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Foreword

Topological graph theory began in the middle of the eighteenth cen-
tury, with Euler's polyhedral identity; it took heightened interest in
the latter part of the nineteenth century, with Heawood's Map-Color
Conjecture; and it emerged as a field of study in its own right with the
Complete Graph Theorem of Ringel and Youngs in 1968 (completing
the proof that Heawood had started). Ringel's books Farbungsprobleme
auf Flachen und Graphen (VEB Deutscher Verlag der Wissenschaften,
Berlin, 1959) and Map Color Theorem (Springer-Verlag, Berlin, 1974)
are, as the titles suggest, devoted to the interplay between the con-
jecture and the theorem mentioned above. The first book devoted to
topological graph theory as an independent field of study is my Graphs,
Groups and Surfaces (North-Holland, Amsterdam, 1973; Revised Edi-
tion, 1984). Related books include Gross and Tucker's Topological
Graph Theory (Wiley Interscience, New York, 1987), Bonnington and
Little's The Foundations of Topological Graph Theory (Springer, New
York, 1995), and Mohar and Thomassen's Graphs on Surfaces [MT1].
See also Archdeacon's "Topological Graph Theory" [A12], a survey
article with 271 references.

Whereas the two editions of Graphs, Groups and Surfaces intro-
duced topological graph theory in general, with a particular emphasis
on various interactions among the three structures of the title (see
Figure 0-1) as well as models of hypergraphs. block designs, and com-
positions of English church-bell music, the present book will also use
suitable imbeddings of graphs of groups on surfaces to model finite
fields and finite geometries. The material on change ringing is greatly
updated, and introductions to emunerative and random topological
graph theory have been added. The unifying concept is that of a Cay-
ley map: the lift, as a branched covering space, of an index-one voltage
graph imbedding, for a fixed group and generating set. (The latter con-
sists of one vertex, a directed loop for each generator, and a particular
imbedding of the loop digraph. The covering graph is then a Cayley
color graph.)

I have attempted to make all this material, with its fascinating inter-
connections, readily accessible to a beginning graduate (or an advanced
undergraduate) student (introductory knowledge of both group the-
ory and topology would be helpful), while at the same time providing
the research mathematician with a useful reference book in topological
graph theory. The latter aspect will not be comprehensive, however, as
the field is not too broad to allow this reasonably. The focus will be on
beautiful connections, both elementary and deep, within mathematics
that can best be described by the intuitively pleasing device of imbed-
ding graphs of groups on surfaces. Several peripheral (but significant)
results are stated without proof. An effort has been made to provide
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those proofs of theorems which are most indicative of the charm and
beauty of the subject and which illustrate the techniques employed.
Proofs missing in the text can be supplied by the reader, as part of the
problem sets (of the total of 297 problems, 30 have been designated
as "difficult" (*) and 9 as "unsolved" (**)), or can be found in the
references.

A bibliography is provided, for future reading; items h and n, f and
i, k respectively are especially suitable for more extensive treatments
of the theories of graphs, of groups, and of surfaces, which are seen
interacting in this text.

I thank everyone who read either edition of Graphs, Groups and
Surfaces, particularly all those who sent me comments and corrections.
I especially thank Margo Chapman for preparing the manuscript, and
Ramon Figueroa-Centeno for producing the figures and greatly assist-
ing with the preparation, of the present volume. I also thank Jim Laser,
Michelle Schultz, Jay Treiman, and Mary Van Popering for their con-
siderable help. Finally I thank Western Michigan University for fund-
ing the sabbatical year during which this book was written and the
Mathematical Institute and Wolfson College, University of Oxford, for
hosting my sabbatical visit.

A.T.W. Kalamazoo January 2001
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CHAPTER 1

HISTORICAL SETTING

In coloring the regions of a map, one must take care to color differ-
ently any two countries sharing a common boundary line, so that the
two countries can be distinguished. One would think that an economy-
minded map-maker would wish to minimize the number of colors to
be used for a given map, although there appears to be no historical
evidence of any such effort. Nevertheless a conjecture was made, about
one and one half centuries ago, to the effect that four colors would al-
ways suffice for a map drawn on the sphere, the regions of which were
all connected. The first reported mention of this problem (see [BCL1]
and [Ol]) was by Francis Guthrie, through his brother Frederick and
Augustus de Morgan, in 1852. The first written references were by
Cayley, in 1878 and 1879. Incorrect "proofs" of the Four Color Con-
jecture were published soon after by Kempe and Tait. The error in
Kempe's "proof was found by Heawood [H4] in 1890; this error has
reappeared in various guises in subsequent years. Ore and Stemple
[OSl] showed that any counterexample to the conjecture must involve
a map of at least 72 regions. The conjecture continued to provide one
of the most famous unsolved problems in mathematics, until Appel and
Haken affirmed it in 1976. [AH1],

It is an astonishing fact that several related, seemingly much more
difficult, map-coloring problems were completely solved prior to the
four color problem. Chief among these is the Heawood Map-coloring
Conjecture, which gives the chromatic number for every closed 2-man-
ifold other than the sphere; we state the orientable case:

where k is the genus of the closed orientable 2-manifold Sk- Heawood
showed in 1870 [H4] that x(Sk) < f ( k ) , and in 1891 Heffter [H5] showed
the reverse inequality for a possibly infinite set of natural numbers fc;
almost eight decades passed before it was shown that x(Sk) >/f(k),
for all k > 0. In 1965 this problem was given the place of honor on
the dust jacket for Tietze's Famous Problems of Mathematics [T7]. An
outline of the major portion of the solution now follows.

The dual of a map drawn on Sk is a pseudograph imbedded in Sk,
and it can be shown (see Section 8-4) that x(Sk) > /f(k), for k > 0,

i
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provided the complete graph Kn has genus given by

Heawood established (*) for n = 7 in 1890, and Heffter for 8 </ n </ 12
in 1891; Ringel handled n = 13 in 1952. The first major breakthrough
occurred in 1954, when Ringel showed (*) for n = 5 (mod 12). During
1961 - 1965, Ringel treated the residue cases 7,10, and 3 (mod 12),
while independently Gustin settled the cases 3, 4, and 7. Gustin's
method involved the powerful and beautiful idea of quotient graph and
quotient manifold, and relies upon the fact that Kn can be regarded as
a Cayley color graph for a group presentation; thus graph theory, group
theory, and surface topology combined to solve this famous problem of
mathematics.

In 1965, Terry, Welch, and Youngs announced their solution to case
0. Gustin, Ringel, and Youngs finished the remaining residue cases
(mod 12), except for the isolated values n — 18,20, and 23; their work
was announced in 1968 [KYI]. In 1969, Jean Mayer (a Professor of
French Literature) [M4] eliminated the last three obstinate graphs by
ad hoc techniques.

Much of the work of Ringel, Terry, Welch, and Youngs was made
possible by Gustin's theory of quotient graphs and quotient manifolds;
this theory was developed and modified by Youngs, who also introduced
the theory of vortices [Y3]. The theory is considerably more general
than was needed to prove the Heawood Map-coloring Theorem, and
was unified and developed in more generality by Jacques [J3], in 1969.
Jacques' results are accessible in Chapter 9 of [W15], together with
many applications to other imbedding problems in graph theory. This
was a focal point of that text, and it illustrates vividly the fruitful
interaction among graphs, groups and surfaces.

We continue this development through the theory of voltage graphs
(introduced by Gross [G4] and by Gross and Alpert ([GA1], [GA2]))
and by extending to nonorientable imbeddings. We consider the re-
lated structures of block designs and hypergraph imbeddings. In map
automorphism groups we study groups acting on graphs of groups on
surfaces. Cayley maps dominate our considerations. They allow con-
crete models of finite geometries and finite fields, as well as for finite
groups, and we study them also in contexts of enumerative and of
topological graph theory. Finally, in studying change ringing, we use
graphs of groups on surfaces to compose pieces of music for English
church bells.

The conjunctions of graph theory, group theory, and surface topol-
ogy described above are foreshadowed, in this text, by several pairwise
interactions among these three disciplines. The Heawood Map-coloring
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Theorem is proved by finding, for each surface, a graph of largest chro-
matic number that can be drawn on that surface. Equivalently (as it
turns out) we find, for each complete graph, the surface of smallest
genus in which it can be drawn. The extension of this latter problem
to arbitrary graphs is natural; the solution is particularly elegant for
graphs which are the Cayley color graphs of a group. We are led in
turn to the problem of finding, for a given group, a surface of minimum
genus which represents the group in some way.

Dyck [D7] (see also Burnside [B21], Chapters 18 and 19) considered
maps, on surfaces, that are transformed into themselves in accordance
with the fixed group T, acting transitively on the regions of the map.
Any such map gives an upper bound for the parameter G(r") discussed in
Chapter 7 of this text, as a "dual" formed in terms of Burnside's white
regions gives a Cayley color graph for F. (Cayley [C4] defined his color
graphs as complete symmetric digraphs, corresponding to the choice
T less the identity element as a generating set for T; it is sensible to
extend his definition to any generating set for the group in question.)
Brahana [B18, B19] studied groups represented by regular maps on
surfaces; these maps correspond to presentations on two generators,
one of which is of order two. In this context the group acts transitively
on the edges of the map, and again an upper bound for G(T) is obtained.
In Chapter 7, we regard T as acting transitively on the vertices of the
map induced by imbedding a Cayley color graph CA(r) for r in a
surface; in Chapter 4, we show that the automorphism group of CA(r)
is isomorphic to r, independent of the generating set A selected for r,
so that in this sense CA(T) provides a "picture" of T. But more: many
properties of T, such as commutivity, normality of certain subgroups,
the entire multiplication table, can be "seen" from the picture provided
by CA( t ) . Thus it is natural to seek the simplest surface on which to
draw this picture; this is given by the parameter G( t ) .

This point of view may give a surface of lower genus for a given
group than the other two approaches listed above; for example, the
group T = Z2 x Z4 is toroidal for Dyck (or Burnside) and for Brahana,
yet G(Z2 x Z4) = 0.

There is one correspondence depicted in Figure 0-1 which we dis-
cuss only briefly in this text: to every surface Sk there corresponds a
unique group, ll(Sk) , called the fundamental group of the surface; the
groups n ( S k ) have been completely determined - they are given by 2k
generators a1, b1, . . . ,ak,bk and the single defining relation

(see, for example, [Sll].) Each of the other five correspondences illus-
trated in Figure 0-1 (where the inner triangle commutes, for proper
choice of A) is germane, as outlined above, to the conjunction of graph
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theory, group theory, and surface topology described in this introduc-
tion and which we now begin to develop.



CHAPTER 2

A BRIEF INTRODUCTION TO GRAPH
THEORY

In this chapter we introduce basic terminology from the theory of
graphs that will be used in this text. We will give several binary op-
erations on graphs; these will enable us to construct more complicated
graphs, and hence to build up our store of examples of frequently en-
countered graphs.

We emphasize that the material introduced here is primarily for
the purpose of later use in this text; for a considerably more thorough
introduction to graph theory, see [CL1] or [H3].

2-1. Definition of a Graph

Def. 2-1. A graph G consists of a finite non-empty set V(G] of vertices
together with a set E(G) of unordered pairs of distinct vertices, called
edges. If x = {u,v} € E(G), for u, v G V(G), we say that u and v
are adjacent vertices , and that vertex u and edge x are incident with
each other, as are v and x. We also say that the edges {u,v} and
{u,w},w #v, are adjacent . The degree , d(v) , of a vertex v is the
number of edges with which v is incident. (Equivalently, d(v) is the
number of vertices to which v is adjacent; i.e.,

If the vertices of G are labeled, G is said to be labeled graph.

For brevity, we usually write uv for {u, v}] p = |V(G)|; q = \E(G)\.
The order of G is given by p . The size of G is given by q .

Example: Let G be defined by:

then G may be represented by either Figure 2-la or 2-lb, where the
latter representation is more accurate, in a sense we will describe in
Chapter 6.

5
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Figure 2-1.

Note: A graph may be more briefly defined as a finite one-dimensional
simplicial complex.

Thm. 2-2. For any graph G, Epi=1 d(vi) = 2q.

PROOF. In summing the degrees, each edge is counted exactly
twice. D

Cor. 2-3. In any graph G, the number of vertices of odd degree is
even.

2-2. Variations of Graphs

Def. 2-4. A loop is an "edge" of the form vv. A multiple edge is an edge
that appears more than once in E(G}. A directed edge is an ordered
pair of distinct vertices. A loop graph allows loops. A multigraph
allows multiple edges. A pseudograph allows loops and multiple edges.
A directed graph (digraph) has every edge directed. The corresponding
graph (with all edge directions deleted) is called the underlying graph.
(Any multiple edges are coalesced.) An infinite graph has infinite vertex
set.

For example, see Figure 2-2.

The term "graph," unless qualified appropriately, disallows any and
all of the above variations.

2-3. Additional Definitions

Def. 2-5. A graph H is said to be a subgraph of a graph G if V(H) C
V(G) and E(H) C E(G). If V(H) = V(G), H is called a spanning
subgraph. For any 0 ^ S C V(G), the induced subgraph (S} is the
maximal subgraph of G with vertex set S.
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Figure 2-2.

Notation: F o r , G-v denotes (V(G) -v). For x e £(G),
V(G - x) = V(G), and E(G - x) = E(G) - x.

Certain subgraphs are given special names. We indicate these by a
series of definitions.

Def. 2-6. A walk of a graph G is an alternating sequence of vertices
and edges v0, X1, V 1 , . . . vn_1, xn, vn (or, briefly: u0, ^i> • • • > vn-i, vn) be-
ginning and ending with vertices, in which each edge is incident with
the two vertices immediately preceding and following it; n is the length
of the walk. If V o = v n , the walk is said to be closed; it is said to be
open otherwise. The walk is called a trail if all its edges are distinct,
and a path if all the vertices are distinct. A cycle is a closed walk with
n > 3 distinct vertices (i.e., Vo = vn, but otherwise the Vi are distinct).

Two famous problems in graph theory may be described in terms of
the above definitions. A graph is said to be eulerian if the graph itself
can be expressed as a closed trail. (This corresponds to the "highway
inspector" problem; eulerian graphs have been completely and simply
characterized: see Problem 2.14 or Harary [H3], p. 64-65.) A graph is
said to be hamiltonian if it has a spanning cycle. (This corresponds to
the "traveling salesman" problem; hamiltonian graphs have not been
completely characterized. See Harary, p. 65-69, for some partial re-
sults.)

Def. 2-7. A graph G is connected if u, v G V(G) implies there exists
a path in G joining u to v. A component of G is a maximal connected
subgraph of G.
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Def. 2-8. The distance, d(u,v), between two vertices u and v of G
is the length of a shortest path joining them if such exists; if not,
d(u, v} = oo. The largest distance in a graph is the diameter of the
graph.

Thm. 2-9. A connected graph may be regarded as a (finite) metric
space.

PROOF. See Problem 2-7. D

For a partial converse to the above theorem, see Chartrand and
Kay [CKlj. By Theorem 2-9, every connected graph may be regarded
as a topological space. (Actually, since the metric induces the discrete
topology, we knew this already.) In Chapter 6 we will see that this
is true in another sense also; that is every graph may be regarded
as a subspace of ]R3, with all edges represented as straight lines. If
we consider G as a topological space in its latter sense, then G is
connected as a graph if and only if it is connected as a topological
space (see Problem 2-8). The term "component" is easily seen to mean
the same in both contexts. Furthermore, a graph (as a subspace of R3)
is connected if and only if it is path connected; (see Problem 2.9.)

Def. 2-10. Two graphs GI and GI are said to be isomorphic (G\ = GI,
or GI = G2=) if there exists a one-to-one, onto map 0 : V(G\) —* V((?2)
preserving adjacency; that is, uv € E(G\) if and only if 0 ( u } 0 ( v ) 6
E(G2).

Note: Isomorphism is an equivalence relation on the set of all graphs.

Notation:

Def. 2-11. If we say that G is regular of degree r.
(If r= 3, G is said to be cubic.)

Thm. 2-12. Let give G1 = G2; then

PROOF. See Problem 2-10 D
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Cor. 2-13. If GI is a regular of degree r and G\ = G2, then G2 is
regular of degree r.

Cor. 2-14. Let the vertices of a graph GI have degrees d\ d-z < • • • <
dn, and the vertices of a graph G2 have degrees c\ < c2 < • • • < Cn. If
di / Q, for some 1 < i < n, then GI and G^ are not isomorphic.

The converse of the above corollary need not be true; see Problem
2-3.

Def. 2-15. The complement G of a graph G has V(G) = V(G} and
E(G) = {uv\u ^ v and uv i E(G}}.

2-4. Operations on Graphs

We now define several binary operations on graphs. In what follows,
we assume that V(Gi) n V(G2) = 0-

Def. 2-16. 1.) The union G - Gl U G2 has:

Notation:

2.) The join G = GI + G2 has:

3.) The cartesian product G = GI x G2 has:
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4.) The composition (or lexicographic product) G = Gi[G2\ has:

For additional products, see Harary and Wilcox [HW1]. We are now
in a position to conveniently define several infinite families of graphs.

Def. 2-17.
a). Pn denotes the path of length n — 1 (i.e. of order n.)
b). Cn denotes the cycle of length n.
c). Kn denotes the complete graph on n vertices; that is all (™)

possible edges are present.
d). Kn denotes the totally disconnected (or empty] graph on n ver-

tices; that is, E(Kn} = 0. For n = 1, we get the trivial graph,
KL

e). Km,n denotes a complete bipartite graph:

(Equivalently, Km,n is defined by:

f). .Kp1pa,...,^ denotes a complete n-partite graph:

an iterated join. In the special case where p\ = p2 = • • • = pn

(= m, say), we get a regular complete n-partite graph:

We introduce Kn(m-) as a shorter notation for this graph.
g). Qn denotes the n-cube and is defined recursively:

The complete bipartite graphs are a subclass of an extremely im-
portant class of graphs - the bipartite graphs.

Def. 2-18. A bipartite graph G is a graph whose vertex set V(G) can
be partitioned into two non-empty subsets V and V" so that every
edge of G has one vertex in V and the other in V".
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Thm. 2-19. A nontrivial graph G is bipartite if and only if all its
cycles are even.

PROOF, (i). Let v\v^ ... vnvi be a cycle in a bipartite graph G, and
assume, without loss of generality, that v\ € V;\ then vn G V", and n
must be even.

(ii). We may assume that G is connected, with only even cycles,
since the argument in general follows directly from this special case.
Consider a fixed v0 € V(G). Let V* = {u € V(G)\d(u,vo) = i},
i — 0,1,... , n — diameter of G. Then n is finite, since G is connected,
and Vo, VI , . . . ,Vn provides a partition of V(G). Now, no two vertices
in V\ are adjacent, since G contains no 3-cycles. Also, no two vertices
in Vi are adjacent, or G would contain either a 3-cycle or a 5-cycle. In
fact, every edge in G is of the form uv, where u € V$, v € V^+i, for some
i = 0,1, . . . , n — 1. Letting V be the union of the Vi for i odd, and V"
be the union of the V* for i even, we see that G is bipartite. D

This completes our brief introduction; other terms will be defined,
and theorems developed, as needed.

2-5. Problems

2-1.) Prove that if G is not connected then G is connected. Give an
example to show that the converse need not hold.

2-2.) A graph is said to be perfect if no two vertices have the same
degree. Prove that no graph is perfect, except G — K\.

2-3.) Show that, even though ^3,3 and K2 x K% are both regular of
order 6 and degree 3, they are not isomorphic.

2-4.) For Gi,G2 nontrivial (/ K I ) , prove that G\ x G2 is bipartite
if and only if both G\ and G2 are bipartite. Give an example
to show that a similar result need not hold for the lexicographic
product.

2-5.) Show that Gi[G2] = Gi_[G2]._
2-6.) Show that GI + G2 = GI U G2.
2-7.) Prove Theorem 2-9.
2-8.) Consider the graph G as a subspace of R3. Show that G is

connected as a topological space if and only if it is connected as
a graph.

2-9.) Show that the first occurrence of "connected" in Problem 2-8
may be replaced with "path-connected." (Recall that a path-
connected topological space must be connected, but that the
converse does not always hold. However, a connected space for
which every point has a path connected neighborhood must be
path-connected.)

2-10.) Prove Theorem 2-12.
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2-11.) Show that the set of all graphs, under the operation of carte-
sian product, forms a commutative semigroup with unity (i.e. a
commutative monoid).

2-12.) Let G and H both be hamiltonian. Show that G[H] and G x H
are hamiltonian also. Show that Qn is hamiltonian, for n > 2.

2-13.) The line graph H = L(G] of a graph G is defined by V(H) =
E(G), E(H) = {ef\e and / are adjacent ,e,/ 6 E(G)}. Show
that L(Km:n} — Km x Kn. (This result appears in Palmer [P2]).

2-14.) Find (with proof) a characterization of eulerian graphs.
2-15.) Show that the n-cube Qn is the lattice graph for the set of all

subsets of an n-set. Show that Qn has diameter n and that
each vertex has a unique vertex at distance n from it; two such
antipodal vertices represent complementary subsets. Illustrate
the case n = 3, symmetrically on the sphere.



CHAPTER 3

THE AUTOMORPHISM GROUP OF A GRAPH

In this chapter we show that there is associated, with each graph, a
group, known as the automorphism group of the graph. We introduce
various binary operations on permutation groups to aid in comput-
ing automorphism groups of graphs. Several powerful results relating
graph and group products are stated, sometimes without proof (see
[H3] for a further discussion); these results will not be used in the se-
quel. Indeed, the concept of automorphism group of a graph is, in the
main, peripheral to the present text; it is introduced here primarily as
one example of an interaction between graphs and groups. (In Section
2 of Chapter 4 we find a more direct bearing on subsequent material.)

3-1. Definitions

Def. 3-1. A one-to-one mapping from a finite set onto itself is called
a permutation. A permutation group is a group whose elements are all
permutations acting on the same finite set, called the object set. (The
group operation is composition of mappings.) If X is the object set
and A the permutation group, then \A\ is the order of the group, and
\X\ is the degree.

A permutation P partitions its object set by the equivalence relation
x = y if and only if Pk(x] = y for some integer k. The equivalence
classes are called the orbits of X, under the action of P. If there is just
one orbit in the action of A on X, then A is said to be transitive on X.
U\A\ = \X\, and if A is transitive on X, then A is said to be a regular
permutation group.

Def. 3-2. Two permutation groups A and B are said to be isomorphic
(A = B] if there exists a one-to-one onto map 0 : A —> B such that

, for all A.

Def. 3-3. Two permutation groups A and B (acting on object sets X
and Y respectively) are said to be identical (or equivalent) (A = B} if:



14 3. THE AUTOMORPHISM GROUP OF A GRAPH

(ii) there exists a one-to-one, onto map / : X —> Y such that f(ax] =
o ( a ) f ( x ) , for all x 6 X and a € A.

For a general treatment of permutation groups acting on combina-
torial structures, see Biggs and White [BW1]. Here, we consider only
the graph automorphism case.

Def. 3-4. An automorphism of a graph G is an isomorphism of G
with itself. (The set of all automorphisms of G forms a permutation
group, Aut(G), acting on the object set V(G).) Aut(G) is called the
automorphism group of G.

Remark. An automorphism of G, which is a permutation of V(G),
also induces a permutation of E(G), in the obvious manner.

Def. 3-5. An identity graph is a graph G having trivial automorphism
group; that is, the identity permutation on V(G] is the only automor-
phism of G.

It is easy to see that the graph pictured in Figure 3-1 is an identity
graph. That there is no identity graph of smaller order (other than
K\) is established in Problem 3-1.

Figure 3-1.

Thm. 3-6. Aut(G) = Aut(G).

PROOF. Let 0 : Aut(G) -» Aut(G) and / : V(G) -> V(G) both be
identity maps, and observe that adjacency is preserved in a graph if
and only if non-adjacency is preserved. D

3-2. Operations on Permutations Groups

From a theorem due to Cayley, we recall that any finite group is
abstractly isomorphic (as opposed to necessarily being identical) with
a permutation group; in fact, if the group G has order n, then G is
isomorphic to a subgroup of Sn. In this light, the operations soon to
be defined could be regarded as applying to groups in general; however,



3-3. COMPUTING AUTOMORPHISM GROUPS OF GRAPHS 15

the definitions will be given in terms of action upon a specified object
set.

Let A and B be permutation groups acting on object sets X and Y
respectively. We define three binary operations on these permutation
groups as follows:

Def. 3-7.

1.) The sum, A + B, (or direct product) acts on the disjoint union
X U Y] A + B = {a + b\a 6 A, b € B}, and

2.) The product, AxB, (or cartesian product] acts ouXxY; AxB =
{a x b\a € A, b 6 B}, and (a x b)(x, y) = (ax, by}.

3.) The composition, A[B], (or wreath product) acts on X x Y as
follows: for each a € A and any sequence 61,62,... ,6^ (where
d = \X\) in B, there is a unique permutation in A[B], writ-
ten , and

Thus Note: The order of A[B] is |A||B|d.

Thm. 3-8. A + B^AxB.

PROOF. Let 9 : A + B —> A x B be given by 6(a + 6) = (a x 6). D

3-3. Computing Automorphism Groups of Graphs

The following theorems indicate some connections between the
graphical operations defined in Section 2-4 and the group operations
defined above. The groups Sn, An, Zn, Dn are respectively the sym-
metric and alternating groups of degree n, the cyclic group of order n,
and the dihedral group of order 2n. The first theorem is due to Prucht
[F6].

Thm. 3-9. If G is a connected graph, then Aut(nG) = Sn[Aut(G)].

Thm. 3-10. If no component of G\ is isomorphic with a component of
G2, then Aut(Gi U G2) = Aut(Gi) + Aut(G2).
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PROOF. See Problem 3-3. D

Thm. 3-11. Let G = n\G\ Un2G2U- • -Un rG r, where n; is the number
of components of G isomorphic to Gi. Then Aut(G) = 5ni[Aut(Gi)] +
Sn2[Aut(G2)} + • • • Snr[Aut(Gr)}.

PROOF. Apply Theorems 3-9 and 3-10, using induction. D

Note: Any graph G may be written as in Theorem 3-11, but if r =
nr = 1, the theorem gives no information.

Thm. 3-12. If no component of G\ is isomorphic with a component of
G2, then Aut(Gi + G2) = Aut(Gi) + Aut(G2).

PROOF. Apply Theorems 3-6 and 3-10, together with Problem 2-
6. D

The following two theorems are due to Sabidussi ([SI] and [S2]
respectively).

Def. 3-13. A non-trivial graph G is said to be prime if G = GI x G2

implies that either GI or GI must be trivial (i.e. = KI). If G is not
prime, G is composite. Two graphs GI and GI are relatively prime if
GI = G3 x G4 and G2 = G3 x G5 imply G3 = KI.

Thm. 3-14. Aut(Gi x G2) = Aut(Gi) x Aut(G2) if and only if GI and
G2 are relatively prime.

Def. 3-15. The neighborhood of a vertex u is given by: N(u) — {v €
V(G)\uv e E(G)}. The closed neighborhood is N[u] = N(u) U {u}.

Thm. 3-16. If GI is not totally disconnected, then Aut(Gi[G2]) =
Aut(Gi)[Aut(G2)], if and only if:

(i) If there are two vertices in GI with the same neighborhood, then
G2 is connected, and

(ii) if there are two vertices in GI with the same closed neighborhood,
then G2 is connected.

We are now able to list the automorphism groups for several com-
mon families of graphs.
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Thm. 3-17.

3-4. Graphs with a Given Automorphism Group

Thm. 3-18. Every finite group is the automorphism group of some
graph.

For a proof of this theorem, due to Frucht [F5], see Section 4-2.

3-5. Problems

3-1.) Does there exist an identity graph (other than K\) of order five or
less? (Hint: Check to see that every graph in Appendix 1, Harary
[H3], with p < 5, has at least one non-trivial automorphism.)

3-2.) Supply details for the proof of Theorem 3-8.
3-3.) Prove Theorem 3-10.
3-4.) Prove Theorem 3-17.
3-5.) Let G = Kp^r- find Aut(G).
3-6.) Aut(K4) = 64, yet K4 is the 1-skeleton of the tetrahedron, and

the symmetry group of the tetrahedron is A4. Explain!
3-7.) For each of the other platonic solids (see Section 5-4), find the

symmetry group for both the solid and for its 1-skeleton (the
associated graph). Is one a subgroup of the other? If so, what is
its index?

3-8.) For k > 2, the odd graph Ok has all (k — l)-subsets of a (2k — 1)-
set as vertices, with adjacency corresponding to the property of
being disjoint. Then 02 = K3 and Oa = II, the Peter sen graph.
(Show that this is consistent with Figure 8-8.) It is immediate
that S^k-i < Aut(Ofc); show that in fact Sat-i = Aut(Ofc). In
particular, Aut(II) = S5.
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CHAPTER 4

THE CAYLEY COLOR GRAPH OF A GROUP
PRESENTATION

In this chapter we see that each group can be defined in terms of
generators and relations and that corresponding to such a presentation
there is a unique graph, called the Cayley color graph of the presenta-
tion. A "drawing" of this graph gives a "picture" of the group, from
which can be determined certain properties of the group. We will es-
tablish some basic results about Cayley color graphs, including a rather
natural correspondence between direct products of groups and carte-
sian products of associated Cayley color graphs. In Chapter 7 we will
ask which groups have Cayley color graphs that can be represented
properly in the plane, and associated questions. In Chapter 9 appro-
priate answers will solve the Heawood map-coloring problem, as well as
many others. The voltage graph theory of Chapter 10, the block design
connection of Chapter 12, and the map automorphisms of Chapter 16
will be especially natural in the context of Cayley graphs. And, each
change-ringing graph of Chapter 19 will be a Cayley color graph.

4-1. Definitions

Def. 4-1. Let F be a group, with {g1,g2,g3, • • • } a subset of the element
set of T. A word W in g1 ,g2 ,g3 , . . . is a finite product f1,f2.....fn, where
each fi is in the set {91,92,93...., • • • , 9il,92l,93l, • • • }• If every element
of T can be expressed as a word in91,92,93...... , then git g?., g$,... are
said to be generators for P. A relation is an equality between two
words in 0i,02,03, • • • •

Thm. 4-2. Given an arbitrary set of symbols and an arbitrarily pre-
scribed set (possibly empty) of relations in these symbols, there is a
unique (up to isomorphism) group with the symbols as generators and
with structure determined by the prescribed relations.

PROOF. (For a proof, see [MKSl].) D

Def. 4-3. If F is generated by <7i,#2, <?3» • • • and if every relation in F
can be deduced from the relations P — P', Q = Q', R = R',...,
then we write F = (g i ,g 2 ,g3 , . . . |P = P', Q = Qf, R = R?,...), and

19
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the right hand side of the equation is said to be a presentation of T.
A presentation is said to be a finitely generated (finitely related) if the
number of generators (defining relations) is finite. A finite presentation
is both finitely generated and finitely related.

For example:

(1) Zn - (x\xn = e)
(2) Z = (x\)
(3) Sn = (x,y\xn = y2 = e = (xy)^1)
(4) Dn = (x,y\xn = y2 = e = (xy)2)
(5) Z2 x Z2n = (x, y\x2 = y2n = e = xyxy~1}

Thm. 4-4. Every finite group has a finite presentation.

PROOF. Take F itself as the set of generators, with all relations of
the form g^ — gk, as determined by the group operations (i.e. the
multiplication table serves as a finite presentation). D

Def. 4-5. For every group presentation there is associated a Cayley
color graph: the vertices correspond to the elements of the group;
next, imagine the generators of the group to be associated with dis-
tinct colors. If vertices v\ and v^ correspond to group elements g\ and
#2 respectively, then there is a directed edge (of the color (or label) of
generator h ) from v\ to v% if and only if g\h — g^; see Figure 4-1.

Let P be a presentation for the group F; we denote the Cayley
color graph of P for F by Cp(F), or (when convenient) by CA(F),
where A denotes the generating set. (Since a group may have more
than one generating set, the Cayley color graph depends on A, as
well as F). Then CA(F) is a labeled, directed graph, with a color (or
label) assigned to each edge. Thus V(C&(T)) = F, and E(CA(T)) =
{(<?, g8)§\g G F, 8 € A}. We observe that the following correspondences
occur:
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Group Cayley Color Graph
element vertex
generator a set of directed edges of

the same color
inverse of a generator the same set of edges (now)

directed against the arrow)
word walk
multiplication of elements succession of walks
identity word (relator) closed walk
solvability of rx — s (weakly) connected di-graph

Note: A characterization is given in [MKS1] of those graphs G which
can be oriented and colored so as to form Cayley color graphs.

Historical note: Max Dehn (in 1911) formulated three fundamental
decision problems concerning group presentations. One of these is:
"determine in a finite number of steps, for two arbitrary words W
and W in the generators, whether W = W or not." Equivalently:
"construct the Cayley color graph for a given group presentation."

The term "connected" may have a "stronger" meaning for directed
graphs than for graphs in general, since we may be allowed to travel
only in the direction of the arrow along a given directed edge.

Def. 4-6. A directed graph D is said to be strongly connected if, for
every pair u, v of distinct vertices, there is a directed path from u to
v. D is said to be unilaterally connected if, for every pair of distinct
vertices, one is joined to the other by a directed path. D is called weakly
connected if the (undirected) pseudograph underlying D is connected.

For example, see Figure 4-2, where D is strongly connected, D' is
unilaterally connected (but not strongly connected) and D" is weakly
connected (but not unilaterally connected).

Figure 4-2.
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4-2. Automorphisms

We have previously defined an automorphism of a graph G (as
a permutation of V(G] preserving adjacency). An automorphism of a
directed graph must preserve directed adjacency; and an automorphism
of a Cayley color graph must also preserve the color corresponding to
each adjacency. We summarize in:

Def. 4-7. An automorphism of a Cayley color graph CA(F) is a per-
mutation 0 of V(CA(F)) such that, for each <?i,<?2 m F and h in A,
gih^g-2 if and only if %:)/i = 0(g2).

Equivalently (see Problem 4-1), 6 is an automorphism of CA(F) if
and only if: for each g in F and generator h in A, B(gh] = 0(g)h; i.e.
the diagram in Figure 4-3 commutes.

Figure 4-3.

As expected, the collection of all automorphisms of CA(F) forms
a group, called the automorphism group of CA(F), and denoted by
Aut(CA(F)) . The next result is perhaps not expected.

Thm. 4-8. Let CA(F) be any Cayley color graph for the finite group
F; then Aut(CA(F)) = F (independent of the presentation selected for
G.}

PROOF. Define a : F -» Aut(CA(F)) by a(g) = Og, where 9g :
V(C&(T)) -» V(C&(T)) is given by 09(&) = ggt. First we show that
Bg E Aut(CA(F)). Clearly 6g is one-to-one and onto (and hence per-
mutes F(CA(F))). Also, Bg(gih) = gfah) = (ggi}h = Og(gi}hJ so that
a is well- defined.

Now, a preserves products: a(gg*) = Ogg*, defined by Qgg*(gi) =
99*9i = Og(9*9i) = 09(0*g(9i}} = (0M(9i); that is a(gsr) = a(g)a(g*).

It is clear that a is one-to-one, since kera = {e}.

It remains to show that a is onto. Let 9 € Aut(CA(F)). Let 9(e) =
g, where e is the identity of F. Now any g* in F can be written as a word
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in the generators for F; i.e. g* = h^h^2 • • • h%?, where hi is a generator
for T and a{ = ±1. Then 0(g*) = 9(eg*} = 0(e)h?h%2 • • • h%* = gg*\
that is, 9 = 0g, so that a is onto. This completes the proof. D

From the above theorem (and its proof) it is evident that any vertex
of CA(F) can be labeled with the identity e of F, and that once this has
been done (for fixed assignment of colors to the generators) all other
vertex labellings are determined; that is, CA(F) is vertex transitive.
(More precisely, a graph G is vertex transitive if, for each pair w, v 6
V(G), there exists a e Aut(G) such that a(u] — v. Vertex transitive
graphs are necessarily regular, but not conversely, as shown by 63U64).
Moreover, Aut(CA(F)) is a regular permutation group, on V(C&(r));
that is:

We are now able to provide a proof of Frucht's Theorem, Theorem
3-18: Every finite group is the automorphism group of some graph.

PROOF. Let F be a finite group, and let A be a generating set for
F. Form the Cayley color graph CA(F); by Theorem 4-8, we know
that Aut(C*A(F)) = F. It only remains to convert CA(F) to a graph
G having the same automorphism group, F. This is done as follows:
let A = {$i,52 , --- ,<$n}- Replace each edge (&,#,•), where QJ = gt6k,
by a path: ^,14^,1^,^. At vertex uij(u'ij] we attach a new path
Pij(Plj) of length 2k - l(2fc)(l < k < n); see Figure 4-4, for the case
k = 2. In this way the "non-graphical" features of direction and label,
present in CA(F), are incorporated into the graph G. It is clear that
Aut(G) =* Aut(CA(F)) ^ F. D

Figure 4-4.
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4-3. Properties

It is clear that every Cayley color graph is both regular (and in fact
vertex transitive) and connected (as a graph); the converse is not true
(see Problem 4-10). For two characterizations of graphs which can be
regarded as Cayley color graphs, see [J3] and [MKSlj.

We may study additional properties for T (apart from the multi-
plication table so conveniently summarized in C^(T)) from C^(T) as
follows:

Thm. 4-11. F is commutative if and only if, for every pair of genera-
tors hi and /ij, the walk hihjh^lhjl is closed.

PROOF. See Problem 4-2. D

Def. 4-12. An element of a generating set for a group F is said to be
redundant if it can be written as a word in the remaining generators.
A generating set is said to be minimal if it contains no redundant
generators.

Example: {x2,x3} is a minimal generating set for Z6 = (x\x6 — e),
even though {x} is a generating set with fewer elements.

Thm. 4-13. Let F be a finite (infinite) group. A generator h is redun-
dant if and only if the deletion of all edges colored h in C&(T] leaves a
strongly (weakly) connected directed graph.

PROOF. See Problem 4-3. D

Thm. 4-14. If h is not redundant, the removal of all edges colored h
leaves a collection of isomorphic disjoint subgraphs, each representing
the subgroup of F generated by the generating set of F minus h.

PROOF. See Problem 4-4. D

Thm. 4-15. Let F be a finite group with minimal generating set
{/ii,/i2,-" ,hn}, and Q a (necessarily proper) subgroup with gener-
ating set {/i2, ^3, • • • , hn}. Let Ci, 6*2, • • • , C^ be the weak components
of the directed graph (^(F), obtained from CA(F), by deleting the
edges colored hi. Then U is normal in F if and only if the deleted
directed edges from any given component Cj all lead to a single other
component Cj.



4-3. PROPERTIES 25

PROOF, (i) Assume the condition holds. Let C\ = £2 be the com-
ponent containing e, let g e C\ and r E P. We must show that
rgr~l E C\. We write r = a^a^ •••(!%?, where ^ is a generator of
F and bi = ±1. If /ii occurs in r exactly w; times with bi = +1 and
v times with 6^ = —1, then the walk corresponding to r leads from e
(in Ci) through w — v components, ending in d+^-u. The walk cor-
responding to g in Ci+w-v now leads to another vertex in Ci+w-v, and
walk a^m • • • a,2b2a^bl, corresponding to r"1, returns us to C\.

(ii) Suppose that edges colored h\ lead from Ci to C\ and Cj, 1 ̂  j.
(Again assume e € C\.} Then there exists g 6 Ci such that h^lgh\ G
Cj, so that £2 is not normal in P. D

It now follows that, for J2 (as above) normal in P, the elements of the
factor group P/12 (i.e. the right cosets) are the components of C/^P).
By shrinking these components, each to a single vertex, and restoring
the edges colored hi (this can be done unambiguously, by Theorem
4-15), a Cayley color graph of P/fi is obtained. (This "shrinking" may
be described by adjoining, to the defining relations for P, the additional
relations h2 — ̂ 3 = • • • = hr = e.}

In general, given a Cayley color graph CA(P), whether a subgroup
U of P is normal or not, we obtain a Schreier (right) coset graph ^(P/
Q) as follows: the vertices are the right cosets of O in P, and there is
an edge directed from ilg to Qg', labeled with 6 € A, if and only if
J2#<5 = ilg', (i.e. if and only if 6 € g~lttg'.} That ttgd is a right coset
follows from the fact that the right cosets of 1) in P partition P. Note
that a Schreier coset graph may actually be a pseudograph, as loops
and/or multiple edges may result from this process. For the special
case fi = {e}, the Schreier coset graph is just the Cayley color graph
CA(P).

Several of the ideas discussed above are illustrated in Figure 4-5.
Note that Q = Za is normal in 83, but not in A*.

As a further example, contrast the groups Z2 x 2^ and D±, as in
Figure 4-6. Note that the subgroup of order 2 generated by r is normal
in Z2 x Z4, but not in D4. This comment extends in an obvious way
to the groups Z2 x Zn and Dn,n > 3. For example, see 83 = D3 (in
Figure 4-5); the subgroup generated by r is not normal here, either.
For a generator 8 of order 2, we adopt the standard convention of
representing the two directed edges (g,g5] and (g5,g] in CA(P) by a
single undirected edge {<?,<?£}.

In Figure 4-7 we give the Schreier coset graph for fi — {e,r}, in
P = D4 (see Figure 4-6).

We close this section with a theorem due to Gross [G6].
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Figure 4-5.

Figure 4-6.

Figure 4-7.

Thm. 4-16. Every connected regular graph of even degree underlies a
Schreier coset graph.

4-4. Products

We now develop a relationship between the direct product for groups
and the cartesian product for graphs. Recall the following from group
theory:
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Def. 4-17. Let FI and F2 both be subgroups of the same group F,
with FI n F2 = {e} and gh = hg for all g 6 F1? h € F2. Then
F! x F2 = {gh\g € FI, h € F2} is also a subgroup of F, called the direct
product of FI and F2.

is a presentation for FI x F2, called the standard presentation for
Fi x F2.

This binary operation may be extended to the class of all groups,
by noting that FI = r{ = {(g,e2)\g € Fi,e2 is the identity of F2},
F2 = F2 = {(ei, h)\h € F2, e\ is the identity of FI}, and denning FI x
F2 = {(g,h)\g e I\, Ji e F2}, with (#i,/ii)(p2,/i2) = (g\gi,hih2) giving
the group operation.

Also recall the following (see, for example [BM1, p. 348]):

Thm. 4-18. (The Fundamental Theorem of Finite Abelian Groups):
Let F be a finite abelian group of order n; then F = Zmi x Zm2 x
• • • x Zmr, where ra^ divides ra^-i, i = 2, • • • , r and 01=1m* = n'->
furthermore, this decomposition is unique.

(We assume mr > 1, unless n = 1, in which case rar = r — 1.)

Def. 4-19. The number r of Theorem 4-18 is called the rank of the
abelian group F.

Theorem 4-18 completely specifies the structure of finite abelian
groups. The next theorem specifies, as a corollary, a Cayley color
graph for every finite abelian group. We first extend the definition of
cartesian product for graphs to Cayley color graphs, in the natural way.

Def. 4-20. The cartesian product, C^CTi) x C^O^), of two Cay-
ley color graphs is given by: F(CAl(Fi) x CA2(F2)) - V^^T^} x
y(CA2(F2)); and (#1,02) is joined to (gi',Q2f} by an edge colored h if
and only if either:

(i) 9i — 9if and gih = #2/, for h a generator in A2
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or
(ii) g-2 = and g\h — g^, for h a generator in AI.

Figure 4-8 shows CAl(Z3) x CA2(Z2), where Z3 = (x\x3 = e) and
Z2 = (y\y2 = e).

Figure 4-8.

Thm. 4-21. Let Cp^F^) be the Cayley color graph associated with
presentation Pi from group Fj, i = 1,2. Let P be the standard presen-
tation for FI x F2. Then

PROOF. First we note that F(CFl(Fi) x Cp2(F2)) = V(CPl^l)') x
V(Cp2(T2)) = V(CP(Tl x F2)). We now show that the edge sets of the
two Cayley color graphs coincide (in colored directed adjacency.)

(i) Let (pi, #2) be joined to (pi/, p2/) by an edge colored h in Cp(Fi x
F2). Then h — fcj, for some 1 < i < n. If 1 < i < m, then /i is a
generator of FI , and

so that #i/ = gih and p2' = ^2; i.e. this directed, colored edge
in Cp(Fi x F2) is also in Cp^Fi) x Cp2(F2). A similar argument
applies for m < i < n, so that

(ii) The argument is reversible, to show that

.

This completes the proof. D

Since the cyclic group Zn with presentation P : Zn — (x\xn = e)
has the readily constructed Cayley color graph Cp(Zn) = C'n (where
C'n denotes the directed cycle of length n), it is a simple matter to
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construct, using Theorems 4-18 and 4-21, a Cayley color graph for any
finite abelian group.

Thm. 4-22. Let T be a finite abelian group; then C'mi x C'm2 x • • • x C'mr

is a Cayley color graph for F, where F = Zmi x Zm2 x • • • x Zmr.

The class of groups for which we can construct Cayley color graphs
using Theorem 4-21 can be enlarged as follows:

Def. 4-23. A non-abelian group F is said to be hamiltonian if every
subgroup of F is normal in F.

Clearly all abelian groups have this normality property for sub-
groups. That non-abelian groups may also have all subgroups normal
is illustrated by Q, the quaternions (one of the two non- abelian groups
of order eight). But more: the finite hamiltonian groups are character-
ized (see Coxeter and Moser [CM1], p. 8):

Thm. 4-24. F is a finite hamiltonian group if and only if F = Q x
AI x A2, where AI is a finite abelian group of odd order, and A% is a
group for which a2 = e, for every a € A%.

Since elementary group theory shows that A2 must be abelian, we
can apply Theorem 4-21 to find a Cayley color graph for F, providing
we know a Cayley color graph for Q. This latter Cayley color graph will
be produced in Chapter 7; it turns out to be the Cayley color graph of
minimum order which cannot be drawn properly in the plane (among
those on minimal generating sets.)

4-5. Cayley Graphs

Let A be a generating set for the group F subject to the following
conditions:

(i) z i A
(ii) If 6 e A, 6~l i A (unless S2 = e).

Also, we adopt the following convention:
(iii) If 5 e A,<52 = e, each pair (g,g6) and (g8,g] of directed edges

are coalesced into a single undirected edge {

Then the pseudograph obtained from the Cayley color graph CA(F)
by suppressing all edge directions and all edge labels (colors) has no
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loops (by (i)) and no multiple edges (by (ii) and (iii)); it is in fact a
graph.

Def. 4-25. If A satisfies (i), (ii), and (iii) above, then the graph un-
derlying the Cayley color graph CA(F) is called a Cayley graph and is
denoted by GA(F).

It is clear that, in passing from C&(T) to G&(T), only structural
properties are lost. Thus in the topological considerations to follow
in the rest of the book, it will be without loss that we restrict our
attention to GA(T). Of course, V(G*(T)) = F, whereas E(G&(T)) =
{{9,98}\9 € F,£ e A U A"1}, where A-1 = {6~l\8 e A}.

4-6. Problems

4-1.) Show that 0 (a permutation of F) is an automorphism of CA(F)
if and only if: for each g in F and h in A, B(gh} — B(g)h.

4-2.) Prove Theorem 4-11.
4-3.) Prove Theorem 4-13. Give an example of a infinite group with

a redundant generator whose deletion does not leave a strongly
connected digraph.

4-4.) Prove Theorem 4-14.
4-5.) How many isomorphic disjoint subgraphs are there, as in the

statement of Theorem 4-14?
4-6.) Give a graph -theoretic proof of the fact that a finite subgroup

of index 2 must be normal.
4-7.) Let F be an abelian group of order pq, where p and q are dis-

tinct primes. By one of the Sylow theorems, F has Zp as a
subgroup. Give a graph-theoretic proof that Zp is normal, first
finding Cp(Zp x Z?). Then modify this Cayley color graph, to
obtain a Cayley color graph of F/ZP.

4-8.) Compile an appendix of Cayley color graphs for all groups of
order < 12. (This appendix should be useful for reference, both
in this course and in later life. You might want to save some
work by doing Zn,Z2 x Zn, and Dn in general, rather than in
each case where appropriate. Also, you will find that some of
your graphs cannot be properly represented in the plane; these
should be re-drawn, following Chapter 7.)

4-9.) Show that, if F is finite, then C^(F) is always strongly connected.
Give an example to show that this need not be true, if F is
infinite.

4-10.) Show that the Petersen graph II (see Figure 8-8 and Problem
3-8) cannot be colored and labeled so as to be a Cayley color
graph. (Note that II is vertex transitive, by Problem 3-8.)
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4-11.) Show that the Heawood graph (see Figure 8-5) can be colored
and labeled so as to be a Cayley color graph. (This is curious,
as the Petersen graph is the unique 5-cage while the Heawood
graph is the unique 6-cage).

4-12.) Find a connected regular (p, q) graph which is not a Cayley
graph, of (i) minimum p; (ii) minimum q (by Problem 4-10,
p < 10 and q < 15).

4-13.) Find A so that G3 x C3 = GA(Z3 x Z3). Show that there is no
A such that G3 x C3 = GA(Z9).

4-14.) A cut-vertex (bridge) for a connected graph G is a vertex v €
V(G) (edge e e E(G)) such that G - v(G - e) is disconnected.
Show that the Cayley graph GA(F) has no cut-vertices, and
hence no bridges, for |F| > 3

4-15.) An n-factor of a graph G is a spanning n-regular subgraph of G.
Petersen's Theorem is: a bridgeless cubic graph is the edge dis-
joint union of a 1-factor and a 2-factor. Illustrate this theorem,
for Cayley graphs GA(F), where A consists of two generators,
exactly one of which has order two.

4-16.) Show that every Cayley graph GA(F) can be expressed as an
edge disjoint union of m 1-factors and n 2-factors, for some m
and n such that m + n = |A|.

4-17.) A graph G is n-factorable if it can be expressed as an edge disjoint
union of n-factors (cf Problem 4-15). Find a non-trivial sufficient
condition for a Cayley graph GA(F) to be:

(i) 1-factorable
(ii) 2-factorable

(iii) 3-factorable
(iv) eulerian

4-18.) Show that the n-cube Qn is ra-factor able if and only if m divides
n. (In particular, Qn is 1-factorable, for all n.)

4-19.) **Babai [B2] conjectured that, for |F| > 3, GA(F) is always
hamiltonian. Prove or disprove!

4-20.) *Show that if F is a finite abelian group of order at least three and
if A is a minimal generating set for F, then GA(F) is hamiltonian.
(Klerlein [K2] showed that, in fact, GA(F) is hamiltonian.)

4-21.) Let P denote a property (in adjectival form) that a graph might
possess (such as "eulerian" or "hamiltonian",) and let F denote
a finite group. We say that F is P (universally P) if there exists
a A for F such that (for all A for F) GA(F) is P. Discuss:

(i) If F is abelian, |F| > 3, then F is hamiltonian and univer-
sally hamiltonian.

(ii) If F is hamiltonian (in the sense of Definition 4-23), then
F is hamiltonian (cf. Problem 2-12 and Theorem 4-24)
and (**) universally hamiltonian. (Klerlein and Starling
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[KS1] showed that, in fact, CA(F) is hamiltonian, for F
hamiltonian and A minimal.)

(iii) If |F| > 3, then F is hamiltonian.
(iv) If |F| is odd, then F is universally eulerian.
(v) If F is abelian, |F| > 3, then F is eulerian.

(vi) The abelian group F is universally eulerian if and only if
|F| is odd.

(vii) What other properties P might be studied?
4-22.) *Is Theorem 4-15 true for F infinite?
4-23.) Let F be a finite group, with F = F! U F2. Prove that if FI does

not generate F, then F2 does. (Hint: use Problem 2-1.)
4-24.) Show that if A is a minimal generating set for F, then |A| <

Iog2 |F|; equality holds if and only if F = Z™.



CHAPTER 5

AN INTRODUCTION TO SURFACE
TOPOLOGY

In this chapter we present an introduction to surface topology, in-
cluding the statement and a brief discussion of the classification the-
orem for closed 2-manifolds and a complete development of the euler
identity for the orientable case. One motivation for this material is that
it gives us alternatives to the plane for drawing graphs in (for example,
no Cayley color graph for the quaternions can be drawn properly in the
plane); these alternatives are completely classified, and the euler iden-
tity gives us important information about them. We give a topological
proof that there are exactly five regular polyhedra, and conclude the
chapter with a brief discussion of pseudosurfaces.

5-1. Definitions

In this chapter, a surface will be a closed, orientable 2-manifold.
Any such figure may be considered as a topological subspace of eu-
clidean 3-space, R3. We consider the subspace topology to be that in-
duced by the standard distance-measuring metric in R3. To pin down
this idea of "surface", we must define the terms used in the first sen-
tence of this paragraph. First, we specify that by the open unit disk

o

we mean D = {(z, y) 6 R2\x2 + y2 < I}.

Def. 5-1. A 2-manifold is a connected topological space in which every
point has a neighborhood homeomorphic to the open unit disk. Such
a neighborhood is called a 2- cell.

o

Note: In Definition 5-1, D may be replaced by R2, since these two
spaces are themselves homeomorphic.

Example: Only one of the conical spaces (the third) in Figure 5-1 is
a 2-manifold.

Definition 5-1 may be extended as follows: an n-manifold is a
connected topological space in which every point has a neighborhood

33
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Figure 5-1.

homeomorphic to

However, we are only concerned here with the case n = 2.

Def. 5-2. A subspace M of M3 is bounded if there exists a natural
number n such that M C B(O;ri) = {(x,y:z)\x2 + y2 + z2 < n2}.

Def. 5-3. Let M C R3 be a 2-manifold. M is said to be closed if it is
bounded and the boundary of M coincides with M.

For example, M of Figure 5-2 is closed, while M' and M" are not.

M = S2 M' = S2 - D M" = E2

Figure 5-2.

Note that the term "closed" does not mean quite the same thing
to a surface topologist as it does to a point-set topologist. What a
surface topologist calls a "closed 2-manifold", a point-set topologist
calls a "compact 2-manifold." (Recall that M C M3 is compact if and
only if M is closed (point-set sense) and bounded.)

Def. 5-4. Let M be a 2-manifold: M is said to be orientable if, for
every simple closed curve C on M, a clockwise sense of rotation is
preserved by traveling once around C. Otherwise, M is nonorientable.

It can be shown that a 2-manifold M is orientable if and only if it
is two-sided. For example, a cylinder open at both ends is orientable,
where a Mobius strip (imbedded in ]R3 in the usual way) is not.

We offer an equivalent definition of orientability.
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Def. 5-4'. M is orientable if it admits a 2-cell decomposition with co-
herent orientation (i.e. the boundary of each 2-cell is given an orienta-
tion so that a 1-cell portion of the boundary incident with two adjacent
2-cells is oppositely oriented within those two 2-cells.)

5-2. Surfaces and Other 2-manifolds

We finally know what a surface is (abstractly); now, exactly which
subspaces of R3 are surfaces?

Let us begin to answer this question by representing certain familiar
2-manifolds as polygons with appropriate edges identified. See Figure
5-3 for the sphere, open cylinder, torus, projective plane, mobius strip,
and klein bottle, respectively. The top three 2-manifolds are orientable,
the bottom three nonorientable. Only the cylinder and mobius strip
are not closed.

cylinder

projective
plane

«1 mobius
strip

Figure 5-3.

It turns out that every closed 2-manifold (whether orientable or
not) can be represented in this manner. In fact (see Frechet and Fan,
[FF1] p. 63) we have the following theorem:

Thm. 5-5. Every closed 2-manifold is elementarily associated with a
polygon whose symbolic representation is of one of the following forms:

(i) aa"1

(ii) a\bia^lb^lG
(iii) aiaiCL2Ci2 • • •

l apbpap
lb-1, p = 1, 2, 3,

The form (i) corresponds to the sphere; (ii) to the sphere with p
handles (a torus is a sphere with one handle) and (iii) to the sphere
with q cross-caps (a projective plane is a sphere with one cross-cap;
a klein bottle is a sphere with two cross-caps.) Only the forms(iii)
correspond to nonorientable closed 2-manifolds. (None of these can be
realized in R3.)
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As a byproduct of the development in Frechet and Fan, an invariant
called the characteristic is determined for each closed 2-manifold. Then
it is shown that:

Thm. 5-6. (The Classification Theorem) Two closed 2-manifolds are
homeomorphic if and only if they have the same characteristic and are
both orientable or both nonorientable.

It follows that a closed orientable 2-manifold (i.e. a surface) M is
a sphere with k handles, where A; is a non-negative integer; k is said
to be the genus of M, and we write 'j(M) = k and M — Sk- A closed
nonorientable 2-manifold M is a sphere with k crosscaps, where fc is a
positive integer; k is said to be the (nonorientable) genus of M, and
we write 7(M) — k and M = Nk.

5-3. The Characteristic of a Surface

We now give an independent determination of the characteristic
of a surface, using the notion of a pseudograph. The proof will be by
induction on k, the genus of the surface. We first need a few definitions,
and one preliminary theorem. The first definition is intuitive; it will
be made more precise in Chapter 6.

Def. 5-7. A pseudograph is said to be imbedded in a surface M if it is
"drawn" in M so that edges intersect only at their common vertices.

For example, Figure 5-4 shows two drawings of K± in the plane, but
only the second is an imbedding.

K.:

Figure 5-4.

Def. 5-8. A tree is a connected graph having no cycles.

For example, Figure 5-5 shows three graphs, but only G^ is a tree.

Thm. 5-9. Let G be a tree, with p vertices and q edges; then p — q +1.
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O-O

Figure 5-5.

PROOF, (by induction on p): The result is clearly true for p — 1,
for then g = 0. Now assume the result holds for all trees with fewer
than p vertices, and let G be a tree with p vertices and q edges. Since
G has no cycles and is finite, we can find v € V(G) such that d(v] = 1.
Then G — v is a tree with p — 1 vertices and q — I edges, so that
(p-l) = (9-l) + l;i.e. p = g + l. D

Def. 5-10. Let a pseudograph G be imbedded in a surface M; the
components of M — G are called regions (or faces) of the imbedding.

For example, the imbedding of K± in Figure 5-4 has four regions.

The following theorem is attributed to both Descartes and Euler,
independently; we perhaps indicate our preference by calling it the
euler polyhedral identity:

Thm. 5-11. Let G be a connected graph imbedded in the sphere, So-
Let G have p vertices and q edges, with r the number of regions of the
imbedding. Then p — q + r — 2.

PROOF, (by induction on q > 0): The result is clearly true for
q = 0, for then p = 1 and r = 1. Now assume the result holds for all
connected graphs with fewer than q edges, and let G be a connected
graph with q edges, p vertices, and r regions for an imbedding in SQ.
We have two cases to consider:

(i) If G is a tree, then p = q + 1 by Theorem 5-9, and r = 1 (since
there are no cycles), so that p — q + r = 2.

(ii) If G is not a tree, then (since G is connected) G contains a cycle;
let x be any edge of this cycle. Then G — x has p vertices, q—l
edges, is still connected, and is imbedded in S0 with r — l regions.
Hence p — (q — 1) + (r - 1) = 2; i.e. p - q + r = 2.

D

Cor. 5-12. Let G be a connected pseudograph imbedded in So, with
p vertices, q edges, and r regions; then p — q + r = 2.

PROOF. See Problem 5-3. D
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We observe here that imbedding a graph in the sphere is equivalent
to imbedding it in the plane. To see this, perform a stereographic
projection (see Figure 5-6) with the north pole of the sphere any point
in the interior of some region of the imbedding. For each point of the
sphere, there corresponds a unique point of the plane: the intersection
of the line L through (0,0,2) and (a;, y, z) with the plane. The mapping
is given explicitly by / : S2 — P —> R2, where

S2 = {(re, y, z] €

P=(0,0 ,2) ,

+ y2 + (z - I)2 = 1},

and

with

f ( x , y , z ) = OW,0),

x =

y =

2x

(see Problem 5-4).

(0.0,2)
N.P.

Figure 5-6.

The image of the graph G from S2 is an imbedding of G in R2,
with the unbounded region corresponding to the region in S2 from the
interior of which the north pole was selected. Clearly, this process is
reversible. In fact, the map / gives a homeomorphism between S2 — P
and E2, where P is any point of S2. (Rotate S2 so that P is at the
north pole.) Note that neither space is closed from the point of view of
surface topology, yet R2 (and not S2 — P} is closed - in the point-set
sense - as a subspace of E3.

Def. 5-13. A region of an imbedding of a graph G in a surface M is
said to be a 2-cell if it is homeomorphic to the open unit disk. If every
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region for an imbedding is a 2-cell, the imbedding is said to be a 2-cell
imbedding.

The next theorem, giving the euler identity, is perhaps the most
important in all of topological graph theory.

Thm. 5-14. Let G be a connected pseudograph, with a 2-cell imbed-
ding in Sk, with the usual parameters p, q, and r. Then

PROOF, (by induction on k); the case k — 0 has been settled by
Corollary 5-12. Now assume the theorem is true for fewer than k han-
dles (k > 1), and let G be as in the statement of the theorem. Without
loss of generality, we assume all the vertices of G to be on the "sphere"
portion of 5^; and since the imbedding is 2-cell, each handle has at
least one edge of G running over it. Select one handle, and draw two
disjoint simple closed curves C\ and C<z around this handle. Suppose
edges #1, #2, • • • , %n run over the handle, where n > 1. Then Cj meets
Xj in a point of Sk which we designate by u^, i = 1, 2; j — 1, 2, • • • , n.
Consider the points ity to be vertices of a new pseudograph, with edges
determined in the natural manner. Now remove the portion of the han-
dle between C\ and C^ and "fill in" the two resulting holes (bounded
by C\ and 62 respectively) with two disks (this is called a capping op-
eration). The result is a 2- cell imbedding of a connected pseudograph
in Sfc_i, with parameters p', q' ', and r' (say). But

p1 — p + 2n

r' = r + n + 2.

Thus, by the inductive assumption,

2 - 2(fc - 1) = p' - q' + r'

= (p + 2n) - (q + 3n) + (r + n + 2);

= p- q + r + 2;

that is, p - g + r = 2 - 2fc. D

Cor. 5-15. Let G be a connected graph, with a 2-cell imbedding in
Ski with the parameters p, q, and r; then p — q + r = 2 — 2k.
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PROOF. The result is immediate, since any graph is also a pseudo-
graph. D

We have shown that the number p — q + r is invariant for Sk, for
any 2-cell imbedding of any connected pseudograph; p — q + r = 2 — 2k,
depending only on k. This invariant number, 2 — 2k, is called the euler
characteristic for the surface Sk- It then follows that Sn and Sm are
homeomorphic if and only if m = n. In the nonorientable case, the
characteristic is given by p — q + r = 2 — k, where k is the number
of cross-caps (see Frechet and Fan.) In notation, x(Sk) — 2 — 2k;
X(Nk) =2-k.

5-4. Three Applications

The ramifications of Theorem 5-14 are enormous. In this section
we give only three of these, each pertaining to the case k = 0.

Def. 5-16. A graph is said to be planar if it can be imbedded in the
plane (or, equivalently, in So). A graph imbedded in SQ is called a plane
graph.

Note: Suppose a graph G is 2-cell imbedded in a surface Sk- Let Vi be
the number of vertices of degree i, and let r^ designate the number of
regions having i sides (i.e. the number of regions having as boundary
a closed walk of length i; i is also called the length of the region). We
assume that VQ — v\ = v-2 = 0, as we focus on polyhedral graphs in this
section; moreover, for G a nontrivial graph, r0 = n = r^ — 0.

Lemma 5-17.

PROOF, (i) and (ii) are obvious; (iii) is Theorem 2-2, and (iv) fol-
lows in like manner to (iii); in summing the number of sides in the
regions, each edge is counted exactly twice. D

Thm. 5-18. The graph K5 is not planar.

PROOF. Suppose that the connected graph K5 were imbedded in
the plane; then 2q = 20 = , by Theorem
5-11,
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2 =p — q

a contradiction! Hence, K§ is not planar. D

Lemma 5-19. Let the planar connected graph G (5(G] > 3) be imbed-
ded in the plane; then

(i) G has a vertex of degree 5 or less; and
(ii) G has a region with 5 or less sides.

PROOF.

(i) Suppose, to the contrary, that V{ = 0, i = 0,1,2,3,4,5; then
24 = Ei>3

 ivi > 6 Ei>3
 vi = 6P. As before, 2q = £ ->3

 iri >
3 Xli>3 ri = 3r. Then, by Theorem 5-11, p — q + r = 2; i.e.

< = + r — 2

a contradiction.
(ii) This follows by duality (soon to be explained); it also follows

from Problem 5-6.

D

This explains why a Petoskey stone (the state stone of Michigan),
although nearly a hexagonal tessellation, can never be perfectly so.
The infinite tessellation of the plane by congruent regular hexagons (or
triangles) is not precluded by Lemma 5-19, however.

We are now prepared to give a topological proof of what the Greeks
knew, geometrically, over two thousand years ago: there are exactly
five regular polyhedra. A polyhedron is a finite, connected collection of
at least four polygons, fit together in R3 so that: (i) each side of each
polygon coincides exactly with one side of one other polygon, and (ii)
around each vertex there is one circuit of polygons; together with the
region of R3 bounded by these polygons. These two conditions rule out
the anomalies depicted in Figure 5-7.

A regular polyhedron is a convex polyhedron for which: (i) the
polygons are congruent regular polygons, and (ii) the same number of
polygons surround each vertex.
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Figure 5-7.

Thm. 5-20. There are exactly five regular polyhedra.

PROOF. Let P be a regular polyhedron. Associated with P is a reg-
ular planar graph G (to picture this, first bound P with a sphere, then
place a light source inside the polyhedron-the shadow of the vertices
and edges of P gives a graph imbedded in the sphere; finally, perform a
stereographic projection.) This planar graph G has VQ = Vi = v2 = 0,
and in fact: p = v^, r — r/j, for k, h € {3, 4, 5}, by Lemma 5-19. Next
by Theorem 5-11, p — q + r — 2; we re- write this as follows:

8 = 4p + 4r - 2q - 2q

= (4 - h)rh + (4 - k)vk.

But also, hr^ = kv^, since both = 2q, by Lemma 5-17. Of the nine
possibilities for (h,k] in positive integers, only the following satisfy
both of the above equations in rh and v^ : (h, k] =

(i) (3, 3); TS = i>3 = 4 (the tetrahedron]
(ii) (3,4);r3 = 8,1*4 = 6 (the octahedron]

(iii) (3,5);r3 = 20, f 5 = 12 (the icosahedron]
(iv) (4, 3);r4 = 6,1/3 = 8 (the hexahedron; i.e. the cube)
(v) (5,3);r5 — 12,i>3 = 20 (the dodecahedron]

This completes the proof. D

The reader may have noticed a certain interchangeability between
the roles of vertices and regions (compare (ii) and (iv) above, (iii) and
(v) above; see Lemmas 5-17 and 5-19, and Theorem 5-14). This is no
accident.

Def. 5-21. Let a connected pseudograph G be 2-cell imbedded in Sk-
The dual pseudograph of G, Dj(G] (relative to this imbedding /), is
given by: the vertices of Di(G] are the regions of G in Sk, and two such
vertices are adjacent if and only if their corresponding regions share a
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K,
(tetrahedron)

(self-dual)

Qa
(hexahedron)

^2,2,2
(octahedron)

(dodecahedron)

(duals)

(icosahedron)

Figure 5-8.

common edge in their boundaries. (Each edge of G is associated with
exactly one edge of £>/((?), which therefore may have loops and multiple
edges.)

For example, Figure 5-8 not only gives the regular polyhedral
graphs, but also indicates duality relationships. Figure 5-9 shows, for
instance, that the tetrahedron is self-dual. Thus, having established
Lemma 5-19 (i), we establish part (ii) by applying (i) to the dual. Sim-
ilarity, having found the hexahedron, we discover the octahedron as its
dual; and so forth.

Although there are only five regular polyhedra (also called the Pla-
tonic Solids], there are infinitely many convex polyhedra, as the classes
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a -..

Figure 5-9.

of all prisms and antiprisms show. The thirteen Archimedean Solids
are also all convex polyhedra. There are many non-convex polyhedra,
some of which are uniform with regard to face structure and vertices,
which have planar graphs as 1-skeletons; see, for example, [W4]. For a
splendid study of orientable polyhedra (of possibly positive genus) with
regular faces, consult B. M. Stewart's Adventures Among the Toroids
[S23].

Def. 5-22. A graph G is said to be 3-polytopal if it is the 1-skeleton
(the graph induced by the vertices and edges) of a convex polyhedron.

Def. 5-23. A graph G is said to be n-connected (n > 1) if the removal
of fewer than n vertices from G neither disconnects G nor reduces G
to the trivial graph K\.

Graphs which are 3-polytopal have been characterized by Steinitz
[S22].

Thm. 5-24. A graph G is 3-polytopal if and only if it is planar and
3-connected.

