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Preface

The goal of this book is to develop a methodology for enhancing fracture detection
and correctly delineating reservoirs with fractures. From the rock mechanics to
seismic forward modeling then AVO inversion, the book deeply explores the
mechanical formation of fractures and fractured media and presents an enhanced
fracture detection technique that uses a new finite-difference scheme to accurately
model fractures and analyze the fracture response in seismic traveltime and
amplitude, and then develops a method for accurate reservoir delineation by
deriving new AVO fracture equations to correctly estimate the properties of the
fractured medium, the host medium, and the fractured medium with impedance
contrast.

With the long wavelength assumption, a linear slip interface is equivalent to a
fracture interface that satisfies the nonwelded contact boundary conditions.
Therefore, the fractured medium can be regarded as a combination of a fracture, or a
set of fractures, and a host medium as a horizontally fractured medium is composed
of a horizontal fracture embedded into a homogeneous isotropic host medium; and a
vertically fractured medium is formed by inserting a vertical fracture into a
homogeneous isotropic host medium; an orthogonally fractured medium is
assembled from a vertical fracture and a homogeneous VTI host medium, or a
horizontal fracture and a homogeneous HTI host medium, or two orthorhombic
fractures and a homogeneous isotropic host medium. Theoretically, the composed
fractured media are effectively equal to the transversely isotropic medium with a
symmetric axis (TI) media.

New finite-difference schemes with imposed explicit boundary conditions for
horizontal, vertical, and orthorhombic fractures are implemented to generate seis-
mograms that precisely illustrate the fracture representations in seismic data. The
results indicate that the fractures are detectable, even though the fractured medium
does not have impedance contrasts, and that the fractured medium can be charac-
terized as a transversely isotropic medium. An analysis of how fractures are rep-
resented in seismic data can help in fracture detection in geoscience.

New exact equations for the reflection and transmission coefficients of a frac-
tured medium with impedance contrast and new approximate AVO equations
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including fracture parameters are derived. This provides a way to separate the
surface seismic records into the fracture reflections and reflections of the impedance
contrast. Therefore, the fracture, the host medium, and the fractured medium with
impedance contrast properties can be estimated from seismic data to correctly
delineate the reservoir characterization.

Calgary, Canada Xiaoqin Cui
Calgary, Canada Laurence Lines
Calgary, Canada Edward Stephen Krebes
Beijing, China Suping Peng
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Chapter 1
Introduction

Abstract Geological fractures play an important role in hydrocarbon exploration
and recovery. In order to enhance the geophysical prediction of the fracture dis-
tribution, and to accurately estimate all of the medium properties related to fractures
in the reservoir, the fracture characterizations and the fracture representations in
seismic data are needed to be understood inevitably. Therefore, the fracture models,
the fracture assumptions, and the boundary conditions that constrain seismic waves
at the fracture are studied in this Chapter. Finite-difference forward modeling
methods are described to precisely model fractures, with the resulting synthetic
seismograms being modified by the fracture features in terms of traveltime and
amplitude. AVO (amplitude variation with offset) methods are reviewed for the
accurate prediction of all rock properties that are related to the fractures, for the
purpose of correctly delineating the reservoir. Also, the structure of this book is
presented in the last section.

Keywords Geological fractures � Fracture parameters � Fracture models � Fracture
assumptions � Type of fracture media � Finite-difference � Forward modeling �
AVO inversion

1.1 Motivation and Objectives

Fracture characterization is of great practical importance in hydrocarbon explo-
ration and recovery because it is one of the main factors for determining reservoir
parameters, and for controlling well-drilling planning and seismic data imaging
quality. First, fractures can increase reservoir permeability and change the fluid flow
rate in a tight reservoir, which is important because large portions of the hydro-
carbons in the world are trapped in tight reservoirs (Nelson 1985). Second, a reverse
effect is that the fractures can create a “thief zone” in the caprock by providing paths
for the injected steam to escape during hot production (e.g. in a SAGD project) and
thereby cause a decrease or termination of hydrocarbon production (Massonnat
1994). Third, the fractal network of wormholes in CHOPS needs to be located for
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optimal placement of infill wells (Yuan et al. 1999; Lines 2003, 2007, 2008), while
the wormholes can be simulated by a stacked fracture network which produces
abnormal amplitudes in seismic data (Cui 2013b). Fourth, fracture-induced aniso-
tropy affects seismic imaging quality because fracture-induced anisotropy has
azimuth-dependent characteristics. Especially, at the fracture interface, the splitting
of fast and slow shear waves of converted PS data with time lags cause a low
signal-to-noise ratio (S/N) data or an incorrect image (Crampin 1985; Lawton 1999;
Bakulin 2000a, b, c; Cary 2008; Bale 2009; Thomsen 1995). Therefore, accurate
location of fracture distributions is a task of top priority in the oil and gas industry.

Geophysical data have the advantages of lower acquisition costs, wider cover-
age, and deeper penetration for obtaining global geological information. However,
the detection of subsurface fractures in geophysics is a challenging problem.
Besides the low seismic resolution and the complexities of geological bodies in the
subsurface, the main contributing causes for the problems are the challenge of
understanding the response of fracture properties in seismic data and the correct
estimation of all properties from seismic data.

Therefore, the motivation of this book is to meet the imminent industrial
demands as described above, i.e., to deeply understand fracture representations in
seismic data in order to enhance the geophysical prediction of the fracture distri-
bution and to accurately estimate all of the medium properties related to fractures
for the correct delineation of the reservoir. This ultimately benefits reservoir and
mining engineers, geologists and geophysicists with respect to optimizing the
hydrocarbon reservoir, well performance and safety mining.

The main objective of this book is to develop a methodology for enhancing
fracture detection and optimizing the delineation of the reservoir. The emphasis of
the book is on the study of fractures and fractured medium formations, and on
knowledge of the fracture model and the boundary conditions that constrain seismic
waves at the fracture. New forward modeling schemes are proposed to precisely
model fractures, with the resulting synthetic seismograms being modified by the
fracture features in terms of traveltime and amplitude, in order to improve fracture
detection. Also, new AVO equations are developed for the accurate prediction of all
rock properties that are related to the fractures, for the purpose of correctly delin-
eating the reservoir.

1.2 Geological Fractures

Geological fractures are pairs of distinctly separated surfaces in the formation which
are related to permanent rock crack deformation (Jaeger 1969; Price 1966; Priest
and Hudson 1976; Schultz and Fossen 2008). Crack formation in a rock occurs
when the rock strain is over a certain threshold and the rock loses cohesion since it
is continuously subjected to stress.

Fundamentally, fractures are described in terms of height, length, density, ori-
entation, and the opening size. The fracture height and length are measurements of
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the spatial extent of the fracture in the medium, and are governed primarily by
in situ stress and the related rock properties (Dunphy and David 2011). The fracture
density measures the number of fractures in units per meter in a certain direction
and is related to reservoir permeability. Commonly, the higher the fracture density,
the higher the permeability if the different fractures conduct fluids in the reservoir
(Singhal and Gupta 1999). The fracture orientation is based on the relationship of
three local principal compressive stresses and the fracture orientation is parallel to
the direction of maximum compressive stress and perpendicular to the direction of
minimum compressive stress (Anderson 1905, 1951). Thus, most fractures in the
reservoir are vertical or nearly vertical with several azimuths because the com-
pression due to overburden deposits globally dominates the stress, while the min-
imum stress locally varies depending on the tectonic movement in the reservoir.
The fracture openings, or the fracture aperture, is a small displacement at the
fracture plane. The fracture opening may remain unfilled or may get subsequently
filled by secondary minerals or some fluids (Aguilera 1998; Romm 1985). The
fracture opening is a function of the depth, and is much shorter than the seismic
wavelength, hence, the fracture opening parameter is generally neglected from a
seismic viewpoint in geophysical fracture studies.

Commonly, geological outcrops provide near-surface information (Gary 2008),
but such information is difficult to accurately interpolate in the deeper areas.
Petrophysical well logs are regarded as the most reliable data because they directly
acquire information from the reservoir with a high resolution (Rider 2002;
Schlumberger 1989), however, well logs are too sparsely located. While seismic
data with wider coverage and deeper penetration have a big potential for fracture
detection (Yu and Telford 1973), even though they pose a big challenge due to the
lack of knowledge of the fracture response in seismic data. Therefore, an integrated
method, involving geological, petrophysical, and geophysical technologies, is
usually used to detect fractures.

1.3 Fracture Models and Assumptions

The fracture model is a link between subsurface fracture characteristics and surface
seismic data (Sava 2004). There are three popular fracture models that are widely
investigated: the penny-shaped crack model (Hudson 1980, 1981), the linear slip
model (Schoenberg 1980, 1983; Schoenberg and Muir 1989) and a combination of
the penny-shaped crack model and the linear slip model (Hudson 1997). The first
model describes fractures as ellipsoidal cracks, with the parameters being the crack
density and the aspect ratio of the oblate spheroidal cracks. The second model
specifies fractures as infinitely extended weakness planes, with the parameters
being the normal and tangential fracture compliances. These two models form the
basis of an effective medium theory and are elastically equivalent to each other
(Schoenberg and Douma 1988; Li 1998), even though the models have different
descriptions for the fractures. The third model depicts the fracture as an infinite
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plane with two rough surfaces in partial contact in which the noncontact parts are
represented as a planar distribution of penny-shaped cracks, while elsewhere the
parts in contact support the ambient pressure and friction. Because the fracture
opening is very small with respect to the seismic wavelength, the geometric details
of the fracture such as shape and microstructure are often neglected in a fracture
detection study. Hence, the models related to the penny-shape model are outside of
the scope of this book. The linear slip model will be studied in detail and used as the
fracture model in forward modeling and backward inversion. In addition,
Pyrak-Nolte et al. (1990) and Hsu and Schoenberg (1993) confirmed the validity of
the linear slip model by some laboratory experimental verifications.

The effective medium theory of Backus (1962) is developed from averaging the
properties of multiple isotropic thin layers to directly make up a single composite
anisotropic medium. The description of the composite medium is based on the
relative fractions and properties of the thin layers. In 1980, with the effective
medium theory, Michael Schoenberg described a physical mechanism of the linear
slip interface: for an isotropic thin layer embedded in a homogeneous isotropic host
medium, the thin layer can be treated as a linear slip interface once the layer
thickness is much thinner than wavelength and its impedance is very small com-
pared to the host medium. To some degree, this linear slip interface is equivalent to
the fracture interface.

Schoenberg and Muir (1989) extended Backus’s averaging approach to develop
a matrix formalism for calculating the properties of a fractured medium that is made
up of fracture and host medium. The composite medium, with five independent
moduli, exhibits the properties of a transversely isotropic medium with a symmetric
axis (Helbig 1999, 2009; Nichols 1989; Hood 1989, 1991) that may be different
from that of the initial host medium. According to Schoenberg and Muir (1989), the
fractured medium can be simplified by performing a composition and a decom-
position calculation as follows:

Fracture þ Hostmedium $ Fractured medium

Therefore, a horizontally fractured medium is composed of a horizontal fracture
and a homogeneous isotropic host medium and exhibits the properties of a trans-
versely isotropic medium with a vertical symmetric axis (a VTI medium).
A vertically fractured medium is formed by a vertical fracture and a homogeneous
isotropic host medium and exhibits the properties of a transversely isotropic
medium with a horizontal symmetric axis (a HTI medium). The simplest orthog-
onally fractured medium is assembled by a horizontal fracture and a HTI host
medium, or a vertical fracture and a VTI host medium, or two orthorhombic
fractures embedded into an isotropic host medium.

Schoenberg’s linear slip model simulates the fracture interface satisfying the
nonwelded contact boundary conditions (Schoenberg 1980; Krebes 1987) that
constrain all seismic waves at the fracture interface. The nonwelded contact
boundary conditions state that the dynamic stresses of the wave quantities are
continuous across the fracture boundary, whereas the kinematic displacements of
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the wave quantities are discontinuous across the fracture boundary. Thus the
reflection and transmission coefficients of waves at the fracture interfaces (Chaisri
and Krebes 2000) have expressions different from those at welded boundaries (Aki
and Richards 1980).

1.4 Forward Modeling of the Fracture

Seismic forward modeling is a key connection between the model and seismic
response, and it can predict results, and enhance interpretation and inversion (Lines
and Newrick 2004). Finite-difference (FD) methods are widely used in seismic
forward modeling to numerically simulate elastic wave propagation in the medium
(Kelly et al. 1976; Virieux 1986; Lines et al. 1999; Zhang 2005). Kelly et al. (1976)
presented a so-called homogeneous approach for finite-difference formulations of
the elastic wave equation. In this approach, boundary conditions at interfaces are
imposed explicitly (Slawinski and Krebes 2002a, b). With the linear slip interface
model, Coates and Schoenberg (1995) introduced an equivalent medium approach
to treat fractures. In their approach, the grid containing a fracture is replaced by the
grid with equivalent anisotropic properties. The forward modeling approach of
Slawinski and Krebes (2002a, b) employed boundary conditions explicitly, and
additional fictitious nodes were incorporated by them. Their approach adapted the
homogeneous formulation of Kelly et al. (1976) by treating the fracture as a non-
welded contact interface satisfying the linear slip displacement discontinuity con-
ditions. The fictitious nodes have the same physical grid locations as the real grid
nodes, but it is convenient to explicitly apply the boundary conditions. In 2009,
Zhang and Gao presented a numerical modeling study for elastic wave propagation
in a 3-D medium with 2-D fractures by imposing the boundary conditions
explicitly. Cui (2013a) modeled a horizontal fracture, a vertical fracture and an
orthorhombic fracture by using the homogeneous formulation approach with fic-
titious nodes and explicit boundary conditions (Slawinski and Krebes 2002a, b). In
addition, in a CHOPS (Cold Heavy Oil Production with Sand) study, a fractal
pattern of the wormholes in the medium is modeled by applying 3D FD schemes
with the same modeling approach (Cui 2013b).

Employing the homogeneous formulation approach with additional fictitious
nodes and explicit boundary conditions, theoretically, finite-difference schemes
using nonwelded contact boundary conditions are presented individually in this
book for the horizontally fractured medium, the vertically fractured medium, and
the orthogonally fractured medium. These new finite-difference schemes express
the wave propagation in the fractured medium, in which the normal equation of
wave motion governs the wave propagation in the host medium and the nonwelded
contact boundary conditions constrain the waves at the fracture interface.

The new finite-difference schemes that generate the synthetic seismograms for
the different fractured media are developed using MATLAB. These modeled
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seismograms indicate that the fractures are detectable because fractures can act as
reflectors and can therefore significantly affect seismic wave propagation. The
amplitude levels of the events in multicomponent seismic data reveal the direction
of the fracture. Therefore, knowledge of how fractures are represented in seismic
data can enhance fracture detection.

1.5 AVO Inversion of a Fractured Medium

Using any possible means to infer the lithology and fluid properties in a reservoir is
an ultimate goal of oil and gas exploration. AVO (amplitude variation with offset)
inversion attempts to use the amplitudes of available surface seismic data to esti-
mate the reflectivity of the density, the P-wave velocity and the S-wave-velocity of
the earth-model (Lines and Newrick 2004).

Since the 1960s geophysicists have discovered that gas deposits are related to
amplitude anomalies on stacked sections known as “bright spots”, and many
geoscientists have been aware that the surface-recorded seismic amplitudes can be
associated with rock properties by studying the Zoeppritz equations (1919). For
example, Koefoed (1955), via a study of the exact Zoeppritz equations, pointed out
the relationship of AVO to Poisson’s ratio across a boundary. Bortfeld (1961)
simplified Zoeppritz’s equations and showed how the reflection amplitudes depend
in a simpler way on an incident angle and the physical parameters of the medium. In
1980, Aki and Richards presented the AVO equations in terms of the P-velocity,
S-velocity and density reflectivity of the medium. Ostrander (1984), and Fatti et al.
(1994) illustrated the interpretational benefits of AVO in predicting and mapping
hydrocarbons. Shuey (1985) specified the AVO equations in terms of the
zero-offset of the P-wave reflectivity and a so-called AVO gradient. Smith and
Gidlow (1987) rearranged the Aki and Richards’s equations and applied an
empirical relationship (Gardner et al. 1974) to approximate the AVO equationsand
express them in terms of the P-wave and S-wave velocity reflectivity of the med-
ium. Rutherford and Williams (1989) proposed a classification scheme for the AVO
anomalies, with further modifications made by Rossand Kinman (1995) and
Castagna and Swan (1997). Goodway et al. (1997) used the AVO method to
indicate lithology and map porosity. In 2002, Rueger used Shuey’s approach
(Shuey 1985) to unravel an AVAZ equation and showed that the reflection coef-
ficients are directly impacted by both incident angles and azimuths. Downton
(2011) contributed to the problem of the AVAZ equation’s relation to fracture
weakness parameters through a method of azimuthal Fourier Coefficients. However,
these approximate AVO equations are entirely based on an assumption of perfect
welded contact regardless of the fractured medium.

Schoenberg (1980), Pyrak-Nolte (1990a, 1990) and Chaisri and Krebes (2000)
derived the exact formulae for the reflection and transmission coefficients with
nonwelded contact boundary conditions that point to fracture issues. Based on these
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equations, Cui et al. (2013c) derived approximate AVO equations and implemented
AVO inversion to estimate all rock properties related to the fracture from seismic
amplitudes.

Because AVO inversion is based on the amplitude variation over a range of the
offsets from the surface seismic data, the seismic data must accurately preserve the
true amplitudes in correspondence to geological factors, rather than containing any
signs of non-geological bodies and artifacts from the acquisition. Thus some pre-
conditioning processing, such as deconvolution, noise attenuation, 5D interpolation,
and shear-wave layer stripping should be applied to data to keep the true amplitude
variation.

New equations for reflection and transmission coefficients which include the
tangential and normal fracture compliances are presented here, and are based on
nonwelded contact boundary conditions. The equations have a pattern similar to
that of the original Zoeppritz equations. The equations reduce to the original
Zoeppritz equations with the assumption of welded contact boundary conditions
(when the tangential and normal fracture compliances vanish), or the fractured
medium equations when there is no impedance contrast in the host medium. Thus,
the new equations allow for the descriptions of the subsurface geological bodies
with both the welded and nonwelded contact boundary conditions discussed above.

New approximate equations are presented for the AVO inversion of a hori-
zontally fractured medium. As we know, a fractured medium can be decomposed
into a fracture and a host medium, vice versa. The new approximate AVO equations
consist of the elastic reflectivity of the welded contact part caused by the impedance
contrast interfaces and the reflectivity of the nonwelded contact part produced by
the fracture. Thus, an accurate inversion of the elastic reflectivity of the host
medium of the fractured medium with impedance contrast should employ the new
AVO equations because they provide a way to separate the fracture effects from the
seismic data. In other words, input data should not include the contamination from
the fracture when we attempt to invert elastic properties for the host medium. Also,
the fracture properties of the fractured medium, which is a fracture embedded in a
uniform isotropic host medium, can be estimated by using the new AVO inversion
equations, whereas conventional AVO inversion cannot achieve these results
because the conventional AVO equations are just for the reflectivity inversion of a
welded contact medium. Therefore, for the inversion of any medium properties, one
should apply the new AVO inversion equations. Especially, for the inversion of all
the properties related to the fractures, one should apply the new AVO inversion
equations for correct reservoir delineation.

1.6 Outline of This Book

The structure of this book follows closely the description of the methodology
introduced in the previous sections. The first part of this book in Chap. 2 focuses on
the rock physics theory about fractures, including the fracture mechanism, the
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composition of the fractured medium, and the boundary conditions of the fracture.
The second part in Chap. 3 focuses on the seismic modeling of the fracture to
illustrate that the fractures are detectable and fracture responses can be identified in
the seismic data. The last part of this book in Chap. 4 presents new AVO equations
for correctly estimating all the rock properties of a fractured and unfractured
medium of the reservoir.

Chapter 2 of this book describes some indispensable fundamental concepts
related to fractures. The concepts of stress and strain from rock physics theories are
reviewed to clarify the stages of rock deformation from reversible elasticity to
irreversible permanent fractures. The fracture parameters such as height, length,
opening, and orientation are used to describe existing fractures. In geoscience, the
fracture orientation is a more important parameter than the fracture opening, and is
parallel to the direction of maximum compressive stress and normal to the direction
of minimum compressive stress, and fracture formation is different with the for-
mation of the fault. Fracture detection usually employs an integrated method,
involving geology, petrophysics, and geophysics, while geophysical detection is a
big challenge that demands developing a method for enhancement of fracture
detection and correct reservoir delineation, even though the petrophysical data are
the most reliable. Compared to the intrinsic anisotropy medium, the fractured
medium exhibits an induced anisotropic feature that is consistent with previous
theoretical work and field observations. Therefore, different symmetric planes of an
anisotropic medium have different anisotropic symbols, and also different aniso-
tropic parameter symbols correspond to fracture-induced anisotropy in terms of
tangential and normal fracture compliances for different fractured media. Through
the Schoenberg and Muir calculus study, the fractured medium can be composed of
fractures embedded in a host medium, and the composite medium, with five
independent moduli, possesses anisotropy characteristics. With the effective med-
ium assumption, a linear slip model is chosen to simulate fractures, because the
fracture is an extended weakness interface regardless of the fracture shape and
microstructure, and all seismic waves at the fracture interface satisfy the nonwelded
contact boundary conditions which state that the dynamic stresses are continuous
across the fracture, but the kinematic displacements are discontinuous across the
fracture.

A table for the types of media contact and a table for boundary conditions are
given in this chapter. For the table of the media contact, a “fractured medium”
means that the host medium has no impedance contrast, whereas “fractured medium
with impedance contrast” indicates that the host media are homogenous and that
there is an impedance contrast, and the fracture interface and the impedance
interface are superposition. In the boundary conditions table, the terms z-normal
boundary, x-normal boundary, and y-normal boundary refer to a horizontal
boundary, a vertical boundary that is normal to the x-axis and a vertical boundary
that is normal to the y-axis, respectively.

Chapter 3 focuses on the seismic forward modeling of the fracture in order to
study fracture representations in seismic data. In this chapter, the finite-difference
forward modeling formulation of the homogeneous approach has been studied and
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selected for fracture modeling. Meanwhile, fictitious grids are introduced into the
FD scheme for the purpose of explicitly imposing boundary conditions at the
interface. Based on the finite-difference scheme for fracture modeling, we indi-
vidually derived new formulae of FD modeling for the horizontally fractured
medium, the vertically fractured medium and the orthogonally fractured medium.
Especially, for a FD grid, the scheme specifies only one nonwelded contact
boundary for modeling the fracture interface, and the rest of the three boundaries
are welded contact boundaries. This is different from the FD formulae of Slawinski
(1999) in which all boundaries are allowed to be nonwelded contact for modeling
the fracture interface in a FD grid. In the last part of this chapter, under a fractured
medium stability condition, we implement a MATLAB script for running the new
fracture FD schemes with a Ricker source wavelet to generate seismograms from
the horizontally fractured medium, the vertically fractured medium and the
orthogonally fractured medium. The results indicate that the fractures are pre-
dictable and visible, even if the fractured medium has no impedance contrast. The
synthetic seismic data for the fractured medium demonstrate the characteristics of
the fracture-induced anisotropy, in terms of traveltime and amplitude, providing us
with knowledge of the fractures which can be used to enhance fracture detection.

Chapter 4 emphasizes the derivation of equations for the PP and PS reflection
and transmission coefficients, the approximate PP AVO (Amplitude Variation with
Offset) equations for the horizontally fractured medium, and conducts inversion to
estimate all rock properties related to horizontal fractures. In this chapter, first, we
reviewed some published AVO equations based on the assumption of a welded
contact medium, and some seismic data preconditioning techniques such as
deconvolution, noise attenuation, 5D interpolation, and shear-wave layer stripping
to preserve the true amplitudes corresponding to geological factors. Second, with
the inclusion of the parameters of the normal and tangential fracture compliances,
we present the reflection and transmission coefficient expressions for PP and PS
waves at the horizontal fracture interfaces that satisfy the nonwelded contact
boundary conditions, and an exact solution for the PP reflection coefficients for the
horizontally fractured medium. Third, we derive new approximate AVO equations
that can be divided into a welded contact part and a nonwelded contact part. The
welded contact part agrees with the Aki and Richard’s AVO equations. The non-
welded contact part, derived in a similar way, using the same conditions for
approximation, results in eight items related to the fracture of which two items are
independent of the host media. The new AVO equations reduce to the conventional
AVO equations to predict the reflectivity of the rock when the tangential and
normal compliances of the fracture parameters vanish, or if the equations are only
for the inversion of the fracture properties when the medium has no impedance
contrast. In other words, the new AVO equations are able to correctly and indi-
vidually estimate all rock properties, such as the fracture properties, and host media
properties and fractured medium with impedance contrast properties, whereas with
the conventional AVO equation, it is hard to estimate all rock properties related to
fractures. Finally, we apply a generalized linear inversion algorithm (GLI) to invert
for all rock properties related to the fractured media, to demonstrate the difference
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that results when the conventional AVO equation is used to invert for the properties
for the same fractured media, and to invert for the tangential and normal compli-
ances (fracture parameters) from seismic data as well.

1.7 Conclusions

The key concepts of the related fracture and the fractured media are studied to meet
the imminent industrial demands as described above, i.e., to deeply understand
fracture representations in seismic data in order to enhance the geophysical pre-
diction of the fracture distribution, and to accurately estimate all the medium
properties related to fractures for the correct delineation of the reservoir. This
ultimately benefits reservoir and mining engineers, geologist and geophysicist with
respect to optimizing the hydrocarbon reservoir, well performance, and safety
mining.
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Chapter 2
Geological Fractures and Geophysical
Assumptions

Abstract Studying geological fractures from seismic data not only requires per-
forming forward modeling and backward inversion, but also required an under-
standing of the rock mechanisms and some geophysical hypotheses related to
fractures. In this chapter, many indispensable fundamental concepts are reviewed
that are associated with fracture formations, fracture types, fracture parameters,
fracture detections, fracture equivalent hypotheses (effective fractures), fractured
media composition, and decomposition and fracture interface boundary conditions
especially, rock deformations, Anderson’s principal stresses classification (Trans
Edinb Geol Soc 8: 387–402, 1905), petrophysics technologies, linear slip theory
(Schoenberg in J Acoust Soc Am 68: 1516–1521, 1980), Schoenberg and Muir
calculus theory (Geophysics 54: 581–589, 1989), welded contact boundary con-
ditions, and nonwelded contact boundary conditions are explored and integrated to
form a substantial body of material supporting the geological fractured media
forward modeling in Chap. 3 and seismic inversion in Chap. 4 of this book.

Keywords Stress–strain tensors � Rock deformation � Stiffness-compliances �
Fracture formation � Fracture parameters � Fracture detection �Well logs � Backus
average theory � Linear slip theory � Schoenberg-Muir theory � Boundary
conditions � Host medium � Fractured medium � Isotropy � Intrinsic anisotropy �
Induced anisotropy

2.1 Rock Deformations

2.1.1 Stress Tensor

Stress and strain tensors are keys for deeply understanding the fracture mechanisms.
In earth science, permanently fractured rock usually experiences three successive
stages when it is continually subjected to forces.

Traction is the force per area acting within a deformable material.

© Springer Nature Singapore Pte Ltd. 2018
X. Cui et al., Seismic Forward Modeling of Fractures and Fractured Medium
Inversion, Springer Geophysics, DOI 10.1007/978-981-10-3584-5_2
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T ¼ F
S
; ð2:1aÞ

Ti ¼
X3
j¼1

rij nj; ð2:1bÞ

where T is traction as the force per unit surface area, F is a force, and S is an area
subjected to the force, r is stress tensor, n is surface. i; j ¼ 1; 2; 3. In general, an
arbitrary stress r is a second rank tensor consisting of nine components, and can be
expressed in matrix form as

r ¼
r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5: ð2:2Þ

rij are the components of the tensor in the Cartesian coordinate system. Index “i”
describes the direction of the force component, and index “j” denotes the direction
that is perpendicular to the surface on which the force acts (Krebes 2006). For
example, the stress component r12 describes a force component parallel to (1)-axis
and acting on the surface (the (1) & (3)-plane) that is normal to (2)-axis. In general,
r11; r22 and r33 are so-called normal stresses because these components are nor-
mally acting to the surfaces, while r12; r13; r21; r23;r31 and r32 are so-called shear
stresses that are tangentially acting on the surfaces. The components of the stress
are shown in Fig. 2.1 on which bold arrows indicate the normal stress components
and light arrows indicate the tangential ones. The stress tensor r is commonly
expressed in terms of Voigt notation (11 ! 1; 22 ! 2; 33 ! 3; 23 !
4; 31 ! 5; 12 ! 6) which also makes use of the symmetry of the tensor
(13 ! 31; 23 ! 32; 12 ! 21) in the Cartesian coordinate system.

r ¼ r11 r22 r33 r23 r31 r12½ �T
¼ r1 r2 r3 r4 r5 r6½ �T ð2:3Þ

2.1.2 Strain Tensor

The components of the strain tensor, e, are defined in terms of the relative changes
in the displacement components of the deformed material subjected to the stresses.
Similar to the stress tensor, the strain tensor is symmetric, and has nine components:
the normal strains e11; e22; e33 and the shear strains e12; e13; e21; e23; e31; e32. The
normal strains measure relative changes in displacement along a specific direction.
For instance, e22 can be given as
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e22 ¼ Du2
Dl2

; ð2:4Þ

where, Dl2 is the original length and Du2 is the change of displacement along (2)-
axis direction (Fig. 2.2a).

The shear strains simply measure the material distortion of the shape in (small)
angles with respect to a specific direction. Figure 2.2b shows simultaneous shear
strains along both the (2)-axis and the (3)-axis. The change in shape of the material
is due to the applied force that can be described by

e32 ¼ 1
2
ð/2 þ/3Þ �

1
2

Du3
Dl2

þ Du2
Dl3

� �
; ð2:5Þ

where the definitions of Dl2 and Du2 are the same as in Eq. (2.4). Dl3 is the original
length and Du3 is the change in displacement along (3)-axis direction./2 and /3 are
material shape distortions in angles related to (2)-axis and (3)-axis, respectively
(Fig. 2.2b).

Fig. 2.1 A sketch of the nine components of the stress tensor at a point in a Cartesian coordinate
system. The bold arrows indicate the normal components of the stress. The light arrows indicate
the tangential components of the stress
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The strain tensor e, can also be expressed in Voigt notation rule which makes use
of the symmetry in the Cartesian coordinate system as well, i.e.,

e ¼ e11 e22 e33 e23 e31 e12½ �T
¼ e1 e2 e3 e4 e5 e6½ �T : ð2:6Þ

In the infinitesimal limit, the strain is given by (Krebes 2006)

Fig. 2.2 a A sketch of the
normal strain showing a size
change in the Cartesian
coordinate system. Dl2 is the
original length and Du2 is the
change in displacement along
the 2-axis direction.
b Diagram of the tangential
(shear) strains in shape
change in the Cartesian
coordinate system. Dl2, Dl3
are original lengths and Du2,
Du3 are changes in
displacement along (2)-axis,
(3)-axis direction
respectively. /2 and /3 are
material shape distortions in
angles respect to (2)-axis and
(3)-axis, respectively
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eij ¼ 1
2
ð/j þ/iÞ �

1
2

@ui
@xj

þ @uj
@xi

� �
: ð2:7Þ

The rock strains represent either reversible deformations where an object can
return to its original size and shape once the exerting stress is removed or irre-
versible deformations where an object is permanently distorted even if the exerting
stress disappears. The deformation stages actually depend on the ratio of the stress
and strain. Figure 2.3 shows a stress and strain function and the deformations
(Nelson 2003).

