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Preface

ISAAC 2007, the 18th International Symposium on Algorithms and Computa-
tion took place in Sendai, Japan, December 17-19, 2007. In the past, it was
held in Tokyo (1990), Taipei (1991), Nagoya (1992), Hong Kong (1993), Beijing
(1994), Cairns (1995), Osaka (1996), Singapore (1997), Daejeon (1998), Chen-
nai (1999), Taipei (2000), Christchurch (2001), Vancouver (2002), Kyoto (2003),
Hong Kong (2004), Hainan (2005), and Kolkata(2006).

The symposium provided a forum for researchers working in algorithms and
the theory of computation from all over the world. In response to our call for
papers we received 220 submissions from 40 countries. The task of selecting the
papers in this volume was done by our Program Committee and many other
external reviewers. After a thorough review process, the Committee selected 77
papers. We hope all accepted papers will eventually appear in scientific journals
in a more polished form. Two special issues, one of Algorithmica and one of
the International Journal of Computational Geometry and Applications, with
selected papers from ISAAC 2007 are in preparation.

The best paper award was given for “Integer Representation and Counting in
the Bit Probe Model” to Mohammad Rhaman and Ian Munro. Selected from 27
submissions authored by only students, the best student paper awards were given
for “On Mixing and Edge Expansion Properties in Randomized Broadcasting”
to Thomas Sauerwald and for “Faster Combinatorial Algorithms for Determi-
nant and Pfaffian” to Anna Urbanska. Two eminent invited speakers, Pankaj
K. Agarwal, Duke University, USA, and Robin Thomas, Georgia Institute of
Technology, USA, also contributed to this volume.

I would like to thank the Program Committee members and many external
reviewers for their great efforts in the review process. I would also like to thank
the Conference Committee, Local Organizing Committee, and ISAAC Advisory
Committee for their contribution to make the conference a success. Finally, I
would like to thank our sponsors and supporting organizations for their assis-
tance and support.

December 2007 Takeshi Tokuyama
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Modeling and Analyzing Massive Terrain Data

Sets

Pankaj K. Agarwal

Department of Computer Science,
Duke University,

Durham NC 27708-0129, USA
pankaj@cs.duke.edu

With recent advances in terrain-mapping technologies such as Laser altimetry
(LIDAR) and ground based laser scanning, millions of georeferenced points can
be acquired within short periods of time. However, while acquiring and geo-
referencing the data has become extremely efficient, transforming the resulting
massive amounts of heterogeneous data to useful information for different types
of users and applications is lagging behind, in large part because of the scarcity
of robust, efficient algorithms for terrain modeling and analysis that can handle
massive data sets acquired by different technologies and that can rapidly detect
and predict changes in the model as the new data is acquired.

This talk will review our on-going work on developing efficient algorithms for
terrain modeling and analysis that work with massive data sets. It will focus on
algorithms for constructing digital elevation models of terrains, handling noise
in elevation models, and for computing watershed regions and stream-networks.
The talk will also discuss some of the challenges that we face in this area.
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1 Introduction

We are concerned with coloring graphs that embed in a fixed surface. This restric-
tion often makes coloring problems tractable, and the purpose of this abstract
is to describe a new result along these lines.

By a surface we mean a compact 2-dimensional manifold with empty boundary.
The classification theorem of surfaces states that every surface is homeomorphic to
either the surface Sg obtained from the sphere by adding g handles (“the orientable
surface of genus g”), or to the surface Nk obtained from the sphere by adding k
“cross-caps” (“the non-orientable surface of cross-cap number k”). We refer to [8]
for background information on surfaces and graphs embedded in them.

Thomassen initiated a systematic study of coloring graphs on surfaces by for-
mulating two related questions. The first one asks for the complexity status of the
following decision problem for fixed integers k and g and a fixed surface Σ.

Decision Problem 1. k-COLORING GIRTH ≥ q GRAPHS IN Σ
INSTANCE: A graph G of girth at least q embedded in the surface Σ.
QUESTION: Is G k-colorable?

The second question is closely related and concerns the finiteness of (k + 1)-
critical graphs among the instances of Decision Problem 1. A graph G is (k+1)-
critical if it is not k-colorable, but every proper subgraph is k-colorable. The
second question Thomassen posed is

Question 1. Given integers k, q and a surface Σ, is the number of (k+1)-critical
graphs of girth at least q that embed into Σ finite?

If the answer is yes, then Decision Problem 1 has an easy polynomial-time
algorithm—simply test if the input graph G has a subgraph isomorphic to one
of the finitely many (k + 1)-critical graphs. In fact, this algorithm can be imple-
mented to run in linear time [2]. Furthermore, in all instances when the number
� Partially supported by NSF Grants No. DMS-0200595 and DMS-0354742.
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of (k+1)-critical graphs is finite we also have an explicit bound on the maximum
size of such a graph, and hence we not only know that the algorithm exists, but
we can actually construct it.

Question 1 is now completely settled. For k = 2 the answer is negative, because
of odd cycles, and for k = 3 and q ≤ 4 the answer is negative for all surfaces
other than the sphere because of the graphs obtained from odd cycles by means
of the Mycielski’s construction [1, Section 8.5]. For k = 4, q = 3 the answer is
negative because of a construction of Fisk [3]. For pairs k, q such that q ≥ 6 and
k ≥ 3, or q ≥ 4 and k ≥ 4, or k ≥ 7 the answer is positive by Euler’s formula
and a theorem of Gallai [4]; see [6]. In the remaining cases k = 5, q = 3 and
k = 3, q = 5 the answer is positive by two deep theorems of Thomassen [9,10].
Let us state the one directly related to our work.

Theorem 2. For every surface Σ, the number of 4-critical graphs of girth at
least five that embed into Σ is finite.

It follows from the solution to Question 1 that Decision Problem 1 is polynomial-
time solvable for all pairs (k, q), except the pairs (3, 3), (3, 4) and (4, 3). In case
of the last pair Problem 1 has a trivial solution when Σ is the sphere, but for
all other surfaces its resolution is clouded by similar issues that make the Four-
Color Problem so difficult. Thus the prospects for a solution are not very bright.
In case of the pair (3, 3) Problem 1 is NP-hard for all surfaces, because it is
NP-hard even when Σ is the sphere [5, Theorem 4.2]. That leaves us with the
case k = 3 and q = 4, which constitutes our main result.

2 Our Result

The classical theorem of Grötzsch [7] states that every triangle-free planar graph
is 3-colorable. Thus deciding whether a triangle-free planar graph is 3-colorable
is trivial. However, Grötzsch’s Theorem does not generalize to any other sur-
face Σ, and, in fact, the 3-colorability of triangle-free graphs embedded in Σ
is an interesting problem. When Σ is the projective plane it has been solved
by Gimbel and Thomassen [6], but it was open for all other surfaces. In this
abstract we announce solution for all surfaces, as follows.

Theorem 3. For every surface Σ there exists a polynomial-time algorithm that
given an input triangle-free graph G embedded in Σ correctly determines whether
G is 3-colorable.

In fact, our result is more general in two respects. The input graph is allowed to
have triangles, as long as they are not trivial. (We say that a cycle C is trivial
if it bounds a disk, and non-trivial otherwise.) Second, a bounded number of
vertices may be precolored.

We prove Theorem 3 by means of the following structural result. We need a
definition first. If G is a graph embedded in a surface Σ and f is a face of a
subgraph of G, then by G[f ] we denote the subgraph of G consisting of all vertices
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and edges of G embedded in the closure of f . Furthermore, we regard G[f ] as
embedded in the surface Σ[f ] obtained from f by capping off each component
of the boundary of f by a disk.

Theorem 4. For every surface Σ there exists an integer N such that every
triangle-free graph G embedded in Σ is either 3-colorable, or has a subgraph H
on at most N vertices such that for every face f of H

(i) f is a disk, or
(ii) f is a cylinder, or
(iii) the graph G[f ] embedded in the surface Σ[f ] is “locally planar”.

We omit the definition of local planarity. Instead, let us remark that we have
proven a coloring extension theorem that under the assumption of local planarity
gives an easily checkable necessary and sufficient condition for a coloring of the
boundary of f to extend to G[f ]. This condition is in terms of “winding number”
of the precoloring, and takes a different form depending on whether Σ[f ] is
orientable or not.

The proof of Theorem 4 can be converted to a polynomial-time algorithm to
find the graph H . Starting with the null graph, if the current graph does not
satisfy any of the conclusions of the theorem, then we find a way to enlarge H
while simplifying the faces of H , and repeat. The simplification guarantees that
there will be only a constant number of iterations.

Once the graph H is found we use Theorem 4 to test whether some 3-coloring
of H extends to G[f ] for all faces f of H . We have developed separate algorithms
to do that when f is a disk or a cylinder. If condition (iii) holds, then the
extension question can be easily decided using the coloring extension theorem
mentioned above.
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Abstract. We examine the problem of integer representation in near
minimal number of bits so that increment and decrement (and indeed
addition and subtraction) can be performed using few bit inspections and
fewer bit changes. In particular, we prove a new lower bound of Ω(

√
n) for

the increment and decrement operation, where n is the minimum number
of bits required to represent the number. The model of computation we
considered is the bit probe model, where the complexity measure counts
only the bitwise accesses to the data structure. We present several effi-
cient data structures to represent integer that use a logarithmic number
of bit inspections and a constant number of bit changes per operation.

Keywords: bit probe model, data structure, Gray code, lower bound.

1 Introduction

The data type integer is fundamental to any computer and any programming
language. Therefore, the representation of integers and operations on them are
fundamental issues. We study the problem of integer representation using a
nearly minimal number of bits so that basic operations can be done efficiently.
The operations include increment, decrement, addition and subtraction.

The model of computation considered in this paper is the bit probe model. In
this model, the complexity measure counts the bitwise accesses to the data struc-
ture. The model ignores the cost of computation. Lower bounds derived by this
model are also lower bounds in any realistic, sequential model of computation.

Although the cell probe model is used more frequently in the data structures,
the bit probe complexity measure was never out of sight and has gained interest
in recent years [2,12,15,16]. The bit probe model was introduced by Minsky and
Papert [13] and was generalized into the cell probe model by Yao later [17].

2 Preliminaries

We are interested in representing the integers in the range [0, 2n − 1], where n is
the minimum number of bits required to represent an element of this set, and we
� This work was supported by NSERC of Canada and The Canada Research Chairs

Program.
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call n the dimension of an integer in this range. Let x be an integer of dimension
n. The increment operation yields a representation of the value (x + 1) mod 2n.
Similarly, the decrement operation can be defined. The addition operation has
the form x ← x + y, where x has a larger dimension than y, so that the number
x is replaced with the sum. The subtraction operation can be defined similarly.

The standard binary number system uses n bits to represent an integer of
dimension n. To increment, scan the bits from the right until the rightmost ‘0’.
Flip this bit to ‘1’ and all previous bits to ‘0’s. The decrement operation is
similar. So, this representation requires n bit probes per operation in the worst
case. The addition between x and y proceeds from the rightmost bits of x and
y. Add the corresponding bits with the proper propagation of carry. Clearly, the
operation requires n+m bit inspections and n+1 bit changes in the worst case.

The redundant binary system supports constant amortized time per operation
[3,4]. The scheme doubles the space usage. But the model considered in these
schemes is not the bit probe model. Frandsen et al. [8] gave a representation that
requires O(log n) bit probes per operation. Using the same time, the number can
be tested to be equal to a number from chosen a fixed set of numbers. Fredman
used the decision assignment tree to obtain the bit probe lower bound of Ω(log n)
to generate a quasi-Gray code sequence [9]. Fredman’s tree representation uses
three times the minimum space required while permitting a constant number of
bit changes for the increment operation.

The Binary Reflected Gray Code (BRGC) was invented by Frank Gray while
converting analog signals into digital signals [10]. A Gray code sequence of dimen-
sion n contains a sequence of 2n elements, where each element of the sequence
is a n-bit code, such that two consecutive codes in the sequence differ only in
one bit. In cyclic Gray code, the first and the last element in the sequence also
differ in one bit. The BRGC is a cyclic Gray code.

Definition 1. The empty string is the sequence G(0), the Binary Reflected Gray
Code (BRGC) sequence of dimension 0. Let G(n − 1) be the BRGC sequence of
dimension n−1. Then the following sequence: G(n) = 0.[G(n−1)], 1.[G(n−1)]R

is the BRGC sequence of dimension n, where [G(n− 1)]R is the BRGC sequence
of dimension n − 1 in the reverse order. The ‘.’ indicates concatenation with
each code of the sequence and ‘,’ separates the first half of the sequence from the
last half.

Let X be the BRGC of dimension n that contains a value x ∈ [0, 2n − 1] and
is denoted by X = xnxn−1 · · · x1, where xi ∈ [0, 1]. The definition of the BRGC
sequence leads to the following observations.

Observation: In the BRGC sequence of dimension n, the i-th bit is flipped
2n−i times, for all i such that 1 ≤ i < n. The n-th bit is flipped 2 times.

Observation: In the BRGC sequence of dimension n, a transition from a
code in the sequence to the next code causes a bit flip. Consider the flip
of bit xi. (i) In each of the next 2i−1 − 1 transitions, a bit xj is flipped,
where i > j. (ii) A bit xk is flipped in the 2i−1-th transition, where i < k.
(iii) The distance between two flips of bit xi is 2i.
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The generation of the BRGC has been studied extensively. To get the next
code, for an even parity code, flip the rightmost bit. For an odd parity code, find
the rightmost ‘1’ and flip the bit to its left. The only special case is when the last
bit xn is the only ‘1’ in the code. This is also the last code in the BRGC sequence.
Note that the parity is odd. But in this case, it is sufficient to flip bit xn to go
back to the first code of the BRGC. Boothroyd [1] calculates the parity and finds
the last ‘1’ bit by a scan of the bits. With no additional space, the algorithm to
generate the next code of the BRGC sequence requires n bits inspections, as it
has to determine the parity of the code. But only one bit needs to be changed
to get the next code. Misra [14] stores the parity explicitly and maintains a
stack of indices of bits that are ‘1’s to improve the performance significantly
on average. Er [6] presented some improvements on Misra’s algorithm. None of
the algorithms mentioned above, considers the problem in the bit probe model.
Lucal proposed a modified Gray code where the parity bit is integrated into the
code [11]. For detailed survey on the Gray code, the readers are referred to the
paper by Doran [5].

3 A Lower Bound

In this section, we present a new lower bound for the increment operation of
an integer with dimension n. The Sunflower lemma is used to prove the lower
bound. A Sunflower with p petals is a collection S1, S2, · · · , Sp of sets so that
the intersection Si ∪ Sj is the same for each pair of distinct indices i and j.
The intersection is called the center of the sunflower. The following well-known
lemma is due to Erdös and Rado [7].

Lemma 1. (Sunflower Lemma) Let S1, S2, · · · , Sm be a system of sets each of
cardinality at most l. If m > (p − 1)l+1l!, then the collection contains as a
subcollection a sunflower with p petals.

Let M be a memory of size n bits. There can be m = 2n distinct memory
configurations. A counting sequence s = c0c1 · · · cm−1c0 is a sequence of distinct
memory configurations such that for any two memory configurations ci and cj , if
i �= j then ci �= cj . The increment algorithm is denoted by a Decision Assignment
Tree (DAT) where at each internal node a single bit is inspected and at each
leaf one or more bits are flipped, so that the algorithm is ignorant of the current
memory configuration.

Theorem 1. Consider an integer of dimension n represented in exactly n bits
using any representation of the values in the range. The increment operation on
this representation requires Ω(

√
n) bit inspections in the worst case.

Proof. Fix a counting sequence s = c0c1 · · · cm−1c0. Let Si be the set of bits
inspected while switching from configuration ci to configuration c(i+1) mod m,

for all i such that m > i ≥ 0. Build a DAT for the sequence s, where at each
internal node a single bit is inspected and at each leaf one or more bits are
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flipped. For a memory configuration ci, follow the root-to-leaf path and flip the
bits mentioned at the leaf to get the memory configuration ci+1. Let l be the
height of the DAT. Therefore, |Si| ≤ l, for all i such that m > i ≥ 0.

Let p′ be the largest integer satisfying the inequality in the sunflower lemma.
Therefore, we can find a sunflower Si1 · · · Sip′ with p′ petals for all j, such that
0 ≤ ij < m and 1 ≤ j ≤ p′. Let C be the center of the sunflower. Thus C is a
set of bits. Since p′ is the largest integer that satisfies the inequality, we have,
m ≤ {(p′ + 1) − 1}l+1l! and hence log p′ ≥ log m

l+1 − O(log l).
Consider two sets Si and Sj such that they correspond to two petals of the

sunflower. The sets Si and Sj correspond to two root-to-leaf paths in the DAT.
Consider the bit inspected at the lowest common node of these two paths. The
bit is in C as it is a common bit of Si and Sj . Furthermore, the value of the
bit must differ for Si and Sj. Therefore, the content of C must uniquely identify
a petal of the sunflower. Thus, |C| ≥ log p′ ≥ log m

l+1 − O(log l). But, we know
|C| ≤ l. Therefore, l ≥ log m

l+1 − O(log l) ⇒ l = Ω(
√

log m). Since m = 2n, we
have l = Ω(

√
n). 
�

4 Efficient Increment and Decrement

Our first data structure for efficient integer representation uses the properties of
the BRGC and requires n+log n+3 bits to represent an integer of dimension n.
Store the BRGC of dimension n explicitly. Also store a parity bit for the Gray
code — the parity bit is ‘1’ when the current code has even number of ‘1’s. The
n bits of the code are divided into two blocks — (i) the lower order log n bits
of the code denoted by XL = xlog n · · · x1, and (ii) the remaining (n − log n)
bits of the code denoted by XH = xn · · · xlog n+1. A pointer P, requiring log n
bits, points to the rightmost ‘1’ in XH , when it is ready. The pointer P becomes
invalid, when the position of the rightmost ‘1’ of XH is changed. Update P in
the background by erasing the previous content of P and by checking one bit of
XH at a time. We use two status bits — (i) R : the ready bit, denotes whether
the pointer P is pointing to the rightmost ‘1’ of XH , and (ii) E : the erase bit,
denotes whether P is being initialized by erasing the previous content.

Lemma 2. The position of the rightmost ‘1’ of XH is changed on an increment
or decrement operation only when the rightmost bit of XH is flipped, except for
the special case, where bit xn is flipped from ‘1’ to ‘0’ (‘0’ to ‘1’) in an increment
(decrement) operation.

Proof. Let xi be the bit of XH to be flipped next by an increment (decrement)
operation. We have, i > log n. From the increment (decrement) algorithm of the
BRGC, we know that, xi is flipped only when the parity of the code is odd (even)
and xi−1 is the rightmost ‘1’ in the code. If i > log n + 1, then xi−1 remains the
rightmost ‘1’ of XH . Now, consider i = log n + 1. If the bit xi is flipped from ‘0’
to ‘1’ then, it becomes the new rightmost ‘1’ of XH . Let xi is flipped from ‘1’ to
‘0’. Before the flip, xi was the rightmost ‘1’ of XH . As the bit is changed to ‘0’,
the rightmost ‘1’ of XH is also changed. 
�
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A valid pointer P contains the distance of the rightmost ‘1’ of XH from xlog n+1,
the rightmost bit of XH . If the rightmost bit of XH is flipped from ‘0’ to ‘1’
then, P should point to it and hence P should contain all 0s. This is done by
erasing the content of P. To do that, reset all bits of P to ‘0’s, one bit at a time
in the background. Consider the case when the bit xlog n+1 is flipped from ‘1’
to ‘0’. Before this flip, the pointer P was pointing to xlog n+1, the rightmost bit
of XH and hence all the bits of P were ‘0’s. So, there is no need to initialize
P. After the flip, update P by inspecting the bits of XH in the background,
one bit at a time, starting from the right. Note that, either we have to erase
the previous content of P or construct P by advancing the pointer one bit at a
time, not both. So, there are sufficient transitions available to update P before
another bit from XH is flipped. We now describe the increment operation in
detail.

4.1 The Increment Operation

The increment algorithm for our data structure is similar to the usual increment
algorithm of the BRGC. First check the parity bit. If the parity is even, then flip
the rightmost bit of X and the parity bit. Otherwise, find the rightmost ‘1’ of
X. Let xs be the rightmost ‘1’ of the code. Read all bits of XL. If there is no ‘1’
in XL then, use the pointer P to find xs, the rightmost ‘1’ of XH . Flip bit xs+1

and the parity bit. Consider the special case when bit xn is the only ‘1’ in the
code. The pointer P is ready and points to xn. The increment algorithm reads
all bits of XL and then follows P to find the rightmost ‘1’ of XH . Flip bit xn

from ‘1’ to ‘0’ and reset bit R to ‘0’. No other changes are required. After the
changes take place, there is no ‘1’ in XH and P is still pointing to xn with R =
‘0’. So, we can consider P is in the last phase of the construction mode.

The update procedure for P starts when XL = xlog n · · · x1 = 10 · · · 0 and bit
xlog n+1, the rightmost bit of XH , is flipped to increment the value. Reset the
status bit R to ‘0’. If bit xlog n+1 is flipped from ‘0’ to ‘1’ then, set the bit E to
‘1’ to enter the erase mode.

In the erase mode, the bit of P to be erased is determined by the BRGC
denoted by the lower log log n bits of XL. When P enters the erase mode, these
bits are all ‘0’s. By the definition of the BRGC, in the next log n transitions the
contents of these lower log log n bits go through the BRGC sequence of dimension
log log n and of length log n. The status bit E is set to ‘0’ and bit R is set to ‘1’,
once all bits of P are erased.

In the construction mode, P points to the bit of XH to be inspected next, if
it is not ready yet. If the bit of the code is ‘1’, the rightmost ‘1’ of XH is found
and the status bit R is set to ‘1’. Otherwise, P is incremented. So, P is a counter
and the BRGC of dimension log n is used for P. As we read all bits of P, the
increment of P requires only a single bit change.

So, the increment operation inspects at most 2 log n + 4 bits and changes at
most 4 bits. The pointer P can be updated in at most n − log n steps, while we
have n steps available to update P.
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0 1 1 0 0 1 0 0 1

0 1 1 R = 1
E = 0

0 1 1 0 1 1 0 0 0

0 1 1 R = 0
E = 1

0 1 1 0 1 1 0 1 1

0 1 0 R = 0
E = 1

0 1 1 0 1 1 1 1 0

0 0 0 R = 0
E = 1

0 1 1 0 1 1 1 0 1

0 0 0 R = 1
E = 0

P

P

P

P

P

(a)

0 0 1 0 1 1 0 0 1

0 0 0 R = 1
E = 0

0 0 1 0 0 1 0 0 0

0 0 0 R = 0
E = 0

0 0 1 0 0 1 0 1 1

0 0 1 R = 0
E = 0

0 0 1 0 0 1 1 1 0

0 1 1 R = 1
E = 0

P

P

P

P

(b)

Fig. 1. Increment operations using a constant number of bit changes. (a) the pointer
P in erase mode (b), the pointer P in construction mode.

4.2 Decrement Operation

The decrement algorithm for the BRGC is similar to the increment algorithm.
First, inspect the parity of the code. If the parity is odd, flip the rightmost bit
of the code. Otherwise, find the rightmost ‘1’ and flip the bit to its left. The
algorithm is similar to the increment algorithm except the role of the parity bit
is reversed. The special case is when all bits of the code are ‘0’s, the first code
of the BRGC sequence. There is no ‘1’ in XH and pointer P points to bit xn. In
this case, flip bit xn and set bit R to ‘1’ as P is ready without entering erase or
construction mode.

Consider the situation that supports both increment and decrement operation.
The complication arises when the pointer P enters the erase mode. In the erase
mode, the lower log log n bits of the code denotes which bit of the pointer P to be
erased. When only the increment or only the decrement is supported, these bits
go through a counting sequence of length log n and can be used to point to the
bit of P to be erased. Even though this counting sequence does not exist during
a mix of increment and decrement operations, the increment or the decrement
operation remains unaffected.

Consider the situation, when we start from a BRGC code that is obtained
by the flip of bit xlog n+1 from the previous code and the pointer P enters the
erase mode. Due to the reflected property of BRGC, the i-th bit of P is erased
before the (i + 1)-st bit. The pointer P remains in the erase mode as long as
the last bit of P doesn’t get a chance to be erased. But in between, only bit xi

is flipped each time, for some i such that log log n > i. The pointer P needs to
be ready only when a bit in XH is to be flipped. By that time, the content of
xlog log n · · ·x1 goes through all possible combinations to erase P completely. So,
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the increment and the decrement has the same bit probe complexity. The result
is summarized in the following theorem.

Theorem 2. An integer of dimension n can be represented by a data structure
that uses n + log n + 3 bits so that the increment and the decrement operations
require at most 2 logn+4 bit inspections and at most 4 bit changes per operation.

5 Increment and Decrement Using Fewer Bit Inspections

Next we modify our data structure to support the increment and decrement op-
erations using fewer bit inspections. Our new data structure reduces the number
of bit inspections from 2 log n+4 to log n+O(log log n). The following property
of BRGC is important in designing the data structure.

Observation: Let Gi(n) be the subset of G(n) containing the initial code
of G(n) and the codes of G(n) that are obtained by flipping the j-th bit
from the previous code, for all i and j such that j ≥ i ≥ 1. The sequence
Gi(n) is the BRGC sequence G(n − i + 1), if the rightmost (i − 1) bits
from each code are discarded. An example is shown in Figure 2.

0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0

1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0

(a)

0 0 0 0
0 1 1 0
1 1 0 0
1 0 1 0

(b)

0 0
0 1
1 1
1 0

(c)

Fig. 2. (a) The BRGC sequence G(4). The codes in bold forms G3(4). (b) The subset
G3(4). (c) Discarding the rightmost 2 bits from G3(4) gives us G(2).

The dimension n BRGC code is divided into k blocks and denoted by X =
Xk · · · X1. The block Xi contains ni bits and denoted by Xi = xli · · · xli−1+1,

where l0 = 0 and li =
∑i

j=1 nj, for all i such that k ≥ i ≥ 1. Block X1 contains
a constant number of bits and the sizes of the blocks are related by ni = 2ni−1 ,
for all i such that k ≥ i > 1. We have

∑k
i=1 ni = n, and hence k = log∗ n.

A pointer Pi is associated with a block Xi along with two status bits Ei

and Ri, for all i such that k ≥ i > 1. Store the parity of X explicitly. When
a pointer Pi is ready, it points to the rightmost ‘1’ of Xi. If there is no ‘1’ in
Xi then, pointer Pi points to xli after scanning all bits of Xi. So the size of a
pointer Pi is |Pi| ≥ log ni = ni−1. Total number of bits used by the pointers is
∑k

i=2 |Pi| =
∑k

i=2 ni−1 = nk−1 +nk−2+
∑k−3

i=1 ni ≤ log n+log log n+
∑k−3

i=1 ni =
log n + O(log log n). The status bits use 2(k − 1) = O(log∗ n) bits. So, the total
size of the data structure is n + log n + O(log log n) bits.
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P2P3Pk

n1n2nk

Rk
Ek

R2
E2

R3
E3

n1n2nk−1

Fig. 3. Data structure for integer representation that uses fewer bit inspections per
operation

5.1 Increment and Decrement

During a sequence of increment operations, consider the transitions that changes
the bits only in Xi and Xi−1, for k ≥ i > 1. From the observations, there are
2ni−1 transitions between two bit changes in Xi, where bits in Xi−1 are flipped.
So, when a pointer Pi becomes invalid, we can use these 2ni−1 transitions to
reconstruct Pi in the background. Using a similar argument, as used in the
previous section, we can show that a pointer Pi is always ready when it is needed
during a mix of increment and decrement operations.

To increment, first read the parity bit. If the parity is even, the rightmost bit
x1 is to be flipped. Otherwise, read all the bits of X1. If there is at least a ‘1’ in
X1 then, we found xs, the rightmost ‘1’ of X. Otherwise, there is no ‘1’ in X1.
In that case, find the rightmost block Xi that contains at least a ‘1’. To do that,
read the status bits Ej and Rj , for i ≥ j > 1. Note that, there is no ‘1’ in Xj and
none of the pointers Pj is in the erase mode. If Pj is not ready, then it points
to bit xlj , the last bit of Xj . Read Pj and bit xlj to confirm that Xj contains
no ‘1’. By the properties mentioned earlier, Pi either must be ready and points
to the rightmost ‘1’ of Xi or points to the last bit of Xi and all lower order bits
of Xi are ‘0’s. Read the pointer Pj to get xs the rightmost ‘1’.

For the special case, xs is the bit xn. Flip bit xn and set bit Rk to ‘0’. Oth-
erwise, bit xs+1 needs to be flipped to complete the operation. Let xs+1 ∈ Xt,
where k ≥ t ≥ 1. Before flipping bit xs+1, process pointer Pt+1, if it is not
ready. Read the status bits Et+1 and Rt+1 (only when t < k) and continue the
update procedure of Pt+1, if necessary. To erase a bit of Pt+1, read the right-
most log nt bits of Xt, and erase the corresponding bit of Pt+1. Finally, flip
the parity bit and bit xs+1. If xs+1 is the rightmost bit of Xt then, switch the
pointer Pt into erase mode or construction mode depending on the value of
xs+1 by changing the status bits Et and Rt appropriately. So, in the worst
case, we might have to read all the pointers. In total, we have to read at
most

∑k
i=2 ni−1 + O(k) = log n + O(log log n) bits. The number of bit changes

required in the worst case is 6. It happens when Pt+1 switches from erase
mode to ready mode and at the same time Pt enters erase mode. The decre-
ment operation is similar. The results can be summarized into the following
theorem.
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Theorem 3. An integer of dimension n can be represented by a data structure
that uses n+logn+O(log log n) bits so that increment and decrement operations
require at most log n+O(log log n) bit inspections and 6 bit changes per operation.

6 Supporting Addition and Subtraction

The natural extensions of increment and decrement operations are addition and
subtraction. We consider the addition operation of the form X ← (X + Y ) mod
2n, where X and Y are BRGC of dimension n and m respectively such that
n > m. First, we review the serial addition algorithm [11] of form S ← X + Y
for the BRGC, where X = xn · · · x1, Y = yn · · · y1, and S = sn · · · s1 are three
BRGC of dimension n.

Addition
E0 ← parity of X
F0 ← parity of Y
for i := 1 to n do

si ← (Ei−1 ∧ Fi−1) ⊕ xi ⊕ yi

Ei ← (Ei−1 ∧ ¬Fi−1) ⊕ xi

Fi ← (¬Ei−1 ∧ Fi−1) ⊕ yi

end for

At the end of the loop, we must have En = 0 and Fn = 0 to get a valid
addition. Otherwise, there is an overflow.

6.1 Addition with Different Size Operands

Let X and Y have dimensions n and m respectively with n > m. The code Y
can be padded with ‘0’s to make it a code of length n. In that case yi = 0, for
n ≥ i > m. The addition can be performed in two steps — (i) xm · · · x1 is added
with ym · · · y1 using the serial addition algorithm 6, and (ii) xn · · · xm+1 is added
with yn · · · ym+1 quickly. We rewrite the formulae for the sum and carry bits as,
si = (Ei−1 ∧ Fi−1) ⊕ xi; Ei = (Ei−1 ∧ ¬Fi−1) ⊕ xi; Fi = ¬Ei−1 ∧ Fi−1, for all
i such that n ≥ i > m. At the end of the step (i), there can be three different
cases possible based on the values of carry bits Em and Fm.

Case 1: Fm = 0. We have Fi = 0, and si = xi, for n ≥ i > m. In other words, if
Fm = 0 then, the remaining n − m bits of the sum are same as those bits of X.

Case 2: Fm = 1 and Em = 1. We have sm+1 = ¬xm+1, Em+1 = xm+1 and
Fm+1 = 0. As the carry bit Fm+1 becomes ‘0’, we know that, Fi remains ‘0’
in the later iterations, for n ≥ i > m + 1. As a result, we have si = xi, for
n ≥ i > m + 1. In other words, if Fm = 1 and Em = 1 then, the sum bit sm+1

is the opposite of bit xm+1. The other bits of the sum are same as those of X.

Case 3: Fm = 1 and Em = 0. Let xm+j be the rightmost ‘1’ of xn · · · xm+1.
We have, Fm+1 = ¬Em ∧ Fm = 1; Em+1 = (Em ∧ ¬Fm) ⊕ xm+1 = xm+1;
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sm+1 = (Em ∧ Fm) ⊕ xm+1 = xm+1. Proceeding in that way we can derive,
Fm+i = 1, Em+i = xm+i = 0 and sm+i = xm+i, for j > i ≥ 1. Also, we have
Fm+j = 1, Em+j = xm+j = 1 and sm+j = xm+j . This is similar to case 2 and we
get the formula sm+j+1 = ¬xm+j , and sm+j+t = xm+j+t, for t > 1. Combining
all the formulae, we have, sm+i = xm+i, for j ≥ i ≥ 1; sm+j+1 = ¬xm+j+1; and
sm+j+t = xm+j+t, for t > 1. Overflow occurs when m + j = n. In that case,
we have sn = ¬xn. In other words, when Em = 0 and Fm = 1, copy the bits
xn · · · xm+1 into sn · · · sm+1, find the rightmost ‘1’ of sn · · · sm+1 and flip the bit
to its left. If sn is that ‘1’ then, flip sn.

6.2 The Data Structure

The data structure used in our first solution is not suitable to perform addition
operation of the form X ← (X + Y ) mod 2n efficiently. The pointer P points to
xj , the rightmost ‘1’ of XH . If j > m then, addition can be done efficiently, as P
points to the rightmost ‘1’ of xn · · · xm+1. Otherwise, P can not help in finding
the rightmost ‘1’ of xn · · · xm+1. In worst case, we have to inspect all bits of XH .
So, the addition requires O(n + m) bits inspections and O(m) bit changes. For
similar reason, the data structure used in the previous section does not support
efficient addition/subtraction operation.