The next theorem, due to Whitney [W27], applies precisely to 3-
polytopal graphs, by Theorem 5-24.

Thm. 5-25. A 3-connected planar graph is uniquely imbeddable on
the sphere.

One readily verifies that the five planar graphs of Figure 5-8 are
also 3-connected. The following theorem of Weinberg [W3] gives infor-
mation about the automorphism groups of 3-polytopal graphs:
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Thm. 5-26. Let G be 3-polytopal, with q edges. Then | Aut(G)| < 4g,
with equality holding if and only if G is the 1-skeleton of a Platonic
Solid.

The Greeks identified four of the Platonic Solids with the four ba-
sic elements: earth with hexahedron, air with octahedron, fire with
tetrahedron (the sharpest of the solids), and water with icosahedron
(the roundest); the dodecahedron became the all-encompassing uni-
verse. Indeed, it can be shown geometrically that the Platonic solids
nest, sequentially, snugly within one another with the dodecahedron
outermost. The Platonic solids appear in nature, in art, and in games
of chance. The tetrahedron appears as chrome alum, the hexahedron
as sodium chloride (common table salt), and the others as skeleta of
micro-organisms called radiolaria. All five are prominent in the works
of M. C. Escher (see particularly "Reptiles,", where an alligator-like
creature evolves from 2-zto 3-space, giving a triumphant snort upon
surmounting a dodecahedron) and of Salvador Dali (in "The Last Sup-
per", the scene is set within a dodecahedron; in both "Corpus Hy-
percubus" and "Galacidalacideoxyribonucleic acid" , the hexahedron is
featured). Finally, whereas the common die is hexahedral, the other
Platonic solids could be used for games of chance featuring 4, 8, 12, or
20 equally likely outcomes. The dodecahedron is also ideally suited for
desk-calendar paperweights.

For our third application of the euler identity for the sphere (or
plane), we consider Pick's Theorem, which surprisingly calculates cer-
tain areas by a combinatorial-topology approach. By a lattice point in
the plane, we mean a point with both coordinates integers. A simple
polygon is bounded by a simple closed curve.

Thm. 5-27. Let P be a simple polygon placed in the plane with all
vertices at lattice points. Then the area of P is given by

,

where / is the number of lattice points in the interior of P, and B is
the number of lattice points on the boundary of P.

PROOF. The simple polygon P, regarded as a plane graph, is the
cycle CB- Augment this graph with the / vertices inside P, and then
add edges (joining lattice points) inside P so as to subdivide the interior
into triangles, each having area |. (It is always possible to do this; see
Problem 5-16.) This yields a plane graph with p = I + 5, r regions,
and, since 2q = 3(r - 1) + B by Lemma 5-17 (iv), q = \(r - 1) + f .
Now, we seek area A = |(r — 1), since we exclude the exterior region.
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But p — q + r = 2, so

and

D

5-5. Pseudosurfaces

We now consider topological spaces akin to surfaces, but which
fail to be 2-manifolds at a finite number of points; these spaces form
additional candidates for the imbedding of graphs, and were studied
extensively by Petroelje [P5].

Def. 5-28. Let A denote a set of ]C*=1
 nirni ^ 0 distinct points of

Sk-, with 1 < mi < 7TT-2 < • • • < rat. Partition A into HI sets of ra^
points each, i — 1,2, • • • , t. For each set of the partition, identify
all the points of that set. The resulting topological space is called a
pseudosurface, and is designated by .S(fc;rai (mi), 712(7712), • • • ,nt(mt}).
Each point resulting from an identification of rrii points of Sk is called a
singular point. If a graph G is imbedded in a pseudosurface, we assume
that each singular point is occupied by a vertex of G; such a vertex
is called a singular vertex. A generalized pseudosurface results when
finitely many identifications, of finitely many points each, are made on
a topological space of finitely many components, each of which is a
pseudosurface, with a connected topological space resulting.

Thm. 5-29. Let G be a graph having a 2-cell imbedding in

then

The number 2 —2k — £)*=i ni(rrii — 1) is said to be the characteristic
for the pseudosurface, and is a topological invariant, just as 2 — 2k is
for the surface SK-

5-6. Problems

5-1.) A forest is a graph for which every component is a tree. Show
that, if G is a forest with p vertices, q edges, and k components,
then p = q + f ( k ) , where f(k) must be determined.
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5-2.) Let G, a graph with p vertices, q edges, and k components, be
imbedded in the sphere, with r regions. Show that p — q + r =
g(k), where g(k) must be determined. Illustrate, for G = 2K4:.
For what value of k will the imbedding be 2-cell?

5-3.) Prove Corollary 5-12.
5-4.) Verify that f ( x , y, z) — (^, ^, 0) gives the stereographic pro-

jection.
5-5.) Show that K^ is not planar.
5-6.) Prove Lemma 5-19 (ii), without using duality.
5-7.) Where might the proof of Theorem 5-14 break down, for graphs

(instead of pseudographs)?
5-8.) Consider the 2-manifolds in Figure 5-3. Determine in which of

these K5 can be imbedded. For each 2-manifold, compute the
characteristic. Note that the characteristics agree for the torus
and the klein bottle; are these two homeomorphic? Why? The
characteristics also agree for the mobius strip and the projective
plane; are they homeomorphic? How about the sphere and the
cylinder?

5-9.) Show that the two symbolic representations ab~lab (as in Figure
5.3) and ai<2ia2a2 (as in Theorem 5-5 (iii)) both give the klein
bottle. (Hint: cut along an appropriate diagonal of the rectangle
<2i<2ia2a2 and then make an appropriate identification to obtain
the rectangle ab~lab.)

5-10.) For G the 1-skeleton of a Platonic Solid, show that | Aut(G)| =
4q.

5-11.) The wheel graph Wm is defined as the join (see Definition 2-16)
K\ + Cm-i,m > 4. Show that | Aut(Wm)| < 4g, with equality
holding if and only if ra = 4. Is this consistent with Theorem
5-26?

5-12.) *Give an example to show that two pseudosurfaces with the same
characteristic can be non-homeomorphic (compare the situation
for surfaces). Find a formula that gives, for n > —2, the number
of non-homeomorphic pseudosurfaces with characteristic — n.

5-13.) Prove Theorem 5-29 and then extend it to generalized pseudo-
surfaces.

5-14.) Into how many regions is the plane R2 divided, by n lines in
general position (i.e. no two lines parallel, no three lines con-
current)'? The answer can be conjectured inductively and then
proved using mathematical induction, but try to obtain it di-
rectly by using the euler identity and stereographic projection.

5-15.) Verify Pick's Theorem, for (i) m x n rectangles; (ii) isosceles right
triangles of side length n.

5-16.) *Complete the proof of Pick's Theorem, by showing that the
interior of p can always be subdivided, using line segments joining
lattice points, into triangles of area |.
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5-17.) *Now show that the euler identity for the plane can be derived
from Pick's Theorem. Thus the two identities are equivalent.

5-18.) Show that a plane graph of order p and size q satisfies q < 3p — 6,
with equality if and only if r = r%.



CHAPTER 6

IMBEDDING PROBLEMS IN GRAPH THEORY

Recall from Definition 2-1 that a graph is an abstract mathematical
system. It is when we concern ourselves with the geometric realization
of a graph as a finite one-dimensional complex that imbedding prob-
lems arise. There are practical applications for this view of graphs.
For instance, we will see in Chapter 8 that one of the truly famous
problems in mathematics can be stated in terms of imbedded graphs.
As another example, imagine the task of printing an electronic circuit
on a circuit board. Associated with the circuit (in an obvious manner)
is a graph, and the circuit can be printed without shorts if and only if
the associated graph can be imbedded in the plane. What to do if the
graph is not planar will be considered in this chapter.

What do we mean by "the geometric realization" of a graph? In
this section, we will normally mean a configuration in E3, where the
vertices of the graph are represented by distinct points, and the edges
of the graph by arcs; two arcs intersect only at a point representing
common end vertices of the corresponding edges. A natural question
is: "In what subspaces of M3 will a given graph imbed in this manner?"
We will confine our attention to the following subspaces:

(i) R3 itself
(ii) R2

(iii) n-books (see definition below)
(iv) surfaces
(v) pseudosurfaces

(vi) generalized pseudosurfaces.

Def. 6-1. An n-book is the cartesian product of the unit interval with
a geometric realization of the graph Ki>n-

That is, an n-book consists of n rectangles (the pages) joined along
a common edge (the spine).

6-1. Answers to Some Imbedding Questions

The imbedding question has been completely answered for (i), (ii),
and (iii), as the next three theorems indicate. We will also need some

49
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definitions. In the sequel, the term "graph" will be used interchange-
ably, to represent either the abstract mathematical system, or a real-
ization of this system in M3. The context should make it clear which
use is intended.

Thm. 6-2. If K is a countable and locally finite simplicial complex,
with dimJ^ < n, then K has a realization (i.e. a linear imbedding) as
a closed subset in M2n+1.

(See Spanier [Sll] for a discussion of this theorem.)

Cor. 6-3. Any finite one-complex is imbeddable in R3.

Note that Corollary 6-3 indicates that any graph may be imbedded
in R3, and in such a way that every edge is represented as a straight
line segment.

Another way to see this is as follows. Let C be the curve in M3

determined by the parametric equations x = t, y = t2, z = t3 (t > 0).
Select p distinct points along C to represent the vertices of G and
represent the q edges of G as straight line segments joining these points
appropriately. Since no four points on C are coplanar (see Problem 6-
2) C meets any plane in M3 at most three times, and no two edges of
G intersect extraneously.

Def. 6-4. An elementary subdivision of an edge uv of a graph is the
deletion of edge uv, the addition of a new vertex w, and the addition
of two new edges, uw and wv.

Def. 6-5. A graph G is said to be homeomorphic from a graph H if G
can be obtained from H by a (finite) sequence of elementary subdivi-
sions. (We say that G is a subdivision of H.) G\ and G^ are said to be
homeomorphic with each other if they are both homeomorphic from a
common graph H.

Note that G\ is homeomorphic with GI in the graph-theoretical
sense defined above if and only if realizations of G\ and G% in R3 are
homeomorphic in the topological sense (see Problem 6-1.)

The next theorem is one of the most important in all of graph
theory; it is due to Kuratowski [K4]. Note that the necessity of the
condition follows from Theorem 5-18 and Problem 5-5.
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Thm. 6-6. A graph G is planar if and only if it contains no subgraph
homeomorphic with either K5 or K^3.

It is clear that any graph with q edges can be imbedded in a q-
book: place all the vertices along the spine, and use one page for each
edge. However, we can do much better; the following theorem, due to
Atneosen [A13], is rather surprising.

Thm. 6-7. Any graph G can be imbedded in a 3-book.

Note that by Theorem 6-6, we have a criterion for ascertaining if
the third page is needed for a particular graph. Theorem 6-7 can be
proved as follows: as shown in Massey [M3], any closed 2-manifold with
non-void boundary can be represented as a disk with strips attached
in a certain way. Clearly any graph G can be imbedded in a closed
2-manifold with non-void boundary (simply remove an open disk from
the interior of some region, for any Sk in which G can be imbedded;
take k = q, for example). Atneosen showed, very neatly, that any disk
with strips attached as described by Massey can be imbedded in a 3-
book. (An alternate proof has been given by Babai [Bl]: Draw G in
the plane so that all intersections lie on a straight line and no three
edges have a common intersection (except at common end vertices).
Let this line be the spine of the book, and let the plane be the union
of two pages. Then the third page can be readily employed to avoid
each intersection.)

So, it is only for the subspaces (iv), (v), and (vi) of our list above-
that is, the surfaces, pseudosurfaces, and generalized pseudosurfaces-
that the imbedding problem is, in general, unsolved, for non-planar
graphs. Clearly, any graph will imbed on Sk, for k large enough (for
example, take k = q and use one handle for each edge); but this does
not characterize which graphs imbed on Sk, for k fixed. The most
natural problem here might be: for a given graph, find the surface of
minimum genus in which the graph can be imbedded. If the graph
is associated with an electronic circuit, the corresponding problem is:
find the fewest number of holes that must be punched in the circuit
board so that the board can accommodate the circuit. For Cay ley color
graphs, the problem becomes: find the simplest locally 2-dimensional
"drawing board" in which to "paint" a picture of a given group. We will
also see, in Chapter 8, that imbedding certain graphs in appropriate
surfaces will tell us a good deal about map-coloring problems.
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6-2. Definition of "Imbedding"

Let us now give two very careful definitions of "imbedding" (they
are easily seen to be equivalent), and then proceed to study this process
in some detail.

Def. 6-8. Let G be a graph, with V(G) = {vi, v2, • • - , vp} and E(G) =
{#1, X2, • • • , xq}- Let M be a 2-manifold. An imbedding of G in M is a
subspace G(M) of M such that

where

(i) v1(M), • • • , vp(M) are distinct points of M
(ii) xi(M), • • • , Xq(M) are M mutually disjoint open arcs in M

(iv) if Xj = { V j i i v j 2 } ) then the open arc Xj(M) has ^ji(M) and
as end points; j = 1, • • • , q.

In the above definition, an arc in M is a homeomorphic image of
[0,1]; an open arc is an arc less its two end points, the images of 0 and
1.

Equivalently (and much more briefly) we have:

Def. 6-8'. The graph G can be imbedded in the 2-manifold M if the
geometric realization of G as a one-dimensional simplicial complex is
homeomorphic to a subspace of M.

6-3. The Genus of a Graph

Imbedding questions (iv) in this chapter leads directly to:

Def. 6-9. The genus, 7(G), of a graph G is the minimum genus among
all surfaces in which G can be imbedded.

For example, if G is planar then we write 7(G) = 0. If 7(G) = /c,
k > 0, then G has an imbedding in £&, but not in Shi for h < k.
Moreover, G imbeds in 5m, for all m > k (merely add ra — k handles
to an imbedding of G in Sk).
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As mentioned above, it is clear that every graph has a genus. Let
G have q edges; then place the vertices of G on the sphere, and add
one handle for each edge. Thus j(G) < q.

Def. 6-10. An imbedding of a graph G in a surface Sk is said to be a
minimal imbedding if j(G) = k.

The next result is extremely useful, as it tells us that the euler
identity applies for any minimal imbedding of a connected graph. For
a complete proof, see [Yl].

Thm. 6-11. If a connected graph G is minimally imbedded in a sur-
face, then the imbedding is a 2-cell imbedding.

Heuristic Argument: We assume (without loss of generality) that
every vertex of G lies on the sphere. Hence only edges can be imbedded
on the handles. Suppose that R is a non-2-cell region. Then there is a
simple closed curve C in R which cannot be continuously deformed, in
R, to a point. If j(G) = 0, C divides SQ into two parts (by the Jordan
curve theorem), each of which must contain a vertex of G. But then G
would be disconnected. Hence j(G) > 1. We consider three cases:

Case (i):: If C lies entirely on one handle, we cut the surface along (7,
cap the two resulting holes, and obtain an imbedding of G in 57(G)-i,
a contradiction.

Case (ii):: If C lies entirely on the sphere, we regard the "sphere"
portion of the surface as a handle, and apply case (i).

Case (iii):: If C lies partially on some handle H and partially on
S^(Q) — H, we redraw the edges of G formerly carried by H along
that portion of C lying in S^G) ~ H; we obtain an imbedding of G on
the surface without using handle H, the final contradiction.

The corollary below follows directly from Theorems 5-14 and 6-11.

Cor. 6-12. If a connected graph G has a minimal imbedding in 5fc,
with p vertices, q edges, and r regions, then
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The next two corollaries are often helpful in computing the genus
of a graph. We require two new terms.

Def. 6-13. A 2-cell imbedding is said to be a triangular (quadrilateral)
imbedding if r — r3(r — r^).

Cor. 6-14. If G is connected, with p > 3, then, 7(G) > §-§ + !•
Furthermore, equality holds if and only if a triangular imbedding can
be found for G.

PROOF. Let G be imbedded in S7(G), so that p — q + r = 2 —27(6?).
Since 1q > 3r, with equality if and only if r = r$ (see Lemma 5-17),
the result is immediate. D

Cor. 6-15. If G is connected, with p > 3, and has no triangles, then
l(G] > f ~ f + 1- Furthermore, equality holds if and only if a quadri-
lateral imbedding can be found for G.

PROOF. (The proof is entirely analogous to that of Corollary 6-
14). n

The next corollary will be heavily used in the remainder of this
chapter.

Cor. 6-16. If G is a connected bipartite graph having a quadrilateral
imbedding, then 7(G) - f - \ + 1.

PROOF. Apply Theorem 2-19 and Corollary 6-15. D

We have shown (among other things) that, for connected graphs,
minimal imbeddings are 2-cell imbeddings. Two questions arise: (i)
What about minimal imbeddings of disconnected graphs? (ii) Are
there 2-cell imbeddings which are not minimal? We discuss these two
questions briefly.

Def. 6-17. Given a connected graph G, a cut-vertex is a vertex v such
that G — v is disconnected. A block is a maximal connected subgraph
of G having no cut-vertices.

For example, the graph in Figure 6-1 has two blocks, both isomor-
phic to K4; v is a cut- vertex for this graph. Note that a block is either
K<2 or is 2-connected.
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Figure 6-1.

The next theorem and its corollary are due to Battle, Harary, Ko-
dama, and Youngs [BHKY1], and are presented without proof.

Thm. 6-18. The genus of a connected graph is the sum of the genera
of its blocks.

Cor. 6-19. The genus of a graph is the sum of the genera of its com-
ponents. (i.e., let G = (JILi Gi- then 7(G) = E^i

6-4. The Maximum Genus of a Graph

That there exist 2-cell imbeddings which are not minimal is evident
from Figure 6-2, which shows K± in Si. Note that the euler identity
still applies here (4 — 6 + 2 = 0). It is clear that no imbedding of
a disconnected graph can be a 2-cell imbedding. To describe all 2-
cell imbeddings of a given connected graph, we introduce the following
concept:

Figure 6-2.

Def. 6-20. The maximum genus, JM(G], of a connected graph G is
the maximum genus among the genera of all surfaces in which G has a
2-cell imbedding.

Duke [D6] has shown the following:

Thm. 6-21. If a graph G has 2-cell imbeddings in Sm and Sn, then G
has a 2-cell imbedding in 5^, for each k, m < k < n.



56 6. IMBEDDING PROBLEMS IN GRAPH THEORY

Cor. 6-22. A connected graph G has a 2-cell imbedding in Sk if and

An upper bound for IM(G) is not difficult to determine.

Def. 6-23. The Betti number /3(G), of a graph G having p vertices, q
edges, and k components, is given by : B(G) = q — p + k.

(3(G) is sometimes called the cycle rank of G; it gives the number of
independent cycles in a cycle basis for G; see Harary [H3, pp. 37-40].

Recall that \_x\ denotes the greatest integer less than or equal to
x\ \x\ gives the least integer greater than or equal to x. Both symbols
will be used frequently in the remainder of this chapter.

Thm. 6-24. Let G be connected; then ~fM(G) < - Moreover,
equality holds if and only if r — I or 2, according as B(G] is even or
odd, respectively.

PROOF. Let G be connected, with a 2-cell imbedding in 5^; then
r > 1, and B(G) = q — p + 1; also p — q + r — 1 — 2k] thus

2

and the results follows. D

Nordhaus, Stewart, and White [NSW1] showed that equality holds
in Theorem 6-24 for the complete graph Kn\ Ringeisen [R9] showed
that equality holds for the complete bipartite graph A"m;n; and Zaks

[Zl] showed that equality holds for the n-cube Qn (if ^M(G] —

G is said to be upper imbeddable ).

Thm. 6-25.

Thm. 6-26.

Thm. 6 - 2 7 . .

Moreover, Kronk, Ringeisen, and White [KRW1] established:
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Thm. 6-28. All complete n-partite graphs are upper imbeddable.

Also, Ringeisen [R8] found JM(G) for several classes of planar
graphs (7, including the wheel graphs and the regular polyhedral
graphs.

Nordhaus, Ringeisen, Stewart, and White combined [NRSW1] to
establish the following analog to Kuratowski's Theorem (Theorem 6-
6): (The graphs H and Q are given in Figure 6-3.)

Thm. 6-29. The connected graph G has maximum genus zero if and
only if it has no subgraph homeomorphic with either H or Q. (Fur-
thermore, r(G) = r M ( G ] if and only if JM(G) — 0 if and only if G is a
cactus with vertex-disjoint cycles.)

Q-

Figure 6-3.

Def. 6-30. A cactus is a connected (planar) graph in which every block
is a cycle or an edge.

Def. 6-31. A splitting tree of a connected graph G is a spanning tree
T for G such that at most one component of G — E(T) has odd size.

The following characterization is due, independently, to Jungerman
[J9] andXuong [X2].

Thm. 6-32. A graph G is upper imbeddable if and only if G has a
splitting tree.

Thus, for example, we get an immediate proof of Theorem 6-25
merely by taking T — K^n-i.

Nebesky [Nl] has given a sufficient condition for upper imbeddabil-
ity. First, we need

Def. 6-33. A graph G is said to be locally connected if, for every v 6
V(G), the set NG(V) of vertices adjacent to v is non-empty and the
subgraph of G induced by NG(V) is connected.
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Thm. 6-34. If G is connected and locally connected, then G is upper
imbeddable.

Although no workable formula is known for the genus of an arbitrary
graph, Xuong [XI] developed the following result for maximum genus.
Let £o(H] denote the number of components of graph H of odd size,
and for G connected set

the minimum being taken over all spanning trees T of G. Then:

Thm. 6-35. The maximum genus of the connected graph G is given
by

6-5. Genus Formulae for Graphs

Prior to the work of Jungerman and Xuong, Theorems 6-25, 6-26,
6-27, and 6-28 and the work of Ringeisen [R8] referred to above gave the
only known non- trivial formulas for maximum genus. Not very many
more formulas were known for the genus parameter prior to 1978; we
list some of these below. For most of what else was known up to that
time, see Table 1 of Stahl [S14].

Thm. 6-36. (Ringel [R12]; Beineke and Harary [BH1])

.

Thm. 6-37. (Ringel [R13])

Thm. 6-38. (Ringel and Youngs [RY1])

Thm. 6-39. (White [W5]; see also [RY5], for the case m = 1)

Thm. 6-40. (Stahl and White [SW2])
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Thm. 6-41. (Stahl and White [SW2])

Thm. 6-42. (Jungerman [J7]; see also Carman [Gl])

Thm. 6-43. (Jungerman and Ringel [JR4]; see also Gross and Alpert

. T h m . 6-44. (Ringel [R18])

Thm. 6-45. (White [W7]) Let G have p vertices of positive degree, q
edges, k non-trivial components, and no 3-cycles. Let H have 2n(n > 1)
vertices and maximum degree less than two. Then ^(G[H]} — k +
n(nq — p).

Cor. 6-46. Let G have no 3-cycles. Then i(G[K2]) = l(G[K2]) =

The special case of Theorem 6-45 when G is bipartite, p > 3, and
H = Km has been generalized to include m odd, by Abu-Sbeih and
Parsons [API].

The genus of a graph is typically determined as follows: first a lower
bound is calculated, using Corollary 6-12 or one of its two refinements
(Corollaries 6-14 and 6-15). Then a specific imbedding is constructed to
attain that lower bound. If a class of graphs is being studied, a general
construction (perhaps using mathematical induction) is sought. The
construction employed is usually of one of the three forms:

(1) surgery;
(2) lifting (of a current or voltage graph imbedding);

or, as a last resort
(3) generating a rotation scheme by ad hoc methods.

Surgery is often useful for graphs which can be factored as a graph-
ical product; see for example Theorems 6-36 and 6-45 above. (We will
give a surgical proof for the first of these shortly.) Lifting is often ap-
propriate for graphs with a high degree of symmetry, especially those
which are Cayley graphs for a suitable group; see for example Theorems
6-38 and 6-40 through 6-44 above. (This method will be discussed in
detail in Chapters 9 and 10.) If all else fails, ad hoc methods can be
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tried, such as for Theorems 6-37 and 6-39 above. (Rotation schemes
will be introduced in Section 6-6.)

Now we present the Beineke/Harary proof, using surgery, of Theo-
rem 6-36: For n > 1, ~/(Qn) = 1 + 2n~3(n - 4). The idea of the proof
extends readily to many other cartesian product graphs; see Chapter
7, [W6], [P6], [P8], [C9], [Al], for example.

PROOF, (i) For Qn,p = T and q = n2n~l (since 2q = nT). By
Problem 2-4 and induction, Qn is bipartite; thus by Corollary 6-15,

.

(ii) By Corollary 6-16, it will suffice to construct a quadrilateral
imbedding for Qn, n > 1. To facilitate the inductive proof, we claim
more than might seem necessary. Let P(n) be the proposition that Qn

has a quadrilateral imbedding, including 2n~2 regions that partition
V(Qn)- We establish P(n), n > 1, by mathematical induction.

The anchor for n = 2 is immediate, as Qi imbeds nicely in SQ as a
4-cycle.

Now assume -P(n), n > 1, and consider Qn+i = K^ x Qn. Start with
two disjoint copies of Qn, identically vertex- labelled, each imbedded
in accordance with P(n) (with the 2n~2 special regions from the two
copies agreeing as to vertex labels), but with one imbedding being the
mirror image of the other. Now excise an open disk from the interior
of each special region, and attach topological cylinders between disk
boundaries for each corresponding pair of special regions. Imbed four
new edges over each cylinder, in the manner depicted in Figure 6-4.
In aggregate, this provides precisely the 4 • 2n~2 = 2n additional edges
needed to complete Qn+i = K2x Qn- We have destroyed 2 -2n~2 = 2n-1

old quadrilateral regions, but created 4 • 2n~2 = 2" new ones. Thus
we have a quadrilateral imbedding of Qn+\. Now, from each added
cylinder, select either pair of opposite new regions; in Figure 6-4 we
have selected (by shading) the top and bottom regions. This yields the
2 • 2n~2 = 2n~l special regions needed to complete the verification of
P(n + l).

D

It follows from Corollary 6-16 that the genus of the surgically-
constructed surface for Qn+i is 1 + 2n~2(n — 3). But we can verify
this independently. We commenced with two disjoint surfaces, having
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Figure 6-4.

2(14-2n~3(n —4)) handles in all. The first cylinder added produces one
(connected) surface of that genus; we then added 2n~2 — 1 additional
handles to that surface, for a total genus of:

This illustrates the charm of surgical procedures: one can readily visu-
alize the handles (equivalently the holes) of the surface constructed.

We note that the genus is known for all complete graphs (Theorem
6-38) and all complete bipartite graphs (Theorem 6-37), but results
are only partial for complete tripartite graphs-even after 30 years of
study of the genus parameter. Perhaps this is because, for Ka,b,c, with
a > b > c, r 7^ r3 unless a — b ~ c; in fact, r% < 26c, as every 3-cycle
contains a vertex from each partite set. The remaining regions should
be as nearly quadrilateral as possible. This leads to the lower bound
of the following lemma:

Lemma 6-47. For a > b > c, (q-2)(b+c-2)
4

We conjecture that equality holds. This conjecture is largely af-
firmed, by Theorems 6-39, 6-40, and 6-41, and especially by work of
Craft [C9], who developed new surgical procedures for imbedding non-
regular complete tripartite graphs (even though they are not graphical
products; compare Kn^n = K3[Kn]}. Here is one of Craft's results:

Thm. 6-48. Let a, 6 and c be positive integers with a > b > c. If
either:

(i) b + c is even and a > 26
or

(ii) b + c is odd and a > 4max{6/, c} + 2, where b' is the smallest
integer such that b' > | and 6' + c = 2 (mod 4),
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then

We mention that Bouchet [B16] has studied 7(^n(m))) using "gener-
ative m- valuations." He considered the residue classes of n (mod 12)
and m (mod 6) and determined 7(Kn(m)) for 32 of the 72 cases, by
constructing triangular imbeddings.

Parsons, Pisanski, and Jackson ([PPJ1]) and [JPP1]) employed
"wrapped quasi-coverings" to establish:

Thm. 6-49. Let G have a triangular imbedding in So; then there are
infinitely many n e N such that G(Kn) has a triangular imbedding.

Finally, we comment that Jackson [Jl] has constructed triangular
imbeddings, as branched covering spaces (see Section 10-1), for some
complete n-partite graphs of the form K((n — 2)m, m, • • • , ra).

6-6. Rotation Schemes

Before leaving the theory of graph imbeddings and considering spe-
cific imbedding problems, we present a powerful tool for solving such
problems: the Edmonds' permutation technique ([El]; see also Youngs
[Yl].) This amounts to an algebraic description, for every 2-cell imbed-
ding of a graph G. It is used, in one form or another, in the proofs of
many of the theorems listed above.

Denote the vertex set of a connected graph G by V(G) =
{1 ,2 , - - - ,n}. For each i e V(G), let V(i) = {k e V(G)\{i,k} €
E(G)}. Let pi : V(i) —> V(i) be a cyclic permutation on V(i), of length
U{ = \V(i}\] Pi is called the rotation at i. The set {pi,p2, • • • ->Pn} of ro-
tations is called a rotation scheme, or rotation system. Then there is a
one-to-one correspondence between 2-cell imbeddings of G and rotation
schemes for G, given by:

Thm. 6-50. Each choice {pi,--- ,pn} determines a 2-cell imbedding
G(M) of G in a surface M, such that there is an orientation on M
which induces a cyclic ordering of the edges {i, k} at i in which the im-
mediate successor to {i,k} is (i,pi(fc)}, i — ! , • • • ,n. In fact, given
{pi-,'" ,Pn}j there is an algorithm which produces the determined
imbedding. Conversely, given a 2-cell imbedding G(M) in a surface
M with a given orientation, there is a corresponding {pi, • • • ,pn} de-
termining that imbedding.
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PROOF. Let D* = {(a, 6)|{a, 6} € E(G)}, and define P* : D* -> £>*
by: -P*(a, 6) = (6,pb(a)). Then P* is a permutation on the set D*
of directed edges of G (where each edge of G is associated with two
oppositely-directed directed edges), and the orbits under P* determine
the (2-cell) regions of the corresponding imbedding. These regions may
then be "pasted" together with (a, 6) matched with (6, a) as in Figure
6-5 - to form a surface M in which G is 2-cell imbedded. (Since every
edge (a, b) in the boundary of a given region is matched with an edge -
(6, a) - in the boundary of another (or possibly the same) region, M is
closed. Since (a, 6) is matched with (b, a) - and not with (a, 6) - M is
orientable. Since each pi is a cyclic permutation, M is a 2-manifold.)
The genus of M may now be determined by the euler formula, with
r given by the number of orbits under P*. The converse follows from
similar considerations. D

As an example, consider the imbedding of K^3 in Si depicted in
Figure 6-6. Let V(K3 3) = {1, 2, 3, 4, 5, 6}, with V(l) = V(2) = V(3) =
{4,5,6}; V(4) = F(5) = V(6) = {1,2,3}. Then

Pi: (4, 5, 6) p 4 : ( l ,2 ,3)

P 2 : (4 ,5 ,6) P5 = (1,2, 3)

Ps: (4, 5, 6) p 6 : ( l ,2 ,3)

describe this imbedding. The orbits under P* are:

(1) (1,5)(5,2)(2,6)(6,3)(3,4)(4,1)
(2) (5,1)(1,6)(6,2)(2,4)(4,3)(3,5)
(3) (2,5)(5,3)(3,6)(6,1)(1,4)(4,2).

(Note that P*(4,l) = (1,5); P*(3,5) = (5,1); P*(4,2) = (2,5).)

As a matter of notation, from this point on, we will abbreviate an
orbit such as (1) above by: 1-5-2-6-3-4; it is implicit that p4(3) = 1,
and i4 = 5.

A(2)

/

(3)-\
4

3s
(3)

/ (2)v f
1 5]

(1)
6 2

C *

(2)

(3)'

V
Figure 6-6.

It now follows that the genus of any connected graph (and hence,
by Corollary 6-19, of any graph) can be computed, by selecting, from
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among the HiLil71* ~ -0' possible permutations P* (i.e. rotation
schemes), one which gives the maximum number of orbits, and hence
determines the genus of the graph (component). (Since, by Theorem
6-11, a minimal imbedding must be a 2-cell imbedding, it corresponds
to some P*; by Corollary 5-15, r will be maximal for this imbedding.)
The obvious difficulty in applying this procedure is that of selecting a
suitable P* from the (usually) vast number of possible ordered n-tuples
of rotations pi.

Stahl has studied "permutation pairs" as a purely combinatorial
generalization of graph imbeddings, and his powerful approach suffices
to establish many of the classical results (Theorems 6-18 and 6-21, for
example) as well as to obtain new information about the genus of the
amalgamation of graphs; see [S15], [S17], [S18], and [S19].

6-7. Imbedding Graphs on Pseudosurfaces

In Section 5-5 we introduced the pseudosurfaces
i(mi), • • • , nf(rat)). Recall that for any imbedding of a graph

G in a pseudosurface 5", we assume that each singular point of S' is
occupied by a (singular) vertex of G. The number 2—2k—X)*=i ni(m>i —
1} gives the characteristic of S', denoted by x'(S'}-

Def. 6-51. The pseudocharacteristic, x'(G), of a graph G is the largest
integer x(S") for all pseudosurfaces 5" in which G can be imbedded. The
generalized pseudocharacteristic, x"(G), is the largest integer x(S")
such that G imbeds in the generalized pseudosurface S".

Of course, since G has no loops, r\ = 0. But we also require TQ — 0
(else we could identify arbitrarily many K\ in So at any given vertex,
and x"(G] would be unbounded) and r^ — 0 (else, by imbedding each
edge in its own sphere and then identifying the various images of each
vertex, we would have r — q and x"(G] = p).

A surface can be considered as a (degenerate) pseudosurface, and a
pseudosurface as a (degenerate) generalized pseudosurface. Hence we
have

The second inequality may be strict (i.e. pseudosurfaces may be more
efficient, from the point of view of maximizing characteristic, for imbed-
ding graphs into); for example \'(K5} = 1, as Figure 6-7 shows. (Now,
see Problem 6-13.)

Petroelje [P5] found that many of the basic theorems for imbedding
graphs in surfaces carry over for pseudosurfaces. For example:
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Figure 6-7.

Thm. 6-52. Let G be a connected graph minimally imbedded in the
pseudosurface 5'; then the imbedding must be 2-cell.

Thm. 6-53. If G(p, q) is connected, then x'(G) < p— f; equality holds
if and only if G has a triangular imbedding in some pseudosurface.

Petroelje also developed an analogue of Edmonds' permutation
technique for pseudosurfaces (the permutations pi are no longer re-
quired to be cyclic; see Problems 6-9 and 6-10.)

Thm. 6-54.

(This is consistent with Theorem 6-42 that, for n / 3, ̂ (Kn nnn) =
(n-1)2.)

Thm. 6-55. x'(^2m:2n,r) = 2(ra + n — ran) - r(m — 1), where 2m >
2n > r > 1.

Ringeisen and White [RW1] showed:

Thm. 6-56.

In the cases where ra and n are both even or either m or n =
2 (mod 4), the pseudocharacteristic agrees with the characteristic of
Theorem 6-37; in all other cases, x'(Km,n) — x(Km,n] + 1- That is, in
terms of pseudocharacteristic these imbeddings are more efficient than
those for the genus case.

Thm. 6-57.
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Generalized pseudosurface imbeddings will have relevance in Chap-
ter 12.

6-8. Other Topological Parameters for Graphs

We have seen that, if a graph is not planar, we can still make a
"proper" drawing of the graph in some surface and/or pseudosurface.
Two common topological parameters (other than genus) which arise if
modified drawings are allowed are the thickness and crossing number.

Def. 6-58. The thickness 0(G) of a graph G is the minimum number
of planar subgraphs whose union is G. (The union is usually taken over
spanning subgraphs).

For sample formulae we have:

Thm. 6-59. (Beineke and Harary [BH2]; Alekseev and Gonchakov
[AG1]; VasakfVl])

0(Kn) =
n + 7

6

Thm. 6-60. (Beineke [B5])

, except that 0(K9) = 0(KW) = 3.

Thm. 6-61. (Kleinert [Kl])

Some thickness results have been obtained for surfaces of positive
genus.

Def. 6-62. The thickness On(G) of a graph G is the minimum number
of subgraphs, each imbeddable on Sn, whose union is G.

Thus 0(G} = BQ(G}. The nonorientable thickness 8n(G}(n > 0) is
defined similarly, for Nn.

Thm. 6-63. (Beineke [B6] and [B7])

For n > 3:
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(i) ~e,(Kn) =
(ii) <?!(*„) =

(iii) 02(Kn) =

n+5
6 J

n+4
6 J

n+3

Thm. 6-64. (Beineke [B5]) For n > 2;

(l)Ol(Kn,n)=[^\-

(ii) e2(Kn,n) = 92(Kn,n) = ei(Kn,n) =
(w)03(Kntn)=[*&\.

Thm. 6-65. (Anderson [A4], [A5], [A6])

(ii) 6i(K^(n-)} = ^2^, for n an odd prime.

) ~ L V j

Def. 6-66. The crossing number v(G] of a graph G is the minimum
number of pairwise intersections of its (open) edges, among all drawings
of G in the plane.

One might say that the crossing number tells us, if we insist upon
drawing G on SQ, just how bad this drawing must be. For this pa-
rameter, exact values are scarce; we mention the following bounds (see
[G12]):

Thm. 6-67. v(Kn) < \ [f J [*=±\ [*=*\ |_^J; equality holds for n <
10.

Thm. 6-68. v(Km,n) < [f J |_^f±j [fj |_*fij; equality holds for m <
6, where m < n.

As an indication of the kind of techniques that might be employed,
we prove the following:

Thm. 6-69. ^(#3,2,2) = 2.

PROOF. Suppose ^(^3,2,2) = x> Since A"3)3 is a subgraph of
-^3,2,2,7(^3,2,2) > 1 (by Problem 5-5 and the hint for Problem 6-4).
Thus x > 1. Consider such an optimal drawing of ^3,2,2 in -Sol this
gives rise to a plane graph G, with p = 7 + x, #=16 + 2#, and r ^ r^.
(If r = r3 the configuration in Figure 6-8a, which must exist since
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x > 1, must correspond to the configuration in Figure 6-8b, which can-
not occur in any complete tripartite graph.) Hence 2q = 32 + 4x >

Thus < x, so that x > 2.
f

n

(a) (b)

Figure 6-8.

Figure 6-9 shows that x < 2, to complete the proof. Figure 6-9
depicts an immersion, not an imbedding (since / : K$ 2 2 ~> So is not
1-1).

Figure 6-9.

A natural extension of the construction in Figure 6-9 gives the fol-
lowing:

Thm. 6-70. v(Km^r) < /(m,n) + /(m,r) + /(n,r), where f(x,y) =

Thm. 6-71. v(Kn,n,n) < f (n - 2)(n - l)2(n + 2); equality holds for

The exact results below are due to Beineke and Ringeisen ([BR1]
and [RBI]), and to Klesc, Richter, and Stobert [KRS1] for (iii):

Thm. 6-72. The following cartesian products have crossing numbers
as indicated:

(i) v(Cz x Cn) = n, for n > 3;
(ii) v(C4 x Cn) = 2n, for n > 4;
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(iii) v(C5 x Cn) = 3n, for n > 5;
(iv) v(K4 x Cn) = 3n, for n > 3.

Other exact results have been found for crossing numbers on sur-
faces of positive genus.

Def. 6-73. The crossing number vn(G) of a graph G is the minimum
number of pairwise intersections of its (open) edges, among all drawings
of G in Sn.

Thus v(G} = vQ(G}. The nonorientable crossing number vn(G)(n >
0) is denned similarly, for Nn.

Thm. 6-74. (Guy and Jenkins [GJ1])

(s - 3)2

12

Thm. 6-75. (Gross [G7])

Let h = (n~1Kn~4) ̂  where n = 1 (mod 4) is a prime power; then
n(n—

= 2

We deduce from Theorem 4-24 that the graphs Qn x K^ are Cayley
graphs for all finite Hamiltonian p-groups (in fact, as we will see in
Chapter 7, these graphs are of minimum genus for these groups.) Prom
Problem 6-14 we see that 7(Qn x ^4,4) = 1 + n2n, and from Problem
11-8 we will learn that the corresponding nonorientable genus is 7(Qn

 x

Thm. 6-76. (Kainen and White [KW1])

Let h = 7(Qn x -^4,4) — m5 and k — ̂ (Qn
 x ^4,4) ~ 2m, with n > 0;

then

(i) vh(Qn x #4,4) = 4m, if 0 < m < 2n.
(ii) vk(Qn x K^) = 4m, if 0 < m < T.

6-9. Applications

For applications of the four basic topological parameters discussed
in this chapter, consider the problem of printing an electronic circuit
on a circuit board. If the associated graph G is planar, one board will
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suffice, without modification. If G is not planar, at least four alterna-
tives are available to avoid short circuits (the choice depending upon
relevant considerations of an engineering and/or economic nature): 1.)
the circuit can be accommodated by drilling holes through the board;
7(6?) gives the minimum number of holes; 2.) some of the vertices can
be printed on both sides of the board, with connections made through
the board between corresponding images of the same vertex; here we
seek the minimum n such that G can be imbedded in the pseudosurface
5(0; n(2)); however, it may occur that no such n exists (see Problem
6-12.) If a given vertex can appear arbitrarily often, with connections
made through the board among corresponding images of the same ver-
tex, and if in addition holes can be drilled as in 1.), then we seek the
value of the parameter x'(G), for maximum efficiency; 3.) If several
circuit boards are used, each containing a planar portion of the circuit,
and jumpers are run between successive boards to connect correspond-
ing images of the same junction, then we are studying the parameter
0(G}; 4.) If the circuit is stamped on one side of one circuit board (with
no holes yet drilled) and if wherever two connections cross extraneously
two holes are now drilled to allow one connection to temporarily pass
to the other side of the board, enabling it to "cross" the second con-
nection while avoiding a short circuit, it is the parameter v(G) that
dictates economy of effort here.

As an example, consider the modified wheatstone bridge circuit of
Figure 6-10(a); the associated graph is G = K^. Figures 6-9(b) - (e)
correspond respectively to: 7(^33) = 1, x'^ss) — 1> #(-^3,3) = 2, and

6-10. Problems

6-1.) Show that two graphs are homeomorphic in the graph-theoretical
sense if and only if their realizations in M3 are homeomorphic in
the topological sense.

6-2.) Show that no four points on C = {(x,y,z) G R3\x = t, y = t2,
z — £3; t > 0} are coplanar.

6-3.) Prove Corollary 6-15.
6-4.) Prove the easy half of Kuratowski's Theorem: If G contains a

Kuratowski subgraph, then G is non-planar. (Hint: show that if
H is a subgraph of G, then 7(#) < 7(G).)

6-5.) Show that the Petersen graph (see Figure 8-8 or Figure 11-4) is
non-planar. What is its genus?

6-6.) Show that Corollary 6-19 follows from Theorem 6-18.
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(e)

6-7.) Show that

(d)

Figure 6-10.

Pi,Pa:(5,6,7,8)
P2,P4 :(8,7,6,5,)
p5,p7:(l,2,3,4)
p6,p8:(4,3,2,l)



72 6. IMBEDDING PROBLEMS IN GRAPH THEORY

describe a 2-cell imbedding of K^ in 5i, with r — r±. Sketch
the imbedding.

6-8.) Give a rotation scheme for the plane imbedding of K^2) given in
Figure 5-8. Then, check that your rotation scheme produces the
imbedding you started with.

6-9.) Label the vertices of Figure 6-7 and then give the corresponding
(non-cyclic) rotation scheme.

6-10.) Sketch an imbedding of K& in the pseudosurface 5(0; 2 (2)). Find
the corresponding (non-cyclic) rotation scheme. How does this
imbedding compare with that of K6 on the torus, in terms of
maximizing characteristic?

6-11.) Why is ^(G) defined as a maximum characteristic, instead of a
minimum genus?

6-12.) Show that G = Kn, n > 13, imbeds on no pseudosurface

6-13.) Can the first inequality following Definition 6-51 be strict also?
6-14.) *Show that j(Qn x #4)4) = 1 + n2n, n > 0.
6-15.) *Find 7(^3,3 x ^3,3). Give both a careful proof and a "visual-

ization" of your genus surface.
6-16.) Let G be a connected graph of order p > 2; show that G2

(V(G2} = V(G), E(G2) = [uv u,v <E V(G\\ < d(u,v) < 2}) is
upper imbeddable, 7Af(Gf2) > ^5 and the lower bound is sharp.



CHAPTER 7

THE GENUS OF A GROUP

To get an accurate and efficient "picture" of a group, we seek a sur-
face of minimum genus on which we can imbed a Cayley color graph of
some presentation of the group. This suggests the following definition.
Let j(C&(r)) denote the genus of the underling graph G&(T) (called
the Cayley graph) determined from CA(F) by removing all arrows and
colors from the edges (recall that, by convention CA(F) has no loops
or multiple edges). Then:

Def. 7-1. The genus of a group F is given by:

where the minimum is taken over all generating sets A for F.

Def. 7-2. A group F is said to be planar if 7(F) — 0.

7-1. Imbeddings of Cayley Color graphs

Finite planar groups have been catalogued by Maschke [M2] (see
also Anderson [A8]). The finite planar groups on one generator are
exactly the cyclic groups Zn; on two generators, they include the dihe-
dral groups Dn, groups of the form Z2 x Zn, 64,^4, and A5 (the last
three groups are the symmetry groups of the regular polyhedra), and
Z2 x A±; on three generators (each must be of order 2) finite planar
groups include Z2 x Dn, Z2 x 64, and 1*2 x A$. In summary:

Thm. 7-3. The finite group F is planar if and only if F = FI x F2,
where FI = Zx or Z2 and F2 = Zn, Dn, 64, Aj, or A5.

We consider infinite groups temporarily, preparatory to establishing
a startling result, due to Levinson [L2]. In this chapter, an infinite
graph is given by:

Def. 7-4. An infinite graph is a graph with denumerable vertex set.

73
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There are two natural (but non-equivalent!) definitions of planarity,
for infinite graphs.

Def. 7-5. An infinite graph is said to be planar if it can be imbedded
in the plane.

Def. 7-5'. An infinite graph is said to be planar if it can be imbedded
in the plane so that the vertex set has no limit points.

We adopt Definition 7-5, for reasons soon to be obvious.

Thm. 7-6. An infinite graph is planar if and only if it contains no
subgraph homeomorphic with K5 or K^-

For a proof of this extension of Kuratowski's theorem, see Dirac and
Schuster [DS1]. To see that this extension does not hold for Definition
7-5', consider the graph of Figure 7-1, where an infinite path is attached
at each vertex of K±. In fact, if we prohibit limit points to the vertex
set, then by the Bolzano- Weierstrass Theorem, no infinite graph imbeds
on any closed 2- manifold.

Figure 7-1.

Def. 7-7. An infinite graph G has infinite genus (j(G] = oo), if, for
every natural number n, there exists a finite subgraph Gn of G such
that (j > n.

Lemma 7-8. Let G be the graph of a presentation of an infinite group
F. Let H be an induced finite subgraph of G. Then there exist two
disjoint, isomorphic copies of H in G.

PROOF. The vertex set of H corresponds to a finite set {#1, • • • , gn}
of elements of F. Form the (finite) set:

Pick x G F — S. Form H*, the subgraph of G induced by {xgi\i =
1, • • • , n}; then H* is isomorphic to H since Qih = QJ if and only if
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xgih — xgj. Now, suppose that v € V(H) n V(H*)\ then there exist i
and j such that xgj = gi, so that x = gig'j1 G 5, a contradiction.

D

We now present Levinson's result.

Thm. 7-9. Let F be an infinite group, with G the graph of a presen-
tation for T. Then either 7(6?) = 0, or 7(6?) = oo.

PROOF. Suppose G is not planar; then, by Theorem 7-6, G contains
K, a Kuratowski (and hence finite) subgraph. Thus 7(G) > 1. Let
n be an arbitrary natural number. But by Lemma 7-8, we can find
a second, disjoint copy of K in G, so that 7(G) > l(2K) = 2 by
Corollary 6-19. Now apply the lemma again, with H = 2K, to obtain
two disjoint copies of 2K in G, so that 7(6?) > 4. Continuing in this
fashion, we eventually find two disjoint copies of 2n~lK in G, so that
7(6?) > 2n > n; then 7(G) — oo, since n was arbitrary. D

For example, 7(G) = oo, for the standard presentation for F =
Z x Z x Z; see Problem 7-9.

Cor. 7-10. Let F be an infinite group; then either 7(F) = 0, or 7(F) =
oo.

In Figure 7-2, portions of planar Cayley color graphs for presenta-
tions of three infinite groups are given. The second group (b) is called
the infinite dihedral group; the third group (c) is the free group on two
generators. For an infinite group having infinite genus, see Problem
7-10.

Returning our attention to finite groups, we produce examples of
groups of positive genus. The following lemma will be useful. Note
that if P gives 7(F), then P may be assumed to have no redundant
generators; i.e. P is minimal. We also note that, in any imbedding of a
Cayley Color graph, every region boundary corresponds to an identity
word.

Lemma 7-11. Let F be a finite group, with 3 /|F|; let A be a minimal
generating set for F. Then C&.(T) contains no triangles.

PROOF. Suppose CA(F) contains a triangle; then we find a closed
walk h"1 h^ h^ = e in CA(F), where hi is a generator in P, and a,i = ±1.
If any two of the hi are distinct, then one of these two is redundant.
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If, on the other hand, hi — h?. = hz, then the GJ all have the same sign
(or else all three = e). But then h\ — e, and 3||r|, a contradiction. D

Ax
xyx

= (x, y\x2 = e = xyxy)

(b)

y'xyQ r = (x, y x2 = y3 = e}

Figure 7-2.

(c)

Now consider Q, the group of the quaternions. Let P be a pre-
sentation for Q, such that 7(Q) = TCC'ACQ)); then P is minimal. By
Lemma 7-11, C&(Q) has no triangles, since |Q| = 8. It is not difficult
to see that A has at least two generators and that if A has exactly
two generators, neither can be of order 2; furthermore, A cannot have
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three generators of order 2 (see Problem 7-1). Thus C&(Q) is regular
of degree at least four. Then 2q > 4p = 32; i.e. q > 16. Now, by
Corollary 6-15,

Then j(Q] = 1 is shown by Figure 7-3, where

The underlying Cayley graph is
group.

. Thus Q is the smallest nonplanar

Figure 7-3.

7-2. Genus Formulae for Groups

We now find a non-trivial genus formula for an infinite class of
groups: those groups (necessarily abelian) in which every element is of
order 2. Let Fn denote this group; then Fn = (Z2)

n, and |F| = 2n.

Thm. 7-12. 7(rn) - 1 + 2n~3(n - 4),n > 2.

PROOF. Fn may be expressed as follows: FI = Iti', Tn = Z2 x Tn-i,
for n > 2. Writing Fn as an iterated direct product in this way, we see
that any P for Fn must have at least n generators; hence 2q > np =
n2n; thus by Lemma 7-11 and Corollary 6-15,

But now let P be determined by repeated application of Theorem 4-21;
then GA(Fn) = Qn, the n-cube, and

7(r») <

by Theorem 6-36. This completes the proof. D
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Let us extend this result somewhat. We will need the following
genus formula, involving (n + 1) parameters. Define the graph Hn as
follows: let HI = C*2TOl, the cycle on 2mi vertices, and recursively define
Hn = Hn^i x C2mn, for n > 2, where each m^ > 2. Let M^ = Hr=i m«-

Thm. 7-13. j(Hn) = I + 2n~2(n - 2)M<n>, n > 2.

PROOF. By Theorem 2-19, Problem 2-4, and a trivial induction
argument, Hn is a bipartite graph. We produce a quadrilateral imbed-
ding for Hn, and compute i(Gn] using Corollary 6-16. For Hn, let p^
and q^ denote the number of vertices and edges respectively. Then
p(n) _ 2nM^; and since Hn is regular of degree 2n, it is a simple
matter to compute q^ = 2nnM^.

Let the statement S(n) be: there is an imbedding of Hn for which
r = r4 = n2n~1M(n), including two disjoint sets of 2n~2M(n) mutu-
ally vertex-disjoint quadrilateral regions each, both sets containing all
2nM(n) vertices of Hn. We claim that S(n) is true for all n > 2, and
we verify this claim by mathematical induction.

That 5(2) is true is apparent from Figure 7-4 (which shows an
imbedding of €4 x CQ in Si), with the regions designated by (1) making
up one set, and those designated by (2) making up the other. We now
assume S(n) to be true and establish S(n + 1), for n > 2.

(2)

(2

(1)

(1)

(2)

(1)

(1)

(2)
)

(1)

(1)

Figure 7-4.

For the graph Hn+\, we start with 2mn+i copies of Hn, minimally
imbedded as described by S(ri). We partition the corresponding sur-
faces into mn+i copies of one orientation, and mn+i copies of the reverse
orientation, corresponding to the vertex set partition of the bipartite
graph C2mn+1 • From each copy, two joins of p^ edges each must be
made, both to copies of opposite orientation, in order to construct
Hn+i. From the statement 5(n), it is clear that these two joins can be
made, each one over 2n~2M^ tubes carrying four edges each. (Attach
one end of a tube in the interior of each region designated by (1) for
one join; use the regions designated by (2) for the second join.) Each
new region formed by this process is a quadrilateral. In this fashion the
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required 2mn+i joins can be made to imbed Hn+\, with r — r±. Now
form one set of regions by selecting opposite quadrilaterals from each
tube added in alternate joins in this construction. Form the second set
by selecting the remaining quadrilaterals on the same tubes. It is clear
that the two sets of regions thus selected are disjoint, and that each
contains (2)(mn+i)(2n-2M(n)) = 2n~1M(n+1) mutually vertex-disjoint
quadrilaterals; both sets contain all 2n+1M(n+1) vertices of Hn+i. Fur-
thermore, r<n+1) - 2ran+1r(

n)+Ar, where Ar = (2mn+l}(2n-2M^)(2),
where 2mn+i joins have been made with 2n~2M^ tubes per join, and
a net increase in r of 2 per tube. Hence,

1M(n)) +2nM(n+1)

= (n + l)2nM(n+1),

and we have established that S(n + l) follows from S(n). Therefore,
S(n) holds, for all n > 2.

We can now compute:

4 2
2n-2(n-2)M(n).

D

For the special case where m; = m, i = 1, • • • , n, we have M^ =
mn, and:

Cor. 7-14. The genus of #im) is given by:

.

Furthermore, if m — 2 in the above formula, since C± — K 2 x
K%,HvP is the 2n-cube, and we obtain the result (compare with The-
orem 6-36):

Cor. 7-15. .

For further results concerning the genus of repeated cartesian prod-
ucts of bipartite graphs, see [W6], and also Pisanski, [P6j.

Now, let rim) be the abelian group with minimal Cayley color graph
H(™\m > 2; i.e. T^ = Z2m, and r(

n
m) = Z2m x T^, for n > 2. Then

we have:
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Cor. 7-16. 7(rir}) - 1 + 2"~2(n - 2)mn.

The reader may wish to combine Theorems 4-18, 4-21, and 7-13
to obtain genus formulae for additional abelian groups. For example,
using the notation of Theorem 4-18, consider F where mr is even. Us-
ing current graph constructions, rather than the surgery techniques of
Theorem 7-13, Jungerman and White [JW1] found the genus of "most"
of the remaining finite abelian groups; the next theorem summarizes
to include previous results as well.

Thm. 7-17. Let F = Zmi x Zm2 x • • • x Zmr, where for 2 < i < r, mi
divides m;_i (and mr > 1, unless |F| = 1.) Let N(T) = 1 + (r~f|r| ;
then

(i) If r = 1, then j(T) = 0.
(ii) If r = 2 and mr = 2, then 7(F) = 0.

(iii) If N(T) is an integer, mr > 3, r > 1, and either mr is even or
r ^ 3, then 7(F) = N(T).

(iv) If r > 3 and for some k, 1 < k < r, k is minimal so that m^ = 2,
then 7(F) - N(T) - (r - k + 1)^.

(v) If 7V(F) is an integer, mr = 3, and 1 < r ^ 3, then 7(F) < N(T).

The argument of Theorem 7-12 can be modified to assist in the
computation of the genus for certain hamiltonian groups; the following
results are due to Himelwright [H8]:

Thm. 7-18. 7(Q x (Z2)n) = n2n + 1.

Thm. 7-19. 7(Q x Zm x (Z2)n) = mn2n + 1, for m odd.

Cor. 7-20. The groups Q x Zm x (Z2)
8, for m odd, have genus asymp-

totic to the order.

By Theorems 4-18 and 4-24, if G is a hamiltonian group, then
G — Q x Zmi x • • • x Zmr x (Z2)n, where the m; are odd (i = 1, • • • , r)
and ra;|mi_i (i — 2, • • • , r). Himelwright has also shown:

Thm. 7-21. The genus of the hamiltonian group Q x Zmi x • • • x Zmr x
(Z2)

n is asymptotic to 2n(r + n — 1) YTi=i m*> i f l < r < n + l.
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There are many open questions in this area. If a generalization of
Theorem 7-13 for products of arbitrary (not necessarily even) cycles
could be found, then the genus of any abelian (and also of any hamil-
tonian) group could be easily computed. What is 7(«Sn)? 7(An)? The
following theorem produces upper bounds for these (and other) group
genera.

Thm. 7-22. If F is finite and is minimally generated by {<?i, , • • • , gn}
and satisfies at least the relations g™* = e = (Yl^=i9j)k, (1 < i < n)
then

PROOF. Select pg = (gg^ gg^\gg2, 99^ , •- , 99n, 99^), for a11 9 €
G. Then, using Edmonds' algorithm (see Theorem 6-50), we compute
orbits as follows:

(i) An orbit containing the directed edge (a,ag^~l) continues with
pag-i(a) — a#i~2; hence this orbit corresponds to the relation
pz

mi = e and has length m*. (If m^ = 2, we draw edges for both
99i = 9' and g'gi = g, obtaining ^ 2-sided regions; for each such
region, the two sides can be identified and the arrows removed,
so that the region is destroyed but the genus is unaffected.)

(ii) An orbit containing the directed edge (a, a<&) continues with
Pagi(a) — a>9i9i+\\ hence this orbit corresponds to the relation
(IljLi 9j}k — e an(i nas length nk. As there are no other orbits,
we find

+rnk

_ ii k

the euler formula now gives the genus 7 of the theorem for this
imbedding of CA(F), for this presentation P for F. Hence 7(F) <
7(cA(r)) < 7.

n

We note that an equivalent formula was obtained by Burnside [B21,
p, 398] in a different context. Theorem 7-22 gives 7(G) exactly, for
F = Zm, Dm, A4, 6*4, A5, Z3 x Z3, or 55, (for example).

We also obtain the following two corollaries:
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Cor. 7-23. 7(5n) < 1 + ̂ ^(n2 - 5n + 2),n > 2.

PROOF. Take s — (123•••n) and t = (12) as generators for Sn;
then sn = t2 = (si)71"1 = e. D

Cor. 7-24.

PROOF. For n odd, s = (12- • -n-2) and t — (In —l)(2n) generate
An, and sn~2 = t2 — (st)n — e. For n even, s — (12 • • -n — 1) and
t = (12)(3n) generate An, with s71'1 = t2 = (si)71"1 = e (see [B19]). D

The two formulas given above for Sn and ^4n respectively were also
found by Brahana [B18], using a different method and in a slightly
different context. For related results, see [W8].

There has been much activity in the study of the genus parame-
ter for groups, in recent years, perhaps at least in part motivated by
Chapter 7 of the first edition of Graphs, Groups and Surfaces. We have
already presented Theorem 7-17. Here is a continued sample of this
research.

Thm. 7-25. (Proulx [Pll])

This improves on Corollary 7-23, for n even. For n odd, a sharper
bound than that of Corollary 7-23 was developed in [W8]; but the next
results detract from the interest that might accrue to the improvement
of bounds for 7(6/1):

Thm. 7-26. (Proulx [P12])

7(^5) = 4-

(The proof is not easy!)

Thm. 7-27. (Tucker [T9])

7(Sn) = 1 + ̂ , for n > 168.

We also find
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Thm. 7-28. (Tucker [T9])

7(AO < 1 + , for n > 168.

During the period 1972-77, Gross [G8], Gross and Lomonaco [GL1],
and White [W8] showed that certain metacyclic and dicyclic groups
are toroidal. Then in 1977 Proulx [Pll] completed work begun by
Baker in 1931 [B4], to classify all toroidal groups in a major effort.
The classification consists of nineteen presentations on two generators,
ten presentations on three generators, and one presentation on four
generators. In the process, Proulx claimed to have found the genus
of each group having order less than 32, except for the group F =
Z3 x Z3 x Z3. This group thus became a focus of attention.

Let 7(F) = 7(C?A(r)), F — Z3 x Z3 x Z3. A minimal generating set
A will have three generators, each of order three, so that G<\(r} will
have at most 27 3-cycles and any imbedding of G&(T] will have r3 < 27
(withp = 27 and q = 81). Corollary 6-14 gives 7(GA(F)) > 1. But if we
incorporate r3 < 27, so that r < 46 (using 2q — 162 and r even), we find
7(GA(r)) > 5. From Theorem 7-22, we find that 7(F) < 10; thus 5 <
7(F) < 10; If we take A = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} as the standard
basis, then by Theorem 4-22 G&(T) — C3 x C3 x C3. Our first attempt
to imbed this graph is by surgery. But efficient surgical procedures for
cartesian products require all factors to be bipartite. This graph misses
badly! (Note that part (iii) of Theorem 7-17 prohibits both m3 = 3
and r = 3.) If we try lifting techniques, we find no improvement on
the upper bound of 10 already obtained. (See Section 10-6.) (The
construction of Theorem 7-22 is actually one of lifting, as we will see
in Chapter 10.)

Thus we turn to the ad hoc generation of a rotation scheme. The
guiding principle is to enforce r3 = 27 and then try to maximize r±. Set
A= (1,0,0), B = (0,1,0), andC = (0,0,1), so that A = {A,B,C}.
Forcing r3 = 27 requires that the rotation at each vertex X of (73 x
C3 x C3 have X + E and X — E adjacent, for each E € A, in one of
the two possible orders. In early 1985, Mohar, Pisanski, Skoviera, and
White [MPSW1] encoded a rotation scheme for C3 x C3 x C3 as follows:

(+A, +B, +C) 000, 111, 222
(-A, -B, -C) 012, 120, 201
(+A, -C, +B) 010, 122
(-A, +C, +B) 020, 112
(+A, +C, -B) 022, 110
(-A, +C, -B) 001, 002, 021, 220, 221
(+A, -C, -B) Oil, 100, 200, 210, 211
(-A, -C, +B) 101, 102, 121, 202, 212
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In this code, +E in the rotation at X is replaced by X — E, X + E;
whereas — E becomes X+E, X — E. For example, if X = 010, then the
code (+A, -C, +B) determines px = (210,110, Oil, 012,000,020). Then
the algorithm of Theorem 6-50 yields an imbedding of C3 x C3 x C3 on
57, with r3 = 27, r4 = 9, r6 = 5, and n5 = 1. Thus 5 < 7(Z3 x Z3 x
Z3) < 7.

Coffee-house discussions in Dubrovnik in April of 1985, led by
Tucker, raised the lower bound to 6, and then Brin and Squier [BS1]
applied the coup de grace by raising the lower bound again; thus (after
much effort):

Thm. 7-29. 7(Z3 x Z3 x Z3) = 7.

It then transpired that another group of order 27 had apparently
escaped Proulx's attention altogether, perhaps due to a misreading
of Table 1 in Coxeter and Moser[CMl] . This group is the semidirect
product Z9 ix Z3. In 1989, David Rauschenberg (then an undergraduate
at Towson University) combined with Brin and Squier [BSR1] to show
that 7(Zg K Z3) = 4. Thus the genus is now known for all "small" order
groups.

We have remarked that odd-order cyclic factors limit the extent of
Theorem 7-17. However, Mohar, Pisanski, and White [MPW1] have
shown that 7(F) is asymptotic to -/V(F), if r > 3 is fixed and mr tends
to infinity.

7-3. Related Results

In 1977 Babai [B2] solved a problem posed in the first edition of
Graphs, Groups and Surfaces, when he established:

Thm. 7-30. If Tl is a subgroup of F2, then 7(1^) < 7(F2).

Since Sn is isomorphic to a subgroup of An+2, we obtain

Cor. 7-31.

For example, we learn from Theorem 7-26 that 7(^7) > 4.

Despite the fact that there are infinitely many planar groups
(Maschke's Theorem) and infinitely many toroidal groups (Proulx's
classification) Tucker [T8] showed, in 1978:
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Thm. 7-32. For each g > 2, there are at most finitely many groups F
such that 7(F) = g.

The following 1981 result, also due to Tucker [T10], is even more
surprising:

Thm. 7-33. There is exactly one group of genus two. It has order 96
and presentation

The unique group of genus two is the automorphism group of the
generalized Petersen graph (7(8,3); see Frucht, Graver, and Watkins
[FGW1].

Theorem 7-32 suggests studying the function f : A —+ B, where
A = N n [2, oo); B = N U {0}; and f(g) = |{r|7(F) = g}\. (We recall
that /(O) and /(I) are both infinite, via, for example, F — Zn and
F = Zn x Zn, n > 3, respectively.) By Theorem 7-33, /(2) = 1. We
also note that /(3) > l(Q x Z2), /(4) > 2 (S5 and Z9 ix Z3)), and
/(5) > 3(Z|, Z4 x Z|, 1\ x Z2). However, no group of genus 6 (or 8, 12,
14, 16, 18, . . . ) is yet known. In [W20], the following are established:

Thm. 7-34. For the function / defined above:

(i) f(g) > 2, for g odd and > 5;
(") f(g) > 3, for g = 1 (mod 18);

(iii) f(g) > 1, for g = 10 (mod 18);
(iv) / is unbounded.

Now, see Problem 7-12.

We mention that other definitions of the "genus of a group" appear
in the literature, due to Levinson [L3], Machlachlan [Ml], and Burn-
side [B21]. For F a finite group, we denote these parameters by 71, (F),
7Af(r), and 7s (F) respectively. The Levinson parameter, like the pa-
rameter 7(F) advocated in this chapter, regards F as being depicted
by a Cayley graph G&(T) minimally imbedded on a surface £&; but Sk
is always an |F |-fold (possibly branched) cover of some Sn (i.e. the
imbedding is index one.) The Machlachlan and Burnside parameters
also regard Sk as an |F |-fold (possibly branched) cover of some 5n,
but represent the group F via its action on the Riemann surface 5^;
for the Burnside parameter, it is always the case that n = 0. The
four parameters are related as follows , where equality holds except for
certain small F.
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Thm. 7-35. For F a finite group, j(T) < jL(T) = 7M(F) < 7S(F); all
are bounded above by the bound of Theorem 7-22.

Thus the most efficient genus, among all these, is that given by
7(F). We remark that both the inequalities of Theorem 7-35 can be
strict, as the groups F = (Z2n)

4, for n > 2 indicate:

Thm. 7-36. Let F = (Z2n)
4n > 2; then

(i) 7(F) = 1 + 8n4

(ii) 7L(r)=7A
(iii) 7B(F) = l

In 1991, Babai [B3] reinforced portions of Theorem 7-35;

Thm. 7-37. If a finite group F acts on surface 5, then F has a Cayley
map on S.

7-4. The Characteristic of a Group

If we allow nonorientable surfaces also, as our "drawing boards" for
"picturing" groups, then we are led naturally to the parameter of this
section. Recall from Section 5-3 that the characteristic of a surface S
is X(S) = 2 - 2fc, if S = Sk- X(S) = 2-k,ifS = Nk.

Def. 7-38. The characteristic of a graph G, denoted by x(G), is the
maximum surface characteristic x(S} such that G imbeds in S.

For example, a graph has characteristic two if and only if it is
planar; K5 and KQ have characteristic one; Kj has characteristic zero;
and so forth.

Def. 7-39. The characteristic of a group F is given by:

where the maximum is taken over all generating sets A for F.

Thus a finite group has characteristic two if and only if it appears
in Maschke's list (Theorem 7-3.)

Here are some less obvious sample results.
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Thm. 7-40. (White [W10])

Let F be finite and abelian; then

x(r) = <

x( < 0, otherwise.

2, ifr = Zn ,Z2 nxZ2 ,or(Z2)3

0, ifF = Z 2 n x Z 2 x Z 2 ( n > l ) , ( Z 2 ) 4 ,
or Zmn x Zm(ra > 2,ran ^ 3).

Thm. 7-41. (White [W10])

Let (|r|, 6) = 1, with T not cyclic. Then x(F) = 0 if and only if T
has a presentation of the form

where w is either a6a~16~1 or abab~l.

Thm. 7-42. (Tucker [T9]) There is no group T having x(F) = -1.

Thm. 7-43. (Tucker [T9]) For n > 168, x(An) = =$.

Thm. 7-44. (Tucker [T9]) For n > 168, %(5n) = =$.

We observe that, for n > 168, | = [Sn : An}.

