generalization
of convex functions is that of invex functions introduced by Hanson (1981). Weir
and Mond (1988) and Noor (1990) have studied some basic properties of the prein-
vex functions and their role in optimization and variational-like inequality problems.
Noor (2004b) has pointed out that the concept of invexity plays exactly the same role
in variational-like inequality problems as the classical convexity plays in variational

S.K. Mishra et al., Generalized Convexity and Vector Optimization,
Nonconvex Optimization and Its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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inequality problems, and has shown that the variational-like inequality problems are
well-defined in the setting of invexity.

Recently, Ruiz-Garzon et al. (2004) established relationships between vector
variational-like inequality and optimization problems, under the assumptions of
pseudo-invexity. However, Ruiz-Garzon et al. (2004) have obtained some results
without invexity assumption on the underlying set while discussing variational-like
inequality problems.

In this section, we establish various relationships between generalized vector
variational-like inequality problems and vector optimization problems under the
assumption of pseudo-α– invex functions.

The following convention for equalities and inequalities will be used throughout
the paper. If x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) ∈ Rn, we denote

x � y iff xi ≤ yi ∀i = 1,2, . . . ,n;
x ≤ y iff xi ≤ yi ∀i = 1,2, . . . ,n; with x �= y;
x < y iff xi < yi ∀i = 1,2, . . . ,n; and x ≮ y is the negation of x < y.

Let X be a nonempty subset of Rn,η : X ×X → Rn be a continuous map and α:
X ×X → R+\{0} be a bifunction.

Definition 8.1.1. A subset X is said to be an α− invex set, if there η : X ×X →
Rn,α(x,u)X ×X → R+ such that

u +λα(x,u)η(x,u) ∈ X , ∀x,u ∈ X , λ ∈ [0,1].

Remark 8.1.1. (i) If α (y,x) = 1, then the set X is called the invex (η– connected)
set, see Mohan and Neogy 1995).
(ii) If η (y,x) = y− x and 0 < α (y,x) < 1, then the set X is called the star-shaped.

(iii) If α (y,x) = 1 and η (y,x) = y− x, then the set X is called the convex set.

It is well known that the α− invex set may not be convex sets, see Noor (2004a).

Definition 8.1.2. The function f on the α– invex set is said to be α − preinvex
function, if there exist η : X ×X → Rn,α (x,u)X ×X → R+ such that

f (u +λα(x,u)η(x,u)) ≤ (1−λ ) f (u)+λ f (x), ∀x,u ∈ X , λ ∈ [0,1].

From now onward we assume that the set X is a nonempty, closed and α– invex set
with respect to α (·, ·) and η (·, ·), unless otherwise specified.

Definition 8.1.3. Let f : X ⊂ Rn → Rp be a differentiable function with a p× n
matrix as its Jacobian. The function f is said to be

(a) α– invex if and only if there exists a functions α: X × X → R+\{0} and η :
X ×X → Rn, such that

f (y)− f (x) � 〈α (y,x)∇ f (x) ,η (y,x)〉, ∀x, y ∈ X ;
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(b) strictly α -invex if and only if there exists a functions α: X ×X → R+\{0} and
η : X ×X → Rn, such that

f (y)− f (x) > 〈α (y,x)∇ f (x) ,η (y,x)〉, ∀x, y ∈ X , x �= y;

(c) pseudo-α− invex if and only if there exists a functions α: X ×X → R+\{0} and
η : X ×X → Rn, such that

f (y) < f (x) ⇒ 〈α (y,x)∇ f (x) ,η (y,x)〉 < 0, ∀x, y ∈ X .

Let X ⊆ Rn be an α– invex nonempty subset of Rn and two continuous maps F :
X → Rn and η : X ×X → Rn and α: X ×X → R+\{0} be a bifunction.

The variational-like inequality problem (VLIP), is to find a point x̄ ∈ X , such that
η (y,x)T F (x̄) ≥ 0, ∀y ∈ X .

A vector variational-like inequality problem (VVLIP), is to find a point x̄ ∈ X ,
such that there exists no y ∈ X , such that F(x̄)η(y, x̄) < 0.

A weak vector variational-like inequality problem (WVVLIP), is to find a point
x̄ ∈ X , such that there exists no y ∈ X , such that F (x̄)η (y, x̄) < 0.

We consider the following generalized forms of vector variational-like inequality
problems:

(GVVLIP) A generalized vector variational-like inequality problems, is to find a
point x̄ ∈ X , such that there exists no y ∈ X , such that 〈α(y, x̄)F(x̄),η(y, x̄)〉 ≤ 0.

(GWVVLIP) A generalized weak vector variational-like inequality problems,
is to find a point x̄ ∈ X , such that there exists no y ∈ X , such that 〈α(y, x̄)F(x̄),
η(y, x̄)〉 < 0.

Remark 8.1.2. Notice that if α (y, x̄) = 1, then the (GVVLIP) and (GWVVLIP)
reduce to the (VVLIP) and (WVVLIP) studied in Garzon et al. (2004).

It is well known that in multiobjective optimization problems, the objective func-
tions are conflicting in nature and can not be combined into a single objective. In
this sense we must understand the concept of efficient solutions.

Let f : Rn → Rp, the vector optimization problem (VOP) is to find the efficient
points for

(VOP) V −min f (x)
subject to x ∈ X .

Definition 8.1.4. A point x̄ ∈X is said to be efficient (Pareto), if there exists no y∈ X
such that f (y) ≤ f (x̄).

Definition 8.1.5. A point x̄ ∈ X is said to be weakly efficient, if there exists no y ∈ X
such that f (y) < f (x̄).

Using the concept of pseudo-α– invex functions, we shall extend the results given
by Ruiz-Garzon et al. (2004) for pseudo-invex functions. In fact, these results also
extend earlier works of Kazmi (1996) and Yang and Goh (1997).

In the following theorem we establish that under α– invexity assumptions the
solutions of the generalized vector variational-like inequality problem (GVVLIP)
are efficient solutions to (VOP).
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Theorem 8.1.1. Let f : X ⊂ Rn → Rp be differentiable function on X. If F = ∇ f , f
is α– invex with respect to α and η and x̄ solves the generalized vector variational-
like inequality problem (GVVLIP) with respect to the same α and η , then x̄ is an
efficient point to the vector optimization problem (VOP).

Proof. Suppose x̄ is not an efficient point to (VOP), then there exists a y ∈ X such
that f (y)− f (x̄) ≤ 0.

Since f is α– invex with respect to α and η , we have ensured that ∃y ∈ X , such
that

〈α (y, x̄)∇ f (x̄) ,η (y, x̄)〉 ≤ 0;

therefore x̄ cannot be a solution to the generalized vector variational-like inequality
problem (GVVLIP). This contradiction leads to the result. ��
Theorem 8.1.2. Let f : X ⊂ Rn → Rp be differentiable function on X. If F =∇ f ,− f
is strictly-α− invex with respect to α and η . If x̄ is a weakly efficient solution to
the vector optimization problem (VOP) then x̄ also solves the generalized vector
variational-like inequality problem (GVVLIP).

Proof. Suppose that x̄ is a weakly efficient solution to (VOP), but does not solve the
(GVVLIP). Then there exists a y ∈ X such that 〈α (y, x̄)∇ f (x̄) ,η (y, x̄)〉 ≤ 0.