We now present our data structure and show that the increment/decrement
operations have the same complexity as the other two solutions. The n-bit BRGC
number is divided into k + 1 blocks denoted by X = Xk, · · · , X1, X0. Let ni

be the number of bits in the block Xi and is denoted by Xi = xli · · · xli−1+1,

where l−1 = 0 and li =
∑i

j=0 nj , for k ≥ i ≥ 0, such that n0 = n1 = log n, and
ni = 2ni−1, for k ≥ i > 1. Since

∑k
i=1 ni = n, we have k = log n− log log n. With

each block Xi, for k ≥ i ≥ 1, there is a pointer Pi that points to the rightmost
‘1’ of Xi, when it is ready. In addition to Ei and Ri, each block Xi is associated
with one more status bit Zi that denotes whether or not there is a ‘1’ in Xi. Total
space used by the data structure is n + 1 +

∑k
i=1 log ni + 3k = n + O((log n)2)

bits. The increment and the decrement operations are similar as before. It can be
shown that increment/decrement operations require 3 logn−2 log log n+O(1) =
O(log n) bit inspections and at most 5 bit changes.

6.3 Addition and Subtraction

Let t be the smallest integer such that lt ≥ m > lt−1. Addition proceeds in two
steps — (i) add xm · · ·x1 with ym · · · y1 using the serial addition algorithm 6.
During this process construct the pointers Pi and status bits Ei, Ri and Zi, for
t ≥ i ≥ 1. Based on the value of the carry bits determine whether there is a
carry to forward. If not, we are done. (ii) Otherwise, find the rightmost ‘1’ of
xn · · · xm+1, denoted by xs, and flip bit xs+1. If xn is that ‘1’, then flip xn.

To find xs, the rightmost ‘1’ of xn · · · xm+1, read bits xlt · · ·xm+1 first. If there
is any ‘1’, we are done. Otherwise, skip all blocks with no ‘1’ bits by checking
the zero status bits of these blocks. Let Xj be the rightmost block with some
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‘1’ such that k ≥ j > t. We claim that the pointer Pj is valid and points to the
rightmost ‘1’ of Xj . The pointer Pj becomes invalid when the rightmost bit of
Xj is flipped. It might take at least nj changes in Xj−1 to complete the update
of Pj . A problem might arise when there is an addition operation before Pj is
updated completely. But when Pj becomes invalid, bit xlj−1 the last bit of Xj−1,
is ‘1’. It requires at least 2nj−1−1 > nj transitions to get all ‘0’s in Xj−1, unless
step (i) affects Xj−1. In that case, the situation is handled by reading all bits of
Xj , without increasing the asymptotic complexity of the operation.

If bit xs is the bit xn, then flip this bit. Otherwise, let bit xs+1 be in Xr for
some integer r ≥ t. Before flipping bit xs+1, check the status of Pr+1. Perform
the maintenance operations (in erase or construction mode) of Pr+1 if necessary.
Finally, flip bit xs+1.

The only remaining concern is the update of a pointer in the background.
There are enough steps to update an invalid pointer when only increment or
decrement operations are supported. We now show that even with the addition
operation, there remain enough steps to rebuild a pointer. Note that only Pt+1

might be affected adversely after an addition operation. Read all bits of Xt+1,
in case of an invalid pointer Pt+1, and rebuild it from scratch. So, the addition
operation requires O(m+ log n) bit probes. The subtraction operation is similar
except that bit F0 is set to the inverse of the parity of Y. Hence, we have:

Theorem 4. An integer of dimension n can be represented by a data structure
that uses n+O((log n)2) bits so that increment and decrement operations require
O(log n) bit inspections and at most 5 bit changes per operation. Addition and
subtraction between two integers of dimension n and m respectively with n > m
requires O(m + log n) bit probes per operation.

7 Conclusion

We have examined the problem of integer representation using a nearly mini-
mum space with few bit inspections and changes for some basic operations. The
problem is only for study in the bit probe model, as in the cell probe model we
get trivial constant time solutions. We proved a new lower bound of Ω(

√
n) bit

probes in the worst case for the increment operation using exactly n bits to store
an integer of dimension n. Our conjecture on the lower bound for the increment
operation is Ω(n). By exhaustive searching we can show that the lower bound
holds for a small n. Future goal is to find a lower bound of Ω(n) bit probes per
operation of a counting sequence of dimension n using no extra space.

The addition of a moderate amount of extra space speeds up the operations.
We present several data structures that uses little extra space for efficient in-
crement/decrement and addition/subtraction operations. Our first solution uses
log n + 3 extra bits that requires at most 2 log n + 4 bit inspections and at
most 4 bit changes for the increment/decrement operation. The second struc-
ture uses log n + O(log log n) extra bits that uses at most log n + O(log log n)
bit inspections and 6 bit changes for the increment/decrement operation. Al-
though these two structures support efficient increment/decrement operation,
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they are not suitable for efficient addition/subtraction. Our third data structure
requires O((log n)2) additional bits to represent an integer of dimension n. The
increment/decrement operation on this structure has the same asymptotic com-
plexity. The addition/subtraction between two numbers of dimensions n and m
with n > m, uses O(m+log n) bit probes in the worst case. All these data struc-
tures use exponentially less space, compared to the best known previous results,
while improving or retaining the same time complexity for the operations on
them.
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Abstract. It is known that, given an edge-weighted graph, a maximum
adjacency ordering (MA ordering) of vertices can find a special pair of
vertices, called a pendent pair, and that a minimum cut in a graph can
be found by repeatedly contracting a pendent pair, yielding one of the
fastest and simplest minimum cut algorithms. In this paper, we provide
another ordering of vertices, called a minimum degree ordering (MD
ordering) as a new fundamental tool to analyze the structure of graphs.
We prove that an MD ordering finds a different type of special pair of
vertices, called a flat pair, which actually can be obtained as the last two
vertices after repeatedly removing a vertex with the minimum degree.
By contracting flat pairs, we can find not only a minimum cut but also
all extreme subsets of a given graph. These results can be extended to
the problem of finding extreme subsets in symmetric submodular set
functions.

1 Introduction

Let � and �+ denote the sets of reals and nonnegative reals, respectively. Let V
be a finite set, where we denote n = |V |. A singleton set {v} is called trivial and
may be written as v. Let (G = (V, E), w) be a hypergraph with vertex set V , edge
set E and weight function w : E �→ �+. The cut function of (G, w) is defined by
set function d(G,w) : 2V �→ �+ such that d(G,w)(X) =

∑
{w(e) | e ∈ E, e ∩ X �=

∅ �= e − X}. For two specified vertices u and v, let λ(G,w)(u, v) denote the local-
edge-connectivity min{d(G,w)(X) | u ∈ X ⊆ V − v}. A hypergraph G = (V, E)
is called a graph if |e| = 2 for all e ∈ E.

Analyzing the connectivity structure of a given graph is an important research
issue, and several compact representations of connectivity structure of graphs
such as Gomory-Hu trees [8], cactus representations [3] and extreme subsets
[22] have been discovered. These representations have numerous applications for
designing efficient graph algorithms (see [11]).

Computing a minimum cut X , i.e., a nonempty subset X ⊂ V that minimizes
d(G,w), is one of the basic problems in the issue, and has been studied extensively
(see [2]). In particular, for undirected graphs, several algorithms that compute
� This is an extended abstract. This research was partially supported by the Scientific

Grant-in-Aid from Ministry of Education, Culture, Sports, Science and Technology
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a minimum cut without relying on a maximum flow algorithm are known so far.
These algorithms use a procedure of contracting a pair of vertices into a single
vertex. Based on the procedure of choosing an edge with probability propor-
tional to its edge weight and contracting the edge, Karger and Stein [7] gave an
O(n2 log n) time randomized algorithm to compute a minimum cut with high
probability without using maximum flow computation. Afterwards, Karger [6]
showed that a minimum cut can be computed in nearly linear time with high
probability. Nagamochi and Ibaraki [14] first gave a minimum cut algorithm that
chooses an edge to be contracted based on a structural feature of graphs.

A pair of vertices u and v is called a pendent pair if it satisfies

d(G,w)(X) ≥ min{d(G,w)(u), d(G,w)(v)} for all X ⊆ V with |X ∩ {u, v}| = 1.
(1)

i.e., λ(G,w)(u, v) = min{d(G,w)(u), d(G,w)(v)}. The existence of pendent pairs
is implied by Gomory-Hu trees that represent the structure of all local-edge-
connectivities [8]. An edge-weighted spanning tree (T = (V, F ), w′) is called a
Gomory-Hu tree of (G, w) if (i) λ(T,w′)(x, y) = λ(G,w)(x, y) holds for all x, y ∈ V
and (ii) for each edge e = {u, v} ∈ F , the two components T1 = (V1, F1) and
T2 = (V2, F2) in (V, F − e) satisfy d(G,w)(V1) = d(G,w)(V2) = λ(G,w)(u, v). For
example, Figure 1(b) shows a Gomory-Hu tree for the graph G = (V, E) in
Fig. 1(a). By definition of Gomory-Hu trees, every leaf vertex u and its unique
neighbour v in (T, w′) give a pendent pair. In the graph (G, w) in Figure 1(a),
{u3, u1} and {u6, u2} are pendent pairs.

Interestingly a pendent pair can be found by the following simple procedure.
An ordering σ = (v1, v2, . . . , vn) of the vertices in an edge-weighted graph (G, w)
is called a maximum adjacency ordering (MA ordering, for short) if it satisfies

d(G,w)({v1, v2, . . . , vi−1}, vi) ≥ d(G,w)({v1, v2, . . . , vi−1}, vj), 2 ≤ i ≤ j ≤ n,
(2)

where d(G,w)(X, Y ) denotes
∑

{w(e) | e = {x, y} ∈ E, x ∈ X, y ∈ Y }. It is
shown that an MA ordering identifies a pendent pair of (G, w) as its last two
vertices; i.e., it holds

d(G,w)(vn) = λ(G,w)(vn−1, vn). (3)
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Fig. 1. (a) An edge-weighted graph (G = (V, E), w) and (b) A Gomory-Hu tree (T =
(V, F ), w′) of the graph (G, w), where the numbers beside edges indicate their weights
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For example, σ = (u1, u3, u4, u5, u6, u2) is an MA ordering of the graph (G, w)
in Figure 1(a), indicating that {u6, u2} is a pendent pair.

Based on property (3), one can design an algorithm to compute a minimum
cut in a graph (G, w) by repeatedly identifying a pendent pair and contract
the pair into a single vertex (see [14,21]). This yields one of the fastest and
simplest minimum cut algorithms, which runs in O(nm + n2 log n) time, where
m =

∑
e∈E |e|. However, no algorithm that constructs a Gomory-Hu tree of a

given graph (G, w) by using MA orderings is known. Importantly Queyranne
[18] extended the minimum cut algorithm for graphs to a combinatorial strongly
polynomial algorithm for minimizing a symmetric submodular set function. Re-
cently combinatorial strongly polynomial algorithms for minimizing general sub-
modular set functions have been obtained by Iwata et al. [5] and Schrijver [20].
However, for minimizing symmetric submodular set functions, Queyranne’s al-
gorithm remains significantly simpler than these algorithms.

In this paper, we prove that a different structural feature of graphs can be
used to design a simple and efficient connectivity algorithm. We define a new
type of special pair of vertices, called a “flat pair,” based on “extreme subsets”
of graphs. We then introduce another ordering of vertices, called “a minimum
degree ordering” (MD ordering) to identify a flat pair. A nonempty proper subset
X of V is called an extreme subset of a graph (G = (V, E), w) if

d(G,w)(Y ) > d(G,w)(X) for all nonempty proper subsets Y of X . (4)

We denote by X (G, w) the family of all extreme subsets of (G, w). Any singleton
{v}, v ∈ V is an extreme subset. Note that at least one of extreme subsets
corresponds to a minimum cut, and no two extreme subsets cross each other.
Figure 2(a) shows the extreme subsets of the graph (G, w) in Fig. 1(a), and
Figure 2(b) shows its tree representation that indicates the inclusionwise relation
among the extreme subsets in such a way that X ∈ X (G, w) is a child of Y ∈
X (G, w) if X is the largest set properly contained in Y .
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Fig. 2. (a) The extreme subsets in X (G, w) of the graph (G, w) in Fig. 1(a), where the
numbers beside edges indicate their weights and each of the nontrivial extreme subsets
X1, X2, X3 ∈ X (G, w) is depicted by a dotted closed curve; (a) The tree representation
for X (G, w)
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Extreme subsets are originally introduced by Watanabe and Nakamura [22]
to solve the edge-connectivity augmentation problem, and extreme subsets of
graphs are currently an important tool to design efficient algorithms for solving
graph connectivity problems such as the source location problem [11,19], the
minimum k-way cut problem [17], and the dynamic minimum cut problem [12]
in addition to the connectivity augmentation problem.

In this paper, we call a pair {u, v} in a graph (G, w), of vertices u and v a flat
pair if it satisfies

d(G,w)(X) ≥ min{d(G,w)(x) | x ∈ X} for all X ⊆ V with |X ∩ {u, v}| = 1. (5)

We will prove that such a pair always exists. Observe that no nontrivial extreme
subset X separates a flat pair {u, v}; i.e., {u, v} ⊆ X or {u, v} ∩ X = ∅ holds
for any nontrivial extreme set X . A flat pair must correspond to two leaves u
and v with the same parent in the tree representation of extreme subsets. In
Figure 2(a), {u3, u4} and {u5, u6} are flat pairs.

In this paper, we call an ordering π = (v1, v2, . . . , vn) of the vertices in a graph
(G, w) a minimum degree ordering (MD ordering, for short) if it satisfies

d(Gi−1,w)(vi) = min{d(Gi−1,w)(v) | v ∈ V −{v1, v2, . . . , vi−1}} 1 ≤ i ≤ j ≤ n−1,
(6)

where Gi−1 = G − {v1, v2, . . . , vi−1} denotes the graph obtained from G by
removing vertices v1, v2, . . . , vi−1 together with all edges incident to them. Thus,
an MD ordering can be easily obtained just by repeatedly removing a vertex
with the minimum degree in the remaining graph. For the graph in Figure 2(a),
π = (u1, u2, u3, u4, u5, u6) is an MD ordering.

Surprisingly the following fact holds: the last two vertices in an MD ordering
gives a flat pair. We prove this, and then show that all extreme subsets of a
graph (G, w) can be computed by using flat pairs in O(mn + n2 log n) time. It
is already known [11] that all extreme subsets in a graph can be computed in
O(mn + n2 log n) time by applying an MA ordering after augmenting the given
graph with a new vertex and edges. However, the augmenting process is rather
artificial, and no direct extension of this algorithm to the case of submodular set
functions has been successful.

Orderings of (6) in a special case where G is an unweighted simple graph are
known as δ-slicings [9] or smallest-last orderings [10] which are introduced to
study the structure of induced subgraphs. However, the fact that MD orderings
identify flat pairs was not known, and extensions to hypergraphs or set functions
are not trivial.

In this paper, we define flat pairs and MD orderings in terms of set functions
on V , and prove that extreme subsets of symmetric submodular set functions
can be computed with the same time complexity of Queyranne’s algorithm. Since
one of the extreme subsets minimizes the set function, our new algorithm also
solves the minimization problem for symmetric submodular set functions.

The rest of the paper is organized as follows. Section 2 introduces basic notions
on submodular or posi-modular set functions, and states our main result in terms
of set functions. Section 3 then proves that the last two elements in an MD
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ordering in a symmetric and crossing submodular or intersecting posi-modular
set function is a flat pair. Section 4 gives an algorithm that computes all extreme
subsets in such a set function. Section 5 makes concluding remarks.

2 Preliminaries

Let V be a finite set, where we denote n = |V |. A singleton set {v} is called
trivial and may be written as v. The union of a set X and a singleton {v}
may be written as X + v. A subset X ⊆ V separates two elements u, v ∈ V if
|X ∩{u, v}| = 1. For two subsets X, Y ⊆ V , we say that X and Y intersect each
other if X ∩ Y �= ∅, X− Y �= ∅ and Y −X �= ∅ hold, and say that X and Y cross
each other if, in addition, V − (X ∪Y ) �= ∅ holds. A family X ⊆ 2V of subsets of
V is called laminar if no two subsets in X intersect each other.

A set function f on V is a function f : 2V → �. A set function f is called
fully (resp., intersecting, crossing) submodular if

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (7)

holds for every (resp., intersecting, crossing) pair of sets X, Y ⊆ V .A set function
f is called fully (resp., intersecting, crossing) posi-modular if

f(X) + f(Y ) ≥ f(X − Y ) + f(Y −X) (8)

holds for every (resp., intersecting, crossing) pair of sets X, Y ⊆ V [15]. Notice
that the class of crossing submodular set functions is wider than that of fully
submodular set functions. A set function f is called symmetric if

f(X) = f(V −X) for all X ⊆ V. (9)

Every symmetric and fully (resp., intersecting, crossing) submodular set func-
tion is fully (resp., intersecting, crossing) posi-modular.

Given a set function f on V the set function f ′ obtained by contracting two
elements x, y ∈ V into a new element z is defined by V ′ = (V −{x, y})∪{z} and

f ′(X) =
{

f(X) if z /∈ X ⊆ V ′

f((X−z) ∪ {x, y}) if z ∈ X ⊆ V ′.

A nonempty proper subset X of V is called an extreme subset of f if

f(Y ) > f(X) for all nonempty proper subsets Y of X .

We denote by X (f) the family of all extreme subsets of a set function f . Any
trivial set {v}, v ∈ V is an extreme subset. By definition, any nonempty subset X
contains an extreme subset X ′ with f(X ′) ≤ f(X). In particular, X (f) contains
a minimizer of f , i.e., a subset X with f(X) = minY ∈2V −{∅,V } f(Y ). We can
observe the following property on extreme subsets of a set function (the proof is
omitted for space reasons).
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Lemma 1. Let f be a set function on a finite set V , and X (f) be the family of
extreme subsets of f .

(i) If f is intersecting posi-modular or symmetric and crossing submodular, then
X (f) is laminar.

(ii) There is a crossing posi-modular set function f such that X (f) is not lami-
nar.

(iii) There is an asymmetric and fully submodular set function f such that X (f)
is not laminar. ��

For a set function f on a set V , let Tf denote the time to evaluate the function
value f(X) of a given subset X ⊆ V . In this paper, we prove the next result,
which also solves the minimization of f since X (f) contains a minimizer of f .

Theorem 1. Let f be a set function on V with n = |V | ≥ 2. If f is symmetric
and crossing submodular or intersecting submodular and posi-modular, then the
family X (f) of extreme subsets of f can be found in O(n3Tf) time. ��

An important example of symmetric and fully submodular functions is the cut
functions of hypergraphs. Let (G = (V, E), w) be a hypergraph with vertex set V ,
hyperedge set E (⊆ 2V −({∅}∪{{v} | v ∈ V })) and weight function w : E �→ �+.
The cut function of (G, w) is defined by d(G,w) : 2V �→ �+ such that

d(G,w)(X) =
∑

{w(e) | e ∈ E, e ∩ X �= ∅ �= e − X}, (10)

where we let d(G,w)(∅) = d(G,w)(V ) = 0. We see that d(G,w) is symmetric and
fully submodular. Figure 2(a) illustrates all extreme subsets in X (d(G,w)) for the
cut function d(G,w) of an edge-weighted graph (G = (V, E), w).

3 Minimum Degree Orderings

To show Theorem 1, this section will introduce a new ordering of V for set
functions f . Before showing this, we first review a related ordering, called a
maximum adjacency ordering. A pair of elements u, v ∈ V is called a pendent
pair of f if

f(X) ≥ min{f(u), f(v)} for all subsets X that separate u and v.

Given a set function f on V with n = |V | ≥ 2, an ordering σ = (v1, v2, . . . , vn)
is a maximum adjacency ordering (MA ordering, for short) of V if it satisfies

f(vi) − f(Vi−1 + vi) ≥ f(vj) − f(Vi−1 + vj), 1 ≤ i ≤ j ≤ n, (11)

where V0 = ∅ and Vi = {v1, v2, . . . , vi} (1 ≤ i ≤ n − 1).
Queyranne [18] obtained the following result.

Theorem 2. [18] For a given symmetric and crossing submodular function f
on V with n = |V | ≥ 2, let σ = (v1, v2, . . . , vn), be an MA ordering of V . Then
the last two elements vn−1 and vn give a pendent pair. ��

Based on this, the following results are known.
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Theorem 3. [18] For a given symmetric and crossing submodular set function
f on V with n = |V | ≥ 2, a set X ∈ 2V − {∅, V } that minimizes f can be found
in O(n3Tf) time. ��

Theorem 4. [15] For a given intersecting submodular and posi-modular set
function f on V with n = |V | ≥ 2, a set X ∈ 2V − {∅, V } that minimizes
f can be found in O(n3Tf) time. ��

In this paper, we introduce a new pair and a new ordering of V for set functions
f . We call a pair of elements u, v ∈ V a flat pair of f if

f(X) ≥ min
x∈X

f(x) for all subsets X that separate u and v. (12)

Given a set function f on V with n = |V | ≥ 2, we call an ordering π =
(v1, v2, . . . , vn) a minimum degree ordering (MD ordering, for short) of V if it
satisfies

f(vi) + f(Vi−1 + vi) ≤ f(vj) + f(Vi−1 + vj), 1 ≤ i ≤ j ≤ n, (13)

where V0 = ∅ and Vi = {v1, v2, . . . , vi} (1 ≤ i ≤ n − 1). It is not difficult to
see that, after choosing Vi−1, the next element vi can be chosen from V − Vi by
evaluating f(v) + f(Vi−1 + v) for all v ∈ V − Vi−1 and that an MD ordering can
be found in O(n2Tf) time.

We here consider the time complexity for computing an MD ordering of the
cut function d(G,w) of (10) in an edge-weighted hypergraph (G = (V, E), w).
For this, we define induced hypergraphs as follows. For a subset X ⊆ V , the
hypergraph G〈X〉 induced by X is defined to be an edge-weighted hypergraph
(X, AX ∪ BX) with an edge weight function wX : E → �+ such that

AX = {e ∈ E | e ⊆ X}, BX = {e − X | e ∈ E, e − X �= ∅, |e ∩ X | ≥ 2},

wX(e) =
{

w(e) if e ∈ AX

w(e)/2 if e ∈ BX .

Note that if G contains only graph edges (i.e., |e| = 2, e ∈ E) then BX = ∅.
Then we can obtain the following (the proof is omitted for space reasons).

Lemma 2. For an edge-weighted hypergraph (G = (V, E), w), an ordering π =
(v1, v2, . . . , vn) such that

d(G〈V−Vi−1〉,wV−Vi−1 )(vi) = min{d(G〈V−Vi−1〉,wV−Vi−1 )(v) | v ∈ V − Vi−1},

i = 1, 2, . . . , n − 1
(14)

is an MD ordering of the cut function d of G. An MD ordering π of d can be found
in O(m+n log n) time and O(m+n) space, where n = |V | and m =

∑
e∈E |e|. ��

As an analogous result to Theorem 2, we show that there exists a flat pair in a
symmetric and crossing submodular function f and that it can be found by an
MD ordering of f .
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Theorem 5. For a symmetric and crossing submodular set function f on V
with n = |V | ≥ 2, let π = (v1, v2, . . . , vn) be an MD ordering of V . Then the last
two vertices vn−1 and vn give a flat pair. ��

We prove Theorem 5 after showing a lemma.

Lemma 3. Let f be a symmetric and crossing submodular set function on V .
For a subset Z ⊂ V , let g be a set function on V −Z such that g(X) = f(X) +
f(Z ∪ X), X ⊆ V −Z. Then g is symmetric and crossing submodular.

Proof. Let X be an arbitrary subset of V −Z. We show that g(X) = g((V −Z)−
X)). By definition of g, we have g((V −Z)−X)) = f((V −Z)−X))+ f(Z ∪ ((V −
Z)−X)) = f(V − (Z ∪ X)) + f(V −X), which is f(Z ∪ X) + f(X) = g(X) by
symmetry of f . Hence g is symmetric. For two crossing subsets X, Y ⊆ V −Z,
we have by the submodularity of f

g(X) + g(Y ) = f(X) + f(Y ) + f(Z ∪ X) + f(Z ∪ Y )
≥ f(X ∩ Y ) + f(X ∪ Y ) + f(Z ∪ (X ∩ Y )) + f(Z ∪ X ∪ Y )
≥ g(X ∩ Y ) + g(X ∪ Y ).

Therefore g is crossing submodular. ��

Proof of Theorem 5. For each i = 0, 1, . . . , n − 2, we define set function fi of
V −Xi by

fi(X) = f(X) + f(Vi ∪ X), X ⊆ V −Vi,

which is symmetric and crossing submodular on V−Vi by Lemma 3. By induction
on i = n − 2, n − 3, . . . , 1, 0, we prove that

fi(X) ≥ min
x∈X

fi(x) for all X ⊆ V −Vi that separate vn−1 and vn. (15)

Since f0(X) = 2f(X), it suffices to show that (15) holds for i = 0. We easily
see that (15) holds for i = n − 2. Now we assume that (15) holds for i = j. We
prove that (15) holds for i = j − 1. Let X be an arbitrary subset of V − Vj−1

that separates vn−1 and vn.
Case-1. vj �∈ X : Let x∗ = argmin{fj−1(x) | x ∈ X}. For two crossing sets

Vj−1 ∪ X and Vj + x∗, we have by submodularity of f

f(Vj−1 ∪ X) + f(Vj + x∗) ≥ f(Vj ∪ X) + f(Vj−1 + x∗).

From this and induction hypothesis fj(X) ≥ fj(x∗), we have

fj−1(X) − fj−1(x∗) = f(X) + f(Vj−1 ∪ X) − f(Vj−1 + x∗) − f(x∗)
≥ f(X) + f(Vj ∪ X) − f(Vj + x∗) − f(x∗)
= fj(X) − fj(x∗) ≥ 0.

Hence fj−1(X) ≥ fj−1(x∗) ≥ minx∈X fj−1(x).
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Case-2. vj ∈ X : By the choice of vj , fj−1(vj) = minx∈V −Vj fj−1(x). Consider
subset Y = (V − Vj)−X , which separates vn−1 and vn, and hence fj−1(Y ) ≥
miny∈Y fj−1(y) holds by the argument in Case-1. Since fj−1(Y ) = fj−1(X) holds
by symmetry, we have fj−1(X) = fj−1(Y ) ≥ miny∈Y fj−1(y) ≥ fj−1(vj) =
minx∈X fj−1(x), as required.

Therefore, (15) holds for i = j. This proves that (15) holds for i = 0, i.e.,
Theorem 5. ��
Corollary 1. Let V be a finite set n = |V | ≥ 2. Every symmetric and crossing
submodular function f on V such that f(v) = k, v ∈ V for some k ∈ � admits
a pair {u, v} ⊆ V that is pendent and flat at the same time.

Proof. We easily see that any MD ordering π of f is also an MA ordering if f(v) =
k, v ∈ V . Hence the last two vertices in π is pendent and flat by Theorems 2
and 5. ��

There is a symmetric and crossing submodular function f which has no pair
that is pendent and flat at the same time. For example, the cut function d(G,w)

in Fig. 2(a) has no such pairs, since {u3, u4} and {u5, u6} are the flat pairs of
d(G,w), but neither of them is pendent.

Corollary 2. Let f be a set function f on V with n = |V | ≥ 2. If f is symmetric
and crossing submodular or intersecting submodular and posi-modular, then a flat
pair of f can be found in O(n2Tf ) time.

Proof. If f is symmetric and crossing submodular, then we compute an MD
ordering π of f in O(n2Tf ) time and choose the pair of the last two elements
in π, which is flat by Theorem 5. Consider the case where f is intersecting
submodular and posi-modular, where we assume f(∅) = f(V ) = −∞ as it does
not lose the intersecting submodularity and posi-modularity of f . In this case,
we work with the following set function g : 2V +s �→ �∪{−∞} (where s is a new
element): For each X ⊆ V + s, let

g(X) =
{

f(X) if s /∈ X
f(V −(X − s)) if s ∈ X.

(16)

It is known [15] that, for an intersecting submodular and posi-modular set func-
tion f on V , the above set function g is symmetric and crossing submodular
on V + s. Let πg be an MD ordering of g, where the first element in πg must
be s since g(s) = f(V ) = +∞. Then the last two elements u, v ∈ V in πg give
a flat pair of g. We see that {u, v} is also flat in f , since any subset X ⊆ V
with f(X) < minx∈X f(x) would imply g(X) < minx∈X g(x), contradicting that
{u, v} is flat in g. Therefore, we can find a flat pair in O(n2Tf ) time even if f is
intersecting submodular and posi-modular. ��

4 Computing Extreme Subsets

This section presents an algorithm for computing all extreme subsets of a set
function f by using flat pairs. For any nonempty subset Y ⊆ V , there is an



26 H. Nagamochi

extreme subset Y ∗ ∈ X (f) with Y ∗ ⊆ Y and f(Y ∗) ≤ f(Y ). Hence we see that
f(Y ) > f(X) for all nonempty Y ⊂ X if and only if f(Z) > f(X) for all Z ⊂ X
with Z ∈ X (f). From this observation and the fact that no nontrivial extreme
subset X ∈ X (f) separates any flat pair, we obtain the following algorithm for
computing all extreme subsets of a set function f that admits flat pairs.

After initializing by X := {{v} | v ∈ V } (⊆ X (f)), we repeat a procedure
of contracting a flat pair n − 2 times. Let V i, i = n, n − 1, . . . , 2, be the set
of elements obtained after contracting the first n − i flat pairs, where |V i| = i
holds. For each element x ∈ V i, let V [x] ⊆ V denote the set of all elements that
have been contracted into x. We maintain the property that

X consists of all extreme subsets X ∈X (f) with X ⊆V [x] and x∈V i. (17)

After contracting a flat pair ui, vi ∈ V i into a single element zi, we add V [zi]
to X if V [zi] ∈ X (f), so that (17) holds in the resulting set V i−1 = (V i −
{ui, vi}) ∪ {zi} of elements. We can test whether V [zi] ∈ X (f) or not by check-
ing if f(V [zi]) < minY ∈X :Y ⊂V [zi] f(Y ). To facilitate this test, we also maintain
μ(x) = minY ∈X :Y ⊂V [x] f(Y ), x ∈ V i for each i = n, n − 1, . . . , 2. The entire
algorithm is described as follows.

Algorithm ExtremeSubsets

Input: A set function f on a finite set V , where n = |V | ≥ 2.
Output: A laminar family X ⊆ 2V − {∅, V } of extreme subsets of f .
1 X := {{v} | v ∈ V };
2 Let μ(v) := f(v) for all v ∈ V ;
3 V n := V ; fn := f ;
4 for i := n to 3 do
5 Find a flat pair {ui, vi} of f i;
6 V i−1 := (V i − {ui, vi}) ∪ {zi};
7 Let f i−1 be the set function on V i−1 obtained from f i by contracting

elements ui and vi into a single element zi;
8 Let V [zi] ⊆ V be the set of all elements that have been contracted

into zi; /* f(V [zi]) = f i−1(zi) */
9 if f i−1(zi) < min{μ(ui), μ(vi)} then
10 X := X ∪ {V [zi]}; μ(zi) := f i−1(zi)
11 else
12 μ(zi) := min{μ(ui), μ(vi)}
13 end if
14 end for

From the above argument, we see that algorithm ExtremeSubsets computes
the set X (f) of all extreme sets of f correctly as long as we can always find a flat
pair in line 5. If a given set function f is symmetric and crossing submodular or
intersecting submodular and posi-modular, then it is not difficult to see that each
set function f i obtained from f by contracting elements remains symmetric and
crossing submodular or intersecting submodular and posi-modular. Therefore,
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by Corollary 2, we can find a flat pair in O(n2Tf) time. Then the running time
of ExtremeSubsets is O(n3Tf ). This establishes Theorem 1.

By Lemma 2, we easily see that, for hypergraphs, algorithm ExtremeSub-

sets can be implemented to run in O(n(m+n logn)) time and O(m+n) space.

Corollary 3. For an edge-weighted hypergraph (G = (V, E), w), the set X (d) of
all extreme subsets can be found in O(n(m + n log n)) time and O(m + n) space,
where n = |V | and m =

∑
e∈E |e|. ��

5 Conclusion

MA orderings were originally introduced to find a forest decomposition of multi-
graphs in linear time by Nagamochi and Ibaraki [13]. They realized that the
an MA ordering identifies a pendent pair, and based on this, they proposed
an O(nm + n2 log n) time algorithm for computing a minimum cut in an edge-
weighted graph without relying on a maximum flow algorithm. The algorithm
is then extended to an O(n3Tf) time algorithm for minimizing a symmetric and
crossing submodular set function by Queyranne [18] and for an intersecting posi-
modular set function by Nagamochi and Ibaraki [15]. For graphs, MA orderings
can be used to sparsify multigraphs [13] and to find a maximum flow between
a pendent pair in an edge-weighed graphs [1]. However, for symmetric submod-
ular or posi-modular set functions, Queyranne’s and Nagamochi and Ibaraki’s
algorithms based on pendent pairs can find a minimizer only.

Our new algorithm beased on flat pairs can find not only a minimizer but also
all extreme subsets. Interestingly, the algorithm works for the class of intersect-
ing posi-modular or symmetric and crossing submodular set functions, which is
shown by Lemma 1 to be a maximal class of set functions whose extreme subsets
always form a laminar family.
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Abstract. Let G = (V, E) be a simple undirected graph with a set
V of vertices and a set E of edges. Each vertex v ∈ V has a demand
d(v) ∈ Z+, and a cost c(v) ∈ R+, where Z+ and R+ denote the set of
nonnegative integers and the set of nonnegative reals, respectively. The
source location problem with vertex-connectivity requirements in a given
graph G asks to find a set S of vertices minimizing

�
v∈S c(v) such that

there are at least d(v) pairwise vertex-disjoint paths from S to v for each
vertex v ∈ V − S. It is known that the problem is not approximable
within a ratio of O(ln

�
v∈V d(v)), unless NP has an O(N log log N )-time

deterministic algorithm. Also, it is known that even if every vertex has
a uniform cost and d∗ = 4 holds, then the problem is NP-hard, where
d∗ = max{d(v) | v ∈ V }.

