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Preface

Control theory is largely an application of the theory of complex variables,
modern algebra, and linear algebra to engineering. The main question
that control theory answers is "given reasonable inputs, will my system
give reasonable outputs?" Much of the answer to this question is given
in the following pages. There are many books that cover control theory.
What distinguishes this book is that it provides a complete introduction
to control theory without sacrificing either the intuitive side of the subject
or mathematical rigor. This book shows how control theory fits into the
worlds of mathematics and engineering.

This book was written for students who have had at least one semester
of complex analysis and some acquaintance with ordinary differential equa-
tions. Theorems from modern algebra are quoted before use—a course
in modern algebra is not a prerequisite for this book; a single course in
complex analysis is. Additionally, to properly understand the material on
modern control a first course in linear algebra is necessary. Finally, sec-
tions 5.3 and 6.4 are a bit technical in nature; they can be skipped without
affecting the flow of the chapters in which they are contained.

In order to make this book as accessible as possible many footnotes have
been added in places where the reader's background—either in mathematics
or in engineering—may not be sufficient to understand some concept or
follow some chain of reasoning. The footnotes generally add some detail
that is not directly related to the argument being made. Additionally, there
are several footnotes that give biographical information about the people
whose names appear in these pages—often as part of the name of some
technique. We hope that these footnotes will give the reader something of
a feel for the history of control theory.

In the first seven chapters of this book classical control theory is de-
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viii A Mathematical Introduction to Control Theory

veloped. The next three chapters constitute an introduction to three im-
portant areas of control theory: nonlinear control, modern control, and the
control of hybrid systems. The final chapter contains solutions to some
of the exercises. The first seven chapters can be covered in a reasonably
paced one semester course. To cover the whole book will probably take
most students and instructors two semesters.

The first chapter of this book is an introduction to the Laplace trans-
form, a brief introduction to the notion of stability, and a short introduction
to MATLAB. MATLAB is used throughout this book as a very fancy calcu-
lator. MATLAB allows students to avoid some of the work that would once
have had to be done by hand but which cannot be done by a person with
either the speed or the accuracy with which a computer can do the same
work.

The second chapter bridges the gap between the world of mathematics
and of engineering. In it we present transfer functions, and we discuss
how to use and manipulate block diagrams. The discussion is in sufficient
depth for the non-engineer, and is hopefully not too long for the engineering
student who may have been exposed to some of the material previously.

Next we introduce feedback systems. We describe how one calculates the
transfer function of a feedback system. We provide a number of examples of
how the overall transfer function of a system is calculated. We also discuss
the sensitivity of feedback systems to their components. We discuss the
conditions under which feedback control systems track their input. Finally
we consider the effect of the feedback connection on the way the system
deals with noise.

The next chapter is devoted to the Routh-Hurwitz Criterion. We state
and prove the Routh-Hurwitz theorem—a theorem which gives a necessary
and sufficient condition for the zeros of a real polynomial to be in the left
half plane. We provide a number of applications of the theorem to the
design of control systems.

In the fifth chapter, we cover the principle of the argument and its con-
sequences. We start the chapter by discussing and proving the principle of
the argument. We show how it leads to a graphical method—the Nyquist
plot—for determining the stability of a system. We discuss low-pass sys-
tems, and we introduce the Bode plots and show how one can use them
to determine the stability of such systems. We discuss the gain and phase
margins and some of their limitations.

In the sixth chapter, we discuss the root locus diagram. Having covered
a large portion of the classical frequency domain techniques for analyz-
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ing and designing feedback systems, we turn our attention to time-domain
based approaches. We describe how one plots a root locus diagram. We
explain the mathematics behind this plot—how the properties of the plot
are simply properties of quotients of polynomials with real coefficients. We
explain how one uses a root locus plot to analyze and design feedback sys-
tems.

In the seventh chapter we describe how one designs compensators for
linear systems. Having devoted five chapters largely to the analysis of
systems, in this chapter we concentrate on how to design systems. We
discuss how one can use various types of compensators to improve the
performance of a given system. In particular, we discuss phase-lag, phase-
lead, lag-lead and PID (position integral derivative) controllers and how to
use them.

In the eighth chapter we discuss nonlinear systems, limit cycles, the
describing function technique, and Tsypkin's method. We show how the
describing function is a very natural, albeit not always a very good, way
of analyzing nonlinear circuits. We describe how one uses it to predict the
existence and stability of limit cycles. We point out some of the limitations
of the technique. Then we present Tsypkin's method which is an exact
method but which is only useful for predicting the existence of limit cycles
in a rather limited class of systems.

In the ninth chapter we consider modern control theory. We review
the necessary background from linear algebra, and we carefully explain
controllability and observability. Then we give necessary and sufficient
conditions for controllability and observability of single-input single-output
system. We also discuss the pole placement problem.

In the tenth chapter we consider discrete-time control theory and the
control of hybrid systems. We start with the necessary background about
the z-transform. Then we show how to analyze discrete-time system. The
role of the unit circle is described, and the bilinear transform is carefully ex-
plained. We describe how to design compensators for discrete-time systems,
and we give a brief introduction to the modified z-transform.

In the final chapter we provide solutions to selected exercises. The
solutions are generally done at sufficient length that the student will not
have to struggle too much to understand them. It is hoped that these
solutions will be used instead of going to a friend or teacher to check one's
answer. They should not be used to avoid thinking about how to go about
solving the exercise or to avoid the real work of calculating the solution. In
order to develop a good grasp of control theory, one must do problems. It
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is not enough to "understand" the material that has been presented; one
must experience it.

Having spent many years preparing this book and having been helped
by many people with this book, I have many people to thank. I am par-
ticularly grateful to Professors Richard G. Costello, Jonathan Goodman,
Steven Schochet, and Aryeh Weiss who each read this work, critiqued it,
and helped me improve it. I also grateful to the many anonymous referees
whose comments helped me to improve my presentation of the beautiful
results herein described.

I am happy to acknowledge Professor George Anastassiou's support.
Professor Anastassiou has both encouraged me in my efforts to have this
work published and has helped me in my search for a suitable publisher.
My officemate, Aharon Naiman, has earned my thanks many, many times;
he has helped me become more proficient in my use of LaTeX, put up with
my enthusiasms, and helped me clarify my thoughts on many points.

My wife, Yvette, and my children, Chananel, Nediva, and Oriya, have
always been supportive of my efforts; without Yvette's support this book
would not have been written. My students been kind enough to put up
with my penchant for handing out notes in English without complaining too
bitterly; their comments have helped improve this book in many ways. My
parents have, as always, been pillars of support. Without my father's love
and appreciation of mathematics and science and my mother's love of good
writing I would neither have desired to nor been suited to write a book of
this nature. Because of the support of my parents, wife, children, colleagues,
and students, writing this book has been a pleasant and meaningful as well
as an interesting and challenging experience.

Though all of the many people who have helped and supported me over
the years have made their mark on this work I, stubborn as ever, made
the final decisions as to what material to include and how to present that
material. The nicely turned phrase may well have been provided by a friend
or mentor, by a parent or colleague; the mistakes are my own.

Shlomo Engelberg
Jerusalem, Israel
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Chapter 1

Mathematical Preliminaries

1.1 An Introduction to the Laplace Transform

Much of this chapter is devoted to describing and deriving some of the
properties of the one-sided Laplace transform. The Laplace transform is
the engineer's most important tool for analyzing the stability of linear,
time-invariant, continuous-time systems. The Laplace transform is denned
as:

£(f(t))(*)= [°°e-stf(t)dt.
Jo

We often write F(s) for the Laplace transform of f(t). It is customary to use
lower-case letters for functions of time, t, and to use the same letter—but in
its upper-case form—for the Laplace transform of the function; throughout
this book, we follow this practice.

We assume that the functions f(t) are of exponential type—that they
satisfy an inequality of the form \f(t)\ < Ceat, C € It. If the real part of s,
9ft(s), satisfies Sft(s) < —a, then the integral that defines the Laplace trans-
form converges. The Laplace transform's usefulness comes largely from the
fact that it allows us to convert differential and integro-differential equa-
tions into algebraic equations.

We now calculate the Laplace transform of some functions. We start
with the unit step function (also known as the Heaviside 1 function):

, / 0 t < 0

1 After Oliver Heaviside (1850-1925) who between 1880 and 1887 invented the "oper-
ational calculus" [OR]. His operational calculus was widely used in its time. The Laplace
transform that is used today is a "cousin" of Heaviside's operational calculus[Dea97].
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2 A Mathematical Introduction to Control Theory

From the definition of the Laplace transform, we find that:

U(s) = C(u(t))(s)

= / e-st-ldt
Jo

_ e~st °°
~s o

,. e~st 1= hm .
t-»oo — s —S

Denote the real part of s by a and its imaginary part by /?. Continuing our
calculation, we find that:

P-j0t 1
Ms) = lim e'at- + -

t^oo — s S

s s

This holds as long as a > 0. In this case the first term in the limit:

e-j0t
lim e-at-

t—»oo —s

is approaching zero while the second term—though oscillatory—is bounded.
In general, we assume that s is chosen so that integrals and limits that must
converge do. For our purposes, the region of convergence (in terms of s) of
the integral is not terribly important.

Next we consider C(eat)(s). We find that:
/•OO

£(eat)(s) = / e-
steatdt

Jo
e(a-s)t °°

a - s 0

_ 1

s — a

1.2 Properties of the Laplace Transform

The first property of the Laplace transform is its linearity.

Theorem 1

£ (a/(t) + pg(t)) (s) = aF(s) + 0G(s).
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Simply put, "the Laplace transform of a linear combination is the linear
combination of the Laplace transforms."

PROOF: Making use of the properties of the integral, we
find that:

/•OO

C (af(t) + (3g(t)) (s) = / e-* (af(t) + (3g(t)) dt
Jo

/•OO />OO

= a / e-stf{t)dt + f3 e-
stg(t)dt

Jo Jo
= aF{s) + 0G(s).

We see that the linearity of the Laplace transform is part
of its "inheritance" from the integral which defines it.

The Laplace Transform of sin(i) I—An Example
Following the engineering convention that j = yf-i,

we write:

ejt _ e-jt
sin(t) = 2j .

By linearity we find that:

£(sin(i))(s) = ^ (C(e^)(s) - r(e"'"*)(S)) .

Making use of the fact that we know what the Laplace
transform of an exponential is, we find that:

£(sin(t))(s) = —. (— 5—̂ ) = -^—.
v w ; w 2j \s-3 s+jj s2 + l

The next property we consider is the property that makes the Laplace
transform transform so useful. As we shall see, it is possible to calculate
the Laplace transform of the solution of a constant-coefficient ordinary dif-
ferential equation (ODE) without solving the ODE.
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Theorem 2 Assume that f(t) is has a well defined limit as t approaches
zero from the righf. Then we find that:

C(f'(t))(s) = sF(s) - /(0+).

PROOF: This result is proved by making use of integration
by parts. We see that:

C(f'(t))(s)= f°° e-atnt)dt.
Jo

Let u = e~at and dv = f'(t)dt. Then du ~ -se~st and
v = f(t). Assuming that a = TZ(s) > 0, we find that:

/ e-atf'(t)dt = - ±e-stf(t)dt + e~^f(t)\^+
Jo Jo at

= s r e~stf(t) dt + lim e~stf(t) - /(0+)

= sF(s) + 0 - /(0+)

= sF(s) - /(0+).

We take the limit of f(t) as t —* 0+ because the integral
itself deals only with positive values of t. Often we dispense
with the added generality that the limit from the right
gives us, and we write /(0).

We can use this theorem to find the Laplace transform of the second (or
higher) derivative of a function. To find the Laplace transform of the second
derivative of a function, one applies the theorem twice. I.e.:

C(f"(t))(s) = sC(f'(t))(s)-f'(O)

= s(sF(s)-f(0))-f'(0)

= s2F(s)-sf'(0)-f(0).

The Laplace Transform of sin(t) II—An Example
2The limit of f(t) as t tends to zero from the right is the value to which /(<) tends as

t approaches zero through the positive numbers. In many cases, we assume that f(t) = 0
for t < 0. Sometimes there is a jump in the value of the function at t = 0. As the zero
value for t < 0 is often something we do not want to relate to, we sometimes consider
only the limit from the right. The limit as one approaches a number, a, from the right
is denoted by a+. By convention /(0+) = limt_>0+ f(t). Of course, if f(t) is continuous
at 0, then /(0+) = /(0).
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We now calculate the Laplace transform of sin(t) a sec-
ond way. Let f(t) = sin(t). Note that f"(t) = -f(t) and
that /(0) = 0, /'(0) = 1. We find that:

£(-sin(£))(s) = s2£(sin(i))(s) - sO - 1 *>

-£(sin(t))(s) = s2£(sin(t))(s) - 1 <s>

O2 + l)£(sin(f))(s) = 1 «*•

£(sin(*))(s) = ^ .

The Laplace Transform of cos(i)—An Example

From the fact that cos(t) = (sin(i))' and that sin(0) =
0, we see that:

C(cos(t))(s) = sC(sm(t))(s) - 0 = -£-.

An easy corollary of Theorem 2 is:

Corollary 3 £ (/„* f(y) dy) (s) = %&.

PROOF: Let g(t) = /0* f(y) dy. Clearly, g(0) = 0, and
g'(t) = f(t). From Theorem 2 we see that C(g'(t))(s) =
sC(g(t))(s) - 0 = £(/(*))(*)• We find that £(J* f(y) dy) =
F(s)/s.

We have seen how to calculate the transform of the derivative of a
function; the transform of the derivative is s times the transform of the
original function less a constant. We now show that the derivative of the
transform of a function is the transform of — t times the original function.
By linearity this is identical to:

Theorem 4
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PROOF:

= - r (-*/(*)) dt
Jo

= C(tf(t)).

The Transforms of tsin(t) and te~t—An Example
Using Theorem 4, we find that:

Similarly, we find that:

c{te~t] = ~Ts ( T + I ) = (J+ip-

VFe see i/iai i/iere is a connection between transforms whose
denominators have repeated roots and functions that have
been multiplied by powers oft.

As many equations have solutions of the form y(t) = e~atf(t), it will
prove useful to know how to calculate £ (e~atf(t)). We find that:

Theorem 5

£{e-atf(t))(s) = F(s + a).

PROOF:

C{e-atf{t)){s)= [°°e-ste-atf(t)dt
Jo

/•OO

= / e-(s+a)tf(t)dt
Jo

= F{s + a).

The Laplace Transform of te~* sin(i)—An Example
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Consider £(e~*sin(£)) (s). As we know that
C (sin(t)) (s) = ^py, using our theorem we find that:

As we know that multiplication in the time domain by t
is equivalent to taking minus the derivative of the Laplace
transform we find that:

£(te-*sin(i)) (s) = ~ f-5—J r) •

Using the chain rule3 we find that:

(!//(*))' = (-l/f2(s))f\s).

Thus we find that £(fe~*sin(i))(s) is equal to:

d f 1 \ _ - 1 d , 2 v
" ^ VS2 + 2 s + 2 J = - ( s 2 + 2 s + 2 ) 2 ^ ( s +2s + 2J

_ 2s+ 2
~ (s2 +2s + 2)2 '

Often we need to calculate the Laplace transform of a function g(t) =
f(at),a > 0. It is important to understand the effect that this "dilation"
of the time variable has on the Laplace transform. We find that:

The Effect of Dilation 6

C(f(at))(s) = -F(s/a),a>0.
(X

PROOF:

C(f(at))(s) = / e-stf(at)dt
Jo

u = a t - l°° e-{s/a>f{u)du
a Jo

= -F(s/a).
a

3The chain rule states that:

dt dy y=g(t)
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sin(utf)—An Example

Suppose f(t) = sm{u}t). What is £(f(t))(s)7 Using
Theorem 6, we find that:

Because we often need to model the effects of a delay on a system, it is
important for us to understand how the addition of a delay to a function
affects the function's Laplace transform. We find that:

The Effect of Delays 7

C(f(t - T)u{t - T)){s) = e-TsF(s),T > 0.

PROOF:

£(f(t-T)u(t-T))(s) = re-stf(t-T)u(t-T)dt
Jo

= r e-stf(t-T)dt
JT

I-OO

"=4-T / e-
s^+T^f{u)du

Jo

= e~sT f e-suf(u)du
Jo

= e-sTF{s).

It is important to be able to determine the steady-state output of a
system—the output of the system after all the transients have died down.
For this purpose one can sometimes make use of the final value theorem:
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The Final Value Theorem 8 If f(t) approaches a limit as t —» oo, and if
/o°° I/'(OI dt converges4 then:

lim f(t) = lim sF(s).

PROOF: Consider sF(s) = s /0°° e~stJ{t)dt. Note that if
/(<) takes a non-zero limit at infinity (and even sometimes
when it takes zero as its limit) the Laplace transform is
only well defined for 9?(s) > 0. In what follows we assume
that that s has always been chosen in such a way that
limt_oo e~stf(t) = 0—i.e. H(s) > 0. With this in mind,
we find that:

/•OO /-OO / J \

Jo

= /(0+)+ l°° e-sif{t)dt.
Jo

It seems reasonable to hope that:

/•OO /-OO

lim / e-stf(t)dt= lim e~stf{t)dt
*-o+ Jo Jo *-o+

= ri-f(t)dt
Jo

= lim /(*) - /(0+).
t—>oo

4If /(t) approaches a final value in a reasonable fashion this condition will hold. Note
that:

f°°\f'(t)\dt= f f'(t)dt- f f'(t)dt, (1.1)
Jo J{t\f'W>o} J{t\f(t)<oy

and recall that:

f f'(x)dx = f(b)-f(a).
J a

Considering (1.1) we see that the first integral must be the total amount that the function
increases in all region in which it is increasing while the second integral is just the total
amount that the function decreases while the function is decreasing. The difference of
the two integrals is just the total amount that function varies as t goes from zero to
infinity. This is often referred to as the total variation of the function. If the oscillations
are exponentially damped (as they generally are in the cases of interest to us), then the
total variation is finite and the theorem applies.
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It is not too hard too show that as long as /0°° \f'(t)\dt
converges, the limit of the integral indeed converges to the
integral of the limit. Consider the difference between:

h(S)= re-
stf(t)dt

Jo

and

h= [°°f'(t)dt=]imf(t)-f(O+).
Jo *-*o°

We would like to show that the difference tends to zero as
s —> oo. We find that:

| / i ( 3 ) - / 2 | = / e-stf'(t)dt- / f(t)dt
Jo Jo

= r(e-st-l)f'(t)dt
Jo

pA /-OO

= / (e-*t-l)f'(t)dt+ (e-st-l)f'(t)dt
Jo J A

where A > 0.
In order to deal with the two integrals separately, we make
use of the triangle inequality:

\a + b\< \a\ + \b\

which says that the absolute value of the sum of two num-
bers is less than or equal to the sum of the absolute value
of the numbers considered separately. We will also use the
generalized triangle inequality:

/ f(t)dt < I \f{t)\dt, b>a
J a J a

which says that the absolute value of the integral of a a
function is less than or equal to the integral of the absolute
value of the function. Using the triangle inequality and the
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generalized triangle inequality, we find that:

\h(s)-I2\ < [A(e'st-l)f(t)dt
Jo

+ r(e-st-l)f(t)dt , A>0
JA

< [A\(e-st-l)f'(t)\dt
Jo

+ /°°|(e-"-l)//(t)|dt, ,4>0
JA

= f \(e-st-l)\\f(t)\dt
Jo

+ / ° ° | ( e - " - l ) | | / ' ( t ) | A , A>0
JA

< / |(e-"-l)||/'(t)|dt
Jo

/•OO

+ / 2\f'(t)\dt, A>0.
JA

As we know that I-i converges, we find that for any e we
can find a B such that for all A > B we have:

/•OO

/ 2\f{t)\dt<e/2.
JA

For any such fixed value of A it is clear that so long as
s > 0 is close enough to zero we find that for all < € [0, A],
for all t in the interval [0,A]:

1 ' JTI/'(*)I*

We see that for any choice of e > 0 as long as s is sufficiently
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close to 0 we have:

\h(s)-I2\<e/2+ [A\(e-3t-l)\\f(t)\dt
Jo

— e.

From the definition of the limit we find that:

lim Ji(s) = I2

s->0+

just as we needed. Combining all of these steps, we find
that:

lim sF(s) = lim f(t).
s—*0+ t—>oo

A Misapplication of the Final Value Theorem—An
Example

Let us find the final value of sin(t). Using Theorem 8,
we find that:

lim sin(t) = lim s-= = 0.
t-»oo s-»0 s2 + 1

This is ridiculous; the sine function has no final value.
What happened? One of the conditions of Theorem 8
is that the function under consideration have a limit as
t —* oo. If the function does not have a limit, then the the-
orem does not apply, and when the theorem does not apply
one can get nonsensical results if one uses the theorem.

The Delayed Unit Step Function—An Example
Consider the function f(t) = u(t — a),a > 0. Clearly,

here a final value does exist; the final value of a delayed unit
step function is 1. The Laplace transform of the delayed
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unit step function is (according to Theorem 7):

From the final value theorem, we see that:

lim u(t - a) = lim sC{u(t - a))(s)
t—>oo s—*0+

e~as
= lim s

8-»0+ S
= lim e~as

= 1.

This is just as it should be.

We will also find use for the initial value theorem:

The Initial Value Theorem 9

/(0+) = lim f(t) = lim sF{s).

PROOF: In the proof of Theorem 8 we found that:

sF(s) = s f e-stf{t) dt
Jo

/ •oo

= /(0+)+/ e-stf'(t)dt.
Jo

As long as f'(t) is of exponential type, we know that:

\f'(t)\<Ceat.
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If this is so, then from the generalized triangle inequality
we find that:

/•OO /-OO

/ e-stf'(t)dt < / \e-'*f'(t)\dt
Jo Jo

= r \e-st\\f'(t)\dt
Jo

/•oo

< / \e~3t\Ceatdt
Jo

/•OO

Jo
/•OO

= C e-W')—)*dt.

It is clear that as TZ(s) —> oo the integral above tends to
zero. This completes the proof of the theorem.

The Delayed Cosine—An Example
Let us make use of the initial value theorem to find the

value of cos(i — r)u(t — r), r > 0 when t = 0. Evaluating
the expression we see that it is equal to cos(—T)U(—T) =
cos(r) -0 = 0. We know that:

£ ( c o s ( t - r ) U ( t - T ) ) ( 5 ) = e - " ^ - I .

Using the initial value theorem we find that:

cos(0 - T)U(0 - r) = lim se~TS^-—=0
3t(s)-><x> S2 + 1

as it must.

We present one final, important, theorem without proof.

Theorem 10 If f(t) and g(t) are piecewise continuous5 and if
C(f(t))(s) = C(g(t))(s), then f(t) = g(t) (except, possibly, at the points
of discontinuity). I.e., the Laplace transform is (to all intents and pur-
poses) unique.

5 Piecewise continuous functions are functions that are "pieced together" from con-
tinuous functions. An example is the delayed unit step function u(t — 2) which is 0 until
2, and is 1 afterwards. Both 0 and 1 are continuous functions. At the interface of the
continuous pieces, at t = 2, u(t — 2) is not continuous.
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Thus, if one recognizes a function F(s) as the Laplace transform of the
function f(t) one can state that F(s) does come from f(t). It is not possible
that there is a second piecewise continuous function f(t) whose transform
is also F(s).

Solving Ordinary Differential Equations—An Example

Let us solve the equation y'(t) — -2y(t), y(0) = 4. We
start by finding the Laplace transform of both sides of the
equation. We find that:

sY(s)-A = -2Y(s)^Y(s) = ~ ^ .

We know that £(e~2t)(s) = -^. From the linearity of the
Laplace transform we know that C(4e~2t)(s) = -^. From
our uniqueness result, we find that y(t) = 4e~2t.

1.3 Finding the Inverse Laplace Transform

We will not attempt to find a formula that gives us the inverse Laplace
transform of a function. (Such a formula exists, but it is somewhat compli-
cated.) In general one calculates the inverse Laplace transform of a Laplace
transform by inspection. That is, one "massages" the transform until one
has it in a form that one recognizes. Note that with the exception of Theo-
rem 7 all of the transforms that we have encountered and all of the theorems
that we have seen lead to transforms that are rational functions with real
coefficients—that are of the form:

?&, P(s) = ans
n + • • • + a0, Q(s) = bmsm + --' + b0

Q(s)

where the coefficients are all real numbers.
From modern algebra we know that all such fractions can be written in
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the form:

- P ( s ) _ n/A | Qoo | Qoi | aQnQ

Q(S) H ^ + s _ p o + ( s _ p o )2 + • • • (S - p o)no

+ •••
QjQ Qil a P n ;

s-pi (s-p()2 (s-p;)"'
&0QS + CQQ ftoncoS + ConCo

(s-^Co)(5-^) ((s-^Co)(5-pCo'))nCO

H
bLQS + CJ,Q bLncL $ + CLncL

(s-pcL){s-pcE) {{s-pcL){s-pcL))nCL

where R(s) is a polynomial with real coefficients, a,ij,bij, and c^ are real
constants, pi are real poles6 of the fraction, pci and pel are complex poles
of the fraction, I is the number of distinct real poles of the fraction, L is
the number of distinct pairs of complex poles, n» is the number of times the
real pole p, is repeated, and rid is the number of times the complex pole
pair pci,pci is repeated. Note that R(s) = 0 as long as the order of the
denominator is greater than the order of the numerator—the most common
case in control theory applications. As (s — a)(s — a) = s2 — 23?(<x)s + \a\2

is a polynomial with real coefficients, we find that all of the terms in the
expansion above are rational function with real coefficients. The expression
above is called the partial fraction expansion of ^ 4 . (It is often used in
calculus to evaluate integrals of rational functions[Tho68].)

1.3.1 Some Simple Inverse Transforms

(1) P(s)/Q(s) = l/(s + I)3. This fraction is already in partial fraction
form. We must determine the function whose Laplace transform it
"obviously" is. We know that £(e~*)(s) = l/(s + 1). We note that
the second derivative of the Laplace transform is 2/(s + I)3. Taking
a second derivative in the Laplace domain is, according to Theorem 4,
the same as multiplying the time function by t2. Thus, C(t2e~t/2)(s) =
l/(s + l)3 .

(2) P(s)/Q(s) = l/(s2 —1). We can factor the denominator into (s — l)(s +

6The poles of a rational function are those points at which the function becomes
unbounded.
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1). We find that:

1 _ __a_ b

S2~1~S-1 + S + 1'

A standard way of finding the coefficients a and 6 is to multiply both
sides of the equation by s2 — 1. One finds that:

1 = a(s + 1) + b(s - 1) «-1 = (a + b)s + (a - b).

Equating coefficients of like powers of s, we find that a + b — 0, and
a — b = 1. Adding the two equations we find that a = 1/2. Clearly
b = -1/2. We find that:

1 _ 1/2 1/2
S 2 - l S - l S + 1 '

Recognizing that:

£((l/2)e-*)(S) = i / i

and that:

£((l/2)e*)(*) = !£-,

we find that:

£((l/2)(e-t-et))(s) = -J—.
6 — X

(3) P(s)/Q(s) = l/(s + I)2. This fraction is also in partial fraction form.
We once again must determine its "obvious" inverse transform. One
way to proceed is to note that 1/s2 is the Laplace transform of t and
a shift by —1 in the s-plane is equivalent to multiplication by e~* in
time. The "obvious" inverse Laplace transform is te~t. Another way to
get to the same answer is to note that C(e~t)(s) = l/(s + 1) and that
—d/ds{l/(s + 1)} = l/(s + I)2. As the differentiation of the Laplace
transform is equivalent to multiplication of the original function by —t,
we find that the original function must have been te~*.

(4)

We can factor the denominator as follows:

s3 + 4s2 + is = s(s2 + 4s + 4) = s(s + 2)2.



18 A Mathematical Introduction to Control Theory

We see that:

8 + 1 _A _B_ C
s3 + 4s2 + 4s ~ s + s + 2 + (s + 2)2 '

Multiplying through by s3 + 4s2 + 4s we find that:

s + 1 = A{s2 + 4s + 4) + B(s2 + 2s) + Cs.

Equating coefficients of like powers of s we find that:

,4 + 5 = 0

4A + 2B + C = 1
4A= 1.

We find that A = 1/4, B = -1/4, and C = 1/2. Following the logic of
the previous example, we see that:

Thus, the original function must have been:

1.3.2 The Quadratic Denominator

Let us consider a fraction of the form:

as + P
as2 + bs + c

where all of the constants are real. The poles of the function are the zeros
of the denominator. Using the quadratic formula we find that the poles
are:

—b ± y/b2 — 4ac
S = la •

If:

b2 - 4ac > 0,

then there are two real poles and we can find the inverse transform quite
easily using the techniques demonstrated in the previous example. Suppose,
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however, that:

b2 - iac < 0.

Then there are two complex conjugate poles:

—b ± ?'\/4ac — b2

S = 2~a •

In this case, the simplest way to proceed is to complete the squares in the
denominator and then manipulate the fractions into fractions whose inverse
transforms we know. We find that:

as + /? _ as + P
as2 + bs + c~ a(s2 + (b/a)s + (c/a))

_ as + (3

1 «(* + & ) - ^
a (* + £)2 + ^
if "(*+&) ^ ^
a I (s+ ±\2 + 4oc-6i (s+ ±\2 + iac-6i I

_ 1 / a (a + ^ ) a6 - 2a/3 y ^ ^ \
"~ a \ fs 4. 1 \ 2 4. 4ac-6a /4ac-b2 fs 4. A1)2 4. 4ae-62 I

= I / Q ( S + ^) _ ab ~ 2aP V 7 ^ ^ \

After these simple (albeit tedious) operations, we find that "by inspection"
the inverse transform is:

e~A* / / Uac-ba? \ ab-2af3 . / Uac-ba2 \ \
acos \ ——2—t - sin W — - 1 — i u(t).a y yV 4a2 y \/4ac - 62 ^V 4a2 yy

Comparing the inverse Laplace transform and the poles of the fraction, we
find that the rate of growth of the inverse Laplace transform is a function
of the real part of the pole 6/(2a)—and the frequency of the oscillations
is controlled by the imaginary part of the pole:

/4ac — 6a2 y/4ac — ba2
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1.4 Integro-Differential Equations

An integro-differential equation is an equation in which integrals and deriva-
tives appear. Many systems can be modeled using integro-differential equa-
tions. Prom Theorem 2 and Corollary 3, it is clear that both linear constant
coefficient differential and integro-differential equation in y{t) lead to ex-
pressions for Y(s) that are rational functions of s. Using the techniques of
the previous section, we should be able to find the inverse Laplace transform
of such expressions. We consider a few examples.

The Laplace Transform of sinh(u>£)—An Example
If y(t) = sinh(wt), then y'(t) = wcosh(wt), and y"{t) =

w2sinh(wi). Clearly y(Q) = 0, and y'(0) = w. Let us find
the Laplace transform of the solution of the equation y"(t) =
uj2y(t), y(0) = 0,j/'(0) = ui in order to find the Laplace trans-
form of sinh(o;£).

y"{t) = cj2y(t), 2/(0) = 0, y'(0) =w&

s2C(y(t))(s) - y'(0) - sy(0) = u2£(y(t))(s) O

(s2-u2)£(y(t))(s)=u>^

4v(*))W = ^ -

At this point we have found the Laplace transform of sinh(wt).
We note that the Laplace transform is not in partial fraction form.
As s2 - J2 = (s - w)(s + u>), find that:

u) _ A B
s2 — u)2 s — u) s + u>

It is easy to see that A = 1/2 and B = —1/2. The inverse transform
of C(y(t)) is thus:

sinh(a;£) =

which is just as it should be.

A Simple Circuit—An Example
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Fig. 1.1 A Simple R-L-C Circuit

If one has a series circuit composed of a switch, a 5V battery, a
10£2 resistor7, a 10 mH inductor8 and a 625 (iF capacitor9 in series
(see Figure 1.1) and there is initially no current flowing, the charge
on the capacitor is initially zero, and one closes the switch when
t = 0s, then from Kirchoff's voltage law10 (KVL) one finds that
the resulting current flow, i(t), is described by the equation:

inductor capacitor
resistor /—^-v / * v battery

loT + .01^ +1600 / i(z)dz= 5u(t)
at Jo

where t it the time measured in seconds. Taking Laplace trans-

7Ohm's law states that the voltage across a resistor, Vn(t), is equal to the current
flowing through the resistor, iii(t), times the resistance, R, of the resistor. I.e. Vn(t) =
iR(t)R.

8Recall that the voltage across an inductor, V^it), is equal to the inductance, L,
of the inductor times the time derivative of the current flowing through the inductor,
diL{t)/dt. That is, VL(t) = LdiL{t)/dt.

9The charge stored by a capacitor, Qc(t), is equal to the capacitor's capacitance, C,
times the voltage across the capacitor, Vc(t). I.e. Qc(t) = CVc(t). Recall further that
charge, Qc(t), is the integral of current, ic(t). Thus, Qc(t) = /„* icW dt + Qc(0).

10Kirchoff's voltage law states that the sum of the voltage drops around any closed
loop is equal to zero. In our example KVL says that:

-5ix(t) + VR(t) + VL(t) + Vc(t) = 0.
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forms, one finds that:

(10 + .01s + 1600/s) I{s) = 5/s.

Rearranging terms, we find that:

I( ) = 500
[S) (s2 + 1000s + 160000)'

The denominator has two real roots:

Pi,2 = -200, -800.

Thus:

I(c)-
 5 0 0 - A , B

K ' (s + 200)(s + 800) s + 200 s + 800'

Multiplying the fractions by (s + 200)(s + 800), we find that:

500 = A(s + 800) + B(s + 200) =» A = 5/6, B = -5/6.

We find that the solution of the equation is:

i(t) = | ( e - 2 0 O t - e - 8 0 0 t )« (* )

where the current is measured in amperes.

A Look at Resonance^—An Example
Consider the equation satisfied by a spring-mass system with

an m Kg mass and a spring whose spring constant is k N/M that
is being excited by a sinusoidal force of amplitude A newtons and
angular frequency Q, rad/sec. (See Figure 1.2.) Let y(t) by the
variation of the mass from it equilibrium position (measured in
meters). From Newton's second law11 we see that:

ma £F

my"(t) = -ky(t) + Asm(Qt).

Assume that the mass starts from its equilibrium position, y(0) = 0,
and that the mass starts from rest, y'(0) = 0. Taking the Laplace

11 Which states that:
sum of forces = ^ F = ma.
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Fig. 1.2 The Free Body Diagram of the Spring-Mass System

transform of the equation, we find that:

AQ
ms2Y(s) = -kC(y(t))(s) + -^-^.

That is:

Y(.) = -40 UlL-
{)

 s
2 + Q2s2 + k/m'

Assume that k/m =£ Cl2. Then the above fraction is not in
partial fraction form. The partial fraction expansion of the fraction
is:

AQ/m _As + B Cs + D
(s2 + Q.2){s2 + k/m) ~ s2 + Q2 s2 + k/m'

Multiplying both sides of the equation by (s2+Q.2)(s2 + k/m) leaves
us with the equation:

{As + B){s2 + k/m) + (Cs 4- D)(s2 + Q2) = AQ/m &

(A + c)s3 + (B + D)S2 + (— + cn2) S + — + Dn2 = —.
v \ m ) m m
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Equating coefficients of powers of s in the last equation gives
us:

A + C = 0 (1.2)

B + D = 0 (1.3)

cn2 + — = o (i.4)
m

^ + DQ2 = ^ . (1.5)
m m

Combining (1.2) and (1.4), we find that A = C = 0. Combining
(1.3) and (1.5), we find that B = AQ/(k - mfi2) and D = -B.
Thus, we find that:

y(t) = k_
A

mft2 (sm(fH) - (n/y/k/m)sm(y/k/mt)^

where y(t) is measured in meters.

Now let us assume that f22 = k/m. Then the Laplace transform
is already in partial fraction form. In this case, we must find the
inverse transform of:

AQ./m
(S2 + (F)2-

Note that:

9<sO
C(tsm(nt))(s)={s2°n2)2.

We are interested in A£(tsm(fi,t))(s)/(2ms). Prom Corollary 3 we
know that this is:

A /•* ._, . , A ( tcos(Qt) sin(fit)\
2m Jo 2m \ Si SlJ /

We find that so long as the resonant frequency of the spring,
y/k/m, is not the same as the forcing frequency, Si, the output of
the system is bounded. If the resonant frequency is the same as the
forcing frequency, then the solution grows "essentially linearly" in
time.
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1.5 An Introduction to Stability

It is important for us to know that a given system behaves in a "reasonable
fashion." In this section we make the kind of reasonableness that we want
precise, and we give a criterion that a system must satisfy in order to behave
reasonably. First, however, we put our generic system in a form that makes
reasonableness easy to check.

1.5.1 Some Preliminary Manipulations

Consider an arbitrary linear, constant-coefficient, inhomogeneous integro-
differential equation in y(t). After differentiating the equation a sufficient
number of times to eliminate all of the integrals, one can convert the equa-
tion into a linear, constant-coefficient, differential equation.

A Simple R-C Circuit—An Example

Fig. 1.3 A Simple R-C Circuit

Consider a circuit in which a capacitor of capacitance C farads,
and a resistor of resistance R ohms are in series with a voltage
source that sources the voltage f(t) volts. Let i(i) be the current
(measured in amperes) traversing the circuit at time t (measured
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in seconds) and let Q(0) be the charge on the capacitor at time
t = 0. (See Figure 1.3.) The equation that describes the current in
the circuit at time t is:

Ri(t) + QT i(y) dy + Q(0)) /C = f(t) (1.6)

We would like to manipulate this into an ordinary differential
equation; we differentiate the equation once. We find that:

Ri'(t) + i(t)/C = f'(t).

We seem to be missing an initial condition—we must find i(0).
Looking at (1.6), we find that when t — 0, the equation reads
Ri(Q) + Q(0)/C = /(0). This equation gives us the initial value of
the current—i(0) = -Q(0)/C + /(0). This is the initial condition
we need.

Let us assume that we have differentiated the integro-differential equa-
tion that describes our system sufficiently many times that we are left with
an ODE of the form:

any
{n)(t) + an- i j / ^ -^ i ) + • • • + aoy(t) = &ro/(m)(0 + • • • + bof(t)

t/"-1)(0) = cn_1,...,2/(0) = Co

where /(£) is the input to the system and y(t) is the output of the system.
Taking the Laplace transform of our equation, we find that:

{ans
n + an_lS

n-1 + • • • a0) Y(s) = P(s)+(bmsm + b^s™'1 + • • • b0) F(s)

where P{s) is related to the initial value of y(t) and its derivatives and of the
initial value of f(t) and its derivatives. Denoting ans

n + an^isn~1 -\ ao
by Q(s), and denoting bmsm + bm-ism~1 + • • • bo by R(s), we find that:

Y(s) = P(s)/Q(s) + F(s)R(s)/Q(s)

where P(s) is determined by our initial conditions, and Q(s) and R(s) are
determined by the differential equation.

1.5.2 Stability

We would like to find a condition which guarantees that "if the input to
the system is reasonable, then so is the output of the system." The first
question one must ask is, how does one define reasonable? We take a simple
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definition—we say that a system is stable iffor any (reasonable) bounded in-
put and for any initial conditions the output of the system is bounded. This
is often referred to as BIBO—bounded input bounded output—stability.
We claim that a necessary and sufficient condition for a system described
by a linear, constant coefficient, time invariant, integro-differential equa-
tion to be stable is that all of the poles of P(s)/Q(s)—all of the zeros of
Q(s)—must lie in the left half-plane. When we speak of the left half-plane
we will always mean the region LHP = {s|3?(s) < 0}. The right half-plane
will always mean the region RHP = {s|8?(s) > 0} unless we specify the
open right half-plane—the region {s|5R(s) > 0}.

We show that our condition is necessary. First, suppose that Q(s) has
a real zero of order n, z, in the open right half-plane and assume that
fit) = 0. We find that Y(s) = P(s)/Q(s), where the coefficients of P(s)
are related to the initial conditions on y(t). The partial fraction expansion
of Y(s) is:

where a ^ 0. Under this condition, y(t) = a{tn~l/(n — \)\)ezt which is a
function whose magnitude is unbounded.

Now suppose that Q(s) has two complex conjugate zeros in the right
half-plane. Then the partial fraction expansion of Y(s) = P(s)/Q(s) is:

as+ (3
as2 + bs + c

where b2 - Aac < 0. As we found on p. 18, the inverse Laplace transform
of such a term grows like e^P01*5'*. As the real part of the pole is positive
in our case, we find that the magnitude of inverse Laplace transform grows
without bound. (The case of multiple roots can be handled similarly.)

Suppose that the Q(s) has a single zero, z, on the imaginary axis. Sup-
pose, for example, that Q(s) has a zero at 0—that Q(s) = sQ(s). Let the
initial conditions on the ODE be identically zero. Let the function f(t) = 1.
Then:

v , . _ F(s) _ l/s partial jractions CL

Clearly then:

y(t) =at + -~
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This function is not bounded as t —* oo even though the input is. Similarly
if Q(s) has an imaginary zero at z = jw, then using f(t) = sin(otf) will
lead one to a solution whose maximum approaches infinity linearly. (See
Problem 8.) Because the instability exhibited by systems with poles of
multiplicity one on the imaginary axis does not generally lead the system's
output to increase without bound, such systems are said to be marginally
stable. Note that marginally stable systems are actually unstable.

The proof that our condition is sufficient to guarantee stability is more
complicated, and we do not present a proof of the sufficiency of the condi-
tion.

1.5.3 Why We Obsess about Stability

We have seen that if a system is not stable, then for some bounded input the
output of the system becomes unbounded. One might think, however, that
as long as one avoids the particular inputs that cause the system to behave
badly, then one can make use of the unstable system. Let us consider a
simple example to see why this is not a practical solution.

An Unstable System—An Example
Consider a system that satisfies the equation:

y"(t) = y(t).

The general solution of this equation (found using Laplace trans-
forms, for example) is:

y{t) = y(°) + y'(°)ct + y(o)-y'(Q)c-t

Suppose that one believes that one has set the initial conditions
to y(0) — 1,$/'(0) = —1. For these initial conditions, the solution
is y(t) = e~*—a perfectly nice solution. The difficulty with this
system is that practically it is well nigh impossible to be sure that
t/(0) = 1 and y'(0) = - 1 . Suppose that y(0) = 1 + e and y'(0) =
—1 + e' where both e and e' are extremely small. The solution of
the equation with these initial conditions is

y(t)=€-^et+(l+€-^)e-\

The effect of this infinitesimal change in the initial conditions
hardly affects the coefficient of the e~t. However, now we find
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that the growing exponential e* has a nonzero coefficient. As t
gets large we find that the part of the solution that we wanted,
e~*, is swamped by the part of the solution that came from a tiny
imprecision in our initial conditions.

Because of this tendency of even very small mistakes to have very large
consequences in unstable systems, such systems cannot generally be used.
Another problem with such systems is that in many cases the possibility of
unbounded output is itself a very bad sign. (One does not want one's car's
speed to increase without bound!) For these reasons we do not generally
use or want unstable systems.

1.5.4 The Tacoma Narrows Bridge—o Brief Case History

On November 7, 1940 the four month old Tacoma Narrows bridge collapsed.
In the aftermath many explanations were proposed for the collapse[Kou96J.
As a bridge is a very complicated structure, nobody has ever been able to
say with certainty what caused the collapse of the Tacoma Narrow Bridge.
It seems that what caused the bridge to tear itself apart was the wind ex-
citing a nonlinearly resonant mode in the bridge[BS9l]. (This is somewhat
akin to the linearly resonant mode in the spring-mass system of Page 22.)

The Tacoma Narrows bridge serves to remind engineers of the impor-
tance of treating unstable systems—and even marginally stable systems—
with the respect and caution that they deserve.

1.6 MATLAB

Throughout this book we will use MATLAB as a very fancy calculator. We
now give a very brief overview of how MATLAB is used. (We make use of the
commands found in the fourth edition of the student edition of MATLAB.)

1.6.1 Assignments

In MATLAB, one makes assignments by writing variable = object where
object may be a number, an array, or various other objects about which
we will hear more later. Note that neither variables nor arrays need to be
declared in MATLAB'S language. Here are a number of examples of legal
assignments.
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(1) A = 3. This assigns the value 3 to the variable A. It also causes MATLAB

to print:

A =
3

(2) Generally, if one wishes to suppress printing one ends the assignment
with a semi-colon. The command A = 3; also assigns three to the
variable A, but it does not cause anything to be printed.

(3) MATLAB prints the value of a variable if one types the variable's name.
If one types A, MATLAB responds with:

A =
3

(4) B = [3, 4 ,5 ] ; assigns the array [3, 4, 5] to B. To refer to the
individual elements of B one refers toB(l) toB(2), and to B(3). Arrays
in MATLAB always start from element number 1. It is worth noting that
the commas in the assignment statement are optional. If one leaves a
space between two numbers, MATLAB assume that the two numbers
are distinct elements of the array.

(5) C = [3, 4; 5, 6] assigns the two dimension matrix to the variable
C. Additionally, because there was no semi-colon after the assignment,
MATLAB prints:

C =

3 4

5 6

One can refer to the elements of this array as one would refer to elements
of a matrix. To refer to the second element in the first row one refers
to B(l,2). Typing B(l,2) causes MATLAB to respond with:

ans =
4

MATLAB prints ans because it is not responding with the value of
an entire named object—4 is not the value of B; it is the value of a
component of B.
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1.6.2 Commands

As we have already seen, we are often interested in finding the roots of
a polynomial—for example, the roots of the denominator of the Laplace
transform of some function. MATLAB has a command for this purpose—
roots12. Suppose one's polynomial is:

C\Xn + C2X
n~1 H h CnX + Cn+i.

To find the roots of this polynomial, one defines the array

C = [Ci,C2 , . • . , C n , C n + i ] ,

and then one makes the assignment/function call R = roots (C). The result
is that the roots of the polynomial are now stored in the array R.

Another command that is useful is the residue command. The residue
command gives the partial fraction expansion of a rational function. One
enters two array B and A which are the coefficients of the numerator polyno-
mial and the denominator polynomial respectively. One uses this command
by writing [R P K] = residue(B,A). The vector P contains the poles of
the various fractions that appear in the partial fraction expansion. Note
that if a pole appears more than once then the fraction connected to the
nth occurrence of the pole is l/(s — p)n. The vector R is the vector of
coefficients—the nth coefficient is the numerator of the fraction associated
with the nth item in the vector P. The vector K is the vector of coeffi-
cients of the polynomial than one gets if one starts with a fraction whose
numerator has degree13 greater than or equal to the degree of the denom-
inator. We note that residue gives all the poles separately—it separates
fractions of the form (As + B)/((s — a)(s — a) into fractions of the form
C/(s-a) + D/(s-a).

How to Use residue—An Example
Suppose that one would like to find the inverse transform of

the function C(f(t))(s) = l/(s2 — 1). One assigns B = 1 and
A = [1, 0, -1] . Then one performs the operation [R P K] =
residue(B,A). MATLAB responds with:

R =
12This command does not work very well for high order polynomials because the roots

of an equation are inherently difficult to calculate.
13The degree of a polynomial is the highest power that occurs in the polynomial. Thus,

the degree of s + 1 is one, while the degree of s3 + 1 is three. Polynomials of degree n
are also sometimes said to be of order n.
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-0.5000
0.5000

P =
-1.0000
1.0000

K =
[3

That means that the array K is empty and that the fraction is equal
to:

1 _ -0.5000 0.5000
s 2 - l ~ s - (-1.0000) + 5 - 1.0000'

Clearly the inverse Laplace transform of the function is (et—e~t)/2.
There are many useful MATLAB commands, and we will see some
of them in the course of this book.

1.7 Exercises

(1) Find the Laplace transform of:

(a)

cos(ut)u(t), u) > 0

Note that u(u>t) = u(t) if u> > 0.
(b)

f(t) = te-1 cos{t)u(t)

(c)

f(t) = Pe-tuit)

(d)

f(t) = e"* sm(2t)u{i)

(2) Find the function whose Laplace transform is:
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(a)

F(8) - 1±1

(b)

(c)

(d)

(e)

Do each problem both "by hand" and using MATLAB'S residue com-
mand.

(3) Use the Laplace transform to solve the differential equation:

y"(t) + 5y'(t) + Ay(t) = 1

subject to the initial conditions:

1,(0) = j/(0) = 0

(4) Use the Laplace transform to solve the integral equation:

/ y(r) dr = -y(t) + u(t)
Jo

where u{t) is the unit step function.
(5) Use the Laplace transform to solve the integral equation:

/ y(r) dr = -y(t) + sm(wt)u(t)
Jo

where u(t) is the unit step function.
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(6) Use the Laplace transform to solve the integro-differential equation:

3 / y(r) dr + 4y(t) + y'(t) = 0
Jo

subject to the initial condition y(0) = 1.
(7) Show the Laplace transform of the function /(£) = u(t)/y/i is •\/7r/s ^or

all s > 0. Use the definition of the Laplace transform, the substitution
y = i/si, and the fact that /0°° e~y dy = ^/TT/2.

(8) Suppose that the relation between the input to a system, f(t), and the
output of the system, y(t), satisfies:

y(°) = ^ w
By considering f(t) = sin(t), show that the system is not BIBO stable.



Chapter 2

Transfer Functions

2.1 Transfer Functions

As discussed in the first chapter, systems of interest to us will generally
be described byintegro-differential equations. Consider the Laplace trans-
forms of the input and output of such a system, X(s) and Y(s) respectively.
Assume that we want to set some combination of derivatives and integrals
of the output to some combination of derivatives and integrals of the input.
We find that the relation between X(s) and Y(s) is:

Y(s) = P(s)/Q(s) + X(s)R(s)/Q(s)

where the polynomial P(s) is related to the initial conditions to which
the system is subject, and R(s) and Q(s) are related to the form of the
integro-differential equation.

In §1.5.2 we saw that for a system to be stable it is necessary that all
of the zeros of Q(s) be in the left half-plane. It is crucial that any system
that one uses be stable. The output of an unstable system—as we have
seen—will almost invariably tend to "run away."

Assuming that we are dealing with a stable system, we find that the
portion of the response that is related to the initial conditions to which the
system is subject, P(s)/Q(s), has all of its poles in the left half-plane. By
considering the partial fraction expansion of this function, it is clear that
the function to which it corresponds decays exponentially quickly. Thus,
after a "little while" the initial conditions will no longer affect the output of
the system. In general when we consider systems we neglect the influence
of the initial conditions; we set P(s) = 0.

Assuming that P(s) = 0, we find that the ratio of the Laplace transform

35
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of the output to the Laplace transform of the input— is:

Tie) = %& - * &W X{a) Q{sY

We call T(s) the transfer function of the system. It is remarkable that a
transfer function exists.