By the strict-α– invexity of − f with respect to α and η , we have

f (y)− f (x̄) < 〈α (y, x̄)∇ f (x̄) ,η (y, x̄)〉 ≤ 0;

therefore ∃y ∈ X such that f (y) < f (x̄),
which contradicts x̄ being a weakly efficient solution to the (VOP). ��
Since every efficient solution to (VOP) is a weakly efficient solution to (VOP),

from the above theorem, we can get the following result.

Corollary 8.1.1. Let f : X ⊂ Rn → Rp be differentiable function on X. If F =∇ f ,− f
is strictly-α– invex with respect to α and η . If x̄ is an efficient solution to the vector
optimization problem (VOP) then x̄ also solves the generalized vector variational-
like inequality problem (GVVLIP).

Theorem 8.1.3. Let f : X ⊂ Rn → Rp be differentiable function on X. If F = ∇ f . If
x̄ is a weakly efficient solution to the vector optimization problem (VOP) then x̄ also
solves the generalized weak vector variational-like inequality problem (GWVVLIP).

If f is a pseudo-α– invex function with respect to α and η . If x̄ also solves the
generalized weak vector variational-like inequality problem (GVVLIP) with respect
to the same α and η . Then x̄ is a weakly efficient solution to the vector optimization
problem (VOP).

Proof. For (⇒) Let x̄ be a weakly efficient solution to the (VOP), since X is an α−
invex set, we have that �y ∈ X , such that f (x̄+ tα(y, x̄)η(y, x̄))− f (x̄) < 0,0 < t < 1.

Dividing the above inequality by t and taking the limit as t → 0, we get to �y ∈X ,
such that 〈α (y, x̄)∇ f (x̄) ,η (y, x̄)〉 < 0.



8.1 Relationships Between Vector Variational-Like Inequalities 259

For (⇐) If x̄ is not a weakly efficient solution to (VOP), then ∃y ∈ X , such that

f (y) < f (x̄) .

By pseudo-α– invexity of f with respect to α and η , we have ensured that ∃y ∈ X ,
such that 〈α (y, x̄)∇ f (x̄) ,η (y, x̄)〉 < 0. This contradicts the fact that x̄ is a solution
to the (GWVVLIP). ��
Theorem 8.1.4. Let f : X ⊂ Rn → Rp be differentiable function on X. If F = ∇ f , f
is strictly-α– invex with respect to α and η . If x̄ is a weakly efficient solution to the
vector optimization problem (VOP) then x̄ is an efficient solution to (VOP).

Proof. Suppose that x̄ is a weakly efficient solution to the (VOP), but not an efficient
solution to (VOP). Then, there exists ∃y ∈ X , such that f (y) ≤ f (x̄).

By the strict-α– invexity of f with respect to the same α and η , we have

f (y)− f (x̄) > 〈α (y, x̄)∇ f (x̄) ,η (y, x̄)〉,

which is to say, ∃y ∈ X , such that 〈α (y, x̄)∇ f (x̄) ,η (y, x̄)〉 < 0; therefore, x̄ does
not solve the (GWVVLIP). This contradiction arises from the first part of Theorem
8.1.3. ��

In the sequel we need the following definition from Osuna et al. (1998).

Definition 8.1.6. A feasible solution x̄ ∈X is said to be a vector critical point for the
problem (VOP) if there exists a vector λ ∈ Rp with λ ≥ 0 such that λ T∇ f (x̄) = 0.

It should be noticed that scalar stationary points are those whose vector gradients
are zero. For vector problems, the vector critical points are those such that there
exists a non-negative linear combination of the gradient vectors of each component
of objective function, valued at that point, equal to zero.

The following theorem is extension to the context of pseudo-α− invexity of
Theorem 2.2 from Osuna et al. (1998) for pseudo-invex case.

Theorem 8.1.5. All vector critical points are weakly efficient solutions if and only
if the vector function f is pseudo-α− invex on X.

Proof. The proof follows from the proof of Theorem 2.2 of Osuna et al. (1998) and
the discussion as above in this section. ��

In light of Theorem 8.1.3 and Theorem 8.1.5 we could relate the vector criti-
cal points to the solutions of the weak vector variational-like inequality problem
(GWVVLIP), with the following result:

Corollary 8.1.2. Suppose that F =∇ f . If the objective function is pseudo-α− invex
with respect to α and η , then the vector critical points, the weakly efficient points
and the solutions of the generalized weak vector variational-like inequality problem
(GWVVLIP) are equivalent.
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8.2 On Relationships Between Vector Variational Inequalities
and Vector Optimization Problems with Pseudo-Univexity

In this section, we establish some relationships between vector optimization prob-
lems and vector variational-like inequality problems. We identify the vector critical
points, the weakly efficient points and the solutions of the weak vector variational-
like inequality problems, under pseudo-univexity assumptions. These conditions are
more general than those of existing ones in the literature and even more general than
given in the previous Section. In particular, this work extends the results of the pre-
vious section as well as an earlier work of Ruiz-Garzon et al. (2004) to a wider class
of functions, namely the pseudo-univex functions.

Bector et al. (1992) have introduced the concept of pre-univex functions, univex
functions and pseudo-univex functions as a generalization of invex (Hanson 1981)
functions. Mishra (1998) have established several sufficient optimality and duality
results for a nonlinear programming problems under generalized univexity assump-
tions. Mishra and Giorgi (2000) have obtained optimality and duality results under
nonsmooth setting for semi-univex functions. Mishra et al. (2005) have introduced
four new classes of d-univex functions and established Karush–Kuhn–Tucker suf-
ficient optimality conditions and various duality theorems for non-differentiable
multiobjective programing problems. Rueda et al. (1995) have established opti-
mality and duality for several programs under a combination of univex and type-I
functions.

In this section, we establish various relationships between vector variational-
like inequality problems and vector optimization problems under the assumption
of pseudo-univex functions.

The convention for equalities and inequalities will be same as in the previous
section.

Let X be a nonempty subset of Rn and η : X ×X → Rn be a continuous map.

Definition 8.2.1. (Weir and Mond 1988). Let u ∈ X. The set X is said to be invex at
u with respect to the function η : X ×X → Rn, if for all u,v ∈ X ,t ∈ [0,1], we have,
u + tη (v,u) ∈ X.

The set X is said to be invex with respect to η : X ×X → Rn, if X is invex at each
point of the set X. The invex set X is also called η− connected set.

Definition 8.2.2. (Ruiz et al. 2004). Let X be a nonempty open and invex subset
of Rn and f : X ⊂ Rn → Rp be a differentiable function with a p× n matrix as its
Jacobian. The function f is said to be

(d) invex if and only if there exists a function η : X ×X → Rn, such that

f (y) � f (x)+∇ f (x)η (y,x) , ∀x, y ∈ X ;

(e) strictly invex if and only if there exists a function η : X ×X → Rn, such that

f (y) > f (x)+∇ f (x)η (y,x) , ∀x, y ∈ X , x �= y;
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(f) pseudo-invex if and only if there exists a function η : X ×X → Rn, such that

f (y) < f (x) ⇒ ∇ f (x)η (y,x) < 0, ∀x, y ∈ X .