In this paper, we consider the problem in the case where every vertex
has a uniform cost. We propose a simple greedy algorithm for deliv-
ering a max{d∗ + 1, 2d∗ − 6}-approximate solution to the problem in
O(min{d∗,

�
|V |}d∗|V |2) time. Especially, in the case of d∗ ≤ 4, we give

a tight analysis to show that it achieves an approximation ratio of 3. We
also show the APX-hardness of the problem even restricted to d∗ ≤ 4.

1 Introduction

Problems of selecting the best location of facilities in a given network to satisfy
a certain property are called location problems [11]. Recently, the location prob-
lems with requirements measured by a network-connectivity have been studied
extensively [2, 3, 5, 7, 6, 9, 10, 13, 14, 15, 16].

Connectivity and/or flow-amount are very important factors in applications
to control and design of multimedia networks. In a multimedia network, a set S
of some specified network nodes, such as the so-called mirror servers, may have
functions of offering the same services for users. A user at a node v can use the
service by communicating with at least one node s ∈ S through a path between
s and v. The flow-amount (which is the capacity of paths between S and v)
affects the maximum data amount that can be transmitted from S to a user at
a node v. Also, the edge-connectivity or the vertex-connectivity between S and
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v measures the robustness of the service against network failures. The concept
of such connectivity and/or flow-amount between a node and a set of specified
nodes was given by H. Ito [8], considering design of a reliable telephone network
with plural switching apparatuses.

Given a graph, the problem of finding the best location of such a set S of
vertices, called sources, under connectivity and/or flow-amount requirements
from each vertex to S is called the source location problem, which is formulated
as follows:

Problem 1. (Source location problems)
Input: A graph G = (V, E) with a set V of vertices and a set E of edges
capacitated by nonnegative reals, a cost function c : V → R+ (where R+ denotes
the set of nonnegative reals), and a demand function d : V → R+.
Output: A vertex set S ⊆ V such that ψ(S, v) ≥ d(v) holds for every vertex
v ∈ V −S and

∑
v∈S c(v) is the minimum, where ψ(S, v) is a measurement based

on the edge-connectivity, the vertex-connectivity or the flow-amount between S
and a vertex v in a graph G. ��

For such measurements ψ(S, v), one may consider the minimum capacity λ(S, v)
of an edge cut C ⊆ E that separates v from S, the minimum size κ(S, v) of
a vertex cut C ⊆ V − S − v that separates S and v, or the maximum number
κ̂(S, v) of paths between S and v such that no pair of paths has a common vertex
in V − v.

Here let us review the developments in the source location problems in undi-
rected graphs. The problem with ψ = λ was first considered by Tamura et al.
[15]. They showed that the problem with uniform costs and uniform demands
can be solved in polynomial time. Also, Tamura et al. [16] showed that the case
of uniform costs and general costs is polynomially solvable, while the fastest
known algorithm for it achieves complexity O(mM(n, m)) due to Arata et al.
[2], where n = |V |, m = |{{u, v} | u, v ∈ V }|, and M(n, m) denotes the time
for max-flow computation in the graph with n vertices and m edges. In general,
Sakashita et al. [14] showed that the problem is strongly NP-hard.

For ψ = κ, Ito et al. [9] investigated the problem with uniform costs and
uniform demands d(v) = k, presented a polynomial time algorithm in the case
of k ≤ 2, and showed the NP-hardness of the problem in the case of k ≥ 3.
They also showed that in the case of k ≤ 2, even if a measurement λ(S, v) ≥ �
is added, then the problem is still polynomially solvable.

For ψ = κ̂, Nagamochi et al. [13] showed that the problem with uniform
demands d(v) = k can be solved in O(min{k,

√
n}kn2) time. In [7], Ishii et al.

considered the problem with uniform costs and general demands, and showed
that it can be solved in linear time in the case of d∗ ≤ 3, while it is NP-hard
even restricted to d∗ = 4, where d∗ = max{d(v)|v ∈ V }. They also showed that
if d∗ ≤ 3, then even in the case of general costs, it is also polynomially solvable
[6].

Also for directed graphs, many variants of problems have been investigated
(see [3, 5, 10] for ψ = λ and [13] for ψ = κ̂).
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Recently, Sakashita et al.[14] showed that no problems with the above three
types of connectivity requirements in undirected/directed graphs are approx-
imable within a ratio of O(ln

∑
v∈V d(v)), unless NP has an O(N log log N )-time

deterministic algorithm. They also gave (1 + ln
∑

v∈V d(v))-approximation algo-
rithms for all such problems if the capacity and demand functions are integral.

In this paper, we focus on the problem with ψ = κ̂ in undirected graphs.
As shown in [14], in general, it is unlikely that it is approximable within a
ratio of O(ln

∑
v∈V d(v)). Moreover, it was shown in [7] that even if the cost

function is uniform and d∗ is bounded from above by a constant, the problem
is NP-hard. In this paper, we show that if the cost function is uniform, then a
simple greedy algorithm delivers a max{d∗ +1, 2d∗ −6}-approximate solution in
O(min{d∗,

√
n}d∗n2) time; the approximation ratio is constant if d∗ is bounded

from above by a constant. Especially, in the case of d∗ ≤ 4, we give a tight
analysis to show that it achieves an approximation ratio of 3. We also show that
the problem is APX-hard even restricted to uniform costs and d∗ ≤ 4.

We here summarize our method. First, we start with the source set S = V .
Then, we pick up vertices v, one by one, in nondecreasing order of their demands;
only when S − {v} remains to be feasible, then update S := S − {v}. It was
shown in [2, 16] that for the problem with ψ = λ and uniform costs in undirected
graphs, this algorithm delivers an optimal solution. In our problem, this method
may not achieve an optimal, but an approximation ratio of max{d∗+1, 2d∗−6}.

The rest of the paper is organized as follows. Some definitions and pre-
liminaries are described in Section 2. In Section 3, we describe a greedy al-
gorithm, named GREEDY LVSLP, for the problem, prove that it delivers a
max{d∗ + 1, 2d∗ − 6}-approximate solution, and discuss the time complexity of
the algorithm. In Section 4, we show that in the case of d∗ ≤ 4, the solution
obtained by GREEDY LVSLP is 3-approximate and the analysis is tight for
the algorithm. Also in Section 4, we show the APX-hardness of the problem
restricted to d∗ ≤ 4. Finally, we give some concluding remarks in Section 5.

2 Preliminaries

Let G = (V, E) be a simple undirected graph with a set V of vertices and a set
E of edges, where we denote |V | by n and |E| by m. A singleton set {x} may
be simply written as x, and “⊂” implies proper inclusion while “⊆” means “⊂”
or “=”. A vertex set and an edge set of graph G is denoted by V (G) and E(G),
respectively. For a vertex subset V ′ ⊆ V , G[V ′] means the subgraph induced
by V ′. For a vertex set X ⊆ V , NG(X) is defined as the set of all vertices in
V − X which are adjacent to some of vertices in X . Moreover, let NG(∅) = 0.
For a vertex set Y ⊆ V and a family X of vertex sets, Y covers X if each X ∈ X
satisfies X∩Y = ∅. For a family X of vertex sets in V , the frequency of a vertex v
(wrt. X ) is defined as the number of sets of X which includes v, and let f(V, X )
denote the maximum frequency wrt. X of a vertex in V .

For a vertex v ∈ V and a vertex set X ⊆ V −{v} in G, we denote by κ̂G(X, v)
the maximum number of paths from v to X such that no pair of paths has a
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(a) (b)

Fig. 1. Illustration of an instance of 3LVSLP. (a) An initial graph G = (V, E), where
each vertex v ∈ V with d(v) = 0, 1, 2, 3 is drawn as a square, a triangle, a circle, and a
star, respectively. (b) A set S of black vertices is a source set; there are at least d(v)
paths between S and each vertex v ∈ V − S such that no pair of paths has a common
vertex in V − v.

common vertex in V −v. For a vertex v ∈ V and a vertex set X ⊆ V with v ∈ X ,
let κ̂G(X, v) = ∞. By Menger’s theorem, the following lemma holds.

Lemma 1. For a vertex v ∈ V and a vertex set X ⊆ V − {v}, κ̂G(X, v) ≥ k
holds if and only if |NG(W )| ≥ k holds for every vertex set W ⊆ V − X with
v ∈ W . ��

In this paper, each vertex v ∈ V in G = (V, E) has a demand d(v) of nonnegative
integer. Let d∗ = max{d(v) | v ∈ V }. A vertex set S ⊆ V is called a source set
if it satisfies

κ̂G(S, v) ≥ d(v) for all vertices v ∈ V − S, (1)

and we call each vertex v ∈ S a source. In this paper, we consider the following
source location problem with local vertex-connectivity requirements in an undi-
rected graph (shortly, LVSLP or d∗LVSLP). Fig. 1 gives an instance of LVSLP
with d∗ = 3.

Problem 2. (LVSLP)
Input: An undirected graph G = (V, E) and a demand function d : V → Z+

(where Z+ denotes the set of nonnegative integers).
Output: A source set S ⊆ V with the minimum cardinality.

The main results of this paper are described as follows.

Theorem 1. Given an undirected graph G = (V, E) and a demand function d :
V → Z+, LVSLP is max{d∗ + 1, 2d∗ − 6}-approximable in O(min{d∗,

√
n}d∗n2)

time. ��

Theorem 2. Let an undirected graph G = (V, E) and a demand function d :
V → {0, 1, 2, 3, 4} be given. Then a 3-approximate solution to 4LVSLP can be
found in O(n2) time, while 4LVSLP is APX-hard. ��
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In the rest of this section, we introduce several properties for LVSLP, which
will be used in the subsequent sections. For a vertex set X ⊆ V , d(X) denotes
the maximum demand among all vertices in X , i.e., d(X) = max

v∈X
d(v). A vertex

subset W ⊆ V with d(W ) > |NG(W )| is called a deficient set. We have the
following property by Lemma 1.

Lemma 2. A vertex set S ⊆ V satisfies W ∩ S = ∅ for every deficient set W if
and only if S is a source set. ��
A deficient set W is minimal if no proper subset of W is deficient. For a vertex
v ∈ V , we say that a deficient set W ⊆ V with v ∈ W is a minimal deficient set
wrt. v, if W is minimal deficient and d(v) > |NG(W )|. A minimal deficient set
has the following properties.

Lemma 3. [7] Every minimal deficient set W wrt. v ∈ W induces a connected
graph. ��
Lemma 4. Let W be a minimal deficient set wrt. v ∈ W . If there is a set X
with v /∈ X, |NG(X) ∩ W | = 1, and X ∩ NG(W ) = ∅, then NG(X) ∩ W = {v}.
Proof. Assume by contradiction that v ∈ W −X−NG(X). Now we have NG(W −
X −NG(X)) ⊆ (NG(W )−X)∪ (W ∩NG(X)). Hence, it follows from |NG(W )∩
X | ≥ 1 and |W ∩NG(X)| = 1 that |NG(W −X−NG(X))| ≤ |NG(W )−X |+|W ∩
NG(X)| ≤ |NG(W )|− |NG(W )∩X |+1 ≤ |NG(W )| < d(v) and W −X −NG(X)
is also a deficient set, contradicting the minimality of W . ��
For two vertex sets X and Y , we say that X and Y intersect each other, if none
of X ∩Y , X −Y , and Y −X is empty. For two vertex sets X and Y , the following
holds.

|NG(X)| + |NG(Y )| ≥ |NG(X ∩ Y )| + |NG(X ∪ Y )|. (2)
|NG(X)| + |NG(Y )| ≥ |NG(X − Y − NG(Y ))| + |NG(Y − X − NG(X))|. (3)

Lemma 5. Let Wi, i = 1, 2 be a minimal deficient set wrt. wi ∈ Wi. If W1 and
W2 intersect each other, w1 ∈ W1 −W2, and w2 ∈ W2 −W1, then w1 ∈ NG(W2)
or w2 ∈ NG(W1) hold.

Proof. Assume by contradiction that {w1, w2} ∩ (NG(W1) ∪ NG(W2)) = ∅. By
w1 ∈ W1 − W2 − NG(W2) and w2 ∈ W2 − W1 − NG(W1), we have W1 − W2 −
NG(W2) = ∅ = W2 − W1 − NG(W2). Now we have |NG(W1)| < d(w1) and
|NG(W2)| < d(w2). It follows from (3) that we have d(w1) > |NG(W1 − W2 −
NG(W2))| or d(w2) > |NG(W2 − W1 − NG(W1))| (say, d(w1) > |NG(W1 − W2 −
NG(W2))|). Then W1 −W2 −NG(W2) is also deficient, which contradicts the min-
imality of W1. Hence, it follows that {w1, w2} ∩ (NG(W1) ∪ NG(W2)) = ∅. ��

3 Greedy Algorithm

For a given graph G = (V, E) and a demand function d : V → Z+, let opt(G, d)
denote the optimal value to LVSLP. In this section, we give a simple greedy algo-
rithm, named GREEDY LVSLP, for finding a max{d∗ +1, 2d∗−6}-approximate
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solution S to LVSLP in O(min{d∗,
√

n}d∗n2) time. In the sequel, assume that a
given graph G is connected, since if G is disconnected, then we can consider the
problem separately for each connected component.

The algorithm GREEDY LVSLP is a greedy method to find a minimal feasible
solution S0 and a family W0 of minimal deficient sets wrt. some s ∈ S0. We start
with the source set S0 = V and the family W0 := ∅ of minimal deficient sets,
and pick up vertices v ∈ V , one by one, in nondecreasing order of their demands.
If S0 − {v} remains to be a source set, update S0 := S0 − {v}, and otherwise
we have a minimal deficient set W wrt. v with W ∩ S0 = {v} and update
W0 := W0 ∪ {W}.

A more precise description of the algorithm is given as follows.

Algorithm GREEDY LVSLP
Input: An undirected connected graph G = (V, E) and a demand function
d : V → Z+.
Output: A source set S such that |S| ≤ max{d∗ + 1, 2d∗ − 6}opt(G, d).
(Step 1) Number vertices of V such as d(v1) ≤ · · · ≤ d(vn).
(Step 2) Initialize j := 1, S0 := V , and W0 := ∅.
(Step 3) If S0 − {vj} satisfies (1) then let S0 := S0 − {vj}. Otherwise select a
minimal deficient set W ′ ⊆ V − (S0 −{vj}) wrt. vj , and let W0 := W0 ∪ {W ′}.
(Step 4) If j < n, then j := j + 1 and go to Step 3. Otherwise output S0 as a
solution. ��
Note that in the case where S0 −{vj} does not satisfy (1) in Step 3, there exists
a minimal deficient set W ′ ⊆ V − (S0 − {vj}) wrt. vj . Before deleting vj from
S0, S0 is feasible and hence by Lemma 2, every deficient set contains a source
in S0. On the other hand, S0 − {vj} is infeasible. Again by Lemma 2, there is
a deficient set W ′ with W ′ ∩ S0 = {vj} such that W ′ − {vj} is not deficient.
Moreover, since all vertices in W ′ − {vj} have been already deleted, we can
observe that d(vj) = max{d(v) | v ∈ W ′} = d(W ′) holds by the sorting in Step
1, and that d(vj) > |NG(W ′)|. It follows that there is a minimal deficient set W ′

wrt. vj satisfying W ′ ⊆ V − (S0 − {vj}).
LetS0 = {s1, s2, . . . , sp} andW0 = {W1, W2, . . . , Wp}bea source set anda fam-

ily of the deficient sets such that Wi corresponds to si, obtained by the algorithm,
respectively. From the above observation, S0 and W0 has the following properties.

Lemma 6. Let s ∈ S0 and W ∈ W0 be a source and the corresponding deficient
set satisfying s ∈ W .
(i) W ∩ S0 = {s}.
(ii) W is minimal wrt. s.
(iii) d(W ) = d(s).

Proof. As mentioned above, when s is not deleted from the current source set
S′

0 and W is chosen as a member of W0 in Step 3, we have W ∩ S′
0 = {s} and

d(s) = max{d(v) | v ∈ W} = d(W ), and W is minimal wrt. s. Moreover, by
S0 ⊆ S′

0, we have W ∩ S0 = {s}. ��

We can observe that S0 is max{d∗ + 1, 2d∗ − 6}-approximate.
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Lemma 7. |S0| ≤ max{d∗ + 1, 2d∗ − 6}opt(G, d).

Proof. If d∗ = 1, then |S0| = 1 clearly holds; S0 is optimal. Consider the
case where d∗ ≥ 2. Let S be an arbitrary source set. From the definition of
f(V, W0), we can observe that S can cover at most |S|f(V, W0) sets in W0.
On the other hand, Lemma 2 indicates that we have S ∩ W = ∅ for every
W ∈ W0. Therefore, |S|f(V, W0) ≥ |W0| must hold. It follows that we have
opt(G, d) ≥ |W0|/f(V, W0) = |S0|/f(V, W0). We will prove this lemma by show-
ing that f(V, W0) ≤ max{d∗ + 1, 2d∗ − 5} and that when f(V, W0) = 2d∗ − 5,
opt(G, d) ≤ max{d∗ + 1, 2d∗ − 6}.

Assume that there is a family W ′ ⊆ W0 of deficient sets with |W ′| = �,
� ≥ d∗+1, and

⋂
W∈W′ W = ∅. We first claim that for each W ∈ W ′, the number

of sets Wi ∈ W ′ with si ∈ NG(W ) is at most d∗ − 3. From |NG(W )| ≤ d∗ − 1,
� ≥ d∗ + 1, and Lemma 6(i), there exists a set Wj ∈ W ′ with sj /∈ NG(W ).
Again by Lemma 6(i), if this claim would not hold, then such Wj would satisfy
|Wj ∩ NG(W )| ≤ 1. Then |Wj ∩ NG(W )| = 0 would imply that Wj − W and

(a) (b)

Fig. 2. Illustration of the directed graph H = (V1, E1). (a) shows S′
0 = {s1,

s2, s3, s4, s5} ⊆ S0 and W ′
0 = {W1, W2, W3, W4, W5} ⊆ W0 such that W1 ∩ W2 ∩ W3 ∩

W4∩W5 �= ∅, S′
0∩NG(W1) = {s2, s5}, S′

0∩NG(W2) = {s4, s5}, S′
0∩NG(W3) = {s1, s2},

S′
0∩NG(W4) = {s1, s3}, and S′

0∩NG(W5) = {s3, s4}. (b) shows that the subgraph of the
directed graph H corresponding to S′

0 and W ′
0 (note that for each pair Wi, Wj ∈ W ′

0,
si ∈ NG(Wj) or sj ∈ NG(Wi) by Lemmas 5 and 6).

Wj ∩ W are disconnected, which contradicts Lemma 3, and |Wj ∩ NG(W )| = 1
would indicate that the vertex v with Wj ∩ NG(W ) = {v} satisfies v = sj by
Lemmas 4 and 6(ii) (note that W ∩ NG(Wj) = ∅ holds by Lemma 3).

Consider the directed graph H = (V1, E1) such that each vertex vi ∈ V1 cor-
responds to a set in Wi ∈ W ′, and that a directed edge (vi, vj) belongs to E1 if
and only if sj ∈ NG(Wi) (see Fig. 2). From the above claim, the outdegree of each
vertex in V1 is at most d∗ − 3. On the other hand, |E1| ≥ �(� − 1)/2 holds, since
Lemmas 5 and 6 imply that for every two sets Wi, Wj ∈ W ′, we have si ∈ NG(Wj)
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or sj ∈ NG(Wi). It follows that (d∗ − 3)� ≥ |E1| ≥ �(� − 1)/2; � ≤ 2d∗ − 5. More-
over, when � = 2d∗ − 5, we can observe that we have |NG(Wi)| = d∗ − 1 and
NG(Wi) ⊆

⋃
W∈W′ W for each Wi ∈ W ′; NG(

⋃
W∈W′ W ) = ∅, V =

⋃
W∈W′ W ,

W0 = W ′, and each si ∈ S0 satisfies d(si) = d∗ (note that G is connected and that
by V =

⋃
W∈W′ W and Lemma 6(i), any set in W0 − W ′ cannot exist). Observe

that in this case, opt(G, d) ≥ 2 since if {v} would be an optimal solution for some
v ∈ V , then V −{v} would be a deficient set wrt. some s ∈ S0 −{v} and hence {v}
would be infeasible (note that |NG(V − {v})| = 1 < d∗ and |S0| ≥ d∗ + 1 > 1). It
follows that if � = 2d∗ − 5, |S0| = � ≤ (2d∗ − 5)opt(G, d)/2. ��

Finally, we show that the algorithm GREEDY LVSLP can be implemented to
run in O(min{d∗,

√
n}d∗n2) time. Step 3 can be done in O(min{d∗,

√
n}m) time

by using the network computation [4]. Since Step 3 is executed at most n times, it
follows that the total complexity is O(min{d∗,

√
n}mn). Moreover, we can reduce

this complexity to O(m + min{d∗,
√

n}d∗n2) by computing a sparse subgraph
G′ of G with O(d∗n) edges that preserves the local vertex-connectivity up to d∗.
Such a sparse spanning subgraph exists and it can be computed in O(m) time
[12].

Summarizing the arguments given so far, Theorem 1 is now established.

4 The Case of d∗ ≤ 4

In this section, we consider the case restricted to d∗ ≤ 4. Let S0 and W0

be the set of vertices and the family of deficient sets obtained by algorithm
GREEDY LVSLP, respectively, as defined in the previous section. We here show
that S0 is 3-approximate and this analysis is tight for the algorithm. We also
show that 4LVSLP is APX-hard.

Assume that d∗ = 4, since the case of d∗ ≤ 3 is polynomially solvable, as shown
in [7]. Also assume that |S0| ≥ 4, since |S0| ≤ 3 implies that S0 is 3-approximate.
If the frequency of each vertex wrt. W0 is at most three, then S0 is 3-approximate
as observed in the proof of Lemma 7. However, there exists an instance which
has a vertex with frequency four. We first start with characterizing such cases
through the following preparatory lemmas.

Lemma 8. Let Wi and Wj denote deficient sets in W0 with Wi ∩ Wj = ∅.
(i) |NG(Wi ∪ Wj)| ≥ 1.
(ii) Wi ∩ NG(Wj) = ∅ = Wj ∩ NG(Wi) holds; |NG(Wi ∩ Wj)| ≥ 2.
(iii) If |NG(Wi ∩ Wj)| = 2, then no set W ∈ W0 − {Wi, Wj} satisfies W ∩ Wi ∩
Wj = ∅.
(iv) If |NG(Wi ∪ Wj)| = 1, then at most one set W ∈ W0 − {Wi, Wj} satisfies
W ∩ Wi ∩ Wj = ∅.
(v) If |NG(Wi∪Wj)| = 2, then for every W ∈ W0−{Wi, Wj} with Wi∩Wj∩W =
∅, we have NG(Wi ∪ Wj) ∩ W ∩ S0 = ∅.

Proof. Omitted due to space limitation. ��
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Lemma 9. f(V, W0) ≤ 4 holds. In particular, for a vertex v ∈ V whose fre-
quency is four, the four distinct sets Wi ∈ W0, i = 1, 2, 3, 4 with v ∈ Wi satisfy
the following (4):

For some two sets W1, W2, d(s1) = 4 and d(s2) ≥ 3 hold and any set in
W0 − {W1, W2, W3, W4} is disjoint with W1 ∪ W2.

(4)

Proof. Let W1 and W2 denote deficient sets in W0 with W1 ∩ W2 = ∅. We
observe how many sets in W0 − {W1, W2} can intersect with W1 ∩ W2. From
Lemma 8(i)(ii), we have |NG(W1 ∪W2)| ≥ 1 and |NG(W1 ∩W2)| ≥ 2. Moreover,
Lemma 8(iii) says that if |NG(W1∩W2)| = 2, then every set W ∈ W0−{W1, W2}
is disjoint with W1 ∩ W2.

Consider the case where |NG(W1∩W2)| ≥ 3. By (2) and |NG(W )| ≤ d∗−1 ≤ 3
for each W ∈ W0, we have |NG(W1∪W2)| ≤ 3. In particular, if |NG(W1∪W2)| =
3 (resp. |NG(W1 ∪ W2)| = 2), then we have |NG(W1)| = |NG(W2)| = |NG(W1 ∩
W2)| = 3 (resp. |NG(W1)| = 3 and |NG(W2)| ≥ 2 without loss of generality).
There are the following three possible cases (I) |NG(W1∪W2)| = 1, (II) |NG(W1∪
W2)| = 2, |NG(W1)| = 3, and |NG(W2)| ≥ 2, and (III) |NG(W1 ∪ W2)| = 3 and
|NG(W1)| = |NG(W2)| = |NG(W1 ∩ W2)| = 3.

(I) Lemma 8(iv) implies that the frequency of each vertex in W1 ∩ W2 is at
most three.

(II) Assume that there are two distinct sets W3, W4 ∈ W0 − {W1, W2} such
that W1 ∩W2 ∩W3 ∩W4 = ∅. Lemma 8(v) implies that NG(W1 ∪W2) = {s3, s4}.
Hence, any other set W ∈ W0 cannot intersect with W1∪W2 by W ∩{s3, s4} = ∅
and the connectedness of G[W ]. Therefore, we can observe that the frequency
of each vertex in W1 ∩ W2 is at most four and that if W1 ∩ W2 ∩ W3 ∩ W4 = ∅
holds, then (4) holds.

(III) Assume that there is a set W3 ∈ W0 − {W1, W2} with W1 ∩ W2 ∩
W3 = ∅. We also assume that |NG(W3 ∪ W1)| = |NG(W2 ∪ W3)| = 3 and hence
|NG(W3)| = 3, since otherwise we can apply the above arguments. Note that
d(s1) = d(s2) = d(s3) = 4. Then we have the following claim whose proof is
omitted due to space limitation. This claim proves this lemma.

Claim. Every set in W0 − {W1, W2, W3} is disjoint with W1 ∩ W2 ∩ W3. ��

Lemma 10. Let Wi, Wj be two minimal deficient sets wrt. vi and vj, respectively,
such that Wi∩Wj = ∅, |NG(Wi∪Wj)| ≤ 2, d(vi) = 4, and {vi, vj}∩(Wi∩Wj) = ∅.
Then for any feasible solution S to 4LVSLP, we have |S ∩ (Wi ∪ Wj)| ≥ 2.

Proof. By Lemma 2, we have S ∩ (Wi ∪Wj) = ∅; let s ∈ S ∩ (Wi ∪Wj). If s = vi,
then |NG(Wi ∪Wj −{s})| ≤ |NG(Wi ∪Wj)|+1 ≤ 3 < d(vi). Hence, in this case,
again by Lemma 2, we have S ∩ (Wi ∪Wj −{s}) = ∅ and |S ∩ (Wi ∪Wj)| ≥ 2. If
s = vi, then s = vi /∈ Wj holds and hence by Lemma 2 we have (S −s)∩Wj = ∅.
Also in this case, |S ∩ (Wi ∪ Wj)| ≥ 2. ��

Lemma 11. S0 is 3-approximate.
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Proof. Let S∗ denote an optimal solution. Since S∗ is feasible, we have W ∩S∗ =
∅ for every W ∈ W0. Consider a mapping g : W0 → S∗ such that for each
set W ∈ W0, f(W ) = s∗ holds for some source s∗ ∈ S∗ with s∗ ∈ W . If
|{W ∈ W0 | g(W ) = s∗}| ≤ 3 holds for each source s∗ ∈ S∗, then we have
|W0| ≤ 3|S∗|, from which |S0| = |W0| ≤ 3|S∗|. We claim that there is such a
mapping.

Assume that for a mapping g, there is a source s∗1 ∈ S∗ which at least four sets
in W0 is mapped to. By Lemma 9, f(V, W0) ≤ 4 holds, and hence the number of
sets in W0 mapped to s∗1 is exactly four. Moreover, the four sets W1, W2, W3, W4

in W0 with g(Wi) = s∗1, i = 1, 2, 3, 4 satisfy (4); |NG(W1 ∪ W2)| = 2, d(s1) = 4,
and W ∩ (W1 ∪ W2) = ∅ for each W ∈ W0 − {W1, W2, W3, W4}.

Now Lemma 10 implies that W1 ∪ W2 includes a source s∗2 ∈ S∗ − {s∗1}.
Notice that no set in W0 is mapped to s∗2 in g because every set W ∈ W0 −
{W1, W2, W3, W4} satisfies s∗2 /∈ W and each of Wi, i = 1, 2, 3, 4 has been mapped
to s∗1. So, we can decrease the number of sets in W0 mapped to s∗1 by one, by
remapping one of two sets W1 and W2 including s∗2 to s∗2. Consequently, by
repeating this arguments, we can obtain a required mapping. ��

We now give a tight example for the algorithm GREEDY LVSLP. Let Hi =
(Vi, Ei) be the graph where Vi =
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3)}) (see Fig. 3(a)). Let

G = (V, E) be the graph where V = {u1, u2, u3} ∪ (
⋃q

i=1 Vi), q ≥ 4 and E =
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j1) = 4 for each i ∈ {1, 2, . . . , q} and
j ∈ {1, 2, 3}, and d(v) = 0 for all other vertices (see Fig. 3(b)). For G and d, the
algorithm GREEDY LVSLP returns a source set S0 =
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Fig. 3. Illustration of a tight example G for the algorithm GREEDY LVSLP in the
case of d∗ = 4. (a) shows the graph Hi which is a subgraph of G in (b). In G, each
vertex v with d(v) = 4 is drawn as double circles.
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example shows that our analysis of the algorithm is tight. We here remark that in
a similar way, we can construct an instance in which GREEDY LVSLP returns
a solution S with |S| = (d∗ − 1)opt(G, d) for a general d.

Finally, we show that the problem is APX-hard. In [7], it was shown that
4LVSLP is NP-hard by a reduction from the minimum vertex cover problem
restricted to 3-regular graphs:

Vertex-cover problem in a 3-regular graph (VC3R)
INSTANCE: (G = (V, E), k) : A 3-regular graph G = (V, E) and an integer k.
QUESTION: Is there a vertex cover X with |X | ≤ k in G? ��
where a set V ′ ⊆ V of vertices is called a vertex cover if every edge e = (u, v) ∈ E
satisfies {u, v} ∩ V ′ = ∅, and a graph is called k-regular if the degree of every
vertex is exactly k. As shown in [1], the minimum vertex cover problem is APX-
hard, even restricted to 3-regular graphs. We can prove the APX-hardness of
4LVSLP by using the same reduction as [7].

Lemma 12. 4LVSLP is APX-hard.

Proof. Omitted due to space limitation. ��

5 Concluding Remarks

In this paper, given an undirected graph G = (V, E) and a demand function
d : V → Z+, we have considered the problem of finding a source set S ⊆ V with
the minimum cardinality for which there exist d(v) paths between every vertex
v ∈ V −S and S such that no pair of paths has a common vertex in V −v. We have
shown that a simple greedy algorithm finds a max{d∗ + 1, 2d∗ − 6}-approximate
solution to the problem in O(min{d∗,

√
n}d∗n2) time. Especially, restricted to

d∗ ≤ 4, we have given a tight analysis to show that it achieves an approximation
ratio of 3, while the problem is APX-hard. However, it is still open whether the
problem is approximable within a constant which is independent of d∗.
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Grant-in-Aid from Ministry of Education, Culture, Sports, Science and Technol-
ogy of Japan.

References

[1] Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theo-
retical Computer Science 237, 123–134 (2000)

[2] Arata, K., Iwata, S., Makino, K., Fujishige, S.: Locating sources to meet flow
demands in undirected networks. Journal of Algorithms 42, 54–68 (2002)

[3] Bárász, M., Becker, J., Frank, A.: An algorithm for source location in directed
graphs. Operations Research Letters 33(3), 221–230 (2005)

[4] Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM Journal
on Computing 4, 507–518 (1975)



40 T. Ishii

[5] van den Heuvel, J., Johnson, M.: Transversals of subtree hypergraphs and the
source location in digraphs. DAM Research Report LSE-CDAM-2004-10, London
School of Economics (2004)

[6] Ishii, T., Fujita, H., Nagamochi, H.: Minimum cost source location problem with
local 3-vertex-connectivity requirements. Theoretical Computer Science 372(1),
81–93 (2007)

[7] Ishii, T., Fujita, H., Nagamochi, H.: Source location problem with local 3-vertex-
connectivity requirements. Discrete Applied Mathematics (to appear)

[8] Ito, H.: Telecommunication network simplifying problem – connectivity, area
graph and T -mixed cut. NTT R&D 44(4), 367–372 (1995) (in Japanese)

[9] Ito, H., Ito, M., Itatsu, Y., Nakai, K., Uehara, H., Yokoyama, M.: Source location
problems considering vertex-connectivity and edge-connectivity simultaneously.
Networks 40(2), 63–70 (2002)

[10] Ito, H., Makino, K., Arata, K., Honami, S., Itatsu, Y., Fujishige, S.: Source loca-
tion problem with flow requirements in directed networks. Optimization Methods
and Software 18, 427–435 (2003)

[11] Labbe, M., Peeters, D., Thisse, J.-F.: Location on networks. In: Ball, M.O., et al.
(eds.) Handbooks in Operations Research and Management Science, vol. 8, pp.
551–624. North Holland, Amsterdam (1995)

[12] Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica 7, 583–596
(1992)

[13] Nagamochi, H., Ishii, T., Ito, H.: Minimum cost source location problem
with vertex-connectivity requirements in digraphs. Information Processing Let-
ters 80(6), 287–294 (2001)

[14] Sakashita, M., Makino, K., Fujishige, S.: Minimum cost source location problems
with flow requirements. In: Proceedings of the 7th Latin American Theoretical
Informatics, pp. 769–780 (2006)

[15] Tamura, H., Sengoku, M., Shinoda, S., Abe, T.: Location problems on undirected
flow networks. IEICE Transactions E73-E(12), 1989–1993 (1990)

[16] Tamura, H., Sugawara, H., Sengoku, M., Shinoda, S.: Plural cover problem
on undirected flow networks. IEICE Transactions J81-A, 863–869 (1998) (in
Japanese)



Dynamic Distance Hereditary Graphs

Using Split Decomposition�

Emeric Gioan and Christophe Paul��
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Abstract. The problem of maintaining a representation of a dynamic
graph as long as a certain property is satisfied has recently been
considered for a number of properties. This paper presents an optimal
algorithm for this problem on vertex-dynamic connected distance hered-
itary graphs: both vertex insertion and deletion have complexity O(d),
where d is the degree of the vertex involved in the modification. Our
vertex-dynamic algorithm is competitive with the existing linear time
recognition algorithms of distance hereditary graphs, and is also simpler.
Besides, we get a constant time edge-dynamic recognition algorithm. To
achieve this, we revisit the split decomposition by introducing graph-
labelled trees. Doing so, we are also able to derive an intersection model
for distance hereditary graphs, which answers an open problem.