2.1.3 Stages of the Rock Deformation

For a small stress exerted on the rock, Hooke’s law entirely describes the linear
elastic behavior on the first elastic stage of the reversible rock deformation
(Fig. 2.3). The general mathematical equation for Hooke’s law is

rij ¼
X3
k¼1

X3
l¼1

Cijklekl; ð2:8Þ

Cijkl ¼ kdijdkl þ lðdildjk þ dikdjlÞ; ð2:9Þ

where the quantity Cijkl is called the material stiffness tensor or material modulus
tensor that is a measurement of the resistance offered by an elastic body to
deformation, and where i; j; k; l ¼ 1; 2; 3: k and l are known as the Lame physical
parameters, and dij is the Kronecker delta:

Fig. 2.3 Diagram of stress–
strain curve and rock
deformation stages. The
stages involve reversible
elastic deformation and
irreversible ductile
deformation and fracture
deformation
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dij ¼ 1; i ¼ j
0; i 6¼ j

�
: ð2:10Þ

With Voigt notation, Hooke’s law in Eq. (2.8) can be rewritten as

r1
r2
r3
r4
r5
r6

2
6666664

3
7777775
¼

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

2
6666664

3
7777775

e1
e2
e3
e4
e5
e6

2
6666664

3
7777775
; ð2:11Þ

where

r1
r2
r3
r4
r5
r6

2
6666664

3
7777775
¼

r11
r22
r33
r23
r31
r12

2
6666664

3
7777775

and

e1
e2
e3
e4
e5
e6

2
6666664

3
7777775
¼

e11
e22
e33
2e23
2e31
2e12

2
6666664

3
7777775
: ð2:11aÞ

An elastic homogeneous isotropic medium’s physical properties are invariant in
all directions. For such a medium, the stiffness tensor C simplifies to

C ¼

kþ 2l k k 0 0 0
k kþ 2l k 0 0 0
k k kþ 2l 0 0 0
0 0 0 l 0 0
0 0 0 0 l 0
0 0 0 0 0 l

2
6666664

3
7777775
: ð2:12Þ

Note that there are only two independent elastic moduli in isotropic media.
Hooke’s law describes the situation of an elastic isotropic medium when it is
subjected to small stress, and gives

rij ¼ kdijekk þ 2leij ¼ kdij
@uk
@xk

þ l
@ui
@xj

þ @uj
@xi

� �
; ð2:13Þ

where a sum is performed over k. In a 2D x–z Cartesian coordinate system,

rxz ¼ l
@ux
@z

þ @uz
@x

� �
: ð2:14Þ
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rzz ¼ k
@ux
@x

þðkþ 2lÞ @uz
@z

� �
: ð2:15Þ

If stress is persistently exerted, the elastic deformation proceeds to the ductile
deformation stage wherein the size and shape changes are irreversible (Nelson
2003). With further exertion of stress, the deformation status reaches the fracture
stage where the rock has been broken (Fig. 2.3). At the fracture point, the rock
strain is over the strain threshold since real materials are not infinitely rigid.

2.1.4 Stresses and Fractures

Thein-situ stresses can be divided into three perpendicular principal compressive
stresses including one vertical stress and two horizontal stresses. Anderson (1951)
recognized that the principal stresses orientation r1 [ r2 [ r3ð Þ could vary with
geological movement in the upper crust of the earth. Once the three principal
stresses deviate from a level of equilibrium, the fractures are possibly created in
which the direction of the fracture is parallel to the direction of the maximum stress
and perpendicular to the direction of minimum stress. An isotropic medium will be
reformed into an anisotropic medium with a new balance of three principal stresses.
In fact, in the deeper area of the upper crust, the maximum principal stress is
deemed to be produced by compression from the overburden deposition, while the
minimum stress will likely be one of the horizontal stresses. Thus most of the
fractures in the reservoir are oriented in the vertical or nearly vertical direction
because the maximum stress decides the direction of the fracture. Figure 2.4 shows

Fig. 2.4 Schematic of vertical fracture with three principal compressive stresses (r1 [r2 [r3)
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a schematic for three compressive principal stresses and a vertical fracture. If
r1 [ r2 [ r3, the vertical fracture plane is parallel to the x2; x3½ � plane and is
perpendicular to the x1-axis. Figure 2.5 illustrates the direction relationship between
the fractures and the corresponding faults (Anderson 1951) when they are under the
same relationship of three principal compressive stresses ordered as r1 [ r2 [ r3.
Figure 2.5a shows a vertical fracture (normal to x1-axis) and a normal fault.
Figure 2.5b shows a horizontal fracture (normal to x3-axis) and a thrust fault.
Figure 2.5c shows a vertical fracture (normal to x2-axis) and a strike-slip fault.

2.2 Geological Fractures in the Reservoir

Subsurface geological formationsare confined under in-situ stresses. Therefore, the
media in the reservoir can be deformed and fractured.

Fig. 2.5 Schematic of the direction relationship between the fractures and the corresponding
faults (Anderson 1951) when they are under the same relationship of three principal compressive
stresses ordered as r1 [r2 [r3
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2.2.1 Fracture Parameters

As we know, the geological fracture is a plane along which rocks show partially lost
cohesion when stresses act on it. The fracture planes may exhibit a little dis-
placement or may not exhibit any movement. A slight movement on the fracture
plane will produce a fracture opening, which may remain unfilled and result in an
increased permeability or may get subsequently filled by secondary minerals or
some fluids. Fracture openings, or apertures, and may vary from very thin (0.001–
0.5 mm) to relatively wide (1 inch) where fractures are propped open by some
minerals in the reservoir (Aguilera 1998).

The subsurface stress is a key to controlling the well-drilling performance and
this can be indicated by the fracture orientation. Thus, the most important param-
eters of a fracture set are the orientation and density which are considered more
critical than the fracture opening to describe the fracture sets in a geophysical
fracture study. Conventionally, geoscientists describe vertical or nearly vertical
fracture orientation that is perpendicular to the direction of minimum compressive
stress and the fracture plane as an isotropic plane. The different fractures have
different lengths or heights that possibly can span hundreds of meters, and this may
result in a lower value of the fracture density in the survey, while it is a fact that
there are quite a lot fractures in this area. Fracture density is defined as the number
of fractures per meter in a certain direction. For a very sparse fracture set the
fracture density could be less than 0.75 m−1, and for a tight fracture set may exceed
10 m−1. Typical values of fracture density for carbonate reservoirs are 1–20 m−1

(Bakulin et al. 2000a, b, c). The higher the fracture density is, the higher the
permeability is—if the fractures are conductive in the reservoir (Singhal and Gupta
1999).

Figure 2.6 shows two vertical fractures with orientations of u1 and u2 respect to
x2-axis. It also illustrates the fracture length, fracture height, and fracture opening
parameters.

It is clear that fracture aperture is much shorter than seismic wavelengths that are
on the order of tens and hundreds of meters. Therefore, in geoscience, a fracture
model can effectively be a transversely isotropic model that neglects finite fracture
openings, fracture shape, and fracture microstructure. The parameters of such a
fractured model will depend on the orientation and intensity of the fracture set(s), as
well as on the elastic properties of the host media.

2.2.2 Fracture Detection by Integrated Methods

Fracture detection is an integrated method that incorporates geology, petrophysics,
and geophysics technologies. Geological outcrops clearly indicate the near surface
fractures from which the directions of local maximum stress can be inferred.
Petrophysical well logs directly acquired from the reservoir can delineate the
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fractures through integrated interpretations of logs with a high resolution.
Geophysical seismic data provide densely sampled reflection signals from the
reservoir that can be used to seek the anisotropic zones indicating possible fractures.
In PP-data, COCA gathers (common offset common azimuth), as well as amplitude
and velocity variation with offset and azimuth (AVO/VVAZ/AVAZ) data can be
used to locate potential fractures. In PS-data, investigation of time lags between fast
and slow shear waves is a method to identify the fractures for the reservoirs.

2.2.3 Fracture Delineation by Petrophysical Data

Since the well logs directly measure data from the reservoir, well logs are the most
reliable and can be “hard data” for constraining the interpretation of surface seismic
data.

2.2.3.1 Core Analysis

The core analysis technique involves the examination of core samples from the
zone of interest and performing laboratory examinations. Thus it is the best suited
technique for studying fractures on a fine scale and detailed local fracture proper-
ties: fracture length and width, the mineralization infilling and un-filling of the
fracture, the orientation and density of the fractures, and the contact relationship of
the fracture to the host media.

Fig. 2.6 Schematic of two vertical fractures model with parameters of fracture orientation,
fracture width and fracture height parameters
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2.2.3.2 Temperature Log

The Earth’s temperature gradually increases with depth. A continuous temperature
log curve that sharply changes to a cooler temperature can be used to identify the
fracture zone. Typically, where the cooler drilling fluid enters into formation, there
will be a cool temperature anomaly. A pre-fracturing gradient contrasts with the
post-fracturing gradient showing a cool anomaly thought to be the fracture zone
(Rider 2002).

2.2.3.3 Caliper Log

Caliper tools measure accurately the hole size, shape, and orientation. A borehole
shape named a “breakout” is considered to be an identification for the fracture
because breakouts show the orientation of horizontal stress rmin [or a SHmin stress
(Rider 2002)]. So the detected fractures should be oriented in the direction of
maximum horizontal stress rmax [or a SHmax stress (Rider 2002)].

2.2.3.4 Density Log

A method of fracture detection is to compare the porosity from the density log with
the sonic log. The density tool records the bulk density that includes intergranular
and fracture porosities. However, the sonic log just measures intergranular porosity
because the sound wave takes the shortest path from emitter to receiver which
avoids the fracture. So if the density porosity changes much more than sonic log
porosity, it means that fractures are present (Rider 2002).

2.2.3.5 Dipmeter Log

The dipmeter log can show an open fracture from a dipmeter micro-resistivity
curve. The indicator is a conductive anomaly due to the invasion of drilling mud.
The fracture may be given an orientation because the dipmeter pad bearings are
known (Rider 2002).

2.2.3.6 Image Log

An image log is a computer-created image based on acoustic reflectivity or elec-
trical conductivity. To analyze the fracture, it is common to use an acoustic image
in which raw acoustic travel times and amplitudes are processed to a color image
presentation (Rider 2002).
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2.2.4 Fracture-Induced Anisotropy and Intrinsic Anisotropy

Anisotropy means that the physical properties of a medium are directionally
dependent. Isotropy, as opposed to anisotropy, means that the physical properties of
the medium are identical in all directions. In seismology, the anisotropy properties
commonly can be classified into intrinsic anisotropy and induced anisotropy.

The intrinsic anisotropy may be caused in the original formation in sedimentary
zones when the layers are substantially thinner than the seismic wavelength. It
assumes that the layers have a welded contact and the waves should meet the
perfectly welded boundary conditions. Intrinsic anisotropy is usually described by
Thomsen’s anisotropic parameters (1986).

Induced anisotropy appears because a medium is subject to regional stresses that
cause the medium to crack and attain a new system of equilibrium stresses in the
subsurface. The cracking action causes a welded continuous medium to change to a
nonwelded discontinuous medium satisfying the nonwelded contact boundary
conditions. From theoretical work and field observations, the fractured medium
exhibits induced anisotropy (Crampin and Bamford 1977; Lefeuvre 1993; Lynn
et al. 1996; Ramos and Davis 1997; Rueger 1996). The induced anisotropy shows
azimuthal dependence that is visible as a sinusoidal variation in the seismic data in
which the travel time is a function of the azimuth (due to velocity variation) in the
common offset and common azimuth cube (COCA). The shear wave splitting
phenomenon further indicates the azimuthal dependence of the induced anisotropy
in that the shear wave split into a fast shear wave that the polarization is parallel to
the direction of the fracture, and into a slower shear wave that the polarization is
perpendicular the direction of the fracture. Both polarizations are orthogonal to the
wave propagation direction (Crampin 1985).

The fracture causes the induced anisotropy that can be described by the fracture
weakness parameters that appear in the five independent moduli of the fractured
medium in next Sect. (2.3).

2.2.4.1 Anisotropic Parameters and Stiffness

In 1986, Thomsen introduced three dimensionless weak-anisotropic parameters:
eTh; dTh, and cTh that are related to the five independent moduli for TI media as

cTh �
C66 � C44

2C44
; ð2:16aÞ

eTh � C11 � C33

2C33
; ð2:16bÞ

dTh � C13 þC44ð Þ2� C33 � C44ð Þ2
2C33 C33 � C44ð Þ ; ð2:16cÞ
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also,

ap0 �
ffiffiffiffiffiffiffiffiffiffiffiffi
C33=q

p
; ð2:16dÞ

bp0 �
ffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p
; ð2:16eÞ

where cTh describes the fractional difference between the horizontal and vertical
SH-wave velocities, eTh describes the fractional difference between the horizontal
and vertical P-wave velocities, and dTh denotes the variation of P-wave velocity
with phase angle for nearly vertical propagation (Thomsen 1986). ap0 and bp0 are
vertical P-wave and S-wave velocities, respectively.

Based on the definitions of the weak-anisotropy coefficients in Eqs. (2.16a–
2.16e), the notations for the VTI (transversely isotropic medium with vertical
symmetric axis) and HTI (transversely isotropic medium with horizontal symmetric
axis) anisotropy coefficients are often identified as c; e; d, and cðvÞ; eðvÞ; dðvÞ

respectively, and they have been widely used in the geophysical literature to
describe wave propagation in anisotropic media.

Tsvankin (1997a, b) introduced the anisotropic coefficients for an orthorhombic
medium with the superscript notations (1), (2) and (3) for three-dimensional
symmetric planes using Thomson’s-type weak-anisotropic parameters (Fig. 2.7).
The superscript indicates the direction of the axis that is normal to the symmetry

Fig. 2.7 Sketch of an orthorhombic media model composed of two vertical fractures embedded in
a layered host medium (VTI). Two vertical symmetric planes and one horizontal symmetric plane
are determined by the vertical fracture orientation and the horizontal layered medium
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plane. For example, the notation (1) means that the x1-axis is normal to the sym-
metry plane.

The weak-anisotropy coefficients in the fracture plane (a vertical symmetric
plane) of the orthorhombic medium that is parallel to x2; x3½ � and normal to the
x1-axis are

cð1Þ � C66 orth � C55 orth

2C55 orth
; ð2:17aÞ

eð1Þ � C22 orth � C33 orth

2C33 orth
; ð2:17bÞ

dð1Þ � C23 orth þC44orthð Þ2� C33orth � C44orthð Þ2
2C33orth C33orth � C44orthð Þ : ð2:17cÞ

The weak-anisotropy coefficients in the normal fracture plane (another vertical
symmetric plane, see Table 2.2) that is parallel to x1; x3½ � and normal to the x2-axis
are

cð2Þ � C66 orth � C44 orth

2C44 orth
; ð2:18aÞ

eð2Þ � C11 orth � C33 orth

2C33 orth
; ð2:18bÞ

dð2Þ � C13 orth þC55 orthð Þ2� C33 orth � C55 orthð Þ2
2C33 orth C33 orth � C55 orthð Þ : ð2:18cÞ

The anisotropic coefficient in another normal fracture plane (a horizontal sym-
metric plane) that is parallel to x1; x2½ � and normal to the x3 axis is

dð3Þ � C12 orth þC66 orthð Þ2� C11 orth � C66 orthð Þ2
2C11 orth C11 orth � C66 orthð Þ : ð2:19Þ

Note that anisotropic coefficients cð2Þ; eð2Þ, and dð2Þ have the same formulae as
Eqs. (2.16a–2.16c) for TI medium anisotropic coefficients. It means that the ani-
sotropic coefficient cð2Þ; eð2Þ and dð2Þ would coincide with the coefficients cðvÞ; eðvÞ

and dðvÞ for the simplest HTI model if the symmetry axis is orientated in the x1-
direction. In the isotropy plane, therefore, the fracture does not affect wave
velocities and the propagation direction, and the anisotropic coefficients will have
the same constant values as the host VTI anisotropic medium (Tsvankin 1997a).

For fractured media, when the fractures have a certain direction (one or several),
and the wavelengths are much greater than the fracture opening, it is feasible that
the induced anisotropic problem described by the fracture weakness parameters can
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be transformed into the intrinsic anisotropic problem described by Thomson’s
anisotropy parameters with Tsvankin’s notations (see Sect. 2.3).

2.3 Fracture Related Geophysical Assumptions

Relative to the seismic wavelength, a fracture is regarded as a weakness plane.
Thus, a seismological fractured medium model should neglect finite fracture
openings, fracture microstructure, and it can be equivalent to an effective aniso-
tropic medium.

2.3.1 Backus Average Theory

Backus (1962) presented a long wavelength equivalent theory that describes a finely
stratified homogeneous medium which is effectively equivalent to an anisotropic
medium, and is named an “effective anisotropic medium”. The effective anisotropic
medium might be a transversely isotropic medium with a vertical symmetry axis
(VTI) or transversely isotropic medium with a horizontal symmetry axis (HTI). In
Fig. 2.8, there is a picture of Backus’s theory (1962): the thin layers are parallel to
the horizontal x1-axis and the media properties vary with vertical x3-axis. The
medium thickness H must be long enough so that the elastic properties of the
medium vary appreciably over H. Also it must be smaller than the smallest
wavelength in order to replace the layered medium by an anisotropic medium where
the density is the average density over H and the elastic parameters are an algebraic

Fig. 2.8 Sketch of the long wavelength equivalent medium. H is the medium width.k is seismic
wavelength.k � H
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combination of the parameters from the original layered medium. The theory
concludes that the elastic moduli of the equivalent medium can be expressed, in the
long wavelength assumption, as thickness-weighted averages of the moduli of the
thin layers of the stratified medium. The Backus average theory has been verified
numerically by Carcione et al (1991).

2.3.2 Stress, Strain in the Stratified Layers

For a stratified medium, in the long wavelength limit, all components of stress
acting on the layering plane, i.e., r3h; r4h and r5h (h ¼ 1. . .n; with h denoting
different layers) and all components of strain lying in the layering plane, i.e., e1h, e2h
and e6h, are the same in all the layers across medium H. The notations of stress and
strain are in Voigt form. The other components of the stress and strain, i.e.,
r1h; r2h; r6h and e3h; e4h; e5h, are different from layer to layer. In other words, some
components of stress and strain are layer-independent, i.e.,

r3h
r4h
r5h

2
4

3
5 ¼

r3
r4
r5

2
4

3
5 ¼ r; ð2:20aÞ

e1h
e2h
e6h

2
4

3
5 ¼

e1
e2
e6

2
4

3
5 ¼ e; ð2:20bÞ

whereas other components of stress and strain are layer-dependent, i.e.,

r1h
r2h
r6h

2
4

3
5 ¼ rh; ð2:21aÞ

e3h
e4h
e5h

2
4

3
5 ¼ eh: ð2:21bÞ

The thickness-weighted average value for the layer-dependent components will
be the total value over full thickness H (Schoenberg and Douma 1988). Thus, the
layer-dependent stress components are

r1 ¼ 1
H

Xn
h¼1

Hhr1h; ð2:22aÞ

30 2 Geological Fractures and Geophysical Assumptions



r2 ¼ 1
H

Xn
h¼1

Hhr2h; ð2:22bÞ

r6 ¼ 1
H

Xn
h¼1

Hhr6h; ð2:22cÞ

the layer-dependent strain components are

e3 ¼ 1
H

Xn
h¼1

Hhe3h; ð2:23aÞ

e4 ¼ 1
H

Xn
h¼1

Hhe4h; ð2:23bÞ

e5 ¼ 1
H

Xn
h¼1

Hhe5h; ð2:23cÞ

where Hh is the thickness and ln is the relative thickness of the composed thin layer,
and l1 þ l2 þ � � � þ ln ¼ 1. In Eqs. (2.22a) and (2.23a), the overhead bar denotes
that the layer-dependent components of stress and strain have been done using the
thickness-weighted average. The linear relationship of the stress and strain in
Eq. (2.11) can be separated into two parts that are individually for the
layer-dependent and layer-independent stress components with corresponding strain
components and the thickness-weighted average for the stiffness

r ¼ CTTeþCTNe; ð2:24aÞ

r ¼ CNTeþCNNe; ð2:24bÞ

where CTN is the transpose of the corresponding CNT, and

CTT ¼
C11 C12 C16

C21 C22 C26

C16 C26 C66

2
4

3
5; ð2:25aÞ

CNN ¼
C33 C34 C35

C34 C44 C45

C35 C45 C55

2
4

3
5; ð2:25bÞ

CTN ¼
C13 C14 C15

C23 C24 C25

C36 C46 C56

2
4

3
5: ð2:25cÞ
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2.3.3 Stiffness and Compliances of the Fracture

In an effective medium, when a thin layer composing the medium is permanently
deformed or fractured, this layer will be soft, and the layer-dependent strain
components e will be enlarged. The layer-independent strain components e are the
same as the corresponding components in the host medium with a constant value.
To represent the fracture, Eq. (2.24b) can be approximated as

rf � CNNf�e: ð2:26Þ

Equation (2.26) describes a pure fracture feature. It turns out that the fracture
feature is mainly affected by the stiffness CNNf rather than by the stiffness CTT and
CTN. CNNf is approximately linearly proportional to the layer-independent stresses
and layer-dependent strains. Now it is assumed that the fracture plane is isotropic
(no roughness) and the fracture behavior is invariant with rotation with respect to an
axis normal to the fracture (fracture system), and the fracture compliance is S
(Schoenberg 1988, 1995). The fracture stiffness CNNf and fracture compliance S
can be transformed into each other as follows:

C�1
NNf ¼

C33 0 0

0 C44 0

0 0 C55

2
64

3
75
�1

¼ S ¼
SN 0 0

0 SH 0

0 0 SV

2
64

3
75;

ð2:27Þ

where SN is the normal fracture compliance that relates to the normal displacement
and the normal stress, SV and SH are the tangential fracture compliances along the
vertical (x3-axis) and horizontal (x1-axis) axes, respectively. Equation (2.27) is the
so-called rotation-invariant fracture system. Because the two tangential fracture
compliances are equal in the rotation-invariant fracture system, ST may be used
(ST ¼ SV ¼ SH) as the tangential compliance that relates to the shear displacement
and the shear stress. The fracture compliances SN and ST are nonnegative and have
the dimension length/stress within a discontinuous medium.

In 1988, Schoenberg and Douma (1988) presented the dimensionless fracture
compliances that link the dimensioned fracture compliances to the unfractured host
medium compliances:

ET � C44HST; ð2:28aÞ

EN � C33HSN; ð2:28bÞ
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where EN and ET are the normal and tangential dimensionless fracture compliances.
The subscript “H” denotes the host medium. To simplify the fracture compliances,
Hsu and Schoenberg (1993) introduce the dimensionless quantities

DN ¼ EN

1þEN
; ð2:29aÞ

DT ¼ ET

1þET
; ð2:29bÞ

0�DN; DT � 1: ð2:29cÞ

The quantities DN;DT relate the fracture compliance to the total compliance of a
fractured medium that is algebraically a summation of a host medium and a frac-
ture. DN;DT are also the so-called normal and tangential weakness of the fracture
when the fracture is treated as an infinite slip interface (Bakulin et al. 2000a, b, c).

2.3.4 Linear Slip Interface and Fracture

A linear slip interface can be used to model a fracture that is based on the Backus
average (1962). In 1980, Michael Schoenberg depicted a physical mechanism of the
linear slip interface: an isotropic thin layer inserted into a homogeneous isotropic
host medium to construct a perfectly welded layered medium (effective anisotropic
VTI media). This isotropic thin layer thickness l0 should be very small compared to
a minimum wavelength k, and its impedance Z 0 should be much lower with respect
to the host medium impedance Z. The reflection and transmission coefficients of
this isotropic thin layer are R0 and T 0. Once the thickness and impedance of the
inserted isotropic thin layer approach to zero, the constructed layered medium
(Fig. 2.9) is transformed into a medium that is effectively equal to a linear slip
interface embedded in a homogeneous isotropic host medium in which the dis-
placement discontinuity and stress continuity across the linear slip interface satisfy
the nonwelded contact boundary conditions (Schoenberg 1980). At this point, the
transformed medium is named the effective fractured medium, and the slip interface
equals to a fracture. The reflection coefficient R and transmission coefficient T of
the effective fractured medium will be R ¼ R0 and T ¼ T 0.

The linear slip theory appreciably provides a convenient effective fractured
medium model in geophysics that allows us to study the fracture from seismic
signatures since the fracture is possibly simulated as an infinite weakness surface.
Pyrak-Nolte et al. (1990a, b) and Hsu and Schoenberg (1993) have confirmed the
validity of this model by some laboratory experimental verifications. In addition,
Peterson et al. (1993) have shown that results obtained from small-scale cross-well
experiments appear to agree with this model. In fact, the fracture outcrops show that
a fracture as an nonwelded interface or weakness plane separates a medium into two
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half spaces that exactly coincide with the linear slip interface. The linear slip
interface theory satisfies the nonwelded contact boundary conditions. Therefore, a
linear slip interface obviously can be adapted to simulate a fracture which unites a
geometrical phenomenon of the geology and a mechanical property of the medium.
In the effective fractured medium model, the fracture is just an infinitely extended
weakness plane or a highly compliant layer, regardless of its shape and
microstructure and the porosity information.

Sayers (2009) used the ratio between the normal and tangential compliances as
an indicator for the fluid content, e.g., SNST � 1 for dry fractures. Schoenberg (1980)
suggested that a fluid filled fracture can be approximated by letting SN ¼ 0 and
ST 6¼ 0, which is equivalent to requiring normal displacement continuity. The case
of SN ¼ 0 and ST / 1, meaning that there is no shear stress across the interface,
and is equivalent to the solid–fluid boundary condition: both the normal stress and
normal displacement are continuous.

2.3.5 Schoenberg-Muir Calculus Theory

Schoenberg and Muir (1989) extended the Backus average approach to develop a
matrix formalism that enables a simple calculation of the stiffness of the rock, and
then achieves a description for the composition and decomposition of the effective
anisotropic medium. First, the rock stiffness of a layer can be mapped to an element
of an Abelian group that includes two scalars and three 3 	 3 matrices. Then
summation or subtraction is used to calculate the corresponding elements from the
media that need to be calculated. Finally, the summed or the subtracted elements are

Fig. 2.9 Diagram of physical mechanism of the linear slip interface. Once l
0
\\k; z

0
\\z,

then R
0 ¼ R; T

0 ¼ T
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inverted into the rock stiffness to describe a reconstructed medium. Under the
Backus theory (1962), a numerical simulation was performed to show that the
Schoenberg-Muir theory is valid from the kinematic (travel times) and dynamic
(amplitudes) viewpoints for a small crack aspect ratio or fracture opening, very long
flat parallel fractures and thin layered media (Carcione et al. 2012). It concludes that
a fracture as an infinitely extended weakness plane is an element for assembling a
fractured medium from a fracture and a host medium. A fractured medium can be
separated into a fracture and a host medium

FractureþHostmedium ! Fracturedmedium

Fracturedmedium ! FractureþHostmedium:

In this view, geophysically a horizontally fractured medium (the VTI case) can
be composed as a horizontal slip interface (a horizontal fracture) within an isotropic
homogeneous host medium. A vertically fractured mediumconsists of a vertical
linear slip interface (a vertical fracture) and an isotropic homogeneous host med-
ium. A more realistic orthorhombic medium can be formed by either embedding a
vertical slip interface into a transversely isotropic host medium with a symmetric
vertical axis (VTI) or embedding a horizontal slip interface into a transversely
isotropic host medium with a symmetric horizontal axis (HTI).

Schoenberg and Muir’s calculus approach has been further developed into an
algorithm that calculates the rock compliances instead of the rock stiffnesses by
Hood (1991) and Nichols et al (1989).

Table 2.1 gives the types of media contact that will be involved in this book.
Throughout the book, the expression “a fractured medium” means that the host
medium is a uniform homogeneous isotropic medium, while the expression
“fractured medium with impedance contrast” implies that homogeneous isotropic
media with impedance contrasts are the host media.

2.3.6 Horizontally Fractured Medium Moduli (VTI)

The stiffness matrix of an isotropic medium (Eq. 2.12) can be rewritten in a special
order of the elements by moving the column six into column three and then moving
the row six into row three as

CH iso ¼

C11 C12 0 C13 0 0
C21 C22 0 C23 0 0
0 0 C66 0 0 0
C31 C32 0 C33 0 0
0 0 0 0 C44 0
0 0 0 0 0 C55

2
6666664

3
7777775
: ð2:30Þ
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Note that the nine elements of the top left of the matrix in Eq. (2.30) form the
stiffness matrix CTT, while the nine elements (3 	 3) of the bottom right of the
matrix in Eq. (2.30) form the stiffness matrix CNN (Appendix A). Following the
matrix formalism of algebra and Abelian (commutative) group theory (Schoenberg
and Muir 1989), the effective elastic moduli of the fractured VTI media (Fig. 2.10)
can be computed as

Table 2.1 Types of media contact

Fracture interface Impedance contrast interface 

Horizontally fractured medium Horizontally fractured medium with 

impedance contrast 

Vertically fractured medium Vertically fractured medium with 

impedance contrast 

Orthogonally fractured medium Orthogonally fractured medium with 

impedance contrast 
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GVTI ¼ GH iso þGh f ; ð2:31Þ

where GH iso the group stiffness of the homogeneous isotropic host medium, and
Gh f is the group stiffness of the horizontal fracture that was discussed and given in
Eq. (2.27). The effective elastic stiffness CVTI of the horizontally fractured media
with the parameters of tangential and normal weaknesses of the fracture
(Eqs. 2.29a) is (see Appendix A)

CVTI ¼

ðkþ 2lÞ 1� k2

ðkþ 2lÞ2 DN

h i
k 1� k

kþ 2lDN

� �
kð1� DNÞ

k 1� k
kþ 2lDN

� �
ðkþ 2lÞ 1� k2

ðkþ 2lÞ2 DN

h i
kð1� DNÞ

kð1� DNÞ kð1� DNÞ ðkþ 2lÞð1� DNÞ
0 0 0

0 0 0

0 0 0

2
66666666664
0 0 0

0 0 0

0 0 0

lð1� DHÞ 0 0

0 lð1� DV Þ 0

0 0 l

3
777777775
:

ð2:32Þ

This fractured elastic stiffness shows that the fractured medium is a TI medium
with five independent moduli CVTI12 ¼ CVTI11 � CVTI66ð Þ and the fracture proper-
ties are independent of the properties of the host medium (Hsu 1993).

Fig. 2.10 Horizontally
fractured medium model. It is
formed by a horizontal
fracture interface and a
uniform homogeneous
isotropic host medium
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2.3.6.1 Horizontal Fracture Anisotropy

A conclusion from Sect. 2.4.2 is that the effective composite media are TI media
since the stiffness has five independent moduli. Hereby, the composed horizontally
fractured medium is equivalent to an effective anisotropic VTI medium in which the
fracture is part of a rotationally invariant fracture system and causes anisotropy. The
stiffness of this effective horizontally fractured medium has been presented in
Eq. (2.32). Substituting some elements in Eq. (2.32) into the anisotropic coeffi-
cients defined in Eq. (2.16a, the anisotropic coefficients caused by a fracture in
terms of the fracture dimensionless weakness parameters are (Schoenberg and
Douma 1988)

c ¼ DT

2ð1� dTÞ �
DT

2
; ð2:33aÞ

e ¼ 2g 1� gð ÞDN

1� dN
� 2g 1� gð ÞDN; ð2:33bÞ

d ¼ 2ð1� gÞ g DN � DTð Þ
1� DNð Þ � g 1� DTð Þ � 2ð1� gÞgðDN � DTÞ; ð2:33cÞ

where g is

g ¼ lH
kH þ 2lH

: ð2:33dÞ

2.3.7 Vertically Fractured Medium Moduli (HTI)

Cui and Lines (2011) showed that the elastic moduli of the HTI can be computed
from the elastic moduli of a transversely isotropic medium with a vertical symmetry
axis (a VTI medium) by using a Bond transformation (Winterstein 1990). Hence,
rotating the horizontal fracture system in Eq. (2.27) by 90° with respect to the
Y axis (Fig. 2.11), the elastic moduli of the vertical fracture system should be

Sv f ¼
C11 0 0

0 C55 0

0 0 C66

2
64

3
75
�1

¼
SN 0 0

0 SV 0

0 0 SH

2
64

3
75:

ð2:34Þ
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Figure 2.11 shows a vertical fracture that is normal to the X(1)-axis or parallel to
Yð2Þ; Zð3Þ½ �-plane with a horizontal symmetry axis. It is rotated from a horizontal
fracture.