Definition 8.2.3. (Bector et al. 1992). Let X be a nonempty open and invex subset
of Rn and f : X ⊂ Rn → Rp be a differentiable function with a p× n matrix as its
Jacobian. The function f is said to be

(a) univex with respect to η , φ and k if and only if there exist a functionsη : X ×X →
Rn,φ : R → R, and k: X ×X → R+, such that

k (y,x)φ [ f (y)− f (x)] � ∇ f (x)η (y,x) , ∀x, y ∈ X ;

(b) strictly univex with respect to η ,φ and k if and only if there exists a function
η : X ×X → Rn, φ : R → R, and k: X ×X → R+, such that

k (y,x)φ [ f (y)− f (x)] > ∇ f (x)η (y,x) , ∀x, y ∈ X ,x �= y;

(c) pseudo-univex with respect to η ,φ and k if and only if there exists a function η :
X ×X → Rn,φ : R → R, and k: X ×X → R+, such that

k (y,x)φ [ f (y)− f (x)] < 0 ⇒ ∇ f (x)η (y,x) < 0, ∀x, y ∈ X .

It should be noticed that the class of univex functions are wider than that
of the invex functions, as can be seen from the following example from Bector
et al. (1991).

Example 8.2.1. Let f : R → R defined by f (y) = y3, where,

k (y,x) =

{
x2

y−x , y > x,

0, y � x,

η (y,x) =

{
y2 + x2 + xy, y > x,
y− x, y � x,

Let φ : R → R be defined by φ (a) = 3a. The function f is univex, but not invex,
because for y = −3, x = 1, f (y)− f (x) < ∇ f (x)η (y,x).

Example 8.2.2. (Bector et al. 1992). In this example, we point out that the class
of pseudo-univex functions are even wider than that of univex functions. Let f :]
0, π2

[→ R be defined by f (y) = cosy, η (y,x) = x− y,

k (y,x) =
{

0, y � x,
xy, y < x,

and φ : R → R be defined by φ (a) = 2a. The function f is pseudo-univex, but not
univex, because for y = π

3 , x = π
6 , ∇ f (x)η (y,x) > k (y,x)φ [ f (y)− f (x)].
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Let X be a nonempty invex subset of Rn and two continuous maps F : X →Rn and
η : X ×X → Rn. The variational-like inequality problem (VLIP), is to find a point
x̄ ∈ X , such that η (y,x)T F (x̄) ≥ 0, ∀y ∈ X .

Consider the following problems as in Sect. 8.1:
A vector variational-like inequality problem (VVLIP), is to find a point x̄ ∈ X ,

such that there exists no y ∈ X , such that F (x̄)η (y, x̄) ≤ 0.
A weak vector variational-like inequality problem (WVVLIP), is to find a point

x̄ ∈ X , such that there exists no y ∈ X , such that F (x̄)η (y, x̄) < 0.
It is well known that in multi-objective optimization problems, the objective

functions are conflicting in nature and can not be combined into a single objective.
In this sense we must understand the concept of efficient solutions.

Let X be a nonempty invex subset of Rn and f : Rn → Rp, the vector optimization
problem (VOP) is to find the efficient points for

(VOP) V −min f (x)
subject to x ∈ X .

Definition 8.2.4. A point x̄ ∈X is said to be efficient (Pareto), if there exists no y∈ X
such that f (y) ≤ f (x̄).

Definition 8.2.5. A point x̄ ∈ X is said to be weakly efficient, if there exists no y ∈ X
such that f (y) < f (x̄).

In this Section, using the concept of pseudo-univex functions, we shall extend the
results given by Ruiz-Garzon et al. (2004). In fact, these results also extend earlier
works Kazmi (1996) and Yang and Goh (1997).

In the following theorem we establish that under univexity assumptions, the solu-
tion of the vector variational-like inequality problem (VVLIP) are efficient solutions
to (VOP).

Theorem 8.2.1. Let X be a nonempty invex subset of Rn and f : X ⊂ Rn → Rp be
differentiable function on X. If F = ∇ f , f is univex with respect to η ,φ and k with
φ (a)≤ 0, whenever, a ≤ 0, and x̄ solves the vector variational-like inequality prob-
lem (VVLIP) with respect to the same η ,φ and k, then x̄ is an efficient point to the
vector optimization problem (VOP).

Proof. Suppose x̄ is not an efficient point to (VOP), then there exists a y ∈ X such
that f (y)− f (x̄) ≤ 0. Since, φ (a) ≤ 0, whenever, a ≤ 0, and we get

k (y,x)φ [ f (y)− f (x̄)] ≤ 0.

Since f is univex with respect to η ,φ and k, we have ensured that ∃y ∈ X , such that

∇ f (x̄)η (y, x̄) ≤ 0;

therefore x̄ cannot be a solution to the vector variational-like inequality problem
(VVLIP). This contradiction leads to the result. ��
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Theorem 8.2.2. Let X be a nonempty invex subset of Rn and f : X ⊂ Rn → Rp be
differentiable function on X. If F = ∇ f ,− f is strictly-univex with respect to η , φ ,
and k with φ (a) < 0, whenever, a < 0. If x̄ is a weakly efficient solution to the vector
optimization problem (VOP) then x̄ also solves the vector variational-like inequality
problem (VVLIP).

Proof. Suppose that x̄ is a weakly efficient solution to (VOP), but does not solve the
(VVLIP). Then there exists a y ∈ X such that ∇ f (x̄)η (y, x̄) ≤ 0.

By the strict univexity of − f with respect to η , φ and k, we have

k (y,x)φ [ f (y)− f (x̄)] < ∇ f (x̄)η (y, x̄) ≤ 0.

Since, φ (a) < 0, whenever, a < 0, and we get

f (y)− f (x̄) < 0,

which contradicts x̄ being a weakly efficient solution to the (VOP). ��
Since every efficient solution to (VOP) is a weakly efficient solution to (VOP),

from the above theorem, we can get the following result.

Corollary 8.2.1. Let X be a nonempty invex subset of Rn and f : X ⊂ Rn → Rp be
differentiable function on X. If F = ∇ f ,− f is strictly-univex with respect to η , φ
and k with φ (a) < 0, whenever, a < 0. If x̄ is an efficient solution to the vector
optimization problem (VOP) then x̄ also solves the vector variational-like inequality
problem (VVLIP).

Theorem 8.2.3. Let X be a nonempty open invex subset of Rn and f : X ⊂ Rn → Rp

be differentiable function on X. If F = ∇ f . If x̄ is a weakly efficient solution to the
vector optimization problem (VOP) then x̄ also solves the weak vector variational-
like inequality problem (WVVLIP).

If f is a pseudo-univex function with respect to η , φ and k with φ (a) < 0, when-
ever, a < 0. If x̄ also solves the weak vector variational-like inequality problem
(VVLIP) with respect to the same η then x̄ is a weakly efficient solution to the vector
optimization problem (VOP).

Proof. For (⇒) Let x̄ be a weakly efficient solution to the (VOP), since X is an
invex set, we have that �y ∈ X , such that f (x̄ + tη (y, x̄))− f (x̄) < 0,0 < t < 1.

Dividing the above inequality by t and taking the limit as t → 0, we get to �y ∈X ,
such that ∇ f (x̄)η (y, x̄) < 0.

For (⇐) If x̄ is not a weakly efficient solution to (VOP), then ∃y ∈ X , such that
f (y) < f (x̄). Since, φ (a) < 0, whenever, a < 0, and we get

k (y,x)φ [ f (y)− f (x̄)] < 0.