1 Introduction

Motivated by their practical applications as well as by their related theoretical
challenges, dynamic graph algorithms have received particular attention over the
last few years [12]. Solving a problem on a dynamic graph consists of an algo-
rithm that, under a series of graph modifications (vertex or edge modification),
updates a data structure supporting elementary queries (e.g. adjacency). Let
us note that the series of modifications to which the graph is submitted is not
known in advance. To be of interest, such an algorithm should not recompute
a solution from scratch. In order to ensure locality of the computation, most of
the known dynamic graph algorithms are based on decomposition techniques.
For example, the SPQR-tree data structure has been introduced in order to dy-
namically maintain the 3-connected components of a graph which allows on-line
planarity testing [2].

This paper considers the dynamic representation problem which asks for the
maintenance of a representation of a dynamic graph as long as a certain prop-
erty Π is satisfied. Existing literature on this problem includes representa-
tion of chordal graphs [18], proper interval graphs [16], cographs [21], directed
cographs [7], permutation graphs [8]. The data structures used for the last four
results are strongly related to the modular decomposition tree [14]. The split de-
composition (also called 1-join decomposition), introduced by Cunningham [9],
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is a generalization of the modular decomposition. A natural question is to ask
whether the split decomposition can be used to dynamically represent wider
graph families? We answer positively to this question.

The algorithmic aspects of the split decomposition, unlike the modular de-
composition, are not well understood. For instance, totally decomposable graphs
are known to be the distance hereditary graphs [1,15], which form an interesting
family of graphs for several reasons: they generalize the well-known cographs [5],
which are totally decomposable by the modular decomposition; they are the
graphs of rankwidth 1 [20] and are among the elementary graphs of clique-
width 3 [4]; they also have various theoretical characterizations... Computing
the split decomposition in linear time [10] is very complicated. It follows that
most of the known algorithms (even recent ones) operating on distance hereditary
graphs do not rely on the split decomposition but rather on a heavy breadth-
first search layering characterization [1], or on some ad-hoc (rooted) tree de-
compositions [3,17,23]. Similarly the recent O(1) edge-only dynamic recognition
algorithm [6] is based on the BFS layering characterization.

In this paper, we revisit the split decomposition theory [9] under the new
framework of graph-labelled trees, which formalize the (unrooted) tree decompo-
sition underlying the split decomposition (see Section 2). As a by-product, we
can derive two new characterizations of distance hereditary graphs (see Section
3). The first one is an intersection model for the family of distance hereditary
graphs. The existence of such a model was known [19], but to our knowledge,
the model itself was still not discovered [22]. Graph-labelled trees also yield an
incremental characterization of distance hereditary graphs from which we can
deduce an optimal vertex-dynamic algorithm to represent distance hereditary
graphs (see Section 4). These are the first results obtained for the split decom-
position in the framework of graph-labelled trees. Moreover the simplicity of the
solutions we propose witnesses the elegance of graph-labelled trees: e.g. our O(d)
vertex insertion algorithm is not only competitive with the existing static linear
time recognition algorithms [3,11,15], but is also simpler. We also get a constant
time edge-dynamic recognition algorithm, different from [6] (see Section 5). We
believe that new applications or generalizations of the split decomposition could
be derived from graph-labelled trees.

2 Split Decomposition and Graph-Labelled Trees

Any graph G = (V (G), E(G)) we consider is simple and loopless. For a subset
S ⊆ V (G), G[S] is the subgraph of G induced by S. If T is a tree and S a subset
of leaves of T , then T (S) is the smallest subtree of T spanning the leaves of S. If
x is a vertex of G then G−x = G[V (G)−{x}]. Similarly if x /∈ V (G), G+(x, S)
is the graph G augmented by the new vertex x adjacent to S ⊆ V (G). We denote
N(x) the neighbourhood of a vertex x. The neighborhood of a set S ⊆ V (G) is
N(S) = {x /∈ S | ∃y ∈ S, xy ∈ E(G)}. The clique is the complete graph and
the star is the complete bipartite graph K1,n. The universal vertex of the star is
called its centre and the degree one vertices its extremities.
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Definition 2.1. [9] A split of a graph G is a bipartition (V1, V2) of V (G) such
that 1) |V1| � 2 and |V2| � 2; and 2) every vertex of N(V1) is adjacent to every
vertex of N(V2).

Cliques and stars are called degenerate since for any such graph on at least 4
vertex, any non-trivial vertex bipartition is a split. A graph with no split that
is not degenerate is called prime. The split decomposition of a graph G, as
originally studied in [9], consists of: finding a split (V1, V2), decomposing G into
G1 = G[V1 ∪ {x1}], with x1 ∈ N(V1) and G2 = G[V2 ∪ {x2}] with x2 ∈ N(V2),
x1 and x2 being called the marker vertices ; and then recursing on G1 and G2.
In [9], Cunningham presents the idea of a tree decomposition. But its main
result stating the uniqueness of lastly resulting graphs in a split decomposition
focuses on the set of resulting graphs more than on the structure linking them
together. To reformulate Cunningham’s result in terms of tree, let us introduce
some terminology.

Definition 2.2. A graph-labelled tree (T, F) is a tree in which any node v of
degree k is labelled by a graph Gv ∈ F on k vertices such that there is a bijection
ρv from the tree-edges incident to v to the vertices of Gv.

We call nodes the internal vertices of a tree, and leaves the other ones. Let (T, F)
be a graph-labelled tree and l be a leaf of T . A node or a leaf u different from l
is l-accessible if for any tree-edges e = wv and e′ = vw′ on the l, u-path in T , we
have ρv(e)ρv(e′) ∈ E(Gv). By convention, the unique neighbor of l in T is also
l-accessible. See Figure 1 for an example.

Definition 2.3. The accessibility graph G(T, F) of a graph-labelled tree (T, F)
has the leaves of T as vertices, and there is an edge between x and y if and only
if y is x-accessible.

Lemma 2.1. Let (T, F) be a graph-labelled tree and T1, T2 be the subtrees of
T − e where e is a tree-edge non-incident to a leaf. Then the bipartition (L1, L2)
of the leaves of T , with Li being the leaf set of Ti, defines a split in the graph
G(T, F).
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Fig. 1. A graph-labelled tree and its accessibility graph
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We can naturally define the split and the converse join operations on a graph-
labelled tree (T, F) as follows (see Figure 2):

• Split of (T, F): Let v be a node of T whose graph Gv has a split (A, B). Let
GA and GB be the subgraphs resulting from the split (A, B) and a, b be the
respective marker vertices. Splitting the node v consists in substituting v
by two adjacent nodes vA and vB respectively labelled by GA and GB such
that for any x ∈ V (GA) different from a, ρvA(x) = ρv(x) and ρvA(a) = vAvB

(similarly for any x ∈ V (GB) different from b, ρvB (x) = ρv(x) and ρvB (b) =
vAvB).

• Join of (T, F): Let uv be a tree-edge of T . Then joining the nodes u and v
consists in substituting them by a single node w labelled by Gw the acces-
sibility graph of the tree with only edge u, v and respective labels Gu and
Gv. For any vertex x of Gw, ρw(x) = ρv(x) or ρw(x) = ρu(x) depending on
which graph x belonged.

Observe that if (T, F) is obtained from (T ′, F ′) by a join or a split operation,
then it follows from the definitions that G(T, F) = G(T ′, F ′).

Among the join operations, let us distinguish: the clique-join, operating on
two neighboring nodes labelled by cliques, and the star-join, operating on star-
labelled neighboring nodes u, v such that the tree-edge uv links the centre of
one star to an extremity of the other. A graph-labelled tree (T, F) is reduced if
neither clique-join nor star-join can be applied, i.e. the clique nodes are pairwise
non-adjacent and two star nodes u and v can be adjacent only if ρu(uv) and
ρv(uv) are both centres or both extremities of their respective stars Gu and Gv.
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Fig. 2. The split and the join operations on a graph-labelled tree

Theorem 2.1 (Cunningham’s Theorem reformulated). For any connected
graph G, there exists a unique reduced graph-labelled tree (T, F) such that G =
G(T, F) and any graph of F is prime or degenerate.

For a connected graph G, the split tree ST (G) of G is the unique reduced graph-
labelled tree (T, F) in the above Theorem 2.1 (see Figure 1).

The next two lemmas are central to proofs of further theorems.

Lemma 2.2. Let ST (G) = (T, F) be the split tree of a connected graph G. Let
l be a leaf of T , and e = uv, e′ = uv′ be distinct tree edges such that u is a
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l-accessible and e is on the u, l path in T . Then ρu(e)ρu(e′) ∈ E(Gu) if and only
if there exists a l-accessible leaf l′ in the subtree of T − e′ containing v′.

The above easy lemma can be rephrased as follows: if u and v are two adjacent
l-accessible nodes, then there exists a l-accessible leaf l′ such that the l, l′-path
contains the tree edge u, v. It follows that:

Lemma 2.3. Let ST (G) = (T, F) be the split tree of a connected graph G. For
any vertex x ∈ V (G), T (N(x)) has at most 2.|N(x)| nodes.

3 Characterizations of Distance Hereditary Graphs

A graph is distance hereditary (DH for short) if the distance between any given
pair of vertices remains the same in any connected induced subgraphs. By [15], a
graph is DH if and only if it is totally decomposable by the split decomposition,
i.e. its split tree is labelled by cliques and stars. Hence DH graphs are exactly ac-
cessibility graphs of clique-star labelled trees, clique-star trees for short. Among
the possible clique-star trees, the split tree is the unique reduced one. Figure 1
gives an example. We mention that ternary clique-star trees were used in [13] to
draw DH graphs. Another general example is given by cographs, which can be
characterized as distance hereditary graphs whose stars in the split tree are all
directed towards a root of the tree.

An intersection model. Given a family S of sets, one can define the inter-
section graph I(S) as the graph whose vertices are the elements of S and there
is an edge between two elements if and only if they intersect. Many restricted
graph families are defined or characterized as the intersection graphs (e.g. chordal
graphs, interval graphs. . . see [19]). Graph families supporting an intersection
model can be characterized without even specifying the model [19]. This result
applies to DH graphs, and no model was known [22]. Based on clique-star trees,
an intersection model can be easily derived. Note that it can be equivalently
stated by considering only reduced clique-star trees, or even only ternary ones.
We call accessibility set of a leaf l in a graph-labelled tree the set of pairs {l, l′}
with l′ a l-accessible leaf.

Theorem 3.1 (Intersection model). A graph is distance hereditary if and
only if it is the intersection graph of a family of accessibility sets of leaves in a
set of clique-star trees.

Incremental characterization. Let G be a connected DH graph and let
ST (G) = (T, F) be its split tree. Given a subset S of V (G) and x �∈ V (G),
we want to know whether the graph G + (x, S) is DH or not.

Definition 3.1. Let T (S) be the smallest subtree of T with leaves S. Let u be a
node of T (S).

1. u is fully-accessible if any subtree of T − u contains a leaf l ∈ S;
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2. u is singly-accessible if it is a star-node and exactly two subtrees of T − u
contain a leaf l ∈ S among which the subtree containing the neighbor v of u
such that ρu(uv) is the centre of Gu;

3. u is partially-accessible otherwise.

We say that a star node is oriented towards an edge (or a node) of T if the
tree-edge mapped to the centre of the star is on the path between the edge (or
node) and the star.

Theorem 3.2 (Incremental characterization). Let G be a connected dis-
tance hereditary graph and ST (G) = (T, F) be its split tree. Then G + (x, S) is
distance hereditary if and only if:

1. at most one node of T (S) is partially accessible;
2. any clique node of T (S) is either fully or partially-accessible.
3. if there exists a partially accessible node u, then any star node v �= u of T (S)

is oriented towards u if and only if it is fully accessible. Otherwise, there
exists a tree-edge e of T (S) towards which any star node of T (S) is oriented
if and only if it is fully accessible.

4 A Vertex-Only Fully-Dynamic Recognition Algorithm

In this section we mainly compute the characterization given by Theorem 3.2 to
obtain the following main result.

Main Theorem 4.1. There exists a fully dynamic recognition algorithm for
connected distance hereditary graphs with complexity O(d) per vertex insertion
or deletion operation involving d edges.

The vertex insertion algorithm yields a linear time recognition algorithm of
(static) DH graphs, thereby achieving the best known bound but also simpli-
fying the previous non-incremental ones [15,11,3].

Corollary 4.1 (Static recognition). The vertex insertion routine enables to
recognize distance hereditary graphs in linear time.

The following data structure is used for the clique-star tree ST (G) = (T, F) of
the given DH graph G: a (rooted) representation of the tree T ; a single clique-
star marker distinguishing the type of each node; a centre-marker distinguishing
the centre of each star node; and the degree of each node. Let us notice that this
data structure is an O(n) space representation of the DH graphs on n vertices.

4.1 Vertex Insertion Algorithm

Computing the smallest subtree spanning a set of leaves. Given a set
S of leaves of a tree T , we need to identify the smallest subtree T (S) span-
ning S, and to store the degrees of its nodes. This problem is easy to solve on
rooted (or directed) trees by a simple bottom-up marking process with complex-
ity O(|T (S)|). So an arbitrary root of T is fixed.
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1. Mark each leaf of S. A node is active if its father is not marked.
2. Each marked node marked its father as long as: 1) the root is not marked

and there is more than one active node, or 2) the root is marked and there
is at least one active node.

3. As long as the root of the subtree induced by the marked nodes is a leaf not
in S, remove this node and check again.

Testing conditions of Theorem 3.2. The first two conditions of Theorem 3.2
are fairly easy to check by following Definition 3.1: a node u is fully-accessible
if its degrees in T (S) and T are the same; u is singly-accessible if it is a star,
if it has degree 2 in T (S) and if the centre neighbor belongs to T (S); and u is
partially accessible otherwise, such a node having to be unique if it exists. This
test costs O(|T (S)|).

We now assume that the first two conditions of Theorem 3.2 are fulfilled. At
first, the case is trivial if |S| = 1. So assume |S| > 1.

We define local orientations on vertices of a tree as the choice, for every vertex
u, of a vertex f(u) such that either f(u) = u or f(u) is a neighbor of u. Local
orientations are called compatible if 1) f(u) = u implies f(v) = u for every
neighbor v of u, and 2) f(u) = v implies f(w) = u for every neighbor w �= v
of u. It is an easy exercise to see that if local orientations are compatible then
exactly one of the two following properties is true: either there exists a unique
vertex u with f(u) = u, in this case u is called node-root, or there exists a unique
tree-edge uv with f(u) = v and f(v) = u, in this case uv is called edge-root.

The test for the third condition of Theorem 3.2 consists of building, if possible,
suitable compatible local orientations in the tree T (S):
1. Let u be a leaf of T (S). Then f(u) is the unique neighbor of u.
2. Let u be a star node of T (S). If u is partially-accessible, then f(u) = u. If u is

singly-accessible, then f(u) = v with v the unique neighbor v of u belonging
to T (S) such that ρu(uv) is an extremity of the star. If u is fully-accessible,
then f(u) = v with v the neighbor of u such that ρu(uv) is the centre of the
star.

3. Let u be a clique node of T (S). If u is partially-accessible, then f(u) = u.
Otherwise, u is fully-accessible and its neighbors are leaves or star nodes.
If f(v) = u for every neighbor v of u then f(u) = u. If f(v) = u for every
neighbor v of u but one, say w, then f(u) = w. Otherwise u is an obstruction.

The third condition of Theorem 3.2 is satisfied if and only if 1) there is no
obstruction and 2) local orientations of T (S) are compatible. This test can be
done in time O(|T (S)|) by a search of T (S). Hence, the conditions of Theorem
3.2 can be tested in O(|T (S)|) time.

Updating the split-tree. We now assume that graph G + (x, S) is DH. So by
Theorem 3.2 the split tree has either a unique node-root or a unique edge-root.
There are three cases (see Figure 3).

1. There is a node-root u being partially-accessible, or S is reduced to a unique
vertex u. We may have to make a first update of T by splitting the node u
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Fig. 3. Vertex insertion

under some conditions on the degrees. Let U , resp. A, be the set of tree-edges
adjacent to u in T , resp. in T (S).

(a) If u is a clique node with |U \A| ≥ 2, then u is replaced with an edge vw
in T . Then v, resp. w, is labelled by a clique whose vertices correspond
to A, resp. U \ A, except one which corresponds to vw. In this case, v is
now the node-root.

(b) If u is a star node with centre mapped to the tree edge e and |(U \ A) \
e)| ≥ 1, then u is replaced with an edge vw in T . Then v is labelled by a
star whose extremities correspond to A \ {e} and centre to vw (we have
|A \ {e}| > 1 since u is not singly accessible), and w is labelled by a star
whose extremities correspond to (U \A)∪{vw} and centre to e. If e ∈ A,
then the edge vw is now the edge-root. And if e �∈ A, then the node v
becomes the node-root.

If the tree still has a node-root r = u or r = v, then let s be its neigbhor
in T that does not belong to T (S). Then the insertion edge is e = rs, and
ST (G + (x, S)) is obtained by subdividing rs with a star node t of degree
3 whose centre is ρw(rt) and making the leaf x adjacent to t. Then, in the
case where s is a star with centre ρv(st), we proceed a join operation on the
tree-edge st .

2. There is a node-root u not being partially-accessible, Then u is a clique node,
and ST (G+(x, S)) is obtained by adding the new leaf x adjacent to u whose
degree thereby increases by one.

3. There is an edge-root uv. Then ST (G + (x, S)) is obtained by subdividing
uv with a clique node w of degree 3 and making the leaf x adjacent to w.

Each above update operation can be done in O(1) time, except the splitting in
case 1 which requires O(|T (S)|) time (by deleting A from u to get w, and adding
A to a new empty node v). Any other update operation requires O(1) time to
maintain the data structure of the split tree (artificial root, degrees...). Then, the
complexity for the whole insertion algorithm derives from from previous steps
and the fact that O(|T (S)|) = O(|S|) (Lemma 2.3).

Theorem 4.2 (Vertex insertion). Let G + (x, S) be a graph such that G is a
connected distance hereditary graph. Given the data structure of split tree ST (G),
testing whether G + (x, S) is distance hereditary and if so computing the data
structure of ST (G + (x, S)) can be done in O(|S|) time.
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4.2 Vertex Deletion Algorithm

Removing a vertex x from a distance hereditary graph G always yields a distance
hereditary graph G − x. Let ST (G) be the split tree of G. Updating the data
structure of the split tree can be done as follows.

1. Remove the leaf x and update the degree of its neighbor v.
2. If v now has degree 2, then replace v with an edge between its neighbors,

and, if needed, reduce the clique-star tree on this edge.
3. If v is a star node whose centre neighbor was x, then G−x is no longer con-

nected, and the split-trees of each connected component are the components
of T − {v, x}.

It is easy to see that any operation costs O(1) except the join operation which
costs min(d′, d′′) where d′, d′′ are degree of the concerned nodes. Since at least
one of these nodes is fully accessible, this minimum degree is lower than d. Hence
this join operation costs O(d).

Lemma 4.1 (Vertex deletion). Let G be a connected distance hereditary graph
and x be a degree d vertex of G. Given the data structure of split tree ST (G), testing
whether G−x is a connected distance hereditary graph and if so computing the data
structure of ST (G − x) can be done in O(d) time.

5 Other Applications and Concluding Remarks

The results in this Section, and the previous ones, will be fully developped, with
proofs (omitted here for lack of space), in a forthcoming paper.

A constant time edge-only fully-dynamic recognition algorithm. We
consider the problem of adding or deleting an edge to a connected distance
hereditary graph and testing if the new graph is distance hereditary. We use
again the split tree of the graph to do this test easily and maintain the split tree
in constant time. Another constant time algorithm for this problen, with other
technique, has been developped in [6].

Let G be a connected distance hereditary graph, and x and y two vertices of
G. If xy �∈ E(G) resp. xy ∈ E(G), then let G′ = G + e resp. G′ = G − e with
e = xy. Let P be the path from x to y in ST (G), which defines a word W on the
alphabet {K, L, R, S}, where K stands for a clique node, R for a star node with
center directed towards x, L for a star node with center directed towards y, and
S for a star node with center not directed towards x or y. Note that xy ∈ E(G)
if and only if W contains no letter S.

Theorem 5.1. The graph G′ is distance hereditary if and only if W has one of
the following forms, where letters in brackets can be deleted.
Case G′ = G + e: (R)SS(L), (R)SK(L), (R)KS(L), (R)S(L).
Case G′ = G − e: (R)LR(L), (R)LK(L), (R)KR(L), (R)K(L), (R)(L).

In the deletion case, if W = (R)(L), then G′ is no longer connected.
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As a consequence, we get the following constant time algorithm:

1. Test if W has length at most 4 and satisfies conditions of Theorem 5.1.
2. Update the split tree. Nodes of letters in brackets are called extreme.

(a) If the not-extreme nodes are not ternary, then make a split on these
nodes to get ternary nodes instead, in the path from x to y.

(b) Replace the not-extreme nodes with ternary nodes according to the fol-
lowing table, and, in the cases where there are two not-extreme nodes,
exchange the edges of the graph-labelled tree adjacent to these nodes,
which are not in the path from x to y, between these nodes. Extreme
nodes are unchanged.

edge insertion −→
←− edge deletion

(R)SS(L) (R)LR(L)
(R)SK(L) (R)LK(L)
(R)KS(L) (R)KR(L)
(R)S(L) (R)K(L)

(c) If necessary, make (at most two) join operations involving the nodes that
have been changed to get a reduced graph-labelled tree.

Particular case of cographs. We mention that algorithms in this paper can
be adaptated to the particular case of cographs, which are totally decomposable
for the modular decomposition. Indeed, a connected cograph is a connected dis-
tance hereditary graph of which split tree has the property that every star is
directed towards a same given edge. The previous known fully-dynamic recog-
nition algorithms of cographs (see [5] for the vertex insertion and [21] for the
other operations) can be restated in the framework of graph-labelled trees, and
then turn out to be equivalent to special cases of the previous algorithms.

General split decomposition. We finally mention that a generalization of our
insertion algorithm to arbitrary graphs would have a complexity no longer linear
in the number of edges. Consider the example where a new vertex is attached to
the extermities of a path on n � 4 vertices (whose nodes in the split tree form a
path of ternary stars). The resulting cycle is prime, witnessing Ω(n) changes in
the split-tree representation. So, even for circle graphs, such an algorithm would
have Ω(n) time complexity.
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Abstract. We introduces the umodules, a generalization of the notion
of graph module. The theory we develop captures among others undi-
rected graphs, tournaments, digraphs, and 2−structures. We show that,
under some axioms, a unique decomposition tree exists for umodules.
Polynomial-time algorithms are provided for: non-trivial umodule test,
maximal umodule computation, and decomposition tree computation
when the tree exists. Our results unify many known decomposition like
modular and bi-join decomposition of graphs, and a new decomposition
of tournaments.

1 Introduction

In graph theory modular decomposition is now a well-studied notion [15,6,21,11],
as well as some of its generalizations [10,19,23]. As having been rediscovered in
other fields, the notion also appears under various names, including intervals,
externally related sets, autonomous sets, partitive sets, and clans. Direct appli-
cations of modular decomposition include tractable constraint satisfaction prob-
lems, computational biology, graph clustering for network analysis, and graph
drawing.

Besides, in the area of social networks, several vertex partitioning have been
introduced in order to catch the idea of putting in the same part vertices ac-
knowledging similar behaviour, in other words finding regularities [27]. Modular
decomposition provides such a partitioning, yet seemingly too restrictive for real
life applications. The concept of a role [12] on the other hand seems promising,
however its computation unfortunately is NP−hard [13]. As a natural conse-
quence, there is need for the search of relaxed, but tractable, variations of the
modular decomposition scheme. A step following this direction has generalized
graph modules to those of larger combinatorial structures, so-called homoge-
neous relations [3,4]. This paper follows the same research stream, and weakens
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the definition of module in order to further decompose. Fortunately we obtain a
new tractable variation of modular decomposition, that we now introduce.

Modular decomposition is based on modules, a vertex subset with no split-
ter. In graphs, a splitter of a vertex subset is linked with some, but not all,
vertices of this subset. We shall see how this definition can be extended to ho-
mogeneous relations. The “outside” of a module constitutes therefore, for all
vertices of the module, the same ordered partition. For instance, all vertices of
an undirected graph module have the same neighbourhood. We here address
unordered-modules, so-called umodules for short: the outside of a umodule con-
stitutes for all vertices of the umodule the same unordered partition. For graph,
the umodules are the bijoins (see Section 6). As there are clearly more umodules
than modules, this allows deeper decomposition. We shall see that this decom-
position is tractable.

After comparing umodule to previous notions in the topic, we display its
tractability by giving an O(|X |4 log |X |) time computation of the maximal umod-
ules of a given homogeneous relation over a finite set X , and show how this can
also be used as a non-trivial umodule existence test. The structure of the family
of umodules is then investigated under different scenarios. We focus on a par-
ticular case, and provide a potent tractability theorem which makes use of the
so-called Seidel-switching graph operation [26]. Fortunately enough, undirected
graphs and tournaments fit into the latter formalism. We then deepen the study
and address total decomposability issues, namely when any “large enough” sub-
structure is decomposable. Surprisingly enough, this shows how our theory pro-
vides a very natural manner to obtain several results on round tournaments,
including characterisation, recognition, and isomorphism testing (see e.g. [1] for
more detailed information), as well as further computational results, such as the
feedback vertex set computation.

2 Umodule, an Enlarged Notion of Module

A diverse triple of a finite set X is (x, y, z) ⊆ X3 with x �= y and x �= z,
which will be denoted by (x|yz) instead of (x, y, z) since the first element plays a
particular role. Let H be a boolean relation over the diverse triples of X . Then,
Hx denotes the binary relation on X \ {x} such that Hx(y, z) ⇔ H(x|yz).

Definition 1 (Homogeneous Relation and Module). [3,4] H is a homoge-
neous relation on X if, for all x ∈ X, Hx is an equivalence relation on X\{x}. A
subset M ⊆ X is a module of H if H(x|mm′) for all m, m′ ∈ M and x ∈ X \M .

Equivalently, a homogeneous relation H can be seen as a mapping from each
x ∈ X to a partition of X \ {x}, namely the equivalence classes of Hx. This
generalizes graphs and 2-structures, where modular decomposition still applies
under the different but equivalent name of clan decomposition [11]. Roughly, a
2−structure G = (X, C) is a ground set X and an edge colouration C : X2 → N

[11]. Thus, a digraph is a 2−structure using two colours, denoting the existing
(when C(x, y) = 1) and absent arcs (when C(x, y) = 0). There is no need of
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the concept of adjacency nor neighbourhood nor incidence in a homogeneous
relation! But a homogeneous relation is canonically derived from graphs and
2−structures as follows.

Definition 2 (Standard Homogeneous Relation). [3,4] The standard ho-
mogeneous relation H(G) of a 2-structure G = (X, C) is

H(G)(x|uv) ⇐⇒ C(x, u) = C(x, v) and C(u, x) = C(v, x).

Proposition 1. Let G be a graph, or a tournament, or an oriented graph, or a
directed graph, or a 2−structure. The modules of H(G) exactly are the modules
of G in the usual sense (see definitions in [15,21,11]).

We now introduce the central notion of the paper which, from Proposition 3
(below), can be seen as a proper generalization of the classical modules/clans
(c.f. [15,21,11]), and a dual notion to the generalized modules (c.f. [3,4]).

Definition 3 (Umodules). A subset U of X is a umodule of H if
∀u, u′ ∈ U, ∀x, x′ ∈ X \ U, H(u|xx′) ⇐⇒ H(u′|xx′).

Roughly, elements of a umodule come from the same “school of thinking”: if one
differentiates, resp. mixes together, some exterior elements, so does every element
of the umodule (Fig. 1). A umodule U is trivial if |U | ≤ 1 or if |U | ≥ |X |−1. The
family of umodules of H is denoted by UH , and U when no confusion occurs.
H is umodular prime if all its umodules are trivial. The following proposition
links umodules to the 1-intersecting families framework as defined in [16]. The
subsequent proposition tells how far umodules may generalize modules.

Proposition 2. For any two umodules U, U ′ of a homogeneous relation H, if
U ∩ U ′ �= ∅ then U ∪ U ′ is also a umodule of H.

Proposition 3. If H is a standard homogeneous relation (see Definition 2),
then any module of H is a umodule of H. If H is an arbitrary homogeneous
relation over a finite set X, then any module M of H is such that X \ M is a
umodule of H.

In case of graphs, a natural question arises [9]: for which graphs the notions
of module and umodule coincide? The following result, which can also be seen

Fig. 1. left Modules and umodules in a graph: {a, b} is a module and also a umodule,
{1, 2} is a umodule but is not a module. right A homogeneous relation with a module
which is not a umodule. {a, b} is a module: they belong to the same equivalence class
in both Hc and Hd. {a, b} is not a umodule: c and d belong to the same class in Ha,
and to different classes in Hb.
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as a relaxed converse of Proposition 3, solves this problem. As with modules,
let the umodules of a graph refer to those of its standard homogeneous relation.
Notice here in a graph that the complementary of a umodule also is a umodule. A
threshold graph is one that can be constructed from the single vertex by repeated
additions of a single isolated or dominating vertex.

Proposition 4. G is a threshold graph if and only if in all induced subgraph of
G, every umodule is a module or the complementary of a module.

Threshold graphs are known to be one of the smallest graph classes (see e.g. [2]).
Therefore for most graphs umodules and modules differ, and Section 6 is devoted
to the umodular graph decomposition. However, before deepening decomposition
issues, let us first display umodule tractability.

3 Algorithmic Tractability for the General Case

As far as we are aware, there is no evidence of a decomposition scheme for arbi-
trary umodules. The first valuable objects to compute thus seem to be the maxi-
mal umodules with respect to some cut. Using this, we also provide a polynomial
time algorithm computing the strong umodules (see definition afterwards).

3.1 Maximal Umodules with Respect to a Cut

Partitions will be ordered with respect to the usual partition lattice: P = {P1..Pp}
is coarser than Q = {Q1, . . . , Qq}, and Q is thinner than P, if every part Qi is con-
tained in some Pj . It is noted Q ≤ P and Q < P if the partitions are different. Let
S be a subset of X . As the umodule family U is closed under union of intersecting
members (Proposition 2), the inclusionwise maximal umodules included in either
S or X \ S form a partition of X , denoted by MU(S) = MU(X \ S). In other
words, this is the coarsest partition of X into umodules of H , which is thinner
than {S, X \ S}. Roughly, it gives an indication on how the umodules are struc-
tured with respect to S: a umodule either is included in a umodule of MU(S), or
properly intersects S, or properly intersects X \ S, or trivial.

Definition 4. For every subset C ⊆ X, the relation RC on C is defined as:
∀x, y ∈ C, RC(x, y) if ∀a, b ∈ (X \ C) H(x|ab) ⇐⇒ H(y|ab).

This clearly is an equivalence relation on C. Furthermore, C is a umodule if and
only if RC only has one equivalence class. Let us define a refinement operation,
the main algorithmic tool for constructing MU(S).

Definition 5. Let P be a partition of X and C a part of P. Let C1, . . . , Ck

be the equivalence classes of RC . Refine(P, C) is the partition obtained from
P, by replacing part C by the parts C1, . . . , Ck. A partition P is refinable by
C if Refine(P, C) �= P. P is unrefinable if for every part C of P, we have
P = Refine(P, C).
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P ← {S, X \ S}
while there exists an unmarked part Cin P do

if P = Refine(P, C) then mark C
else P ← Refine(P, C)

Algorithm 1. Refinement algorithm computing MU(S) given homogeneous
relation H over X and S ⊆ X

Lemma 1. Let H be a homogeneous relation over X, U a umodule of H, and
P a partition of X. If U is included in a part of P, then for any part C of P, U
is included in a part of Refine(P, C). Moreover, a part C of P is a umodule if
and only if P is not refinable by C.

Correctness of Algorithm 1 follows from Lemma 1 and the invariant: There is no
umodule partition Q such that P < Q < {S, X \ S}. So, starting from {S, X \ S}
the algorithm constructs a strictly decreasing chain of partitions of X ending at
MU(S). Let us see how to implement it efficiently.

Lemma 2. It is possible to compute Refine(P, C) in O(|X |2) time.

Due to lack of space, the proof is omitted (see [5]). This lemma leads to an
O(|X |3) time implementation of Algorithm 1. However:

Theorem 1. For every S ⊆ X, MU(S), the coarsest umodule partition thinner
than {S, X − S} can be computed in O(|X |2 log |X |) time.