7-5. Problems

7-1.) Show: that any presentation P for Q, the quaternions, has at
least two generators; that if P has exactly two generators, nei-
ther can be of order 2; and that P can not have exactly three
generators, each of order 2. (Hence 6(C^(Q)) > 4).

7-2.) Find an example of a group F and a presentation P for F such
that 7(CA(F)) = oo.

7-3.) Find 7(Zm x Zn), for all m and n.
7-4.) Show that the only finite planar abelian groups are Zn, Z2 x Z2n,

and Z2 x Z2 x Z2, where n > I.
7-5.) *Use the imbedding of Problem 6-7 to find */(Q x Q}.
7-6.) Find a non-normal subgroup in Q x Q. (Thus the product of

hamiltonian groups need not be hamiltonian.)
7-7.) *Show that the dicyclic group

Gn = (x, yx2n = xny~2 = y~lxyx = e)
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has genus 1, for all n > 1. (G<2 — Q] G$ is the "least familiar
group of order 12".)

7-8.) Find an infinite group with a presentation of the form given in
Theorem 7-22.

7-9.) Let A = {(1,0,0), (0,1,0), (0,0,1)} for T = Z x Z x Z. Show
that 7(GA(r)) = 00.

7-10.) Show that 7(Z x Z x Z) = oo. Now let TI = Z, and Tn =
Z x rn_x,n > 2; find 7(Fn), for all natural numbers n.

7-11.) **The smallest order groups whose genera are unknown are non-
abelian of order 32. There are 44 such; D^ and Z2 x D8 are both
planar. Pick any one of the other 42, and find its genus.

7-12.) **Does there exist a value of g (g even, g ^ 10 (mod 18)) such
that f(g] = 0? Is / onto?

7-13.) *Verify Theorem 7-36.



CHAPTER 8

MAP-COLORING PROBLEMS

In this chapter we will see that the famous four-color theorem can be
formulated - and studied - in graph-theoretical terms. Graph theory
will be used to establish the five-color theorem. The Heawood Map-
coloring theorem will be introduced; this powerful theorem, whose proof
was completed in 1968, answers the coloring question - which, at that
time, was still unanswered for the sphere - for every other closed 2-
manifold. The easy half of the proof - found by Heawood in 1890 -
is presented in this section. The difficult half of the proof - developed
primarily by Ringel and Youngs - will be discussed in Chapter 9.

Consider any map of the world. Suppose we desire to color the
countries of the world (or the states of a particular country, or the
counties of a particular state, etc.) so that the distinct countries are
distinguishable. This means that if two countries share a border at
other than isolated points, then they must be colored differently. We
make only one assumption as to the countries themselves: each country
must be connected (this rules out Pakistan of some decades ago, and
the United States, for example.) Note that a country need not be 2-
cell; that is, it may entirely surround some collection of other countries
(such is the case for a certain region in France; see Frechet and Fan
[FF1], p. 3).

We mention in passing that several generalizations of this map-
coloring problem are possible. One of the most appealing is the follow-
ing: allow disconnected countries, with each country having at most k
components. (It is not hard to see that, without this restriction involv-
ing k, arbitrarily many colors may be needed.) Then it can be shown
(see Problem 8-6 for the case k = 2) that 6k colors will always suffice.
Ringel ([RIO]; p. 26 (see also Heawood [H4])) displays a map, for the
case k = 2, requiring 12 colors, so that this case is completely solved.

Returning now to the case of classical interest (k — 1), we pose the
question thusly: what is the smallest number of colors needed to color
any map on the sphere (or, equivalently, on the plane)? That four colors
may be needed is indicated by the map induced by the tetrahedron.
That five colors suffice for the sphere will be demonstrated shortly.
Whether or not five colors are ever necessary has probably stimulated
as much work in mathematics as any other single mathematical ques-
tion; and the answer is finally known. The four-color theorem says that

89
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five colors are never necessary: four colors will suffice to color any map
on the sphere. Many "proofs" of the four color theorem have been pre-
sented to the mathematical community, but most have not yet survived
close scrutiny. The interested reader might wish to read through one of
the false "proofs", given by Kempe in 1879 (see [BCL1], for example),
and try to spot the error in the "proof."

Graph theory enters the picture in the following way. Form the
dual of the map in question. This produces a pseudograph. Attempt to
color the vertices of the pseudograph so that no two adjacent vertices
have the same color. The pseudograph has no loops, as no country
ever shares a border with itself. In fact, we may as well drop any
multiple edges, since they (the " extra" edges) have no bearing on the
coloring question. Then the coloring numbers, or chromatic numbers,
of the resulting graph and the map will be identical. This leads to the
following definitions.

8-1. Definitions and the Six-Color Theorem

Def. 8-1. The chromatic number, x(G], of a graph G is the smallest
number of colors for V(G] so that adjacent vertices are colored differ-
ently.

Def. 8-2. The chromatic number, x(Sk), of a surface Sk is the largest
x(G] such that G can be imbedded in Sk-

We prove that six colors will suffice for every planar graph. Of
course, both this result and the five-color theorem of the next section
are subsumed by the Four-Color Theorem. But we want to include the
proofs, as the techniques they illustrate will have value later.

Thm. 8-3. Six colors suffice to color any map on the sphere; that is,
X(S0) < 6-

PROOF. We use induction on p, the order of the planar graph G,
to show that x(<7) < 6. The anchor for p — 1 is clear. So, assume that
all planar graphs with p — 1 vertices (p > 1) are 6-colorable. Let G be
planar, of order p. By Lemma 5-19, G has a vertex v of degree 5 or
less. By the induction hypothesis, x(G — v) < 6. Since the neighbors
of v use at most 5 colors, there is a sixth color available for v. D

8-2. The Five-Color Theorem

The proof below is found in [BCL1].
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Thm. 8-4. Five colors will suffice to color any map on the sphere; i.e.
< 5.

PROOF. We use the induction on p, the order of the graph G, to
show that if 7(G) = 0, then x(G) < 5. The anchor at p = 1 is obvious.
Now assume that all planar graphs with p — I vertices (p > 1) are
5-colorable. Let G be planar, with p vertices. By Lemma 5-19, G
contains a vertex v of degree 5 or less. By the induction hypothesis,
X(G — v} < 5; denote the colors in a 5-coloring of G — v by 1,2,3,4,5. If
not all five colors are used for the vertices adjacent to v in G, we can
color v with one of the colors not so used, to give x(G) ^ 5. Otherwise,
d(v) = 5, and all five colors are used for vertices adjacent to v. We
can assume that the situation around v is as in Figure 8-1, and that
Vi is colored with color i. Consider now any two colors assigned to
non-consecutive vertices vi: say 1 and 3, and let H be the subgraph of
G — v induced by all those vertices colored 1 or 3. If Vi and v3 belong
to different components of H, then by interchanging the colors in the
component of H containing Vi, say, a 5-coloring of G — v is produced
in which no vertex adjacent with v is assigned the color 1, and we can
use 1 for v. If, on the other hand, v\ and v3 are joined by a path in #,
the above argument guarantees that we can recolor v2 with 4, and use
2 for v. This completes the proof. D

8-3. The Four-Color Theorem

In the notation of Section 8-1, the Four-color Theorem becomes:

Thm. 8-5. x(So) = 4.

The first proof is due to Appel and Haken [AH1] in 1976. See
Woodall and Wilson [WW1], for one discussion of this proof; for a
second proof, seefRSSTlj. See also [SKI], for example.

The proofs so far obtained for Theorem 8-5 are enormously more
complicated than those of either Theorem 8-3 or 8-4, in part due to the
positive difference upon subtracting the number of colors, four, from
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the maximum minimum degree of a planar graph, five. Thus no simple
induction argument seems to be available.

In fact, the sphere is the only closed orientable 2-manifold for which
the maximum minimum degree is not obtained by a complete graph.
(See Theorem 8-15.) The sphere is also the only closed orientable 2-
manifold of positive characteristic. This is why Theorem 8-13 does not
contain a (simple) proof of the Four-Color Theorem.

There are many equivalent formulations of the Four-color Theo-
rem. (See, for example, Ore's book: The Four Color Problem [Ol], or
[BCL1].) Of course, these are all now corollaries of the theorem itself.
Following a definition, we present one of these.

Def. 8-6. A graph G is said to be n-edge colorable if n colors can be
assigned to E(G] so that adjacent edges are colored differently.

Thm. 8-7. Every cubic plane block is 3-edge colorable.

PROOF. Let G be a cubic plane block. By Theorem 8-5, G is 4-
region colorable; let the colors be taken from the group F = Z2 x TL^.
Since G is a block, each edge x of G appears in the boundary of two
distinct (but adjacent) regions, Rx and R*. Define the color of x by
c(x) — c(Rx) + c(R%), addition taking place in P. Since c(Rx] ^ c(R%),
c(x) ^ e, the identity of F (every element is its own inverse, in F.)
Let x, y, and z be adjacent edges in G; see Figure 8-2. We claim that
x,y, and z are colored distinctly. Suppose to the contrary that, say,
c(x) = c(y)- that is c(j£) + c(^) = c(flj) + c(R2

y) = c(Rl
y) + c(flj).

But then c(.Rj) — c(R2
x), a contradiction. Thus G is 3-edge colorable

(the colors being taken from F — {e}). D

"X -* C,v» •*• *"tl

y
Figure 8-2.

8-4. Other Map-Color ing Problems:
The Heawood Map-Color ing Theorem

Now let us consider other subspaces of IR3 in which to pose map-
coloring questions such as that above, for the sphere (and plane).
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2 3 4 5

1

Figure 8-3.

Strangely enough, if we allow 3-dimensional countries, arbitrarily many
colors may be needed to color the map. This is indicated by Figure
8-3, in which the countries are numbered; it is seen that each country
meets each of the other countries. (In general, n modified rectangular
parallelepipeds are laid across n other such solids.)

Perhaps it seems natural, since the coloring problem is apparently
extraordinarily difficult for the sphere, and admits no finite answer in
R3, to consider next the surfaces Sk as candidates for maps and the
corresponding map-coloring questions.

The Heawood Map Coloring Theorem (formerly the Heawood Map-
Coloring Conjecture) has a particularly colorful background, as out-
lined in Chapter 1; also see J.W.T. Youngs [Y2]. We state the theorem
first for the orientable case:

Thm. 8-8. x(Sk) = for k > 0.

Note what happens if we replace k with 0 in this formula. This
led many mathematicians to feel that the four color conjecture was
probably true, and they were vindicated! Thus we can now take k > 0
in Theorem 8-8.

The corresponding map-coloring question can also be asked for the
closed non-orientable surfaces Nk (spheres with k cross-caps). In 1959
Ringel [RIO] showed the following (the case k = 2 was solved by
Franklin [F4]):

Thm. 8-9. x(Nk) = , for k = 1 and k > 3; = 6.

For example, the formula gives x(Ni) = 6 (for the projective plane).
Figure 8-4 shows K6 imbedded in NI, indicating that x(Ni) > x(K&) —
6.

Recalling that the euler characteristics for Sk and Nk are given by
n — 2 — 2k and n = 2 — k respectively, we can combine Theorems 8-5,
8-8, and 8-9 as follows:
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b C

Thrn. 8-10. Let Mn be a closed 2-manifold, other than the klein bot-
tle, of characteristic n; then

7 + ̂ 49 - 24n

For ease of notation, we let f ( n ) = 7+x/4| 24n-. We will now establish
what Heawood knew in 1890:

x(Mn)<[/(n)J.

We proceed by a series of steps, following the translator's notes in
Frechet and Fan [FF1].

Lemma 8-11. Let a graph G, with p > 3, be 2-cell imbedded in Mn,
with a denoting the average degree of the vertices of G. Then a <

PROOF. Note that a = ^. Now 3r < 2q = ap. Also, p - q + r — n.
Hence

so that

f l = ± 2 < 6 [ l - -
P ~ \ P

a

Thm. 8-12. x(Ni) < 6.

PROOF. We use induction on p, the order of a graph imbedded in
NI. The result is clearly true for p < 6. Assume x(G] < 6 for all
graphs in NI with p — 1 vertices, p > 7; let G be a graph imbedded in
NI, with p vertices. If the imbedding is not 2-cell, then (see Youngs
[Yl]) 7(G) = 0, and x(G) < 5- Otherwise, by Lemma 8-11, a < 6, so
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that G has a vertex v such that d(v) < 5. Then G — v is imbedded in
NI, and x(G — v} < 6, by the induction hypothesis. Since there are
vertices of at most five colors adjacent to v, the sixth color can be used
for v, and x(G) < 6. D

Note that Theorem 8-12, together with Figure 8-4, show that
= 6.

The reader should locate the spot where the following argument
fails for the sphere (and the projective plane as well; this is why these
two surfaces are treated separately).

Thm. 8-13. .

PROOF. Thanks to Theorem 8-12, we may assume that n < 0. We
use induction on p, to show that x(G) < [_/(n)J , if £ is imbedded in
Mn. (We may assume G to be connected, as the chromatic number of
a graph is the largest chromatic number for its components.) It is clear
that x(G) < [f(n)\ if p < [f(n)\. Now assume that x(G) < [f(n)\
for all graphs with fewer than p vertices and imbeddable in Mn. Now,
from the definition of /(n), we see that /2(n) — 7f(n) + 6n = 0; i.e.

6 (l - j^y) - f ( n ) - 1. If the imbedding of G (of order p > |_/(n)J)
in Mn is 2-cell, then Lemma 8-11 applies, and

P

f ( n )
= /(n) - 1.

If the imbedding is not 2-cell, then it is not minimal (see again Youngs
[Yl]), and we can find a 2-cell imbedding in Mm, where m > n. We
then apply Lemma 8-11 as above, to get a < f(m) — 1 < f ( n ) — 1.
Thus in either case a < f ( n ) — 1, and we can find a vertex v of G having
d(v) < L/(n)J - 1, so that (using X(G -v}< \J(n)\), X(G) < |/(n)J.
This completes the proof. D

The task remains to show that x(Mn) > [/(ra)J, for Mn ^ N2, the
klein bottle. This is done by finding a graph G imbeddable in Mn and
having x(G] = |_/(n)J- For M% = So, K$ is such a graph; for MI = NI,
take G = K& (as in Figure 8-4); for M0 = Si, pick G = K7 (see Figure
8-5 for the dual of K7 in Si); for M_2 = S2, let G — K8. In fact, for
Mn 7^ N-2, L/(n)J ig attained by the largest complete graph imbeddable
in Mn. We now confine our attention to the orientable case and explore
this claim in some detail.
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Figure 8-5.

Let us assume the truth of the Complete Graph Theorem (which
will be discussed in more detail in Chapter 9):

, for m > 3.
12

From this it will follow that %(Mn) > |_/(n)J (in the orientable case;
the non-orientable case is handled similarly).

Thm. 8-14.

PROOF. Consider Sfc. Define m = \_f(2 — 2fc)J, and now consider
also S7(xm). Note that j(Km) < k, so that x(S7(/rm)) < x(Sk)- Now
-fcTm imbeds in 57(^m). Clearly x(S7(Km)) > m = L/(2 ~ 2^)J > so that

D

Theorems 8-13 and 8-14 combine to prove Theorem 8-8, with the
understanding that it remains to establish the formula for the genus of
Km. Before indicating how this is done (in the next chapter), we pause
for some related results.

8-5. A Related Problem

We have seen that, for every closed 2-manifold , the maximum
chromatic number of an imbedded graph is taken on by a complete
graph. We now show that the complete graphs play the same role with
respect to maximizing the minimum degree of an imbedded graph, with
the sphere and the klein bottle as the sole exceptions.

Thm. 8-15. Let Mn be a closed 2-manifold of characteristic n, and G
a graph. If G has an imbedding in Mn, then 6(G) < g(ri), where

if n<2

5, ifn = 2.
Furthermore, there exists a graph G, imbeddable in Mn, such that
6(G) = g(n).
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PROOF. The theorem is known to be true for n — 2, as Lemma
5-19 and the icosahedral graph show. Suppose now that n < 2 and
that G is a graph having p vertices and q edges, with 6(G) > g(n), and
a 2-cell imbedding in Mn(^ SQ). By standard arguments, 2q > 3r, and
also 2q > p(g(ri) + 1). We may assume that G is connected, since if the
theorem is true for every component of (7, it is also true for G. The
euler formula applies, so that

We may assume that n < 0, as the above inequality is clearly
impossible for n = 1. But for n < 0, g(ri) > 6, so that

But since 6(G) > g(n),p > g(ri) + 2, and

We note that

(g(n) + 2)(g(n) - 5) =
9 + 24n -5 + V49 - 24n

7 + ̂ 49 - 24n -7 + V24 - 24n> ( _ j( _ j

= —6n.

It now follows that

>
-3n(p(n) + 1)

a(n) - 5

a contradiction. Hence 6(G) < g(n).

Now suppose that G has a non 2-cell imbedding in Mn. By a result
of Youngs [Yl], G has a 2-cell imbedding in some Mn/, where n < n'.
Prom what we have shown above, 6(G) < g(n'} < g(ri).

Ringel and Youngs have shown [RY1] (also, see Chapter 9) that
the complete graph ^^(2-2^)]+! is imbeddable in Sk, for k < I. Ringel
[RIO] has shown that the complete graph K[g(2-k)]+i is imbeddable in
Nk, for all positive k except k — 2. It remains to find a graph G
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imbeddable in JV2 and having 8(G] = 6. We begin by considering two
projective planes, PI and Pj, each with a complete graph K§ imbedded
as indicated in Figure 8-6. Cut open disks D\ and D2 from the interiors
of the five-sided regions of PI and P2, respectively. Let T be a cylinder
disjoint from PI and P2, with simple closed boundary curves C\ and
C2. Identify C\ with the boundary of DI and C2 with the boundary
of D2. The result, (Pl - DI) U T U (P2 - #2), is a klein bottle (see
Problem 8-7). The graph G is then constructed by adding the edges
(i, i')(i, (i +1)'), i = 1,2,3,4,5, (where the vertex 6' is the same as the
vertex 1'). This completes the proof. D

c b

We thus make the following observation. The sphere is the only
closed orientable 2-manifold for which the maximum minimum degree
is not attained by a complete graph. In contrast, we have seen that
for every closed 2-manifold (whether orientable or non-orientable), in-
cluding the sphere, the maximum chromatic number is attained by a
complete graph.

8-6. A Four-Color Theorem for the Torus

Thus far in this chapter we have been discussing, for a given closed
2-manifold M, the chromatic number of arbitrary graphs that can be
imbedded in M. In this section we impose a restriction on the girth of
the graphs we are considering.

Def. 8-16. The girth g(G) of a graph G is the length of a shortest cycle
(if any) in G.

Thus a graph G with cycles but no triangles has g(G] > 4; if G
is a forest, we write g(G] — oo. The following theorem was shown by
Grotzsch [G10]:

Thm. 8-17. If 7(G) - 0 and g(G) > 4, then x(G) < 3.
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The graph G = C*> shows that equality can hold in Theorem 8-17.
In this section we [KW2] find an upper bound for the chromatic number
of toroidal graphs having no triangles, and show that this bound is best
possible. We also consider toroidal graphs of arbitrary girth.

Def. 8-18. A connected graph G is said to be n-edge-critical (n > 2)
if x(G] — n but, for any edge x of G, x(G — x) = n — I.

The next theorem is due to Dirac [D4].

Thm. 8-19. If G is n-edge-critical, n > 4, and if G ^ Kn, then 2q >
(n- l)p-\-n-3.

We are now able to find the analogue of Grotzsch's Theorem, for
the torus.

Thm. 8-20. If j(G) < 1 and g(G) > 4, then x(G) < 4.

PROOF. Let x(G) — n > 5. We first assume that G is n-edge-
critical, and hence connected. Since g(G) > 4, G ^ Kn. By Theorem
8-19,

Now if 7(69 = 1, then by Corollary 6-15,

thus n < 4. If 7(6') = 0, then n < 3, by Theorem 8-17. In either case
we have a contradiction, so that n < 4.

Now suppose that G is not n-edge-critical. Then G contains an n-
edge-critical subgraph H, and the argument above shows that x(<7) =
X(H) = n < 4. D

The graph of Figure 8-7, constructed by Mycielsky [M8] as an ex-
ample of a graph having no triangles and chromatic number four, also
has genus one, so that the bound of Theorem 8-20 cannot be improved.

The situation for the torus is almost completely analyzed in the
next theorem.

Thm. 8-21. If 7(G) < 1 and g(G) = m, then
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Figure 8-7.

17, if m = 3
4, if m = 4 or 5
3, if m > 6.

Moreover, all the bounds are sharp, except possibly for m = 5.

PROOF. If m > 6, then each region in an imbedding for G has at
least six edges in its boundary, so that 1q > 6r. As in the proof of
Theorem 8-20, we may assume that 7(6?) = 1 and that G is n-edge-
critical, where n = x(G)- If n < 4, then 2q > 3p-l-1, by Theorem 8-19.
Then, by Corollary 5-14,

0 = p — q + T

an obvious contradiction. Hence for 7(6?) < 1 and g(G] > 6, we
must have %(Gr) < 3. This bound is best possible, as an appropriate
subdivision G of the Petersen graph (shown imbedded in Si in Figure
8-8) can always be found, having g(G] = m(m > 5), 7(6?) = 1, and
X(G) = 3.

Figure 8-8.

For m = 4 or 5, it follows from Theorem 8-20 that x(G) < 4. (Now,
see Problem 8-9.) Figure 8-7 shows that equality can hold for m = 4.
For m = 3, we refer to the Heawood Map-Coloring Theorem. D
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Gimbel and Thomassen [GT1] showed that x(G) < 3, if i(G) < 2
and g(G) > 6.

8-7. A Nine-Color Theorem for the Torus and Klein Bottle

The material in this section is due to Ringel [R19].

Def. 8-22. A graph G is said to be 1-imbeddable in a surface S if G
can be represented on S so that each edge is crossed over by at most
one other edge.

Def. 8-23. The l-chromatic number Xi(S) *s tne largest x(G) such
that G is 1-imbeddable in 5.

Thm. 8-24. The l-chromatic numbers Xi(Sk) and Xi(Nh) are bounded
above as shown:

Thm. 8-25. The following hold:

(i) xi(5i) = 9,
(ii) Xi(#2) = 9,

(iii) Xi(S8s)=41.

The result (iii) above was obtained using a modified current graph
(see Chapter 9, for a discussion of the theory of current graphs.)

8-8. /c-degenerate Graphs

Before getting to one focal point of this text, in the next chapter,
we digress briefly. The generalization below of Theorem 8-10 might be
of interest.

A coloring number for graphs closely related to the chromatic num-
ber is the vertex-arboricity (see [CKW1].)

Def. 8-26. The vertex arboricity, a(G), of a graph G is the minimum
number of subsets that V(G) can be partitioned into so that each subset
induces an acyclic graph.

Def. 8-27. The vertex arboricity of a surface Sk is the maximum
vertex-arboricity among all graphs which can be imbedded in Sk-
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In 1969, Kronk [K3] showed that the vertex arboricity of Sk, k > 0,

is J9+Vi+48fc | Chartrand and Kronk [CK2], also in 1969, proved that

the vertex-arboricity of the sphere is three. The similarity of Kronk's
result to those of Ringel and of Ringel and Youngs for the chromatic
number suggested the generalization discussed below.

Def. 8-28. A graph G is said to be k-degenerate if every induced sub-
graph H of G satisfies the inequality 6(H) < k.

Def. 8-29. The vertex partition number, pk(G], of a graph G is the
minimum number of subsets into which V(G) can be partitioned so
that each subset induces a ^-degenerate subgraph of G.

The parameters po(G) and pi(G] are the chromatic number and
vertex arboricity of (7, respectively (see Problem 8-4). A general study
of ^-degenerate graphs has been begun in [LW2], where many of the
well-known results for the chromatic number and the vertex-arboricity
of a graph have been extended to the parameters pk(G], for all non-
negative integers k.

Def. 8-30. The vertex partition number of the closed 2-manifold Mn,
denoted by pk(Mn), is the maximum vertex partition number pk(G}
among all graphs G which can be imbedded in Mn.

The following theorem (for a complete proof, see [LW3]) almost
completely generalizes the results of Kronk, Ringel, Ringel and Youngs
and Haken mentioned above.

Thm. 8-31. The vertex partition numbers for a closed 2-manifold Mn

are given by the formula:

where k = 0,1,2,3, • • •; and n = 2,1,0, — 1, —2, • • •, except for the
following cases:

(i) in the orientable case, pi(So) = 3, ps(So} — Ai(So) = 2; and
(ii) in the non-orient able case, po(N2) = 6, pi(N2} = 3, £2(^2) = 2.

We make the following comments about the proof of Theorem 8-31.

Set f(k,n) = |(2fc+7)
2t+29~24-[ • The Proof is divided into three parts.
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(i) pk(Mn} < f ( k , n), for Mn ^ So (the proof breaks down for the
sphere, reminding us how obstinate the four color problem was.)

(ii) pk(Mn) > f ( k , n ) , for Mn ^ N2 (the proof fails for the klein
bottle).

(hi) the exceptional cases are treated separately:
(a) for Mn = S0, pi(S0) = 3 appears in [CK2]; for pk(S0) = 2,

k — 2,3,4, see Problem 8-5; finally, pk(So) = I for k > 5,
since any planar graph is 5-degenerate, by Lemma 5-19.

(b) For Mn = A/2, additional ad hoc arguments are devised.
For example, the graph constructed in Figure 8-6 shows
that p$(N2) > 2; from (i) we see that p5(N2) < 2; thus
p5(N2) = 2. The values of pi(N2) and p2(N2) were settled
by Borodin [B13] in 1976.

8-9. Coloring Graphs on Pseudosurfaces

The pseudosurfaces S(k;ni(mi), • - • ,nt(mt}) have been defined in
Section 5-5 and re-encountered in Sections 6-7 and 6-9. Dewdney [D2]
has studied a subclass of these pseudosurfaces, namely those of the
form 5(0, n(2)):

Def. 8-32. The chromatic number, %(5(0;n(2))), of the pseudosurface
5(0; n(2)) is the largest chromatic number x(G) of any graph G that
can be imbedded in 5(0; n(2)).

Thm. 8-33. x(S(0; n(2))) < n + 4, forn > 0; equality holds for n =
1,2,3,4.

For example, Figure 6-7 shows K$ imbedded in 5(0; 1(2)), show-
ing that x(5(0; 1(2)) > 5. Similarly, K6 imbeds in 5(0; 2(2)), to give
equality for the case n — 2. (See Problem 6-10.) Note that we state
this coloring problem for graphs rather than for maps; the dual of G
in 5(0; n(2)) is not a 2-cell imbedding, so that there is not the natu-
ral correspondence we find for surfaces. (The cases n = 3 and 4 were
established by Mark O'Bryan and James Williamson respectively.)

Then in 1974, Borodin and Melnikov [BM2] solved this particular
problem completely, except for the case n = 0 now covered by the
Four-color Theorem; we state the complete solution:
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Thm. 8-34.
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=

n + 4,
8,

12,

0 < n < 4,
n = 5,
6 < n < 1 2 ,

n > 12.

Thus we have the map-coloring numbers for the sphere, where n
countries have two components, and that twelve is the largest of all
these numbers (see Problem 8-6). Heawood [H4] generalized to ask for
the map-coloring number x(S, c) for a surface S (orientable or nonori-
entable) of characteristic n, where each country has at most c compo-
nents, and showed for every case but the sphere for c = 1 that this
number is bounded above by:

Thm. 8-35.

Note that the case c — I is the one of primary interest (the Heawood
Map Coloring Theorems) , and that the bound does hold for c = I and
n = 2 as well (the Four-color Theorem.) Moreover, we have seen that

Recently it has been shown that equality also holds in Theorem
8-35, for certain other cases:

Thm. 8-36. (Jackson and Ringel [JR2]

c) = 6c, for c > 2.

Thm. 8-37. (Taylor [Tl])

,c) = <2c=l , f o r c > 1.

Thm. 8-38. (Jackson and Ringel [JR1])

c) =6c, f o r c > 1.

Thm. 8-39. (Jackson and Ringel [JR3], Borodin [B14])

Let

g(c,n) =
6c + 1 + ^(60+1)2-2471
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then x(S, c) = g(c,n), if:

(i) S = Nk and g(c, n) = 1, 4, 7 (mod 12), unless fc = 2 and c = 1.
(ii) 5 = Sfc, c is even, and g(c,ri) = 1 (mod 12).

(iii) £ = Sfc, c is odd, and #(c, ri) = 4, 7 (mod 12).

It remains to construct the "verification figures" (i.e. the appropri-
ate pseudosurface imbeddings) for the cases not covered above. (See
Problem 8-17.)

8-10. The Cochromatic Number of Surfaces

The material in this section is taken from Straight ([S25] and [S26].)

Def. 8-40. The cochromatic number, z(G), of a graph G is the min-
imum number of subsets into which V(G) can be partitioned so that
each subset induces either an empty or a complete subgraph of G.

Def. 8-41. The cochromatic number, z(S), of a surface 5, is the max-
imum z(G) such that G imbeds in S.

Thm. 8-42. z(Sn) < x(5n), with equality if and only if n = 0.

For example, z(C^ U K±) — 4, so that z(S0] — 4.

Thm. 8-43. For n > 4, z(Nn) < x(Nn).

Thm. 8-44.

(ii) z(N1) = 5
(iii) z(N2} - 6
(iv) z(N3) = 6
(v) z(7V4) = 7.

Straight conjectures that, in general, ;z(5) is the maximum n such
that U"=1Ai imbeds in 5.

8-11. Problems

8-1.) Let G ^ Kn; show that x(G) = 2 if and only if G is bipartite.
8-2.) Find x(Cn), for all cycles Cn.
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8-3.) Find an imbedding of K7 on Si . Form the dual of this imbedding,
and explain why this shows that x(^i) — ?•

8-4.) Show that p0(G) = x(G) and that p^G) = a(G).
8-5.) Show that pk(So) = 2, for k = 2,3,4. (Hint: for each fc, use

induction to show that pk(So) < 2. Then consider graphs of
certain regular polyhedra.)

8-6.) *Show (as Ringel and Heawood did) that any map on the surface
of the sphere, in which each country has at most two components,
can be colored with 12 colors. (Hint: it may be helpful to show
that if a graph G is n-critical, then S(G) > n— 1; i.e. if x(G) = n,
but x(G— 1>) = n— 1, for all vertices v in G. Then form two "dual"
graphs for an arbitrary map, one where the vertices represent
countries, the other with vertices representing regions of land.
Use also the fact that q < 3p — 6, for planar connected graphs.)
Interpret this result for pseudo-surfaces. Compare Problem 6-12.

8-7.) Show that the connected sum of two projective planes (as in
the proof of Theorem 8-15) is a klein bottle. (Hint: find the
characteristic of the resulting closed 2-manifold, using the graph
G constructed in the same proof.)

8-8.) Show that x(G) = 4, for the graph G of Figure 8-7.
8-9.) **Does there exist a toroidal graph G having g(G) = 5 and

X(G) = 4?
8-10.) *Prove or disprove: Kg imbeds in 5(0; 5(2)) (and hence

X(5(0;5(2)) = 9.) Is x(S(0;n(2))) = n + 4 for all n? Compare
Problems 6-12 and 8-6. Does Kw imbed in 5(0; 7(2))?

8-11.) Define the chromatic number of a group to be: x(F) =
minA x(GA(r)) (cf Babai [Bl]). Find x(F), for F - Zn, Z2 x Zn,
(Z2)

n, Dn,Z2 x Dn, Sn. Show x(r) < 3, for F finite abelian or

8-12.) *If F has a normal subgroup FI, show that xOO <
Thus if F is solvable (note that this includes all odd order groups),
then x(r) < 3. If F has a subgroup of index 2, then show that
x(r) < 2.

8-13.) Show that xCO = 2 if and only if F has a subgroup of index 2.
Conclude that x(AO — 3, for n > 3.

8-14.) **Is x(r) < 3 for all groups F?
8-15.) Isx(r i )<x(r 2 ) , i f r 1 <r 2 ?
8-16.) Extend the definition of x(F) to pfc(F), for arbitrary vertex par-

tition numbers. Study this family of parameters.
8-17.) **Find the imbeddings called for at the conclusion of Section

8-9.
8-18.) ** Study the conjecture given at the conclusion of Section 8-10.
8-19.) Show that, for any integer pair (fc,n), when k > 0 and 3 < n <

x(5fc), these exists a triangulation of 5fc by a graph G having
x(G) — n. (Harary, Korzhik, Lawrencenko [HKL1]).



CHAPTER 9

QUOTIENT GRAPHS AND QUOTIENT
MANIFOLDS: CURRENT GRAPHS AND THE

COMPLETE GRAPH THEOREM

In this chapter we present the beautiful theory of quotient graphs
and quotient manifolds, usually called, for short, the theory of current
graphs. This theory was introduced by Gustin [Gil], developed by
Youngs (see, for example, [Y2], [Y3], and [Y6]), and used by Ringel
and Youngs to find the genus of Kn, thereby proving the Complete
Graph Theorem and, in turn, the Heawood Map-Coloring Theorem.
The application of the theory to the graphs Kn falls into 12 cases, de-
pending upon the residue modulo 12 of n. The theory applies directly,
for n = 0,3,4, 7 (mod 12), as will be seen shortly. For the remaining
eight cases, the theory is augmented (by the theory of vortices] to com-
plete the solution. We will treat the case n = 7 (mod 12) completely,
and discuss the case n = 10 (mod 12); this will give an indication
of the power and beauty of the theory. The remaining ten cases are
treated similarly, although many complicating details must be han-
dled properly. (Perhaps one should expect a complicated solution, to
a complicated problem!)

We will then see how the theory (designed to produce triangular
imbeddings for Kn) can be extended to handle first triangular imbed-
dings for Cay ley graphs in general, and then to handle regular imbed-
dings (r = rn, n > 3) in general, for Cayley graphs. This is the scope
of the theory, as announced by Gustin. But Youngs' theory of vortices
[Y3] hints at an even more general theory; we illustrate this general
theory, as unified by Jacques [J3]. (For a more theoretical discussion,
see [W15].) The even more intuitive dual form will be studied in detail,
in Chapter 10.

9-1. The Genus of Kn

Let us now turn our attention to the complete graphs Kn. Recall
that if we show that

107
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the Heawood map-coloring theorem will be established. We see the
origin of the number on the right-hand side of the above equality in
the following:

Thm. 9-1. Let Kn be minimally imbedded in a surface M. Then

PROOF. From Corollary 6-14, we know that

with equality if and only if Kn has a triangular imbedding. But we
can be more specific than this; we can get some information about the
non-triangular regions (if any). If Kn is minimally imbedded in M,
then clearly ^(Kn) = 7(M), and the imbedding is 2-cell, by Theorem
6-11. Thus the euler formula applies, and

We now see that if Kn has a triangular imbedding (TJ — 0, z > 4),
then

and (n-3)(n-4) = 0 (mod 12); i.e. n = 0,3,4,7 (mod 12). Moreover,

in general, -y(Kn) = pn-3)(n-4)l } if we can show that Ez<4(«-3)n < 5-
It is now perhaps apparent why there are twelve cases for the determi-
nation of 7(-Kn), and why only four of them admit triangular imbed-
dings. Let us consider these four cases now.

What is needed is a method of constructing triangular imbeddings.
The naive trial-and-error method easily handles n = 3, 4, and 7; it
becomes a bit sticky at n — 12. We turn away from the drawing board
and employ the algebraic description of 2-cell imbeddings given us by
Edmonds' permutation technique. Now we seek a means of selecting
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judiciously the local vertex permutations, to form the rotation scheme
(piiPz,' • • iPn}\ this is what the method of current graphs is all about!

9-2. The Theory of Current Graphs as Applied to Kn

We introduce this theory by means of the example K?. Let Kj be
imbedded in S\, by Theorem 9-1, this imbedding must be a triangu-
lation. Select a group F for which Kj is a Cay ley color graph; in this
case, we can only pick F = Z7, and take 1,2,3 as generators for F.
Label the vertices of K7 with the elements of F (one should also think
of the edges as being directed and colored appropriately.) Now take
the dual of this imbedding; assume this is as pictured in Figure 8-5.
Each region in the dual (formerly a vertex of KT) is now labeled with
a distinct group element: 0,1,2,3,4,5, or 6. We proceed to label the
boundary edges of each region of the dual, as indicated in Figure 9-1.
(Note that (g~1h)~1 = h~lg.) We observe that the seven regions of the
dual have identical clockwise boundaries: 1,3,2,6,4,5.

We summarize this information in a map having one region, as
shown in Figure 9-2. But I"1 = 6, 2'1 = 5, and 3"1 = 4; thus the
six edges have a natural identification, in three pairs; we make this
identification, to form a closed orientable 2-manifold, as in Figure 9-3.
The result (in this case, Si) is the quotient manifold] the corresponding
graph (actually, in this case, it is a pseudograph) is the quotient graph.
The subgroup of F consisting of all vertices of Kj whose regions in the
dual had the same ordering of directed edges in their boundaries as did
e = 0 (in this case, Z7 itself) gives rise to the quotient group (in this
case, the trivial group). The index of this subgroup in F (in this case,
1) is the index of the imbedding. The point is this: all the information
needed to describe a triangular imbedding of K-j in S\ is contained in
the quotient graph, imbedded in its quotient manifold (which, after all,
was obtained by "modding out" the subgroup Z7).

To see this, let the permutation at vertex 0 be given by the bound-
ary of the single region in the quotient manifold:

0: 1,3,2,6,4,5.

The remaining local vertex permutations may be obtained by succes-
sively adding 1 to every entry in this row (remember, we are in the
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group Z7!):

Figure 9-3.

1,3,2,6,4,5

2,4,3,0,5,6

3,5,4,1,6,0

4,6,5,2,0,1

5,0,6,3,1,2

6,1,0,4,2,3

0,2,1,5,3,4.

Now, compute orbits (corresponding to regions in a 2-cell imbedding
otK7):

0-1-5 1-2-6 3-5-6

0-2-3 1-3-4 3-6-4

0-3-1 1-4-2

0-4-6 1-6-5

0-5-4 2-4-5

0-6-2 2-5-3.

We see that we have an imbedding of K7 for which r = r3 = 14; that
is - a triangular imbedding. This is no accident as we shall soon see.

We have just encountered a connection between cubic vertices of
a quotient graph and triangular regions for an imbedding of interest.
As our present concern is triangular imbeddings of complete graphs,
the relevant quotient graphs will all be cubic. As the quotient manifold
will, in itself, not be crucial to the development, we follow Gustin [Gil],
Ringel, Youngs, and others (in the body of work proving the Complete
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Graph Theory) in suppressing it in the planar diagrams employed.
For example, Figure 9-3 is rendered as Figure 9-4. By convention, a
solid vertex has its incident edges ordered clockwise; a hollow vertex,
counterclockwise. This describes the local vertex permutations for the
quotient graph and hence, implicitly, an orientable 2-cell imbedding
for it. In the case of Figure 9-4, this is into the torus. We want this
imbedding to have only one region, providing the rotation at vertex 0
(and, by translation, at all other vertices) for the complete graph we
want to imbed. In Figure 9-4, we use our convention to trace out the
region boundary: 1,3,2,6,4,5, as in Figure 9-2.

Figure 9-4.

Now let K be a pseudograph, with K* = {(u,v)\{u,v} £ E(K}}.

Def. 9-2. A current graph is a triple (K, F,A), where K is a pseudo-
graph, F is a finite group with identity e, and A : K * —> F — e is a map
satisfying (A(a))"1 = A(a~1), for all a e K*. Each value X(a) is called
a current.

Thus Figure 9-4 is a current graph (with F = Z7 understood). Note
also that each Cayley graph is a current graph. Moreover, a quotient
graph is a current graph. (The former terminology emphasizes the
imbedding aspect, whereas the latter stresses the edge labels.)

Def. 9-3. Let a pseudograph K be 2-cell imbedded in a closed ori-
entable 2-manifold M, with v e V(K). We say that Kirchoff's Cur-
rent Law (KCL) holds at v if the product of the currents directed away
from v, taken in the order given by the rotation pv, is the identity, &.
We say the KCL holds for the imbedding of K if it holds at v, for each
v E V(K).

The following theorem, and the application we make of it, indicate
the power of a much more general theory, which we develop in Chapter
10 - in the dual context of voltage graphs.

Thm. 9-4. If (K, Zn, A) is a cubic current graph with:

(i) A : K* —»• Zn — {0} a bijection, and
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(ii) a 2-cell imbedding into a closed orientable 2-manifold with just
one region and satisfying the KVL,

then Kn has a triangular imbedding into a closed orientable 2-manifold.

PROOF. The unique region contains each arc a 6 K* exactly once,
and since A is a bijection, the succession of currents on the boundary
of the region can be taken as the rotation pQ at vertex 0 6 V(K] =
{0,1,2, • • • , n - 1}; we write p0 : (GI, a2, • • • , an_i). Using F = Zn, we
cyclically generate^ : (ai+i, a^+i, • • • , an_i+z), for each i G Zn. Then
(pOiPi-,''' »Pn-i) is a rotation scheme for Kn, and thus determines an
orientable 2-cell imbedding for Kn. We need only show that r = r$ for
this imbedding.

So, suppose that po(x) = y, and let a, 6 6 AT*, with A(a) — x
and A(6) = y. Since K is cubic, in the imbedding for K we have the
situation depicted in Figure 9-5. (The arrow gives the orientation at the
vertices; by Edmonds' algorithm, the region boundary has the opposite
orientation.) From the KCL, we deduce that -x + y + z = 0, so that
z — x—y. Now we also have that po(—y] = z, so that py(0) = z-\-y = x.
Now let (n, v) be any directed edge in K. To complete this proof, we
will show that (u, v) is in the boundary of a triangular region.

Figure 9-5.

Compute the orbit, beginning

u — v — .

Let pv(u) = w, then we have

u — v — w — .

But since pv(u) = w, PQ(U—V] = w — v. Letting u — v = x and w — v = y
in the above discussion (where PQ(X) — y implies py(Q) = x), we see
that pw_t;(0) = u — v; hence pw(v) = u, and we have

u — v — w — u — .

Next, let v — w = x and u — w = y; then (since pw(v) = u, p0(v — w) =
u — w} Pu-w(ty = v — w, and pu(w) = v. Thus

u — v — w — u — v
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confirms an orbit under P* (as in the proof of Theorem 6-50) for Kn,
of length 3. This completes the proof. D

Next, we prove that ~f(Kn} is as predicted, for n = 7 (mod 12).
By Theorem 9-4, we need only find a suitable imbedding of a suitable
current graph.

Thm. 9-5. Ki2s+r has a triangular imbedding.

PROOF. Let F — Zi2s+7. We have already treated the case s =
0. The cases s = 1 and s = 2 are shown in Figures 9-6 and 9-7
respectively. The generalization to all s is as in Figure 9-8, with the
vertical edges directed alternately and carrying the currents 1,2, • • • , 2s
consecutively. All other currents (not shown) are determined by the
KCL. It is straightforward to check that K has 6s + 3 edges, or 12s -f 6
directed edges, carrying all the currents from

Figure 9-6.

13: 1 14>
k. 1

"V— 4

• ^
2^
—A ^

15

O
4>

—A ^ r
7 10

Figure 9-7.

11
A

5s + 4 6s+ 3

2s+ 1
"*Jt>

3.s + 3 4s + 2

Figure 9-8.

^125+7 ~ 0- The single region is:
(2s + 1) - (5s + 3) - (5s + 4) (6s + 3) - (4s + 3) - (2s + 2) -
(-2s) - (-6s - 3) - (-2s + 1) - (2s + 3) (-1) - (3s + 2) -
(-2s - 1) - (-4s - 3) - (2s) - (4s + 2) - (2s - 1) - (-4s - 4)
(1) - (-5s - 3) - (-3s - 2) - (-3s - 3) (-4s - 2) - (-2s - 2).
Thus K is a current graph (imbedded in 5s+i), satisfying the conditions
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of Theorem 9-4, and Ki2s+7 has a triangular imbedding, for all non-
negative integers s.

D

Cor.

The theory of current graphs with vortices is employed to find
7(/fn), for n = 10 (mod 12). The group Z12s+7 is used to find a trian-
gular imbedding for K^s+io — -Ks; the current graph in this case has
three vertices of degree one; otherwise it is essentially the K of Figure
9-8. (See [Y3].) Each vertex of degree one has its edge labelled with a
generator of Z12s+7 and produces one region, bounded by a hamilton-
ian cycle in K^s+i- (See Problem 9-2). Then adding a vertex in the
interior of these regions, together with 12s + 7 edges from each new
vertex to the boundary vertices, gives the triangulation we seek. This
is called the regular part of the problem. Next, the surface in which
^i2s+io — KZ is triangularly imbedded is modified - by the addition of
one well-chosen handle (See [W12])- so as to accommodate the three
edges removed in K-$. This is called the additional adjacency part of the
problem. The final result is a (non-triangular) imbedding of K\2s+\Q m

a surface of the appropriate genus.

The remaining ten cases for j(Kn] are handled similarly, with vary-
ing degrees of complexity; see [Y4], [RY2], [Y5], [TWY2], [RY3], [RY4],
[TWY1], and [M4]. A constructive proof is given for each case but
n = 0 (mod 12); for this case the theory of finite fields supplements
the theory of current graphs in establishing the existence of a triangu-
lar imbedding (see [TWY1]). (See also [R16], for the complete proof.)
We now turn our attention to Cayley graphs in general.

9-3. A Hint of Things to Come

Modifications of the theory of the preceding section allow us to at-
tack other Cayley graphs for which triangular imbeddings are possible.
But more: quadrilateral imbeddings can be constructed as well. Even
more: imbeddings with regions of varying sizes. We present four exam-
ples here; the general theory will be developed, in the more intuitive
dual form, in the next chapter.

Example 1. We seek a triangular imbedding for the octahedral
graph ^2,2,2- Choose A = {1,2} for F = Z6, so that GA(F) — K3(2}-
We try for an index one imbedding of a current graph K having four di-
rected edges (for A* = {1,5,2,4}) and one 4-sided region in its quotient
manifold. But then K has two edges; no such K will work. Consider,
however, the index two spherical imbedding of Figure 9-9. This does
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work nicely, if we let
fi = {0,2,4} : (1,5,4,2) and ft = {1,3,5} : (2,4,5, 1) produce

0: (1,5,4,2)

2: (3,1,0, 4)

4: (5, 3, 2,0)

as a rotation scheme for the

1: (3,5,0,2)

3: (5,1,2, 4)

5: (1,3, 4,0),

imbedding of Figure 9-10.

Figure 9-9.

An index one imbedding is possible, if we use F = 63; see Problem
9-3.

Figure 9-10.

Example 2. The imbedded current graph of Figure 9-11, using
F = Z5, produces the rotation scheme given for K5, and in turn a
quadrilateral imbedding on the torus.

Figure 9-11.
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0: (1,3,4,2)

1: (2,4,0,3)

2: (3,0,1,4)

3: (4,1,2,0)

4: (0,2,3,1)

Example 3. The spherical current graph of Figure 9-12 gives
G&.(Sn) in Sk, where k — 1 + ^^(n2 — 5n + 2), with rn — (n — 1)!,
r2n_2 = n(n - 2)!, and r2 = f. (See Problem 9-4.) Here, A = {$,*},
with s = (12 • • • n) and t = (12). As is the standard practice, the digons
would be collapsed in the Cayley graph imbedding. Note the relevance
of this construction to Corollary 7-23 and to Theorem 7-26.

s t

Figure 9-12.

Example 4. The spherical current graph of Figure 9-13 imbeds K7

in Ss, with r3 = 7 and r7 = 3. Each 7-gon is bounded by a spanning
cycle. This index-one imbedding solves the regular part of the problem,
for finding 7(^10); see Section 9-2.

1
2

Figure 9-13.

9-4. Problems

9-1.) Show that seven "different" minimal imbeddings of K$ are com-
patible with the formula of Theorem 9-1. (For example, r3 =
4, rg = 1; r4 = 5 give two different imbeddings of K$ on Si, since
the region sizes are distributed differently.) How many of the
seven can you actually construct? (Hint: not all seven exist!)

9-2.) If a vertex of degree one in a current graph imbedding has its in-
cident edge carrying a current which generates the current group,
show that that vertex determines one region bounded by a hamil-
tonian cycle, in the Cayley graph imbedding being constructed.

9-3.) Use 83 to find an index-one imbedding of ^"2,2,2-
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9-4.) Verify the claims of Example 3, in Section 9-3. (This will be
much easier to do, after Chapter 10.)

9-5.) Verify the claims of Example 4, in Section 9-3, by using a the-
oretical approach. Then, write out the rotation scheme for K7

determined by Figure 9-13, and use that scheme to verify the
claims independently.

9-6.) Use the current graph imbedding of Figure 9-3, but with F = Z8.
What imbedding, of what graph, does this produce?

9-7.) Repeat Problem 9-6, using F = Z3 x Z3 and

A = {(1,0), (0,1), (1,1)}.

Assign the currents so that the resulting Cayley graph imbedding
is as interesting as possible.

9-8.) Use current graph theory to find a hexagonal imbedding (r = r6)
for K3j.

9-9.) The current graph of Figure 9-6 is K2 x K3. But there is a
second cubic graph of order 6 (see Problem 2-3), namely #3,3.
Label and direct the edges of K^ with currents from ZIQ, and
specify a rotation at each vertex, so as to obtain a triangular
imbedding for Kig. How does this imbedding compare with that
produced by Figure 9-6?

9-10.) A graph G of size q is said to be conservative (see Bange, Bar-
kauskas, and Slater [BBS1]) if the edges can be oriented and
distinctly labelled with 1,2, • • • , q so that at each vertex the sum
of the numbers on the inwardly directed edges equals that on
the outwardly directed edges. Show that if such a graph has a
2-cell imbedding with r = 1, then it serves as a KCL current
graph, with currents from F = Zn, n > 2q + 1, determining
a 2-cell imbedding of GA(F), for A = {1,2, • • • ,<?}. Study the
imbedding. Consider the special cases n = 2q +1 and n = 2q + 2.
Use the fact that, for n > 4, Kn is conservative (see [BBS1]) to
find r = rn_i imbeddings for Kn2_n+i, n = 1,2 (mod 4). If G is
cubic, show that, in general, the covering imbedding is minimal
for GA(F). How does this problem connect with the previous
one (9-9)?
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CHAPTER 10

VOLTAGE GRAPHS

In the preceding chapter, following the historical development of
Gustin, Youngs, Ringel, Jacques, et al, we generated graph imbeddings
by means of constructing (simpler) current graph imbeddings. These
latter were variously called "quotient graph in quotient manifold" and,
in [J3], "reduced constellation." Each approach has the advantage of
economy of construction; each approach has the disadvantage of gener-
ating regions by vertices and vertices by regions. Moreover, the mode
of "generation" is not made explicit, in a way to give maximum aid to
intuition.

These defects are corrected by the voltage graph theory initiated by
Gross [G4] in 1974 and by its interpretation in the context of branched
covering spaces (see papers by Gross and Alpert: [GAl], [GA2], and
[AG2].) The key is that the desired imbedding covers its quotient
structure directly, rather than in dual form.

In this chapter we present just enough covering space theory for
the immediate context (for more details, see [M3]) and then introduce
voltage graphs, with examples. We then revisit the Heawood Map-
coloring Theorem from this advantageous viewpoint. Next, we describe
the strong tensor product construction for graphs; this is an iterative
process that often produces an infinite tower of graph imbeddings from
one voltage graph imbedding at the base. Finally, we study voltage
graphs in conjunction with graphical products.

10-1. Covering Spaces

Def. 10-1. A continuous function p : X —> X from one path connected
topological space to another is called a covering projection if every point
x G X has a neighborhood Ux which is evenly covered; i.e. p maps
each component of p~l(Ux] homeomorphically onto Ux. If Y C X and
Y C X is such that p maps Y homeomorphically onto Y, we say that
Y lifts to Y. We call X a covering space for X.

A standard result in the theory of covering spaces is that |/o~1(x)|
is independent of the choice of x € X. If |p~1(rc)| = n, then p is called

119
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an n-fold covering projection. Here are some standard examples of
covering spaces and covering projections:

Example 1: Let Sl = {(x,y) E R2\x2 + y2 = 1} and consider
p : R —» 51, where p(t] — (cos t, sin t}. Then p "wraps" the real line
R around the unit circle Sl infinitely many times, with each half-open
interval [r, r + 2?r) "covering" Sl exactly once. If we pick (1,0) € S1

and (say) U(ifl) = {(x,y) 6 S*\x > 0, -| < y < |}, then C/(i,0) is
evenly covered - as p~1(f/(o,i)) = Uj6/ (2?r2 — |, 2?ri + |) and each open
interval (2m — |, 2?rz + |) is clearly homeomorphic to f/(i,o)-

The covering projection of the preceding example fails to be n-fold,
for each n € N. However, for every n € N it is a simple matter to
construct an n-fold covering projection.

Example 2: Define p : Sl —> S1 by p(z) = £n, where z E S1 is
regarded as a complex number. (Recall that, if z = cis 0 = (cos 0, sin 0),
then zn = cisn# = (cosn0, sinn#).) Thus p wraps S1 n times around
itself, and - for example - p-1(l, 0) consists precisely of the nth roots
of unity.

The above example is significant for the sequel, as it describes how
region boundaries of a desired graph imbedding will project to those of
a voltage graph imbedding, both in the simplest of cases (corresponding
to the KCL - see Section 9-2 - holding) and, in general.

Example 3: Recall that 50 is the sphere (S2 in R3), and that NI
is the projective plane (nonorientable surface of genus one, or sphere
with one crosscap.) Define p : SQ —> NI by antipodal identification;
i.e. p(x, y, z) = p(—x, —y, —2); then p2 is a 2-fold covering projection.
Intuitively, we could regard p as fixing the bottom hemisphere and
depressing the top hemisphere in "reverse overlapping" fashion; the
antipodal identification along the equator then "sews on" the crosscap.
(This takes place in R4, not R3.)

The following result is well known (by the Riemann-Hurwitz The-
orem.)

Thm. 10-2. If p : S —» S is an n-fold covering projection for surfaces,
then the surface characteristics are related by: x(S} — nx(S)-

This relationship is quite natural: if G is 2-cell imbedded in 5, with
p — q + r = x(5"), then p~1(G) is 2-cell imbedded in 5 with np vertices,
nq edges, and nr regions, so that x(S] = np — nq-\-nr — n(p — q + r) —
nX(S).

Cor. 10-3. If S = Sk and S = Sh, then k = n(h - 1) + 1.
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Thus, for example, only the torus can cover the torus (since h = I
forces k = I.)

An important generalization of the concept of covering space is
required, to cover the case where the KCL does not hold.

Def. 10-4. A continuous function p : X —> X from one path-connected
topological space to another is called a branched covering projection
(and X is a branched covering space of X) if there exists a finite set
B C X such that the restricted function p : X — p~l(B] —>• X — B is
a covering projection. The points of B are called branch points. For
b £ B and C/& a sufficiently small neighborhood of 6, the restricted
function p : Ub —» Uj, — {b} is n-fold, for some cardinal number n -
called the multiplicity of branching at 6 - where Ub is a component of
p~l(Ub — {b}) in X. (If n — 1, then there is no branching.)

Standard examples here are:

Example 4: Let D = {(x,y) e M2 x2 + y2 < 1}, the unit disk,
and give p : D —> D by p(z] = zn where, as before, z is regarded as
a complex number. Then p "wraps" D around itself n times, except
that the origin is fixed (and thus is a branch point of multiplicity n.}

Example 5: Define p : SQ —> 5o, in spherical coordinates, by
p(l, 0,4>) — (1, n6, </>). Then p "wraps" SQ around itself n times, except
that the north and south poles are both fixed; each is thus a branch
point of multiplicity n.

Both of the examples above are important for what is to follow, as
the former gives the prototype description of the projection of regions
in (possibly branched) coverings of one graph imbedding by another
- the local picture - while the latter is one instance of the projection
between the corresponding ambient surfaces - the global picture.

10-2. Voltage Graphs

Let K be a pseudograph. With each edge uv € E(K}, we associate
two oriented edges e = (u,v) and e~l = (v,u), and we set K* =
{(u,v)\uveE(K)}.

Def. 10-5. A voltage graph is a triple (K, F, <£), where K is a connected
pseudograph, F is a group, and 0 : K* —»• F satisfies (f>(e~~l) = (^(e))"1

for all e € K*. Each value 4>(e) is called a voltage.

We remark that the pseudograph K is closely related to the quotient
graph K of Section 9-2.
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Def. 10-6. The covering graph K x^ F for (K, F,</>) has vertex set
V(K) x T and each edge e = (u,v) of K determines the edges
(u,g)(v,g<j>(e)) of K x^ F, for all g £ T.

For pseudographs regarded as topological spaces then, K x^ F is
an |F| - fold covering space of K; in fact, every regular covering space
of K can be obtained in this manner (see [GT3]). (For additional
information on covering projections of graphs, see Waller [Wl], Farzan
and Waller [FW1], Clarke, Thomas, and Waller [CTW1], Sit [S9], and
Biggs [B12].)

For any walk w : e\, e2, • • • , em beginning at v G V(K) in (K, F, </>),
we set

1=1
and define the local group at v by:

F^ = {(f>(w)\w is a closed walk at v}.

Then F^ is a subgroup of F (see Problem 10-11), and moreover:

Thin. 10-7. If vertices u and v are in the same component of K, then
the subgroups Fw and Tv are conjugate in F.

PROOF. (i) Let (f>(x] G Fu, where x is a closed walk at u. Let y
denote a walk from u to v, as shown in Figure 10.1. Then y~lxy
is a closed walk at v, so that (f>(y~lxy) — 4>~l(y)(f)(x}(t)(y} G Tv.

y
Figure 10-1.

(ii) Now let <j>(w] G Fu? with w a closed walk at v. But ywy~l

is a closed walk at u,(j)(ywy~l) = <j>(y}(f)(w}(t)~l(y} G Fu, and
4>(y)Tv^-l(y) C Fu. Hence Fu - <^(y)Tv4rl(y), where 0(y) G F.

D

We see from Theorem 10-7 that, if K is connected, then [F : F^] is
independent of v G V(K).
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Thm. 10-8. For (K, F, </>) a connected voltage graph, the number of
components of the covering graph K x ̂  F is given by [F : F^], where v
is arbitrary in V(K}.

PROOF. Fix v 6 V(K). Since K is connected, every component
of K x«£ F contains a vertex of the form (v,g), for some g G F. Thus
the number of components of K x^ F is the number of components
of K x ̂  F having at least one vertex with v as first coordinate. But
(v,g) and (i>, h] are in the same component of K x^, F if and only if
g~lh 6 Tv if and only if gF^ = hTv. Thus the components of K x^ F
are in one-to-one correspondence with the left cosets of F^ in F. D

In Figure 10.2 we illustrate Theorem 10-8, using F = Z4. Since
Tv = {0,2}, we have the covering graph K x^ F consisting of [Z4 :
Z2] = 2 components. If we regard K as being imbedded in So, then
K x^ F = 2C4 is imbedded in 250-

Figure 10-2.

In general let (K, F, 0) be 2-cell imbedded in an orientable surface 5,
as described algebraically by the rotation scheme P = (pi,p2, • • • ,PP)-
We define the lift P of P to K x^ F as follows: if pv(v,u) = (v,w),
then

for each g e F. (See Figure 10-3.) Then
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Thus P determines a 2-cell imbedding of each component of K x^F.
The power of voltage graph theory is that the simpler imbedding of K
below gives much information about the more complicated imbedding
of K x^ F above. To see this, let R be a region of the imbedding of
K on S induced by P, and let \R\<j> be the order of (f>(w) in F, where
w = ei, 62, • • • ,em is a closed walk in K consisting of the ordered
boundary of R. (Since <f)(w) is unique up to inverses and conjugacy,
\R\<f> is independent of the orientation of R and of the initial vertex of
w.) We then have the following central result, due to Gross and Alpert
[GA1]:

(w,g<f>(v,w))

(in A")

Figure 10-3.

Thm. 10-9. Let (K, F, 0) be a voltage graph with rotation scheme P
and P the lift of P to K x^F. Let P and P determine 2-cell imbeddings
of K and K x ̂  F on the orientable surfaces S and S respectively, where
S is possibly disconnected. Then there exists a (possibly branched)
covering projection p : S — >• S such that:

(i) p
(ii) if R is a region of the imbedding of K which is a fc-gon, then

p~l(R) has rjB- components, each of which is a k\R\<j,-gon region
of the covering imbedding of K x^ F;

(iii) if \R\cj, = n > 1, then R contains a branch point of multiplicity
n. If n = 1, then R contains no branch point.

PROOF. For ( v , g ) e V(K x^ F), define p(v,g) = v. Extend
this continuously, first to E(K x^, F) by sending the image of edge
(n, g)(v, g4>(u, v)) in the imbedding of K x^ F to the image of edge uv
in the imbedding of K: and then to the regions of the imbedding of
Kx^T.

(i) Then p~l(K] = K x^ F, by the definition of p.
(ii) Let Vi,V2, — - ,^fc be a closed walk w bounding R, with Cj =

(vi, vi+i), mod k. Then we can also express w as: ei, 62, • • • , e^.
Let n = \R\<j>, the order of 4>(w) in F. Then each component of
p~l(R) will have boundary of the form:
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, (vk,

for some g € F. Hence each component of p~l(R] is a fcn-gon.
The number of such components is L^, as the second coordinates
of (i>i,<?) range over F.

(iii) This follows from the above, after observing that each component
of p~l(R] is mapped by p onto R, essentially by p : D — > D,
p(z) = zn, as described in Example 4 of Section 10.1.

D

Figure 10-2 serves to illustrate these ideas also. The covering pro-
jection is 4-fold. Each region R below has \R\tj, = order of 1 + 1 in
^4 = 2 and contains a branch point of multiplicity 2. Moreover, each
p~l(R] has | = 2 components (one in each 5o above), each a 4-gon in
25o (since k — 2). Each of these components projects to R, exactly
like p : D — > D, p(z] = z2 (wrapping around twice, but fixing a branch
point at the origin).

Def. 10-10. The order |-R|0 of 4>(w) in F, where it; is a closed walk
bounding region R, is called the period of R.

Thm. 10-11. Let voltage graph (K,T,<j>) imbedded in Sh have r re-
gions, with periods 7rl5 7r2, • • • , 7rr. Let the covering imbedding
be in Sk. Then

PROOF. Let p, q, r and p, q, r apply to the base and covering imbed-
dings respectively. Since region Ri (a fcj-gon) below determines ^1
regions, each of length k^i above, for 1 < i < r, we have
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so that q = \T\q. Also, p = |F|p, and f = YH=i ^- Moreover, h —
l + \(q-p-r). So,

D

Note that for |F| = 1, each TTJ = 1, so that k = h, as expected.
Also note that Theorem 7-22 is a special case of Theorem 10-11. For
additional corollaries, we need:

Def. 10-12. If (f>(w] = e, the identity in F, for the closed walk w
bounding region R in the voltage graph imbedding of K on 5, we say
that R satisfies the Kirchoff Voltage Law (KVL). If the KVL holds for
all regions R of K on 5, we say that the imbedding of K satisfies the
KVL.

Cor. 10-13. If the KVL holds for the voltage graph imbedding of K
on 5, then k = I + \T\(h - I).

The above is also Corollary 3 of Cairns [Cl, p. 208], for a covering
of Sh by Sk without branching; see also Corollary 10-3 of this book.

Cor. 10-14. If the voltage graph imbedding is on the sphere, then

That is essentially the formula of Fox [F3, p. 255], for branched covers
of S0 by Sk.

If p = \V(K}\ = 1, the covering imbedding is a Cayley map; see
Section 16-3. Then we have:
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Cor. 10-15. For Cayley maps,

That result is Theorem 5.3.8 of [BW1].

Cor. 10-16. For KVL Cayley maps,

Cor. 10-17. A KVL Cayley map covering the torus is on the torus.

The last result is independent of the Cayley property (see Corollary
10-13), but it is in the Cayley map context that we will most frequently
encounter this situation (see, for example, Section 10-3). The next
result follows directly from Theorem 10-9.

Thm. 10-18. The projection p : S —> S of Theorem 10-9 is a covering
projection (i.e. there is no branching) if and only if the imbedding of
the voltage graph (K, F, $) satisfies the KVL.

In either case (branching or not), if K has order ra, the voltage
graph (K, F, 0) is said to have index ra, and the imbedding of K x^ F
is an index ra imbedding.

Voltage graph theory is even more general than the (dual-form)
generalizations of Theorem 9-4 illustrated in Section 9-2, in that the
covering graph K x^ F need not be a Cayley graph. In this book,
however, we are concerned primarily with the Cayley graph case. This
will arise for Q a subgroup of F and voltage graph (K, Q, 0)-where
4> '• K* —»• F- a Schreier coset graph for il in F. Then K x^O = GA(F),
where A* = {<f>(k)\k € K*} (see Section 9-5 of [W15], for details of
this construction). For example, referring to Figure 10-2 once again,
we see that if we lift by 17 = Z2 = {0,2} instead of F = Z4, taking
vertex v below for the subgroup fJ and vertex u below for the other
coset {1,3}, then we get just the spherical imbedding of C4 on the
left as the covering space. Or, we could use voltage graph (K, F, </>)-
our preference in this book; then K x^ F would consist of U- disjoint
copies of GA(F). This is what the full Figure 10-2 shows.

In the simplest case-index oiie-K has one vertex (V(K) = {v}),
n = F, the two approaches coincide, and the construction is quite
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clear: for each g € F, we identify (v,g) with g, and then V(K x^ F) =
V(K) x T « T and £(tf x^F) « {{g,g<t>(e)}\g G F,e = (t;,t;) 6 #*}•

We remark that even voltage graph theory has been generalized; see
Gross and Tucker [GT3]. Also, see Bouchet [B17] for graph imbeddings
as covering spaces with folds. (A fold is a 1-dimensional analog of the
0-dimensional branching). And, see Parsons, Pisanski, and Jackson
([PPJ1] and [JPP1]) for graph imbeddings as branched covering spaces,
where the restrictions of the branched coverings to the imbedded graphs
are "wrapped quasi-coverings." Finally, for a study of voltage-current
duality using medial graphs, see Archdeacon [All].

10-3. Examples

Example 1: Consider the index one voltage graph (a "bouquet"
of two circles) of Figure 10-4, shown imbedded on the torus Si. We
take A = {a,b} for F = ft abelian (|F| > 5), so that the KVL holds;
thus by Theorem 10-18, there is no branching. Then, by Corollary
10-17, we see that G&(T] = K x^T will be imbedded on the torus as
well. By Theorem 10-9, this imbedding will have r = r± — |F|. Thus
Figure 10-4 completely determines an infinite family of quadrilateral
imbeddings on the torus. We mention four special cases below.

J

k

a

i
W f

b
>

a

6 t t

Figure 10-4.

(a) Let a = 1 and b = 2 in F = Z5; then GA(F) - K5. This
imbedding is self-dual and is the ground case for several infinite
families of imbeddings appearing in the literature:

(i) K^n+i has a self-dual imbedding in S = 5n(4n_s) (see [W9]);
here the voltage graph imbedding is just the normal form
representation for S = Sn (see Theorem 5-5 (ii).) The
covering projection is (4n + l)-fold, and indeed x(5) =
2 - 2n(4n - 3) = (4n + 1)(2 - 2n) - (4n
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(ii) The imbedding of K§ on Si can be augmented to an im-
mersion of #5(2) on S\ attaining the toroidal crossing num-
ber vi(K5(2)) = 10. Similarly, vk(Kp(2)) = ^^ for k =
(p-i)(p-4) an(j p a prime power = 1 (mod 4); see Theorem
6-75.

(iii) The imbedding of K§ on S\ can also be modified to obtain
a genus imbedding for G$ = #5,5 less a 1-factor; this ex-

tends to show 7(Gn) = p"-1)]"-4)! , which will be useful

in Chapter 13.
We observe that the rotation scheme for K$ in Si can be

readily obtained from Figure 10-4. First, we find

As is customary for index one imbeddings, we identify (i>, g) with
g in the covering graph. Next, as K5 has no loops or multiple
edges, we regard each p(Vtg) = pg as permuting the neighbors of
g rather than the edges at g. Finally, taking a = 1 and 6 = 2,
we get:

pi = (2,3,0,4)

pa = (3, 4, 1,0)

ps = (4, 0,2,1)

p4 = (0,l,3,2)

(In practice, the above is written down directly from the figure.)
The covering projection is 5-fold: the single vertex, two edges,
and one 4-gon for K in Si lift respectively to five vertices, ten
edges, and five 4-gon regions for K x $ T — K5 (also in Si.)

b) Now let a = (1, 0) and b = (0, 1) for F = Zm x Zn; then GA(F) =
Cm x Cn and finds a self-dual, quadrilateral, toroidal imbedding.
The case m = n = 3 is illustrated in Figure 10-5. The covering
space nature of this imbedding is readily apparent: the single
vertex, two edges, and one 4-gon now lift, respectively, to nine
vertices, eighteen edges, and nine 4-gons, under this nine-fold
projection p.

c) Setting a = (1,0), 6 = (1,1) for F = Z4 x Z2 gives a genus
imbedding for G^(T) = K^ in Si.

d) Now let T = uj(Si) - (a,b\abarlb-1 = e) = Z x Z, the funda-
mental group of the torus. In this case G^(T) has an imbedding
on So (if we allow the vertex set to have limit points) , but it is
more natural to consider G&(T) as being imbedded in R2, as one
of the three regular tessellations of the plane. (Recall that R2 is
the universal covering space for Si, in the sense that M2 covers
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Figure 10-5.

any space which covers Si; thus G&(T) in R2 also covers each
C&(%m x ^n) imbedding of b) above, in a natural way.