Following the Schoenberg and Muir (1989) procedure to simplify the calculation
of the effective elastic moduli of the vertically fractured media (HTI) (Fig. 2.12),
we have:

GHTI ¼ GH iso þGv f : ð2:35Þ

GH iso is the group stiffness of the homogeneous isotropic host medium, Gv f is
the group stiffness of the vertical fracture. Consequently, the elastic stiffness for a
vertically fractured medium (HTI) is (Appendix A)

Fig. 2.11 Coordinates
Rotation. A horizontal
interface is rotated into a
vertical interface by a rotation
of 90° with respect to the
Y axis

Fig. 2.12 Vertically
fractured medium model. It is
formed by a vertical fracture
interface and a uniform
homogeneous isotropic host
medium
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CHTI ¼

ðkþ 2lÞð1� DNÞ kð1� DNÞ kð1� DNÞ
kð1� DNÞ ðkþ 2lÞ 1� k2

ðkþ 2lÞ2 DN

h i
k 1� k

kþ 2lDN

� �
kð1� DNÞ k 1� k

kþ 2lDN

� �
ðkþ 2lÞ 1� k2

ðkþ 2lÞ2 DN

h i
0 0 0

0 0 0

0 0 0

2
66666666664
0 0 0

0 0 0

0 0 0

l 0 0

0 lð1� DVÞ 0

0 0 lð1� DHÞ

3
777777775
:

ð2:36Þ

The elements of Eq. (2.36) have CHTI22 ¼ CHTI33;CHTI12 ¼ CHTI13;CHTI55 ¼
CHTI66 and CHTI23 ¼ CHTI33 � 2CHTI44. Thus effective vertically fractured media are
TI media with five independent moduli. Note that C44 HTI ¼ l is the same as the
homogeneous isotropic host medium stiffness. It means that only the elements
corresponding to the fracture system describe the fracture in the stiffness for the
effective vertically fractured medium. This effective vertically fractured medium
(HTI) is the simplest azimuthally anisotropic medium that provides valuable
insights into the study of the fracture behavior of the seismic signature variation
with the azimuthal fractures.

2.3.7.1 Vertical Fracture Anisotropy

This vertically fractured medium may cause anisotropy that would be seen and
observed on seismic signature as travel time and amplitude variations. The stiffness
tensor of this vertically fractured medium is expressed by the fracture weakness in
Eq. (2.36). Substituting some elements in Eq. (2.36) into Eq. (2.16a), the
fracture-caused anisotropic coefficients can be conveniently described by the ani-
sotropic parameters as

cðvÞ ¼ �DT

2
; ð2:37aÞ

eðvÞ ¼ � 2gð1� gÞDN

1� ð1� 2gÞ2DN
� �2gð1� gÞDN; ð2:37bÞ

40 2 Geological Fractures and Geophysical Assumptions



dðvÞ ¼ � 2g 1� 1� 2gð ÞDNð Þ 1� 2gð ÞDN þDTð Þ
1� 1� gð Þ2

� �
1þ 1

1þ g ðgDT � ð1� 2gÞDNÞ
� �

� �2g 1� 2gð ÞDN þDTð Þ: ð2:37cÞ

In Eq. (2.37a), anisotropic parameters cðvÞ; eðvÞ and dðvÞ are always negative in a
HTI model, thus the fracture weakness parameters always have nonnegative values.
The fracture characterization can be determined from the surface seismic signatures
through the anisotropic representations in the seismic data.

2.3.8 Orthogonally Fractured Medium Moduli (VTI + HTI)

A reconstructed effective orthorhombic medium (the symmetry of a brick) is usu-
ally a combination of a VTI medium and a HTI medium that has been considered as
a more realistic model to characterize the reservoir (Fig. 2.13). The reason is that
geological sediments deposited into a horizontally layered medium show trans-
versely isotropic elastic behavior with a vertical symmetry axis (VTI), while the
maximum principal stress is a vertical one of compression from the overburden
deposition that generated the vertical fractures with a horizontal symmetry axis.
Therefore, an orthorhombic medium model is a more reasonable model to describe
the subsurface structures. Based on the Schoenberg and Muir calculus, an
orthogonally fractured medium can be treated as a vertical slip interface plus a VTI
host medium

GOrth ¼ GH VTI þGv f : ð2:38Þ

Fig. 2.13 Orthogonally
fractured medium model. It is
formed by a vertical fracture
interface and horizontally
fractured host medium
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GH VTI is the group stiffness of the VTI host medium that could include the
stiffness of a horizontally fractured medium in Eq. (2.36) as well. Gv f is the group
element of the vertical fracture and has the same expression as in Eq. (2.34)
(Appendix A).

COrth ¼

C11H VTIð1� DNÞ C12H VTIð1� DNÞ C13H VTIð1� DNÞ
C12H VTIð1� DNÞ C11HVTI 1� C2

12H VTI

C2
11H VTI

DN

� �
C13H VTI 1� C12H VTI

C11H VTI
C12H VTIDN

� �
C31H VTIð1� DNÞ C13H VTI 1� C112H VTII

C11H VTI
DN

� �
C33H VTI 1� C2

13H VTI

C11H VTIC33H VTI
DN

� �
0 0 0

0 0 0

0 0 0

2
666666666664
0 0 0

0 0 0

0 0 0

C44H VTII 0 0

0 C44H VTIð1� DVÞ 0

0 0 C66H VTIð1� DHÞ

3
777777775
:

ð2:39Þ

Equation (2.39) gives the stiffness of an orthogonally fractured medium. An
effective orthogonally fractured medium has nine independent moduli that depend
on the five independent moduli of the TI host medium and the three fracture
compliances of the fracture. A more complex method for solving for the stiffness of
the orthorhombic medium is given in Appendix A by considering a composite of a
VTI medium and a HTI anisotropic media.

2.3.8.1 Orthorhombic Fractures Anisotropy

The geometry of Fig. 2.13 shows that the orthorhombic fracture model has two
orthogonal vertically symmetric planes x2; x3½ �; x1; x3½ � and one horizontally sym-
metric plane x1; x2½ � which are normal to the x1-axis, x2-axis and x3-axis, respec-
tively. Tsvankin (1997b) proved that the anisotropy in the symmetric planes of
orthorhombic media can be completely described by known intrinsic anisotropy
parameters, and all conclusions about anisotropy in VTI and HTI media remain
valid for symmetric planes in orthorhombic media. If the properties of all vertical
planes are identical, an orthorhombic medium can be reduced to a VTI medium.
The stiffness tensor of this orthorhombic fractured medium is expressed through the
fracture weakness in Eq. (2.39). Substituting necessary elements in Eq. (2.39) into
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Eq. (2.17a) yields the anisotropic coefficients for the vertical symmetry x2; x3½ �-
plane

cð1Þ ¼ cH þ DV � DH

2
; ð2:40aÞ

eð1Þ ¼ eH ; ð2:40bÞ

dð1Þ ¼ dH : ð2:40cÞ

The subscript H of anisotropic parameters denotes the host medium, a hori-
zontally fractured medium. Therefore, the anisotropic coefficients in the x2; x3½ �-
plane coincide with those of the horizontally fractured VTI host medium. It is seen
that the x2; x3½ �-plane represents an isotropic plane with a horizontal symmetric x1-
axis in this orthorhombic medium in which all of the velocities are not affected by
the fracture and remain constant for all propagation directions (Tsvankin 1997b). If
the fracture system is rotationally invariant, we have DV ¼ DH , and then cð1Þ ¼ cH .

Substituting some elements in Eq. (2.39) into Eq. (2.18a) gives the anisotropic
coefficients for another vertical symmetry x1; x3½ �-plane that is normal to the x2-axis

cð2Þ ¼ cH � DH

2
; ð2:41aÞ

eð2Þ ¼ eH � 2gð1� gÞDN; ð2:41bÞ

dð2Þ ¼ dH � 2g 1� 2gð ÞDN þDV½ �: ð2:41cÞ

Note that the x1; x3½ �-plane involves two distinguishing anisotropic coefficients.
One is the corresponding anisotropic coefficient of the horizontally fractured VTI
host medium with subscript “H”, while the other anisotropic coefficient that results
from the vertical fracture that approximately equals the coefficients cðvÞ; eðvÞ; dðvÞ

describing a vertically fractured HTI model. This composite result is what we
expected.

The anisotropic coefficients of the horizontal symmetry x1; x2½ �-plane are
obtained by substituting necessary elements in Eq. (2.39) into Eq. (2.19)

dð3Þ ¼ 2g DN � DV½ �: ð2:42Þ

Note that dð3Þ does not relate to the anisotropic coefficients of host medium
because the horizontal symmetry x1; x2½ �-plane is an isotropic plane in the hori-
zontally fractured VTI host media.
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2.4 Boundary Conditions

Boundary condition stands for a constraint function that must be satisfied along a
boundary (Sheriff 2002). At the boundary, all waves are constrained such that
kinematic displacements and dynamic stresses on one side of the boundary are
related to displacements and stresses on the other side by certain boundary con-
ditions. The direction of the boundary and contact properties of the two sides of the
boundary decide the wave expressions in terms of the displacement and stress.
Table 2.2 provides boundary types in 3D and the corresponding expressions of the
boundary conditions in terms of displacement u and the stresses r, in which u
 ¼
u
i ; r ¼ r
ij : i ¼ j ¼ x; y; z.

Table 2.2 Boundary conditions in 3D

Type of the boundaries Welded boundary
conditions

Nonwelded boundary
conditions

z-normal boundary uþ
x � u�x ¼ 0
rþ
xz � r�xz ¼ 0

�

uþ
z � u�z ¼ 0

rþ
zz � r�zz ¼ 0

(

uþ
z � u�z ¼ 0
rþ
zz � r�zz ¼ 0

�

uþ
x � u�x ¼ STrþ

xz
rþ
xz ¼ r�xz

�

uþ
z � u�z ¼ SNrþ

zz
rþ
zz ¼ r�zz

�

uþ
y � u�y ¼ STrþ

yz
rþ
yz ¼ r�yz

�

x-normal boundary uþ
x � u�x ¼ 0
rþ
xx � r�xx ¼ 0

�

uþ
z � u�z ¼ 0
rþ
zx � r�zx ¼ 0

�

uþ
y � u�y ¼ 0
rþ
yx � r�yx ¼ 0

�

uþ
x � u�x ¼ SNrþ

xx
rþ
xx ¼ r�xx

�

uþ
z � u�z ¼ STrþ

zx
rþ
zx ¼ r�zx

�

uþ
y � u�y ¼ STrþ

yx
rþ
yx ¼ r�yx

�

y-normal boundary uþ
x � u�x ¼ 0
rþ
xy � r�xy ¼ 0

�

uþ
z � u�z ¼ 0
rþ
zy � r�zy ¼ 0

�

uþ
y � u�y ¼ 0
rþ
yy � r�yy ¼ 0

�

uþ
x � u�x ¼ STrþ

xy
rþ
xy ¼ r�xy

�

uþ
z � u�z ¼ STrþ

zy
rþ
zy ¼ r�zy

�
uþ
y � u�y ¼ SNrþ

yy
rþ
yy ¼ r�yy

�
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2.4.1 Perfectly Welded Contact Interface

Consider a compressional wave traveling in the x–z plane. It impinges upon a
perfectly welded contact interface at which the kinematic displacements and the
dynamic stresses of the wave quantities on the two sides of the interface satisfy

uþ ¼ u�; ð2:43Þ

rþ ¼ r�; ð2:44Þ

where u is kinematic displacement and r is dynamic stress. uþ ¼ uþ
x

uþ
z

�
; u� ¼

u�x
u�z

�
; rþ ¼ rþ

xz
rþ
zz

�
; r� ¼ r�xz

r�zz

�
. The superscripts “−” and “+” denote the two

sides of the interface (Fig. 2.14). The subscripts “x and z” or “xz and zz” denote the
u or r in tangential and normal components. For example, uþ

x or uþ
z can be

interpreted as a displacement u in tangential x or normal z component at the “+”
side of the interface. Equations (2.43) and (2.44) must be satisfied by the incident,
reflected, and transmitted waves at the interface, and are known as the perfect
welded contact boundary conditions. They state that both kinematic displacements
and dynamic stresses of the wave are continuous across the perfect welded interface
when the wave propagates at the interface. Figure 2.14 shows the perfectly welded
interface boundary conditions.

2.4.1.1 Reflections and Transmissions

In seismology, an incident compressional plane wave produces reflected and
transmitted waves at the interface. Figure 2.15 shows all elastic waves at the

Fig. 2.14 Perfectly welded interface boundary conditions. uþ ¼ u�,rþ ¼ r�. The kinematic
displacements and dynamic stresses are continuous across the welded interface
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reflector in a homogeneous isotropic medium. The upper prime “‘” indicates up
going reflection waves, and the down prime “‘” means down going waves that
include the incident wave in the upper medium and the transmitted waves in the
lower medium. Consider a plane wave,

u ¼ Ae�ixðt�s�xÞd; ð2:45Þ

where A is the amplitude and is assumed to be unity, and s � x ¼ sxxþ syyþ szz.
Equation (2.45) represents a harmonic plane wave traveling in the s direction,
where s is the slowness. d denotes the wave polarization, with |d| = 1.

Substituting Eq. (2.45) into Eq. (2.43) and using Fig. 2.15, gives

P‘1 sin h1 ¼ �P‘1 sin h1 � S01 cos#1 þ P‘2 sin h2 þ S‘2 cos#2: ð2:46aÞ

P‘1 cos h1 ¼ P01 cos h1 � S01 sin#1 þ P‘2 cos h2 � S‘2 sin#2: ð2:46bÞ

where P‘1; P
‘
1; P

‘
2; S

‘
1 and S

‘
2 are the amplitudes of the P-incident, PP-reflected and

transmitted, PS-reflected and transmitted waves, respectively, while h1; h2; #1 and
#2 are angle of PP and PS-waves reflection and transmission, respectively.

Similarly, substituting Eq. (2.45) into Eq. (2.44) and using Fig. 2.15 gives

P‘1x1 cos h1 ¼ P01x1 cos h1 þ S01b1r1 þ P‘2x2 cos h2 þ S‘2b2r2: ð2:47aÞ

P‘1a1r1 ¼ �P01a1r1 þ S01x1 cos#1 þ P‘2a2r2 � S‘2x2 cos#2: ð2:47bÞ

Fig. 2.15 Incident P-wave, reflected and transmitted PP and PS waves at a perfectly welded
contact interface. h1; h2; #1 and #2 are PP and PS-waves reflection and transmission angles
respectively. The single arrows point in the direction of wave propagation. The double arrows
indicate the direction of the wave polarization. an;bn and qn, n ¼ 1; 2 are the media parameters
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where an; bn and qn are the P-wave velocity, S-wave velocity and density,
respectively. xn ¼ 2qnb

2
nP,rn ¼ qn 1� 2b2nP

2
� 	

; n ¼ 1; 2 (Aki and Richards 1980).
P is the ray parameter.

sinhn
an

¼ sin#n

bn
¼ P: ð2:48Þ

2.4.1.2 Zoeppritz Equations

Equations (2.46a) and (2.47a) are four linear equations in four unknowns, and they
can be used to solve for the four unknown PP and PS reflection transmission
coefficients in a homogeneous isotopic media. This system of equations can be
written in matrix form as

a1P
cos h1

x1 cos h1
a1r1

2
664

3
775 ¼

�a1P � cos#1 a2P cos#2

cos h1 �b1P cos h2 �b2P
x1 cos h1 b1r1 x2 cos h2 b2r2
�a1r1 x1 cos#1 a2r2 �x2 cos#2

2
664

3
775

P‘P01
P‘S01
P‘P‘2
P‘S‘2

2
664

3
775: ð2:49Þ

These equations are known as the Zoeppritz equations (1919). The equations
reveal that the amplitudes of reflected and transmitted waves are functions of the
angles at the interface. For a normal incidence case, the PP-wave reflection and
transmission coefficients are

Rw ¼ P01
P‘1

¼ P‘P
0
1 ¼

a2q2 � a1q1
a2q2 þ a1q1

; ð2:50aÞ

Tw ¼ P02
P‘1

¼ P‘P
‘

2 ¼
2a1q1

a2q2 þ a1q1
: ð2:50bÞ

Note that there should be only transmitted waves passing through the interface in
a uniform homogeneous isotropic medium at normal incidence since in that case
a2q2 � a1q1 ¼ 0.

2.4.2 Imperfectly Welded (Nonwelded) Contact Interface

Consider a compressional wave hitting upon a deformed (fractured) linear slip
interface that is different from the perfect welded interface. At this slip interface, the
incident, reflected, and transmitted waves are constrained by the imperfectly welded
(nonwelded) contact boundary conditions: the dynamic stresses are continuous
across the interface, but the kinematic displacements are discontinuous and the
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differential displacements are linearly proportional to the corresponding stresses
(Fig. 2.16):

uþ � u� ¼ Srþ ð2:51Þ

rþ ¼ r� ð2:52Þ

where u and r are the same as in Eqs. (2.43, 2.44). The parameters S ¼ ST
SN

�
; ST

and SN have been described in Eq. (2.27) as the tangential and normal fracture
compliances of the fractured medium (Schoenberg 1980), which are the reciprocals
of the rock stiffnesses. ST is for a normally incident shear wave, and SN is for a
normally incident compressional wave (Schoenberg 1980). ST and SN imply that
fracture deformation is a combination of tangential deformation and normal
deformation.

As Eq. (2.52) shows, the stress is continuous across the interface, even though it
is a nonwelded contact interface. If it was not, the equation of motion,

@rij
@xj

¼ q
@2ui
@t2

; ð2:52aÞ

indicates that forces and accelerations would be infinite for a discontinuity in stress,
which is unphysical.

2.4.2.1 Reflections and Transmissions

Similarly, a plane compressional incident wave produces reflected and transmitted
waves at the linear slip interface in a homogeneous isotropic medium (Fig. 2.16).

Fig. 2.16 Imperfectly welded (nonwelded) contact interface boundary conditions. uþ 6¼
u�;rþ ¼ r� The kinematic displacements are discontinuous, but the dynamic stresses are
continuous across the nonwelded contact interface
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For a given frequency x, substituting Eq. (2.45) into Eq. (2.51)and using Fig. 2.17
gives

P‘
1 sin h1 ¼� P0

1 sin h1 � S01 cos#1 þP‘
2ðsin h2 � ixSTx2 cos h2Þ

þ S‘2ðcos#2 � ixSTb2r2Þ;
ð2:53aÞ

P‘1 cos h1 ¼ P01 cos h1 � S01 sin#1 þ P‘2 cos h2 � ixSNa2r2ð Þ
þ S‘2ð� sin#2 þ ixSNx2 cos#2Þ:

ð2:53bÞ

Similarly, substituting the plane wave in Eq. (2.45) into Eq. (2.52) for the stress
nonwelded boundary conditions, gives

P‘1x cos h1 ¼ P01x1 cos h1 þ S01b1r1 þ P‘2x2 cos h2 þ S‘2b2r2; ð2:54aÞ

P‘1a1r1 ¼ �P01a1r1 þ S01x1 cos#1 þ P‘2a2r2 � S‘2x2 cos#2; ð2:54bÞ

where, the symbols P‘1; P
0
1; P

‘
2; S

0
1; S

‘
2 and an; bn; qn and xn ¼ 2qnb

2
nP,rn ¼

qn 1� 2b2nP
2

� 	
; n ¼ 1; 2 in Eqs. (2.46a) and (2.47a) are the same as in Eqs. (2.53a)

and (2.54a). Note that Eq. (2.54a) are identical to Eq. (2.47a). An explanation for
this is that the dynamic stresses always obey the law of conservation of energy,
regardless of whether contact of the interface is perfectly welded or not.

Fig. 2.17 Incident P-wave, reflected and transmitted PP and PS waves at the imperfectly welded
(nonwelded) contact interface. h1; h2; #1 and #2 are PP and PS-waves reflection and transmission
angles respectively. The single arrows point in the direction of wave propagation. The double
arrows indicate the direction of the wave polarization. an;bn and qn. n ¼ 1; 2 are the media
parameters. ST and SN are tangential and normal fracture compliances, respectively
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2.4.2.2 Zoeppritz Equations

Combining Eqs. (2.53a) and (2.54a) yields a system of four linear equations in four
unknowns. They can be used to solve for the four unknown reflection and trans-
mission coefficients of the PP and PS-waves at the imperfect welded interface:

a1P
cos h1

x1 cos h1
a1r1

2
664

3
775 ¼

�a1P � cos#1 a2P� ixSTx2 cos h2 cos#2 � ixSTb2r2
cos h1 �b1P cos h2 � ixSNa2r2 �b2Pþ ixSNx2 cos#2

x1 cos h1 b1r1 x2 cos h2 b2r2
�a1r1 x1 cos#1 a2r2 �x2 cos#2

2
664

3
775

P‘1P
0
1

P‘1S
0
1

P‘1P
‘
2

P‘1S
‘
2

2
664

3
775

ð2:55Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

. Equations (2.55), are the so-called Zoeppritz equations for the
linear slip interface, and these equations are important for fracture analysis because
they reveal the relationship between the wave incident angles and the
reflection/transmission coefficients at the linear slip interface. Note that they have
the same pattern as the original Zoeppritz equations (1919). Equation (2.55) also
shows that the reflection/transmission coefficients are frequency dependent with the
fracture parameters ST and SN (Schoenberg 1980; Chaisri and Krebes 2000; Chaisri
2002). Pyrak-Nolte et al. (1990a, b) and Chaisri and Krebes (2000) have shown that
the reflected P-wave has a lower amplitude at the lower frequencies that has an
apparent attenuation in the nonwelded interface.

Chaisri and Krebes (2000) and Chaisri (2002) give the conditions that the
fracture parameters and the frequency should satisfy the following conditions.

xSNq2a2\\1; ð2:56aÞ

and

xSTq2b2\\1: ð2:56bÞ

From Eq. (2.55), the normal incidence P-wave reflection and transmission
coefficients at the slip interface in a homogeneous isotropic medium are

Rnon w ¼ P‘1P
0
1 ¼

Z2 � Z1 þ ix SNZ2Z1
Z2 þ Z1 � ix SNZ2Z1

; ð2:57aÞ

Tnon w ¼ P‘1P
‘
2 ¼

2Z1
Z2 þ Z1 � ix SNZ2Z1

; ð2:57bÞ

where Zn is the media impedance: Zn ¼ qnan. Note that reflection coefficients at a
linear slip interface should be nonzero at normal incidence even if the interface is in
the uniform homogeneous isotropic medium where there is no impedance contrast,
i.e., Z2 � Z1 ¼ 0. This is a substantial difference between a linear slip interface and
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a welded interface. In other words, reflections from the slip interface show that a
fracture itself generates a reflection which is due to the displacement discontinuity,
rather than an impedance contrast at the boundary.

2.5 Conclusions

This chapter theoretically and systematically provides a link between the inherent
elastic properties of the medium and the gained fracture compliance parameters of
the fractured medium. Also it presents the knowledge of fracture formation, fracture
parameters, and fracture detection. As well, it supplies a rock stiffness composition
and decomposition framework within which a complex fractured medium stiffness
can be simplified into a fracture stiffness and a host medium stiffness, and vice
versa. This infers that a medium forming a fracture feature combined with a host
medium is equivalent to a fractured medium, and vice versa. Additionally, it dis-
cusses the boundary conditions that are constraints for all waves at an interface, thus
it is a key for next chapter’s study, which is on the seismic signature response of the
fracture.

Elastic tensors are the basis of understanding what will happen to a rock when it
is subjected to force. In general, an elastic rock deformation first obeys Hooke’s law
as a reversible deformation when it is subjected to a small force, then it changes to
an irreversible ductile deformation if the force keeps exerting. Once the rock strain
exceeds a strain threshold, the rock deformation finally changes to a physically
permanent fracture deformation. A discussion of stress and strain is presented in
Sect. 2.1 for illustrating the different deformation stages. As a subsurface medium,
the fracture formation similarly suffers the same deformation stages as a rock
because the medium still undergoes the geological movement and overburden
compressions. Commonly, most geological fractures are vertical or nearly vertical
fractures because the overburden compression is the maximum stress rather than the
other two horizontal stresses.

From a geophysical viewpoint, the fracture orientation and density are signifi-
cantly more important parameters than the fracture openings in reservoir charac-
terizations. The orientation is determined by the directions of maximum and
minimum stress. The direction of the fracture is parallel to the direction of the
maximum compressive stress and perpendicular to the direction of the minimum
compressive stress. The fracture density is a measurement of the number of the
fractures per meter along a certain direction, and it influences permeability evalu-
ations: the higher the fracture density, the higher the permeability if the fractures are
conductive.

The fracture detection usually is an integrated method involving geology, geo-
physics, and petrophysics technologies. For this integrated method, petrophysics
data are regarded as the most reliable, i.e., as “hard data” to be broadly applied since
the data are directly observed with higher resolution from the reservoir, even though
the coverage is sparser that seismic data coverage. Petrophysics data such as core
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analysis, temperature log, caliper log, density log, dipmeter log, and image log data
have been individually introduced in Sect. 2.2.3 in order to have a deep knowledge
of well logs that predict the fractures in the reservoir.

Backus (1962) average theory is the basis of forming effective media. A perfectly
welded layered medium can be approximated as an effective TI medium (a trans-
versely isotropic medium with a symmetric axis). It indicates that an algebraic
calculation is probably applicable for the rock stiffnesses of a medium. In Sect. 2.3,
three effective fractured anisotropic media stiffnesses (VTI, HTI, and orthorhombic)
have been calculated and presented. The calculations show that a fractured rock
stiffness can be algebraically decomposed into the fracture stiffness and the host
medium stiffness, and vice versa. Analogously, a fractured medium is equivalent to
a fracture feature combined with a homogeneous host medium, whereas a fracture
feature plus a homogeneous host medium is equivalent to a fractured medium. In
other words, a fracture can be obtained by taking a fractured medium and sub-
tracting the host medium, or, a host medium can be obtained by getting rid of the
fracture from the fractured medium. In some sense, the fractured medium with five
independent moduli exhibits properties of a transversely isotropic medium with a
symmetry axis.

The linear slip interface theory (Schoenberg 1980) has been studied and it is
regarded as one of perfect fracture model. Pyrak-Nolte et al. (1990a, b) and Hsu and
Schoenberg (1993) conducted laboratory experiments to validate the model. As a
result, a horizontally fractured medium is effectively formed by a linear slip
interface embedded in a homogeneous isotropic host medium. A vertically fractured
medium is effectively constructed by a vertical linear slip interface inserted in a
homogeneous isotropic host medium. Furthermore, the orthogonally fractured
media are effectively made from a vertical linear slip interface and a transversely
isotropic medium with a vertical symmetric axis (VTI) and a homogeneous host
medium.

The anisotropy problem has been discussed. Based on effective medium theory,
the Schoenberg-Muir calculus theory and the mechanism of the fracture formation,
it has been confirmed that fractured media have the characteristics of a transversely
isotropic medium and that the anisotropy is an induced anisotropy caused by tec-
tonic movement, rather than an intrinsic anisotropy formed by natural deposition.

The anisotropy issue has been discussed and it can be described by the
parameters c; e and d with five independent moduli (Thomsen 1986). The fractured
medium has five independent moduli that can be expressed in terms of fracture
weaknesses DN and DT that express the fracture in terms of induced anisotropic
problem. There is a way to transform the intrinsic anisotropic parameters c; e; d and
fracture anisotropic description DN and DT into each other.

The boundary conditions control the seismic reflection and transmission coef-
ficient values at the interface. Two sets of PP and PS reflection and transmission
coefficients formulae have been presented in the last section. One is for a perfectly
welded contact interface boundary and the other is for an imperfectly welded
(nonwelded) contact interface boundary. The imperfectly welded (nonwelded)
boundary conditions require that the kinematic displacements are discontinuous
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across the interface, whereas the dynamic stresses are continuous across the
interface. These boundary conditions completely constrain all waves at the fracture
interface. It is also demonstrated that the reflection coefficients of the nonwelded
boundary are frequency dependent. In addition, for a wave normally incident
propagating in a uniform homogeneous isotropic medium, there is no reflection at a
perfectly welded boundary that has no impedance contrast. However, there are
reflections at an imperfectly welded (nonwelded) contact boundary, since a fracture
manifests itself a reflector, and the reflected waves are caused by a displacement
discontinuity across the fracture, instead of by the impedance contrast at the fracture
interface.

This chapter mainly concludes that a linear slip interface can model a fracture
regardless of its fracture shape or microstructure, and it satisfies the nonwelded
contact boundary conditions when a wave impinges on it. The fractured medium is
composed by the fracture and homogeneous isotropic host medium, and vice versa.
The composed horizontally and vertically fractured medium with five independent
moduli and the orthogonally fractured medium with nine independent moduli
shows that the fractured medium present the medium properties of a transversely
isotropic medium with a symmetric axis (TI).
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Chapter 3
Seismic Forward Modeling of Fractures

Abstract Chapter 2 stated that the fractures play a very important role in the oil
and gas production since they significantly affect the reservoir permeability, and the
petrophysical detection technique is the most reliable in the integrated method for
seeking fractures because it directly acquires data from the reservoir with a higher
resolution. However, petrophysical data are extremely sparse and fracture patterns
rapidly change, thus accurate delineation of fracture distributions in the subsurface
imperatively demands geophysical seismic data that can provide global information
coverage of the reservoir. The seismic measurements are wave reflection data that
could imprint complex geological information with a relatively lower resolution.
However, detecting fractures from seismic data is a big challenging problem
because of the lack of understanding of the fracture responses in the intricate
seismic data. Therefore, the main goals of this chapter are to address the problem by
studying forward modeling of fractures to reveal the fracture representations in
seismic data.

Keywords Finite-difference (FD) modeling � FD schemes � Fictitious points �
Displacements–stresses � Perfectly welded boundary conditions � Imperfectly
boundary conditions �Wave equation of motion � Horizontally fractured medium �
Vertically fractured medium � Orthogonally fractured medium � Direction of the
fracture � Amplitude � Traveltime � Fracture-induced anisotropy

3.1 Finite-Difference Forward Modeling
Formulation Approaches

Seismic forward modeling usually attempts to simulate the rock properties of the
earth model and the response of seismic wave propagation as the waves travel
through the model (Lines and Newrick 2004). In seismology, the finite-difference
(FD) method is widely used to numerically solve wave equation with a FD stencil
to simulate seismic waves traveling through the structured subsurface. Kelly et al.
(1976) presented a homogeneous formulation approach for solving the wave
equation through FD modeling. In 1982, Korn and Stöckl (1982) used a
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homogeneous approach to model SH wave propagation in inhomogeneous media.
An effective medium scheme (Coates and Schoenberg 1995) has been used to
model the fracture with an explicit slip interface boundary condition. The explicit
boundary condition approaches treat the fracture as a nonwelded contact interface,
satisfying displacement discontinuity and stress continuity. With a homogeneous
formulation approach and the explicit boundary conditions, Slawinski and Krebes
(2002a, b) implemented the homogeneous finite-difference approach with addi-
tional fictitious points to model SH wave and P-SV wave propagation in the
fractured media in which the fractures are aligned with the vertical or horizontal
directions among the grids.