Proof. We borrow on the well-known Hopcroft’s partition refinement rule [24]
and avoid at each step to consider the biggest part. Thus, to compute MU(S)
assuming that |S| ≤ |X −S|, we first partition X −A using the ”neighbourhoods
lists” of all a ∈ A. If we assume a data structure which links each edge ay to
its opposite edge ya. We can associate in the meantime to each element a ∈ A a
bitvector representing how X −A sees a. These |A| bitvectors of size |X −A| can
be sorted in O(|X |.|X−A|) ∈ O(|X |2). Using Hopcroft’s rule, a vertex a can only
be explored at most O(log |X |) time, which yields the announced complexity. ��

3.2 Strong Umodules Computation and Primality Test

A umodule is strong if it overlaps no other umodules, where two subsets overlap
if none of the intersection and differences are empty. As two strong umodules are
either disjoint, or one contains another, they can be ordered by inclusion into
a tree (see e.g. laminar families in [25]). The following theorem answers both
maximal umodule computation and primality test since a non-trivial umodule
exists if and only if a non-trivial strong umodule exists.

Theorem 2. There exists an O(|X |4 log |X |) algorithm to compute the inclusion
tree of strong umodules.

Proof. Consider a non-trivial strong umodule M . For each pairwise distinct
x, y /∈ M (at least two of them exist as M is not trivial), M is contained in



Unifying Two Graph Decompositions with Modular Decomposition 57

exactly one set of MU({x, y}). The intersection of all these sets is exactly M .
Indeed if it were M ′ with M � M ′ then there would exist x ∈ M ′ \ M . For
y /∈ M , MU({x, y}) contains a umodule M ′′ smaller than M ′ but containing
M , a contradiction. Then the algorithm could be: for any pair {x, y} compute
MU({x, y}) in O(|X |2 log |X |) time (Theorem 1), which is a family of at most
|X |3 umodules. Add the trivial umodules and greedily compute the intersection
of overlapping umodules. It is possible in O(|X |4 log |X |) time: for each triple
(a, b, c) look for the umodules containing exactly two of them, they overlap. Then
we have all strong umodules, and just have to order them into a tree. ��

4 Two Decomposition Scenarios

Obviously, the number of umodules is potentially 2|X|. But we shall now focus on
families having a polynomial-size representation. The umodules of local congru-
ence 2 relations and self-complemented umodules families have such property:
they can be stored in O(|X |2) and O(|X |) space, respectively.

4.1 Local Congruence and Crossing Families

Definition 6 (Local congruence). Let H be a homogeneous relation on X.
For x ∈ X, the congruence of x is the maximal number of elements that x
pairwise distinguishes ( i.e. the number of equivalence classes of Hx). The local
congruence of H is the maximum congruence of the elements of X.

Standard homogeneous relations of undirected graphs and tournaments have
local congruence 2. This value is 3 for antisymmetric digraphs and directed
acyclic graphs, and is 4 for digraphs. When H has local congruence 2 (LC2
condition for short), we obtain the following structural property.

Definition 7 (Crossing family). F ⊆ 2X is a crossing family if, for any
A, B ∈ F , that A ∩ B �= ∅ and A ∪ B �= X implies A ∩ B ∈ F and A ∪ B ∈ F
(see e.g. [25] for further details).

Proposition 5. The umodules of a homogeneous relation with local congruence
2 form a crossing family, and can thus be stored in O(|X |2) space.

Crossing families commonly arise as the minimizers of a submodular function,
such as the family of minimum s, t−cuts of a network. For those families Gabow
gave a compact representation in O(|X |2) space using a tree representation [14].

4.2 Self-complementarity and Bipartitive Families

A consequence of previous proposition is that standard homogeneous relations of
graphs and tournaments have crossing umodules families. But they have stronger
properties, used there to build a O(|X |) space encoding of the umodules family.
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Definition 8. H fulfils the four elements condition if

∀ m, m′, x, x′ ∈ X,

{
H(m|xx′) ∧ H(m′|xx′) ∧ H(x|mm′) ⇒ H(x′|mm′)
¬H(m|xx′) ∧ ¬H(m′|xx′) ∧ ¬H(x|mm′) ⇒ ¬H(x′|mm′) .

Proposition 6. Standard homogeneous relations of undirected graphs and tour-
naments satisfy the four elements condition.

This is a light regularity condition, allowing to avoid examples similar to that of
Fig. 1.right. Surprisingly enough, it suffices to make the umodule family behave
in a very tractable manner (Proposition 7 and Corollary 1 below).

Definition 9 (Self-complementary condition). A family F of subsets of X
is self-complemented if for every subset A, A ∈ F implies X \ A ∈ F.

Proposition 7. If a homogeneous relation H fulfils the four elements condition
then the family U of umodules of H is self-complemented.

The four elements condition allows to shrink a umodule, hence apply the di-
vide and conquer paradigm to solve optimisation problems. However, as far as
umodules are concerned, the self-complementary relaxation is sufficient to de-
scribe a tree-decomposition theorem as can be seen below. Finally, notice that
the converse of Proposition 7 does not necessarily hold. The characterisation of
relations having a self-complemented umodule family by a local axiom, such as
the four elements condition, actually appears to be more difficult.

The following results on bipartitions can be found in [10] under the name of
“decomposition frame with the intersection and transitivity properties”, in [22]
under the name of “bipartitive families” (the formalism used in this paper), and
in [19] under the name of “unrooted set families”. We call {X1

i , X2
i } a bipartition

of X if X1
i ∪X2

i = X and X1
i ∩X2

i = ∅. Two bipartitions {X1
i , X2

i } and {X1
j , X2

j }
overlap if for all a, b = 1, 2 the four intersections Xa

i ∩ Xb
j are not empty. A

bipartition is trivial if one of the two parts is of size 1. Let B = {{X1
i , X2

i }i∈1,...,k}
be a family of k bipartitions of X . The strong bipartitions of B are those that
do not overlap any other bipartition of B. For instance, the trivial bipartitions
of B are strong bipartitions of B.

Proposition 8. If B contains all trivial bipartitions of X, then there exists a
unique tree T (B)

– with |X | leaves, each leaf being labelled by an element of X.
– such that each edge e of T (B) correspond to a strong bipartition of B: the

leaf labels of the two connected components of T −e are exactly the two parts
of a strong bipartition, and the converse also holds.

Let N be a node of T (B) of degree k. The labels of the leaves of the connected
components of T −N form a partition X1, . . . , Xk of X . For I ⊆ {1, . . . , k} with
1 < |I| < k, the bipartition B(I) is {∪i∈IXi, X \ ∪i∈IXi}.

Definition 10 (Bipartitive Family). A family of bipartitions is a bipartitive
family if it contains all the trivial bipartitions and if, for two overlapping bipar-
titions {X1

i , X2
i } and {X1

j , X2
j }, the four bipartitions {Xa

i ∪ Xb
j , X \ (Xa

i ∪Xb
j )}

(for all a, b = 1, 2) belong to B.
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Theorem 3. [10,22]If B is a bipartitive family, the nodes of T (B) can be labelled
complete, circular or prime, and the children of the circular nodes can be ordered
in such a way that:

– If N is a complete node, for any I ⊆ {1, . . . , k} such that 1 < |I| < k,
B(I) ∈ B.

– If N is a circular node, for any interval I = [a, . . . , b] of {1, . . . , k} such that
1 < |b − a| < k, B(I) ∈ B.

– If N is a prime node, for any element I = {a} of {1, . . . , k} B(I) ∈ B.
– There are no more bipartitions in B than the ones described above.

For a bipartitive family B, the labelled tree T (B) is an O(|X |)-sized representa-
tion of B, while the family can have up to 2|X|−1−1 bipartitions of |X | elements
each. This allows to efficiently perform algorithmic operations on B. Notice that
any self-complemented subset family can be seen as a family of bipartitions.

Proposition 9. A self-complemented umodule family is bipartitive.

Corollary 1 (Decomposition Theorem). There is a unique O(|X |)-sized
tree that gives a description of all possible umodules of a homogeneous rela-
tion H fulfilling the self-complementary condition. This tree is henceforth called
umodular decomposition tree. Notice that it is an unrooted tree.

Let H be a self-complemented homogeneous relation, T (H) its umodular de-
composition tree, and U a nontrivial strong umodule (if any). Let us examine
some consequences of Theorem 3. Two umodules overlap if and only if they are
incident to the same node of T (H). As H is self-complemented the union of two
overlapping umodules is a umodule (Proposition 2) but also their intersection.
The strong umodule U is an edge in T (H) incident with two nodes A and B.

– If one of them, say A, is labelled prime then for any x, y /∈ U such that the
least common ancestor of them in T (H) is A, then U ∈ MU({x, y}).

– If one of them, say A, is labelled circular then U ∈ MU({x, y}) for any x
belonging to the subtree rooted at the successor of U in the ordered circular
list of A, and for any y belonging to the subtree rooted at its predecessor.

– If one of them, say A, is labelled complete then the intersection, for all
x, y /∈ U whose least common ancestor is A, the intersection of all parts of
MU({x, y}) containing U is exactly U .

Theorem 2 then can be used to compute the strong umodule inclusion tree.
After this, typing the nodes and ordering their sons according to the above
definition is straightforward. Hence,

Theorem 4. There exists an O(|X |4 log(|X |)) algorithm to compute the unique
decomposition tree for a self complemented umodule family.

5 Seidel-Switching Theorem: More Tractability

Standard homogeneous relations of graphs and tournaments satisfy both LC2
and self-complemented conditions. We thus can decompose their umodules using
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2

Seidel(1)

(a) An example of a Seidel switch on

an undirected graph

2)1)

(b) 1. A bi-join (i.e. umodule) in an

undirected graph, 2. a umodule in a tour-

nament

Fig. 2. (a) Seidel switching, (b) umodules on undirected graphs

either the crossing decomposition or the bipartitive decomposition. Moreover, re-
lations that satisfy both conditions seem to own stronger potential. In particular,
there is a local transformation from the umodules of such a relation to the mod-
ules of another relation. This operation was first introduced by J. Seidel in [26]
on undirected graphs. It was later studied by several authors interested in some
computational or structural aspects [8,17,18,20]. Following [18], we call it Seidel
switching. We generalize it to homogeneous relations but take a restricted case
of switch, with the slight difference that we remove from the transformation an
element (see Fig. 2(a)). If H is a homogeneous relation on X and s ∈ X , we
denote the equivalence classes of Hs by H1

s , . . . , Hk
s .

Definition 11 (Seidel switch). Let H be a homogeneous relation of local con-
gruence 2 on X, and s an element of X. The Seidel switch at s transforms H
into the homogeneous relation H(s) on X \ {s} defined as

∀x ∈ X \ {s}, H(s)1x = (H1
xΔHj

s ) \ {s} and H(s)2x = (H2
xΔHj

s ) \ {s}

with j such that x /∈ Hj
s . AΔB denotes the symmetric difference of A and B.

Theorem 5 (Seidel-switching Theorem). Let H be a homogeneous relation
of local congruence 2 on X such that UH is self-complemented. Let s be a member
of X, and U ⊆ X a subset containing s. Then, U is a umodule of H if and only
if M = X \ U is a module of the Seidel switch H(s).

Corollary 2. The umodular decomposition tree of a self-complemented homo-
geneous relation of local congruence 2 on X can be computed in O(|X |2) time.

Proof. A Seidel switch on any element will result in a relation where every mod-
ule of the relation also is a umodule (c.f. modular quotient property [3]). Then,
the O(|X |2)-time algorithm depicted in [3] can be used. As two complemented
strong umodules M, X \ M of H , for s /∈ M , correspond to a strong module M
of H(s), then the strong umodules of H can be found trivially from the strong
modules of H(s). Typing and ordering their sons is then easy. ��

Notice that the modular decomposition tree of H can be trivial, while the one of
its Seidel switch at s may be not. Besides, there is no real need to type and order
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the sons of a node, as so-called linear nodes of the modular decomposition tree
give circular nodes of the umodular decomposition tree with the same ordering of
their sons, complete nodes of H(s) give complete nodes of H and prime nodes of
H(s) give prime nodes of H . However, modular decomposition of homogeneous
relations will not be discussed here, the reader should refer to [3].

6 Umodular Decomposition of Graphs and Tournaments

Let us now apply umodular decomposition to two well-known combinatorial
objects: undirected graphs and tournaments. In this section we always implicitly
refer to their standard homogeneous relations, for instance “the umodules of the
graph G” stands for “the umodules of the standard homogeneous relation H(G)
of the graph G” and so on. Also, “graph” stands for “undirected graph”. As
we have seen, graphs and tournaments fulfil the four elements conditions, are of
local congruence two, and their umodule family is self-complemented.

6.1 Bijoin Decomposition

Let us call bijoin a umodule of a graph or of a tournament. From definition, one
can see what bijoins are (Fig.2(b)). In a graph, B is a bijoin if X \ B can be
partitioned in two sets C and D such that for each x ∈ B, either N(x) ∩ C = ∅
and D ⊆ N(x), or N(x) ∩ D = ∅ and C ⊆ N(x). For a tournament, same
definition with C ⊆ N+(x) and D ⊆ N−(x), or D ⊆ N+(x) and C ⊆ N−(x).

Bijoins of graphs were studied in [23] as a new graph decomposition, general-
izing modular decomposition. The Seidel switch was used to derive most of the
properties claimed, especially a decomposition tree (with no circular nodes), a
linear-time decomposition algorithm, a characterisation of the two kinds of com-
plete nodes, and characterisation of totally decomposable graphs (see below).
Bijoins of tournaments form a new decomposition. Their decomposition tree
exists thanks to Corollary 1, since the bijoins form a self-complemented LC2
family. The tree computation follows from Corollary 2, that is

Proposition 10. The umodular (bijoin) decomposition tree computation time
of a tournament is O(|X |2).

Proposition 11. The umodular (bijoin) decomposition tree of a tournament
has no complete node. And there exists a circular ordering of the vertices of the
tournament such that every umodule of the tournament is a factor (interval) of
this circular ordering.

The first assumption can be checked by reader: it is impossible to build tourna-
ments with more than four elements such that every vertex subset is a bijoin.
The second is a consequence of the first, and of definitions in Theorem 3. As a
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consequence, there are O(|X |2) bijoins in a tournament (the exponential growth
of a bipartitive family comes from complete nodes).

6.2 Total Decomposability

Given a graph decomposition scheme, it is often worth to consider the totally
decomposable graphs w.r.t. that scheme, namely those in which every ”large
enough” subgraph admits a non trivial decomposition. Generally this leads to
the definition of very interesting graph classes, such as cographs with modular
decomposition or distance hereditary graphs with split decomposition.

Theorem 6. [23] The totally decomposable graphs w.r.t. bijoin decomposition
are the (C5,bull,gem,co-gem)-free graphs, and also exactly the graphs that can be
obtained from a single vertex by a sequence of (twin,antitwin)-extensions.

Definition 12. The in-diamond (resp. out-diamond) is a tournament made
with a cycle of three vertices plus a sink (resp. a source). A diamond is ei-
ther an in- or an out-diamond. A tournament T is locally transitive if for each
vertex x ∈ V (T ), both T[N+(x)] and T[N−(x)] are transitive. Two vertices x and
y of a tournaments are twins if N+(x) \ {y} = N+(y) \ {x} and antitwins if
N+(x) \ {y} = N−(y) \ {x}. An extension of x by a twin (resp. antitwin) y
consists in adding a new vertex y to T and making y twin (resp. antitwin) of x.

Theorem 7. Let T be a tournament. The following propositions are equivalent:

1. T is diamond-free (no induced subgraph is a diamond)
2. T is locally transitive
3. T is totally decomposable with respect to bijoin decomposition
4. T is obtained from a single vertex by a sequence of (twin,antitwin)-extensions.

Due to lack of space, the proof is omitted (see [5]). As the umodular decomposi-
tion tree of a totally decomposable tournament may have no prime nodes, and
since two circular nodes may not be adjacent, it is not hard to check that the
umodular decomposition tree of a totally decomposable tournament has only a
single circular node. The ordering of the vertices along this node is known as
circular ordering. This ordering is such that, for each vertex x, the vertices of
N+(x) follow consecutively; and so do vertices from N−(x). This, combined to
the above theorem, could be seen as a sketched proof of the characterisation of
round tournaments by local transitivity (see e.g. [1] for further information).

In the extended version [5], we present an O(n2) recognition algorithm, making
an intensive use of this ordering property, and computing this ordering. It allows
us to solve the isomorphism problem for the class of such tournament in O(n2)
time, like in [7]. We also propose the first linear-time algorithm for the feedback
vertex set problems (NP-complete for tournaments). The basic idea is to find a
vertex of highest outgoing degree, and output the tournament composed of this
vertex and its outgoing neighbourhood.
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21. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete struc-
tures and connections with combinatorial optimization. Annals of Discrete Math-
ematics 19, 257–356 (1984)

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00157502


64 B.-M. Bui-Xuan et al.

22. de Montgolfier, F.: Décomposition modulaire des graphes. Théorie, extensions et
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Abstract. Given a set of searchers in the grid, whose search paths are
known in advance, can a target that moves at the same speed as the
searchers escape detection indefinitely? We study the number of searchers
against which the target can still escape. This is less than n in an n × n
grid, since a row of searchers can sweep the allowed region.

In an alternating move model where at each time first all searchers
move and then the target moves, we show that a target can always escape
� 1

2n� searchers and there is a strategy for � 1
2n� + 1 searchers to catch

the target. This improves a recent bound Ω(
√

n) [5] in the simultaneous
move model. We also prove similar bounds for the continuous analogue,
as well as for searchers and targets moving with different speeds. In the
proof, we use a new isoperimetric theorem for subsets of the n × n grid,
which is of independent interest.

1 Introduction

Pursuit-Evasion problems have been studied in many models, and under many
names, like lion and man [14] or hunter and rabbit [1]. In each case, there is a
target t and one or more searchers s1, . . . , sk; both target and searchers move,
and the searchers aim to catch the target. The problems differ by the domain
of the movement, which might be a graph [8,12,13], the entire plane [14], or
some bounded domain [7], by relative speed of target and searchers, and by the
information that the searchers receive about the target: they might know its
position [14], or be constrained by visibility [6,9,11,15], or recognize the target
only if in their detection range [7], in the graph case, if they occupy the same
node.

In a recent paper, Dumitrescu et al. [5] introduced the model of offline
searchers. Here, the search path for each searcher is known in advance, for all
future, and the question is whether the target t can escape these searchers for
� Corresponding author. Supported by Soongsil University Research Fund.
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an arbitrary long time, using the information of those given search paths. If the
domain is an n × n grid, we can arrange a row of n searchers that sweeps this
grid square, and the target cannot escape even if it knows those search paths
in advance. But if the number of searchers is smaller, the target may escape
detection. Dumitrescu et al. [5] proved that the target can always escape O(

√
n)

offline searchers in the n × n grid. We improve this bound.

Theorem 1. In an n×n grid, a target can always escape �n
2 � offline searchers.

In an alternating move model where at each time first all searchers move and
then the target moves, there is a strategy for �n

2 �+1 searchers to catch the target.

To prove the first part of the theorem, in Section 2.1, we use the following discrete
isoperimetric theorem for finite grid graphs, which will be proved in Section 3.

Theorem 2. If X is a subset of the vertices of the n × n grid, and bd(X) is
the set of points in X that have a grid-neighbor not in X, then

– If 1
2 (i − 1)i + 1 ≤ |X | ≤ n2 − 1

2 (i − 2)(i − 1) − 1 for some 1 ≤ i ≤ n, then
| bd(X)| ≥ i.

– If |X | = n2, then | bd(X)| = 0.

All these bounds are best possible.

This is a discrete isoperimetric theorem for the grid graph; similar theorems for
the grid, unbounded or wrapped to a torus, have been studied in a number of
papers [2,3,4,10]; but in this result, the boundary effects are important.

In Section 4, we use the same proof technique used in Theorem 1 to obtain the
results in different situations; searchers and target with different speeds or in the
continuous space and time. The following theorems will be proved in Section 4.
Theorem 4 improves the recent bound Ω(

√
n) on the number of searchers such

that a target can escape in the continuous model [5].

Theorem 3. Suppose that the searchers are v times as fast as the target in an
n × n grid for some integer v ≥ 1. Then the target can always escape � n

v+1�
offline searchers, and there is a strategy for � n

v+1� + 1 searchers to catch the
target in the alternating move model.

Theorem 4. A target can always escape cn offline searchers in a square with
side length n for some c > 0.

2 Escaping Offline Searchers in the Grid Square

An n × n grid Gn = (V, E) (n ≥ 2) has n2 vertices with integer coordinates
[1, n] × [1, n]. In the following, we always assume that there are k searchers
s1, . . . , sk and one target t. Their positions are the vertices of Gn, and any
move either goes to a neighboring vertex, or stays in the same vertex. So if a
current position is vertex v, then the possible next positions are the vertices
of the closed neighborhood N(v) (including v). The searchers and the target



Escaping Off-Line Searchers and a Discrete Isoperimetric Theorem 67

move alternatingly, at time a, first all searchers move, with si moving from
si(a − 1) to si(a), then the target t moves from t(a − 1) to t(a). The target
escapes detection if for all times a and all searchers si it holds that t(a) 	= si(a)
and t(a) 	= si(a + 1). The searcher paths are given, and we want to choose a
target path that escapes detection. Note that if a target can escape k searchers
in our “alternating move” model, then this target can also escape k searchers in
the “simultaneous move” model of Dumitrescu et al. [5] and thus the first part
of Theorem 1 and Theorems 3 and 4 improve the bound Ω(

√
n) proven in [5].

However, the converse is not true; the strategy of searchers to catch the target in
our “alternating move” model does not provide one in the “simultaneous move”
model. In the following subsections, we prove Theorem 1: �n

2 � offline searchers
are never enough to catch the target, and there is a strategy for �n

2 �+1 searchers
to catch the target in the alternating move model, so this is tight.

2.1 �n
2 � Searchers Are Never Enough

We define Forb(a, b) as the set of forbidden vertices p ∈ V for which any target
t with t(a) = p will be caught by one of the searchers by time b at latest. This
set satisfies a dynamic-programming like recursion: a vertex p at time a will be
unavoidably captured if either it will be captured immediately at time a, or any
vertex that could be reached by time a+1 will lead to unavoidable capture. This
can be summarized in two formulas

Forb(a, a + 1) =
k⋃

i=1

{si(a), si(a + 1)} (1)

and
Forb(a, b) = Forb(a, a + 1) ∪ {p ∈ V | N(p) ⊂ Forb(a + 1, b)}. (2)

For fixed a and b → ∞, the sets Forb(a, b) form an increasing family of sets.
The target t can avoid the searchers for arbitrary long, if the sets Forb(a, b) never
become the set of all vertices, i.e., Forb(a, b) 	= V . Let forb(a, b) = |Forb(a, b)|
be the number of forbidden points, then we have to show that for k = 1

2n and
for fixed a and arbitrary large b, it holds that forb(a, b) < n2. Indeed we will
show a stronger statement that forb(a, b) ≤ 1

2n2.
Since |Forb(a, a + 1)| ≤ 2k and {p ∈ V | N(p) ⊂ Forb(a + 1, b)} ⊂ Forb(a +

1, b), the above recursion (2) yields that forb(a, b) ≤ 2k + forb(a + 1, b). This is
actually overestimate of forb(a, b), since in {p | N(p) ⊂ Forb(a + 1, b)} we lose
all those points from Forb(a + 1, b) that have a neighbor not in Forb(a + 1, b).
Let bd(X) denote for any X ⊂ V the set of vertices of X which have a neighbor
in V \ X . Then we have

forb(a, b) ≤ 2k + forb(a + 1, b) − | bd(Forb(a + 1, b))|. (3)

Now | bd(Forb(a+1, b))| can be small if Forb(a+1, b) is small or very large, but
our key observation is that for a mid-sized set Forb(a + 1, b), its boundary size
cannot be small, which is exactly what Theorem 2 shows.



68 P. Brass et al.

Using Theorem 2, we can now argue as follows. Fix k = �n
2 �. If forb(1, b)

becomes close to n2 when b becomes large, then there must be some b with
forb(1, b) > 1

2n2. Consider now the sequence forb(b − 1, b), forb(b − 2, b),. . . ,
forb(2, b), forb(1, b). This sequence satisfies that (i) forb(b − 1, b) ≤ 2k ≤ n, (ii)
forb(1, b) > 1

2n2 and (iii) forb(a, b) ≤ forb(a + 1, b)+ n− | bd(Forb(a +1, b))| for
1 ≤ a ≤ b−2. Property (iii) implies that along the sequence each term grows by at
most n, but Theorem 2 implies that the sequence grows slower when forb(a+1, b)
becomes near n2

2 . Indeed, if 1
2 (�n

2 �−1)�n
2 �+1 ≤ forb(a+1, b) ≤ 1

2n2, Theorem 2
shows that the boundary of Forb(a + 1, b) contains at least �n

2 � points and we
have that forb(a, b) ≤ forb(a + 1, b) + �n

2 �.
By (i) and (ii), there must be some a∗ with forb(a∗, b) ≤ 1

2n2 < forb(a∗−1, b).
Then we have that forb(a∗, b) > 1

2n2 − �n
2 � (since otherwise forb(a∗ − 1, b)

would be at most 1
2n2) and thus that 1

2n2 − n
2 < forb(a∗, b) ≤ 1

2n2. However,
Theorem 2 again yields that the set Forb(a∗, b) of this size must have at least
n boundary points, and plugging this into inequality (3) gives that forb(a∗ −
1, b) ≤ forb(a∗, b) + n − n ≤ 1

2n2, which contradicts to the definition of a∗ that
forb(a∗, b) ≤ 1

2n2 < forb(a∗ − 1, b). This completes the proof of Theorem 1.

2.2 �n
2 � + 1 Searchers Are Enough

We present a strategy for �n
2 �+1 searchers to catch the target in the alternating

move model. As illustrated in Figure 1(a), the idea of the searchers’ strategy
that will catch any target is that a searcher moving back and forth between two
consecutive grids blocks both positions; so a row in which searchers and gaps
alternate, but the searchers move into and out of these gaps, cannot be passed
by the target. We need one additional searcher to allow the searchers to move
one row up, and finally to sweep the whole grid from the bottommost row to the
topmost row.

Let F̂ (a) be the set of p ∈ V that the target cannot reach at time a without
having been detected by that time. Refer to Fig. 1(a) for the illustration of
F̂ (a−1) at time a. The cross-mark at time 1 is the place where the green searcher
was at time 0, so the target cannot lie there at time 0 and is contained in F̂ (0).
Two cross-marks at time 2 are forbidden at time 1 because of the red and green
searchers, and are contained in F̂ (1). If we can move the searchers at every time
a ≥ 1 so that every point in N(F̂ (a−1)) is either contained in F̂ (a−1) or detected
by some searchers at times a − 1 or a, then those points are still unreachable by
the target at time a; formally, if N(F̂ (a − 1)) ⊆ Forb(a − 1, a) ∪ F̂ (a − 1), then
F̂ (a − 1) ⊆ F̂ (a). Indeed, if p ∈ F̂ (a − 1) and p = t(a), then t(a − 1) ∈ N(p) ⊆
Forb(a − 1, a) ∪ F̂ (a − 1), which implies that t(a − 1) was unreachable by time
a − 1 or is caught by the searchers at times a − 1 or a, and that p cannot be
reached by the target without having been detected by time a. So our strategy
is to extend F̂ (a) row by row, besieging the target to the upper rows, and finally
to leave no place for the target outside F̂ (a). We need to handle the cases that
n is even and n is odd, in a different manner. Fig. 1 illustrates the cases when
n = 7 and n = 8. At time a, the cross-marks represent some vertices in F̂ (a− 1)
and we can check that N(F̂ (a − 1)) ⊆ Forb(a − 1, a) ∪ F̂ (a − 1).
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Time 2Time 0

Time 7 Time 6 Time 5 Time 4

Time 3Time 1

(a) When n is odd (n = 7).

Time 2Time 0 Time 3Time 1

Time 7 Time 6 Time 5 Time 4

Time 8 Time 9

(b) When n is even (n = 8).

Fig. 1. Strategy for �n
2 � + 1 searchers to catch the target; we only illustrate the pro-

cedure for the searchers to move one row up because this can be repeated to sweep all
rows of the grid. At time a, solid disks with different colors represent searchers just
moved from the other ends of the line segments, and the cross-marks represent some
vertices in F̂ (a − 1).

3 Proof of the Isoperimetric Theorem

We now show that | bd(X)| ≥ i for any X ⊆ V with 1
2 (i − 1)i + 1 ≤ |X | ≤

n2 − 1
2 (i − 1)(i − 2) − 1. To prove this, we first convert X by the following

operations to a staircase point-set X ′′ having the same number of points but no
more boundary points than X , and then show that | bd(X ′′)| ≥ i.

Compression. Denote by Xj ⊆ X the points of X in column j of Gn. First,
compress the points of X to the bottom of Gn as much as possible, so that in
each column the lowest point lies on the bottom row and the highest point lies at
the |Xj |-th row. Then shift all the columns to the left so that the leftmost column
becomes the first column of Gn without empty columns in between. Let us denote
by X ′

j the compressed column of Xj , and by X ′ the set of the compressed columns
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of X . Since |Xj | = |X ′
j |, it is clear that |X ′| = |X |, but the number of boundary

points may decrease. Indeed, we have that either | bd(X)∩Xj | = | bd(X ′)∩X ′
j | =

0, or

| bd(X) ∩ Xj | ≥ | bd(X ′) ∩ X ′
j | = max{|Xj | − |Xj−1|, |Xj | − |Xj+1|, 1}.

Thus we have that | bd(X)| ≥ | bd(X ′)|.

Sorting. Now we sort the columns X ′
j of X ′ according to their size (or height)

|X ′
j | in non-increasing order from left to right. The resulting point set X ′′

is a staircase such that each column X ′′
j in X ′′ has the same height as its

corresponding column X ′
σ(j) in X ′ for a permutation σ induced by sorting.

Since the columns are sorted by their height, it holds for any column X ′′
j that

|X ′′
j |− |X ′′

j+1| ≤ max{|X ′
σ(j)|− |X ′

σ(j)+1|, |X ′
σ(j)|− |X ′

σ(j)−1|, 1}. Thus | bd(X ′′)∩
X ′′

j | ≤ | bd(X ′) ∩ X ′
σ(j)|, yielding that | bd(X ′′)| ≤ | bd(X ′)|.

Proving that | bd(X ′′)| ≥ i. See Fig. 2 for the following definitions. Let weakbd
(X ′′) be the set of points (x, y) ∈ X ′′ such that at least one of points {(x +
i, y + j) : i, j = −1, 0, 1} are in V \ X ′′. Let Cmax := max{x + y : (x, y) ∈
weakbd(X ′′)} and Cmin := min{x+y : (x, y) ∈ weakbd(X ′′)}. Denote the points
of X ′′ defining Cmax and Cmin by pmax = (xmax, ymax) and pmin = (xmin, ymin),
respectively. Note that bd(X ′′) ⊆ weakbd(X ′′), pmax ∈ bd(X ′′) and pmin ∈
weakbd(X ′′). No points of X ′′ lie above Cmax and all points below Cmin are in
X ′′. The line x+ y = i contains at most i−1 points in X ′′ for i ≤ n and at most
2n − i + 1 points in X ′′ for i > n; refer to the line x + y = 6 in Fig. 2(a).

We now have a simple fact: as illustrated in Fig. 2(b), for any X ′′ with 1
2 (i −

1)i + 1 ≤ |X ′′| = |X | ≤ n2 − 1
2 (i − 1)(i − 2) − 1, we have that Cmax ≥ i + 1 and

Cmin ≤ 2n − i. Proving that Cmax ≥ i + 1 is immediate from the observation
that the number of points in X ′′ with Cmax ≤ i cannot be larger than 1

2 (i − 1)i.
Similarly, we can prove that Cmin ≤ 2n − i.

Consider the case that i + 1 ≤ Cmax ≤ n. As shown in Fig. 3(a), the number
of boundary points of X ′′ in the left-side of pmax is at least xmax − 1 and the
number of boundary points of X ′′ in the right-side of pmax is at least ymax − 1,
so counting pmax itself we have

| bd(X ′′)| ≥ xmax + ymax − 1 = Cmax − 1 ≥ i.

Similarly, if n ≤ Cmin ≤ 2n − i, then the number of boundary points of X ′′

in the left-side of pmin is at least n − ymin and the number of boundary points
of X ′′ in the right-side of pmin is at least n − xmin. The point pmin might not be
a boundary point of X ′′, thus we get

| bd(X ′′)| ≥ 2n − ymin − xmin = 2n − Cmin ≥ i.

Now we have only one case left, that is, Cmax > n and Cmin < n. We claim that
in this case | bd(X ′′)| ≥ n, proving that | bd(X ′′)| ≥ i for all i. For illustration,
refer to Fig. 3(b). Consider the top leftmost point p� and the bottom rightmost
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(a) (b)
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1
2 (i − 1)i points

i

i − 1

Fig. 2. (a) The definition of Cmax, Cmin, pmax, and pmin. Here Cmax := {(x, y) | x+y =
n + 1} and Cmin := {(x, y) | x + y = 10}. (b) Since the line x + y = i contains at most
i − 1 points, for any X ′′ such that |X ′′| ≥ 1

2 (i − 1)i + 1, it holds that Cmax ≥ i + 1.