A High-Pass Filter—An Example

Fig. 2.1 A Simple High-Pass Filter

Consider the high-pass filter of Figure 2.1. The simplest way
of describing how it functions is to consider the current flowing
through the circuit at time t, i(t). If we assume that the initial
charge on the capacitor is zero, then using Ohm's law and Kirchoff 's
voltage law we find that:

voltage across the capacitor
/ ^ s voltage across the resistor input voltage

^ f i(y)dy + /RMf) = CS •
^ Jo

We would like to find the system transfer function, so we must
rewrite this in terms of the voltage at the output—vo(t). As vo{t) =
Ri(t), we find that:

1 /"*
vo(t) + -fig I My) dy = vin(t).
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Taking Laplace transforms, we find that:

Vo(s) + 7^Vo(s) = Vin(s),

or that:

TM = V°{S) = SR°W Vin(s) 1 + sRC

After discussing what we mean by the frequency response of a sys-
tem, we explain (on p. 39) why this filter is called a high-pass
filter.

2.2 The Frequency Response of a System

Suppose that one has a system described by the transfer function:

[)~Vin(s)~Q(sV

and assume that the system is stable—that Q(s) has no zeros in the right
half-plane (including the imaginary axis). Let the input to the system be
sm(ut)u(t). Then the output of the system is:

o[ j ~ Q ( s ) s 2 + w 2 -

The partial fraction expansion of this expression is:

R(s) u, =As + B
Q(s)s2+u2 s2+o;2 { '

where the ellipsis represents terms corresponding to the poles in the left
half-plane. The terms that we have ignored all correspond to terms that
contain damped exponentials. If we are interested in the long term behavior
of the system, we do not need to understand any more about the ignored
terms; ~r+$ ls t n e only term of importance to us.

Let us find A and B. Rewriting (2.1) we find that for all s ̂  ±jui:

W W = j 4 S + B + ( s 2 + w 2 ) ( - )
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where ±juj is not a pole of the terms contained in the ellipsis. Considering
the limit of the above expression as s —> izjco, we find that:

As the polynomials Q(s) and R(s) have real coefficients, we find that
Q(—ju) = Q(jijj) and R(—ju>) = R(ju>). We see that:

A(ju) + B = u)T(jui)

A(-ju}) + B = wT(ju>).

Solving for A and B we find that:

A = Q(T(jcj)),B = u;$i(T(juj)).

Combining the above, we find that the transform of the behavior of the
system after all of the transients1 have died down is:

The inverse Laplace transform of this expression is:

Steady State(i) = S(T(JLJ)) cos(wt) + $t(T(jw)) sin(wt)

This "steady state" output is sometimes called the "sinusoidal steady state"
to remind us of the fact that our output is not constant—it is the steady
state in the sense that it is the output of the system after all the transients
have "died down."

If a2 + p2 = 1, then the expression asin(^>) 4- /3cos(</>) can be written
as sin(<f> + 9) where 0 satisfies:

cos(#) = a
sin(0) = p.

(Thus, 9 = arctan(/3/a) or 9 = arctan(/3/a) + 180° depending on the
quadrant in which (a, (3) lies.) Clearly:

%(T(ju)) , , 3(r(jw)) . ,
- W c o s M ) + mism{ut)

XA transient signal is a signal that tends to zero as t —* oo.

(Steady State(t))(s)
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is of this form where:

9 = arg(r(jw)).

Thus, we find that:

Steady State(t) = \T(ju)\sm(ut + arg(T(jo>))).

We see that T(ju>)'s magnitude gives the steady state amplification that a
sine wave with angular frequency UJ sees, and its argument gives the steady
state phase-shift that a sine wave input sees. The function T(jw) is called
the frequency response of the system.

The Frequency Response of the High-pass Filter—An Example
Let us consider the high-pass filter of the previous example.

The transfer function of the system was:

TOO = -J™-.
K ' 1 + sRC

We find that the frequency response is:

We find that for low frequency inputs, for w « 0, the amplification
is near zero—the signals are "removed" by the filter. For high
frequency signals, for:

the frequency response is almost exactly one—the signals are passed
without change. This is, of course, why the filter is called a high-
pass filter. The filter allows high frequency signals to pass while it
"kills" low frequency signals.

Suppose that rather than using a sine wave as input, one uses a cosine.
Then proceeding just as we did above, one finds that:

R(s) s _As + B
Q{S)S2+UJ2 ~ s2+w2 +'"

Proceeding as we did in the case of the sine, we find that:

A = K(T(jw)),B = -w9f(r(jw)).
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Finally, we find that the steady state output of the system is:

Steady State(t) = \T(jcj)\cos(wt + arg(T(jw))).

We find that the system's response to a cosine is essentially the same as
its response to a sine. Since we are dealing with a time invariant system,
this is as it should be. We also note that cos(Ot) = 1. Thus, |T(j'0)| =
|T(0)| gives the steady state amplification that a constant input "sees". As
sin(wt + </>)= sin(wt) cos(</>) + cos(wi) sin((/>), it is clear that the output of
our system to a sine-wave with an arbitrary phase shift <f> is:

|T0'w)| sin(wt + (j) + arg(T(jw)).

2.3 Bode Plots

It is common practice in engineering to plot the frequency response of
a system as two separate plots—one of the magnitude of the frequency
response and one of the phase of the frequency response. The x-axis of both
plots is the frequency axis (with frequency measured in radians per second)
with the frequency marked on a logarithmic scale. The magnitude plot is
generally given in decibels2—dB. By definition the number of decibels is
twenty times the common logarithm3 of the magnitude. The phase plot
gives the phase in degrees. The two plots collectively are referred to as the
Bode plots of the system4.

Why do we use logarithmic scales? Because we find that they make our
life easier. How do they make our life easier? We find that we often need
to multiply transfer functions. If we start with the transfer functions Ti(s)
and T2(s) we find that the product of their frequency responses in dB is:

(T1(iw)r20w))dB = 201og10 |ri(jw)T2Giw)|

= 201og10 |Ti(jw)| + 201og10 |T2(jw)|

Measuring in decibels allows us to add graphs when we multiply transfer
functions. Phases also add when functions are multiplied, so to find the

2After Alexander Graham Bell (1847-1922) who named the Bel after himself. The
decibel is one tenth of a Bel[Wik].

3I.e. Iog10(x)—as opposed to the natural logarithm, ln(x) = loge(z).
4 Named after their inventor, Hendrik Bode (pronounced bode—with a hard o and a

hard e). Bode invented the Bode plots in 1938 while employed by the Bell Telephone
Laboratories [Lew92].
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phase plot of the combined system we also need only add the phase plots
of the separate systems. We scale the frequency logarithmically because
of the fact that our transfer functions generally behave like powers of s.
Consider (jui)n measured in dB. We find that (O'w)n)dB = 201og10 |w|n =
20nlog10 \w\ dB. If one of our axes is logarithmically scaled frequency and
the other is dB, then this is a straight line with slope 20n. The distance
from a frequency u to the frequency 10w is one decade (by definition). If
a polynomial "looks like" s" in some regions, then its magnitude plot has
the slope 20n dB/dec. Thus, each time the frequency increases by a factor
of 10—what engineers call a "decade"—the amplitude in dB increases by
20n. From the slope of of the magnitude of the frequency response one can
read off some of the characteristics of the system.

When using MATLAB one defines objects that are transfer functions by
giving the numerator polynomial and the denominator polynomial to the
MATLAB function tf. For example, one defines the transfer function:

v ' 0.001s + 1

by typing:

T = tf([0.001 0],[0.001 13)

MATLAB responds with:

Transfer function:

0.001 s

.001 s + 1

In order to find the Bode plots of the system, one need only type
bode (T). The computer will open a second window and will present both
plots.

The Bode Plots of Our High-Pass Filter—An Example
Consider the high-pass filter of the previous example with RC =

.001. Define T as above, and type bode(T). MATLAB produces
Figure 2.2. We see that at high frequencies the magnitude of the
response is approximately OdB = 1. We note that in the decade
between 1 rad/sec and 10 rad/sec the magnitude rose from —40dB
to —20dB—a slope of 20dB/dec. This slope corresponds to the fact
that at such low frequencies the frequency response looks like JUJ.
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Fig. 2.2 The Bode Plots of the High-Pass Filter

At low frequencies the phase is near 90° which is also what one
would expect.

2.4 The Time Response of Certain "Typical" Systems

Many of the systems and subsystems that we will encounter will be either
first or second order systems—systems whose denominator is of degree one
or two respectively—or will be systems that can be approximated by first
or second order systems. We now consider the responses one expects from
such systems.

We consider the relation between the various parameters that describe
the system and the response of the system to a unit step, u(t). We would like
to determine the relationship between the system's rise time, the system's
overshoot, and the parameters that describe the system. We define the rise
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time as the time it takes the system to go from 10% of its final value to the
first point at which it always stays within 90% of its final value. Let:

vo max — maxvo(t), and vo finai = lim vo(t).
t>0 t—>oo

We define the overshoot to be:

Overshoot = V° max ~ "° final x 100%.
^o final

(If the voltage tends to its maximum monotonically, then let vo max =
Vo final-)

2A.I First Order Systems

Consider a component whose transfer function is first order—of the form:

T(s) = -?—.
W TS + 1

What will the response of this system be when the input is a unit step
function, u{t)l

As the Laplace transform of u(t) is 1/s, from the final value theorem
we know that:

lim vo(t) = lim sT(s)- = lim T(s) = C.
t->oo s->0 S s—0

Intuitively we can see this another way. Looking at what is happening from
the "component's point of view," we find that for large time the component
looks back on an uninterrupted input of 1—a signal at 0 rad/sec (also
often referred to as DC). We have already seen that the amplification at 0
rad/sec—at DC—is T(0). Thus the output must tend to C.

The component's behavior as it goes from its initial state to its steady
state is called the transient response of the component. Consider the tran-
sient response of a first order system to a unit step function. The Laplace
transform of the response of the system is:

Vo(a)S£M))(-) = ^ I y = ? - ^ I .
Finding the inverse Laplace transform of this we find:

vo(t) = C(l - e-*/T)U(i).
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Let us find the rise time of this system. The steady state output of the
system is C. Because the output rises monotonically, we know that the
times at which the output of the system reaches 10% of its final value (for
the first time) and the time at which it reaches 90% of its output (for the
last time)—iio% and £90% respectively—are well defined. They are equal
to:

«io% = T l n ( l - . l )

t9O%=Tln(l-.9).

The rise time is tg0% — tw% = ln(9)r « 2.2r ss 3r. We usually say that
the rise time of a first order system is roughly 3T. Because the output rises
monotonically to its final value, there is no overshoot in this system.

In many ways a first order system has a very nice response. The output
attains its final value by rising up to the final value without any overshoot
or any oscillations. As we shall see, second order systems do not always
behave so nicely.

2.4.2 Second Order Systems

Consider a component whose transfer functions has the form:

This is a reasonably typical transfer function for a second order system.
The constant u>n is called the natural frequency of the system, and £ is
called the damping factor of the system. As T(0) = 1 the system provides
neither amplification nor attenuation at DC; the steady state response of
this system to a unit step function will be 1.

If the input to the system is u(t), then the Laplace transform of the
output of the system is:

Civ (t))(S) - "" X - ~(* + fr'n)-fr'n , I

To find the inverse Laplace transform of this function, we must know
whether w£ — £2w^ is positive, zero, or negative. We consider each case.

If the constant is positive, then |£| < 1 and the inverse Laplace transform
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is:

vo(t) = U(t) L - ^ LsKyrr^t) + CsinKyr^Q\V2)

= «(t) (1 - 6J^L s i n K ^ l - C2* + 4)) , (2.3)

^ = arctan I —— I .

Such systems are called under-damped because they have too little damping
to prevent oscillations.

If the constant is zero, then |£| = 1 and the inverse Laplace transform
is:

vo{t) = (1 - e-""* - Wnte-""*) u(t).

Such systems are called critically damped because they have just enough
damping to stop oscillations from occurring.

If the constant is negative, then |C| > 1 and the inverse Laplace trans-
form is:

u{t) (1 - e"^"* cosh(u)n^/C^lt) - ** e-^ 's inhKye 2 - !*) I .
\ V1 - C2 )

Note that both sinh(at) and cosh(at) behave like eat/2 as t —> oo. Thus the
inverse Laplace transform looks like u(t) + terms of order e~u>n^~vtx~1').
Clearly this tends to 1 as t —> oo. Also the solution here is clearly non-
oscillatory. Such systems are called over-damped.

Let us consider the relation between the parameters which define the
second order system, uin and £, and the time response of the system for the
under-damped system—the system for which we will have the most use.
In order to find a useful formula for the rise time, it is reasonable to try
to find the rise time by thinking of the system output as 1 — e~U)"'»t and
ignoring the effects of the sinusoidal term. Using this formula it is clear
that the rise time is 3/(wn£). This formula is only approximately correct,
but it is simple and widely used. Next, we would like to find the overshoot.
Differentiating (2.2) we find that for t > 0:

v'o{t) = ^ ^ e - ^ s i n t x / w W ) .
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The first zero of this function occurs when i / l — (2u>nt = n. This will give

the maximum of the output. (If one takes a later zero of the derivative,

one will find that the exponentially decaying term causes the net result to

be smaller.) We find that the maximum value of the output is:

•K + arctan I —— I I

V c ) )
= l + e~' <£=?.

Thus the percent overshoot is:

percent overshoot = e~ Vi-c3 x 100%. (2.4)

2.5 Three Important Devices and Their Transfer Functions

Though we are not trying to present a nuts and bolts view of control en-
gineering in this book, we describe three systems of interest to the control
engineer—the operational amplifier (op amp), the DC motor, and the sim-
ple satellite. We make no attempt to derive their properties from first
principles; we describe them, and we relate their transfer functions to their
a priori known properties.

2.5.1 The Operational Amplifier (op amp)

A diagram of an op amp is given in Figure 2.3. The relation between the
inputs and the output of the op amp is:

Vo(s) = -^-(V+(s)-V-(s)).
ST -p 1

The op amp is a difference amplifier—it amplifies the difference between
its two input. The two inputs, v~(t) and v+(t), are (assumed to be) mea-
sured by "ideal sensors." The "sensors" measure the voltages at the inputs
without in any way affecting the inputs—in particular, no current flows into
the inputs of the op amp. The frequency response of the op amp is (ap-
proximately) A/(JUJT + 1). If w « 0, then the frequency response is almost
a pure amplification A. Generally speaking A is quite large (> 50,000) and
r is moderately small (r is often several hundredths). An op amp is usually
part of a larger system like the amplifier in the following example.
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A Simple Op Amp Amplifier—An Example

Consider the simple amplifier of Figure 2.4. We find that:

Fig. 2.4 A Simple Amplifier

- A (y *i I V ** )
ST + 1 \ Ri+ R2 Ri+R2j



48 A Mathematical Introduction to Control Theory

At this point, we can continue in two different ways. If all that
we want to know is how our amplifier reacts at reasonably low
frequencies, it is sufficient to consider s = ju and to approximate.
At reasonably low frequencies, the right-hand side is multiplied
by the very large number A/(JUJT + 1). The left-hand side is a
(presumably) reasonably small number Vo(ju>)- Assuming that the
left hand is "small enough," we find that to a good approximation:

ir -̂ 1 , tr -̂ 2 n -., R"l Tr
V°R^lh + V*R7+R2 « ° "* ^ « -T^

If we would like to be more precise, we find that:

Vo(s)/Vin(s) = ~ - f * .
I / + R! A )

Note that when the frequency response is considered, when we
consider s = jw, we find that as long as rju) is not too large the
frequency response is very near —R2/R1 as it should be.

Let us define the nominal gain of the amplifier by G = R2/R\.
Let us define the bandwidth of our amplifier, W, as the frequency
at which the magnitude of the frequency response falls to G/V2.
We find that:

Vo(jW) =R2j_ Rl + R2 TJW + 1 = /r
Vin(jW) iJjy^ Ri A

Assuming that W is large enough that rWj + 1 w rWj, we find
that the bandwidth is fixed by the equation:

Ri + R-2 TW

Rt A

If G is reasonably large, then:

This implies that:

GW ss A/T = constant.

That is, the product of the (nominal) gain and the (approximate)
bandwidth is a constant that depends on the characteristics of the
op amp. This constant, called the gain-bandwidth product, is one
of the op amp characteristics that manufacturers generally specify.
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2.5.2 The DC Motor

A DC motor has as its input a voltage Vin(t) and as its output the angle of
the motors shaft, <f>(t). We take two feature of the motor as central:

(1) If Vin(t) = Cu(t), then the steady state speed of the motor, 4>'(t), is
proportional to C .

(2) The motor takes a finite amount of time to settle down to its final
speed.

A simple transfer function which gives this behavior is:

$(«) K
Vin{S) ~S(ST + 1)'

where $(s) — C(4>(t))(s). This is the simplest transfer function that is
generally used to describe a DC motor.

Consider the response of the motor to a step input. Let Vin(t) = Cu{t).
Then Vin(s) = C/s. We find that

mil, \\i \ OK partial fraction expansion / - I T , I 1 T T \

mt))(s) = ̂ ^ = CK{72-- + -^Ti) •

With a step input, the output of the motor for t > 0 is:

4>(t) =CK(t-T + T2e-*/r)

(j>'{t) = CK{\- re-*/T) .

Considering the second equation, we find that after the transient term has
died down the motor speed is CK. Thus, the constant K in the motor's
transfer function gives the ratio of the speed to the input voltage. From the
form of <j>'{t), we see that the rise time of the motor speed is approximately
3T. The constant r is called the motor's time constant.

Evaluating the Step Response Using MATLAB —An Example
Suppose we have motor whose transfer function is:

and we want to know how the motor's speed reacts to a unit step
input, u{t). To find the relation between the derivative of the mo-
tors output to its input we need only multiply the transfer function
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of the motor by s—which is the same thing as differentiating the
output of the motor.

We would like to evaluate the step response of the system char-
acterized by the transfer function 5/(s/2+l). MATLAB has a simple
command that performs this evaluation. First we ask MATLAB to
assign the transfer function to a variable, and then we ask MATLAB

to find the step response. We proceed as follows:

V = t f ( [ 5 ] , [ l / 2 1])

to which MATLAB replies:

Transfer Function:

5

0.5 s + 1

Then we type:

step(V)

To this MATLAB replies with Figure 2.5. Of course the command
step can be used with any transfer function.

2.5.3 The "Simple Satellite"

Suppose that one is interested in controlling the angular position of a simple
satellite—considered here as a disk with moment of inertia /, whose angle
relative to some fixed ray emanating from its center is 9, whose angular
velocity is w = 9, whose angular momentum is L = Iu, and whose "input"
is a torque T. We know that:

^-L = ILJ = I9 = T.
at

Assuming that the initial condition of the satellite is 0(0) = 9(0) = 0, we
find that:

Is2C(uj(t))(s)=C(T(t))(s)

or that the transfer function of the satellite is:

T(s) = ^
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Fig. 2.5 The Step Response of a Motor

T o k e e p o u r c a l c u l a t i o n s s i m p l e w e o f t e n t a k e 7 = 1 .

2.6 Block Diagrams and How to Manipulate Them

A central problem of control theory is to determine how the properties of the
(often reasonably simple) subsystems of a system and the interconnections
between these subsystems determine the properties of the system as a whole.
We are often interested in systems that employ feedback—systems where
some fraction of the output is fed back to the system's input to help control
the output itself. Throughout this book we will use block diagrams to
describe systems in terms of their subsystems. In this section we describe
how block diagrams are to be used, understood, and manipulated.

The fundamental components of the block diagram are the differencer,
the arrow, and the "block." A differencer is generally represented by a
circle with pluses and minuses that tell us which signals are to be added
and which are to be subtracted. Arrows tell us which way signals flow, and
blocks generally perform an operation on an input signal and output an
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output signal.

The Block Diagram of a Motor Controller—An Example
Consider a simple motor controller that consists of a motor,

a tachometer (to measure the motor's shaft speed and output an
electrical signal that can be used by the rest of the system), a
differencer (to calculate the difference between the motor's actual
speed and the desired speed), and an amplifier (to amplify the dif-
ference between the actual speed and the desired speed). This can
be shown in a block diagram as we see in Figure 2.6. This pictorial

Fig. 2.6 A Simple Motor Controller

description of the motor controller gives one a feeling for the inter-
connections between the subsystems of our motor controller. From
the diagram we see that the input to the amplifier is the difference
between the desired speed and the measured speed. The amplified
difference is the input to the motor.

Generally speaking, our diagrams give more information than Figure 2.6
does. Rather than labeling each block with its purpose, we usually label
each block with the transfer function of the unit represented by the block
(and perhaps the unit's name as well). Let us consider a simple DC motor
receiving an input Vin(t).

A DC Motor—An Example
We consider a simple system that consists of the input voltage

to a DC motor, the motor, and the output shaft position of the
motor. Assume that the transfer function of the motor is T(s) =
5/(s(s/2 + 1)). The block diagram of the system is given in Figure
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2.7. Because the item in the block is a transfer function we interpret

Fig. 2.7 A DC Motor

the picture to mean that

Let us consider what happens when blocks are interconnected in various
ways. Consider the upper figure in Figure 2.8 in which two blocks are
connected in series. It is easy to see that the two block diagrams in Figure

Fig. 2.8 The Series Connection of Two Blocks

2.8 are equivalent. The Laplace transform of the signal between the two
blocks of the first diagram is clearly just the input times the first transfer
function—Vin(s)Ti(s). The Laplace transform of the output of the second
block is just T2(s) times the input of the second block. That gives us
Vo(s) = Ti(s)T2(s)Vin(s). This is exactly what the second block diagram
in the figure shows. Considering only the relation between their input and
their output, the two block diagrams in Figure 2.8 are equivalent.

Next consider the most important connection in control theory—the
feedback connection. Consider Figure 2.9. How can we find the output of
the lower diagram in terms of its input? We follow the output "around the
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Fig. 2.9 A Simple Feedback Circuit

loop backwards." Clearly, Vo(s) = Gp(s)a(s). Also, a(s) = Vin(s) — (3(s).
Since /3(s) = H(s)Vo(s), we find that:

v.(.) = OM (vlM - m.)vM). g & - 1 + gffg(i)-
This shows that the upper block diagram is equivalent to the lower one.
The importance of this equivalence cannot be overemphasized.

2.7 A Final Example

We would like to design a system to control the angle of the motor shaft of
a DC motor. A simple way of doing this is to use a feedback system like
that of Figure 2.10. One takes the input signal—which gives the desired
position of the motor shaft—and considers the difference between it and the
output of the shaft encoder—the actual position of the motor shaft. Then
one amplifies this difference, and one uses this value to drive the motor.
This should give negative feedback—if the motor shaft is turned too much
in one direction, the feedback should act to restore the motor to its correct
position.

Let us move to a more quantitative description of the system. Suppose
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Fig. 2.10 Another Simple Motor Controller

that the motor's transfer function is:

T M ( S ) =
 S(0.5!+ 1)'

the shaft encoder's transfer function is Ts(s) = 1, and the amplifier's trans-
fer function is T\(s) = K where we choose K later. The block diagram of
the motor controller is given in Figure 2.11.

Fig. 2.11 A Quantitative Block Diagram of a Simple Motor Controller

As the two blocks on top are connected in series, they can be combined
in to one block whose transfer function is:

5K
(s(0.5s + 1) "

Now we have a simple feedback system and we find that the transfer func-
tion of the whole system is:

T( x _ s(0.5a+l) = 5K = 10K
1 + s(0

5
5f+1) ~ s(0.5s + 1) + 5K ~ s2 + 2s + 10K'

This is precisely the form of the second order system discussed on p. 44.
We find that u)n = VlOK and C = 1/y/WK. From what we have already
seen, this means that as long as K < 0.1 the system will not oscillate at
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all, while for K > 0.1 the system will oscillate about its steady state value
for a little while.

For values of K < 0.1, the decaying part of the solution decays like eat

where a = u>nVC2 — 1 — C^n- F°r small K we find that5:

a = VlOKj-^ - 1 - 1 = VT^IOK - 1 ^ 1 + x ' 2 _sx.
V lUxv

We see that (at least for small values of K) the system gets faster as K gets
larger. We also see that past a certain point increasing K causes the system
to start oscillating about its steady state value. This is rather typical of
feedback systems—up to a point increasing the gain helps the system, and
past that point it starts hurting the system. In Figures 2.12 - 2.14 we show
the step response of the system for K = 0.05,0.1, and K = 0.2 respectively.

Fig. 2.12 The Step Response of a Controlled Motor—K = 0.05

sAs the first two terms in the Taylor series of \ / l + x about zero are 1 and x/2, for
small |x| we find that \/l + x ~ 1 + x/2.
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Fig. 2.13 The Step Response of a Controlled Motor—K = 0.1

2.8 Exercises

(1) (a) If the relation between a system's input, x(t), and its output,y(£),
is described by the differential equation:

y"(t)+y'(t)+y(t)=x(t)

what is the system's transfer function?
(b) Using MATLAB's bode command, plot the frequency response of

the system.
(2) Using the information about the time response of low-order systems,

approximate the response of the following systems to a unit step input,
and sketch the estimated response:

(a)
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Fig. 2.14 The Step Response of a Controlled Motor—K = 0.2

(b)

T(s) = -i°_v ; s + 2 '

(c)

T(s) = 5

^ ; s2 + 10s + 50
(d) Check the results of 2a-2c using MATLAB.

(3) Use the result of 2c and your knowledge of the properties of the Laplace
transform to estimate the output of the system:

T(s) = 5S

w s2 + 10s + 50
to a unit step input.

(4) Suppose that one is given the system of Figure 2.15 and that the trans-
fer function of the motor is:

TM(S) = sT^TT)'
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Fig. 2.15 A Simple Motor Controller

the transfer function of the shaft encoder is 2, and the gain of the
amplifier is 1. Find the transfer function of the entire system, T(s).
Also, please estimate the response of the system to a step input.

(5) Suppose that one has an under-damped system whose transfer function
is:

T(s) = ^

In what region must the poles of the system be located in order for the
system to satisfy the constraints:

(a) The rise time must be less than or equal to T seconds.
(b) The percent overshoot must be less than O x 100 percent.

What does this tell us about the significance of the ratio between the
imaginary part of the poles to the real part of the poles?

(6) (a) Find the transfer function the system of Figure 2.16. This fig-
ure depicts a first attempt at controlling the angular position of a
simple satellite.

(b) Show that this system is unstable for all K > 0. Find a bounded
function which when input to the system causes the output of the
system-the angular position of the satellite-to be unbounded. That
is, show that the system is not BIBO stable. (This is another
example of a resonant system.)

(c) Find the unit step response of the system. Note that though the
response is bounded, it is not what one would like to see from a
properly designed system.
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Fig. 2.16 A "Mildly" Unstable Controller for a Simple Satellite

Fig. 2.17 A Controller for a Simple Satellite

(7) Consider a system whose transfer function is:

T(s) = ^"

Show that if £ = 0 the system is unstable, while if £ > 0 the system
is stable. This shows that an undamped second order system is not
stable.

(8) (a) Find the transfer function of the system of Figure 2.17.
(b) Is this system stable?
(c) What is the inverse Laplace transform of (1 + s)$(s) (neglecting

any initial conditions) in terms of </>(£)?



Chapter 3

Feedback—An Introduction

3.1 Why Feedback—A First View

We now have the tools that are necessary to consider the pros and cons
of feedback systems. Consider the system of Figure 3.1. What are the

Fig. 3.1 A Generic Feedback Circuit

"physical implications" of the diagram? Generally speaking Gc(s) is the
transfer function of an object that we as system designers have added to
the system in order to improve the system's performance—it is added to
compensate the system's shortcomings. The transfer function of the object
whose output we are supposed to be controlling is Gp(s). It is the given
physical plant; we cannot change Gp(s). The feedback network's transfer
function is H(s). We also design the feedback network.

Though the labeling in the block diagram makes it seem as though all
of the inputs and output are of the same sort (say voltages), this need not
be the case. When it is the case, it often means that some blocks consist of
more than one element. For example, a block that is supposed to be a motor
but accepts a voltage input and returns a voltage output clearly consists of
a motor and some sort of position (or velocity) to voltage transducer.

61
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Frequently our goal is to design a system such that the output of the
system tracks the input as well as possible. That is, we would like to
minimize \vin(t) — vo(t)\. In this case it is often advantageous to set H(s)
to 1. In this way, the signal that controls our "plant" is directly related to
the signal that we would like to minimize. When H(s) = 1, we say that we
have a unity feedback system.

As we have already seen, one way of trying to improve a system's per-
formance is to set Gc(s) = K—to make our compensator a pure gain. For
the rest of this discussion, we assume that our compensator is a pure gain.

Consider the transfer function of our system, T(s), assuming that
Gc(s) = K and H(s) = 1. We find that the frequency response of our
system is:

Tfi.A = KG*{JW) = l

U ' 1 + KGP(JUJ) 1 + \/{KGp{ju)))"

Supposing that Gp(jw) is nonzero, we see that for large enough K the
transfer function will be close to one—and this is exactly what we want.
If the gain is large enough the system tracks its input very closely in the
(sinusoidal) steady state. As we saw in the previous chapter, generally
speaking at sufficiently high gains the system's performance start to de-
grade. This is one of the many tradeoffs that a system designer must deal
with—frequently what helps cure one problem creates a different problem.

3.2 Sensitivity

We have seen one of feedback's main uses. We can "trade" the addition of
a large gain in the loop for a system whose transfer function is very nearly
one at many frequencies. It is not (or at least is should not be) sufficient
to explain why feedback itself is good—we must explain why it is better
than other methods of achieving our goal. Our goal is to get the output
of our system to track its input in a reasonable fashion; we would like an
overall transfer function that is as near as possible to 1. Why should we
employ feedback techniques—why don't we consider a system like that of
Figure 3.2? If we assume that all of the zeros of Gp(s) are in the left-half
plane (something which is—for reasons that we will discuss in §6.3.1—often
desirable), then we can let Gc(s) = 1/Gp(s). This is the transfer function
of a stable system, and it gives us exactly the result that we wanted—the
overall transfer function of the system is now precisely 1!
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Fig. 3.2 Open-Loop Compensation

To understand why this more direct method of compensation is often
not practical, it is helpful to understand the concept of sensitivity. Suppose
we have a value a that is affected by a value b. Suppose that we make a
small change in b—we change it to b + Ab. As a depends on b, we will find
that the current value of a is a + Aa. If we measure all changes in relation
to the inital values of the measured quantities, then we we find that the
relative change in a is Aa/a and the relative change in b is Ab/b. The ratio
of the relative change in a to the relative change in b is just:

Aa/a
Ab/b'

We define the sensitivity of a to & to be the ratio of the relative change in
a to the relative change in 6 for an infinitesimal change in b. That is the
sensitivity of a to b, denoted by 5£, is defined as:

_, ,. Aa/a ,. Aa b dab
SI = hm ' = hm -—- = — - .

A6->o Ab/b A&^O Ab a ab a

If the sensitivity of a to b is 5£, then if b increases by a small amount, say
x%, a will increase by approximately S%x%.

Consider the sensitivity of our open-loop system to changes in Gp(s).
Suppose that we assumed that the transfer function of the given system
Gp(s) was Go(s). Our compensator is Gc(s) = 1/Go(s). The system's
transfer function is T(s) = Gp(s)/G0(s). The sensitivity of T(s) to changes
is Gp(s) is:

T ( s ) _ dT(s) Gp(s) _ _1_ Go(£) _
^ W ~ dGp(s) T(s) Go(s) p W Gp(s)

A small change in the actual value of the Gp(s) makes an approximately
proportional change in T(s).

Now consider the sensitivity of the transfer function of a system that
uses a large gain and feedback to implement a system whose overall transfer
function is very nearly one. Consider the system of the previous section
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whose transfer function is T(s) = KGp(s)/(l + KGp(s)). We find that the
sensitivity of T(s) to Gp(s) is given by:

T W = dT(s) Gp(s)
G*>M dGp(s) T(s)

_ K(l + KGp(s))-KKGp(s) l + KGp(s)

(l + KGp(s))* Up{S) KGp(s)
_ 1
~ 1 + KGp(s)'

So long as KGp(s) is large, the sensitivity of T(s) to changes is Gp(s) is
quite small. Closed-loop feedback is much less sensitive to changes in the
given function Gp(s) than open-loop feedback. Since we do not generally
know exactly what the characteristics of the system to be controlled are, it
is often beneficial to utilize closed-loop feedback.

3.3 More about Sensitivity

Once again, we consider the feedback system of Figure 3.1. We would like
to consider the sensitivity of the system to its various components. As we
have seen previously:

Gc(s)Gp(s)
1{S> l + Gc(s)Gp(s)H(sy

Making use of the definition of the sensitivity, we find that:

9 r ( s ) Gp(s) Gc(s) 1
°Gc(<> (i + Gc(s)Gp(s)H(s))2 T(s) 1 + Gc(s)Gp(s)H(s)

qn.) Gc(s) Gp(s) 1
°Gp(a) ( 1 + Gc{s)Gp(s)H(s))2 T(s) 1 + Gc(s)Gp(s)H(s)

T(S) (Gc(s)Gp(s))2 H(s) = Gc(s)Gp(s)H(s)
°"W (1 + Gc(s)Gp(s)H(s))2 T(s) 1 + Gc(s)Gp(s)H(s)

Assume that Gp(s) and H(s) are function's whose values remain "reason-

able" and that |Gc(s)| is relatively large. Then we find that SG ,\ « 0,

ST(3) ~ 0 and 9T(s ) ~ 1
What are the implications of these sensitivities? We have found that if

the compensator gain is reasonably large, then the system transfer function
is relatively insensitive to the compensator gain and to the transfer function
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of the item being controlled. On the other hand, we have found that the
system transfer function is relatively sensitive to the feedback. How does
all this help us?

In many cases, we are given an item to control without being given a
precise description of the item. Often a precise description is not possible—
as for example when one must design a general purpose controller to be
used with any item from a particular class of items. In such cases, the
insensitivity to the item to be controlled is a very important feature of our
technique. The sensitivity to the feedback element is not hard to deal with.
Generally speaking, the feedback is electronic in nature. It is reasonably
easy to purchase high precision electrical and electronic components. By
using feedback, we exchange the need for an accurate model of the system
to be controlled—a model that will often be impossible to find—for an
accurate model of a feedback network that we build—something that is
achievable.

3.4 A Simple Example

Suppose that we would like to control the speed of a motor. Assume that
motor's transfer function (the transfer function from voltage to speed in
revolutions per second) is:

Suppose that the nominal values of K and r are 5 and 0.1 respectively.
Consider two controllers for the motor. The first controller is shown in
Figure 3.3 and the second in Figure 3.4.

Fig. 3.3 An Open-Loop Motor Speed Controller

The transfer function of the first system—the open-loop system—is:

K 0.15 + 1
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Fig. 3.4 A Closed-Loop Motor Speed Controller

The transfer function of the second system—the unity feedback closed loop
system—is:

1QK
Td{S) = TS + l + lOK'

Consider the step response of each system for K = 7, T = 0.15. These
results are plotted in Figures 3.5 and 3.6. We see that the system with
feedback performs much better than the system without feedback. The
system with feedback is faster than the system without feedback, and the
system with feedback comes very close to stabilizing on the precise value
we input.

In order to understand the response of the system to a step input, let us
consider the sensitivity of the gain of the system at DC, T(0), to changes in
the parameters K and r. Using the definition of sensitivity, we find that:

ST
K°i{0) = 0 . 2

5 T o i ( 0 ) = 0

9Tc,(0) _ 10 *=5
Sli " ( 1 + 10^)2 ~ 0-0 0 4

STc«(0) = Q

We see that the DC gain is much more sensitive to changes in K in the
open-loop system.

3.5 System Behavior at DC

Frequently we must design a system to track its input. If the input is a unit
step, then as t —> oo the system should settle down to some constant value.
In the best case scenario, the system settles on the input value. Sometimes,
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Fig. 3.5 The Step Response of the Open-Loop System

the system will not settle at all, and sometimes the system will settle on a
value other than the input value.

Once again we consider a system like that of Figure 3.1. The transfer
function of the system is:

U l + Gc(s)Gp(s)H(sY

We see that T(0)—which controls the behavior at DC—is:

rrm = Gc(Q)GP(Q)
M U ; 1 + Gc(0)Gp(0)H(0)

as long as all of these numbers exist.
What is the implication of this formula? Suppose that we are dealing

with a unity feedback system. Then we find that:

GC(Q)GP(O)
i W l + Gc(0)Gp(0)'
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Fig. 3.6 The Step Response of the Closed-Loop System

If Gc(0)Gp(0) is large, then T(0) w 1. Once again, we find that if we make
Gc large, it will generally improve the system's performance at DC.

We see something else too. Suppose that Gc(s)Gp(s) is of the form:

where P(s) and Q(s) are polynomials, all of the roots of Q(s) are in the left
half-plane, and both P(0) ^ 0 and Q(0) ^ 0. We define the system's order
to be the value of n—the number of poles at the origin. We find that:

1 P(s)

lim T(s) = lim *" Qi"X ,
1 + «" Q(s)

P(s)

= l i m _ ^

_ P(0)/Q(Q)
P(0)/Q(0) '
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That is, if the "gain" of the elements Gc(s)Gp(s) is "infinite" at DC—if
the system's order is one or greater—then the steady state output of the
system is the same as the steady state input of the system.

Suppose that the input to the system is a ramp, tu(t). Then the system's
output is:

P(s) 1
snQ(s) + P{s)s2'

As by assumption snQ(s) +P(s) has no roots at s = 0, the partial fraction
expansion of this expression is:

P(s) 1 ^ A B
snQ{s) + P(s) s2 s s2

where the terms that have been ignored are all exponentially decaying (as
the system is stable). Multiplying both sides by s2 one finds that:

^ / ^ . . = As + B + s2(- • •).

Evaluating this expression at s = 0 we find that B = 1. Differentiating
once and evaluating at s = 0 we find that:

_ f -Q(0)/P(0) n = 1
^ ~ \ 0 n > l -

We see that if n = 1, the system will not track a ramp perfectly. The
slope of the output will be correct, but the output will be displaced by
—Q(0)/P(0) units in the steady state.

Suppose that one is given an element to control, and one knows that
Gp(0) = c. How can one compensate the system in such a way that the
resulting system will track its input perfectly in the steady state? We have
seen many times that adding a gain block before the given system should
improve the performance of the system. Our current result gives us a way of
getting excellent performance from the system. We must add a block whose
gain at DC is infinite. What sort of block has this property? An integrator

Let us choose an integrator as our compensator; let Gc(s) = 1/s. After
adding the integrator, we find that T(0) = 1—the system tracks its input
perfectly in the long run.

Motor Control Revisited—An Example
Let us consider a system for regulating a motor's speed. We

have already seen that taking Gc(s) to be a pure gain improves
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the system performance at DC. Now we would like to see what
happens if we replace the finite gain by an integrator—an element
with infinite gain at DC. Consider the system of Figure 3.7. As
there is one pole at zero in Gc{s)Gp{s), we know that the steady
state output of the system when the input is a unit step is one.

Fig. 3.7 A Motor Speed Controller with Integral Compensation

In this example it is also easy to get a feel for how integral
compensation works. Without integral compensation—if Gc{s) =
C—the output of the differencer cannot go to zero in the steady
state. If the output of the differencer went to zero, the input to
the motor would go to zero, and the motor would eventually stop
rotating. Thus, C times the output of the differencer drives the
motor. This also explains why the larger C is the better the steady
state response of the motor. If C is large, then the output of
the differencer must be smaller in order to drive the motor at a
particular speed. If the the compensator is an integrator, then
after a while the voltage on the integrator builds up to the correct
value to drive the motor, and after reaching the correct voltage, the
output of the differencer must drop to zero for proper operation.
Here we have a nice example of theory and intuition leading to the
same result.

3.6 Noise Rejection

Suppose that there is reason to think that spurious signals—noise—are
entering our system at the input to the system which we are controlling—
at the input to the block containing Gp(s). Then rather than using the
model of Figure 3.1, we must consider a model like that of Figure 3.8.

Let us consider the relation between the output of our system and its
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Fig. 3.8 A Feedback Circuit with Noise

two inputs. Starting from Vo(s) and following the system backwards around
the loop, we find that:

Vo{s) = Gp(s) (N(s) + Gc(s)(Vin(s) - H(s)Vo(s))).

Solving for Vo(s), we find that:

V (s) - Gp{s) N(c) + Gc(s)GP(s)
Vo{S)- l + Gc(s)Gp(s)H(sf[S)+ l + Gc(s)Gp(s)H(s)Vm[S)-

If Gc{s) is sufficiently large, then the coefficient of N(s) is approximately
l/(Gc(s)H(s)) while the coefficient of Vin(s) is approximately 1/H(s). In
the simple and important unity feedback case, we see that the coefficient of
N(s) is approximately equal to 1/Gc(s) « 0 while the coefficient of Kn(s)
is approximately equal to one. That is the noise signal is attenuated by
systems of this type. Of course, the noise that is attenuated is the noise
that enters the system after the amplifier. Not all noise is attenuated by
such systems—there is no cure-all for noise problems.

3.7 Exercises

(1) Consider the simple buffer of Figure 3.9.

(a) Find the transfer function, T(s), of this circuit where:

(b) Find the gain of the buffer at DC.



a

Fig. 3.9 A Simple Buffer

(c) Calculate the sensitivity of T(s) to the DC gain of the amplifier,
A.

(d) Evaluate the sensitivity at DC—when s = 0.

In this circuit we are once again trading the possibility of a large but
unknown gain, A, for a lower but very well known gain, 1.

(2) Consider the system shown in Figure 3.10. Using the techniques of this
chapter, determine the steady state output of the system to u(t) when:

(a) n = 0
(b) n = 1

(c) n = 2

(3) Consider the system shown in Figure 3.10.

(a) Calculate the circuit's transfer function when:
i. n = 0

ii. n = 1
iii. n = 2

For which values of n is the system stable?
(b) Considering that for some values of n the system is not stable, how

do you explain the results of the previous question? (Hint: what
do we know about the final value theorem?)

(4) In the system of Figure 3.10 let n = 1. What is the response of the
system to a unit ramp, Vin(s) = 1/s2.

(5) Consider the system of Figure 3.11. Let Gp(s) = K.

 A Mathematical Introduction to Control Theory
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Fig. 3.10 A Simple Feedback Circuit

(a) Find the output as a function of the input and noise—that is find:

Vo(s) = T7(s) Vin(s) + TN(s)N(s).

(b) If K is very large, how does the noise affect the output?

(c) If K is small how does the noise affect the output?

(6) Consider the system of Figure 3.11. Let Gv{s) = 1/s.

(a) Find the output as a function of the input and noise—that is find:

Vo(s)=Tr(s)Vin(s) + TN(s)N(s).

(b) If the noise is a constant value, N(s) = cu(t), how does the noise
affect the output in the steady-state?

(c) If the noise is very high-frequency (u> >> 1), how does the noise
affect the output in the steady-state?

(7) Please explain how Problem 5 can be used to help explain the results
seen in Problem 6.

Fig. 3.11 A Simple Feedback Circuit with Noise

(8) Consider the system of Figure 3.12. Assume that the transfer function
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Fig. 3.12 A Simple Motor Controller

of the motor (from voltage to speed in radians per second) is:

(a) If Gc(s) = K > 0, what is the rise time of the system, and what is
the system's response to a unit step input?

(b) If Gc(s) = K/s, K > 0, what is the system's rise time, and what is
the system's response to a unit step input?

(c) Why might one prefer to use a system of the first type rather than
a system of the second type?

The moral of this story is that simpler is sometimes better too.



Chapter 4

The Routh-Hurwitz Criterion

4.1 Proof and Applications

In this chapter we consider transfer functions that are quotients of poly-
nomials in s—rational functions of s—with real coefficients. Suppose
that one has a feedback system for which Gp(s) — P\(s)/Qi(s) and
H(s) = P2(s)/Q2{s), with P1(s),P2{s),Q1(s) and Q2{s) polynomials in
s whose coefficients are real. Then the transfer function of the system is:

T(s) = Gp{s) = pi(s)Q2(s)
W l + Gp(s)H(s) Pi(s)P2(s) + Qi(s)Q2(sY

To determine the stability of the system, it would seem that we need to
know the zeros of the polynomial Pi(s)P2(s) + Q\(s)Q2(s)—the poles of
the transfer function. This would be problematic as it is proved in modern
algebra that there can be no general formula for the roots of polynomials of
degree five or higher in terms of the coefficients of the polynomial [vdW9l].

In fact, we do not need to know the roots of the polynomial Pi(s)P2(s) +
Qi(s)Q2(s); we only need to know whether the roots of the polynomial are
in the right half-plane. This problem was studied in the late 1800's, and a
number of criteria were developed. These tests give us information about
the location of the roots without telling us exactly where the roots are. One
of the most helpful of the criteria is the Routh-Hurwitz1 criterion. Before
discussing and proving the Routh-Hurwitz criterion, we state and prove a
number of facts about polynomials.

(1) If P{s) = sn + a is"- 1 + • • • an, then ai = - £" = 1 st where Sj is the ith

root of P(s).
lrThe criteria is named after the two people who independently discovered it. The first

was Edward John Routh( 1831-1907). The second was Adolf Hurwitz (1859-1919)[OR].

75
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PROOF: Prom modern algebra it is known that P(s) can be
written as (s — si) • • • (s — sn) where the Sj are the roots of P(s).
Multiplying out this expression and equating coefficients with
our first expression for the polynomial we prove the proposition.

(2) If P(s) = aos
n H + On, then:

n
ai ^
a° hi

PROOF: We know that P(s)/ao has the same roots as P(s),
and we see that P(s)/ao satisfies the conditions of 1. Thus the
coefficient of s n - 1 in P(s)/ao is equal to minus the sum of the
roots of the polynomial. As the coefficient of sn~1 is ai/ao, the
result is proved.

(3) The roots of the polynomial P(s) = a,QSn +aisn~1 + • • • an, ai € TZ, i =
1, ...n are either real numbers or occur in complex conjugate pairs.

PROOF: In modern algebra it is proved that any polynomial
with real coefficients can be factored into first and second order
polynomials with real coefficients. A first order polynomial with
real coefficients, as + b, clearly has one real zero. A second
order polynomial with real coefficients, as2 + bs + c has two
roots which are either both real or are complex conjugates of
one another. As the roots of a polynomial are just the roots of
its factors, we have proved the result.

(4) If ai/flo 5- 0, then the polynomial has at least one root in the right
half-plane.

PROOF: If a\/ao = 0, then from 2 we know that the sum of the
roots of the polynomial is zero. In particular, we know that the
sum of the real parts of the roots is zero. This can only happen
if either all of the real parts are zero—which leaves us with all
of our roots in what we have defined as the right half plane, or
it means that there are some roots with positive real parts and
some with negative real parts—which also means that there is
at least one root in the right half-plane. If ai/ao < 0, then
there is at least one root whose real part is positive.

(5) An even polynomial is a polynomial in which s appears only in even
powers. An odd polynomial is a polynomial in which s appears only in
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odd powers. One can write any polynomial as P(s) = Peven{s)+Podd{s)
where the first polynomial is even and the second is odd.
Consider a polynomial with real coefficients, P(s). Let UJ € 1Z. If
P(ju) = 0, then PeVen{ju) = Podd{ju) = 0. Moreover, if jw is an nth

order zero of the P(s), then it is at least an nth order zero of both
P0dd{s) and of Peven(s).

PROOF: For any even polynomial Peven(ju) = a 6 11. For
any odd polynomial, Podd(j^) = jP G jTl. Thus, P(ju>) = 0
implies that both a and /3 must equal zero.
If JUJ ^ 0 is a zero of a polynomial with real coefficients, then
from 3 we know that — ju> is also a zero. That is, (s — JOJ)(S +
ju>) = s2 + w2 is a factor of the polynomial. In particular, this
implies that if jw is a factor of P(s), then s2 +u>2 is a factor of
P{s),Podd(s) and Peven{s)- Thus, one can write:

P(S) _ Peven(s) Pgdd(s)
S2 + W2 s2 + W2 S2 + W2 '

It is clear that each of these expressions is a polynomial and
that the even and odd polynomials give rise to even and odd
polynomials.
If jui is a second order zero of P(s), then we know that it is a
zero of P(s)/(s2 +u2). From our previous results, we see that it
must be a zero of the even and the odd part of this polynomial.
Thus, if ju> is a second order zero of P(s) then:

P(S) Peven(s) Podd(s)
(S2+W2)2 (S2 + W2)2 (S2 + LJ2)2

and each expression is a polynomial. This logic can be used for
a zero of any order. Thus, we find that if ju) ^ 0 is a zero of
P(s) of the nth order, then s2 + UJ2 is an nth order factor of
P(s),Peven(s), and Podd(s)- This is equivalent to saying that
ju> and —ju> are nth order zeros of all three polynomials.
Consider now zeros that occur at 5 = 0. If the zero is of mth

order, that P(s) is of the form aosn + •••an—msrn. Clearly
both the odd and the even parts of this polynomial have zeros
of order at least m at 0.

We are now able to state and prove the Routh-Hurwitz criterion. We use
an expanded version of Meinsma's proof[Mei95].
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Theorem 11 A non-constant nth order polynomial P(s) — aosn +
ais™"1 + • • • + an has no zeros in the right half-plane if and only if a±
is nonzero, a® and a,\ have the same sign, and the polynomial:

Q(s) = P(s) - ^ (ais
n + a3s

n~2 + a5 S"-4 + • • •)

is of degree n — 1 and has no zeros in the right half-plane.
Furthermore, the number of zeros ofQ(s) in the right half-plane is equal

to the number of zeros of P(s) in the right half-plane if ao and ai are of
the same sign, and is one less if ao and a\ are of different signs.

P R O O F : AS long as ai / 0, Q(s) will be of degree n — 1. If ai = 0,
then from 4 we know that P(s) has at least one zero in the right
half-plane. We have shown that if Q(s) is not of degree n — 1, then
P(s) has at least one zero in the right half-plane. In the rest of the
proof, we assume that a\ ^ 0 and we show that the conclusions of
our theorem are correct for this case too.
If the degree of P(s)—n—is even, then Q(s) = P(s) —
(a0/ai)sPodd(s), while if n is odd, then Q(s) = P(s) —
(ao/ai)sPeven(s). Define:

Qv(s) = P(s) - r, (ais
n + a3s

n~2 + • • • ) .