By pseudo-univexity of f with respect to η , φ and k, we have ensured that ∃y ∈ X ,
such that ∇ f (x̄)η (y, x̄) < 0. This contradicts the fact that x̄ is a solution to the
(WVVLIP). ��
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Theorem 8.2.4. Let X be a nonempty open invex subset of Rn and f : X ⊂ Rn → Rp

be differentiable function on X. If F = ∇ f , f is strictly-univex with respect to η , φ
and k with φ(a)≤ 0, whenever, a ≤ 0. If x̄ is a weakly efficient solution to the vector
optimization problem (VOP) then x̄ is an efficient solution to (VOP).

Proof. Suppose that x̄ is a weakly efficient solution to the (VOP), but not an efficient
solution to (VOP). Then, there exists ∃y ∈ X , such that f (y)≤ f (x̄). Since φ(a)≤ 0,
whenever, a ≤ 0, we get

k(y,x)φ [ f (y)− f (x̄)] ≤ 0.

By the strict-univexity of f with respect to the same η ,φ and k, we have

0 ≥ k(y,x)φ [ f (y)− f (x̄)] > ∇ f (x̄)η(y, x̄)

which is to say, ∃y ∈ X , such that ∇ f (x̄)η(y, x̄) < 0; therefore, x̄ does not solve the
(WVVLIP). This contradiction arises from the first part of Theorem 8.2.3. ��

The following theorem is extension to the context of pseudo-univexity of Theo-
rem 2.2 from Osuna et al. (1998) for pseudo-invex case.

Theorem 8.2.5. All vector critical points are weakly efficient solutions if and only
if the vector function f is pseudo-univex on X.

Proof. The proof follows from the proof of Theorem 2.2 from Osuna et al. (1998)
and the discussion as above in this section. ��

In light of Theorem 8.2.3 and Theorem 8.2.5 we could relate the vector criti-
cal points to the solutions of the weak vector variational-like inequality problem
(WVVLIP), with the following result:

Corollary 8.2.2. Suppose that X is an open invex set and F = ∇ f . If the objective
function is pseudo-univex with respect to η , φ and k then the vector critical points,
the weakly efficient points and the solutions of the weak vector variational-like
inequality problem (WVVLIP) are equivalent.

8.3 Relationship Between Vector Variational-Like Inequalities
and Nondifferentiable Vector Optimization Problems

In this section, we establish some relationships between vector variational-like
inequality and non-smooth vector optimization problems under the assumptions of
α− invex non-smooth functions. We identify the vector critical points, the weakly
efficient points and the solutions of the weak vector variational-like inequality prob-
lems, under non-smooth pseudo-α− invexity assumptions. These conditions are
more general than those of existing ones in the literature. In particular, this work
extends an earlier work of Ruiz-Garzon et al. (2004) to a wider class of functions,



8.3 Relationship Between Vector Variational-Like Inequalities 265

namely the non-smooth pseudo-α− invex functions. Moreover, this work extends
an earlier work of Mishra and Noor (2005) to non-differentiable case.

Assumptions and conventions are same as in previous sections.

Definition 8.3.1. A function f : X → R is said to be Lipschitz near x ∈ X if for some
K > 0,

| f (y)− f (z)| ≤ K ‖y− z‖ , ∀y, z within a neighbourhood of x.

We say that f : X → R is locally Lipschitz on X if it is Lipschitz near any point of X.

Definition 8.3.2. If f : X → R is Lipschitz at x ∈ X, the generalized derivative (in the
sense of Clarke) of f at x ∈ X in the direction v ∈ Rn, denoted by f 0 (x;v), is given
by

f 0 (x;v) = limsup
y→x
λ↓0

f (y +λv)− f (y)
λ

.

Definition 8.3.3. The Clarke’s generalized gradient of f at x∈X, denoted by ∂ f (x),
is defined as follows:

∂ f (x) =
{
ξ ∈ Rn : f 0 (x;v) ≥ ξ T v for all v ∈ Rn} .

It follows that, for any v ∈ Rn

f 0 (x;v) = max
{
ξ T v : ξ ∈ ∂ f (x)

}
.

These definitions and properties can be extended to a locally Lipschitz vector-
valued function f : X → Rp. Denote by fi, i = 1,2, . . . , p the components of f . The
Clarke generalized gradient of f at x ∈ X is the set ∂ f (x) = ∂ f1 (x) × ∂ f2 (x) ×
. . . × ∂ fp (x).

Let X be a nonempty subset of Rn,η : X ×X → Rn be a continuous map and
α: X ×X → R+\{0} be a bifunction.

Remark 8.3.1.(iv) If α (y, x) = 1, then the set X is called the invex (η− connected)
set, see Noor (2004a) and Ruiz-Garzon et al. (2004).

(v) If η (y, x) = y− x, and 0 < α (y, x) < 1, then the set X is called the star-shaped.
(vi) If α (y, x) = 1 and η (y,x) = y− x, then the set X is called the convex set.

It is well known that the α− invex set may not be convex sets, see Noor (2004a).
From now onward we assume that the set X is a nonempty, closed and α− invex

set with respect to α (·, ·) and η (·, ·) , unless otherwise specified.

Definition 8.3.4. The non-differentiable function f : X ⊂ Rn → Rp is:

(a) α− invex if and only if there exists a functions α: X × X → R+\{0} and
η : X ×X → Rn, such that

f (y)− f (x) � 〈α (y, x)ξ , η (y, x)〉 , ∀ξ ∈ ∂ f (u) , ∀x, u ∈ X ;
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(b) strictly α− invex if and only if there exists a functions α: X ×X → R+\{0}and
η : X ×X → Rn, such that

f (y)− f (x) > 〈α (y,x)ξ ,η (y, x)〉 , ∀ξ ∈ ∂ f (u) , ∀x, u ∈ X , x �= y ;

(c) pseudo- α− invex if and only if there exists a functions α: X ×X → R+\{0} and
η : X ×X → Rn, such that

f (y) < f (x) ⇒ 〈α (y, x)ξ ,η (y, x)〉 < 0, ∀ξ ∈ ∂ f (u) , ∀x,y ∈ X .

We consider the following nondifferentiable vector optimization problem:

(NVOP) Min f (x) = ( f1 (x) , . . . , fp (x))
subject to x ∈ X ,

where fi: X → R, i = 1,2, . . . , p are non-differentiable locally Lipschitz functions.
In vector optimization problems, multiple objectives are usually non-commensu-

rable and cannot be combined into a single objective. Moreover, often the objectives
conflict with each other. Consequently, the concept of optimality for single-objective
optimization problems cannot be applied directly to vector optimization. In this
regard the concept of efficient solutions is more useful for vector optimization
problems.

The following problems are more general than the ones given in the above
sections.

(GVVLIP) A vector variational-like inequality problem for non-smooth case,
is to find a point y ∈ X , and for any ξ ∈ ∂ f (y), there exists no x ∈ X , such that
〈α (x, y)ξ ,η (x, y) 〉 ≤ 0,

(GWVVLIP) A weak vector variational-like inequality problem, is to find a point
y ∈ X , and for any ξ ∈ ∂ f (y), there exists no x ∈ X , such that 〈α(x, y)ξ , η (x, y)〉
< 0.

In this section, using the tools of non-smooth analysis and the concept of non-
differentiable vector pseudo-α− invexity, we shall extend the results given by
Ruiz-Garzon et al. (2004) and the results of Sect. 8.1 to the nondifferentiable case
(also see; Mishra and Noor 2005).