(a) (b)

n

1

10 n

pmax

n

1

1 n0

iCmax

xmax − 1

ymax − 1

Cmax

Cmin

p�

pr

Fig. 3. (a) When Cmax ≤ n, the number of boundary points of X ′′ is at least xmax +
ymax − 1 = Cmax − 1, so | bd(X ′′)| ≥ i. (b) When p� lies above the line x + y = n and
pr lies below the line, p� is on the topmost row of Gn and pr is on the bottommost row
of Gn. Thus the number of boundary points of X ′′ is at least n.

point pr of bd(X ′′). If one of them, say p�, lies above the line x + y = n and
the other below line x + y = n, then p� must be on the topmost row of Gn and
pr must be on the bottommost row of Gn, which means, as shown in Fig. 3(b)
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that the boundary of X ′′ contains at least n points. For the other case when
p� lies below the line and pr lies above the line, they are on the leftmost and
rightmost row of Gn, so we have also that | bd(X ′′)| ≥ n. If both of p� and pr lie
below the line x + y = n, then from the assumption that Cmax > n, the number
of boundary points of X ′′ in the left-side of pmax is at least xmax − 1 and the
number of boundary points of X ′′ in the right-side of pmax is at least ymax − 1,
which proves that | bd(X ′′)| ≥ Cmax − 1 ≥ n. Similarly, if both of p� and pr lie
above line x + y = n, then from the assumption that Cmin < n, the number of
boundary points of X ′′ in the left-side of pmin is at least n−ymin and the number
of boundary points of X ′′ in the right-side of pmin is at least n − xmin, proving
that | bd(X ′′)| ≥ 2n − Cmin ≥ n. Thus the proof of the isoperimetric theorem is
completed.

4 Evading Offline Searchers in Related Models

Searchers and target of different speed. If the target is faster than the searchers,
then the lower bound does not change; if � 1

2n� searchers are insufficient to catch
the target of speed one, then they are also insufficient to catch a faster target.
If the searchers are v times faster than the target, then the argument for the
lower bound stays almost the same, but only we have forb(a, a + 1) ≤ (v + 1)k,
which shows that � n

v+1� searchers are not sufficient to catch the target. We can
catch the target with � n

v+1� + 1 searchers by simulating the strategy for v = 1
(Section 2.2) as follows; assign a searcher at every (v+1) consecutive grid points
on the bottommost row as in Figure 4, so that each searcher patrols the assigned
(v + 1) grid points. Then � n

v+1� searchers are set on the bottommost row. We
assign one more searcher at the second bottommost row as in Figure 4. Then we
can move the � n

v+1�+1 searchers by similarly simulating the strategy used when
n is even and v = 1. We here omit the details. As a result, a target of speed
one can escape � n

v+1� searchers of speed v > 1, but it cannot escape � n
v+1� + 1

searchers. Unlike v = 1, this is not tight because we need one more searcher
when n is not multiple of (v + 1). Filling this gap remains open.

Time 2Time 0

Time 3

Time 1

Time 5 Time 4

Fig. 4. When v = 3 and n = 11
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Searchers and target in the continuous model. We have k searchers and one
target moving with unit speed in a 2n × 2n square S, and the target is detected
if it comes within unit distance to a searcher. Again, n searchers are sufficient to
create a row of searchers, which will always discover the target. We claim that
for some c > 0, the target can always escape cn searchers. This improves the
corresponding Ω(

√
n) bound in [5].

The proof is by reduction to a similar problem as before. First we discretize the
time. Instead of looking all the time at a disc of radius 1 around each searcher, we
check for the moments 1, 2, 3, . . . a disc of radius 3 around each searcher. We claim
that this is a stronger searching: if t escapes these time-discrete observations,
then t also escapes the original searchers; for if d(t(x), si(x)) ≤ 1 for some x ∈
[0, 1] and i, then d(t(0), si(0)) ≤ d(t(0), t(x))+d(t(x), si(x))+d(si(x), si(0)) ≤ 3.
So we have to show that for some c > 0, the target can always escape k = cn
searchers, where the target and the searchers move in each step at most distance
1, and the target is detected if it comes within distance 3 of a searcher. But this
problem again fits the previous proof; if Forb(a, b) are those points of p in the
square S, from which any target with t(a) = p will unavoidably be caught by
time b, and B(p, r) is a disk centered at a point p with radius r, then we have
almost the same relations:

Forb(a, a + 1) =
k⋃

i=1

B(si(a), 3) ∪ B(si(a + 1), 3),

and

Forb(a, b) = Forb(a, a + 1) ∪ {p ∈ S | B(p, 1) ⊂ Forb(a + 1, b)}.

With forb(a, b) = area(Forb(a, b)), this gives forb(a, a + 1) ≤ 9πk + 6 and
forb(a, b) ≤ forb(a+1, b)+9πk+6−R, where R is the total area of all points in
Forb(a + 1, b) that are within distance at most one to points of the square that
are outside Forb(a + 1, b). That area is Ω(n) if Forb(a + 1, b) contains a positive
fraction of the entire area of the square; from this follows the claim: there is a
c > 0 such that t can always escape cn searchers. This also holds even for the
the searchers and target with different constant speeds by the similar argument
in the discrete model.

5 Conclusion

We showed that there is some constant 0 < c < 1 such that a target can always
escape cn searchers in n × n square as well as in n × n grid even with different
constant speeds in an alternating move model. These results drastically improve
a recent result of Ω(

√
n) [5], and the bounds are almost tight; for the searchers

and target with the same speed, the bound is tight.
An interesting openquestion is to find theminimumnumber of searchers thathas

the strategy to catch the target in the simultaneous move model. We showed that
the number is as big as �n

2 � + 1 when the target is at least as fast as the searchers,
and as � n

v+1� + 1 when the searchers are v > 1 times faster than the target.
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Abstract. Geometric spanner is a fundamental structure in computa-
tional geometry and plays an important role in many geometric networks
design applications. In this paper, we consider a generalization of the clas-
sical geometric spanner problem (called segment spanner): Given a set S
of disjoint 2-D segments, find a spanning network G with minimum size
so that for any pair of points in S, there exists a path in G with length no
more than t times their Euclidean distance. Based on a number of inter-
esting techniques (such as weakly dominating set, strongly dominating
set, and interval cover), we present an efficient algorithm to construct
the segment spanner. Our approach first identifies a set of Steiner points
in S, then construct a point spanner for them. Our algorithm runs in
O(|Q| + n2 log n) time, where Q is the set of Steiner points. We show
that Q is an O(1)-approximation in terms of its size when S is relatively
“well” separated by a constant. For arbitrary rectilinear segments under
L1 distance, the approximation ratio improves to 2.

1 Introduction

In this paper, we consider the following generalization of the classical geometric
spanner problem: Given a set O of n disjoint objects in Euclidean space and a
constant t > 1, construct a graph G for O of minimum size so that for any pair
of points pi ∈ oi and pj ∈ oj , there exists a path P (pi, pj) in G whose total
length is at most t × d(pi, pj), where oi and oj are objects in O and d(pi, pj) is
the Euclidean distance between pi and pj . The path P (pi, pj) consists of three
parts, P1, P2 and P3, where P1 and P3 are the portions of P (pi, pj) inside oi and
oj respectively. We assume that there implicitly exists an edge (or path) between
any pair of points inside each object o ∈ O. Thus, the objective of minimizing
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the size of G is equivalent to minimizing the total number of vertices, and edges
between vertices in different objects. In this paper, we consider the case where
all objects are disjoint 2-D line segments.

Spanner is a fundamental structure in computational geometry and finds ap-
plications in many different areas. Extensive researches have been done on this
structure and a number of interesting results have been obtained [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11]. Almost all previous results consider the case in which the objects
are points and seek to minimize the spanner’s construction time, size, weight,
maximum degree of vertex, diameter, or combination of them.

A common approach for constructing geometric spanner is the use of Θ-graph
[1,2,3,4]. In [5], Arya et al. showed that a t-spanner with constant degree can be
constructed in O(n log n) time. In [6,7], they gave a randomized construction of
a sparse t-spanner with expected spanner diameter O(log n). In [9,10], Das et al.
proposed an O(n log2 n)-time greedy algorithm for a t-spanner with O(n) edges
and O(1)wt(MST ) weight in 3-D space. Gudmundsson et al. showed in [11] that
an O(n) edges and O(1)wt(MST ) weight t-spanner is possible to be constructed
in O(n log n) time.

In graph settings, Chandar et al. [8] showed that for an arbitrary positive
edge-weighted graph G and any t > 1, ε > 0, a t-spanner of G with weight
O(n

2+ε
t−1 )wt(MST ) can be constructed in polynomial time. They also showed

that (log2 n)-spanners of weight O(1)wt(MST ) can be constructed.
For geometric spanners of objects other than points, Asano et al. considered

the problem of constructing a spanner graph for a set of axis-aligned rectangles
using rectilinear bridges and under L1 distance [12]. They showed that in general
it is NP-hard to minimize the dilation, and when the spanner graph is restricted
to be trees with rectilinear edges, the problem can be solved using a linear
program. They also considered other simple graphs such as paths and sorted
paths, and presented polynomial time solution for each of them.

The spanner of segments problem considered in this paper is motivated by
several interesting applications. One of them is for constructing bridges between
a set of buildings so that the path (traveling through bridges) between locations
in different buildings is close to their Euclidean distance [12]. Another application
appears in wireless mesh networks. In such networks, a set of wireless routers
(or stations) are to be installed in objects, such as streets or highways, so that
for any pair of wireless devices in those objects there exists a routing path for
them with length close to their Euclidean distance. The rationale of such distance
requirement is for minimizing the total energy used for routing messages between
them, as the energy consumption is proportional to the path length.

To build a spanner of segments, we view the construction as a two-phase
process. In the first phase, a set of points (called Steiner points) are selected
from each segment, and in the second phase, a spanner is constructed for the
set of Steiner points. Since the second phase can be completed by using existing
spanner algorithms (for points), our focus in this paper is thus on the first
phase. Furthermore, since most existing spanners are sparse graphs (i.e. consist
of O(n) edges), minimizing the size of the segment spanner is equivalent to
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minimizing the total number of Steiner points. Our objective is hence to obtain a
spanner with a minimum number of Steiner points. Using a number of interesting
techniques, we show that there exists an O(|Q| + n2 log n) algorithm to identify
a set Q of Steiner points whose size is an O(1)-approximation of the optimal
size. Further, when the segments are rectilinear and under L1 distance, the
approximation ratio improves to 2. Due to the space limit, we omit a lot of
details and proofs from this extended abstract.

2 Preliminaries

Let S = {s1, s2, · · · , sn} be a set of n disjoint segments on a plane with each seg-
ment si = aibi, where ai and bi are the left and right endpoints of si respectively
(For a vertical segment, ai is the lower endpoint and bi is the upper endpoint).
A t-spanner GS of S is a network which connects the segments in S and satisfies
the following condition. For any two points pi and pj on segments si and sj in
S, there exists a path (called spanner path) of GS between pi and pj and with
length no more than t × |pipj |, where t is the stretch factor of the spanner and
|pipj | is the Euclidean distance between pi and pj . The spanner GS contains two
types of line segments: input segments and segments connecting the input seg-
ments. We call the former segments and the latter bridges to distinguish them.
The intersections of segments and bridges are called Steiner points.

As mentioned in previous section, our main objective for the spanner GS is to
minimize its size. The size of GS is the sum of the number of vertices and edges.
The vertices of GS include all endpoints of the input segments and the Steiner
points. The edges consist of bridges and subsegments fragmented by the Steiner
points. For a segment si with k Steiner points, the number of subsegments on si

is bounded by O(k) (i.e. at most k + 1). Thus, to minimize the size of GS , it is
sufficient to minimize the total number of Steiner points and bridges.

To simplify the optimization task, our main idea is to separate the procedures
of minimizing i) the number of Steiner points; and ii) the number of bridges.
We consider the following approach: (1) compute a set Q of Steiner points with
small size, then (2) construct a spanner GQ for Q to minimize the number of
bridges. The spanner GQ together with the subsegments on S forms a spanner
for S.

For a pair of segments si, sj ∈ S, the distance between them is defined
as d(si, sj) = min

pi∈si,pj∈sj

|pipj |. The distance from si to S is defined as di =

min
j �=i,sj∈S

d(si, sj). Let li be the length of si. The relative separation ratio of si

in S is defined as di/li and the relative separation ratio of S is min
si∈S

di/li. In

this paper, we assume that S is “well” separated in a sense that its relative
separation ratio is no less than ε for some constant ε > 0. The rationale of this
assumption is that in wireless networks, if two segments are too close to each
other, they can share a set of routers (or stations) and therefore can be viewed
as one segment.
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3 Minimizing the Number of Steiner Points

3.1 Weakly Dominating Set

To investigate how the Steiner points affect each other, we consider the problem
of placing Steiner points on two disjoint segments, s1 = a1b1 and s2 = a2b2. Let
p1 and p2 be two arbitrary points on s1 and s2 respectively. Let q1 and q2 be two
Steiner points on the neighborhoods of p1 and p2 respectively such that the path
p1 → q1 → q2 → p2 is a spanner path for p1 and p2. In this case, we say that
q1 and q2 t-dominate the pair of p1 and p2. Clearly, the positions of q1 and q2

are constrained by p1 and p2. If we fix p1, p2, and one Steiner point q1, then all
possible positions of the other Steiner point q2 form a (possibly empty) interval
IS(p1, p2, q1) (which is a function of p1, p2, and q1) on s2 (see Figure 1).

For each pair of segments, our main idea is to isolate their Steiner point
determination from that of the rest of the segments. As discussed above, for an
arbitrary pair of points p1 ∈ s1 and p2 ∈ s2, the positions of their t-dominating
pair q1 and q2 are constrained. To relax this constraint, when placing Steiner
points on s1, we assume that q2 can be placed at arbitrary position on s2. Ideally,
we assume that q2 always overlaps with p2. Thus, we only need to consider the
relation between q1 and p1. We say that q1 t-weakly dominates p1 and p2 if the
length of the path p1 → q1 → p2 is no more than t × |p1p2|. If q1 t-weakly
dominates p1 and p2 for every possible choice of p2 (while fixing p1), then we say
q1 t-weakly dominates p1. Our objective is thus to select a minimum number of
points on s1 so that every point on s1 is t-weakly dominated by some selected
Steiner point. We call such a set of points as a t-weakly dominating set of s1.

s1

q2

s2

q1p1

I(p1, p2, q1)

p2

Fig. 1. Steiner points on two segments

αθ
s1

d(p1, s2)

e1re1l

s2

q1 p1 b1

r

a1

a2

b2

p2(q2)

Fig. 2. The interval of I(p2, p1)

3.2 Computing t-Weakly Dominating Set in a Brute-Force Manner

Let θ = � a1p1p2, and e1l and e1r be the two endpoints of IS(p2, p1, p2), i.e. the
interval of all possible positions of q1 while q2 coincides with p2 (see Figure 2).

Lemma 1. The two endpoints e1l and e1r locate on different sides of p1 with
|p1e1l| = min{|p1a1|, t2−1

2(t−cos θ) |p1p2|} and |p1e1r| = min{|p1b1|, t2−1
2(t+cos θ) |p1p2| }.
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Lemma 2. |p1e1l| (or |p1e1r|) achieves its minimum either when e1l coincides
with a1 (or e1r coincides with b1), or p2 is at the endpoints of s2, or θ is one of
the two constants depending only on s1, s2 and t.

Proof. Let d(p1, s2) be the shortest Euclidean distance from p1 to s2’s supporting
line and r be the point that achieves the shortest distance. Let α be the angle
� a1p1r. See Figure 2 for an example. Since |p1p2| = d(p1,s2)

cos(α−θ) , we have |p1e1l| =

min{|p1a1|, (t2−1)d(p1,s2)
2(t−cos θ) cos(α−θ)}. When p1, s2 and s1 are fixed, both d(p1, s2) and

α are fixed. To achieve the minimum, fl(θ) = (t − cos θ) cos(α − θ) has to be
maximized. fl(θ) achieves its maximum either when θ is the root of f ′

l (θ) = 0 or
θ is the minimum or maximum in its domain (i.e. when p2 is at the endpoints
of s2), where f ′

l (θ) = sin(2θ − α) + t sin(α − θ) is the derivative of fl(θ). The
equation of f ′

l (θ) = 0 has at most four roots, among which at most two are real
roots that allow fl(θ) to achieve the maximum for all p1. W.l.o.g let θ1, θ2 be
the two roots, and fl(θ1) ≥ fl(θ2) (See Figure 3 for an illustration). The lemma
follows from the fact that the roots depend only on t and α. ��

Lemma 3. The set of t-weakly dominating points selected by the following pro-
cedure has the minimum size among all sets of points t-weakly dominating s1.

1. Mark all points on s1 as non-dominated.
2. Starting from the first non-dominated point on s1 (initially it is a1), walk

along s1 until encounter the first point pi, whose interval I(pi) overlaps at
only one point, say qi, with the common intersection of the intervals of all
visited but non-dominated points.

3. Select qi as a weakly dominating point, and mark all points visited in Step
2 as dominated points.

4. Keep walking along s1 and marking points as dominated until the encoun-
tered point cannot be dominated by qi.

5. Repeat Steps 2-4 until all points are dominated.

3.3 Parameterization

Let m be the parameter of p1 in its convex combination of the two endpoints
of s1, i.e. p1 = (1 − m)a1 + mb1, for m ∈ [0, 1]. Let L1,2(m) and R1,2(m)
be the functions defining the positions of e1l and e1r (respectively) on s1, i.e.
L1,2(m) = m − |p1e1l|/|a1b1| and R1,2(m) = m + |p1e1r|/|a1b1|.

Consider the two functions when m increases from 0 to 1, it is possible that
the beginning part of L1,2(m) always has value 0 (because e1l = a1), and the
ending part of R1,2(m) always has value 1 (because e1r = b1). To simplify the
discussion in this section, from now on we focus on the remaining part of the two
functions, and assume that |p1e1l| = t2−1

2(t−cos θ) |p1p2|, |p1e1r| = t2−1
2(t+cos θ) |p1p2|.

By Lemma 2, for each fixed m, L1,2(m) (or R1,2(m)) is the maximum (or
minimum) of O(1) values with each corresponding to the position of e1l (or e1r) at
a fixed θ value. Let Θ = {θ1, θ2} be the real roots of f ′

l (θ) = 0 (or f ′
r(θ) = 0) that

allow fl(θ) (or fr(θ)) to achieve its maximum. Since Θ depends only on the input
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segments and t, it is the same for any p1 ∈ s1 and can be computed in advance.
Let θa(m) and θb(m) be the two angles � a1p1a2 and � a1p1b2 respectively (i.e.
when p2 is at the two endpoints of s2). By our definition, θb(m) ≥ θa(m), thus we
have t2−1

2(t−cos θb(m)) ≤ t2−1
2(t−cos θa(m)) and t2−1

2(t+cos θb(m)) ≥ t2−1
2(t+cos θa(m)) . Therefore,

the position of e1l depends on θb(m) and that of e1r depends on θa(m).
L1,2(m) (or R1,2(m)) can be viewed as the the upper (or lower) envelope of

up to three functions, gl
i(m) (or gr

i (m)), 1 ≤ i ≤ 2, and hl(m) (or hr(m)), where
gl

i(m) (or gr
i (m)) is the function of e1l (or e1r) when θ = θi ∈ Θ, hl(m) is the

function of e1l when θ = θb(m), hr(m) is the function of e1r when θ = θa(m).

Lemma 4. Each gl
i(m) (or gr

i (m)), 1 ≤ i ≤ 2, is a linear function of m.

Lemma 5. Each of hl(m) and hr(m)) is either a monotone function or the
concatenation of a monotonically increasing function and a monotonically de-
creasing function.

Proof. Let r0 be the foot of perpendicular from b2 to s1, and m0 be the pa-
rameter of r0 in its affine combination of a1 and b1. Then we have hl(m) =
m − t2−1

2(t−cos θb(m))
|p1p2|
|a1b1| = m − (t2−1)(m−m0)

2(t−cos θb(m)) cos θb(m) . Its derivative is

(hl(m))′ =
2t2 cos2 θb(m) − (t3 + 3t) cos θb(m) + t2 + 1

2(t − cos θb(m))2
.

Let x = cos θb(m). We get 2t2x2−(t3+3t)x+t2+1
2(t−x)2 = t2 − 3t3−3t

2(t−x) + (t2−1)2

2(t−x)2 = 1
2 ( t2−1

t−x −
t)( t2−1

t−x −2t). The function has two roots, x1 = 1
t , x2 = 1

2 (t+ 1
t ). Since 0 < x1 < 1,

x2 > 1, obviously x2 is not feasible as −1 ≤ x = cos θb(m) ≤ 1. The derivative
of hl(m) is decreasing on x when x ≤ 1

t ; increasing otherwise. This shows that
the function hl(m) can be partitioned into at most two pieces, with the first one
monotonically increasing and the second monotonically decreasing on θb(m). ��
Lemma 6. hl(m) is an increasing function on θb(m) when θb(m) ≥ π/2; hr(m)
is a decreasing function on θa(m) when θa(m) ≤ π/2. Further, the derivatives
of hl(m) and hr(m) both have a minimum value of 1

2 (1 + 1
t2 ).

3.4 Truncating the h Functions

Lemma 5 shows that each of hl(m) and hr(m) could be a bitonic function (i.e.
an increasing function followed by a decreasing function). Taking hl(m) as an
example, the geometric meaning of this lemma is that, as p1 moves along s1

from left to right, the left endpoint of I(p1, s2) calculated by fixing p2 at b2

might move from right to left at some positions.
In such a scenario, let pi be the first such point on s1 that the left endpoint eil

of interval I(pi, s2) starts to move “from right to left”. By Lemma 5, every point
pj on s1 that is to the right of pi will have its ejl (calculated by the same function
hl(m)) located to the left of eil. This means that if we replace ejl by eil for every
such pj , we can make hl(m) a completely monotone function. Geometrically, this
seems to truncate the tail of hl(m) (i.e. the decreasing piece) and replace it with
a constant function. See Figure 4.
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Fig. 3. An illustration of fl(θ)
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truncated h functions

Fig. 4. An illustration of L1,2(m) and R1,2(m)

3.5 Computing t-Weakly Dominating Set

The two functions L1,2(m) and R1,2(m) together form a “band” B1,2 (see Fig-
ure 4). A horizontal line segment located within the band represents the interval
I(p1, s2) of a point p1 on s1 determined by the corresponding e1l and e1r posi-
tions. An interval cover IC1,2 for B1,2 is a set of horizontal intervals inside B1,2

so that the union of each interval’s vertical projection covers the domain of m.
It is easy to see that an interval cover for B1,2 corresponds to a t-weakly dom-
inating set for s1. This is because each horizontal interval uniquely determines
a point on s1. Since every point on s1 is covered by some interval, it is t-weakly
dominated by the point corresponding to that interval.

Let L(m) = {l1, l2, . . . , ln1} be the 2-D curve corresponding to the function
of L1,2(m), where each segment (li, li+1) corresponds to a piece of the h or g
function in L1,2(m). Similarly we have R(m) = {r1, r2, . . . , rn2}.

Lemma 7. The following algorithm computes an interval cover of minimum
size in O(|IC| + n1 + n2) time, where |IC| is the size of the interval cover and
n1 and n2 are the number of vertices in L(m) and R(m) respectively.

1. Starting from r1, shoot a horizontal ray to the right, and let v1 be the
intersection of the ray and L(m).

2. Shoot a vertical ray upwards from v1, and let v2 be the intersection of the
ray with R(m).

3. Starting from v2, repeat the above steps until all the L(m) and R(m) are
horizontally covered.

4. Return the set of the horizontal segments as the cover. See Figure 5.

3.6 Imaginary Steiner Points

Let p1, p2 be two arbitrary points on segments s1 and s2 respectively, and q1, q2

be their t-weakly dominating points. Ideally, the path p1 → q1 → q2 → p2 should
be a t-spanner path for p1, p2, i.e. |p1q1|+|q1q2|+|q2p2| ≤ t|p1p2|. Due to the weak
domination, we know |p1q1| + |q1q2| ≤ t|p1q2|, |p2q2| + |q2q1| ≤ t|p2q1|. Adding
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the two together, we have |p1q1| + |q1q2| + |q2p2| ≤ t|p1q2| + t|p2q1| − |q1q2|. To
make q1 and q2 t-dominate p1 and p2, we need t|p1q2|+ t|p2q1|− |q1q2| ≤ t|p1p2|.

Our main idea is to introduce an imaginary Steiner point pM , which is the me-
dian of p1p2, and use this imaginary Steiner point to help determining the domi-
nating points for p1 and p2 (see Figure 6). More specifically, when computing the
interval I(p1, s2), we assume that there exists a Steiner point pM at the median of
p1p2 for every possible choice of p2. These imaginary Steiner points form an imag-
inary “Steiner” segment s′2 for every p1 (See Figure 6 for an example). Instead
of computing I(p1, s2) directly, we calculate I(p1, s

′
2) = ∩pM∈s′

2
IS(pM , p1, pM ).

(I(p2, s
′
1) can be defined similarly.) Steiner point q1 in such I(p1, s

′
2) is therefore

a t-weakly dominating point for p1 and ∀pM ∈ s′2.

Lemma 8. Let q1 ∈ I(p1, s
′
2) and q2 ∈ I(p2, s

′
1) be t-weakly dominating Steiner

points for p1 and p2 with respect to their imaginary Steiner segments respectively.
Then, q1 and q2 are a t-dominating pair for p1 and p2.

Position function on m

1

m
0 1

R(m)

L(m)

Fig. 5. An example of the interval cover

p1
s1

q2

s′
2

s2
p2

q1

pM

Fig. 6. Imaginary Steiner point pM

3.7 From Weakly Dominating Set to Dominating Set

Let m1 be the parameter of p1 when e1l is at a1 (i.e. L1,2(m1) = 0 and ∀m1 <
m ≤ 1, L1,2(m) > 0), and m2 be the parameter of p1 when e1r coincides with b1

(i.e. R1,2(m2) = 1 and ∀0 ≤ m < m2, R1,2(m) < 1).

Lemma 9. L̄1,2(m) = (m + L1,2(m))/2 for m1 ≤ m ≤ 1; R̄1,2(m) = (m +
R1,2(m))/2 for 0 ≤ m ≤ m2.

Let HL be the longest maximal horizontal line segment within B1,2, and HS be
the shortest maximal horizontal line segment within B1,2.

Lemma 10. |HL|/|HS| ≤ 1
(t−1)ε , where ε is the relative separation ratio of S.

Proof. A horizontal line segment within B1,2 satisfying R1,2(λ1) = L1,2(λ1′)
represents a t-weakly dominating point q determined by two points p1 and p1′

on s1 (corresponding to parameter λ1 and λ1′ respectively, see Figure 7 for
an example.). For p1, assume that the point on the segment s2 that allows
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Fig. 8. An example of B1,2 and B̄1,2

e1r to achieve its minimum is p2. For p1′ , assume that the point on s2 that
allows e1′l to achieve its minimum is p2′ . Since q is the t-weakly dominating
point determined by such minimum p1e1r and p1′e1′l, they (q, e1r and e1′l)
coincide at one point. Then we have |p1e1r| + |p2e1r| = |p1q| + |p2q| = t|p1p2|
and |p1′e1′l|+ |p2′e1′l| = |p1′q|+ |p2′q| = t|p1′p2′ | (equalities are achieved because
p1e1r and p1′e1′l are minimum). By triangle inequality, |p2q| ≤ |p1q| + |p1p2|,
|p2′q| ≤ |p1′q| + |p1′p2′ |. Hence, |p1q| + |p1′q| ≥ (t − 1)(|p1p2| + |p1′p2′ |)/2. As we
described before, the segments in S are well separated with relative separation
ratio ε, therefore |p1p2| ≥ ε|a1b1| and |p1′p2′ | ≥ ε|a1b1|. Thus we have |HS | =
(|p1q| + |p1′q|)/|a1b1| ≥ (t − 1)ε. The lemma follows since |HL| ≤ 1. ��

L̄1,2(m) and R̄1,2(m) form a “shrunk” band B̄1,2. A minimum-sized interval cover
IC1,2 can also be found within B̄1,2 by using the algorithm given in Section 3.5.
Let β = |IC1,2|/|IC1,2|. Let δl = R1,2(0) and δr = L1,2(1). By Lemma 9, we
have R̄1,2(0) = δl/2 and L̄1,2(1) = (1 + δr)/2. Let m3 and m4 be the parameter
of p1 satisfying L̄1,2(m3) = δl/2 and R̄1,2(m4) = (1 + δr)/2 respectively.

Lemma 11. If δr ≥ δl, then β ≤ 1
(t − 1)ε

· min{1 + 1/(2 min
m3<m<1

L̄′
1,2(m) − 1),

1 + 1/(2 min
0<m<m4

R̄′
1,2(m) − 1)}, where L̄′

1,2(m) and R̄′
1,2(m) are the derivatives

of L̄1,2(m) and R̄1,2(m) respectively.

Proof. Let H be any maximal horizontal line segment within B1,2 with endpoints
(λ1, R1,2(λ1))and(λ2, L1,2(λ2)).Obviously,R1,2(λ1) = L1,2(λ2).Startingatpoint
(λ1, R̄1,2(λ1)), there exists a maximal horizontal line segment H̄ within B̄1,2 with
right endpoint (λ, L̄1,2(λ)). Clearly,λ ∈ [λ1, λ2] and R̄1,2(λ1) = L̄1,2(λ). Assume
that we can extend L1,2(m) such that Lemma 9 can be applied to all m ∈ [0, 1] (i.e.
allow e1l to be placed to the left of a1; note that this will not affect bounding β). By
Lemma 9, (λ1 + R1,2(λ1))/2 = (λ + L1,2(λ))/2, i.e. R1,2(λ1) − L1,2(λ) = λ − λ1.
Since R1,2(λ1) = L1,2(λ2), L1,2(λ2) − L1,2(λ) = λ − λ1. By Mean Value Theorem
(the function L1,2(m) is smooth when L1,2(m) > 0), L′

1,2(λ
′)(λ2 − λ) = λ − λ1,

where λ < λ′ < λ2. Thus |H |/|H̄| = (λ2 − λ1)/(λ − λ1) = 1 + (λ2 − λ)/(λ −
λ1) = 1 + 1/L′

1,2(λ′) = 1 + 1/(2L̄′
1,2(λ′) − 1). Consider each interval H̄i ∈ IC1,2,

correspondinglythere isamaximalhorizontalsegmentHiwithinB1,2. Ifweconsider
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all |H̄i|andfindtheminimum,say |H̄i| = λ̃−λ̃1 with λ̃1 < λ̃ < λ̃2,wehave |IC1,2| ≤
1

λ̃−λ̃1
. For the corresponding |Hi|, we have |Hi| = λ̃2 − λ̃1 ≥ |HS |. Consider each

interval Hj ∈ IC1,2, we have |Hj | ≤ |HL| such that |IC1,2| ≥ 1
|HL| . Hence, β =

|IC1,2|
|IC1,2|

≤ |HL|
λ̃ − λ̃1

≤ λ̃2 − λ̃1

λ̃ − λ̃1

× |HL|
|HS | . By Lemma 10, β ≤ max

λ1<λ<λ2

(λ2 − λ1)
(λ − λ1)

×

|HL|
|HS | ≤ 1

(t − 1)ε
(1 +

1
2 minλ<λ′<λ2 L̄′

1,2(λ′) − 1
). Since R̄1,2(0) = L̄1,2(m3), β ≤

1
(t − 1)ε

(1 +
1

2 minm3<m<1 L̄′
1,2(m) − 1

). See Figure 8. ��

Lemma 12. β ≤ 1
(t−1)ε ×max{1+ 2fl(θ2)

2fl(θ2)−(t2−1) cos α , 1+ 2fr(θ2)
2fr(θ2)−(t2−1) cos α , 3−

2
t2+1}. And β is O(1) since fl(θ2), fr(θ2), t and ε are all constants.

Proof. If δr ≤ δl, one Steiner point is sufficient to t-weakly dominate s1. Since
the t-dominating interval of a point p1 is always half of its t-weakly dominating
interval, by choosing q, a1 and b1 as the Steiner points, they are sufficient to
t-dominate s1. In this case, β ≤ 3. Thus, from now on we assume δr > δl.

1. For the parts of L1,2(m) determined by the linear gi functions, we have

min L′
1,2(m) = min

θi∈Θ
{1 − (t2 − 1) cosα

2(t − cos θi) cos(α − θi)
} = 1 − (t2 − 1) cosα

2fl(θ2)
.

2. For the parts of L1,2(m) determined by hl(m), θb(m) decreases when m
increases. Let mb be the parameter of p1 such that θb(mb) = π/2. Then,
θb(m) > π/2 for 0 ≤ m < min{mb, m2}, θb(m) < π/2 for max{0, mb} <
m ≤ 1. (One of the intervals in the above two inequalities might be empty.)

(a) m ∈ [0, min{mb, m2}], by Lemma 6 min L′
1,2(m) = min

dhl

dm
≥ 1

2
(1+

1
t2

).

(b) For m ∈ [max{0, mb}, 1], we have two subcases.

i. If R1,2(m) is determined by gi, min R′
1,2(m) = 1 − (t2 − 1) cosα

2fr(θ2)
.

ii. If R1,2(m) is determined by hr(m), we have θa(m) ≤ θb(m) ≤ π/2.

By Lemma 6, min R′
1,2(m) = min

dhr

dm
≥ 1

2
(1 +

1
t2

).

Combining all the cases, the lemma follows from Lemma 11. ��

3.8 From Dominating Set To Strongly Dominating Set

For any two segments si and sj in S, si and sj are weakly visible to each other if
there exists a pair of points pi ∈ si and pj ∈ sj such that pi and pj are visible to
each other (i.e. pipj does not intersect the interior of any other input segment).

Lemma 13. To compute a t-strongly dominating set of an arbitrary segment
s1, it is sufficient to consider only those segments weakly visible to it.
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Let WVi = {s1, s2, . . . , ski} be the set of segments weakly visible to si.

1. For each segment si ∈ S, compute WVi.
(a) For each segment sj ∈ WVi, compute the g and h functions for si with

respect to sj .
(b) Determine Li,j(m) and Ri,j(m).