An advantage of the homogeneous approach with the explicit nonwelded
boundary conditions is that it is able to constrain all the wave propagation in the
homogeneous medium and satisfy the displacement discontinuity at the fracture
boundary. Therefore, this approach is ideally selected to do the fractured medium
forward modeling in which the boundary condition is imposed explicitly to govern
wave propagation through the fractured medium.

3.2 Fictitious Grid and the Real Grid Points

In order to implement the fracture FD forward modeling with the homogeneous
approach and explicitly impose the nonwelded boundary conditions, a fictitious
displacement concept as an additional real displacement has been introduced for
solving the homogeneous formulations (Korn and Stöckl 1982; Slawinski and
Krebes 2002a, b). As shown in Fig. 3.1, the fictitious displacements are denoted by
overhead tildes. The fictitious displacement points have physical grid locations
corresponding to real displacement points such that the two media on either side of
the interface extend into one another. The fictitious displacement ~uðxþDx;zÞ at grid
point ðxþDx; zÞ, for instance, attempts to extend the medium at grid point ðx; zÞ
into the medium at grid point ðxþDx; zÞ through the boundary at X ¼ ðxþ 1

2Dx; zÞ,
while the fictitious displacement ~uðx;zÞ at grid point ðx; zÞ is the consequence of
extending the medium at grid point ðxþDx; zÞ into the medium at grid point ðx; zÞ
through the boundary X ¼ ðxþ 1

2Dx; zÞ. In Fig. 3.1, a real displacement uðx;zÞ may
relate to the four boundaries at X ¼ ðx� 1

2Dx; zÞ and Z ¼ ðx; z� 1
2DzÞ, the four

nearest-neighbor real displacements uðx�Dx;zÞ; uðx;z�DzÞ, the four
next-nearest-neighbor real displacements uðx�Dx;z�DzÞ as well as fictitious dis-
placements such as ~uðx�Dx;zÞ; ~uðx;z�DzÞ and ~uðx�Dx;z�DzÞ. The bracket of the subscript
x, z in symbol displacement are the grid indexes and Dx;Dz are the step size in the
x-direction and z-direction, respectively. The uppercase letters Z and X are boundary
indices for the z-normal boundary (the horizontal boundary that is normal to the z-
axis) and the x-normal boundary (the vertical boundary that is normal to the x-axis),

respectively. Here, u ¼ ux
uz

�
.
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Korn and Stöckl (1982) assumed that a real grid displacement is approximately
equal to the displacements at the sides of the boundary, i.e.,

uþ
ðx;z�1

2DzÞ
¼ uðx;zÞ ¼ u�ðx;zþ 1

2DzÞ; ð3:01aÞ

uþ
ðx�1

2Dx;zÞ
¼ uðx;zÞ ¼ u�ðxþ 1

2Dx;zÞ; ð3:01bÞ

and

uðx;zþDzÞ ¼ uþ
ðx;zþ 1

2DzÞ
; ð3:02aÞ

uðx;z�DzÞ ¼ u�ðx;z�1
2DzÞ; ð3:02bÞ

Fig. 3.1 Schematic of the fictitious displacements, the real displacement points, and the related
boundaries. The fictitious displacements are denoted by overhead tildes. The signs “−” and “+”

specify the side of the boundary respect to the x, z-axis. u ¼ ux
uz

�
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uðxþDx;zÞ ¼ uþ
ðxþ 1

2Dx;zÞ
; ð3:03aÞ

uðx�Dx;zÞ ¼ u�ðx�1
2Dx;zÞ; ð3:03bÞ

where, the superscripts “−” and “+” in Eqs. (3.01a–3.03b) indicate two sides of the
boundary with respect to the axis (Fig. 3.1).

3.3 Finite-Difference Scheme for Horizontally
Fractured Medium

3.3.1 Boundary Conditions

Consider a homogeneous host medium that is discretized by a uniform rectangular
grid and contains a horizontal linear slip interface along the numerical grid
boundary at depth Z ¼ ðx; zþ 1

2DzÞ. The slip interface vertically separates the
homogenous host medium into two spaces such that the upper medium 1 belongs to
the region shallower than Z ¼ ðx; zþ 1

2DzÞ with density q1, S-wave velocity b1 and
P-wave velocity a1, and the lower medium 2 occupies the region deeper than
Z ¼ ðx; zþ 1

2DzÞ with density q2, S-wave velocity b2 and P-wave velocity a2. As
discussed in Chap. 2, with the long wavelength assumption and the linear slip
theory, this transversely isotropic medium with a vertical asymmetric axis is
equivalent to an effective horizontally fractured medium (VTI) (see Table 2.1) in
which the fracture is the horizontal infinite linear slip interface at Z ¼ ðx; zþ 1

2DzÞ
and satisfies the nonwelded boundary conditions.

If a horizontal fracture separates a homogeneous isotropic host medium, then
q1 ¼ q2; b1 ¼ b2; a1 ¼ a2 (Fig. 3.2a). This treats the horizontal fracture as the
boundary between the evaluated grid points and the nearest-neighbor grid points in
the FD stencil, which is mathematically constructed rather than having rock
boundaries with impedance contrasts. This model agrees with the real cases that the
fractures are often revealed in a uniform lithology, such as coal, shale in the
reservoir.

In the FD stencil of the effective horizontally fractured medium shown in
Fig. 3.2b, an evaluated displacement rectangle point at ðx; zÞ is surrounded by four
grid boundaries but only one z-normal boundary models the fracture and satisfies
the imperfectly welded (nonwelded) contact boundary conditions at
Z ¼ x; zþ 1

2Dz
� �

, whereas the rest of the boundaries, two x-normal grid boundaries
at X ¼ ðx� 1

2Dx; zÞ and one z-normal boundary at Z ¼ ðx; z� 1
2DzÞ, satisfy the

perfectly welded contact boundary conditions.
The perfectly welded contact boundary conditions at Z ¼ ðx; z� 1

2DzÞ are that
both displacement and stress are continuous across the welded boundary.
Mathematically, that is
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u�xðx;z�1
2DzÞ

¼ uþ
xðx;z�1

2DzÞ
r�xzðx;z�1

2DzÞ
¼ rþ

xzðx;z�1
2DzÞ

(
; ð3:04aÞ

u�zðx;z�1
2DzÞ

¼ uþ
zðx;z�1

2DzÞ
r�zzðx;z�1

2DzÞ
¼ rþ

zzðx;z�1
2DzÞ

(
; ð3:04bÞ

where the subscripts in bracket denote boundary locations, italic letters, e.g. x and z,
or xz and zz represent tangential and normal components. Superscripts indicate the
sides of the boundary with positive and negative signs.

The imperfectly welded (nonwelded) contact boundary conditions at Z ¼
x; zþ 1

2Dz
� �

are where the stress is continuous across the nonwelded boundary, while
displacements are discontinuous: the tangential displacement difference is linearly
proportional to the tangential stress with the proportionality factor being the tangential
fracture compliance ST, while the normal displacement difference is linearly pro-
portional to the normal stress with the proportionality factor being the normal fracture
compliance SN. These conditions can be expressed mathematically as

uþ
xðx;zþ 1

2DzÞ
� u�

x x;zþ 1
2Dzð Þ ¼ STrþ

xz x;zþ 1
2Dzð Þ

rþ
xzðx;zþ 1

2DzÞ
¼ r�xzðx;zþ 1

2DzÞ

(
; ð3:05aÞ

uþ
zðx;zþ 1

2DzÞ
� u�

z x;zþ 1
2Dzð Þ ¼ SNrþ

zz x;zþ 1
2Dzð Þ

rþ
zzðx;zþ 1

2DzÞ
¼ r�zzðx;zþ 1

2DzÞ
;

(
ð3:05bÞ

Fig. 3.2 A horizontally fractured medium (a) and a finite-difference stencil (b) with horizontal
fracture in x, z-domain
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where

r�xzðx;z�1
2DzÞ ¼ l�ðx;z�1

2DzÞ
@u�xðx;z�1

2DzÞ
@z

þ
@u�zðx;z�1

2DzÞ
@x

 !
; ð3:06aÞ

r�zzðx;z�1
2DzÞ ¼ kþ 2lð Þ�ðx;z�1

2DzÞ
@u�zðx;z�1

2DzÞ
@z

þ k�ðx;z�1
2DzÞ

@u�xðx;z�1
2DzÞ

@x
: ð3:06bÞ

Since the host medium is a homogeneous medium, the medium properties are
invariant with location. That is,

lþ
ðx;z�1

2DzÞ
¼ lðx;z�DzÞ ¼ lðx;zÞ ¼ l�ðx;z�1

2DzÞ; ð3:07Þ

kþ
ðx;z�1

2DzÞ ¼ kðx;z�DzÞ ¼ kðx;zÞ ¼ k�ðx;z�1
2DzÞ:: ð3:08Þ

The x-normal boundaries at X ¼ ðx� 1
2Dx; zÞ have perfectly welded boundary

conditions: displacement and stress are continuous across the boundaries. That is,

uþ
zðx�1

2Dx;zÞ
¼ u�zðx�1

2Dx;zÞ
rþ
zxðx�1

2Dx;zÞ
¼ r�zxðx�1

2Dx;zÞ

(
; ð3:09aÞ

uþ
xðx�1

2Dx;zÞ
¼ u�xðx�1

2Dx;zÞ
rþ
xxðx�1

2Dx;zÞ
¼ r�xxðx�1

2Dx;zÞ

(
; ð3:09bÞ

where

r�zxðx�1
2Dx;zÞ ¼ l�ðx�1

2Dx;zÞ
@u�zðx�1

2Dx;zÞ
@x

þ
@u�xðx�1

2Dx;zÞ
@z

 !
; ð3:10aÞ

r�xxðx�1
2Dx;zÞ ¼ kþ 2lð Þ�ðx�1

2Dx;zÞ
@u�xðx�1

2Dx;zÞ
@x

þ k�ðx�1
2Dx;zÞ

@u�zðx�1
2Dx;zÞ

@z
: ð3:10bÞ

3.3.2 Fictitious Displacement Formulas

In the FD stencil shown in Fig. 3.2b, as explained above, an evaluated point at
x; zð Þ relates to two kinds of boundary conditions that constrain all wave propa-
gation in the horizontally fractured medium. Using the numerical average operator
and finite-difference central operator (Appendix B) to expand the fracture boundary
conditions in Eqs. (3.05a, 3.05b), the boundary conditions can be expressed in
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terms of the fictitious displacement and real displacement instead of the generalized
displacement and stress items.

1
2 ux x;zþDzð Þ þ ~ux x;zð Þ
� �� 1

2 ~ux x;zþDzð Þ þ ux x;zð Þ
� �

¼ STlþ
ðx;zþ 1

2DzÞ
uz xþDx;zþDzð Þ�uz x�Dx;zþDzð Þ

2Dx þ ux x;zþDzð Þ�~ux x;zð Þ
Dz

� �
;

lþ
ðx;zþ 1

2DzÞ
uz xþDx;zþDzð Þ�uz x�Dx;zþDzð Þ

2Dx þ ux x;zþDzð Þ�~ux x;zð Þ
Dz

� �
¼ l�ðx;zþ 1

2DzÞ
uz xþDx;zð Þ�uz x�Dx;zð Þ

2Dx þ ~ux x;zþDzð Þ�ux x;zð Þ
Dz

� �
;

8>>>>>>>><
>>>>>>>>:

ð3:11aÞ

1
2 uz x;zþDzð Þ þ ~uz x;zð Þ
� �� 1

2 ~uz x;zþDzð Þ þ uz x;zð Þ
� �

¼ kþ
ðx;zþ 1

2DzÞ
ux xþDx;zþDzð Þ�ux x�Dx;zþDzð Þ

2Dx

� �þ kþ 2lð Þþ
x;zþ 1

2Dzð Þ
uz x;zþDzð Þ�~uz x;zð Þ

Dz

� �
;

kþ
ðx;zþ 1

2DzÞ
ux xþDx;zþDzð Þ�ux x�Dx;zþDzð Þ

2Dx

� �þ kþ 2lð Þþ
x;zþ 1

2Dzð Þ
uz x;zþDzð Þ�~uz x;zð Þ

Dz

� �
¼ k�ðx;zþ 1

2DzÞ
ux xþDx;zð Þ�ux x�Dx;zð Þ

2Dx

� �þ kþ 2lð Þ�x;zþ 1
2Dzð Þ

~uz x;zþDzð Þ�uz x;zð Þ
Dz

� �
:

8>>>>>>>><
>>>>>>>>:

ð3:11bÞ

Equations (3.11a), (3.11b) are the fracture boundary conditions in terms of real
and fictitious displacements for the tangential component (x) and the normal
component (z), respectively. The fictitious displacements in the equation tend to
extend the media into each other in order to present the displacement difference of
the two sides of the fracture. To derive Eqs. (3.11a, 3.11b), the normal derivatives
of the displacements in the x, z-components are approximated to O Dzð Þ2 (Appendix
B), the tangential derivative of the displacements in x, z-components are approxi-

mated to O Dxð Þ2;Dz
� �

. For example,

@uþ
ðx;zþ 1

2DzÞ
@z

¼ uðx;zþDzÞ � ~uðx;zÞ
Dz

; ð3:12aÞ

@uþ
ðx;zþ 1

2DzÞ
@x

¼ uðxþDx;zþDzÞ � uðx�Dx;zþDzÞ
2Dx

: ð3:12bÞ

With those approximations, the next-nearest-neighbor fictitious points need to be
eliminated from the boundary conditions expressions to avoid the underdetermined
problems (Slawinski 1999). Equations (3.11a, 3.11b) present a linear system that
can be simultaneously solved for the four expressions for the four unknown ficti-
tious displacement formulae:

~ux x;zð Þ ¼
1

1þ eT
½ux x;zð Þ þ eTux x;zþDzð Þ �

1
4

uz xþDx;zð Þ � uz x�Dx;zð Þ
� �

þ 1
4
ð1þ 2eTÞðuz xþDx;zþDzð Þ � uz x�Dx;zþDzð ÞÞ�;

ð3:13aÞ

3.3 Finite-Difference Scheme for Horizontally Fractured Medium 63



~ux x;zþDzð Þ ¼ 1
1þ eT

½ux x;zþDzð Þ þ eTux x;zð Þ � 1
4

1þ 2eTð Þ uz xþDx;zð Þ � uz x�Dx;zð Þ
� �

þ 1
4

uz xþDx;zþDzð Þ � uz x�Dx;zþDzð Þ
� ��;

ð3:13bÞ

~uz x;zð Þ ¼ 1
1þ dN

½uz x;zð Þ þ dNuz x;zþDzð Þ � 1
4
cN
dN

ux xþDx;zð Þ � ux x�Dx;zð Þ
� �

þ 1
4
ð1þ 2dNÞ cNdN ux xþDx;zþDzð Þ � ux x�Dx;zþDzð Þ

� ��; ð3:13cÞ

~uz x;zþDzð Þ ¼ 1
1þ dN

½uz x;zþDzð Þ þ dNuz x;zð Þ � 1
4
ð1þ 2dNÞ cNdN ux xþDx;zð Þ

�
�ux x�Dx;zð Þ

�þ 1
4
cN
dN

ux xþDx;zþDzð Þ � ux x�Dx;zþDzð Þ
� ��: ð3:13dÞ

Equations (3.13a–3.13d) are formulae for the tangential and normal fictitious
displacements points at x; zð Þ and x; zþDzð Þ that relate to the z-normal fracture
interface. The equations show two representations (real and fictitious) of the dis-
placement at the same grid point presenting the displacement difference between the
real and fictitious point that not only relates material discontinuities in the nearest
grid point, but also involves a material discontinuity in the next-nearest-neighbor
points. In Eqs. (3.13a–3.13d),

eT ¼ STl
Dd

; dN ¼ SNðkþ 2lÞ
Dd

; cN ¼ SNk
Dd

; ð3:14Þ

where Dd ¼ Dx ¼ Dz. eT; dN and cN are the dimensionless nonweldedness
parameters that depend on the medium properties, fracture compliances and grid
parameters. eT determines the contribution to the tangential displacement uxð Þ
discontinuity across the fracture interface from the continuous change in the dis-
placement. Similarly, dN and cN determine the contribution to the normal dis-
placement uzð Þ discontinuity across the fracture interface from the continuous
change in the displacement (Slawinski 1999, p. 208). The fictitious displacement
formulae in Eqs. (3.13a–3.13d) can be rewritten in a compact way as

~u x;zð Þnonwelded ¼ Nu x;zð Þ þMu x;zþDdð Þ � 1
4
E u x�Dd;zð Þ � u xþDd;zð Þ
� �

þ 1
4
G uðx�Dd;zþDdÞ � uðxþDd;zþDdÞ
� �

;

ð3:15Þ
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~u x;zþDdð Þnonwelded ¼ Nu x;zþDdð Þ þMu x;zð Þ � 1
4
G u xþDd;zð Þ � u x�Dd;zð Þ
� �

þ 1
4
E uðxþDd;zþDdÞ � uðx�Dd;zþDdÞ
� �

;

ð3:16Þ

where

N ¼
1

1þ eT
0

0 1
1þ dN

" #
; ð3:17aÞ

M ¼
eT

1þ eT
0

0 dN
1þ dN

" #
; ð3:17bÞ

G ¼ 0 1þ 2eT
1þ eT

cNð1þ 2dNÞ
dNð1þ dNÞ 0

" #
; ð3:17cÞ

E ¼ 0 1
1þ eT

cN
dNð1þ dNÞ 0

" #
: ð3:17dÞ

If the dimensionless nonweldedness parameters vanish as ST ¼ 0; SN ¼ 0. The
fracture boundary changes to a z-normal perfectly welded boundary at
Z ¼ x; zþ 1

2Dz
� �

. So Eqs. (3.15, 3.16) can be modified as

~u x;zð Þ ¼ u x;zð Þ þ 1
4
H uðxþDd;zþDdÞ � uðx�Dd;zþDdÞ � u xþDd;zð Þ þ u x�Dd;zð Þ
� �

; ð3:18Þ

~u x;zþDdð Þ ¼ u x;zþDdð Þ þ 1
4
H uðxþDd;zþDdÞ � uðx�Dd;zþDdÞ � u xþDd;zð Þ þ u x�Dd;zð Þ
� �

ð3:19Þ

Slawinski (1999) presented a simple method to determine the fictitious dis-
placement for the nearest-neighbor grid points from the central fictitious dis-
placement grid point. For example, the fictitious displacement at ~u x;z�Ddð Þ can be
computed from ~u x;zð Þ in Eq. (3.18) by shifting “z” to “z� Dd”. Thus,

~u x;z�Ddð Þ ¼ u x;z�Ddð Þ þ 1
4
H uðxþDd;zÞ � uðx�Dd;zÞ � u xþDd;z�Ddð Þ þ u x�Dd;z�Ddð Þ
� �

ð3:20Þ
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Computing the fictitious displacements at ~u xþDd;zð Þ and ~u x�Dd;zð Þ can be simply
obtained from ~u x;zþDdð Þ and ~u x;z�Ddð Þ by exchanging “x” to “z” (Slawinski 1999).
Then we have

~u x�Dd;zð Þ ¼ u x�Dd;zð Þ þ 1
4
HT uðx;zþDdÞ � uðx;z�DdÞ � u x�Dd;zþDdð Þ þ u x�Dd;z�Ddð Þ
� �

;

ð3:21Þ

~u xþDd;zð Þ ¼ u xþDd;zð Þ þ 1
4
HT uðxþDd;zþDdÞ � uðxþDd;z�DdÞ � u x;zþDdð Þ þ u x;z�Ddð Þ
� �

;

ð3:22Þ

where

H ¼ 0 1
k

kþ 2l 0

� �
; HT ¼ 0 k

kþ 2l
1 0

� �
: ð3:23Þ

Equations (3.19)–(3.22) are fictitious displacement formulae for the
nearest-neighbor grid points related to central grid point with the welded boundary
conditions. The fictitious displacement formulae express the difference between
fictitious displacement and real displacement that is caused by the continuity of
stress boundary conditions, which couple two components (tangential and normal
components) displacements along the boundary (Slawinski 1999).

3.3.3 Equation of Motion

A P-SV wave equation of motion in a homogeneous isotropic medium may be
written as (Aki and Richards 1980)

@2u
@t2

¼ A
@2u
@x2

þB
@2u
@x@z

þC
@2u
@z2

; ð3:24Þ

and

A ¼ a2 0
0 b2

	 

; B ¼ 0 a2 � b2

a2 � b2 0

	 

; C ¼ b2 0

0 a2

	 

; ð3:25Þ

where a and b are, respectively, the compressional and shear wave velocities. Using
the second-order central finite-difference approximation to solve the wave
Eq. (3.24) at point uðx;zÞ (Aki and Richards 1980), one obtains:
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utþ 1
x;zð Þ ¼ �ut�1

x;zð Þ þ 2ut x;zð Þ þ
Dt
Dd

	 
2

A ut xþDd;zð Þ � 2ut x;zð Þ þ ut x�Dd;zð Þ
� �

þ Dtð Þ2
4 Ddð Þ2 B ut xþDd;zþDdð Þ � ut xþDd;z�Ddð Þ � ut x�Dd;zþDdð Þ þ ut x�Dd;z�Ddð Þ

� �

þ Dt
Dd

	 
2

C utðz;zþDdÞ � 2utðx;zÞ þ utðx;z�DdÞ
� �

:

ð3:26Þ

The subscripts in parentheses denote the grid locations. Clearly, for the P-SV FD
stencil in Eq. (3.26), an evaluation of uðx;zÞ involves four nearest-neighbor grid
point uðx�d;zÞ and uðx;z�dÞ, and four next-nearest-neighbor grid points uðx�Dx;z�DzÞ
(Slawinski and Krebes 2002). The polynomial of the next-nearest-neighbor points,
however, can be reduced by taking Taylor expansion in the first order
approximation.

ut xþDd;zþDdð Þ � ut xþDd;z�Ddð Þ � ut x�Dd;zþDdð Þ þ ut x�Dd;z�Ddð Þ

� u x;zð Þ þ
@u x;zð Þ
@x

Ddþ @u x;zð Þ
@z

Dd

	 

� u x;zð Þ þ

@u x;zð Þ
@x

Dd � @u x;zð Þ
@z

Dd

	 


� u x;zð Þ �
@u x;zð Þ
@x

Ddþ @u x;zð Þ
@z

Dd

	 

þ u x;zð Þ �

@u x;zð Þ
@x

Dd � @u x;zð Þ
@z

Dd

	 

� 0:

ð3:27Þ

Consequently, the equation of motion (3.26) can be approximated and the
evaluated point uðx;zÞ only relates to the four nearest-neighbor grid points.

utþ 1
x;zð Þ ¼ �ut�1

x;zð Þ þ 2ut x;zð Þ

þ Dt
Dd

	 
2

A ut xþDd;zð Þ � 2ut x;zð Þ þ ut x�Dd;zð Þ
� �

þ Dt
Dd

	 
2

C utðx;zþDdÞ � 2utðx;zÞ þ utðx;z�DdÞ
� �

:

ð3:28Þ

In order to explicitly impose the boundary conditions at Z ¼ ðx; z� 1
2DdÞ and

X ¼ ðx� 1
2Dd; zÞ, the real displacement at the nearest-neighbor grid in Eq. (3.28)

should be replaced by corresponding fictitious displacement. The resulting equation
should be
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utþ 1
x;zð Þ ¼ �ut�1

x;zð Þ þ 2ut x;zð Þ

þ Dt
Dd

	 
2

A ~ut xþDd;zð Þ � 2ut x;zð Þ þ ~ut x�Dd;zð Þ
� �

þ Dt
Dd

	 
2

C ~ut x;zþDdð Þnonwelded � 2utðx;zÞ þ ~utðx;z�DdÞ
� �

: ð3:29Þ

In Eq. (3.29), the fictitious displacement with subscript “nonwelded”,
~ut x;zþDdð Þnonwelded , is determined by the nonwelded boundary conditions in Eq. (3.16),

and is distinct from the other fictitious displacement ~uðx�Dd;zÞ; ~uðx;z�DdÞ determined
by the welded boundary conditions. Substituting those four fictitious displacements
into Eq. (3.29) yields a P-SV equation of motion for a horizontally fractured
homogeneous medium:

utþ 1
x;zð Þ ¼ �ut�1

x;zð Þ þ 2ut x;zð Þ

þ Dt
Dd

	 
2

A ut xþDd;zð Þ � 2ut x;zð Þ þ ut x�Dd;zð Þ
� �h i

þ 1
4

Dt
Dd

	 
2

B ut xþDd;zþDdð Þ � ut x�Dd;zþDdð Þ � ut xþDd;z�Ddð Þ þ ut x�Dd;z�Ddð Þ
h i

þ Dt
Dd

	 
2

C ut x;zþDdð Þ � 2ut x;zð Þ þ ut x;z�Ddð Þ
h i

þ Dt
Dd

	 
2

CM ut x;zð Þ
h

� ut x;zþDdð Þ �
1
4
H ut xþDd;zþDdð Þ
�

� ut x�Dd;zþDdð Þ

þ ut xþDd;zð Þ � ut x�Dd;zð Þ
�i

:

ð3:30Þ

Note that the four next-nearest-neighbor displacements (mixed derivative items)
have been taken from the fictitious displacement formulae. Coefficient M is only
associated with the particular fractured boundary and are dependent on whether
material is discontinuity. Equation (3.30) can be used to model a set of horizontal
fractures in the fractured medium with impedance contrast.

3.4 Finite-Difference Scheme for Vertically
Fractured Medium

3.4.1 Boundary Conditions

Consider a medium that has a linear slip interface vertically inserted into a
homogeneous host medium at X ¼ xþ 1

2Dx; z
� �

(Fig. 3.3). The slip interface
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horizontally separates the homogenous host medium into two spaces, of which
medium 1 belongs to the region that is horizontally smaller than X ¼ xþ 1

2Dx; z
� �

with density q1, S-wave velocity b1 and P-wave velocity a1 and medium 2 occupies
the region in the right side of the interface X ¼ xþ 1

2Dx; z
� �

with density q2,
S-wave velocity b2 and P-wave velocity a2. If q1 ¼ q2; b1 ¼ b2; a1 ¼ a2, the host
medium is a homogeneous isotropic medium. Following the long wavelength
assumption and the linear slip theory, this reconstructed transversely isotropic
medium with a horizontal symmetry axis is equivalent to an effective vertically
fractured medium. One symmetric plane coincides with the vertical fracture plane
and is parallel to y; z½ �� plane in the coordinate system (perpendicular to the x-axis)
(Fig. 3.3a). Similarly to the effective horizontally fractured medium, an evaluated
central rectangle point at x; zð Þ should encounter four grid boundaries at X ¼
x� 1

2Dx; z
� �

and Z ¼ x; z� 1
2Dz

� �
. However, the boundary characteristics at X ¼

ðxþ 1
2Dx; zÞ and Z ¼ ðx; zþ 1

2DzÞ are contrary to the horizontally fractured med-
ium case: the boundary at X ¼ ðxþ 1

2Dx; zÞ is a fractured nonwelded contact
boundary, whereas the boundary at Z ¼ ðx; zþ 1

2DzÞ changes to a perfect welded
contact boundary. This means that referring to the evaluated point x; zð Þ, the
boundaries at Z ¼ ðx; z� 1

2DzÞ and X ¼ ðx� 1
2Dx; zÞ satisfy the perfectly welded

contact boundary conditions, but the boundary at X ¼ ðxþ 1
2Dx; zÞ will have

imperfectly welded (nonwelded) contact boundary conditions. The z-normal
boundaries can be expressed as

uþ
xðx;z�1

2DzÞ
¼ u�xðx;z�1

2DzÞ
rþ
xzðx;z�1

2DzÞ
¼ r�xzðx;z�1

2DzÞ

(
; ð3:31aÞ

Fig. 3.3 Vertically fractured medium (a) and a FD stencil (b) with vertical fracture in x, z-domain
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uþ
zðx;z�1

2DzÞ
¼ u�zðx;z�1

2DzÞ
rþ
zzðx;z�1

2DzÞ
¼ r�zzðx;z�1

2DzÞ
;

(
ð3:31bÞ

where

r�xzðx;z�1
2DzÞ ¼ l�ðx;z�1

2DzÞ
@u�xðx;z�1

2DzÞ
@z

þ
@u�zðx;z�1

2DzÞ
@x

 !
; ð3:32aÞ

r�zzðx;z�1
2DzÞ ¼ kþ 2lð Þ�ðx;z�1

2DzÞ
@u�zðx;z�1

2DzÞ
@z

þ k�ðx;z�1
2DzÞ

@u�xðx;z�1
2DzÞ

@x
: ð3:32bÞ

Equations (3.31a, 3.31b) indicate that the z-normal boundaries at Z ¼ ðx; z�
1
2DzÞ satisfy welded boundary conditions in which both displacement and stress are
continuous across the boundaries.

For the x-normal boundaries at Z ¼ ðxþ 1
2Dx; zÞ, we have

uþ
xðxþ 1

2Dx;zÞ
� u�xðxþ 1

2Dx;zÞ
¼ SNrþ

xxðxþ 1
2Dx;zÞ

rþ
xxðxþ 1

2Dx;zÞ
xxð Þ ¼ r�xxðxþ 1

2Dx;zÞ
xxð ÞÞ

(
; ð3:33aÞ

uþ
zðxþ 1

2Dx;zÞ
� u�zðxþ 1

2Dx;zÞ
¼ STrþ

zxðxþ 1
2Dx;zÞ

r�zxðxþ 1
2Dx;zÞ

¼ rþ
zxðxþ 1

2Dx;zÞ

(
: ð3:33bÞ

Equations (3.33a, 3.33b) indicated that the vertical fracture interface at Z ¼
ðxþ 1

2Dx; zÞ satisfies nonwelded boundary conditions for which the stress is con-
tinuous across the fracture, but the displacements are discontinuous across the
fracture. And the difference in tangential displacements is linearly proportional to
the normal stress with the proportionality constant being the normal fracture
compliance SN, while the difference in normal displacements is linearly propor-
tional to the tangential stress with the proportionality constant being the tangential
fracture compliance ST. Another x-normal boundary with perfectly welded
boundary conations at Z ¼ ðx� 1

2Dx; zÞ is

uþ
zðx�1

2Dx;zÞ
¼ u�zðx�1

2Dx;zÞ
rþ
zxðx�1

2Dx;zÞ
¼ r�zxðx�1

2Dx;zÞ

(
; ð3:34aÞ

uþ
xðx�1

2Dx;zÞ
¼ u�xðx�1

2Dx;zÞ
rþ
xxðx�1

2Dx;zÞ
¼ r�xxðx�1

2Dx;zÞ

(
; ð3:34bÞ
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where

r�zxðx�1
2Dx;zÞ ¼ l�ðx�1

2Dx;zÞ
@u�z
@x

þ @u�x
@z

	 

; ð3:35aÞ

r�xxðx�1
2Dx;zÞ ¼ kþ 2lð Þ�ðx�1

2Dx;zÞ
@u�x
@x

þ k�ðx�1
2Dx;zÞ

@u�z
@z

: ð3:35bÞ

Equation (3.34a, 3.34b) states that the displacement and stress are continuous
across the boundary at X ¼ x� 1

2Dx; z
� �

.