Theorem 8.3.1. Let f : X → Rp be locally Lipschitz and α− invex function with
respect to α andη . If y ∈ X solves the generalized vector variational-like inequality
problem (GVVLIP) with respect to the same α and η , then y is an efficient solution
to the nondifferentiable vector optimization problem (NVOP).

Proof. Suppose that y is not an efficient solution to (NVOP). Thus, there exists a
x ∈ X such that f (x)− f (y) ≤ 0. Since f is α− invex with respect to α and η , we
have ensured that ∃x ∈ X such that

〈α (x, y)ξ , η (x, y)〉 ≤ 0, ∀ξ ∈ ∂ f (y) ;
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therefore, y cannot be a solution to the generalized vector variational-like inequality
problem (GVVLIP). This contradiction leads to the result. ��

In order to see the converse of the above theorem, we must impose stronger
conditions, as can be observed in the following two theorems.

Theorem 8.3.2. Let f : X → Rp be locally Lipschitz and − f is strictly-α− invex
with respect to α and η . If y ∈ X is a weak efficient solution for (NVOP), then y
solves the generalized vector variational-like inequality problem (GVVLIP).

Proof. Suppose that y does not solve (GVVLIP). Thus, there exists a point x ∈ X
such that 〈α (x, y)ξ , η (x, y)〉 ≤ 0, ∀ξ ∈ ∂ f (y). By the strict-α– invexity of the
non-smooth function − f with respect to α and η , we have

f (x)− f (y) < 〈α (x, y)ξ , η (x, y)〉 ≤ 0, ∀ξ ∈ ∂ f (y) ;

therefore, there exists a x ∈ X such that f (x)− f (y) < 0, which contradicts y ∈
X being a weakly efficient solution of (NVOP). This contradiction leads to the
result. ��

As every efficient solution is also a weakly efficient solution to (NVOP), the
following result is trivial to prove.

Corollary 8.3.1. Let f : X → Rp be locally Lipschitz and − f is strictly-α− invex
with respect to α and η . If y ∈ X is an efficient solution for (NVOP), then, y also
solves the vector variational-like inequality problem (VVLIP).

Theorem 8.3.3. If y ∈ X is a weakly efficient solution for (NVOP), then y solves the
weak vector variational-like inequality problem (WVVLIP).

Proof. Let y ∈ X be a weakly efficient solution for (NVOP). Since X is an α− invex
set, we have that � ∃x ∈ X , such that f (y + tα (x, y)η (x, y))− f (y) < 0,0 < t < 1.
Dividing the above inequality by t and taking the limit as t tends to zero, we get to
� ∃x ∈ X such that 〈α (x, y)ξ , η (x, y)〉 < 0, ∀ξ ∈ ∂ f (y). ��
Theorem 8.3.4. If f is a locally Lipschitz and pseudo-α− invex with respect to α
and η and y solves the weak vector variational-like inequality problem (WVVLIP)
with respect to the same α and η , then y is a weakly efficient solution to (NVOP).

Proof. Suppose that y is not a weakly efficient solution to (NVOP). Thus, there
exists a x ∈ X , such that f (x) < f (y). By the pseudo-α− invexity of f with respect
to α and η , we have that, there exists x ∈ X such that 〈α (x, y)ξ , η (x, y)〉 < 0,
∀ξ ∈ ∂ f (y). This contradicts the fact that y is a solution to (WVVLIP). ��
Theorem 8.3.5. If f is a locally Lipschitz and strictly-α− invex with respect to α
and η and y is a weak efficient solution of the (NVOP), then y is an efficient solution
to the (NVOP).



268 8 Vector Variational-like Inequality Problems

Proof. Suppose that y is a weakly efficient solution of (NVOP), but not an efficient
solution to (NVOP). Hence, there exists x ∈ X such that f (x) ≤ f (y). By the strict-
α− invexity of the non-smooth function f with respect to α and η we have that

0 ≥ f (x)− f (y) > 〈ξα(x, y),η(x, y)〉 , ∀ξ ∈ ∂ f (y).

That is to say, there exists x ∈ X such that 〈α(x, y)ξ , η (x, y)〉 < 0, ∀ξ ∈ ∂ f (y).
Therefore, y does not solve (WVVLIP). Then, by Theorem 8.3.4 we get a contra-
diction. Hence, y is an efficient solution to the (NVOP). ��

The following definition is a simple extension of the concept of vectorial critical
point given for the differentiable case given in Definition 8.1. (see Osuna et al. 1998)
to the non-smooth case.

Definition 8.3.5. A feasible solution y ∈ X is said to be a vector critical point for
(VOP) if there exists a vector λ ∈ Rp with λ ≥ 0 such that 〈λ ,ξ 〉 = 0, ∀ξ ∈ ∂ f (y).

Lemma 8.3.1. Let y ∈ X be a vector critical point for (NVOP), and let f is pseudo-
α− invex on X with respect to α and η . Then, y ∈ X is a weakly efficient solution to
(NVOP).

Proof. The proof is obvious using the pseudo-α− invexity of the nondifferentiable
function f and the definition of vector critical point for (NVOP). ��
Theorem 8.3.6. All vector critical points are weakly efficient solutions to (NVOP)
if and only if f is pseudo-α− invex on X.

Proof. The proof follows the lines of the proof of Theorem 2.2 from Osuna et al.
(1998) in light of the discussion above in this section. ��

We can relate the vector critical points to the solutions of the weak vector
variational-like inequality problems (WVVLIP) using Theorems 8.3.4 and 8.3.6.

Corollary 8.3.2. If the objective function f is locally Lipschitz and pseudo-α−
invex with respect to α and η , then the vector critical points, the weakly effi-
cient points and the solutions of the weak vector variational-like inequality problem
(WVVLIP) are equivalent.

The results given in the present section can be extended to the class of nondif-
ferentiable pseudo-univex functions. It will be interesting to extend these results
for the class of non-smooth r-invex introduced by Antczak (2002b) and (p, r)-invex
functions introduced by Antczak (2001).
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8.4 Characterization of Generalized Univex functions

Karamardian and Schaible (1990) proved that generalized convexity of functions is
equivalent to monotonicity of its gradient functions. It was pointed out that the role
of generalized montonicity in variational inequality problems corresponds to the
role of generalized convexity of objective functions in mathematical programing.
Variational inequalities arise in models for a wide class of Mathematical, Phys-
ical, Economic and Social problems. Invexity was introduced as an extension of
differentiable convex function by Hanson (1981). Hanson’s work inspired a great
deal of subsequent work that has greatly expanded the role and applications of
invexity in nonlinear optimization and other branches of pure and applied sciences.
Furthermore, Noor (1990, 1994, 1995) has studied the role of invex functions in
variational-like inequality problems a natural extension of variational inequality
problems. Noor (1994) has established that the minimum of invex functions on the
invex sets in normed spaces can be characterized by variational-like (prevariational)
inequality problems. Thus extended the idea of Karamardian and Schaible (1990)
to invex functions and variational-like inequality problems, that is, the concept of
invexity plays exactly the same role in variational-like inequality problems as the
convexity plays in variational inequality problems. Yang et al. (2005) established
relationships between the generalized monotonicities of gradient and generalized
invexity of a function.

Invex functions and invex monotonicities are interesting topics in the study
of generalized convexity. Generalized invexity and generalized monotonicities are
studied in Ruiz-Garzon et al. (2003). Recently, Yang et al. (2005) established
that (1) if the gradient of a function is (strictly) pseudo-monotone, then the func-
tion is (strictly) pseudo-invex; (2) if the gradient of a function is quasi-monotone,
then the function is quasi-invex; and (3) if the gradient of a function is strong
pseudo-monotone, then the function is strong pseudo-invex.