We mention that TT(SI) is also the group of one of the sev-
enteen wallpaper designs (i.e. a planar crystallographic group.)
The voltage graph theory is applicable to each of the seventeen
planar infinite wallpaper groups (as presented, for example, in
[B20]); of these imbeddings in R2, six are index-one branched
covers of So, six are index-two branched covers of So, one is
an index-two unbranched cover of S0, three are index-two un-
branched covers of S1? and the pattern described by TT(SI) is an
index-one unbranched cover of Si.

Example 2: Now modify Figure 10-4 slightly, to obtain Figure
10-6.

Figure 10-6.
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We still require F to be abelian, but now take A = {a, 6, a + 6}
with |F| > 7. Then G&(T) is regular of degree six and has an index
one r = r3 imbedding in Si; again infinitely many such imbeddings
are determined, one for each choice of F. Moreover, each of these has
bichromatic dual (the geometric dual G* has chromatic number two,
where G = GA(F)); the indicated 2-coloring of the regions of Figure
10-6 lifts to a 2-coloring of the regions for G&(T}. (This will be useful
in Chapter 12.)

a) For a — I and b = 2 in F = Z7, G&(T) = K7; this is the same
famous toroidal imbedding obtained by the dual of Figure 9-3
(see also Figure 9-4.)

(i) A fairly natural extension of this voltage graph gives ori-
entable triangular imbeddings for /f125+7, for all s € N.
(The dual is bichromatic only for s = 0.)

(ii) By taking first a = I and 6 — 3 and then a = 2 and
b = 5 in F = Zi3, toroidal imbeddings are obtained for two
complementary graphs in K^, this shows that N(l, 1) =
14, where AT (7,7') is the least integer such that every graph
G of order at least N(j^ 7') is not (7,7') bi-imbeddable (G
imbeddable in S7,G in Sy). (See [AW1]; see also [A3] and
[AC1].) It also shows that the toroidal thickness of KI$ is
two (Oi(Kiz) = 2; see Beineke [B7] and Ringel [R15]; see
also Theorem 6-63 (ii).)

b) If a = 1 and b = 2 for F = Z8, we obtain a genus imbedding for
#4(2)-

c) If a = (1,0) and 6 = (0,1) for F = Z3 x Z3, a genus imbedding
for #3(3) results.

Voltage graph constructions are by no means unique for a
given graph imbedding. For example, the dual of Figure 10-
6 serves as an index two voltage graph (using F = Z3) for an
imbedding of K^ on Si having r = r6 = 3; the dual of this
imbedding then serves as an index three voltage graph (again
using F — Z3) to triangularly imbed KZ(Z} on Si again. This is
the ground case of Theorem 4.2 in [KRW1].

We also mention that taking a — 1 and 6 = 2 in Figure 10-6,
but replacing a -I- b with 5 in F = Z9, gives an r = r<n — 2
imbedding for K3@) (as seen from Theorem 10-9 (ii)); this gives
the maximum genus of K^ as 7.^(^3(3)) = 9, and is our first
example of a branched covering in this section: each 27-gon above
wraps around a triangle R below 9 times, since |/?|^ — 9.

d) We keep a = (1,0) and b = (0,1), but now in F = Z4 x Z4;
the resulting triangular imbedding of GA(F) will be of interest
in Section 12-7.

e) In [S28] the following conjecture is attributed to Griinbaum: if a
graph G has an orientable triangular imbedding, then the dual
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graph G* has a Tait coloring (that is, has edge chromatic num-
ber Xe(G*) = 3.) We remark that G cannot be allowed loops
(consider the G* of Figure 8.2 in [BCL1]) or multiple edges (con-
sider G* = P, the Petersen graph, in Si) and that the conjecture
is false also for nonorientable triangular imbeddings (consider
G = KQ in NI, where G* = P.] However the conjecture is true,
as formulated, for 3-degenerate graphs G, as an easy induction
argument shows. It is also true if x(G*) = 2: if G* is cubic and
bipartite, then G* is 1-factorable (see, for example, Theorem 8-7
in [BCL1]), so that Xe(G*) — 3. Moreover, any G&(T) triangu-
lating 5i as a covering space of Figure 10-6 has an edge coloring
induced by the labels a, b, and a + 6; now color the dual edges
(in G*) to agree with the colors on the edges of G they cross.
Thus the voltage graph of Figure 10-6 also provides an easy al-
gorithm for Grunbaum's conjecture, for infinitely many toroidal
triangulations.

Example 3: The graphs K^(n) have genus ^(K^n)) = (n — I)2,
for n 7^ 3, as established by Jungerman [J7] and independently (for
n even) by Carman [Gl]. (See Theorem 6-42.) Jungerman did not
announce 7(^4(3)), although he did report that 7(^4(3)) > 4. The
index-three (this is not a Cayley graph construction) toroidal voltage
graph of Figure 10-7, using F = Zs, shows that 7(^4(3)) = 5, by first
imbedding K3^ in 85 with r3 = 6 and rg = 4. (Refer to Theorem 10-9
(ii): there are four branch points - indicated by dots inside regions -
each of multiplicity three and determining one 9-gon; the two regions
having no branch point each lift to three triangles.) It is easily veri-
fied that each 9-gon is bounded by a hamiltonian cycle in #3(3). (For
example, the clockwise boundary of the lift of the shaded region R
is: (60, aO, cO, 61, al, cl, 62, a2, c2) where, for ease of notation, we write
( v , g ) as vg; the fact that \R\<$> = 3 assures that the lift of R wraps
around R three times under branched projection by p.] Now add a
new vertex in the interior of each of three of the four 9-gons, and join
each new vertex to all nine boundary vertices, for the region containing
that vertex. The result is an imbedding of #4(3) in 85, with r% = 33
and r9 — 1. Note that the construction is readily augmented to give
a triangular (and hence genus) imbedding for the complete 4-partite
graph #4,3,3,3-

Example 4: For G a graph and n a natural number, by n-fold G we
mean that multigraph which results when each edge uv of G is replaced
by n edges uv. The construction of Figure 10-6 suggests the extension
in Figure 10-8 (where S = 62) • We take A = {a, 6, a + 6}- again - for
F abelian (n = \T\ > 7) and K a bouquet of nine circles in 52, with
r — TS, KVL, and bichromatic dual. The covering space is an r — r^
imbedding of the 18-regular 3- fold G&(T] on Sn+i, having bichromatic
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dual. The ground case (n — 7) gives an orientable triangular imbedding
for 3-fold K7 (using a — 1,6 = 2). Jungerman [Jll] has found genus
imbeddings (no digons allowed) for m-fold Kn, for all m and n (in both
the orientable and the nonorientable cases.)

a + b

0*2 0,1

Figure 10-8.

Example 5: The spherical index two voltage graph of Figure 10-9
also appears in [SW2]; it uses F = Zn to imbed Kn,n = K"2(n) in Sk (as
a branched covering space), where k = (n~ >(n~ )^ with r = r2n — n
(each |.R|0 = n; now apply Theorem 10-9 (ii).) Moreover, each region
boundary is a hamiltonian cycle. (For example, the region covering
the shaded digon has clockwise boundary (aO, 61, al, 62, a2, • • • , a(n —
1),60).) Thus this imbedding is readily augmented to give an r — r^
imbedding for K$(n) (we discussed the case n — 3 in Example 2c)
above, so that 7(K3(n)) =

 (n~1^n~2); this proof is far shorter (and more
elegant) than those of either [RY5] or [W5]. It is easy (see Problem 10-
4) to show that every r = r3 imbedding for K^(n) has bichromatic dual;
this will be important in Section 12-7. Moreover, these imbeddings
thus all satisfy the Griinbaum conjecture. (In fact, the three types of
edges in the complete tripartite graph G = K^(n) determine a natural
3-edge coloring for the dual G*.}
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a

n-1

6
Figure 10-9.

10-4. The Heawood Map-coloring Theorem (again)

We reconsider the crux of the proof of the Heawood map-coloring
theorem: the construction of genus imbeddings of complete graphs by
the use of current graphs; our context now will be that of branched
covering spaces, and we use the voltage graph construction. This view-
point treats only the regular part of each case; the additional adjacency
parts continue to be handled as before (see Section 9-2, [GT2], [W12],
and [R16].)

Recall the current graph of Figure 9-3, for imbedding K7 on the
torus. The dual of Figure 10-6 (in particular, see Example 2a) is
the corresponding voltage graph. From either the single region of
Figure 9-3 or the single vertex of Figure 10-6, we read the rotation
Po : (1,3,2,6,4,5); this generates the entire rotation scheme P =
(pOiPii ' ' ' 5Pe) and in turn the triangular imbedding. (Note that the
KCL/KVL holds.)

In general, the current graph K(s) for Ki2s+7 (as given in Section
9-3) has as its dual a voltage graph for F = Zi2S+7, with p — 1, q =
6s + 3, and r = r% = 4s + 2; the voltage graph, as was the current
graph, is imbedded in S8+i. The covering is unbranched (since the
KVL holds) and is (12s + 7)-fold, giving an imbedding of Ki2s+7 in
Si2s2+7s+i as before, with p = 12s + 7, q = (12s + 7) (6s -f 3), and

The current graph for KIQ appears in Figure 9-13; it is used, with
F = Z7 (see, for example, [W12]) to imbed K7 in 83 with r3 = 7
and r? = 3 (determined by the vortices x,y, and z.) This is readily
augmented to a triangulation of 83 by K7 + K$ = Kw — {xy, xz, yz};
then the additional adjacency part of the construction adds the three
missing edges over one extra handle.

The corresponding voltage graph is given in Figure 10-10.
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The rotation p0 = (1,6,4,3,2,5) is easily read from either figure.
The outer region of Figure 10-10 satisfies the KVL (1 + 4 + 2 = 0,
in Z7), so by Theorem 10-9 (ii) it lifts, without branching, to seven
triangles in the covering imbedding of K7. Each of the three monogons,
however, has voltage sum of order \R\^ = 7, so that each is covered,
with branching, by one seven-sided region (a heptagon.) Thus Kf
is imbedded in .$3 as a branched covering space over SQ. Moreover,
since each voltage generates Z7, each heptagonal region boundary is a
hamiltonian cycle for K7. Thus, if one vertex is added in the interior
of each heptagon, a triangular imbedding of K? + K^ results. The
additional adjacency construction is as before.

Figure 10-10.

The three vortices for each current graph in case 10 (see [R16]) be-
come monogons in the voltage graph imbedding, with the single bound-
ary edges always carrying a voltage which generates Zi2S+7. Thus each
monogon is branch-covered by a single (12s + 7)-gon, bounded by a
hamiltonian cycle for Ki2s+7, and the construction proceeds as for the
case 5 = 0.

For a discussion of all twelve cases in this voltage graph branched
covering space setting, see Gross and Tucker [GT2].

10-5. Strong Tensor Products

In [GRW1] the following product operation for graphs was intro-
duced:

Def. 10-19. For two graphs G\ and G2, the strong tensor product
G\®G2 has vertex set V(G\) x V(G2) and edge set

Thus Gi<S>G?2 consists of |V(G?i)| disjoint copies of G2, together with
all the tensor product edges. The following two properties of the strong
tensor product follow from the definition:
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Thm. 10-20. Kr®Kn(m} = Kn(rm).

Thm. 10-21. G\®G-2 is a subgraph of the lexicographic product
GzlGi], with equality if and only if G\ is complete.

The theorem below from [GRW1] is especially germane in the
present work:

Thm. 10-22. Let G2 have a triangular imbedding in an orientable
surface, with bichromatic dual; let G\ be connected and bichromatic,
with maximum degree at most two. Then Gi®G^ has a triangular
imbedding in an orientable surface, with bichromatic dual.

In Chapter 12 we will find that orientable triangulations of strongly
regular graphs with bichromatic duals can be particularly useful. We
shall see that each Kn(m) is strongly regular; thus if we take GI —
KI, Theorems 10-20 and 10-22 will combine to preserve this usefulness
under the strong tensor product operation.

For the present, we observe that each covering imbedding of Figure
10-6 (with GA(F) = G-z) gives rise to an infinite collection of bichro-
matic dual triangulations, via repeated application of Theorem 10-22 -
for each graph GI as in that theorem.

In particular, we can take GI = K2 and extend Examples 2a, 2b,
and 2c respectively to obtain, for each nonnegative integer k, orientable
bichromatic dual triangulations for K7^

k)i •^4(2fc+1)> and -^3(3.2*)-

Finally, we remark that Theorem 10-21 combines with Theorem
6-45 to yield the surprisingly general formula of:

Thm. 10-23. Let G have p vertices of positive degree, q edges, k non-
trivial components, and no 3-cycles. Then 7(^2n®G) = k + n(nq — p).

Cor. 10-24. Let G have no 3-cycles. Then j(K2®G) = (3(G).

10-6. Covering Graphs and Graphical Products

This approach to graph imbedding was motivated by the desire to
imbed the graph G3 x G3 x G3 efficiently, so as to find the genus of the
group Z3 x Z3 x Z3 (see Section 7-2). Although it was not successful
in that regard, it did bear other fruit ([Al] and [W18]).
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A useful way to think of forming a cartesian product H x G is to
replace each vertex of H with a copy of G, and then to join corre-
sponding vertices in G in accordance with the edges of H. We have
used this idea in some of our surgical constructions (see the proofs of
Theorem 6-36 and Theorem 7-13, for example). Now we combine it
with voltage-graph lifting, in a surprisingly general construction.

We are interested in product graphs H * G for which V(H *G) =
V(H) x V(G) = {(u,v)\u e V(H),v € V(G)}. We specify four types
of possible edges {(^i, ^i), (u2, v2}} for H * G:

(i) HI = u2 and {vi,v2} e E(G)\
(ii) vi = v2 and {ui,u2} € E(H);

(iii) {Ul,u2} e E(H);
(iv) {MI,w2} <E E(H) and {vi,v2} e E(G).

In Table 10-1 we define six graphical products (the first two were
encountered in Section 2-4, the fourth in Section 10-5) H*G, by spec-
ifying the types of edges each contains.

name symbol types of edge
cartesian
lexicographic
tensor
strong tensor
strong cartesian
augmented tensor

HxG
H(G]
H®G
H®G
HxG
H®'G

(i), (")
(i), 0")
(iv)
(i), H
(i), (n), (iv)
("), (iv)

Table 10-1.

We remark that H <8>' G — G®H, so that the augmented tensor
product operation is abstractly redundant. We retain it, however, as
we want to maintain G = G&(T) as a Cayley graph in the second
factor. For each of the six products of Table 10-1, we construct H*G,
where G = GA(F), as an |F|-fold covering graph of the voltage graph
H* = (AT, F,0) obtained by modifying H as shown in Table 10-2. Let
e represent the identity of F. Note that putting, at each vertex of H,
a loop for each element in A has the effect of replacing that vertex
with a copy of G above (in the covering graph), as in our surgical
constructions.

The covering graph K x^F is H*G&(T}, and if we commence with
an imbedding of H into some surface, the lift via this construction is
an imbedding of H*G&(T] into a second surface, uniquely determined
by Theorem 10-9.

The motivating example started with H = 63 x 63 and A = {1}
for F = Z3. The imbedded voltage graph H* is shown in Figure 10-11.
All loops carry voltage 1, while all other edges carry voltage 0. The
covering imbedding is of (Gs x €3} x C^ on S\Q. (See Problem 10-17.)
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product for each u € V(H) for each {u, v} £ E(H)
cartesian

lexicographic

tensor

strong tensor

strong cartesian

augmented tensor

uc(*~~} V<5 6 A

ti(j^*~^ V£ 6 A

U0

«cO W6A

ĉC*"*""̂ ) V(5 6 A

t*o

u e v

u g v V# G F

u £ v V£ € A*

UQ (? g V(^€A*

w Jv V<5 € A* U {e}

7z <? g V^6A*U{e}

Table 10-2.

Figure 10-11.

Note that the construction of Figure 10-9 also fits this format, with
Kn,n = K2[Kn], using A = 0 for F = Zn.

We give four other applications here, one for each additional graphi-
cal product under study. For a thorough study of these ideas, including
many other applications, see Abay-Asmerom [Al].
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Thm. 10-25. If a connected graph H of order p and size q has an
orientable quadrilateral imbedding, then

2 |l + f - p, if H is not bipartite

Thm. 10-26. If H = HA(T), with A - {a,b,c} for T satisfying at
least the relations a4 = 64 = c4 — a&c = e, then:

Thm. 10-27. If H is connected and bipartite, with an orientable
quadrilateral imbedding, then y(H <S>' K^) =

10-7. Problems

10-1.) Show that the identity map i : X —> X is always a covering
projection, if X is locally connected (every neighborhood of each
point contains a connected neighborhood of that point).

10-2.) Show that if p : X —>• X and q : Y —*• Y are covering projections,
then soispxq : X xY -+ X xY, where (p x q)(x, y) = (px, qy).

10-3.) Regard the torus as Si = C x C, where C is the unit circle in
]R2. Show that R2 = R x R, R x C, and Si = C x C all cover
Si. Try to visualize /?, in each case.

10-4.) Show that every orientable triangular imbedding for Kz(n} has
bichromatic dual.

10-5.) Find the voltage graph corresponding to Figure 9-11.
10-6.) Find the voltage graph corresponding to Figure 9-13.
10-7.) What imbedding (and of what graph) covers the voltage graph

imbedding of Figure 10-12 (T = Zg)? Is there branching? Where,
and of what multiplicity?

Figure 10-12.
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10-8.) *Answer the questions of Problems 10-7, but now for Figure 10-
13, with F = Zi2. Then show that 7(^6,6,3) = 7.

Figure 10-13.

10-9.) *Extend the construction of Problem 10-8, to show that

7(#2n,2n,2n-2) = 2(n - I)2,

for n = 1,2 (mod 3). (See also [SW2].)
10-10.) Show that if we begin with an arbitrary 2-cell imbedding of a

Cayley color graph C&(T) as a voltage graph imbedding, and
use voltage graph F, the covering space consists of |F| disjoint
copies of the base configuration.

10-11.) Show that Tv is a subgroup of F.
10-12.) Construct an interesting voltage graph imbedding, and describe

the covering space.
10-13.) Prove Theorem 7-22, using voltage graphs.
10-14.) Does voltage graph theory ever produce a covering surface of

lower genus than that of the base space?
10-15.) Prove Theorem 10-20.
10-16.) Prove Theorem 10-21.
10-17.) Show that the covering graph for Figure 10-11 is C3 x C3 xC3, and

that the covering surface is SIQ. Deduce that 7(Z3 x Z3 x Z3) <
10.

10-18.) What are the covering graph and covering surface for Figure 10-
14, using A = {1} for F = Z3?

10-19.) Prove Theorem 10-23.
10-20.) **Affirm or deny the conjecture of Example 2e.
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Figure 10-14.
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CHAPTER 11

NONORIENTABLE GRAPH IMBEDDINGS

We reiterate that our primary motivation for this entire work is
to depict graphs - and in particular graphs of groups - on surfaces
(locally 2-dimensional drawing boards), usually as efficiently as possi-
ble. In keeping with our desire to study structures that exist in three-
dimensional space, we have concentrated on the orientable surfaces
Sk(k > 0) - to the almost total exclusion of the non-orientable surfaces
Nh(h > 1). But much of what we have done has an analog in the
nonorientable context, and it is to these analogs that we now turn our
attention.

11-1. General Theory

Def. 11-1. The nonorientable genus, 7(6?) > of a graph G is the mini-
mum h such that G can be imbedded in the non-orientable surface A^.
Such an imbedding is said to be nonorientably minimal for G.

For completeness, we extend Definition 11-1 so that 7(6?) = 0, if G
is planar. Since h can be regarded as the number of crosscaps attached
to the sphere SQ to form Nh,*((G) is also called the crosscap number
of G. Thus a planar graph has crosscap number zero.

The genus and nonorientable genus are related by:

Thm. 11-2. 7(G) < 2-y(G) + 1.

PROOF. Imbed G in 57(G) ai*d then attach one crosscap to 57(G),
within one region of the imbedding. Then G is imbedded in this new
surface, which is homeomorphic to

This upper bound is best possible, as G = K7 shows.

Auslander, Brown, and Youngs [ABY1] have constructed graphs of
arbitrarily large genus which all imbed in the projective plane NI; thus
there is no modification of Theorem 11-2 which reverses the inequality.

For a proof of the following analog to Theorem 5-14, see Massey
[M3].

143
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Thm. 11-3. Let G be a connected pseudograph, with a 2-cell imbed-
ding in Nh, with the usual parameters p, q, and r. Then p—q+r — 2—h.

The number 2 — h is the characteristic of Nh (x(Nh) = h), as it
is independent of G. Note that in computing the characteristic of a
surface, one handle has the same weight as two crosscaps.

Unfortunately, the nonorientable analog of Theorem 6-11 is false.
As is implicit in Theorem 8-9, K7 does not imbed in N%; but since K7

does imbed in Si, it has an imbedding in N$ (add one crosscap in the
interior of a region of the K7 imbedding in Si) which is not 2-cell. This
imbedding must be nonorientably minimal for K7.

Thus we cannot be assured that a nonorientably minimal imbedding
of a connected graph satisfies the very useful euler equation of Theorem
11-3. Youngs [Yl] overcame this obstacle by two definitions and one
theorem:

Def. 11-4. An imbedding of a connected graph G into a surface S
(orientable or nonorientable) is simplest if there is no imbedding of G
into any S' satisfying x(S') > x(S)-

Def. 11-5. An imbedding of a connected graph G into a surface S
(orientable or nonorientable) is maximal if there is no imbedding of G
into any S' having more regions. (That is, S allows the maximum value
of r.)

Thm. 11-6. An imbedding of a connected graph G into a surface S
(orientable or nonorientable) is simplest if and only if it is both 2-cell
and maximal.

Thus the imbedding of K7 into 7V3 constructed above is neither sim-
plest nor 2-cell (nor maximal.) In general, if a connected graph G has
a nonorientable 2-cell imbedding which maximizes r, then that imbed-
ding is simplest (by Theorem 11-6) and hence nonorientably minimal,
so that 7(G) has been determined. Then we have the following analogs
to Corollary 6-14, Corollary 6-15, and Theorem 9-1:

Cor. 11-7. If G is connected, with p > 3, then ^(G) > f - p + 2;
equality holds if and only if a nonorientable triangular imbedding can
be found for G.

PROOF. Let G be imbedded in A^G)- If the imbedding is 2-cell,
then p — q + r = 2 — 7(G) by Theorem 11-3. As in the orientable case,
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2q>3r- with equality if and only if r = r^. Thus 7(6?) = q—p—r+2 >
| — p + 2. If, on the other hand, the imbedding is not 2-cell, then it
is not simplest, by Theorem 11-6. Thus G has a simplest (and hence
2-cell) imbedding on surface 5, where x(N*t(G)) = 2 — i(G) < x(S) =
p — q + r < p — | (using 2q > 3r again); hence 7(G) > f — p + 2, in
this case. D

Cor. 11-8. If G is connected, with p > 3, and has no triangles, then
l(G) > f - p + 2; equality holds if and only if a nonorientable quadri-
lateral imbedding can be found for G.

(The proof is entirely analogous to that of Corollary 11-7.)

Cor. 11-9. Let Kn be nonorientably, minimally, 2-cell imbedded in
Nh. Then ^(Kn) = h= (n-3)

6
(n~4) + £,>4(z - 3)r<.

(The proof is analogous to that of Theorem 9-1.)

The nonorientable analogs to Theorem 6-18 and Corollary 6-19 are
also false, as G = 2K7 shows: since, by Corollary 6-19, 7(2^7) =
27(^7) = 2, 7(2^7) < 5, by Theorem 11-2. Similarly, for Theorem
6-18, consider two disjoint copies of K? joined by an edge. But, as
shown by Franklin [F4], i(K7) = 3, so that l(2K7) ^ 27(^7). What
is true follows in two definitions and one theorem, due to Stahl and
Beineke [SBl]:

Def. 11-10. The manifold number of a graph G is v(G] = max{2 —
27(G),2-7(G)}.

Def. 11-11. A graph G is orientably simple if /x(G) ̂  2 — 7(6?); that

Thm. 11-12. Let G be a graph with blocks (or components)
G\,GI,-— ,Gfc. If G is orientably simple, then 7(G) — 1 — k +

O; else ^(Cf) = 2k- ^

11-2. Nonorientable Covering Spaces

Recall from Example 3 of Section 10-1 that the sphere 5o is a 2-
fold covering space of the projective plane. In general (see Stahl [S12],
for example), there is a 2-fold covering projection p : Sk — * -Wfc+i, for
every nonnegative integer k. Thus every nonorientable surface has an
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orientable covering surface. Trivially, each nonorientable surface has at
least one nonorientable covering surface, namely itself (see Problem 10-
1.) In Section 11-4 we shall see an example of a nonorientable surface
(Ns) with infinitely many nonorientable covering surfaces (Nn+2n > 7).

In contrast, if the base space is an orientable surface, then every
covering surface must be orientable also. Thus in Chapter 10 - where
each base space is orientable - each covering space is orientable and
hence unambiguously determined by its characteristic. In this chap-
ter, however, since the base space will always be nonorientable, if the
covering surface has even characteristic, then its orientability character
needs to be ascertained to specify the surface uniquely.

In the next section we shall see how to do this, in the context of
nonorientable graph imbeddings.

11-3. Nonorientable Voltage Graph Imbeddings

To extend the voltage graph theory to nonorientable imbeddings,
we augment the rotation scheme P of section 10-2 to a pair (P, A) called
an imbedding scheme: X : K* — » 1*2 gives a voltage graph (K, Z2,A).
The region boundaries are computed almost as in the orientable case
(see Section 6-6), except that sometimes p~l(v,u) is used instead of
pv(v, u}\ see [S13] and [SW2] for details, and Example 4 of Section 11-
4. Now let (K, F, 0) be a voltage graph with imbedding scheme (P, A)
and let P be the lift of P to K x^ F; define A : (K x^ F)* -» Z2 by
X(e) = A(e), for each lift e of e e E(K). Define (P, A) to be the lift
of (P, A) to K x^ T. Then the conclusions of Theorems 10-9 and 10-18
can be shown to follow verbatim.

Thm. 11-13. Let (K, F, 0) be a voltage graph with imbedding scheme
(P,A) and (P, A) the lift of (P,A) to K x0 F. Let (P, A) and (P, A)
determine 2-cell imbeddings of K and K x^ F on the surfaces S and
S respectively, where S is possibly disconnected. Then there exists a
(possibly branched) covering projection p : S — > S such that:

(i) p
(ii) if R is a region of the imbedding of K which is a /c-gon, then

p~1(R) has rP- components, each of which is a fcl-R^-gon region
of the covering imbedding of K x^, F.

(iii) If \R\tp — n > 1, then R contains a branch point of multiplicity
n. If n = 1, then R contains no branch point.

Cor. 11-14. The projection p : S — > S is a covering projection (i.e.
there is no branching,) if and only if the imbedding of K x^, F satisfies
the KVL.
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Of course, the imbedding scheme (P, A) is used in practice only
when 5 is nonorientable; if S is orientable, the rotation scheme P
alone suffices, and S is necessarily orientable also, as observed above.
If S is nonorientable, we must determine the orientability character of
5; to this end we give (see [SW2]):

Def. 11-15. For a voltage graph (K, F, 77), a closed walk c in K is said
to be 77-trivial if 77(0) = e in F.

Thm. 11-16. Under the hypothesis of Theorem 11-13, the derived sur-
face S is orientable if and only if every ^trivial closed walk in K is
also A-trivial.

We mention that Garman [Gl] has further extended the theory of
voltage graphs, as outlined in the previous and present chapters, to
pseudosurface imbeddings. In particular, Theorems 10-8, 10-9, 10-18,
11-13, and 11-16, and Corollary 11-14 also apply for S a pseudosurface;
in this case, S is necessarily also a pseudosurface (or a generalized
pseudosurface; see Definition 5-28.) Moreover, Rahn [Rl] has extended
voltage graph theory to hypergraphs.

11-4. Examples

Example 1: Let ra = 2 (mod 4). Figure 11-1 presents a projective
plane imbedding of a pseudograph K with one vertex and y loops:
A(e) = 1 for each loop e. Let F = Zn (n even), and set </>(e) = 1 for
each loop also, with direction as indicated. Then K x^ Zn is a graph
with vertex set {(i?,i)|0 < i < n — 1} in which (i>, i] and (v,i + 1)
are joined by ~ edges for each i. For each region R of K imbedded
below, \R|0 = |, so that the regions of K x^ Zn imbedded above are
all n-gons; in fact each is a hamiltonian cycle. There are y2 — m such
regions in all (above.) Thus if we place a new vertex in the interior of
each such region, join it by non-intersecting edges to all the vertices
on its boundary, and then delete all the original edges of K x^ Zn, a
quadrilateral imbedding of Km,n results. It is clear that every 0-trivial
closed walk in K is also A-trivial, so that the covering imbedding is
orientable by Theorem 11-16; it is into Sk, where k = (m~2^(n~2). This
gives a partial proof of Theorem 6-37; the approach appears in [SW2],
and originated with Gross [G9].

Example 2. In Figure 11-2 we take A = {a, 6, a + 6} for F abelian
(|F| = n > 7) and K as a bouquet of three circles imbedded in N3.
The single vertex has been given an orientation as indicated. Then
those edges which are coherently oriented, as induced by the vertex
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flzn

Figure 11-1.

orientation, are assigned A = 0 (there are none); all other edges - in
this case the three edges bounding the hexagon - are assigned A = 1.
Then the closed walk a + b — (a + b) is 0-trivial but not A-trivial; thus
the covering surface S is nonorientable, by Theorem 11-16. Moreover,
x(S) = nx(S) = —n, so that 5 = Nn+2. The special case n = 7
produces a self-dual imbedding of K7 on Ng.

a + b

a + b

Figure 11-2.

Example 3. Now modify Figure 11-2 slightly, to give Figure 11-3.

The covering imbedding, still on Nn+2, is now triangular and of the
12-regular 2-fold G&.(T). Finally, change 0 (i.e. relabel the edges of
K on AT3; see Problem 11-4) to give 1-fold triangulations of G&(T}
of characteristic —2n; for example, consider G^(1i2n}, where A =
{l,2,3,n — 3, n — 2, n — 1} and still n > 7. The case n = 7 gives
K7(2) on NIG.

Example 4. The Petersen graph is one of the most famous in
graph theory; see [CW2]. We introduced it in Problem 3-8 as the
odd graph Oa; encountered it in Problem 4-10 as a connected vertex
transitive graph which is not a Cayley graph; and found it imbedded
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a + b

a + b

Figure 11-3.

on the torus in Figure 8-8. It then follows from Problem 11-12 and
Theorem 6-6 that the orientable genus of the Petersen graph is one.
The usual depiction of the Petersen graph is as in Figure 11-4, where
we have labelled it as O^. (For brevity, we set {a, 6} = ab.}

Figure 11-4.

We know that A(O3) = S5, from Problem 3-8; and 10 of the 120
graph automorphisms, in a pleasing dihedral symmetry, are apparent
in Figure 11-4. But the five inappropriate edge intersections are not
pleasing, in the context of topological graph theory. In Figure 8-8,
however, whereas we have avoided the edge intersections, we have sac-
rificed the symmetry (r5 = 3,r6 = I,r9 = 1). Consider now Figure
11-5, which depicts the Petersen graph imbedded symmetrically in the
projective plane NI. In fact, it is routine to check that the permu-
tations (123) and (14) (25) both induce map automorphisms, in the
sense of Chapter 16 (graph automorphisms preserving oriented region
boundaries), except that here we do not require that orientation be pre-
served. These two permutations generate A5 (see the proof of Corollary
7-24). Now choose an arbitrary odd permutation in 65, say (12). This
graph automorphism does not preserve region boundaries. Thus the
map automorphism group is precisely A5. This is not surprising, as the
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dodecahedron is a double cover of Figure 11-5, by antipodal identifica-
tion, and AS is the automorphism group of the dodecahedron. More-
over, since we already know that the Petersen graph is not planar, its
nonorientable genus is one also. (But the imbedding of Figure 11-5 is
most efficient, since it is of highest euler characteristic for the Petersen
graph.) We also note that Figure 11-5 is the dual of Figure 8-4 (Figure
8-4 is double covered, by antipodal identification, by the icosahedron,
dual to the dodecahedron, as we saw in Figure 5-8); here we have a
map of six countries, each bordering on all the others, reaffirming that

= 6.

This is our first instance of obtaining a desired imbedding not as a
lift of a simpler imbedding, but as a projection of a more complicated
(in the sense of increased p, q, and r) imbedding. If we try to find Figure
11-5 by a voltage graph construction, we encounter two obstacles: (1)
since the Petersen graph is not a Cayley graph, no index one voltage
graph lifting is possible, and (2) our desired imbedding has p = 10,
q = 15, and r = r$ — 6; but these three numbers have no nontrivial
common factor to mod out by. Surgery does not seem relevant to
construct our projective planar imbedding either. But here is a rotation
scheme that will suffice once we assign A = 1 to each edge (a, 6, c, d, e)
passing through the crosscap and A = 0 to the remaining ten edges:

p12:(35,45,34)
p13:(45,24,25)
p14:(23,25,35)
p15:(23,24,34)
p23:(14,15,45)

PM: (15, 35, 13)
p25 : (34, 13, 14)
P34:(15,12,25)
p35:(24,14,12)
p45:(12,23,13).

We modify the algorithm of Theorem 6-50 as follows: if our re-
gion boundary commences with walk w = Ui, ̂ 2, • • • ,Vfc , then Vk+i =
Pvk(vk-i) if A(w) = 0, but vk+i = p~^(vk-i] if A(iy) = 1. The central
region boundary is calculated as in the orientable case:

12 - 34 - 25 - 13 - 45 - 12.

The shaded region boundary is calculated as:

34 - 12 - 35 - 24 - 15 - 34,

using P24(35) = 15, but pis(24) = 34. Intuitively, each time we pass
through the crosscap, the orientation is reversed. The other four region
boundaries are similar to the preceding one, as is retrospectively evident
from the Z5 rotational symmetry.
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C

Figure 11-5.

11-5. The Heawood Map-coloring Theorem,
Nonorientable Version

If we apply Corollary 11-9 to the graphs G — Km, we obtain:

Lemma 11-17. j(Km) > [(m"3)
6

(m"4)], for m > 3.

We have noted that equality does not hold for m = 7 and that
= 3. However, equality does hold in every other case:

Thm. 11-18. 7(tfm)] < p™-3K™~4)j, for m ̂  7.

This is, of course, established by finding an imbedding of Km on

Nh,h = [(m~3)
6

(m~4)j. The first proof was by Ringel [RIO], without
the benefit of current graphs. Later proofs do employ current graph
theory (in particular, the theory of cascades), and again split naturally
into the residue cases of m modulo 12 (see [R16], [LYl], [J6].) Lemma
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11-17 and Theorem 11-18 combine to form the nonorientable version
of the complete graph theorem:

Thm. 11-19. i(Km) = p™-3Km-4)-|, for m > 3 and m ^ 7; 7(^7) =
3.

Now we let Mn = Nh in Theorem 8-13, recalling that f(n) =

Lemma 11-20. x(Nh) < |_/(n)J = T+v/l+24/-,

To complete the proof of the Heawood Map-coloring Theorem,
nonorientable version, we need the following:

Lemma 11-21.

PROOF. Consider Nh,h^2. Define m = |_/(2 - /i)J , and now con-
sider also N^(Km}. Note that 7(tfm) < h, so that x(-My(tfTO)) ^ x(Nh)-
Now lfm imbeds in N^(Kn). Clearly x(^(Km)) > m = [/(2 - ft)J, so

Since Franklin [F4] showed that x(Nz) — 6, we can now combine
Lemmas 11-20 and 11-21 to restate Theorem 8-9.

Thm. 11-22.

11-6. Other Results

We give a few of the analogs to the orientable results of Chapter 6.
For most of the other nonorientable genus results known by 1978, see
Table 2 of Stahl [S14].

Thm. 11-23. (Ringel [R14])

'(m-2)(n-2)'
;m,n > 2.

Thm. 11-24. (Jungerman [J8])
l(Qn) = 2 + 2n-2(n-4),n > 2, except that 7(Q4) = 3 and 7(Q5) = 11-
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Thm. 11-25. (Jungerman [J10])
(n)) — 2(n — I)2, if n > 1, except that 7(^4(2)) = 3.

Thm. 11-26. (Stahl and White [SW2])

Thm. 11-27. (Stahl and White [SW2])
For n > 4 and even, 7(/^n,n,n-4) = (n — 2)(ra — 3).

Bouchet [B16] has also used his "generative m-valuations" (see Sec-
tion 6-5) to study 7(ATn(m))- He considered the residue classes of m
and n (mod 6) and constructed triangular imbeddings for 18 of these
36 cases, thus determining 7(/fn(m)) for those 18 cases.

We now turn our attention to the maximum nonorientable genus
parameter.

Def. 11-28. The maximum nonorientable genus, 7M(G), of a connected
graph G is the maximum h for which G has a 2-cell imbedding in TV/,,.

In contrast to the orientable case, the value of this parameter is
readily calculated for each connected graph G (see Ringel [R17] and
Stahl [S13]); recall that the Betti number j3(G) = q-p+l.

Thm. 11-29. 7

This means that every connected graph has a nonorientable 2-cell
imbedding with r = I.

The following theorem, also due to Stahl, gives an analog to Duke's
Theorem (6-21) and to Corollary 6-22.

Thm. 11-30. A connected graph G has a 2-cell imbedding in Nh if
andonly i f7(G)</ i< /3(G) .

We give a nonorientable analog to the famous Kuratowski Theorem
(6-6); this result is due to Glover, Huneke, and Wang [GHW1] and to
Archdeacon [A9]. See also Bodendiek and Wagner [BW2], who present
a list of 12 graphs.
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Thm. 11-31. A graph G imbeds in the projective plane N\ if and only
if, for each graph H in a prescribed list of 103 graphs, G contains no
subgraph homeomorphic with H.

It had long been conjectured that there is a finite number of graphs
obstructing imbedding into each surface, whether orientable or nonori-
entable (by Theorem 6-6 there are two for SQ\ by Theorem 11-31 there
are 103 for JVj.) Recently Robertson and Seymour [RSI] have affirmed
this conjecture:

Thm. 11-32. For each closed 2-manifold M, there is a finite set SM
of graphs such that a graph G imbeds in M if and only if G contains
no subgraph homeomorphic from at least one member of SM-

Finally, we mention that Pisanski [P7] has expanded the surgery
techniques he used to generalize work of [W6] (see Theorem 7-13, for
example) in the orientable case, to apply to the nonorientable case as
well. Moreover, Pisanski and White [PW1] have calculated the nonori-
entable genus, for many classes of abelian and hamiltonian groups.

11-7. Problems

11-1.) Prove Corollary 11-8.
11-2.) Prove Corollary 11-9.
11-3.) Describe the 2-fold p : Sk -> Nk+1 of Section 11-2, for k > 1.
11-4.) Relabel the edges of K in Figure 11-3, to yield the GA(Z2n)

imbedding suggested in Example 3.
11-5.) What imbedding, and of what graph, covers the voltage graph

imbedding if Figure 11-6 (F = Z9)? Is there branching? Where,
and of what multiplicity?

Figure 11-6.

11-6.) Answer the questions of Problem 11-5, but now for F = ZIQ.
11-7.) **Try to prove Theorem 11-19 by the use of nonorientable volt-

age graphs.
11-8.) Show that -y(Qn x KM) = 2 + n2n+1, n > 1.
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11-9.) Show that the 2"-metacyclic group

r = 1n x Dm = (a, b\am = b2n = abab~l = e) ,

for n odd and n > 1, is toroidal. (Hint: use Theorem 7-3 and the
voltage graph imbedding that results when the right side arrow
is reversed in Figure 10-4.)

11-10.) What other toroidal groups can you find, using the hint of Prob-
lem 11-9?

11-11.) Make a small change to Figure 7-3 to imbed K^ on N%. Hence
verify the case m = n = 4 of Theorem 11-23.

11-12.) Find a homeomorph of K^ in the Petersen graph H. Is there a
homeomorph of K5 in H? Find 7(H).

11-13.) For G a connected graph having crossing number v(G), show
(i) 7(G) < v(G)

(ii) 7(C7) < v(G).
Are these bounds sharp? Are they useful?
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CHAPTER 12

BLOCK DESIGNS

Block designs are combinatorial structures of interest in their own
right, with applications to experimental design and to scheduling prob-
lems. Heffter [H6] was the first to observe that certain imbeddings of
complete graphs determine BIBDs with k = 3 and A = 2 (and some-
times A = 1.) Alpert [A2] established a one-to-one correspondence
between BIBDs with k — 3 and A = 2 and triangular imbeddings for
complete graphs. In [Wll] this correspondence is extended to PBIBDs
on two association classes with k — 3, AI = 0 and A2 = 2 (and some-
times A2 — 1) and triangular imbeddings for strongly regular graphs.
The group divisible designs of Hanani [H2] are used to construct trian-
gular imbeddings (in generalized pseudosurfaces) for the graphs Kn(m),
in each case permitted by the euler identity. Conversely, triangular
imbeddings of Kn(m) are constructed (by other means) which lead to
new group divisible designs. A process, using the strong tensor product
operation for graphs, is developed for "doubling" a given PBIBD of an
appropriate form.

In this chapter, the term "surface" includes nonorientable as well
as orientable closed 2-manifolds.

12-1. Balanced Incomplete Block Designs

Def. 12-1. A (v,b,r,k,\}-balanced incomplete block design (BIBD) is
a set of v objects and a collection of b subsets of the object set, each
subset being called a block, satisfying:

(i) each object appears in exactly r blocks;
(ii) each block contains exactly k (k < v) objects;

(iii) each pair of distinct objects appear together in exactly A blocks.

If fc = v, the design would be complete ; complete designs are
trivial to construct, but have little application. Hence for k < v, the
design is "incomplete." The "balance" comes from the three uniformity
conditions on r, fc, and A respectively.

A trivial example of a BIBD, for each v > 1 and 0 < k < v, is
obtained by taking the blocks to be all the fc-subsets of the f-set; then

<>= G)< r =(«:;), and A =(H)-
157
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In general, elementary counting arguments (see Problems 12-1 and
12-2) establish the following well-known result:

Thm. 12-2. If a (v, 6, r, k, A)-BIBD exists, then:

(i) vr = bk;
(ii) \(v - 1) = r(k - 1).

These necessary conditions have also been shown to be sufficient,
for k — 3,4,5 (and for some of the cases k = 6,7) by Hanani [H2], and
for fixed k and A, with v large enough, by Wilson [W28]. That they are
not sufficient in general is demonstrated by (43,43,7,7,1); if a BIBD
with these parameters existed, so would a projective plane of order 6;
but none such exists.

12-2. BIBDs and Graph Imbeddings

What Heffter and Alpert observed is that a triangular imbedding
of Kn in an appropriate surface (this is possible exactly when n = 0,1
(mod 3), n > 1; see Sections 9-1 and 11-5), with the regions determin-
ing the blocks in the natural fashion, serves as an (n, n^n~1^; n — 1,3,2)-
BIBD, since: (i) every vertex is adjacent to exactly n—l other vertices
and hence is in exactly n—l regions; (ii) each region contains exactly
three vertices, by assumption; and (iii) each pair of distinct vertices
constitutes an edge (since the graph is complete) and hence belongs
to exactly two blocks (the two regions containing that edge in their
boundary.)

Conversely, a BIBD on v objects with k = 3 and A = 2 (a 2-fold
triple system ) determines a triangular imbedding of Kv in a generalized
pseudosurface, as follows. Each block becomes a 3-sided 2-cell region,
with vertices labelled by the objects of the block. Since A = 2, each pair
of vertices appears exactly twice - so that a 2-manifold (possibly with
several components) results from the standard identification process
of combinatorial topology. Then identify identically labeled vertices,
to form a generalized pseudosurface triangular imbedding for Kv. We
summarize, in:

Thm. 12-3. The 2-fold triple systems on v objects are in one-to-one
correspondence with triangular imbeddings of Kv in generalized pseu-
dosurfaces.
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If the triangular imbedding of Kv has bichromatic dual, then the 2-
fold triple system splits naturally into two 1-fold triple systems (Steiner
triple systems, having k — 3 and A = 1):

Thrn. 12-4. Steiner triple systems on v objects are in two-to-one cor-
respondence with triangular imbeddings of Kv in generalized pseudo-
surfaces having bichromatic dual.

Letting k — 3 and A = 1 or 2 in Theorem 12-2, and invoking
the work of Hanani (or others) mentioned following that Theorem, we
obtain:

Thrn. 12-5. (i) Steiner triple systems on v objects exist if and only
if v = 1,3 (mod 6);

(ii) 2-fold triple systems on v objects exist if and only if v = 0,1
(mod 3).

For independent verification of (ii) above, we follow Alpert in ob-
serving that triangular imbeddings of Kv (see Sections 9-3 and 11-5)
give 2-fold triple systems on v objects for all v = 0,1 (mod 3), v ^ 1.
Moreover, in [GRW1] it is observed that the orientable genus imbed-
dings for Kn,n = 3 (mod 12), all have bichromatic dual; thus Steiner
triple systems are independently produced for these values of n.

Def. 12-6. A Mendelsohn triple system on v objects is a collection of
cyclic ordered triples (a, 6, c) from the v objects such that each ordered
pair of distinct objects appears in exactly one triple.

Thrn. 12-7. Mendelsohn triple systems on v objects are in one-to-one
correspondence with triangular imbeddings of Kv in orientable gener-
alized pseudosurfaces.

Mendelsohn [M5] showed the following.

Thm. 12-8. A Mendelsohn triple system on v objects exists if and
only if v = 0,1 (mod 3), v ^ 1 or 6.

Cor. 12-9. Triangular imbeddings of Kv in orientable generalized
pseudosurfaces exist if and only if v = 0,1 (mod 3), v ^ I or 6.
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Mendelsohn triple systems are 2-fold triple systems, but not con-
versely. Compare Theorems 12-3, 12-5 (ii), 12-7, and 12-8. The dis-
crepancy for v = 6 is because KQ has a nonorientable triangular imbed-
ding (on NI), but not an orientable one. Thus KQ does not imbed on
the pseudosurface 5(0; 1(2)), even though such an imbedding would be
compatible with the euler identity; see also Theorem 8-33.

12-3. Examples

Example 1: Refer to Example la of Section 10-3; the quadrilateral
imbedding of K5 in Si obtained there yields a (5,5,4,4,3)-BIBD. This
is atypical in that k > 3 and A > 2, but it does indicate that the
scope of the connection between BIBDs and graph imbeddings is even
wider than indicated in Section 12.2. This imbedding is a geometric
realization of the "all 4-subsets of a 5-set" abstract design.

Example 2: Refer to Example 2a of Section 10-3; the triangular
imbedding of K7 in Si obtained there yields a (7,14, 6,3,2)-BIBD and,
since the dual is bichromatic, two (7, 7,3,3, l)-BIBDs. One of these
latter is given abstractly in Table 12-1; the blocks may be read off
from the seven regions covering the unshaded region in Figure 10-6
(note that they are also half of the "blocks" listed in Section 9-2.) The
blocks may also be regarded as the lines of the Fano Plane (the finite
projective plane of order two; see Chapter 15.) The design could be
employed to schedule firemen (say) in a weekly schedule (three men per
day, etc.) The extension of the voltage graph of Figure 10-6 to A^+T
gives a (12s + 7, (12s + 7)(4s + 2), 12s + 6,3,2)-BIBD, which is not of
bichromatic dual for s > 0; hence we obtain no additional Steiner triple
systems from this figure.

013
124
235
346
450
561
602

Table 12-1.

Example 3: Refer to Example 3 of Section 11-4; the triangulation
of 2-fold K7 in N9 obtained there gives a (7,28,12,3,4)-BIBD.

Example 4: Refer to Example 4 of Section 10-3; the triangulation
of 3-fold K7 in 58 obtained there gives one (7,42,18,3,6)-BIBD and,
since the dual is bichromatic, two (7,21,9,3,3)-BIBDs.
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12-4. Strongly Regular Graphs

For values of v, 6, r, k, A not meeting the conditions of Theorem
12-2 (and perhaps even for those that do), it is natural to attempt
a construction of a related design. For this reason, partially balanced
incomplete block designs were introduced by Bose and Nair [BNlj. The
partial balance occurs in that there are i > 1 lambda values, one for
each "association class;" we restrict our attention primarily to the case
i = 2.

As the association classes (for the case t = 2) are determined by
adjacencies within a "strongly regular graph" - to ensure an appropri-
ate balance within each class - we first define this latter concept. Let
x and y be distinct vertices in a graph G, either non-adjacent (h = 1)
or adjacent (h = 2). Let p^j(x, y} be the number of vertices which are
non-adjacent to both x and y(i = j — 1), adjacent to x but not to
y(i = 2,j — 1), adjacent to y but not to x(i = 1, j = 2), or adjacent to
both x and y = (i = j = 2).

Def. 12-10. If a graph G is regular of degree n^ and is of order v, yet
G / Kv or Kv, and if p^(x, y) is independent of the choice of x and y,
for /i, z, j = 1,2, then G is said to be a strongly regular graph.

It is well known that the eight conditions involving x and y can be
replaced by two of them (see Problem 12-4):

Thm. 12-11. If G is a regular graph which is neither complete nor
empty, then G is strongly regular if and only if p$2(x,y] is independent
of x and ?/, for h = 1,2.

For strongly regular graphs, it is convenient to write p^ for Pij(x, y),
as the choice of x and y is immaterial (except that they must be ad-
jacent in G, for h — 2, and adjacent in G, for h — 1.) Two vertices
(objects) of a strongly regular graph are said to be first associates if
they are non-adjacent and second associates if they are adjacent. Thus
each vertex has exactly rii ith associates (i = 1,2), and n\ +n,2 = v — 1.

As a major class of examples of strongly regular graphs, we give:

Thm. 12-12. The regular complete n-partite graphs G = Kn(m-) are
all strongly regular, for m, n > 2.
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PROOF. Clearly G is regular, of degree n^ — m(n— 1). Since m > 1,
G is not complete; since n > 1, G is not empty. Finally, we observe
that £>22 — m(n ~ 1) arid £22 = m(n ~ 2). D

For the examples of Section 12-8, the following observation will be
crucial. If we start with G\ = Kr and the strongly regular G-2 = Kn(m),
then the strong tensor product G\ <8> G<2 is strongly regular also, by
Theorems 10-20 and 12-12.

Other standard examples of strongly regular graphs include G =
L(Kn),n > 4, and G = L(K-2(m^],m > 2, where L(H) denotes the line
graph of graph H. (We mention in passing that L(^"2(m)) = Km x Km:
see Problem 2-13.) The Petersen graph is strongly regular, with p\2 = 1
and p%2 = 0. (The latter value corresponds to girth greater than three.)

12-5. Partially Balanced Incomplete Block Designs

Def. 12-13. A (v,b,r,k;\i,\-2)-partially balanced incomplete block de-
sign (PBIBD) is a set of v objects, pairwise associated into two associ-
ation classes (as determined by a strongly regular graph G of order v)
and a collection of b subsets of the object set, each subset being called
a block, satisfying:

(i) each object appears in exactly r blocks;
(ii) each block contains exactly k(k < v) objects;

(iii) each pair of iih associates appear together in exactly \i blocks

Again, the requirement k < v corresponds to the incompleteness of
the design; the requirement G / Kv or Kv ensures that niU-2 > 0, so
that the PBIBD does not collapse to a BIBD - unless AI = A2, and the
requirement that G be strongly regular is an attempt to restore some
of the balance to the experiment that was lost when one A could not
be found for all pairs x, y.

We now give additional terminology, some of which applies to both
BIBDs and PBIBDs.

Def. 12-14. A PBIBD is said to be group divisible if the strongly reg-
ular graph G upon which the design is based has a partition of its
vertex set into n groups of m vertices each so that two vertices are first
associates if and only if they are in the same group.

Clearly this is possible if and only if G = Kn(m).
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Def. 12-15. A group divisible PBIBD is a transversal design if each
block contains exactly one vertex from each group.

Clearly this requires k — n.

Def. 12-16. A design (BIBD or PBIBD) is said to be resolvable if the
set of b blocks can be partitioned into r subsets, of | blocks each, each
subset containing each object exactly once.

For example, if we take the edges of a strongly regular graph G as
blocks (k = 2), the resulting PBIBD is resolvable if and only if G is
1-factorable. In particular, G — Kn(m-) gives an (mn, m

 2
n~ , m(n —

1), 2; 0,1)-PBIBD, which is resolvable (see Himelwright and Williamson
[HW2]) if and only if mn is even (for m = 1, the BIBD on G = Kn(i) =
Kn is resolvable if and only if n is even) and in fact is a transversal
design if and only if n = 2. The transversal design on K^w+i), for
example, is used in duplicate bridge scheduling to ensure that, in 2w+l
rounds, each north-south couple plays exactly one round against each
east-west couple.

Def. 12-17. A design (BIBD or PBIBD) is said to be z-resolvable if the
block set can be partitioned so that each set in the partition contains
each vertex exactly z times.

Thus, a 1-resolvable design is resolvable.

Def. 12-18. Two block designs D\ and D2 are said to be isomorphic
if there exists a one-to-one correspondence 0 : O\ —> 02 between their
object sets such that \x\,x<i,... ,£&} is a block in D\ if and only if
{#(#1), #(#2), • • • 5 Q(%k}} is a block in D%.

Clearly if DI and D% are isomorphic, their parameters v, 6, r, fc, A
(or AI and A2) must agree; the converse is not true, as we shall see in
Section 12-6.

For an example of all these definitions, consider the designs of Ta-
bles 12-2 and 12-3; clearly these are isomorphic, under the map 9 send-
ing i to the ith letter of the alphabet, 1 < i < 6. The (6,8,4,3; 0,2)-
PBIBD is based upon the strongly regular graph G — K^) and hence
is group divisible; it is also a transversal design and is resolvable (the
resolution is given by the horizontal pairing of the blocks.)
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This design could be used to compare six wines (v = 6) as follows:
companies A, B, and C make wines 1 and 4,2 and 5,3 and 6 respec-
tively. We want to test the wines of the different companies against
each other (say twice each: A2 = 2), but do not want to compare two
wines made by the same company (Ai = 0.) Each taster tastes exactly
3 wines (k = 3), after which his judgement becomes impaired. We have
eight tasters (b = 8) in all, and each wine is tasted four times (r — 4).

1,2,6 3,4,5
2,4,6 1,3,5
4,5,6 1,2,3
1,5,6 2,3,4

Table 12-2.

a, 6, / c,d,e
6, d, f a,c,e
d,e,f a,b,c
a, e, / b,c,d

Table 12-3.

Finally we remark that the above design was taken directly from
the triangular imbedding of K^) in ^o depicted in Figure 9-10 (writing
"6" for "0" and rearranging the or bits to display the resolvability.) This
foreshadows the correspondence of the next section.

12-6. PBIBDs and Graph Imbeddings

For triangular imbeddings of strongly regular graphs, we readily
obtain analogs to Theorems 12-3 and 12-4. A design is said to be
connected if its underlying graph is connected; since a complete graph
underlies each BIBD, only a PBIBD could fail to be connected.

Thm. 12-19. Connected (v, 6, r, 3; 0,2)-PBIBDs are in one-to-one cor-
respondence with triangular imbeddings of strongly regular graphs of
order v in generalized pseudosurfaces.

Thm. 12-20. Connected (v, 6, r, 3; 0, l)-PBIBDs are in two-to-one cor-
respondence with triangular imbeddings of strongly regular graphs of
order v in generalized pseudosurfaces and having bichromatic dual.
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When a design is constructed, by any method (here we are advo-
cating graph imbeddings, but other tools of construction include Latin
squares, finite projective geometries, finite euclidean (affine) geome-
tries, difference sets), the natural question is: Is it new? Clearly the
design is new, if no design existed previously on the same parameter
set. It is new also if no previously constructed design on the same pa-
rameters is isomorphic to the given design. The context of topological
graph theory is often very convenient for answering the isomorphism
question, as we see in:

Thm. 12-21. Let Dl and D2 be two designs (both BIBDs with k = 3
and A = 2, or both PBIBDs with k = 3 and AI = 0, A2 = 2) on the
same parameter set. If the generalized pseudosurfaces they determine
are not homeomorphic as topological spaces, then DI and D2 are not
isomorphic as designs.

PROOF. The identification procedure of surface topology is well-
defined, so that isomorphic designs would yield homeomorphic gener-
alized pseudosurfaces. D

The converse of this theorem is false. For example, K& triangulates
620, both with and without bichromatic dual. (See Problem 9-9.) Thus
in one case the 2-fold triple system splits into two Steiner triple systems
and in the other case, it does not, so that the two (19,114,18,3,2)-
BIBDs are not isomorphic.

12-7. Examples

Example 1: Refer to Example Ib of Section 10-3; the self-dual
quadrilateral imbedding of C3 x C3 in Si yields a (9,9,4,4; 1,2)-PBIBD.
The graph €3 x C$ is strongly regular, with p\2 = 2 and p%2 — 1; in
fact, C3 x C3 = £(#3,3). (see Problem 2-13.) This "topological" design
is atypical in that k > 3 and AI ̂  0 and thus indicates that the scope
of the connection is even wider than as indicated in Section 12-6. This
design will be the ground case of an infinite collection of interesting
designs constructed in Section 16-8.

Example 2: Refer to Example 2b of Section 10-3; the bichromatic-
dual, triangular imbedding of K^) in Si obtained there gives one
(8,16,6,3;0,2)-PBIBD and two (8,8,3,3;0; l)-PBIBDs (with blocks
generated by {0,1,3} and {0,3,2} - in Z8 - respectively.) All three of
these designs are on parameters for which no BIBD exists. Then Ex-
ample 2c of Section 10-3 gives a bichromatic-dual triangulation of Si
also, but this time by K^ and giving one (9,18,6,3,; 0,2)-PBIBD and
two (9,9,3,3; 0, l)-PBIBDs (generated by {00,10,01} and {00,11,01}
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- in Z3 x Z3 - respectively.) Finally Example 2d of Section 10-3 gives
a bichromatic-dual triangulation of Si once again, now by the strongly
regular GA(F), F = Z4 x Z4 (no£ in the class Kn(m)) and yielding one
(16,32,6,3; 0,2)-PBIBD and two (16,16,3,3; 0,1)-PBIBDS. The latter
two designs are on parameters for which no BIBD exists.

Example 3: Refer to Example 5 of Section 10-3; the bichromatic
dual (see Problem 10-4) triangulation of SV-ixn-2) by K^ obtained

there gives one (3n, 2n2,2n, 3; 0,2)-PBIBD and two (3n,n2,n,3;0,1)-
PBIBDs. These are all group divisible, transversal designs. In [P5]
Petroelje constructed orientable triangulations for K^n^ for which the
resulting X2 = 2 PBIBDs are also resolvable. He then used these to
obtain pseudosurface triangular imbeddings for K^n) and the corre-
sponding (4n,4n2,3n,3;0,2)-PBIBDs. In [Gl] Carman constructed
bichromatic-dual orientable surface triangulations for J^4(n), n even
(no imbedding of K^n) can have bichromatic dual for n odd, since
each vertex then has odd degree 3n), so that different (by Theorem 12-
21) (4n, 4n2,3n, 3; 0,2)-PBIBDs, and also pairs of (4n, 2n2, f^, 3; 0, l)-
PBIBDs, are obtained for these values of n. Finally, in [A6] Anderson
constructed generalized pseudosurface triangulation for jfQ(n), for all n,
giving yet another realization of these triples of designs.

Example 4: We observe that any (n,6, n — 1,/j, A)-BIBD deter-
mined from an r = r*; imbedding of Kn(k > 3) determines in turn
an (n2,2n6, In - 2, fc; 0, A)-PBIBD as follows. The line graph L(K2(n))
= Kn x Kn (see Problem 2-13) is strongly regular, and the cartesian
product Kn x Kn can be obtained by identifying vertices appropri-
ately among 2n disjoint copies of Kn. (Let V1 = {(i,j)\l < j < n},
1 < i < n, and Vj = {(i'J)\lf <i' < n'}, 1' < j' < n', be the In dis-
joint vertex sets, each V1 and each Vj inducing a Kn; then identify ( i , j )
with ( i ' , f ) , 1 < i, j < n.) Then performing these vertex identification
on 2n disjoint initial imbeddings of Kn as given yields a generalized
pseudosurface imbedding of Kn x Kn and a PBIBD on the parameter
set as claimed.

For instance, take k = 3, A = 2, n = 0,1 (mod 3). Or, con-
sider the complete design given by K± in NI (see Problem 12-8); this
(4,3,3,4,3)-BIBD gives a (16,24,6,4; 0,3)-PBIBD by this method. Fi-
nally, consider the voltage graph for F = Z9 consisting of an octagon
with edges labeled, in order, 1,2,3, —4, —3, —1, —2,4 (a bouquet of four
circles in 62, after identification of the boundary edges of the octagon);
the (9,9,8,8, 7)-BIBD arising from the covering imbedding of Kg, al-
though a trivial design, gives a non-trivial (81,162,16,8; 0, 7)-PBIBD.
These designs on Kn x Kn are called Latin square designs; their con-
struction could have been carried out purely combinatorially, but their
topological realization is convenient for the application of Theorem 12-
21.
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Example 5: The imbedding of Figure 11-5 gives a(10,6,3,5;l,2)-
PBIBD based upon the strongly regular Petersen graph.

Example 6: In all of the preceding examples - including those in
Section 12-3 - we have used graph imbeddings to obtain block designs.
Now we reverse this point of view.

More attention has been paid toward the imbedding of graphs in
the class Kn(m-) then in any other class; see for example [B16], [RIO],
[RY1], [RY5], [Gl], and [J7j; for a survey of results in the orientable
case, see [GRW1] and [KRW1]. Except for n — 2 (where no triangles
are possible), the known results are obtained by constructing triangular
imbeddings. For the generalized pseudocharacteristic x"Kn(m)} - see
Definition 6-51 - the upper bound is given by the euler characteristic
for a triangulation:

Thm. 12-22.

We observe that the bound is an integer if and only if 3 divides
mn(n — 1). For m = 1, G = Kn\ it is now well-known that Kn has
(in fact surface) triangular imbeddings if and only if n = 0, 1 (mod 3).
(See Theorems 6-38 and 11-19; see also Corollary 12-9). For m > 1 and
n > 2 generalized pseudosurface triangular imbeddings of Kn(m) are, by
Theorem 12-19 and the observation following Definition 12-14, exactly
group divisible PBIBDs with k = 3, AI = 0, and A2 = 2. The following
is Theorem 6-2 of Hanani [H2], restated in the present context:

Thm. 12-23. A group divisible PBIBD with the object set partitioned
into n groups of m objects each (m > l,n > 2) and k = 3, AI — 0,
\2 = 2 exists if and only if 3 divides mn(n — 1).

Thus all the triangular imbeddings upon which the estimate of The-
orem 12-22 is based actually exist, and we state:

Thm. 12-24. For n > 2, x"(tfn(m)) - mn(6+^"mn) if and only if 3
divides mn(n — 1).

Hence Hanani's result for block designs serendipitously computes
the generalized pseudocharacteristic of Kn(m-) , in | of the possible cases.
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12-8. Doubling a PBIBD

Given an orientable triangular imbedding of Kn^ with bichromatic
dual, we have seen that one (i>, 26, 2r, 3; 0, 2)-PBIBD, as well as two
(v, 6, r, 3; 0, l)-PBIBDs, correspond to this imbedding. Then by Theo-
rem 10-20 (with r = 2) and Theorem 10-22 (with GI = K2), the strong
tensor product J^2®^n(m) = Kn(2m) has an orientable triangular imbed-
ding with bichromatic dual, so that one (2v, 86, 4r, 3; 0, 2)-PBIBD and
two (2-y, 46, 2r, 3; 0, l)-PBIBDs result; in a sense, each original PBIBD
has been doubled. Clearly this process can be iterated indefinitely,

Moreover, the construction given in [GRW1] for Theorem 10-22
provides a prescription for listing the blocks in the doubled designs in
terms of those in the initial designs. Thus if the 26 initial blocks are

grouped by color class, then the 86 final blocks are

and

(again grouped by color class).

Theorem 10-22 always gives a triangular imbedding for K-zt&G, for
G as in the theorem; yet if K2^G is not strongly regular, then no block
designs are provided. It is easily seen that K<2®G is strongly regular
if and only if G is strongly regular with p\% — n^ or complete, and
that G is strongly regular and connected, with p^2 — n2, or complete,
if and only if G = -Kn(m) for some m > 1, n > 2. Thus the doubling
process of this section is applicable exactly to triangular imbeddings
of Kn(m) with bichromatic dual (there is a nonorientable analog to
Theorem 10-22; see [Gl]). However, every time such an imbedding is
found, it determines an infinite tower of triples of PBIBDs, as explained
above. Moreover, if the initial imbedding is on a pseudosurface, than
all imbeddings derived from it are also pseudosurface imbeddings; thus
the associated designs, by Theorem 12-21, differ from those of Hanani
(see Example 6 in Section 12-7.)
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For example, consider the toroidal imbeddings of Kj, K^), and
•^3(3) given as covering spaces of Figure 10-6 (Example 2 in Section
10-3); each is the base for such an infinite tower of designs. The graphs
for K7, for instance, are the family K7^

k)-> A: = 0,1,2,.. . - for which
the genus is also thereby determined.

As a second example, consider the voltage graph of Figure 12-1,
for F = Z35; this determines a nonorientable pseudosurface triangular
imbedding for K7^ with bichromatic dual. Hence another infinite
tower of imbeddings - for K7(5.2k) - and of the corresponding block
designs is anchored. (In this case, the pseudocharacteristic x'(^7(s-2fc))
is also determined.) The A2 = 1 designs, for all fc, and the A2 = 2
designs, for k even, have no BIBD counterparts.

16

16

2 ^ 3

Figure 12-1.

12-9. Problems

12-1.) Prove Theorem 12-2 (i).
12-2.) Prove Theorem 12-2 (ii).
12-3.) Find (and prove) an analog to Theorem 12-2 for PBIBDs.
12-4.) Prove Theorem 12-11.
12-5.) Prove or disprove the following strengthening of Frucht's The-

orem (3-18): Every finite group is the automorphism group of
some strongly regular graph.

12-6.) Show that the complement of a strongly regular graph is strongly
regular.

12-7.) Let a (u, 6, r, k; AI, A2)-PBIBD be based upon the strongly regular
graph G. Show that we can use exactly the same objects and
blocks, to obtain a corresponding (v, 6, r, k; A2, Ai)-PBIBD, based
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upon G. (Thus we may assume, without loss of generality, that
A! < A2.)

12-8.) Construct an imbedding of K± in NI to give a (4,3,3,4,3)-
balanced complete block design.

12-9.) Show that L(K±) = K^2) and L(K$) = E, the complement of
the Petersen graph.

12-10.) What design results from the voltage graph imbedding of Figure
12-2, using T = ZIQ?

Figure 12-2.

12-11.) What designs result from the voltage graph imbedding of Figure
12-3, using F = Zn? Find a generalization, for prime powers q
congruent to 3 modulo 4. (Hint: the quadratic residues mod q
give a perfect difference set, that is each non-zero difference of
two elements in the set occurs exactly A = ^- times.) These
designs are called Paley designs.

12-12.) Show that the design of Figure 12-1 is 3-resolvable, the design
of Problem 12-10 is 4-resolvable, and the first design of Problem
12-11 is 5-resolvable.

12-13.) PBIBDs on three or more association classes may also be
found from graph imbeddings. For example, take A =
{(1,0,0), (0,1,0), (0,0,1)} for r = Z2 x Z2 x Z2 and show that
Qs = G&(T) in S0 gives an (8,6,3,4; 0,1,2)-PBIBD(3), where vi
and v-2 are first associates if v% — v\ + (1,1,1), second associates
if non-adjacent but not first associates, and third associates if
adjacent.

Figure 12-3.

12-14.) Find the parameters i>, 6, r, k, and A for the imbeddings of: (1)
Example 2a(ii) of Section 10-3, and (2) Theorem 11-19, m = 13.
Are these designs isomorphic?
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12-15.) An isomorphism of a design with itself is called an automor-
phism. If two objects are in a common block, they are said to
be collinear. Show that if a permutation of the object set of a
design preserves blocks (i.e. is an automorphism), then it pre-
serves collinearity. Give an example to show that the converse is
false.