For 77 = 0, we have Qo(s) = P(s). For rj = ao/ai, we find
that Qao/ai(s) = Q(s)- Suppose that n is even. Then, Qv{s) =
(Peven(s) - VsPodd(s)) + Podd(s)• Clearly the term in parentheses
is even and Podd(s) is odd. Also, any joint zeros of Peven(s) and
Podd(s) a r e zeros of Qr,(s). From property 5, we know that any
mth order imaginary zero of Qv must be at least an mth order zero
of Podd(s) &nd an mth order zero of the term in parentheses. But
one of the terms in parentheses is sPodd{s)—and we know that our
zero is at least an mth order zero of this term. Hence, it must also
be at least an mth order zero of Peven(s). We have shown that the
imaginary zeros of Qr](s) are precisely the shared imaginary zeros
of Peven{s) and Podd(s)- We see that P(s) and Q^s) have the same
imaginary zeros. We find that Qri{s) can be written:

Qv(s) = R(s)Tr,(s)

where the zeros of R(s) are the imaginary zeros of Qn(s)—which
are independent of r\. Clearly, Tv cannot have any imaginary zeros.
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Prom this it follows that as one goes from P(s) to Q{s), no zeros
of Qv{s) cross the imaginary axis.
If n is odd, the same result holds. The proof is basically the
same, but we start from the identity Qv = (Podd(s) — rjsPeven(s)) +
Peven\s)-
Because the degree of Q(s) is one less than the degree of P(s), we
know that in going from P(s) to Q(s) we "lose" one zero. We must
find out where that zero "goes." Consider Qn(s). We find that:

Qr,(s) = (o0 - vai)sn + aiS™"1 + • • • .

As r) —> ao/a,i, it is clear that n — 1 of the zeros of this polynomial
tend to the n — 1 zeros of Q(s). We must determine what happens
to the nth zero. As 77 —> ao/ai, the coefficient of s™ tends to zero.
In order for this term to have any effect, the magnitude of s must be
large. For large s, only the highest order terms in the polynomial
make an effective contribution—the term (do — r]ai)sn + a\sn~l

is dominant for large values of s. The equation (a0 — rjai)sn +
aisn~1 = 0 has n solutions. One solution is —ai/(ao — Vai)i and
the other n — 1 solutions are zero. The zero solutions correspond to
the (relatively small) solutions of the equation Q(s) — 0. The other
solution is the one we need to study now. We see that as 77 —> a^/ai
from zero, this solution goes off to infinity. If O,Q and a\ have the
same sign, then the solution goes off towards —00—thus the zero
that was lost must have always been in the left half-plane (since no
zeros can cross the imaginary axis). If the signs are different, then
—ai/(ao — 7701) tends towards +00 and the zero must always have
been in the right half-plane.

Repeated use of this theorem allows us to tell how many zeros of a
given polynomial are in the right half-plane and how many are in the left
half-plane.

The Use of the Routh-Hurwitz Criterion—An Example

(1) Let us start with P(s) = s2 - 5s + 6. We see that Q(s) =
P(s) - (1/ - 5)s(-5s) = -55 + 6. From the fact that o0 is
positive and a\ is negative, we know that the number of zeros
of P(s) in the right half-plane is one more than the number of
zeros of —5s + 6 in the right half-plane. As this has one zero
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in the right half-plane, we find that P(s) has two zeros in the
right half-plane. This is correct as P(s) = (s — 2)(s — 3).

(2) Now consider P(s) = s4 + 3ss - 3s2 + 3s + 1. We find that
gx(s) = P(s)-(l/3)s(3s3 + 3s) = 3s 3 -4s 2 + 3s + l. Prom the
fact that ao and a\ have the same sign, we know that P(s) and
Qi(s) have the same number of zeros in the right half-plane.
Now let us consider Qi(s) as our new uP(s)" and continue
using the theorem.
We see that our new ao and a\ have opposite signs. Also our
new Q(s)—which we call Q2(s) satisfies:

Qi(s) = Qi(s) - (3/ - 4)s(-4s2 + 1) = -4s2 + (15/4)s + 1.

Thus, we know that Qi (s) has one more zero in the right half-
plane than Q2($) has.
Continuing, we find that Q3(s) = Q2{s) - (4/15)s(15/4s) =
15/4s + 1. As the ao and a\ of Qiis) are of the opposite signs,
we find that the Q2{s) has one more zero in the right half-plane
than does Q^is). Finally it is clear that Qs(s) has no zeros in
the right half-plane.
Combining all of this information, we find that P(s) has two
zeros in the right half-plane. We can use MATLAB to verify
that this is so. We use the roots command. We find that:

roots ([1 3 - 3 2 1 ] )
ans =

-3.9387
0.5963 + 0.8028 i
0.5963 - 0.8028 i
-2.539

There are indeed two roots in the right half-plane (and they
are complex conjugates of one another).

(3) Finally, consider P(s) = s3+s2+l. We find that Peven = s2 + l.
Thus, Qi(s) = P(s) - 1 • sPeven(s) = s2 - s + 1. We see that
P(s) has the same number of zeros in the right half-plane that
Qi(s) has. It is clear that Q2(s) = Qi(s) - s • s = -s + 1. We
see that Qi(s) has one more right half-plane zero than Q2(s).
As Q2(s) has one positive real zero, we see that P{s) has two
zeros in the right half-plane. Using MATLAB it is simple to
verify this result. We find that:
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roots([1 1 0 1])
ans =

-1.4656
0.2328 + 0.7926 i
0.2328 - 0.7926 i

Once again, we see that the answer checks.

At each step we calculate "Q(s)" according to the rule:

Q{s) = P(s) - ( a o / a i ^ a i s " - 1 + a3s
n-3 + •••)

= (aos
n + a V ~ 2 + •••) + (aisn~l + a3s

n-3 + •••)

- ( a o / a i X c i i s " - 1 + a 3 s
n - 3 + •••)

= (a 1s
n- 1+a 3s

n- 3 + --.)

+ ( ( 0 2 - (ao/ai)a3)s
n-2 + ( a 4 - (ao/ai)a5)s

n-2 + •••)(4.1)

We know that the next uP(s)" is just the current Q(s). This allows us
to calculate the coefficients in a recursive fashion and to list all of the
coefficients in a neat tabular form as follows.

The Routh Array—An Example
Let us consider P(s) = s4 + 3s3 — 3s2 + 3s +1 again. This time

we write down the odd and even parts separately in an array as:

Oo 0,2 O"i 1 ~ 3 1

O! a3 0 ~ 3 3 0

The coefficient of the highest power of s always goes in the leftmost
column of the first row. The next row starts with the next lower
power of 5. By looking at these two rows, one can reconstruct the
polynomial. It is clear from (4.1) that the matrix for Qi{s) starts
with the last row of the matrix for P(s), and has as its second row:

a2 - (ao/a^as a4 - (ao/«i)«5 0 = - 3 - (1/3)3 = -4 10.

Of course, the same procedures work to write down each of the
Qi(s) where one just uses the values that correspond to the previous
Qi(s).

As the last row of Qi(s) is the first row of Qi+i(s), there is no
need to write down separate matrices. Rather one writes down one
large matrix. Proceeding this way, one finds that the matrix that
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corresponds to our problem is:

1 - 3 1
3 30

-4 10
15/4 0 0

1 00

This matrix is called the Routh array. Each adjacent pair of rows
corresponds to a polynomial. The first two rows correspond to
P(s). The second and third rows correspond to Qi(s), and so forth.
Additionally the last row represents the last polynomial—which is
just a constant. We know that the number of right half-plane zeros
of P(s) is the same as the number of right half plane zeros of Qi(s)
because the signs of ao and a\—the first elements of the first two
rows—are the same. We note that our a0 and a\ will always be the
first two elements in the two rows that correspond to our current
polynomial. Thus, we find that Q\{s) has one more right half-plane
zero than Q2(s) because 3 and —4 have different signs. Also, we
know that Q2(s) has one more zero in the right half-plane than
Qsis) because —4 and 15/4 have different signs. Finally, we find
that Q3(s) has the same number of right half-plane zeros as QA(S).

But Q4(s) is a constant and cannot have zeros in the right half-
plane. Thus, we find that Qs(s) has no right half-plane zeros, and
Q2{s) has one zero in the right half-plane, and Q\(s) has two zeros
in the right half-plane, and, finally, P(s) has two zeros in the right
half-plane. In fact, we see that all that one needs to do to see how
many right half-plane zeros P(s) has is to count the number of sign
changes in the first column of the Routh array.

If at any stage one finds that "Q(s)" is not of degree one less than
"P(s),n then one cannot proceed to the next "Q(s)." In terms of the
Routh array, one finds that it terminates prematurely. We see that we
cannot use this technique to determine the number of right half-plane zeros
in this case. However, if the degree of "Q(s)" is more than one lower than
the degree of "P(s)," then our current Oi = 0. If this is so, then we know
that P(s) has at least one zero in the right half-plane. We see that if one
cannot build the complete Routh array, then the original polynomial had
at least one zero in the right half-plane.
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Premature Termination of the Routh Array—An Example
Consider P(s) = s5 + s4 + 2s3 + s2 - 3s - 2. As this is a

fifth order polynomial, we need to find a six row Routh array. In
general, the Routh array will have one more row than the order of
the polynomial with which it is associated. Calculating the array,
we find:

1 2 - 3
1 1 - 2
1 - 1 0
2 - 2 0
0 0 0

We see that the array terminates early. What can we learn from
the Routh array in this case? First, from our theorem we know that
the polynomial must have at least one zero in the right half-plane.
But we can actually say more. By making use of the array and our
theorem, we find that P(s) has the same number of zeros in the
right half plane as does the polynomial Qi(s) = s4 + s3 + s2 —Is —2.
Furthermore, we know that Qi(s) has the same number of zeros in
the right half plane as has Qzis) = s3 + 2s2 —s —2. Finally this has
the same number of zero in the right half-plane as Q3(s) = 2s2 — 2.
As we know that the zeros of Qs(s) are ±1, we see that P(s) must
have one zero in the right half-plane. Using MATLAB, we find that:

roots([ l 1 2 1 - 3 - 2 ] )
ass =

-0.1424 - 1.6662 i
-0.1424 + 1.6662 i
-1.0000
-0.7152
1.0000

This shows us precisely one zero in the right half-plane—as it
should.

As we have already explained, if the Routh array terminates
prematurely, we know that there is at least one zero of P(s) in
the right half-plane. Sometimes even if the Routh array terminates
prematurely, we are able to get all of the information that we want
from it. We just have to work a little harder for the information.
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4.2 A Design Example

Suppose that we would like to control the shaft angle of a DC motor. We
have seen (p. 49) that the transfer function from the input voltage of a DC
motor to its output shaft angle is of the form:

Suppose that we have a motor whose parameters are K = lOyoitfec' an<^
r = 1 sec. Let Vin(i) be measured in volts and $(£) be measured in degrees.

Let us assume that we are using this motor to position a pen and that we
are not planning to use this motor to do anything very quickly. Moreover,
assume that we do not want the motor system to respond to fast signals—we
want the motor system to treat such signals as unwanted noise.

We can express the constraints on our system by the following three
requirements:

• Every five millivolts of input voltage should correspond to 1° of arc.
(This condition is necessary to pin down the relationship between the
input in Volts and the desired output in degrees.)

• The steady-state response to a ramp input (vin — tu(t)) must be correct
to within 10°.

• The output to a one volt input at 20rad/s (i.e. vin(t) — sin(20£)u(i))
must remain between ±7.5° of arc.

We could try to construct the system using the system of Figure 4.1.
The 1/200 attenuator is included so that in the comparison between the
input which is in Volts and the output which is in degrees, if the output is
the desired one then the output of the differencing block will be zero. Let

Fig. 4.1 A Simple Motor Controller
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us see if it is possible for this system to meet all of the requirements. The
transfer function of this system is:

T(S) - I ^ - 10K

1 1 + * }0K ~ S(S + 1) + K "
1 ^ 200 «(«+i) * V * T i ; - r 2 o

We find that the DC gain of the system is T(0) = 200—as it should be to
meet the first requirement. Next, we consider the second requirement. A
ramp input leads to the output:

xr / \ _ 1 0 * 1 partial fraction expansion A B Cs + D
0{S'~ 8(8 + 1)+ f ? = ? + 7 +

S ( S + l) + f-

It is easy enough to calculate that A = 200 and B = ~ 4 j ^ 0 0 . Thus:

uo(0 = ( 200i ——h exponentially decaying terms I u(t).

\ K J
We see that —4000/K is the steady state error when the input is a ramp.
Thus, we find that the response to a ramp is better the larger K is. To
keep the error within ten degrees requires that K be at least 400. Let us
take K = 400. Then the transfer function of the system is:

T(s) -
 4 0 0°

We find that T(20j) = 4000/(-380 + 20j). Thus the error due to a 20rad/s
input of one volt will be on the order of 10°. This is almost good enough.
We must find a slightly better solution.

One way to force the response of the system to relatively high frequency
signals to decrease is to add an integrator to the system as we have done
in Figure 4.2 rather than a simple amplifier as we have done in Figure 4.1.
The transfer function of the new system is:

2000*
K> 200s2(s + l) + 10/f

Let us use the Routh-Hurwitz test to see if this system is—or can be—
stable. The polynomial in the denominator is 200s3 + 200s2 + 10*. The
Routh array that corresponds to this polynomial is:

200 0
200 10*

- 1 0 * 0
10* 0
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We see that there are always two roots in the right half-plane—no matter
how big or small K > 0 is. Thus, we cannot use this scheme to deal with
the problem.

Fig. 4.2 A Simple Motor Controller with Integral Compensation

We see that using a simple amplifier is not enough to give us a system
with the performance that we need. Also, we see that adding an integrator
to the system—though it should help the system to respond less to "high
frequency" signals—makes the system unstable. We now try to add a part
that is a compromise between the two techniques—we add a low-pass filter.
We replace the block whose transfer function is K/s by a block2 whose
transfer function is K/(TS + 1) (where r > 0 is a new parameter). The
transfer function of the system with this block added is:

_ 2000/f _ 2000/iT
(S ) ~ 200(rs + l)s(s + 1) + WK ~ 200rs3 + 200(r + l)s2 + 200s + 10K'

Let us examine the stability of this system. We find that the Routh array

2To see that a block whose transfer function is:

GP(s) = -JL-
TS+ 1

is a low-pass filter consider the magnitude of the frequency response of the block. We
find that:

\GP(ju)\ = \K}
VT2W2 + 1

Clearly this function has a maximum at w = 0 and decreases monotonically for positive
U).
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that corresponds to the denominator is:

200T 200

200(T + 1 ) 10A"

200 - ^ f 0
10A" 0

We find that as long as:

200 > 0 <£> 200 > (10K - 200)r
r + 1

we have a stable system. This condition requires that for stability we must
have:

T < 1 0 ^ 2 0 0 - <4"2>

This condition says that the value of r cannot be too large. This condition is
reasonable. We have already seen that the block K/s leads to a system that
is unstable for any value of K. If r is very large then K/(TS+1) ~ (K/T)/S,

and this is known to lead to an unstable system.
Let us see if our system meets the requirements now. If the system

input is a step function then the output is:

2000X 1 _ A B Cs2 + Ds + E
o W ~ 200(TS + 1)S(S + 1) + WK1? ~ ^ + 7 + 200(rs + l)s(s + 1) + 10K'

A simple calculation shows that A = 200 and B = —A0Q0/K. Thus get
the steady-state accuracy that we require, K > 400. Let K = 400. Pick T
according to (4.2). We find that r < 1/19. Let T = 1/20. We must now
check the response to a 20 rad/s signal is not too large. We find that:

n m = 1222 =
 400Q

v J> (j + l)(20j + l)20j + 20 -400-380J '

We find that |T(20j)| = 7.25. We are just able to meet our requirements
using this system.

4.3 Exercises

(1) Using the Routh array, determine which of the following polynomials
have zeros in the right half-plane. Where possible, determine the num-
ber of zeros in the right half-plane as well.
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Fig. 4.3 A Controller for a Simple Satellite

(a) S2 + 3s + 1
(b) S3 + 1
(c) s4 + 3s2 + l
(d) s4 + s3 + s2 + s + 1
(e) s4 + s3 + 1

(2) Explain Problem la without recourse to the Routh-Hurwitz theorem.
(3) Explain Problem lc without recourse to the Routh-Hurwitz theorem.

(Hint: how is Problem la related to Problem lc?)
(4) Recall that the transfer function of a simple satellite is Gp(s) = l/s2.

Use the Routh array to show that the system of Figure 4.3, a system
for which the controller has the transfer function Gc(s) = K(s + 1), is
stable for all K > 0.

(5) Prove that the system of Figure 4.4 is unstable for all values a, b > 0.
Also, prove that for all such values of a and b the system has two poles
in the right half-plane.

Fig. 4.4 A Simple Feedback Circuit

(6) (a) Use the Routh array to find the values of K > 0 for which the
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Fig. 4.5 A Controller for a System with a Zero in the RHP

system of Figure 4.5 is stable when a > 0.
(b) Use the Routh array to show that if a = 0, then the system of

Figure 4.5 is stable for all K > 0.
(c) What does this say about the effect of zeros in the right half-plane?

(We will see more about this effect in 6.3.1.)
(7) Consider the system of Figure 4.5 but replace the transfer function

ai+J+i by *ne transfer function:

_ (8-fl)(a + 3)
Gp{S>~ S2 + 3 s + 2 •

(a) Use the Routh array to find the values of K > 0 for which the
system of Figure 4.5 is stable when a > 0.

(b) Use the Routh array to show that if a = 0, then the system of
Figure 4.5 is stable for all K > 0.

(c) What does this say about the effect of zeros in the right half-plane?
(We will see more about this effect in 6.3.1.)

(8) (a) Use the Routh array to show that the roots of s2 + as + b are all
in the left half-plane if and only if a and b are positive,

(b) Prove this result without recourse to the Routh-Hurwitz theorem.
(9) Use the Routh array to find the range of gains, K, for which the system

of Figure Figure 4.5 is stable when Gp(s) is replaced by:

_ , , s2 + 201s + 10100

(10) Consider the system of Figure 4.5, but let:

Gp(s) = (S + 2)( S -1)-

Use the Routh array to determine the range of K for which the system
is stable.





Chapter 5

The Principle of the Argument and
Its Consequences

5.1 More about Poles in the Right Half Plane

If a transfer function that is a rational function of s has any poles in the
right half plane, the transfer function represents an unstable system. We
state that this is more generally true-a pole or poles in the right half plane
is the sign of an unstable system. No poles in the right half plane is the
sign of a stable system.

Much of control theory is devoted to answering the questions "does the
transfer function of the system of interest have any poles in the right half
plane? Might small changes to the system cause poles to migrate to the right
half-plane?" Many of the techniques used to determine the stability of a
system assume that the system's transfer function is a rational function of s
and that the polynomials in the numerator and the denominator have real
coefficients. Any system whose component parts are real gains, integrators
and differentiator is of this type. The examples of the previous chapters
make it clear that many systems are (at least approximately) of this type.

Some techniques allow other classes of analytic functions as well. All the
techniques we consider assume that the transfer function is analytic except
for isolated poles. Though this is a strong restriction on the type of system
one may use, many practical systems can be described by transfer functions
of this type. The most commonly used block whose transfer function is not
a rational function of s is a delay block. As we saw in the first chapter
(Theorem 7, p. 8) the transfer function that corresponds to a delay of T
seconds is e~Ts.

In the preceding chapter we examined the Routh-Hurwitz criterion. We
saw how one can determine the stability of a system whose transfer function
is a rational function of s. In this chapter, we consider a technique that

91
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works as long as the transfer function is analytic in s except for isolated
poles-the Nyquist plot1. We will see that this new techniques leads us to
Bode plots2, and we will see how easy-to-use Bode plots are.

5.2 The Principle of the Argument

The major theoretical tool that we use in this chapter is the principle of
the argument. Let N be the number of zeros in a (reasonable) region Q
and let P be the number of poles in 0. We say that a curve encircles the
origin once if the curve goes around the origin once in the counterclockwise
direction. If it goes around the origin in the clockwise direction then we
say that it encircles the origin —1 times. Our theorem states:

The Principle of the Argument 12Let /(s) be a function that is analytic
(except for a finite number of poles) in a neighborhood Cl and that has
neither poles nor zeros on the boundary of fi, <9Q. Then the number of
times that the function f(s) encircles the origin, E, as s traverses dQ. in
the counterclockwise direction is equal to the number of zeros in fi less the
number of poles in fi. That is:

N-P = E.

We defer the proof of this theorem to the next section. We consider a simple
example to help fix the ideas presented in the theorem.

The Function 1/s—An Example
We apply our theorem to the function f(s) = 1/s and the region

fi = j s |s| < 1 I. The question we consider—as it will always be
in this chapter—is how many poles and zeros are located inside
the region fi. To answer this question we use the principle of the
argument. We map the boundary of the region of interest to us, fi,
using the function about which we want information, f(s).

We want to map the boundary of the unit disk—the unit circle—
using the function 1/s. Let us describe the unit circle as the points
s = eje as 9 goes from 0 to 2TT. This causes us to traverse the unit
circle counterclockwise (as seen in the left half of Figure 5.1). Then

1Named after its inventor, Harry Nyquist (1889-1976). Nyquist invented the plot in
1932 while employed by the Bell Telephone Laboratories[Lew92].

2Named after their inventor, Hendrik Bode. Bode invented the Bode plots in 1938
while employed by the Bell Telephone Laboratories[Lew92].
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Fig. 5.1 The Domain, Q, Its Boundary, dQ, and the Image of its Boundary, f(dCl)

\Js = e^~e\ Thus the second circle is traversed in the clockwise
direction (as seen in the right half of Figure 5.1). We see that
in this example E = —1—there is minus one encirclement. This
means that the number of zeros of 1/s inside Q less the number of
poles of 1/s inside 0 is equal to minus 1. This is true; 1/s has no
zeros in O, and it has one pole in Q..

5.3 The Proof of the Principle of the Argument

The proof of the principle of the argument relies on equalities A and B:

2*j Jan f(«)

We prove each of the equalities separately.
Let us start with equality A. We must show that the number of en-

circlements of the origin is equal to the given integral. We know that
(f'(s)/f(s))ds = d(ln(/(s))). Also, /(a) = |/(a)|e>*</(*» where $(/(s))
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is /(s)'s phase given in radians. We see that ln(/(s)) = ln(|/(s)|) +
ln(ej*(/(s))) a nd this in turn is equal to ln(|/(s)|) + j$(/(s)). The integral
of d(ln(f(s))) around a closed curve should be the change in ln(/(s)) =
ln(|/(s)|) + j$(f{s)) over that curve. The change in the logarithm of the
magnitude is zero—the magnitude of the function will be the same at both
the "beginning" and the "end" of the closed curve. The only change will
be in j times the phase of the function—which is 2TTJ times the number of
encirclements of zero.

Let us formalize this proof. Let s(t) be a function from the interval [a, b]
to dfl which parameterizes the curve 9f2. Then:

2*3 /fin /(*) 27rJ Ja /(*(*))

= ^/V(/(*to)))'<ft
Z7TJ Ja

= 2^3 t ( I n ( l / ( S W ) I ) + l n( e J $ ( / ( S ( t ) ) ))) ' dt

= i-($(/(S(6)))-$(/(s(a))))

$(/(«(*))) t=b

= ^r~t=a = K

In order to prove equality B, we note that h(s) = f'(s)/f(s) is analytic
at every point at which f(s) ^ 0 and f(s) ^ oo. That is, away from the
poles and zeros of f(s) the function h(s) is analytic. Thus, to calculate the
value of >̂af2 h(s) ds we need only consider the residues of h(s) at its poles.
Let us find these residues.

We note that if an analytic function, /(s), has Nz zeros at a point z,
then the function can be written f(s) = (s — z)Nzg(s) where g(z) ^ 0. Thus
near a zero we find that:

_ f'(s) Nz(s - z)N^g(s) + (s- z)N*9'{s) Nz g'(s)
[) f(s) (s-z)^g(s) s-z+ g(s)-

As g'(s)/g(s) is analytic in a neighborhood of the zero, we find that the
residue at z is Nz.

Similarly, if f(s) has Pz poles at the point z, then f(s) = (s — z)~Pzg(s)
where g(z) ^ oo, g(s) ^ 0. Thus, near a pole we find that:

h( ) = f'W = -p^s ~ ^)"P~1g(s) + (s ~ z)-Pz9\s) __ -Pz , g'(s)
{> f(s) (s-z)-P-g(s) s-z^g(s)-
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As g'(s)/g(s) is analytic in a neighborhood of the pole, we find that the
residue at z is — Pz.

Adding up all the residues, we find that:

I ^ ds = 2TTJ Y^ residues = 2nj I ] T NZi - ^ PZk j = 2irj{N - P)
\ I ft, /

which was to be shown.

5.4 How are Encirclements Measured?

From the proof of the principle of the argument, we see how to define an
encirclement properly. When tracing out the image of the boundary of the
region of interest start, one starts from some point and then one traces out
the rest of the image. Let the point from which one starts be defined as
0°—that is measure all angles relative to the ray which connects the origin
to the initial point and continues out to infinity. Then keep track of the
angle of the current point. When one finishes tracing out the boundary, one
will have returned to one's initial point. Upon one's return to the initial
point, one will find that one has swept out n360° where n may be any
integer. Let us consider two simple examples.

A Function with No Poles or Zeros in the Unit Disk—An
Example

Consider the function:

As the numerator is one, this function cannot have any zeros. Thus,
we know that iV = 0 for any region whatsoever. Let us map the
boundary of our region—which is just the unit circle—using our
function, f(s). The region and the image of the boundary (under
the mapping f(s)) are given in Figure 5.2. In the plot of the region
we started at 0° (with respect to the positive x-axis as is customary)
and proceeded counterclockwise in a circle. We plotted the first
quarter circle using periods, the next using pluses, the next using
o's and the last quarter circle using x's. Similarly, when plotting
the image we start with dots and proceed to plot the image. Let
us consider how many times we encircle the origin in this case.
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Fig. 5.2 The Boundary, |s| = 1, and Its Image under f(s)

We find that the first point in the image is at 0°—which is
convenient. As we proceed with the dots we find that the angle
is increasing. At the top of the image—which is approximately
f(s) = 0.275 + jO.222, we find that the angle is 57.3°. After that
point, however, we find that the angle decreases. At the point at
which the curve switches from pluses to o's, we find that the angle
is back down to 0°. At the image's lowest point—at approximately
0.275 - jO.222 the angle is -57.3°. However, after this point the
angle increases. When we finish tracing out the image, we find that
the angle is 0°. As we know that N = 0 and we have now seen that
E = 0, we find that P = 0—/(s) has no poles in the unit disk.

A Function with One Pole in the Region—An Example
Let us consider the function:

/(S) =
 S 2 - l + 6
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once again. This time, however, we choose as our region:

\s\ <2 .5 .

We have plotted both the boundary of the region and the image of
the boundary under /(s) is Figure 5.3. This time the first dot in the

Fig. 5.3 The Boundary, \s\ = 2.5, and Its Image under f(s)

image occurs at the point —4 + jO. This is our starting point and
we say that the (relative) angle of this point is 0°. As we proceed
we find that the highest point in the image occurs at — 0.86+J0.26.
This has an (relative) angle of —16.8°; the minus sign means that
we have moved in the clockwise direction. Proceeding from the
dots to the pluses and from the pluses to the o's, we find that at
the point at which we next cross the real axis—at 0.04 as a quick
calculation shows—the angle is now —180°. We are now on the
opposite side of the origin. Continuing, we find that as we finish
the plot of the image of the boundary—and return to the point
from which we started—the angle has decreased to —360°. That
is, we have encircled the origin —1 times. As the numerator of f(s)
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is one, we know that N = 0. Thus, P = 1. Indeed, the function:

f( ) = 1 = 1
J[S) s2-5s + 6 (s-3)(s-2)

has one pole in the region \s\ < 2.5.

5.5 First Applications to Control Theory

The transfer function of our generic linear system is:

T(s) = GPM
{) l + Gp(s)H(sY

Assuming that Gp(s)H(s) is an analytic function (except for a finite number
of poles)—something that will always be true for the linear systems in this
book—we can use the principle of the argument to determine the presence
or absence of zeros of 1 + Gp(s)H(s) in the right half-plane.

Gp(s)H(s) = l/s—An Example
We would like to determine the number of zeros that 1 +

Gp(s)H(s) has in the right half-plane. We note that l + Gp(s)H(s)
is a rational function of s. Thus, it has a finite number of poles.
This means that all of its poles that lie in the right half-plane are
located in some region of the form:

nR = {s\Tl{s) >0, | s | <R}.

Thus, if one can show that for all sufficiently large R the number
of zeros of 1 + Gp(s)H(s) inside Q.R remains fixed, then one knows
that this is the number of zeros of 1 + Gp(s)H(s) in the entire right
half-plane.

In our case, there is a problem with the application of the prin-
ciple of the argument—0, which is a pole of 1 + Gp(s)H(s), is on
the border of £IR. TO avoid this pole we take a somewhat different
region:

fip,fi = {s\Tl(s) > 0, \s\ > p, \s\ < R) .

This region is shown in Figure 5.4. This region excludes the origin.
As 1 + Gp(s)H(s) is an analytic function of s, if the origin is a
pole, then there are no poles or zeros "near" zero. Thus, if for all
sufficiently small values of p and for all sufficiently large values of
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Fig. 5.4 The Region ttPtR Where p - .3 and R = 10

R one finds that there are N zeros in Q,P,R, then there are N zeros
in the right half-plane.

In our example, it is clear that:

lim 1 + GJs)H(s) = 1.
s—»oo

For all sufficiently large R, the large semi-circle is mapped into a
neighborhood of 1. When mapping the imaginary axis, we find
that 1 + Gp(ju)H(JLj) = 1 + l/(jw). That is, the points on the
imaginary axis are all mapped to points whose real value is one.
Finally the points on the small semi-circle peJ0 where 9 varies from
TT/2 to —?r/2 are mapped into the points 1 + (l/p)e~;)6'-which is a
large semi circle in the right half-plane.

Putting all of these facts together we find that the left-hand
figure in Figure 5.5 is mapped into the right-hand figure of Figure
5.5 by 1 + Gp(s)H(s). As it is clear that no matter how small p is
and no matter how big R is the second figure never encircles the
origin, it is clear that the number of zeros in fiP)/j is equal to the
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number of poles in the region. As there axe no poles in the region,
there are no zeros either. Hence, the system is stable.

Fig. 5.5 The Region QP>R and Its Image under 1 + 1/s

Though in our previous example we considered the function 1 +
Gp(s)H(s), generally we consider the function Gp(s)H(s). The number
of times that 1 + Gp(s)H(s) encircles 0 is clearly equal to the number of
time Gp(s)H(s) encircle —1. We generally check encirclements of —1 to de-
termine the stability of our systems. The plot of Gp(s)H(s) on the "border"
of the left-half plane (with possible detours around poles on the imaginary
axis) is called the Nyquist plot of the system.

5.6 Systems with Low-Pass Open-Loop Transfer Functions

We have seen that the Nyquist plot can be used to determine whether a
closed loop system will be stable given the transfer function of the system
when the "loop" is opened (as shown in Figure 5.6)—Gp(s)H(s). What do
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we mean when we say Gp(s)H(s) is low-pass? We mean that:

lim Gp(s)H{s) = 0.

If Gp(s)H(s) = P(s)/Q(s) is a rational function of s, then the state-
ment "Gp(s)H(s) is low-pass" is equivalent to the statement deg(P(s)) <
deg(<3(s))- In terms of the Nyquist diagram this says that the semi-circle
"at infinity"—which satisfies \s\ = R » 1—is (essentially) mapped into
the origin. Also for large values of u, we find that Gp(ju))H(juj) —> 0.
Thus, there is no need to explicitly consider the semi-circle at infinity. In
low-pass systems the semi-circle at infinity cannot present a problem. In or-
der to determine the stability of a low-pass system it is sufficient to consider
s = jui (including, of course, small semi-circles around poles (or zeros) at
the origin and any imaginary poles (or zeros)). In fact, because the Taylor
series associated with Gp(s)H(s) always has real coefficients, we find that
the region d£l—which is symmetric about the real axis—is mapped into a
region symmetric about the real axis by Gp(s)H(s). Thus, it is sufficient to
calculate the image of the upper half of dQ under the mapping Gp(s)H(s)
(as from it we can infer the image of the lower half of /($fi)).

Fig. 5.6 A Simple Feedback Circuit with the "Loop" Opened and the Output Moved
to Vo(s)

Gp{s)H{s) = 1/s5—An Example
When Gp(s)H(s) = 1/s5, we are dealing with a low-pass func-

tion. We need not concern ourselves with the behavior for |s| >> 1.
It is clear that such numbers are mapped (very nearly) into the ori-
gin. We see that for s = ju>, Gp(ju)H(ju>) = l/(jw5). Also, for
s = peje,6 : 7r/2 -> -TT/2, we find that Gp(s)H(s) = p-5e~5je.
Thus the small semi-circle is mapped into five large semi-circles—
into two and one half circles—as shown in Figure 5.7. In Figure 5.7
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the image of the small semi-circle overlaps itself a number of times.
On the left-hand side it overlaps itself once, and on the right hand
side it overlaps twice. We see that —1 is encircled twice—which
means that there are two more zeros of 1 + 1/s5 in the right half-
plane than there are poles in the right half-plane. This is clearly
correct as:

s° s°

Two of the fifth roots of —1 are located in the right half-plane, and
1 + 1/s5 clearly has no poles in the right half-plane (excluding the
origin which is explicitly not part of O).

Fig. 5.7 The "Modified" Imaginary Axis and Its Image under 1/s5
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Let us consider the general effect of poles at the origin on the Nyquist
plot. If one has a transfer function of the form:

Gp(s)H(s) = c^^-y cP(0)/Q(0) = d > 0,

one finds that near zero Gp(s)H(s) looks like d/sn. As there is a pole at
the origin, one must put a small semi-circle near the origin. The semi-circle
is described by pe^6,6 £ [TT/2, —TT/2]. The image of this semi-circle under
Gp(s)H(s) is (approximately) (d/pn)e~jne. Thus, the image of the small
semi-circle is (approximately) n very large semi-circles that are traversed in
the counter-clockwise direction starting at the point (rf/p")e-7"7r/'2. Thus, if
n = 1, the semi-circle starts from (approximately) the point (d/p)e~:>n/2-~
from the negative imaginary axis. When n = 1, the semi-circle (mostly)
circles through the right half-plane. For n = 2, the small semi-circle gener-
ates an almost (or possibly slightly more than) complete circle. This circle
can cause encirclements of —1 and drive a system into instability. For
n > 3, the image of the small semi-circle will encircle —1. Unless the image
of the rest of the boundary encircles —1 in such a way as to "unwind" the
encirclements, the system will be unstable. Though increasing the gain at
low frequencies should improve the performance of our system at DC, once
again we find that increasing the gain too much can cause the system to be
unstable. We consider some examples.

Gp(s)H(s) = jr^f2)—^n Example

Consider the transfer function—Gp(s)H(s) = J^+2) • ^ m s

function is low-pass, has one pole at zero, and:

*+l = I > 0
* + 2

 s=0 2

We see that the the small semi-circle around the origin is mapped
into a large semi-circle that is largely in the right half-plane. To
get more information about the behavior of the function when s
is near the origin, let us approximate Gp(s)H(s) by making use of
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the fact3 that:

—— « l - i , \x\ « 1 .
1 +x

We find that:

02) = JJIT^ " 5(«-W-/» » 5<1+*/2) - £+1/4.
We see that as s -> 0, Gp{s)H(s) behaves like l/(2s) + 1/4. In
particular, if s = ju>, then the function looks like —ju)/2 + 1/4.
This is a straight line with real part equal to 1/4 that tends to
—joo as OJ —> 0+.

Additionally, when s = ju, we find that:

n c \TTt- \ juJ + 1 u ~ J ' ^ 2 + 2)
GP{JU)H{JU) = ju{ju + 2) = ^ 2 + 4) •

Thus, for w > 0 we find that Gp(ju>)H(ju>) always has positive
real part and negative imaginary part. Without drawing anything
it is clear that there can be no encirclements of — 1—our plot is
always in the right half-plane. In Figure 5.8 we see both the curve
we are mapping and its image under Gp(s)H(s). There are no
encirclements of —1. Thus, N = P. As Gp(s)H(s) has no poles in
the right half-plane, we find that 1 + Gp(s)H(s) has no zeros in the
right half-plane either. That is, we find that our system is stable.

Gp{s)H(s) = 7^%— An Example
Here we consider a slightly different transfer function—instead

of having s + 1 in the numerator, we have s + 3. The small semi-
circle around the origin is still mapped into a large semi-circle as

3The series:
1 - x + x2 + (~x)n +•••

is a geometric series with ratio —x. If \x\ < 1, the series' sum is:

1

1+x'

If |x| << 1, then the series is well approximated by its first two terms—that is, for small
value of | i | , we find that:

1 + x
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Fig. 5.8 The Imaginary axis (with Detour) and Its Image under s^2)

it was previously. Also:

ZGp{ju)H(ju) = Z{ju + 3) - Zjw - Z{ju + 2)

= t a i r V / 3 ) - 90° - tan-1(w/2).

This function is equal to 90° when u> = 0. For w > 0 the function
is less that —90°, but it cannot ever decrease to —180°. Thus, for
w > 0 we find that I{Gp{ju)H{jw)) < 0. We see that the point
— 1 cannot be encircled. We have plotted the "imaginary axis" and
its image under Gp(s)H(s) in Figure 5.9. Once again, we find that
the system is stable. Here, however, the image does make it into
the right half-plane.
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Fig. 5.9 The Imaginary axis (with Detour) and Its Image under s(J+2)

5.7 MATLAB and Nyquist Plots

MATLAB has a command to plot Nyquist plots. The command is called
nyquist. One can find the Nyquist plot of a system G by typing:

nyquist(G)

MATLAB will reply with a plot of

Gp{JLj), \w\ > e.

In order to determine the stability of the system, one must know how one's
system behaves near the origin. MATLAB does not provide that information
to you.

In the next section we consider systems with delays. The nyquist
command also does not know how to deal with delays. To get around these
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shortcomings, a special set of MATLAB routines is used to plot the Nyquist
plots that appear in this book. (This is the only important place where
"vanilla" MATLAB is not used in this book.)

5.8 The Nyquist Plot and Delays

Prom Theorem 7 of Chapter 1 we see that if an element's output is its
input delayed by T seconds then the transfer function of the element is
e~Ts. On the imaginary axis this is e~^T—a phase shift of —LJT radians.
What effect does this have on the stability of a system? Let us consider
a system for which Gp(s) — \/s and H{s) = e~Ts. This corresponds to
a system for which the plant behaves like an integrator and for which the
feedback element—often the measuring device at the output—introduces
some "processing delay."

We have seen that if T = 0, then the system is stable. In Figure 5.10
we show the Nyquist plot of the system. Since the plot does not enclose
s — —\ and since the system has no poles in the right-half plane other than
zero—which is not in our region, we know that the system is stable.

Now consider the same system with T = 1. We find that the Nyquist
plot is as shown in Figure 5.11. In Figure 5.12 we expand this plot near
the origin. Considering these two pictures we see a number of things that
are typical of Nyquist plots of systems that include delays.

First of all, we see that near the origin the plot seems to spiral. When is
this to be expected? The region near the origin corresponds to \s\ » 1. If
s = juj, then we find that e~^T is adding more and more phase a su -» oo.
On the other hand, since Gp{s) is low-pass, Gp(ju>) —> 0. For low-pass
systems with delays, one expects the Nyquist plot to spiral into the origin.

Additionally, we find that even though the plot corresponding to l/s
remained in the right half-plane, TZ(s) > 0, we find that after the addition
of e~Ts the plot extends into the left half-plane. This too is to be expected.
Let us consider Gp(s)H(s) which is a rational function of s and which has
a first order pole at zero. That is, Gp(s)H(s) has the form:
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Fig. 5.10 The Imaginary axis (with Detour) and Its Image under i

For \s\ « 1 we find that:

P(s) _ amsm -A Y a\s + q0

Q(s) ~ bns
n + --- + bis + b0

_ QQ (Qm/ao)gm H \- (ai/ao)s + 1

~ b0 {bn/bo)sn + --- + (bi/bo)s + l

^ a0 1 +(ai/ao)s

~ ^ 1 + (6i/6o)s

« ^ (1 + (oi/oo)*) (1 - (6i/6o)s)

~ T ~ 1 + T l s )
bo V \ao bo) )
a0 fai aobi\

= T + I H~ s
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Fig. 5.11 The Imaginary Axis (with Detour) and Its Image under s-^- • (The spiral
appear to be finite because the imaginary axis only extends from —10j to +10j.)

We see that for small s, Gp(s)H(s) is approximately:

Qp(s)H(s) W 7 1- rs- .

Thus, as s — jui tends to zero, the value of Gp(s)H(s) tends to a point on
the line TZ(s) = ai/b0 - aobi/bl. Recall4 that for small values of \Ts\ we
know that:

e^s « 1 - Ts.
4The Taylor series expansion of e~Ts about zero is:

2\ n\

For small values of Ts one can—to a first approximation—ignore the second and higher
order terms.
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Fig. 5.12 The Imaginary axis (with Detour) and Its Image under s-^~

We find that the effect of e~Ts on Gp(s)H(s) is, for small s:

w(1-Ts)te+U"^"JJ
^ a0 / a i ap6i ^aoA

OoS \(?o 00 Oo/

We see that the movement towards the left half-plane is expected and that
the amount of the shift of the asymptotes should be —Tao/bo units.
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5.9 Delays and the Routh-Hurwitz Criterion

One of the advantages of the Nyquist Plot is that it allows us to deal
with any analytic function directly. This does not mean that there is no
way to use our previous techniques in such cases. If we can find "good"
rational function approximations to our functions, then we can use our
other techniques as well.

When do the destabilizing effects of e~Ts become apparent? In low-pass
systems they become apparent at low frequencies. At high-frequencies the
smallness of Gp(juj)H(jw) prevents problems from starting. In order to
use our polynomial based methods, we need to find a good approximation
to e~Ts at low frequencies that has some of the properties of e~Ts at high
frequencies.

The "standard" approximation to e~Ta is 1 — Ts—the first two terms in
the Taylor series of e~Ts about zero. This function has a rather unfortunate
effect—it's absolute value is large for large frequencies—for large values of
ju>. This is not the case for e~Ta, and this can be a problem. How else can
we approximate e~Ts?

A simple approximation5 relies on the fact that for small s:

1 - ( T / 2 ) S (1 (T/2)c) 1

l + (T/2)s~[l [/')S)l + (T/2)s

= (1 - T/2)s)(l - (T/2)s + {{T/2)sf -•••)

* (1 - (T/2)s)(l - (T/2)s + (T/2) V )

~ (1 _ Ts + (T2/2)s2)

» e~Ts.

For large values of s this approximation is near —1 and for s = jw we find
that:

1 - (T/2)ju> _ \1-{T/2)M _
1 + (T/2)jw |1 + (T/2)JLJ\ •

We see that on the imaginary axis this function always has unit magnitude,
for small s this function is a good approximation to e~Ts, and for large s
the function is very near minus one. As we do not care too much about
the precise behavior for large s (as the low-pass nature of Gp(s)H(s) is
supposed to guarantee that these values will not affect the stability of the

5This approximation is a particular example of a Padi approximation[Bor97]—of the
approximation of a function by a quotient of polynomials.



112 A Mathematical Introduction to Control Theory

system), this function should give us a useful approximation to e~Ts. We
consider a simple example.

The Function Gp(s) = 77^7—An Example
Consider a system for which

G^ = l(f+T)
and for which the feedback loop adds a delay of T seconds. We
would like to know what the maximum value of T is for the stable
operation of our system.

After a number of trials, we found that with T = 1.1 the Nyquist
plot (see Figure 5.13) does not encircle —1. From the plot, it is clear
the if T is much bigger than 1.1, then there will be encirclements.
Let us see what value of T our approximation finds for us.

Fig. 5.13 The Nyquist Plot of e ' 1 ' 1 3
 su+\) a n d a Z o o m o n P a r t o f t h e p l o t
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We are interested in determining the values of T for which:

has zeros in the right half-plane. Rewriting this expression, we find
that we are interested in the zeros of the expression:

(T/2)s3 + (1 + T/2)s2 + (1 - T/2)s + 1
s(s + 1)(1 + (T/2)s)

These are just the zeros of the polynomial in the numerator. To
determine when there are zeros in the right half-plane, we use the
Routh-Hurwitz criterion. Building the matrix, we find that:

T/2 2=1
2±T 1

1-T _ T n
2 2+T U

1 0

Thus, we need to determine when:

2-T T
~~2 2 + T

is negative. This leads to a quadratic equation, and we find that
the solution is that there are roots in the right half-plane if T >
y/E — 1 = 1.23. The value that we get here is just a little bit too
optimistic; the exact value (as a bit of experimenting shows) is
between 1.1 and 1.2. (See Problem 10 to see how to calculate the
exact value.)

5.10 Relative Stability

We have mainly dealt with the question, "is the system stable?" We now
consider a question whose meaning is somewhat less clear, "how stable is
the system?"

Why must this question be asked? If a system can be shown to be stable,
one would think that that would be the end of the process. However, the
mathematical models that we use when determining the system's stability
are generally inaccurate in a number of ways. First of all, there are often
nonlinearities that are not modeled at all. Also there are often parasitic
reactances (which often contribute negative phase to the system) that are
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not taken into account by our models. Furthermore we never know the
values of the elements of our system with 100% accuracy. It is, therefore,
important to be able to show that we have some margin for error. We
consider two of the most commonly used measures of relative stability—of
how stable the system is—the gain margin and the phase margin.

Suppose that GP(JUI)H(JLJ) is real and negative for some set of values
u> = LJI, ...,0Jn > 0. Let k = mini Gp(ju)i)H(ju>i). Then we define the gain
margin to be l/|fc| in dB—i.e. —201n10 |fc|dB. If \k\ < 1, the gain margin
will be positive. What information does the gain margin give us about the
stability of our system? Consider Figure 5.14. We have drawn one line
passing through —1 and another line passing through k. We see that l/|fc|
is the amount by which the Nyquist diagram must be multiplied in order
for the diagram to first intersect s = — 1. That is, any gain larger than
or equal to l/|fc| will cause the system to be unstable. This gain—when
measured in decibel—is —201og10 |fc|. It has been found (empirically) that
that a gain margin of 8 dB is usually a sufficient margin without being
excessive.

The gain margin gives one an idea about how much gain can be added to
a system without the system becoming unstable. The phase margin, on the
other hand, gives one an idea about how much phase can be "subtracted"
from the system without causing the system to become unstable. Suppose
that \Gp(ju>)H(juj)\ = 1 for some set of values w = ui,...,un > 0 and
suppose that the phase of the system6 is never less that —360°. Let $
be the value of ZGp(jiVi)H(ju}i) that is most negative. Then the phase
margin, cf>, is equal to +180° + <J>. To understand this idea consider Figure
5.15. We have plotted the unit circle and the Nyquist plot corresponding
to:

Note that only the lower portion of the Nyquist plot comes from positive
frequencies. Thus, it is only the intersections in the lower half-plane that
count for our purposes. The phase margin is the angle <j> shown in the
figure. This angle is the difference between —180° and the angle of the sole
relevant point on the Nyquist plot whose magnitude is one. What does
the phase margin tell one? It says that if one were to introduce a negative

6If the phase of the system can be less than -360°, then the phase margin is defined
slightly differently. The idea remains that same—the phase margin is the "amount" of
phase that must be subtracted from the system in order to cause the system to become
unstable.
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Fig. 5.14 A Graphical Representation of the Gain Margin

phase shift of tj> degrees into the system, one would cause the system to
become unstable. A phase margin in the neighborhood of 45° is usually
sufficient to guarantee the stability and proper operation of the system.

No claim is being made that these two margins fully characterize the
stability of the system. It is quite possible to have a system with infinite
phase and gain margins; this does not mean that the system cannot be
made unstable. It means is that one cannot cause the system to become
unstable by the introduction of either a pure gain or a pure phase shift. It
is also possible to have a system for which the gain margin is negative but
which is still stable. The gain and phase margins have proved to be useful
ways of characterizing the extent to which a system is stable. They do not
completely characterize it.

A Conditionally Stable System—An Example
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Fig. 5.15 A Graphical Representation of the Phase Margin

Consider the system described by the transfer function:

G (s)H(s) - (S + 1XS + 2)Gp[S)H[S>~ s(s + 0.1)(s + 0.2Y

We have already seen how to show that for small values of u> this
function is approximately:

inn
GP(JUJ)H(JCJ) « - ^ - 1350.

For very large values of u the transfer function looks like l/(ju))—
that is the Nyquist plot approaches zero through negative imag-
inary numbers as we see in the (partial) Nyquist plot in Figure
5.16. What is more interesting is that for "intermediate" values
of u the Gp(ju>)H(juj) has positive imaginary part. (For example,
we find that Gp(.5j)H(.5j) « -16 + 5j.) Consider Figure 5.16
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again. When one considers the stability of the system one finds
that as things stand the system is stable—minus one is encircled
once in the positive direction (by the semi-circle at infinity) and
once in the negative direction—there are zero net encirclements.
Such systems are called conditionally stable. If one were to raise or
lower the gain, the system would become unstable. In this example
the gain margin is certainly negative—each of the intersections of
the Nyquist plot with the negative real axis occurs for values of
Gp(jw)H(ju) that are larger than one. Nonetheless the system is
stable.

Fig. 5.16 The Nyquist Plot Near the Origin

It is also possible to examine this system using the methods
of the previous chapter. The denominator of the transfer function
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with a gain, K, added before Gp(s) is:

(s + l)(s + 2)
s(s + 0.1)(s + 0.2)'

We find that we must identify the values of K for which the poly-
nomial:

s{s+0.1){s+0.2)+K(s+l){s+2) = s3+{0.3+K)s2+{0.02+3K)s+2K

has zeros in the right half-plane. We find that the Routh array that
corresponds to this polynomial is:

1 0.02 + 3K
0.3 + K 2K

IK 0

Clearly in order for the sign of the left-hand column to be constant
we find that K > 0. The only additional condition is that of the
third row. As K > 0 we find that this condition is equivalent to:

(0.02 + 3K)(0.3 + K)-2K>0.

This is a quadratic inequality. Solving for the zero of the quadratic,
we find that they are:

# = 0.172,0.188.

As it is clear that for small K and for large K the condition is met,
we find that the system is unstable when K is between 0.172 and
0.188 and is otherwise stable. This information supplements the
information gleaned from the Nyquist plot quite nicely.