3.4.2 Fictitious Displacement Formulas

Following the horizontal fracture boundary procedure to expand the fracture
boundary conditions in Eq. (3.33a, 3.33b) in terms of the fictitious displacement
and real displacement at the points, one may eliminate the generalized displacement
and stress terms in the boundary condition at the fracture as follows:

1
2 ux xþDx;zð Þ þ ~ux x;zð Þ
� �� 1

2 ~ux xþDx;zð Þ þ ux x;zð Þ
� �

¼ SN kþ
ðxþ 1

2Dx;zÞ
uz xþDx;zþDzð Þ�uz xþDx;z�Dzð Þ

2Dz

� �
þðkþ 2lÞþðxþ 1

2Dx;zÞ
ux xþDx;zð Þ�~ux x;zð Þ

Dx

� �h i
;

kþ
ðxþ 1

2Dx;zÞ
uz xþDx;zþDzð Þ�uz xþDx;z�Dzð Þ

2Dz

� �
þðkþ 2lÞþðxþ 1

2Dx;zÞ
ux xþDx;zð Þ�~ux x;zð Þ

Dx

� �
¼ k�ðxþ 1

2Dx;zÞ
uz x;zþDzð Þ�uz x;z�Dzð Þ

2Dz

� �
þðkþ 2lÞ�ðxþ 1

2Dx;zÞ
~ux xþDx;zð Þ�ux x;zð Þ

Dx

� �
;

;

8>>>>>>>><
>>>>>>>>:

ð3:36aÞ
1
2 uz xþDx;zð Þ þ ~uz x;zð Þ
� �� 1

2 ~uz xþDx;zð Þ þ uz x;zð Þ
� �

¼ STlþ
xþ 1

2Dx;zð Þ
ux xþDx;zþDzð Þ�ux xþDx;z�Dzð Þ

2Dz þ uz xþDx;zð Þ�~uz x;zð Þ
Dx

� �
;

lþ
xþ 1

2Dx;zð Þ
ux xþDx;zþDzð Þ�ux xþDx;z�Dzð Þ

2Dz þ uz xþDx;zð Þ�~uz x;zð Þ
Dx

� �
¼ l�

xþ 1
2Dx;zð Þ

ux x;zþDzð Þ�ux x;z�Dzð Þ
2Dx þ ~uz xþDx;zð Þ�uz x;zð Þ

Dz

� �
:

;

8>>>>>>>>><
>>>>>>>>>:

ð3:36bÞ

Using the similar approximation as Eqs. (3.12a, 3.12b) as O Dx; Dzð Þ2
� �

, one

may solve Eqs. (3.36a, 3.36b) for the four unknown fictitious displacements in
terms of real displacements as

~ux x;zð Þ ¼ 1
1þ dN

½ux x;zð Þ þ dNux xþDx;zð Þ � 1
4
cN
dN

uz x;z�Dzð Þ � uz x;zþDzð Þ
� �

þ 1
4
ð1þ 2dNÞ cNdN ðuz xþDx;z�Dzð Þ � uz xþDx;zþDzð ÞÞ�:

ð3:37aÞ
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~ux xþDx;zð Þ ¼ 1
1þ dN

½ux xþDx;zð Þ þ dNux x;zð Þ � 1
4
ð1þ 2dÞ cN

dN
uz x;zþDzð Þ
� �uz x;z�Dzð Þ

�
þ 1

4
cN
dN

ðuz xþDx;zþDzð Þ � uz xþDx;z�Dzð ÞÞ�
ð3:37bÞ

~uz x;zð Þ ¼ 1
1þ eT

½uz x;zð Þ þ eTuz xþDx;zð Þ � 1
4

ux x;z�Dzð Þ � uxðx;zþDzÞ
� �

þ 1
4
ð1þ 2eTÞðuxðxþDx;z�DzÞ � uxðxþDx;zþDzÞÞ�:

ð3:38aÞ

~uz xþDx;zð Þ ¼ 1
1þ eT

½uz xþDx;zð Þ þ eTuzðx;zÞ � 1
4

1þ 2eTð Þ uxðx;zþDzÞ � uxðx;z�DzÞ
� �

þ 1
4
ðuxðxþDx;zþDzÞ � uxðxþDx;z�DzÞÞ�:

ð3:38bÞ

The compact formats for the fictitious displacements in Eqs. (3.37a, 3.37b and
3.38a, 3.38b) obtained from the nonwelded boundary conditions at the x-normal
fracture interface Z ¼ xþ 1

2Dx; z
� �

are

~u x;zð Þnonwelded ¼ FNFu x;zð Þ þ FMFu xþDd;zð Þ � 1
4
FEF u x;z�Ddð Þ � u x;zþDdð Þ

� �
þ 1

4
FGF uðxþDd;z�DdÞ � uðxþDd;zþDdÞ

� �
;

ð3:39Þ

~u xþDd;zð Þnonwelded ¼ FNFu xþDd;zð Þ þ FMFu x;zð Þ � 1
4
FGF u x;zþDdð Þ � u x;z�Ddð Þ

� �
þ 1

4
FEF uðxþDd;zþDdÞ � uðxþDd;z�DdÞ

� �
;

ð3:40Þ

where

F ¼ 0 1
1 0

� �
: ð3:41Þ

The nearest-neighbor fictitious displacement points ~uðx�Dd;zÞ and ~uðx;z�DdÞ
obtained from the welded boundary conditions are identical to Eqs. (3.19)–(3.21) in
this section.

Note that the nonweldedness parameters eT; dN and cN have the same expres-
sions as Eq. (3.14). However, they are computed from the vertical nonwelded
boundary conditions. Physically, eT determines the contribution to the normal
displacement uzð Þ discontinuity across the fracture interface from the continuous
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change in the displacement, while dN and cN determine the contribution to the
tangential displacement uxð Þ discontinuity across the fracture interface from the
continuous change in the displacement.

3.4.3 Equation of Motion

As discussed above, a P-SV wave equation of the motion can be approximated as
Eq. (3.28) by taking Taylor’s first order approximation (Eq. 3.27). In order to
represent all boundary conditions including the medium discontinuity on the ver-
tical fracture, the real displacement at the nearest-neighbor points should be
replaced by the nearest-neighbor fictitious displacement in the approximated wave
Eq. (3.28).

utþ 1
x;zð Þ ¼ �ut�1

x;zð Þ þ 2ut x;zð Þ

þ Dt
Dx

	 
2

A ~ut xþDx;zð Þnonwelded � 2ut x;zð Þ þ ~ut x�Dx;zð Þ
� �

þ Dt
Dz

	 
2

C ~utðx;zþDzÞ � 2utðx;zÞ þ ~utðx;z�DzÞ
� �

:

ð3:42Þ

Substituting all evaluated fictitious displacement points into Eq. (3.42), the P-SV
equation of motion for a homogeneous vertically fractured medium is formulated as

utþ 1
x;zð Þ ¼ �ut�1

x;zð Þ þ 2ut x;zð Þ

þ Dt
Dd

	 
2

A ut xþDd;zð Þ � 2ut x;zð Þ þ ut x�Dd;zð Þ
� �h i

þ 1
4

Dt
Dd

	 
2

B ut xþDd;zþDdð Þ � ut x�Dd;zþDdð Þ � ut xþDd;z�Ddð Þ þ ut x�Dd;z�Ddð Þ
h i

þ Dt
Dd

	 
2

C ut x;zþDdð Þ � 2ut x;zð Þ þ ut x;z�Ddð Þ
h i

þ Dt
Dd

	 
2

A FMFð Þ ut x;zð Þ
h

� ut xþDd;zð Þ �
1
4
HT ut xþDd;zþDdð Þ
�

� ut xþDd;z�Ddð Þ

þ ut x;zþDdð Þ � ut x;z�Ddð Þ
�i

;

ð3:43Þ

where HT is the transpose of H and given in Eq. (3.23). As a similarity, this
equation can be used to model the sets of the vertical fractures rather than a single
fracture in the fractured medium with impedance contrast.
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3.5 Finite-Difference Scheme for Orthogonally
Fractured Medium

3.5.1 Boundary Conditions and Fictitious
Displacement Formulas

In seismology, the crust of the earth that consists of commonly layered deposits
exhibits the intrinsic anisotropy of a transversely isotropic medium with a vertical
symmetry axis (VTI) where the layer thickness is very much thinner than seismic
wavelength. Additionally, the near vertical fractures caused by geological move-
ments exhibit the induced anisotropy of a transversely isotropic medium with
horizontal symmetric axis (HTI). Hence, it is difficult to adequately delineate the
fractured reservoir using a VTI medium or a HTI medium alone. Existing geo-
logical data (e.g. outcrops) indicate that an orthorhombic model should be a more
realistic model for a fractured reservoir (Tsvankin et al. 2010).

Consider a vertical slip interface that is embedded in a horizontally fractured
homogeneous medium. Following the long wavelength assumption and the linear
slip theory, this composed medium explicitly is equivalent to an orthogonally
fractured medium that has two orthorhombic fractures at Z ¼ x; zþ 1

2Dz
� �

and
X ¼ xþ 1

2Dx; z
� �

. The two fractures laterally and vertically divide the composite
orthorhombic homogenous medium into four spaces that are similar to the four
quadrants of a plane used in mathematics. Medium 1 occupies the first quadrant
with density q1, S-wave velocity b1 and P-wave velocity a1, medium 2 occupies the
second quadrant with density q2, S-wave velocity b2 and P-wave velocity a2,
medium 3 occupies the third quadrant with density q3, S-wave velocity b3 and
P-wave velocity a3, and medium 4 resides in the fourth quadrant with density q4,
S-wave velocity b4 and P-wave velocity a4 (see Table 2.1).

If the host medium of the horizontally fractured medium is an isotropic medium,
the two orthogonal fracture interfaces divide the media into four identical blocks.
Then, q1 ¼ q2 ¼ q3 ¼ q4;b1 ¼ b2 ¼ b3 ¼ b4; a1 ¼ a2 ¼ a3 ¼ a4 (Fig. 3.4).

The orthogonally fractured medium contain three symmetric planes, y; z½ �; x; z½ �
and x; y½ �, that are orthogonal to each other and normal to the x�; y� and z� axes,
respectively. The evaluated central rectangle point at x; zð Þ should relate to the four
nearest-neighbor fictitious points at x� Dx; zð Þ and x; z� Dzð Þ, as well as the four
grid boundaries at X ¼ x� 1

2Dx; z
� �

and Z ¼ x; z� 1
2Dz

� �
. It is especially assumed

that the wave propagation in this orthorhombic media will encounter two fractures
as nonwelded contact boundaries at Z ¼ x; zþ 1

2Dz
� �

;X ¼ xþ 1
2Dx; z

� �
and two

welded contact boundaries at Z ¼ x; z� 1
2Dz

� �
and X ¼ x� 1

2Dx; z
� �

. Thus, the
boundary conditions are successively expressed as

uþ
xðx;zþ 1

2DzÞ
� u�xðx;zþ 1

2DzÞ
¼ STrþ

xzðx;zþ 1
2DzÞ

rþ
xzðx;zþ 1

2DzÞ
¼ r�xzðx;zþ 1

2DzÞ

(
; ð3:44aÞ
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uþ
zðx;zþ 1

2DzÞ
� u�zðx;zþ 1
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zzðx;zþ 1
2DzÞ

rþ
zzðx;zþ 1

2DzÞ
¼ r�zzðx;zþ 1

2DzÞ

(
; ð3:44bÞ
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(
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rþ
xxðx�1

2Dx;zÞ
¼ r�xxðx�1
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(
; ð3:47bÞ

Fig. 3.4 Orthogonally fractured medium (a) and a finite-difference stencil (b) with orthorhombic
fractures in the x, z-domain
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where

r�xzðx;z�1
2DzÞ ¼ l�ðx;z�1

2DzÞ
@u�xðx;z�1

2DzÞ
@z

þ
@u�zðx;z�1

2DzÞ
@x

 !
; ð3:48aÞ

r�zzðx;z�1
2DzÞ ¼ kþ 2lð Þ�ðx;z�1

2DzÞ
@u�zðx;z�1

2DzÞ
@z

þ k�ðx;z�1
2DzÞ

@u�xðx;z�1
2DzÞ

@x
; ð3:48bÞ

r�zxðx�1
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2Dx;zÞ
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r�xxðx�1
2Dx;zÞ ¼ kþ 2lð Þ�ðx�1

2Dx;zÞ
@u�xðx�1

2Dx;zÞ
@x

þ k�ðx�1
2Dx;zÞ

@u�zðx�1
2Dx;zÞ

@z
: ð3:49bÞ

Formulae for the two fictitious displacements ~uðx;zþDzÞnonwelded and ~uðxþDx;zÞnonwelded
obtained from the nonwelded boundary conditions are given in Eqs. (3.16) and
(3.40) respectively. Solutions for the two fictitious displacements ~uðx;z�DzÞ and
~uðx�Dx;zÞ are obtained from the welded boundary conditions and presented in
Eqs. (3.20) and (3.21).

3.5.2 Equation of Motion

Following the horizontally and vertically fractured medium procedures, by applying
the homogeneous approach for FD wave modeling, one should replace the
nearest-neighbor real displacement points in Eq. (3.28) by the corresponding fic-
titious displacement points. In other words, the z-normal and x-normal fractures at
the two nonwelded contact boundaries at X ¼ xþ 1

2Dx; z
� �

and Z ¼ x; zþ 1
2Dz

� �
have been imposed explicitly. One obtains

utþ 1
x;zð Þ ¼ �ut�1

x;zð Þ þ 2ut x;zð Þ

þ Dt
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2
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2

C ~utðx;zþDzÞnonwelded � 2utðx;zÞ þ ~utðx;z�DzÞ
� �

:

ð3:50Þ
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Substituting four fictitious points around the evaluated point ðx; zÞ into
Eq. (3.50) yields the P-SV equation of motion for an orthogonally fractured
medium.

utþ 1
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2
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ð3:51Þ

M refers to the fracture compliances and contribute to two fractured boundaries
at X ¼ ðxþ 1

2Dx; zÞ and Z ¼ ðx; zþ 1
2DzÞ which are dependent of the discontinuous

medium. Equations (3.30), (3.43) and (3.51) express that the nonwelded contact
boundary conditions govern the extra displacement discontinuity across the fracture
boundary. This equation will enable us to model a complex set of the fractures if
they are defined as a horizontal and vertical fracture in the medium.

3.6 Numerical Applications and Discussions

This section shows modeled wave behaviors of the horizontally, vertically and
orthogonally fractured media, which gives insights into studying fracture seismic
signatures.
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3.6.1 Implementation of Seismic Source

A Ricker wavelet is used as the seismic source (CREWES software)

Ricker tð Þ ¼ 1� 2p2f 2t2
� �

e �p2f 2t2ð Þ; ð3:52Þ

where “t” is time in seconds, “f” is frequency in hertz. Note that the Ricker wavelet
in Eq. (3.52) is a zero-phase wavelet with a central peak and two smaller side lobes
(Fig. 3.5). With a dominant frequency of f = 40 Hz, the breadth of the input Ricker
wavelet is 0.7797/f = 0.02 (ms). The amplitude and phase spectra of the input
Ricker wavelet show that the wavelet phase is zero and the main energy is around
the dominant frequency 40 Hz (Fig. 3.6). The numerical artifacts of the source have
been attenuated before the wavefront impinges on the reflections once a fractured
medium is modeled as the effective fractured TI medium.

3.6.2 Stability Condition

Using the finite-difference method requires determination of the spatial and tem-
poral sampling intervals to meet the requirements of Courant condition, so that the
numerical results can avoid the instability problem in which the wavefield grows
without bound and eventually exceeds the model precision. The Courant condition
for the second order n-dimensional FD for P-waves has been provided by Lines
et al. (1999) as

Fig. 3.5 Source wavelet.
A zero-phase Ricker wavelet
with dominant frequency
40 Hz
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a ¼
ffiffiffi
n

p
Dta

Dd
� 1; ð3:53Þ

where Dd is the spatial sampling interval, Dt is the time sampling interval, and the P
wave velocity is a.

Manning (2008) addressed the issue of the stability condition for synthetic P-SV
seismograms that was given by Kelly et al. (1976) as

a ¼ Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Dd

� 1: ð3:54Þ

Slawinski (1999) discussed the Courant condition for nonwelded boundary
contact for the P-SV case, and showed that

a ¼
Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=ð1þ dNÞþ b2=ð1þ eTÞ

q
Dd

� 1; ð3:55Þ

where dN and eT are dimensionless nonweldedness parameters that are related the
parameters of the fracture compliance discussed in Sect. 3.4. To minimize the run
time and numerical dispersion, the time step is kept as a constant value with the
Courant condition for the fractured medium. So

Dt ¼ Ddffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=ð1þ dNÞþ b2=ð1þ eTÞ

q : ð3:56Þ

Fig. 3.6 The amplitude and
phase spectrum of the source
wavelet. It is clear that
wavelet phase is zero and the
significant energy is around
frequency 40 Hz
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3.6.3 Model Parameters

The model parameters given in this section are used for three subsurface models in
the book: a horizontally fractured medium, vertically fractured medium and an
orthogonally fractured medium. Three fractured medium models are formed by a
horizontal, a vertical and an orthorhombic fractures embedded into a homogeneous
isotropic medium, respectively. The first model of the horizontally fractured
medium has a P-wave velocity of a ¼ 3790 ðm=sÞ, a shear wave of
b ¼ 2100 ðm=sÞ, and the density is q ¼ 2:10 ðg=cm3Þ. The normal and tangential
compliances SN ¼ 2:73�1011 ðm=PaÞ; ST ¼ 1:35�1011 ðm=PaÞ can effectively
induce an anisotropic properties to this horizontally fractured medium if it is needed
that is equivalent to VTI medium as e = 0.189 and d = 0.204 by taking Eq. (2.33)
in Chap. 2. For the second model of the vertically fractured medium, the P-wave
velocity is a ¼ 3670 (m/s), the S-wave velocity is b ¼ 2000 (m/s), and the density
q ¼ 2:41 (g/cm3). The normal and tangential compliances are SN ¼
1:73�1011 ðm=PaÞ; ST ¼ 1:35�1011 ðm=PaÞ. The corresponding anisotropic
parameters of this effective vertically fractured medium (HTI), if it is needed, are
e vð Þ ¼ �0:15; dðvÞ ¼ �0:155 that obtain from Eq. (2.37) in Chap. 2. For the third
model of the orthogonally fractured medium, the P-wave velocity is a ¼ 2900
(m/s), the S-wave velocity is b ¼ 1600 (m/s), and the density q ¼ 2:50 (g/cm3).
The normal and tangential compliances are
SN ¼ 3:13�1011 ðm=PaÞ; ST ¼ 4:76�1011 ðm=PaÞ. The resulting SN; ST and dom-
inant frequency x should satisfy VppxSN � 1;VspxST � 1 (Chaisri and Krebes
2000). We use a staggered-grid coding (Manning 2008) with second order spatial
differences and second-order temporal differences. The spatial grid size Dd is 1 m
and the time step Dt is 0.1 ms.

3.6.4 Horizontal Fracture Model

Figure 3.7 shows the geometry for a horizontally fractured medium model. The
source is located at the center of the model (at 900 m depth). The horizontal
receiver array at which the normal and tangential displacement components are
recorded lies above the fracture at a distance of 155 m. The fracture itself is 1800 m
long and is embedded at a depth d = 1050 m in the model. In order to investigate
the fracture itself without any other reflection effects and to avoid the free surface
problem and the interference with the boundary reflections, the receiver array is
buried at 5 m (at 895 m depth) above the source, and the maximum horizontal
offset is 900 m, and the model is a uniform homogeneous isotropic medium without
anisotropic issues.

Modeled wavefield snapshots are shown in Fig. 3.8. The snapshots are the
horizontal and vertical components at 0.2799 (s). The modeled wavefields contain
not only direct arrivals, but also PP and PS reflected and transmitted waves which
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Fig. 3.7 Geometry of the horizontal fractures model of 1800 m � 1800 m. The source is located
at the center of the model. The receivers are 5 m above the source. A horizontal fracture is 150 m
below the source

Fig. 3.8 Snapshot of wavefields. The tangential (x-component) and the normal (z-component)
wavefields propagate in a uniform isotropic medium. These are not only the direct wavefields and
the transmission wavefields, but also PP and PS reflection wavefields from the fracture
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are generated by the horizontal fracture. Obviously, the horizontal fracture would be
detected from seismic data because the fracture is a reflector that generates the PP
and PS reflected waves which are then recorded at the receivers.

Figure 3.9 shows the recorded seismograms in x, z-components simulated from a
horizontal fracture subsurface model. The media parameters are the same as model
parameters of the uniform medium in the Sect. 3.6.3. The left seismogram is the
x-component. The right side seismogram is z-component. A phenomenon observed
is that the near offset z-component reflections are dominated by PP waves, while the
near offset x-component reflections are dominated by PS-waves. As the offsets
increase, this phenomenon decreases. The explanation is that the near offset
PP-wave polarization is normal to the horizontal fracture in the z-component,
whereas PS-wave polarization is perpendicular to the horizontal fracture in
x-component. Consequently, the normally incident waves on the horizontal fracture
are entirely reflected, and then result in PP and PS reflections with different
amplitudes in the different components. This implies that the direction of the
fracture can be determined by the dominant wave amplitudes in the multicompo-
nent data.

Figure 3.10 shows the horizontal fracture seismograms of negative offset with
PP and PS amplitudes variation in the x and z-components (using CREWES soft-
ware). The left graph shows the PP amplitudes as a function of offset. The right
graph shows the PS amplitudes variation with offset. The red color is for the
x-component, and the black color is for the z-component. The PP amplitudes of the
x and z-components cross at an offset of around 400 m, while the PS amplitudes of

Fig. 3.9 Seismograms of the horizontal fracture. The left side of seismogram is x-components.
The right side of the seismogram is z-component. A horizontal fracture is visible in the PP and PS
reflections in the seismograms. They show that the z-component reflection is dominated by the PP
refection, while the PS reflection amplitude dominates at the receivers in the x-component
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the x and z-components cross around 250 m. Figure 3.10 verifies that the amplitude
levels of the PP and PS waves change in the x and z-components of the seismo-
grams in Fig. 3.9.

Figure 3.11 shows the seismic traces after AGC (Automatic gain control,
CREWES software). The traces are reflections from a horizontal fracture interface
(black) and a horizontal small impedance contrast interface (red) at a near offset of
5 m and a far offset of 420 m. The media parameters are the same as the ones in
Sect. 3.6.3. The first arrivals are the same since they are not distorted by any
reflection or transmission at all. However, both reflection coefficients are different
and have a phase rotation.

Figure 3.12 demonstrates snapshots of the wavefields in the horizontally frac-
tured medium in x-component (the left) and z-component (the right). The top row
shows the modeling of the wave propagation in the horizontally fractured medium
that is irrespective anisotropic problem, while the bottom row illustrates the wave
propagation in the same medium as the top one, but the fractured medium is
regarded as a fracture-induced anisotropic medium. Figure 3.12 exhibits that the
wavefronts is a perfect circle in the top row, whereas the wavefronts making an
ellipse shape with a lateral longer axis in the bottom row means that the traveltime
is angularly variant. This manifests that the vertical wavefront is less advanced than
horizontal wavefront when wave propagate in the effective horizontally fractured
anisotropic medium (VTI medium). This conclusion agrees to an opinion about
different incident angle with different traveltime in a VTI anisotropic medium
(Rueger 2002).

Figure 3.13 illustrates the reflections and their calculations for the media com-
position and decomposition that shows traces from different reflectors. The left side
of the figure is for the z-component of the seismograms, and the right side of the

Fig. 3.10 Graph of the horizontal fracture PP and PS amplitudes, x and z-components. The left
graph is the PP amplitudes. The right graph is the PS amplitudes. The red color is for the
x-component, and the black color is for the z-component
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Fig. 3.12 Snapshot of wavefields in the horizontally fractured medium. The top row shows the
wave propagation in the horizontally fractured medium with irrespective anisotropic problem. The
bottom row illustrates the wave propagation in the same medium as top row, but the medium is
regarded as an effective horizontally fractured anisotropic medium

Fig. 3.11 Seismic traces after AGC (Automatic gain control). The traces are from a horizontal
fracture (black) and a horizontal impedance contrast interface (red) at a near offset of 5 m and a far
offset of 420 m
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figure is for the x-component of the seismograms. In Fig. 3.13, the black trace
(a) records reflections from the horizontally fractured medium with uniform med-
ium 1, the red trace (b) records reflections from the impedance contrast interface,
the blue trace (c) is for reflections from the horizontally fractured medium with
impedance contrast, the magenta trace (d) is the summation of the first two traces
(a) and (b), and the bottom traces (e) are overlain displays of the summation
reflection trace (magenta) and the reflection trace (blue) of the fractured medium
with impedance contrast, i.e., they are superimposed. It is not difficult to conclude
that at certain media parameters, the reflections of the horizontally fractured
medium with impedance contrast are numerically and approximately equal to a
linear summation of the reflections of the fracture medium with uniform medium 1
and the reflections of the host media with impedance contrast interface. This means
that the reflections of the horizontally fractured medium with impedance contrast
numerically can be approximately separated into the reflections of the fracture and
the reflections of the unfractured host media, i.e., at certain media parameters,
reflection from fractured medium with impedance contras � reflection from fracture
with uniform medium 1 + reflection from host medium with impedance contrast.
This investigation is for a preparation of the fractured medium inversion in the next
chapter.

Fig. 3.13 Diagram of the seismograms for Schoenberg-Muir calculus theory. The left side are
reflections for the z-component. The right side are reflections for the x-component. The reflection
of fractured medium with impedance contrast $ reflection of the fracture with uniform
medium + reflection of the host media with impedance contrast
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3.6.5 Vertical Fracture Model

Figure 3.14 shows the vertically fractured medium model. The source is located at
the center of the model and the vertical fracture is 50 m away at right positive offset
side. The receiver arrays is arranged horizontally above the source at a distance of
100 m. The other model parameters are the same as those of the horizontally
fractured medium model in Sect. 3.6.3.

According to Snell’s law and the model geometry in Fig. 3.14, the location of
the vertical fracture decides the path of the reflection wave. The relatively far offsets
will receive reflections with small incident angles, while the relatively near offsets
will record the waves having larger incident angles. This is different from the
horizontally fractured medium case in which relatively far offsets receive waves
with large incident angles, while relatively near offsets record waves with small
incident angles. A cartoon in Fig. 3.15 illustrates the path of reflection waves in the
wavefield for this vertically fractured medium.

The vertical fracture is detectable and visible through PP and PS reflections in
the seismograms (Fig. 3.16) as well. In Fig. 3.16, the direct wave has been removed

Fig. 3.14 Geometry of the vertical fractures model of 1800 m � 1800 m. The source is located in
central of the model. The receivers are 100 m above the source. A vertical fracture is located 50 m
to the right of the source
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from the original records, and the negative offset traces record the reflection waves,
while the positive offset traces record the transmission waves. The left side shows
the seismograms for the x-component, and the right side shows the seismograms for
the z-component. Note that the amplitude differences between the PP and PS
reflections are opposite to those of the case of the horizontally fractured medium,
because the direction of the fracture has been changed. The amplitude of the PP
wave dominates in the x-component, while the PS amplitude dominates in the
z-component. This further proves that PP and PS amplitudes are related to the
direction of the existing fracture. In other words, the change in the amplitude levels
of elastic waves in multicomponent data can be used to detect the direction of the
existing fracture. It denotes that the PS reflection in the z-component propagating in
the vertical fracture plane coincides with a fast wave of the split PS data of the
multicomponent seismic data.

Figure 3.17 shows snapshots of the wavefields in a vertically fractured effective
anisotropic HTI medium. The left side and right side of Fig. 3.17 are for x, z-
components, respectively. Obviously, in both components, the horizontal wavefront
is less advanced than the vertical wavefront that agrees with a conclusion of the
traveltime (amplitude) azimuth-dependent anisotropic properties for the HTI med-
ium (Rueger 2002).

The reason is that the vertical wavefront is the wave propagation closing to the
vertical fracture plane or an isotropic plane, whereas the horizontal wavefront
presents the direction of wave propagation that is normal to the fracture plane. In

Fig. 3.15 Picture of the path
of reflection and the
wavefields of the vertically
fractured medium. The
relatively far offsets will
receive reflections with small
incident angles, while the
relatively near offsets will
record the waves with the
larger incident angles
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particular, for this geometry of the vertically fractured medium, each receiver and
the source make different planes that have different azimuths relative to the fracture
plane (Fig. 3.18). This vertically fractured model fully presents HTI characteristics

Fig. 3.16 Seismograms of the vertical fracture. The left side is the x-component and the right side
is the z-component. The vertical fracture is visible and detectable through the PP and PS reflections
in the seismograms. The amplitudes of the PP wave dominate in the x-component, while the
amplitudes of the PS wave dominate the z-component

Fig. 3.17 Snapshots of the wavefields in a vertically fractured effective anisotropic HTI medium.
The left side and right side are for x, z-components, respectively
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in that wave amplitude and traveltime are actually azimuth-dependent. Therefore,
the data from a mature fractured reservoir necessarily need anisotropic correction
and azimuthal AVO analysis.

3.6.6 Orthorhombic Fracture Model

As we know, the most realistic medium model in the oil & gas reservoir is the
orthorhombic medium model that can be simply simulated by integrating the
models of horizontally fractured media with a vertical fracture. Figure 3.19 shows
the geometry of the model of the orthorhombic medium of 1801 m � 1801 m. The
source is located at the center of the model. The horizontal receiver array lies 5 m
above the source. The fractures are vertically and horizontally 150 m away from the
source.

Figure 3.20 shows the seismograms for the x and z-components (the top) and the
x and z-component snapshots (the bottom) of the wavefield at t = 0.319 (s) of the
orthorhombic fractures model. Note that the recorded synthetic seismic data and

Fig. 3.18 Schematic of
fracture with azimuth issues.
Each receiver and the source
make planes with different
azimuths with respect to the
fracture plane. The receivers
with near offsets and the
source make planes that are
closely parallel to fracture
plane, while the receivers with
far offsets and the source
create planes that are nearly
normal to the fracture plane
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wavefield are more complex than those of the single fracture model. And all
conclusions about the limited horizontally and vertically fractured media remain
valid for the amplitude level in this orthorhombic fractures model. The PS-wave
reflected from the horizontal fracture PShð Þ and PP-wave generated from the ver-
tical fracture PPvð Þ dominate in the x-component. The z-component seismogram is
dominated by the PS-wave and PP-wave from the vertical fracture and horizontal
fracture PSvð and PPhÞ, respectively. The waves are reflected or converted a second
time near the fracture intersection point, and these are annotated in the snapshots of
the x and z-components of the wavefield as PPhPv; PPhSv; PPvPh and PPvSh. The
second reflected wave and the converted waves are PPhPv and PPhSv, and denote
that the PP wave is reflected from the horizontal fracture first and then is reflected
and converted to a P wave and S wave respectively at the vertical fracture again,
while the reflected and converted waves, PPvPh and PPvSh, indicate that the PP
wave is reflected from the vertical fracture first and then is reflected and converted
to a P wave and S wave respectively by the vertical fracture a second time.

Fig. 3.19 Geometry model of the orthorhombic medium (1801 m � 1801 m). The source is
located at the center of the model. The horizontal receiver array lies 5 m above the source. The
fractures are 150 m vertically and horizontally away from the source
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3.7 Conclusions

Forward modeling of the fracture provides a connection from the subsurface models
to the surface seismograms that is key to understanding geological body repre-
sentations including the fracture features in the seismic data.

In this chapter, the homogeneous formulation approach of finite-difference
modeling has been selected. The advantage of the homogeneous formulation
approach of FD modeling for the discontinuity medium is that the boundary con-
ditions can be implemented explicitly. This approach is suitable for modeling
fractured media, for which the discontinuous displacement nonwelded boundary
conditions need to be explicitly implemented.