12-16.) Modify Figure 10-12, to obtain an imbedding of K8 on S2 with all
regions triangular except for two disjoint quadrilaterals. (Hint:
change the placement of the loops and half-edges.) Augment this
imbedding to obtain a Mendelsohn triple system of order 9.

12-17.) Given a Steiner triple system of order v, replace each (unordered)
triple with two oppositely oriented triples (on the same three
elements), to obtain a Mendelsohn triple system of order v. What
generalized pseudosurface provides the natural model for this
construction?
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CHAPTER 13

HYPERGRAPH IMBEDDINGS

A graph is just a special case of a hypergraph; but although a great
deal of attention has been paid, as we have seen, to the geometric
realizations of graphs, there has been little effort made to extend these
concrete representations to the general setting. In [JSW1] an attempt
was made to remedy this situation, as we indicate in the present chapter
also.

Our aim is to find a geometric realization for hypergraphs satisfying:

(1) The method should not be unduly cumbersome.
(2) It should include the standard geometric realization of graphs

(as points and arcs in appropriate 2-manifolds) as a special case.

Every block design is a hypergraph, so the material of this chapter
will connect with that of the previous chapter. The connection will
extend to Chapter 15 also, as every finite geometry is a hypergraph
too.

13-1. Hypergraphs

Def. 13-1. A hypergraph H consists of a finite non-empty set V(H] of
vertices together with a set E(H], each of whose elements is a subset
of V(H) and is called an edge. If e € E(H) (e C V(H)) and if u,v 6
e(u,v G V ( H ) ) , we say that u and v are adjacent vertices, and that
the vertex u and edge e are incident with each other, as are v and e.
Two distinct edges e\ and 62 are said to be adjacent if e\ Pi 62 ^ 0.
The degree, d(v], of v E V(H] is the number of edges with which v is
incident. If \e\ = r(r > 0) for all e €E E(H), then H is said to be an
r-uniform hypergraph.

Thus a graph is just a 2-uniform hypergraph.

We write pH = \V(H)\ and qH = \E(H)\. Let m = h|, for 1 < i <
qn and e(H) = {ei, 62 , . . . , eqH}. Then as a generalization of Theorem
2-2, we have:

173
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Thm. 13-2. For any hypergraph H,

PROOF. Merely count total incidences, in the two possible ways.
D

Note that for a graph each rii = 2, and we regain Theorem 2-2. In
fact:

Cor. 13-3. For an r-uniform hypergraph H,

PH

For an example, consider the 3-uniform hypergraph H defined by:

= {1,2,3,4},

E(H) = {{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}};

then Corollary 13-3 observes that 4-3 = 3 - 4 . One convention (see
Berge [B8]) for representing hypergraphs would depict H as in Figure
13-1; this method does not appear to meet either criterion (1) or (2),
as given in the introduction to this chapter. Thus, we seek another
method.

Figure 13-1.

We observe that Definitions 2-6 and 2-7 carry over verbatim, so
that a connected hypergraph is exactly what one would expect it to be.
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13-2. Associated Bipartite Graphs

We use a bijection between connected hypergraphs H and con-
nected bipartite graphs G(H] given by Walsh [W2]. In the present
context, we are primarily concerned with the construction of G(H]
from H:

V(G(H)) = V(H) U E(H), the bipartition;
E(G(H)) = {{v,e}\v e V(H},e e E(H),v € e).

We call G(H) the Levi graph of H; see Coxeter[C8].

We next find a 2-cell imbedding of G(H) into some closed orientable
2-manifold Sk(k > 0), and denote this 2-cell imbedding by G(H) < Sk.

For the example H of Section 13-1, G(H] is K^ less a 1-factor;
that is, G(H] — Q3. It is convenient to take Qs < So, as usual.

In the next section, we shall see how to modify the imbedding of
G(H) < Sk so as to obtain an "imbedding" of H into Sk(H < Sk).

13-3. Imbedding Theory for Hypergraphs

Given a 2-cell imbedding of the associated bipartite graph, G(H) <
Sk, we modify this imbedding to obtain an imbedding of the hypergraph
H into Ski wherein certain of the regions of the modified imbedding
(G*(H)<Sk) represent edges of H] the remaining regions of the modified
imbedding (G*(H}<Sk) become regions for the imbedding of H into Sk-
For H connected, G(H) will be connected also, and thus we can find
a 2-cell imbedding G(H) < Sk- The modification we perform preserves
the 2-cell aspect of the imbedding, so that the regions for H in Sk are
all 2-cell also. Hence the notation H < Sk is justified.

We illustrate the modification process in Figure 13-2. In part (a) of
that figure, we see - in the imbedding of G(H) - the vertices represent-
ing edge e = {i ,̂ v2,... , v/J of H and each vertex in e. In part (b) of
the figure we begin modifying the imbedding by adding edge {vi,vi+i},
within the region containing Vi, vi+i, and e, for 1 < i < fc, (mod k).
Then the edges {e, Vj}, 1 < i < k, and the vertex e, are deleted, so that
in part (c) of the figure the edge e appears as a region in the modified
imbedding. (More precisely, the set of vertices from the boundary of
region (e} is exactly the edge e.}

In Figure 13-3 we illustrate the entire process for the hypergraph H
of Section 13-1. In part (a) of this figure we see an imbedding G(H) =
Qs<So, and the beginning of the modification. In part (b) of the figure
we see the corresponding imbedding H < 5o, with the regions of this
imbedding being shaded; the unshaded "regions" depict the edges of H.



176 13. HYPERGRAPH IMBEDDINGS

(a) (b)

(c)
Figure 13-2.

The former (i.e. the bona fide regions of the hypergraph imbedding)
are all digons here, as each region for the imbedding of G(H) was a
quadrilateral. (In general, a fc-gonal region results for H<Sk from a 2k-
gonal region of the bipartite G(H] < 5^.) The process readily reverses.
Thus given H < Sk, we can obtain G(H] < Sk, by inserting an "edge"
vertex in the interior of each "edge" region, joining it to the vertices in
the boundary, and deleting all edges from G*(H) < Sk-

We remark that: (1) this representation is not cumbersome, in that
V(H) and E(H) are readily discernible. (Compare Figure 13-1, for the
same hypergraph H.} (2) If H is in fact a graph, then each edge of
H becomes a digon for the modified imbedding G(H) < Sk, and the
collapsing of each digon gives a traditional imbedding H < Sk- This is
illustrated for H = K4, in Figure 13-4.

Imbedding problems for hypergraphs now translate directly into the
graphical context, and many standard results for graphs have ready
generalizations to hypergraphs. (This approach was noted, indepen-
dently, for the sphere only, by Jones [J5].) For example, here is the
generalization of Theorem 5-14. (We let r# denote the number of bona
fide regions - i.e. not including those regions depicting edges - in a
2-cell imbedding of hypergraph H.}
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(b)
Figure 13-3.

(b)
Figure 13-4.

Thm. 13-4. Let the connected hypergraph H have a 2-cell imbedding
in Sk, with the usual parameters pu, qn-, and r#. Then

1=1
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PROOF. For the 2-cell imbedding G(H) < Sk which gave rise to
H <5jfc, we have

by Theorem 5-14, where

p=\V(G(H))\=PH

QH

1=1
and r — TH-

The result now follows, by substitution. D

We note that, for H a graph - so that HI — 2, 1 < i < qn, then
Z^=i ni = 2qH and we have the familiar pn — qn + TH = 2 — 2k.

13-4. The Genus of a Hypergraph

Once we accept as worthwhile the task of realizing a hypergraph
geometrically, then it is most natural to wish to do this as efficiently
as possible. This motivates

Def. 13-5. The genus, 7(#), of a hypergraph H is the genus of its
associated bipartite graph; i.e. i(H] — j(G(H)).

Since the genus parameter for graphs is additive over connected
components (Corollary 6-19), we obtain immediately:

Thm. 13-6. The genus of a hypergraph is the sum of the genera of its
components.

PROOF. Let H = \Jft=l Hi be the decomposition of H into its con-
nected components, with G(Hi) the bipartite graph associated with
component Hi. Then

= 7 (\jG(Hi) ) =
\z=l /

D

Thus it is without loss of generality that we continue to restrict our
attention to connected hypergraphs.

Def. 13-7. The maximum genus, JM(H), of a connected hypergraph
H is given by: >y
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We have the natural generalization of Corollary 6-22:

Thm. 13-8. A connected hypergraph H has a 2-cell imbedding in Sk
if and only if 7(#) <k<jM(H).

We now give a lower bound for the genus parameter, reminiscent of
Corollary 6-15 (but not in generalization of that corollary, since if H is
a graph, then G(H) will have girth at least six.)

Thm. 13-9. If H is a connected hypergraph, then
-,

PROOF. Let H < Sk, where k = j(H) = ~f(G(H)). Since H is
connected, so is G(H}; thus the minimal imbedding G(H)<Sk is 2-cell,
as is H < Sk. Since G(H) is bipartite, 4r < 2q. Thus

and using this in the euler equation for hypergraphs (Theorem 13-4),
we get the desired bound. D

We close this section with an upper bound for the maximum genus
parameter, in analogy with Theorem 6-24.

Thm. 13-10. Let H be connected; then

Moreover, equality holds if and only if r# = 1 or 2, according as the
numerator is even or odd, respectively.

13-5. The Heawood Map-Coloring Theorem, for
Hypergraphs

Def. 13-11. The chromatic number, x(H], of a hypergraph H is the
minimum natural number k for which there is a partition V(H) —
\Ji=iVi(H) such that, for each edge e 6 E(H), there is no i with
e C Vi(H).

That is, x(H] is the smallest number of colors for V(H) so that no
edge of H is uniformly colored. Note that this is the "weak" definition
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of chromatic number for hypergraphs, as we are not requiring that all
vertices in an arbitrary edge be colored differently (just that they not
all be colored alike.) Clearly the weak and the "strong" definitions
agree, if H is a graph. The latter definition holds less interest, in the
following sense: replacing each edge with one complete graph reverts
to the chromatic number problem for graphs.

Def. 13-12. The hypergraph chromatic number of the surface Sk is de-
fined by: Xn(Sk) = the maximum x(H] suc^ that H < Sk-

Thm. 13-13. XH(Sk) =

PROOF. Set /(fc) - I :

(1) Let H < Sk, and let G*(H] denote the corresponding modifica-
tion of G(H). Since G*(H) < Sk, x(G*(H)} < f ( k ) , by the Heawood
Map-Coloring Theorem (or the Four-Color Theorem, if k = 0) for
graphs. Let G*(H) be /(fc)-colored. Now consider an arbitrary edge
e of H and any two consecutive vertices in the corresponding region
of G*(H}\ since they form an edge of G*(H}, these two vertices are
colored differently. Thus e is not uniformly colored, and x(H) ^ /(^)-
Since H was arbitrary for Sk,XH(Sk) < /(&)•

(2) Since H = Kf(k} < Skl xn(Sk) > x(H) = f(k}.

(3) Thus xn(Sk) = f(k). D

13-6. The Genus of a Block Design

Every block design is a fc-uniform hypergraph - with objects as
vertices and blocks as edges - so that any realization of a hypergraph
associated with a block design is simultaneously a realization of that
design. For example, the Steiner triple system H of order 7, arising
(for example) from the projective plane of order 2, is depicted in Figure
13-5, where G(H) would be the "Heawood Graph" (see Figure 8-5), the
dual of Kf < Si . In this case, G*(H) is K7, and our realization of H
coincides with that of Example 2, Section 12-3. (The blocks of Table
12-1 appear as the unshaded regions in Figure 13-5.)

It will be no surprise that, once we agree to depict block designs
realistically, we should desire to do this as efficiently as possible.

Def. 13-14. The genus of a block design D, i(D), is the genus of the
associated hypergraph H] i.e. ^(D) = i(H) = 7(G(#)), where G(H)
is the bipartite graph for H.
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Figure 13-5.

Thus 'y(D) gives the most efficient orientable surface for the repre-
sentation of D.

For example, if D is the familiar (7,7,3,3,1)-BIBD (Steiner triple
system), then Figure 13-5 shows that j(D) < 1; but one readily finds a
homeomorph of K3^ in G(H) for Figure 13-5, so that ~f(D) > 1. Thus
7(-D) = 1, and our depiction in Figure 13-5 is optimal.

Rahn [Rl, R2] has characterized planar (i.e. ^(D) = 0) BIBDs;

Thm. 13-15. A (v, 6, r, fc, A)-BIBD is planar if and only if:

(i) k = 1;
(ii) k = 2 and v = 2,3, or 4;

(iii) k = 3 and

(v, 6, r, fc, A) - (3,1,1,3,1), (3,2,2,3,2) or (4,4,3,3,2).

We note that the case (4,4,3,3,2) is displayed in Figure 13-3.

13-7. An Example

For an additional example of many of the concepts of this chapter,
we consider the (n, n, n — 1, n - 1, n - 2)-BIBD Dn (for n > 2) whose
object set is {1,2,... , n} and whose blocks are the complements of
singletons (i.e. all (n — l)-subsets of an n-set.) This immediately
determines a hypergraph H having the same description: V(Hn) =
{1,2,... ,n}, E(Hn) = {S C V(Hn)\ \S\ = n - I}. Then G(Hn) is
Kn^n less a 1-factor (each vertex i is adjacent to every edge except its
complement, so that the 1-factor is composed of pairs {i, V(Hn) — {i}},
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1 < i < n.) For n = 2, 3, 4 respectively, we have G(Hn) = 2K2, C*6, Qs;
see Figure 13-3 for the case n = 4 and the planar imbedding of H±.

Thm. 13-16. 7(Dn) = [(n~1)
4

(n~4)j , forn > 2.

PROOF. From the lower bound of Theorem 13-9, we find that

To complete the proof, we show the reverse inequality, by construction.
This construction splits into four cases, depending upon the residue of n
modulo 4; here we provide the details only for the case n = 1 (mod 4).
(See Problem 13-2 for the remaining - harder - cases.) The method uses
an index two current graph (see Figure 13-6 for the cases n = 5 and 9,
which have an obvious generalization; the vertex rotations are indicated
schematically, to yield a current graph imbedding in S^, where h = ^^
and the group F = Z2n, generated by A = {1, 3, 5, ... , n — 2}. Since
the KCL holds at each vertex of the current graph, the Cayley graph
(GA(F) = G(Hn)) imbedding which covers the dual of the current
graph imbedding is quadrilateral, and hence - since it is bipartite -
minimally imbedded in Sk, k = (n~1)

4
(n"4). Thus

in this case.

n =• 5

(n-l)(n-4)

1 3 1

1 ? 5 7

D

Figure 13-6.
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13-8. Nonorientable Analogs

We conclude with a brief discussion of the nonorientable imbedding
of hypergraphs. The definition of a 2-cell imbedding of a hypergraph
H (via a 2-cell imbedding of the associated bipartite graph G(H)}
on the nonorientable surface N^H < Nh) carries over verbatim from
the orientable case, as do all related concepts. We have the following
results:

Thm. 13-17. HH<Nk, then pH + qH - J^ m + rH = 2-h.

Thm. 13-18. If 7(/f) denotes the nonorientable genus of hypergraph
H, then

qH

t=i

Thm. 13-19. The connected hypergraph H has a 2-cell imbedding on
Nh if and only if

z=l

Finally, we give the nonorientable Heawood Map-Coloring Theorem
for hypergraphs:

Thm. 13-20. xn(Nh) = [7W™J , for M 2; xn(N2) = 6.

13-9. Problems

13-1.) Prove Theorem 13-10.
13-2.) *Show that Kn,n less a 1-factor imbeds on Sk, k = (n~l>^n~^> ;

f o r n E E O , 2 , 3 , (mod 4).
13-3.) Prove Theorem 13-17.
13-4.) Prove Theorem 13-18.
13-5.) Prove Theorem 13-19.
13-6.) Prove Theorem 13-20.
13-7.) Find the voltage graph imbeddings corresponding to the two

current graph imbeddings of Figure 13-6. Is the generalization to
n = 1 (mod 4) as readily apparent in the voltage graph setting?
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CHAPTER 14

FINITE FIELDS ON SURFACES

In Chapter 7 we modelled finite groups on surfaces. First we formed
a Cayley graph for a given finite group, depending upon the generating
set employed, and we saw that this provided a useful model for the
group. Then we strove to depict this model as efficiently as possible,
that is, on a surface of minimum genus. Minimizing this genus over all
generating sets for the given group then gave the genus of the group,
and some interesting mathematics has resulted from the study of this
parameter. A group is a set with one binary operation (satisfying
certain axioms); in this chapter we impose a second binary operation
and seek to model the resulting structure efficiently.

The most general setting is that of a ring. We start modestly with
(Zn, +, x), where n is composite. But even in this simple context, we
find no satisfactory graphical model, even before bringing surfaces into
the picture. We see that it is the composite nature of n that is thwarting
us, so we let n be prime. This gives us a field, and so we study finite
fields in general. After some necessary background material, we present
results, largely due to Jones [J4], about the genus parameter for finite
fields and related questions.

14-1. Graphs Modelling Finite Rings

We begin by considering the ring Zn, with the usual binary op-
erations of addition and multiplication. Our goal is to model each
operation with its own graph (both graphs have vertex set Zn), and
then combine the two graphs. The combined graph would then model
the interaction between the two operations. Each separate graph would
have its edges determined by generators for the associated operation,
in keeping with Chapter 4. Also in keeping with Chapter 4, we require:

(1) With each edge {<?, h} are associated two arcs: (<?, k), with label
6 = g~lh (or — g 4- h in the additive case); and (h,g}, with
label 5~l = h~1g(—h + g, respectively) - thus inverse arcs model
inverse generators.

185
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(2) The aggregate of generators for each operation generates the
structure for the operation; thus both graphs are connected, ex-
cept that for multiplication the zero vertex has only loops at-
tached. Thus the combined graph contains all the information
of both operation tables for the ring.

Addition is readily modelled by taking A+ = {!}, so that
G&+(Ln} — Cn, as in Chapters 4 and 7. Thus the interest lies in the
selection of Ax, for the operation of multiplication. The case where
n is prime will be treated in Section 14-3, so here we set n = k • m,
where 1 < A;, m < n. If S E Ax, we want 8^1, for 6 = 1 would
produce a loop at each vertex. Now condition (1) above requires that
8~l exist in Zn, that is that (n,8) = 1, as in Figure 14-l(a), where
n = 9 (k = m = 3) and 8 = 2. The loop at vertex 0 is unavoidable,
but we note two additional components, where we want only one more,
by condition (2). In general, this unfortunate situation exists and can-
not be remedied by augmenting Ax: since n = k • m = 0, for each
6: dm E (m), and we never connect the multiples of m to the other
vertices.

= (9,2)

(a) (b)
Figure 14-1.

If we choose 8 so that (n, 8) > I, a connected graph will sometimes
result (see Figure 14-1 (b)), but we lose property (1). Moreover (see
Problem 14-1) the multiplicative subgraph determined by 8 is regular
if and only if (n, 8) = I. (Recall that regularity is a feature of Cayley
graphs.)

Thus our attempts to model Zn seem doomed to failure, for n com-
posite. On the other hand, for n prime we will find the model we seek.
Since our approach extends to finite fields in general, that will be the
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appropriate setting for this chapter. We start with some background
information about finite fields.

14-2. Basic Theorems About Finite Fields

The following theorems can be found in many abstract algebra
texts.

Thm. 14-1. There exists a finite field of order n if and only if n is a
prime power, n = pr.

Thm. 14-2. All fields of fixed order pr are isomorphic.

Thm. 14-3. The additive group of the finite field of order pr is isomor-
phic to the vector space of dimension r over Zp, Zp x Zp x • • • x Zp = Z£.

Thm. 14-4. The multiplicative group of the nonzero elements of the
finite field of order p is cyclic, Zpr_i.

Thm. 14-5. The elements of the finite field of order pr are the roots
of Xpr - X = 0, over Zp.

We will need to work explicitly with the elements of a given finite
field, so we outline a construction of GF(pr], the Galois field of order
pr, which we take as our representation of the isomorphism class. For
r = 1, GF(p) = Zp, with A+ = {1} and Ax = {£}, where (p,5) = 1.
For r > 2, start with a monic irreducible polynomial of degree r over Zp

having a primitive root. (Such a polynomial always exists, by Theorems
14-3, 14-4 and 14-5.) For example, let p = 3 and r = 2. The polynomial
x2 + 1 is monic and irreducible (since neither 0 nor 1 nor 2 is a root).
But it is not primitive, since if a is a root, then o? — 2 and a4 = 1, so
that a does not generate the multiplicative group. On the other hand,
x2 + 2x + 2 is also monic and irreducible, and if a2 — a + 1, then we
calculate the multiplicative representation of the elements of GF(9) as
follows:
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0 (0,0)

1 (0,1)

a (1,0)

o? = a + l (1,1)

a3 = a2 + a = 2a + 1 (2,1)

a4 = 2a2 + a = 2 (0,2)

a5 = 2a (2,0)

a6 = 2a2 = 2a + 2 (2,2)

aI = 2a2 + 2a = a + 2 (1,2)

a8 = a2 + 2a = 1

The key is that the monic irreducible primitive polynomial provides
the connection (which we know exists, by the distributive axiom) be-
tween the additive and multiplicative structures of the finite field. We
have also listed the corresponding vectors in Z3 x Z3, isomorphic to
{aa + 6|a, b G Z3}. We take the latter to represent the additive group.
More formally, this corresponds to Z3[x]/(m(x)}, where (m(x)) is the
maximal ideal in Z3[x] generated by m(x) = x2 + 2x + 2.

For a second example, consider p — 2 and r — 3, using x3 + x + 1,
with root a. Then we have:

0 (0,0,0)

1 (0,0,1)
a (0,1,0)

a2 (1,0,0)

a3 = a + 1 (0,1,1)

a4 = a2 + a (1,1,0)

a5 = a3 + a2 = a2 + a + l (1,1,1)

a! - a3 + a2 + a = a2 + 1 (1,0,1)

a7 = a3 + a = 1

Here we see the eight elements of GF(8] and how they correspond
to the seven elements of the cyclic multiplicative group.
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14-3. The genus of Fp

The simplest of the Galois fields GF(pr] to analyze are those of
exponent r = 1, but we find challenge enough here. We know that
1 generates the additive group, and that the multiplicative group is
also cyclic; take g as a generator. Let A+ = {1} and Ax = {#},
with A = A+ U Ax. For brevity, we set Fp = GF(p). Graphically,
we represent 1 with a solid arc and g with a dashed arc, and form
the analog C&(¥p,g} of a Cayley color graph. Denote the underlying
pseudograph by G(¥p,g}, where we suppress the A, as it is entirely
determined by g. We call G(¥p,g) the finite field graph (associated
with multiplicative generator g}.

Def. 14-6. The genus of the field ¥p is given by

the minimum taken over all single generators g for the multiplicative
group.

In Figure 14-2 we give plane imbeddings of GA(FS, 2) and GA(F7,3).
We observe that:

(i) For Zs (respectively Z7) there is only one other choice for #(2-1 =
3 in Z5, 3-1 = 5 in Z7). But in general choosing g"1 instead
of g merely reverses the multiplicative arcs; thus G(FP, g'1} =
G(FP, g), always. So, both of the finite fields of Figure 14-2 have
a unique graphical model. Both fields are planar, as are Z2 and
Z3. (Problem 14-3.)

(ii) There is exactly one loop, at 0. This will pertain, in general.
(iii) There are exactly two digons. This will generalize also: a digon

(for p > 5) can result only from the situation of Figure 14-
3, where 6 = g or g~l. Suppose 6 — g. Then a + 1 = ag:
a(g—l] = 1, and a = (g — I)"1 is uniquely determined. (Note the
use of the distributive axiom in the above argument.) Similarly,
if (5 = g~l, a is uniquely determined as a = (g~l — I)"1.

(iv) Both pseudographs G(Fp, #)-not the plane imbeddings - have re-
flective symmetry fixing vertex 0; this is because (—a)g = — (a#),
where we use additional field properties. In general, G(Fp, g) ;has
this reflective symmetry. This is also consistent with (iii).

The situation is more complex for p = 11. The choices for g are:
g = 2 (or 2-1 = 6) and g = 7 (or 7~l = 8). We find (Problem 14-4)
that 7(G(FU,2)) - 1, but 7(G(F11:7)) - 0. Thus 7(Fn) = 0.

For general p, Jones' analysis proceeds as follows: by algebraic
arguments similar to that using Figure 14-3 (see Problem 14-5), we see
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CA(F5,2)

(a) (b)

Figure 14-2.

\j

a Cf"~ ~~JD a + 1
^ *—-

Figure 14-3.

that G(FP, <?), for p > 7, always has precisely 4 3-cycles and precisely
7 4-cycles. Thus

ri < 1
r2 <2
r 3 < 4
r4< 7

in any imbedding. This leads (via Theorem 5-14 and Problem 14-6)
to:

Thm. 14-7. For p prime, 7(FP) >

If our initial interest is in the planar case, then by Theorem 14-
7 p < 13. But in examining all possible generators for Zi3, Jones
found a Kuratowski subgraph for each possible pseudograph. Thus
the planar values are precisely p = 2,3,5, 7, and 11, for the fields ¥p.
Recall that we are insisting (since it seems most natural to do so) that
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A+ = {1} and Ax = {g}. But note that if we keep |AX | = 1 but
use |A+| = 2 instead of 1, remove the one loop and destroy all digons,
we have q = 3p — 5 > 3p — 6, so that the resulting pseudograph is
not planar, by Problem 5-18. Similarly, if we keep |A+| — 1 but use
|Ax | = 2, after removing the two loops, destroying all digons, and
reversing the elementary subdivision at vertex 0, we have a nonplanar
pseudograph of order p—l with q = 3p — 7 > 3p — 9 — 3(p — 1) - 6.
Thus the most natural class of models also produces the most efficient
one.

For toroidal fields of the form Zp, Theorem 14-7 yields p < 23.
By further analyzing possible region distributions, Jones found that
7(Z13) = 7(Zi7) - 1, 7(Zw) = 2, and 7(Z23) > 2.

14-4. The Genus of ¥pr

Again for brevity, set ¥pr = GF(pr}. To find analogs of the theo-
rems of Maschke and Proulx for the genera of finite planar and toroidal
groups respectively, Jones combined her analysis of Section 14-3 for the
case r = I with the case r > 2 of this section. In the general case we
set A+ = {a7""1,... , a:2, a, 1}, a basis for Pr(d) (the vector space of all
polynomials of degree less than r over Zp, isomorphic to Zp, where a
is a primitive root of a monic irreducible polynomial of degree r over
Zp; and we set Ax = {ak}, where (pr — 1, fc) = 1. Let A = A+ U Ax,
and form the color graph C&(¥pr,xk). Then let G(¥pr,ak) denote the
underlying pseudograph; imbedding properties are not affected by this
reduction. Again, we call this a finite field graph.

Def. 14-8. The genus of the field ¥pr is given by

where the minimum is taken over all k such that (pr — 1, k] = 1.

Several observations are in order:

(1) Definition 14-8 includes Definition 14-6, as the special case r = I.
(2) If (pr - l ,fc) = 1, then (pr - 1,-fc) = 1 also; but using Ax =

{a~k} instead of {ak} merely reverses all multiplicative arrows,
so that the underlying pseudographs are isomorphic. Thus the
minimum is effectively taken over \(t>(pr — 1) multiplicative gen-
erators, where 0 is the euler phi function.

(3) For 7(Fpr) to be well-defined, we need to establish two properties:
(a) For a fixed monic irreducible polynomial m(x) of degree

r over Zp, G(¥pr,ak) depends upon k but not upon the
particular primitive root a of m(x) selected. (See Problem
14-12.)
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(b) Choosing a different m(x] as above yields an isomorphic
collection of pseudographs. (See Problem 14-13. This
problem is open in general, yet the claim holds for p =
4, 8, 9, and 16-all that we need for the rest of this chapter.
For later work, pending resolution of Problem 14-13, we
would take the minimum over all monic irreducible poly-
nomials of degree r, also.)

For example, if p — r — 2, the only suitable polynomial is x2

and we take o? = a + I so that (a} = {1, a, a + 1}. The plane color
graph (7(F4, a) is given in Figure 14-4. We use A+ = {a, 1}, modelling
addition by a with a crossed edge, and Ax = {a}.

Now consider p — 2 still, but with r = 3. We use x3 + x + 1, as
in the example of Section 14.2. We display C(F8,a:) in Figure 14-5,
drawn in the plane with one crossing. This establishes that 7(F8) < 1.
To show that 7(F8) > 1 we could separately consider color graphs
C(F8,a),C(F8,o;2), and C(F8,0!3), finding a Kuratowski subgraph in
each case. (These are three mutually non-isomorphic graphs, as ex-
amining the configurations of the digons readily shows.) Instead, we
note that G^I^QZ}^!^) — Q3 in each case. By Theorem 5-25, Qs is
uniquely imbeddable in the sphere. If we can show that one multi-
plicative arc joins antipodal vertices, then G(F8,afc) will not be pla-
nar, by the Jordan Curve Theorem, since a 6-cycle divides the plane
(obtained under stereographic projection) into two regions, with one
antipode in each. So, solve the equation a + (1 + a + a2) = aak for
a = (1 + a + a2)(ak — I)"1, the unique starting vertex of such an
arc. (For Figure 14-5, we calculate that a — (1 + a. + a2)(a - I)"1 =
a5(a3)"1 = a2, as is displayed in the figure.) Thus a(F8) = 1.

Similar arguments show that 7(Fpr) > 2 for each pr > 16, with
r > 2: for p — 2, start with K2 x K2 x K2 x K2 = C± x €4 on the
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torus; for p > 5, find a subgraph of Cpr homeomorphic to 65 x C$ on
the torus. In either case, we can find an edge that cannot be added on
the torus, so that 7(Fpr) > 1 + 1 = 2. For p = 3 and pr > 16, <7f is a
subgraph, and we know that 7(Cf) = 7 (Theorem 7-29).

Thus to complete the classifications of planar and toroidal finite
fields, we have only to study Fg. Consider the construction of Fg given
in Section 14-2, yielding the toroidal imbedding of Figure 14-6. But
7(F9) > 7(^3 x C3) = 1. Thus 7(F9) = 1.

+

Figure 14-5.

Collecting the results of this and the preceding section, we get the
following two theorems of Jones:

Thm. 14-9. The finite field Fpr is planar if and only if pr = 2, 3, 4, 5, 7,
or 11.

Thm. 14-10. The finite field ¥pr is toroidal if and only if pr = 8, 9, 13,
or 17.

The next theorem gives two asymptotic results, also developed by
Jones in [J4 ].

Thm. 14-11. The genus of:

(i) F2r is asymptotically 1 + 2r~3(r - 4).
(ii) Fpp is asymptotically ^—.
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The following bounds [J4] will be useful in the next section:

Thm. 14-12. For p prime:

(i)
(ii)

>
> .

14-5. Further Results

Using Theorem 6-32, Jones [J4] found:

Thm. 14-13. Each G(Fpr,o*) is upper-imbeddable; thus the maxi-
mum genus of Fpr- is given by: 7Af(Fpr) = [rp

2
+1] .

Cor. 14-14. Asymptotically, if G(Fpp) is imbedded on 5^, then

Now we give a result analogous to that of Theorem 7-30.
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Thm. 14-15. If ¥q is a subfield of the finite field F9/, then 7(Fq) <

PROOF. Let q = p1 and q' — (j/)*'; then since p* divides
(because of the additive structure), p' — p and t' > t. Since pt — 1
divides (p'Y — 1 (because of the multiplicative structure), t' = kt,
for some integer k. We can assume k > 2. We consider two cases,
depending upon the parity of p.

(i) p = 2. Note that 7(F2) = 0 < 7(F2fc) and 7(F4) = 0 < 7(F22fc),
so we can assume t > 3. Then 7(F2t) < 7(Qt) + 2* — 1, as we
could use a separate handle for each multiplicative edge other
than the loop. So

(ii) p > 3. Here we have two subcases, depending upon t.
(a) t > 2. We combine lower- and upper-bound arguments,

using Corollary 6-14 for the lower bound and Problem 10-
13 for the upper bound.

(1) T( V) > 7((Cy*() > 1 - £ + **£ = ̂ (kt - 3) + !•
(2) 7(Fp>) < l((Cpf) +p'-l< p"'('+2')(y-'). Thus
(3)

2t

< -(kt - 3) + 1

(b) t = 1. Now we focus on fc.
(1) k > 4. 7(FP) < p-3

where the last inequality is by (ii)(a)(l) above (whose
proof is valid also for t = 1).

(2) k = 3. 7(FP) < p - 3 < ̂  < 7(Fp3), where the last
inequality is that of Theorem 14-12(ii).

(3)k = 2.
(a) p = 3. 7(F3) = 0 < 1 = 7(Ffl).
(/?) p > 5. 7(FP) < p - 3 < ̂  < 7(Fp2), where

we have used Theorem 14-12(i).
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n

We give yet another result of Jones [J4], this one analogous to
Theorem 7-32.

Thm. 14-16. For each nonnegative integer &, there are at most finitely
many finite fields of genus k.

14-6. Problems

14-1.) Let G(n,6) be the graph with Zn as vertex set and arcs deter-
mined by multiplication by 6 6 Zn — {0}.

(a) Show that G(n, 6) is regular (of degree 2) if and only if (n, 6} = I.
(b) Show that G(n, 8} can be either (weakly) connected or discon-

nected, if (n, 5) > 1.
(c) **Find a characterization of G(n, 6) being (weakly) connected.

14-2.) Reinterpret Zg as consisting of all the roots of x9 — x, by factor-
ing into monic irreducible polynomials over Zs and then finding
the roots of each polynomial, as numbers in the extension field.
Which </>(8) = 4 roots are primitive, and what irreducible factors
do they correspond to? (</> is the euler phi function.)

14-3.) Find plane graphs for F2 and F3.
14-4.) Show that G(Fn,2) is toroidal, but that G(WnJ) is planar.
14-5.) Show that every imbedding of G(¥p,g), for p > 7, has:

(i) r3 < 4;
(ii) *r4 < 7.

14-6.) Prove Theorem 14-7.
14-7.) **How many finite fields of genus two are there? What are they?
14-8.) **Prove or disprove: Let F be an infinite field; then either F is

planar or F has no finite genus (cf. Corollary 7-10).
14-9.) **Find an example of an infinite planar field, or prove that none

exists.
14-10.) **We saw in Section 7-2 that the (additive) group Z| has genus

7 and in Section 14-5 that 7(F27) < 36 ((ii)(a)(2) of the proof of
Theorem 14-15). Find 7(F2r) precisely.

14-11.) The smallest field whose genus is unknown is Fi6. Show that
2 < 7(Fi6) < 4.

14-12.) Show that, for a fixed monic irreducible polynomial m(x) of de-
gree r over Zp, G(Fpr, a

k] depends on k but not on the particular
(primitive) root a of m(x) selected.

14-13.) **We saw in Section 14-4 that fixing a monic irreducible prim-
itive polynomial of degree r for GF(pr] determines a collection
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of pseudographs G(Fpr, a
k), where (pr - 1, k) = 1. Show that se-

lecting a different such polynomial for GF(pr] determines a col-
lection of pseudographs which are pairwise isomorphic to those
of the first collection.

14-14.) Remove requirement (2) of Section 14-1 and define the genus of
the ring 1*n (whether n is prime or not) to be the minimum genus
7(G(Zn, #)), taken over all g ^ ±1 in Zn so that (n,g) — I. (If
g = ±1 were allowed, then we would have 7(Zn) = 0 for all n.
We also restrict n > 7, since no suitable g exists for n = 2,3,4,
or 6.) Study this parameter on this common class of rings. Here
are some sample results to prove:

(1) 7(G(Z9,2)) = 1, but 7(G(Z9,4)) - 0; thus 7(Z9) - 0.
(2) 7(Zi3) = 1, yet 7(Zie) = 0; thus the function is not non-

decreasing.
(3) In fact, 7(Z4n) = 0, for all n > 2. (Hint: choose g = 2n-l.)

Thus there are infinitely many planar rings in this class,
under the modified definition.
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CHAPTER 15

FINITE GEOMETRIES ON SURFACES

In previous chapters we have defined, and studied, the genus pa-
rameter for a variety of mathematical structures, primarily in the finite
case: graphs, groups, block designs, hypergraphs, and fields. For the
latter four structures, the genus parameter is defined via a relevant
graph: the Cayley graph of a group (for a particular generating set),
the Levi graph of a design or of a hypergraph, and the finite field
graph (for a particular finite field and multiplicative generator). Thus
everything is tied back to the genus parameter for graphs.

In this chapter we extend this idea to finite geometries. As each
such structure can be regarded as either a design or a hypergraph, it
is again the associated Levi graph which is relevant. After illustrating
a discussion of axiom systems in general with n-point geometry, we
consider the configurations of Fano, Pappus, and Desargues, as well as
a common generalization. Then we study the classical protective and
affine planes in some detail.

For general references regarding finite geometries, see [GDI], [Dl],
[HI], [H9], [R20], and [S10].

15-1. Axiom Systems for Geometries

Formally, an axiom system for a geometry starts with a point set
P, a line set L, and a symmetric incidence relation / C (P x L] U
(L x P}. We find it convenient to regard each line I as consisting of
all points p such that (p, i] E /; thus £ is a subset of P. The more
abstract formulation is useful for discussions involving duality, but our
convention facilitates the modelling we seek, as it is in conformity with
the usual model for Euclidean geometry. The axiom system continues
with statements about points and lines which are assumed to be true,
and the challenge is to derive other true statements from these axioms.

The individual axioms specify various properties for the points and
lines, such as:

(i) existence
(ii) uniqueness

(iii) uniformity
(iv) finiteness.

199
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The axiom system as a whole might satisfy the desirable properties
of:

(a) consistency
(b) independence
(c) completeness.

An axiom system is said to be consistent if no contradictions can
be derived from the axioms. A model for the system consists of a
specified set P and a set L of specified subsets of P which together
satisfy all the axioms. The existence of a model for a system establishes
its consistency, as any contradiction from the axioms would produce a
statement both true and false for the model, an impossibility.

An axiom system is said to be independent if no axiom in the system
can be derived from the others. This property is established by finding,
for each axiom, a model failing that axiom but satisfying all the others.

An axiom system is said to be complete if every statement in the
system can be either proven true or proven false by using the axioms.
This property can be verified by showing that any two models for the
system are isomorphic: if the system has a unique model, then one
needs only check if a given statement is true or false for that model. In
the finite case, this can be done finitely.

Thus we see the importance of models for axiom systems in gen-
eral. We note that Godel's incompleteness theorem-no axiom system
including a formal elementary number theory can be shown to be both
consistent and complete-does not apply to geometric axiom systems
which make no reference to formal elementary number theory. Thus
the systems considered in this chapter might well be shown to be both
consistent and complete, and perhaps satisfy independence as well.

Again in conformity with Euclid, all geometries considered in this
chapter will satisfy the axiom:

(A) Two distinct points belong to at most one line.

15-2. n-Point Geometry

Our initial example is n-point geometry, where n G N is fixed. The
axioms are:

(1) There are exactly n points.
(2) Each pair of distinct points determine a unique line.
(3) Each line consists of exactly two points.

Observe that (1) provides existence and finiteness; (2) gives exis-
tence (if n > 2) and uniqueness; and (3) imposes uniformity. One
model for n-point geometry is the complete graph Kn, so the system is
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consistent. In fact, with respect to isomorphism Kn is the only model
for n-point geometry, so the system is also complete. For n > 4, the
graphs Kn+i,Cn, and Pn (one line) show respectively that axiom (1)
cannot be derived from the others, and similarly for axioms (2) and (3).
Thus, for n > 4, the system is independent. (This is true for n — 3 as
well, but now use KI U K2, in place of 63.)

Now, either from the axioms or from the unique model of Kn, we
can prove theorems, such as:

(4) There are exactly ^f^ lines.
(5) Each point is on exactly n — 1 lines.

We also find that, for n > 3, given a line t and a point p not on £,
the number of lines through p and parallel to i (i.e. disjoint from £ ) is
n — 3. Thus n-point geometry satisfies the Euclidean parallel postulate
(Playfair's form) precisely for n = 4 (the parabolic case); n = 3 and
n > 5 are the elliptic and hyperbolic cases respectively.

15-3. The Geometries of Fano, Pappus, and Desargues

In this section we introduce three classical finite geometries. The
Fano plane has the following axioms:

(FA1) There is a least one line.
(FA2) Every line contains exactly three points.
(FA3) Not all points lie on one line.
(FA4) Two distinct points belong to exactly one common line.
(FAS) Two distinct lines contain exactly one common point.

Using these axioms, one can construct the unique (up to isomor-
phism; see Problem 15-1) model of Figure 15-1; the particular labelling
employed will be useful in later sections

Figure 15-1.

Now, from the axioms (or from the model, since the system is com-
plete), one can deduce theorems, such as:
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(FT1) |P| = 7.
(FT2) |L| - 7.
(FT3) Each point belongs to exactly three lines.

We note that the model also arises from various theorems of concur-
rency in Euclidean geometry: for any triangle in the Euclidean plane,
each of the following triples of lines are concurrent:

(i) the perpendicular bisectors of the sides;
(ii) the altitudes;

(iii) the internal angle bisectors;
(iv) the medians.

For an equilateral triangle, as in Figure 15-1, the four points of
concurrency are identical; the three vertices, the three midpoints of
the sides, and the point of concurrency constitute the point set of the
Fano plane. The lines are given by the three sides of the equilateral
triangle, the three concurrent lines, and the inscribed circle.

Here is another theorem from Euclidean geometry, due to Pappus
of Alexandria (c. 300-350 a.d.).

Thrn. 15-1. If A,B, and C are three distinct points on line L and
A', Br, and C' are three different distinct points on line L' ^ L, then
the points AB' D A'B, AC' n A'C, and BC' D B'C are collinear.

One such situation is depicted in Figure 15.2. This gives rise to a
geometry of nine lines on nine points, as given in Table 15-1; the final
line DEF is the line established by the theorem.

D

ADB' A'DB ABC
A'EC AEC' A'B'C'
BFC' B'FC DEF

Table 15-1.

Here are formal axioms for the geometry of Pappus.

(PA1) There is at least one line.
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(PA2) Every line contains exactly three points.
(PAS) Not all points belong to the same line.
(PA4) If a point p is not on a line ^, then there is a unique line i'

containing p such that no point is in both t and i'.
(PA5) If a line i does not contain a point p, then there is a unique point

p' in i such that no line contains both p and p'.
(PAG) Except as disallowed by (PA5), two distinct points belong to a

unique line.

The system is consistent, as the model of Figure 15-2 attests. It is
also complete; see Problem 15-1. Some theorems deducible from either
the axioms or the model are:

(PT1) \P\ = 9.
(PT2) \L\ = 9.
(PT3) Each point belongs to exactly three lines.
(PT4) For each point p there are exactly two points not sharing a line

with p.
(PT5) For each line i there are exactly two lines not sharing a point

with t.

Recall that, in a geometry, point p is incident with line t if and only
if i is incident with p. Thus each geometry (P, L) has a dual geometry
(L, P), with the roles of points and lines exchanged. Note that (PA4)
and (PAS) are dual statements, as are (PT1) and (PT2), (PT4) and
(PT5), and (PT3) and (PT2). In fact, the geometry of Pappus is self-
dual, as are the Fano geometry and the geometry we present next (see
Problem 15-2). We formalize this idea with two definitions.

Def. 15-2. Two geometries (P, L) and (P', L'} are isomorphic if there
exists a one-to-one, onto function / : P —> P' such that L' — {/(^)K €
L}, where f ( l ) = {f(p)\p E t}.

Def. 15-3. A geometry (P, L) is self-dual if there is an isomorphism
between (P, L) and the dual geometry (L, P).

As an infinite class of examples of self-dual geometries, we offer the
Paley maps of Section 16-8. By Theorem 16-81, these are all self-dual
as block designs, and hence as geometries.

Now we consider one more theorem from Euclidean geometry; this
one is due to Desargues (1593-1662).

Thm. 15-4. If two triangles are perspective from a point, then they
are perspective from a line.
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In Figure 15-3, triangles BCD and EFG are perspective from point
A. Let H = BC n EF, I = CD n FG, and J = ££> n £G. Then the
claim of Desargues' Theorem is that H, /, and J are collinear. This
yields a geometry of ten lines on ten points, as given in Table 15-2.
The final line is the one guaranteed by the theorem. Formal axioms

E

Figure 15-3.

ABE BCH EFH HIJ
ACF CDI FGI
ADG BDJ EGJ

Table 15-2.

for this geometry require two new terms. A line i in the geometry of
Desargues is a polar of point p if no line containing p contains a point
of i. Dually, point p is a pole of line i if no point of I is in a line
containing p. Then we have:

(DAI) There is at least one point.
(DA2) Every point has a unique polar.
(DAS) Every line has a unique pole.
(DA4) Two distinct points belong to at most one common line.
(DAS) Every line contains exactly three points.
(DAG) If point p is not in line £, then there is a point p' in both £ and

the polar of p.

Some theorems are:

(DTI) \P\ = 10.
(DT2) \L\ = 10.
(DT3) Each point belongs to exactly three lines.
(DT4) Two lines parallel to the same line are not parallel to each other.
(DT5) Two points are collinear if and only if their polars intersect.
(DT6) If p is on the polar of p', then p' is on the polar of p.
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15-4. Block Designs as Models for Geometries

The geometries considered thus far-n-point, Fano, Pappus, De-
sargues-have all been modelled by graph-like structures. But each has
an alternate model as a block design (or as a hypergraph), by specify-
ing the point set and then listing the lines as subsets of the point set.
If every point is on at least one line, then just listing the line-subsets
suffices, as P is then the union of all the line-subsets.

For n-point geometry, we would list all the 2-subsets of a fixed n-set.

This gives an (n, ̂ f^, n -1,2,1 VsiBD.

For the Fano plane, Table 15-3 gives a (7,7,3,3,1)-BIBD, or Steiner
Triple System. The lines agree with Figure 15-1, and are cyclically
generated from {0,1,3}- a perfect difference set in Z7.

0 1 3
1 2 4
2 3 5
3 4 6
4 5 0
5 6 1
6 0 2

Table 15-3.

The Pappus design of Table 15-1 is a (9,9,3,3; 0,1)-PBIBD, based
upon the strongly regular graph K3(3). The design is resolvable (by
columns in the table), group divisible, and transversal.

The Desargues design of Table 15-2 js a (10,10,3,3;0,1)-PBIBD,
based upon the strongly regular graph II, the complement of the Pe-
tersen graph II. (The strongly-regular parameters for II are ^22 — 3
and £>22 — 4.) Figure 15-4 shows II; the polar of each point p is given
by the neighbors of p in II.

Figure 15-4.
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Recall that the Levi graph of a design-and hence of a geometry-has
vertex set P U L and all edges of the form {p, £}, where p (E i. Another
relevant graph for the study of geometries is the Menger graph.

Def. 15-5. The Menger graph of a geometry (P, L} has vertex set P,
and two vertices adjacent if and only if they are collinear (i.e. belong
to a common line).

Thus the n-point, Fano, Pappus, and Desargues geometries have
Menger graphs (respectively) Kn,K7,Kz(z)-, and EL Note that non-
isomorphic geometries, such as 7-point geometry and the Fano plane,
can have the same Menger graph.

We remark that each of the Fano, Pappus, and Desargues geome-
tries corresponds to a /^-decomposition of the edge set of the associ-
ated Menger graph.

15-5. Surface Models for Geometries

The spirit of this book has been to model abstract mathematical
structures, using concrete representations. Thus we prefer the graph-
like models of Sections 15-2 and 15-3 to the design models of Section
15-4. But we are not satisfied with the former as currently given. For
example, Figure 15-1 for the Fano plane has several deficiencies:

(Dl) The line {1,2,4} is differently shaped, yet that line is indistin-
guishable from the others, via the axioms.

(D2) Each other line has two "end" points and one "middle" point,
yet there is no axiom for "betweenness."

(D3) There are three "crossings" of lines that have no meaning in the
geometry.

(D4) One cannot discern that r = 3, by looking at small neighbor-
hoods of points 0,1,2, and 4.

Figures 15-2 and 15-3 suffer all but (Dl) above. Of course, it is
(D3) that is particularly worrisome to a topological graph theorist.

To overcome these deficiencies, we regard each geometry as a hy-
pergraph (points are hypervertices, lines are hyperedges) and use the
construction of Section 13.3. We first imbed the Levi graph of the
geometry, and then modify that imbedding to depict the hypergraph:
certain regions are the hyperedges; what remain are the hyperregions.
Of course, we wish to do this as efficiently as possible.

Def. 15-6. The genus of a geometry H = (P, L} is the genus of its
Levi graph: 7(#) = */(G(H)).
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Note that we are assuming the geometry to be given as H = (P,L),
rather than as a perhaps incomplete axiom system, so that G(H) is
well-defined.

Recall that the process that modified the G(H) imbedding to an
imbedding of G*(#)-depicting the hypergraph H on the same surface-
is reversible. If every line of the geometry has exactly three points
(k = 3 in block-design notation), then G*(H) is just the Menger graph.
If, in addition, two points are on at most one line, then an efficient
imbedding of such a geometry corresponds to an imbedding of the
Menger graph having bichromatic dual, where the regions of one color
class are all triangular, with triangles given by the A^-decomposition of
the Menger graph modelling the lines of the geometry, and the number
of regions of the other color class is a maximum. This fact will be
exploited in Sections 15-6 and 15-7.

We conclude this section by calculating the genus of n-point geom-
etry, which we denote by Hn. Commence with Kn. Perform an ele-
mentary subdivision on each edge; the result is G(Hn}. Clearly G(Hn)
is homeomorphic to Kn. Thus we have:

Thm. 15-7. The genus of n-point geometry is
for n > 3.

We observe that, having imbedded G(Hn) on the genus surface
for Kn, we obtain G*(Hn) by replacing each edge of Kn with a digon
(modelling a hyperedge of order 2). The regions for the Kn imbedding
become the hyperregions. See Figure 13-4, for the case n = 4.

15-6. Fano, Pappus, and Desargues Revisited

We want to find a surface model of minimum genus for each of these
geometries. The following lemma will be useful.

Lemma 15-8. If H is a geometry with the property that two points
belong to at most one line, then the Levi graph G(H) has girth at least
six.

PROOF. Since G(H) is bipartite, it must have even grith. But a
4-cycle in G(H] would describe two points belonging to at least two
different lines; see Figure 15-5. Thus the girth is six or more. D

Thm. 15-9. Let H be a geometry satisfying:



208 15. FINITE GEOMETRIES ON SURFACES

Pi

P2

Figure 15-5.

(1) Each point is on at least three lines.
(2) Each line contains at least three points.
(3) Two points belong to at most one line.

Then H is nonplanar.

PROOF. By Lemma 15-8, G(H] has girth at least six. Thus a planar
imbedding would contradict Lemma 5-19. D

Hence all three geometries currently under study are nonplanar. By
remarks of the preceding section, we seek bichromatic-dual imbeddings
of the Menger graphs K7, K3^, and II, where the regions of one color
give a ^-decomposition corresponding to the lines of the geometry
and the number of regions of the other color class is a maximum. That
the latter regions all be triangular is, for girth six, a sufficient condition
(but not a necessary one, as we shall see) for the maximization we seek.

Figure 13-5 shows that the Fano plane is toroidal. Figure 10-5, with
the nine diagonals of positive slope added within the square regions and
the vertices appropriately labelled, shows that the geometry of Pappus
is toroidal also. (See [FW2], or Figure 15-17, for an alternative model
on the torus.) Both imbeddings cover Figure 10-6 (with T = I,? and
A = {1,2,3} for Fano, and T = Z3 x Z3 with A = {(1,0), (0,1), (1,1)}
for Pappus).

The situation for Desargues is more complicated. A toroidal imbed-
ding of II (with p — 10, q = 30, and r = r$ — 20) would seem possible,
but unfortunately no such imbedding exists: the neighbors of vertex
A, for example, form no wheel graph W7 with line triangles alternat-
ing with hypertriangles (see Problem 15-6). Thus there seems to be
insufficient symmetry to allow a useful voltage graph/covering space
construction. (The Petersen graph strikes again.)
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Figure 15-6, found by ad hoc methods [Fl], shows that the ge-
ometry of Desargues has genus two. Note that the hyperregions in-
clude five triangles and three pentagons (instead of the ten triangles
a toroidal imbedding required); the latter share point A. This facili-
tates the discovery of a 3-fold rotational symmetry (about A) which, in
fact, generates the map automorphism group Aut M. (Note that some
regions-those labelled I, II, and Ill-appear three times in the figure, to
better illustrate this symmetry.

We examine the orbits of the action of AutM =< a >, where
a = (A)(BCD)(EFG)(HIJ), on both P and L, as well as on the
hyperregions.

(1) The orbits on P give the pole A, the polar {H,I, J}, and the
two triangles BCD and EFG of perspectivity.

(2) The orbits of the induced action on L give the three lines con-
taining pole A, the three lines bounding triangle BCD, the three
lines bounding triangle EFG, and the polar {H, /, J}.

(3) The orbits of the induced action on the hyperregions give the
three pentagons, the three triangles the points of the polar make
with the lines at pole A, and each triangle of perspectivity is
fixed.

In summary, AutM fixes the point of perspectivity, the line of
perspectivity, the two triangles of perspectivity, and nothing else.

We summarize this section, in:

Thm. 15-10. The geometries of Fano and of Pappus are toroidal. The
geometry of Desargues has genus two.

15-7. 3-Configurations

For this section and the two following, we turn our attention to
certain classes of geometries. As with the geometries previously en-
countered, we impose more structure on a geometry H = (P,L] by
specifying various axioms. We say that H is finite if both P and L are
finite.

Def. 15-11. Let r and k be positive integers. A (k, r)-configuration is
a geometry H = (P, L) satisfying:

(CA1) P is non-empty and finite.
(CA2) Each point belongs to exactly r lines.
(CA3) Each line consists of exactly k points.
(CA4) Each pair of distinct points belong to at most one line.



210 15. FINITE GEOMETRIES ON SURFACES

Figure 15-6.

Thus (CA1) establishes existence and finiteness (for P), (CA2) ex-
istence (of lines) and uniformity, (CAS) uniformity, and (CA4) unique-
ness and finiteness (of L and hence of H).

Observe that every (v,b, r, fc, 1)-BIBD, and every (v,b,r, fc;0,1)-
PBIBD, is a (k,reconfiguration, where v = \P\ and b — \L\.

Def. 15-12. If r — k, a (&, reconfiguration is said to be symmetric.

Note that the geometries of Fano, Pappus, and Desargues are all
symmetric (3,3)-configurations, whereas the (n — l,2)-configuration
given by n-point geometry is symmetric only forn = 3. The case k = 3
is particularly nice in our topological context, for then the modification
G*(H) of the Levi graph G(H) (see Section 13-3) is just the Menger
graph, and it is convenient to focus on the latter in constructing surface
models of H. Thus we specify k — 3 in our study of configurations, and
we often suppress the "r" in the notation. There is already much in-
terest in this first non-graphical hypergraph case. (A 2-configuration is
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just an r-regular graph, and graph imbedding is studied in Chapters 6
and 10.) For instance, every Steiner triple system is a 3-configuration.
See Figueroa-Centeno [Fl] for a study of topological models of config-
urations.

The following theorem is due to Gropp [G3j.

Thrn. 15-13. Let \P\ = v and \L\ = b. There exists a (3, /^-configura-
tion H = (P, L) if and only if:

(i) vr — 36; and
(ii) v > 2r + 1.

As one application of this theorem, we find that the sequence of
symmetric 3-configurations commencing with the geometries of Fano,
Problem 15-5, Pappus, and Desargues has no predecessor. However,
the sequence continues indefinitely (see Problem 15-7).

Def. 15-14. A configuration imbedding (ofdegree r} of a graph G is a
bichromatic-dual imbedding of G for which all the regions of one color
class are triangles depicting the lines of a (3, reconfiguration H =
(P,L) having P = V(G).

We address the following PROBLEM: For each pair (v, r) satisfy-
ing v r = 0 (mod 3) and v > 2r + 1, find a "nice" topological model of
a (3, reconfiguration H = (P,L) having \P\ = v. By "nice" we mean
to take the following into account as much as possible.

(i) We prefer the Menger graph of the configuration to be either
complete or strongly regular, so that the corresponding design
will be either a BIBD or a PBIBD.

(ii) We prefer surfaces to pseudosurfaces, and pseudosurfaces to gen-
eralized pseudosurfaces.

(iii) We prefer orientability to nonorientability.
(iv) We prefer the euler characteristic of the ambient space to be a

maximum. (This requires the regions of the second color class
to be as nearly triangular as possible.)

(v) We prefer the resulting map to have as many (line-preserving)
symmetries as possible. (If we use a Cayley map M, then
AutM) > v, by Theorem 16-24.)

Thm. 15-15. Let G be a 2r-regular graph of order v. Then the fol-
lowing statements are equivalent:

(i) G is a Menger graph for a (3, reconfiguration.
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(ii) G is ^-decomposable, into y 3-cycles.
(iii) G has a configuration imbedding, of degree r.

PROOF, (i) implies (ii). Let G be a Menger graph for a (3, r)-
configuration. Then the q — vr = bk = 3b edges of G partition into b
3-cycles corresponding to the lines of the geometry.

(ii) implies (iii). If G is /^-decomposable into y 3-cycles, then
let these cycles (each with arbitrary but fixed orientation) bound tri-
angular regions. Any extension of the partial vertex rotations thus
determined to a full rotation scheme for G will correspond to a config-
uration imbedding, with the initial triangular regions comprising one
color class. The number of these triangles at each vertex will be r.

(iii) implies (i). Let a configuration imbedding of degree r be
given for G. Take the vertices of G as points of a geometry, and the
color class of regions having all triangles (or either color class, if the
imbedding is triangular) as the line set. Then k = 3 uniformly, each
pair of points belongs to at most one line, and G is a Menger graph for
the (3, r)-configuration. D

We illustrate these ideas by restricting v < 10 and considering
all possible values of r for each such v. See [Fl] for a study of 3-
configurations of low order.

1. v = 1 or 2. There are no possible values of r.
2. v = 3, r = 1. KZ on So gives a (3,1,1,3,1) complete block de-

sign and 3 symmetries.
3. v = 4 or 5. No possible values of r.
4. v = 6, r = 1. 2#3 on 2S0 gives a (6,2,1,3; 0,1)-PBIBD, and 18

symmetries.
5. v = 6, r = 2. #3(2) on S0 gives a (6,4,2,3; 0,1)-PBIBD, and 12

symmetries.
6. v = 7, r = 3. K7 on Si gives the Fano plane, a (7,7,3,3,1)-

BIBD, with 21 symmetries.
7. v = 8, r — 3. #4(2) on Si gives the geometry of Problem 15-5,

an (8,8,3,3; 0,1)-PBIBD, with 24 symmetries.
8. v = 9, r = 1. 3#3 on 3S0 gives a (9,3,1,3; 0,1)-PBIBD, and

162 symmetries.
9. v = 9, r = 2. C3 x C3 on Si gives a (9,6,2,3; 0,1)-PBIBD, and

18 symmetries.
10. v = 9, r = 3. #3(3) on Si gives the geometry of Pappus, a

(9,9,3,3; 0,1)-PBIBD, with 27 symmetries.
11. v = 9, r — 4. The Menger graph is Kg, the geometry is the

affine plane ^4(7(2,3), and the design will be a (9,12,4,3,1)-
BIBD. Competing models will be constructed in Section 15-10.
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12. v = 10, r = 3. II on 62 gives the geometry of Desargues, a
(10,10,3,3; 0,1)-PBIBD, with 3 symmetries.

It seems that we have covered nearly all the interesting imbeddings
of graphs of small order! Each of the constructions above satisfies
our preferences (i) through (v), except for Desargues both (iv) and
(v) might be improved (but the former at the risk of (ii) and (iii)).
In Section 15-10, when modelling .4(3(2,3), we will see that (iv) is
incompatible with (ii) and (iii) taken together.

To illustrate how more complicated models might be constructed,
we consider the following situation. Suppose we want a 3-configuration
with v = 21 and r = 9. Start with K7($), a strongly regular Menger
graph. We want a suitable Cayley map for K7(z), so we must choose be-
tween Z21 and the semi-direct product Z7 x Z3. The former is abelian,
with one element (and its inverse) of order 3, while the latter is non-
abelian and has 7 pairs of elements of order 3. Elements of order
3 are useful in producing triangles, but the abelian property is irre-
sistible (and, as it turns out, one element of order 3 is all we will need
here) - so we try Z2i- Choosing A == {1,2,3,4,5,6,8,9,10}, we find
GA(F) = K7(3). We seek to partition A into KVL triples, and as A
contains four odd numbers (o) and five even numbers (e), we look for
a partition of the form o + o — e = 0, o + o — e = Q, e + e — e = Q. (As
we see later, it is nice to avoid the form a + b + c = 21.) This works:
1 + 9-10 = 0, 3 + 5-8 = 0 (we rewrite this as -3 - 5 + 8 = 0),
2 + 4 — 6 — 0. These equations yield three white triangles. (Each
will lift to 21 lines of our geometry.) Now we want three black KVL
triangles (for preference (iv)), with each generator having the opposite
sign to that already used (to meet preference (iii); preferences (i) and
(v) have already been attended to). This works: —2 + 10 — 8 = 0,
-4 - 1 + 5 = 0, 6 - 9 + 3 = 0. We use these six 3-cycles to bound
six triangular regions and then identify edges so as to obtain the KVL
voltage graph imbedding (in 52) of Figure 15-7. For preference (ii), we
check that our voltage graph has just one vertex, x. (If we had used
—2 — 8 + 10 = 0 instead of -2 + 10 - 8 = 0, for example, this property
would seem to fail, leading to a pseudosurface imbedding. But then,
since our group is abelian, we could change to —2 + 10 — 8 = 0 as in Fig-
ure 15-7. With our alternative voltage group Z7 K Zs, this might not be
so easy.) The lift will be a bichromatic-dual imbedding of K7($) in 822
(p = 21,q = 189, r = r3 = 6 • 21 = 126), modelling a 3-configuration
which is a (21,63,9,3; 0,1)-PBIBD. (We also get a second such PBIBD
from the black covering triangles, and a (21,126,18,3; 0,2)-PBIBD (not
a configuration, since A2 = 2) from all the covering triangles.)

We have two surprises in store. Firstly, since the KVL holds not
just in Z2i, but-by the way we chose our six equations from A -in
Zn, for all n > 21 (voltage-graph theorists say that the KVL holds
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Figure 15-7.

in ZQO), we have an infinite class of orientable genus surface models,
for 3-configurations with v = n(n > 21) and r = 9, with at least n
translational symmetries. (We are not likely to have strong regularity,
for v > 21.) The covering surface is Sn+i, as p = n, q = 9n, and
r = r3 = 6n.

Secondly, if we modify A to A' = A U {7}, then G&(T) = K2i-
Now add a loop, carrying voltage 7, inside any one of the three black
triangles of Figure 15-7. Color the loop region white; it will lift to
seven more white triangles. The result is an imbedding of K2i on
5s6, modelling a Steiner triple system of order 21, with at least 21
symmetries. (This probably does not maximize characteristic for this
(21, 70, 10, 3, 1)-BIBD, as the modified black triangle now lifts to 7 do-
decagons. For comparison, the genus of K2i is 26, although an imbed-
ding on £26 might not model this geometry.)

This gives an idea as to how several of the ideas of this book come
together to model 3-configurations in a concrete manner.

Similar considerations have produced topological models of 3-config-
urations for all possible pairs (v, r) with v < 50.

Finally we present some counting results.

Thm. 15-16. Let H = (P,L) be a (3, reconfiguration, with v = \P\
and b = \L\ and G and the associated Menger graph. Then:

(i) The total number of orientable topological models (into gener-
alized pseudosurfaces, including pseudosurfaces and surfaces) is
2b(r\)v.

(ii) The number of orientable surface models is 26((r — 1)\}V.



15-8. FINITE PROJECTIVE PLANES 215

Cor. 15-17. In the probability space of all orientable topological mod-
els, with the uniform distribution, the probability of a model being on
a surface is -77.

15-8. Finite Projective Planes

In the preceding section we studied surface models for 3-configu-
rations, one generalization of our toroidal model of the Fano plane.
In this section we generalize the latter in a different way. The Fano
plane is not only the smallest symmetrical 3-configuration, but also the
smallest projective plane. Here are the axioms for a protective plane
n.

(IIA1) Two distinct points are on a unique common line.
(ITA2) Two distinct lines contain a unique common point.
(HAS) There exist four distinct points, no three on the same line.

We use these axioms to develop some elementary properties for II.

(HTl) There exist four distinct lines, no three containing the same
point.

PROOF. Use axioms (HAS) and (IIA1); see Figure 15-8. D

(IIT2) (Duality) The dual of a valid statement about II is also valid.

PROOF. Axioms (HAl) and (HA2) are dual statements, as are ax-
iom (IIA3) and theorem (HT1). Thus the "dual" of the proof of any
statement deducible from these four statements establishes the validity
of the dual statement. D

Figure 15-8.

(IIT3) Any two lines of II are in one-to-one correspondence with each
other (as subsets of the point set).
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PROOF. Let i\ ^ i^ be given in L. First we find a point p £ i\ \j£2-
If the four points, say A,B.C., and D, guaranteed by (HAS) contain
such a point p, we are done. Otherwise, the situation must be as in
Figure 15-9, and we find p = AC n BD.

Figure 15-9.

Next, we use p to find a bijection / : t\ —> i^ as shown in Figure
15-10, where /(pi) = P2 is found as the unique intersection of t^ with
the unique line containing pi and p.

Figure 15-10.

D

We define a projective plane II = (P, L] to be finite if P is finite.
Then L is finite also, as is each i 6 L. Thus, by (IIT3), there is an
n 6 N so that, for each i € L, \i\ = n + 1; n is said to be the order of
IT. We write II = II(n), and restrict our attention to the finite case for
the remainder of this section.

(IIT4) For each p 6 P, p belongs to exactly n + 1 lines.
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PROOF. This is the dual statement to (HT3), for U(n). D

(IIT5) The number of points of H(n) is given by \P\ = n2 + n + 1.

PROOF. Let p e P, with p e t\,li,-- ,4+i, as in Figure 15-11.
As this arrangement, called the pencil of lines at p, includes all of P,
by (HA1), we can use (IIA2) to count: \P\ = 1 + (n + l)n. D

n+l

Note that, by (HAS) and (HT5), the order n of U(n) is at least 2.
This confirms that the Fano plane is the smallest projective plane.

(HT6) The number of lines of H(n) is given by \L\ = n2 + n + 1.

PROOF. By duality. D

We summarize the above development in:

Thm. 15-18. The projective plane H(n) is an (n2 + n + l,n2 + n +

Conversely, every such design is a projective plane II (n). To see
this, we note first that (ILA1) holds, since A — 1. For (IIA2), let Bi
and Bj be distinct blocks (lines). Since A = 1, \B{ fl Bj\ < 1. Thus

jf and omy jf

pair of lines intersect uniquely. But the total number of non-empty
pairwise intersections is vQ = ("2+"+i)("2+") . Thus \Bt n Bj\ = 1, for
all i ^ j. For (HAS), consider any two distinct lines. By the above
argument, they intersect uniquely. Since n > 2, we can take, as the
four points we seek, any two points from each of the two lines other
than their common point. D
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Now that we see the power of the axioms for II, it will be instructive
to examine the properties of consistency, independence, and complete-
ness for these axioms. As we indicate below how to construct infinitely
many models for the system, it is consistent. As we will construct
one model of order n, for each prime power n, the system is not com-
plete. The system as given is independent: 3-point geometry shows
that (HAS) cannot be deduced from (IIA1) and (HA2); 4-point geom-
etry shows that (HA2) does not follows from (HAl) and (HAS); and
the dual of 4-point geometry shows that (HA1) cannot be proved using
(HA2) and (IIA3) only.

The situation changes if we add:

(IIA4) For all lines t, \i\ = n + 1, where n > 2 is fixed.

The only known models are for n a prime power. It is also known
that there are no models possible for n = 6 or 10, and that every
prime power n = pe > 9 of exponent e>2 produces at least two non-
isomorphic models (there are four, for n = 9). Thus the system is still
not complete, for such values of n. (It is complete for n = 2,3,4,5,7,
and 8, for example.) Consistency seems irrelevant for n = 6 and 10,
and is an open question for many other non-prime powers. (By the
Bruck-Ryser Theorem - see [BR2] - for n = I or 2 (mod 4), if n is not
a sum of two squares, then no H(n) exists.)

Now we construct one II(n)-denoted -PG(2, n)-for each prime power
n.