5.11 The Bode Plots

We have seen how to determine the gain and phase margins of a system
using a Nyquist diagram. In principle, with a sufficiently precise diagram,
one could measure the margins from the diagram. The Nyquist diagram is
not, however, the easiest way to measure the systems margins. It is easier
to measure the margins using the Bode plots. The Bode plots are just plots
of the magnitude of Gp(ju>)H(ju>) (measured in decibels) against frequency
(plotted on a logarithmic scale) and the phase of Gp(ju>)H(jui) (measured
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in degrees) against frequency (again plotted on a logarithmic scale). The
plots are generally presented one above the other and the frequency scales
are identical. It is very easy to calculate the system's margins using the
Bode plots. To calculate the gain margin one locates all points on the
phase plot for which the phase is -180° + n360°. Then one looks up at the
gains that correspond to those phases. The additive inverse of the largest of
these values is the gain margin. To find the phase margin one looks for all
frequencies at which the gain is OdB. At those frequencies one looks at the
phase. The phase closest to — 180° + n360°—the most problematic phase—
is the one that fixes the phase margin. Also, MATLAB has a command which
allows one to calculate the Bode plots and the margins at one blow-margin.
This command also shows one where the margins occur.

Let us consider a simple example. Suppose that Gp(s) — srs
x
+1\ and

H(s) = 1. Then one would define Gp(s) by:

G = t f ( [ i ] , [ l 1 0])

Transfer Function:
1

s~2 + s

To find the margins, one types:

margin(G)

MATLAB replies to this with Figure 5.17 which has all of the desired infor-
mation on it. Note that the phase margin is 180° + Z.Gp(ju))H(ju)) for the
LJ for which \GP(JLJ)H(JUJ)\ = 1.

5.12 An (Approximate) Connection between Frequency
Specifications and Time Specification

Let us consider the "typical" second order system of Figure 5.18. The phase
margin of the system is determined by the phase of the function Gp(ju{)
for the frequency that satisfies |Gp(jo;i)| = 1. Let us find u>\ now.

We must solve the equation:
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Fig. 5.17 The Bode Plots

Fig. 5.18 A Simple Feedback Circuit

After a little bit of manipulation, we find that this is equivalent to solving:

w* + 4C2w2 - 1 = 0, wv=u/wn.
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This is a quadratic equation in u>%, and the solutions are:

<4 = -2c2 ± x/ic^TT.

As we are only interested in real positive values of <jv this leads us to:

Uv = \j-K2 + \/4C4 + 1,

or

wi = wn-V/-2C2 + ^/4C4 + l.

What is the value of Gp(jwi)? Making use of the fact that wi = cjvu>n and
the fact that w4, + 4£2u^ = 1, we find that:

2

_ i

= lZ(arctan(2C/w1J) - 180°).

We see that the phase margin is:

I 2C \
ifM = arctan(2C/a)t)) = arctan — - I .

\ ^ -2c 2 + v/4C4Tiy

This leads to the approximation, valid for relatively small £:

<PM = arctan(2C/wv)
( 2C ^

= arctan I — - I

w arctan(20

w2Crad

«iooc°.

The transfer function of the system with feedback is:

T(s) = ^
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We have seen (p. 45) that the time constant of the system is approximately
V(WTIC)- ^ o n e assumes that one's system settles "completely" after four
time constants, then one finds that the settling time of this second order
system, Ts, is:

T ~ 4

We have just proved that:

tan(<pM) = — = —-— = .

Combining these results, we find that:

Ts « . * , • (5.1)
tan(^M)wi

Though this relationship between settling time, u>\—also called the gain
crossover frequency, and the phase margin was derived for a specific second
order system, it is sometimes used in a more general context when one
knows two of the numbers TS,<PM, and wi and wants to find the third.
For example, if one is given a value of the phase margin, and one is give
the settling time, then this approximation gives one an idea of the angular
frequency for which the gain of the system must equal one.

Though (5.1) need not hold exactly for generic systems, it is reasonable
that the settling should be inversely proportional to uii and to something
like tan(y>Af)- The frequency w\ is in some sense the system's "bandwidth,"
and the systems speed ought to be inversely proportional to its bandwidth.
Also, as ipM —• 0 we know that a pole (or poles) is approaching the imagi-
nary axis. As the pole(s) get closer, the system's time constant—which is
fixed by the pole closest to the imaginary axis—must get larger, and the
system must get slower. Thus, though (5.1) need not hold precisely for
generic systems, something like it ought to be true—and we use (5.1) as a
first approximation to the exact—but unknown—relationship.

5.13 Some More Examples

An Integrator—An Example
Suppose that Gp(s)H(s) = 1/s. How stable is the system? We

consider the Bode Plots that pertain to the system. We use the
MATLAB margin command to draw the plots and find the margins.
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In Figure 5.19, we see that the gain margin is infinite and the phase
margin is ninety degrees. Is this reasonable? Certainly. GP(JLJ) =
l/(joj) is always ninety degrees from the negative real axis, and it
is never real. Thus the phase margin is ninety degrees and the gain
margin is infinite.

Fig. 5.19 The Bode Plots Pertaining to Gp{s)H(s) = 1/s

An Integrator with a "Parasitic Low-Pass Filter"—An
Example

Next consider a system for which:

One can think of the this as an integrator followed by a (para-
sitic) low-pass filter. Consider the Bode plots that pertain to this
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system—shown in Figure 5.20. We find that the gain margin is
still infinite—and this is as it should be. For the gain margin to be
finite the open-loop transfer functions—in this case Gp(s)—must
be negative for some value of w. However, the phase of Gp(s) only
tends towards —180° asw->oo. As u> —> oo, GP(JUJ) —> 0. The
phase margin of the new system is 87.14°. This too is reasonable.
The phase contribution of a low pass filter is always negative. Thus,
the parasitic filter tends to force the Nyquist plot of the integrator
towards the negative real axis.

Fig. 5.20 The Bode Plots Pertaining to Gp(s)H(s) = (l/s)(l/(0.05s + 1))

A Motor with a "Parasitic Low-Pass Filter"—An Example
In Section 5.11 we saw that if
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then the gain margin of the system is infinite and the phase margin
is 51.8°. Suppose that the motor is preceded by a (parasitic) low-
pass filter whose transfer function is l/(0.05s + 1). What will the
effect of the filter be on the system's margins? In Figure 5.21 we
find that the new gain margin is not infinite—it is 26.4dB. This
too is reasonable. From the form of the final open-loop transfer
function of the system:

1
s(s + l)(0.05s + 1)

we see that as s = ju> increases through the imaginary numbers the
phase of the denominator:

Z(ju){juj + l)(0.05jw + 1) = 90° + tan-1(w) tan-^O-OSw)

must increase from ninety degrees to 270°. Thus, the phase of
the system—which is just minus the phase of the denominator in
this case—passes through —180° once. It is easy to determine the
frequency at which the phase is equal to —180°. At this frequency
we find that:

%{ju{JLj + l)(0.05jw + 1)) = 9(-j0.05u;3 - 1.05w2 + jw)

= -0.05w3 + OJ

= 0.

Thus, we find that u> = 0, -\/20J —V20. As we are interested only in
non-negative u>, we find that the only two numbers that must be
checked are w = 0, \/2~0- As w = 0 makes GV{JOJ)H{JUJ) positive
and only u> = \/20 makes it negative, we find that the value of
interest to us is w = A/20- At this point, we find that:

Gp(jVw)H(jV20) = _LQ
1

5 2Q.

As this is almost exactly —1/20 it must correspond to a gain margin
of approximately 20 log 20 « 26 dB.

Additionally we find that the phase margin of the new system is
49.6°. This decrease in the phase margin is also reasonable—after
all the low-pass filter always contributes negative phase and helps
push the phase closer to —180°.
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Fig. 5.21 The Bode Plots Pertaining to Gp(s)H(s) = l/(s(s + 1)) • l/(0.05s + 1)

5.14 Exercises

(1) Using the principle of the argument, determine the number of poles
and zeros of the following functions in the region {z \z\ < 1}. (Con-
sider using MATLAB to help plot the functions.)

(a) f(z) = jr
(b) /(*) = i^biy
(<=) / ( * ) = (i^4)

(2) Using the Nyquist plot, show that the system of Figure 5.22 is stable
for all K > 0.

(3) Using the Nyquist plot, show that the system of Figure 5.22 is unstable
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Fig. 5.23 A Controller for a Simple Satellite

for all K > 0 when:

(4) Using the Nyquist plot show that the system of Figure 5.22 is stable
for all K > 0 when:

G-<S> - ^ y y
Note that this corresponds to using position feedback on a DC motor.

(5) Show that for K > 0 the system of Figure 5.23 has poles in the right
half-plane for all T > 0. Note that when T = 0 the system has
two poles on the imaginary axis—the system is on the (wrong side of
the) border of stability; any delay causes the system to become wildly
unstable.

(6) (a) Find the Bode plots that correspond to the system of Figure 5.22
when K = 1.

(b) What are the gain and phase margins of the system?
(c) What do these margins indicate about the stability of the system?
(d) Would it be wise to use this system in practice? Explain.

Fig. 5.22 Control of a Simple Satellite Revisited
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Fig. 5.24 A Simple Integrator with Delay

(7) (a) Find the Bode plots that correspond to the system of Figure 5.23
when X = l,T = 0.01.

(b) What are the gain and phase margins of the system?
(c) What do these margins indicate about the stability of the system?
(d) Would it be wise to use this system in practice? Explain.

(8) Consider Figure 5.24.

(a) Using the Nyquist plot and some simple calculations, find the
exact value of T for which the system becomes unstable.

(b) Now use the approximation:

Ta ^ 1 - (T/2)s
~ 1 + (T/2)s

and the Routh-Hurwitz technique to approximate the range of T
for which the system is stable. Is the value one finds reasonable
in light of the solution to the first part of this question?

(9) One of the reasons that the Bode plots are useful is that the informa-
tion required to generate them can often be measured with relative
ease. In order to measure the frequency response of Gp(s)H(s) one
"opens the loop" of one's system as done in Figure 5.6, inputs sine
waves at a variety of frequencies, and measures their amplitude and
phase at i>o{t)- Assuming that the system is low-pass (as most physi-
cal systems are) one need not worry about the semi-circle at infinity.
However, the system may have a pole or poles at zero. Explain how
one can use the Bode plots to determine the number of poles at zero.
Note that:

201og10 (J^\ = -20nlog10M + 201og10(/0.

(10) Consider the example of p. 112 again. Calculate the exact value of T
for which the system becomes unstable by:
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(a) Finding the value of w for which |Gp(jw)| = 1.
(b) Finding the phase of Gp(ju) at that frequency.
(c) Finding the value of T that makes the phase of the system exactly

-180°.

(11) Consider Figure 5.24 once again.

(a) Use the approximation:

e~Ts « 1 - T (

to determine the range of T for which the system is stable.
(b) Use the approximation:

e~T» ~i_Ts + (T2/2)s2

to determine the range of T for which the system is stable.
(c) Use the approximation:

e-T> KI_TS + (T2/2)s2 - (T3/6)s3

to determine the range of T for which the system is stable.
(d) Use the Nyquist plot to examine the results of the previous part.

(Consider particularly the image of the large semi-circle.)

(12) Consider a system for which:

G (s)H(s) - 4°(* + *>

(a) Find the Bode plots that correspond to the system.
(b) What are the gain and phase margins of the system?
(c) What do the margins imply about the stability of the system?





Chapter 6

The Root Locus Diagram

6.1 The Root Locus—An Introduction

In this chapter we consider a third method of analyzing a system with
feedback. We examine systems of the form shown in Figure 6.1. We consider
the blocks Gp(s) and H(s) to be given and the gain, K, to be variable. Our
goal is to plot the position of the roots of the denominator of the transfer
function of the system:

KGp[s)
K ' 1 + KGp(s)H(s)

with K as an implicit parameter. This is the plot of the system's poles
and is called the root locus diagram1 of the system. It gives us an idea
of the effect of gain on the system's stability and performance. Often the
gain, K, is not present in the physical system being analyzed. The virtual
gain block is added to the system in order to understand the effect that
additional gain would have on the system's stability and performance.

The System Gp(s) = 1/s2, H(s) = 1—An Example
As we have seen Gp(s) = 1/s2 is the transfer function of a

simple satellite. We now analyze a system to control the angle
of the satellite. We find that the transfer function of the system
is:

T(.) = K/s2

We need to determine all of the roots of 1 + K/s2. The solutions

^ h i s technique was invented by Walter R. Evans (1920-1999) in 1948 while he was at
Autonetics, a division of North American Aviation (now Rockwell International) [AnoOO].

131
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Fig. 6.1 The Typical System Analyzed by Means of Root Locus Techniques

are s = ±jy/~K. Thus, when K = 0 the roots are both at the
origin, and as K increases the two roots "climb" the imaginary
axis—one "branch" heading towards +joo and the other towards
—joo. We see that this control strategy leads to a system that
is unstable (or marginally stable) at any gain. Figure 6.2 shows
the poles "climbing" the imaginary axis.

Figure 6.2 was drawn by MATLAB'S rlocus command. First one defines
Gp(s)H(s); then one uses the rlocus command. In this example, the plot
was generated by the sequence of commands (with MATLAB'S responses):

Gp = t f ( [ l ] , [ l 0 0])

Transfer function:

1

s"2

rlocus(Gp)

to which MATLAB responds by generating Figure 6.2. The command
rlocus (Gp) generates a plot of the solutions of 1 + KGp(s) for K > 0
with K acting as a (implicit) parameter. Poles of Gp(s)H(s) are marked
with x's and zeros are marked with o's. This is a general convention in root
locus diagrams.
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Fig. 6.2 The Root Locus Diagram for Gp(s) = l/s2,H(s) = 1

6.2 Rules for Plotting the Root Locus

We now develop a set of rules to be used when plotting the root locus
diagram that corresponds to Gp(s)H(s). We assume that Gp(s)H(s) is a
rational function of s with real coefficients—that Gp(s)H(s) = P(s)/Q(s)
where P(s) and Q(s) are polynomials with real coefficients. We are looking
for all of the solutions of the equation:

1 + KGp(s)H(s) = 1 + KP{s)/Q{s) = 0.

This is equivalent to looking for all of the solutions of the equation:

Q(s) + KP(s) = 0.

This is just a polynomial with real coefficients.

6.2.1 The Symmetry of the Root Locus

The first rule is:
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Rule 1 The root locus diagram is symmetric about the real axis.

This follows from the fact that the roots of a polynomial with real coeffi-
cients are always either real—leading to the points on the root locus being
on the real axis—or they appear in complex-conjugate pairs—leading to
branches symmetric with respect to the real axis. Figure 6.2 shows this
symmetry nicely.

6.2.2 Branches on the Real Axis

Next we consider the question "which points on the real axis solve the
equation 1 + KP(s)/Q(s) = 0 for some value of KT We make an assump-
tion about the form of P(s)/Q(s)—we assume that P(s) = s™ + • • • and
Q(s) = B(sm + • • •) where B > 0. All rational functions with real coeffi-
cients can, by a simple division, be reduced to this form save that some will
have B < 0. We exclude such polynomials from our consideration—they
do not occur too frequently in practice. When the need arises, it is simple
to recast the rules we develop. We find that:

Rule 2 Points on the real axis to the left of an odd number of real zeros
and poles of Gp{s)H(s) are on the root locus. Points to the left of an even
number of real zeros and poles of Gp(s)H(s) are not on the root locus.

PROOF: Polynomials of the form R(s) = sn + ais™"1 -\ \-an

can be written as R(s) = II"=0(s - rj). If the polynomial has
real coefficients, then all of the r̂  are either real or they appear
along with their complex conjugates. Let us start by assuming
that P(s) = n?=0(s - (rP)i), Q(s) = BIT£0(s - (rQ)i), that all
of the roots are real, and that B is positive. It is clear that for
large positive values of s both P(s) and Q{s) are positive. As
K > 0, it is clear that for s large and positive 1 + KP(s)/Q(s)
cannot be zero—all the terms are positive. Suppose now that
s is smaller than the largest of the roots of Q(s) or P(s) but
is larger than all of the other roots. Then one of the factors
of either P(s) or Q(s) is negative, but all of the other factors
are positive. For such a value of s we find P(s)/Q(s) is negative
and, consequently, that l+KP(s)/Q(s) must equal zero for some
positive value of K. After crossing another one of the roots of
P(s) or Q{s) there will be two negative factors in P(s)/Q(s)—
thus P(s)/Q(s) > 0 and once again there will be no value of K
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for which 1 + KP{s)/Q{s) = 0. Such values of s do not belong
to the root locus. We see that if all of the roots of P(s) and Q(s)
are real then Rule 2 holds.
One can remove the condition that the roots must all be real.
Consider a factor of the form (s — (rp)i) where {rp)i = c
is complex. Then we know that there exists a j such that
(rp)j = (rp)i = c. Now consider the product of the factors
that correspond to these two roots. We find that when s is real
the product of the two factors is:

(s - c)(s - (c)) S = K (s - c)(s=c) = \s- c\2 > 0.

Thus such factors cannot contribute a minus sign for points s on
the real axis—they are totally irrelevant from our perspective.

Let us now consider some simple examples.

Gp{s) = Yfp,H(s) = 1—An Example
In this example there are two complex poles and no real poles

or zeros. Thus there should not be any points of the root locus
on the real axis. MATLAB generates the root locus diagram of
Figure 6.3 for this example. We see that this bears out rule 2.

Gp{s) = l/(s(s + 1)), H(s) = 1—An Example
In this example there are two poles—s = 0 , -1 . When s is to

the left of one of them—when s is between 0 and — 1—s should
on the root locus. Using MATLAB we find that the root locus is
as shown in Figure 6.4. This too bears out rule 2. (Note that
rule 2 gives no information about complex values of s.)

6.2.3 The Asymptotic Behavior of the Branches

Next we consider the question "what do the roots of Q(s) +KP(s) = 0 look
like for small values of K?" We assume that Gp(s)H(s) is low-pass2—that
deg(<3(s)) > deg(P(s)). As K —> 0 we find that the equation approaches
Q(s) — 0. As if approaches 0, we see that the points on the root locus
approach the roots of Q(s) — 0—the poles of Gp(s)H(s).

2 Note that this definition differs slightly from the definition of low-pass that was
given when we were considering Nyquist plots. There we required that the degree of
the denominator be greater than that of the numerator—here we only require that it be
greater than or equal to the degree of the numerator.
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Fig. 6.3 The Root Locus Diagram for Gp(s) = 1/(1 + s2), H(s) = 1

The trickier question is "what happens as K —> oo?" First, let us
suppose that deg(P(s)) = deg(Q(s)). Then as K —> oo we find that:

Q{s) + KP(s) = 0 «- P(s) + Q(«)/tf = 0 =>• P(a) = 0.

That is we find that the solutions of the equation tend to the roots of
P(s)—the zeros of Gp(s)H(s). In fact, we can now state:

Rule 3 Each "branch" of the root locus diagram starts at a pole
Gp(s)H(s) and ends on a zero of Gp(s)H(s).

What happens when there are more poles of Gp(s)H(s) than there are
zeros? Consider the polynomial whose roots we would like to find:

Q { s ) / K + P { s ) - B { s m + ••• ) / K + ( s n + • • • ) = 0 .

This is an mth order polynomial and, therefore, has m roots. In Section 6.4
we prove that n of the roots indeed converge to the roots of P{s)—as they
should. The other m — n roots all tend to infinity. We note that one can
reasonably say that a function whose denominator is of higher degree than
its numerator has zeros at infinity—after all as \s\ —> oo the function tends
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Fig. 6.4 The Root Locus Diagram for Gp(s) = l/(s(s + l)),fl(s) = 1

to zero. Defining the number of zeros at infinity as the difference between
the degree of the denominator and the numerator, we see that rule 3 always
applies.

We consider how the m — n roots that tend to infinity actually progress
towards infinity as K —> oo. In Section 6.4 we show that the m — n roots
are approximately s = —(K/B)"^r"em-n,i = l,...,m — n. This is fairly
easy to see (though a bit of technical work is required for a proof). We
know that any mih order equation—no matter how small the coefficient of
sm—must have m roots. As the coefficient of sm gets smaller the effect
of the term will be felt only for very large values of \s\. For large values
of \s\, the two important terms in the equation Q{s)/K + P(s) = 0 are
Bsm/K and s". Thus the equation that we need to solve is (for large s)
approximately Bsm/K + sn = 0. The first n solutions of this equation are
zero—they correspond to the n solutions that stay finite—the n solutions
of P(s) = 0. The other m — n solutions are the ones listed above. In fact,
we can prove more (and we do in Section 6.4). We can show that the m — n
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roots tend towards:

/ , , , r,v i i«+2jni Yl finite poles — V] finite zeros .
s = (KB)m-»e "•-« + — — ,i = l , . . . ,m-n .

m — n

These are rays that go off to infinity and start at the point:

Y2 finite poles — J^ finite zeros
m -n

Summing up we find that:

Rule 4 If the degree of the denominator exceeds the degree of the numer-
ator by d, then d branches of the root locus tend to infinity. Asymptotically
these branches are straight lines, their angles are 180 ~j360 l, i = 0,..., d — 1,
and they have as their common ^-intercept:

^ finite poles — J2 finite zeros
m — n

Figures 6.2 and 6.4 Revisited—An Example
Figure 6.2 corresponds to a system with two poles at zero and

no finite zeros. According to rule 2 there should be no branches
of the root locus on the real axis, and this is indeed the case.
According to rule 3 there should be two branches that tend to
infinity—and there are. According to rule 4 the branches should
head off with angles 180°/2 = 90° and 540°/2 = 270°—and they
do. Moreover the asymptotes should have as their common point
of origin (0 - 0)/2 = 0 and this is indeed the case.

In Figure 6.4 we consider a system with no finite zeros and
whose poles are 0 and — 1. According to rule 3 there should be
two branches heading off to zeros at infinity—and this is indeed
so. Also, as before, the angles that they head off at should be
90° and 270°—and they are. Finally the common point of origin
should be ((0 -i—1) — 0)/2 = —1/2, and this is indeed the case.

6.2.4 Departure of Branches from the Real Axis

Rules 2 and 3 have a very nice corollary. Suppose that one has a pole in
position 2n +1 and another pole in position 2n + 2. From rule 2 one knows
that all of the point between the first pole and the second pole must be
part of the root locus. From rule 3 one knows that branches of the root
locus start on poles and must end on zeros—either finite zeros or zeros at
infinity. Combining these two rules, we find that branches must begin on
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each of the two poles and cannot end on either of them. This leaves us with
only one possibility. The region between the two poles must consist of at
least two branches and the root locus must leave the real axis at some point
or points between the two poles. Similarly if there are zeros at positions
2n + 1 and 2n + 2 then at some point (or points) between the two zeros
other branches enter the real axis. We find that:

Rule 5 If one has two poles (or two zeros) at locations In +1 and 2n + 2,
then the root locus leaves (or enters) the real axis at some point (or points)
between the two poles (or zeros).

Rule 5 states that under certain conditions branches of the root locus
leave or enter the real axis. We would like to answer the question "where
do the branches leave the real axis?" Define the functions Sj(K) as the
location of the points on the jtfl branch of the root locus as a function of
K. We know that while the j t h branch remains on the real axis:

for if Sj{K) is real, its derivative must be real as well. To calculate the
derivative of Sj(K), we differentiate the equation:

Q(Sj(K))+KP(Sj(K)) = 0

with respect to K. Differentiating implicitly we find that:

We see that:

dsj(K) = P(SJ(K))

dK Q'(Sj(K)) + KP'(Sj(K))

where the ' denotes differentiation with respect to s. We assume that P(s)
and Q(s) are polynomials with no common factors. This implies that the
two polynomials do not share any zeros. Thus, if we know the s is a point
at which Q(s) = —KP(s), then we know that at that point neither of the
polynomials can have a zero. Thus, for s on the root locus we have:

d rut \ iru w _ P'Q ~ Q'P ° °» theJL°°t locus -KPP' - PQ' _ KP' + Q'-{P(S)/Q(s)) - -2 - ^ ^ - j ^ - .
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We find that for points s on the root locus we can write:

dKSj{K) = K*{p(,)/Q(,)y s=3j{K) • ( 6 J )

We would like to answer the question "when does Sj(K) leave the real axis?"
We need to find a point at which ^Sj(K) is not real. Looking at (6.1) we
find that on the real axis that cannot happen. As all our polynomials have
real coefficients, when evaluated at real values of s the derivative cannot be
complex. How can the root locus leave the real axis?

The root locus can leave the real axis in one way—if the derivative in
(6.1) fails to exist at some point. If the derivative fails to exist at some point
on the root locus diagram, then the root locus must change directions at
that point—otherwise, how did the derivative cease to exist? How can the
derivative cease to exist? If the denominator is equal to zero. We find that:

Rule 6 Branches of the root locus leave or enter the real axis at all points
on the root locus that satisfy the condition:

j-a(P(s)/Q(s)) = ±(Gp(3)H(8))=0.

Gp(s)H(s) = l/(s(s + 1)) Revisited—An Example
We can now determine where the root locus corresponding to

this system leaves the real axis. Let us differentiate Gp(s)H(s)
with respect to s. We find that:

d 1 _ - 2 s - 1
dss{s+l) ~ s2(s + l)2'

This expression equals zero precisely when s = —1/2. That is
where the root locus leaves the real axis.

Gp(s)H(s) = l±i§§ ̂ - A n Example
This system has three poles—0,-1/70, and —1—and one

zero 1/10. From rule 2 we find that branches of the root
locus are located between 0 and —1/70 and between —1/10 and
—1. From rule 5 we find that the root locus must leave the axis at
some point between 0 and —1/70. Let us use rule 6 to determine
where. We find that:

in i ^ TT, w -14000s3 - 9200s2 - 1420s - 10
( G P ( S ) F ( S ) ) = ((l + 70,)( , ( ,+ !)))» •
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Fig. 6.5 The Root Locus Diagram for Gp(s)H(s) = 10(10s + l)/(s(s + l)(70s + 1))

We find (numerically) that the roots of this function—the roots
of the numerator—are -0.4193, -0.2304, and -0.0074. The last
root is between 0 and —1/70. The other two roots, however, are
between —1/10 and —1. We find that the branches that leave at
-0.0074 reenter at -0.2304 and leave again at -0.4193. Making
use of rule 4 we find that there are two asymptotes that leave at
±90° and that have as their common x-intercept:

x _ Percept = 0 - 1 / ™ - ! - ( - 1 / 1 0 ) = _0 .4 5 7 1 .

This root locus diagram is shown in Figure 6.5. We see that
though branches of the root locus must enter or leave the real
axis between two poles or zero that appear in the positions 2n
and In + 1, they may enter or leave the real axis under other
conditions as well.

Consider the behavior of dsj(K)/dK just after the point Sj(K) at which
the branches of the root locus leave the real axis. Assuming that two
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branches of the root locus coalesce when K = K, we find that Sj(K) must
be a double zero of Q(s) + KP(s) = 0. That is, we can write:

Q(s) + KP(s) = Q(s) + KP(s) + (K- K)P(s)

= (s-sj(K)fR(s) + (K-K)P(s),

where R(SJ(K)) ^ 0. We find that Sj(K) must solve:

(Sj(K) - Sj(k)fR(Sj(K)) + (K- K)P(Sj(K)) = 0.

Let ASJ = Sj(K) — Sj(JK). Differentiating implicitly with respect to K and
solving for:

dKSj{K)'

we find that:

J_s ,K) = P(8j(K))
dK lK 2AsjR(sj(K)) + (Asj)*R>(sj(K)) + (K-K)P>(sj(K)y

(6.2)
We have already seen that \dsj(K)/dK\ —» oo as K —» K. Clearly ASJ —> 0
as well. Thus, as K tends towards K it is clear that ASJ/(K — K) —> CXD.

We see that in the denominator in (6.2) the leftmost term will be much
larger than the other two terms for values of K near K. Thus we see that:

d P(SJ(K))

dKj{ >~ 2ASjR(Sj{K))'

For K near K it is clear that Sj(K) will be very nearly real. Thus, the
angle of the derivative will be fixed by the angle of:

1
ASJ'

For two nearby points both ASJ and dsj(K)/dK point in the same direction.
That is there exists /? > 0 such that:

This approximation is increasingly good as K —> K. From this ap-
proximation we find that (SJ(K) — sj(K))2 « 7 e Tt. This happens if
Sj (K) — Sj (K) w y/j. As 7 is real this square root is either pure real or
pure imaginary. It cannot be pure real—we know that the j t h branch has
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left the real axis. Thus, the change in the position of the root locus must
be imaginary. This leads us to:

Rule 7 When two branches of the root locus coalesce and then (enter or)
leave the real axis, they (enter or) leave at right angles to the real axis.

6.2.5 A "Conservation Law"

We have already seen that the poles of our system are the roots of the
equation:

Q{s) + KP(s) = 0.

We also know (see item 1 on p. 75) that for any polynomial of the form
sn + axs71"1 H the coefficient a! is equal to:

ai = - r i rn.

where the r, are the roots of the polynomial. If the degree of Q(s) is greater
than the degree of P(s) by two or more, then the coefficient of sn~1 does
not depend on KP(s) at all. That means that the sum of the roots of the
polynomial is fixed. We see that:

Rule 8 If the degree of Q(s) is greater than the degree of P(s) by two or
more, then the sum of the poles of the system is constant.

Thus, the sum of the poles for any value of K is equal to the sum of the
poles of Gp(s)H(s)—which are the roots of the equation when K = 0. This
rule forces a certain "balance" on the root locus when the degree of the
denominator of Gp(s)H(s) is greater than the degree of the numerator by
two or more.

Gp(s)H(s) = l/(s(s + 1)) Revisited—An Example
We have seen previously that the root locus diagram that cor-

responds to this function has two branches and that the branches
must head off to ±joo as K —> oo. We now use Rule 1 and Rule
8 to show that when they leave the real axis their real part is
always —0.5. We see from rule 1 that from the point at which
the branches leave the real axis the points on the root locus are a
and a. Prom rule 8 we know that the sum of the poles must equal
the sum of the poles when K = 0—which is just 0 + (—1) = — 1.
Thus, we find that a + a = 21Z(a) = - 1 . Thus the real part of
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any point on the root locus that is off the real axis is —0.5. This
is borne out by Figure 6.4.

6.2.6 The Behavior of Branches as They Leave Finite Poles
or Enter Finite Zeros

We have seen how the branches of the root locus behave as they tend to
infinity in those cases where they tend to infinity. We would now like to
know how the branches behave as they tend to finite zeros or poles. We
know that branches depart from finite poles and end on finite zeros. We
would like to know the angle of departure and the angle of entry. Once
again, we start by assuming that P(s) = II"=0(s — (rp)i), Q(s) = BII£L0(s —
(rQ)i)> a nd that B is positive. Suppose that we are near the pole {TQ)I.

Then s = (TQ)I + £ and £ is relatively small. The expression s — {ro)i «
(ro)i - (rQ)i except when i = I. We find that £ must make the expression:

P(a) = n?=0(* - (rp)Q ^ n?=0((rq)j - (rp)Q 1
Q(s) BUT=0(s - (ro)i) ~ BII£o,*jfo)/ ~ fa)0 £

negative. Consider the "meaning" of this statement. Each term of the
form (rg)/ — (rp)i can be thought of as the vector going from (rp)i—which
is either a pole or a root—to (rg)/—which is the point of interest to us.
To say that P(s)/Q(s) must be negative is to say that its angle must be
—180° + n360°. If all that we want is information about angles, then (6.3)
can be rewritten as:

,P{s)=A ^U{{rQ)i-{rp)i) 0
Q(s) \im£o,*j(fa)/-fo)i)q

n m

= XV((r<,), - (rp)0 - £ A(rQ)i-(rQ)i)-ZZ
i=0 i=0,i^I

= -180° + n360°.

This leads us to:

Rule 9 The angle of departure from the pole (?"Q)/, Z£, satisfies:
n m

Z£ = J2 A(rQ)i ~ (rP)i) - Yl Z((r«)' " M<) + 180° - n360°-
*=0 t=0,t^/

Similarly the angle at which the root locus approaches a zero (rp)j, Z£

(6.3)
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satisfies:

n m

^ = - X) z«rph ~ <rpW + £ z ( ( r^) ' - (rQ W - 1 8 0 ° + n 3 6 0°-
i=O,i^J i=0

Gp(s)#(s) = l/(s(s + l)(s2 + 1))—An Example
In this example we find that there are four more finite poles

than finite zeros. According to rule 4 that there are four branches
going off to infinity and that they tend to infinity at angles of
45°, 135°, 225°, and 315°. Thus it is clear that for large K the
system is unstable. From rule 2 we know that there is a branch
connecting the pole at 0 to the pole at — 1. Near K = 0 this
branch cannot cause trouble. Prom rule 3, we know that the
branches leave from each pole Gp(s)H(s). The question remains
what happens at the branches that leave from ±j? Let us use
rule 9 to answer this question. We find that the angle at which
the branch must leave the pole at s = j is:

Z£ = -Z( j - 0) - Z(j - (-1)) - Z(j - (-j)) + 180° - n360°

= -90° - 45° - 90° + 180° - 0 • 360°

= -45°.

According to rule 1—symmetry—the branch departing from — j
must leave at 45°. We see that Figures 6.6 and 6.7 bear out these
statements. (In Figure 6.7 we see that near s = j the branch is
indeed departing at —45°.) We see that the system is unstable
at any gain.

6.2.7 A Group of Poles and Zeros Near the Origin

Making use of the ideas of the last section, we develop one more rule.
Suppose that one has one group of poles near the origin, other groups of
poles farther from the origin, and no poles on the positive real axis. We
show that while one is near the origin one can—to a first approximation—
ignore the poles far from the origin. The idea is quite simple. In order for
a point, s, to be on the root locus, it is necessary that:

z ( S 4 1 = -180° + n360°.
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Fig. 6.6 The Root Locus Diagram for Gp(s)H(s) = l/(s(s + l)(s2 + 1))

Now suppose that r is a root of either P(s) or Q(s) that is far from the
origin and s is relatively small. If r is real and negative, then Z(s — r) ss
Z(—r) = 0° because s is very small compared to r. If r is complex, then
f is also a pole/zero. Thus, we can consider the overall contribution of the
two poles/zeros. This contribution is

Z {(s - r)(s - r)} = Z(s2 - 2sTZ(r) + \r2\) w Z\r\2 = 0°.

We have shown that:

Rule 10 In a system which has no poles on the positive real axis, poles
and zeros far from the origin have little effect on the root locus diagram
near the origin.

In other words, for "moderate gains" (and systems with no poles in the
right half-plane) the poles near the origin fix the behavior of the system.
This is one reason why the effects of poles far from the origin are often
ignored in a first order approximation.

Gp(s)H(s) = 10(10s + l)/(s(s + l)(70s + 1) Revisited—An
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Fig. 6.7 A Zoom of the Root Locus Diagram for Gp(s)H(s) = l/(s(s + l)(s2 4- 1))

Example
We note that in this example one pole—s = — 1—is quite a

lot farther from the origin than the rest of the poles. Let us see
how the system behaves without this pole. Using MATLAB we
find that the root locus diagram of this new system is as shown
in Figure 6.8. Note how similar this plot is to figure 6.5 for points
near the origin.

6.3 Some (Semi-)Practical Examples

6.3.1 The Effect of Zeros in the Right Half-Plane

Suppose one has a transfer function with a zero in the right half-plane.
What implications does this zero have for system stability? Prom Rule 3
we see that for sufficiently large gain a branch of the root locus crosses into
the right half-plane and approaches the right half-plane zero.

We see that a right half-plane pole indicates an unstable component in
the system and indicates that at the very least at low gains the system
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Fig. 6.8 The Root Locus Diagram for Gp(s)H(s) = 10(10s + l)/(s(70s + 1)

will be unstable. A right half-plane zero indicates that the system will be
unstable for sufficiently high gain. In other words, a system with a zero in
the right half-plane has finite gain margin. This is one reason why elements
with zeros in the right half-plane are considered somewhat problematic.
(See Problems 6 and 7 in §4.3 for another way to see that zeros in the right
half-plane can be problematic.)

6.3.2 The Effect of Three Poles at the Origin

Suppose that one has a system all of whose poles are in the left half-plane
except for three poles at the origin. Then one can use rule 10 because the
three poles near the origin constitute a "group" near the origin. We see
that the branches leave the origin just like the poles of the system described
by Gp(s)H(s) = 1/s3.

Let us consider the root locus diagram that corresponds to the the
system described by Gp{s)H(s) = 1/s3. The poles of the system are the



The Root Locus Diagram 149

solutions of:

1 + K \ = 0 & s3 = -K.
s3

The solutions of this equation are three lines emanating from the origin.
One leaves the origin at 60°, one at —60°, and one at 180°. We see that two
of the branches leave the origin and move into the right half-plane. Thus
the system is unstable for any value of K greater than zero.

Now let us consider the system Gp(s)H(s) = (s + l)3 /s3 . Prom rule 10,
we see that for gains near zero this system is not stable—two of the poles
leave the left half-plane. On the other hand, from rule 3 we know that
as K —> oo the poles of the system tend to —1. The root locus diagram
corresponding to Gp(s)H(s) = (s + l )3 /s3 is plotted in Figure 6.9. This
system is an example of a conditionally stable system.

Fig. 6.9 The Root Locus Diagram for Gp(s)H(s) = (s + l ) 3 / s 3
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6.3.3 The Effect of Two Poles at the Origin

In Figure 6.2, we see that a system with precisely two poles at the origin
is on the border of stability. Let us see what effect adding various types
of "compensation" has on the system's stability. Consider the system de-
scribed by:

_ . . „ . . l + a/10 1

Here the additional term reduces the gain at high frequencies. Let us con-
sider the root locus diagram that corresponds to the new system. The order
of the numerator here is two less than the order of the denominator. Thus
the sum of the poles is conserved. There is a branch between the pole at
—1 and the zero at —10. Also there are two branches that go off to ±joo.
Let us assume that the two branches that go to infinity start at the two
poles at the origin. (This can be checked by using rule 6.) Then the two
complex points on the root locus must be complex conjugates. As the sum
of the roots must be constant, since the one real root is moving to the left,
the two complex roots must be moving to the right. Thus, the system will
be unstable at any gain. Figure 6.10 shows the root locus diagram that
corresponds to this system.

On the other hand, consider the system:

It is easy to see that this system is stable at any gain. When there are
two poles at the origin the problem is more complicated then when there
are three poles at the origin. When there are two poles at the origin some
types of compensation lead to unconditionally stable systems, and other
types lead to systems that are unstable.

6.3.4 Variations on Our Theme

All of the rules that we have considered are rules for systems whose poles
are the solutions of an equation of the type 1 + KP(s)/Q(s) where both
P(s) and Q(s) are polynomials with real coefficients, where the degree of
Q(s) is at least as large as the degree of P(s), and where the the coefficients
of the highest powers of s have the same sign. We can use our techniques for
any system of this type. Consider a system for which K is fixed at one, but
for which Gp(s)H(s) — srrl+l\—this might describe a motor whose shaft
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Fig. 6.10 The Root Locus Diagram for Gp(s)H(s) = (1 + s/10)/((l + s)s2)

angle is being controlled and whose time constant r is a "free" parameter.
We would like to understand the effect of the motor's time constant on the
location of the poles of the system.

We must solve the equation:

Rearranging terms, we find that this is equivalent to:

l + r ^ — = 0 .
s + 1

This is now in the correct form for our rules—with r assuming the role of
the gain, K—except that the degree of the numerator is greater than the
degree of the denominator (i.e. the system is not low-pass). Considering
our rules, we find that the only rules that depended in an unobvious way
on the relation of the degree of numerator and the denominator are rules
3 and 4. It is easy to see that if one is willing to allow poles at infinity
then rule 3 is unchanged. As we will be able to determine the asymptotic
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behavior of the poles without recourse to rule 4, we will not consider it
further.

Prom rule 2 we find that the real axis to the left of —1 is part of the root
locus diagram. From rule 3 we see that two branches end on the double zero
at the origin. From rule 5, we see that there is one point on the negative
real axis at which the branches leave the axis. This point is found (using
rule 6) by solving:

d s2 2s(s + 1) - s2 s2 + 2s _
dsJTl~ (s + 1)2 ~ (s + 1)2 ~ '

The solutions are s = 0, —2. The root locus has been plotted in Figure
6.11.

Fig. 6.11 The Root Locus Diagram for Gp(s)H(s) = s2/(s + 1)

What value of r gives us the fastest system for which there are no
oscillations? We see that the fastest system without oscillation is the system
with both of its poles at —2. At s = —2, we find that we must solve
1 + T 2 2 / ( - 2 + 1 ) = 0 for r. We find that T = .1/4 gives the "optimal" system.
In practice r is not generally something we can choose—nonetheless we see
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that the optimal value for r is neither zero nor infinity.

6.3.5 The Effect of a Delay on the Root Locus Plot

Let us consider the system defined by Gp(s)H(s) — e~T3/s. When T = 0,
we know that the system is stable for any gain. Let us consider the root
locus diagram when T > 0. We make use of the approximation:

-Ts „ 1 ~ (T/2)8

~ 1 + (T/2)s

in order to find a transfer function that is a rational function of s. We must
analyze the system described by:

G (s)H(s) - ldZ@li

We find that the denominator of Gp(s)/(1 + Gp(s)H(s)) is:

, , l - ( r / 2 ) a l
+ l + (T/2)sS-

Rearranging terms, we find that we must find the solutions of:

Thus our "Gp(s)H{s)" is:

s (s- l )
2(s + l)'

We are in the same position we were in in the last example. Here we find
that there are branches of the root locus between 1 and 0 and between
—1 and —oo. Because there is a pole at infinity, we know that the root
locus must leave the real axis at some point to the left of —1. Because the
branches must end on the two finite zeros, we know that the branches that
leave the real axis must reenter it between 0 and 1. To find these points we
must solve the equation:

d s(s - 1) _ (2s - l)(s + 1) - s{s - 1) _ s2 + 2s-l
ds s + 1 ~ (s + 1)2 (s + 1)2 ~ '

The solutions of this equation are —1 ± \/2 = —2.41,0.41. We see that for
small values of T our system is very nicely behaved. As T is increased the
root locus shows the onset of sinusoidal solutions and, finally, for sufficiently
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high T the system is unstable. The root locus diagram is shown in Figure
6.12.

Fig. 6.12 The Root Locus Diagram for Gp(s)H(s) = s(s - l)/(s + 1)

There is no reason to expect the preceding analysis to be correct for
relatively large values of Ts. Our approximation of e~Ts is only effective
for small values of Ts. At what point will our system really first become
unstable? Let us consider the Nyquist plot corresponding to our system—
see Figure 6.13 for the Nyquist plot and Figure 6.14 for a blowup of Nyquist
plot near the region near s = 0. The Nyquist plot crosses the negative
real axis for the first time—and gives us the largest negative value—when
e-Tju = _90o A t t h a t p o i n t ) w e find t h a t Gp(s)H(s) = -1/w. The

smallest value of u for which this crossing leads to instability is UJ = 1. The
we find that the smallest value of T for instability is TT/2.

Using our approximations to find the smallest value of T that causes
instability, we find that we must find the smallest value of T for which
1 4- (T/2)(s(s — l)/(s + 1)) has zeros in the right half-plane. Rearranging
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Fig. 6.13 The Nyquist Plot of Gp(s)H(s) = e~Ts/syT = TT/2

terms we find that we must determine the values of T for which:

2(8 + 1) + T(s2 - s) = Ts2 + (2-T)s + 2

has zeros in the right half-plane. It is clear that this occurs when T > 2. We
see that our approximation mistakenly predicts a stable system for values
of T between n/2 and 2. Our approximation gives us a feel for the effect of
T on the location of the roots for small value of Ts. It does not work for
large values of Ts.

In fact, there is another related problem—there are actually other solu-
tions of 1 + Gp(s)H(s) = 0. If we take as our domain:

fi = {s||s-a| <R,Tl(s) <-a}

we find that we must consider the how Gp(s)H(s) maps the line s = —a+jcj
and our (more or less) usual semi-circle. On the line, we find that:

pa-ju , . ^ . v l p-jw

Gp(s)H(s) = -?-—u:g1ea—,
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Fig. 6.14 A Blowup of the Nyquist Plot of Gp(s)H(s) = e~Ts/s, T = TT/2

and on the semi-circle Gp(s)H(s) « 0. For large value of u, Gp(s)H(s)
maps the boundary of our new region into (approximately) ea times the
map of the boundary of our standard region. In Figure 6.14, we see that
this figure spirals in to the origin for large values of w. We see that in
the new region this spiral gets larger—and will encircle — l a number of
times. This means that there will be a number of roots with relatively large
negative real part. These roots may well be complex—there is no reason
to expect that our system will not have oscillations in its output even for
relatively small T. The root locus diagram tells us (approximately) how
the pole nearest the origin behaves.

6.3.6 The Phase-lock Loop

We now turn our attention to the phase-lock loop (PLL)—a device that
finds the phase and frequency of an input sinusoid and outputs a sinusoid
of the same frequency whose phase differs from the phase of the input
by a constant. If the input to a PLL is asin(wt + Acot + <pi), then the
output will be cos(wt + Auit + ^2)—a scaled and phase-shifted version of
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the input. PLLs are useful because if they are fed a signal with a sinusoid
and other terms they tend to "find" the sinusoid and lock onto its phase
and frequency. In Figure 6.15 we show the block diagram of a PLL.

Fig. 6.15 The Block Diagram of a Phase-Lock Loop

The components of the phase-lock loop are a multiplier, a low-pass
filter (LPF), and a voltage controlled oscillator (VCO). We assume that
our input is of the form a sin(wi 4- Auit + <p). The transfer function of the
LPF is assumed to be l/(rs + 1), and the output of the VCO is cos(wi +

Consider the relationship between the inputs to the multiplier and its
output. The output of the multiplier—the input to the LPF—is:

asin(ut + Awt + <p)cos(ut + /3 / VWo-m(£)d£)
Jo

= | (sin(Awi + v-(3j Vvco_in(0d£)+

sm{2ut + Aut + v + /3 I Vvco-in(Z) dm .

If Aw is not too big, it is reasonable to hope that the difference in the
first term of the equation above is small. Also, if one picks a reasonable
low-pass filter, it is reasonable to ignore the effect of the the second term
altogether—it is a high frequency term and is removed by the LPF. Making
use of the the fact that for small \x\ we know that sin(x) « x, we see that
the output of the multiplier is can be taken to be:

OUtput S3 | (Awt + <P-P I Vvco-in{€) d{\ .

This is a/2 times the difference in the phases of the input and the output.
If we use this approximation and we consider the phases of the input and
the output relative to ut rather than the input and the output themselves,
we find that we can model our system by the block diagram of Figure 6.16.
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(Note that the VCO—when we consider only phases relative to ujt—acts
by integrating its input and multiplying the result by /3.)

Fig. 6.16 The Phase-Lock Loop—with Respect to Phase

We see that we can now apply what we know about control theory to
the PLL. First, we note that:

We can consider the term a/3/2 to be our K—our gain. We find that the
system has two poles—one at 0 and one at — 1/r. Thus, the root locus
diagram has the same form as Figure 6.4. We see that the system is stable
for all "gains". For low gains—while a/3/2 is small—the system has two real
poles. Thus the phase of the output tends to converge to the phase of the
input without oscillations. As the gain gets larger the two roots coalesce.
At this point the system is as fast as it can get without oscillations in the
output. As the gain passes this point the system gets no faster, but the
phase of the output approaches the phase of the input in an oscillatory
fashion.

As Gp(s)H(s) has one pole at zero, we saw in §3.5 that if the input is
a step function—if the phase of the input and the VCO initially differ by
a constant—then the output tracks the input perfectly. This shows that a
PLL tracks phase differences perfectly. If, however, the input is a ramp—if
there is a difference in frequency as well—then the output will track the
frequency, but there will be a fixed phase difference between the two signals.
The larger the system gain, the smaller this difference in phase will be. For
this reason, one often finds that the gain in the PLL is sufficiently large to
cause the phase of the output to tend towards the phase of the input in an
oscillatory fashion. Such a gain causes the input and output phase to be
more nearly equal in the steady-state.
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6.3.7 Sounding a Cautionary Note—Pole-Zero
Cancellation

Consider the system of Figure 6.17. Here we are trying to control the
angle of a "simple satellite" by feeding back s@(s)—in other words by
feeding back the angular velocity. It does not seem too reasonable that
this should work—or even be stable. Let us analyze our system using root
locus techniques. We find that Gp{s)H(s) = 1/s. The root locus of this
system is given in Figure 6.18. We see that this system is stable at any
gain! Moreover because Gp(s)H(s) has one pole at the origin, this system
should track its input perfectly in the steady-state too. This seems to be
an ideal system, but it is too good to be true.

Fig. 6.17 An Example of Pole-Zero Cancellation

What is wrong with this picture? Let us consider the ideas that underlie
the root locus technique. We assume that all of the poles of the transfer
function:

KGp(s)
W 1 + KGp(s)H(s)

come from the roots of the denominator. We have left out a possibility—
perhaps some of the poles come from the poles of the numerator. Generally
speaking this is not a problem. A pole in the numerator will be effectively
canceled by a pole in the denominator. At any point at which the numerator
tends to blow up, the denominator—which also contains Gp(s) will blow
up. However, if a pole of Gp(s) is canceled by a zero of H(s), then the
numerator will blow up at a place where the denominator does not blow
up. That is, there will be poles of the system at points other than the zeros
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Fig. 6.18 The Root Locus Plot Corresponding to a System for which Gp(s)H(s) = 1/2

of the denominator of T(s).
In our example, we see that:

= KGp{s) = K/s* = K
K ' 1 + KGp(s)H(s) 1 + K/s s{s + K)'

We see that our system has one pole at s = — K—and this is the pole that
the root locus diagram shows—and one pole at s = 0 which is not shown in
the root locus diagram. The pole at zero means that this system has one
pole in the right half-plane and is unstable at any gain.

This example shows how when using techniques that only consider the
roots of the denominator of the system's transfer function one must be
careful that the zeros of H(s) not cancel poles of Gp(s). One must be
careful of pole-zero cancellation in all of the methods that we have studied
for evaluating the stability of a system. Luckily many systems have unity
gain feedback and cannot have pole-zero cancellation. Even those systems
that do not have unity gain feedback are not often problematic.
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6.4 More on the Behavior of the Roots of
Q(s)/K + P(s) = 0

We now continue the discussion of §6.2.3. We would like to prove that n of
the roots of the equation:

Q(s)/K + P(s) = 0

tend to the roots of P(s) and that the remaining roots tend to infinity. To
do this, we make use of Rouche's theorem[CB90] (which is a corollary of
the principle of the argument). Rouche's theorem states that if one has
two analytic functions, f(s) and g(s), and if |/(s)| > \g(s)\ on some simple
closed contour, then the number of zeros of f(s) + g(s) inside the contour
is equal to the number of zeros of f(s) inside the contour.

We now show that our polynomial has n roots inside a fixed circle and
has m — n roots in the region:

(1 - e)(K/B)^ < \s\ < (1 + e)(K/B)^.