Fig. 3.20 Seismograms of orthorhombic fractures. The top illustrates the seismograms for the
x and z components. The bottom shows the corresponding snapshots of the wavefield at t = 0.3199
(s). The amplitude of the PS-wave from the horizontal fracture PShð Þ and the PP-wave from the
vertical fracture PPvð Þ dominate in the x-component. The amplitude in the z-component
seismograms is dominated by the PS-wave and the PP-wave from the vertical fracture and
horizontal fracture PSvð and PPhÞ, respectively. The waves are reflected or converted a second
time near the fracture intersection point and are denoted in the snapshots of the wavefield as,
PPhPv;PPhSv;PPvPh and PPvSh
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The concept of the fictitious grid point has been studied and it has been found
that it facilitates expressing the relationships between the stresses and displacements
at the two sides of the boundary. Additionally, the replacement of the real dis-
placement with the fictitious displacement in the wave equation of motion ade-
quately presents the wave propagation on the two sides of the fractured medium, so
that the waves are imprinted with the fracture properties in the seismogram data.

Theoretically, a finite-difference stencil has been discussed by considering the
different boundary conditions. It is based on using only one grid boundary of a FD
cell to satisfy the nonwelded boundary conditions, instead of all four boundaries
(Slawinski 1999) for model the fractures. As well, the fictitious displacement for-
mula that relates a finite-different stencil with welded and nonwelded boundary
conditions has been derived. Therefore, the finite-difference schemes for a hori-
zontally fractured medium, a vertically fractured medium and an orthogonally
fractured medium have been developed and presented. The new finite-difference
schemes treat the case of waves propagating in the fractured medium in which the
normal equation of wave motion governs the wave propagation in the host medium
and the nonwelded boundary conditions constrain the waves at the fracture
interface.

The new finite-difference schemes were implemented using MATLAB code to
generate the seismograms for the different fractured media. Firstly, the seismograms
indicate that the first arrivals for both the fracture and impedance contrast interfaces
are the same because they are not distorted by any reflection or transmission at all if
the medium properties are the same. Fractures are good reflectors because they
produce not only the transmitted PP and converted PS waves, but also reflected PP
and PS waves with x and z components in the seismograms from a uniform
homogenous isotropic medium without an impedance contrast. Conventionally,
there are no reflected waves in the uniform homogenous isotropic medium if there
is no fracture existing. Thus this phenomenon can be used to detect fractures in
uniform lithology zones in the reservoir such as fractures in shale or coalbed zones.
Secondly, the PP and PS amplitudes in the seismograms illustrate that the variation
of amplitudes follows the direction of the fractures. For a horizontally fractured
medium, the amplitude of the PP wave dominates in the z-component data, while
the PS amplitudes are stronger than the PP amplitude in the x-component data.
Oppositely, in the seismograms for the vertically fractured medium, the PP
amplitudes are stronger than the PS amplitudes in the x-component, while PS
amplitudes dominate in the z-component of the seismogram. Thus, the amplitudes
of PP and PS waves in the x and z components of the seismograms can be used to
detect the direction of the fracture. Thirdly, the reflection of the fracture has a phase
rotation with respect to the reflection from the impedance contrast interface. The
wavefront variation is angularly dependent so that the vertical wavefront is less
advanced than the horizontal wavefront in the horizontally fractured medium. This
means that the horizontal fractured medium displays VTI anisotropic properties. In
the vertically fractured medium, however, the vertical wavefront close to the
fracture plane is more advanced than the horizontal wavefront of the wave prop-
agation normal to the fracture plane. This is evidence that the vertically fractured
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medium is equivalent to the HTI anisotropy problem: the amplitude variation is
azimuth-dependent (AVAZ), i.e., different azimuths have different traveltimes
(because of the different velocities).

One may conclude that the fractures are detectable and visible because fractures
strongly influence the seismic wave propagation and raise issues of scattering and
induced anisotropy. The amplitudes of the multicomponent seismic data are evi-
dence that reveal the direction of the fracture. The seismic data of the fractured
medium presenting anisotropy show that analyzing the anisotropy of the seismic
data can provide a way to predict fractures.

References

Aki, K., & Richards, P. G. (1980). Quantitative seismology: Theory and methods (vol. 1). W.H.
Freeman and Company.

Chaisri, S., & Krebes, E. S. (2000). Exact and approximate formulas for P-SV reflection and
transmission coefficients for a nonwelded contact interface. Journal Geophysical Research,
105, 28045–28054.

Coates, R. T., & M. Schoenberg. (1995). Finite-difference modeling of faults and fractures.
Geophysics, 60, 1514–1526.

Kelly, K. R., Ward, R. W., Treitel, S., & Alford, R. M. 1976. Synthetic seismograms
finite-difference approach. Geophysics, 41(1), 2–27.

Korn, M., & Stöckl, H. (1982). Reflection and transmission of love channel wave at coal seam
discontinuities computed with a finite difference method. Journal of Geophysics, 50, 171–176.

Lines, L. R., Slawinski, R., & Bording, R. P. 1999. Short note—A recipe for stability of
finite-difference wave-equation computations. Geophysics, 64(3), 967–969.

Lines, L. R., & Newrick, R. T. (2004). Fundamentals of geophysical interpretation. Tulsa,
Oklahoma: Society of Exploration Geophysicists Publication.

Manning, P. M. (2008). Techniques to enhance the accuracy and efficiency of finite difference
modelling for the propagation of elastic waves. Ph.D. thesis, The University of Calgary.

Rueger, A. (2002). Reflection coefficients and azimuthal AVO Analysis in anisotropic media: SEG
geophysical monograph series number10: Soc. Geophys: Expl.

Slawinski, R. A., & Krebes, E. S. (2002a). Finite-difference modeling of SH-wave propagation in
nonwelded contact media. Geophysics, 67, 1656–1663.

Slawinski, R. A., & Krebes, E. S. (2002b). The homogeneous finite difference formulation of the
P-SV wave equation of motion. Studia Geophysica et Geodaetica (Impact Factor: 0.75).
01/2002; 46(4), 731–751. doi:10.1023/A:1021133606779

Slawinski, R. A. (1999). Finite-difference modeling of seismic wave propagation in fractured
media. Ph.D. thesis, The University of Calgary.

Tsvankin, I., Gaiser, J., Grechka, V., van der Baan, M., & Thomsen, L. (2010). Seismic anisotropy
in exploration and reservoir characterization: An overview. Geophysics, 75, A15–A29.

3.7 Conclusions 93

http://dx.doi.org/10.1023/A:1021133606779


Chapter 4
Fractured Medium AVO Inversion

Abstract The synthetic seismograms for the fractures in Chap. 3 suggest that the
fractures are also reflection generators for reflecting waves propagating in the
media. Consequently, the recorded surface seismic data inevitably contain fracture
reflections when the acquisition reservoir contains fractures. In this chapter, we
derived new PP- and PS-wave reflection and transmission coefficient equations
based on the principle of nonwelded boundary conditions. The new AVO equations
for the horizontally fractured medium with impedance contrast are finally presented.
In the new AVO equations, the reflection coefficients are divided into a welded
contact part (a conventional impedance contrast part) and a nonwelded contact part
(the fracture part) which makes them flexible for truly inverting for the rock
properties of the fractured medium with impedance contrast.

Keywords Zoeppritz equation � Reflection/transmission coefficients �
Approximate AVO inversion � Amplitudes � Seismic data processing �
Horizontally fractured medium � Vertically fractured medium � Algorithm of the
AVO inversion

4.1 Approximations of the Zoeppritz Equations

The Zoeppritz equations (Zoeppritz 1919) describe the relation of the incident angle
of a plane P-wave, to the reflection and transmission coefficients of compressional
waves (P-waves) and shear waves (S-waves) at an interface in a perfectly welded
contact medium. The relation is the basis of the AVO and AVAZ (amplitude
variation with angle and azimuth) methods which assume that the amplitudes
contain impedance contrast information. The Zoeppritz equations have exact
solutions but they have quite a complex form (Aki and Richards 1980). With
assumptions of small fractional perturbations in elastic parameters (all of the
reflectivity �1 at zero-offset), i.e., low impedance contrast and perfectly welded
contact media, many people simplified the original Zoeppritz equations into linear
approximate AVO equations with different variables (Table 4.1). In 1980, Aki and
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Richards presented the AVO equations by providing the elastic reflectivities of the
P-velocity, S-velocity, and density. Shuey (1985) specified the AVO equation in
terms of zero-offset P-wave reflectivity and a gradient. Smith and Gidlow (1987)
rearranged the Aki and Richards’s equation and applied an empirical relationship
(Gardner et al. 1974) to the approximate AVO equations for P-wave and S-wave
velocity reflectivities. Fatti et al. (1994) gave the AVO equations for P-wave and
S-wave reflectivities. In 2002, Ruger used the approach of Shuey (1985) to unravel
an AVAZ equation that shows the reflection coefficients are directly affected by
both incident angles and azimuths. Downton et al. (2011) contributed to the AVAZ
equation relation to the fractured weakness parameters through using azimuthal
Fourier coefficients. Exact solutions (which are extremely complex) for the
reflection and transmission coefficients for nonwelded contact boundary conditions
have also been derived (Chaisri and Krebes 2000; Chaisri 2002).

4.2 Data Preconditioning for AVO/AVAZ Inversion

AVO inversion is intended to provide additional reservoir properties based on the
amplitude variation over a range of offsets from the surface seismic data. Therefore,
the seismic data must accurately preserve the true amplitudes in correspondence to
geological factors, rather than maintain signs of non-geological bodies and artifacts
from data acquisition.

4.2.1 Deconvolution

In seismology, a seismic data trace SðtÞ is usually modeled to be the convolution of
a source wavelet WðtÞ and an earth reflectivity function RðtÞ:

SðtÞ ¼ WðtÞ � RðtÞ: ð4:1Þ

Seismologists are interested in the earth reflectivity RðtÞ that represents rock
formations as geological reflectors. The well-known method of deconvolution
attempts to undo the convolution by applying an inverse filter f ðtÞ to remove the
effects of the source wavelet WðtÞ from the seismic data SðtÞ in order to get back to
the true reflectivity series RðtÞ (Lines and Newrick 2004):

R tð Þ ¼ f tð Þ � S tð Þ: ð4:2Þ

Ideally, deconvolution (Yilmaz 1991; Margrave 2006) should provide the per-
fect resolution: the reflectivity function should be a series of delta functions.
However, the performance of deconvolution often is imperfect because of the
impacts of noisy signals, the band-limited nature of the seismic data, and the lack of
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knowledge about the wavelet (Lines and Newrick 2004). Nevertheless, deconvo-
lution still compresses the seismic wavelet to achieve a flat, or white amplitude
spectrum that significantly improves the resolution of seismic data. Figure 4.1
shows a real seismic data stack section and its amplitude spectrum in a certain
window before and after deconvolution. The data belong to the Suping Peng
research group of the State Key Laboratory of the CUMTB (China University of
Mining and Technology, Beijing) and were processed by the Arcis Seismic
Solution company. There is no doubt that the amplitude spectrum (orange) of the
deconvolution data approaches a flat level, or the white color, meaning that the data
have been enhanced with content at higher and lower frequencies. Therefore, the
deconvolution is a vital step of data preconditioning.

4.2.2 Noise Attenuation

Seismic data are always contaminated by some noises that distort the true ampli-
tudes and affect the accuracy of the AVO/AVAZ inversion results. The noises can
be categorized into two types: coherent noises and random noises. The coherence
noises, such as the ground roll and the multiples, can be suppressed by a Radon
transform or an FK filter. For the random noises, they can be investigated in the
spatial and temporal directions, and uncorrelated noise from trace to trace. Thus, a
time-variant method and spatial prediction filtering such as FX deconvolution can
be used to attenuate most of the random noise. Of course, conventional CMP
stacking significantly reduces the uncorrelated random noises within the data.
Figure 4.2 shows the result of random noise attenuation on the same real seismic
data as shown in Fig. 4.1. Figure 4.2a, b shows before and after random noise

Fig. 4.1 Deconvolution stack. Real seismic data stack and amplitude spectrum analysis on a
certain window before (blue) and after (orange) deconvolution (Data owned by China University
of Mining and Technology, Beijing)
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attenuation, respectively. Figure 4.2c shows the difference between before and after
noise attenuation which shows no coherent reflections, which means that the ran-
dom noises are attenuated and signals are preserved.

Despite more and more noise attenuation technologies having been developed,
geophysicists still would like to see a lateral integration of existing technologies to
enhance the ratio of signal and noise (the S/N ratio). An amplitude-friendly filtering
technique, LIFT, which works for different types of noise attenuation, was pub-
lished by Choo and Sudhakar (2003). They take a new approach by adding back an
estimation of the signal lost during the modeling, rather than simply outputting the
signal model or the signal model with a percentage of the original data added back.
This approach is a practical and robust amplitude-preserving way to precondition
data for the AVO process (Choo et al. 2004).

4.2.3 5D Interpolation

The purpose of the seismic data preconditioning is to enhance the signal-to-noise
ratio by removing all sorts of noise. However, missing data at some offsets and
azimuths can create “acquisition footprints” that are undesirable artifacts creating
amplitude variations within the seismic data. In other words, the missing data or
“acquisition footprints” almost always negatively impact AVO and AVAZ analy-
ses. A method of 5D Interpolation based on Fourier reconstruction addresses the
problems, in which interpolation is simultaneously performed in pre-stack data in
five dimensions to predict new sources and receivers at desired locations to com-
pensate for the missing data. The five dimensional Fourier spectra of the acquired
data along inline, crossline, offset, azimuth, and time (frequency) act as a constraint
on the nature of the missing traces. New interpolated traces have multidimensional
Fourier spectra that are consistent with the input data in all five dimensions.
Therefore, it can truly capture inline–crossline, offset and azimuth amplitude
variations. A QC (Quality Control) tool known as “5D Leakage” is used to assess

Fig. 4.2 Random noise attenuation. a and b are before and after random noise attenuation stacks,
respectively. c is the difference between before and after noise attenuation (Data owned by China
University of Mining and Technology, Beijing)
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the accuracy of the 5D Interpolation by making a comparison between data with
reconstructed geometry and true recorded data with the original geometry.
Figure 4.3 shows the stack sections before and after 5D interpolation and QC “5D
Leakage” (the data are the same as those shown in Fig. 4.2). Figure 4.3a shows the
stacked data without the 5D interpolation, while Fig. 4.3b illustrates the stacked
data with the 5D interpolation. Comparing Fig. 4.3a with Fig. 4.3b confirms that
the S/N ratio of the data has been enhanced and the image is reliable and has true
amplitudes. Figure 4.3c shows the QC of “5D Leakage” that verifies the 5D
interpolation efficiency.

4.2.4 PS-Data Layer Stripping

4.2.4.1 Converted PS-Wave

In seismic exploration, the incident P-wave not only generates up-going and
down-going PP-waves, but also it converts to an up-going PS reflection and
down-going PS transmission once the P-wave impinges upon any reflector (Stewart
et al. 2002, 2003). The PP and converted PS reflections would be fully present in
multi-component data on the surface that usually contain one vertical component
(PP-data) and two horizontal components (PS-data), i.e., they are 3C data.
Figure 4.4 illustrates the paths of PP- and PS-waves and the mapping of the
common middle point (CMP), the asymptotic conversion point (ACP), and the
common conversion point (CCP). Sorting a CCP gather in PS-data is more complex
than sorting a CMP gather in PP-data, because CCP traces also rely on the medium
properties, whereas CMP traces only depend on the source and receiver geometry.

Fig. 4.3 5D interpolation and QC. a is the data stack without the 5D interpolation. b is data stack
with the 5D interpolation in which the S/N ratio has been enhanced and the amplitude has been
truly kept. c is an application of the QC tool of “5D Leakage” to inspect the 5D interpolation
efficiency (Data same as in Fig. 4.2)
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4.2.4.2 Shear Wave Splitting

Due to the fact that a shear wave is always polarized orthogonally to the direction of
wave propagation, a shear wave propagating in an azimuthally anisotropic medium
with a number of unique properties can have a profound effect on the wavefront in
terms of S-wave birefringence (Crampin 1985). Shear wave splitting techniques were
first used for fracture detection byAlford (1986). At the fracture interface, a converted
shear wave would split into a fast shear wave PS1 that polarizes in and parallel to the
direction ofmaximum stress and a slow shearwave PS2 that is polarized in and parallel
to the direction ofminimum stress (Fig. 4.5). Onemay call this system (defined by the
directions of maximum and minimum stress) the natural coordinate system. PS-wave
splitting analysis is associated with the direction of the existing fracture. The
split-converted shear waves PS1 and PS2 are orthogonally polarized with respect to
each other and both are perpendicular to the direction of propagation and have dif-
ferent speeds that cause a time shift (Fang and Brown 1996).

In practice, the direction of the fracture in the natural system has an angle of (u0)
with respect to the radial component R, or an angle of ðu0 þ 90�Þ with respect to the
transverse component T. R and T are rotated from the two horizontal components in
the acquisition system. The converted PS-wave that splits into a fast-wave PS1 and
a slow-wave PS2 in the natural system satisfies the following equation:

PS1 ¼ PSðtÞ cosu0; ð4:3aÞ

PS2 ¼ PSðt � DtÞ sinu0: ð4:3bÞ

As trigonometry in Fig. 4.5

Fig. 4.4 Diagram for PP- and PS-wave paths and a mapping of the common middle point (CMP),
asymptotic convert point (ACP), and common convert point (CCP)
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PS1
PS2

� 	
¼ cosu0 � sinu0

sinu0 cosu0

� 	
R
T

� 	
; ð4:4aÞ

R�1 PS1
PS2

� 	
¼ R

T

� 	
; ð4:4bÞ

whereR ¼ cosu0 � sinu0
sinu0 cosu0

� 	
is a rotator for the coordinate system rotation. And

R�1 ¼ cosu0 sinu0
� sinu0 cosu0

� 	
.

Conversely, the fast and slow PS-waves can be obtained from the radial and
transverse components by applying the rotator R if the fracture azimuth angle u0 is
known:

PS1
PS2

� 	
¼ R R

T

� 	
¼ R cosu0 � T sinu0

R sinu0 þ T cosu0

� 	
: ð4:5Þ

4.2.4.3 Fracture Orientation

For PP-data, the orientation of existing fractures is often surmised from velocity
anisotropy (Marrett et al. 2007). For PS-data, the methods of using the limitation of
the amplitude value to determine the orientation of the fractures have been inves-
tigated (Garotta and Granger 1988; Bale et al. 2005). Given an arbitrary angle u
that is assumed to be the direction of the fracture with respect to the radial com-
ponent in the R–T processing system, then

Fig. 4.5 A schematic of
PS-wave splitting. The
orientation of the fracture is
u0 with respect to the radial
component R. T denotes the
transverse component. The
split fast and slow PS-waves
are PS1 and PS2,
respectively. The direction of
polarizations of PS1 and PS2
are orthogonal with respect to
each other
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PS1 uð Þ ¼ R cosu� T sinu; ð4:6aÞ

PS2 uð Þ ¼ R sinuþ T cosu: ð4:6bÞ

Substituting Eq. (4.4b) into Eqs. (4.6a) and (4.6b) the ratio of PS2ðuÞ=PS1ðuÞ is

PS2 uð Þ
PS1 uð Þ ¼

�PS1 cosu0 sinðu0 � uÞþ PS2 sinu0 cosðu0 � uÞ
PS1 cosu0 cosðu0 � uÞþ PS2 sinu0 sinðu0 � uÞ : ð4:7Þ

Substituting Eqs. (4.3a) and (4.3b) into Eq. (4.7) and if u ¼ u0, we have

PS2 u0ð Þ
PS1 u0ð Þ ¼

PSðt � DtÞ sinu0

PSðtÞ cosu0
: ð4:8aÞ

Considering the energy of PS1 and PS2 only, then

PS2 u0ð Þj j
PS1 u0ð Þj j ¼

PSðt � DtÞj j
PSðtÞj j tanu0j j ¼ tanu0j j; ð4:8bÞ

this u0 is the actual orientation of the fracture but it may be ambiguous with two
distinct values at around ±90°. Usually, it is necessary to check the arrival time on
the reflections by applying the two angle values to confirm that the fast shear wave
has a smaller traveltime corresponding to the angle for the fracture direction.

4.2.4.4 Shear Wave Layer Stripping

If the time shift between fast and slow shear waves is big enough and not negligible,
then the recorded waves on the surface are complicated by the destructive and
constructive interference of fast and slow shear waves that degrade the quality of the
data and render the data uninterpretable. Alford (1986) discovered an interesting
operation, the layer stripping anisotropic correction, to overcome the problem by
removing the time shift from shear wave spitting at a current anisotropic interface
and the overburden anisotropic layers.

Figure 4.6 shows a schematic of a medium consisting of two subsurface layers.
The deeper layer (Layer 1) is the target layer and the shallow layer (Layer 2) is a
fractured layer (an azimuthally anisotropic layer). In Fig. 4.6, H1 and H2 represent
two horizontal component data acquired on the surface in the acquisition system.
PS1 and PS2 in layer 2 represent the fast and slow split waves from the converted
PS-wave in the natural coordinate system, in which PS1 is polarized in and parallel
to the direction of the fracture (x1) and PS2 is polarized in and parallel to the
direction perpendicular to the fracture (x2). PS1 and PS2 are polarized orthogonally
with respect to each other and propagate in the same direction with different speeds
causing a time delay in the PS-data. In Fig. 4.6, shear wave splitting can be
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regarded as a forward process from layer 1 to the surface, while an inverse process
is layer stripping from the surface to the target layer (layer 1).

In order to correctly image and interpret the target layer, the most important steps
are as follows:

• Rotate the acquisition data in the acquisition system (H1–H2) into radial–
transverse (R–T) data in the processing system.

• Rotate the radial–transverse (R–T) components of the pre-stack data into the
(PS1�PS2) components of the natural (fracture) system (x1–x2) by applying
Alford’s rotation angle u0 in Eqs. (4.8a) and (4.8b).

• Determine a time lag for cross-correlation of the stacked traces of PS1 and PS2
in the analysis window.

• Apply the time shift to the pre-stack data to align all PS2 traces to PS1.
• Rotate the aligned PS1 and PS2 data back to the (R–T) components (normally

named as (R0 � T 0) in the processing system.

Fig. 4.6 Sketch of the shear wave layer stripping. H1 and H2 represent the two horizontal
components of the converted data in the acquisition system. PS1 and PS2 at the anisotropic layer
(Layer 2) symbolize the split fast and slow waves from the converted PS-wave in the natural
system. The fast shear wave PS1 is polarized in and parallel to the direction of the fracture (x1) and
a slow shear wave PS2 is polarized in and parallel to the perpendicular direction of the fracture
(x2). PS1 and PS2 are orthogonally polarized respect to each other and propagate in the same
direction with different speeds causing a time delay that appears in the PS-data
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To significantly improve the reservoir image, these steps can be repeated layer
by layer (for fractured anisotropic layers) with different analysis windows
(Fig. 4.7). The explanation for this is that the different anisotropic (fractured) layers
cause the time lag recorded in different time windows of the data. Meanwhile, an
analysis of the amplitude and traveltime differences between the fast and slow
converted shear waves may provide additional information to map subsequent
fracture distributions in the reservoir. Figure 4.7 exhibits a result of the layer
stripping that cascades two times of the layer stripping at shallow and deep win-
dows. The left slice indicates the radial component data stacked without the layer
stripping. The right slice is for the radial prime component data stacked with the
layer stripping. It is convincing that the layer stripping processing removed the time
lag to enhance the S/N ratio and improve the data quality of the R0 component data.

4.3 AVO Equations for Fractured Media

When seismic waves propagate in the subsurface and encounter a fractured med-
ium, the energy of the incident wave can be partially reflected and recorded on the
surface seismic data (even if there is no impedance contrast around the fracture) that
combine the response of the fracture and the host media (Chap. 3). In Chap. 3,
the synthetic seismograms provide evidence that the fracture is a reflection

Fig. 4.7 Stack of shear wave layer stripping processing. The left slice is the radial component data
stack without the layer stripping. The right slice is for the radial prime component data stack with
the layer stripping. The layer stripping cascades two times at a shallow and deeper window. It is
convincing that the layer stripping processing removed the time lag to enhance the S/N ratio and
pronounce the reflection events
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generator and strongly affects the amplitudes of seismic traces, the traveltimes, and
the Vp

Vs
ratio, and therefore the conventional AVO equations for inversion of the rock

properties of the host media from seismic amplitudes will be inaccurate if the
reservoir under investigation is fractured since the amplitudes inevitably are con-
taminated by fracture reflections. However, this issue is not recognized in the
conventional AVO method.

AVO equations for a fractured medium should take the fracture issue into
account and avoid its influences when the equations are used to invert for the elastic
reflectivity of the host media from the input data that contain reflections from the
fractured media.

4.3.1 Exact Reflectivity Equations for Horizontally
Fractured Media

An incident P-wave (P8
1), reflected P-wave (P8

1P
0
1), transmitted P-wave (P8

1P
8
2), and

converted S-waves (P8
1S

0
1 and P8

1S
8
2), as well as the incidence angle (h1), trans-

mission angle (h2), converted reflection angle (#1), converted transmission angle
(#2), and a horizontal viscous fracture interface in the vertical x–z domain, are
shown in Fig. 4.8. The black single arrows point in the directions of the wave

Fig. 4.8 Schematic of reflected and transmitted rays for an incident P-wave incident upon a
fracture interface. The incident P-wave (P8

1), reflected P-wave (P8
1P

0
1), transmitted P-wave (P8

1P
8
2),

and converted S-waves (P8
1S

0
1 and P8

1S
8
2), as well as incident angles (h1) transmission angle (h2),

converted reflection angle (#1), and transmission angle (#2), are shown in the x–z domain. The
single black arrows point in the direction of the wave propagation. The double gray arrows
indicate the direction of the polarization of the waves
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propagation. The gray double arrows indicate the directions of the polarizations of
the waves. The rock properties of the upper and lower isotropic media are P-wave
velocity (a1;2), S-wave velocity (b1;2), and density (q1;2). The normal compliance
(SN) and tangential compliance (ST) of fracture and specific viscosity parameter (vx)
are shown in Fig. 4.8, too.

We use a harmonic incident plane P-wave, which can be expressed as P8
1 ¼

Aeixðs�x�tÞd (Krebes 2006, course notes), where A is the amplitude and is assumed to
be unity, s � x ¼ sxxþ syyþ szz, where s represents the slowness of the harmonic
plane wave in the travel direction, and d stands for the wave polarization and its
eigenvector component are lhn, mhn, l#n, and m#n, respectively, where n ¼ 1; 2
indicates the upper and lower medium (Ruger 2002). For a given frequency x, the
relationship between the PP-waves (P8

1P
0
1;P

8
1P

8
2), the PS-waves (P8

1S
0
1;P

8
1S

8
2), the

angles (h1;2, #1;2), and the fracture parameters ST and SN at the horizontal viscous
(vx) interface satisfies the linear slip nonwelded contact boundary conditions (2.42)
as (Appendix C)

lh1 sin h1
mh1 cos h1
ðxxÞ1 cos h1
ðyyÞ1a1

2
6664

3
7775 ¼

�lh1a1P �m#1 cos#1 lh2a2P� ixST
1�ixvxST

ðxxÞ2 cos h2
mh1 cos h1 �l#1b1P mh2 cos h2 � ixSNðyyÞ2a2
ðxxÞ1 cos h1 ðrrÞ1b1 ðxxÞ2 cos h2
�ðyyÞ1a1 ðkkÞ1 cos#1 ðyyÞ2a2

2
66664

m#2 cos#2 � ixST
1�ixvxST

ðrrÞ2b2
�l#2b2Pþ ixSNðkkÞ2 cos#2

ðrrÞ2b2
�ðkkÞ2 cos#2

3
77775

P8
1P

0
1

P8
1S

0
1

P8
1P

8
2

P8
1S

8
2

2
6664

3
7775;

ð4:9Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

,

lhn ¼ 1þ f cos2 hnðdþ 2ðe� dÞ sin2 hnÞ; ð4:10aÞ

mhn ¼ 1� f sin2 hnðdþ 2ðe� dÞ sin2 hnÞ; ð4:10bÞ

l#n ¼ 1þ f cos2 #nðdþ 2ðe� dÞ sin2 #nÞ; ð4:10cÞ

m#n ¼ 1� f sin2 #nðdþ 2ðe� dÞ sin2 #nÞ; ð4:10dÞ

ðxxÞn ¼ ðlhn þmhnÞqnb2nP; ð4:10eÞ
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ðrrÞn ¼ qnðl#n � ðl#n þm#nÞb2nP2Þ; ð4:10fÞ

ðyyÞn ¼ qn lhn � mhnð Þa2nP2 þðmhn � lhn2b
2
nP

2Þ� �
; ð4:10gÞ

ðkkÞn ¼ qnP 2b2n � a2n
� �

m#n þ a2nl#n
� �

; ð4:10hÞ

where f ¼ a2

a2�b2
, n ¼ 1; 2. Equation (4.9) expresses reflection and transmission

coefficients from the horizontally viscous fractured medium that formed a horizontal
viscous fracture embedding in the anisotropic host medium. The formed medium is
equivalent to TI medium that induced by the fracture and the host medium.