A set of ra distinct numbers will produce m(m — 1) non-zero dif-
ferences, where we distinguish between a — b and b — a. If we take
ra = n + 1 and the distinct differences from Zn2+n+1, then we get
n2 + n non-zero differences in Zn2+n+1. If these differences are distinct,
then (together with 0) we have each element of Zn2+n+1 exactly once.
Then using this initial set of n + 1 elements (called a perfect differ-
ence set) to generate cyclically n2 + n other perfect difference sets by
successively adding 1 to each element in the initial set, we obtain an
(n2 + n + l,n2 + n + l,n + l,n + l, 1)-BIBD, and hence all(n). In sum-
mary, a II(n) can be constructed by first finding a perfect difference set
for Zn2+n+1. Tables 15-3 (in Section 15-4) and 15-4 show the designs
corresponding to planes 11(2) and 11(3) generated by perfect difference
sets {0,1,3} and {0,1,3,9} for Zy and Zis respectively.

But how do we find an initial perfect difference set? One construc-
tion uses finite fields, and this is where the prime powers come into
play. (Recall (Theorem 14-1) that a finite field GF(n) of order n exists
if and only if n is a prime power.) The construction is general. We
illustrate, with the case n = 5.
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Start with GF(5) = {0,1,2,3,4} and the monic cubic irreducible
polynomial /(x) = x3—x—2 over GF(5}. Set x3 — x+2 and calculate in
increasing powers of x : x° = 1, or, x2, x3 = x+2, x4 — x2+2x, • • • , xs =

0
1
2
3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
6
7
8
9
10
11
12
0

3
4
5
6
7
8
9
10
11
12
0
1
2

9
10
11
12
0
1
2
3
4
5
6
7
8

Table 15-4.

Thus x62 = 4,x93 = 3, and x124 = I. Hence < x >^ Z124 =
GF(53) — {0}, the multiplicative group of the degree 3 extension, and
x is primitive. Now take {xz|0 < i < 30} as coset representatives
for (GF(53) - (0})/(GF(5) - {0}) and Z3i for the points of 11(5) =
PG(2, 5). (Multiplying powers of x corresponds to adding exponents.)
By a theorem of Singer [S7], each line (and all of its translates) in
the resultant geometry is a perfect difference set. We take the unique
line consisting of all points having coefficient of x2 equal to 0, called
the standard perfect difference set (since it contains both 0 and 1).
For the present example, this is {0,1,3,8,12,18}. This generates a
(31,31,6,6,1)-BIBD, which is 11(5) = PG(2,5).

Similarly, for each prime power n, we obtain an abstract model for
PG(2, n), which is a II(n). (There might be other possibilities for II(n),
as noted above, for various values of n.) Now we describe how to model
the geometries PG(2, n) in a topological manner. Walsh [W2] treated
the case n = 2 in 1975. We complete the analysis.

For each prime power n, obtain a perfect difference set as described
above. This leads (we see how, below) to a generating set A for the
group F = Zn2+n+1 and then an index one voltage graph imbedding
which is covered by a Cayley map for G&(T} modelling PG(2,n) as
follows: the points of the geometry are the vertices of G&(F}. The
lines are modelled by (n + l)-gonal regions. The remaining regions
are the hyperregions, which we strive to make as nearly triangular as
possible, so as to minimize the complexity of the model. We also want
to preserve the action of Zn2+n+1, already regular on both the points
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and lines of PG(2,n), as being regular also on each orbit of the set
of hyperregions. Full details are given in [W25], where the following
results are established.

Thm. 15-19. Let n be a prime power.

(1) If n = 0 (mod 3), then PG(2,n) is modelled on an orientable
pseudosurface of characteristic (3~2n 3 +n+1); wjth n2 + n +1 hy-
perregions quadrilateral and all others triangular. These imbed-
dings are asymptotically efficient, in terms of characteristic.

(2) If n = 1 (mod 3), then PG(2,n) is modelled on the orientable
surface of genus 1 + (n~1)(7^+n+1); with n2 + n + 1 hyperregions
pentagonal and all others triangular. The genus of these geome-
tries is asymptotic to that of these surfaces.

(3) If n = 2 (mod 3), then PG(2,n) is modelled on the orientable
surface of genus 1 + (n~2)(^ +n+V ? wah an hyperregions triangu-
lar. Thus these are genus imbeddings, for these geometries.

We can consolidate the three parts of Theorem 15-19, but first we
need a definition.

Def. 15-20. The regular pseudocharacteristic of PG(2,n),
Xr(PG(2, n)), is the maximum x' sucn that the Levi graph G(PG(2, n))
imbeds on a pseudosurface S', of characteristic x'-, with Zn2+n+1 acting
regularly (as a group of map automorphisms) on each orbit of the
region set for the modified imbedding G*(PG(2,n)).

Thm. 15-21. For i = 0,1,2 and n = 2 + i (mod 3), x'r(PG(2,n)) -
(4-2n-i)(n2+n+l)

3

These constructions give additional information.

Def. 15-22. A (k,g)-cage is a graph of minimum order among all k-
regular graphs of girth g.

From Proposition 23.1(2) of [B12], it follows that the order of an
(n + l)-regular graph having girth 6 is at least 2(n2 + n + 1). By
Lemma 15-8, the Levi graph G(PG(2,n)) has girth at least 6. But
6-cycles exist in G(PG(2,n)); see Problem 15-15. Thus the girth is
precisely 6, and by the definition of H(n) and theorems (IIT4), (IIT5),
and (HT6), G(PG(2, n)) is (n + l)-regular of order 2(n2 + n + 1). We
have shown:
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Thm. 15-23. The Levi graph G(PG(2,n)) is an (n + l,6)-cage, of
order 2(n2 + n + 1).

In fact, Singleton showed [S8]:

Thm. 15-24. A projective plane II(n) exists if and only if there is an
(n + 1, 6)-cage of order 2(n2 + n + 1).

Since the girth of G(PG(2,n)) is 6, hexagonal imbeddings will be
minimal for these graphs. But hexagonal imbeddings for Levi graphs
G(H) correspond with all hyperregions triangular for imbeddings of the
modified graphs G*(H}. (Hyperregions double in size by the reversal
of the modification process.) Thus we have:

Thm. 15-25. Let Gn denote the (n + l,6)-cage associated with
PG(2, n). For n = 3m - 1, 7(G3m_i) = m(3m - 2)2.

The ground case m = 1 of this theorem gives the Heawood graph
on the torus, and the modified imbedding is our toroidal model of the
Fano plane. The case m = 2 we describe below (continuing our earlier
example for n = 5) , as it illustrates the constructions of both Theorem
15-19(3) and Theorem 15-25. The other two parts of Theorem 15-19
required only slight modifications to the basic technique of part (3) .

In Figure 15-12 we give the voltage graph imbedding, using Z3i

and the perfect difference set {0, 1, 3, 8, 12, 18} constructed earlier, that
lifts to the model of PG(2, 5) - and in turn to the (6, 6)-cage G$ - in
832- The generating set A for Z3i is found as follows. We need a
crucial result (see Theorem 2.5.2 of [A7] or Theorem 11.5.3 of [HI], for
example) .

Proposition 15-26. Let p be prime, n = pm, v = n2 + n + 1, and
k — n + 1. Let L0 be the standard form line for PG(2, n), and let s be
the sum of the elements of LQ in Zv. Let j — k~l(— s), with Lj = LQ+J.
Then multiplication by p fixes Lj .

For n = 5, we calculate that j = 24 in Z3i. We confirm that
multiplication by 5 fixes L24 = {24,25,27,1,5,11}. Rewrite L24 by
orbits under this action:

L24 = {1,5,25} U {11,24,27} = {1,11,5,24,25,27},
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by interlacing. Use successive differences, to form

A = {10, -6, -12,1,2,5}

for F = Z3i. Observe:

(1) 10-12 + 2 = 0, and
(2) -6 + 1 + 5 = 0, forcing
(3) 10 - 6 - 12 + 1 + 2 + 5 = 0.

(To see why this might work in general, and it does, note that, for
instance, 10 - 12 + 2 = (11 - 1)(1 + 5 + 52) = 0 in Z3i.) The three
equations give the KVL property for the voltage graph imbedding of
Figure 15-12.

Figure 15-12.

There are six edges in the voltage graph K, one for each generator
in A, and three regions. There is only one vertex (after identifica-
tion of the two occurrences of each edge, matching up the arrows),
as seen by the (clockwise) ordering of the generators and their in-
verses: (-2,10,-5,-6,-10,-12,6,1,12, 2,-1,5). The surface S in
which K is imbedded is orientable, as each edge appears once in each
direction, among all the (clockwise, say) region boundaries. The euler
identity p — q + r = 2 — 2a yields a = 2, so we have S = 82- Then
X(S) = 3lx(S2) = -62 = 2 - 26, so b = 32 and the covering imbed-
ding of GA^SI) is on S = 632. The 31 vertices above are the points
of PG(2,5). The 31 lifts p'^R) of the hexagon R depict the lines of
PG(2,5). Thus if we take 0(ei) = 1, we find RQ = (0,1,3,8,18,12)
producing L0 in p~l(R). Similarly, Ri = RQ + i depicts Li, for each
i in Zsi. In like manner, each triangle below lifts to 31 triangular
hyperregions above.

Clearly Z31 acts as a group of automorphisms on the covering
imbedding. For example, adding i sends Lj to Lj+i. Similarly, Z3i
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acts regularly on the 31 hyperregions covering each triangle. Using
ideas of Chapter 5 of [BW1] (see also Chapter 16 of this book), it can
be shown that the full automorphism group Aut M is Z3i x (Aut M)0,
a semidirect product, where (Aut M)0 is the stabilizer of vertex 0. The
stabilizer has order dividing 6, as we cannot exchange 6 hexagons with
6 triangles when rotating at a vertex. It can be checked that multiply-
ing by 5 (the generator of the multiplier group for PG(2,5)) gives a
map automorphism stabilizing 0; as this action has order 3(\/5 = 6 in
Z3i, but 6 is not a multiplier), we conclude that AutM = Z3i x Z3.

We modify this imbedding of GA(^SI) in 632, to obtain a hexagonal
imbedding of the (6,6)-cage G(PG(2,5)) in 632, by first inserting a
vertex in the interior of each hexagonal region, next adding an edge
from each such vertex to every vertex of that hexagonal region, and
then deleting all edges of GA^SI)- (This is the reverse of the procedure
of Section 13.3).

Finally, Fink and White [FW3] showed:

Thm. 15-27. The projective plane PG(2, n) has a model on a surface
of genus g whose map automorphism group has a regular action on
the set {(p,C)\p 6 P, t € L,p e t} of flags if and only if (n ,g) =
(2,1), (2,3), (8,147), (8,220), or (8,252).

This is consistent with our finding that our model of PG(2,5) has
Aut M = Z3i x Z3, not Z3i x Z6.

In [Fl], Figueroa-Centeno greatly generalized the approach of this
section, to find topological models for PG(m, n), where m + 1 is prime
and n is a prime power (and A > 2).

15-9. Finite Affine Planes

Another interesting class of geometries is composed of the affine
planes. Here are axioms for an affine plane IT.

(II'Al) Two distinct points are on a unique common line.
(ITA2) Through a given point not on a given line, there is a unique

parallel line.
(ITA3) There exist four distinct points, no three on the same line.

Note that the first and third axioms agree with those for a projec-
tive plane II, but that the second axiom (IT') for II has been replaced
with Playfair's axiom for Euclidean geometry (equivalent to the par-
allel postulate). Thus we have no duality principle for affine planes.
Nevertheless, affine and projective planes are intimately related.
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Thm. 15-28. To every projective plane II — (P, L) there corresponds
an affine plane II7 = (P', I/), and conversely.

PROOF. Given II = (P, L), choose any £0 £ L, and form II' =
(P', L') by setting P' - P - £0 and L' = L - {10}. Thus, for each
I 6 L, £ ̂  £0, f = ^ - {f n 4}. We show that IT is an affine plane.
First, note that (II'Al) follows directly from axiom (IIA1) for II. For
(ITA3), consider any p € £0 and £i ^ 12 € L so that £i n £2 = {p} in II.
Then take as four points in II' any pair from each of £[ = i\ — {p} and
£'2 = £2- {p}. For (ITA2), consider p' £ £' in IT, as in Figure 15-13.
Let £' n £Q = {PO}- Consider the unique line £{ containing p' and £>o m

n. Then £{ is parallel to £' in H', since £' n ̂  = {p0} in H, and p0 i P'
for II'. Moreover, any other line through p' in II' must intersect £' in
II', for otherwise, by (HA2), (IIA1) is violated in II. This shows that
(ITA2) holds for II', so that II' is an affine plane. D

The converse will be established following Theorem 15-30, and we
illustrate the converse in Section 15-11. First we need a lemma. Now we
regard two lines as being parallel if they are either disjoint or identical.

Lemma 15-29. If £'2 and 1'3 are both parallel to £[ in II7, then they are
parallel to each other.

PROOF. If 1'2 = 1'3, the conclusion is immediate. If £2 ^ 1'3, then fail-
ure of the conclusion would contradict the uniqueness claim of (II'A2).

n

Thm. 15-30. Let IT = (P7, L') be an affine plane. Then L' can be
partitioned into classes of parallel lines, with each class partitioning
P'. No two lines from distinct classes are parallel.

PROOF. By the definition of "parallel" and by the lemma, "is par-
allel to" is an equivalence relation on L'. Thus L' is partitioned into
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classes of parallel lines, and no two lines from separate classes are par-
allel. Then (II' A2) and the disjointness of distinct lines in a given class
ensure that each class partitions P'. D

We remark that if II' = H'(n) is derived from H = U(n}, then (refer
to Figure 15-13) each pencil at a point of IQ forms a parallel class in
IT. Thus L' is partitioned into n + 1 parallel classes, each consisting of
n lines, where each line contains n points.

Now we can prove the converse of Theorem 15-28.

PROOF. Given II' = (P',L'), consider the partition of L' given by
Theorem 15-30. Form II = (P, L) by adding, for each parallel class, one
common point to each line in that class, so that different parallel classes
have different added points. This determines P. Finally, complete the
formation of L from L' by adding one new line, consisting of all the
new points. Then II is a projective plane.

D

We summarize the above development, in the finite case.

Thm. 15-31. The affine plane II' (n) is a resolvable (n2,n2 + n,n -f

Next we study the properties of consistency, independence, and
completeness for the axiom system for the affine plane II'. As given, the
axioms are independent: the graphs PS, K^, and IK^ show respectively
that neither (II' A3), nor (II' A2), nor (II'Al) can be derived from the
other two axioms. The system is consistent, but not complete, as there
are models of every prime power order, as we soon see. Now specialize
to H' = H'(n), by adding:

(ITA4) For all lines t, \i\ — n, where n > 2 is fixed. (We say that n
is the order of II' (n).)

Consistency is established, for n a prime power, by deletions from
the model for II(n) = PG(2,n) previously constructed, to obtain a
model for IT '(n) = AG(2,n). (We are obtaining an affine geometry
from a projective geometry.) Since there is neither a 11(6) nor a 11(10)
(for example), then by Theorem 15-28 there can be neither a II' (6) nor
a II'(IO). Since non-isomorphic planes H(n) produce non-isomorphic
planes H'(n), then for n > 9 a prime power with exponent larger than
1, the system for II' (n) is not complete either.

We turn our attention to finding models for AG(2,ri). If we delete
the first line (and all the points on it) of Table 15-3 (for n — 2) and
of Table 15-4 (for n — 3), we get abstract models for AG(2,2} and
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.4(2(2,3), as in Table 15-5. (We have reordered the lines of II' in each
case, to display the parallel classes.

24 2 4 10
5 6 5 6 8
25 7 11 12
46 2 5 11
26 4 6 12
45 7 8 10

2 6 7
4 8 11
5 10 12
2 8 12
4 5 7
6 10 11

Table 15-5.

As the reader might suspect, we now seek topological models for
AG(2,n}. One approach is to commence with the surface (or pseu-
dosurface, when the prime is 3) models constructed for PG(2,n} in
Section 15-8, and then model AG(2, n) on the same surface (or pseu-
dosurface) by making the required deletions, as was done in [W25]. But
this is not very satisfying, as the result is neither efficient (since the
euler characteristic is too low) nor aesthetically pleasing (since there
are too few symmetries). For example, whereas PG(2,2) was modelled
on the torus, AG(2, 2) is just 4-point geometry, readily modelled on the
sphere via K±. More dramatically, whereas PG(2,3) was modelled on
a pseudosurface of characteristic —13 (a torus with 13 pairs of points
identified), we will find a variety of more satisfactory alternatives to
the deletion model of AG(2,3) on that pseudosurface, in Section 15-10.

It is an open problem to find models for AG(2, n), for general prime
power orders n, that rival the efficiency and symmetry of the models
we found for FG(2,n). (See Problem 15-17.)

We have constructed AG(2,n) by deletions from PG(2,n). But
there is also a direct construction, using F = GF(ri), the Galois field of
order n. Just as for the plane E2, form F2 = {(#,y)\x,y 6 F}, giving
the n2 points. Each line consists of all those points satisfying one of
the usual equations: x = a, for a € F (n vertical lines); y = mx + b, for
m, b € F (n2 lines with finite slope m). This gives n2 + n lines in all,
each line containing n points and each point on n + 1 lines. Using this
coordinatization, we readily see the partition of the n2+n lines into n+1
classes (n classes with finite slope, 1 vertical class) of n parallel lines
each, each class partitioning the point set of F2. Figure 15-14 displays
AG(2,2) and AG(2,3) from this perspective. The latter representation
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appears in many texts. For ease of notation, we represent the ordered
pair (x, y) by xy. Also to avoid clutter, for AG(2,3) we omit the labels
for the vertical and horizontal lines.

This model for AG(2,2) is already a surface model (K± on the
sphere, under reverse stereographic projection). However, the AG(2,3)
model of Figure 15-14 suffers from all the deficiencies of Figure 15-1
for the Fano Plane.

We can remedy this situation, at least for all odd primes p, and n =
p, using the voltage graph of Figure 15-15, imbedded in the sphere, and
the additive group F = Zp x Zp. (The case p = 2 gives an alternative
model of AG(2,2) on the sphere.) The loop carrying voltage (0,1) lifts
to n = p n-gons, modelling the n vertical lines (and partitioning the n2

points). The other n loops lift to the parallel classes of lines of finite
slope: the loop carrying voltage (l,m), where 0 < m < p — 1, lifts to
n n-gons, modelling the n parallel lines of slope m. Thus we see again,
quite readily, the n + 1 parallel classes, of n lines each, and indeed the
entire (n2, n2 4- n, n + 1,n, 1)-BIBD nature of AG(2,n), for n = p. But
now the surface model avoids the extraneous intersections, and other
unfortunate aspects, such as occur in Figure 15-14 for the case p = 3.

AG(2,2)

Figure 15-14.

The covering space imbedding over Figure 15-15 has p2 vertices,
p2(p + 1) edges, p2 + p regions modelling the lines of AG(2,p), and p
hyperregions (each a (p2 + p)-gon). The covering space is an orientable
surface of genus 1 + p(p~2j(p+1). Although these models have p2-fold
translational symmetry (Zp x Zp acts as a group of map automorphisms
preserving lines; see Theorem 16-24), the large hyperregions render



228 15. FINITE GEOMETRIES ON SURFACES

Figure 15-15.

them inefficient-the genus seems too large. Improvements are sought
in Problem 15-17.

15-10. Ten Models for AG(2,3)

The class of projective planes intersects the class of 3-configurations
in the Fano plane PC?(2,2), as we have seen. The only affine plane
which is also a 3-configuration is AG(2,3). Moreover, as AG(2,2) has
been shown to be a planar geometry, .AC?(2,3) is the first candidate for
serious imbedding study, among the affine planes. Finding a suitable
topological model for this geometry might indicate how to approach
the class .AC?(2, ri) in general. We consider ten models for A.G(2,3); six
of these are topological.

(1) 4G(2,3) is displayed as a (9,12,4,3,1)-BIBD, in Table 15-5.
(2) We can specify abstractly that P — Z3 x Z3, and describe the

line set by equations:

L = {x = i\i G Z3} U {y = mx + 6|m, b £ Z3}.

(3) Figure 15-14 depicts model (2). As the figure represents an im-
mersion (in the plane) rather than an imbedding, we do not
regard it as a truly topological model.

(4) The model of Problem 15-18 improves upon (3), but is still not
fully topological.

(5) In Section 15-8 we modelled PC?(2,3) on the pseudosurface
(Si; 13(2)), so initially the deletion model of .AC?(2,3) is on
(Si; 13(2)) also. But the four deleted points are all points of
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identification. If we reverse these four identifications, we obtain
a topological model of AG(2,3) on (5i;9(2)). The characteris-
tic is —9, and the automorphism group is trivial. Each line of
the geometry is represented by a path P3. (In each of the fully
topological models below, lines are represented by cycles C3, and
their interiors.)

(6) Specialize the voltage graph imbedding of Figure 15-15 to p = 3,
to get a model of AG(2,3) on 5V; the characteristic is —12, and
the symmetry group is Z3 x Z3. This model has the nice feature
that each loop of the voltage graph lifts to a parallel class of
lines.

(7) The rotation scheme below imbeds AG(2,3) on 83. The charac-
teristic of —4 is optimal, for orientable surfaces, and the symme-
try group is Z3. The hyperregions are triangular, with the excep-
tion of one hexagon. (Parity does not allow an orientable surface
triangulation.) We label the points with elements of Z3 x Z3, and
let xy denote (x,y).

00
01
02
10
11
12
20
21
22

(02,01,10,20,21,12,11,22)
(21,11,20,12,22,10,00,02)
(01,00,22,12,20,11,10,21)
(20,00,01,22,21,02,11,12)
(01,21,22,00,12,10,02,20)
(10,11,00,21,02,22,01,20)
(12,01,11,02,22,21,00,10)
(12,00,20,22,11,01,02,10)
(12,02,00,11,21,20,10,01)

The final three models will have all hyperregions triangular. But
the one surface will be nonorientable, and the two orientable spaces
include one pseudosurface and one generalized pseudosurface. All have
characteristic —3.

(8) The index-one voltage graph of Figure 15-16, shown imbedded
in the projective plane, lifts to a model of AG(2,3) in -/V5, with
symmetry group Z3 x Z3.

(9) Commence with a toroidal imbedding of K"3(3) (see Example 2c
in Section 10-3). Recalling that K^s) = 3C3, imbed 3<73 on 350

and make nine pairs of vertex identifications, to model AG(2,3)
on the generalized pseudosurface (Si U 35o;9(2)). The symme-
try group is (Z3 x Z3) x Z3; 27 symmetries is the best for these
topological models. The three added spheres model one paral-
lel class of lines, while the toroidal imbedding gives a Pappus
configuration.

(10) The rotation scheme below models AG(2,3) on 5(1; 3(2)). The
symmetry group is Z3.
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Figure 15-16.

00
01
02
10
11
12
20
21
22

(12,21,02,01)(11,22,20,10)
(21,11,20,12,00,02,22,10)
(01,00,21,10,20,11,12,22)
(12,11,00,20,02,21,01,22)
(22,00,10,12,02,20,01,21)
(21,00,01,20)(11,10,22,02)
(02,10,00,22,21,12,01,11)
(10,02,00,12,20,22,11,01)
(21,20,00,11)(02,12,10,01)

All ten models yield a resolvable (9,12,4,3,1)-BIBD, a Steiner
triple system. The last five models imbed Kg, in a variety of ways,
but each makes explicit the 3-configuration that is ^4G(2,3). Each of
the last three models produces a second (9,12,4,3,1)-BIBD (from the
hyperregions), as well as one (9,24,8,3,2)-BIBD, a 2-fold triple sys-
tem. The final two models also give a Mendelsohn triple system, of
order nine.

We commented above, in model (9), that AG(2,3) contains a Pap-
pus configuration, obtained by deleting one parallel class of lines. In
fact, any three parallel classes in AG(2,3) give a Pappus configuration,
a group divisible design with groups given by the lines in the fourth
class.

In general, the configurations of both Pappus and Desargues occur
within each PG(2, n), for n > 3. (The Fano plane has too few points.)
For example, refer to Table 15-4, and see Problem 15-20.

Alternatively, if we model P for AG(2,3) by Z3 x Z3 rather than by
nine numbers from Z13 (as was done in models (1) and (5)), and refer
to the voltage graph of Figure 15-15 (for p = 3) again, then by deleting
the loop carrying voltage 12 = (1,2), we obtain a toroidal model of
the Pappus configuration that combines features of Section 15-6 and
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models (2), (3), and (4) for AG(2,3). See Figure 15-17, first appearing
in [FW2].

Figure 15-17.

15-11. Completing the Euclidean Plane

The Euclidean plane is an affine plane II' = (P', I/), as it satis-
fies the axioms (LTAl), (LTA2), and (IT A3). Now we complete the
Euclidean plane, by applying the process used to prove the converse
part of Theorem 15-28. That is, we construct the real projective plane
II = (P, L] from IT. Topologically, this process converts an unbounded
orientable 2-manifold into a compact nonorientable one (a surface).

Commence with the equivalence relation "is parallel to" , to parti-
tion U into equivalence classes of parallel lines, each class partitioning
P I _ TD>2.

— IK. .

V= U Li-
0€[o,n)

where L'e consists of all lines making angle 0 with the rr-axis. (For
0 = 0, these are the horizontal lines.) Then set

= P'U[0,7T),

where 0 depends on i' via t' 6 L'e. Then II = (P, L) is indeed a
projective plane, as it satisfies axioms (IIA1), (IIA2), and (HAS).

Our restriction of 6 to the interval [0, TT) has the effect of identifying
the "points at infinity" 9 and 9 + TT, for 0 < 9 < TT. This antipodal
identification produces the nonorientable surface NI , a sphere with one
crosscap. Thus we see that the two common meanings of the term
"projective plane" coincide, for this situation.
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In this section, we have modelled an infinite geometry on a surface.

15-12. Problems

15-1.) *Show that each geometry-Fano, Pappus, and Desargues-is com-
plete.

15-2.) Show that each geometry-Fano, Pappus, and Desargues-is self-
dual. (Hint: for Desargues, use the function that sends each
point to its unique polar line.)

15-3.) Give a one-line proof of the converse to Desargues' Theorem.
15-4.) Use the Petersen graph (Figure 15-4) and its properties to prove

Theorems (DT5) and (DT6).
15-5.) We have seen that the geometries of Fano, Pappus, and De-

sargues are all self-dual 3-configurations, of order 7, 9, and 10
respectively. What might correspond to the missing number, 8?
(Hint: use K4(2) to produce an (8,8,3,3; 0,1)-PBIBD. Is the
design resolvable? Group divisible? Transversal? Is the geome-
try self-dual?) Give an axiom system having the geometry you
found as a model. Try to choose the axioms so that the system
is complete.

15-6.) Show that the neighbors of vertex A in the Menger graph II for
the geometry of Desargues induce (with A) no wheel graph W7

with line triangles alternating with hypertriangles. Explain why
this shows that this geometry has genus at least 2.

15-7.) Prove that there exists a toroidal symmetric 3-configuration of
order v if and only if v > 7. Which of the corresponding Menger
graphs are either complete or strongly regular?

15-8.) For each k > 4, find a toroidal Cayley map modelling a 3-
configuration with v — 3k and r = 3. (Hint: Use A = {1, 2,3}
for for F = Z3fc.) Then modify the voltage graph you used to
model 3-configurations, still with v = 3k, but now with r = 4.

15.9.) *Find a topological model for a 3-configuration having v — 36
and r = 17. (The Menger graph is necessarily Kis(2)-)

15-10.) **A topological model has been found of a 3-configuration having
v = 36 and r = 15, using Z36 and A = {6,9,18}. But GA(Z36)
is not strongly regular. Try to remedy this defect by replacing
the "9" in A with "12", so that <7A(Z36) = #6(6).

15-11.) Prove Theorem 15-16.
15-12.) (i) Characterize those generalized pseudosurface rotation

schemes which produce pseudosurface imbeddings.
(ii)** Complete Theorem 15-16, by counting the number of ori-
entable pseudosurface imbeddings.

15-13.) **Under what conditions are the two 3-configurations of a con-
figuration imbedding with all regions triangular isomorphic?

15-14.) Supply the details of the proofs of (HT1) through (HT6).
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15-15.) For n a prime power, find a 6-cycle in the Levi graph
G(PG(2,n)).

15-16.) For modelling AG(2, n), why is the voltage graph of Figure 15-15
restricted to prime values of n?

15-17.) **Find efficient models for .4(7(2, n), where n is a prime power.
15-18.) Figure 15-14, for AG(2,3), demands to be redrawn on the torus.

Yield to that demand. Try to remedy as many deficiencies-(Dl)
through (D4) in Section 15-5-as possible.

15-19.) Which of the ten models for AG(2,3) do you prefer? Why? Find
a voltage graph, using Za x Zs, consisting of four loops on the
sphere, that lifts to a model of AG(2,3) on 54. How does this
model compare with the previous ten?

15-20.) Refer to Table 15-4, listing the lines of PG(2,3).
(i) Confirm the theorem of Pappus, applied to points 0,1, and

3 on line {0,1,3,9} and 6, 7 and 2 on {6,7,9,2}.
(ii) Confirm the theorem of Desargues, applied to triangles 056

and 3102, in perspective from point 9.
15-21.) Find an axiom of Euclidean geometry that fails to hold for finite

affine planes.
15-22.) Consider the completion of the Euclidean plane to the projective

plane (Ni) described in Section 15-11. Sketch familiar graphs,
such as y = ^ and y — tana;, on N\ (with perpendicular coor-
dinate axes as would be depicted by Figure 15-16, with the two
loops removed).

15-23.) Define the chromatic number of geometry H = (P, L) to be the
chromatic number of H as a hypergraph, as in Section 13-5.

(a) In the "strong" sense, this would be the chromatic number
of the Menger graph for H. Find the strong chromatic
number, for:

(i) PG(2,n)
(ii) AG(2,n).

(b) In the "weak" sense, show that:
(i) PG(2,3) and the geometries of Pappus and Desargues

all have chromatic number 2.
(ii) AG(2,3) and the geometry of Fano have chromatic

number 3.
(iii) AG(2, 2) has chromatic number 4.

15-24.) In the axiom system given for the geometry of Pappus, replace
(PAS) with (P'A5): If a line t does not contain a point p, then
there is exactly one point p' in t such that there is a line contain-
ing both p and p'. (Retain the other five axioms, unchanged).
Find a model for this new system, and calculate the genus of the
resultant geometry.

15-25.) *Let II be the Petersen graph. Show that E is the line graph
of K5. (Hint: think of H as the odd graph #3; see Problem
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3-8.) Thus the Menger graph for the Desargues configuration is
also the line graph of K$. To see the connection, take points
as edges of K$, and lines as 3-cycles in K5. Show that this
gives a model for the geometry of Desargues. (Hint: verify that
axioms (DAI) through (DA6) are satisfied.) Generalize, to find
a 3-configuration of order Q), for each n > 3. Find a suitable
topological model, for:

(i) n = 3 and 4;
(ii) **n — 6

15-26.) Give an axiom system for a geometry of your own devising, and
find a suitable model for your geometry.

15-27.) Project. Many interesting theorems in Euclidean geometry in-
volve points of concurrency for three lines, for example the me-
dian, orthocenter, incenter, and circumcenter for a given triangle.
Figure 15-1 illustrates all of these, for equilateral triangles. (Du-
ally, we might have three points collinear, as in the theorems of
Pappus and Desargues.) The question is: how likely is it that
three lines chosen at random (without replacement) in the Eu-
clidean plane are concurrent? It seems difficult to answer this
question directly, for the uncountably infinite sample space of
triples of distinct lines in ]R2. One heuristic approach would be
to analyze the situation for the discrete sample space provided
by AG(2,p), for p a prime, and then let p become arbitrarily
large. There are (p ^p) triples of distinct lines in AG(2,p}, and
four events of interest, with respect to three fixed lines:

(i) There are no intersection points. (The lines are in one
parallel class.)

(ii) There is one intersection point. (This is the concurrency
case.)

(iii) There are two intersection points. (These arise from two
parallel lines and a common transversal.)

(iv) There are three intersection points. (They are the vertices
of a triangle. The three lines are said to be in general
position; see Problem 5-14.)

Find the probability of each event, and draw some conclusions.
15-28.) Does the geometry of Desargues satisfy Playfair's axiom (see

(II'A2))? If not, how "close" does it come?
15-29.) Show that a geometry (P, L) and its dual (L,P) have the same

genus. (Hint: a one-line proof is available).



CHAPTER 16

MAP AUTOMORPHISM GROUPS

Our focus in this book has been on the various interactions among
graphs, groups, and surfaces and - in particular - on the surface imbed-
dings of graphs depicting groups. In this chapter we go one step further,
by considering the automorphism group of the configuration consisting
of a graph imbedded in a surface. An important special case will occur
when the graph is a Cay ley graph for some group. The development
here is essentially that of [BW1]; see also Biggs ([B9], [BIO], and [Bll]),
[W9], and [W13].

Recall Corollary 6-22: a connected graph G has a 2-cell imbedding
in Sk if and only if i(G) < k < ^M(G}. So far, in this book, we have
concentrated on the two extremes of this imbedding range, in calculat-
ing various values of the genus and the maximum genus parameters.
The connection between block designs and graph imbeddings discussed
in Chapter 12 was introduced at the genus end of the spectrum, but
extended for larger values of k. In this chapter we consider two ad-
ditional special types of imbeddings, generally in the interior of the
imbedding range: those which are symmetrical, and those which are
self-dual. Finally, we combine these two concepts (and others as well)
in our study of "Paley maps."

For a theory of maps for orientable surfaces unifying the two stan-
dard approaches (that of geometers, studying symmetry properties,
and that of combinatorialists, studying graph imbeddings and map
colorings), see Jones and Singerman [JS1].

16-1. Map Automorphisms

Recall that a rotation scheme for a connected graph G of order n
is an ordered n-tuple P = (pi,p2> • • • ,Pn}, where pi is the rotation at
vertex z, 1 < i < n. Then P determines a 2-cell imbedding in a closed
orientable 2-manifold 5*, where k is uniquely specified by the euler
equation and the number of orbits of the permutation P* on the set
D* (see Section 6-6.) Here it will be convenient to let pv denote the
rotation at vertex v and p = (pv}v^v(G} denote P.

Def. 16-1. A map is a pair (G,p}, where G is a connected graph and
p is a rotation scheme for G.

235
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Thus a map may be regarded as a configuration consisting of a
representation of a connected graph by its imbedding in a particular
closed orient able 2-manifold. This definition can be extended to include
nonorientable surfaces as well, as in Section 11-3; but we concentrate
on orientable maps here.

We now define an automorphism of a map (G, p) to be an automor-
phism of the graph G which also preserves the rotation p. Specifically,
we construct an action of the automorphism group Aut(G) on the set
R(G] of all rotations of G. These are the labeled orientable 2-cell
imbeddings of G. (We observe that \R(G}\ = nT=i(n« ~~ -0'> where
m = d(vi), 1 < i < n; see Problem 16-1.) If a e Aut(G) and p E R(G),
we define a(p] E R(G) by:

that is, if pv takes x to y, then (a(p))a(v) takes a(x] to a(y) (see Figure
16-1).

a(p)a(v)

Figure 16-1.

a(y)

Def. 16-2. Two rotations p and a in R(G) are said to be equivalent if
there is an a € Aut(G) such that a = a(p}.

This gives an equivalence relation on R(G); see Problem 16-2.

Lemma 16-3. If p and o are equivalent rotations on G, with a = a(p]
and (x, y,z,- •• ,w] a region of map (G, p), then

is a region of map (G, a).

PROOF. Since (x, y,z,-- • , w) is a region of (G,p), p*(x,y) = (y, z)
i.e. py(x) = z. Thus

So, putting cr = a(/?), we have
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Hence, (a(x), a(y), a(z}, • • • , a(w)) is a region of (G, o).

It follows that, if p and a are equivalent rotations, then there is a
one-to-one correspondence between the region sets of the maps (G, p)
and (G ,o ) . Hence the two maps are in the same surface; that is, they
have the same genus.

Def. 16-4. An automorphism of a map M = (G, p} is a graph auto-
morphism a G Aut(G) such that a(p) = p; i.e. pa(v) = apva~l, for all
v G V(G). (That is, p is equivalent with itself, under the action of a).

The following equivalent formulation (see Figure 16-1 and Problem
16-3) readily displays the graph-automorphism nature of each map au-
tomorphism. We denote the automorphism group of a map M = (G, p)
by Aut(M).

Thm. 16-5. For a permutation a : V(G) -> V(G), a G Aut(M) if and
only if: (x, y, z, • • • , w) is a region of M implies

is a region of M.

Thus graph automorphisms preserve edges, while map automor-
phisms preserve oriented region boundaries.

We need two standard results from the theorem of permutation
groups (see [BW1], for example). Let (T,X) be a permutation group,
so that each 7 6 F is a permutation of object set X. The orbit on
x G X is defined by: Tx = {j(x)[7 G F}; then Tx is a subset of X.
The stabilizer of x is defined as: Fx = {7 G F|7(x) = rr}; then Fx is a
subgroup of F. Moreover, we have:

Thm. 16-6. |Fx| = |F : Fx .

Finally, for 7 G F, the set of fixed points for 7 is denoted by:
^(7) = {x G X \ j ( x ) = x}. Then we have the following theorem of
Frobenius, often called"Burnside's Lemma";

Thm. 16-7. The number, t, of orbits of (F, X] is given by:
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Now we put the two above results to work.

Thm. 16-8. Let G be a connected graph and p a rotation on G; then
the number of rotations equivalent to p is equal to the index | Aut(G) :
Aut(G,p)|.

PROOF. By definition, Aut(G, p} — Aut(G)p, the stabilizer of p in
the action of Aut(G) on R(G}. The set of rotations equivalent to p is
just the orbit Aut(G)p. Now apply Theorem 16-6.

Thm. 16-9. The number of equivalence classes of maps with underly-
ing graph G is:

where F(d) — {p for G\a(p) = p}.

PROOF. Apply Theorem 16-6 to the action of Aut(G) on R(G). D

These are the unlabelled orientable 2-cell imbeddings of G.

We illustrate with G = #4; then \R(G)\ = 24 = 16. Consider
p = ((234), (143), (124), (132)) as shown in Figure 16-2. For this
M, Aut(M) = At (see Problem 16-4.) From Theorem 16-8, using
Aut(/Q) = 64 (see Theorem 3-17 (1)), we deduce that there are just
two of the sixteen rotations in R(K^) equivalent to the given one (the
other is the "mirror image" ((243), (134), (142), (123))); both have genus
zero. To classify all 16 rotations of K±, we note that |F(7)| is a class
function: it is constant on each conjugacy class of elements of S4; we
obtain Table 16.1.

Figure 16-2.

Class representative (a)
Number in class

e
1

16

(12)
6
0

(123)
8
4

(12)(34)
3
4

(1234)
6
2

Table 16-1.
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Thus, by Theorem 16-7, the number of equivalence classes is
. One of these classes is represented by Figure 16-2,

and we have just seen that this class contains exactly two rotations.
The other two classes are both toroidal (genus one); they are repre-
sented in Figure 16-3. The map automorphism groups are Z4 and Z3,
so that the classes contain (by Theorem 16-8) six and eight rotations
respectively. In each case, the rotations pair off by the "mirror image"
relationship.

Figure 16-3.

Def. 16-10. The mirror image of a map M = (G, p) is given by M 1 =
(G,p-1), where if p = {pv}v€v(G), then p~l = {p~l}vev(G)-

Clearly M~l always exists for a given map M, and M~l = M if
and only if G is a cycle (since pv = p~l if and only if d(v) = 2.)

Def. 16-11. A map M = (G, p) is said to be reflexible if there exists
an a e Aut(G) such that (v1, v2, • • • , vn] is a region for M if and only
if (avn, • • • ,av2 , av1) is a region for M; a is called a reflection.

Thus M is reflexible if and only if M and its mirror image M l are
equivalent (Problem 16-5.) For example, every rotation for K4 gives
rise to a reflexible map.

Def. 16-12. The extended map automorphism group, Aut*(M), of a
map M consists of Aut(M) together with all reflections for M.

Thm. 16-13. Let D be a (v, 6, r, 3,2)-BIBD (a 2-fold Steiner triple
system), let Aut(D) be the design automorphism group, and let M be
the corresponding map (Theorem 12-3); then Aut*(M) = Aut(£>).
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We have seen that the sixteen rotations for K4 split into three equiv-
alence classes of maps; we remark that K5 and K6 have corresponding
numbers as indicated by Table 16-2.

n
number of rotations
number of classes

2
1
1

3
1
1

4
16
3

5
7,776

78

6
191,102,976

265,764
Table 16-2

16-2. Symmetrical Maps

We now study Aut(M), considered as a permutation group acting
on V(G) - where M = (G, p).

Lemma 16-14. Let a e Aut(M), where M = (G,p), and let {u,v} E
E(G) with a(u) = u and a(v) — w, then a = e.

PROOF. Since a Aut(M),pa(u) = apva~l. Thus a(pv(u)) =
apva~l(u) = pa(v)(u] — pv(u)\ that is, a fixes pv(u) also. But since
pv is cyclic on N(v) (the set of vertices adjacent to v), the argument
repeats and we see that a fixes each vertex in N(v). Similarly, a fixes
each vertex in N(u), each vertex in N(pv(u}}, and so on; since G is
connected, we see that a fixes each w 6 V(G], so that a = e. D

Thm. 16-15. Let A = Aut(M), for M = (G,p), with v G V(G).
The stabilizer Av is isomorphic to a subgroup of the cyclic group (pv)
generated by pv, and hence is a cyclic group whose order divides d(v).

PROOF. We have apva~l = pa(v) = pv, so that apv = pva. Let
w e N(v); then a(w) G N(v) also, and since pv is cyclic on N(v} we
have a(w) = pl

v(w], for some i. Let x G N(v), say x = pj
v(w). Then

a(x) = api(w] = (4a(w) = p>v
+i(w) = M(w) = p\,(x). Thus a = p^,

where a is the restriction of a to N(v), and 6 : Av — >• (pv), 0 (a) = a,
is a homomorphism and if GI = a2, then aia^"1 = e by Lemma 16-14;
thus 0 is a monomorphism. D

If A is transitive on V(G), then all vertex stabilizers are conjugate
in A, so that \A\ = p\Av\, where p = \V(G)\. Thus \A\ — p6, where 6
divides rf, the common vertex degree of G. For example, the rotation p
for K7 given in Section 9-2 gives a vertex-transitive map M (consider
(0,1,2,3,4,5,6) G Aut(M)). Moreover, p0 = (1,3,2,6,4,5) € A0, so
that |^4| = 1 • 6 = 42. All the K4 maps are vertex- transitive, except
those in the third of the three classes.
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Now consider A = Aut(M) to act on D* = {(u,v)\{u,v] £ E(G)},
by a(u,v) — (a(u),a(v)). Let x = (u,v); then Ax = e, by Lemma
16-14. Thus, by Theorem 16-6, \Ax\ = \A : Ax\ = \A\, independent of
x. This gives:

Thm. 16-16. |Aut(M)| divides 2\E (G)\.

PROOF. By the preceding remarks, each orbit of D* has length
|Aut(M)|. D

Def. 16-17. If | Aut(M)| = 2\E(G)\, then M is said to be a symmet-
rical map.

Thus symmetrical maps display the maximum amount of symmetry.
If M is symmetrical, then Aut(M) is a regular permutation group on
the object set D*; symmetrical maps are also called regular maps.

Thm. 16-18. If M is symmetrical, then Aut(M) is transitive on the
vertices, on the edges, and on the regions of M.

PROOF. Let A = Aut(M) act on £>*, with | Aut(M)| = \D*\. Let
x = (u,v) E D* and a1,a2 € Aut(M); if a1x = a2x, then a\ = a2 by
Lemma 16-14; thus \A x = \D* , and A is transitive on D*; hence A
is transitive on E(G). Now let u, w G V(G), with (u,v), (w,z) e D*.
Since A is transitive on D*, we find a G A so that (a(u),a(v)) =
a(u,v] = (w,z); thus a(u) = w, and A is transitive on V(G). Fi-
nally, let TI = (v , it;, • • • ) and r2 = (x, y, • • • ) be two regions of M,
with a G Aut(M) such that a(v) — x and a(w) = y. Then, since
apwa~l = pa(w) = py,apw(v) = pa(w)a(v) = pya(v) = py(x), so that the
next vertex of r\ is carried to the next vertex of r2 by a; this process
continues, to show that A is transitive on the region set as well. D

Thus a symmetrical map M has associated with it two important
constants: the constant vertex degree d and the constant number k of
vertices in each region boundary.

Thm. 16-19. Let M be a symmetrical map of genus 7, with p vertices
(all of degree d), q edges, and r regions (all having length fc); then:

(i) dp — kr — 2q;

PROOF. We use Lemma 5-17 (iii) and (iv) and Theorem 5-14. D



242 16. MAP AUTOMORPHISM GROUPS

For d = 2,p — q = k, r = 2, and 7 = 0; M consists of G = Cp on
SQ. Hence we assume d > 3 (and k > 3).

If 7 = 0, then (d - 2)(fc - 2) < 4 and

or (5,3). Each pair determines p, q, and r uniquely; see Section 5-4.
Thus we have:

Thm. 16-20. A map M(G,p) is symmetrical of genus zero if and only
if G — Cp(p > 2) or the 1-skeleton of a Platonic solid.

If 7 = 1, then (d - 2)(k - 2) = 4 and (d, k) = (3, 6), (4, 4), or (6, 3).
For each case, we find infinitely many toroidal maps covered by the
corresponding regular tessellation of the plane (see Figures 8-5, 7-3,
and 13-5 for one map of each respective type.)

If 7 > 2, then again each pair (d,k), for fixed 7, determines p, q,
and r uniquely. Moreover, the number of symmetrical maps of genus
7 is finite:

Thm. 16-21. If M is a symmetrical map of genus 7 > 2, then
| Aut(M)| < 84(7 - 1); equality holds if and only if (d,k) = (3,7)
or (7, 3).

PROOF. Using | Aut(M)| = 1q and both parts of Theorem 16-19,
we obtain

Since d > 3 and k > 3, the coefficient of 7 — 1 has a maximum value
of 84, occurring precisely when (d, k} — (3, 7) or (7, 3). D

For any map M, whether orientable or nonorientable, the order
Aut*(M)| of the extended map automorphism group Aut*(M) divides

4|£(G% where G is the graph of the map (See Problem 16-9). We
get | Aut*(M)| = 4|E"(G)|, in the orientable case, if M is symmetrical
and reflexible. In the nonorientable case we lose our sense of order-
preservation, so that "map automorphisms" are indistinguishable from
"reflections;" a nonorientable map M is thus said to be symmetrical if
| Aut*(M)| = 4|E(G)|. We mention just one result about such maps,
due to Wilson [W29]; note the connection with the covering projection
of Section 11-2.
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Thin. 16-22. If TV is a nonorientable symmetrical map, then there is
a unique orientable map M, both symmetrical and reflexible, which is
a 2-fold covering space of TV.

For two examples, we give the graph of the dodecahedron on So
covering, by antipodal identification, the Petersen graph on N1 and
the dual configurations: the icosahedral graph on SQ projecting to K6

on NI.

Wilson shows that the uniqueness of Theorem 16-22 is not re-
versible, by giving one M covering two distinct maps TV.

16-3. Cayley Maps

Now let M = (G, p) be a map, where G = G&,(T) is a Cayley graph
for group F, as generated by A C F subject to the usual restrictions
(e i A; if 6 6 A n A"1, then 62 = e); recall that A* = A U A"1. In
this situation, the vertex rotations pv (v e V(G) = F) can be regarded
as permutations not only of N(v), but also of A*; thus two rotations
can be more readily compared. Of special interest is the case where
the induced permutations of A* are all the same.

Def. 16-23. A Cayley map M(F, A, p) is the map M(G, p), where G =
GA(F) and r : A* —> A* is a cyclic permutation so that, for g € F and
h e N(g),

Thus the group structure determines the vertex rotations, as in
Figure 16-4 - where r = (61,62, • • • , 6k): the edge {g, g5\} is determined
by 5i G A*, so that the image of gdi under pg is determined by r(6i) =
62 € A*.

Figure 16-4.

For a specific example, we consider the map of K7 on Si given
in Sections 9-2 and 16-2; it is a Cayley map M(Z7, {1,2,3}, r), with
r = (1,3,2,6,4,5). Then pt(g) = i + r(g - i),0 < i < 6; that is,
pi = (1 -M, 3 + i, 2 -M, 6 + i, 4 -M, 5 + i). In contrast, the graph
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Qz shown in Figure 5-8 is a Cayley graph G^(L-2 x Z2 x Z2), with
A = {(1,0, 0), (0, 1,0), (0,0, 1)}; but the map shown on 50 is not a
Cayley map, since no suitable r exists.

Now we give a strengthening of Theorem 4-8; every automorphism
of CA(F) is also an automorphism of M(F, A,r). We remark that the
Cayley graph G&(T] may well have additional automorphisms.

Thm. 16-24. The Cayley map M — M(F, A,r) is vertex-transitive;
in fact Aut(M) contains a regular subgroup isomorphic to F.

PROOF. The isomorphism a : F -> A(C&(T)),

= ggi given in the proof of Theorem 4-8 works here as well; it
only remains to show that Og G Aut(M); that is, that Peg(h) =
for each h e V(C±(T)) = F. But let / € N(8g(h)); then

We observe that the map of K± in S\ depicted in Figure 16-3(a) is
a Cayley map M(Z4,{l,2},r), where r = (1,2,3), and has only the
automorphisms guaranteed by Theorem 16-24; it is not symmetrical.
This situation generalizes:

Thm. 16-25. Let M = M(F, A, r) be a Cayley map which is not sym-
metrical, and let |A* be prime; then Aut(M) = F.

PROOF. Let A = Aut(M) and v E V(CA(T)). By Theorem 16-15,
\AV\ divides |A*|, which is prime; hence \AV\ = 1 or |A*|. By Theorem
16-24, M is vertex-transitive, so that by Theorem 16-6, \A\ — |F||AV|.
But since M is not symmetrical, \AV =£ |A*|; thus \AV\ = 1, \A\ = |F|,
and Aut(M) ^ F. D

On the other hand, Aut(M) may be strictly larger than F, for M a
Cayley map M(F, A, r). Recall that a : F —» F is an automorphism of
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group F if a is one-to-one and onto, and 01(7172) = a(7i)o:(72), for all

Thm. 16-26. Let M = M(F, A,r) be a Cayley map and let a E
Aut(F) be a group automorphism such that a A* = re, for some £, I <
i < |A*|. Then a E (Aut(M))e. (That is, a is a map automorphism,
fixing e).

PROOF. Since a E Aut(r), a(e) = e. Let {u,v} E E(G&(T)), so
that u~lv E A*; then a(u~lv] = a(u~l)a(v) E A*, {a(u),a(v)} E
E(GA(r)), and a E Aut(GA(r)). To show that a E Aut(M), we verify
that for all g e ^,pa(g) = Oipga~l: let h E N(a(g)); then a"1^) e

, 9~l<x-l(h) € A*, and

In the special case t = 1 of the above theorem, Aut(M) is as large
as possible:

Thm. 16-27. Let M = M(F, A,r) be a Cayley map, with a 6 Aut(F)
such that a|A* = r. Then M is a symmetrical map.

PROOF. By Theorem 16-26, a E (Aut(M))e. By Theorem 16-
15, |(Aut(Af))c| divides |A*|. But a|A* = r, a |A* -cycle, so that
|(Aut(M))e| = |A*|. In fact, (Aut(M))e is generated by a. Now, by
Theorem 16-24, Aut(M) is transitive on T = V(G&(?)), so that The-
orem 16-6 gives:

and M is symmetrical.
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We now calculate the genus of an arbitrary Cayley map M(F, A, r).
We first observe (see Problem 16-25) that M(F, A,r) is just the cover-
ing space of the imbedded index one voltage graph K of Figure 16-5 (the
ambient orientable surface for K is immaterial here; it is determined
uniquely by the rotation at the single vertex.) The region boundaries
for K are clearly determined by the (not necessarily cyclic) permuta-
tion r : A* —» A*, given by r (6) = r(8~1}. So, let r have t cycles
AI, A2,... , At in its action on A*, with m^ the order of d1 d2 • • • ^
in F, where Aj = (di1, di2, • -. , dikj), 1 <i <t. These t numbers m^ are
called the periods of M.

Figure 16-5.

Thm. 16-28. Let mi, 7712, ... ,mt be the periods of the Cayley map
M(F, A, r); then the genus 7 of M is given by

PROOF. By Theorem 10-9 (ii), the cycle A*(l < i < t} is covered
by j^ regions, each of length miKj. Thus 7 is determined by the euler

equation (Theorem 5-14), using p = |F|, q — |F|̂ -, and r = X^=1 j^j-.

D

To illustrate these ideas, consider once again M — M(Z7, {1, 2, 3},
(1,3,2,6,4,5)). It is immediate that G&.(T) = K?, and we compute
f = (1,4,2)(3,5,6); thus t = 2, mi = m2 = 1. Using Theorem 16-28,
we confirm that 7 — 1. Next, we note that a = (0)(1,3,2,6,4, 5) €
Aut(Z7), so that Theorem 16-27 applies to show that M is symmetrical.

As a second example, consider now the map M = M(A5,A,r)
as specified by r = ((1,2,3,4,5), (5,4,3,2, 1), (12)(34)). Then GA(F)
is the one-skeleton of the familiar soccer ball design. We find f =
((1,2,3,4,5),(12)(34))((5,4,3,2,1)), so that t = 2, ml = 3, and m2 =
5. We again use Theorem 16-28, to compute 7 = 0 (this is truly for-
tunate, for the game of soccer!), noting that r6 = 20 (the white panels
of the soccer ball) and r5 = 12 (the black panels.) Clearly M is not
region-transitive and hence, by Theorem 16-18, M is not symmetrical.
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Finally, we observe that r does not extend to an automorphism of
(since r does not preserve order), as required by Theorem 16-27.

16-4. Complete Maps

Def. 16-29. A complete map is a map M(G, p), where G is a complete
graph Kn.

Of course, we have been studying complete maps throughout this
book, primarily with the aim of minimizing or maximizing the genus 7
of M. Now it is the symmetry of M that we wish to maximize.

Lemma 16-30. If a G Aut(Kn,p) fixes more than one vertex, then
a — e.

PROOF. Any two distinct vertices of Kn are adjacent, so Lemma
16-14 applies.

D

Def. 16-31. The transitive permutation group (F, X) is said to be a
Frobenius group if only e € F has more than one fixed point in X.

Thus the automorphism group of a vertex-transitive complete map
is necessarily Frobenius, by Lemma 16-30. The study of Frobenius
groups leads to a classification of vertex-transitive complete maps. We
only outline this development here; for full details, see [B1O] or [BW1].

Thm. 16-32. Let (F, X) be a Frobenius group, with N* the set of
fixed-point-free elements of F and N — N* U {e}. Then:

(i) \N\| = \X\-
(ii) If Fx is abelian, then N is a regular normal subgroup of (F, X).

The following result appears in Burnside [B21; p. 172]

Thm. 16-33. If ( T , X ) is a Frobenius group of degree n = \X\ > 6
and order n(n — 1) = |F|, then n is a prime power.

Now let F be any group of order n, with A* = F — {e}] then
= Kn, and if r is any cyclic permutation of F — {e}, then
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the Cayley map (F, A*,r) is complete and, by Theorem 16-24, vertex-
transitive. Theorem 16-32 is used to provide a converse to this result,
so that we have:

Thm. 16-34. Let M = M(Kn,p) be a complete map; then Aut(M)
acts transitively on the vertices for M if and only if M is a Cayley map.

PROOF. The sufficiency was established in Theorem 16-24. For the
necessity, apply Lemma 16-30 to see that Aut(M) is a Frobenius group.
Now (Aut(M))x is cyclic, by Theorem 16-15, and hence Theorem 16-32
(ii) guarantees a regular normal subgroup TV of Aut(M). Now take F =
Zn and define a bijection (3 : V(G&(T)) = F -»• N by (3(i) = A, where
A(0) = i] then calculations show that p is given (homeomorphically)
by r : N - {e} -> N - {e}, r(Bi) = Bpe(i), i ^ 0. D

Thus, for example, an imbedding of a complete graph covering a
voltage graph of index higher than one (and not projecting to an index
one voltage graph) cannot be symmetrical.

Finally, Biggs [BIO] established:

Thm. 16-35. There is a rotation p for Kn so that (Kn,p) is symmet-
rical if and only if n is a prime power.

PROOF, (i) If M — (Kn,p] is symmetrical, then

moreover, Aut(M) is Frobenius, by Theorem 16-18 and Lemma 16-30.
Thus Theorem 16-33 applies, to show that n is a prime power.

(ii) Conversely, if n = pm where p is prime and m E. TV, then take
F = (Zp)

m - the additive group in GF(n) - and let x G F generate
the multiplicative group. Take A* = F - {0}, and r : A* — >• A* by
r(6) = x5; and r extends (by setting a(0) = 0) to a G Aut(F) and, by
Theorem 16-27, the Cayley map M(F, A,r) is symmetrical. D

We close this section by summarizing our knowledge of A =
Aut(M), for M = M(Kn,p] a symmetrical complete map:

(i) \A\=n(n-l).
(ii) A is transitive on the vertices, edges, and regions of M, and

regular on the directed edges.
(iii) A is a Frobenius group.
(iv) For each v € V(Kn),Av = Zn_i.
(v) A has a regular normal subgroup, isomorphic to (Zp)

m-where
n = pm; in fact A is the semi-direct product of (Zp)

m and Zn_i.
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16-5. Other Symmetrical Maps

In contrast to the situation for Kn, where symmetrical maps exist
only for prime powers of n, we have the following three results (see
Problems 16-12 and 16-13; for hints, see [BW1]) see also [W16]:

Thm. 16-36. (i) The graph Kn^n has a symmetrical map, for all n.

(ii) The graph Kn,n,n has a symmetrical map, for all n.

Thm. 16-37. The graph Qn has a symmetrical map, for all n.

We note that the symmetrical maps for K n n n can be taken to be
of genus g (K n ^ n ^ n ) ; those for Qn can be taken to be of genus j(Qn) or
of genus g(Qn+1).

There are several classes of questions that can be asked regarding
symmetrical maps; we list three of these, so as to reflect the thrust of
this book:

(i) For a given graph G, what are the symmetrical maps M(G, p}7
(ii) For a given group F, what are the symmetrical Cay ley maps

M(F,A,r)?
(iii) For a given surface Sk, what are the symmetrical maps of genus

kl

Theorems 16-35, 16-36, and 16-37 speak to question (i). The dis-
cussion following Theorem 16-19 addresses question (iii). And the fol-
lowing two results (see Problems 16-14, and 16-15; for hints, see [BW1])
respond to question (ii) :

Thm. 16-38. The group Sn has a symmetrical Cayley map, for all
n> 2.

Thm. 16-39. The group An has a symmetrical Cayley map, for n odd,
n> 3.

We could also ask:

(iv) For a given group F, what are the symmetrical maps M =
M(G,p) so that Aut(M) 2* F?

Thm. 16-40. (Brahana [B19]) The group F is the automorphism group
of a symmetrical map if and only if F is generated by two elements,
one of order two.
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Cor. 16-41. The symmetric groups Sn (n > 3), the alternating groups
An (n > 4), and the dihedral groups Dn each occur as the automor-
phism group of a symmetrical map.

16-6. Self-Complementary Graphs

Def. 16-42. A graph G is said to be self-complementary if it is iso-
morphic to its complement: G — G.

Def. 16-43. An anti-automorphism of a graph G is a permutation j3 :
V(G] —> V(G) exchanging edges and "non-edges"; that is, uv € E(G)
if and only if fiufiv £ E(G}\ u ^ v. We denote the set of all anti-
automorphisms of G by Aut(G).

It follows that G is self-complementary if and only if Aut(G) ^
0; in this case Aut(G) U Aut(G) is a group containing Aut(G) as a
(necessarily normal) subgroup of index two.

Self-complementary graphs have been studied in some detail, as
the sample results below demonstrate. (See also Sachs [S3], and Gibbs
[G2j.

Thm. 16-44. (Ringel [Rll]) There exists a self-complementary graph
G of order p if and only if p = 0 or 1 (mod 4).

(The necessity is apparent, as the size of G must be p(p-1) .)

Thm. 16-45. (Ringel [Rll]) If p = I (mod 4) and (3 is an anti-auto-
morphism for a self-complementary graph G of order p, then (3 has
exactly one fixed point and every other orbit for the action of j3 on
V(G] has length a multiple of four.

For example, if A = {1} for T = Z5, then GA(r) = G5 is self-
complementary, as shown (say) by (3 — (0)(1,2,4,3); Aut(Gs) = D$,
and Aut(G5) = BD5.

Thm. 16-46. (Read [R6]) There are 36 self-complementary graphs of
order p = 9; 5,600 of order 13; and 11,220,000 of order 17.

Thm. 16-47. (Rao [R4]) If G is a self-complementary graph of order
p > 8 and having minimum degree 5 > p/4|, then G has a 2-factor (a
spanning 2-regular subgraph.)



16-7. SELF-DUAL MAPS 251

Def. 16-48. A graph G is a graphical regular representation of a group
F if (Aut(G), V(G}) is a regular permutation group and Aut(G) = F.

Thm. 16-49. (Lim [L4]) If G is a graphical regular representation of
F, then G is not self-complementary.

Thm. 16-50. (Chao and Whitehead [CW1]) If G is self-complementa-
ry, then \V(G)\ < (X(G))2.

Recall from Problem 2-1 that at least one of G and G is connected;
we get immediately:

Thm. 16-51. If G is self-complementary, then G is connected.

Nebesky [N2] has shown that at least one of G and G is upper-
imbeddable; thus:

Thm. 16-52. If G is self-complementary, then JM(G) =

The next result could be useful in seeking a genus imbedding for a
self-complementary graph:

Thm. 16-53. (Clapham [C5]) The number of triangles in a self-com-
plementary graph of order p is at least p(p-2)/48; if p = 0 (mod 4),

and at least p 48 , if p = 1 (mod 4). These minimum numbers are
attained.

Finally, we comment that self-complementary graphs determined
by the quadratic residues of a finite field have been used to give lower
bounds for the Ramsey numbers r(fc, k); see Greenwood and Gleason
[GG1] and Burling and Reyner [BR3]. See also Clapham [C6], for a
more general construction; he finds a self-complementary graph of order
113 containing no K7, giving the improved bound r(7,7) > 114.

16-7. Self-dual Maps

The "self-complementary" property for a graph depends only upon
the abstract structure of the graph itself. To obtain an analog in terms
of a geometric realization for the graph, we first imbed the graph on a
surface, form the dual graph for this imbedding, and then compare
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the original graph with its dual. (In a sense, duality is a higher-
dimensional analog of complementation: in taking a dual, we fix 1-
dimensional subsets, while interchanging 2- and 0-dimensional subsets;
in taking a complement, we fix 0-dimensional subsets, while interchang-
ing 1-dimensional subsets and "(—1)-dimensional" subsets - the "non-
edges." )

Def. 16-54. Let map M = M(G,p) have dual map M* = M(G*,p*);
then M is said to be self-dual if G = G*.

For example, the maps of Figures 5-4 (b), 7-4, and 10-5 and the
map of Example la in Section 10-3 are all self-dual.

The first and last of those are special cases of:

Thm. 16-55. (Heffter [H7], Biggs [BIO], White [W9], Pengelley [P4],
Stahl [S12], and Bouchet [B15]). The complete graph Kn has a self-dual
imbedding if and only if n = 0 or 1 (mod 4).

(Compare with Theorem 16-44.)

We now outline the development of [W9], but in the context of
voltage graphs. Let the finite abelian group F be generated by A =
{ai,&i, a2,b2, • • • ,ah ,bh} , where no generator has order 2. Take as
the voltage graph (K, F, 0) and its imbedding the normal form for
Sh(h > 1), as given in Theorem 5-5: a regular polygon of 4h sides,
with clockwise boundary al5 61? a

1, b^1,... , ah, 6/j, a^"1, b^1. Identify
the sides, by paired labels, respecting the directions. Then K has one
vertex, 2h edges, and one region on Sh, and-since F is abelian-the
index-one imbedding of K satisfies the KVL. (See Figure 16-6, for the
case h = 2.) Then by Corollary 10-16, the covering imbedding of GA(F)
is on Sk, where k = I + \T\(h— 1). Moreover, the covering imbedding
has p — p^h = F and r — r4h = F. In fact:

Thm. 16-56. The map M(GA(F),P) constructed above is self-dual.

Thus for each h > 1, the normal form for Sh determines a variety of
self-dual imbeddings of Cayley graphs (see Problem 16-18.) This has
many ramifications.

Thm. 16-57. For h > 1, there is a self-dual imbedding of some graph
G of order p on Sp(h-i)+i if and only if p > 4/i + 1.
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V V

Figure 16-6.

PROOF, (i) For the necessity, we let G be self-dual imbedded on
Sp(h-i)+i', the euler equation (Theorem 5-14) gives q = 2ph <
and p > 4/i + 1.

(ii) For the sufficiency, choose F = Zp and A = {1,2,... , 2/i}; that
is, di = 2i — l,6j = 2z, 1 < i < h. Now apply the construction of
Theorem 16-56.

D

Cor. 16-58. There is a self-dual imbedding of some graph G of order
p on the torus if and only if p > 5.

Thm. 16-59. The finite abelian group F is self-dual (i.e. has a self-
dual imbedding for some GA(F)) if there exists a generating set A for
F of even order with the property that if 5 € A, then <5-1 ̂  A.

Cor. 16-60. F = Zn(n > 1), is self-dual if and only if n > 4.

Thm. 16-61. If 4 divides m(n — 1), then Kn(m) has a self-dual imbed-
ding.

PROOF. Take F = Zmn, with A* consisting of F less all multiples of
n; then (since the multiples of n induce the graph nKm, the complement
of Kn(m)), GA(F) = Kn(m). Since 4 divides m(n — 1), A has even order;
moreover, if ^ <E F, ?f £ A. Thus the construction of Theorem 16-56
applies. D

Now part of Theorem 16-55 follows as an immediate corollary. For
additional corollaries, we have:
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Cor. 16-62. Km^m has a self-dual imbedding, for m = 0 (mod 4).

Cor. 16-63. For n = 3 (mod 4), Kn(m) has a self-dual imbedding if
and only if m is even.

Cor. 16-64. Kmjnjn has a self-dual imbedding if and only if m is even.

Cor. 16-65. The 1-skeleton of the n-dimensional octahedron, Kn(2),
has a self-dual imbedding for n odd.

In [S16] Stahl (see also Bouchet [B15]) established the following:

Thm. 16-66. Ifm — l = n = 0 (mod 4), then Kn(m) has a self-dual
imbedding.

(And, in [Ql] Quitte added:

Thm. 16-67. If n = 0 (mod 8) and m = 2, 3 (mod 4), then Kn(m} has
a self-dual imbedding.)

Thm. 16-68. For n = I (mod 4), the complete maps constructed in
the proof of Theorem 16-35 are self-dual.

Thm. 16-69. The fundamental group 7r(Sk},k > 1, has a self-dual
imbedding in the plane.

Thm. 16-70. The finitely generated abelian group F has a self-dual
imbedding if and only if F ^ Z2 or Z3.

All of the self-dual imbeddings considered thus far have been into
orientable surfaces. Stahl [S16] considered the nonorientable case as
well.

Thm. 16-71. The graph Kn(m),n > 1, has a nonorientable self-dual
imbedding if any one of the following holds:

(i) m = 0 (mod 4) and n > 2;
(ii) m = 2 (mod 4) and n ^ 2 (mod 4);

(iii) m = 1 and n = 0 (mod 4), n / 4;
(iv) m = I (mod 2), n ^ 2 (mod 4), n is not a power of 2, and

(m,n)^ (1,3), (1,5), or (3,3).
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Thm. 16-72. The fundamental group Tr(A^), h > 1, has a self-dual
imbedding in the plane.

Thm. 16-73. The finitely generated abelian group F has a nonori-
entable self-dual imbedding if and only if |F| > 6.

16-8. Paley Maps

The properties for graphs and maps we have been discussing are
symmetry properties; in the self-complementation or self-duality case,
the symmetry is external (G compares with G or G* respectively),
while in the context of symmetrical maps, the symmetry is internal
(M = (G, p) compares with itself.)

In this section we attempt to tie these three properties together.

First we recall, from Definition 3-3, that two permutation groups
(F, X] and (F', X'} are equivalent if there exists a bijection (3 : X —» X'
and a group isomorphism 4>: F —> F' such that, for each x E X and 7 G
F, ^(7)(/?(ar)) = /%(*)); that is 0(7)/? = /?7, so that 0(7) - ^P~l

and 4> is induced by /5, which can be regarded as a relabelling. For
example, (Aut((7), V(G)) and (Ant(G),V(G)) are equivalent, with (3
as the identity function, inducing </> as the identity function also. As a
less trivial example, if M = M(G, p) is a map, with dual map M* =
M(G*,p*), then (Aut(M),£>*) and (Aut(M*), (£>*)*) are equivalent,
under j3 : D* —> (£>*)* assigning, to each s e D*, the unique s* €
(£>*)* 'crossing' s (recall that D* = {(u,v)\uv E E(G}}}. However,
(Aut(M), V(G)) and (Aut(M*), V(G*)) need not be equivalent; in fact,
it is quite possible that \V(G)\ ^ \V(G*)\.