We start by picking /(s) = sn and our contour to be \s\ = C where C
is a large, fixed, number. For large enough C it is clear that |sn | is bigger
than the absolute value of the remaining terms in P(s). Moreover, for all K
larger than some number it is clear that sn is larger than \Q(s)/K\ on this
contour. In fact, it is clear that for a sufficiently large C we will find that
\sn\ will be larger than all the remaining terms in the polynomial. Thus,
the number of zeros of the polynomial that are located in the disk \s\ < C
is the same as the number of zeros of sn in that region. That is, there are
n zeros of the polynomial inside \s\ < C.

Next, we consider the same function, /(s), but on the contour |s| =
(1 — e)(K/B)">^r;;. Clearly here \sn\ will be much larger than the remaining
terms in P(s)—it always includes at least a factor of (l—e)(K/B)™-n more
than they do. In fact :

sn\ = (l-e)n(K/B)^.

What about the terms corresponding to Q(s)/K? Let us consider the
largest term there—Bsm/K. We find that:

B\sm\/K = (1 - e)m(K/B)^{B/K) = (1 - e)m(K/B)^ < \s\n

because (1 — e) < 1 and m > n. Clearly all of the rest of the terms will
add only a relatively insignificant amount. We see that our function, f(s),
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is in fact larger than all the other terms on the circle. Thus there are
only n zeros inside this new larger circle. Thus, there are no zeros of our
polynomial in the region:

C < \s\ < (l-e)(K/B)^.

Now we let f(s) = Bsm/K and we consider the contour |s| = (1 +
e)(K/B)^. We find that:

B\sm\/K = (l+e)m(K/B)^(B/K) = (1 + e)m(K/B)^.

Furthermore, we find that:

| s"| = (l + e)n(K/B)^ < B\sm\/K.

Clearly all of the rest of the terms become insignificant as K —» oo. We find
that for large K the number of zeros of the mth order polynomial that are
inside the circle of radius (1 + e)(K/B)™~n is m. That is there are m — n
zeros located in the region:

Cl = {s|(l - e)(K/B)*±* < \s\ < (1 + e)(K/B)^}.

We have now pinned the zeros down to two regions, but what more
can we say about their positions? Let us consider the zeros located inside
the disk \s\ < C. It is clear that as K —» oo that the contribution of
Q(s)/K -> 0. Thus, the zeros inside this disk must tend to the zeros of the
remaining term—P{s). What about the zeros in the annulus ffi We know
that the zeros are the solutions of the equation Q(s)/K + P(s) = 0. When
s is in Q, we have already seen that Bsm/K and sn are of the same order.
All the rest of the terms are much smaller. Thus, for s to be a solution of
the equation it must be an approximate solution of Bsm/K + sn — 0 and
it must be large. The solutions of this equation are:

(1) n zeros at 0.
(2) The m — n numbers s = (K/B)™-ne m~n ,i = 1, ...,m — n.

The first set of solutions are irrelevant to us—they are not large. The
second set of solutions are the approximate solutions of our equation. We
note that their size is just right—they are in the annulus. We now know—
approximately—what the solutions are.
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Let us define Ai = (K/B) ^ ^ e '"m-n"1, Let us plug s — Ai + Ci into
Q(s)/K + P(s). We find that:

Q(s)/K + P(s) = (B/K) {(At + Ci)
m + h(Ai + c^-1 + •••)

+(Ai + a)n + ai{Ai + Ci)"-1 + . . .

= (B/K) (AT + maA™-1 + ••• + b1A^~1 + •••)

+A? + naAr1 + ••• + aiA?-1 + • • •

= 0

We have already seen that (B/K)Af + A*> = 0. The next set of terms
in the equation—the terms that correspond to (B/K)Am~1 and An~x are
all listed above. In order for these "second order" terms to cancel we find
that:

(B/K) (maA?-1 + hA?-1) + nCiATx + a i ^ " 1 = 0-

As —(B/K)AT — AI, we see that this leads to the condition:

ai — b\
mci + b\ — nci — ai = 0 •£> Ci = .

m — n

We have seen previously (p. 75) that a\ = —^2(rp)i and &i = — ^( rQ)i-
Thus Ci is equal to the sum of the poles of Gp(s)H(s) less the sum of the ze-
ros of Gp(s)H(s) divided by the difference in the degrees of the denominator
and the numerator. Note that all the c, are identical.

To sum up, we have found that "to second order" the m — n large roots
of Q(s)/K + P(s) are:

s = (K/B^e*^1 + E f i n i t e P ° l e S ~ E f i " i t e Zer°S,z = 1, ...,m - n.
m — n

6.5 Exercises

(1) Sketch the root locus diagram that corresponds to the system of Figure
6.19 when:

(a) Gp(s) = ^
(b) Gp(s) - ^ _ -

(c) Gp(s) = 4fci.
Include all relevant calculations (i.e. the points at which the branches
leave the real axis, etc.).
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Fig. 6.19 A Generic Unity-Gain Feedback System

(2) Sketch the root locus diagram that corresponds to the system of Figure
6.19 when:

(a) Gp(s) = 4 f f i + i
(b) Gp(s) = (s+2)(a+3)(s+4)-

(c) Gp(s) = rffa.
Include all relevant calculations (i.e. the points at which the branches
leave the real axis, etc.).

(3) Sketch the root locus diagram that corresponds to:

r ( > s + 0-1

1{) s(s + 0.2)(s + 10)(s + 20)'

Compare this with the root locus diagram that corresponds to:

G 2 ( s ) = 1 ( 7 ^ 2 ) •

Why are the plots so similar?
(4) Use Rule 3 and Rule 10 to design a conditionally stable system. (I.e.

design a system that is unstable at low gains by using Rule 3 but stable
at high gains because of Rule 10.)

(5) Let

r ( \ - s + 5
L'p[S)- s(s + l)(s + 2)

in the system of Figure 6.19. For which values of K will the system
have complex poles?

(6) Let K in Figure 6.19 be replaced by Ke~Ts and let Gp(s) = l/(s(s+2)).
Use the approximation:

_Ts ^ 1 - (T/2)s
~ 1 + (T/2)s
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in order to approximate the root locus diagram of the system. Should
one expect the system to be stable for all values of Kl Explain.

(7) Let

r ( \ - s + 4
G p U J " ( S + 5)(S2 + i)

in the system of Figure 6.19. Using the rules that we have developed,
prove that this system is stable for all K > 0. (Rule 8 may be helpful.)

(8) Sketch the root locus of the system of Figure 6.19 when:

GpiS) = (S2 + 1 ) ( s 2 _ 1 ) -

Make use of the fact that the root locus corresponding to this system
is the "square root" of the root locus corresponding to the system for
which:

G*(S) = (S + 1)1(S-1)-

(9) Consider a system like that of Figure 6.19 where:

w = £rry
(a) Plot the root locus diagram of the system.
(b) What are the zeros of the system?
(c) What is the transfer function of the system?
(d) What does the frequency response of the system look like when K

is large?
(e) What is the net effect of this system?

(10) Consider a system like that of Problem 9 but where both the gain term
and Gp(s) have been moved into the feedback. That is, in the new
system Gp(s) = 1 and:

H(S)=K4±^-s(s + l)

(a) Plot the root locus diagram of the system.
(b) What are the zeros of the system?
(c) What is the transfer function of the system?
(d) What does the frequency response of the system look like when K

is large?
(e) What is the net effect of this system?





Chapter 7

Compensation

7.1 Compensation—An Introduction

We have developed many tools for the analysis of linear feedback systems.
It is time to work on the problem of how best to design such systems. Often,
we are given a plant to control—for example a motor—and we are given
tools with which the output of the plant is to measured—say a tachometer
(a device for measuring a motor's speed). We can then add other parts to
the system in order to meet the requirements imposed on the system. One
requirement is, of course, that the system be stable. Another requirement
might be that the system be over-damped—that there be no overshoot,
that the system's settling time be Is, or that the system's phase margin be
60°. In this chapter we examine a number of the standard techniques for
compensating a system—for adding elements to the system to improve the
system's performance. This part of control theory is something of an art,
and as is typical of engineering problems there is often more than one way
to design a reasonable system.

7.2 The Attenuator

Consider the system of Figure 7.1. The transfer function of our plant is

H(s) = 1, and we are to design Gc(s). This is a reasonable model for a DC
motor with position feedback, for example. Suppose that we are asked to
design a compensator, Gc(s), such that the final system's phase margin is
60°.

167
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Fig. 7.1 A Generic Feedback Loop with Compensator, Gc(s)

Using MATLAB to plot the Bode plots for the system with Gc(s) = 1—
for the uncompensated system—we find that the phase margin of the system
is 45°. (See Figure 7.2.) Looking at the Bode plots it is clear that if we
want to achieve a better phase margin—if we want the phase to be further
from —180° when the gain is 0 dB—then one method is to simply "add"
some attenuation into the system. Reading the Bode plot1, we see that
the system's phase is —120° when ui « 0.55 rad/sec. At that point the
amplitude is about 7dB or 2.25. If we make Gc(s) = 1/2.25, then we find
that the phase margin is indeed about 60°. (See Figure 7.3.)

7.3 Phase-Lag Compensation

Unfortunately, though the addition of an attenuator often improves a sys-
tem's stability, it generally harms system performance in important ways.
As we have seen, the greater the forward gain of a system, Gc(s)Gp(s), at
a particular frequency, the more nearly the system's output will track its
input at that frequency in the steady state. In the preceding example we
needed to lower the gain at a particular frequency, u « 0.55 rad/sec, and
instead we lowered the gain at all frequencies. We now consider a strat-
egy that leaves the gain at low frequencies alone while reducing the gain

1Here it is relatively easy to find the exact values necessary for the design of the
compensator without using the Bode plots. Note that at the point at which Gp(jw) is
60° from -180°:

/-Gp(jw) = Z. , — - = -90° - tan-^u;) = -120°.

We find that u = l / \ /3 = 0.5774. We find that for this value of omega:

|GP07v/3)| = 2.12.

Thus the exact value of the attenuator is Gc(s) = 1/2.12.
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Fig. 7.2 The Bode Plots for Gp(s) = V2/{s{s + l)),H(s) = 1, Gc(s) = 1

both where necessary and at higher frequencies than necessary. This allows
us to improve the system's phase margin without harming the system's
performance at DC.

Consider a compensator Gc(s) of the form:

S/UJO +1

The Bode plots of such a system (when uip = \,UJO = 2) are shown in
Figure 7.4. We see that the gain of this system is always less than one
(OdB), but it approaches one for low frequencies. For large s—at very high
frequencies—Gc(s) ~ UJP/WO < 1. This compensator is generally used to
reduce the gain of a system at high frequencies. It is called a phase-lag
compensator because its phase is always negative.

The phase-lag compensator is a little bit more complicated than a simple
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Fig. 7.3 The Bode Plots for Gp(s) = V2/(s(s + l)),H(s) = 1, Gc(s) = 1/2.25

attenuator and gives somewhat better results generally. The main advan-
tage of a phase-lag compensator is that it does not significantly alter the
low frequency gain of the system. It lowers the gain at high frequencies—
something that though not an unmitigated blessing is sometimes useful.
(Lowering the gain at high frequencies will tend to reduce the system's sen-
sitivity to high frequency inputs. If the only high frequency "input" one
expects is noise, then this reduction is a good thing.)

Designing a phase-lag compensator is relatively simple. One uses the
phase-lag compensator to lower the gain of the system to one at the point,
u>\, at which the phase is —180° + <p + 5° where <p is the desired phase
margin. The main idea is that when s is near infinity the compensator's
gain is u>p/uo. Thus, one makes certain that u>p and u/0 are small enough
that GC(JUJI) « ujp/ujo—one makes sure that u\ is effectively "at infinity"
relative to UJP and wo. The general method is:
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Fig. 7.4 The Bode Plots of a Typical Phase-Lag Compensator

(1) Find wi—the frequency at which Z.Gp{juii) = -180° + <p + 5°—and
calculate \Gp{ju>i)\.

(2) Let u)o = 0.1-wi.
(3) Let ujp/ujo = l / |Gp( jwi) | < 1.
(4) Finally, set:

cv ' s/wp + 1

Gp(s) = TT^fiy—An Example

Once again we would like to design a compensator that will
give us a system whose phase margin is 60°. After carefully
considering Figure 7.2 (and performing a couple of calculations
to add accuracy) we find that W\ = 0.47 and J G p ( ^ i ) | = 2.7.
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Thus, wo = 0.047, and up = 0.047/2.7 = 0.017. We see that:

, s/0.047 + 1 21.35 + 1
c{S'~ s/0.017 + 1 ~ 57.4s+ 1

The Bode plots of the compensated system are given in Figure
7.5. Note that the phase margin is almost exactly 60°.

Fig. 7.5 The Bode Plots for Gp(s) = v/2/(s(s + l)),H(s) = l,Gc(s) - (21.3s +
l)/(57.4s+l)

What differences do the two types of compensation make to the final
system? Consider Figure 7.6 in which the step responses of the two systems
are compared. We find that the response of the system with the attenuator
alone is better (both faster and has less overshoot) than the response of
the system that uses phase-lag compensation. Is that reasonable? Yes it
is. The attenuation of the attenuator is only 2.25, while the attenuation of
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the phase-lag compensator at high frequencies is 2.7. As the attenuation
at high frequencies is larger, it is reasonable that the system's response is
slower. Overshoot is sufficiently complicated that it is hard to say how
reasonable or unreasonable our results are.

Considering what we have just seen, why prefer phase-lag compensa-
tion? Because Gp(s) has one pole at the origin, we know that its steady-
state response to a unit step is perfect—and we see this in both of the
step responses is Figure 7.6. However, since Gp(s) has only one pole at
the origin, the response to a ramp should not be perfect. There should
be some steady-state error. We compare the unit ramp responses of the
two systems in Figure 7.7. We see that the response of the system that
uses phase-lag compensation is in fact closer to a unit ramp, tu(t), than
the response of the system whose compensation is performed by means of
a simple attenuator. We see that the one thing that we can be certain of
is that phase-lag compensation gives better steady-state performance than
compensation using a simple attenuator. As that is really all that phase-lag
compensation is designed to add, it should not come as a big surprise that
(at times) that is all that it does add.

Fig. 7.6 A Comparison of the Unit Step Responses of the Two Systems
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Fig. 7.7 A Comparison of the Unit Ramp Responses of the Two Systems

In the rules for designing a phase-lag compensator, we find that we are
interested in u>i—the frequency at which the phase of Gp(jui) is 5° farther
from —180° than the phase margin seems to need. Why must we add five
degrees? Let us consider our compensator at LJ\. We find that:

>io

ZGciJU!) = Z^J + | = Z(jlO + 1) - Z(J£IA£+1) .

It is clear that this angle is between 0 and Z(jlO + 1) - 90° « -5.7°. For
this reason we add an additional five degrees—the compensator itself may
subtract five degrees from the phase at the frequency of interest.

Considering that the compensator can contribute a relatively substantial
phase, why don't we worry that the attenuation is not as large as the
intended attenuation? Let us perform a quick calculation:

|Gc(M) |= j™i
3/u) + i = V^0T/^100(u;o/wp)2 + 1.
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It is easy to show2 that ^l + e « 1 + e/2. Thus we find that:

\nc M 10(1+ .01/2)

10(Wp/wo) ( l + 2 0 0 ^ / ^ ^ )

_ 1.005 tjp

1 + 200(wo/wp)
2 W°

This number, is wen/ close to up/u0—it is a much closer match than the
angles were. The magnitude of the compensator is almost exactly correct
at u>i, though the phase may be off by almost six degrees.

7.4 Phase-Lead Compensation

Phase-lag compensation is generally used because it gives frequency depen-
dent attenuation. Phase-lead compensation is used because it adds phase
to Gp(s)H(s). It improves the phase margin by "main force."

The transfer function of a phase-lead compensator is:

_ . . S/UJO + 1
Gc(s) = ———, w0 < Up.

S/Up + 1

This is essentially the same as a phase-lag compensator except that here
wo <up. The effect of this change is to make the numerator "start adding"
phase before the denominator "starts subtracting" it. Another consequence
of this difference is that for large 5 we find that:

lim T(s) = ^ > 1.
s—»oo UJO

I.e. at high frequencies the phase-lead compensator acts as an amplifier.
As our goal when a adding a phase-lead compensator is to add phase,

we ought to see where the phase is added. Let us consider the phase of the
compensator as a function of u. We find that:

Z.Gc{ju) = tan-1(a;/w0) - tan~1(w/wp).

Making use of the identity:

tan(a) — tan(6)
tan(a - b) = ^-p—. ~r,v ' 1+ tan(a) tan(6)

2The first two terms in the Taylor series expansion of y/l + x are 1 and x/2. Thus
for small \x\ we find that y/1 +x « 1 -f x/2.
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we find that:

tan(Z(GeO-u,))) = "f"\-"IU\ = ^ ^ ± . (7.1)
1+W2 /(WOWP) LJ0U)p+LJ2

As the phase of the compensator is always between 0° and 90° and as
tan(x) is increasing in this range, to find the value of w for which the phase
of the compensator is maximum it is sufficient to find the maximum of
(7.1). Differentiating the right hand side of the equation with respect to u>
and setting the result to zero, we see that we must find the roots of:

(u)p - UJO)(WOUJV + uj2) - 2LJ2(WP - wo) _

(WOUJP + UJ2)2

A little bit of algebra shows that this is solved by u>2 = u)owp. As we are
only interested in positive values of w, we find that u = -\-^u)oujp. In order
to find the maximum of (7.1), we must find the maximum value that the
function takes at its critical points—the points at which the derivative of
the function is zero—and at the endpoints of the interval. The range of w
is from 0 to infinity. Because the phase tends to zero as u> —> oo, and as the
phase is 0 at UJ = 0, it is clear that the maximum of the function occurs at
the critical point

Umax = y/U0Up. (7.2)

We find that:

maximum phase = tan - 1 < - ( w— — J— ) \ • (7.3)
[ 2 \ y wo yUpJ)

What is the amplification that the phase-lead compensator contributes at
this frequency? We find that:

li+up/up lucVp + wl nj;
y 1 + W0/Wp y U0LJp + L02 \j Wo

We find that both the maximum phase of the compensator and its gain
at the point of maximum phase are functions of a>p/wo alone. For the
record, all of our conclusions hold for phase-lag compensators too-with
max replaced by min, of course.

Gp(s)H(s) = V2/(s(s + 1)) Revisited—An Example
As we saw in Figure 7.2, the phase margin of this system

is 45° and is achieved when w = 1. Let us try to add another
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15° at this point by using a phase-lead compensator. We know
that Umax = -y/uipUJo. Let us try putting the maximum phase at
u) = 1. For this to happen, we find that:

y/UpUJo = 1 =>• W p = 1/WO .

A phase-lead compensator adds gain as well as phase. This
gain will tend to change the point at which the phase margin
is fixed. At uimax the phase-lead compensator contributes a gain
of y/wp/<Mo. Prom Figure 7.2 we see that if one increases the gain,
one tends to push the point at which \GC(JW)GP(JU>)H(JLJ)\ = 1
to the right. As one moves to the right, one finds that the phase
of system gets more negative. Thus, it makes sense to choose
the maximum phase of the phase-lead compensator to be a bit
more than is strictly necessary. Let us try 20°. A bit of ex-
perimenting with (7.3)—or a simple calculation—leads us to the
conclusion that if WP/UJO = (1.5)2 then the maximum phase of
the phase-lead compensator is approximately 22°. We find that
u)p = 1.5, u>o = 1/1.5. Thus, our compensator is:

1.53 + 1
Gc(s) = I/TIT!

The Bode plots of the system with this compensator added are
shown in Figure 7.8. After adding the compensator the phase
margin increased from 45° to 57° and the frequency at which
it is achieved moved from u = 1 rightward (to w = 1.4) as we
expected.

In Figure 7.9 we show the system's unit step response. Com-
paring this result with Figure 7.6, we find that the step response
is faster than the response with either of the other compensation
schemes. This is reasonable; the phase-lead compensator am-
plifies the high-frequency components of the control signal—the
components that allow a system to respond quickly.

In Figure 7.10 we show the response of the compensator to
a unit step input to the system. We see that initially—after the
step—the output is quite large. Intuitively this happens because
the step has some very high frequency components which are
amplified by the phase-lead compensator. It is not hard to prove
that this must happen. The transfer function of a system with
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Fig. 7.8 The Bode Plots of the Phase-Lead Compensated System

unity feedback is:

Gc(s)Gp(s)
1(S) l + Gc(s)Gp(s)-

As the ouput of the compensator is the input to the plant, it
is easy to see that the Laplace transform of the output of the
compensator, Vcomp(s), is given by:

Vcomp(s) = l + Gcls)GP(s)Vin{s)-

Assuming that the plant's transfer function is low-pass—that
lima-nx, Gp(s) = 0—and making use of the initial value theorem,
we find that when the input to the system is a unit step, then
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the output of the compensator satisfies:

= l im
 G ^

vt(s)^oc 1 + Gc(s)Gp(s)
Gc(oo)

l + Gc(oo)Gp(oo)
= Wp

As in our case WP/LJO = 2.25, the initial value of the output must
be 2.25. This large initial output could be a real problem if the
next component cannot handle a relatively large voltage. One
must be careful that the output of the phase-lead compensator
not be too large for the next element in the loop.

Fig. 7.9 The Step Response of the Phase-Lead Compensated System
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Fig. 7.10 The Response of the Phase-Lead Compensator to a Step at the System's
Input

7.5 Lag-lead Compensation

One way to get some of the benefits of both phase-lag and phase-lead com-
pensation is to use both types of compensation at once. There are analytical
methods for designing such compensators—but we will not examine them.
We consider an example to see how one can benefit from using lag-lead
compensation. We once again consider a system for which:

Let us use the same phase-lead compensator that we did in the previous
section:

1.5a;+ 1
Glead{s) = ^ s T I

However, this time we will add a phase-lag compensator to provide an
attenuation of ^/u;0/wp = 1/1.5 at uimax = 1- Prom our general rules for
phase-lag compensators, we see that u>o = 0.1 and that wp = 0.1/1.5 =
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0.067. Thus:

lOw + 1
GlM = ism-

We find that our compensator is now:
lQgj + 1 1.5a;+ 1

c ^ ~ 15w + lw/1.5 + l"

In Figure 7.11 we show the Bode plots of Gp{s)H(s)Gc{s), in Figure 7.12
we show the step response, and in Figure 7.13 we show the compensator's
response to a unit step input. We see that the phase margin has improved
quite a bit and now appears just where we expected—w = 1. We also
see that response of the system with the lag-lead compensator is not quite
as fast as the system with lead compensation—but that is reasonable as
high frequencies are not amplified as much by the compensator. Finally,
we see that the compensator's response to the step input is not quite as
large as it was previously. The lag-lead compensator is somewhat more
complicated than the previous compensators, but it is also a somewhat
better compensator.

7.6 The PID Controller

The PID (proportional-integral-derivative) controller3 is a close relative of
the lag-lead compensator, and is one of the most commonly used compen-
sators. Its transfer function is:

Gc{s)=KDs + KP + ^-.
s

Looking at the controller's transfer function, we see that the PID con-
troller is composed of three basic elements. The first is a differentiator,
the second is a pure gain, and the third element is an integrator. The
output of the gain section is proportional to its input; this explains how
the PID controller got its name. We note that a proportional-integral (or
PI) controller—a PID controller with KQ = 0—is just a phase-lag compen-
sator whose pole is located at zero and a proportional-derivative (or PD)
controller—a PID controller with Kj = 0—is just a phase-lead compen-
sator whose pole is located "at infinity." It is fairly simple to design a PID
controller for a given plant, Gp(s).

3The the three-term controller (now generally referred to as the PID controller) was
introduced in 1922 by Nichlas Minorsky for use in the steering of ships[Lew92],
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Fig. 7.11 The Bode Plots of Gp(s)H(s)Glag(s)GUad(s)

How do each of the components of the PID controller influence the
behavior of the closed-loop system? The integral component contributes an
additional pole at zero—this increases the order of the system by one and
increases the gain at very low frequencies. The proportional component
gives a frequency independent gain—it is an ideal amplifier. Finally the
derivative component contributes a large gain at high frequencies. This
generally speeds up the system.

As we have already seen, any of these three components can force a
system into instability. In particular, if one already has one pole at zero,
one may well drive one's system into instability by adding an integrator.
Similarly adding a large gain to a system can drive the system into insta-
bility. Therefore, after adding a PID controller, it is particularly important
to check that the system is stable.

Let us consider an analytic technique for designing a PID controller.
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Fig. 7.12 The Response of the Lag-Lead Compensated System to a Unit Step

Suppose that one would like to force the phase margin of one's system to
be ip degrees at frequency wi. Let Gpio{s) be the transfer function of the
PID controller. Then one would like to find values of Kp, Kj, andJCo such
that:

Gp/D(M)Gp(M)tf (M) = 1 Z ( ^ " 18°O)-

This means that:

\GPW(M)\ = l/|Gp(M)#CM)l
6 = ZGpioiJU!) = <p- 180° - ZGp(jwi)i/(jwi)

We find that:

Gpioijui) = Kp + j(KDui - KJ/UJI)

= \Gpw(ju\)\(cosG + j sine)

= T7TT-—\TJT-—\T(cos0 + 3 s i n 0 )
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Fig. 7.13 The Response of the Lag-Lead Compensator to a Step at the System's Input

Prom this we see that:

Kp = |Gp(M)ff(M)| (?'4)

TS rs i s i n @ / - r\

KDLJ\ - Ki/Wi = 777-77 TTjrn rr. (7.5)

Here we have a set of design equations for a PID controller.

Let us design a controller for a system for which

Suppose that we want a system with a phase margin of 60° at u>\ = 1. We
find that:

\GPID(j-1)| = 1

G = 60° - 180° - (-135°) = 15°
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This leads us to the equations:

KP = cos(15°)

KD-Ki = sin(15°)

Assuming that we do not want to add an integrator to the system (as it
already has a pole at the origin), we find that Kp — 0.9659 and Kr> =
0.2588. We show the bode plots of the compensated system in Figure
7.14 and the plot of the unit step response in Figure 7.15. We see that
the phase margin is indeed 60° at wi = 1, and we see that the unit step
response is about as good as the response with a phase lead or a lag-lead
compensator. This is reasonable as all three of the systems amplify the high-
frequencies and it is precisely the high-frequencies that allow the system to
react quickly.

Fig. 7.14 The Bode Plots of Gp(s)H(s)GPID(s)
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Fig. 7.15 The Response of the PID Compensated System to a Unit Step

If we take the phase margin, (p, as a given, but consider the constants w\,
and Kp, Kj, and Kp as parameters, we find that wi is a free parameter, Kp
is determined by the value of u>i and <p, and the combination Kr)UJi—Ki/uj\
is fixed by the values of o>i and <p. How do we go about fixing u)\ and the
relation between KJJ and Kp.

Often we fix OJ\ by making use of (5.1) which relates the system's settling
time, the phase margin, and u>\. Equation (5.1) states :

T rj 8

Thus, if we know the settling time and the phase margin we can also choose
LJI in a sensible fashion. Though (5.1) really only applies to second order
systems in standard form, as we have seen (p. 122) it is not unreasonable
to use it as a rule of thumb for more general systems.

The choice of Kj and Kp is made on other grounds. As we saw in
the previous example, sometimes Ki is set to zero because an additional
integrator would be likely to harm the system. One might set Kp to zero
if one did not want to add too much gain at high frequencies.



Compensation 187

Let us try to make use of what we know to design a PID controller that
will give us a phase margin of 60° and a settling time of Is. To achieve the
desired settling time we find that:

1 = , ,Rfw, <^LJ1= 4.6188.
tan(60°)wi

We find that Gp{jui)H(jwx) = 0.0648Z - 167.8°. Thus, 6 = 47.8°. We
find that:

KP = 1|3.4

KD = 2.5

The Bode plots corresponding to this system are shown in Figure 7.16 and
the unit step response is given in Figure 7.17. We see that the phase margin
is as desired and that the system is substantially faster than the system we
designed previously though it does not actually settle in one second.

Suppose that Gp(s)H(s) = -^j. In this case though the phase margin
is very big—it is 135°—the system will not properly track a step input.
Suppose that we want the system with a 60° phase margin, a settling time
of Ts = 1.5s, and we want the system to track a step input. We must add a
pole at zero in order for our system to track a step input—if we are to use a
PID controller, then Ki ^ 0. The larger Ki is the more nearly our system
will track a ramp input. Additionally, in order to speed up the system it is
reasonable to choose KB ^ 0.

We find that:

Wl = tan(60°)1.5=3-°8

9 = 60° - 180° - (-72.0°) = -48.0°
|GJ,(w1)fT(wi)|=0.44.

With these numbers, we see that:

cos(-48°)
Kp = 0.44 = L 5 3

3.08KD - ^ /3 .08 = S i n^4
4

8 O ) = -1.70.

If we choose Kj = 6, then we find that KD = 0.08. That is, our compen-
sator is GPID(S) = 1.53 + 0.08s + 6.0/s. We show the Bode plots of the
compensated system and the unit step response in Figures 7.18 and 7.19
respectively. Note that once again the system is not as fast as we hoped
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Fig. 7.16 The Bode Plots of Gp(s)H(s)GPID(s)

for. It is important to remember that for systems other than the system
for which it was derived (5.1) is only a rule of thumb.

7.7 An Extended Example

Let us consider the system of Figure 7.1 but with v/2/(s(s + 1)) replaced
by:

r ( \- s + 30

The Bode plots for this system with Gc(s) = 1 are given in Figure 7.20.
Suppose that we would like to improve the phase margin to 60°—and we

do not care what the crossover frequency is. Then we have several options.
Let us start by designing an attenuator and a phase-lag compensator to
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Fig. 7.17 The Response of the PID Compensated System to a Unit Step

achieve this phase margin.

7.7.1 The Attenuator

In order to use a pure attenuation, we must find the point on the Bode
plots at which the phase of our plant is —120°. We must then force the
gain at that point to be exactly one. A careful examination of the Bode
plots shows that a t u « 0.5 the phase is —120° and the magnitude is 7.5 dB.
Let Gc(s) — -7.5 db = 1/2.4. The Bode plots of the compensated system
are given in Figure 7.21.

7.7.2 The Phase-Lag Compensator

Following our technique for designing phase-lag compensators, we must find
the frequency at which ZGp(jwi) = -115°. (We must not forget about the
5° security margin that this technique requires.) A careful examination of
Figure 7.20 shows that u>i = 0.42; at this point \Gp{jw±)\ = 9.2 dB = 2.9.

As ui = 0.42, we find that wo = 0.1 • wx = 0.042. As the "gain at
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Fig. 7.18 The Bode Plots of Gp(s)H(s)GPID(s)

infinity", Gc(oo) = wp/u)0, must make the gain at w\ (which is "at infinity"
for our purposes) equal to one in magnitude, we find that:

^ = ^- & wp = wo/2.9 = 0.0145.

Thus our phase-lag compensator is:

S/UJO + 1 _ 23.8s + 1
C^S' ~ S/UJP + 1 ~ 69.0s + 1'

The Bode plots that correspond to the system with the compensator added
are given in Figure 7.22

We now add a constraint—we would like to make our system some-
what faster, so we require that u>i be equal to 2 rad/sec. To achieve this
goal, we design a phase-lead compensator. After designing the phase-lead
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Fig. 7.19 The Response of the PID Compensated System to a Unit Step

compensator, we will design a lag-lead compensator to perform the same
task.

7.7.3 The Phase-Lead Compensator

From Figure 7.20, we find that at u> = 2, we have:

\Gp(2j)\ = -9.65 dB = 1/3.04, ZGp(2j) = -191°.

We find that we must add 71° to the system while at the same time in-
creasing the gain by 3.04. In order to choose the ratio of UJP to uo we make
use of Figure 7.23—in which the value of the maximum phase and of the
gain at the point of maximum phase are plotted as functions of u)p/uio- A
careful examination of this plot shows that in order to get the 71° that we
need we must let OJP/OJ0 — 36. At this ratio, the gain at our frequency will
be 6. In order to force the point of maximum gain to occur at LJ\ = 2, we
must have:

y/UJpUl = 2<$wo = 4/uip.
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Fig. 7.20 The Bode Plots Corresponding to Gp(s)

As u)p/u)o = 36, we find that:

LJP/UJO = Wp/4 = 36 =» u>p = \/l44 = 12.

Clearly then, UJO = 4/12 = 0.33.
To make this design work, we will also need to add an attenuator so that

the attenuation times 6/3.04 ss 2.0 is reduced to one. Thus the attenuation
of the attenuator must be 0.5. The Bode plots of the system with the
compensator:

are given in Figure 7.24. We compare the step response of the uncompen-
sated system with the step response of the phase-lead compensated system
in Figure 7.25. Note that the phase-lead compensated system is somewhat
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Fig. 7.21 The Bode Plots Corresponding to Gp(s)/2A

faster that the uncompensated system.

7.7.4 The Lag-Lead Compensator

In order to design a lag-lead compensator to give us 71° at w = 2, we design
a phase-lead compensator to add 71° + 5° = 76° at u> = 2, and then we
use the phase-lag compensator to lower the gain at that point to 0 dB = 1.
Considering Figure 7.23, we find that in order to achieve a maximum phase
of 76° we must make up/u0 = 66. Thus, the gain of the compensator at
the point of it maximum phase—which we must choose to be w — 2—is
\/66 = 8.1. Thus the attenuation of the phase-lag filter "at infinity" must
be 3.04/8.1 = 1/2.7.

For the phase-lead compensator, we know that y/u)puio = 2. Thus,
LJO = 4/wp. Additionally, UJP/UJ0 = 66. Thus, uip = v4 • 66 = 16.2. From
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Fig. 7.22 The Bode Plots Corresponding to the System with a Phase-Lag Compensator

this we find that wo = 4/wp = 0.246. Thus the phase-lead compensator is:

4.06s + 1
Glead{s) = 0.062, + 1-

As wi = 2 we find that for the phase-lag compensator, u0 = 0.1 • w\ =
0.2. As the attenuation "at infinity" must be 1/2.7, we find that up =
Wo/2.7 = 0.074. Thus, the phase-lag compensator is:

GlM = ifSrr
The Bode plots that correspond to the lag-lead compensated system are
shown in Figure 7.26 and the step response of the system is shown in Figure
7.27.

Finally let us try to compensate the system using a PID controller. As
our system has already got one pole at the origin, it is probably best to
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Fig. 7.23 Design Curves for a Phase-Lead Compensator

use a PD controller—so that we do not increase the number of poles at the
origin.

7.7.5 The PD Controller

Making use of the notation and the design equation for the PID controller,
we find that:

6 = 60° - 180° - (-191°) = 71°.

With Ki = 0, we find that:

coS(6) 0.326
Kp~\Gp(2j)\- 1/3.04 - ° - " U

1 sin(6) 10.9455 n „
D wi|Gp(2j)| 2 1/3.04 ' •
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Fig. 7.24 The Bode Plots Corresponding to the System with a Phase-Lead Compensator
and an Attenuator

Thus, the PD compensator is:

Gc(s) = 1.437s+ 0.99.

The Bode plots that correspond to the PD compensated system are shown
in Figure 7.28 and the step response of the system is shown in Figure 7.29.

7.8 Exercises

(1) We are interested in controlling the angle of a simple satellite; the
transfer function of a simple satellite is Gp(s) = K/s2. Let Gp(s) =
K/s2 in Figure 7.30. Use the root locus diagram to show that using a
phase-lag compensator, Gc(s), will make the system unstable.
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Fig. 7.25 A Comparison of the Step Responses of the Uncompensated System (Top)
and the Phase-Lead Compensated System (Bottom)

(2) In the system of Figure 7.30 let

r ( ^_ 40 40

U P ^ s3 + 6s2 + l l s + 6 (s + i ) (s + 2)(s + 3)'

(a) Using root locus techniques, show that (provided that Kj is small
enough) one can add integral compensation (Kp = KD = 0) to
this system without driving it into instability.

(b) Now find the largest value of Kj for which the step response of the
system will not be oscillatory. (Use MATLAB to solve for the zeros
of any polynomials whose zeros must be found.)

(c) Calculate the time constant of the system found in the previous
section. (The time constant of a system is the reciprocal of the
of the absolute value of the pole nearest the imaginary axis. One
expects the settling time of a system to be approximately three
times the system's time constant. Why?) Simulate the system, and
see if the result is in reasonable agreement with the time constant
found.
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Fig. 7.26 The Bode Plots of the Lag-Lead Compensated System

(3) Let the plant of Figure 7.30 be a motor whose transfer function is:

Show that using a PD controller you can make the system as fast as
desired while maintaining the accuracy of the system. (I.e. show that
the steady state output of the system to a unit step is always 1.)

(4) Let the plant of Figure 7.30 be a motor whose transfer function is:

(a) Design a simple attenuator to cause the systems phase margin to
be 45°.

(b) Use the step command to plot the step response of the compen-
sated system.
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Fig. 7.27 The Step Response of the Lag-Lead Compensated System

(c) What is the (approximate value of the) system's time constant as
seen from the step response?

(d) What is the exact value of the time constant?

(5) Once again, let the plant of Figure 7.30 be a motor whose transfer
function is:

(a) Use a phase-lag compensator to achieve a phase margin of 45°.
(b) Using MATLAB, find the unit step response of the compensated

system.
(c) Explain the nature of the step response by considering both Gp(s)

and Gc{s).

(6) Compare and contrast the results of the previous two problems. Explain
the differences in the performance by making use of your knowledge of
the systems.
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Fig. 7.28 The Bode Plots of the PD Compensated System

(7) Let the plant of Figure 7.30 be:

(a) Find the phase margin of the system when Gc(s) = 1.
(b) Design a lag-lead compensator that will give the system a phase

margin of 55° at the same location as the phase margin of the
uncompensated system.

(c) Find the gain and phase margins of the system with the lag-lead
compensator.

(8) Repeat problem 7 using a PID controller rather than a lag-lead com-
pensator.

(9) Show that if Gp(s) = l/s in the system of Figure 7.30, then adding a
PI compensator leaves the system stable and leaves one with a system



Compensation 201

Fig. 7.30 A Generic Unity-Gain Feedback System with Compensation

that tracks a ramp input in the steady state.
(10) Let:

Gp{s) = s*{3 + 10)

in the system of Figure 7.30.

(a) Find the gain and phase margins of the system.
(b) Show that a PD compensator leaves the system stable for all

KP,KD>0.

Fig. 7.29 The Step Response of the PD Compensated System
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(c) Find a condition on Kp and K] that guarantees that a PI compen-
sator will make the system testable.



Chapter 8

Some Nonlinear Control Theory

8.1 Introduction

A circuit is linear if it obeys the principal of superposition—if when the
output corresponding to vini is vouti and the output corresponding to Vin2
is vout2 then the output corresponding to avini + bvin2 is auou4i + bvout2-
Systems of the type that we have discussed until now—those that have
transfer functions—obey the principal of superposition (under the standard
condition that the systems' initial conditions are all zero). Many practical
circuits are not composed solely of linear elements; circuits often contain one
or more elements that behave in a nonlinear fashion. A typical nonlinear
circuit element, 77, is a comparator. If x is the input to a comparator, then
the output of the comparator, fCOmp(x)> ls:

{ l z > 0
Ox = 0.

- l x < 0

Let us check that the comparator does not obey the principle of superpo-
sition. If the input to the comparator is x = a > 0, then its output is
fcomp(x) = 1. For the comparator to obey the principle of superposition,
the output when x = a + a = 2a would have to be 1 + 1 = 2. In fact, the
output is 1; the comparator is not a linear element.

When dealing with linear elements, our main concern has been with
stability. We have checked that the output of our system cannot become
unbounded when the input is bounded. When dealing with nonlinear el-
ements, the boundedness of the output is often not our main concern.
Most of the nonlinear elements that we encounter in practice are like the
comparator—their output is inherently bounded. We do not worry that the

203
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system may become wildly unstable; we worry that the system may start
oscillating.

In this chapter, our goal is to determine whether or not a feedback
system that incorporates a nonlinear element, rj (see Figure 8.1), sup-
ports periodic oscillations—in engineering terminology "limit cycles." We
are interested in seeing whether or not the system can itself sustain the
oscillations—therefore we consider systems with no input. We rely on noise
or the initial conditions to start the oscillations. Since we are dealing with
periodic functions, we make use of Fourier Series.

In this chapter we introduce two techniques for analyzing circuits that
contain nonlinear elements—the describing function technique and the
method of Tsypkin. The first method is an approximate method that is
widely applicable; the second method is an exact method that applies only
to a relatively small class of systems.

Fig. 8.1 Block Diagram of a Nonlinear Feedback Circuit

8.2 The Describing Function Technique

8.2.1 The Describing Function Concept

Assume that our feedback system does support limit cycles. Then the input
to the "inverter" will be a periodic function y(t). To simplify our analysis,
we approximate y(t) by a sine wave—we assume that y(t) « -Msm(uit).
If Gp{joj)H{joj) is sufficiently low-pass in nature, then this assumption is
not too unreasonable. The output of the nonlinear element, 77, which may
have some energy at higher frequencies, will be filtered by Gp(ju)H(ju)
into a reasonable facsimile of a pure sine wave. The output of the nonlinear
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element will be f(—y(t)) « /(Msin(wi)). Because we assume that the
linear elements remove the harmonics from the ouptput of the nonlinear
element, it follows that the output of the nonlinear element can be usefully
approximated by the portion of the output located at the fundamental
frequency. It follows that f(Msm(u>t)) « ^4sin(wi) + Bcos(wt) where A
and B are the first Fourier sine and cosine coefficients respectively. That
is:

2 fT

A = — sm(wt)f(Msin(wt))dt
1 Jo
2 fT

B = - / cos(cjt)f(Msin(u)t))dt
1 Jo

where T = ^f.
We define the describing function1 of the nonlinearity as:

The function D(M,u>), the describing function, can be treated as an ampli-
tude dependent gain. The phase angle of the describing function gives the
phase change of the output of the nonlinear device (relative to the phase of
the input) just as the phase angle of the transfer function gives the phase
change of its output.

The Describing Function of the Comparator—An Example
To calculate the describing function of the comparator, we find

the first Fourier coefficients of the function:

g(x) = fcomp(Msm(wt)).

The output of the the comparator is a square wave with period T.
(See Figure 8.2.) We must calculate the integrals:

2 ( fT/2 fT \
A= — [ 1 • sin(wt) dt + / -1 • sin(wt) dt )

r \Jo JT/2 J
2 / rT/2 rT \

B = — / 1 • cos(wt) dt + / - 1 • cos(utf) dt .
T yJo JT/2 J

lrThe describing function technique was first used by the J. Groszkowski in radio
transmitter design before the Second World War and was formalized in 1964 by J.
Kudrewicz [Lew92].
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From the symmetries of the integrands, we see that:

8 fT/i

A = — / 1 • sin(wt) dt
T Jo

B = 0.

As / sin(a;£) dt is — cos(u>t)/w + C, we find that the value of A is:

8 1 _ 8 _ _ 8 _ _ 4
~ Tuj ~ TLJ ~ 2-K ~ ix'

Thus, the describing function of the comparator is A+Jl
B = ^j-

Fig. 8.2 A Plot of Msin(cjt) and signum(M sin(wt)) When M - 2, w = 1

What does this function tell us about the behavior of the com-
parator? First of all, since the function is real, it tells us that there
is no phase shift. Indeed the apparent phase of the sine wave and
the square wave are the same. Additionally, we find that as M goes
up the "amplification" of the comparator goes down. This too is
to be expected; the level of the comparator's output is always the
same. The comparator amplifies small signals and attenuates large
ones.
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8.2.2 Predicting Limit Cycles

One standard technique for predicting limit cycles makes use of the describ-
ing function. One argues that if a limit cycle with angular frequency w and
amplitude M exists, then the total gain the limit cycle sees as it makes
"one full circuit" around the circuit of Figure 8.1 must be precisely 1. The
gain that the linear elements provide is clearly -GP(JUJ)H(JLJ) (where the
minus sign comes from the inverter). What is the gain introduced by the
nonlinear element? It is just D(M,ui). Thus the total gain that the sine
wave sees is —GP(JU>)H(JUJ)D(M,UJ). In order for this product to equal
one, we find that:

In general solutions to this equation are pairs of numbers (Mfe,Wfc)—
frequencies and magnitudes. There may be (and often are) more than one
solution for any given circuit. Each pair specifies the frequency of a solution
and its magnitude. Here we find a fundamentally nonlinear phenomenon—
our possible solutions have fixed magnitudes.

Oscillations in a Circuit Using a Comparator—An Example
Suppose that the nonlinear element in Figure 8.1 is a compara-

tor, that Gp(s) = ^ , and that H(s) = 1. We would like to deter-
mine whether or not the circuit supports limit cycles.

Note that were our nonlinear comparator replaced by a linear
gain, A, then the transfer function of the closed-loop system would
be:

T(s)= G p ( 5 ) = 1 / S 2 = ^ -K ' l + AGp(s) 1 + A/s2 s2 + A'

From the linear theory, we find that the circuit oscillates with angu-
lar frequency w = \f~A. For any given gain, A, the circuit will tend
to oscillate at a specific frequency. The amplitude of the oscillation,
however, is not determined by the gain.

When the comparator is present, we must look for solutions of
the equation:

1 _ TTM

Clearly the solutions are w = v /^f • Equivalently, T = TT^T-V/M-



208 A Mathematical Introduction to Control Theory

We find that there are oscillatory solutions possible at any given
frequency—just as in the linear case. What distinguishes the non-
linear case from the linear case is that in the nonlinear case there
is only one magnitude for each frequency.

Because the circuit that we are analyzing is not too complicated,
we can find the true oscillations of the system. Suppose that the
system starts with j/(0) = 0, y(0) = D > 0. Then for t > 0, and
until some point that we will determine shortly, y(t) > 0. Thus,
the output of the comparator will be —1 until the solution hits zero
again. That is y(t) solves the equation:

/ / signum(-y(s) = -1) dsdr + Dt = y(t). (8.1)
Jo Jo

The term Dt appears to take care of the initial condition y(0) = D.

Integrating (8.1), we find that y(t) = ~t2/2 + Dt. Clearly
this will hit zero when t = ID. At this point, the derivative is
y(2D) = —D. Following the procedure outlined above, we find
that until t = AD, the solution is (t - 2D)2/2 - D(t - 2D). At this
point we start the process again. Since at t = AD the function and
its first derivative are equal to what they were initially, we know
that from this point on the pattern repeats itself every AD seconds.
That is, we have found that the function is periodic with period
T = AD. We graph the output of the circuit in Figure 8.3. Note
how very sinusoidal the function looks. The maximum amplitude
of the solution, M, is D2/2. Thus, the relationship between the
period and the amplitude is T = A\f2\[M. This is the same type
of relationship that our approximate technique gave. In fact, the
constants in the two equations are almost the same—'Ksfn as 5.57
and 4\/2 w 5.66.

8.2.3 The Stability of Limit Cycles

In the previous section, we discussed a condition for the existence of limit
cycles. Mere existence of oscillatory solutions is not all the knowledge
that we need—we need to know if such solutions are stable. We want to
determine whether or not a limit cycle, once it is entered into, is likely to
be self-maintaining. We want to make sure that if one perturbs the limit



Some Nonlinear Control Theory 209

Fig. 8.3 A Comparison of the Output of Our Circuit with a Sine Wave

cycle a little bit that the limit cycle will not simply go away2.
We make use of the describing function to test for stability. Suppose that

some system supports a limit cycle with angular frequency UJ and magnitude
M. That is, the system output can be Msin(wt). We test for stability by
assuming that something changed the magnitude of the oscillation from M
to M + AM. We want to know the total gain the solution "sees" as it
traverses the circuit. Prom our previous discussions it is clear that that
gain is -Gp(jto)H(jw)D{u!, M + AM).

What is a reasonable condition for stability? What condition should
guarantee that if the the magnitude goes up for some reason that it will
go back down to its equilibrium position? The condition is that the total
gain around the loop be less than one if the magnitude of the oscillation
is increased. And what condition guarantees that if something decreases
the magnitude of the oscillation that the oscillation will rise back to it
equilibrium level? Clearly in this case the gain around the loop needs to

2This type of stability seems to be quite different from the type of stability we con-
sidered for linear systems. For linear systems we wanted to know whether the system
could behave "badly" when its inputs were reasonable; for limit cycles we want to know
whether a small perturbation will tend to stop the predicted oscillations. On the other
hand, as we saw in §1.5.3, in an unstable linear system small perturbations can also
change the nature of the system's behavior. Thus the two types of stability are related.
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be greater than one. Putting the conditions for the existence and stability
into a set of formulas, we find that the conditions for a stable limit cycle
are that there exist an M, an u>, and an e > 0 such that:

\Gp(jw)H(jw)\\D{ij,M + A.M)\ > 1 -e < AM < 0
-Gp(ju})H(jw)D{oj, M + AM) = 1 AM = 0
\GP(JLJ)H(JW)\\D\U>,M + AM)| < 1 0 < AM < e.

As Gp(ju})H(ju>) do not depend on the value of M, this is a condition on the
describing function. The condition is that the magnitude of the describing
function be a decreasing function of M in the vicinity of the limit cycle.
Putting this condition another way, if \D(w, M)\ is a differentiable function
of M, then -^j\D(u>, M)\ < 0 at the values of UJ and M that correspond to
the limit cycle.

Stability of Oscillations—An Example
We have shown that when the nonlinear element in Figure 8.1

is a comparator and the linear elements are Gp(s) = -^,H(s) = 1,
then the system supports limit cycles at all possible frequencies.
We would now like to determine the stability of the limit cycles
that we have predicted.

To see that the limit cycles are stable it is enough to look at the
describing function of the comparator. Since it is D{u>, M) = -^
and since for all positive M this function is decreasing, we see that
the limit cycles should indeed be stable.

Following the logic of our "stability proof," what should sta-
bility mean? It should mean that "a long time" after increasing
the amplitude a little one finds that the system's amplitude has
returned to its original amplitude. Thus, our prediction is that a
long time after making this small change to the system's output
the system's output will return to its original amplitude.

This is not what happens in our system! We have already seen
that the frequency of the output is connected to the maximum
of the output. Suppose that at the point at which the output
was at it maximum—the point at which M = D2/2—one made
a small change in the amplitude—one changed it to M + AM =
(D + AD)2/2. Then what happens is that one forever changes the
period to 4(£> + A£>). Admittedly the output will be very similar
to the previous output. However, the output will never actually
return to its previous state.
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Here we see one of the fundamental limitations of this approach
to the stability of limit cycles. Even though this approach implies
that the limit cycles are stable in a very strong sense, we find that
they are only stable in a weaker sense.

The describing function technique for the determination of the existence
of limit-cycles is an approximate technique. It generally works well if one
is careful to use it only when the system under consideration is low-pass.
The rule of thumb is that for best results the degree of the numerator of
Gp(s)H(s) should be at least two less than the degree of the denominator
of Gp(s)H(s). As we will see, if this is not the case the technique need not
work well. The test for the stability is even more ad hoc—and it should not
be trusted too far.