2. Let Li(m) be the upper envelope of the set of Li,j(m) functions, and Ri(m)
be the lower envelope of the set of Ri,j(m) functions.

3. Determine L̄i(m) and R̄i(m) with the help of the imaginary Steiner points.
4. Compute an interval cover ICi for the band formed by L̄i(m) and R̄i(m).
5. For each interval in ICi, determine its corresponding t-strongly dominating

Steiner point.

Consider si and WVi. For each pair of segments si and sj , sj ∈ WVi, we have
a pair of parameterized functions Li(m) and Ri(m). It is not difficult to see that
both Li(m) and Ri(m) are piecewise smooth.

Lemma 14. Let βi[u,v] be the ratio of ICi to ICi in the interval [u, v]. Then,

βi[u,v] ≤ 1
(t − 1)ε

× min{1 + 1/ min
0<m<1

Li(m), 1 + 1/ min
0<m<1

Ri(m)}.

Proof. Notice that if Li,j(λ) < Li,k(λ), then L̄i,j(λ) < L̄i,k(λ). Same property
holds for the Ri,j(m) functions. This property ensures that the ideas used in the
proof of Lemma 11 can still be applied on each smooth piece. ��

Lemma 15. Let K1 = max
∀si,sj∈S

2fl(θ2)
2fl(θ2) − (t2 − 1) cosα

and K2 = max
∀si,sj∈S

2fr(θ2)
2fr(θ2) − (t2 − 1) cosα

. Then, βi ≤ 1
(t−1)ε × max{1 + K1, 1 + K2, 3 − 2

t2+1}.

Lemma 16. The above algorithm computes a t-strongly dominating set for S
in O(|Q| + n2 log n) time, where |Q| is the size of the t-strongly dominating set.

Theorem 1. For a set S of n disjoint 2-D segments with constant relative sep-
aration ratio, a set of t-strongly dominating Steiner points whose size is an
O(1)-approximation of (the size of) the optimal solution can be computed in
O(|Q| + n2 log n) time, where |Q| is the size of the set of Steiner points.

4 Minimizing the Size of the Segment Spanner

Consider an optimal solution O. Let N be the number of Steiner points in O,
and M be the number of bridges in O. It is easy to see that O contains: i) 2n
endpoints and N Steiner points; ii) N +n subsegments and M bridges. Therefore
|O| = 3n + 2N + M . Recently, [13] shows that given a set of n0 points S, in the
worst case, any graph with n0 − 1 + k edges on S has dilation at least 2n0

π(k+1) .
That is to say, as a t-spanner for the input segment, O needs to contain at least
M = 2N/πt + N − 2 edges. Therefore |O| ≥ 3n + 3N + 2N/πt − 2.
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Consider a spanner A generated by our algorithm. Let M ′ be the number
of bridges in A. A contains: i) 2n endpoints and βN Steiner points; ii) βN + n
subsegments and M ′ bridges. Therefore |A| = 3n+2βN +M ′. Again, in [13], the
authors give an algorithm that for a set of n0 points S, finds a spanner on S with
at most n0−1+k edges and dilation O( n

k+1 ). Thus if using the algorithm in [13],
we have t2 = O( βN

M ′−βN+2) = c·βN
M ′−βN+2 . Therefore M ′ = c ·βN/t2 +βN −2 and

|A| = 3n + 3βN + c · βN/t2 − 2. To achieve the best approximation ratio, we
can minimize the ratio |A|

|O| ≤ 3n+3βN+c·βN/t2−2
3n+3N+2N/πt−2 . Since β is a function of t1 and

t1t2 = t, we can choose t1 and t2 to minimize |A|/|O|.

5 Constructing t-Spanner for Rectilinear Segments
Under L1 Distance

Assume that the input is a set S of rectilinear segments, and the distance function
is based on the L1 distance (i.e. the Manhattan distance).

Theorem 2. Given a set of n rectilinear segments, a set of t-strongly dominat-
ing set of Steiner points with size no more than 2 × |OPT | can be computed in
O(|Q| + n2 log n) time, where |Q| is the size of the set of Steiner points.

Notice that in theorem 2, the segments are not required to be well separated.
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Abstract. Let C be a polygonal cycle on n vertices in the plane. A ran-
domized algorithm is presented which computes in O(n log3 n) expected
time, the edge of C whose removal results in a polygonal path of smallest
possible dilation. It is also shown that the edge whose removal gives a
polygonal path of largest possible dilation can be computed in O(n log n)
time. If C is a convex polygon, the running time for the latter problem
becomes O(n). Finally, it is shown that for each edge e of C, a (1 − ε)-
approximation to the dilation of the path C \ {e} can be computed in
O(n log n) total time.

1 Introduction

Given a (geometric) network, a natural question to ask is what happens to the
quality of the network when some connections are removed. In case some links in
a traffic network have to be shut down (e.g., due to budget considerations), we
may want to know which edges of the network should be removed so as to not
decrease the quality of the new network too much. Alternatively, we may want to
know the most critical edge in the network, i.e., the edge whose removal causes
the largest possible decrease in the quality of the new network. We consider a
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simple variant of this problem: The initial network is a polygonal cycle C in the
plane, and we have to remove one single edge from C. We measure the quality
of the resulting polygonal path P by its dilation (or stretch factor) δP .

Recall that the dilation between two distinct vertices x and y of the path
P is defined as δP (x, y) := dP (x, y)/|xy|, where dP (x, y) denotes the Euclidean
length of the subpath of P connecting x and y, and |xy| denotes the Euclidean
distance between x and y. For convenience we define δP (x, x) := 1. The dilation
between two sets X and Y of vertices of P is defined as

δP (X, Y ) := max{δP (x, y) | x is a vertex of X , y is a vertex of Y },

the dilation of a set X of vertices of P is defined as δP (X) := δP (X, X), and
the dilation of the path P is defined as

δP := δP (P ) = max{δP (x, y) | x and y are vertices of P}.

The problem we consider is the following: We are given a polygonal cycle
C = (p0, . . . , pn−1, p0) whose n vertices p0, . . . , pn−1 are points in the plane.
We want to determine the edge e of C for which the dilation of the polygo-
nal path C \ {e} is minimized or maximized. In other words, if we denote by
Pi (for 0 ≤ i < n) the polygonal path obtained by removing the edge (pi, pi+1)
from C (where indices are to be read modulo n), then our goal is to compute
δmin
C := min0≤i<n δPi and δmax

C := max0≤i<n δPi . We will prove the following
results :

Theorem 1. Given a polygonal cycle C on n vertices in the plane, we can
compute δmin

C in O(n log3 n) expected time.

Theorem 2. Given a polygonal cycle C on n vertices in the plane, we can
compute δmax

C in O(n log n) time. If C is a convex polygon, δmax
C can be computed

in O(n) time.

Theorem 3. Given a polygonal cycle C = (p0, . . . , pn−1, p0) on n vertices in
the plane and a constant ε > 0, in O(n log n) time, we can compute a se-
quence t0, . . . , tn−1, t

∗ of real numbers, such that δPi/(1 + ε) ≤ ti ≤ δPi for each
i = 0, 1, . . . , n − 1 and δmin

C /(1 + ε) ≤ t∗ ≤ δmin
C .

In Sect. 2, we prove Theorem 1. We start in Sect. 2.1 by describing an approach
of [1] to estimate the dilation of a polygonal path; see also [7]. These ideas will
play a central role in the algorithm we give in Sect. 2.2 for solving a decision
problem associated with the problem of computing δmin

C ; the algorithm solving
this decision problem runs in O(n log2 n) expected time. In Sect. 2.3, we give a
simple randomized approach which reduces the problem of computing δmin

C to an
expected number of O(log n) decision problems of Sect. 2.2. Thus, this reduction
incurs a logarithmic slowdown of the decision procedure.

In Sect. 3, we prove Theorem 2. We first show that for two fixed vertices x
and y of C, it is easy to determine the largest possible dilation between them
if one edge is removed from C. We then show that, in order to compute δmax

C ,
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it suffices to consider pairs (x, y) of vertices whose distance is at most twice the
closest-pair distance in the vertex set of C. Since there are only O(n) such pairs
(x, y), this leads to an efficient algorithm for computing δmax

C .
Theorem 3 is proved in Sect. 4. The algorithm uses the well-separated pair

decomposition of [2] and a result of [10], which states that this decomposition
can be used to reduce the problem of approximating the dilation of a Euclidean
graph to the problem of computing the shortest-path distances between O(n)
pairs of vertices. This result, together with the observation that for any two
vertices x and y of C, the sequence δP0(x, y), . . . , δPn−1(x, y) contains only two
distinct values, leads to an O(n log n)–time algorithm that approximates the
dilation of each path Pi as well as the minimum dilation δmin

C .

2 Dilation-Minimal Edge Deletion in a Polygonal Cycle

2.1 Estimating the Dilation of a Polygonal Path

Our algorithm for computing the edge of a polygonal cycle whose removal min-
imizes the dilation of the resulting path uses as a subroutine parts of the algo-
rithm of [1] that decides if the dilation of a polygonal path is less than some
given threshold κ > 1; see also [7]. We describe those parts of this algorithm
which are relevant for us.

Let P = (p0, . . . , pn−1) be a polygonal path whose n vertices are points in the
plane and let κ ≥ 1 be a real number. The idea is to use a lifting transformation
that rephrases the decision problem, i.e., the problem of deciding if δP < κ, into
a point-cone incidence-problem in R

3.
We denote the first and last vertices of a polygonal path P by f(P ) and l(P ),

respectively. Thus, f(P ) = p0. For each vertex p of P , we define the weight of
p to be ωP (p) := dP (p, f(P ))/κ. We map each vertex p = (xp, yp) of P to the
point hP (p) := (xp, yp, ωP (p)) ∈ R

3. Let C denote the three-dimensional cone
C := {(x, y, z) ∈ R

3 | z =
√

x2 + y2}. We map each vertex p of P to the cone

CP (p) := C ⊕ hP (p) = {c + hP (p) | c ∈ C}.

If p and q are vertices of P , then we say that p is before q on P , if dP (p, f(P )) <
dP (q, f(P )); this will be denoted as p <P q. We then get the following lemma.

Lemma 1. For any two vertices p and q of P with p <P q, we have

δP (p, q) < κ if and only if hP (q) lies below CP (p).

Proof. By straightforward algebraic manipulation, we have

δP (p, q) < κ ⇐⇒ dP (q, p)
|qp| < κ

⇐⇒ dP (f(P ), q) − dP (f(P ), p)
|qp| < κ

⇐⇒ dP (f(P ), q)
κ

< |qp| + dP (f(P ), p)
κ

⇐⇒ ωP (q) < |qp| + ωP (p). �	
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If X and Y are subsets of the vertex set of P , then we say that X is before
Y on P , if dP (x, f(P )) < dP (y, f(P )) for all x ∈ X and all y ∈ Y ; this will
be denoted as X <P Y . For any subset X of the vertex set of P , we define
CP (X) := {CP (p) | p ∈ X} and hP (X) := {hP (p) | p ∈ X}.

The lower envelope of a set S of bi-variate functions will be denoted as L(S).
Lemma 1 immediately gives the following result.

Lemma 2. For any two subsets X and Y of the vertex set of P with X <P Y ,
we have δP (X, Y ) < κ if and only if hP (Y ) lies below L(CP (X)).

The minimization diagram of CP (X), i.e., the projection of the lower envelope
L(CP (X)) onto the xy-plane, is the additively weighted Voronoi diagram VP (X)
of X with respect to the weight function ωP . If the point y of Y is located in the
Voronoi region of the point x of X , then hP (y) is below L(CP (X)) if and only if
hP (y) is below CP (x).

This yields an efficient algorithm to verify if δP (X, Y ) < κ for two subsets X
and Y of the vertex set of P having the property that X <P Y : The Voronoi
diagram VP (X) can be computed in O(|X | log |X |) time, c.f. [4]. Within the same
time bound, this diagram can be preprocessed into a linear size data structure
that supports O(log |X |)-time point-location queries, c.f. [6]. This structure can
now be queried with each point y of Y to determine which point x of X contains
y in its Voronoi cell. Once this is known, the check if hP (y) is below CP (x)
can be performed in O(1) time. The total running time of this algorithm is
O((|X | + |Y |) log |X |).

2.2 The Decision Problem

Let C be a polygonal cycle on a set of n vertices in the plane and let κ > 1 be a
real number. In this section, we present an algorithm that decides for each edge
e of C, whether or not the dilation of the polygonal path C \ {e} is less than κ.
We first describe the overall approach. Then, we give two implementations that
yield running times of O(n log3 n) and O(n log2 n), respectively.

If R = (r1, . . . rm) and Q = (q1, . . . , qn) are two polygonal paths having the
property that l(R) = rm = q1 = f(Q), then we denote the concatenation of R
and Q by R ⊕ Q. Thus, R ⊕ Q is the polygonal path (r1, . . . , rm, q2, . . . , qn).

In order to facilitate a recursive approach, we will consider the following more
general problem: Assume that (the edge set of) C is partitioned into two polyg-
onal paths T (the top) and B (the bottom) such that δT < κ. We want to decide
for each edge e of B, whether or not the dilation of C \ {e} is less than κ. If we
take T = {p}, where p is an arbitrary vertex of C, then we obtain the original
problem.

The details of the decision algorithm is presented in Algorithm 2.1. The cor-
rectness of Algorithm 2.1 is obvious. We will show below that after a preprocess-
ing step taking O(n log2 n) expected time, we can decide in O(|B| log n) time
if δT⊕Br < κ and δBl⊕T < κ, where |B| denotes the number of edges on B.
The expected running time t(n) of the algorithm can therefore be written as
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Algorithm 2.1. Decision-Algorithm

InputPaths T and B and κ > 1.
Outputyes or no for every edge of B.
if |B| = 1 then1

return yes for the edge in B;2

else3

l := the first vertex of T ; /* in counterclockwise order along C */4

r := the last vertex of T ; /* in counterclockwise order along C */5

m := the middle vertex of B;6

Br := the part of the path B between r and m;7

Bl := the part of the path B between m and l;8

if δT⊕Br < κ then Decision-Algorithm(T ⊕ Br, Bl, κ);9

else return no for each edge e of Bl;10

if δBl⊕T < κ then Decision-Algorithm(Bl ⊕ T, Br, κ);11

else return no for each edge e of Br;12

end13

t(n) = O(n log2 n) + r(n) where the function r satisfies the recurrence

r(b) ≤ 2 · r(b/2) + O(b log n).

This implies that t(n) = O(n log2 n).
Figure 1 illustrates the recursion tree of Algorithm 2.1. The nodes of the

tree are labeled according to a BFS-numbering where the first (left) child of a
node corresponds to the recursive call in Step 11 and the second (right) child
corresponds to the recursive call in Step 9. Later, we will refer to a recursive call
corresponding to the node with BFS-number i as the i-th step of the recursion.
For each node i, the current top and bottom paths are denoted by Ti and Bi,
respectively. These paths can be computed as follows. Assume that the polygonal
cycle C is given by the array C[0, . . . , n] and that B consists of b vertices. Then
B1 = C[0, . . . , b − 1] and T1 = T . For i ≥ 1, if Bi = C[l, r], then B2i :=
C[l, l+
 r−l

2 �], B2i+1 := C[l+
 r−l
2 �+1, r], T2i := B2i+1⊕Ti, and T2i+1 := Ti⊕B2i.

Observe that each top path Tj is the concatenation of O(log n) bottom paths.

A First Implementation. We will show that after an O(n log2 n)–time pre-
processing, we can decide if (i) δT⊕Br < κ and (ii) δBl⊕T < κ in O(|B| log2 n)
time. Later, we will give a faster implementation. Since (ii) is symmetric to (i),
we only show how to decide whether or not (i) holds.

Suppose we have a polygonal path T ′ with δT ′ < κ that is given as a list of k
polygonal paths (B′

1, . . . , B
′
k) such that l(B′

i) = f(B′
i+1) for 1 ≤ i < k. Thus, we

have T ′ = B′
1 ⊕ . . . ⊕ B′

k. Given a new polygonal chain B′ with f(B′) = l(T ′),
we want to decide if δT ′⊕B′ < κ.

Observe that δT ′⊕B′ < κ if and only if (a) δT ′ < κ, (b) δB′ < κ, and
(c) δT ′⊕B′(T ′, B′) < κ. We are given that (a) holds. Using the algorithm



Dilation-Optimal Edge Deletion in Polygonal Cycles 93

1

2

4 5

10 11

3

6

... ...

7

T1

T1 = T

T1

T2 T2

T5 T5

T3 T3

G4

B4

G2 B2

B1 = B

B3 G3

p0

B7

G7

G6

B6

G5

B5

B10
G10 B11

G11

Fig. 1. The recursion tree. Note that G2i := B2i+1 and G2i+1 := B2i.

of [1], we can decide in O(|B′| log |B′|) time whether or not (b) holds. Thus,
it remains to show how to verify whether or not (c) holds.

Obviously, δT ′⊕B′(T ′, B′) < κ if and only if δT ′⊕B′(B′
i, B

′) < κ for each i with
1 ≤ i ≤ k. Since B′

i <T ′⊕B′ B′, we know from Lemma 2 that δT ′⊕B′(B′
i, B

′) < κ
if and only if hT ′⊕B′(B′) lies below L(CT ′⊕B′(B′

i)).
Assume that for each path B′

i, we have the total accumulated scaled length

�i :=
i∑

j=1

dB′
j
(l(B′

j), f(B′
j))/κ

and the additively weighted Voronoi diagram VB′
i
(B′

i) that has been augmented
with a data structure to support point-location queries in tloc time per query.
Recall that VB′

i
(B′

i) is the projection of the lower envelope L(CB′
i
(B′

i)) onto the
xy-plane. It is defined with respect to the weights ωB′

i
(p) = dB′

i
(p, f(B′

i))/κ.
Since ωT ′⊕B′(p) = ωB′

i
(p)+�i−1 for all p ∈ B′

i, we have ωT ′⊕B′(p)−ωT ′⊕B′(q) =
ωB′

i
(p) − ωB′

i
(q) for all p, q ∈ B′

i. It follows that the diagram VB′
i
(B′

i) is also the
projection of the lower envelope L(CT ′⊕B′(B′

i)).
The associated point-location structure of B′

i can therefore be used to deter-
mine for each point b′ in B′, the point t in B′

i that contains b′ in its Voronoi
cell in VT ′⊕B′(B′

i). Once this is known for each point b′ in B′, we can check if
hT ′⊕B′(b′) is below CT ′⊕B′(t). To this end, we compute the weights

ωT ′⊕B′(t) = ωB′
i
(t) + �i−1 and ωT ′⊕B′(b′) = ωB′(b′) + �k.

The overall running time of this approach (excluding the preprocessing time) is
O(k|B′|tloc).

In our application, the relevant paths B′
i are the bottom paths Bi that ap-

pear in the recursive calls. As a consequence, k = O(log n), |T ′ ⊕ B′| ≤ n, and
we can precompute the required information in O(n log2 n) time by computing
all the diagrams VBi(Bi) along with the point-location data structures. Since
tloc = O(log n), it follows that the overall running time of this approach (af-
ter O(n log2 n) preprocessing time) is O(|B′| log2 n). With this implementation,
Algorithm 2.1 runs in O(n log3 n) time.
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A Faster Implementation. In the i-th step of the recursion, we split Bi

(almost evenly) into B2i and B2i+1, and compute the diagrams VB2i (B2i) and
VB2i+1(B2i+1). We then locate each point b of B2i in VB2i+1(B2i+1) to determine
which point t of B2i+1 contains b in its Voronoi cell in VB2i+1(B2i+1). We store t
in a table Tb associated with b under the key 2i + 1 that identifies the set B2i+1.
In the same way, we locate each point b of B2i+1 in VB2i(B2i) and store the
corresponding point t of B2i in a table Tb associated with b under the key 2i.

Since we perform exactly one point-location query for each point b of B1

on each level of the recursion tree, the table Tb has O(log n) entries. We can
therefore use the construction of [5] to store Tb in a perfect-hash table of size
O(log n) that supports O(1) access time. Note that in the complexity model
of [5], they assume that the entries come from a universe set and the memory is
able to randomly access each entry in constant time. Recall that the construction
of [5] is randomized and builds the hash table in O(log n) expected time.

The total time we spend on each level of the recursion tree is O(n log n), so
the total expected preprocessing time is O(n log2 n) and the total time we spend
for answering point-location queries is O(n log2 n).

In order to determine for a point b′ of B′, where B′ ⊆ B1, which point t of
B′

i contains b′ in its Voronoi cell, we find the index j for which B′
i = Bj . Then

we retrieve the entry with the key j from Tb′ . This is exactly the point t of Bj

that contains b in its Voronoi cell in VBj (Bj).
It follows that tloc = O(1), so that the overall running time of this approach

(after O(n log2 n) preprocessing time) is O(|B′| log n). With this implementation,
Algorithm 2.1 runs in O(n log2 n) expected time.

2.3 The Optimization Algorithm

We now present our algorithm that computes, for a given polygonal cycle C on
a set of n points in the plane, the value of δmin

C in O(n log3 n) expected time.
Clarkson and Shor [3] used a similar randomized approach to compute diameter
of a point set.

Step 1: Compute a random permutation of the edges of C. We denote the permutation
by e1, e2, . . . , en.
Step 2: Use the algorithm of [1] to compute the dilation of the path C \{e1} and assign
this value to κ.
Step 3: Run Algorithm 2.1 and store with each edge e of C a Boolean flag which is
true if and only if the dilation of the path C \ {e} is less than κ.
Step 4: For i = 2, 3, . . . , n, do the following: If the flag stored with ei is true , then
perform the following Steps 4.1 and 4.2:
Step 4.1: Use the algorithm of [1] to compute the dilation of the path C \ {ei} and
assign this value to κ.
Step 4.2: Run Algorithm 2.1 and store with each edge e of C a Boolean flag which is
true if and only if the dilation of the path C \ {e} is less than κ.
Step 5: Return the value of κ.
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The correctness of the algorithm follows from the fact that, after Step 4,
κ = min1≤i≤n δPi = δmin

C , where Pi is the polygonal path obtained by removing
ei from C.

Clearly, Step 1 takes O(n) time. The algorithm of [1] and, therefore, Step 2,
takes O(n log n) expected time. Each time we run Algorithm 2.1, we spend
O(n log2 n) expected time. Observe that we run this algorithm once in Step 3
and, moreover, in Step 4 each time the dilation of Pi is less than the current value
of κ. In the latter case, we also spend O(n log n) expected time to compute the
dilation of Pi. Since the edges of C are in random order, the values δP1 , . . . , δPn

are in random order as well. At the start of the i-th iteration of Step 4, the value
of κ is equal to min1≤j<i δPj . Thus, δPi < κ if and only if δPi is the minimum
of the set {δPj | 1 ≤ j ≤ i}. It follows that δPi < κ with probability 1/i. Using
the linearity of expectation, it follows that the expected number of times that
Steps 4.1 and 4.2 are performed is equal to

∑n
i=2 1/i = O(log n). Thus, the over-

all expected running time of our algorithm is O(n log3 n). This completes the
proof of Theorem 1.

3 Dilation-Maximal Edge Deletion in a Polygonal Cycle

In this section, we will prove Theorem 2. That is, we give an algorithm that
computes δmax

C = max0≤i<n δPi .
Let L be the total length of the edges of C. We define Δ(p0) := 0 and Δ(pi) :=

Δ(pi−1)+|pi−1pi| for 1 ≤ i < n. Thus, Δ(pi) is the length of the path (p0, . . . , pi)
and the shortest-path distance dC(pi, pj) between pi and pj in the cycle C is given
by dC(pi, pj) = min(|Δ(pi) − Δ(pj)|, L − |Δ(pi) − Δ(pj)|).

Consider two distinct vertices x and y of C. We obtain the largest dilation
between x and y in any path Pi, by deleting an arbitrary edge on the shorter of
the two paths in C between x and y. Thus, the following lemma holds.

Lemma 3. Let x and y be two distinct vertices of C. Then

max
0≤i<n

δPi(x, y) =
max(|Δ(x) − Δ(y)|, L − |Δ(x) − Δ(y)|)

|xy| ≥ L

2|xy| .

The next lemma states that the closest pair in the vertex set of C can be used
to obtain a 2-approximation to δmax

C .

Lemma 4. Let (p, q) be a closest pair in the vertex set of C. Then

δmax
C ≤ 2 · max

0≤i<n
δPi(p, q).

Proof. Let j be an index such that δmax
C = δPj and let x and y be two vertices

of C such that δPj = δPj (x, y). Then δmax
C =

dPj
(x,y)

|xy| ≤ L
|pq| . By Lemma 3, we

have L
|pq| ≤ 2 · max0≤i<n δPi(p, q). �	

Thus, by computing the closest pair (p, q) in the vertex set of C and then using
Lemma 3 to compute max0≤i<n δPi(p, q), we obtain a 2-approximation to δmax

C .
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We now show that a simple extension leads to an algorithm that computes the
exact value of δmax

C .
Let S be the set of all pairs (x, y) in the vertex set of C for which x = y and

|xy| ≤ 2|pq|. The following lemma states that it suffices to consider the elements
of S to compute δmax

C .

Lemma 5. We have δmax
C = max(x,y)∈S max0≤i<n δPi(x, y).

Proof. It is clear that

δmax
C = max

x, y vertices of C
max

0≤i<n
δPi(x, y) ≥ max

(x,y)∈S
max

0≤i<n
δPi(x, y).

Let j be an index such that δmax
C = δPj and let a and b be two vertices of C such

that δPj = δPj (a, b). If we can show that (a, b) ∈ S (i.e., |ab| ≤ 2|pq|), then the
proof is complete.

By Lemma 3, we have the following inequality, which follows that

L

2|pq| ≤ max
0≤i<n

δPi(p, q)

≤ max
x, y vertices of C

max
0≤i<n

δPi(x, y)

= δmax
C

= δPj (a, b)
= dPj (a, b)/|ab|
≤ L/|ab|.

This implies that |ab| ≤ 2|pq|. �	

The discussion above leads to the following algorithm for computing the value
of δmax

C .

Step 1: Compute the total length L of the cycle C and compute the values Δ(pi)
(0 ≤ i < n) as defined above.
Step 2: Compute the closest pair (p, q) in the vertex set of C.
Step 3: Compute the set S of all pairs (x, y) in the vertex set of C for which x �= y and
|xy| ≤ 2|pq|.
Step 4: For each element (x, y) in S, compute

max(|Δ(x) − Δ(y)|, L − |Δ(x) − Δ(y)|)
|xy| .

Step 5: Return the largest value computed in Step 4.

By Lemma 3, each value computed in Step 4 is equal to max0≤i<n δPi(x, y).
By Lemma 5, the largest of the values computed in Step 4 is equal to δmax

C .
This proves the correctness of the algorithm. To analyze the running time of the
algorithm, it is clear that Step 1 takes O(n) time. The closest-pair computation
in Step 2 takes O(n log n) time; see [12]. In [9], it is shown that the size of the
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set S is O(n). It is also shown there that if the points in the vertex set of C are
stored in two lists X and Y , where the points in X are sorted by x-coordinates
and the points in Y are sorted by y-coordinates, and if there are cross-pointers
between these two lists, then the set S can be computed in O(n) time. Therefore,
Step 3 takes O(n log n) time. In Step 4, the algorithm spends O(1) time for each
element of S. Since the size of S is O(n), the total time for Step 4 is O(n). Thus,
the total time of the algorithm is O(n log n).

If the cycle C is a convex polygon, then we can improve the running time: In
[8], it is shown that the closest pair can be computed in O(n) time. Since C is a
convex polygon, we can obtain the lists X and Y in O(n) time. It follows that
the entire algorithm runs in O(n) time.

4 Approximating the Dilation of All Paths Pi

Consider again the polygonal cycle C = (p0, . . . , pn−1, p0) whose vertices are
points in the plane. Let ε > 0 be a constant. In this section, we prove Theorem 3.
That is, we show that an approximation to the dilation of each path Pi (0 ≤
i < n), as well as an approximation to δmin

C , can be computed in O(n log n) total
time.

Our algorithm uses the well-separated pair decomposition (WSPD) of [2]. More
specifically, we use the following lemma from [10], which states that the WSPD of
the vertex set of any Euclidean graph G can be used to approximate the dilation
of G. The statement of the lemma as we present it appears in Section 13.2.1 of
[11].

Lemma 6. Let V be a set of n points in the plane and let {A1, B1}, {A2, B2}, . . . ,
{Am, Bm} be a WSPD for V with separation ratio 4(2 + ε)/ε. For each j with
1 ≤ j ≤ m, let aj be an arbitrary point in Aj, and let bj be an arbitrary point
in Bj. For any connected Euclidean graph G with vertex set V , the following holds:
For each j with 1 ≤ j ≤ m, let δG(aj , bj) be the dilation between aj and bj in G,
and let

t := max
1≤j≤m

δG(aj , bj).

Then δG/(1 + ε) ≤ t ≤ δG, where δG denotes the dilation of G.

Thus, in order to approximate the dilation of a Euclidean graph, it is sufficient
to compute the dilation between O(n) pairs of vertices. Moreover, the choice of
these vertices depends only on the vertex set of the graph, it does not depend
on the edges of the graph.

In a preprocessing step, we use the algorithm of [2] to compute, in O(n log n)
time, a WSPD {Aj , Bj}, 1 ≤ j ≤ m = O(n), for the vertex set {p0, . . . , pn−1}
of the cycle C, with separation ratio 4(2 + ε)/ε. For each j with 1 ≤ j ≤ m, we
pick an arbitrary point aj in Aj , and an arbitrary point bj in Bj . Our algorithm
will compute, for each i with 0 ≤ i < n, the value ti := max1≤j≤m δPi(aj , bj).
Observe that, by Lemma 6, δPi/(1 + ε) ≤ ti ≤ δPi .

Lemma 7. Let t∗ := min(t0, t1, . . . , tn−1). Then δmin
C /(1 + ε) ≤ t∗ ≤ δmin

C .
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Proof. Let i be an index such that t∗ = ti and let j be an index such that δmin
C =

δPj . Then t∗ ≤ tj ≤ δPj = δmin
C and δmin

C = δPj ≤ δPi ≤ (1 + ε)ti = (1 + ε)t∗. �	

We remark that, by a similar argument, t∗∗ := max(t0, t1, . . . , tn−1) can be
shown to satisfy δmax

C /(1 + ε) ≤ t∗∗ ≤ δmax
C . In other words, the algorithm that

will be presented below can also be used to compute an approximation to δmax
C

in O(n log n) time. We have seen in Sect. 3, however, that the exact value of
δmax
C can be computed within the same time bound.

As mentioned above, our algorithm computes ti for i = 0, 1, . . . , n − 1. The
main idea is to maintain, for the current value of i, the m dilations δPi(aj , bj)
(1 ≤ j ≤ m) in a balanced binary search tree T . Observe that, for any fixed
index j, the value of δPi(aj , bj) changes at most twice when i is increased from
0 to n − 1. As a result, the total number of updates in T will be at most 2m.
We now present the details.

Let P denote the path (p0, p1, . . . , pn−1). Recall the relation <P of Sect. 2.1.
We may assume without loss of generality that aj <P bj for each j with
1 ≤ j ≤ m.

In the preprocessing step, we compute, in O(n) time, the values Δ(pi) =
dP (p0, pi) (0 ≤ i < n) and the total length L of the cycle C. Observe that, for
0 ≤ i < n, the distance dPi(aj , bj) between aj and bj in the path Pi satisfies

dPi(aj , bj) =
{

Δ(bj) − Δ(aj) if i = n − 1 or pi <P aj or bj <P pi+1,
L − (Δ(bj) − Δ(aj)) otherwise.

(1)
In the final part of the preprocessing step, we compute, for each i with 0 <

i < n, the set Si := {j | 1 ≤ j ≤ m, aj = pi or bj = pi}. Obviously, all these
sets can be computed in O(m) = O(n) time. After the preprocessing step, the
algorithm proceeds as follows.

Step 1: Initialize an empty balanced binary search tree T (e.g., a red-black tree).
Step 2: For j = 1, 2, . . . , m, use (1) to compute dP0(aj , bj), compute Dj := δP0(aj , bj)
and insert it into T .
Step 3: Compute the maximum element t0 in the tree T .
Step 4: For i = 1, 2, . . . , n − 1, perform the following Steps 4.1–4.2. (Observe that, at
this moment, Dj = δPi−1(aj , bj), 1 ≤ j ≤ m.)

Step 4.1: For each element j in Si, delete Dj from the tree T , use (1) to compute
dPi(aj , bj), compute the new value Dj := δPi(aj , bj) and insert it into T .

Step 4.2: Compute the maximum element ti in the tree T .
Step 5: Compute t∗ := min0≤i<n ti, and return the sequence t0, t1, . . . , tn−1, t

∗.

The correctness of the algorithm follows from the discussion above. We have
seen already that the preprocessing step takes O(n log n) time. Steps 1–3 take
O(m log m) = O(n log n) time. The total time for Step 4 is proportional to

n−1∑

i=1

(|Si| + 1) log m ≤ (2m + n) log m = O(n log n).

This completes the proof of Theorem 3.
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5 Concluding Remarks and Acknowledgments

Recently, there has been a fair amount of work on the problem of computing
the optimal dilation of a given (geometric) graph. In this paper we considered a
variation of the problem where we are given a polygonal cycle and are supposed
to choose one edge to remove such that the resulting polygonal path gives the
smallest (or the largest) possible dilation.