We combine the symmetry properties of seh^complementation, self-
duality, and symmetricality, and proceed with the development as in
[W13].

Def. 16-74. The map M = M(G, p) is said to be strongly symmetric
if:

(i) G = G;
(ii) G* = G-

(iii) M is symmetrical
(iv) Aut(M) and Aut(M*) are equivalent, under an anti-isomor-

phism: (3 : V(G) -» V(G*).

We need one preliminary result, before characterizing strongly sym-
metric maps as to order; compare Theorem 16-33.
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Thm. 16-75. (Jordan; see Burnside [B21, p. 172]) If (F, X} is a Frobe-
nius group of degree n — \X\ > 6 and order n(n~l> = |F|, then n is a
prime power.

Thm. 16-76. There exists a strongly symmetric map of order n if and
only if n is a prime power congruent to 1 (mod 8).

PROOF. (A) Let M = M(G,p) be a strongly symmetric map, with
n = \V(G)\ and e — \E(G}\. Since G is self-complementary, e — \(^) =
^——; thus n = 0 or 1 (mod 4) - see also Theorem 16-44. But since
M is symmetrical, G is vertex-transitive (by Theorem 16-18) and hence
regular of degree ^j^, so that n = 1 (mod 4). Now let M embed G on
5jb, with / regions. Since M is self-dual, / = n, and the Euler equation
(Theorem 5-14) gives 2n - ^f^ = 2 - 2fe, so that n = I (mod 8).
Since M is symmetrical, | Aut(M)| = 2\E(G)\ = !^f^, and Aut(M)
is a transitive permutation group of order n(n~l> and degree n > 9.
We show that Aut(M) is a Frobenius group and then apply Theorem
16-75, to see that, in fact, n is a prime power.

So, let a € Aut(M), with u ^ v € V(G) such that a(u) = u and
a(v) = v. If uv € E(G], then a is the identity permutation, by Lemma
16-14. If uv £ E(G], then we apply the anti-isomorphism (3 giving
Aut(M) equivalent to Aut(M*). Then (3 induces an isomorphism 4>
between Aut(M) and Aut(M*), so that $(a) = (3a(3~l.

Thus ((j>(a))(P(u)) = (3ap-l(P(u)) = /3a(u) = (3(u); similarly, 0(a)
also fixes (3(v). But, since j3 is an anti-isomorphism and uv £ E(G),
(3(u}/3(v) € E(G*}. Hence, by Lemma 16-14 again, 0(a) is the identity
in Aut(M*); but since 0 is a group isomorphism, a is the identity in
Aut(M) and Aut(M) is a Frobenius group.

(B) For the converse, let n = pr = 1 (mod 8), p a prime and r € N.
We construct a Cayley graph Gn = G&n(Tn}, where Fn = (Zp)

r-the
additive group in the Galois field GF(pr}. Take x as a primitive element
for GF(pr), so that x generates the multiplicative group, and let A* =
{I,x2,x4,... ,rcn~3}, the set of all squares in GF(pr). (Equivalently,
uv e E(Gn] if and only if v — u is a square in GF(PT}.} The Cayley
graph Gn is called a Paley graph (see [PI], where the ideas behind
this construction were introduced.) We remark that Paley graphs are
defined for all prime powers pr = 1 (mod 4), since these are precisely
the cases for which —1 is a square - so that undirected edges are well-
defined; but only in the case pr = I (mod 8) are self-dual imbeddings
possible.

Next we define rn : A* —» A* by rn(<5) = x25, so that Mn —
M(Fn, An,rn) is a Cayley map- which we now call a Paley map; rn
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induces vertex rotations

pv(w) = x2(w -v) + v,

in accordance with Definition 16-23; and the permutation fn : A* —»•
A;, as given by

rn(6) = -x28,

in accordance with the remarks preceding Theorem 16-28. We observe
that Paley maps are in fact defined for all n — pr = I (mod 4), but
we continue to specialize to the case n = pr = 1 (mod 8). We claim
that, for n — pr = 1 (mod 8), the Paley map Mn = M(Tn, An,rn) is
strongly symmetric.

(i) The permutation J3 : (Zp)
r —> (1,p)

r given by (3(v) = xv is an
anti-automorphism for Gn-since w = u+x2k if and only if (3(w) = xw =
x(u + x2k) — xu + x2k+l — (3(u) + x2k+l; note the use of distributive
law in the field GF(pr)- so that Gn is self-complementary.

We remark that Paley graphs, being Cayley graphs of odd order,
not only have a 2-factor (as required by Theorem 16-47), but in fact
are 2-factorable (the edge set partitions into 2-factors); see Problem
4-17. We also observe that the anti-automorphism (3 has exactly one
fixed point (the vertex 0) and one orbit of length n — 1 = 0 (mod 4),
as required by Theorem 16-45.

(ii) To show that M(Gn,p) is a self-dual map, we study the corre-
sponding imbedding of Gn into Sk, where n = pr = 8m + 1 and k =
8m2 —7m, for m = 1,2,3,5,6,9, This imbedding is an (8m+l)-fold
covering space (no branching) of a voltage graph imbedding which is the
following alternative normal form for Sm : a±a2 ... a2ma]"1a^1... a^m-
(Note that the values n = 8m + 1, h — m are consistent with Theorem
16-57 and that Theorem 16-70 is also illustrated by this construction.)
The 2m directed edges bounding this 4m-gon are labelled with gener-
ators from An by the assignment a* —» x^~l^4m~2\ 1 < i < 2m. This
assignment describes each region boundary (and each vertex rotation)
in the covering space, the map (Gn,/o), by the voltage graph theory;
in particular, the single 4m-gon below satisfies the KVL and lifts to
8m + 1 4m-gons above.

Figure 10-5 (letting b in Figure 10-4 be 1, — a = x2) depicts the
entire situation for m = 1, using x2 — 2x + 1 in GF(9) : ai —»> 1 =
01, a2 —> x2 — 21; x = 10; for just the voltage graph for the case m — 2,
replace the labels in Figure 16-6 with: I,x6,x12,x2,-l, -x6, -x12, —x2.

We now utilize a method introduced by Bouchet [B15] for showing
self-duality. Each region in the covering space imbedding has a unique
lift of the directed edge ai from the normal-form voltage graph in its
boundary; this lift is a side (g, g + 1) in Gn, where g is uniquely de-
termined for that region; label the region with g*. It is now routine
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to check that, for each g e (Z>P)r, the region g* (g* e V(G^)) has
neighbors N(g*) = {(g + w(—x2)k)*\Q < k < 4m — 1} in G*, where
w = l^ff. In fact, the dual is a Cayley map M* = Mn(Fn, wAn,r*),
where r*(w) = — x2w6(6 e An), r* being taken in the sense opposite
to that of rn. Thus if if is a square in GF(pr}_, then G* = Gn. On the
other hand, if w is a non-square, then G* = Gn = Gn.

(iii) Using the distributive law in GF(ri) again, we readily see
that the permutation rn of A* extends to a group automorphism of
Fn = (Zp)

r; thus Theorem 16-27 applies, to show that Mn(Fn, An,rn)
is a symmetrical map. In fact, Aut(Mn) is a Frobenius group with
Frobenius kernel the regular normal subgroup {7^ : Fn —> Fn,75(/i) =
g + h\g € Fn — V(Gn}} = Fn and Frobenius complement the cyclic
group stabilizing the vertex 0, generated by the automorphism Co ex-
tending rn,Co(^) = x2h. (See Theorems 16-32 and 16-15.) The other
vertex stabilizers are conjugate, with (Aut(Mn))9 generated by Cg —
TffCoTj1- Of course, |Aut(Mn)| - |Fn| |An| = 2\E(Gn)\. Finally; we
emphasize that Aut(Mn) contains a subgroup isomorphic with Fn, as
required by Theorem 16-24; this subgroup must be proper, in Aut(Gn),
by Theorem 16-49.

(iv) If w — |*~*2| is a non-square, then the anti-isomorphism j3 :
V(Gn} —» V(Gn] given by /3(g] — g* gives an equivalence between
Aut(Mn) and Aut(M*), since if a* = f3a(3~l, where a is one of the
generating automorphisms Co °r 7g (9 G Tn) of Aut(Mn), one readily
checks that a* preserves oriented region boundaries in M*. If, however,
w e An, then we take (3(g] — (xg)*, to again see that Aut(Mn) and
Aut(M*) are equivalent, under an anti-isomorphism (3. D

The Paley maps Mn = (Fn,An,rn) constructed above have addi-
tional properties of interest. We use the following facts about Galois
fields, taken from Storer [S24].

Thrn. 16-77. Let x be a primitive element for GF(pr], where pr =
2/ + 1 and / is even. Let (z, j) denote the number of ordered pairs
(s, t} such that x2s+i + 1 = x*+j, 0 < s, t < f - 1; then:

(i) (0,0) = -^;

Thm. 16-78. For n = 4m + 1, the Paley graph Gn is strongly regular,
with parameters p\^ — m and p2

2 = m — I.

PROOF. From n = 4m + 1 = 2/ + 1, we find / = 2m. From
Theorem 16-77 (i) we see that (0,0) = ^- — m — 1. Now clearly
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x2s + 1 = x2* if and only if x2s+2k + x2k = x2t+2k; it follows that
£>22 = m — 1 for Gn. Similarly, we use Theorem 16-77 (ii) to deduce
that p£2 = (1,1) = | = m. D

This result overlaps with the next:

Thm. 16-79. If G is self-complementary and has a symmetrical map,
then G is strongly regular.

PROOF. In fact, for any graph G having a symmetrical map M,
since Aut(M) is transitive on edges and Aut(M) < Aut(G), p2

2 is
well-defined. But if G is self-complementary, then Aut(G) is transitive
on non-edges also, so that p\2 *s well-defined too. D

Thus the Paley graphs Gn, for n = pr = 1 (mod 8), are candidates
for determining association classes for PBIBDs, and in fact the Paley
maps give such designs:

Thm. 16-80. Let a; be a primitive element for GF(n), where n —
pr; the Paley map Afn, for n — 8m + 1, yields an (8m + 1,8m +
1,4m, 4m; AI, A2)-PBIBD, where AI = 2m and A2 = 2m - 1 if x2 + I
is a square in GF(n), while AI = 2m — 1 and A2 = 2m if x2 + 1 is a
non-square.

PROOF. See Problem 16-20.

D

It can be shown that, in a Paley map, either each region bound-
ary consists of neighbors N(v), v € (Zp)7", or each region boundary
consists of neighbors in the complementary graph, so that the designs
constructed above also exist in a natural, topology-free, context. The
topological context, however, does facilitate the next observation: these
designs are also self-dual, in a very strong sense. The dual of a design
has as its objects the blocks of the original design, and a block in the
dual design contains all those objects of the dual design which represent
blocks of the original design to which the fixed object of the original
design (corresponding to the given block) belongs.

Thm. 16-81. Given a Paley map, the dual of the design of the map
and the design of the dual of the map coincide, and both are isomorphic
to the design of the Paley map itself.

PROOF. See Problem 16-21.
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D

We make several additional comments relevant to Theorem 16-76.
Firstly, we observe that self-dual imbeddings of self-complementary
graphs need not be unique for a given order. Moreover, the order
need not be a prime power. (We are temporarily relinquishing the
symmetricality condition for strongly symmetric maps.) For the first
example, take A = {5; 1,6,11,16, 21} in F = Z25, so that GA(F) is
the composition C5[C5}. Since C5 = C5 and G[H] = G[H] in general
(see Problem 2-5), 65 [65] is self-complementary. A self-dual imbed-
ding is constructed by the use of Theorem 16-56. Since C^Cs] is not
strongly regular, the map M is not symmetrical, by Theorem 16-79;
thus M differs from the Paley map Af25 of the same order. In fact,
Aut(M) = T — Z25 and is equivalent to Aut(M*) (both are Frobe-
nius groups) under the anti-isomorphism (3(g) = (2g)*. (Every map
M of a Cayley graph GA (F) covering a normal-form voltage graph has
F = I" < Aut(M); in this case the fact that there are no additional
automorphisms follows from the observation that each region bound-
ary contains repeated vertices.) We mention that Theorem 16-56 also
provides a self-dual imbedding, but not a symmetrical map, for the
Paley graph G25.

For the second example, we take

A = {13; 5,20,15; 1,4,16; 3,12, -17; 7,28, -18; 11, -21, -19}

in F = Zes; @(g) = 2g gives an anti-automorphism, so that GA(F)
is self-complementary. Again a self-dual imbedding is constructed by
Theorem 16-56, and again the map fails to be symmetrical, by The-
orem 16-79. Again, Aut(M) and Aut(M*) are equivalent under the
anti-isomorphism /3(G) — (2#)*, and both are Frobenius groups iso-
morphic to F = ZGS- The non-prime-power order is possible, because
the automorphism group is not large enough for the Jordan theorem
(Theorem 16-75) to apply.

Next we present another sufficient condition to give prime-power
order (see Problem 16-22.)

Thm. 16-82. Let G be strongly regular (with p22 = 2m, p\2 = 2m —
1), and M = (G, p) a symmetrical map yielding an (8m + 1,8m 4-
1,4m, 4m; 2m-1,2m)-PBIBD. Then \V(G)\ = 8m+l is a prime power.

We remark that, for the Paley graphs Gn(n = pr = 1 (mod 4)),
Aut(Gn} consists not only of the map automorphisms Aut(Mn) as
in (iii) of the proof of Theorem 16-76, but also of the field auto-
morphisms, generated by 0 : (Zp)

r —> (Zp)
r, 9(g) = gp; in fact,

Aut(Gn) = (Aut(M),<9):
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Thm. 16-83. (Carlitz [C3]) The automorphism group of the Paley
graph Gn is Aut(Gn) - {g -» x2kgpS +a|0 < fc < 2m-1, 0 < s < r-1,
a € (Zp)

r}, where n = 4m + 1.

We use this result to study the reflexibility of the Paley maps.

Def. 16-84. If a map M is symmetric but not reflexible, we say that
M is chiral.

Thm. 16-85. The Paley map Mn is reflexible if and only if n = 9; thus
Mn is chiral if and only if n / 9.

PROOF. If Mn is reflexible, with n = pr, then we must have r — 2s
and 9s (g] — gpS giving a reflection. Since 6s fixes both 0 and 1, we
must have 6s(x2) = x2pS = xp2s~3 (since p0 = (l,x2,.. . m, xp2s~3).
Thus p2s — 3 = 2ps, so that p divides 3; hence p = 3 and s = 1 (or else
3 divides 1); that is, n — 9.

Conversely, 0(g) = g3 is readily seen to be a reflection for Mg; refer
to Figure 10-5. D

As we have seen, the Paley maps-defined for prime powers con-
gruent to 1 (mod 8) -have several interesting properties: they are
regular (symmetrical), self-dual imbeddings of strongly regular, self-
complementary graphs which produce self-dual block designs, for ex-
ample. Now we see how closely we can approximate these properties
by similar maps, for all other prime-power orders.

For pr = 5 (mod 8), the Paley graphs Gn are defined, and are both
self-complementary and strongly regular, as before. The euler equation
disallows self-dual surface imbeddings, so we utilize pseudosurfaces.
Again we use a normal-form voltage graph but, for n = 8m + 5, it is
a (4m + 2)-gon and thus has two vertices; see Figure 16-7 for the case
m — 1. The (8m + 5)-fold covering imbedding has 16m + 10 vertices,
each of degree 4m+2. For each g € GF(n), we identify the two vertices
(a, g) and (6, g); the result is a symmetrical, self-dual pseudosurface
imbedding of Gn, for m > 0. (G£ = C$ consists of five disjoint loops.
For the pseudosurface theory of voltage graphs, see Garman [Gl].)
In fact, the map is a Cayley map M(Fn,An,rn), with rn : £* —» A*,
rn(6) — x4, having two cycles. The dual G* is G if w — ̂ ^ is a square,
or G if it; is a non-square. The automorphism group is Frobenius, with
Frobenius kernel = (Zp)

r. The stabilizer of vertex 0 is generated by
g —» x2g, which alternates between the two orbits of the vertex rotation
at 0. An (8m + 5,8m + 5,4m + 2,4m + 2; 2m, 2m + 1)-PBIBD results
if 1 + x4 is non-square; otherwise, the two A values interchange.
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1

1
Figure 16-7.

For pr = 3 (mod 4), the Paley graphs Gn are no longer defined,
since — 1 = x2m+l (pr = 4m+ 3) is not a square. Instead, we define the
Paley tournament Tn, by: (pi, ̂ 2) € E(Tn] if and only if g2 — <?i is a
square in GF(ri); of course, we still take Tn = (Zp)

r as our vertex set.
Then gl ^ g2 gives |{(#i,#2), (#2,£i)} He(Tn)| = 1, so that we do have
a tournament. The underlying undirected graph is thus complete, and
hence degenerately "strongly regular". The Paley tournaments are self-
converse, under the anti-automorphism (3 : g —> xg. In Biggs [BIO] we
find symmetrical imbeddings of the associated K^m+3 having 8m + 6
regions, each of length 2m + 1; these are Cayley maps M(Tn,Tn —
(0},rn), where rn(g) = xg. Thus the imbedding cannot be self-dual
directly, although the dual is bichromatic. Hence we obtain one (4m +
3,8m + 6,4m + 2,2m + 1,2m)-BIBD and two (4m + 3,4m + 3,2m +
1,2m + 1, m)-BIBDs. (The latter are Hadamard designs.) We modify
this map to form a self-dual pseudosurface imbedding of K^m+3. Each
region contains exactly one edge corresponding to 1 € (^p)

r, in one
of the two possible senses (clockwise or counterclockwise.) In fact,
this distinction determines the 2-coloring of the dual. The region is
assigned label g*(g E (Zp)

r) if either: (i) (g, g + 1) bounds the region
in the clockwise sense, or (ii) (g — a,g — a — 1) bounds the region in the
clockwise sense, where a = a.2^_1. Thus each g appears exactly twice as
a region label, and if these n pairs of vertices in the dual are identified,
we obtain a self-dual pseudosurface imbedding of K^m+^. Moreover, if
the edge directions are carried over into the dual, then we have a self-
dual imbedding of the self-converse tournament Tn, with each vertex
neighborhood N(g*} partitioned into two sets (corresponding to the
g* identification): one consists of those vertices dominated by p*, the
other consists of those dominating g*.

Finally, we consider p = 2, so that pr — 2r. Here not even 1 is
a square (1 = x2T~1} in GF(2r}J so our previous constructions seem
not to apply. However, if we use the planar voltage graph of Figure
16-8, with n = 2r, we obtain an n-fold covering imbedding of a 2-fold
Kn, with n (n — l)-gons and Q) digons. If each digon is closed (by
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identifying its two edges), a symmetrical, self-dual imbedding of the
"strongly regular" Kn (self-complementary in the 2-fold Kn) results.
(In fact, r* = rn for this case.) The concomitant design is an (n, n, n —
1, n— 1, n—2)-BIBD which, of course, can also be constructed by taking
complements of singletons as blocks.

x

Figure 16-8.

We close this lengthy section by discussing conditions under which
the Paley maps are, in some sense, unique. Self-duality, strong regular-
ity, and designs do not enter into the characterizations given, but as it
is Paley maps which are being characterized, these additional proper-
ties persist - except the self-duality fails for n = 5 (mod 8). For proofs
of the following two theorems, refer to [W13] or to Section 16-9.

Thm. 16-86. If M = (G, p) is vertex-transitive and if (Aut(M), V(G))
is self-equivalent under an anti-automorphism /? of G, then M is iso-
morphic to a Cayley map Af(r, A,r), where |r| = |V(G)| and |A*| =

Thm. 16-87. There exists a symmetrical imbedding of a self-comple-
mentary graph G of order n, with (Aut(M), V(G)) self-equivalent un-
der an anti-automorphism j3 of G, if and only if n is a prime power
congruent to 1 (mod 4). Moreover, if /32 6 Aut(M), the maps are
essentially unique, with at most six exceptions.

Cor. 16-88. For each prime p = I (mod 4), there exists a unique sym-
metrical imbedding of a self-complementary graph G of order p having
Aut(M) = Aut(G).

PROOF. The Paley maps give existence. But if Aut(M) = Aut(G),
then (32 and (3a(3~l (for each a € Aut(M) and where {3 is an anti-
automorphism of G) are both in Aut(M), so that Theorem 16-87 (and
its proof) show that M is a Paley map. D

The strength of this uniqueness claim is illustrated by Theorem
16-46. The Paley maps of order 13 and 17, for example, are unique
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among 5,600 and 11,220,000 self-complementary graphs respectively,
with respect to being symmetrical, with Aut(M) = Aut(G).

Cor. 16-89. If there exists a symmetrical imbedding of a self-comple-
mentary graph G of order n, with Aut(M) = Aut(G), then (with at
most six exceptions) n is a prime congruent to 1 (mod 4).

PROOF. As in the proof of Corollary 16-88, we find by Theorem
16-87 that n is a prime power congruent to 1 (mod 4); moreover, the
maps (with at most six exceptions) are unique and thus are Paley maps.
But if n = pr with r > 1, then Aut(M) is a proper subgroup of Aut(G),
by Theorem 16-83; thus r = 1, and n is prime. D

16-9. Problems

16-1.) Show that \R(G)\ = ECU fa - !)!

16-2.) Show that the relation of Definition 16-2 is an equivalence rela-
tion.

16-3.) Prove Theorem 16-5.
16-4.) Show that Aut(M) = At, for M as in Figure 16-2.
16-5.) Prove that the following are equivalent, for a map M = (G,p):

(i) M is reflexible;
(ii) M and its mirror image M~l are equivalent;

(iii) there exists an a G Aut(G) such that, for all v € V(G),
Pa(v) = ap~1a~l.

16-6.) Show that the map of Figure 10-5 is reflexible.
16-7.) Prove Theorem 16-13.
16-8.) Verify the entries in Table 16-2.
16-9.) Show that Aut*(M)| divides 4|E(G)|. (See Theorem 5-26.)

Thus a nonorientable map M is defined to be symmetrical if
| Aut*(M)| = 4|£(G)|. Is the map of Figure 8-4 symmetrical?

16-10.) Prove or disprove: If G is a strongly regular graph, then there
exists a rotation p for G so that M — (G, p) is a regular map.
(Hint: consider the Petersen graph.)

16-11.) Let M be the imbedding of K5 on S\ given in Example la of
Section 10-3. Show that M is symmetrical (i.e. | Aut(M)| = 20),
but not reflexible (i.e. M is chiral.) Show that the corresponding
design D (Example 1 of Section 12-3) has automorphism group
Aut(D) = S5. Does this contradict Theorem 16-13?

16-12.) *Prove Theorem 16-36.
16-13.) Prove Theorem 16-37.
16-14.) Prove Theorem 16-38.
16-15.) Prove Theorem 16-39.
16-16.) Show that M(Z9, {1,2,4}, (1,2,4,8,7,5)) is a symmetrical map

for Ks(3). Use this map to show that 7(1(3,3,3,6) = 7.
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16-17.) Let map M* = M(G*,p*) be dual to map M = M(G,p). Find
a description of p*, in terms of p and A : D* —»• -D*, where
D* = {(u,v)\uv e E(G)} and X ( u , v ) = (v,u). (See Biggs [Bll].)

16-18.) *Prove Theorem 16-56.
16-19.) Show that 7M(Gn) =

 (n~1}
8
(n~4), where Gn is the Paley graph of

order n — pr = 1 (mod 8).
16-20.) Prove Theorem 16-80.
16-21.) *Prove Theorem 16-81.
16-22.) Prove Theorem 16-82.
16-23.) Prove Theorem 16-86.
16-24.) Prove Theorem 16-87.
16-25.) Show that a Cayley map covers an index-one voltage graph

imbedding. Reconcile Theorems 10-11 and 16-28.
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CHAPTER 17

ENUMERATING GRAPH IMBEDDINGS

We have studied various techniques for imbedding a given graph on
a given surface, and we have studied the range of possible surfaces for
2-cell imbeddings of a fixed connected graph. In this chapter we will
study three counting problems that arise in topological graph theory:

(1) For a fixed connected graph, how many 2-cell imbeddings does
it have altogether?

(2) How many of these are on a particular surface?
(3) How many of those on a fixed surface have a particular region

distribution?

We will consider these questions both for labelled and for unlabelled
graphs. Our surfaces will all be orientable (closed orientable 2-man-
ifolds), but similar studies could be made for nonorientable (and/or
pseudosurface) imbeddings as well.

17-1. Counting Labelled Orientable 2-Cell Imbeddings

Let G be a connected graph, with a labelling given by V(G) —
{1,2,... , n}. As in Section 6-6, let V(i) = {k € V(G)\{i, k} 6 E(G)},
for 1 < i < n, and let pi : V(i) —» V(i) be a cyclic permutation.
Set di = |V(i)|, the degree of vertex i. The set {pi,£>2, • • • ,Pn} is a
rotation scheme for G and determines a 2-cell imbedding of G into an
orientable surface. In fact the set R(G) of all rotation schemes for G
is in one-to-one correspondence with the set of all labelled orientable
2-cell imbeddings of G, by Theorem 6-50 (and its proof). This gives
immediately:

Thm. 17-1. The number of labelled orientable 2-cell imbeddings of
the connected graph G is:

t=l

Thus question (1) of the introduction to this chapter is entirely an-
swered, for all connected graphs G, in the labelled case. Questions (2)
and (3) are considerably more difficult. We illustrate, with a series of
examples.

267
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Example 1: Let G = K4. From Theorem 17-1, we see that K4

has ((3 — I)!)4 = 16 labelled orientable 2-cell imbeddings in all. We
saw in Section 16-1 that the 16 imbeddings split into 2 on the sphere
and 14 on the torus. Both imbeddings on the sphere have r = r3 = 4.
However, on the torus 6 imbeddings have r± — rg = 1 and 8 have
TS = rg = 1. Thus we have answered questions (2) and (3) for G = K±.
Note that no other region distribution for K± is possible for the sphere,
but that either r5 = r7 = 1 or r$ — 2 seems, at first, possible for the
torus. (Both distributions satisfy both the euler identity and part (iv)
of Lemma 5-17.) But no 5-sided region can occur for K±\ see Figure
17-1. At least one vertex, say v, must be repeated, since only four
vertices are available. As K± has no loops, the second occurrence of v
can be placed, without loss of generality, as shown in the figure. But
then {u, v} is a multiple edge. Similarly (see Problem 17-1) no 6-sided
region can occur for K±.

The following definitions will be useful. As usual, TI denotes the
number of regions of length i, i > 3, and q — \E(G]\.

Def. 17-2. The sequence {r3,r4,r5, • • • }, called a region distribution,
is said to be compatible for a connected graph G if:

(i) Xli>3 ri nas the same parity as p — q; and

Def. 17-3. A compatible sequence {r3,r4,r5, • • • } is said to be realiz-
able if G has an orientable 2-cell imbedding attaining the values of the
sequence.

Thus, for K4, both r3 = r9 = 1 (that is, the sequence (1, 0, 0, 0, 0, 0,
1,0,0, ( ) , • • • ) ) and r5 — r-j — 1 are compatible, but only the former is
realizable.
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For G = Kn in general, \R(G)\ = ((n - 2)!)n grows rapidly. Thus
computer programs were written for the next two examples, repeatedly
implementing the algorithm of Theorem 6-50 and consolidating the
results.

Example 2: Now take G — K5. In Table 17-1 we record the counts
for both the labelled and the unlabelled cases (see Section 17-2 for the
approach to the latter). We include all compatible region distributions,
noting that three of them are not realizable. The final column will be
discussed in Chapter 18. The table provides answers to questions (1),
(2), and (3) for G = K5.

Example 3: See [LW1], where a similar table appears for K$.
Here, in Table 17-2, we record the answers to questions (1) and (2) for
KQ, a column for the number M of non- realizable compatible region
distributions, and a column for probabilities.

In general, let gk(G) denote the number of labelled orientable 2-cell
imbeddings of the connected graph G on the surface Sk- Then we have
the following:

Thm. 17-4. (i) gk(G) > 0 if and only if ^(G) <k< J

We discuss the function gk(G) for five families of connected graphs
G: cobblestone paths, closed-end ladders, Ringel ladders, bouquets,
and dipoles. The cobblestone path Jn is obtained by doubling every
edge of the n- vertex path Pn and then adding a loop at each end. Thus
Jn is a 4-regular pseudograph of order n, and \R(Jn}\ — 6n. Furst,
Gross, and Statman [FGS1] established:

Thm. 17-5. For the cobblestone path J

The closed-end ladder Ln is obtained by taking the cartesian product
of the n-vertex path Pn with K% and then doubling both end edges.
Thus Ln is a cubic multigraph of order 2n, and |.R(Ln)| = 22n. The
next result is also due to Furst, Gross, and Statman [FGS1] .

Thm. 17-6. For the closed-end ladder Ln,

n+l-k
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Region Distribution
for K5

r3 = 4, r8 = 1
rs = 3, r4 = r7 = 1
rs = 3, r5 = r6 = 1
r3 = r4 = 2, r6 = 1
r3 = r5 = 2, r4 = 1
r3 = r5 = 1, r4 = 3
r4 = 5
Total on Si
?*3 = 2, 7*14 = 1
7-3 = r4 = ri3 = l
r3 = r5 = ri2 = 1
r3 = r6 = rn = 1
r3 = r7 = no = 1
?"3 = r8 = r9 = 1
r4 = 2, ri2 = 1
n = r5 = ni = i
r4 = r6 = ri0 = 1
r4 = r7 = r9 = 1
r4 = 1, r8 = 2
r5 = 2, no = 1
r5 = r6 = r9 = 1
f*5 = r7 = r8 = 1
r6 = 2, r8 = 1
r6 = 1, r7 = 2
Total on ^2
r20 — 1; Total on S3

Grand Total

N = number
of occurrences

labeled
150
120

0
120
60
0

12
462
960
960
240
240
360
720
240
120
420
360
60
24

120
120
30
0

4,974
2,340
7,776

unlabeled
(3)
(1)

(2)
(1)

(2)
(9)
(8)
(8)
(2)
(2)
(3)
(6)
(2)
(1)
(4)
(3)
(2)
(1)
(1)
(1)
(1)

(45)
(24)
(78)

p _ N
7776

.019

.015

.015

.008

.002

.059

.123

.123

.031

.031

.046

.093

.031

.015

.054

.046

.008

.003

.015

.015

.004

.640

.301
1.000

Table 17-1

Totals for K6

Total on Si
Total on S2

Total on 83
Total on S4
Total on S5

Grand Total

TV = number
of occurrences

1,800
654,576

24,613,800
124,250,208
41,582,592

191,102,976 = (24)6

M

0
3
0
0
0
3

p N
r ~ (24)6

9.42= xlO~b

.00343
.129
.650
.218

1.000
Table 17-2

The Ringel ladder graph Rn is obtained from the ladder Ln by
performing, at each end of Ln, an elementary subdivision on one of
the two multiple edges, and then joining the two new vertices with an
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edge. Thus Figures 9-6, 9-7, and 9-8 depict, respectively, #2, -&b and
R2s. Since Rn is a cubic graph of order 2n + 2, \R(Rn)\ = 22n+2. Tesar
[T3] showed:

Thm. 17-7. For the Ringel ladder Rn,

The even-runged Ringel ladders served as current graphs for Case 7 of
the proof of the Complete Graph Theorem (see Section 9-2). Since the
solution is of index one for Case 7, the imbedding of R2S(s > 1) whose
dual is covered by a triangular imbedding of Ki2S+7 has r = 1. Thus
the following corollary has interest; see Theorem 18-9.

Cor. 17-8. The number of maximum genus imbeddings for R2s is given
by:

The bouquet Bm consists of one vertex and m loops, so that
\R(Bm}\ = (2m — 1)1. Recall that an index-one voltage graph (K, F, 4>)
is covered by a Cayley graph GA(F), where A* = {(f>(e)\e e K*} and
K = -B|A|. Thus bouquets are heavily utilized. For example, in Section
10-3 we find B2 on 5i covered by K5 and Cs x Ct(s,t > 3) on Si, and
BZ on Si is covered by K7, #4(2), and #3(3), all on Si- Moreover, B^s
on Ss provides the normal form (a^a^b^1 • . . asbsajlb~l) for Ss as a
polygon of 4s sides, identified in pairs as indicated.

Jackson [J2] used characters of symmetric groups to calculate
em_2fc+i(m), the number of unlabelled orientable 2-cell imbeddings
of Bm on Sfe, in terms of generating functions and recurrence relations.
Gross, Robbins, and Tucker [GRT1] then showed:

Thm. 17-9. For the bouquet Bm,

A closed form expression arises for the special case m = 2k, corre-
sponding to k = 7M(#2fc):

Cor. 17-10. For the even-size bouquet B^,
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For example, taking k = 1 we find gi(B2) = 2. Since \R(B2)\ = 6
and 7M(#2) — 1> it follows from Theorem 17-4 that go(B2) = 4. The
six labelled imbeddings are displayed in Figure 17-2.

-o

Figure 17-2.

In [R7], Rieper independently determined the genus distribution of
bouquets and enumerated by region distribution as well. Thus (since
\R(Bm}\ = (2m — 1)! has already been calculated) all three questions
of the introductory section for this chapter have been answered, for
bouquets. Here is Rieper's solution. Let Sm,r denote the number of
labelled orientable 2-cell imbeddings of Bm having r regions.

Thm. 17-11. The number Sm,T is given by the recurrence relation (m+
l)5m>r - 4(2m - l)(2m - 3)(m - I)2 (m - 2)Sm_2,r +4(2m - l)(m -
l)5m_ijr._i, for m > 2, with initial conditions 5m>r = 0 if m < 0 or
r < l o r r > m + l; SQ,I = 5i,2 = 1, •S'o.r = 0 for r ^ 1, and 5i>r = 0 for
r ^ 2; 52,i = 2, 52,2 = 0, S2,3 '= 4, and 52,r = 0 for r > 3.

Table 17-3 contains several values for S.m,r-

m\r
1
2
3
4
5

1
0
2
0

1008
0

2
1
0
80
0

185472

3

4
0

3360
0

4

40
0

161280

5

672
0

6

16128

Total
1!
3!
5!
7!
9!

Table 17-3

Note the consistency of the first column with Corollary 17-10. In
Table 17-4 we record gk(Bm), using k = m+1-r
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Rieper also answered questions (2) and (3) for dipoles in [R7]. The
dipole Dn has 2 vertices and n edges joining them. In Figure 10-9 Dn is
used as an index-two voltage graph for Zn, leading to symmetrical maps
for Knji and Kn^n (the latter are genus imbeddings) and three infinite
families of partially balanced, group divisible, transversal, incomplete
block designs-in what must be one of the most elegant constructions
in topological graph theory; it is due to Stahl [SW2].

m\k
I
2
3
4
5
6

0
1
4
40
672

16128
506880

1

2
80

3360
161280
8870400

2

1008
185472

24837120

3

5702400

Total
1!
3!
5!
7!
9!
11!

Table 17-4

It is easy to see that \R(Dn)\ = (n — II}2. It is not so easy to
compute gk(Dn). We note that the Stirling numbers s(a, 6) of the first
kind are given by: s(a, 6) = 0 if either b = 0 or b > a; s(l, 1) = 1; and
s(a + 1,6) = s(a, b — 1) — as(a, b}. Rieper found:

Thm. 17-12. The genus distribution of Dn is given by:

where the s(n + 1, n — 2k) are Stirling numbers of the first kind.

Cor. 17-13. The genus distribution of K^n is given by:

.

PROOF. We can obtain the graph K^n from the dipole Dn by per-
forming an elementary subdivision on each edge. But vertices of degree
2 do not affect topological considerations. Thus gk(K%,n) — 9k(Dn). D

Kim and Lee [KL1] generalized the developments above for Bm and
Z>n, by studying the bouquet of m n-dipoles, denoted by Bm,n\ it is
the multigraph n-fold K^m. Then Bm is homeomorphic to Bm,2, and
Dn — .B1;n. Kim and Lee calculated all the values 9k(Bm,n)i m terms
of Stirling numbers of both the first and second kind. The following
special cases give information about Bm and Dn in closed form:

Thm. 17-14.
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u] aiB -(11) g1(B m ) -

(iii) g0(Dn) =
(iv) 9l(Dn) =

17-2. Counting Unlabelled Orientable 2-Cell Imbeddings

Let G be a connected graph, with R(G) the set of labelled ori-
entable 2-cell imbeddings of (7, each given by its own rotation scheme.
As in Section 16-1, we impose an equivalence relation on R(G}; the
equivalence classes will be the unlabelled orientable 2-cell imbeddings
of G. Recall that the relation is as follows. Rotation schemes p and a
in R(G) are equivalent if there is an a € Aut(G) such that a(p) = <j;
that is, era(v) = apva~l. This describes a re-labelling of p. We illustrate
this by examining the example G = K4 of Section 16-1 in more detail.

Consider p = {pl = (234), p2 = (143),p3 = (124),p4 = (132)}, as in
Figure 16-2. For any a € AutM = A± (where M = (K4,p)), a(p) = p.
For example, if a — (123), then a(p) — {p2 = (314), p3 — (241), pi =
(234), p4 = (213)} = p. However, if a € AutG - AutM = 54 - AJ,
then a(p) = p~l / p. For example, if a = (12), then a(p] = {p2 =
(134), pl = (243), p3 = (214), p4 = (231)}, which we denote by p~l

since it describes the mirror image of Figure 16-2. The point is that p
and p~l are different, but in the same equivalence class; that is, they
arise from the same unlabelled imbedding (Figure 16-2 without the
labels).

In general, let C(G} denote the set of equivalence classes-unlabelled
orientable 2-cell imbeddings-for G. (See [MRW1], where the term used
is "congruence class".) Then we rewrite Theorem 16-9 as:

Thm. 17-15. The number of unlabelled orientable 2-cell imbeddings
of the connected graph G is:

We verify the entry |F((123))| = 4 in Table 16-1, to reinforce these
ideas. We want to count the p e R(G] fixed by (123) 6 54 = Aut(K^).
There are two choices for p\ ((234) and (243)), and each one determines
P2 and ps uniquely, under the action of (123). However, neither of the
two possibilities for p4 is affected by (123). Thus |F((123))| = 2x2 = 4.
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The remaining entries of Table 16-1 are calculated similarly, and we
easily compute |C(/iL4)| = 3, using Theorem 17-15.

In [MRWlj Mull, Rieper, and White completely generalize the
above procedure. We need some notation. For a € AutG and v £
V(6r), let Fv(a) = [pv\apva~l = pv}. Let i(v) be the cardinality of the
orbit of v under the action of < a > on V(G).

Thm. 17-16. For

, where the product is taken over a complete set S of orbit representa-
tives for < a > acting on V(G).

Now for a permutation b of an n-set, write j(b) for the n-tuple whose
kth entry is the number of fc-cycles in the disjoint cycle representation
of 6; write jk for the kth entry. As usual, (f> is the euler phi function,
and N(v) is the set of neighbors of vertex v.

Thm. 17-17. For a G Aut G and v e V(G), with n = \N(v)\,

0, otherwise.

Revisiting the example a = (123)(4) for G = K±, choose S = {1,4}
and set e as the identity of 84. Then a€(1)|jv(i) — e has cycle type
(j! = f ,0,0) and, by Theorem 17-17, |Fi(a3)| = 0(l)(f - I)!!?-1 = 2;
whereas a£(4) |jv(4) = (123) has cycle type (0,0, j3 = |) and, by Theorem
17-17 again, |F4(a)| - 0(3)(| - l)\3*~l = 2. Thus by, Theorem 17-16,
|F(a)| = |Fi(a3)| |F4(a)| = 2 x 2 ^ 4 . This formalizes the calculation
of |F(123)| given earlier.

Thus in theory, Problem (1) for the unlabelled case is solved in
general: Theorem 17-17 enables Theorem 17-16, which in turn en-
ables Theorem 17-15. So far, we have illustrated this process only
for G = K±. Two natural generalizations occur: the wheel graphs
Wn = Cn-\ + KI (the join operation) and the complete graphs Kn.
In [MRW1] closed-form expressions for |C(G)| are established for both
generalizations. Here we give just the result for complete graphs.
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Thm. 17-18. The number of unlabelled orientable 2-cell imbeddings
of Kn is:

This produces the numbers in the bottom row of Table 16-2. The
corresponding numbers in Table 17-1 summing to 78 = |G(jPf5)| were
calculated by Mull, using ad hoc methods.

Routine calculations involving Theorem 17-18 produce:

Cor. 17-19. Asymptotically, \C(Kn)\ = [j^g^; that is

.

Mull [M7] has applied Theorems 17-16, 17-17, and 17-18 to count
|G(G)|, first for G — KP1JP2, and then for complete n-partite graphs in
general.

17-3. The Average Number of Symmetries

In this section we find an elementary connection among
Aut G, jR(G), and G(G), where G is a connected graph. We start with
a property of equivalent rotations in R(G}.

Thm. 17-20. For G connected and p, a € R(G), if p and a are equiva-
lent, then Aut(G, p) and Aut(G, cr) are conjugate subgroups of Aut G.

PROOF. Since p and a are equivalent, we find a 6 Aut G so that
a(p] = cr; that is

.

Now, let b € Aut(G,p), so that b(p) = p; that is

.

We claim that aba~l £ Aut(G, cr), so that aAut(G, p)a~l C
Aut(G, cr). Similarly, a"1 Aut(G, a)a C Aut(G, p), so that Aut(G, cr) C
aAut(G, p}a~l, and aAut(G, p)a~l = Aut(G, a).

To verify our claim, we must show that (a6a~1)(cr) = cr, that is:
-i)(u) = aba~1avab~1a~l

j for all v 6 V(G). But
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= a/o&a-Mw)0"1 ((1), with u = ba~l(v))

= a(bpa-i(v}b~l)a-1 ((2), with w = cT^v))

= ab(a~l(jva)b~la~l ((1), with u = a~l(v))

— aba~lavab~la~1.

Since conjugate subgroups are isomorphic, we have the expected re-
sult that an unlabelled graph imbedding has a unique symmetry struc-
ture. However, note that we cannot claim Aut(G,p) = Aut(Gr, cr); see
Problem 17-2. We can, however, deduce:

Cor. 17-21. For G connected and p, cr equivalent in R(G],

It is instructive to consider the imbedding of K± on the torus having
rs — ?"9 = 1 once again. The eight labelled imbeddings corresponding
to this one unlabelled imbedding arise from the four ways to choose the
3-cycle bounding the small region and then the two ways to orient this
3-cycle. Each of the four pairs of mirror-image imbeddings thus pro-
duced has automorphism group generated by a rotation of the 3-cycle.
These eight non-identity rotations correspond to the eight elements of
order 3 in 54 = Au^/Ci), paired by inverse. The four subgroups thus
determined are all conjugate in 54.

Now we present the connection we seek, due to Mull [M6] .

Thm. 17-22. For G a connected graph, the average number of map
automorphisms, taken over R(G), is

PROOF. Let A denote the average number of map automorphisms
for the connected graph G, taken over R(G). Our calculation uses
Theorem 16-8 and Corollary 17-21. Let S be a collection of equivalence
class representatives, consisting of exactly one rotation scheme for each
class in C(G). Then
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,A —
\R(G)\

|Aut(G,p)| |AutG|

|AutG|

AutG
\R(G)\
|AutG|

D

Cor. 17-23. Let Q 6 C((7) be any one equivalence class of rotation
schemes for G. Then ^e I Aut(<3, p)\ = \ Aut G\.

These ideas can be readily checked for our continuing example G =
K±. We omit the details.

Cor. 17-24. Almost no labelled orientable 2-cell imbeddings of Kn

have non-trivial map automorphisms.

PROOF. Apply Corollary 17-19 in conjunction with Theorem 17-22.

D

17-4. Problems

17-1.) Show that K$ has no orientable 2-cell imbedding with TQ — 2.
17-2.) Find an example of p and a equivalent in R(G], but Aut(G, p) ^

Aut(G,a). (Hint: consider K± on Si, with r$ = r9 = 1). Then
find a e AutG so that aAut(G, p}crl — Aut(G, <j).

17-3.) Show that if |AutG| = 1, then |C(G)| = \R(G]\. (Thus the
numbers of labelled and unlabelled orientable 2-cell imbeddings
agree, in this situation.) Give an example to show that the
converse is false.

17-4.) Let G = K2,s. Find AutG, R(G),C(G), and the average num-
ber of symmetries. Partition both R(G] and C(G) by region
distribution.

17-5.) Repeat Problem 17-4, for G = K^. How could you cut down
your work by a factor of 4? Does K^3 have a compatible region
distribution which is not realizable?
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17-6.) Repeat Problem 17-5, for G = K2 x K3.
17-7.) Use Corollary 17-13 to show that po(-^2,n) = (n — 1)' How many

unlabelled imbeddings does this represent?
17-8.) Now verify the special case #o(-^2,n) = ( n — l ) l of Corollary 17-13

independently, by a direct counting argument.
17-9.) Show that ^M(K2,2k+i) = k, and that gk(K2,2k+i) = ((f+i •

17-10.) Check your work of Problem 17-4 against Corollary 17-13, as far
as possible.

17-11.) Find the genus distribution for K2,5 and the region distributions
for SQ and 82- Make a reasonable definition of the "average
genus of a labelled graph", and then calculate the average genus
for #2,5-

17-12.) **Find the average genus for K2,n.
17-13.) Use the recurrence relation of Theorem 17-11 and mathematical

induction to show that Sm^ = ™+l if m is even, but 0 if ra is
odd.

17-14.) Use Problem 17-13 to prove Corollary 17-10.
17-15.) Prove that if maps (G,p) and (G,0) are equivalent, then their

region distributions (and hence their genera) agree. To show
that the converse is false, consider K5 on Si, with r — r4 = 5,
as described by Example la) in Section 10-3. First, demonstrate
that this map M is not reflexible. Then, deduce from Problem
14-5 that M and its mirror image M~l (which also has r = r± —
5) are not equivalent.

17-16.) Following up on Problem 17-15 regarding maps M and M"1,
note from Table 17-1 that there are exactly 12 rotation schemes
for K5 producing r = r^ — 5.

(i) Apply Theorem 16-27 to show that M is symmetrical,
(ii) Deduce that | Aut M\ = 20.

(iii) Now apply Theorem 16-8 to show that precisely 6 of our
12 rotation schemes produce maps equivalent to M.

(iv) Show that the mirror image M~l of M also covers Figure
10-4, but with both "6" arrows reversed.

(v) Repeat (i), (ii), and (iii) for M"1, thereby showing that
the 12 rotation schemes split into two equivalence classes
(represented by M and M"1).

17-17.) Gross and Tucker [GT4] show that there are exactly 2 - 5 ! ro-
tation schemes in R(K7) yielding r = r3 = 14 on Si. (Thus
Q\(KT) — 240.) Show that these split into two equivalence classes
of 120 rotation schemes each, with each class containing the mir-
ror images of the members of the other class.
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CHAPTER 18

RANDOM TOPOLOGICAL GRAPH THEORY

In one model for random graph theory, we start with n G N and
p £ R, 0 < p < 1. The sample space fi consists of all labelled graphs
of order n. If G G 0 has m edges, then the probability of G is given
by:

Intuitively, we think of p as the constant probability, for each potential
edge of G, that that edge actually exists in (?, and we assume that the
(2) corresponding events are independent. The uniform case occurs

for p — |, where each G in Q has P(G) — |^2' = pr. If A is the
set of all labelled graphs of order n satisfying some property Q, where
linin^oo P(A) — 1, we say that almost all graphs have property Q.
If the limit is 0, we say that almost no graphs have property Q. Now
fix both p and k(k G N}. The following results appear in [P3], except
that (vii) appears in [AG3].

Thm. 18-1. Almost all graphs:

(i) are hamiltonian;
(ii) have diameter 2;

(iii) are ^-connected;
(iv) are locally connected;
(v) contain a given subgraph of order fc as an induced subgraph;

(vi) are nonplanar.

(vii) have genus in 12 ' ^2 > where s > 0 and 0 < p =

p(n) < I with p2(l - p) > 2M1.

We note that (vi) follows from (v) by taking, for instance, k = 5
and G = K5 as the given subgraph. Here is a generalization of (vi),
and of the proof just given.

Cor. 18-2. For each g € N, almost all graphs have genus at least g.

PROOF. In (v) take k = 5g and G = gK5. D

281
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In this chapter, motivated by Theorem 18-1 (vii) and Corollary
18-2, we introduce a variety of models for random topological graph
theory, posing-and attempting to answer-natural questions which arise
within these models. (See [W24], [LW1] and [S5].) All of our models
will be for labelled graphs, but corresponding models for unlabelled
graphs could be constructed in some of the cases. (See, for example,
Problem 18-3.)

Model I imposes the uniform probability distribution on R(G],
where G is a labelled connected graph. (The corresponding model for
unlabelled graphs would be on C(G), with either the uniform distribu-
tion or a probability distribution weighting each equivalence class by
the number of rotations it contains. But the latter would essentially re-
turn us to the uniform distribution for the labelled case.) Model II im-
poses a variable distribution on R(G], where G is a labelled connected
cubic graph. (There is no analogous unlabelled model for Model II.)
Models III and IV extend from rotation schemes to imbedding schemes
(allowing for the possibility of nonorientable imbeddings), with uniform
and variable distributions respectively. Model V combines features of
Model II and IV. Finally, we study Model VI, for random Cay ley maps.

18-1. Model I

In this model, for each labelled connected graph G of degree se-
quence {di, d2) • • • , dn}, the sample space O consists of all |.R(G)| ori-
entable 2-cell imbeddings (G, p] of G, with the uniform distribution

The two natural random variables of interest are as follows.

(1) The genus random variable g, g : fi — » N U {0}, gives the genus
of an arbitrary sample point; that is, if (G, p) imbeds G on 5fe,
then g(G, p) = k.

(2) The symmetry random variable M, M : $1 — > N, gives the num-
ber of map automorphisms: M(G,p) = | Aut(G, p)\.

We are especially interested in the expected values (but also in the
variances) of these random variables. Since our probability distribu-
tion is uniform, an expected value is just an average. Thus E(g) =
W\ ^2peR(G) 9(G-> P) nas Deen called the average genus (in [A10] and

[S19], for example). As E(M) = |Au^(G)l has been calculated in
Theorem 17-22, we concentrate here on E(g).



18-1. MODEL I 283

Thm. 18-3. For G connected, E(g) = -^^ Y.k>o k9k(G], where gk(G)
is the number of p € R(G) having g(G, p) = k.

Since |-R(C?)| is known, the evaluation of E(g) depends only on work
from enumerative topological graph theory to calculate <&(G), as given
in Chapter 17. In Table 18-1, we summarize information about K±, K5

and KQ. The entry for (n, A;) is P(g(Kn, p)} = k. The final column is
obtained from Theorem 17-22, using Theorem 17-18.

n\k
4
5
6

0
.125

1
.875
.059
io-5

2

.640

.003

3

.301

.129

4

.650

5

.218

E(g)
.875
2.242
4.082

V(g)
.109
.301
.360

E(M)
4.500
1.204
1.001

Table 18-1

These and other data provided empirical evidence leading to the
next theorem, due to Lee [LI] and depending upon a result of Stahl
[S20].

Thm. 18-4. If G is a connected graph of order n and size asymptotic
to cn1+e, where c and e are positive constants, then the average genus
E(g(Gn}} is asymptotic to the maximum genus 7Af(G fn)-

Thus, for many families of graphs, the genus distribution is skewed
considerably to the right, as we begin to see in Table 18-1. (See also
Problem 18-1.)

Cor. 18-5. For complete graphs,

PROOF. Let c = \ and e — 1 in Theorem 18-4, and refer to Theo-
rem 6-25. Cl

Further calculations, using results of Section 17-1 (see [W24] and
[T3]), establish:

Thm. 18-6. For the cobblestone path Jn,
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Thm. 18-7. For the closed-end ladder Ln,

Thm. 18-8. For the Ringel ladder Rn,

where hn(x] = £fc>0

Thm. 18-9. The probability that a random imbedding of -R2s, edge-
labelled so as to be a KCL current graph K for KI^S+I-, will be a
suitable quotient graph for Ki2s+7 is P (9(^23-, p) = s + 1) = -j-^.

As this probability goes to 0 with increasing 5, we see that such
imbeddings of #25 are rare: almost no imbeddings are suitable.

Thm. 18-10. For the bouquet Bm,

where em-2k+i (m) is the number of congruence classes of Bm on Sk-

Here is a generalization of Figure 17-2:

Thm. 18-11. For even-size bouquets,

PROOF. Use Corollary 17-10 and |Q| = (4/c - 1)! D

Thm. 18-12. For Gn either the dipole Dn or K2tn,

where the s(n + 1, n — 2k) are stirhng numbers of the first kind.

PROOF. Refer to Theorem 17-12 and Corollary 17-13. D
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18-2. Model II

We seek a variable-probability distribution, akin to that given for
random graph theory at the beginning of this chapter-where a binary
choice is made for each pair of distinct vertices (either join or do not
join by an edge). Since we are fixing a labelled connected graph G, our
edges are determined. What we can vary are the vertex rotations, to
produce an element in R(G). Since we want a binary choice, we restrict
to cubic graphs; then each vertex has exactly two possible rotations.
The trick is: how to determine which is "clockwise" (so that the other
will be "counterclockwise"). We offer three possibilities:

Model II A. For each labelled connected cubic graph G of order n,
with V(G] = {1,2,... , n} and 0 < p < 1, the sample space Q consists
of all \R(G)\ orientable 2-cell imbeddings (G,/?) of G. For i 6 V(G),
let N(i) — {j,k,l}, with j < k < t. If pi = ( j , k , l ) , we say that
rotation pi is clockwise. On the other hand, if pi = (j, /, k), we say that
Pi is counterclockwise. Then p = {p\,p2, • • • ,pn}- Let p have exactly c
clockwise rotations p^, 0 < c < n. Then we define

This does give a probability distribution, as:

.

We also check that £JL0 (") = (1 + l)n = 2n = |Q|.

The distribution of Model II A is uniform if and only if p = |, in
which case we revert to Model I. (For two methods for calculating the
genus distribution and average genus, and some computer results for
several cubic graphs of order 96, in the uniform case of Model II A,
see Archdeacon [A10].) The number of clockwise rotations has the
binomial distribution; but our interest is in P(G,p), rather than in

For example, if G = K4, then in 0 let EI be the event that (K±, p}
has r3 = 4, let E2 be the event that (K±,p] has r3 = r9 = 1, and let E3

be the event that (K^p) has r4 = r8 = 1. Then routine calculations
produce the following probability polynomials, as studied by Tesar [T2,
T4j:
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The calculations above are independent of the vertex labelling se-
lected for K± from {1, 2, 3, 4}, as similar calculations are for K^ from
{1, 2, 3, 4, 5, 6}. (See Problem 18-5.) But this is not true in general for
Model II A, as G = K2 x K3 shows. (See Problem 18-6.) This is a
shortcoming of the model. Thus we turn to:

Model II B. Let F be a group of order 2m, generated by A* =
{£i, <52, £3}, where 81 is an involution. (It could be that #2 and £3 are also
involutions. If not, then £3 = <^~1.) Let 0 < p < 1. The sample space Q
consists of all \R(G) \ labelled orientable 2-cell imbeddings (G, p} of G —
GA(P), with vertex labels taken from T. If pg = (g + Ji, g + £2? g + £3),
then we say that pg is clockwise; otherwise pg is counterclockwise. Let
P = {Pg}ger have exactly c clockwise rotations p9, 0 < c < 1m. Then
we set

As before, we get a probability distribution. But now there is no am-
biguity as to how the vertex labels are assigned. Nor does changing
the order in which the elements of A* are given affect the probability
calculations we wish to make, as the only change might be a reversal of
the roles of "clockwise" and "counterclockwise". (However, changing
F and/or A could have an effect.)

If we take A* = {2,3, 1} for T = Z4, then GA(F) = K4 and we
regain the calculations of Model II A for K± (writing "4" for "0").

In Model II B, the event E : p has c = 0 or 2m has interest, since
then (G, p) is a Cayley map. It can be viewed as a 2m-fold branched
covering projection over the bouquet B2 in the sphere (or B3 if 62 and
£3 are involutions also.)

For connected cubic graphs which are not Cayley graphs, there is
still an alternative to Model II A.

Model II C. In this model we start with a fixed labelled orientable
2-cell imbedding of a connected cubic graph G, and the clockwise vertex
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rotations are determined by this imbedding. Otherwise, this model
agrees with the two previous variants.

For example, if G is the ladder Ln, it is natural to take as the fixed
imbedding the planar one derived from Figure 9-8 by deleting edge A
and suppressing the two vertices of degree 2 that result. Tesar [T5]
found the following:

Thm. 18-13. In Model IIC, P(g(Ln,g) = k) is given by:

Of course, letting p= \ and multiplying by |fi| = 22n regains Theorem
17-6.

18-3. Model III

Now we expand to allow both orientable and nonorientable labelled
2-cell imbeddings of a connected graph G; we assume that G has mini-
mum degree at least 3. As in Chapter 11, we augment a rotation scheme
(G, p) to an imbedding scheme (G,p, A), where A : E(G] — » Z2. From
Theorem 11-16, we see that the imbedding is orientable if and only if
every cycle of G has an even number of edges e for which A(e) = 1.
(We say that such a cycle G is X-trivial, since if G = X^=i e* ̂  an ed§e

sum, then A(G) = A(£?=i ef) - Eti Afe) = 0 in Z2.)

So, for each labelled connected graph G of degree sequence
{o?i, c/2, • • • , dn}, the sample space Q consists of all 2-cell imbeddings
(G,p, A), with the uniform distribution

where m = | XlILi ̂  ^

An event of interest here is E : (G, p, A) is orientable. Note that
E depends only upon A (for fixed G); it is independent of p. Each
assignment A will have nT=i(^ ~~ -0- imbeddings of G associated with
it, all of the same orientability nature. Thus the uniform probability
of (G,A) is 2^-. The key idea for the following development is due to
Schwenk [S6]. As usual, let (3(G) = m-n + l denote the Betti number,
or cycle independence number, of G. It is the number of edges in a cycle
basis for G, and is the size of the complement of every spanning tree
for G.

Lemma 18-14. Every cycle in G is A-trivial if and only if every cycle
in a cycle basis for G is A-trivial.
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PROOF. The necessity is immediate. For the sufficiency, let
be a cycle basis for G, where k — f3(G}. Let EI 6 Z2, 1 < i < fc,
and let C = Y^=\£i^i be an arbitrary cycle in G. Then X(C) —

^o = o. n

Thm. 18-15. If A is uniformly distributed on E(G] and if E is the
event that (G,p, A) will be orientable, then P(E) — . . LG) .*

PROOF. Let T be a spanning tree for G, with A : £(T) -^ Z2

given arbitrarily. Add each of the (3(G] remaining edges one at a time.
Each such edge e completes a unique cycle C in a fixed cycle basis
for G (E(C] — e C E(T)} and we assign A(e), with probability |, so
that A(C) = 0. Then every cycle in this cycle basis is A-trivial, with
probability ,2 J(G) , as these events are independent. Now apply Lemma
18-14. D

Cor. 18-16. If Gn is a family of connected graphs of order n such that
= oo, then (Gn,p, A) is almost never orientable.

Thus, in Model III, Kn is almost never orientably imbedded. Nor
are Kn,n, Kn^n, or Qn, for example. In fact:

Cor. 18-17. If Gn is a family of connected graphs of order n and min-
imum degree at least 3, then (Gn,p, A) is almost never orientable.

This includes all Cayley graphs, except G&(T} = Cn for F = Zn and
|A| = 1, and GA(F) = K2 x Cn for F = Dn and |A*| - 2. However, in
practice, as graph imbedders use nonorientable imbeddings to construct
covering imbeddings of interest, A(e) = 1 with probability considerably
less than |. Thus we turn to Model IV.

18-4. Model IV

For each labelled connected graph G and rotation scheme p for G,
and for 0 < p < 1, the sample space Q consists of all imbedding schemes
(G,/o, A). Let k - \{e € E(G)\X(e) = l}\. Then

where m= \E(G)\.

We emphasize that both G and p are fixed, and that P(G, p, A)
varies only with A. We readily check (see Problem 18-11) that we have
a probability distribution, with |Q| = 2m. The distribution is uniform
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precisely when p — |. Then, for questions of orientability, we are
effectively back in Model III. We think of p as giving the probability,
for each e E E(G], that X(e) — 1. The distribution of k, the number
of positive edges, is binomial, but our concern is in the event E that
(G, p, A) is orientable. We make three initial observations.

(1) If p = 0, then k = 0 and P(E) = 1.
(2) If p = 1, then k = m and P(E) = 1 or 0 according to whether

G is bipartite or not, respectively.
(3) If p = \, then P(E) = ^jfey as in Model III. It then follows

(see Problem 18-10) that \E\ = 2n-1. More generally, a slight
modification of the proof of Theorem 18-15 gives:

Thm. 18-18. If G is a connected graph, with 0 < p < 1 in Model IV,
then P((G, p, A) is orientable) < [max{p, 1 -

Cor. 18-19. For a family of connected graphs Gn of order n with
limn^00/?(Gn) = oo, then (Gn,p, A) is almost never orientable, in
Model IV with 0 < p < 1. Moreover, if Gn is not bipartite, the re-
sult holds for p = 1 also.

It is also possible to show [W24]:

Thm. 18-20. For 0 < p < 1, q = p - 1, and n > 4,

P((Kn,p,X) is orientable) = q\2' y.

18-5. Model V

Here we combine the features of Models II and IV.

Fix a labelled connected cubic graph G of order n and size m. Fix
Pi and £>2, both in [0,1]. The sample space Q consists of all imbedding
schemes (G, p, A). Let p have exactly c clockwise rotations, 0 < c < n;
and let k = \{e e E(G)\X(e) = 1}|, 0 < k < m. Then |fl| = 2n+m and

Note that we have not specified the meaning of "clockwise". As in
Model II, several options are available.

Here are three natural questions for this model.
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(a) What is the probability that (G, p, A) is orientable? The answer
is the same as for Model IV, as orientability depends on A, but
not on p.

(b) What is the conditional expectation of the genus (or symmetry)
random variable, given that (G, p, A) is orientable? The answer
could differ from that of Model II, as the use of p in evaluating
g is affected by A.

(c) What is the expected value of the euler characteristic, with no
assumption of orientability?

18-6. Model VI: Random Cayley Maps

Recall that a Cayley map (F, A, TT) is the map (G, p), where G =
GA(F) and TT : A* — > A*, where A* = A U A"1, is a cyclic permutation
so that, for g 6 F and h <E N(g), pg(h] = g7r(g~1h)] thus p — {pg\g G
r}.

In Model VI, our sample space 0 consists of all Cayley maps for a
fixed finite group F and generating set A for F. The uniform probability
distribution is given by

Our interest here will be in the expected value of the genus random
variable g : fi -> TV U {0}, g(T, A, TT) = k if g(G, p} = k:

also called the average Cayley genus by Schultz [S5] (see also [SW1]),
where the parameters Cayley genus and maximum Cayley genus are
studied also. (See Problems 18-16 and 18-17 respectively.)

We consider the situation where F = (Zn)m, the repeated direct
product of m factors, each isomorphic to Zn, where n > 3 and m > 1;
we take A as the standard basis for F. Then G^(T] — (Cn)

m, the
corresponding repeated cartesian product of cycles, by Theorem 4-22.
(Note that, for n = p (a prime), this is precisely the model we took for
the additive structure of GF(pm] in Chapter 14.) Now, for any cyclic
permutation TT : A* —* A*, the Cayley map (F,A,7r) is a covering
space for an index-one voltage graph imbedding. To study the former,
we first study the latter.

Lemma 18-21. Let R be a region for an index-one voltage graph
imbedding covered by the Cayley map (F, A, TT) for F = (Zn)m,n > 3,
with A the standard basis. Then R satisfies the Kirchoff Voltage Law
(KVL) if and only if R is the unique region below.
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PROOF. (i) If R is the unique region, then each element of A*
appears exactly once in the boundary of R. Since F is abelian
and A contains no involutions, the KVL is satisfied.

(ii) Now assume that R satisfies the KVL, but that there is an-
other region R' below; thus R does not contain all of A* in its
boundary. But since F is abelian, and A consists of independent
generators, for each 5 in the boundary of R, S'1 is in the bound-
ary too. Thus, by identifying each pair £, £-1 in the boundary
of R in the usual way, we obtain a closed orientable 2-manifold
that does not exhaust A*; that is, the voltage graph imbedding
is into a disconnected space. This is a contradiction, since no
one-vertex graph can be disconnected. Thus it must be that all
the one-vertex components are identified at that one vertex, giv-
ing a voltage graph imbedding into a generalized pseudosurface
that is not a 2-manifold. This is the final contradiction.

D

Thm. 18-22. Let A be the standard basis for F = (Zn)
m, n > 3,

and let the Cayley map (F,A,7r) cover an index-one voltage graph
imbedding having r regions. Then

PROOF. By Theorem 10-9, since every 8 € A has order ra, a region
i? of size k below lifts to nm A:-gons when R satisfies the KVL (that is,
by Lemma 18-21, when r = 1) and to nm~l n/c-gons otherwise.

Thus the total number f of regions above is:

and order and size of G&(T) = (Cn}
m are p — nm,q = mnm respec-

tively. Hence, by Corollary 5-15, the result follows by elementary alge-
bra. D

Next, we apply Theorem 18-22 and Rieper's work presented in The-
orem 17-11 to calculate E(g) for (F, A, TT) as above, in a striking in-
stance of the usefulness of enumerative topological graph theory to
random topological graph theory.



292 18. RANDOM TOPOLOGICAL GRAPH THEORY

Thm. 18-23. Let A be the standard basis for T = (Zn)m, n > 3;
then

PROOF. We need only observe that |A*| = 2m, since A contains no
involutions, and recall that Sm,r denotes the number of 2-cell imbed-
dings of the bouquet Bm having r regions. D

We note that, when r = 1, m must be even by the euler identity
applied to the voltage graph imbedding (where p = I also). Thus
for m odd, the first term inside the square brackets in Theorem 18-23
vanishes.

Cor. 18-24. The expected value of the genus random variable for the
Cayley maps ((Zn)m, A, TT), with n > 3 and A the standard basis, is:

E(g) =

o,
±n2-a ' A

n3-|

I"4-o

2n5-
fn6-

n + 1,
n2 + l,

fn3 + 1,o '

in4 + 1,15 '
f| n5 + 1,15 '

if

if

if
if
if
if

m
m
m
m
m
m

= 1
= 2
= 3
= 4
= 5
= 6

PROOF. Use the appropriate values for Sm}r from Table 17-3, in
Theorem 18-23. ' D

The polynomials of the corollary lead to the entries in Table 18-2. The
entry for (n, m) is E(g((Zn}

m, A, TT)}. The first column corresponds to
the fact that Cn has only a planar imbedding. The case m = 2 (of either
Corollary 18-24 or Table 18-2) corresponds to Figure 17-2. The four
spherical voltage graphs each lift to Cn x Cn on S/n-i\ with rn = 2n and
^2n = n, whereas the two toroidal voltage graphs both lift to Cn x Cn

on Si with r = r4 = n2. Thus E(g) = 4lL^hg+2-1
 = »£ _ n + L

From Theorem 18-23, one readily sees that E(g(T, A,TT)) has the
form aonm+ainm~1+a2, where ao5 ̂ i? and 02 depend only on m. This is,
of course, confirmed by Corollary 18-24. Since Yl™=i Sm,r = (2m — 1)!,
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n\m
3
4
5
6

1
0
0
0
0

2
1

2.333
4.333

7

3
16

43.67
92.67

169

4
78.4

274.1
709.3

1527.4

5
362.8

1656.5
5292.7

13565.8

6
1398.8
8378.3

33155.8
101385.2

Table 18-2

we easily find that a2 = 1. Since 6^1 = m+i ^ m *s even> but is
0 if 777, is odd (see Problem 17-13), it follows (after some work) that
a° = 2m+2 ^ m *s even> an(l flo = 2!y^ if m is °dd. Finally, but less
satisfactorily, a\ = — -.

18-7. Problems

18-1.) Calculate | Aut G|, |#(G)|, |C(G)|, and E(M), for G = K7. Com-
pare with E(M) for G = K4, K5, and K6 (see Table 18-1). What
conclusion do you make?

18-2.) Show that P(g(K2,n,p) = j(K2,n)) = , so that

whereas

18-3.)

18-4.)

18-5.)
18-6.)

18-7.)
18-8.)

18-9.)
18-10.)

18-11.)
18-12.)

18-13.)