4.3.2 Approximate AVO Equations for Horizontally
Fractured Media

The matrix on the left side of Eq. (4.9) is for the incident wave, and the matrix on
the right is for the scattered wave and the reflection and transmission coefficients.
Rewrite Eq. (4.9) as

M P8
1P

0
1 P8

1S
0
1 P8

1P
8
2 P8

1S
8
2½ �T¼ N: ð4:11aÞ

According to Cramer’s rule,

P8
1P

0
1 P8

1S
0
1 P8

1P
8
2 P8

1S
8
2½ �T¼ detðMkÞ

detðMÞ ; ð4:11bÞ

where Mk is the matrix M and the k-th column of M has been replaced by the vector
N. k = 1 corresponds to the first reflection/transmission coefficient, etc. Thus

P8
1P

0
1 ¼ Rp hð Þ ¼ detðM1Þ

detðMÞ ¼

det

N11 m12 m13 m14

N21 m22 m23 m24

N31 m32 m33 m34

N41 m42 m43 m44

2
664

3
775

0
BB@

1
CCA

det

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

2
664

3
775

0
BB@

1
CCA

; ð4:12aÞ
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P8
1S

0
1 ¼ Rs hð Þ ¼ detðM2Þ

detðMÞ ¼

det

m11 N12 m13 m14

m21 N22 m23 m24

m31 N32 m33 m34

m41 N42 m43 m44

0
BB@

1
CCA

ddet

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

2
664

3
775

0
BB@

1
CCA

: ð4:12bÞ

Equations (4.12a) and (4.12b) are equations for the PP- and PS-wave reflection
coefficients, respectively. It is straight forward to solve the linear algebraic
Eq. (4.12a) with assumptions of the polarization vector d ¼ 1. Then the exact
PP-wave reflectivity from the fractured VTI media can be formulated as
(Appendix C)

Rp hð Þ ¼ Rw hð ÞþRnon w hð Þ; ð4:13Þ

where

Rnon w hð Þ ¼ ixST
1� ixvxST

� �
RT
non w hð Þþ ðixSNÞRN

non w hð Þ: ð4:13aÞ

The PP reflection coefficient in Eq. (4.13) contains two items. The reflection
coefficient Rw is caused by velocity or density contrasts in the host media that
satisfy the assumption of perfectly welded contact. The reflection coefficient Rnon w

results from the fracture: the displacement discontinuity across the fracture gener-
ates the reflections. In Eq. (4.13a), the upper subscripts T and N indicate that the
reflection coefficient is associated with the fracture tangential and normal compli-
ance parameters ST and SN. For the conventional reflection coefficient Rw, it is
assumed that all incidence and transmission angles are real and less than 90°, and it
is the same approximation as given by Aki and Richards’s AVO equation in
Table 4.1:

Rw hð Þ � 1
2 cos2 h

ra � 4
b
a

� �2

sin2 hrb þ 1
2

1� 4
b
a

� �2

sin2 h

 !
rq: ð4:14aÞ

For the fracture part Rnon w, it can be simplified into tangential and normal
components with the same approximations that were used for Rw. So we have
(Appendix C)
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RT
nonw hð Þ � 2

1
q
l2qaP

2 þ l
qb

P2 � 1
4
qb sec# sec h2

� �
ra

þ 2
l
qb

P2rb þ l
qb

P2 � 1
4
qb sec#

� �
rq;

ð4:14bÞ

RN
nonw hð Þ � 1

2
qa sec h� 2l

qa
P2 � l2

qb
q

1þ sin h2
� �

P2
� �

ra

þ 4l2
qb
q
P2

� �
rb þ 2l2

qb
q
P2

� �
rq;

ð4:14cÞ

where ra, rb, and rb are compressional wave velocity, shear wave velocity, and
density reflectivity, respectively; P is the ray parameter; and

ra ¼ Da
a

; rb ¼ Db
b

; rq ¼ Dq
q

; ð4:15aÞ

qa1;2 ¼
cos h1;2
a1;2

; qa ¼ qa1 þ qa2
2

; Dqa ¼ qa2 � qa1; ð4:15bÞ

qb1;2 ¼
cos#1;2

b1;2
; qb ¼ qb1 þ qb2

2
; Dqb ¼ qb2 � qb1 ð4:15cÞ

l ¼ qb2: ð4:15dÞ

RT
non w hð Þ and RN

non w hð Þ have the same style as Rw in terms ra, Rw and rq. Thus
Eq. (4.13) can be rewritten as (Appendix C)

Rp hð Þ � Rw hð Þþ ixST
1� ixvxST

RT
non w hð Þþ ixSNR

N
non w hð Þ

� ixST
1� ixvxST

TTðhÞþ ixSNN
NðhÞ

þ AðhÞþ ixST
1� ixvxST

AT
a ðhÞþ ixSNA

N
a ðhÞ

� �
ra

þ BðhÞþ ixST
1� ixvxST

BT
bðhÞþ ixSNB

N
b ðhÞ

� �
rb

þ CðhÞþ ixST
1� ixvxST

CT
qðhÞþ ixSNC

N
q ðhÞ

� �
rq:

ð4:16Þ
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This is the new approximate AVO equation for the fractured medium with
impedance contrast that divides the reflection coefficients into fracture reflection
coefficients for the fracture and impedance contrast reflection coefficients for the
host media. In other words, the all rock properties of the fractured medium with
impedance contrast can be correctly inverted from the input data to delineate the
reservoir characterizations. The host medium properties have a correct prediction
because of the new AVO equation considered the input of seismic data possibly a
combination of the reflection from the fracture issue. In Eq. (4.16)

TT hð Þ ¼ 2
1
q
l2qaP

2; NN hð Þ ¼ 1
2
qa sec h� 2l

qa
P2; ð4:17aÞ

A hð Þ ¼ 1
2 cos2 h

; AT
a hð Þ ¼ l

qb
P2 � 1

4
qb sec# sec h2;

AN
a hð Þ ¼ �ðl2 qb

q
ð1þ sin h2ÞP2Þ; ð4:17bÞ

B hð Þ ¼ �4
b
a

� �2

sin2 h; BT
b hð Þ ¼ 2

l
qb

P2; BN
b hð Þ ¼ 4l2

qb
q
P2; ð4:17cÞ

C hð Þ ¼ 1
2

1� 4
b
a

� �2

sin2 h

 !
; CT

q hð Þ ¼ l
qb

P2 � 1
4
qb sec#;

CN
q hð Þ ¼ 2l2

qb
q
P2: ð4:17dÞ

Figure 4.9 shows a comparison between the PP-wave exact solution and
approximate solution of the reflection coefficients for the fractured medium with
impedance contrast. The black line represents the exact solution from Eq. (4.9) as
vx ¼ 0� and d ¼ 1, while the red line is for the approximate solution from
Eq. (4.16). The model parameters are the same as those in Fig. 4.9. This shows that
the solution of the new approximate AVO Eq. (4.16) for fractured media closely
matches the exact solution (Eq. 4.16) for incidence angles less than about 40°.

Let ra ¼ rb ¼ rq ¼ 0 in Eq. (4.16). Then

Rp hð Þ � ixST
1� ixvxST

TTðhÞþ ixSNN
NðhÞ

� �
: ð4:18Þ

Equation (4.18) clearly shows that the fracture parameters can be predicted from
seismic data when the fractures are embedded in a uniform medium without
impedance contrast. This can be used as an approach to verify the well-known
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parameters from the initial model. In particular, this equation provides a way to
invert the rock fracture parameters, rather than a lithology variation from the
seismic data to infer the reservoir characterization.

Let ST ¼ SN ¼ 0 for Eq. (4.16). Then

Rp hð Þ � A hð Þra þB hð Þrb þCðhÞrq: ð4:19Þ

Equation (4.19) states that the new AVO equation can be transformed into the
conventional AVO equation to estimate the rock elastic reflectivity caused only by
an impedance contrast without any fracture in the media.

4.4 AVO Inversion Algorithm for the Fractured Medium

Obtaining the geologic factors corresponding to the velocity reflectivity and density
reflectivity is the ultimate objective of the AVO method. Equation (4.16) can be
written in matrix format as

Fig. 4.9 PP reflection coefficients. The black curve is the exact solution for the fracture interface.
The red curve is the approximation solution for the fracture interface. This illustrates that the
approximate solution for the fracture interface is accurate in the conventional incidence angle range
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Rp h1ð Þ
Rp h2ð Þ

..

.

Rp hm�1ð Þ
Rp hmð Þ

2
66666664

3
77777775
¼

ix ST
1�ixvxST

TT h1ð Þþ SNNN h1ð Þ
� �

ix ST
1�ixvxST

TT h2ð Þþ SNNN h2ð Þ
� �

..

.

ix ST
1�ixvxST

TT hm�1ð Þþ SNNN hm�1ð Þ
� �

ix ST
1�ixvxST

TT hmð Þþ SNNN hmð Þ
� �

2
666666666664

3
777777777775

þ

A h1ð Þþ ix ST
1�ixvxST

AT
a h1ð Þþ SNAN

a ðh1Þ
� �

A h2ð Þþ ix ST
1�ixvxST

AT
a h2ð Þþ SNAN

a ðh2Þ
� �

..

.

A hm�1ð Þþ ix ST
1�ixvxST

AT
a hm�1ð Þþ SNAN

a ðhm � 1Þ
� �

A hmð Þþ ix ST
1�ixvxST

AT
a hmð Þþ SNAN

a ðhmÞ
� �

2
666666666664

B h1ð Þþ ix ST
1�ixvxST

BT
b h1ð Þþ SNBN

b h1ð Þ
� �

B h2ð Þþ ix ST
1�ixvxST

BT
b h2ð Þþ SNBN

b h2ð Þ
� �

..

.

B hm�1ð Þþ ix ST
1�ixvxST

BT
b hm�1ð Þþ SNBN

b hm�1ð Þ
� �

B hmð Þþ ix ST
1�ixvxST

BT
b hmð Þþ SNBN

b hmð Þ
� �

. . .. . .. . .. . .

C h1ð Þþ ix ST
1�ixvxST

CT
q h1ð Þþ SNCN

q h1ð Þ
� �

C h2ð Þþ ix ST
1�ixvxST

CT
q h2ð Þþ SNCN

q h2ð Þ
� �

..

.

hm�1ð Þþ ix ST
1�ixvxST

CT
q hm�1ð Þþ SNCN

q hm�1ð Þ
� �

C hmð Þþ ix ST
1�ixvxST

CT
q hmð Þþ SNCN

q hmð Þ
� �

3
777777777775

ra
rb
rq

2
64

3
75;

ð4:20Þ

where m is the number of the offsets in a CDP gather. In Eq. (4.20), the matrix
format declares that the new approximate AVO equation is applied to all the offsets
of the CDP gather simultaneously. Rewrite Eq. (4.20) as a generalized linear
inversion (GLI) problem, i.e.,

Gx ¼ d; ð4:21Þ

where G is a linear operator depending on the geometry. x is the column vector for
the unknown elastic reflectivity parameters ra, rb, and rq. d is the column vector for
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the recorded seismic data. The least squares method is employed to solve the GLI
Eq. (4.21). One obtains

x ¼ ½GTGþ k I��1GTd; ð4:21aÞ

the addition of a matrix k I tends to stabilize the calculation of ½GTG��1 (Lines and
Treitel 1984). Equation (4.21a) can be used to solve all eight unknown elastic
parameters for the fractured media.

4.5 Numerical Applications

4.5.1 Initial Model

A MATLAB code is implemented to do the numerical inversion and the results are
based on the new AVO equations. The numerical model consists of the homoge-
neous isotropic host media with parameters of P-wave velocity
að1;2Þ ¼ 2850; 2800 m/s; shear wave velocity bð1;2Þ ¼ 1650; 1600 m/s; density

q ¼ 2:35 g/cm3; and a horizontal fracture with parameters of ST ¼ 0:127	
10�8 m/Pa and SN ¼ 0:269	 10�9 m/Pa (Fig. 4.10). This model focuses on

Fig. 4.10 AVO inversion model of the horizontally fractured media. A horizontal interface is
embedded in homogeneous isotropic host media whose parameters are að1;2Þ ¼ 2800; 2850 m/s;
bð1;2Þ ¼ 1600; 1650 m/s; the density is q ¼ 2:35 g/cm3; and the fracture parameters are ST ¼
0:127	 10�8 m/Pa and SN ¼ 0:269	 10�9 m/Pa
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VTI-fractured medium with impedance contrast: a horizontal fracture embedded
into the homogeneous host medium with impedance contrast. The input data AVO
inversion for this fractured VTI medium have been synthetically generated by the
forward modeling of the fracture described in Chap. 3.

4.5.2 Data Preconditioning

Deconvolution processing (using CREWES software) is applied to the input seis-
mic data for AVO to remove the wavelet factors and flatten the amplitude spectrum.
So the deconvolved input seismic data would have a uniform amplitude spectrum
and higher resolution to more delicately represent the reflectivity of the fractured
media. Figure 4.11 shows CDP gathers (with NMO applied) sorted from the shots
with and without deconvolution (Fig. 4.11a, b) and their corresponding amplitude
spectra (Fig. 4.11c). In Fig. 4.11c, the black curve represents the spectrum of the

Fig. 4.11 Muted NMO gathers with (b) and without (a) deconvolution and their corresponding
amplitude spectrum analyses for (a) and (b). In c, the black curve presents the data spectrum before
deconvolution, and the red curve displays the data spectrum after deconvolution
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data before deconvolution, and the red curve displays the spectrum of the data after
deconvolution. On the other hand, the input data do not need noise attenuation and
the 5D interpolation processes that are conducted in the processing flow for real
seismic data.

4.5.3 Preparation of Input Data

As we discussed in Chap. 2, a fractured medium is a linear summation of a fracture
and a host medium. Numerically, a similar relation applies to the amplitude of a CDP
gather: Amplitude of the fractured medium with impedance contrast � Amplitude of
the fracture with medium 1 + Amplitude of the host medium with impedance con-
trast. This relationship is well numerically proved as shown in Fig. 4.12 which
illustrates the reflection individually reflected from the fractured medium with
impedance contrast (black), the fracture with uniform host medium 1 (red), and the
host medium with impedance contrast (blue). The green line is a summation of the
reflection of the fracture with uniform host medium 1 and the reflection of the host

Fig. 4.12 CDP (with NMO applied) gathers reflectivity from different reflectors. The black line is
the reflectivity curve for the fractured media with impedance contrast. The red reflectivity curve is
reflected from a fracture. The blue reflectivity curve is generated from the homogeneous isotropic
host media. The green line is made from the red line plus the blue line
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medium with impedance contrast. It is not hard to observe that the summed reflection
(green) approximately equals to the reflection of the fracture mediumwith impedance
contrast (red + blue = green = black). It means that reflections of the pre-stack data
from the fractured mediumwith impedance contrast can be divided into the reflection
of the fracture and reflection of the host medium.

At this numerical application, the synthetic seismogram (shot records) is to be
input seismic data.

Therefore, in order to truthfully invert the elastic reflectivity for the host med-
ium, as a numerical study, the reflections caused by a fracture should be simulated
by modeling a fracture embedding in the isotropic medium and then subtracted it
from the input seismic data. For real data, the fracture parameters ST and SN are
calculated from Thomson’s anisotropic parameters using Eq. (3.39), while
Thomson’s anisotropic parameters can be evaluated from pre-stack seismic data
because the fracture-induced anisotropy creates the fast and slow velocities leading
to an uneven gather after NMO. Subsequently, the fracture reflection coefficients
can be separated and inverted by Eq. (4.16) from the input seismic data.

Also, the parameters of the tangential and normal compliances of the fracture
(ST, SN) can be predicted from seismic data by applying Eq. (4.18) if the host
medium is a uniform isotropic medium.

4.5.4 Results Analysis

Figure 4.13 presents the AVO inversion results for the velocity reflectivity of the
P- and S-wave for the host medium of the fractured medium with impedance
contrast by applying the new approximate AVO Eq. (4.20) and implementing the
GLI algorithm (Sect. 4.4). Furthermore, the input seismic data for AVO already

Fig. 4.13 Velocity reflectivity inversion. Velocity reflectivities of P- and S-waves of the host
media are inverted from the fractured media seismic data by using the new AVO equations
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have the fracture effects subtracted. At the time 0.1656 (s) in Fig. 4.13, the inverted
interface correctly represents the interface of the host medium. Figure 4.14 shows
the AVO inversion results for the velocity reflectivity of the P- and S-wave for the
host medium of the fractured medium with impedance contrast too, but the results
are obtained from the conventional AVO equations that do not consider fractures as
reflectors. The conventional AVO equations invert the total reflectivity of the
fractured medium with impedance contrast which is to be regarded as the velocity
reflectivity for the host medium. With the same color bar, comparison of the two
inversion results shown in Figs. 4.13 and 4.14 indicates that two AVO methods
obtained different inverted velocity reflectivities for the same fractured medium
with impedance contrast. Theoretically, the new approximate AVO equations in
Fig. 4.13 provide more accurate inversion results than the conventional approxi-
mate AVO equations. Figure 4.15 shows the difference of the AVO results for the
two methods. We can see that difference for the S-wave reflectivity is greater than
the difference for the P-wave reflectivity. This observation agrees with the dis-
cussion in Chap. 3 that the S-wave is more sensitive to the fracture than the P-wave.

Figure 4.16 shows the AVO inversion results for the tangential and normal
compliances of the fracture parameters from the fractured medium seismic data by
applying the simplified new AVO Eq. (4.18). The input seismic data are generated
only from the fracture reflector, and thus the host medium is a uniform homoge-
neous isotropic medium without impedance contrast. In other words, it is impos-
sible to invert these fracture parameters by applying the conventional AVO
equations because the conventional AVO equations are estimations for the reflec-
tivity of the elastic properties.

Fig. 4.14 Velocity reflectivity inversion. Velocity reflectivities of the host media are inverted
from the fractured media seismic data using the conventional AVO equations
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4.6 Conclusions

The equations of Zoeppritz (1919) describe the relationships between the incidence
angles and the reflection and transmissions coefficients of PP- and PS-waves which
is the basis of many approximate AVO inversion equations. In exploration, the
AVO inversion method is widely used to estimate rock elastic reflectivity (P-waves,

Fig. 4.15 Difference between P- and S-wave reflectivity inverted from new and conventional
AVO equations

Fig. 4.16 Fracture parameters inversion. The tangential (left) and normal (right) compliances of
the fracture parameters are inverted from the fractured seismic data by applying the simplified new
AVO Eq. (4.18)

4.6 Conclusions 119



S-waves, and density reflectivity) and then to infer more parameters that describe
the reservoir characteristics.

To obtain reliable AVO results, the input seismic data should preserve true
amplitudes because the rock property inversions rely on the amplitude variations.
Thus data preconditioning is performed on the input seismic data to enhance res-
olution by doing deconvolution, to improve the S/N ratio through noise attenuation,
to remove artificial “footprints” by applying the 5D interpolation technique, and to
obtain better images of the PS-data through layer stripping processing as well. Data
preconditioning is commonly performed for real seismic data to remove
non-geological body effects from the data.

The conventional AVO equations are based on the assumption that the welded
contact boundary conditions cause an inversion error in the case of fractured
medium with impedance contrast. It is imperative that a method not only works for
data from media with welded boundary conditions but is also adaptable to data from
media with nonwelded boundary conditions. The equations expressing the rela-
tionships between the incidence angle of a plane wave and the reflection and
transmission coefficients for the PP- and PS-waves have been derived. These
equations are based on nonwelded boundary conditions. They have a pattern similar
to that of the original Zoeppritz equations, but they take the fracture to be non-
welded contact interface. Also, these equations reduce to the original Zoeppritz
equations for the welded media assumption, and also to equations only for
reflection and transmission coefficients of the fracture in a uniform medium with the
nonwelded contact assumption, as well as the equations reflection and transmission
coefficients of the fractured medium with impedance contrast in the nonwelded
media assumption. Thus the new equations can be adapted to describe subsurface
geological bodies with two boundaries, as discussed above.

As we know, a fractured medium equals a fracture plus a host medium.
Numerically, the reflection of fractured medium with impedance contrast approxi-
mately equals the reflection of the fracture plus the reflection of the host medium
with impedance contrast. This has been numerically verified and shown in
Fig. 4.12. Therefore, the reflection of the fracture can be separated and estimated
from seismic data. Furthermore, subtracting the reflection of the fracture from the
reflection of the fractured medium with impedance contrast gives the reflection of
the host medium alone for correctly inverting for the rock properties of the host
medium. New AVO equations have been developed for which the welded part
works for the reflection from impedance contrast interfaces and the nonwelded part
addresses the reflection from the fractures. The new AVO equations can reduce to
other equations for simpler cases with certain assumptions. For example, the new
AVO equations reduce to the conventional AVO equations when fracture param-
eters vanish, i.e., ST ¼ 0, SN ¼ 0; or to a fracture AVO equation when elastic
reflectivity of the host medium is zero (ra ¼ rb ¼ rq ¼ 0). Thus, an appropriate
inversion of the elastic reflectivities of the host medium for the fractured medium
with impedance contrast case should employ the new AVO equations because they
provide a way to separate the fracture effects from the seismic data. In other words,
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the input data for inversion should not be contaminated by the fracture reflection
when we attempt to invert for the elastic properties of the host medium. Similarly,
the parameters of the tangential and normal compliances of the fracture can be
determined from seismic data for a fractured medium by the fracture AVO
Eq. (4.18).

Synthetic data for the fractured medium with impedance contrast have been used
to invert for the rock properties of the host medium by applying both the new and
conventional AVO equations respectively. The results show that the inversion
results of the new AVO equations are theoretically and numerically more accurate
than the results obtained from the conventional AVO equations (Figs. 4.13 and
4.14). The differences between the inversion results for these two AVO methods
have been calculated and are shown in Fig. 4.15. In addition, the differences
between the inversion results as shown in Fig. 4.15 indicate that the shear wave is
more sensitive to the fracture than the P-wave. This observation agrees with the
analysis of the seismograms in the forward modeling of Chap. 3. Therefore, one
may conclude that the new AVO equations should be used to estimate the rock
properties of the host medium in the fractured medium with impedance contrast
case, so that we can correctly delineate a reservoir with fractures.
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Chapter 5
Conclusions and Future Work

Abstract This book is to develop a methodology for enhancing fracture detection
and correctly delineating reservoirs with fractures. From the rock mechanics to
seismic forward modeling then backward AVO inversion, the book deeply explores
the mechanical formation of fractures and fractured media, and presents an
enhanced fracture detection technique that uses a new finite-difference scheme to
accurately model fractures and analyze the fracture response in seismic traveltime
and amplitude, and then develops a method for accurate reservoir delineation by
deriving new AVO fracture equations to correctly estimate the properties of the
fractured medium, the host medium and fractured medium with impedance contrast.

Keywords Stress–strain tensors � Rock deformation � Stiffness compliances �
Fracture formation � Fracture parameters � Backus average theory � Linear slip
theory � Schoenberg–muir theory � Boundary conditions � Finite-difference
(FD) modeling � Reflection/transmission coefficients � Inversion � Algorithm of the
AVO inversion

5.1 Summary

In this book, we designed a methodology for the enhancement of fracture detection
and correct delineation of a reservoir with fractures. The book mainly includes
exploring fracture formation for understanding some key concepts related to the
fractures, seismic forward modeling of a fracture for analyzing fracture responses in
seismic data to enhance fracture detection, and the inversion of data for estimating
all rock properties in order to correctly delineate a reservoir with fractures.

Through studying the key concepts of the related fracture formation, a fractured
medium should undergo three deformation stages: elastic, ductile, and fracture.
A fracture in the medium indicates that the rock strain exceeds the threshold when
the rocks are continuously subjected to stress. In geoscience, a geological fracture
relates to in situ stress and the fracture orientation is parallel to the direction of
maximum compressive stress (Anderson 1951). Thus, most fractures in the
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reservoir are vertical or nearly vertical because the maximum compressive stress is
a compression from the overburden deposits in the subsurface. Geological fractures
are usually described by parameters of fracture length, width, density, opening, and
orientation, while the fracture orientation is a more important parameter than the
fracture opening because the seismic wavelength is greater than the fracture dis-
placement (opening). Hence, seismic fracture modeling allows us to ignore the
fracture shape and microstructure and uses a linear slip interface Schoenberg (1980)
to simulate the fracture.

Seismic data with wider coverage and deeper penetration demonstrate a big
potential for fracture detection, even though petrophysical well logs are regarded as
the most reliable and are usually used to calibrate the seismic data, but the well logs
are too sparse for fracture information. Therefore, in order to improve fracture
detection and correctly delineate reservoirs with fractures, seismic fracture mod-
eling and correct inversion of the properties of the fractured medium are addressed
in this book.

The linear slip fracture model Schoenberg (1980) is based on the effective theory
that mainly averages the multiple thin layers directly to make up the composite
medium. Once the impedance contrast of a thin layer in the composite medium is
much smaller than its host medium and its thickness is much smaller than a
wavelength, this thin layer can be equivalent to a linear slip interface. Therefore,
following the Schoenberg and Muir calculus (1989), a horizontally fractured
medium is composed of a horizontal fracture embedded in an isotropic host med-
ium, a vertically fractured medium is formed by a vertical fracture embedded in an
isotropic host medium, and an orthogonally fractured medium is assembled from a
horizontal fracture and a HTI host medium, or a vertical fracture and a VTI host
medium, or two orthorhombic fractures embedded in an anisotropic host medium.
The fact is that each composed fractured medium has five independent stiffnesses
which indicate that the composed fractured medium possesses the medium prop-
erties of a transversely isotropic medium with a symmetric axis (TI). The boundary
conditions constrain all waves at the boundary. For a fracture, they satisfy the
nonwelded-contact boundary conditions in which the dynamic stresses of waves are
continuous across the boundary, but the kinematic displacements are discontinuous
across the boundary. This is different from welded-contact boundary conditions in
which both stresses and displacements are continuous across the boundary.

Seismic forward modeling is a key connection between the model and the
seismic response, and it can predict results, which enhance interpretation and
inversion. It is clear that the homogenous finite-difference formulations of the
elastic wave equation (Korn and Stöckl 1982; Slawinski 1999; Slawinski and
Krebes 2002a, b) are sufficient for fracture seismic modeling because the boundary
conditions can be imposed explicitly in this approach. We used the homogenous
formulation approach by using additional fictitious nodes to derive new FD
schemes for various fractured media, such as horizontally fractured medium, ver-
tically fractured medium, and orthogonally fractured medium. In the FD grid for the
new scheme, only one grid boundary in a cell is equivalent to a fracture interface
that satisfies the nonwelded-contact boundary conditions, and the other three grid
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boundaries satisfy the welded-contact boundary conditions, whereas Slawinski and
Krebes (2002a, b) allowed all four grid boundaries to be in nonwelded contact, for
simplicity of coding and for flexibility in modeling. The new finite-difference
scheme states that the normal equation of wave motion governs the wave propa-
gation in the host medium, and that the nonwelded boundary conditions constrain
the waves at the fracture interface when the waves propagate in the fractured
medium.

The new finite-difference scheme was used with a Ricker wavelet source to
generate the synthetic seismograms for the different fractured medium by imple-
menting a MATLAB script. The seismograms indicate that the fractures are
detectable and visible because the fractures strongly affect the seismic wave
propagation as they give rise to reflections, even the medium does not have
impedance contrasts. Also, analysis of the PP and PS amplitudes in the seismo-
grams can identify the direction of the fractures: the seismograms of the horizon-
tally fractured medium show that PP-wave amplitudes dominate in the z-component
data, while PS-wave amplitudes are stronger than PP-wave amplitudes in the
x-component of the seismograms. Conversely, in a seismogram for the vertically
fractured medium, PP-wave amplitudes are stronger than PS-wave amplitudes in
the x-component, while PS-wave amplitudes dominate in the z-component of the
seismogram. Thus, the amplitudes of PP- and PS-waves in the x- and z-components
of the seismograms can be used to detect the direction of the fracture. In addition,
the seismograms illustrate that the fractures induce anisotropy. For example, in the
horizontally fractured medium (VTI), the traveltime of a wave propagating parallel
to the horizontal fracture is shorter than the traveltime of a wave propagating
normally to it. In the vertical fractured medium, the wave propagation in the near
fracture plane has a shorter traveltime than the wave propagation in the plane
normal to the fracture plane. In other words, the vertically fractured medium
demonstrates the following feature of HTI anisotropy: the medium properties vary
with azimuth (AVAZ), i.e., the wave propagating in a different plane with a dif-
ferent azimuth has a different traveltime (velocity). Therefore, seismic modeling of
fractures and analysis of the fracture response in the seismic signatures can high-
light the existing fractures and enhance fracture detection.

Using any available results to infer the lithology and fluid properties in the
reservoir is the ultimate goal for oil and gas exploration (Lines and Newrick 2004).
AVO (amplitude variation with offset) inversion attempts to use the amplitudes of
the available surface seismic data to estimate the reflectivity of the density, P-wave
velocity and S-wave velocity of the earth model. Since the 1960s, geophysicists
have discovered that gas deposits are related to amplitude anomalies on stacked
sections, known as “bright spots”, and many geoscientists have been aware that
surface-recorded seismic amplitudes can be related to rock properties by approxi-
mations to the solutions to the Zoeppritz equations (1919). However, those AVO
equations are completely based on an assumption of a perfectly welded-contact
medium regardless of whether or not fractures exist in the medium.
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AVO inversion is based on the amplitude variation over a range of the offsets
from the surface seismic data. Therefore, the seismic data must accurately preserve
the true amplitudes corresponding to true geological factors, rather than contain
useless signs of non-geological bodies and artifacts from acquisition. Thus we
conducted some preconditioning processing, such as deconvolution, noise attenu-
ation, 5D interpolation, and shear-wave layer stripping and showed their effects in
real seismic data.

New reflection and transmission equations with parameters of tangential and
normal fracture compliances (ST and SN) and viscosity parameter (vx) are presented
based on nonwelded-contact boundary conditions. We numerically computed and
presented a graphic which convincingly showed that the reflection from a fractured
medium with impedance contrast can be approximately decomposed into a
fracture-caused reflection and a reflection caused by the host medium, and vice
versa. The equations have a pattern similar to that of the original Zoeppritz equa-
tions, but they take the fracture factor into account. The equations reduce to the
original Zoeppritz equations with the assumption of welded contact, i.e., when the
tangential and normal compliance vanish, and they reduce to the fractured AVO
equations when the medium has no impedance contrast. Thus, the new equations
can describe subsurface geological bodies with both welded and nonwelded-contact
boundary conditions.

We derived some new approximate AVO equations for inversion of the hori-
zontally fractured medium. The new AVO equations consist of the reflection
coefficients of the welded-contact part caused by an impedance contrast at the
interface and the reflection coefficients of the nonwelded-contact part caused by the
fracture. Thus, an accurate inversion of the elastic reflectivities of the host medium
of the fractured medium with impedance contrast should apply the new AVO
equations because they provide a way to separate the fracture effects from the
seismic data. In other words, the input data for AVO inversion should avoid con-
tamination of the fracture reflection when we attempt to invert for the elastic
properties of the host medium. Also, the fracture properties of the fractured medium
for which the fracture is embedded in a uniform isotropic host medium can be
estimated by using the new AVO inversion equations, whereas with conventional
AVO inversion it is hard to achieve this because the conventional AVO inversion is
used to invert the medium reflectivity with the assumption of a welded-contact
medium. Therefore, the new AVO inversion equations can be used to invert for the
properties of either a welded-contact or nonwelded-contact medium, and especially
for media related to fractures.

Finally, we have shown the results of inversion for the properties of the host
medium for the fractured medium with impedance contrast by applying the new
AVO equations, and have also displayed the incorrect inversion results by using the
conventional AVO equations to invert the properties of the host medium. Similarly,
we illustrated an incorrect result for the fracture properties by applying the con-
ventional AVO equations, because the conventional AVO equations only have the
reflectivity corresponding to the host medium, and neglect the fracture effect. Also,
we demonstrated the fracture properties that are estimated from the reduced form of
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the new AVO equations. Therefore, applying the correct AVO inversion equations
allows one to estimate all rock properties and one is able to delineate the reservoir
truthfully.

5.2 Future Work

Throughout this book, it was assumed that the fractures are unfilled. However, the
infilled material strongly affects the boundary conditions and the fracture response
in the seismic data. In future, we will focus on the research of the field cases where
the fluids and some of highly viscous hydrocarbons (e.g., bitumen) are in the infill
fractures.

Uncertainty is ubiquitous in reservoir characterization, therefore, we will con-
sider an uncertain analysis with a different fracture structure to model and study
their response in the seismic data.

The numerical forward modeling and inversion have been presented in this
book. We will study the different models, e.g., an isotopic medium over the sets of
the vertical fracture, and apply real seismic data to analyze the fracture represen-
tations, and invert all of the rock properties related to the fractured medium by using
the new AVO equations.

5.3 Conclusions

In this book, a methodology for understanding the fracture mechanism, enhancing
the fracture detection and for correctly delineating the reservoirs with the fractures
has been developed. It can assist reservoir and mining engineers and geoscientists
to optimize hydrocarbon reservoir, well drilling performance, and safety mining.
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Appendix A
Moduli Calculation for Fractured Media

A.1 Schoenberg and Muir (1989) Calculus Theory

The matrix for the rock physical parameters (the stiffness matrix) can be divided
into four sub-matrices, and the relationship between stress and strain for the
equivalent layered (from to bottom) medium is

rT
rN

� �
¼ CTT CTN

CT
TN CNN

� �
eT
eN

� �
; ðA:1Þ

where rT, rN, eT , and eN are defined in Eqs. (2.22) and (2.23) in Chap. 2, and
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The bracket �h i meansa thickness-weighted average. rN, eT are layering inde-
pendent. The elements of the stiffness can be mapped into an Abelian group G with
5 elements that includes two scalars and three 3 � 3 matrices.

G ¼ g 1ð Þ; g 2ð Þ; g 3ð Þ; g 4ð Þ; g 5ð Þ½ �T: ðA:3Þ

Each element of the group relates to the physical parameters as
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H
q

CNN

CTN

CTT

2
66664

3
77775!