However, it is to be noticed that univex functions are more general than that of
invex functions. In this section, we established that (1) if the gradient of a function is
(strictly) pseudo-monotone, then the function is (strictly) pseudo-univex; (2) if the
gradient of a function is quasi-monotone, then the function is quasi-univex; and (3)
if the gradient of a function is strong pseudo-monotone, then the function is strong
pseudo-univex. The results established in Yang et al. (2005) are particular case of
the results obtained in this section.

Let X be a nonempty subset of Rn and η : X ×X → Rn be a continuous map.
The set X is said to be invex with respect to η : X ×X → Rn, if X is invex at each

point of the set X . The invex set X is also called η-connected set.

Definition 8.4.1. (Bector et al. 1992). Let X be a nonempty open and invex subset
of Rn and f : X ⊂ Rn → Rp be a differentiable function with a p× n matrix as its
Jacobian. The function f is said to be

(a) univex with respect to η , φ and k if and only if there exist a functionsη : X ×X →
Rn, φ : R → R, and k: X ×X → R+, such that
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k(y,x)φ [ f (y)− f (x)] � ∇ f (x)η(y,x), ∀x,y ∈ X ;

(b) strictly univex with respect to η , φ and k if and only if there exists a function
η : X ×X → Rn, φ : R → R, and k: X ×X → R+, such that

k(y,x)φ [ f (y)− f (x)] > ∇ f (x)η(y,x), ∀x, y ∈ X , x �= y;

(c) pseudo-univex with respect to η , φ and k if and only if there exists a function
η : X ×X → Rn, φ : R → R, and k: X ×X → R+, such that

k(y,x)φ [ f (y)− f (x)] < 0 ⇒ ∇ f (x)η (y, x) < 0, ∀x, y ∈ X .

It was discussed in Sect. 8.2, that the class of univex functions are wider than that
of the invex functions, and the class of pseudo-univex functions are even wider than
that of univex functions.

Definition 8.4.2. (Yang et al. 2005). Let X be an invex set in Rn with respect to η :
X ×X → Rn. Then F : X → Rn is said to be (strictly) pseudo-invex monotone with
respect to η on X if for every pair of distinct points x,y ∈ X,

η (y,x)T F (x) ≥ 0 ⇒ η (y, x)T F (x) (>) ≥ 0.

Condition C. (Mohan and Neogy 1995). Let η : X ×X → Rn. Then for any x,y ∈
Rn for any λ ∈ [0, 1], η (y, y +η (x, y)) = −λ η (x, y) and η (x, y +η (x, y)) =
(1− λ ) η (x, y).

Remark 8.4.1. From Condition C, we have η (y +η (x, y) ,y) = λ̄ η (x, y).
It was noticed by Yang et al. (2005) that Condition C is different from that η is

linear in first argument and skew-symmetric.

Example 8.4.1. Let

η (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x− y if x ≥ 0, y ≥ 0;
x− y if x ≤ 0, y ≤ 0;
−2− y if x > 0, y ≤ 0;
2− y if x ≤ 0, y < 0.

Then, it is obvious to see that η satisfies Condition C. However, η is neither linear
in the first argument nor skew-symmetric.

Theorem 8.4.1. Suppose that

1. X is an open invex set of Rn with respect to η;
2. η satisfies Condition C;

1. for each x �= y, k (x, y)φ [ f (x)− f (y)] < 0 implies

ηT (x, y) ∇ f
(
y + λ̄η (x, y)

)
< 0 for some λ̄ ∈ (0, 1) and k (y, x) > 0;
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2. ∇ f is pseudo-invex monotone with respect to η on X.

Then f is a pseudo-univex function with respect to η , φ and k on X.

Proof. Let x, y ∈ X , x �= y be such that

ηT (x, y) ∇ f (y) ≥ 0. (8.4.1)

We need to show that k (x, y)φ [ f (x)− f (y)] ≥ 0.
Assume the contrary, that is,

k (x, y)φ [ f (x)− f (y)] < 0. (8.4.2)

By inequality (8.4.2) and hypotheses 3, we have

ηT (x, y)∇ f
(
y + λ̄η (x, y)

)
< 0, for some λ̄ ∈ (0, 1) . (8.4.3)

From Condition C and (8.4.3), we get

ηT (
y + λ̄ η (x, y) , y

)
∇ f

(
y + λ̄ η (x, y)

)
< 0, for some λ̄ ∈ (0, 1) . (8.4.4)

Since ∇ f is pseudo-invex monotone with respect to η on X , from (8.4.4), we get

ηT (
y + λ̄ η (x, y) , y

)
∇ f (y) < 0, for some λ̄ ∈ (0, 1) . (8.4.5)

Since λ̄ ∈ (0, 1) from (8.4.4) and (8.4.5), we get

η (x, y)T ∇ f (y) < 0,

which is a contradiction to (8.4.1). Hence, f is pseudo-univex with respect to η , φ ,
and k. ��
Theorem 8.4.2. Suppose that

1. X is an open invex set of Rn with respect to η;
2. η satisfies Condition C;
3. for each x �= y, k (x, y) φ [ f (x)− f (y)] ≤ 0 implies

ηT (x, y) ∇ f
(
y + λ̄ η (x, y)

) ≤ 0 for some λ̄ ∈ (0, 1) and k (y, x) > 0;

4. ∇ f is strictly pseudo-invex monotone with respect to η on X.

Then f is a strictly pseudo-univex function with respect to η , φ and k on X.

Proof. Let x, y ∈ X , x �= y be such that

ηT (x, y) ∇ f (y) ≥ 0. (8.4.6)

We need to show that k (x, y) φ [ f (x)− f (y)] > 0.
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Assume the contrary, that is,

k (x, y)φ [ f (x)− f (y)] ≤ 0 (8.4.7)

By inequality (8.4.7) and hypotheses 3, we have

ηT (x, y)∇ f (y + λ̄η(x, y)) ≤ 0, for some λ̄ ∈ (0, 1). (8.4.8)

From Condition C, we know that

ηT (y, y + λ̄η(x, y)) = −λ̄η(x, y). (8.4.9)

It follows from (8.4.8) and (8.4.9) that

ηT (y, y + λ̄η(x, y))∇ f (y + λ̄η(x, y)) ≥ 0, for some λ̄ ∈ (0, 1). (8.4.10)

Since ∇ f is strictly pseudo-invex monotone with respect to η on X , from
(8.4.10), we get

ηT (y,y + λ̄ η(x, y))∇ f (y) > 0. (8.4.11)

Since λ̄ ∈ (0, 1) from Condition C and (8.4.11), we get

η (x, y)T ∇ f (y) < 0,

which is a contradiction to (8.4.6). Hence, f is strictly pseudo-univex with respect
to η , φ , and k. ��

Now we establish relationship between quasi-univex functions and quasi-invex
monotonicity. That is; if the gradient of a function is quasi-invex monotone, then the
function is quasi-univex.

Definition 8.4.3. Let X be an invex set in Rn with respect to η : X ×X → Rn. Then
F : X → Rn is said to be quasi-invex monotone with respect to η on X if for every
pair of distinct points x, y ∈ X,

η (y, x)T F (x) > 0 ⇒ η(y, x)T F (x) ≥ 0.