What does this indicate?
In Model I, let 0 = C(G) instead of R(G). Study this revised
model.
In Model II A, show that P(g(K±] = 0) is maximized, and
E(g(K±)} is minimized, uniquely for p — |, the uniform case.
Analyze G = K3)3 in Model II A.
Show that, in Model II A, calculations for G — K2 x Ks depend
on the assignment of labels from {1,2,3,4,5,6} to V(G).
Analyze K2 x K3 in Model II B, using A = {3,1,5} for T - Z6.
Analyze K2 x K3 in Model II C, with reference to the fixed planar
imbedding of K2 x K% as a 3-prism.
Prove Corollary 18-16.
If E is the event that (G, p, A) will be orientable, for fixed G and
p in Model III, show that \E\ = 2n~\ where n = \V(G)\.
Show that Model IV gives a probability distribution.
What does Corollary 18-16 have to say about Knl About KnjTl7
About a family of graphs Gn with minimum degree at least 3?
In Model IV, express P((K±,p, A) is orientable) as a function of
p. (Hint: use Theorem 18-20.) Verify the uniform case, by a
direct count.
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18-14.) Consider the random variable k : Q — *• N U {0},fc(G, p, A) =
\{e G E(G)\X(e) = 1}\ in Model IV. Find E(k) and a(k), where
<j is the standard deviation.

18-15.) **Study Model V.
18-16.) In Model VI, find P(g((1n)

m, A,TT) = miiw0((Zn)m, A,TT)], for
m < 6, where A is the standard basis.

18-17.) In Model VI, find

where A is the standard basis, for:
(i) m < 6

(ii) m even.
18-18.) Do Problems 18-16 and 18-17, taken together, reinforce, or un-

dermine, the indication of Problem 18-2?
18-19.) *Use Theorem 18-8 to show that E(g(Rn)) < ^. Next show

that E(g(Rn)) > E(g(Ln}} > f (using Theorem 18-7). Thus
E(g(Rn)} is asymptotic to |. Deduce that, for Rn, average genus
and maximum genus are not asymptotic. In what sense does this
show that Theorem 18-4 is best possible?



CHAPTER 19

CHANGE RINGING

The ancient and continuing art of change ringing, or campanology
(how the English ring church bells), is here studied from a mathematical
point of view. An "extent" on n bells is regarded as a hamiltonian cycle
in a Cayley color graph for the symmetric group Sn, often imbedded
in an appropriate surface. Thus-perhaps surprisingly-graphs, groups,
and surfaces combine to model something musical. We begin by de-
scribing some of the history and lore of change ringing, along with the
requisite terminology. Next we give details of the mathematical model
we will be using, together with some basic results, illustrated by the
only two extents on three bells. Then, in succession, we consider vari-
ous compositions on four, five, six, seven, and n bells. Along the way
we meet Fabian Stedman, a seventeenth-century printer and bell ringer,
who was doing coset decomposition in symmetric groups a century be-
fore mathematicians happened upon the concept. We also encounter
three compositions of the author, all performed to quarter-peal length
in Oxford, England. Each was found by imbedding the right graph of
the right group on the right surface, in the right way. Most of the ma-
terial in this chapter is taken from [W14], [W17], [W19], [W21], [W22],
[W23], and [W26].

19-1. The Setting

Bells are chimed-swung through an arc, with clapper and bell meet-
ing to produce the sound-using ropes or levers. The purpose is to an-
nounce coronations, weddings, funerals, and calls to service, or perhaps
just to enjoy the challenge of composing and ringing a piece of music
properly. For centuries church towers were almost the only structures
substantial enough to accommodate sizeable bells. Prior to the four-
teenth century, church bells in Europe were usually hung on a spindle
and chimed by pulling a rope attached to the spindle. The succeeding
centuries saw the development, in England, of a more sophisticated
method of hanging a bell, to improve the control that a ringer had over
it. The bell was mounted on first a quarter-wheel, then a half-wheel,
and finally on a full wheel, so that it would swing through a full 360-
degree arc each time it was rung. The further refinement of the slider
and the stay made possible the setting of the bell (in mouth-up posi-
tion) , allowing the ringer to temporarily halt and then restart the bell

295
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precisely. That led to the development of change ringing in England.
This practice crossed the English Channel into Belgium only, but with-
out the slider and the stay, so purely mechanical methods of ringing
eventually led to the carillon there. In Great Britain nonconformist
chapels usually had but one bell, and for centuries Roman Catholic
churches were allowed no bells at all. Thus change ringing became a
peculiarly English art, formalized by Fabian Stedman with the publica-
tion of Tintinnalogia-or the Art of Change Ringing in 1668 [D5], and
Campanologia: or the Art of Ringing Improved, in 1677 [S21]. Now
there are more than five thousand church towers in England where
bells are mounted to be rung in changes, perhaps a score or so in the
United States and in Australia, and a half-dozen or so in Canada. The
Whitechapel Bell Foundry in London, which manufactured Big Ben
and the Liberty Bell among many others, still actively produces bells
for the ringing of changes. Let the n bells in a tower be denoted by
the natural numbers 1,2, . . . , n-arranged in descending order of pitch,
from bell 1 (the treble) to bell n (the tenor). A change is a ringing
of the n bells, once each, in some order. The very special change that
rings the bells in the natural order 1,2,.. . , n is called rounds. The
central problem in change ringing is to ring an extent on n bells; this
is a sequence of n\ + 1 changes satisfying:

(i) The first and last change are both rounds,
(ii) No other change is repeated (so that each change other than

rounds is rung exactly once),
(iii) From one change to the next, no bell changes its order of ringing

by more than one position.

Rule (i) is for musicality, rule (ii) is for thoroughness, and rule (iii)
is necessitated by the manner in which the bells are mounted in the
tower: a ringer can only advance or retard the motion of his or her bell
slightly. Thus a bell cannot be quickly rung twice successively, nor can
it not be rung for more than a short period of time, so that English
church bells are rung not in melody, but in permutations. Moreover,
the way that one permutation follows another is strictly limited. This
makes the connection to mathematics, as we see in detail in the next
section. Certain additional conditions that an extent might meet are
often regarded as desirable (or perhaps even essential), but it is only the
three conditions (rules) given above that are always required. Among
the additional conditions, here regarded as optional, the following three
are the most noteworthy:

(iv) No bell occupies the same position in its order of ringing for more
than two (sometimes relaxed to four) successive changes.

(v) The "working" bells each do the same work.
(vi) Each lead (or division) of the extent, and thus the plain course

and perhaps even the extent itself, is palindromic in the sequence
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of transitions employed to pass from one change to the next.
That is, the lead (or division) is symmetric.

We need additional terminology to understand the last two condi-
tions. But first we remark that (iv) keeps the performance interesting
for the ringers, (v) is for balance, and (vi) is to ease the memory burden
for the ringers, as no visual aid to memory is allowed within the ringing
chamber. One ringer-the conductor-will occasionally make a call (an
oral instruction, either a bob or a single, to instruct the ringers to mod-
ify their pattern of ringing slightly at an appropriate time. What each
ringer must bring into the tower is a clear image of the path (called the
blue line] see [SSI]) that his or her bell follows through the other bells
in the sequence of changes to be rung. This path is normally followed
by ropesight: pulling your rope about one quarter of a second after
the rope of the bell yours is to follow is pulled by your fellow ringer.
Waiting to hear the sound of that bell will not do.

Here is some additional terminology. There are two basic types of
composition in change ringing: methods and principles. A method is
treble-dominated. That is, the treble plain hunts-occupying succes-
sively positions 1,2,... , n; n, . . . , 2,1; 1,2,... , n; n, • • • ,2,1; and so
on. It is not considered to be working (the blue line is as simple as
possible). In a principle, all the bells are working-that is, they are
performing more intricate tasks, such as dodging around other bells,
making internal places and so forth. (A plain hunt bell makes only
the external places 1 and n.) Finally, each composition is composed of
basic blocks called, for methods, leads (the changes progressing from
one treble lead-such as in rounds-to the next, usually consisting of 2n
changes), or, for principles, divisions. The plain course is the sequence
of changes starting with rounds and following lead after lead (or divi-
sion after division) without calls (special generating transitions, either
bobs or singles) until rounds comes up again. (If this happens before
the extent is completed, then calls are required. If not, then the plain
course is the extent, called a no-call extent.) Condition (v) can be
expressed by saying that the plain course must have the same number
of leads (or divisions) as there are working bells. These ideas will be
illustrated in the succeeding sections. Typically the number n of bells
in a tower is between three and twelve, with eight (tuned to an octave)
being common. There is a nomenclature for extents, and the last part
of this nomenclature specifies the number of bells; see Table 19-1. The
odd-bell names reflect the maximum number of disjoint pairs of bells
that could be exchanged, in their order of ringing.

As an extent of Major takes about twenty hours to ring-surely one
of the 'major' physical and intellectual feats of mankind-extents on
more than eight bells clearly surpass the limits of human endurance.
Even on eight bells they are extremely rare: on 27 and 28 July, 1963,
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n
3
4
5
6
7
8
9
10
11
12

name
Singles

Minimus
Doubles

Minor
Triples
Major
Caters
Royal

Cinques
Maximus

n\ + I
7
25
121
721
5041
40,321
362,881
3,628,801
39,916,801
479,001,601

Table 19-1

Plain Bob Major was rung on tower bells at the Loughborough Bell
Foundary; on 27 and 28 December 1977, the same extent was rung on
handbells in a private residence in Farnham, Surrey. Each handbell is
readily controlled by a flick of the wrist, but then each ringer-having
a bell in each hand-has two blue lines to memorize. In a tower, each
ringer has both hands full-of rope and sally-controlling one bell. In
fact, it takes many months of practice to learn this control, let alone
learning to strike uniformly as part of rounds, to say nothing of ringing
constantly changing changes. An extent of triples, usually requiring
just under three hours of concentrated ringing, is much more read-
ily attainable, and many peals are attempted, completed, and duly
reported in the weekly publication The Ringing World (published in
Guildford, Surrey). Technically, a peal consists of at least 5,000 and,
for 5 < n < 7, exactly 5,041 successive changes satisfying the rules
(i), (ii), (iii) above-except that (ii) is waived for n < 7, where a peal
consists of several extents strung together. Thus for n = 7, a peal is an
extent; and, for n > 7, a peal is a partial extent, called a touch (rules
(i) and (iii) still hold). As generally the number of bells in a tower is
even, for odd-bell extents (or peals or touches) a covering 6e//-always
the tenor-rings last in every change, in forgivable violation of rules (iv)
and (v). In fact, some listeners find the stability and regularity this
provides to be pleasing musically. For more information about the his-
tory and practice of change ringing, the reader could consult Wilson
[W30], Camp [C2], Cook [C7], Eisel [E2], and The Ringing World. For
other mathematicians who have studied this fascinating subject, see,
for example, Budden [B20], Dickinson [D3j, Fletcher [F2], Price [P9 and
P10], and especially Rankin [R3], whom we will encounter in Section
19-7. For a mystery novel in which change ringing figures prominently,
read The Nine Tailors, by Dorothy Sayers [S4].
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19-2. A Mathematical Model

We employ a mathematical model for change ringing extents that
uses graphs of groups on surfaces. Our first observation is that a change
on n bells is a permutation of degree n and that, by rule (ii), the
symmetric group Sn is relevant for extents on n bells. Secondly, by
rule (iii), each legal transition (from one change to the next) can be
described as a product of disjoint transpositions of adjacent numbers
from {1,2,... , n}-regarded as a line, not a circle, so that 1 and n are
not adjacent (for n > 3). This leads to our surprising first theorem.
Let t(ri) give the number of legal transitions for n bells.

Thm. 19-1. For n > 2,t(n) = F(n + !)-!, where F(n) is the nth
Fibonacci number.

PROOF. We check that t(2) = 1 = F(3) - 1 and that *(3) = 2 =
F(4) — 1, and then assume the claim for n < k. Consider t(k), k > 4.
Since there are t(k — 1} legal transitions fixing the bell in position
k, t(k — 2] legal transitions exchanging the bells in positions k and k—l
and at least one other pair, and the single transposition (k — 1, fc), we
have:

t(k) =*( fc - l ) + *(fc-2) + l
= (F(fc)-l) + (F(fc- l ) - l ) + l
= F(k + !)-!.

D

To avoid confusing the number of a given bell with the number of
the position it occupies in a particular change, we regard each change
as a function / from the set of n positions to the set of n bells; thus
/ : {1,2,... , n} —> {1,2,... ,n}, where the domain elements repre-
sent positions and the range elements represent bells. Then change
/, recorded as /(I),/(2),... ,/(n), would ring bell /(I) first, bell
/(2) second, and so on. Rounds is given by the identity permutation
r(i) — i, 1 < i < n. Each transition is regarded as a permutation of
the set of n positions. Thus if d\, c^,... , dk represent the first k transi-
tions in an extent, then the (k + l)st change is the function rdid^ ... dk,
where we compose from right to left in Sn- Now we can express con-
ditions (v) and (vi) more precisely. Let word w = d\d<i... dt describe
the first lead (or division) and the transition to the second. Then if
there are m working bells, (v) requires that w be an m-cycle, so that
wm — I gives the plain course-where / is the identity on the set of
positions-and there is only one orbit for w in its action on the working
bells. The symmetry condition (vi) is that if be a palindrome in the
letters di, cfe, • • • , c^-i- Next let A be the set of all transitions employed
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for a particular extent. (Necessarily, each is a legal transition, by rule
(iii).) By rule (ii), A must generate Sn. Thus we can form the Cayley
color graph C^(Sn). Since all the generators are involutions, the edges
have color, but not direction (by convention (iii) in Section 4-5). By
rule (i), in conjunction now with (ii) and (iii), our extent corresponds
to a hamiltonian cycle in C&(Sn). The starting vertex is arbitrary, as
CA(STI} is vertex-transitive. We have shown:

Thm. 19-2. An extent on n bells, satisfying rules (i), (ii), and (iii)
and whose set of transitions is from A, can be composed if and only if
C&Sn is hamiltonian.

We remark that the Cayley color graph C^(Sn} can be replaced
by the Cayley graph G&(Sn}. But we retain the edge colors, as they
are valuable in constructing the extent from the hamiltonian cycle and
in visually checking the palindromic condition (vi). Thus we see that
graphs of symmetric groups are central to change ringing. Imbedding
or immersing such graphs on surfaces is helpful in making a hamilton-
ian cycle more readily apparent, and it is this idea that we exploit in
the remainder of this chapter. We begin with a simple example, for
n = 3, to clarify many of the points we have discussed. From Theorem
19-1 we see that *(3) = F(4) -1 = 2; and if we take A - {(12), (23)},
then G&(Sz} = CQ, see C&(Sz) in Figure 19-1. The hamiltonian cycle
and the extent it gives rise to shown in Table 19-2 describe the clock-
wise interior region boundary of the spherical imbedding of C^(S^)
depicted. This extent is called quick six. The clockwise boundary of
the exterior region produces slow six, the only other extent on 3 bells.
(Not surprisingly, slow six is just quick six in the backwards order.)
If we let a = (12)-denoted by solid edges-and b = (23)-denoted by
dashed edges-then quick six is completely described by the identity
word (a&)3 in 63 (and slow six by (bo)3). In the first case the rele-
vant palindrome-for condition (vi) applied to the extent-is ababa; in
the latter case it is babab. Both extents appear to be methods, as the
treble is plain hunting. But in both cases, the other two bells are plain
hunting also, from one leading position to the next. Thus both extents
are actually principles, as reinforced by the identity words (ab)3 and
(6a)3 respectively; there are three divisions, one for each bell, and all
bells work alike. The word w — ab = (123), for example, gives w3 = I
as the plain course and the extent, for quick six. Thus condition (v) is
met. Condition (iv) is readily verified by examining the final column
of Table 19-2, and also algebraically-by noting the effect of alternating
a and b throughout. Of course, rules (i), (ii), and (iii) are guaranteed
to hold, by the hamiltonian cycle and the generating set employed.
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(12)

(23)

(132)

Figure 19-1.

(123)

hamiltoniancycle
I
(12)
(123)
(13)
(132)
(23)
/

change
rl — T
r(12)
r(123)
r(13)
r(132)
r(23)
r

range of change
1,2,3
2,1,3
2,3,1
3,2,1
3,1,2
1,3,2
1,2,3

Table 19-2.

Ringers study extents primarily in the form of the final column
(without the commas) of Table 19-2, where each change appears as
a row in an (n\ + 1) x n matrix (see [SSI]). Our contribution is to
introduce a graph-of-groups-on-surfaces approach to find that matrix.

19-3. Minimus

Now we turn to 4-bell extents, all of which are called "Minimus" as
the last part of their nomenclature. We see from Theorem 19-1 that
there are £(4) = F(5] — 1 = 4 potential transitions for four bells; they
are

It is well known by ringers that the eleven minimus methods given in
[SSI] are the only such which satisfy condition (vi). They are alge-
braically described (by the corresponding identity word in 64) in Table
19-3. Each word corresponds to a hamiltonian cycle in the Cayley color
graph for 64 as generated by the letters in the word. Note that only
the first three satisfy all six of our conditions. The others all fail (iv).
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In fact, both Reverse Court and Double Court Minimus fail even the
relaxed version of (iv).

Minimus Extent
Plain Bob
Reverse Bob
Double Bob
Canterbury
Reverse Canterbury
Double Canterbury
Single Court
Reverse Court
Double Court
St. Nicholas
Reverse St. Nicholas

Algebraic Description
((ab)'6 ac)'6

(abad(ab)2)3

(abadabac)3

(abcdcbab)3

(db(ab)2dc)3

(dbcdcbdc)3

(db(ab)2db)3

(ab(cb)2ab)3

(db(cb)2db)3

(dbadabdc)3

(abcdcbac)3

Table 19-3.

It is particularly instructive to consider Plain Bob Minimus topolog-
ically. For A = {(12)(34), (23), (34)}, CA(S4) imbeds on the projective
plane NI, as shown in Figure 19-2. We note from Figure 19-3 that
a — (12) (34) and b — (23) generate the dihedral group D± (the sym-
metry group of the square). Thus the first lead of Plain Bob Minimus,
described by abababa = b = (23) starting from rounds at, say, the
vertex designated in Figure 19-2, covers the subgroup D4 of £4 and
corresponds to the vertices in the central octagon of the figure. Using
transition 6 a fourth time would return us prematurely to rounds, com-
pleting a touch of only nine changes. Using c instead shunts us across
to (ab)3ac = be = (234) = w. Now alternating abababa again traces
out the boundary of a second octagon, the left coset wD4 (the second
lead of the extent). Using c a second time takes us to w2, and then fol-
lowing with (ab}3 ac for a third time traces out the third octagon (and
the lead corresponding to coset w2D^)^ returning to rounds (so that
w3 — / describes the entire extent). Thus the partitioning of the
extent into leads corresponds to a decomposition of 84 into left cosets
of Z?4 (called the hunting group, as the treble completes one plain hunt
for these changes) and a 2-factor of €^(84) consisting of three 8-cycles,
each bounding a region on the projective plane. The rows of Plain Bob
Minimus are given in Table 19-4; this is the form the ringers use. The
listing follows either from the word ((a&)3 ac)3 or from the hamiltonian
cycle in the Cayley color graph (two versions of the same idea). Again,
conditions (i), (ii), (iii) are guaranteed by our hamiltonian cycle and
choice of A. Condition (iv) can be visually checked, but can be even
more readily established by noting the alternation of "a" in ((ab)3 ac)3.
Condition (v) follows algebraically from w = (ab)3 ac — (234), but we
confirm by checking, from the table, that what bell 2 does in column
1 (the first lead), bell 3 does in column 2, and bell 4 does in column 3,
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Figure 19-2.

Figure 19-3.

etc., so that all three working bells work alike. Finally, condition (vi)
holds, as abababa is a palindrome.

The graph imbedding of Figure 19-2 also serves directly to describe
Reverse Court Minimus, and indirectly for Reverse Bob and Single
Court Minimus (with d replacing c to describe the "reversal", which
amounts to a vertical reflection in the rows of the extent). As the
graph of Figure 19-2 is non-planar, all four of these extents have no
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1234
2143
2413
4231
4321
3412
3142
1324

1342
3124
3214
2341
2431
4213
4123
1432

1423
4132
4312
3421
3241
2314
2134
2143
1234

Table 19-4.

more efficient graphical imbedding (from the point of view of maxi-
mizing euler characteristic). The other seven minimus methods given
need two additional topological models. As depicted in [W14], one of
these is on the sphere, and the other is a spherical immersion, with six
crossings occurring within quadrilaterals of the spherical imbedding,
for the added (redundant) generator. Double Court and Double Can-
terbury Minimus, modelled on the sphere, are the only planar minimus
methods. In examining minimus methods, we have been "ringing the
changes," that is using the full Cayley color graph. Now we turn our at-
tention to minimum principles, for which Schreier (right) coset graphs
introduce a nice efficiency. The result will be "ringing the cosets."
We outline the development here; for full details, see [W22]. Take
A = {(12)(34), (12), (23), (34)}; we temporarily use all t(4) = 4 po-
tential transitions. Since a minimus principle will be described by an
identity word it;4, where w is itself a word in six letters, it makes sense
to study the Schreier right coset graph S&(S$/%4), as shown in Fig-
ure 19-4. Starting, without loss of generality, at the designated vertex

NO/
V

Figure 19-4.

(to exploit the symmetry of the diagram in seeking to satisfy condition
(iv)), we find exactly eight hamiltonian cycles in the coset graph, listed
below by the associated word w:

(1) (db}2da = (1342) (5) cbdbca
(2) (db)3 = I (6) cbdbcb
(3) dbcbda = (1243) (7) (cb)2ca
(4) dbcbdb = (14) (23) (8) (c6)3 -

(1243)
(14) (23)
(1342)
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Then (2) and (8) give touches of length six, whereas (4) and (6) give
touches of length twelve. In [W22] we find the following result. Recall
that the "no-call" means that neither a bob nor a single is required;
that is, the plain course wn = I gives the extent.

Thm. 19-3. There is a no-call principle on n bells, using the transi-
tions of A, if and only if there is a hamiltonian cycle in S&.(Sn/%*„,)
whose associated word is an n-cycle.

As our first application of this theorem, we see that (1), (3), (5),
and (7) all give no-call minimus principles. Since Figure 19-4 contains
only the eight hamiltonian cycles already considered, we have proved:

Thm. 19-4. There are exactly four no-call minimus principles.

These were already known to ringers as:

(1) [(db)2da\4, Erin Minimus
(3) [dbcbda]4, Stanton Minimus
(5) [cbdbca]4, Reverse Stanton Minimus
(7) [(c6)2 ca]4, Reverse Erin Minimus.

The contribution of the present study is the exhaustiveness of this
list (and the unified approach-one diagram-to obtaining it). We note
that all four extents satisfy conditions (v) and (vi), but none satisfies
condition (iv). Extents (3) and (5), however, satisfy the relaxation of
(iv): no bell rests in one position for more than four successive changes.

19-4. Doubles

The vertices of a regular pentagon can be labelled so that a =
(12) (34) and b = (23) (45) are two reflections generating the dihedral
group D5 (see Problem 19-3). In fact, D5 = {I, a, ab, aba,... , (ab)4a}.
Let c = (34) and form P = (ab}4ac = (2354); this is the plain lead
of Plain Bob Doubles, and P4 = [(ab)4 ac]4 gives the plain course.
We note the similarity with Plain Bob Minimus. But there the plain
course was the extent, while here the plain course gives a touch of
40 (of the requisite 120) different changes, using four (of the requisite
twelve) left cosets of D$ in 85. To extend the touch to an extent, in-
troduce d = (23) and form B — (ab)4ad = (45), the bob lead. When
the conductor calls "bob," the ringers know to replace transition c with
transition d. The question is: when should this occur, to get the full
extent of Plain Bob Doubles? In Figure 19-5 we give a slight modi-
fication of a diagram due to D.W. Struckett [S27]. The graph is the
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1-skeleton of a truncated octahedron. The 24 vertices are labelled with
the 24 treble leads on five bells. (Bell 1 is first in each of these changes,
and is suppressed.) The directed edges represent right multiplication
by P = (2354), and the undirected edges represent right multiplication
by B = (45). Thus the figure gives a spherical imbedding of the Cayley
color graph CA(r), where A = {P,B} for T = (55)i = 54? the stabi-
lizer in 65 of object 1, acting on {2,3,4,5}-precisely what is needed
to study the treble leads on 5 bells. An example calculation might be

Figure 19-5.

helpful. If we start at vertex 5423 in Figure 19-5, we must remember
that the change 15423 is identified with permutation (2534)-in position
two, ring bell 5; in position five, ring bell 3; etc.-so that when we mul-
tiply by P, the product (2534) (2354) = (245) is identified with change
14352. Thus there is a directed edge from vertex 5423 to vertex 4352,
colored with the color of P. But the figure has another interpreta-
tion, as given in [W19]. Each vertex represents a block of ten changes,
commencing with the treble lead given and continuing by applying the
word w* = (ab}4a — b = (23)(45) one letter at a time. Note that: (1)
w*c = P and w*d = B: (2) since w* € (£5)1, the tenth change in each
block is also a treble lead. Thus each of the 24 treble leads appears in
each of two blocks, once as the first change (the one given in the figure)
and once as the last. These two blocks are diametrically opposite (that
is, antipodal) vertices on the spherical imbedding, since antipodes are
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joined by the path P2BP~2B = (23) (34) = w*. Moreover, since w* is
a palindrome, in each such pair of blocks one is the backwards version
of the other. In fact, each block of ten changes is a left coset of D5 in
65, and each coset appears twice-represented by each of the two tre-
ble leads it contains. To avoid this redundancy, we perform antipodal
identification on the sphere. This gives a 2-fold covering projection
to the graph we want, imbedded on the projective plane; see Figure
19-6. Now each hamiltonian cycle properly incorporating the arrows

\

Figure 19-6.

gives an extent of Plain Bob Doubles, and all such extents can be ob-
tained this way. The arrows are respected, except that a bob lead
(labelled o, 6, c in the figure) requires traversing against the arrows on
the plain leads until another bob lead passes through the crosscap. This
is required, since passing through the crosscap corresponds to chang-
ing hemispheres above, where-for a fixed vantage point-orientation is
reversed.

The hamiltonian cycles obtained, all starting at 2345 (rounds), are:

(1) (P3B)3

(2) P2B(P3B)2P
(3) PB(P3B)2P2

(4) B(P3B)2P3.

Thus topological graph theory has shown very nicely that there are
precisely four extents of Plain Bob Doubles using the standard bob b.
For example, the extent given by (1) is:

[((ab)*ac)3(ab)*ad}3.

Now let us try to compose a doubles principle. Using Theorem 19-1
again, we find £(5) = F(6) — 1 = 7] thus we have seven transitions to
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choose from:

a = (12)(34)

b = (23)(45)

c = (34)

d = (23)

e = (12)

/ = (12)(45)

<? = (45).

No two of these will generate 85. Choosing more than three seems
wasteful, so we fix on |A| = 3. We like a, 6, and /, as they facilitate
satisfying condition (iv). However, (a, 6, /} = A$, not 85. We settle on
A = {a, 6, <?}, which does generate 85. In [W14] a hamiltonian cycle
was found in 6^(65), by imbedding that Cay ley color graph on NIQ
with 5-fold rotational symmetry, and then finding a path of length 24
which replicated to a spanning cycle by rotation. In [W19] we used
this symmetry in a more systematic way. Identify each vertex with its
four images under rotation by 72,144,216, and 288 degrees, giving a
decomposition of 85 into right cosets of Z5. The quotient imbedding
is into 7V2, as depicted in Figure 19-7. The covering projection is 5-
fold, with branching (two of twelve 10-gons above wrap five times each
around a respective digon below). In order to satisfy condition (iv),
generator a-the only one to affect position 1-must alternate throughout
the extent. We find exactly twelve hamiltonian cycles in Figure 19-7
with a alternating; without loss of generality we start at the designated
vertex, with the solid edge. The twelve cycles fall into four equivalence
classes under rotation (conjugation). These are:

By Theorem 19-3, I, II, and III above produce no-call doubles extents
w5 where w is the word given in a, 6, and g. All three satisfy conditions
(i) through (v) by construction, but fail (vi). The extent arising from
I was found initially as a hamiltonian cycle in CA^S), as mentioned
earlier, but Theorem 19-3 is a more efficient means of composing it. On
9 December 1984, this extent was rung to quarter-peal length (eleven
replications, 1,321 changes in all) on the tower bells of the church of St.
Thomas the Martyr in Oxford, England. Following the performance,
the band (J.D. Alford 1, M.E. Ovenden 2, J.G. Pusey 3, R. L. Wilden 4,
I. M. Gardiner 5, R. Pusey (C) 6-rung in cover) named the composition
(as is their right) "White's No Call Doubles."
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Figure 19-7.

As noted above, this composition does not satisfy the symmetry
property (vi). Surprisingly, this turns out to be an asset, as an asym-
metric principle automatically generates three companion extents: (i)
backwards, (ii) reverse (in this case, interchanging the roles of a and b
and replacing g with e], and (iii) backwards reverse (which is the same
as reverse backwards). On 27 February 1985, Reverse White's No Call
Doubles was rung to quarter-peal length at Carfax Tower, Oxford. It
seems that the two backwards versions have yet to be rung.

The extent arising from II above is, in fact, the backwards version of
White's No Call Doubles. The two reverse forms do not arise directly
from Figure 19-7, as the generating sets differ. The extent arising
from III represents another asymmetric doubles principle (with its three
variants; all are apparently unrung, and hence unnamed).

In [W22] all 102 no-call doubles principles on three generators are
constructed, using just five Schreier right coset graphs. All five are
nonplanar, including the graph of Figure 19-7; two others have cross-
ing number 1. One of the other two is depicted in Figure 19-8 with
one crossing on NI and 4-fold rotational symmetry. The hamiltonian
cycle (fc)5fd(fc)4(fd)2 = (15342) in that figure lifts to a no-caU dou-
bles principle satisfying all but condition (vi). This piece was rung
to quarter-peal length at Carfax Tower, Oxford on 19 July 1987, and
named "Western Michigan University Doubles." Kalamazoo composer
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(and Western Michigan University colleague) C. Curtis-Smith then in-
corporated part of the extent into the third movement ("Moto Per-
petuo: Brilliant and Ringing") of his "Concerto for Left hand and
Orchestra," which received its world premiere performance on April
17, 1991 with Leon Fleisher and the Kalamazoo Symphony Orchestra;
Yoshimi Takeda, conductor. Subsequent performances of the piano
concerto have involved the Detroit Symphony and the New York Phil-
harmonic orchestras.

If we rewrite [(fc)5fd(fc)*(fd)2}5 as [df(cf)\df)2(cf)5}5 and re-
gard the latter as [PB]5, where P = df(cf}4df is the plain division and
B — df(cf}4cf is the bob division, then P* = df(cf)4d is a palindrome,
and this arrangement of Western Michigan University Doubles is sym-
metric. (But this doubles principle is no longer a no-call extent.) A

X

Figure 19-8.

pure doubles extent would be one for which every transition moved the
maximum of four bells. But since (a, 6, /} = A5, not 85, no such extent
exists. (Extents of pure triples-every transition moving six bells-do
exist.) An approximation to pure doubles occurs when the two cosets
of A$ (each a no-call doubles touch w5 = I of length 60) are linked
by a single (called twice). This is only possible when S^(A5/1I5) is
hamiltonian, for A = {a, 6, /}. Starting at the designated vertex (to
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display the symmetry) of Figure 19-9, we find exactly four hamiltonian
cycles:

A. fbafbfbfabfa = xa (say)
B. fbafbfbfabfb = xb
C. fabfafafbafa = ya (say)
D. fabfafafbafb — yb.

Figure 19-9.

Then for extents of "nearly pure" doubles, we obtain:

A. [{xa)4xc}2, Reverse Carter Doubles
B. [(xty^xd}2, Stedman Doubles
C. [{yaYyc}2, Reverse Stedman Doubles
D. [(?/&) V]2, Carter Doubles.

These are all well-known. The point is that we have found a unity in
their construction, and we have shown that no other extents of this
type are possible.

19-5. Minor

Amazingly, a principle like White's No Call Doubles can be used
to provide callings for an extent of Plain Bob Minor. In this con-
text it is notationally convenient to rewrite White's No Call Dou-
bles as ™5, where w = (&V)3(&V)3&/s/(&/c/)2(&'s')2 b'd\ b' = (12)(34),
d — (23) (45), and s' = (45). To compose Plain Bob Minor, we start
with a = (12) (34) (56) and b = (23) (45) to generate the hunting group
D6 as the first lead; all other leads will be left cosets of this one.
Appending c = (34)(56) and s — (56), we get the plain and single
leads P = (ab)5ac and S = (a6)5as respectively. Noting that, since
(a&)6 = 1, (ab)5a = b, we rewrite P = be and S = 6s. Now regard
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White's No Call Doubles as being rung on the back five of six bells,
so that, after renumbering, it becomes [(bs}3(bc)3bs(bc)2(bs}2bc}5. Then
[S3P3SP2S2P]5 gives a calling, using singles only, for Plain Bob Minor.
(Note that, whereas s and c represent one transition each, 6 represents
a sequence of eleven transitions. Thus we account for 720 = 6! tran-
sitions in all.) That White's No Call Doubles is an extent guarantees
that the 120 treble leads in our minor composition are distinct. Then,
since each lead (of 12 changes, the first and last being treble leads) is
a coset, and two cosets are either disjoint or identical, our minor com-
position repeats no change, until rounds at the end. That it is indeed
Plain Bob Minor follows from our choices for a, 6 and c. It is routine
to check that conditions (iv), (v), and (vi) all hold.

Thus the 24-vertex graph of Figure 19-7, when fully interpreted,
rings all 721 changes of Plain Bob Minor.

Now consider the Schreier right coset graph S^A^/Zs) for A =
{a,p, 6} as given in Figure 19-10. Starting at the designated vertex,
the obvious hamiltonian cycle starting with the edge labelled "a" is:
(ap)4(ab)2(ap)3ab = (365); thus [(ap)4(ab)2(ap)3(ab)}3 = I. Now, in 58,
set x = (12)(34)(56), y = (12)(56), z = (34)(56), 6 = (23)(56), and
c — (23) (45). Let a = xyxc(xzxc)4xyx = (34) (56), a palindrome. The
word a will determine the leads of the extent we are constructing. The
leads will be connected by transitions 6 and c = p. Set P = ap and
B — ab, the plain and bob leads respectively. Since a, 6, c E (Se)i,
the treble will be leading in the first and last change of each lead; both
these treble leads are in A5. Since xy = (34), the treble will also lead in
rows 3 and 22 of each lead (of 24 changes); both these treble leads are
in the other coset of A$ in 85. Then the identity word above translates
to [P4 B2 P3 5]3, a calling for a treble dodging minor method called
Oxford Treble Bob Minor. This is a variant of the method-type of
composition described in Section 19-1; here the treble is said to be
dodge hunting. (It might be helpful to write out the first lead of this
composition; see Problem 19-7.) Thus we have improved upon even the
efficiency of our construction of Plain Bob Minor, for now we get 721
changes from a graph with only 20 vertices. This analysis is greatly
extended in [W23].

19-6. Triples and Fabian Stedman

Fabian Stedman (c. 1640-1713) worked both as a printer (in Lon-
don and perhaps also in Cambridge) and as a clerk in a London office
of Audit of Excise. He was also very active in change ringing: as ringer,
composer, and expositor. In 1682 he became Master of the Society of
Colledg Youths, a bell-ringing society. Tintinnalogia [D5], published
in 1668, was written "By a Lover of that ART," and "printed by W.G.
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Figure 19-10.

for Fabian Stedman." It is thought [E2] that "W. G." stands for the
publisher W. Godbid, that Stedman helped to arrange the printing
and to supply material for the book, and that the actual author was
Richard Duckworth. Extents on four, five, and six bells were pre-
sented, including what we now call Plain Bob Minimus. Campanalogia
[S21], published in 1677, was printed "by W. Godbid, for F.S.," and
historical evidence indicates that "F.S." was indeed Fabian Stedman.
Campanalogia is a substantial updating of Tintinnalogia. Although
apparently Stedman had no formal mathematical training, he wrote:

"Although the practick part of Ringing is chiefly the subject of
this Discourse, yet first I will speak something of the Art of changes,
its Invention being Mathematical, and produceth incredible effects, as
hereafter will appear."

Many group-theoretic ideas (but of course without the terminol-
ogy and notation that trained mathematicians introduced much later)
are implicit in Stedman's exposition and in the many compositions
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recorded in Campanalogia. These concepts include closed systems, ax-
iomatic systems, coset decomposition (including the ideas of coset rep-
resentative and disjointness), even and odd permutations, factorials,
and stabilizers in permutation groups. (See [W26] for details.) Among
the extents we have considered in this chapter, Plain Bob Doubles and
Stedman Doubles both appear. Let us examine Stedman Doubles more
closely. Rewriting this extent as given in Section 19-4 slightly, we ob-
tain

[(bfbfbafbfbfa)4 (bfbfbafbfbfd)}2

as an identity word ringing Stedman Doubles. As before, b = (23) (45),
/ = (12)(45), a = (12)(34), and d = (23). The sequence bfbfb gives a
slow six on the front three bells, while fbfbf gives a quick six. These
two sequences are used in alternation; each yields all the permutations
on the front three bells, and thus a subgroup isomorphic to 83. (See
Problem 19-8.) Transition a links successive sixes, bringing one of the
back two bells into the front three. The plain course consists of 60
changes, all in A5 — (a, 6,/). The single d is used once to change
cosets of A5 and a second time to return to rounds. Stedman Doubles
can also be thought of as being composed of the 20 left cosets of 63 in
65, and ringers learn the extent in that form; see [SSI]. If we extend
Stedman's Principle (as he called it in Campanalogia) on five bells
to seven bells, we get Stedman Triples. Letting / = (12)(45)(67),
b = (23)(45)(67), and a = (12)(34)(56), we obtain the plain course
w7 = /, where w = (fb)2(fa)(bf)2ba = (1374562). Note that quick
and slow sixes alternate, just as for Stedman Doubles; but now there
are many more of them! In fact, we need 840 left cosets of 83 in
Sj for the extent. To expand the plain course touch of 85 changes
to a full extent, bob c = (12)(34)(67) and single d = (12)(34) have
been used effectively, replacing a in either of its occurrences in certain
subwords w to get beyond the plain course, even as far as the full extent.
Until recently, the most famous unsolved problem in bell ringing was:
Is it possible to ring the full extent of Stedman Triples using only
a, 6, /, and c? In late 1994, Colin Wyld achieved such a composition,
using-out of the 840 positions where the bob c might be called-705
bobs. Then, in early 1995, Andrew Johnson and Philip Saddleton also
composed an extent of Stedman Triples using the common bob c only
(no singles), and one week later their composition was successfully rung
by a Cambridge University Guild band, being called (579 bobs) at the
first attempt by Philip Agg. Thus a centuries old (mathematical!)
problem derived from the work of Fabian Stedman has finally been
settled. The solution corresponds to a hamiltonian cycle in the Cayley
graph for the symmetric group S?, as generated by involutions a, b, c,
and / above, incorporating quick and slow sixes (generated by b and
/) in alternation, linked by generators a and c. It also corresponds to
a hamiltonian cycle in 8^(87/83), where A — {c,d}.
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19-7. Extents on n Bells

Here we present some results of a more general nature, to com-
plement those of Section 19-2. The first of these is due to Rapaport
[R5].

Thm. 19-5. Let A = {(12), (12)(34)(56)... , (23)(45)(67)... } for 5n;
then C&(Sn} is hamiltonian.

If we require only rules (i), (ii), and (iii) for an extent, then we
have:

Cor. 19-6. An extent on n bells exists, for all n. Moreover, only three
transitions are required.

Examination of Rapaport's constructive proof reveals:

Cor. 19-7. For n odd an extent exists which also satisfies condition
(iv) at all but position n, where (at the worst) no bell rests for more
than four successive changes.

A standard algorithm for producing all permutations of n objects
from all those forn—1 objects leads to a sequence of symmetric extents,
all with the treble plain hunting. In fact, if we take the n — 1 objects to
be all but the tenor in a ring of n bells, and set A = {(12), (23),... (n —
l,n)} for 5n, it is not hard to visualize how the treble plain hunts
(through each row of En-\ replicated n times) to produce En, the
permutation extent on n bells. (See [W17] for details.) Thus we have:

Thm. 19-8. A symmetric extent, with the treble plain hunting, exists
for all n.

Define the genus of the extent En by: j(En) = l(G&(Sn}), where

Thm. 19-9. The genus of the permutation extent on n bells is given
by:
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PROOF. The result is immediate if n = 1 or 2. So, let n > 3. As
each generator in A is an odd permutation in 5n, G&(Sn) is a bipartite
graph. Thus we obtain a genus imbedding if we first maximize r$
and then, if r4 equals T±, the number of 4-cycles in G^(Sn), we next
maximize r6. We produce such an imbedding, for each n > 3, as an y-
fold branched covering space of the spherical voltage graph imbedding,
using voltage group Sn, of Figure 19-11. For either vertex v of the
voltage graph, Tv — A$. Thus by Theorem 10-8 the covering space
consists of two homeomorphic components. We take either one of these.
For n = 3, r4 = T4 = 0 and re — 2 (see Figure 19-1). For n = 4, r4 —

(45) (12)

n — 5 n> 6

Figure 19-11.

T4 = 6 and r6 = 8 (see Figure 3 of [W14]). For n = 5,r4 = T4 = 90
and r6 = 20. Finally, for n > 6, r = r4 = (n~Vnl. The result now
follows from the euler identity (Corollary 5-15), using p = nl and q —

[-](n-l)n!
2

These imbeddings were found also by Jacques [J3], by a different
method and for a different purpose.

We say that an involution in Sn is of type A if it is an allowable
transition for ringing changes on n bells: a product of disjoint trans-
positions of adjacent positions. The following is proved in [W19]: note
the potential applicability to Plain Bob on n bells.
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Thm. 19-10. Let A = {a, 6, c, d} be a set of generating involutions
for 5n, each of type A. Let b,c,d,e An-i C (Sn)i- Let (a,6} = Dn,
with ab of order n. Set X = (a6)n~1ac, Y = (ab}n~lad, and assume
that A' = {X,Y} generates An_i. Then there is an extent on n bells
using transitions from A and leads X and Y if and only if C^'C^n-i)
is hamiltonian.

Thm. 19-11. Let X and Y be as in Theorem 19-10, with the addi-
tional condition that cd = dc. Then C&(An-i) is hamiltonian.

The heart of the proof is a construction due to Philip Saddleton
(private communication). Prom cd = dc it is easy to deduce that
YX~l = XY~l. Then Figure 19-12 shows how to merge cycles in
CA'(AH-I) recursively, until a hamiltonian cycle is obtained.

Figure 19-12.

Cor. 19-12. Under the combined hypothesis of Theorems 19-10 and
19-11, there is an extent on n bells, using transitions from A and leads
X and Y.

We apply Corollary 19-12 to Plain Bob Major. Take n = 8, a =
(12)(34)(56)(78), 6 = (23)(45)(67), c = (34)(56)(78), and d = (78).
Then X = (3578642) and y = (23)(45)(678). From ab = (24687531)
and d, we find that A does generate S8. (Use Section 1.5 of [BW1],
and repeated conjugation of d by ab.) From Y2 = (876) and XY2 =
(23574), giving (by conjugation) (68z) in (X, Y) for z = 7,4,2,3,5, we
see that (X, Y) = A7. (See 5.8.4 of [BW1].) All the other conditions
of Corollary 19-12 are met. As d is a single, we deduce that an extent
of Plain Bob Major can be rung on plain and single leads only. The
result generalizes.

Thm. 19-13. For n = 0 (mod 4), an extent of Plain Bob on n bells
can be rung on plain and single leads only.

Similar considerations, in [W19], establish the following two results.
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Thm. 19-14. For n even (n > 6), there is no extent of Plain Bob on
n bells using plain and bob leads only.

Thus a single is both necessary and sufficient for Plain Bob Major.

Thm. 19-15. For n even (n > 6), there is a Plain Bob 2n! on n bells
(each change rung exactly twice, followed by rounds for a third time),
using plain and single leads only.

The next theorem, restated for the present context, is due to Rankin
[R3].

Thm. 19-16. Let group F be generated by A = {x, t/}, with k = jKr,

t = TJ^TT, and m = \(x~1y}\ odd. If <JA(F) is hamiltonian, then k and t
are both odd.

Rankin used this theorem to give a modern (1948) proof of an 1886
result of Thompson [T6], the case n — 7 of the more general the-
orem below (also based on Rankin's theorem). Grandsire is a pop-
ular method on n > 5 (n odd) bells having two bells (1 and 2)
plain hunting. In [W19] we show that the plain and bob leads on
Grandsire (n) axe given by P = (bd)n~l(bf] and B = (6a)n~2(6/)2,
where a = (12)(34)... (n - 2,n - 1), b = (23)(45) ...(n- l,n), and
/ = (12)(45)(67)... (n — l,n), and that an extent using these leads
would require C{p,B}(An-i) to be hamiltonian. This yields:

Thm. 19-17. For n odd (n > 5), there is no extent of Grandsire on n
bells using plain and bob lead only.

We close with a result from [W19] generalizing the calling for Plain
Bob Minor derived from White's No Call Doubles in Section 19-5. Let
n > 6 be even. Let a = (12)(34)... (n - 1, n), 6 = (23)(45)... (n -
2,n — 1); then (a, b) = Dn, the hunting group on n bells. Let c =
(34)(56)... (n - l,n) form the plain lead P = (ab)n~lac. By Theo-
rem 19-14, single leads are required for an extent of Plain Bob on n
bells (n > 6, n even). Such an extent would be given by a calling
[ f ( P , S ) } n ~ l , where /(P,5) is a word in P and S (the single lead) of
length ^n~ '' -since P and 5 each contain 2n changes.
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Thm. 19-18. For each calling [/(P^S)}71'1 of Plain Bob on n bells
(n > 6 and even) , there is a principle on n — 1 bells with

alternating with

and

and conversely.

19-8. Summary

In this chapter we have attempted to illustrate the classical use
of a mathematical model: a problem in a context seemingly far re-
moved from mathematics (ringing extents on English church bells) is
translated into a mathematical context (finding hamiltonian cycles in
graphs); a solution is found to the mathematical problem, in appropri-
ate situations; and that solution, when translated back into the ringing
context, has relevance there. But more: there are layers to the model
we use. Initially we modelled the music in question by Cayley color
graphs for groups, and we found hamiltonian cycles vertex by vertex.
Then we introduced the efficiency of decomposing a given group into
cosets, and we found hamiltonian cycles in the corresponding Schreier
coset graph, coset by coset. This is advantageous for ringers, who
know-dating back to Fabian Stedman in the seventeenth century-that
two cosets are either disjoint or identical. Thus, verifying that the tre-
ble leads are distinct, in an extent of Plain Bob for example, suffices
to "prove" the extent; that is, to show that only rounds is repeated.
This is a significant simplification for the composing of change ringing
music. The final layer of the model comes when we imbed the right
graph of the right group on the right surface. This can be helpful in
at least four ways: (1) cycles are easier to trace out and verify when
edges only intersect where they are supposed to-which does not happen
when a non-planar graph is represented in the plane, for instance: (2)
significant portions of the cycle can often be taken from some of the
region boundaries-as was the case for Plain Bob Minimus in Section
19-3; (3) symmetries of the imbedding can suggest how to extend a
partial cycle into a full one, as we did for White's No Call Doubles in
Section 19-4; (4) a covering projection can reduce a complicated sit-
uation to a simple one, as we saw with Plain Bob Doubles in Section
19-4. We have illustrated these ideas further, with additional extents
on 3, 4, 5, 6, 7, 8, and n bells.
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19-9. Problems

19-1.) Write out the changes of Erin Minimus, and ascertain which of
the conditions (i) through (vi) are satisfied. Is Erin Minimus a
method or a principle?

19-2.) (i) Repeat Problem 19-1, for Double Bob Minimus.
(ii) The word "Double" as the first part of the nomenclature

for an extent indicates that the extent is identical to its
reverse. Verify this property, for Double Bob Minimus.
(Hint: in the reverse version, a = (12) (34) and b = (23) are
unaffected, but c — (34) and d = (12) are interchanged.)

19-3.) Show that the vertices of a regular pentagon can be labelled so
that a = (12)(34) and 6 = (23)(45) are both reflections, and that
(a,b)=D5.

19-4.) Write out the plain course of Plain Bob Doubles. Check to see
that the working bells all work alike.

19-5.) Let G be the graph underlying Figure 19-8. Show:
(i) 7(G) = 1 or 2.

(ii) 7(G) = 1 or 2.
(iii) v(G) = 1 or 2.
(iv) v i ( G ) = O o r 1.
(v) vi(G) = Qoil.

19-6.) *Let A = {a, 6, d}, where a = (12)(34), b = (23)(45), and d =
(23).

(i) Show that S^(S5/Z5} has crossing number one.
(ii) Find all no-call doubles principles using A for the set of

transitions. (Hint: each edge not used in a hamiltonian
cycle for a cubic graph forces all four adjacent edges to be
used.)

19-7.) Write out the first lead of Oxford Treble Bob Minor. Note the
dodge-hunting path of the treble.

19-8.) Show that b = (23)(45) and / = (12)(45) generate a subgroup
isomorphic to 83, and that each path 6/6/6 (or fbfbf) starting
from rounds produces all six elements of that subgroup.

19-9.) Let a = (12)(34), 6 = (23)(45), and / = (12)(45). If we write
the plain course of Stedman Doubles as u>5 = 7, where w =
bfbfbafbfbfa, then by splitting each division in half we achieve
a coset decomposition, of £5 by 83. If we use w = fbafbfbfabfb
instead, as ringers do in practice, we lose that feature. What do
we gain in its place?

19-10.) Show that the permutation extent Es of Section 19-7 is quick
six, and that £4 is Double Canterbury Minimus.

19-11.) Let A = {a, 6, c, d} be as in Theorem 19-10. We know from
Problem 4-17 that C&(Sn} is 1-factorable (by color). What is
the significance of the 1-factor formed by generator 6 for the
Plain Bob extents?
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19-12.) (i) *Show that ((34675), (165)(347)> = A6 < S6 ^ (57)2-
(ii) Now prove the case n = 7 of Theorem 19-17.

19-13.) Let an extent E on n bells be given by a hamiltonian cycle in
CA(SH}. Define the characteristic of E,x(E), to be the maxi-
mum euler characteristic among all surfaces (either orientable or
nonorientable) in which G^.(Sn} can be imbedded.

(i) Find x(En), for the permutation extents En of Section 19-
7.

(ii) *Find x(E)-, f°r eacn minimus extent E.
(iii) Set a = (12)(34)(56)... , b = (23) (45) (67)... , and c =

(34)(56)(78)... in Sn. Let A = {a, 6, c}.
(a) Show that A generates 5n, and that the plain course

of Plain Bob on n bells is depicted by a subgraph of
CA(Sn).

(b) Define %(n), the characteristic of the plain course of
Plain Bob (n), to be the characteristic of C&(Sn).
How would the latter be defined?

(c) Show that %(4) = 1.
(d) Find an imbedding of C&(S$) on N5 having r± = 30,

r8 — 15, and rw = 12. Then label an arbitrary vertex
with rounds, and trace out the plain course of Plain
Bob Doubles, using four of the decagons. Finally, use
hamiltonian cycle (1) of Section 19-4 to find a hamil-
tonian cycle in C&(Ss) corresponding to Plain Bob
Doubles where A' = A U {(23)}.

(e) *Show that x(5) = -3.
(f) **Prove or disprove: for n > 4,
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G, 5 Aut(G), 14
GA(r), 30 r, 19 x(r), 86
Cp(r), 20
cA(r), 20 Aut(cA(r)), 22

, 3 Sfc, 36

Mn, 94
5', 64
5", 64

52 7(r), 73 7(5fc), 36
, 25 r\Q, 25

86 X(r), 86 X(Sk), 90
93
, 94

64 X(5'), 64
, 64 X(5"), 64
102 pfc(r), 106 pfc(MB), 102

Gi = G2, 8 Fi = T2, 13
G! = G2, 8 F! = T2, 13
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Gi x G2, 9 Ti x T2, 15
G^GJ, 10 r̂ rj, 15
Gi0G2, 135
Pi, 62
Kn, 10 5n, 15
Wmi 47 L>n, 15
Gn, 10 Zn, 15
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Graphs

Jn, 269
Ln, 269
Rn, 270
Bmt 271
Dn, 273
Kn(m), 10

2(G), 105

D, 180
G», 256
X(#), 179
(AT,r,A), 111
(#,r,0), 121
V(G), 5
£(G), 5
<5(G), 8
A(G), 8

9(G), 98
a(G), 101
0(G), 66
0n(G), 66
0n(G), 66
u(G), 67
vn(G), 69
#n(G)l 69

/?(G), 56
7M(G), 55
D/(G), 42
G, 9
Gi U G2, 9
nG, 9
G-u, 7
G-x, 7
(5), 6
d(u,v), 8
d(v), 5
# <g) G, 137
HxG, 137
ff (8)' G, 137
V(i), 62

Groups

Aut(M), 237
Aut*(M), 239
Aut(D), 239

A, 20
P, 20
An, 15

P2,'76

DOO, 76
rv, 122
J./ \ 1 OO<p(a;J, Izz
I^U, 124

Tx, 237
rx, 237
(r,X),237
N*, 247
Aut(G), 250
GF(pr), 187
n, 215
n(n), 216
PG(2,n), 218
H', 223
n'(n), 225
AG(2,n), 225
t(n), 299
F(n), 299
di? 299
N(T), 80
Q, 29
K, 84

Surfaces

(̂5), 105
M, 237

7(Z>), 180
Mn, 256
XH(Sk), 180
KCL, 111
KVL, 126

n, 40
r, 37
Mn o/i, O4

Bn, 34
o

D, 33
D, 269
52, 38
5(A;;ni(mi) • • •), 46
5(0; n(2)), 103
M, 34
7(ATfc), 36
Xi(S), 101
Xi(Sk), 101
Xi(Nh), 101
X(5,c), 104
p, 119, 235
7̂x, H9
X, 119
JV(7,Y), 131
P, 123
P, 123
<, 175
cr, 236
(G, p), 235
J2(G), 236
M-1, 239
M(r,A,p), 243
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AT(u), 16 rn, 257
AT[w], 16 rn, 256
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additional adjacency part, 114
adjacent edges, 5
adjacent vertices, 5
affine plane, 223

order of, 225
almost all graphs, 281
almost no graphs, 281
anti-automorphism of a graph, 250
arc, 52
associated bipartite graph, 175
associates

first, 161
second, 161

augmented tensor product, 137
automorphism

of a Cayley color graph, 22
of a design, 171
of a graph, 14
of a group, 244
of a map, 237

automorphism group
of a Cayley color graph, 22
of a graph, 14
of a map, 237

average Cayley genus, 290
average genus, 282
axiom system

complete, 200
consistent, 200
independent, 200
model of, 200

balanced incomplete block design
(BIRD), 157

bell
tenor, 296
treble, 296

Betti number of a graph, 56
bichromatic dual, 131
bi-imbeddable, 131
bipartite graph, 10
block of a design, 157, 162
block of a graph, 54

blue line, 297
bob, 297
bob lead, 305
n-book, 49
bounded subspace, 34
bouquet, 271
branch points, 121
branched covering projection, 121
branched covering space, 121
bridge, 31

cactus, 57
cage, 220
call, 297
capping, 39
Cayley color graph, 20
Cayley graph, 30
Cayley genus, 290

average, 290
maximum, 290

Cayley map, 243
Cartesian product

of two Cayley color graphs, 27
of two graphs, 9
of two permutation groups, 15

2-cell, 33
2-cell imbedding, 39
2-cell regions, 38
change, 296
characteristic

of a closed 2-manifold, 36, 144
of a graph, 86
of a group, 86
of a pseudosurface, 46
of an extent, 321

chiral map, 261
chromatic number

of a graph, 90
of a group, 106
of a hypergraph, 179
of a pseudosurface, 103
of a surface, 90

1-chromatic number, 101
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class function, 238
clockwise rotation, 285
closed 2-manifold, 34
closed-end ladder, 269
closed neighborhood, 16
closed walk, 7

?7-trivial, 147
cobblestone path, 269
cochromatic number

of a graph, 105
of a surface, 105

coherent orientation, 35
collinear, 171
compatible region distribution, 268
complement, 9
complete axiom system, 200
complete bipartite graph, 10
complete design, 157
complete graph, 10
complete map, 247
complete n-partite graph, 10
component, 7
composite graph, 16
composition

of two graphs, 10
of two permutation groups, 15

configuration, 209
imbedding, 211
symmetric, 210

connected design, 164
connected graph, 7
connected hypergraph, 174
n-connected graph, 44
conservative graph, 117
consistent axiom system, 200
counterclockwise rotation, 285
covering bell, 298
covering graph, 122
covering projection, 119

branched, 121
n-fold, 120

covering space, 119
branched, 121

n-critical graph, 106
crossing number, 67, 69
crosscap number, 143
n-cube, 10
cubic graph, 8
current, 111
current graph, 111
cut vertex, 54
cycle, 7
cycle rank, 56

fc-degenerate graph, 102
degree

of a vertex, 5
of a permutation group, 13

Desargues Geometry, 204
design

balanced incomplete block (BIBD),
157

complete, 157
connected, 164
dual of, 259
genus of, 180
group divisible, 162
isomorphic, 163
Latin square, 166
Paley, 170
partially balanced incomplete block

(PBIBD), 162
resolvable, 163
^-resolvable, 163
transversal, 163

diameter, 8
dicyclic group, 87
digraph, 6

strongly connected, 21
unilaterally connected, 21
weakly connected, 21

dipole, 273
direct product

of two groups, 15, 27
of two permutation groups, 15

directed edge, 6
directed graph, 6
distance, 8
divisions, 297
dodecahedron, 42
doubles, 298

pure, 310
Western Michigan University, 309
White's No Call, 308

dual, 42
bichromatic, 131
of a design, 259
of a geometry, 203
of a map, 252
pseudograph, 42

edge
of a graph, 5
of a hypergraph, 173
directed, 6
multiple, 6

n-edge colorable graph, 92
n-edge critical graph, 99



INDEX OF DEFINITIONS 359

elementary subdivision, 50
empty graph, 10
equivalent permutation groups, 13
equivalent rotations, 236
euler characteristic, 36
euler identity, 39
euler polyhedral identity, 37
eulerian graph, 7
evenly covered, 119
extended map automorphism group,

239
extent, 296

characteristic of, 321
doubles, 298
genus of, 315
Grandsire, 318
minimus, 301
minor, 298
no-call, 297
permutation, 315
triples, 298

face, 37
n-factor, 31
n-factor able, 31
Fano plane, 201
finite geometry, 209
finite presentation, 20
finitely generated presentation, 20
finitely related presentation, 20
first associates, 161
n-fold covering projection, 120
2-fold triple system, 158
forest, 46
free group, 75
Frobenius group, 247
fundamental group, 3

generalized pseudocharacteristic of a
graph, 64

generalized pseudosurface, 46
generator, 19

minimal set, 24
redundant, 24

genus
average, 282
average Cayley, 290
Cayley, 290
maximum Cayley, 290
of a block design, 180
of a field, 189, 191
of a geometry, 206
of a graph, 52

of a group, 73
of a hypergraph, 178
of a ring, 197
of a surface, 36
of an extent, 315
random variable, 282

geometry
affine plane, 223
configuration, 209
Desargues, 204
dual, 203
Fano, 201
genus of, 206
isomorphic, 203
Pappus, 202
n-point, 200
projective plane, 215
self-dual, 203

girth, 98
Grandsire, 318
graph, 5

anti-automorphism of, 250
automorphism group of, 14
automorphism of, 14
Betti number of, 56
bipartite, 10
Cayley, 30
Cayley color, 20
characteristic of, 86
chromatic number of, 90
closed end ladder, 269
cobblestone path, 269
cochromatic number of, 105
complement of, 9
complete, 10
complete bipartite, 10
complete n-partite, 10
composite, 16
connected, 7
n-connected, 44
conservative, 117
covering, 122
n-critical, 106
cubic, 8
current, 111
cycle rank of, 56
^-degenerate, 102
directed, 6
n-edge colorable, 92
n-edge critical, 99
empty, 10
eulerian, 7
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generalized pseudocharacteristic of,
64

genus of, 52
girth of, 98
hamiltonian, 7
identity, 14
imbedding of, 52
imbedded, 52
infinite, 6, 73
isomorphic, 8
labeled, 5
Levi, 175
line, 12
locally connected, 57
loop, 6
manifold number of, 145
maximum genus of, 55
Menger, 206
multi, 6
odd, 17
orientably simple, 145
Paley, 256
perfect, 11
planar, 40
planar infinite, 74
plane, 40
3-polytopal, 44
prime, 16
pseudo, 6
pseudocharacteristic of, 64
quotient, 109
regular, 8
regular complete n-partite, 10
relatively prime, 16
Ringel ladder, 270
Schreier coset, 25
self-complementary, 250
strongly regular, 161
totally disconnected, 10
trivial, 10
underlying, 6
vertex arboricity of, 101
vertex partition number of, 102
vertex transitive, 23
voltage, 121

graphical regular representation, 251
group

characteristic of, 86
chromatic number of, 106
dicyclic, 87
extended map automorphism, 239
free, 75
Probenius, 247

fundamental, 3
genus of, 73
graph automorphism, 14
hamiltonian, 29
hunting, 302
identical permutation, 13
infinite dihedral, 75
isomorphic permutation, 13
local, 122
map automorphism, 237
permutation, 13
planar, 73
vertex partition number of, 106

group divisible PBIBD, 162

hamiltonian graph, 7
hamiltonian group, 29
hexahedron, 42
homeomorphic from, 50
homeomorphic with, 50
hunting group, 302
hypergraph, 173

adjacency in, 173
chromatic number of, 179
edge of, 173
genus of, 178
incidence in, 173
maximum genus of, 178
r-uniform, 173
vertex degrees in, 173
vertices of, 173

hyperregion, 206

icosahedron, 42
identical permutation groups, 13
identity graph, 14
1-imbeddable, 101
imbedded graph, 52
imbedding

2-cell, 39
of a graph, 52
of a pseudograph, 36
configuration, 211
index of, 109, 127
maximal, 144
minimal, 53
nonorientably minimal, 143
quadrilateral, 54
simplest, 144
triangular, 54

imbedding scheme, 146
incident, 5
independent axiom system, 200
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index of an imbedding, 109, 127
induced subgraph, 6
infinite dihedral group, 75
infinite genus, 74
infinite graph, 6, 73
isomorphic designs, 163
isomorphic geometries, 203
isomorphic graphs, 8
isomorphic permutation groups, 13

join, 9

Kirchoff's Current Law (KCL), 111
Kirchoff Voltage Law (KVL), 126
klein bottle, 35

labeled graph, 5
Latin square designs, 166
lattice point, 45
lead, 297

bob, 305
plain, 305
single, 311
symmetric, 297

length of a region, 40
length of a walk, 7
Levi graph, 175
lexicographic product, 10
lifts, 119
line graph, 12
local group, 122
locally connected graph, 57
loop, 6
loop graph, 6

2-manifold, 33
closed, 34
nonorientable, 34
orientable, 34, 35
vertex partition number of, 102

n-manifold, 33
manifold number of a graph, 145
manifold, quotient, 109
map, 235

automorphism group of, 237
automorphism of, 237
Cayley, 243
chiral, 261
complete, 247
mirror image of, 239
Paley, 256
periods of, 246
reflexible, 239
self-dual, 252

strongly symmetric, 255
symmetrical, 241
symmetrical nonorientable, 242

maximal imbedding, 144
maximum Cayley genus, 290
maximum genus

of a graph, 55
of a hypergraph, 178

maximum nonorientable genus, 153
Mendelsohn triple system, 159
Menger graph, 206
method, 297
minimal generating set, 24
minimal imbedding, 53
minimus, 301
minor, 298
mirror image of a map, 239
mobius strip, 35
model of a geometry, 200
multigraph, 6
multiple edge, 6
multiplicity of branching, 121

neighborhood of a vertex, 16
no-call extent, 297
nonorientable genus, 143
nonorientable 2-manifold, 34
nonorientable symmetrical map, 242
nonorientably minimal

imbedding, 143

object set, 13
objects, 157, 162
octahedron, 42
odd graph, 17
open walk, 7
open unit disk, 33
orbits, 237
order of a graph, 5
order of a permutation group, 13
orientable 2-manifold, 34, 35
orientably simple graph, 145

Paley designs, 170
Paley graph, 256
Paley map, 256
Paley tournament, 262
palindromic method, 296
Pappus geometry, 202
partially balanced incomplete block

design (PBIBD), 162
path, 7
peal, 298
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pencil of lines, 217
perfect difference set, 170
perfect graph, 11
periods of a map, 246
permutation, 13
permutation extent, 315
permutation group, 13

degree of, 13
equivalence, 13
order of, 13
regular, 13
transitive, 13

Petersen graph, 17
plain course, 297
plain hunting, 297
plain lead, 305
planar BIBDs, 181
planar graph, 40
planar group, 73
planar infinite graph, 74
plane graph, 40
Platonic solids, 43
n-point geometry, 200
polar line, 204
pole of a line, 204
polyhedron, 41

regular, 41
3-polytopal graph, 44
presentation, 20

finite, 20
finitely generated, 20
finitely related, 20
standard, 27

prime graph, 16
principle, 297
product

augmented tensor, 137
cartesian (Cayley color graphs), 27
cartesian (graphs), 9
cartesian (permutation groups), 15
direct (groups), 15, 27
direct (permutation groups), 15
lexicographic, 10
strong Cartesian, 137
strong tensor, 135
tensor, 137
wreath, 15

projective plane, 35, 215
finite, 216
order of, 216

pseudocharacteristic
of a graph, 64
regular, 220

pseudograph, 6
imbedded, 36

pseudosurface, 46
characteristic of, 46
chromatic number of, 103
generalized, 46

pure doubles, 310

quadrilateral imbedding, 54
quick six, 300
quotient graph, 109
quotient group, 109
quotient manifold, 109

random variable
genus, 282
symmetry, 282

rank of an abelian group, 27
realizable region distribution, 268
redundant generator, 24
region distribution, 268

compatible, 268
realizable, 268

reflection, 239
reflexible map, 239
region, 37

2-cell, 38
length of, 40

regular complete n-partite graph, 10
regular graph, 8
regular map, 241
regular part, 114
regular permutation group, 13
regular polyhedron, 41
regular pseudocharacteristic, 220
relation, 19
relatively prime graphs, 16
resolvable design, 163
^-resolvable design, 163
Ringel ladder, 270
ropesight, 297
rotation, 62

clockwise, 285
counterclockwise, 285
equivalent, 236

rotation scheme, 62
rotation system, 62
rounds, 296

Schreier coset graph, 25
second associates, 161
self-complementary graph, 250
self-dual geometry, 203
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self-dual map, 252
simple polygon, 45
simplest imbedding, 144
single, 297
single lead, 311
singular point, 46
singular vertex, 46
size of a graph, 5
slow six, 300
spanning subgraph, 6
splitting tree, 57
stabilizer, 237
standard presentation, 27
Steiner triple system, 159
stereographic projection, 38
Stirling numbers, 273
strong Cartesian product, 137
strong tensor product, 135
strongly connected digraphs, 21
strongly regular graph, 161
strongly symmetric map, 255
subdivision, elementary, 50
subgraph, 6

induced, 6
spanning, 6

sum, 15
surface, 33

chromatic number of, 90
cochromatic number of, 105
genus of, 36
hypergraph chromatic number of,

180
vertex arboricity of, 101

symmetric configuration, 210
symmetric lead, 297
symmetrical map, 241

nonorientable, 242
symmetry random variable, 282

Tait coloring, 132
tenor bell, 296
tensor product, 137
tetrahedron, 42
thickness, 66

toroidal, 131
torus, 35
toroidal thickness, 131
totally disconnected graph, 10
touch, 298
tournament, Paley, 262
trail, 7
transitive permutation group, 13
transversal design, 163

treble bell, 296
treble-dominated method, 297
tree, 36

splitting, 57
triangular imbedding, 54
triple system

2-fold, 158
Mendelsohn, 159
Steiner, 159

triples, 298
trivial graph, 10
77-trivial closed walk, 147
underlying graph, 6, 73
r-uniform hypergraph, 173
unilaterally connected digraph, 21
union, 9
upper-imbeddable, 56

vertex, 5
neighborhood of, 16
singular, 46

vertex arboricity
of a graph, 101
of a surface, 101

vertex partition number
of a graph, 102
of a group, 106
of a closed 2-manifold, 102

vertex transitive, 23
voltage, 121
voltage graph, 121
vortices, theory of, 114

walk, 7
closed, 7
length of, 7
open, 7

weakly connected digraph, 21
Western Michigan University Doubles,

309
wheel, 47
White's No Call Doubles, 308
word, 19
wreath product, 15