8.2.4 More Examples

8.2.4.1 A Nonlinear Oscillator

We now design an oscillator using a comparator. Suppose that in Figure 8.1
the nonlinear element is a comparator and the linear elements are Gp(s) =
~h si+s+i'> H(s) = 1- The condition for the existence of limit cycles is that:

G,V*) = -1/D(U,M) * l^lU
1+ju = f -

Since the right hand side of this equation is real, the left hand side must
be as well. In order for this to happen, the denominator of the expression
on the right hand side must be a pure imaginary number. This happens
when w = 1. At this point, the left hand side is equal to 1/2, so the right
hand side must be one half as well. We find that M = 2/it. We have found
that there is precisely one limit cycle with angular frequency w = 1 and
amplitude M = 2/ir. As we have already seen that the describing function
is a decreasing function of M, we find that the limit cycle is stable.

Why does this system oscillate? The linear portion of the system has the
transfer function — A sz+a+1 • When the input to this system is a unit step,
its output is —\si2s+i- The inverse Laplace transform of this function
is —\e~t^2 sin(y/3/4£). That is, its output is a damped exponential—it
naturally oscillates. The problem with the linear system is that its output
will decay to zero. The function of the comparator is to "kick" the linear
element every half period and in that way to add some "energy" to the
system.
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We note something else of interest. The natural frequency at which
the system oscillates seems to be \fZJA. « .866 and not one. A rigorous
treatment of the system shows that the frequency of oscillation is in fact to =
\/3/4 and not u> = 1. This lack of accuracy in the results of the describing
function technique is not surprising—the linear part of this system is not
very low-pass. (The degree of the denominator is only one greater than the
degree of the numerator.)

8.2.4.2 A Comparator with a Dead Zone

Consider a comparator with a dead zone—a circuit whose output profile is
shown in Figure 8.4. The output of the circuit is always zero as long as the
absolute value of the input is less than one. Let us consider the case that the
input to the circuit is Vin(t) = Msin(wt) where M > 1—the case one must
consider in order to calculate the interesting part of the describing function
of the nonlinear circuit element. In this case, the output will be a function
with the same period as the sine wave, but the output will equal zero until
the points at which Msin(wi) = 1. A typical example of the output of a
comparator with a dead zone is given in Figure 8.5. The smallest positive
value of t for which M sin(u>t) = 1 is:

_ sin-^l/M)

w

From the symmetry of Figure 8.5, it is clear that:

8 f*" 4
A — —\ sin(wt) dt = — cos(wr)
5=0.

From the definition of r we find that A = £ cos(sin~1(l/M)). As the cosine
term is positive and as we know that sin2 (a;) + cos2 (a;) = 1, it is clear that

cos(x) = ^l -s in 2 (a ; ) . Thus, cos^ in^ l /M)) = yjl - 1/M2. We find
that:

We plot this function if Figure 8.6.
Suppose that we now use this nonlinear element in the circuit of Figure

8.1 with Gp(s)H(s) = — si+
s
s+1- We would like to know whether or not

there are limit cycles, and if there are limit cycles, we would like to know
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Fig. 8.4 The Output Profile of a Comparator with a Dead Zone

if they are stable. When checking for limit cycles, we once again find that
UJ = 1. We also find that M must satisfy the equation ^$-\/l — 1/M2 =
1/2. Though it is simple enough to solve this equation by hand, it is still
simpler to look at Figure 8.6. We see that the describing function equals
1/2 twice. Thus, there are two limit cycles. Are the limit cycles stable?
Since the describing function is increasing at the first intersection, the first
limit cycle is not stable. As the describing function is decreasing at the
second intersection, the second limit cycle it is stable.

8.2.4.3 A Simple Quantizer

Next we consider a simple quantizer—a circuit element whose input-output
relationship is as shown in Figure 8.7. Though this looks like something
where it would be quite unpleasant to calculate the describing function, it
is actually quite easy. If one looks at the output of this quantizer, one finds
that it is precisely the output of our comparator added to the output of the
comparator with a dead zone. It is not difficult to see that the describing
function is just the "sum" of the describing functions of the two items just
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Fig. 8.5 The Output of a Comparator with a Dead Zone when the Input Is a Sine Wave

mentioned. Thus, the describing function of the element is:

We plot this function in Figure 8.8.
Suppose that in the circuit of Figure 8.1 we let the nonlinear element be

this simple quantizer, and we let Gp(s) = %sz7!f+1,H(s) = 1. Once again
we find that the only place at which there might be a limit cycle is UJ = 1.
At this point, Gp(j) = -2 /3 . Thus, we find that 1/D(LJ,M) = 2/3. That
is, we must find all places where D(u, M) = 3/2. Looking at Figure 8.8, we
find that there are three such points. At two of those points, the describing
function is decreasing. Thus, there are two stable limit cycles. The other
limit cycle is not stable.

8.2.5 Graphical Method

As we saw in §8.2.2, the describing function technique predicts the existence
of a limit cycle at those points for which:
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Fig. 8.6 The Describing Function of a Comparator with a Dead Zone

Such a condition lends itself to graphical analysis when D(u>, M) is only a
function of M. Let us try a simple example.

Consider the system of Figure 8.1 where the nonlinear element is a
comparator with a dead zone, Gv(s) = -3a+

2/+10, and H(s) = 1. We graph
the functions:

Gp{ju)H{ju) = -10_
2$+ju w > 0

f - o o Af < 1
—Dohn = \ -*¥—j-± M > i M > °

{ 4 y/l-l/M*

as functions of w and M respectively. The graph is shown in Figure 8.9.
We note that there is an intersection of the two curves. Thus, there is a
limit cycle.

Using the graphical method, one can often see whether or not one can
easily get rid of the limit cycle. In our case, a careful examination of Figure
8.9 (or a simple calculation) shows that if we introduce an attenuation of
more than TT/4, then we will no longer have a limit cycle—the ellipse and
the dashed line will no longer intersect.
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Fig. 8.7 The Input-Output Relationship of the Simple Quantizer

8.3 Tsypkin's Method

When dealing with a comparator-type nonlinearity, there is an exact
method for determining the existence of limit cycles—Tsypkin's method3.
This method, introduced by Tsypkin[Tsy84] and Hamel[Ham49] separately
in the late forties and early fifties, allows one to determine the frequency
of a limit cycle to any desired accuracy. It also allows one to calculate the
form of the limit cycle to any desired accuracy.

This method deals with continuous limit cycles that are non-negative
for half of their period and non-positive in the next half-period. The idea of
the method is as follows. Suppose that in Figure 8.1 the function z(t)—the
output of the entire linear portion of the circuit—is periodic of period T,
is positive in (0,T/2) and negative in (T/2,T). Then the output of the
nonlinear component—a comparator—is a square wave. Assume that the
comparator used is the comparator of Figure 8.2; then the amplitude of
the square wave is 1. The Fourier series representation of the output of the

3Named after Yakov Zalmanovich Tsypkin (1919-1997)—one of its inventors[Sto].
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Fig. 8.8 The Describing Function of the Simple Quantizer

comparator is:

, , 4 ^ sin((2n - l)ut) 2TT
squared) = - 2 J 2n - 1 ' " = ~T'

n=l

The frequency response of the linear part is just —Gp(ju))H(juj). When the
square wave passes through the linear part, each component is affected by
the linear part separately (according to the principle of superposition). In
the steady state, we find that (with K(ju>) = —Gp(jw)H(ju))) the square
wave is transformed into:

_(t) ^ 4 ^ \K(j(2n - 1V)| sin((2n - l)wt + SL{K{j{2n - l)o;))) _ ( g 2 )

n=l

Evaluating this at t = 0 gives us:

4 ^ [ir(j(2n - l)oj)\sin(Z(K(j(2n - l)o;)))
Z(O) = n ^ 2 ^ 1 •

n=l
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Fig. 8.9 The Graphical Method for Checking for the Existence of Limit Cycles

Clearly, this is equal to:

z(0) = - - ^ ^ - j • (8.3)
71=1

Assuming that Gp(s)H(s) is the quotient of two polynomials, as long as
the degree of the denominator is greater than the degree of the numerator:

|GP0'(2n - l)w)H(j(2n - l)u)\ < ° • (8.4)

As the terms in (8.2) and (8.3) are of order 1/n2 and are continuous func-
tions, the sums converge absolutely and uniformly and z(t) is a continuous
function4. As by assumption z(t) is positive in its first half-period and
negative in its second half-period, z(0) = z(T/2) = 0. We find that a nec-
essary condition for limit cycles that are positive through one half-period

4Let:
oo

71 = 0

where the yn(s) are continuous functions. As the sum is assumed to converge absolutely
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and negative in the other half-period is that:

AM 5 - 1 1 Im(^(j(2n -W»^ ~ 1)")) = z{0) = p. (8.5)

This is a condition that is easily checked using a computer and letting n
range from 1 to a "sufficiently large" number. Also note that once a value
of u for which X(u>) = 0 has been found it is easy to plug this value back
into Equation (8.2) in order to find z(t)—the form of the limit cycle. If z{t)
is positive until T/2 and is negative from T/2 to T then there is indeed a
limit cycle with angular frequency w.

Gp{s) = - s / ( s 2 + s + 1), H(s) = 1—An Example
Once we are dealing with a specific problem we need to find the

constant, C, (that appears in (8.4)) and we need to work out what

and uniformly, for any 8 > 0 one can pick a number N such that:

£ |yn(«)|<«/4.
n=N+l

Furthermore, as all of the yn(t) are assumed to be continuous:

N

SN(s) = '£yn(s)
71 = 0

is continuous too. Thus, for any 5/2, one can pick an e > 0 so that if \s — s'\ < e, then
|5n(s) — SN(S')\ < 8/2. Combining these results, we find that for any 8 > 0 there exists
an e > 0 such that if |s — s'\ < e, then:

\y(s) - v(s')\ < £ »„(«) - £ yn(s')
n=0 n=0

< £>»(«)-£>»(«')+ £ W»M- £ *>"(s')
n=0 n=0 n=N+l n=AT+l

oo oo

<8/2+ Y, y^s"> + T, 2/"(s')
n=N+l n=N+l

< 8.

That is, we find that y(s) is continuous.
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a "sufficiently large" number is. It is easy to see that:

w

< u

~ | 1 - ^ 2 |

^ W 2 5 1 ^ r

- IT"? = 777-' w > 5.

We find that5 as long as (2/V + l)w > 5:
_4 ^ /G p ( j (2n- l )o ; ) \ 4 25 ^ 1

1 ^ I (2n - 1) 7 - 7T 24 ^ w(2n - I)2

A 25 f°° 1
~ nw 24 JN {2x - I)2

- 2 5 1
~ 12TTW 27V - 1'

We find that if N = 1000, the value of the tail of the sum cannot
exceed -j^jj^g- If w > 1/2, then this does not exceed ^ - j ^ g «
0.00066. It would seem that TV = 1000 ought to be sufficiently
large.

Using a simple MATLAB program that calculates the first thou-
sand terms of A(w), we find that X(y/3/4 - 0.001) « 0.0018 and
A(\/3/4 + 0.001) w —0.0012. Prom our previous error estimate we
know that this is sufficient to prove that A(y/3/4 — 0.001) > 0 and
A(y/37i + 0.001) < 0. Thus, there is a zero of A(w) in the inter-
val U/3/Z - 0.001, y/3/4 + O.OOll. Using u> = y/3/1 and (8.2) we
find that the form of the limit cycle is as shown in Figure 8.10.
We evaluated the sum using a MATLAB program that calculates
(8.2) at 1001 points using the first hundred odd harmonics of w.
We note that the picture does not look terribly sinusoidal. It is to
be expected (as noted on p. 212) that in this case the describing
function technique will not work very well.

5Recall that:

£ f(i)< r f(x)dx

if f(x) is a decreasing function on [N, 00].
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Fig. 8.10 The Limit Cycle for the System with Gp{s) = -s/(s2 + s + l), H(s) = 1

8.4 The Tsypkin Locus and the Describing Function
Technique

The describing function technique is an approximate method for finding
limit cycles; the Tsypkin locus is an exact method for finding limit cycles.
By using the Tsypkin locus one can determine some of the limits of the
describing function technique6

Prom the definition of A(u>) in (8.5) we see that A(u>) is a weighted
average of a sequence of values of the imaginary part of Gp(jw)H(juj). The
only way that A(w) can equal zero-as it must for a limit cycle to exist-is
for the imaginary part to be positive for some values of w and negative
for others (or for the imaginary part to be identically zero—which does
not generally happen). In order for a limit cycle to exist in a system whose
nonlinear element is a comparator, the describing function analysis requires

6This section is adapted from [EngO2]. Parts of this section are ©2002 IEEE. Those
portions are reprinted, with permission, from "Limitations of the Describing Function
for Limit Cycle Prediction," IEEE Transactions on Automatic Control, Vol. 47, No. 11
(2002).
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that there exist a value u>o such that Gp(ju)o)H(ju>o) < 0—such that the
frequency response is negative at that frequency. It is perfectly possible to
produce systems for which the latter condition is fulfilled but for which the
former condition is not. For such systems the describing function technique
erroneously predicts the existence of a limit cycle.

As an example of a system for which the describing function technique
erroneously predicts a limit cycle consider:

n t \v! \ 1 /V>/3±l\3

Gp{s)H(s) = 1 ( T S ^ T T J •
We find that l/(jw) contributes —90° to the phase of GP(JUJ)H(JLJ) for
all values of u. The second term in the transfer function is just a thrice
repeated phase-lag compensator. It is easy to see (using (7.2) and (7.3))
that the phase-lag compensator achieves its minimum phase at u = 1 and
at this point the phase of the compensator is —30°. Thus, the phase of
Gp{jw)H{juj) will always be between 0° and -180° and it reaches -180°
at only one point—w = 1. At that point the frequency response is negative.
According to the describing function analysis the fact that Gp(j)H(j) is
negative implies the existence of a limit cycle. The Tsypkin locus analysis
guarantees that in this case there will be no limit cycle because the weighted
sum of the imaginary part of Gp(jiv)H(ju>) cannot be zero.

This example is a bit unfair—it is well known that the describing func-
tion technique works well with low-pass systems, and our system is not very
low-pass. However, it is easy to show that there are other, more low-pass
system for which the describing function fail to work properly. As a simple
example consider the system for which:

n I MJI \ l ( 1 O s + 1 V

The linear part of the system has two zeros at infinity—it is sufficiently
low-pass that we expect the describing function technique to work properly.
The Bode plots corresponding to the system are given in Figure 8.11. We
see that the phase hits —180° once and is never less that this. Though the
describing function analysis indicates that there will be limit cycles, from
the exact method we know that there will not be any limit cycles.

Plotting the graphs of GP(JUJ)H(JLJ) and —l/D(M,w) (see figure 8.12),
we find that rather than the two graphs crossing one another's path, the
two graphs have a single point of tangency. In an approximate method such
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as the describing function method, it is questionable whether such inter-
sections are meaningful. By using Tsypkin's method, we have shown that
at least at times such intersections are not meaningful—such intersections
need not imply that the system supports a limit cycle.

Fig. 8.11 The Bode Plots

8.5 Exercises

(1) Suppose that in Figure 8.13 the nonlinearity is a limiter—a non-ideal
amplifier. Consider, for example:

(C x>C
f(x) = < x \x\ < C

{-Cx<-C
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Fig. 8.12 The Intersection of Gp(ju)H(jcj) and -l/D(M,ui)

Fig. 8.13 A Generic Nonlinear Unity-Gain Feedback System

where f(x) is the output of the nonlinear element when its input is x.

(a) Find the describing function of the nonlinear element.
(b) To what function does the describing function tend as C —> 0? Is

this reasonable? Explain.
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(2) Suppose that in Figure 8.13:

Gp{S) = S3 + S2 + 4 s + 1

and the nonlinearity is the limiter of Problem 1 with C = 1/2. Does
the describing function technique predict that the system supports
a limit cycle? If it does, does it predict a stable limit cycle or an
unstable limit cycle?

(3) Suppose that in the system of Figure 8.13 we have:

and the nonlinear element is the limiter of Problem 1.

(a) What is the smallest value of K for which the describing function
technique predicts a limit cycle?

(b) Should one expect the limit cycle predicted in the previous part
to be stable? Explain.

(4) (a) Calculate the describing function of the nonlinear element which
is described by the function:

3.5 x > 3
2.5 2 < x < 3
1.5 l < x < 2

f{x) = I 0 - 1 < x < 1 .
- 1 . 5 - 2 < a ; < - l
-2.5 - 3 < x < -2
- 3 . 5 K - 3

(b) What limit cycles does one expect to see in the output of the
circuit of Figure 8.13 with this nonlinear element and with a linear
element whose transfer function is:

G^ = ̂ 7TIF?

(5) We generally assume that the transfer function of a DC motor is:

This is a reasonably good approximation, but there is actually a small
third-order term in the denominator. A better approximation to the

(8.6)
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transfer function is:

Suppose that the nonlinearity in Figure 8.13 is a comparator and the
plant is a DC motor.

(a) Making use of the inexact transfer function (8.6) does one predict
stable limit cycles?

(b) Using the more exact transfer function (8.7) does one predict sta-
ble limit cycles?

(c) What is the crucial difference between the two approximate trans-
fer functions?

(6) Suppose that in Figure 8.13 the nonlinearity is a comparator and the
transfer function of the linear system is:

_ i_ (£A/3 + A 3

Gp{s)-s*{v3s + l)
Note that:

s/V3 + l

is the transfer function of a phase-lag filter.

(a) Show that the describing function technique predicts a limit cycle
in this system.

(b) Describe the limit cycle. In particular discuss the stability of the
limit cycle.

(c) Plot the function Gp(ju)H(ju) and -1/D(M,UJ). What does the
manner in which they intersect imply about the accuracy of the
predictions in first two parts of this question?

(7) Use Tyspkin's method to show that the limit cycle predicted in Prob-
lem 6 does not really exist. Note that this is so despite the fact that
Problem 6 concerns a very low-pass system.

(8) Use the describing function technique to show that if the linear part
of the system of Problem 1 is replaced by:

GP(s)= K K,T>0

S(TS + 1)
and the nonlinear part is as given in Problem 1, then the system does
not support limit cycles.

(8.7)



Chapter 9

An Introduction to Modern Control

9.1 Introduction

When controlling a system using the techniques of classical control one
generally uses the system's output in the feedback. In this way one can
improve the gain and phase margins, make the system faster, and generally
improve the system's performance.

When controlling a system using the techniques of modern control, one
can (generally) do much more than just improve the margins; one can place
the system's poles as one pleases. This improvement, however, comes at a
price. In order to place the poles of the system, one must generally know
the complete internal state of the system. This is often not a trivial task.

9.2 The State Variables Formalism

In classical control, one generally describes a system using high-order dif-
ferential equations or, equivalently, a transfer function. In modern control
we use systems of first order equations. We consider systems that have
a single input, u(t), a single output, y(t), but many states. To describe
systems, we make use of one matrix, A and three vectors, x(t)—which is
the vector that is made up of the system's states, and the vectors b and c.
The equations that describe the evolution of the system's states and the
system's output must be put in the form:

x'{t) = Ax(t) + bu(t), x(0) = xQ (9.1)

y(t) = <?x(t). (9.2)

227
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The first equation describes the evolution of the state of the system and is
called the state equation. The second equation gives the output as a linear
combination of the states.

Let us consider a simple example. If our system is a motor whose
transfer function is:

and if we let the input to the motor be u(t) and the output of the motor
be y(t)—the motor shaft's angle, then we find that:

Y(s) = 1
U(s) s{s + l)'

Taking inverse Laplace transforms (and adding the appropriate initial con-
ditions), we find that:

y"(t)+y'(t) = u(t), y(0) = a,y'(0)=(3.

If we let x(t) = y(t) and we let the state of the system be:

*>-[;8]-
then we find that we can write our equations as:

S'(t) A S(t) b

T^V _7^T\ i^wT ToT r*«» i _ fai
U'WJ '\0-l)W(t)\ + [l\U^ U'(O)J-[/3j

The first equation is the state equation. It describes the evolution of the
state of the system. (In this case the state is the motor shaft's angular
position and its angular velocity.) The second equation states that the
output of the system is the motor shaft's angular position.
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9.3 Solving Matrix Differential Equations

Given an equation of the form:

x'{t) = Ax(t), x{0) = x0, (9.3)

what can we say about x(t)l Recalling that the solution of the scalar
equation:

x'(t) = ax{t), x(0) = x0

is x(t) = eatxo, a reasonable guess at the solution of (9.3) is:

x(t) = eAV 0 .

It remains to define the matrix exponential in such a way that this equation
is well denned and in such a way that the (9.3) holds.

Let us define the matrix exponential by using the Taylor series expansion
of the exponential. (See §9.13 for some technical results about series of
matrices.) That is, let:

eA=l + A+^- + ... + ̂ - + .... (9.4)

Considering the derivative of eAt, we find that:

d At d fT . AH2 Antn \
- e A t = — I + At + — r + • • • + — j - + • • •
at at \ 2! n\ }

( \nj.n-l \

(n - 1)! J
= AeAt.

If we consider the derivative of eMXo, we find that:

jt(e
AtxQ)=AeAtx0.

Thus, eAtxo is a solution of the differential equation. We also find that at
time zero this function is equal to fo. Thus:

x(t) = eAtx0

solves the differential equation subject to the given initial conditions.
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9.4 The Significance of the Eigenvalues of the Matrix

We find that to understand the solutions of (9.3) we must understand the
behavior of the matrix exponential eA. Let us assume that A has a full
set of eigenvectors and eigenvalues. That is, if A is an n x n matrix let us
assume that there are n linearly independent vectors, Vi, and n scalars A»
that satisfy:

AWJ = XiVi.

Writing these vectors as a matrix:

M = (vx •••$„),

and defining the matrix A according to the equation:

/Xi 0 0 \

0 A2 0 ••• 0

A = :

0 ••• 0 An_x 0

\ 0 0 An/

we find that:

AM = MA.

As the eigenvectors are linearly independent, M is invertible. We find that:

A = MAM"1

It follows that:

U M M " 1

A = MAM"1

A2 = MAM"1 MAM"1

= MA 2 M"'

An = MA"M-1 .
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Let us consider the matrix exponential again. Assuming that A has n
independent eigenvectors, we find that:

A _ A A2 A"
e

A = I + A + - + ... + — + ..•

= MM-1+MAM-1 + M A ^ " 1 + . . .

/eA l 0 0 \
0 eA2 0 ••• 0

= M : M- 1

0 ... 0 e^-1 0
\ 0 0 eA"/

= Me^-M"1.

We see three things:

(1) The exponential of a diagonal matrix is just the original matrix with
the diagonal elements exponentiated.

(2) Calculating a matrix exponential can be done in two steps:

(a) Calculate the eigenvectors and eigenvalues corresponding to the
matrix.

(b) Use the results of the previous part to find M and eA, and then
eA.

(3) The exponents in the exponentials are just the eigenvalues of the orig-
inal matrix.

We can also make use of this form of the matrix exponential to show
that eA always has an inverse. Let us consider the inverse of the exponential
in the case that A is diagonalizable. It is just:

( e A ) - 1 = (Mt^M" 1 )" 1

= M ( e A ) " 1 M " 1

= Me"AM- 1 ,

where we have made use of the facts that:

(AB)-1 =B- 1 A~ 1 .
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• The inverse of a diagonal matrix is just a diagonal matrix whose ele-
ments are the reciprocals of those in the original matrix.

e. i

Note further that:

e-A = g-MAM-1
 = M e - A M - 1 = (eA)-l_

That is, we find that:

(eA)-1 = e~A

as we would hope. (Note that though this proof requires that A be diago-
nalizable, the result is true in general.)

9.5 Understanding Homogeneous Matrix Differential
Equations

We now return to the solution of (9.3). We have seen that the solution is:

x(t) = eAtx0.

We now know that as long as A is diagonalizable—as long as it can be
written as:

A = MAM"1,

then x(t) = eAtXQ can be written:

x(t) = MeAtM"1fo

/e A l t 0 0 \
0 eX2t 0 • • • 0

= M : M"1^-
0 ••• 0 eA"- l ( 0

\ 0 0 eXnt/

We see that there are generally n exponential functions here and their
exponents are Ait,..., Xnt. When solving systems using the transfer function
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approach, one generally finds that the exponents are the poles times t.
Thus, we see that the eigenvalues of A are just the poles of the transfer
function.

9.6 Understanding Inhomogeneous Equations

Suppose that one would like to solve an equation of the form:

x'{t) = Ax{t) + bu{t), x{0) = x0. (9.5)

We solve this equation using the method of variation of parameters. I.e. we
assume that the solution is of the form:

x(t) = eAtz{t)

and then we solve for z(t). Note that:

x(0) = f0 = eAof(0) - z(0).

Thus, z(0) = x0.

Assume that the solution of (9.5) is of the given form. Then we find
that:

(eAtz(t))' = AeAtz(t) + bu{t) >̂

AeAtz(t) + eAtz'(t) = AeAtz(t) + bu{t) =>

eAtz'{t) = bu{t) =»

z'(t) = e~Atbu{t).

We solve this equation by integrating it from 0 to t and imposing the initial
condition. Upon performing the indicated integration and imposing the
initial condition, we find that:

rt
z(t)= / e-ATbu(T)dT + x0.

Jo

Multiplying through by eAt, we find that:

x{t) =eAt([ e-ATKr) dr + f0) .
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Making use of this equality, and moving the exponential inside the integral,
we find that:

x(t) = eAt ( f e~ATbu(T)dr + XQ) (9.6)

rt
= / e-A<T-*>5u(T)dT + eAt£0. (9-7)

Jo
Using this formulation it is not difficult to show that if all of the eigenvalues
of A are negative (if all of the poles of the transfer function are negative),
then if u(t) is bounded so is the state of the system, and so is the output.

9.7 The Cayley-Hamilton Theorem

The Cayley-Hamilton theorem states that a matrix, A, satisfies its own
characteristic equation. A matrix's characteristic equation is the equation:

a(X) = det(A - AI) = an\
n -\ <ziA + a0A° = 0.

The Cayley-Hamilton theorem states that:

a(A) = 0. (9.8)

We prove the Cayley-Hamilton theorem when A is diagonalizable.
Consider a(A). Because A can be written as A = MAM"1 , we find

that:

a(A) = Ma(A)M"1.

But a(A) acts one each element of a diagonal matrix separately. As each
element satisfies a(X) = 0, we find that a(A) — 0. Prom this we conclude
that a(A) = 0, which was to be proved.

A simple consequence of the Cayley-Hamilton theorem is that any power
of A can be expressed in term of I, A,..., A""1. Consider, for example, An.
From (9.8) we see that:

A" = - — (an_1A"-1 + ... + a i A + aol) .
0>n

To find a representation for A n + 1 multiply the preceding equation by A
and then replace A™ by its value as given in the preceding equation. Pro-
ceeding inductively, we find- that any power of A can be expressed as a
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linear combination of I, A,..., A""1 . In particular this means that:

eAt = fo(t)I + /x(t)A + • • • + fn-X{t)An-\ (9.9)

9.8 Controllability

Given a system whose state is described by (9.1), it is reasonable to ask if
one can control the state of the system—which is a vector—by using the
scalar input, u(t), alone. A system for which one can force the state to zero
in finite time from any initial condition using the input, u(t), alone is said
to be controllable.

Let us see when a system may be controllable. Prom (9.6) we see the
solution of (9.1) is:

x(t) =eAt([ e-ATbu(T) dr + £0) •

As the matrix exponential is alway invertible, the only way that x(t) can
become zero is if:

/ e~ATbu(r) dr = -x0
Jo

Prom (9.8) we deduced that the matrix exponential can be written as a
combination of the powers of A from the zeroth power to the n — 1th power.
Thus we find that a necessary condition for controllability is that:

/* (/0(*)I + /i(*)A + • • • + /n- iWA"" 1) bu(r) dr = -x0.
Jo

Performing the indicated integrations (and denoting the integral
Jo fj(T)u(T) di~ by /3j) we find that we must have:

/3ott + 0iAb + ••• + pn-i A.n~lb = -x0.

That is, we must be able to set a linear combination of the n vectors,
b, Ab,..., An~lb equal to an arbitrary — x0- That is the n vectors that we
have must span TZn. A simple condition for this is that the determinant of
the matrix:

Con = (b Ab • • • A""1?)
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must be nonzero. This matrix is known as the controllability matrix. We
have shown that in order for a system to controllable it is necessary that:

det(Con) ^ 0.

It can be shown that this is also a sufficient condition for a system to be
controllable.

9.9 Pole Placement

It has been shown [Bro74] that if a system is controllable, then using state
feedback—using feedback that is a linear combination of the elements of
the elements of the state vectors—the poles of the system with feedback
can be placed in any desired position in the complex plane. If one would
like the linear combination of the states to be real, then one must make
sure that all complex poles appear with their conjugates. We will look at
some examples of pole placement shortly.

A generic system with state feedback is given in Figure 9.1. Note that
a linear combination of the states—and not a function of the output—is
being fed back to the input. That is why the states appear explicitly. In
order to use state feedback one must either have access to the states, or
one must be able to estimate the states. In the next section we discuss the
conditions under which the state of the system can be estimated from a
knowledge of the system's input and output.

Fig. 9.1 State Feedback
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9.10 Observability

In order to use pole placement techniques one must know the internal state
of one's system. This can be very difficult as often the system is a "black
box" and one does not have access to its internal state. When this is the
case it is important to know if it is possible to determine the internal state
of the system by looking at the signals that enter and leave the system. We
consider the following question. Given a system that can be described by
(9.1), (9.2) but whose initial state is not known, is it possible to determine
the system's initial state by observing y{t) and u(t)? A system for which
such measurements of external signals provide enough information to de-
termine the initial state of the system (and via (9.1) the state of the system
for all time) is said to be observable.

Once again we make use of (9.6). We know that:

x{t) =eM([ e-ATbu{r) dr + f0) •

As we are now interested in the output of the system—in y{t)—we multiply
this expression by cF. We find that:

y(t) = ?eKt ( [ e-ATbu(T) dr + xo^j .

We find that the contribution of the initial condition to y(t) is:

yinit(t) = cTeAtx0.

If this is zero for any nonzero vector xo then the system is not observable
as it is impossible to distinguish between certain initial conditions and the
initial condition 0.

Making use (9.9) we find that yinit(t) is:

Vinitit) = <? (/o(i)I + /l(t)A + • • • + /n-lWA""1) Xo

= (fo{t)F + fi(t)FA + ••• + fn-i(t)F'A"-1) xo.

If the vectors <?,(FA, ...,crAn~l do not span 72.", then there exists some
vector XQ that is orthogonal to all of the vectors and for which yinu(t) = 0.
Thus in order for a system to be observable it is necessary that the vectors
(F, c^A,..., crAn~1 be linearly independent. Another way of saying this is
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to say that the matrix whose rows these vectors are:

/ cF \

Obs =

must have nonzero determinant.

We have shown that a necessary condition for observability is that:

det(Obs) ^ 0.

In fact, this is also a sufficient condition.

9.11 Examples

9.11.1 Pole Placement

Let us consider a simple motor control problem. Suppose that one would
like to control a motor whose input is u(t) and whose output, y(t), is the
motor's shaft angle. Assume that the motor's transfer function is:

Y(s) c ( ) 3

Picking our states to be y(t) and y'(t), we find that the state equations that
correspond to this transfer function are:

'«-G®]'-53[$]4-» ™

Let us calculate the observability and the controllability matrices. We
find that:

We see that det(Obs) = 1 and det(Con) = —9. Thus, this system is both
observable and controllable. As the system is controllable, we should be
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able to place the system's poles anywhere we please by the addition of state
feedback. Let us add the appropriate feedback and see what happens.

In our case, the states of the system are the output and the output's
derivative. The system with state feedback added is shown in Figure 9.2.

Fig. 9.2 A Simple Feedback Circuit

Let us determine the equations that govern the system with state feed-
back added. The effect of the state feedback is to cause u(t) to equal:

u{t) = -[k1k2]^(^+Uext(t).

Combining this with (9.10) we find that the equations that describe the
system with feedback are:

[y'(t)\ ~ [o -2) [y'(t)\ - U\ (Jfcl feJ [y'(t)\ +u^^)
This can be rewritten as:

Af

\ y ( t ) ] ' _ ( 0 1 \ \ y ( t ) ] \o]
[y'(t)\ - V - 3 * i - 2 - 3 * a ; l w ' ( * ) J + L3j l <" x t ( )-

Let us find the eigenvalues of the matrix that characterizes the system
with state feedback—Af. We find that the eigenvalues must satisfy:

det(Af - AI) = det ( _~^ _ 2 _ ̂  _ A \ = A2 + (2 + 3fc2)A + 3fci = 0.

If one would like Ai and A2 to be the system's eigenvalues, then one
would like to be able to write characteristic polynomial, A2 + (2+3fc2)A+3fc1
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in the form:

(A - Ai)(A - A2) = A2 - (Ai + A2) + AiA2.

To make this possible all that we need to do is to pick k\ and fc2 to satisfy
the equations:

3fci = AiA2

2 + 3fc2 = -(A1+A2).

We see that for any Ai and A2 this is possible, and if we restrict Ai and A2

to be either real or complex conjugates, then k\ and &2 will be real as well.

9.11.2 Adding an Integrator

Fig. 9.3 A First Order System with an Integrator Added.

Consider the following scenario. One is given a first order system whose
nominal transfer function is l/(s + 3). Suppose, however, that it is known
that the location of the pole can vary substantially. (I.e. the pole nominally
located at —3 may actually vary over a wide range.) One would like to
design the system to have a DC gain of 1. One would also like the system's
time constant to be less than or equal to T = (l/3)s.

It is easy to see (see Problem 11) that state feedback for a first order
system leads to proportional control. Just using proportional control one
cannot make the steady state response totally insensitive to the location
of the system's pole. (Why not?) One solution to the DC gain problem is
to add a block (and a state) to the system. In Figure 9.3 we have added
an integrator before the state-variable feedback that we add to the plant;
we have added the output of the integrator to the set of state variables;
and we have added a gain block after the integrator. It is clear that the
forward gain of our system at DC is infinite and that the overall gain of the
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system at DC is one—independent of the actual location of the pole that
is nominally located at s = —3.

The state equations of the system are:

m=tew] ) f ' w = ( ~ 3 ~-i ki)m+[1] u ( ° ' y { t ) = [ i °]m

Af

The eigenvalues of the matrix Af of the final system are the solutions of:

det(Af - XI) = A2 + (3 + fci) + k2 = 0.

As the second order polynomial with roots at Ai and A2 and with quadratic
term A2 is A2 — (Ai + A2)A + A1A2, we find that by a suitable choice of the
gains fci and £2 we can place the poles wherever we would like to. In
particular, to keep r = (l/3)s, we put one pole at s = — 3 and one at
s = —4. With this choice of poles, the gains must be fci = 4 and fo = 12.
Adding an integrator in this fashion is possible in more compex systems
too.

9.11.3 Modern Control Using MATLAB

MATLAB'S control system toolbox allows one to describe a system us-
ing its state equation. To define one's system, one uses the command
ss(A,B,C,D). Here, A is our matrix A, B is our vector b, C is our vector
cF, and D allows one to make the output contain a linear combination of
the system's inputs as well as its states. This can be summarized by saying
that if a system is denned using ss(A,B»C,D), then the state equation that
the system satisfies is:

x'(t) = kx (t) + Bu(t), y(t) = Cx(t) + Du(t).

Note that MATLAB allows both the input and the output to the system to
be vectors—a possibility that we do not consider.

Consider the example of §9.11.2. Let us use MATLAB to examine the
system we designed. We examine the performance of the system with the
feedback we have designed both when the pole of the system is at its nominal
location—at s = —3—and when the pole of the system is actually at s =
—1. We will see that the performance is affected by the change, but the
system's gain at DC is 1 in both cases.
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To define the system of Figure 9.3 with its pole at - 3 , we used the
following commands:

Al = [(-3 -4) 12; -1 0] ;
bl = [0 1] ' ;
cl = [ 1 0 ] ;
dl = [0] ;
Gl = ss(Al ,bl ,c l ,dl) ;

To define the system with its pole at —1 we added the following commands
after the commands given above:

A2 = [(-1 -4) 12; -1 0];
G2 = ss(A21bl,cl ,dl) ;

In order to examine the step response of the two systems, we made use of
the step command—which is happy to work on systems denned using state
space definitions. We found that the step response of the two systems is
as given in Figure 9.4. Note that both systems stabilized on 1—as they
should have. However, the poorly modeled system shows oscillation in its
output—a sign that its poles are not on the real axis. As the poles were
supposed to be at s = —3, —4, this shows that the design is somewhat
sensitive to the exact location of the pole.

9.11.4 A System that is not Observable

Let us consider a motor-tachometer system. Such a system can be modeled

by a motor followed by a differentiator. (See Figure 9.5.)
If we are interested in the "true" state of the motor, then we must know

the motor shaft's angular position and velocity. Let us define these two
quantities as x(t) and x'(t). We find that the equations that define our
system are:

Note that in this case y(t) is equal to x'(t)—as it must be. Now let us check
to see if this system is observable and/or controllable.

We find that:

°*-ft-,)- c-(a-3a)-
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Fig. 9.4 The Step Response of the Properly Modeled System (Left) and the Poorly
Modeled System (Right)

Fig. 9.5 A Motor with a Tachometer

As det(Obs) = 0 and det(Con) = -9 , we find that this system is control-
lable, but it is not observable.

That the system is controllable is actually obvious. In §9.11.1 we saw
that a system with the same state equations is controllable. The fact that
we have changed the output does not change the fact that u(t) can con-
trol the state of the system. The system is not observable because the
tachometer, whose transfer function is s, cancels a pole of the motor. Prom
the point of view of an observer, the system has only one pole. One could
not really expect to see the effect of both states from the outside.
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9.11.5 A System that is neither Observable nor
Controllable

Now consider a system with two identical blocks in parallel—for the sake
of this discussion let the blocks both have the transfer function:

G<s> - 7 T T
Such a system is shown in Figure 9.6. Clearly Xi(t) and %2(t) satisfy the
equations:

x'1(t) = -x1(t)+u(t)

x'2{t) = -x2{t)+u(t).

We find that the state equations for this system are:

r*i(*)l'_/-i O A U W I ri i V(t)-rii ih<*>l

Fig. 9.6 Two Units in Parallel

Calculating the observability and controllability matrices, we find that:

Clearly:

det(Obs) = det(Con) = 0.

That is the system is neither observable nor is it controllable.
It is clear that the system cannot be controllable. Because the two

parallel blocks of which the system is composed are identical, any effect
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that u(t) has on one block it will have on the other. Thus, if the two
subsystems start with different initial conditions, the input cannot possibly
bring both outputs to zero in finite time. Additionally, because the two
subsystems are identical there is no way that someone viewing the system
from the outside can hope to separate the contribution of the two internal
blocks. Thus, the system cannot be observable either.

9.12 Converting Transfer Functions to State Equations

Suppose that one is given a system that is described by a transfer function
of the form:

Y{a) = T ( ) = ao+ais + ---+amsm

U{s) {S> bo + blS + --- + bns
n '

and one would like to define a set of states for this system, and one would
like to produce the state equations which correspond to the system. It turns
out that there is an easy way to do this as long as one has the freedom to
define the states of the system.

Fig. 9.7 A System Divided into Two Subsystems

Let us consider a system that is made up of two subsystems as shown
in Figure 9.7. Clearly x(t) satisfies:

box(t) + hx'(t) + ••• bnx
{n\t) = u{t).

If we define the states of our system as x(t), ...,x^n~1^(t) then we find that
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the state vector satisfies:

r * > X ( I I > : : : : : : I ) \ *<•> 1 m
m - i i x ' w

 + ; «:

L W J \-bo/bn-bx/bn -bn-i/bnj
 L W J

Also, clearly:

• x(t) •

y(t) = a o x( i )+a ia ; ' ( i ) + - - - + a m a ; ( m ) ( i ) = [a 0 ••• a m 0 • • •0 ]

As long as m < n, this technique works. Note however, t ha t here the states

have been chosen in a mathematically—rather than practically—convenient

fashion.

9.13 Some Technical Results about Series of Matrices

To show that the series in (9.4) converges in a reasonable fashion, it is
easiest to define convergence for sequences of matrices. If one lets the norm
of a matrix be the square root of the sum of the squares of the elements of
the matrix—if one lets:

I|A|| = . f>«|2 ,
\ | i,j=l

then (by thinking of the matrices as "vectors") it is clear that:

||A + B| |< | |A| | + ||B||.

Clearly,

||A|| =0<!=>A = 0.

Finally, if c is a scalar it is easy to see that:

||cA|| = |c|A.

Thus, || • || is indeed a norm on matrices.
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Consider || AB| | . Denote the ith row of A by af, the j t h column of B by
bj, and the dot product of two vectors by (•, -)v and the norm of a vector
by II • II v- We find that:

l|AB||2=f;|af&/

= E i(^)vf

< E iNivto

\ »=i \ i=i

= Viv||A||2VAr||B||2

= W||A||2||B||2.

We find that:

| |AB||<^| |A| | | |B| | .

In particular, we find that:

||A"|| < V^IIAIHIA"-1!! < • • • < y/Jt^WKr, n > 2.

If an upper-bound on the norms of a sequence of matrices satisfies the
ratio test, then the series that corresponds to the sequence of matrices
converges in the matrix norm. Let us consider the series for the matrix
exponential—the series whose nth term is An/n\. We find that:

A« _ JrT-'ur
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Applying the ratio test to un, we find that:

l i m ! W i = l i m ^ = o.
n->oo un n-*oo 7 1 + 1

Thus, we see that the series:

A"
I + A + ••• + —p + - "

n!

converges to a limit in the matrix norm.
Clearly the value of any given term in the matrix A, say a^, is less in

absolute value than the norm of the matrix. Thus, the convergence of the
matrices in the matrix norm also guarantees the convergence of the terms
of the matrix in the ordinary sense.

9.14 Exercises

(1) Find the eigenvalues and eigenvectors of the matrix:

(2) With A as above, find eAt in terms of M, M"1 , and A. What are the
exponents of the exponentials in eAt?

(3) Let:

- G O -
(a) Show that A satisfies its own characteristic equation.
(b) Find A3 as a linear combination of / and A.

(4) Consider a block whose transfer function is:

Let y(t) be the output of the block and let u(t) be the input to the
block. Thus:

m - T(S)

U(s)-T{s)-

(a) Find the ordinary differential equation that y(t) satisfies.
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(b) Let the states of the system be y(t) and y'(t). Find the equations
that define the system.

(c) Is the system controllable? Explain.
(d) Is the system observable? Explain.

(5) Using state feedback place the closed loop poles of the system of the
previous exercise at s = — 2 and s = —4. Please provide a sketch of the
completed system with all values filled in.

(6) Consider a block whose transfer function is:

Let y(t) be the output of the block, and let u(t) be the input to the
block. Let x(t) and x'(t) be the states of the block. Let the various
signals "in" the block satisfy:

X(s) 1 Y(s)
U(s) s2 + 3s + 2' X(s) '

Thus:

Y(s) Y(s) X(s)
U{s) X(s) U{s) { ''

(a) Find the ordinary differential equation that x(t) satisfies.
(b) Let the states of the system by x(t) and x'(t). Find the equations

that define the system.
(c) Is the system controllable? Explain.
(d) Is the system observable? Explain.

(7) Using state feedback place the closed loop poles of the system of the
previous exercise at s — —2 and s = —4. Please provide a sketch of the
completed system with all values filled in.

(8) Consider a block whose transfer function is:

T ( s ) = s2 + 5s + 6'

Let y(t) be the output of the block, and let u(t) be the input to the
block. Let x{t) and x'(t) be the states of the block. Let the various
signals "in" the block satisfy:

X(s) 1 Y{s)
U(s) s2 + 5s + 6' X(s) + '
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Thus:

U(s) X(s) U(s) { >'

(a) Find the ordinary differential equation that x(t) satisfies.
(b) Let the states of the system by x(t) and x'(t). Find the equations

that define the system.
(c) Is the system controllable? Explain.
(d) Is the system observable? Explain.

(9) Using state feedback place the closed loop poles of the system of the
previous exercise at s = —10 and s = —11. Please provide a sketch of
the completed system with all values filled in.

(10) In this exercise we show that the system of Figure 9.6 is not controllable
by showing that the state of the system cannot generally be brought
to zero in finite time. Throughout this problem we make use of the
terminology and definitions of §9.11.5.

(a) Define r(t) = xi(t)-X2(t). Find the first order ordinary differential
equation (ODE) satisfied by r(t).

(b) Find the initial condition, r(0), in terms of #i(0) and £2(0).
(c) Find the solution of the ODE.
(d) Show that if x\(0) ^ £2(0), then the solution is non-zero for all

t > 0 .
(e) Use the results of the preceding section to show that the system is

not controllable.

(11) Consider a block whose transfer function is:

T(s) = ,a&1l.
s + a

Let y(t) be the output of the block and let u(t) be the input to the
block.

(a) Find the ordinary differential equation satisfied by y{t).
(b) Let the state of the equation be y(t). Find the equations that define

the state of the system.
(c) Is the system controllable?
(d) Is the system observable?
(e) Explain why for first order systems of this type of "state feedback"

is (nearly) identical to "proportional control."



Chapter 10

Control of Hybrid Systems

10.1 Introduction

Most interesting plants are what can be termed "fully analog." A DC mo-
tor, for example, takes a continuous-time voltage as its input and produces
in return a shaft-angle—also a continuous-time signal. Controllers, how-
ever, are another story. Today control algorithms are often implemented
by microcontrollers or microprocessors. These devices process their input
at fixed times and change their output at fixed times.

We have learned how to describe systems whose input and output change
continuously. For this task we use the Laplace transform and transfer
functions. Now we are going to learn how to model systems that pro-
cess discrete-time signals, and we are going to learn how to models hybrid
systems—systems that have some parts that work in continuous time (like a
motor) and some parts that work in discrete-time (like a microcontroller).
The z-transform is the correct tool for modeling many discrete-time sys-
tems, so we start by defining it and describing some of its properties. We
also give a fairly complete description of the bilinear transform and its
uses in the control of hybrid systems. Next, we consider the more general
problem of designing controllers for hybrid systems. Finally we give a brief
description of the modified z-transform and its uses.

10.2 The Definition of the Z-Transform

Consider a sequence of numbers:

{e(0),e(l),...}.

251
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The z-transform of the sequence, Z({e(0), e(l),.. .})(z), is defined as:

oo

Z({e(O),e(l),...})(z) = ^e(k)z-k.
fc=o

Often the z-transform of the sequence {e(0), e(l),...} is denoted by E(z).

10.3 Some Examples

In calculating z-transforms, it is often necessary to sum a geometric series.

Recall t ha t the geometric series is the sum:

fc=o

and its sum is:

oo 1

Let us consider the z-transform of several sequences.

(1) Let

We find that:

oo .

£?(*) = g l .z -* = I _ _ r = - l T l N > 1 .

(2) Let e(k) = ak. Then we find that:

oo oo ..

fc=0 ifc=0 '
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(3) Similarly, if we let e(fc) = e~ak, then we find that:

E(z) = f2e-akz-k

fc=O
oo

fc=0

_ 1
~ l-e-az~1

= J^> W>|e-|-

(4) Let e(k) = sin(ujk). Rewriting sm(ojk) as:

sin(wfc) = ,

we find that:

E(z) = — (— Z \

- 1 z(ej" - e~ju)
~ 2j z2 - 2(ei" + e~i") + 1

= ^ s i n ( ^ ) . I -,

z2-2zcos(u) + l' ' '

10.4 Properties of the Z-Transform

(1) Linearity. If E(z) is the z-transform of the sequence {e(0),e(l),...}
and F(z) is the z-transform of the sequence {/(0),/(l),...}, then
aE(z) + bF(z) is the z-transform of the sequence {ae(0) + 6/(0), ae(l) +
6/(1),...}. The proof is a simple application of the definition of the
z-transform.

(2) Final Value. If the sequence e(k) has a limit as k —> oo, then:

lim e(k) = lim (z - l)E(z).
k—>oo z—»1+

The proof of this result is not trivial. Let us start with a sequence,
a(k), that converges to zero. That is, for every e there exists an N for
which \a(k)\ < e for every k > N. Let us consider the z-transform of
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a(k). We find that:

oo

\A(z)\ = X>(fcKfc

k=0

JV-1 oo

< ^a(k)z-k + Y,a(k)z~k

k=0 k=N

lzl>l N~l °°

'< EKfc)l + £ E N "
A;=0 k=N

k=o l z\
N-l _N

z>l \~^ i /7 M , z

fc=o i z

fe=O

We find that:

Ci=} Z-N+I \

lim+\(z-l)A(z)\<lim+\(z-l)\ ( £ |o(fc)| + e^-yJ = c.

But e can be made arbitrarily small and the limit must be non-negative,
so we find that:

lim \(z-l)A(z)\ =0.
2 ^ 1 +

Prom this it is clear that:

lim (z - l)A(z) = 0.
Z - . 1 +

if the sequence a(fc) tends to zero.
Suppose that e(k) —• c. Then write e(k) as:

e(/c) = c + (e(fc) -c) =c + a(k)

where a(k) —> 0 as k —> oo. The z-transform of e(/c) is then:

J5(z) = Z({c, c,.. .})(z) + A(z) = c-^-j + A(z).
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We find that:

lim (z-l)E(z) = c + O = c
z—»1+

just as it should.
(3) Initial Value. It is easy to see that:

e(0) = lim E(z).
z—»co

By definition E(z) is:

E(z) = e(Q) + f^e(k)z-k.
fc=i

Assuming that the sequence does not grow more than exponentially
quickly, we know that:

\e(k)\<Mck, M,c>0.

We find that:
OO CO

£e(fc)2-fe < 5>(fc)||z-fc|
fe=l fe=l

oo

< ^Mck\z\~k

OO

fc=l

- M\-c/\z\

Clearly, as z —> oo this tends to zero. We find that:

lim E{z) = e(0).

(4) Translation. Let E{z) be the z-transform of {e(0), e(l), . . .}. What is
the z-transform of:

{/(0), / ( I) , . . .} = { C M ^ O , e(0), e(l),...}?

n times
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We find that:

OO CO OO

F(z) = 2 f(k)z~k = J2e(k~ ")*"* = z~U Yl <k)z-k = z-nE(z).
k=0 k=n fc=0

The importance of this relationship cannot be overemphasized.
(5) Multiplication by k. Suppose that the z-transform of {e(0), e(l),...} is

E(z). Then the z-transform of {0 • e(0), 1 • e( l ) , . . . , fce(fc),...} is:

d „ , .