Definition 8.4.4. (Bector et al. 1992). Let X be a nonempty open and invex subset
of Rn and f : X ⊂ Rn → Rp be a differentiable function with a p× n matrix as its
Jacobian. The function f is said to be quasi-univex with respect to η ,φ and k if
there exist functions η : X ×X → Rn, φ : R → R, and k: X ×X → R+, such that

k(y, x)φ [ f (y) − f (x)] ≤ 0 ⇒ η(y, x)T∇ f (x) ≤ 0, ∀x,y ∈ X .

Theorem 8.4.3. Suppose that

1. X is an open invex set of Rn with respect to η;
2. η satisfies Condition C;
3. for each x �= y, k(x, y)φ [ f (x) − f (y)] ≤ 0 implies

η(x, y)T∇ f (y + λ̄ η (x, y)) < 0 for some λ̄ ∈ (0, 1);
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4. ∇ f is quasi-invex monotone with respect to η on X.

Then f is quasi-univex function with respect to η , φ and k on X.

Proof. Assume that f is not quasi-univex with respect to the same η , φ and k. Then,
there exist x, y ∈ X , such that

k (x, y)φ [ f (x)− f (y)] ≤ 0, (8.4.12)

but,
η (x, y)T ∇ f (y) > 0. (8.4.13)

By inequality (8.4.12) and hypotheses 3, we have

η (x, y)T ∇ f
(
y + λ̄ η (x, y)

)
< 0, for some λ̄ ∈ (0, 1) . (8.4.14)

From Condition C, we know that

ηT (
yy + λ̄ η (x, y)

)
= −λ̄ η (x, y) . (8.4.15)

it follows from (8.4.14) and (8.4.15) that

ηT (
y, y + λ̄ η (x, y)

)
∇ f

(
y + λ̄ η (x, y)

)
> 0 for some λ̄ ∈ (0, 1) . (8.4.16)

Since ∇ f is quasi-invex monotone with respect to η on X , from (8.4.16), we get

ηT (
y, y + λ̄ η (x, y)

)
∇ f (y) ≥ 0 . (8.4.17)

Since λ̄ ∈ (0, 1) from Condition C and (8.4.17), we get

η (x, y)T ∇ f (y) ≤ 0,

which is a contradiction to (8.4.13). Hence, f is quasi-univex with respect to η , φ
and k.

Finally, we establish relationships between strong pseudo-invex monotonicity
and strong pseudo-univexity for differentiable functions.

Definition 8.4.5. Let X be an invex set in Rn with respect to η : X ×X → Rn. Then
F : X → Rn is said to be strong pseudo-invex monotone with respect to η on X if
there exists a scalar β > 0, such that for every pair of distinct points x, y ∈ X,

η (y, x)T F (x) ≥ 0 ⇒ η (y, x)T F (y) ≥ β ‖η (y, x)‖ .

Definition 8.4.6. The non-differentiable function f : X → R is strong pseudo-univex
with respect to η , φ and k if and only if there exists a function η : X ×X → Rn,
φ : R → R, and k: X × X → R+, and a scalar α > 0 such that for every pair of
distinct points x, u ∈ X, such that

η (x, u)T ∇ f (u) ≥ 0 ⇒ k (x, u) φ [ f (x) − f (u)] ≥ α ‖η (x, u)‖ .
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Theorem 8.4.4. Suppose that

1. X is an open invex set of Rn with respect to η;
2. η satisfies Condition C;
3. f (x +η (y, x)) ≤ f (y), and f (y) − f (x) ≥ β‖η(y, x)‖ ⇒ φ [ f (y)− f (x)] ≥
β ‖η(y, x)‖

∀x, y ∈ X ;

4. ∇ f is continuous strong pseudo-invex monotone with respect to η on X.

Then f is strong pseudo-univex function with respect to η , φ and k on X.

Proof. Let x, y ∈ X be such that

η (y, x)T ∇ f (x) ≥ 0.

By Condition C and hypotheses 1, we have

η (x +λη (y, x) , x)T ∇ f (x) ≥ 0.

By the strong pseudo-invex monotonicity of ∇ f with respect to η , there exists a
scalar β > 0

η (x +λη (y, x) , x)T ∇ f (x +λ η (y, x)) ≥ β ‖ηx +λη (y, x)‖ .

Again from Condition C and λ ∈ (0, 1]

η (y, x)T ∇ f (x +λ η (y, x)) ≥ β ‖η (y, x)‖ . (8.4.18)

Let g(λ ) = f (x +λη (y,x)) It follows from (8.4.18) that

g′ (λ ) ≥ β ‖η (y,x)‖ , ∀λ ∈ (0,1] .

Integrating the last expression between 0 and 1, we get

g(1)− g(0) ≥ β ‖η (y,x)‖ .

That is,
f (x +η (y,x))− f (x) ≥ β ‖η (y,x)‖ .

By hypotheses 3, and since k (y, x) > 0, we get

k (y, x)φ [ f (y)− f (x)] ≥ β ‖η (y,x)‖ .

Thus, f is strong pseudo-univex function with respect to η , φ and k on X . ��
In this section, we have established some characterizations of pseudo-univex

functions, strictly pseudo-univex functions, quasi-univex functions and strongly
pseudo-univex functions and hence established some new relationships between
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generalized invex-monotonicity and generalized univexity of differentiable func-
tions. These results can be extended to the non-differentiable case and hence will
extend the results of Fan et al. (2003) as a by product.

8.5 Characterization of Nondifferentiable Generalized Invex
Functions

Yang et al. (2005) established relationships between the generalized monotonici-
ties of gradient and generalized invexity of a function. Fan et al. (2003) established
relationships between convexity of non-differentiable functions and monotonicity
of set-valued mappings. However, a very little has been done on the relation-
ships of generalized invexity of non-differentiable functions and generalized invex
monotonicity of set-valued mappings.

In this section, we establish under some appropriate conditions that (1) if the
Clarke’s sub-differential of a function is (strictly) pseudo-monotone, then the func-
tion is (strictly) pseudo-invex; (2) if the Clarke’s sub-differential of a function
is quasi-monotone, then the function is quasi-invex; and (3) if the Clarke’s sub-
differential of a function is quasi-monotone then the function is quasi-invex. The
results given in Ruiz-Garzion et al. (2003) and Yang et al. (2005) are special cases
of the results established in this section.

Let Rn be the n− dimensional Euclidean space and Rn
+ be its non-negative octant.

In the sequel X be a non-empty open subset of Rn. Definitions 8.3.1–8.3.3 will be
needed in this section as well.

Definition 8.5.1. Let u ∈ X, the set X is said to be invex at u with respect to
η : X ×X → Rn if, for all x, u ∈ X, t ∈ [0, 1], u + tη (x,u) ∈ X

Definition 8.5.2. The non-differentiable function f : X → R is invex with respect to
η : X ×X → Rn if

f (x)− f (u) � ξ Tη (x, u) , ∀ξ ∈ ∂ f (u) , ∀x,∈ X .

Definition 8.5.3. The non-differentiable function f : X → R is strictly-invex with
respect to η : X ×X → Rn if

f (x)− f (u) > ξ Tη (x, u) , ∀ξ ∈ ∂ f (u) , ∀xν u ∈ X .

Definition 8.5.4. The non-differentiable function f : X → R is pseudo-invex with
respect to η : X ×X → Rn if

f (x)− f (u) < 0 ⇒ ξ Tη (x, u) < 0, ∀ξ ∈ ∂ f (u) , ∀xu ∈ X .