H
Hq

HC�1
NN

HCTNC�1
NN

H CTT � CTNC�1
TTCNT

� �

2
66664

3
77775 ¼

gð1Þ
gð2Þ
gð3Þ
gð4Þ
gð5Þ

2
66664

3
77775; ðA:4Þ

H is total thickness of the medium. q is average density of the medium. Equation
(A.4) can be used for the Abelian group of the host medium.

H
Hq

HC�1
NN

HCTNC�1
NN

H CTT � CTNC�1
TTCNT

� �

2
66664

3
77775 ¼

gHð1Þ
gHð2Þ
gHð3Þ
gHð4Þ
gHð5Þ

2
66664

3
77775: ðA:5aÞ

The host medium is fractured, the physical parameters of the deformed fracture
interface are mapped approximately as

0
0

HCNNf�1

0
0

2
66664

3
77775 ¼

gf ð1Þ
gf ð2Þ
gf ð3Þ
gf ð4Þ
gf ð5Þ

2
66664

3
77775; ðA:5bÞ

Equation (A.5b) shows that all elements of the fracture interface vanish except
for gf ð3Þ which is known as the fracture compliance matrix (Eq. 2.23). The Abelian
group of a fractured medium is equivalent to the Abelian group of the host medium
plus that of the fracture.

gð1Þ
gð2Þ
gð3Þ
gð4Þ
gð5Þ

2
66664

3
77775 ¼

gHð1Þ
gHð2Þ
gHð3Þ
gHð4Þ
gHð5Þ

2
66664

3
77775þ

gf ð1Þ
gf ð2Þ
gf ð3Þ
gf ð4Þ
gf ð5Þ

2
66664

3
77775 ¼

gHð1Þ
gHð2Þ

gH 3ð Þþ gf ð3Þ
gHð4Þ
gHð5Þ

2
66664

3
77775: ðA:6Þ

One may invert the calculated elements of the group in Eq. (A.6) to obtain the
rock physical parameters, as follows:

gð1Þ
gð2Þ=gð1Þ
gð1Þgð3Þ�1

gð4Þgð3Þ�1

g 5ð Þþ gð4Þgð3Þ�1gð4ÞT
h i

=gð1Þ

2
666664

3
777775 ¼

HH

q
CNN

CTN

CTT

2
66664

3
77775: ðA:7Þ
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A.2 Moduli Calculation of the Horizontally Fractured
Medium

The horizontally fractured medium consists of a horizontal fracture interface and an
isotropic homogeneous host medium. The stiffness of the isotropic homogeneous
host medium can be specified as

CTT H ¼
C11H C12H 0
C21H C22H 0
0 0 C66H

2
4

3
5 ¼

kþ 2l k 0
k kþ 2l 0
0 0 l

2
4

3
5; ðA:8aÞ

CNN H ¼
C33H 0 0
0 C44H 0
0 0 C55H

2
4

3
5 ¼

kþ 2l 0 0
0 l 0
0 0 l

2
4

3
5; ðA:8bÞ

CTN H ¼
C13H 0 0
C23H 0 0
0 0 0

2
4

3
5 ¼

k 0 0
k 0 0
0 0 0

2
4

3
5: ðA:8cÞ

The elements of the group for the fractured medium are

g 3ð Þ ¼ H

1
C33H

þ SN 0 0
0 1

C44H
þ ST 0

0 0 1
C55H

þ ST

2
64

3
75; ðA:9aÞ

g 4ð Þ ¼ H

C13H
C33H

0 0
C23H
C33H

0 0
0 0 0

2
4

3
5; ðA:9bÞ

g 5ð Þ ¼ H
C11H � C2

13H
C33H

C12H � C13HC23H
C33b

0

C21H � C13bC23H
C33H

C22H � C2
23H

C33H
0

0 0 C66H

2
64

3
75: ðA:9cÞ

Thus the sub-matrices of the stiffness for the horizontally fractured medium can
be composed as follows:

CNN VTI ¼
C33H

1þ SNC33H
0 0

0 C44H
1þ STC44H

0
0 0 C55H

1þ STC55H

2
64

3
75; ðA:10aÞ
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CTN VTI ¼
C13H

1þ SNC33H
0 0

C23H
1þ SNC33H

0 0
0 0 0

2
4

3
5; ðA:10bÞ

CTT VTI ¼
C11H � SNC2

13H
1þ SNC33H

C12H � SNC13HC23H
1þ SNC33H

0

C21H � SNC13HC23H
1þ SNC33H

C22H � SNC
2
23H

1þSNC33H
0

0 0 C66H

2
664

3
775: ðA:10cÞ

Thus, the physical parameters of a horizontally fractured medium are

CVTI ¼

ðkþ 2lÞ � SNk
2

1þ SNðkþ 2lÞ k� SNk
2

1þ SNðkþ 2lÞ
k

1þ SNðkþ 2lÞ 0 0 0

k� SNk
2

1þ SNðkþ 2lÞ ðkþ 2lÞ � SNk
2

1þ SNðkþ 2lÞ
k

1þ SNðkþ 2lÞ 0 0 0

k
1þ SNðkþ 2lÞ

k
1þ SNðkþ 2lÞ

kþ 2l
1þ SNðkþ 2lÞ 0 0 0

0 0 0 l
1þ STl

0 0

0 0 0 0 l
1þ STl

0

0 0 0 0 0 l

2
666666666664

3
777777777775
:

ðA:11Þ

A.3 Moduli Calculation of the Vertically Fractured
Medium

A rotation of 90� with respect to the y-axis can transform a VTI medium into a HTI
medium by applying the orthogonal transformation matrix

cos h 0 sin h
0 1 0

� sin h 0 cos h

0
@

1
A: ðA:12Þ

The corresponding Bond transformation matrix is

M ¼

cos2 h 0 sin2 h 0 sin 2h 0
0 1 0 0 0 0

sin2 h 0 cos2 h 0 � sin 2h 0
0 0 0 cos h 0 � sin h

� 1
2 sin 2h 0 1

2 sin 2h 0 cos 2h 0
0 0 0 0 0 cos h

2
6666664

3
7777775
: ðA:13Þ

For an HTI medium with a rotated symmetry axis (Winterstein 1990),
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CHTI ¼ M � CVTI �MT: ðA:14Þ

The HTI stiffness can be obtained from the stiffness of a VTI medium with a
symmetric rotationally invariant system. The five independent parameters of VTI
media are rotated as

C11VTI C12VTI C13VTI 0 0 0

C12VTI C11VTI C13VTI 0 0 0

C13VTI C13VTI C33VTI 0 0 0

0 0 0 C55VTI 0 0

0 0 0 0 C55VTI 0

0 0 0 0 0 C66VTI

2
666666664

3
777777775

!

C33 VTI C13 VTI C13 VTI 0 0 0

C13 VTI C11 VTI C12 VTI 0 0 0

C13 VTI C12 VTI C11 VTI 0 0 0

0 0 0 C66 VTI 0 0

0 0 0 0 C55 VTI 0

0 0 0 0 0 C55 VTI

2
666666664

3
777777775
:

ðA:15Þ

Thus the four sub-matrices of the rotated stiffness should be

CTT HTI ¼
C33 VTI C13 VTI 0
C13 VTI C11 VTI 0

0 0 C55 VTI

2
4

3
5; ðA:16aÞ

CNN HTI ¼
C11 VTI 0 0

0 C66VTI 0
0 0 C55VTI

2
4

3
5; ðA:16bÞ

CTN HTI ¼
C13 VTI 0 0
C12 VTI 0 0

0 0 0

2
4

3
5: ðA:16cÞ

Applying the Schoenberg and Muir (1989) calculation, the stiffness of the ver-
tically fractured medium is
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CHTI ¼

kþ 2l
1þ SNðkþ 2lÞ

k
1þ SNðkþ 2lÞ

k
1þ SNðkþ 2lÞ 0 0 0

k
1þ SNðkþ 2lÞ ðkþ 2lÞ � SNk

2

1þ SNðkþ 2lÞ k� SNk
2

1þ SNðkþ 2lÞ 0 0 0

k
1þ SNðkþ 2lÞ k� SNk

2

1þ SNðkþ 2lÞ ðkþ 2lÞ � SNk
2

1þ SNðkþ 2lÞ 0 0 0

0 0 0 l 0 0

0 0 0 0 l
1þ STl

0

0 0 0 0 0 l
1þ STl

2
666666666664

3
777777777775
:

ðA:17Þ

A.4 Moduli Calculation of the Orthogonally Fractured
Medium

An orthorhombic medium has been considered as a realistic model and it mainly
affects the permeability of the reservoir characterizations in geoscience. This
medium is assumed to be a combination of the VTI medium and the HTI medium
(Carcione 2012).

Take Eqs. (A.8a–A.8c) and (A.17) to implement the Schoenberg and Muir
(1989) calculation:

g 3ð Þ ¼ H=2

C33 VTI þC11 VTI

C33 VTIC11 VTI
0 0

0 C55 VTI þC66 VTI

C55 VTIC66 VTI
0

0 0 2
C55 VTI

2
664

3
775; ðA:18aÞ

g 4ð Þ ¼ H=2

C11 VTIC13 VTI þC33 VTIC13 VTI

C33 VTIC11 VTI
0 0

C11 VTIC13 VTI þC33 VTIC12 VTI

C33 VTIC11 VTI
0 0

0 0 0

2
64

3
75; ðA:18bÞ

g 5ð Þ ¼ H=2; ðA:18cÞ

C11 VTI þC33 VTI � C11 VTIC2
13 VTI þC33 VTIC2

13 VTI

C33C11
C12 VTI þC13 VTI � C11 VTIC2

13 VTI þC33 VTIC12 VTIC13 VTI

C33 VTIC11 VTI
0

C12 VTI þC13 VTI � C11 VTIC2
13 VTI þC13 VTIC33 VTIC12 VTI

C33 VTIC11 VTI
2C11 VTI � C11 VTIC2

13 VTI þC33 VTIC2
12 VTI

C33 VTIC11 VTI
0

0 0 C55 VTI þC66 VTI

C55 VTIC66 VTI

2
66664

3
77775

ðA:18dÞ

Invert the orthorhombic group elements in Eq. (A.18a–A.18d) into the physical
parameters by applying Eq. (A.7)
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CTT ORTH ¼
C11 VTI þC33 VTI

2
C12 VTI þC13 VTI

2 0
C12 VTI þC13 VTI

2 C11 VTI � C12 VTI�C13 VTIð Þ2
2ðC11 VTI þC33 VTIÞ 0

0 0 C55 VTI þC66 VTI

2

2
664

3
775;

ðA:19aÞ

CTN ORTH ¼
C13 VTI 0 0

C11 VTIC13 VTI þC12 VTIC33 VTI

C11 VTI þC13 VTI
0 0

0 0 0

2
4

3
5; ðA:19bÞ

CNN ORTH ¼
2C33 VTIC11 VTI

C33 VTI þC11 VTI
0 0

0 2C55 VTIC66 VTI

C55 VTI þC66 VTI
0

0 0 C55 VTI

2
64

3
75; ðA:18cÞ

Then the stiffness of the orthogonally fracture media are

CORTH ¼

C11 VTI þC33 VTI

2
C12 VTI þC13 VTI

2 C13 VTI

C12 VTI þC13 VTI

2 C11 VTI � C12 VTI�C13 VTIð Þ2
2ðC11 þC33Þ

C11 VTIC13 VTI þC12 VTIC33 VTI

C11 VTI þC13 VTI

C13 VTI
C11 VTIC13 VTI þC12 VTIC33 VTI

C11 VTI þC13 VTI

2C33 VTIC11 VTI

C33 VTI þC11 VTI

0 0 0

0 0 0

0 0 0

2
6666666666666

0 0 0

0 0 0

0 0 0
2C55 VTIðC11 VTI�C12 VTIÞ
2C55 VTI þC11 VTI�C12 VTI

0 0

0 C55 VTI 0

0 0 1
4 2C55 VTI þC11 VTIð Þ

3
77777777777
;

ðA:20Þ

where C66 ¼ 1
2 ðC11 � C12Þ.
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Appendix B
Numerical Operators

B.1 Average Operator

Define an operator A at point x as follows (see Fig. B.1)

Af xð Þ ¼ 1
2

f xþ h
2

� 	
þ f x� h

2

� 	� �
: ðB:1Þ

A is called the average operator.

B.2 Difference Operator

The finite difference operators can be defined in terms of forward, central, and
backward operators, and their consecutive expressions in the first order are

@f
@x






ðxþ h

2Þ
¼ f xþ hð Þ � f ðxÞ

h
; ðB:2aÞ

@f
@x






x
¼ f xþ h=2ð Þ � f x� h=2ð Þ

h
; ðB:2bÞ

@f
@x






ðx�h

2Þ
¼ f xð Þ � f ðx� hÞ

h
: ðB:2cÞ

Note that Eq. (B.2a–B.2c) has different center points, i.e., xþ 1
2 h, x, and x� 1

2 h.
Consider a second-order derivative with the center point at x. We have

@2f
@x2






x

¼
@
@x f xþ h=2ð Þ � @

@x f x� h=2ð Þ
h

¼ f xþ hð Þ � 2f xð Þþ f x� hð Þ
h2

; ðB:3Þ

Equation (B.3) is the second-order finite-difference operator.
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B.3 Accuracy of Operator

In an application of the finite-difference method to the PDE wave equation in
seismology one needs to be aware of the accuracy and numerical stability issues to
avoid numerical grid dispersion and oscillation problems. The numerical grid dis-
persion is caused by truncation of higher order terms in Taylor series expansion. So
the PDE solution is inaccurate for the derivative, which leads propagation velocities
of seismic waves to be frequency dependent.

Expanding a function f in a Taylor series, one obtains f xþ hð Þ as

f xþ hð Þ ¼ f xð Þþ h
@f
@x






x
þ h2

2!
@2f
@x2

� 	




x
þ h3

3!
@3f
@x3

� 	




x
þ � � � : ðB:4aÞ

The forward difference operator is

f xþ hð Þ � f ðxÞ
h

¼ @f
@x






x
þ errþ ; ðB:4bÞ

errþ ¼ h
2!

@2f
@x

� 	




x
þ h2

3!
@3f
@x3

� 	




x
� OðhÞ: ðB:4cÞ

Expanding a function f in a Taylor series, one obtains f x� hð Þ as

f x� hð Þ ¼ f xð Þþ ð�hÞ@f
@x






x

þ ð�hÞ2
2!

@2f
@x2

� 	




x

þ ð�hÞ3
3!

@3f
@x3

� 	




x

þ � � � : ðB:5aÞ

The backward difference operator is

f xð Þ � f ðx� hÞ
h

¼ @f
@x






x

þ err�; ðB:5bÞ

err� ¼ ð�hÞ
2!

@2f
@x2

� 	




x

þ ð�hÞ2
3!

@3f
@x3

� 	




x

þ � � � � OðhÞ: ðB:5cÞ

We can obtain f xþ hð Þ � f x� hð Þ by subtracting Eq. (B.4a) from Eq. (B.5a) as

Fig. B.1 Delineation steps for numerical operator
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f xþ hð Þ � f x� hð Þ ¼ 2h
@f
@x






x

þ 2
h3

3!
@3f
@x3

� 	




x

þ � � � : ðB:6Þ

Hence, the central difference operator to the first order derivative is

f xþ hð Þ � f ðx� hÞ
2h

¼ @f
@x






x

þ err; ðB:7aÞ

err ¼ h2

3!
@3f
@x3

� 	




x

þ � � � � Oðh2Þ: ðB:7bÞ

We can obtain f xþ hð Þþ f x� hð Þ by summing Eqs. (C.4a) and (C.5)

f xþ hð Þþ f x� hð Þ ¼ 2f xð Þþ 2
h2

2!
@2f
@x2

� 	




x

þ � � � : ðB:8aÞ

So the central difference operator for the second derivative is

f xþ hð Þ � 2f xð Þþ f ðx� hÞ
h2

¼ @2f
@x2






x

þ err; ðB:8bÞ

err ¼ h2

4!
@4f
@x4

� 	




x

þ � � � � Oðh2Þ: ðB:8cÞ

err, errþ and err� are the so-called truncation errors. The lowest power of h in
the truncation error is the order of accuracy of the finite-difference approximation.
Thus, in the first order derivative, the forward and backward difference formulas
had an error of the first order O(h), while the central difference formula yields an
error of the second-order O(h2).
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Appendix C
PP Reflection Coefficients
for the Fractured Medium

C.1 Waves at a Nonwelded Contact Fracture Interface

Consider fractured media in which the incident P-wave, and reflected PP- and PS-
waves are in the upper medium, and the transmission waves PP and PS are in the
lower medium. The fractured medium is composed of a fracture and an anisotropic
host medium. The displacement u and the stresses r of a wave are

u ¼ Ae�ixðt�s�xÞd; ðC:1Þ

rxz ¼ l
@ux
@z

þ @uz
@x

� 	
¼ ixAe�ixðt�s�xÞl sxdz þ szdx½ �; ðC:2Þ

rzz ¼ k
@ux
@x

þðkþ 2lÞ @uz
@z

� 	
¼ ixAe�ixðt�s�xÞ ksxdx þðkþ 2lÞszdz½ �; ðC:3Þ

where the amplitude A, slowness s, and polarization vector d are different for each
wave. The sign of the polarization vector d follows the conventional notation that
the component in the x-axis is positive dx [ 0.

Table C.1 trigonometrically provides that the plane wave of amplitude, slow-
ness, and polarization expressions in x, z-component should be obtained.

The boundary conditions of viscous fracture interface are that rðxzÞ and rðzzÞ
are continuous across the interface, while uðxÞ, uðzÞ are discontinuous across the
interface. The displacement difference are linearly proportional to the stresses.
Thus, the displacements u of all plane wave are constrained by the nonwelded
boundary conditions as
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P8
1lh1 sin h1 ¼ �P0

1lh1 sin h1 � S01m#1 cos#1

þ P82 lh2 sin h2 � ixST
1� ixvxST

xxð Þ2cos h2
� 	

þ S82 m#2 cos#2 � ixST
1� ixvxST

b2ðrrÞ2
� 	

;

ðC:4aÞ

P8
1mh1 cos h1 ¼ P0

1mh1 cos h1 � S01l#1 sin#1

þP8
2 mh2 cos h2 � ixSNa2 yyð Þ2
� �

þ S82ð�l#2 sin#2 þ ixSNðkkÞ2 cos#2Þ;
ðC:4bÞ

The stresses r of the nonwelded boundary condition are

P8
1ðxxÞ1 cos h1 ¼ P0

1ðxxÞ1 cos h1 þ S01ðrrÞ1b1 þP8
2ðxxÞ2 cos h2 þ S82ðrrÞ2b2; ðC:4cÞ

P8
1ðyyÞ1a1 ¼ �P0

1ðyyÞ1a1 þ S01ðkkÞ1 cos#1 þP8
2ðyyÞ2a2 � S82ðkkÞ2 cos#2; ðC:4dÞ

where ðxxÞN, ðrrÞN, ðyyÞN, and ðkkÞN are defined in Eq. (4.10e–h). n ¼ 1; 2.
Equations (C.4a–C.4d) express the relationships between all waves for the fractured
medium that is composed of a fracture and an anisotropic host medium.

C.2 Exact Solution of PP Reflection Coefficients
for Fractured Medium

If we let lhn ¼ mhn ¼ l#n ¼ m#n ¼ 1, then the anisotropic host mediumchanges to
an isotropic medium. Equations (C.4a–C.4d) can be rearranged into Eq. (4.9).
According to Cramer’s rule,

Table C.1 Amplitude, slowness, and polarization for plane wave at the VTI interface

Waves Amplitude sx sz dx dz
P8 P8

1
sin h1
a1

cos h1
a1

lh1 sin h1 mh1 cos h1

P8P0 P0
1

sin h1
a1

� cos h1
a1

lh1 sin h1 �mh1 cos h1

P8S0 S01 sin#1
b1

� cos#1
b1

m#1 cos#1 l#1 sin#1

P‘P‘ P‘
2

sin h2
a2

cos h2
a2

lh2 sin h2 mh2 cos h2

P‘S‘ S‘2
sin#2
b2

cos#2
b2

m#2 cos#2 �l#2 sin#2
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P0
1P

0
1 ¼ R hð Þ ¼ det Mpp

� �
det Mð Þ

¼ bqa1 � cqa2ð ÞF � aþ dqa1qb2
� �

HP2 þ q2qa2L1 � q1qa1K2ð Þ ixST
1�ixvxST

þ q2qb2L1 þ q1qb1K2
� �

ixSN þ L1K2x2 ST
1�ixvxST

SN

EFþGHP2
� �� q2qa2K1þ q1qa1K2ð Þ ixST

1�ixvxST
� q2qb2L1þ q1qb1K2
� �

ixSN � K1K2x2 ST
1�ixvxST

SN

¼ N
D

¼ Nw þNnon w

Dw þDnon w
¼ Nw þNT

non w
ixST

1�ixvxST
þNN

non wixSN þNTN
non wx

2 ST
1�ixvxST

SN

Dw þDT
non w

ixST
1�ixvxST

þDN
non wixSN þDTN

non wx
2 ST
1�ixvxST

SN

¼ Nw

Dw
þ DT

non wRw þNT
non w

D
ixST

1� ixvxST
þ DN

non wRw þNN
non w

D
ixSN þ DTN

non wRw þNTN
non w

D
x2 ST

1� ixvxST
SN;

ðC:5Þ

where a, b, c, d, qan, qbn, E, F, G, H, L and K have definitions similar to those
given by Aki and Richards (1980), or Chaisri and Krebes (2000).

a ¼ x2 � x1; b ¼ r2 þ x1P; c ¼ r1 þ x2P;

d ¼ 2 q2b
2
2 � q1b

2
1

� � ¼ 1
P

x2 � x1ð Þ; ðC:6aÞ

qan ¼ cos hN
aN

; qbn ¼ cos#N

bN
; ðC:6bÞ

E ¼ bqa1 þ cqa2ð Þ; F ¼ bqb1 þ cqb2
� �

; G ¼ a� dqa1qb2
� �

;
H ¼ a� dqa2qb1

� �
;

ðC:7aÞ

KN ¼ r2N þ x2N
� �

qanqbn; LN ¼ r2N � x2N
� �

qanqbn: ðC:7bÞ

C.3 Approximate PP AVO Equation for Fractured
Medium

Note that the exact solution for the PP reflection coefficients in Eq. (C.5) includes a
perfect welded contact part and imperfectly welded contact part. For the imperfectly
welded contact part, Rw

Dw
� 1, and if we only take the first order in the tangential

term ST, and the normal term SN, Eq. (C.5) is approximated as (Chaisri 2002)

RðhÞ � Nw

Dw
þ 1

Dw
q2qa2L1 � q1qa1K2ð Þ ixST

1� ixvxST
þ q2qb2L1 þ q1qa1K2
� �

ixSN

� Nw

Dw
þ NT

non w

Dw

ixST
1� ixvxST

þ NN
non w

Dw
ixSN � Rw þ ixST

1� ixvxST
Rnon wT þ ixSNRN

non w:

ðC:8Þ

Extend and rearrange the terms of Nw, Dw in the orders of the ray parameter P,
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Nw ¼ q2qa1 � q1qa2ð Þ q2qb1 þ q1qb2
� �

þ �4 Dlð Þ q2qa1qb1 þ q1qa2qb2
� �� Dq2 þ 4 Dlð Þ2qa1qa2qb1qb2

h i
P2

þ 4 Dlð Þ2 qa1qb1 � qa2qb2
� �h i

P4 � 4 Dlð Þ2P6

¼ Ew þFwP
2 þGwP

4 � HwP
6;

ðC:9aÞ

Dw ¼ q2qa1 þ q1qa2ð Þ q2qb1 þ q1qb2
� �

þ �4 Dlð Þ q2qa1qb1 � q1qa2qb2
� �þDq2 þ 4 Dlð Þ2qa1qa2qb1qb2

h i
P2

þ 4 Dlð Þ2 qa1qb1 þ qa2qb2
� �h i

P4 þ 4 Dlð Þ2P6

¼ Aw þBwP
2 þCwP

4 þ IwP
6:

ðC:9bÞ

So, the reflection coefficients of the perfectly welded part in Eq. (C.8) can be
approximated to second order in P as

Nw

Dw
� Ew

Aw
þ Fw

Aw
� BwEw

A2
w

� 	
P2: ðC:10Þ

Apply the same approximation as Aki and Richards (1980) in which are
Dh ¼ h2 � h1 ¼ tan h Da

a ; D# ¼ #2 � #1 ¼ tan# Db
b : a ¼ a2 þ a1

2 ; Da ¼ a2 � a1: b ¼
b2 þ b1

2 ; Db ¼ b2 � b1: q ¼ q2 þ q1
2 ; Dq ¼ q2 � q1: to Eq. (C.10). Then

Ew

Aw
¼ q2qa1 � q1qa2ð Þ

q2qa1 þ q1qa2ð Þ ¼ Rf

¼
qþ Dq

2


 �
aþ Da

2

� �
cos i� Di

2

� �� q� Dq
2


 �
a� Da

2

� �
cos iþ Di

2

� �
qþ Dq

2


 �
aþ Da

2

� �
cos i� Di

2

� �þ q� Dq
2


 �
a� Da

2

� �
cos iþ Di

2

� �

¼
Dq
q þ Da

a þ 2þ 1
2
Dq
q

Da
a


 �
tan i tan Di

2

2þ 1
2
Dq
q

Da
a þ Dq

q þ Da
a


 �
tan i tan Di

2

¼
Dq
q þ Da

a þ 2þ 1
2
Dq
q

Da
a


 �
tan i tan Di

2

2þ 1
2
Dq
q

Da
a þ Dq

q þ Da
a


 �
tan i tan Di

2

� 1
2

Dq
q

þ Da
a

sec h2
� 	

;

ðC:11aÞ
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Fw

Aw
� BwEw

A2
w

� � 1
Aw

4ðDlÞ q2qa1qb1 þ q1qa2qb2
� ��

�4ðDlÞRf q2qa1qb1 � q1qa2qb2
� �� 4ðDlÞ2qa1qa2qb1qb2

i

� �2
ðDlÞ
q

þ 1� Rf
� � ðDlÞ

q

� 	2

qaqb;

ðC:11bÞ

in which, ðDlÞ ¼ q2b
2
2 � q1b

2
1, qa ¼ qa1 þ qa2

2 , qb ¼ qb1 þ qb2
2 , Dqa ¼ qa2 � qa1,

Dqb ¼ qb2 � qb1. Then,

Rw � Rf � ð2 ðDlÞ
q

� 1� Rfð Þ ðDlÞ
q

Þ2qaqb
� 	

P2

� Rf � 2 2bDbþ Dq
q

b2
� 	

sin2 h
a2

� 1
2 cos2 h

ra � 4
b
a

� 	2

sin2 hrb þ 1
2

1� 4
b
a

� 	2

sin2 h

 !
rq:

ðC:12Þ

Similarly, the tangential term ST of the imperfectly welded part is

NT
non w

Dw
¼ ET

non w

Aw
þ FT

non w

Aw
� BwET

non w

A2
w

� 	
P2; ðC:13aÞ

where

ET
nonw

Aw
¼ q21q2qa2 � q1q

2
2qa1

q2qa1 þ q1qa2ð Þ q2qb1 þ q1qb2
� �

� �Rf
q1q2b1b2

q2b2 cos j1 þ q1b1 cos j2

� �Rf
qb

½ 1þ Dq
2q þ Db

2b


 �
1þ 1

2
Db
b tan2 jÞ�


 �
þ 1� Dq

2q � Db
2b


 �
1� 1

2
Db
b tan2 jÞ�


 �
�ðcos jcos Dj2 Þ

� � 1
2
Rfqb sec# ¼ � 1

4
qb sec #

Dq
q

� 1
4
qb sec# sec h2

Da
a

;

ðC:13bÞ

FT
nonw

Aw
� 4q1q2 l2qa1 � l1qa2ð Þ

Aw
� 4q1qa1qa2 l22qb2 þ l21qb1

� �
Aw

� 	

� l
qb

Dl
l

� Dqa
qa

� 	
þ 2

1
q
l2qa 1þ 1

4
Dl
l

� 	2

þ 1
2

Dqb
qb

� 	
Dl
l

� 	" #

� l
qb

2
Db
b

þ Dq
q

þ Da
a

� 	
P2 þ 2

1
q
l2qaP

2;

ðC:13cÞ
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Derivation of Eq. (C.13a, C.13b) used the following approximations:

cos
D#
2

� 1; ðcos#Þ ¼ 1� 1
2

b
a

� 	2

sin h2; ðC:14aÞ

ðcos#Þ ¼ 1� 1
2

b
a

� 	2

sin h2; ðC:14bÞ

Dqb
qb

� �Db
b

� Db
b

b1b2P
2;

Dqa
qa

� �Da
a

� Da
a

a1a2P
2: ðC:14cÞ

Thus, the tangential term ST in the nonwelded part is finally approximated as

NT
nonw

Dw
� 2

1
q
l2qaP

2 þ l
qb

P2 � 1
4
qb sec#

� 	
Dq
q

þ l
qb

P2 � 1
4
qb sec # sec h2

� 	
Da
a

þ 2
l
qb

P2 Db
b

:

ðC:15Þ

Similarly, the normal term in the nonwelded part can be rearranged as

NN
nonw

Dw
� EN

nonw þ FNnonwP
2

Dw

 !

� EN
non w

Aw
þ FNnon w

Aw
� BwEN

non w

A2
w

� 	
P2;

ðC:16aÞ

EN
non w

Aw
¼ q21q2qb2 þ q1q

2
2qb1

q2qa1 þ q1qa2ð Þ q2qb1 þ q1qb2
� � � 1

2
qa sec h; ðC:16bÞ

FNnonw
Aw

P2 ¼ �4q1q
2
2b

2
2qb1P

2 1� b22qa2qb2
� �� 4q21q2b

2
1qb2P

2 1� b21qa1qb1
� �

q2qa1 þ q1qa2ð Þ q2qb1 þ q1qb2
� � P2

� �2l
qa

P2 þ 2l2
qb
q
P2 Dq

q
� l2

qb
q

1þ sin h2
� �

P2 Da
a

þ 4l2
qb
q
P2 Db

b
:

ðC:16cÞ

Thus,

NN
nonw

Dw
� 1

2
qa sec h� 2l

qa
P2 þ 2l2

qb
q
P2

� 	
Dq
q

� l2
qb
q
ð1þ sin h2ÞP2

� 	
Da
a

þ 4l2
qb
q
P2

� 	
Db
b

:

ðC:17Þ
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Therefore, the approximate PP reflection coefficient for the fractured medium
finally is given by

R hð Þ � Rw þ ixST
1� ixvxST

RT
nonw þ ixSNRN

nonw

� 2
1
q
l2qaP2

� 	
ixST

1� ixvxST
þ 1

2
qa sec h� 2l

qa
P2

� 	
ixSN

þ 1
2

1� 4
b
a

� 	2

sin2 h

 !
þ l

qb
P2 � 1

4
qb sec#

� 	
ixST

1� ixvxST
þ 2l2

qb
q
P2

� 	
ixSN

( )
Dq
q

þ 1
2 cos2 h

þ l
qb

P2 � 1
4
qb sec# sec h2

� 	
ixST

1� ixvxST
� l2

qb
q
ð1þ sin h2ÞP2

� 	
ixSN

� �
Da
a

þ �4
b
a

� 	2

sin2 hþ 2
l
qb

P2
� 	

ixST
1� ixvxST

þ 4l2
qb
q
P2

� 	
ixSN

( )
Db
b

:

ðC:18Þ
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