The simplest proof of this property is to consider — z times the deriva-
tive of the z-transform. It is:

~zTz (e(0) + e(1)*~1 + e(2)z"2 + ' ' ' )
= -z (0e(0) - le(l)2"2 - 2e{2)z'3 + • • •)

= 0e(0) + le(l)z-x + 2e(2)z~2 + • • • .

This is the z-transform of the sequence {fce(fc)}.

The Sequence {0,1/1,1/2,...}—An Example
Let us calculate the z-transform of the sequence:

e{k) = \i/kk>o-

Denote the z-transform of e(fc) by E{z), and note that:

{fce(*)} = {0, l , l , l , . - -} .

Denote the new sequence by g(k). As g(k) is just a shifted unit
step we find that:

G(z) = z-1-?- = -±-.
z - 1 z - 1

From the properties of the z-transform, we know that:

-z±E(z)=G(z).
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Thus, we find that:

E(z) = - I G(z)/zdz + C

= ~ I < l ,,dz + c
J z(z-l)

= ln(z) - ln(2 - 1) + C

All that remains is to evaluate C. As we know that e(0) = 0, we
know that lim^^oo E(z) = 0. As ln(z) is a continuous function of
z at z = 1, we find that:

lim E(z) = 0 = lim (in ( -?— ) ) + C = ln(l) + C = C.
Z-KX 2->OO y \Z — \J)

Thus:

Note that this z-transform allows us to calculate an interesting
sum1. Let us consider E(—1). We find that:

£ ( - l ) = -ln(2)

= 0 + ( l / l ) ( - l ) - 1 + ( l /2 ) ( - l ) - 2 + .. .
I l l / Nfcl

The sum is just minus the alternating harmonic series. We see that
the sum of the alternating harmonic series is ln(2).

10.5 Sampled-data Systems

One of the main reasons to study the z-transform is to use it to help analyze
systems that "run on" samples of data rather than continuously arriving
data. In such systems the form of the sequence with which one works is

lrTo justify this calculation is a little bit tricky as the region of convergence of this
z-transform is \z\ > 1, but the calculation can be justified.
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often e(k) = f(kT). That is, the elements of the sequence are actually
samples of a function from which a sample is acquired every T seconds.

Suppose that one samples the unit step function. That is, suppose that
e(k) = u(kT). As this sequence is all ones (for non-negative values of k) its
z-transform is:

Suppose that the function that is being sampled is 5sin(wi). Then the
sequence whose z-transform we must find is e(k) = 5sin(wTfc). Using the
transforms we have already calculated, we find that:

, . _ 5zsin(u>Tk)
{Z> = z2-2zcos(uTk) + l'

Suppose that the function being sampled is the ramp. That is, let
e(t) = tu(t). The samples are :

{T-O,T-l , . . . , rfc, . . .} = T{ l -O, l - l , . . . , l - fc , . . . } .

Thus, the z-transform of the the samples must be — zT times the derivative
of the z-transform of the unit step. That is, the z-transform is:

ZaO,T,2T,...,kT,...})(z) = -zT±^-1=JJ^-2.

10.6 The Sample-and-Hold Element

Because most of the systems in which we are interested have both digital
and analog parts, we need a circuit element which takes continuous-time
signals and "converts" them to discrete-time signals. The sample-and-hold
circuit fills this need. An ideal sample-and-hold element that samples at
the rate T samples per second has as its input a signal r(t) and as its output
c(t)—a signal that satisfies:

c(t) = r(0)(u(t) - u(t - T)) + r(T)(u(t - T) - u{t - 2T))

+ • • • + r{kT)(u(t - kT) - u(t - (k + 1)T)) + ••• . (10.1)

(See Figure 10.1 for an example of a sine wave that has been passed through
a sample-and-hold circuit.) A signal that has been processed by a sample-
and-hold circuit only changes values at discrete times.
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Fig. 10.1 A Sampled-and-Held Sinewave (Dashed Lines) and the Unsampled Sinewave
(Solid Lines). The Frequency of the Sinewave is 20 Hz, and 200 Samples Per Second Are
Taken.

Taking the Laplace transform of both sides of (10.1), we find that:

C(s) = r(0)(l/s - e~Ta/s) + r{T){e~Ts/s - e~2Ts/2) + • • •

+r(kT)(e-kTs/s - e-fc+1T72) + • • • .

Inspecting C(s) carefully, we find that it can be written:

C(s) =l~e'TSYr(kT)e-kTs = I^^Z({r(0),r(T),r(2T),. . .})(z)

Defining the "star-transform" of the sequence {r(0),r(T),r(2T),...} by:

R*(s)=Z({r(0),r(T),r(2T),...})\z=eT.,

we find that the Laplace transform of the output of the sample-and-hold
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circuit is:

1 - e~Ts

In the next sections we will see that R*(s) corresponds to samples of r(t)
made by an "ideal sampler" and that ^ ^ — is the transfer function of a
"zero-order hold."

10.7 The Delta Function and its Laplace Transform

In what follows it will be useful to consider the delta function (or the Dirac
delta function). The delta function is the function2 that is zero at all points
other than 0, that is infinite at zero, and whose integral over the real line
is one. The delta function is denoted by 5(t).

Let us consider the family of functions dh(t) defined by:

h{) = \ 0 otherwise "

We can say that:

5(t) = lim 5h(t).
h—*0+

Note that as the integral of 5h(t) is one for any h, the integral of S(t) should
be one as well.

Making use of the definition of the Laplace transform we find that:

«M.»M-f.-i*-i^.
As e~x = 1 — x + x2/2\ + • • •, we know that for small values of \x\ e~x «
1 — x. We find that as long as sh is small, the Laplace transform of 6h (t)
is approximately equal to one. As 6(t) — lim/l_0+ $h(t), we find that the
Laplace transform of S(t) should be:

1 _ p—sh

£{S(t)) = lim — = 1.
h->o+ sh

The Laplace transform of S(t) should be, and is, 1.
2Strictly speaking the delta function is not quite a function, but we will not worry

about the technical problems that surround the delta function's definition.
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Fig. 10.2 The Symbol for the Ideal Sampler

10.8 The Ideal Sampler

Let us consider the inverse transform of the function e~kTs. We know that
the inverse transform of e~TsF(s) is f(t-T)u(t—T). In our case, F(s) = 1.
Thus, f(t) = 6(t). Thus, the inverse transform of e~fcTs is 6{t - kT). We
find that the inverse transform of R*(s), which we denote by r*(t), is:

oo

r*(t) = r(0)6{t) + r(T)5(t - T) + • • • = J2 r{kT)d(t - kT).

That is, r*(t) is composed of the samples of r(t) multiplied by delta func-
tions located at the time at which the sample was made. The symbol for
an ideal sampler is given in Figure 10.2.

10.9 The Zero-Order Hold

For our purposes, what is important about the discrete-time part of our
system is not the precise representation of the discrete-time signal. What
we need to know is the value of the signal at a particular sample. For this
reason, we use either the star-transform or the z-transform to represent our
signal in the discrete-time region. To convert the signal from discrete-time
back to steps in continuous time, we use the zero-order hold block. This
block has the transfer function:

i P~TS

Suppose that one inputs a delta function of strength h at time r to this
block. Then the Laplace transform of the output of the block, C(s), is just:

-TS e-(T+T)s

C(s) = T(s)he-TSl = h h .
s s
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Thus, the output as a function of time is:

c(t) = h(u(t -r)-u(t-T- T)).

this function is zero until t = r and after t = r + T. Between these times
it is a pulse whose height is h.

The zero-order hold takes a delta function of strength h that arrives
at time r and converts it into a pulse of height h that starts at the time
at which the delta function arrived and ends T seconds later. (See Figure
10.3.)

Fig. 10.3 A Pulse of Height h and Duration T Starting at t = r

10.10 Calculating the Pulse Transfer Function

Let us consider a system like that of Figure 10.4 in which there is a sample
and hold circuit followed by an analog element. How can we calculate the
output of the analog element?

Consider the input to the zero-order hold. We know that the zero order

Fig. 10.4 A Very Simple System



Control of Hybrid Systems 263

hold has a train of delta functions as its input. Let us see what the output
of the combination of the zero-order hold and the analog block is when the
input to the zero-order hold is just S(t).

The Laplace transform of the output is just:

1 - e~Ts

To find the output as a function of time one need only consider the inverse
Laplace transform of this expression. Because of the time-shifting property
of e~Ts the inverse Laplace transform of this expression is actually just:

v(i)u(t) - v(t - T)u(t - T)

where

v(t)=C-l(Gp(s)/s)(t).

(The function v (t) can also be thought of as the impulse response of the
block with transfer function Gp(s)/s.)

Gp(s) = l/s—An Example
Let Gp(s) = l/s. We find that:

v(t) = C-^GpisysW) = C-\l/s2)(t) = tu{t).

As e~Ta just delays a signal by T, the inverse Laplace transform of
(l-e-T s)(l /s2)isjust:

tu(t) ~{t- T)u(t - T ) .

Let us now consider what sort of data, r(t), would get us a delta function
at zero at the output of the sampler. Clearly data that is equal to 1 at t = 0
and that is zero at all other sampling instants will do that. If we are willing
to limit our interest to the samples of the output, then we can say that
when the z-transform of the input is 1, then the output of the system at
the sampling times is:

v{kT)u{kT) - v{kT - T)u(kT - T).

Taking the z-transform of this sequence, we find that the z-transform of the
samples of the output when the input has 1 as its z-transform is just:

V{z)-z-1V{z) = {l~z-l)V{z).
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Suppose that rather than considering input that has height 1 at t = 0 and
height zero at all other sampling instants, we consider an input that has
height ft at t = kT and has zero height at all other sampling instants.
Because the system is linear and time-invariant, the output to the system
must be the previous output multiplied by the height of the input and
shifted by kT seconds. In term of the z-transform of the output, this
means multiplication by hz~k. That is, we have found that if the input to
a system has z-transform hz~k, then the output must by hz~k{\— z~1)V(z).
By linearity, we find that if the input to the system is:

R(z) = J2r(kT)z-k,
fc=O

then the z-transform of c{kT) must be:

fc=O
oo

= V{z){l - z~l)Y^r{kT)z-k

k=0

= V(z)(l-z-1)R(z)

where:

Z(Y(s))(z) = Z({y{0),y(T), y(2T),..., y(kT),.. .})(z)

and y(t) is the inverse Laplace transform of Y(s). We now have a nice,
simple formula for C{z). The ratio:

C(z)
R(zy

when it is independent of R(z) is called the pulse transfer function (or
simply the transfer function) of the system.

Consider the system of Figure 10.5—a system with feedback. Clearly:

E(s) = Vin(s) ~ H(s)Gp(s)1~6 T"E*(S).

Let:

w(t) = C-1(H(s)Gp(s)/s)(t).
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Following our previous logic, we find that:

oo

e(t) = vin(t) - ^2 e(k)(w(t - kT) - w(t - (k + 1)T)).
fc=o

Sampling these functions at t = nT and taking the z-transform of both
sides of this equation we find that:

E(z) = Vin(z) -f^e(k)(z-kW(z) - z-(k+VW(z))
fc=O

= Vin(z)-E(z)(l-z-i)W(z).

A little bit of algebra shows that:

E(Z) = Ym&

To determine the output of the system at sampling times is now simple.
We now know what the output of the sampler is. The output of the system
is just the output of the hold and Gp(s) when the input is now known to
be E*(s). We have already seen that:

Vo(z) = (l~z-1)V(z)-E(z).

Thus,

°yZ> 1 + (1 - z-i)W(z) mK ' ~ ! + z^z fGMHl.)\ ^

where w(t) and v(t) are as defined above.

Fig. 10.5 A Simple Feedback System

Gp(s) = 1/s, H(s) = 1—An Example
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Consider the case in which H(s) = 1 and Gp(s) = 1/s. Because
of the unity-feedback, because H(s) = 1,

v(t)=w(t)=£-1(Gp(s)/s)(t).

In our case, v(t) = w(t) = tu(t). Thus, we find that:

V{z) = W{z) = — ^ .

This shows that:

Vo(*) = ,?=¥z~\-iVin{z) = T Vin(z). (10.2)
i + (0-1)2 ~T z 1 ' t l

The pulse transfer function, T(z), is:

T(z) = ¥&- = T

{) vin(z) z-i + r
Note that when T = 1 we find that T(z) = z~l. That is, when T =
1 the output of the system at sampling times is just the system's
input one sample ago. (Can you explain why this is so?)

10.11 Using MATLAB to Perform the Calculations

MATLAB has a set of commands that is designed to take care of the calcu-
lations that one must perform to calculate a pulse transfer function or to
analyze a discrete-time or hybrid system. Let us consider the system of the
previous section in which Gp{s) = 1/s and H(s) = 1. We found that with
these definition the pulse transfer function of the system of Figure 10.5 is:

= *=iS(l/, ')(t)

Let us first define the pulse transfer function (z—l)/z. For this purpose, one
uses the command S_H = tf (a, b, Ts). (S.H is the name of the transfer
function object that MATLAB creates.) The array a defines the numerator
of the transfer function. In our case it is [1 -1]. (The polynomials here
are represented just as they are in the continuous-time case.) The array b
defines the denominator of the transfer function. In our case it is [1 0].
Finally, Ts is the sample time. If one uses - 1 for the sample time, then
MATLAB registers the system as discrete-time but it does not pick a sample
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time for the system. (If no Ts is given, then the system is taken to be a
continuous-time system.)

Next, we take the Laplace transform 1/s2 and "convert" it into a z-
transform. MATLAB has a command—c2d—whose job it is to perform
such continuous-time to discrete-time conversions. If we define the transfer
function:

V = t f ( [ l ] , [ l 0 0])

MATLAB will provide us with an object whose "value" is 1/s2. To con-
vert this object into a z-transform one uses the command Gd = c2d(V,
Ts, ' imp'). The first argument of the command is the object one wants
transformed. The second argument is the sample time that is desired, and
the third argument is the way that MATLAB is being requested to perform
the transformation. As we want MATLAB to take samples of the impulse
response, we use the argument 'imp'. Finally, to calculate T(z) one uses
the command:

T = S_H * V / ( I + S_H * V)

If one gives the following sequence of instruction to MATLAB:

V = t f ( [ l ] , [ l 0 0]);
Ts = 1;
S_H = t f ( [ l -1] , [1 0],Ts)
Gd = c2d(V,Ts,)imp))
Td = S_H * Gd / (1 + S_H * Gd);
step(Td,[0:Ts:20]);

MATLAB responds with:

Transfer function:

z - 1

z

Sampling time: 1

Transfer function:

z + 2.719e-016

z"2 - 2 z + 1
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Sampling time: 1

and with Figure 10.6 in which the step function has been delayed by Is as
predicted in §10.10. Note that the transfer function that corresponds to
V(z) is not quite correct. The +2.719 x 10~16 should not be present—it is
an artifact of the way MATLAB does the conversion from continuous-time
to discrete-time.

Fig. 10.6 The Step Response of the Hybrid System

10.12 The Transfer Function of a Discrete-Time System

The transfer function of a linear, time-invariant, discrete time system is
denned as:

rnl \ _ 'OUt\z)

T{Z) - V~(z)-



Control of Hybrid Systems 269

Let us consider what we can learn from T(z). First of all suppose that
the input to the system is 1 when t = 0 and zero at all other sample
times. Then the input sequence is {1,0,0,...}. (This sequence is sometimes
called the unit pulse.) The z-transform of this sequence is Vin(z) = 1.
The z-transform of the output of the system with such an input is just
Vout{z) = T(z) • 1 = T{z). The output of the system with such input will
bet(fc) = Z-l{T{z)){k).

Now suppose that we have found that when a unit pulse is input to
a system the system's output is t(k) and the z-transform of the output
is T(z). Let us consider the output of the system to a generic input
{ao,ai,...,an,...}. By linearity, we know that the output to this input
must be the same as the sum of the outputs of the signals:

oo{l,0,0,.. .},ai{0,1,0,0,.. .},a2{0,0,1,0,0, . . . } , • • - .

Let us consider the z-transform of the output to the signal. It is clear
that the the output to the first term is just aoT(z). The next signal is a
constant times the first signal delayed by one. As the system is assumed to
be linear and time invariant the output must be the same as the output to
the unit pulse but scaled and time shifted by one. That is, the output is
a\Z~1T(z). Continuing this way, we find that the z-transform of the output
to the signal is:

Vout(z) = a0T{z) + aiz^Tiz) + a2z~2T{z) + •••

= T(z)f^akz-k

= T(z)Vin(z).

Thus the transfer function of the system is:

Vin(z) -T{Z)-

We see that the z-transform of the response to a unit pulse is the (pulse)
transfer function and the inverse z-transform of the (pulse) transfer function
is the unit pulse response.

10.13 Adding a Digital Compensator

We are now able to consider the system of Figure 10.7—a system that has a
digital compensator. Let us calculate the transfer function of such a system.
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Fig. 10.7 A Simple Feedback System with a Digital Compensator

Before performing the calculation, we must understand precisely what
the block whose transfer function is D(z) is. D(z) acts on samples of e(t)—
of the "error." It is the transfer function of the digital compensator. As we
saw in the previous section, the z-transform of the sequence at the output of
the digital compensator is D(z)E(z). If one would like the star-transform of
the sequence rather than the z-transform (because one would like to think
of the compensator as processing impulse trains rather than sequences),
then one must let z = eTs. Thus, the star-transform of the output of the
digital compensator is:

D(eTs)E(z)\z=eT3=D(eTs)E*(s).

Let us now calculate E(s). We find that:

E(s) = Vin(s) - E*(s)D(eTs) 1 ~ 6 ^ Gp(s)H(s).
s

Let:

w(t)= C-1(GP(s)H(s)/s)(t)

and let:

v(t) = £-1(Gp(s)/s)(t)

Then following the logic of §10.10, the transfer function of the system must
be:

D{z){\-z-l)V{z)
{) 1 + D{z)(l - z-!)W(zy
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10.14 Stability of Discrete-Time Systems

Given that a system's pulse transfer function is T(z), under what conditions
can we say that the system is stable? First, let us agree that when we say
that a system is stable we mean that for any bounded input, the output
of the system remains bounded. I.e. the system is bounded input-bounded
output (BIBO) stable. Under what conditions is a system BIBO stable?

Recall that if one has a rational function—a function that can be ex-
pressed as the quotient of two polynomials—then the function can be writ-
ten as a sum of polynomials each of which has a single (possibly complex)
pole (that may be repeated several times). (See §1.3 for help with the
partial fraction expansion.) Let us consider a generic term of this type
and consider the conditions under which the associated sequence remains
bounded.

Consider:

£« = ̂ ?
This corresponds to the sequence e(k) = pk,k > 0. Clearly this remains
bounded if and only if \p\ < 1.

Now consider:

d . . z — p — z pz
dz (z-p)2 (z-p)2

As the transform of ke(k) is —z times E'(z), we find that if the pole in the
denominator is of multiplicity two, then the inverse z-transform is a multiple
of kpk. Note that this is bounded as long as \p\ < 1. If |p| = 1, this sequence
is unbounded (though it tends to infinity linearly and not exponentially).
For higher multiplicities one finds higher powers of k multiplying pk. This
changes nothing.

We conclude that the sequence associated with a term of the form:

z

(z~p)n

remains bounded if:

(1) \p\ < 1, or
(2) |p| = 1 and n = 1.

Now consider a system whose transfer function is T(z). Under what
conditions can we say that the system is stable? If T(z) has any poles
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outside of the unit circle, then almost no matter what the input to the
system is, the partial fractions expansion of the output will have a term
with a pole outside of the unit circle and will tend to infinity exponentially
fast. Thus, if any poles of T(z) are strictly outside the unit circle, then the
system is wildly unstable.

Next, consider a system with poles inside or on the unit circle. First let
us suppose that the system has no poles that are greater than or equal to
one in absolute value. That is, assume that all poles are strictly inside the
unit circle. Then if the input is R(z), the output will be T(z)R(z). Assume
that R(z) is a rational function of z. In order for the input to be bounded
all of the poles of R{z) must be inside or on the unit circle, and if they
are on the unit circle they must be simple poles. Under these conditions,
we know that the partial fractions expansion of T(z)R(z) will have terms
with poles inside the unit circle that correspond to the poles of T(z). It
will have terms inside the unit circle that correspond to the poles of R(z).
It may have simple poles on the unit circle that correspond to simple poles
of R(z) that are on the unit circles. Since all such poles lead to bounded
sequences, the output must be bounded. That is, if all of the poles ofT(z)
are located inside the unit circle, then the system is stable.

Suppose now that T(z) has a simple pole on the unit circle. Consider
the following scenario—suppose that the input to the block has a simple
pole at the same location. Then T(z)R(z) will have a double pole on the
unit circle. In the partial fractions expansion of T(z)R(z) there will be a
term with a double pole at that point on the unit circle. That will cause the
output to run off to infinity in a "linear" fashion. That is, certain bounded
inputs lead to unbounded outputs. Thus, even a simple pole on the unit
circle leads to an unstable system. A system with a simple pole on the unit
circle is said to be "marginally stable." It is almost, but not quite, stable.

A System for which T(z) = T/{z- 1)—An Example
Suppose that one is given a system for which:

T

To demonstrate that this system is unstable, input a signal with
a pole in the same location as the system's pole. One can pick
as the input the unit step function. With this choice of input
Vin(z) = z/(z — 1). The z-transform of the system's output is
Vout{z) = Tz/(z - I)2. This corresponds to vout{kT) = Tku(kT).
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That is, the output is a sampled ramp function. We see that the
output is unbounded even though the input is bounded.

10.15 A Condition for Stability

Much of the time the transfer functions we examine are of the form:

T(z) - %&
{) ~ Q(z)

where P{z) and Q(z) are polynomials with positive coefficients. We state
and prove a theorem that gives a necessary condition that such polynomials
have all their zeros inside the unit disk.

We start by proving a related result. Consider the polynomial:

Q(z) = ao + a\z + a^z + • • • a^zN, a,i € TZ.

Suppose that ao > a\ > a-i > • • • > â v > 0. We show that all of the zeros
of Q(z) are located outside the unit disk.

Consider the function (1 — z)Q(z). Clearly:

(1 - z)Q(z) = a0 + (oi - ao)z + • • • + (aN - aN^)zN - aNzN+1. (10.3)

Prom the triangle inequality, we know that \a(z) + b(z)\ < \a(z)\ + \b(z)\.
Letting a(z) = f(z) + g(z) and b(z) = —g(z), we find that:

I/WI < I/O*) + 9(z)\ + | - g(z)\ = \f(z) + g(z)\ + \g(z)\.

Rearranging terms, we find that:

l/(*) + s(*)l>l/(*)l-ls(*)|.
Combining this result with (10.3), we find that:

|(1 - z)Q(z)\ >a0- \(ax - ao)z + (o2 - a^z2

+ • • • + (aN - aN^)zN - aNzN+1\

> Oo — ((ao — ai)\z\ + (a : — a,2)\z\'2

+ ... + (aN_1-aN)\z\N + aN\z\N+1).

As we are interested in showing that the polynomial has no roots in the
region \z\ < 1, we consider z inside or on the unit circle. Because all of the
coefficients in the final form are positive, it is clear that (for points inside or
on the unit circle) we are subtracting as much as possible when \z\ = 1. At
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this point we find that |(1 — z)Q(z)\ > ao — ao = ao > 0. For all \z\ < 1 we
find that |(1 — z)Q(z)\ > 0. Thus, Q(z) has no zeros strictly inside the unit
circle. If \z\ = 1, the only way for equality to hold is if z = 1. (Because all
of the coefficients of the terms being subtracted are positive, if z ^ 1 there
is some cancellation. Because of the cancellation, |(1 — z)Q(z)\ > 0.) When
z = 1 it is clear that (1 - z)Q(z) = 0. However, Q(l) = ao-\ h ajv > 0.
Thus Q(z) has no zeros inside or on the unit circle.

Now consider a polynomial Q(z) of the same form but for which a^ >
ajv_i > ajv-2 > • • • o-o > 0. Note that:

zNQ(l/z) = aoz
N H h aN-\z + aN.

This new polynomial satisfies the conditions of our previous result. The new
polynomial has all of its zeros outside the unit circle. (The multiplication
by zN does not add zeros at z = 0. It removes a removable singularity.)
If a ^ 0 is a zero of zNQ(l/z), then I/a is a zero of Q(z). As every root
of Q{\/z) is located outside the unit circle, every root of Q(z) is located
inside the unit circle.

We have found that a sufficient condition for a polynomial Q(z) =
ao + a\z + aiz + • • • a^zN to have all of its roots inside the unit circle is
that ajv > ajv_x > ajv-2 > • • • ao > 0. This result is known as Enestrom's
theorem.

A Quick Check Using MATLAB—An Example
Let us consider the polynomial Q(z) = z4+0.9z3+0.8z2+0.7,z+

0.6. According to our theorem all of roots of this polynomial must
be inside the unit circle. Additionally, let us consider z4<3(l/z) =
0.6z4 + 0.7z3 + 0.8z2 + 0.9z + l. The roots of this polynomial should
be the reciprocals of the roots of the first polynomial; they should
all lie outsize the unit circle. Using MATLAB we find that:

» r t s l = roots([ l 0.9 0.8 0.7 0.6])

r t s l =

-0.7128 + 0.5149i
-0.7128 - 0.5149i
0.2628 + 0.8408i
0.2628 - 0.8408i
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» abs(rtsl)

ans =

0.8793

0.8793

0.8809

0.8809

» rts2 = roots([0.6 0.7 0.8 0.9 1])

rts2 =

0.3386 + 1.0835i

0.3386 - 1.0835i

-0.9219 + 0.6659i

-0.9219 - 0.6659i

» l./rts2

ans =

0.2628 - 0.8408i

0.2628 + 0.8408i

-0.7128 - 0.5149i

-0.7128 + 0.5149i

» abs(rts2)

ans =

1.1351
1.1351
1.1373
1.1373

(Note that l . / r t s 2 means divide 1 by each element of r ts2 and
produce a new array from the results.) MATLAB'S calculations bear
out all of our assertions.
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10.16 The Frequency Response

Suppose that the input to a sampled-data system is r(t) = ejut. Then the
z-transform of the sampled input, r(kT), is:

Assume that the transfer function of the system to which this signal is being
input is T(z) and that the system is stable—all of its poles are located inside
the unit circle. Then the z-transform of the output sequence, C(z), is:

Az
= r-^ + terms with poles inside the unit circle.

z - eJuT

Multiplying through by z — ejulT, and then substituting z = eju>T, we find
that:

A = T(ejujT).

Thus, we find that the output of the system is:

c(kT) = T(ejwT)eja>T + terms that decay.

Now let us consider what happens when:

r(t) = cos(wt) = .

As — ui is also an angular frequency, we can use our previous results and
linearity to say that:

c(kT) = ^ '- ^ - ^ '- + terms that decay.

Assuming that T(z) is a rational function with real coefficients, then it is
easy to show that T(z) = T(jz). Thus, under this (not terribly restrictive)
condition we find that:

c(kT) = Re(T(ej"T)eju>kT) + terms that decay.

Let us write:

T(e^T) = \T(^T)\e^T^T\
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Then we find that:

c{kT) = \T(eju)T)\cos{u>kT + ZT(eju;T)) + terms that decay.

Thus, if the input to a system is a cosine wave at a particular frequency,
then the steady-state output of the system is a cosine wave at the same
frequency shifted by the phase of T(e?uT) and amplified by the magnitude
ofT(ei"T). The function:

T{ejojT)

is called the frequency response of the discrete-time system. Note that the
frequency response at D.C.—when u> = 0—is just T(l). Thus, the steady-
state amplification seen by a D.C. signal is T(l).

A Simple Low-Pass Filter—An Example
Consider a system whose (pulse) transfer function is:

Let the input sequence to the system be denoted by x(k) and the
sequence output from the system be denoted by y(k). We find that:

Y(z) _ z-1 + 1
X(z) ~ 2 •

Cross-multiplying and converting the resulting equation back to an
equation for sequences, we find that:

y{k) = x(k)+x(k + l)^

That is, y(k) is an average of the last two values of x(k).
Now consider the frequency response of the filter. We find that:

T(e>»T) = l-±±

2

= e~ju;T/2cos{LjT/2).

Thus, the magnitude of the frequency response is:

|T(e^ r ) | = |cos(u,T/2)|.
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Clearly this function has a maximum at u> = 0 and decreases to
zero at w = ir/T. In this region the system is clearly low-pass.
In the next section we discuss why only the angular frequencies
between 0 and n/T are of interest to us.

10.17 A Bit about Aliasing

There is something a bit odd about the frequency response, T{e^T)—it is
periodic with period 2n/T. That means that high enough frequencies are
affected by our system in the same way low frequencies are.

Actually this behavior is not surprising at all. Suppose that the input
to the system is r(t) = sin((u> + 2ir/T)t). The samples of this sine wave are:

r(kT) = sin((w + 2n/T)kT) = sin(u;kT + 2nk) = sin(u>fcT).

That is, the samples here are the same as the samples of sm(u>t)—a lower
frequency signal. This is an example of aliasing.

As a rule, if one does not sample a sine wave fast enough, one cannot
determine the frequency of the sine wave from which the samples were
taken. Because we did not sample the sine wave fast enough, the samples
that we did take looked like the samples of sine wave at a lower frequency. It
can be shown that the frequency beyond which aliasing occurs, the Nyquist3

frequency, is:

= n t 1

^Nyquist — rpt JNyquist — ~rr, •

This effect is also seen in the frequency response. The frequency response
is 2TT/T periodic, but in the range [—TT/T, TT/T) half of the frequencies are
negative and, physically, are essentially the same as the positive frequencies
(for real inputs). The frequency range of interest is [0,7r/T).

10.18 The Behavior of the System in the Steady-State

Consider the system given in Figure 10.5. If the input to the system is a
constant and the output tends to a constant, then the input to the sample
and hold element is tending to a constant too. As a sample and hold circuit
with a constant input does not change its input at all, the output of the
sample and hold circuit is precisely its input—and the sample and hold

3Once again, Harry Nyquist of the eponymous plot.



Control of Hybrid Systems 279

circuit can be ignored. Thus, the gain in the steady state can be calculated
by removing the sample and hold elements and then calculating the steady
state gain of the remaining analog system.

As an example let us consider the system discussed at the end of §10.10.
In (10.2) we found that the transfer function of a feedback system composed
of a sample and hold element and an integrator is:

It is easily seen that the system without the sample-and-hold element tracks
a DC signal perfectly. (To see this, either calculate the transfer function
and plug in s = 0, or note that the integrator has infinite gain at DC.)
Plugging z — \ into the transfer function, we find that T(l) = 1. That is,
the discrete-time system tracks DC perfectly too—as it should.

10.19 The Bilinear Transform

In §10.15 we showed that a particular class of systems is stable. In §10.14
we determined a necessary and sufficient condition for stability—that the
poles of the system lie strictly inside the unit circle. Now we need to develop
a general technique that will allow us to determine whether or not the poles
of a system all lie inside the unit circle. We choose to transform the whole
question into a question that we know how to answer.

Suppose that we had a mapping z = B(w) that mapped every point in
the right half of the w plane in a one-to-one fashion onto the region outside
the unit circle; that mapped every point in the left half of the w plane in a
one-to-one fashion onto the region inside the unit circle; and that mapped
the imaginary axis of the w plane onto the unit circle of the z plane in a
one-to-one fashion.

Suppose that we have a function F(z) and we need to check whether
its poles are insider or outside of the unit circle. If we consider F(B(w))
instead, the question becomes whether or not the poles of the composite
function lie in the left half-plane. The advantage of this question is that it
is one that we have already developed many techniques for answering.

Let us consider the mapping:

2 + Tw
Z = B{W)E£2^-

This function maps every point in the w plane except the point w = 2/T
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into a point in the finite z plane. The point w = 2/T is mapped to z = oo.
With this definition of B(w) we find that w as a function of z is:

_ 2 + Tw
Z = 2-Tw

<=> 2z - zTw = 2 + Tw
O 2 z - 2 = T«) + zTw

2 2 - 1

^ w = r7TT
= B~l{z).

As there is an inverse for every value except for z = —1, we find that
B(tu) must be a one-to-one mapping onto the z-plane less the point —1.
Considering B(w), we find that B{w) maps oo to —1. If one considers oo
to be a single point, then the mapping is indeed one-to-one and onto.

To check that this mapping maps the regions correctly is easy. First of
all, if w = ju>w, then:

2 + Tjww = l2+T2wl _
|Z| 2-Tjuw ]J2 + T2ul

That is, the mapping takes the imaginary axis in the w-plane into the unit
circle of the z-plane.

Now let w = a + jb. Then we find that:

2 + Ta + Tjb _ l(2 + Ta)2 + (Tb)2

Z\~ 2-Ta + Tjb ~ y (2 - Ta)2 + (T6)2"

If a > 0, then \z\ > 1. Similarly, if a < 0, we find that \z\ < 1. Thus, we
find that the mapping is just the type of mapping we were looking for.

This particular mapping has another nice property. We have seen that
the value of the transfer function at z = e?wT determines the gain and
phase shift that the system imparts to a sine wave input at the frequency
u>z. Let us consider what value corresponds to z = e?u'T under the bilinear
transform. We already know that all points on the unit circle in the z-plane
are mapped into points on the imaginary axis in the w-plane. Thus, we can
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call the point into which z — ejWlT is mapped w = JLJW. We find that:

2 z-1
3Ww = TTTi

2eJ"' r-l
~ T ei"*T + 1

2 eJw2T/2 _ e-j"zT/2

= j-tsa(uzT/2).

Recall that uiz is the actual frequency under consideration. Currently JOJW

is just the point on the imaginary axis to which e7'1"* is mapped under the
bilinear transform.

Now suppose that \u)zT\/2 « 1. Then, tan(wzT/2) ss wzT/2. In that
case, we find that:

That is, under the bilinear transformation angular frequencies are mapped
almost correctly to the appropriate point on the imaginary axis in the w-
plane. The correspondence is perfect when uiz = 0, and it is very good
when UJZT is small. For very large values, it is not good.

A final and very major advantage of this mapping is that it takes ratio-
nal functions of z into rational functions of in. As most transfer functions
that we are interested in are rational functions of z, most of the trans-
formed functions are rational functions of w—and we have many tools for
examining such functions.

Let us consider several examples.

(1) In the system of Figure 10.7, let D(z) = 1, H{s) = 1, and Gp(s) = l/s.
As we saw in (10.2), the transfer function of the system is:

Let us use the bilinear transform to convert this to an analog-style
function. Making use of the definition of the bilinear transform, we
find that:

2 + Tw 2 - Tw _ 2Tw
Z~ ^ 2-Tw~ 2-Tw = 2-Tw
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Thus, we find that the bilinear transform of T(z) is:

2-Tw

Note that the function that plays the role that Gp(s) would play in
an analog system—2~^" has an interesting property. When one lets
T —> 0, one finds that this function tends to 1/w. That is it tends
to Gp(s) with s replaced by w. That is, the bilinear transform of the
z-transform of the analog portion of the system (with the hold circuit)
tends to the transfer function of the analog element as T —> 0.

(2) Consider the same problem, but with H(s) = 1 and:

G»« - ITS'

We find that the inverse Laplace transform of Gp(s)/s is just:

v{t) = e~5tu(t).

Thus:

We find that the transfer function of the system is:

(l-z-i)V(z)
{) l + C l - z - 1 ) ^ )

z - 1
z—e~5T

_ z - \
~ z-l+z- e~5T'

Let us consider the bilinear transform of this function. We find that:

2 + Tw 2-Tw _ 2Tw
Z~ ~ 2-Tw~ 2-Tw~ 2-Tw'

Also,

_5T _ 2 + Tw _ _5T2-Tw _ 2(l-e-5T) + Tw(l+e'5T)
Z~6 ~ 2-Tw 6 2-Tw~ 2-Tw

Thus,

T ( U ; ) = 2(l-e-5T)+Tw(3 + e~ST)-
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Let us consider the value of this function as T —» 0. We find that it
tends to:

T( ) -> 2Tw = W

[W) ""* 2(5T) + Tw(3 + 1) 5 + 2w '
Note that in the original system if the sample and hold element is
removed, then T(s) = s/(2s + 5). Thus, by taking T to zero, we have
"recovered" the analog system.

Using MATLAB—An Example
MATLAB can calculate bilinear transforms as well. The

command d2c converts cfiscrete-time transfer functions to
continuous-time transfer functions. If one would like to use d2c
to transform a discrete-time function to a continuous-time func-
tion, the syntax for the command is d2c(G, ' t u s t i n ' ) . Here G
is the discrete-time transfer function that is to be transformed
and ' t u s t in ' tells MATLAB that it is to use the bilinear trans-
form (also known as the Tustin transform) to transform the
continuous-time function. If, for example, one gives MATLAB
the commands:

Ts = 0.001
Gdisc = t f ( [ l -1] ,[2 -(l+exp(-5*Ts))],Ts)

Gcont = d2c(Gdisc, ' t u s t in ' )

MATLAB replies with:

Ts =

0.0010

Transfer function:

z - 1

2 z - 1.995

Sampling time: 0.001

Transfer function:
0.5006 s
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s + 2.497

Note how close the final transfer function is to s/(2s + 5).

Let us analyze the stability of the system. We have found that:

The bilinear transform of this element—our liGp(z)"—is:

r ( v 2Tw
p{W) 2(l-e-5T)+Tw(l+w-5T)'

Clearly:

T(W) = G>W

As the root locus diagram that corresponds to Gp(w) has one branch
that travels along the real axis from the single negative pole to the zero
at the origin, the system is stable no matter how much gain is inserted.
In particular, it is stable for a gain of one. Thus, the system is stable.
However, its gain at DC is (plugging in w = 0) zero. This could well
be a problem.

10.20 The Behavior of the Bilinear Transform as T -> 0

We consider the behavior of the bilinear transform of the z-transform of:

m = £-i (^z±HG{s)^ (i) = v{t) _ v(t _ T), v{s) = <M.

Let us consider f(t). As e~Ts produces a delay of T seconds and multipli-
cation by 1/s is integration in time, we find that:

rt pt-T rt
/(*)= / 9(y)dy-u(t-T) / g(y)dy= / g(y)dy,t>T.

J0 JO Jt-T

If g(t) is continuous /(0) = 0. For t > T, as long as T is small enough and
g(t) is differentiate4 we find that:

fit) = Tg(t) + O(T2).
4Differentiability is not actually necessary, but it makes the truth of the conclusion

easier to prove.
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Thus, the z-transform of f(t) is:

F(z) = JTf(kT)z-k

oo

= f>(W>-feT + O(T2)O (-L-) .
fc=i \ z '

The bilinear transform of F(z) is:

F(w) = £ g(kT) ^Y^) T + O(T2)O(1/(27V(2 - Tw))).

Note that:

2 + Tw l + (T/2)u,,, e ( ^ ) ^ Tw

2-Tu ; l - ( r / 2 ) « ; e-^/2)-' ~ ' l i u ; l < < i -

Proceeding formally5, we find that as T —> 0:

FH = g5(fcT)(|±^)" fcT + O(T)
OO

fe=i

- ^ g{t)e-wtdt = G{w).
Jo

That is, the bilinear transform tends to the Laplace transform of the analog
element from which it is derived—just as we saw previously.

10.21 Digital Compensators

We now show how using the bilinear transform the design of a digital com-
pensator can be reduced to the design of an analog compensator—a task
we have already mastered—and a few mechanical steps. Let us consider an
example.

5That is, without making all the estimates and listing all the conditions that are
necessary to proplerly prove the statement.
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Suppose that in Figure 10.7 we let H(s) = 1 and Gp(s) = l/(s + 1).
Then:

"W-Z(«TI))("
= Z((l-e->)u(t))(z)

z z
= z - 1 ~ z - e~T

(l-e~T)z
(z-l)(z-e-Ty

As:

(l-z-1)V(z) = ^V(z)=1^0F,

we find that:

T{z) = v J z ~ e
 T .

A simple check that we have not made any silly mistakes yet is to check the
gain at DC when D(z) = 1—when there is no compensator. As we have
already seen, the gain at DC must be the same both in the circuit with the
sample-and-hold element and in the purely analog circuit. In the purely
analog circuit it is easy to see that the gain at DC is 1/(1 + 1) = 1/2. In
the digital case, let z = 1. We find that here too T(l) = 1/2.

Suppose that we want to compensate the system in such a way that the
gain of the system at DC will be 1. We use the bilinear transform to give us
functions of w to which we relate as though the functions represent analog
components.

Let:

_ 2 + Tw
Z~ 2-Tw'

Then we find that:

_T 2 + Tw _T2-Tw 2(1 - e~T) + Tw(l + e~T)
Z~e ~ 2 - Tw ~6 2-Tw~ 2-Tw "

Prom this we see that the expression (1 — e~T)/(z — e~T)—an expression
which plays the role of the given plant—goes over to

C(w)- (l-e-T)(2-Tw)
p{ ' ~ 2(1 - e~T) + Tw(l + e~T)'
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Thus we find that:

Tiro) = g W G »
{ ' l + D{w)Gp{wY

Note that if D(w) = 1—if there is no compensator—then:

D(O)CP(Q) 1-1
W 1 + D(0)Gp(0) " 1 + 1 • 1 ~ /Z-

This is exactly what we saw when we used the z-transform.
How can we compensate this system so that the gain at DC—when

w = 0—will be 1? As Gp(0) — 1, we find that the gain at DC is just:

r(0) = D®W 1 + £>(0)

The only way that this can be 1 is if D(0) = oo. The simplest function for
which this holds is D(w) = Kj/w. This compensator is, in some sense, an
integrator. Let us check the stability of our system with this compensator.

With D(w) = Ki/w, we find that the denominator of T(w) is:

1 Ki (l~e-T)(2-Tw)
denominator = H •—— " '

w 2(1 - e~T) + Tw(l + e~T)

u;(2(l - e~T) + Tw(l + e~T)) + KJ{1 - e~T)(2 - Tw)

2(l-e-T)+Tw(l + e-T)
The zeros of the denominator—the poles of the system—are the solutions
of:

w(2(l - e~T) + Tw(l + e~T)) + Ki{\ - e~T){2 - Tw) = 0

Rewriting this, we find that we are looking for the solutions of:

T(l - e-T)w2 + (2(1 - e~T) - KjT(l - e~T)) w + K^l - e~T) = 0.

It is well known (and easy to show using the Routh-Hurwitz theorem—see
Problem 8a of §4.3) that the condition for all of the roots of a quadratic to
be in the left half-plane is that all of the coefficients have the same sign. As
the coefficient of w2 is positive the other coefficients must be positive too.
Thus, Ki > 0, and TKi < 2. These then are the conditions for stability.

Let us now convert our compensator back into a function of z. As:

2 z - 1
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we find that:

What recursion relation do the input, x{k), and the output, y(k), sat-
isfy? By the definition of the transfer function,

Y{z) _Tz + 1 _Tl + z~l

X(z) ~ ~2z-l ~ ~2\-z~1'

Cross-multiplying, we find that:

Y(z) - z^Yjz) ^ X(z) + z-lX{z)
T ~ 2

Inverse transforming we find that:

y(k)-y{k-l) _ x{k) + x{k-l)
T ~ 2

If T is small, then this looks very much like "the derivative of y is equal to
x." That is, y is the integral of x—just as we planned in the w-plane.

If one would like to write this equation in a way that is reasonably
simple to implement, one writes:

y(k) = y(k - 1) + (T/2)x(k) + (T/2)x(k - 1).

(This equation can be implemented in a couple of lines of code on a simple
microcontroller.)

10.22 When Is There No Pulse Transfer Function?

Consider a linear time invariant system that has a sample-and-hold element
in it. Under what conditions will there not be a pulse transfer function?
The answer to this question is essentially simple. There will be no pulse
transfer function when the output of the system at sampling intervals is
not only a function of the input at sampling intervals but also of the input
between sampling intervals.

Consider the system of Figure 10.8. Let us show that this system has
no transfer function. Let:

r o t < T/A
r(t) = I 1 T/4 < t < 3T/4 .

[ot> 3T/4.
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Fig. 10.8 A System Without a Transfer Function

Note that the z-transform of the input—the z-transform of r(kT)—is zero.
The input is always zero at the sampling instants. Let us consider what
the output of the system is. Integrating this pulse gives us the function:

,t f 0 t<T/A
I r(y) dy=l (t - T/4) T/4 < t < 3T/4 .

Jo [ T/2 t> 3T/4

Thus the output of the system at sample times is {0, T/2, T/2, . . .} . The
z-transform of the output is:

T 1

Now suppose that the system has a transfer function, T(z). Then as
the z-transform of the input is 0, the z-transform of the output must be:

Voutiz) = T(z) -0 = 0.

But the z-transform of the output is not zero. Thus the system has no
transfer function. The reason that there is no transfer function is that the
input to the sample-and-hold element is not dependent on the values of the
input only at the sample instants. The input to the sample-and-hold is the
integral of the input to the system. Hence it depends on the input to the
system at all times. Thus there can be no pulse transfer function.

10.23 An Introduction to the Modified Z-Transform

Until now we have assumed that in a system with a sample-and-hold circuit
one cannot calculate the value of the output between sampling times. This
is not true. By working a little harder than one does to find out the value
of the output at sampling times, one can find the value between sampling
times too.
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Fig. 10.9 A Generic System for Use with the Modified Z-transform

There are several ways of seeing what one can do. One way is to consider
the system of Figure 10.9. In this figure the final element is a "virtual
element" that delays the output by mT seconds. Note that we require that
0 < m < 1. The delay is always a fraction of one sampling period. The
actual output of the system is V0(s). However, the output of the virtual
element is e~mTsVo{s). The inverse z-transform of samples of the output
of this virtual element is:

vo(kT-mT).

As m is between 0 and 1, these samples are samples of the output between
sampling intervals.

Let us consider an example. Let Gp(s) = 1/s and let Vin(s) = 1/s. We
proceed to analyze the system including the virtual element. We find that
the transfer function of the system is:

{l-z-l)Z{e-mTs/s2){z).

The inverse Laplace transform of 1/s2 is tu(t). The time shifted version of
this function is (t — mT)u(t — mT). This equals tu(t — mT) — mTu(t — mT).
Sampling at t = kT, we find that the samples are:

kTu(kT - mT) - mTu(kT - mT).

Clearly the z-transform of the samples is just:

Z{e /s ){z) ~ (Trip - ^ry-
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Now let us consider the samples of the output of the system when the
input to the system is the unit step function. Clearly, Vin(z) = z/(z — 1).
Thus,

nr \ rr w t \ z ~ l ( Tz mT \ z Tz mT

The inverse z-transform of this function is:

d{kT) = kTu(kT) - mTu{{k - 1)T).

As at zero the k in the first term forces the term to zero, this function can
be written:

d(kT) = vo(kT - mT) = (k - mT)u((k - 1)T).

Let us check to see if our answer is correct. If one passes a unit step
through a sample-and-hold element, the unit step is output by the sample-
and-hold without any changes. Thus, the input to the integrator is a unit
step function. The output of the integrator is tu(t). The output of the
delay is (t — mT)u(t — mT). After sampling the output, we find that
d(kT) = (kT — mT)u(kT — mT). Since we are only interested in integer
values of k this is equal to:

d(kT) = (kT - mT)u((k - l)T).

This is precisely the answer we got using the pulse transfer function.
To treat systems with feedback, one must add a virtual delay in the for-

ward path and a virtual "predictor" (something that sees into the future—
whose transfer function is e+mTs) in the feedback. The "predictor" precisely
cancels the effects of the delay. This allows one to calculate the output of
a system with feedback at non-sample times.

The z-transforms that one calculates when e~mTs is part of the transfer
function are called modified z-transforms. Tables of these transforms are
available. (See [Jur58], for example.)

10.24 Exercises

(1) Find the z-transform of the sequence whose elements are:

(a) e(k) = cos(ojk).
(b) e(k) = k2.
(c) e(k) = fcsin(wfc).



292 A Mathematical Introduction to Control Theory

(2) Can one use the final value theorem to calculate:

lim e{k)
k—KX>

when e(k) = sin(fc)? Why or why not?
(3) Use the initial value theorem to show that if:

then e(0) = 1, while if:

E& = 7 ^ '

then e(0) = 0.
(4) Making use of translation property and the z-transform of the sequence

e(k) = ak, find the inverse z-transform of:

1
z-p'

How does this explain the results of the previous question?
(5) Find the star-transform of the sequence whose elements are e(kT) =

e-kT.
(6) Let:

*•<" " 3TT-
(a) Show that a block with transfer function T(z) is marginally stable.
(b) Produce a bounded input for which the output of the block is un-

bounded.
(c) Calculate the output of the block for the input given in the previous

section.

(7) Let:

T{z) = ——, 0<a<l.
z — a

(a) What is the frequency response of the block?

(b) What kind of filter does this block represent?

(8) In Figure 10.5 let Gp(s) = l/(s + 1) and let H(s) = 1.

(a) FindT(z).
(b) Find r(io).
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(c) Show that as T —> 0, T(w) approaches the transfer function of the
system without the sample-and-hold circuit.

(9) In Figure 10.7 let Gp(s) = l/(s + 1) and H(s) = 1.

(a) Design a compensator, D(w), that will cause the system to track a
DC input in the steady-state.

(b) Show that the system with the compensator is stable.
(c) Find the recurrence relation satisfied by the input and the output

of the compensator.

(10) In Figure 10.5 let Gp(s) = 1/s2 and let H(s) = 1.

(a) Find Gp(z) = (1 - z~l)V(z).
(b) Find Gp(w).
(c) Use the Routh-Hurwitz criterion to show that the system is unsta-

ble for all T > 0.

(11) In the system of Figure 10.8 replace the integrator block (the block
whose transfer function is 1/s) with a differentiator block (a block
whose transfer function is s). Show that the new system has no pulse
transfer function. Explain why this is so.

(12) Find the z-transform of u(t) - u(t - T).
(13) In Figure 10.9 let T = 0.1 and Gp(s) = l/(s + 1). Let vin(t) = u(t) -

u(t - T). Find vo(kT - mT).
(14) In Figure 10.9 let T = 0.1 and Gp{s) = l/(s + 1). Let vin(t) = u(t).

Find vo(kT-mT).
(15) Show that if E(l) is well defined, then:

£(l) = f>(fc).
fc=0

(16) (a) Please calculate the pulse transfer function of the system of Figure
10.5 when Gp{s) = s/(s + 1) and H(s) = 1.

(b) What is vo{kT) when the input to the system is Vin(t) = u(t)?
(17) (a) Please calculate the pulse transfer function of the system of Figure

10.7 when Gp(s) = 1/s, H{s) = 1, and D(z) = (1 - z~l)/T.
(b) What is vo{kT) when the input to the system is Vin(t) = u(i)?

(18) In Figure 10.7 let Gp(s) = l/(s + 3) and H(s) = 1.