Definition 8.5.5. Let X be an invex set in Rn with respect to η : X ×X → Rn. Then
F : X → Rn is said to be (strictly) pseudo-invex monotone with respect to η on X if
for every pair of distinct points x, y ∈ X,
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〈u,η (y,x)〉 ≥ 0 ⇒ 〈v,η (y,x)〉(>) ≥ 0, ∀u ∈ F (x) andv ∈ F (y) .

Definition 8.5.6. The non-differentiable function f : X → R is strictly pseudo-invex
with respect to η : X ×X → Rn if

ξ Tη (x,u) ≥ 0 ⇒ f (x) > f (u) , ∀ξ ∈ ∂ f (u) , ∀x, u ∈ X .

Condition C. (Mohan and Neogy 1995). Let η : X × X → Rn. Then for any
x,y ∈ Rn for any λ ∈ [0, 1], η (yy +η (x, y)) = −λ η (x,y) and η (x,y +η (x,y)) =
(1− λ )η (x, y) .

Remark 8.5.1. From Condition C, we have η (y +η (x, y) , y) = λ̄ η (x, y) .
It was noticed by Yang et al. (2005) that Condition C is different from that η is

linear in first argument and skew-symmetric for example see Example 8.4.1 in the
previous section.

Theorem 8.5.1. Suppose that

1. X is an open invex set of Rn with respect to η;
2. η satisfies Condition C;
3. for each x �= y, f (y) > f (x) implies

ηT (x, y) f 0 (
y + λ̄ η (x, y)

)
< 0 for some λ̄ ∈ (0, 1) ;

4. the set-valued map ∂ f is pseudo-invex monotone with respect to η on X.

Then f is a pseudo-invex function with respect to η on X .

Proof. Let x, y ∈ X , x �= y be such that

ηT (x, y) f 0 (y) ≥ 0. (8.5.1)

We need to show that f (x) ≥ f (y).
Assume the contrary, that is,

f (x) ≥, f (y) . (8.5.2)

By inequality (8.5.2) and hypotheses 3, we have

ηT (x, y) f 0 (
y + λ̄η (x, y)

)
< 0, for some λ̄ ∈ (0, 1) . (8.5.3)

From Condition C and (8.5.3), we get

ηT (
y + λ̄η (x, y) , y

)
f 0 (

y + λ̄ η (x, y)
)

< 0, for some λ̄ ∈ (0, 1) . (8.5.4)

Since ∂ f is pseudo-invex monotone with respect to η on X , from (8.5.4), we get

ηT (
y + λ̄η (x, y) , y

)
f 0 (y) < 0 for some λ̄ ∈ (0, 1) . (8.5.5)
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Since λ̄ ∈ (0, 1) from (8.5.4) and (8.5.5), we get

ηT (x, y)ξ < 0, ∀ξ ∈ ∂ f (y) ,

which is a contradiction to (8.5.1). Hence, f is pseudo-invex with respect to η . ��
Theorem 8.5.2. Suppose that

1. X is an open invex set of Rn with respect to η;
2. η satisfies Condition C;
3. for each x �= y, f (y) ≥ f (x) implies

ηT (x, y) f 0 (
y + λ̄ η (x, y)

)≤ 0 for some λ̄ ∈ (0, 1) ;

4. the set-valued map ∂ f is strictly pseudo-invex monotone with respect to η on X.

Then f is strictly pseudo-invex function with respect to η on X.

Proof. Let x, y ∈ X , x �= y be such that

ηT (x, y) f 0 (y) ≥ 0. (8.5.6)

We need to show that f (x) > f (y).
Assume the contrary, that is,

f (x) ≤ f (y) . (8.5.7)

By inequality (8.5.7) and hypotheses 3, we have

ηT (x, y) f 0 (
y + λ̄ η (x, y)

) ≤ 0, for some λ̄ ∈ (0, 1) . (8.5.8)

From Condition C, we know that

η T (
y, y + λ̄η (x, y)

)
= −λ̄ η (x, y) . (8.5.9)

It follows from (8.5.8) and (8.5.9) that

ηT (
y, y + λ̄ η (x, y)

)
f 0 (

y + λ̄ η (x, y)
)≥ 0 for some λ̄ ∈ (0, 1) . (8.5.10)

Since ∂ f is strictly pseudo-invex monotone with respect to η on X , from (8.5.10),
we get

ηT (
y, y + λ̄ η (x, y)

)
f 0 (y) > 0 . (8.5.11)

Since λ̄ ∈ (0, 1) from Condition C and (8.5.11), we get

ηT (x, y) ξ < 0 ∀ ξ ∈ ∂ f (y) ,

which is a contradiction to (8.5.6). Hence, f is strictly pseudo-invex with respect
to η . ��
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Definition 8.5.7. Let X be an invex set in Rn with respect to η : X ×X → Rn. Then
F : X → Rn is said to be quasi-invex monotone with respect to η on X if for every
pair of distinct points x, y ∈ X,

〈u,η (y, x)〉 > 0 ⇒ 〈v, η (y, x)〉 ≥ 0, ∀u ∈ F (x) andv ∈ F (y) .

Definition 8.5.8. The non-differentiable function f : X → R is quasi-invex with
respect to η : X ×X → Rn if

f (x) ≤ f (u) ⇒ ξ Tη (x, u) ≤ 0, ∀ξ ∈ ∂ f (u) , ∀x ,u ∈ X .

Theorem 8.5.3. Suppose that

1. X is an open invex set of Rn with respect to η;
2. η satisfies Condition C;
3. for each x �= y, f (y) ≥ f (x) implies

ηT (x, y) f 0 (
y + λ̄ η (x, y)

)
< 0 for some λ̄ ∈ (0, 1) ;

4. the set-valued map ∂ f is quasi-invex monotone with respect to η on X.

Then f is quasi-invex function with respect to η on X .

Proof. Assume that f is not quasi-invex with respect to the same η . Then, there
exist x, y ∈ X such that

f (y) ≤ f (x) (8.5.12)

but,
ηT (x, y) f 0 (y) ≥ 0 . (8.5.13)

By inequality (8.5.13) and hypotheses 3, we have

ηT (x, y) f 0 (
y + λ̄ η (x, y)

)
< 0, for some λ̄ ∈ (0, 1) . (8.5.14)

From Condition C, we know that

ηT (
y, y + λ̄ η (x, y)

)
= − λ̄ η (x, y) . (8.5.15)

It follows from (8.5.14) and (8.5.15) that

ηT (
y, y + λ̄ η (x, y)

)
f 0 (

y + λ̄ η (x, y)
)

> 0, for some λ̄ ∈ (0, 1) . (8.5.16)

Since ∂ f is quasi-invex monotone with respect to η on X , from (8.5.16), we get

ηT (
y, y + λ̄ η (x, y)

)
f 0 (y) ≥ 0 . (8.5.17)
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Since λ̄ ∈ (0, 1) from Condition C and (8.5.17), we get

ηT (x, y) ξ ≤ 0, ∀ ξ ∈ ∂ f (y) ,

which is a contradiction to (8.5.13). Hence, f is quasi-invex with respect to η . ��
We can extend the results of Sect. 8.4 to the nondifferentiable case as well.

Further, it will be interesting to extend the results of this chapter to the class of
generalized invex functions given by Fan (2007).
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