(a) Design a compensator, D(w), that will cause the system to track
a DC input in the steady-state.

(b) Determine the values of T for which the system with the compen-
sator is stable.
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(c) Find recurrence relation satisfied by the input and the output of
the compensator.

(19) In Figure 10.7 let Gp{s) = 1/s2, and let H(s) = 1. Use a PD compen-
sator in the w-plane to stabilize the system.

(a) Determine the range of values of Kp and KB that stabilize the
system. Note that the range of values of Kp and K& that stabilizes
the system may be a function of T.

(b) If x(k) is the input to the compensator and y(k) is its output, what
equation do x(k) and y(k) satisfy?



Chapter 11

Answers to Selected Exercises

11.1 Chapter 1

11.1.1 Problem 1

l.a. On page 5 we found that:

£(coS(t))(s) = ^ - I .

Using the dilation property of the Laplace transform, we find that:

1 s/ui s
£{cos{ujt)){s) - — „ = -5——5-.

w (S/LJ)2 + 1 s 2 +w 2

l.b. We find that:

£(£e-( cos(t))(s) = C(tcos(t))(s + 1)

= - A £ ( c o s ( i ) ) ( s )

d s

" («2 + I)2 , _ . + 1

( ^ + 1 ) 2 - 1
((S + 1)2 + 1)2"

295
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I.e. We find that:

£(t2e-t)(s)=C{ti)(s + l)
_ 2

S s—s+1
_ 2

l.d. We find that:

£(e-tsin(2f))(s) = £(sin(2*))(s + 1)
2

_ 2
~ (s + l)2 + 4-

11.1.2 Problem 3

3. We must solve the ODE:

y"(t) + 5y'(t) + 4y(t) = 1

subject to the initial conditions y(0) = y'(0) = 0. Taking the Laplace
transform of both sides (and noting that the Laplace transform of 1 and
of u(t) must be the same because the functions are identical when t > 0),
making use of the initial conditions, and denoting the Laplace transform of
y(t) by Y(s), we find that:

s2Y(s) + 5sY(s)+4Y(s) = -.
s

Thus, we find that:

Y(s) = ^
V) s(s2 + 5s + 4)

1
s(s + l)(s + 4)

partial fractions A. B C
S S + 1 S + 4 '

After clearing denominators we find that:

1 = A(s + l)(s + 4) + Bs{s + 4) + Cs(s + 1).
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Rewriting this, we find that:

1 = (A + B + C)s2 + (5A + 4B + C)s + AA.

Equating coefficients, we find that:

A+B+C= 0

5 A + 4B + C = 0

4A = 1.

We find that A = 1/4, B = -1/3, and C = 1/12. Thus:

y ( s ^ _ 1/4 1/3 1/12

We see that:

"<t) = (j-k'+^"4')" ( t )-
11.1.3 Problem 5

5. We must solve the integral equation:

/ y(r) dr = —y(t) + sin(ujt)u(t).
Jo

Taking Laplace transforms and denoting the Laplace transform of y(t) by
Y(s), we find that:

Rearranging the terms, we find that:

We find that:

[S) ~ (5 + l)(s2+w2) ~ 5 + 1 s 2 +w 2 '

Clearing the denominators, we find that:

A{s2 + w2) + (Bs + C)(s + 1) = sw.

Rewriting this, we find that:

(A + B)s2 + (B + C)s + (Au2 + C) = sw.
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Equating coefficients we find that:

A + B = 0

B + C = w

Aw2 + C = 0.

Solving these equations we find that:

TT^' i+w2' C ~ T T ^ '
We find that:

•VI \ - w ( - 1 4. s + u>2 \(S)~ 1+w2 V* + l s 2 + W '

By inspection, the inverse transform of this is just:

y(t) = 2 (-e-1 +cos(<jt) +usin{u)t)) u(t).

11.1.4 Problem 7

7. Following the instructions given in the problem, we find that:

Vs Jo
_2_VTT_

yfs 2

• f?

11.2 Chapter 2

11.2.1 Problem 1

l.a. We must find the transfer function of the system whose input, x(t),
and output, y(t), satisfy the ODE:

y"(t)+y'(t)+y(t)=x(t).
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Recall that in finding a transfer function we assume that all initial condi-
tions are zero. Letting X(s) and Y(s) be the Laplace transform of x{t) and
y(t) respectively, we find that:

s2Y(s) + sY(s) + Y(s)=X{s).

Rearranging terms, we find that:

Y(s) ^ 1
X(s) s2 + s + l'

This is the transfer function.
l.b. To get MATLAB to print the Bode plots that correspond to this

transfer function, proceed as follows. First type:

T = t f ( [ l ] , [ l i 1])

MATLAB responds with:

Transfer function:
1

2
s + s + 1

Then type bode (T). MATLAB will respond with the Bode plots.

11.2.2 Problem 3

3. In Problem 2c we are asked to evaluate the step response of the system
whose transfer function is:

T ( S ) = s2 + 10s + 50"

Let us estimate this step response. First of all, we find that T(0) = 0.1.
Thus, the steady state amplitude of the output will be 0.1. We find that
wn = VE6 and that 2(un = 10. Thus, wn = 7.01 and < = 0.70. From the
value of £ (using (2.4)) we calculate that the percent overshoot is 4.3%—
i.e. there is not much overshoot. The rise time of the output is about
3/(£u/n) = 0.6. Assuming that the rise is more or less linear, we find that the
slope of the rise in this 0.6 second interval is approximately 0.1/0.6 = 0.17.
Note that the response we are asked to consider should be the derivative
of the response of the system of Problem 2c. Assuming that the response
of the first figure is linear until t = 0.6 and zero afterwards, we find that
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the output should be approximately 0.17 until t = 0.6 and zero afterwards.
The actual response is given in Figure 11.1. Though the response does not
quite agree with our estimate, note that the time-frame is correct and the
values given are not too far from the correct values.

Fig. 11.1 The Step Response

11.2.3 Problem 5

5. We are asked to consider the system described by:

T(a) = ^

Note that the poles of the transfer function are:

s = -Cwn±wny/p-l=u>n((-l±jV1~P\ . (11.1)



Answers to Selected Exercises 301

For this system, the rise time is approximately 3/(£wn) and the percent
overshoot is given by:

percent overshoot = e Vi-c2 x 100%.

The two conditions on the output translate into:

gTT^C5 < O.

Rearranging the conditions, we find that they can be written:

(un > Z/T

7R!< *_
c - Hoy

We find that the second condition limits the angle of

In fact, considering the pole with positive imaginary part, we find that it
can have imaginary part no larger than —7r/ln(O). Thus its angle must be
between 180° and

By symmetry, we find that the angle of /z must be in the interval:

As the angle of fj, is equal to the angle of the pole, the poles in our region
must have angles in this interval too. Furthermore, as 7?.(pole) = — £wn,
the other condition says that the real part of the pole must be less than
or equal to —3/T. See Figure 11.2 to get an idea of what the region looks
like.

11.2.4 Problem 7

7. In the analysis of Problem 5 we found that the poles of this system are
—u>nC i iw n \ / l — C2- If C = 0, then there are two poles on the imaginary
axis—the system is marginally stable (which means that the system is just
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Fig. 11.2 The Region

barely unstable). If £ > 0, then it is not hard to show that both of the
poles of the system are in the left half-plane. We consider the cases £ < 1
and £ > 1 separately.

If C < 1, then the poles are:

Clearly both poles have as their real part — C,uJn < 0.
If C > 1, then the poles are both real and their value is:

As A/£2 — 1 < C, it is clear that the poles are both negative and the system
is stable.
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11.3 Chapter 3

11.3.1 Problem 1

l.a. We find that:

Vo(s) = 7^1(V+(s)-V^s))

= ;r+T^s) - W)-
Rearranging the terms we find that:

l«"(1 + S^i)-STTK-W-
That is:

1 + ST+l

Thus, the transfer function is:

l.b. We find that:

^ - ATT'
As A is generally very large this number is generally very close to one.

I.e. We find that the sensitivity is:

r w = dT(s) A
A DA T(s)

_ (ST + 1 + A)-A A
~~ (ST + 1 + A)2 T(s)
_ ST + 1
~ ST + 1 + A'

l.d. We find that when 5 = 0:

bA 3=0 - YTA ~u'
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11.3.2 Problem 3

3.a. In case i we find:

This is certainly stable.
In case ii we find that:

As this has a single negative pole, this too must be stable.

In case iii we find that:

T(s) - l/$2 - ~^—

Here the two poles are ±j. As these are on the imaginary axis this system
is (just barely) unstable.

3.b. If a system is unstable then using the final value theorem can lead
to wrong answers.

11.3.3 Problem 5

5.a. Considering Figure 3.11 we find that:

Vo(s) = N(s) + Gp(s)(Vin(s) - Vo(s)).

Rewriting this we find that:

Vo(s)(l + Gp(s)) = Gp(s)Vin(s) + N(s).

We see that:

Vo(s) = . ^ M s ) + l N(s).
1 + Crp(SJ 1 + txp(SJ

Finally, if we let Gp(s) = K, then we find that:

v°W = TTKVin{s) + TTKN{s)-
5.b. The noise does not affect the output very much.
5.c. The noise arrives at the output with very little attenuation.
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11.3.4 Problem 7

7. Note that the gain provided by 1/s is very large when \s\ is small and
small when \s\ is large. Thus, low frequency noise should have practically
no effect on the output whereas high frequency noise suffers practically no
change.

11.4 Chapter 4

11.4.1 Problem 1

l.a. The Routh array corresponding to the polynomial is:

1 1
30 .
10

As there are no sign changes in the first column, there are no RHP zeros,
l.b. The Routh array corresponding to the polynomial is:

10
0 1 '

As the array terminates prematurely there must be some RHP zeros. As
one of the zeros of our polynomial s3 + 1 is — 1, we know that s3 + 1 is
divisible by s + 1. In fact:

s3 + l 2

—2— = s
2 - s + l.

s + 1
Let us determine how many zeros s2 — s + 1 has in the RHP. The Routh
array that corresponds to this polynomial is:

1 1
- 1 0 .

10

As there are two sign changes, this polynomial has two zeros in the RHP.
As s3 + 1 = (s + l)(s2 — s + 1), we find that s3 + 1 has two zeros in the
RHP.

I.e. The Routh array that corresponds to the polynomial is:

1 31
000"
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As the Routh array terminates prematurely there are RHP zeros,
l.d. In this case, we find that the Routh array is:

1 1 1
1 10.
0 10

As the Routh array terminates prematurely, we know that there is at least
one RHP zero.

I.e. Here the Routh array is:

101
1 0 0 ,
0 1 0

and once again we see that the array terminates prematurely. As there are
no sign changes before the array terminates, we can look at the polyno-
mial that corresponds to the last two rows to get some more information
about the number of RHP zeros. The number of RHP zeros of our original
polynomial must equal the number of RHP zeros of this polynomial. The
polynomial that corresponds to the last two rows is:

s3 + l.

Rather than using the analysis we used in l.b, we find the solutions of
s3 + 1 = 0 by using some facts from complex variables. The three solution
of s3 + 1 = 0 are

We find that there are two zeros in the RHP.

11.4.2 Problem 3

3. If one defines x = s2, then one finds that our polynomial can be written
as:

x2 + 3x + 1.

The zeros of the original fourth order polynomial must satisfy the equation:

s = ± v solutions of x2 + 3x + 1 = 0.
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Consider what the solutions of this equations must be. If the square root is
in the LHP, the minus the square root is in the RHP. If the square root is
in the RHP not including the imaginary axis, then minus the square root
is in the LHP. If the square root is imaginary—and hence (just barely) in
the RHP, then minus the square root is also (just barely) in the RHP. Thus
each solution leads to either one or two zeros in the RHP. We find that on
general grounds, this type of fourth order polynomial must have either two
or four zeros in the RHP.

11.4.3 Problem 5

5. Here we find that:

as2+b

T(s) = ~°V.
1 "" s3

_ as2 + b
s3 + as2 + b

The Routh array that corresponds to the denominator is:

10
a b

-b/a 0'
60

As there are two sign changes in the Routh array, we see that our system
has two poles in the RHP and is certainly not stable.

11.4.4 Problem 7

7. a. With:

_ (5-o)(s + 3)
G p ( S ) - s2 + 3s + 2 '

we find that:

TM = K(s-a)(s + 3)
{ ' s2 + 3s + 2 + #(s-a)(s + 3)

K(s-a)(s + 3)
~ (1 + K)s2 + (3 + K(3 - a))s + 2 - 3Ka'
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The Routh array corresponding to the denominator is:

1+K2- 3Ka
3 + K(3-a) 0.

2 - 3Ka 0

As K > 0, we find that for all the elements of the first column to have
the same sign all of the elements must be positive (as the first element is
definitely positive). This leads to the two conditions:

3 + K(3 - a) > 0

2 - 3Ka > 0.

The second condition leads us to the condition that:

K<Ta

The first condition is certainly true if a < 3. When a > 3, it leads to the
condition that:

a-3

Let us compare the sizes of these conditions when a > 3. We find that:

3 2 ^ 9 a - 2 ( q - 3 ) _ 7a + 6
a - 3 3a 3a(a - 3) 3a(a - 3) '

Thus, the condition:

is always the stricter condition and is the only one we need to consider.
7.b. Consider the Routh array when a = 0. It is all positive if K > 0.

Thus the system (with a = 0) is stable for all K > 0.
7.c. We see that zeros in the right half plane tend to make a system

unstable at relatively high gains.
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11.4.5 Problem 9

9. Here we find that:

_ K(s2 + 201s + 10100)
[S) s{s2 + s + 1) + K(s2 + 2015 + 10100)

K{s1 + 2015 + 10100)
~ s3 + (1 + K)s2 + (1 + 2O1.K> + 10100.fi:"

The Routh array that corresponds to the denominator is:

1 1 + 201.fi:
1 + K lOlOOtf

1 + 201K - f f 0 '
lOlOOtf 0

In order for the system to be stable all of the elements in the first column
must have the same sign. We find that:

l+K>0

10100.fi" > 0.

The first inequality requires that K > — 1, and the last requires that K > 0.
As we know that for stability K > 0, we can clear the denominator of the
second condition. This leads to the condition that:

(1 + 201A")(l + K)- 10100.fi" = 201.fi:2 + (201 - 10100)K + 1 > 0.

This is a quadratic equation in K. It is clear that for large \K\ this quadratic
is positive. Thus there are certainly some values of K for which the system
is stable. Let us find the zeros of the quadratic. We find that:

(10100 - 201) ± /̂(lOlOO - 201)2 -4 -201
2-201

Evaluating this expression, we find that the two roots are:

Kx = 1-00 x 10~4, K2 = 49.2.

As we know that for large values of \K\ the system is stable, we see that
the system is unstable only when:

Kx>K> K2.
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11.5 Chapter 5

11.5.1 Problem 1

l.a. We must consider how the unit circle is mapped by 1/z2. In this case it
is clear that the circle is mapped into two circles about the origin but whose
direction is the opposite of the direction of the original circle. Clearly 1/z2

has no zeros in the unit circle—its numerator cannot be zero. We find that
E = - 2 and N = 0. Thus P = 2. (Clearly 1/z2 does have two poles inside
the unit circle—it has two poles at the origin.)

l.b. Consider Figure 11.3. Our region is the unit circle. It is plotted in
the left-hand diagram. The mapping of the boundary under the map

f(z) = l/(z(z-2))

is shown in the right-hand diagram.

Fig. 11.3 /(*) = ]IpL_y
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In order to make it possible to determine the direction of each plot, we
have used dots, o's, pluses and then x's in that order in the plots. We see
that the curve in the right-hand diagram encircles the origin once in the
direction opposite that taken by the curve in the left-hand diagram—which
is the boundary of the region of interest. As it is clear that f(z) has no
zeros in the region of interest, we find that:

E = -l,N = 0.

Thus, we see that P = 1.
I.e. Consider the plots in Figure 11.4. We find that here the mapping

of the boundary of region of interest circles the origin once in the positive
direction. As it is clear that f(z) = -^rri n a s one zero in the region, we
find that:

N = l,E = l.

Thus, we find that P — 0—as it should be.

11.5.2 Problem 3

3. We plot the Nyquist plot in Figure 11.5. We see that because of the
negative phase contributed by the term:

K

7+1'
and because of the fact that the term 1/s2 contributes a (at least almost)
full circle when it maps the small semi-circle that skirts the origin, the
Nyquist plot of:

encircles —1 twice for all positive K. Thus, the system is unstable for all
positive K,

11.5.3 Problem 5

5. This problem is very similar to Problem 3. Here too we make use of
the fact that 1/s2 is borderline unstable and can tolerate no addition of
negative phase. We use this to show that a term like e~Ts—which always
adds negative phase—is guaranteed to destabilize our system. To show
this in a graphical way, consider the Nyquist plot that corresponds to the
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Fig. 11.4 f(z) = ^

system with T = 0.5 given in Figure 11.6. We see that —1 is encircled twice
here—showing that our system is unstable.

11.5.4 Problem 7

7.a. The gain plot is a line that is always decreasing at 20dB/dec. The
phase plot is always decreasing and its value is:

-180°-Twl80°/7r.

As the u) axis is scaled logarithmically, this will not appear as a straight
line.

7.b. As we have already shown in Problem 5, this system is absolutely
unstable when T > 0. To calculate the gain margin—which should be
negative—one must find the point at which the Nyquist plot crosses the
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Fig. 11.5 GP(S) = ^ p j y

negative real axis. In this case, that crossing is caused by the "infinitesimal"
semi-circle that skirts the origin. Thus, the only gain that leads to a stable
system is 0. One over that gain is oo. Thus, the gain margin is — oodB. To
find the phase margin we must determine when \GP(JLJ)\ = 1. Clearly this
occurs when u = 1. At this point,

ZGp(joj) = -180° - Twl80°/7r.

We find that the phase margin is -TW180O/TT.

7.c. The system is quite unstable.
7.d. To say that it would be unwise to use such a system is to massively

understate the case. One should stay far far away from a system that
promises to be as poorly behaved as this system.
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Fig. 11.6 Gp(s) = £-^.,p = 0.75,.R = 3

11.5.5 Problem 9

9. Near zero the transfer function of a system with n poles at the origin
will look like:

Thus, at low frequencies we will find that:

Thus, the amplitude of the frequency response (in dB) will be:

201og10 (J^J = -20nlog10(w) + 201og10(tf).
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Clearly this is falling at a rate of 20n dB per decade. That is, if at low
frequencies the frequency response falls off at the rate of 20n dB per decade
then the transfer function has n poles at the origin.

11.5.6 Problem 11

11.a. Using the first approximation, we find that the poles of the system
are (approximately) the solutions of the equation:

1 - T s
1 + = 0.

s

The lone solution of this equation is:

_ 1

As this is negative until T — 1, we find that the set of values for which the
system is stable is T < 1.

ll.b. Using the second approximation, we find that the poles of the
system are (approximately) the solutions of the equation:

x | i - r s + (r2/2)s2_a

s

We find that the poles of the system are (approximately) the solutions of
the quadratic equation:

(T2/2)s2 + (1 - T)s + 1 = 0.

We have found that a necessary and sufficient condition for all the roots of
this equation to be in the left half-plane is that all of the coefficients have
the same sign. Here that translates into the condition T < 1 yet again.

ll.c. Using the third approximation, we find that the poles of the system
are (approximately) the solutions of the equation:

i t l-Ts + (Ty2)s2-(T3/6)s3 _ Q

s

We find that the poles of the system are (approximately) the solutions of
the quadratic equation:

-(T3 /6)s3 + (T2/2)s2 + (1 - T)s + 1 = 0.
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Let us consider the Routh matrix that corresponds to this polynomial. We
find that it is:

-(T3 /6) 1 - T
T2/2 1

i - f o-
1 0

As always, we require that T > 0—that our delay be a delay. We find that
the first column can never be of one sign. Thus, this approximation gives
an unstable system for all delays—a result that we know if very wrong.

11.d. Note that the system give in the previous section is not at all low-
pass in nature. In fact the degree of the numerator is two greater than the
degree of the denominator. That leads the large semi-circle to be mapped
into a large circle. This circle leads to an encirclement of —1 for all values
of T—and this is why the approximation does not give reasonable results.

11.6 Chapter 6

11.6.1 Problem 1

l.a. The root locus has one branch because the degree of the denominator
(and the numerator) is one. Prom rule 2, we see that the branch connects
s = 0 to s = — 1 and lies on the real axis. See Figure 11.7 for the root locus
diagram.

l.b. There are two branches; from rule 2 we see that one connects 0 to
—1 and the other connects —2 to -co. See Figure 11.8 for the root locus
diagram.

I.e. From rule 3 we see that three branches leave from the origin. From
rule 4 we see that one branch leaves the pole at zero and connects to the
"zero" at — oo. The other two connect 0 to the zeros of the numerator—±j.
From rule 10 we see that near the origin the root locus must behave like
the root locus of 1/s3. Thus, two poles must leave the origin and enter the
RHP while one leaves the origin and moves into the LHP. See Figure 11.9
for the root locus diagram.

11.6.2 Problem 3

3. The root locus diagram corresponding to Gi(s) is given in Figure 11.10.
As the denominator of G\(s) is a fourth order polynomial (and the degree



Answers to Selected Exercises 317

Fig. 11.7 The Root Locus Diagram for -^

of the numerator is smaller than four), the root locus has four branches.
One of the branches connects the pole at zero to the zero at —0.1. The
next branch connects the pole at —0.2 to the pole at —10. As this is a
connection between two poles, we know that the branch must leave the
real axis between the two poles. As the degree of the denominator is three
greater than the degree of the numerator, we find that the sum of all the
poles must remain constant. As the last branch connects —20 to — oo, we
find that the two branches must tend towards +oo.

The root locus diagram that corresponds to (?2(s) is given in Figure
11.11. As the degree of the denominator is two, the root locus diagram has
two branches. One branch connects the pole at zero to the zero at —0.1
while the second branch connects the pole at —0.2 to the zero at —oo.

The reason that the two plots are similar near the origin is that the
difference between the two transfer functions is two poles that are far from
the origin. Such poles do not change the root locus diagram very much
near the origin.
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Fig. 11.8 The Root Locus Diagram for ?+*

11.6.3 Problem 5

5. The root locus diagram that corresponds to Gp(s) is given in Figure
11.12. We see that two branches of the root locus break away between
s = 0 and s = — 1. To calculate where they break away we must find the
solutions of:

LG (A d s + 5

dsUp{S>~ dss(s + l)(s + 2)
_ d s + 5
~ d~ss3+ 3s2 + 2s
_ (s3 + 3s2 + 2s) - (s + 5)(3s2 + 6s + 2)

(s3 + 3s2 + 2s)2

_ -2s3 - 18s2 - 30s - 10
(s3 + 3s2 + 2s)2

- 0 .
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Fig. 11.9 The Root Locus Diagram for Gp(s) = s-^-

The zeros of this function are the zeros of its numerator. Thus, we must
calculate the zeros of:

-2s 3 - 18s2 - 30s - 10 = 0.

The solution of this equation that lies between 0 and —1 is approximately
—0.45 (as found by a simple numerical calculation). At so = —0.45 we find
that Gp(s0) = -11.9. In order that 1 + KGp(s0) = 0, as it must on points
of the root locus, we find that K = 0.084. We see that for all K greater
than (approximately) 0.084 the system has complex poles.

11.6.4 Problem 7

7. In this problem, since the degree of the denominator is greater than
the degree of the numerator by 2, we know that the sum of the poles is
constant. Clearly, one branch of the root locus goes from the pole at —5
to the zero at —4. Thus, the two symmetric branches that leave from ±j
must move from ±j to values whose real part is more negative than zero.
That is, the branches must move into the left half-plane. The system must,
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Fig. 11.10 The Root Locus Diagram of Gi(s) = 3(s+o,2)
s
(t+io)(s+2O) •

therefore, be stable for all K > 0. For a plot of the root locus diagram that
corresponds to this system, see Figure 11.13.

11.6.5 Problem 9

9.a. As Gp(s)H(s) has two (real) poles and two (imaginary) zeros, we find
that the root locus must start at the zeros and end on the poles. From
rule 2, we see that the interval [—1,0] is on the root locus. Differentiating
Gp(s)H(s), we find that:

d s2 + l _ 2s • s(s + 1) - (2s + l)(s2 + 1)
dss(s + l) ~ s2(s + l)2

2s3 + 2s2 - 2s3 - s2 - 2s - 1

s2(s + l ) 2

_ s2 - 2s - 1
~ S2(s + 1)2 •
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Fig. 11.11 The Root Locus Diagram of G2(s) = J^^s

We find that the derivative equals zero when:

s2 - 2s - 1 = (s - I)2 - 2 = 0

Thus, the points at which the derivative equals zero are:

s = 1 ± V2 = -0.4142,2.4142.

As only the first of these numbers is located on the root locus diagram
we see that the point at which the branches leave the real axis is just
s = —0.4142. We plot the root locus in Figure 11.14.

9.b. The system's zeros are just the zeros of Gp(s). Thus, the zeros are

9.c. The transfer function of the system is:

= KGp{s) = K(s2 + 1)
{ ) l + KGp{s) s2 + s + K{s2 + l)'

9.d. For very large K the system response will be approximately one at
any point that is not very near the zeros of ±j. When s = ±j, the system
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Fig. 11.12 The Root Locus Diagram of Gp(s) = s(s+J(3+2)

response will be zero. That is the system passes all frequencies except for
frequencies very near LJ = 1.

9.e. This type of system can be used to stop one frequency. (In our case
the system stops w = 1 while passing all frequencies that are "reasonably
far" from ui — 1.)

11.7 Chapter 7

11.7.1 Problem 1

1. The transfer function of a phase-lag compensator is:

As our plant is Gp(s) = K/s2, we find that:

Gc(s)Gp(s) --2-j——.
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Fig. 11.13 The Root Locus Diagram of Gp(s) = 5"+4
2+1)

Let us consider the root locus diagram that corresponds to such a system.
As the degree of the denominator is two greater than the degree of the
numerator, we know that the sum of the poles must be constant. Moreover
we find that one branch of the root locus connects the pole at — u>p to the
zero at — u>o. As the pole on this branch moves to the left, there must be
a compensatory net movement to the right on the part of the remaining
poles. Since these poles start at the double pole at the origin, and since
they cannot remain on the real axis (as the rules do not put any branches
there), we find that these two poles leave the real axis. Thus, they have
the same real part. In order for there to be a net movement to the right,
both poles must move to the right—into the RHP. That is, the system is
unstable. See Figure 11.15 for a plot of the root locus of such a system
when wp = 1 and u/o — 2.
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Fig. 11.14 The Root Locus Diagram of Gp(s) = 3f3+{)

11.7.2 Problem 3

3. Here, we have:

Gp(s) = ,2s + 1y
 a nd Gc(s) = KP + KDs.

Clearly:

G (s)G (s) - SOCfr + g g ' )
Lsc{s)Gp{s)- s ( 2 s + 1 )

has one pole at the origin. Thus, the steady-state output of the system to
a unit step input will be 1.

Now let us consider the root locus diagram that corresponds to such a
system. Let us write the system in the form:

(1 + %P-s)
Ge(s)Gp{s) = mKPl^L.

Taking 50Kp as the gain parameter to be used in the root locus diagram,
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Fig. 11.15 The Root Locus Diagram of Gc(s)Gp(s)

we find that we must plot the root locus diagram that corresponds to:

q+fe*)
s(2s+l) '

This system has two poles—0 and —1/2—and one zero —KPJKD- If we
choose Kp/KD > 1/2, then we find that the root locus must:

• Have branches that connects the poles 0 and —1/2.
• Have branches that connects the zeros —KpjKu and — oo.
• Have branches that leave from some point between the two poles and

reenter the real axis at some point between the two zeros.

An example of such a plot (with KP = KD = 1) is given in Figure 11.16.
We can fix Kp/Ko to be as large as we want. Then by taking Kp

sufficiently large, we can force both of the poles of our system to be smaller
than —KpjKj). That is, we can make the system as fast as we would like.
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Fig. 11.16 The Root Locus Diagram of Gc(s)GP(s)

11.7.3 Problem 5

5.a. The plant is:

We are to design a phase-lag compensator that will give us a phase margin
of 45°. The first step is to find the value w\ for which:

ZGp(jwi) = -180° + 45° + 5° = -130°.

Clearly:

= Z50 - Zju - Z(2jw + 1)

= 0°-90°-tan-1(2a;).
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We find that:

^ = ^ = 0.4195.

Our compensator has the form:

From the standard rules for the design of a phase-lag compensator, we find
that

w0 = wi/10 = 0.04195.

We also know that:

up = uol\Gp{jwi)\.

We find that:

\Gp{juJi)\ = 91.3, and wp = 0.00045956.

We plot the Bode plots in Figure 11.17. Note that we have achieved the
phase margin we desired.

5.b. The step response of the system is given in Figure 11.18.
5.c. Because Gp(s) has a pole at zero, the steady state response to a

unit step input is 1. Because the compensator has a pole very near to zero
the combined system takes a long time to reach its steady state.

Another way to see that the system should take a long time to settle
down is to use the formula:

T
 8

 =
 8 _ 8

 = 1 9 0 7
3 ~ tan(<^M)a/i tan(45°)o;i 0.4195 ' '

This is in reasonable accord with Figure 11.18.

11.7.4 Problem 7

7. a. To find the phase margin, we must find those points for which
\Gp(jui)\ = l,u > 0. In our case, it is pretty clear that only such point
is w = 1. (This can, of course, be checked using MATLAB.) Plugging in
u = 1, we find that:

Gp(j) = 7(JTTF = -1 = lz-1800-
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Fig. 11.17 The Bode Plots of the System

We find that the phase margin is zero degrees (and the gain margin is zero
dB).

7.b. We must now design a lag-lead compensator to increase the phase
margin to 55° while leaving the point at which it occurs—w = 1—alone. We
do this by first designing a phase-lead compensator to increase the phase
at u> = 1 by 60° (remember the —5° that the phase-lag compensator may
add) and then adding a phase-lag compensator to make the gain at u> = 1
equal to one. Our phase-lead compensator has the form:

s/u)O + 1
(Jlead = —, — , U>O<Up.

S/U)p + 1

We would like:

Umax = \JUQWp = 1 (H-2)
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Fig. 11.18 The Step Response of the System

and we want the phase at that point to be:

\2\]joJo yujpjj '

Rearranging (11.3), we find that:

1 ( F^ f^\ = \/3
2 \Y u>o V up )

Multiplying this through by ujmax = y/wowp and rearranging the result
slightly, we find that:

wP - wo = 2\/3. (11.4)

As:

Wmai = y/VoVp = 1,

we find that:
1

wo = —•
uip

(11.3)
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Substituting this in (11.4), we find that:

up - 2V3U>P - 1 = 0.

This equation has two solutions:

UP = \ / 3 ± 2 .

As ojp must be greater than its reciprocal, u>o> w e n n d that:

ojP = 2 + V5, wo = y= = 2 - V3.

As the gain of the phase-lead filter at u>max is just:

\Glead(jWmax)\ = \Ju)p/wo = 2 + A/3,

we need our phase-lag compensator to reduce the gain by 2 + y/3 at w = 1.
The transfer function of the phase-lag compensator is :

Following the regular procedure for designing a phase-lag compensator, we
find that:

u>o = 0.1 • 1 = 0.1, and UJV = '—= = 0.02679.
2 + V3

We find that the lag-lead compensator's transfer function is:

, , (2 + V3)s + 1 10s + 1
^lag-leaiM ~ ( 2 _ ^3)S + 1 10(2 + ^ ) S + 1 '

7.c. From the Bode plots of Figure 11.19, we find that the phase margin
of system is 55.6° and the gain margin is 13.4dB.

11.7.5 Problem 9

9. If:

r t \ *r j. K l sKP + K l
Gc{s) =KP-\ = ,

s s
and:

GP(s) = i ,
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Fig. 11.19 The Bode Plots of the System

then:

n ( \n ( \ KpS + Kl
Gc{s)Gp(s) = -2 .

b

As this system has two poles at the origin, if the system is stable, it is able
to track a ramp input.

Let us use the Routh-Hurwitz criteria to evaluate the stability of the
system. We must check the zeros of:

l + Gc(s)Gp(s) = l+KpStKl

s
s2 + KPs + Ki

s2
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The Routh array that corresponds to the numerator is:

KP 0.
Kj 0

Clearly as long Kj, Kp > 0 the system is stable.

11.8 Chapter 8

11.8.1 Problem 1

As always, when calculating the describing function, we consider the effect
of our nonlinear element on M sm(u>t). If we use such a signal as the input
to our limiter, the output will have one of two possible forms:

• If M < C, then the signal passes through the limiter unchanged.
• If M > C, then the the sine-wave is clipped by the limiter. It will look

like the signal in Figure 11.20.

We find that if M < C, then D(u>, M) = 1—the sine wave is unchanged. If
M > C, then we must find A and B by hand.

As we have seen up until now, because of the symmetries of the clipped
sine wave 5 = 0 and:

8 [T'A

A = — sm(ujt)f(Msm(ojt))dt.
T Jo

This integral must be broken into two pieces in order to calculate it. Until
t reaches the value to for which:

Msin(uto) — C

it is clear that /(Msin(u;£)) = Msin(wi). After this point, /(Msin(wi)) =
C. Thus, we find that:

8 / ft0 fT/4 \
A = — / sin(ujt)Msm(ujt)dt. + / sin(ut)C dt .T \Jo Jt0 J

To calculate the first integral, recall that:

. 2 l-cos(20)
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Fig. 11.20 A Clipped Sine Wave

We find that:

/•to rto

/ sm(ut)Msm(ojt)dt = M sin2(ujt)dt

= M%i-cos{2.t)dt

Jo 2

M / sin(2wto)A
= T ( * > — ^ - ) -

As:

sin(26») = 2sin(6>)cos(6'),

we find that:

fto . . .... . . .,,. M ( sin(wt0)cos(a;io)\
/ sin(a;^)Msin(a'i) at = — ^0 ^ ' ^ I •

Jo 2 V u J
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We find that the second integral is equal to:

/ sm(ut)Cdt = C —-
Jt0 " t0

wT=2ir ~ COs(7r/2) + COSJUtp)

Q
= — cos(wio)-

u>
We find that:

. 8 f M ( sin(w«0)cos(wi0)\ C , . , \

As t0 is defined by:

Msin(wio) = C,

we find that:

siiT1 (C/M)
to =

oj

sin(wto) = C/M

cos{u)to) = y 1 — sin2(o;io)

= v/i - (C/M)2-

Making use of the fact that uiT = 2n, we find that:

I \ 2 \ u> u) I UJ I

= 1{M (sin"1 (C/M) - (C/M)y/1 - (C/M)2^ + 2C^1 - (C/M^l

= - (M sin"1 (C/M) + Cy/l - (C/M)2)

Finally, we find that:

D(u,M) = ±

j 1 M <C
= \lk (Msm-\C/M) + CVl - (C/M)2) M > C
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l.b. As C -> 0, we find that:

sin" x{CjM) -> C/M

Vl - (C/M)2 -» 1.

Thus, we find that as C —» 0, we have:

That is, as the value at which the limiter starts to limit the signal tends to
zero, the limiter's describing function tends to the describing function of a
comparator of amplitude C. A little bit of reflection shows that this is as
it ought to be.

11.8.2 Problem 3

3.a. To determine the smallest value of K for which a limit cycle exists, we
need to know the maximum value of the describing function as a function
of M and C. We claim that the describing function is a non-increasing
function of M. As for all M < C the describing function equals one and
as the describing function decreases towards zero as M increases without
bound, we find that the describing function takes all values between 0 and
1 (including 1 but not including 0).

To see that the describing function is indeed a non-increasing function
consider its derivative. For M < C the describing function is constant and
its derivative is zero. For M > C, we find that:

JMD^M> " 3¥ (I (™-'(c/M) + § V T H C W ) )

C 1 2C2\
+ M 2^1 - (C/M)2 M* )

2 / C C C C2 \
= TTVI - (C/M)2 l~M* ~W^~ ( C / M ) 2) + M W)

M2TVy/l - (C/M)2 \M2 )

<0.
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In order for the product of the describing function—which is never
greater than one—and the frequency response to be equal to —1, the fre-
quency response must be negative and have absolute value at least 1. The
frequency response is negative when ui = 1. At that point:

Gp(j) = -K/2.

Thus, K > 2. The smallest possible value of K for which the describing
function technique predicts limit cycles is K = 2.

3.b. If K = 2, then the condition for a limit cycle is:

D(w,M) = 1.

Thus, M < C. In this region the derivative of the describing function is
zero and there is no reason to expect stable limit cycles.

If K > 2, then the condition for a limit cycle is:

The M which solves this is less than C (as only for such M is the describing
function less than one). In this region, as we saw above, the derivative of the
describing function is negative. Thus, we expect the limit cycle predicted
to be stable.

11.8.3 Problem 5

5.a. As (8.6) can never be negative, and as the describing function of a
comparator is positive, there can be no limit cycles.

5.b. Using the more exact transfer function one predicts limit cycles
at the point at which the transfer function is negative—when s = jy/l/e.
(Note that this corresponds to a very high frequency.)

5.c. The crucial difference is that the more exact transfer function is
negative at some frequency while the less exact transfer function is never
negative.
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11.8.4 Problem 7

Note that:

= -450° + 3 Z ^ + 1 .
jwV3 + 1

As:

s/V3 + l

s%/3 + l

is a phase-lag compensator, we know that its phase is at a minimum for:

Umin = \/3—7= = 1.
V3

It is easy to see that at w = 1 the phase of the filter is just —30°. We find
that:

-450° < ZGp(jw) < -540°.

The phase is equal to —540° at one point—when u> = 1. We find that:

Z(Gp(ju>)) < 0

with equality when u> = 1. Clearly then \(u>) cannot be zero for any value
of u>. I.e. this system does not support any limit cycles.

11.9 Chapter 9

11.9.1 Problem 6

(1) We find that:

(s2 + 3s + 2)X(s) = U{s), Y(s) = {s + l)X(s).

Converting these equations to differential equations we find that:

x"(t) + 3x'(t) + 2x(t) = u(t), y(t) = x'(t) + x{t).

(2) If we let:
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we find that:

*'W = [ J -3] m + [l] U{t)' V{t) = C1 ^ f(t)'
(3) We find that:

As det(Con) = —1, we find that the system is controllable.
(4) We find that:

As det(Obs) = 0, we find that the system is not observable. Note that
had we chosen to, we could have rewritten the transfer function as:

T(8) =
 s + 1 = s + 1 = _ J _w s2 + 3s + 2 (s + 2)(s + l) s + 2'

Thus, one does not really see the (internal) pole at —1 in the output
of the system. It is not surprising that the system is not observable.

11.9.2 Problem 7

If we let:

u=-[ki k2]x(t)+uext(t),

then we find that the state equations can be rewritten as:

^)=[_2_ t°_3-fa] *>+[!]—<*>•
The characteristic equation of this system is:

d e t ( [ - 2 - t - 3 - f c 2 - A ] ) = A 2 + (3 + fc2)A + 2 + fcl = °-
Comparing this with the equation with leading term A2 and with roots and
-2 and -4—A2 +6A + 8 = 0—we find that fci = 6 and k2 - 3. This system
is shown in Figure 11.21.
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Fig. 11.21 The System with State Feedback Added

11.10 Chapter 10

11.10.1 Problem 4

As we know that the z-transform of pk is:

2

z-p'

and as we know that multiplication by z~x is the z-domain is the same as
shifting by one step in the time domain, we find that the inverse z-transform
of:

--1 z

z-p

is just the sequence {0, l,p,p2,...}. This explains the results of exercise 3.

11.10.2 Problem 10

lO.a With Gp{s) = 1/s2 and H(s) = 1, we find that:

w(t) = v(t)=£-1(l/s3)(t) = ju(t).

We know that the z-transform of Tku(k) is Tz/(z — I)2. We need to
find the z-transform of T2(k2/2)u(k). Clearly this is:

V(z) = W(z) = T(-z)- (j^yi) = -YJz^W
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Thus:

c ( z ) ^ z + 1

lO.b Let:

_ 2 + Tw
Z~ 2-Tw'

We find that:

4 _ 2Tw
Z+ 2-Tw' ~ 2 ^ 2 V

Thus, we find that:

,_, . , _ . .. T2 4(2 -Tw) 22-Tw

lO.c With the above, we find that:

, _ , , 4T2w2 - 2T3w + 4T2

1 + G>M = pfw)2 •

Clearly, the poles of the system are the zeros of the numerator. Ac-
cording to the Routh-Hurwitz criterion, these will all be in the left
half-plane if and only if all the coefficients of the quadratic have the
same sign. If T > 0, this cannot be. Thus, the system is unstable for
all T > 0.

11.10.3 Problem 13

As this signal is unchanged by the sample-and-hold circuit, in order to find
the output as a function of time, we need only consider the inverse Laplace
transform of:

l-e'Ta 1 l-e~Ts l-e~Ta

s s +1 s s +1 '

Clearly this is:

vo(t) = (1 - e-')u(i) - (1 - e-t '-^M* - T).
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With T = 0.1, we find that:

{ 0 k = 0

1 _ e-(fc0.1-m0.1) k _ i

e-((fc-l)0.Z-m0.1) _ e-(fe0.1-m0.1)

= (eT _ ^-(M.l-mO.l) k > 2

Let us solve the problem a second way. It is easy to see that we must
find:

/ -mTa \

Viz) = Z ( 4 r •
The inverse Laplace transform of e~mTs/(s(s + l )) ,0 < m < 1 is:

u(t - mT) - e-(t-mT)u(i - mT) = u{t - T) - e-(t-T~^m-^T\{t - T)

= u(t - T) - e^m^Te-^-T)u(t - T).

The z-transform of the samples of this function is:

Thus, we find that:

z z z{z — e~l)

z \ z z — f1 J
_l-emT (1 - e-

T)emT

z z — e~T

As our input has as its z-transform the function 1, we find that the above is
the z-transform of the output of the system with the delay. Thus, we find
that:

(0 k = 0
vo(kT - mT) = < 1 - e-(T-mT) k = 1 .

1 (1 - e-r)emTe-(fc-l)T = (eT _ ^e-(kT-mT) fc > 2

Plugging in T = 0.1 we find that the two expressions for vo(kT - mT) are
identical.
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11.10.4 Problem 16

16.a We let Gp(s) = s/(s + 1) and H(s) = 1 in Figure 10.5. As H(s) = 1,
we only need to calculate V{z). We find that V(s) = l/(s +1). Thus,
v(t) = e~* and V(z) = z/(z — e~T). This shows that the transfer
function is:

- ^ z - \
W - i + - ^ - iz - 1 - e-T

16.b If the input to the system is a unit step function, then the z-transform
of the output of the system is:

z — \ z _ z _ 1 z
Iz - 1 - e~T z - 1 = 2z - 1 - e~T = 2 z - (1 + e~T)/2'

We find that the samples of the output are:

i{ l , ( l + e- r ) /2 , ( ( l+e- T ) /2) 2 , . . .} .

Note that when T « 1,

We see that we T « 1, the samples of the output are approximately:

Note that if one considers the system of Figure 10.5 without the sample
and hold element, then the transfer function of the system is:

When one inputs a step function to the system, one finds that the
output is:

Sampling this signal at t = kT, we find that the samples of the output
are e~feT/2/2. This is just what we found for the system with the
sample and hold element in the limit as T —> 0+.
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11.10.5 Problem 17

17.a We let Gp(s) = 1/s, H(s) = 1, and D(z) = (1 - z'l)/T in Figure
10.7. As H(s) = 1, we only need to calculate V(z). We find that:

TV
V{z) = Z{l/s2){z) = Z(tu(t))(z) = ^ .

V1 ~ z)

Thus, we find that:

z - l z - 1 Tz

T(z) = Tz z T ^ 5 F - - —
1 Tz z (1—z)'

17.b If the input to the system is a unit step function, then the output is:

1 z _ Az Bz _l ( z z \

Thus, we find that:

vo(kT) = I (1 - (-l)fc) u(fc).

11.10.6 Problem 19

19.a Prom the solution of Problem 10 (see above) we know that:

in \ ? Y I / 3 W N T2 z{z + l) 2-Tw

V(z) = Z(l/S )(*) = Y ^ y ^ - Gp(«;) = -^-.

This system is unstable—as shown above. To stabilize it, we add the

compensator D(w) — Kp + KDW. We find that:

The numerator of this expression—whose zeros are the poles of the
final system—is:

(2 - TKD)w1 + {2KD - TKP)w + 2KP.

Assuming that Kp > 0, we find that:

KD < 2/r

KP < 2KD/T.
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19.b Converting from D(w) to D(z), we find that:

D(w) =KP+ KDw

_ TKP(z + l) + Kp2{z-l)
T{z + l)

TKpjl + z-^+Krtjl-z-1)
^ TQ. + Z-1)

With x(k) as the input and y(k) as the output, we find that:

y(k) + y(k - 1) = KP(x(k) +x(k - 1)) + 2KD
x{k) ~ ^ ~ 1} .
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alternating harmonic series, 257 controllability, 235

critically damped systems, 45
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BIBO stability, 27, 271 damping factor, 44
bilinear transform, 279 DC, 43

behavior as T -+ 0, 284 DC Motor, 49-50
block diagram, 51 transfer function of, 49

feedback connection, 53 degree
Bode plots, 40 of a polynomial, 31

and stability, 118 delta function
Bode, Hendrik, 40, 92 definition of, 260

describing function, 204
capacitor, 21, 25, 36 comparator, 205
Cayley-Hamilton theorem, 234 comparator with dead zone, 212
chain rule, 7 definition of, 205
characteristic equation for prediction of limit cycles, 207

of a matrix, 234 graphical method, 214
comparator, 203 simple quantizer, 214
compensation, 61, 150, 167 digital compensators, 269, 285

attenuators, 167 discrete-time systems
integral, 69, 197 stability of, 271
lag-lead compensation, 180
open-loop, 62 eigenvalues, 230
PD controller, 181 relation to poles of transfer
phase-lag compensation, 168 function, 233

design, 170 eigenvectors, 230
phase-lead compensation, 175 encirclement, 92
PI controller, 181 Enestrom's theorem, 274
PID controller, 181 Evans, Walter R., 131

design equations, 184
conditional stability, 115 feedback, 51
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block diagram, 53 dilation, 7
noise rejection properties, 70, 72, final value theorem, 8

73 initial value theorem, 13
unity, 62 integration, 5

filter linearity, 2
high-pass, 36 multiplication by e~at, 6

frequency response, 39 multiplication by t, 5
low-pass, 86 second derivative, 4

final value theorem, see Laplace uniqueness, 14
transform, properties whose denominators have repeated

frequency response, 276 roots, 6
definition, 39 left half-plane, 27
high-pass filter, 39 limit cycles, 204

prediction, 207
gain crossover frequency, 122 stability, 208
gain margin, 114 Tsypkin's method, see Tsypkin's

calculation of, 119 method
of systems with zeros in the RHP, linear

148 definition, 203
low-pass systems, 101

Heaviside function, 1
Heaviside, Oliver, 1 MATLAB
Hurwitz, Adolf, 75 commands
hybrid systems bode, 41

control of, 251 c2d, 267
definition, 251 d2c, 283

margin, 119
ideal sampler, 260, 261 nyquist, 106
inductor, 21 residue, 31
integrator, 69 rlocus, 132
inverse Laplace transform, 15 roots, 31

ss(A,B,C,D), 241
Kirchoff's voltage law, 21 step, 50

tf, 41, 266
Laplace transform, 1 assignments, 29

of functions introduction, 29-32
cosine, 5 numerical artifact of, 268
delta function, 260 matrix
exponential, 2 norm of, 246
hyperbolic sine, 20 matrix differential equations, 229
sine, 3, 5 calculation of, 232
unit step, 1 inhomogeneous, 233

of integro-differential equations, 20 matrix exponential
properties calculation of, 231

delay, 8 definition, 229
differentiation, 4 Meinsma, G., 77
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Minorsky, Nichlas, 181 pulse transfer function, 264
modern control, 227 lack of, 288

integral compensation with, 240
rational functions, 75

natural frequency, 44 relative stability, see stability, relative
Newton's second law, 22 resistor, 21, 25
Nyquist plot, 100 resonance, 22, 59

delays, 107 resonant frequency, 24
low-pass systems, 101 rise time

Nyquist, Harry, 92 definition, 43
in first order systems, 44

observability, 237 in under-damped systems, 45
ODE, see ordinary differential root locus, 131

equation asymptotic behavior, 135
Ohm's law, 21, 36 departure from real axis, 138
operational amplifier, 46-49 for systems that are not low-pass,

configured as a buffer, 71 151
configured as an (inverting) grouping near the origin, 145

amplifier, 47 plotting conventions, 132
gain-bandwidth product, 48 symmetry, 134

order treatment of delays, 153-156
of a polynomial, 31 Routh array, 81
of system, 68 sign changes in, 82

ordinary differential equation, 3 Routh, Edward John, 75
solution of Routh-Hurwitz criterion, 77

by means of the Laplace delays, 111
transform, 15 proof of, 78

over-damped systems, 45
overshoot sample-and-hold, 258

definition, 43 sampled-data systems, 257
in under-damped systems, 46 second order system

phase margin, 121
partial fraction expansion, 16 settling time of, 122
phase margin, 114 sensitivity, 63

calculation of, 119 settling time
in second order systems, 121 second order system, 122
relation to settling time, 122, 186 simple satellite, 50-51, 59, 88, 196

phase-lock loop, 156 transfer function of, 50
piecewise continuous, 14 sinusoidal steady state, 38
PLL, see phase-lock loop spring-mass system, 22
pole, 16 stability
pole placement, 236 and the location of poles, 272

example, 238 BIBO, 27, 34, 59
pole-zero cancellation, 159 conditional, see conditional
principle of the argument, 92 stability

proof of, 93 definition, 27
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marginal, 28, 132, 272 multiplication by fc, 256
relative, 113 translation, 255

state equation, 228 zero-order hold, 260, 261
state variables, 227
steady state output

to a unit ramp, 69
to a unit step, 66-69
to sinusoids, see frequency

response, definition
steady-state

amplification, 277
behavior, 278

superposition, 203

Tacoma Narrows Bridge, 29
time constant

definition of, 197
total variation, 9
transfer function, 36
transient response

definition, 43
triangle inequality, 10, 273

generalized, 10, 14
Tsypkin's Method, 216

undamped systems, 60
under-damped systems, 45

overshoot, 46
rise time, 45

unit pulse
definition of, 269

unity feedback, 62
unstable systems, 35

variation of parameters, 233

z-transform, 251
modified, 251, 289
of a sine, 253
of a unit pulse, 269
of a unit step, 252
of an exponential, 252
properties

final value, 253
initial value, 255
linearity, 253