We would like to thank Jan Vahrenhold for fruitful discussions on the subject.
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Abstract. Since the seminal work of Paturi and Simon [26, FOCS’84 &
JCSS’86], the unbounded-error classical communication complexity of a
Boolean function has been studied based on the arrangement of points
and hyperplanes. Recently, [14, ICALP’07] found that the unbounded-
error quantum communication complexity in the one-way communica-
tion model can also be investigated using the arrangement, and showed
that it is exactly (without a difference of even one qubit) half of the
classical one-way communication complexity. In this paper, we extend
the arrangement argument to the two-way and simultaneous message
passing (SMP) models. As a result, we show similarly tight bounds of
the unbounded-error two-way/one-way/SMP quantum/classical commu-
nication complexities for any partial/total Boolean function, implying
that all of them are equivalent up to a multiplicative constant of four.
Moreover, the arrangement argument is also used to show that the gap
between weakly unbounded-error quantum and classical communication
complexities is at most a factor of three.

1 Introduction

As with many other probabilistic computation models, communication complex-
ity (CC for short) has two contradistinctive settings: Bounded-error CC refers to
the amount of communication (the number of bits exchanged) between Alice and
Bob which is enough to compute a Boolean value f(x, y), with high probability,
from Alice’s input x and Bob’s input y. On the other hand, unbounded-error CC
refers to the lowest possible amount of communication which is needed to give
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“a positive hint” for the computation of f(x, y), in other words, even one-bit
less communication would be the same as completely no communication in the
worst case. More formally, it is defined as the minimum amount of communica-
tion between Alice and Bob such that for all x and y Alice (or Bob) can output
a correct value of f(x, y) with probability > 1/2.

Unbounded-error CC was first studied by Paturi and Simon [26], who charac-
terized its one-way version, C1(f), in terms of the minimum dimension kf of the
arrangement that realizes the Boolean function f (see Sec. 2 for the definition
of arrangements). Namely they showed �log kf� ≤ C1(f) ≤ �log(kf +2)�. It was
also proven that the two-way (unbounded-error) CC, C(f), does not differ from
C1(f) more than one bit for any (partial or total) Boolean function f , which is
a bit surprising since there are easily seen exponential differences between them
in the bounded-error setting (see, say [21]).

Since then, arrangement has been a standard tool for studying unbounded-
error CC. Alon, Frankl, and Rödl [1] showed by counting arguments that almost
all Boolean functions have linear unbounded-error CCs. The first linear lower
bound of an explicit function was found by Forster [8], who gave the linear
lower bound of the inner product function by showing the lower bound of its
minimum dimension using operator norms. Extending Forster’s arguments, there
are several papers on the study of unbounded-error CC [9,10] that also put
emphasis on the margin of arrangements.

Recently, [14] completely characterized the unbounded-error one-way (Alice
to Bob) quantum CC, Q1(f), also in terms of kf , i.e., Q1(f) = �log

√
kf + 1�.

The main idea was to relate quantum states in Alice’s side and POVMs in Bob’s
side to points and hyperplanes of a real space arrangement, respectively. More-
over, they also closed the small gap between the upper and lower bounds of
C1(f) in [26] by proving C1(f) = �log(kf +1)�. As a result, they found that the
unbounded-error one-way quantum CC of any Boolean function is always ex-
actly one half of its classical counterpart. Unfortunately, however, their studies
were limited within the one-way model: The proof technique mentioned above
apparently depends on the one-way communication and there is no obvious way
of its extension to the more general two-way communication model. Further-
more, it seems hard to change two-way quantum protocols to one-way quantum
protocols efficiently, which was possible and was used as the basic approach in
the classical case [26].

Our Contribution. We provide a new approach for constructing an arrange-
ment from a given two-way quantum protocol with n qubit communication.
The basic idea is to use the simple fact, found by Yao [30] and Kremer [20],
that the final state of the whole system after the protocol is finished can be
written as a superposition of at most 2n different states. This allows us to
imply a quite tight lower bound for the two-way quantum CC Q(f), namely
Q(f) ≥ �log

√
kf + 1/8 − 1/2�. Notice that this lower bound does not differ

more than one qubit from the upper bound of one-way CC Q1(f) in [14], which
then means that all of Q(f), Q1(f), C(f)/2 and C1(f)/2 coincide within the
difference of at most only one bit or one qubit.
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Arrangements are also useful to provide a couple of related results: First, we
give almost tight characterizations of Q||(f) and C||(f), i.e., the unbounded-
error quantum and classical CCs in the simultaneous message passing (SMP)
model. We prove that Q||(f) and C||(f) are equal to twice as much as Q1(f)
and C1(f) up to a few qubits and bits, respectively. Therefore we can see that in
the unbounded-error setting all of the two-way/one-way/SMP quantum/classical
CCs of any Boolean function are asymptotically equivalent up to a multiplicative
constant of four. Note that, in the bounded-error classical case, the equality
function gives an exponential gap between one-way and SMP CCs [4,24]. In the
bounded-error quantum case, it is also shown that an exponential gap between
one-way and SMP CCs exists for some relations [12].

Secondly, we give several relations among CCs in the weakly unbounded-error
setting, which was introduced by Babai et al. [3]. The weakly unbounded-error
(classical) CC of a protocol P , denoted by Cw(P ), is measured by the sum
of the communication cost of P and log 1/(p − 1/2) if P ’s success probability
is p. The weakly unbounded-error CC of f , Cw(f), is the minimum of Cw(P )
over all protocols P that computes f . The quantum variant and one-way/SMP
variants are defined similarly. Using two quantities of arrangement, margin and
dimension, we show several upper bounds of weakly unbounded-error CCs, in
particular, Cw(f) ≤ 3Qw(f) + O(1). Previously, it is only known [17] that
Cw(f) = O(Qw(f)). The multiplicative factor three seems to be quite tight
since at least a factor of two must be involved as a gap between quantum and
classical communication costs as mentioned before.

Related Work. In the bounded-error setting, CCs of some Boolean functions
have large gaps between quantum and classical cases: Exponential separations
are known for all of two-way [27], one-way [11] and SMP models [5], where the
first two cases are for partial Boolean functions, and the last case is for a total
Boolean function. It remains to show (if any) exponential gaps for total Boolean
functions in the cases of two-way and one-way models. In particular, the largest
known gap between quantum and classical one-way CCs is only a factor of two.

Other than the minimum dimension kf of arrangements, several different mea-
sures of Boolean functions also appeared in the literature. Paturi and Simon
[26] showed that C1(f) (and C(f)) is equal to the logarithm of the sign-rank,
srank(f), up to a few bits (also see [6]). Due to Klauck [17], both Cw(f) and
Qw(f) are equivalent to the logarithm of the inverse of the discrepancy disc(f)
(see, say [21]) within a constant multiplicative factor and a logarithmic additive
factor. The recent result by Linial and Shraibman [22,23] implies that the max-
imal margin of arrangements realizing f , m(f), is equivalent to disc(f) up to a
multiplicative constant. Thus, combined with the results of the current paper,
(i) C(f), Q(f), log kf and log srank(f) are all within a factor of two, and (ii)
Cw(f), Qw(f), log disc−1(f) and log m−1(f) within a factor of some constant
and a logarithmic additive term. However, due to the two independent results
by Buhrman et al. [6] and Sherstov [28], (i) is exponentially smaller than (ii) for
some Boolean function f .
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2 Technical Components

In this section, we present some basic tools for obtaining our results. Their
proofs, as well as some of those in the following sections, are omitted due to
space constraints. They are mainly the concept of arrangement and its sufficient
conditions (Lemmas 3 and 4) for realizing a quantum protocol whose success
probability can be calculated from arrangement parameters by Lemma 5 in [14].

Arrangements. We denote a point in R
n by the corresponding n-dimensional

real vector, and a hyperplane {(ai) ∈ R
n |

∑n
i=1 aihi = hn+1} by the (n + 1)-

dimensional real vector h = (h1, . . . , hn, hn+1), meaning that any point (ai) on
the plane satisfies the equation

∑n
i=1 aihi = hn+1. A Boolean function f on

X × Y is realizable by an arrangement of a set of |X | points px = (px
1 , . . . , px

k)
and a set of |Y | hyperplanes hy = (hy

1 , . . . , h
y
k, hy

k+1) in R
k if for any x ∈ X

and y ∈ Y , sign(
∑k

i=1 px
i hy

i − hy
k+1) = f(x, y). Here, sign(a) = 1 if a > 0

and −1 if a < 0. The value
∣
∣
∣
∑k

i=1 px
i hy

i − hy
k+1

∣
∣
∣ denotes how far the point px

lies from the plane hy, and the margin of an arrangement denotes the smallest
of such values in the arrangement. The magnitude of the arrangement is de-

fined as maxx,y

(√∑k
i=1 |px

i |2,
√∑k

i=1 |hy
i |2, |hy

k+1|
)

. The value k is called the

dimension of the arrangement. Let kf denote the minimum dimension of all
arrangements that realize f .

Remark. In the hereafter, our statements will use “functions” while their proofs,
that obviously hold for partial, are showed only for total ones. Note also that the
concept of arrangement in this paper is not symmetric. Here, Alice’s input x and
Bob’s input y are associated with a point and a hyperplane, respectively. For
this reason, the value of kf might be different from that of kft , where f t(x, y) :=
f(y, x). However, it can be easily seen that |kf − kft | ≤ 1. The random access
coding is one of examples such that |kf − kft | = 1 [2,14].

The following lemma relates arrangements to classical CC, which was shown
in [26] and later in [9] in more detail including the margin.

Lemma 1 (From arrangements to classical CC). Any N -dimensional ar-
rangement realizing f of magnitude at most 1 with margin μ can be converted
into a classical one-way protocol for f using at most �log(N + 1)� + 1 bits with
success probability at least 1/2 + μ/(2

√
N + 1).

Bloch Vector Representations of Quantum States. Let N = 2n. Any n-
qubit state can be represented by an N × N positive matrix ρρρ (also often called
N -level quantum state), satisfying Tr(ρρρ) = 1. Moreover, ρρρ can be written as a
linear combination of N2 generator matrices IIIN ,λλλ1, . . . ,λλλN2−1, where IIIN is the
identity matrix (the subscript N is often omitted when it is clear from the con-
text), and λλλi’s are N × N matrices which are generators of SU(N) satisfying (i)
λλλi = λλλ†

i (i.e., λλλi’s are Hermitian), (ii) Tr(λλλi) = 0 and (iii) Tr(λλλiλλλj) = 2δij . Note
that λλλi can be any generator matrices satisfying the above conditions (and in
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fact N can be any positive integer ≥ 2), but practically for n = 1 one can choose

σσσ1 =
(

1 0
0 −1

)

, σσσ2 =
(

0 1
1 0

)

, and σσσ3 =
(

0 −ı
ı 0

)

of Pauli matrices as λλλ1,λλλ2, and

λλλ3, respectively. For larger n, one can choose the following tensor products of

Pauli matrices for λλλ1, . . . ,λλλN2−1: λλλ1 =
√

2
N III⊗n−1

2 ⊗ σσσ1, λλλ2 =
√

2
N III⊗n−1

2 ⊗ σσσ2,

λλλ3 =
√

2
N III⊗n−1

2 ⊗σσσ3, λλλ4 =
√

2
N III⊗n−2

2 ⊗σσσ1⊗III, . . . ,λλλN2−2 =
√

2
N σσσ⊗n−1

3 ⊗σσσ2, and

λλλN2−1 =
√

2
N σσσ⊗n

3 . The following representation is known on N -level quantum
states (see, e.g., [16]).

Lemma 2. For any N -level quantum state ρρρ and any N ×N generator matrices
λλλi’s, there exists an (N2 − 1)-dimensional vector r = (ri) such that ρρρ can be
written as

ρρρ =
1
N

⎛

⎝III +

√
N(N − 1)

2

N2−1∑

i=1

riλλλi

⎞

⎠ .

The vector r in this lemma is often called the Bloch vector of ρρρ.
Note that Lemma 2 is a necessary condition for ρρρ to be a quantum state. The

following sufficient condition appeared in [14], using the geometric fact of Bloch
vectors in [15,19].

Lemma 3. For any r = (r1, r2, . . . , rk) ∈ R
k and any N satisfying N2 ≥ k + 1,

ρρρ(r) =
1
N

(

III +

√
N(N − 1)

2

k∑

i=1

(
ri

|r|(N − 1)

)

λλλi

)

is an N -level quantum state. (Intuitively, if a vector is shrunk enough to be
inside the ball of radius 1/(N −1), its shrunk vector is always a quantum state.)
Moreover, if ρρρ(r) is a quantum state, then ρρρ(γr) is also a quantum state for any
0 ≤ γ ≤ 1.

Bloch Vector Representations of POVMs. A POVM M = {EEE,III − EEE} is
a set of operators, which represents a quantum measurement, such that EEE and
III −EEE are positive matrices. It is known that any POVM M on N -level quantum
states can be written as a linear combination of N × N generator matrices λλλi’s.
Namely,

EEE = eN2III +
N2−1∑

i=1

eiλλλi,

where e = (e1, e2, . . . , eN2) is called the Bloch vector representation of POVM
M . One sufficient condition for a vector to represent a POVM is given as follows.

Lemma 4. Let e = (e1, e2, . . . , eN2) ∈ R
N2

such that

N2−1∑

i=1

e2
i ≤ N

2(N − 1)
min(e2

N2 , (1 − eN2)2).
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If we take EEE = eN2III +
∑N2−1

i=1 eiλλλi, then {EEE,III − EEE} is a POVM on N -level
quantum states.

3 Two-Way Communication Complexity

The model is due to Yao [30]: The space of a quantum protocol consists of Alice
and Bob’s private parts and a communication channel. On her (his) turn, Alice
(Bob) applies a unitary transformation on her (his) part and the communication
channel, and Bob (Alice) receives quantum information from the content of the
channel. Finally the output of the protocol is obtained by a measurement via
Alice or Bob. Note that without loss of generality we can assume that no mea-
surement is performed in the middle of the protocol. This is because it is well
known that measurements can be postponed without increasing the communi-
cation cost [25]. Also, it is often assumed, for technical reason, that the output
is put on the communication channel. A protocol described under this output
style (and Yao’s formalism), which we call a shared-output protocol, means that
the protocol’s output can be known to both Alice and Bob. We define Q(f) as
the CC for one of them to know the output since we want to regard one-way
protocols as a special case of two-way protocols. Thus our Q(f) may be smaller
than the corresponding CC under shared-output protocols, but we can easily see
that the gap is at most one qubit.

For the shared-output protocol, the following lemma, which was given by Yao
[30] without proof and proved by Kremer [20], is quite strong.

Lemma 5 ([30] and [20]). The final state of a shared-output quantum protocol
for a Boolean function f on input (x, y) using n qubit of communication can be
written as ∑

i∈{0,1}n

|Ai(x)〉|in〉|Bi(y)〉,

where |Ai(x)〉 and |Bi(y)〉 are complex vectors of norm ≤ 1, and in is the nth
bit of the index i and also the last bit of the communication channel (that is, the
output bit).

To see the intuitive meaning of this lemma might help understand the proof of
Lemma 6 (our main lemma) more easily. There are two points: (i) The super-
position consists of at most 2n different states, independent of the size of the
whole space. This allows us to consider only 22n (2n ×2n) different combinations
of vectors (and their inner product values) when calculating the trace of under-
lying density matrices whose size may be much larger. (ii) As one can see, a
product of state Ai(x) and state Bj(y) exists only if i = j. This correspondence
is translated into the same correspondence between the indices when calculating
an inner product of a point and a hyperplane of the converted arrangement.
A similar correspondence was also used in [7] for lower bounds of quantum ex-
act and bounded-error protocols, and in [29] for tight lower bounds of quantum
one-sided unbounded-error (which is referred as nondeterministic) protocols.

Let k∗
f = min(kf , kft). Then here is our first main result.
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Theorem 1. For any Boolean function f , �log
√

kf + 1/8 − 1/2� ≤ Q(f) ≤
�log

√
k∗

f + 1�.

Theorem 1 induces the equality of two-way and one-way quantum CCs of a
Boolean function within one qubit since we can verify that the difference of the
upper bound from the lower bound is at most one for any integer kf > 0. Recall
that the difference between the two-way and one-way CCs is also at most one
in the classical case [26]. For the proof of Theorem 1, it is enough to give the
lower bound Q(f) ≥ �log

√
kf + 1/8 − 1/2� since Q(f) ≤ min(Q1(f), Q1(f t)) =

�log
√

k∗
f + 1�. To do so, we relate quantum communication protocols to ar-

rangements.

Lemma 6 (From quantum CC to arrangements). Ann-qubit shared-output
protocol that computes a Boolean function f with success probability 1/2 + ε can be
converted to a (22n−1 − 2n−1)-dimensional arrangement of magnitude at most 1
that realizes f with margin ε.

Proof. Suppose that P is an n-qubit protocol for f . According to Lemma 5, we
can write the final quantum state of P on input (x, y), ρρρxy, as follows.

ρρρxy =
∑

i,j∈{0,1}n

|Ai(x)〉|in〉|Bi(y)〉〈Aj(x)|〈jn|〈Bj(y)| = ρρρ0
xy + ρρρ1

xy + ρ̃ρρxy,

where

ρρρ0
xy =

∑

i,j∈{0,1}n and in=jn=0

|Ai(x)〉|0〉|Bi(y)〉〈Aj(x)|〈0|〈Bj(y)|,

ρρρ1
xy =

∑

i,j∈{0,1}n and in=jn=1

|Ai(x)〉|1〉|Bi(y)〉〈Aj(x)|〈1|〈Bj(y)|,

and ρ̃ρρxy = ρρρxy −ρρρ0
xy −ρρρ1

xy such that Tr(ρρρxy) = Tr(ρρρ0
xy)+Tr(ρρρ1

xy) = 1. Note that
Tr(ρρρ0

xy) (resp. Tr(ρρρ1
xy)) is the probability that the output of P is 0 (resp. 1). By

basic properties of the trace [25], Tr(ρρρ0
xy) can be written as follows: |mA〉 and

|mB〉 are the computational base of Alice’s and Bob’s spaces, respectively, and
b ∈ {0, 1}. Then,

Tr(ρρρ0
xy) =

∑

mA,b,mB

〈mA|〈b|〈mB|ρρρ0
xy|mA〉|b〉|mB〉

=
∑

mA,mB

∑

i,j∈{0,1}n−1

〈mA|〈mB |(|Ai0(x)〉|Bi0(y)〉〈Aj0(x)|〈Bj0(y)|)|mA〉|mB〉

=
∑

i,j∈{0,1}n−1

∑

mA,mB

〈Aj0(x)|〈Bj0(y)||mA〉|mB〉〈mA|〈mB ||Ai0(x)〉|Bi0(y)〉

=
∑

i,j∈{0,1}n−1

〈Aj0(x)|Ai0(x)〉〈Bj0(y)|Bi0(y)〉,
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where the last equation holds since
∑

mA,mB
|mA〉|mB〉〈mA|〈mB| = I (com-

pleteness relation). Now, let us define the following vectors a(x) ∈ C
22n−2

and
b(y) ∈ C

22n−2+1.

(a(x))k = (a(x))ij = 〈Aj0(x)|Ai0(x)〉,
(b(y))k = (b(y))ij = 〈Bj0(y)|Bi0(y)〉 for i, j ∈ {0, 1}n−1, (b(y))22n−2+1 = 1/2,

where the index k ∈ [22n−2] naturally corresponds to the index ij ∈ {0, 1}2n−2.
Since P computes f(x, y) with success probability 1/2 + ε, Tr(ρρρ0

xy) ≥ 1/2 + ε if
f(x, y) = 0 and ≤ 1/2 − ε if f(x, y) = 1. Thus, the points a(x) and hyperplanes
b(y) can be considered as an arrangement that “realizes” f but they are in
complex space. Fortunately, one can find an arrangement in R

22n−1
that realizes

f from the above arrangement by noticing that Tr(ρρρ0
xy) is always real. Namely,

Tr(ρρρ0
xy) =

∑

i,j∈{0,1}n−1

〈Aj0(x)|Ai0(x)〉〈Bj0(y)|Bi0(y)〉 =
∑

k∈[22n−2]

(a(x))k(b(y))k

=
∑

k∈[22n−2]

Re ((a(x))k(b(y))k)

=
∑

k∈[22n−2]

(Re(a(x))kRe(b(y))k − Im(a(x))kIm(b(y))k)

=
∑

k∈[22n−1]

(a′(x))k(b′(y))k, (1)

where

(a′(x))2k−1 = Re(a(x))k , (a′(x))2k = −Im(a(x))k ,

(b′(y))2k−1 = Re(b(x))k, (b′(y))2k = Im(b(x))k, for k ∈ [22n−2],

and we set (b′(y))22n−1+1 = 1/2. Now by Eq.(1), the arrangement of points a′(x)
and hyperplanes b′(y) realizes f with margin ε. Also, it is easy to see that its
magnitude is at most 1. Furthermore, since 〈Ai0(x)|Ai0(x)〉 and 〈Bj0(y)|Bj0(y)〉
are already real, the dimension of the above arrangement can be reduced from
22n−1 to 22n−1 − 2n−1.

Proof of Theorem 1. Let n = Q(f). As mentioned before Lemma 5, there exists
an (n + 1)-qubit shared-output protocol that computes f with success proba-
bility larger than 1/2. By Lemma 6, we can obtain a (22n+1 − 2n)-dimensional
arrangement realizing f . Thus kf ≤ 2(2n)2 − 2n. By solving the quadratic in-
equality on 2n, Q(f) = n ≥ �log(

√
8kf + 1+1)�−2. The righthand side equals to

�log
√

8kf + 1�−2 = �log
√

kf + 1/8−1/2� by a simple consideration on round-
ing reals, and hence we obtain the desired lower bound of Q(f). On the contrary,
it was proven that Q1(f) = �log

√
kf + 1� [14]. Since Q(f) ≤ min(Q1(f), Q1(f t))

(by our definition mentioned before Lemma 5), we obtain the desired upper
bound. These complete the proof.
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4 Simultaneous Message Passing Models

The simultaneous message passing (SMP) model is the following three-party
communication model: Alice and Bob have their inputs x and y, respectively,
but they have no interaction at all. The third party with no access to input,
called the referee, must compute a Boolean function f(x, y) with the help of two
messages sent from Alice and Bob. For such a model, the corresponding CC are
defined similarly to two-way or one-way CCs.

We give quite tight characterizations of unbounded-error SMP CCs, Q||(f)
and C||(f). First, we show the characterization of Q||(f) via kf , which also
implies that Q||(f) is the same as the sum of Q1(f) and Q1(f t) up to two
qubits.

Theorem 2. For any Boolean function f , Q1(f) + Q1(f t) ≤ Q||(f) ≤ Q1(f) +
Q1(f t) + 2. In particular,

�log
√

kf + 1� + �log
√

kft + 1� ≤ Q||(f) ≤ 2�log
√

k∗
f + 2�.

Proof. For lower bound, Q1(f) + Q1(f t) ≤ Q||(f) is obtained by considering
the relation between one-way communication models and SMP models: In the
SMP model, Alice must send at least Q1(f) qubits to the referee. Otherwise, the
number of qubits that she sends to the referee would be m < Q1(f), and then
we can construct an m-qubit one-way protocol from Alice to Bob by regarding
the referee and Bob as the same party, which contradicts the definition of Q1(f).
Similarly Bob must send at least Q1(f t) qubits. Since Q1(f) = �log

√
kf + 1� for

any f , we obtain �log
√

kf + 1�+�log
√

kft + 1� ≤ Q||(f), and 2�log
√

k∗
f + 2� ≤

Q1(f) + Q1(f t) + 2.
What remains to do is to show the upper bound Q||(f) ≤ 2�log

√
k∗

f + 2�.
For this purpose, we can use quantum fingerprinting introduced in [5]. That
is, Alice’s input x and Bob’s y are encoded into two quantum states ρρρx and
ρρρy, respectively, and the referee uses the controlled SWAP (C-SWAP) test. The
difference from the standard quantum fingerprinting such as [5,31,13] is that we
use mixed states for encoding. (The C-SWAP test for mixed states are also used
in [18] for quantum Merlin-Arthur games.)

We assume kf ≤ kft and show Q||(f) ≤ 2�log
√

kf + 2�. (The case of kf >
kft is similarly shown.) Let d = kf . Then there is an arrangement of points
pppx = (px

i ) ∈ R
d and hyperplanes hhhy = (hy

i ) ∈ R
d+1 that realizes f . Let

n = �log
√

d + 2� and N = 2n. Also, for each x, define qqqx = (qx
i ) ∈ R

d+1

as qx
1 = px

1 , . . . , qx
d = px

d, qx
d+1 = −1. By Lemma 3, for each qqqx and hhhy we

can obtain n-qubit states ρρρ(qqqx) = 1
N

(

III +
√

N(N−1)
2

∑d+1
i=1

(
qx

i

|qqqx|(N−1)

)
λλλi

)

and

ρρρ(hhhy) = 1
N

(

III +
√

N(N−1)
2

∑d+1
i=1

(
hy

i

|hhhy|(N−1)

)
λλλi

)

. Then, we consider the follow-

ing SMP quantum protocol: (1) Alice and Bob send the referee ρρρ(qqqx) and ρρρ(hhhy),
respectively. (2) The referee outputs the bit obtained by the C-SWAP test on the
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pair of the quantum states (ρρρ(qqqx), ρρρ(hhhy)) with probability α = 1
2

(
1
2 + 1

2N

)−1,
and otherwise outputs 1 with probability 1 − α. Note that the C-SWAP test
produces output 0 with probability 1

2 + 1
2Tr(ρρρ(qqqx)ρρρ(hhhy)) [5,18]. Thus, the referee

outputs 0 with probability

α

�
1

2
+

1

2
Tr(ρρρ(qqqx)ρρρ(hhhy))

�
=

1

2

�
1

2
+

1

2N

�−1
�

1

2
+

1

2N
+

N − 1

2N

d+1�
i=1

qx
i hy

i

|qqqx||hhhy |(N − 1)2

�

=
1

2
+

1

4N |qqqx||hhhy|(N − 1)

�
1

2
+

1

2N

�−1
�

d�
i=1

px
i hy

i − hy
d+1

�

=

�
> 1/2 if f(x, y) = 0
< 1/2 if f(x, y) = 1.

Hence Q||(f) ≤ 2n = 2�log
√

d + 2�.
Moreover, we can also show a similar result in the classical setting.

Theorem 3. For any Boolean function f , C1(f) + C1(f t) ≤ C||(f) ≤ C1(f) +
C1(f t) + 1. In particular,

�log(kf + 1)� + �log(kft + 1)� ≤ C||(f) ≤ �log(k∗
f + 1)� + �log(k∗

f + 2)�.

5 Weakly Unbounded-Error Communication Complexity

Finally we give several relations among the weakly unbounded-error CCs. For
this purpose, we need Lemmas 1, 6 and 7 to consider the bias of the success
probability explicitly when converting protocols to arrangement, and vice versa.

Theorem 4. The following relations hold for any Boolean function f : (1) Cw(f)
≤ C1

w(f) ≤ 3Qw(f) + O(1). (2) Q1
w(f) ≤ 2Qw(f) + O(1).

Proof. 1) By the definition of Qw(f), there is a quantum protocol P such that
Qw(f) = CP + �log 1/εP � where CP and 1/2 + εP are the communication cost
and the success probability of P , respectively. By Lemma 6, we can obtain a
(22CP−1 −2CP−1)-dimensional arrangement of magnitude at most 1 with margin
εP from P . By Lemma 1, we have a 2CP -bit one-way protocol that computes
f with probability ≥ 1/2 + εP /(2

√
22CP−1). This implies that C1

w(f) ≤ 2CP +
�log(2

√
22CP−1/εP )�, which is at most 3CP +�log 1/εP �+O(1) ≤ 3Qw(f)+O(1).

2) The proof idea is similar to 1). The difference from 1) is to construct
a desired protocol from the arrangement. To this end, we use the following
lemma, whose proof is omitted, that convert arrangements to one-way quantum
CC. The proof follows from carefully transforming points and hyperplanes, with
appropriate shrinking and shifting factors, to quantum states (by Lemma 3) and
measurements (by Lemma 4), respectively. The success probabilities of resulting
protocols then follows from Lemma 5 of [14].

Lemma 7 (From arrangements to quantum CC). Each d-dimensional ar-
rangement of magnitude at most 1 realizing f with margin μ can be converted
into an n = �log

√
d + 1� qubit one-way protocol that computes f with success

probability at least 1/2 + αμ where α =
√

2−1
2n+1/2 .
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Now we give the proof of Theorem 4 (2). Take a quantum protocol P such
that Qw(f) = CP + �log 1/εP � where CP and 1/2 + εP are the communication
cost and the success probability of P , respectively. By Lemma 6, we can obtain a
(22CP−1 −2CP−1)-dimensional arrangement of magnitude at most 1 with margin
εP from P . By Lemma 7, we have a one-way quantum protocol for f using at
most CP qubits such that its success probability is 1/2+Ω(εP /2CP ). This implies
that Q1

w(f) ≤ 2CP + �log 1/εP � + O(1) ≤ 2Qw(f) + O(1).

Similar to the proof of Theorem 4, using the proofs of Theorems 2 and 3 we can
also show: Q

||
w(f) ≤ 4Qw(f) + O(1) and C

||
w(f) ≤ 9Qw(f) + O(1) .
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Abstract. We propose an algorithm using a spectral method, and an-
alyze its average-case performance for MAX2SAT in the planted solu-
tion model. In [16], they proposed a distribution Gn,p,r for MAX2SAT
in the planted solution model, as well as a message-passing algorithm.
They showed that it solves, whp, MAX2SAT on Gn,p,r for rather dense
formulas, i.e., the expected number of clauses is Ω(n1.5√log n). In this
paper, we propose an algorithm using a spectral method and a variant of
message-passing algorithms, and show that it solves, whp, MAX2SAT
on Gn,p,r for sparser formulas, i.e., the expected number of clauses is
Ω(n log n).

1 Introduction

In this paper, we propose an algorithm using a spectral method, and analyze its
average-case performance for MAX2SAT in the planted solution model.

MAX2SAT asks, given a 2-CNF formula, what the truth assignment satis-
fying as many clauses as possible is. It is one of the basic NP-hard problems.
Furthermore, there is no polynomial time approximation algorithm that finds
an assignment with a ratio better than 0.955 unless P=NP [9]. Therefore, it is
significant to define a suitable distribution over 2-CNF formulas, and to quest for
efficient algorithms that solve MAX2SAT well on average for the distribution.
In fact, there are several average-case analyses for the other NP-hard problems:
graph coloring [1,5,2,7], graph partitioning [8,14,3,4], and 3-SAT [12,13,10], while
it is not enough for MAX2SAT.

In [16], they proposed a distribution for MAX2SAT in the planted solution
model, as well as a message-passing algorithm for it. The distribution, denoted by
Gn,p,r, seems to be natural: choose a planted assignment on n variables uniformly
at random, say, the all-true assignment, and then independently generate clauses
as follows: for every pair (x, y) of variables, include clauses which has literals
with the same polarities, i.e., (x ∨ y) and (x ∨ y), with probability r, and the
other types of clauses with probability p. (See section 2 for a formal definition.)
They showed that the planted assignment is optimal with high probability if
p, r = Ω(log n/n) with p ≥ 4r. The message-passing algorithm they proposed,
given a 2-CNF formula I ∈ Gn,p,r, first constructs a directed graph from I in
the standard manner. Next, it arbitrarily chooses a vertex u of the graph, and
makes u believe that u is assigned true by the planted assignment. Suppose

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 112–123, 2007.
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that this “belief” is correct. Then, u propagates that belief to its neighbors v
along edge (u, v), and further v also propagates its belief to its neighbors, and
so on. This propagation rule comes from the following idea: clause (u → v)
is not satisfied if and only if u and v are assigned true and false respectively.
This propagation procedure is repeated in parallel for each round, and repeated
a finite number of rounds. Finally, it decides a truth value of each variable x
according to two beliefs at vertices x and x. They analyzed this message-passing
algorithm with two rounds, and showed that it solves MAX2SAT on Gn,p,r with
p, r = Ω(

√
log n/n) with high probability, that is, rather dense formulas.

1.1 Our Ideas

This two-round message-passing algorithm makes use of correct beliefs at only
one vertex. On the other hand, using the well-studied spectral method [1,12], we
can obtain correct beliefs at a (1−δ)-fraction of variables for any (small) constant
δ > 0. In particular, [12] proposed an algorithm for 3-SAT using the spectral
method in the similar way to [1]. He analyzed its average-case performance for
distribution In,p1,p2,p3 , where we choose a planted assignment on n variables
uniformly at random, and then we include in I ∈ In,p1,p2,p3 each clause with
exactly i literals satisfied by the planted assignment. Parameterizing as p1 =
d/n2, p2 = η2d/n2, and p3 = η3d/n2, he showed a theorem (corollary 2.1 of
[12]) that for any constants 0 ≤ η2, η3 ≤ 1 except (η2, η3) = (0, 1), there exist
constants dmin and C such that for any d ≥ dmin, after applying the spectral
method to I ∈ In,p1,p2,p3 , at least (1−C/d)n variables of I are set correctly with
high probability.

Once we are given correct beliefs at a (1 − δ)-fraction of variables for some
suitably small constant δ > 0, it is not difficult to see that a variant of message-
passing algorithms works well for somewhat dense instances: Given I ∈ Gn,p,r and
an assignment t which agrees with the planted assignment at (1 − δ)n variables
for a suitably small constant δ > 0. Suppose that I is represented as a directed
graph constructed in the standard manner. Then, we proceed as follows: for
each variable x, count the numbers W (x) and W (x) of directed edges emanating
from vertices assigned true by t into x and x respectively. If W (x) ≥ W (x),
we redefine as t(x) = 1, and as t(x) = 0 otherwise. This procedure is done in
parallel for each variable, and repeated log n rounds. By a counting argument, it
is not difficult to see that the number of variables incorrectly assigned decreases
by half for each round, and therefore the final assignment after log n rounds is
consistent with the planted assignment with high probability. The following is
our main result for this algorithm spect-max2sat:

Theorem 1. Let p = cp log n/n and r = cr log n/n. Given I ∈ Gn,p,r, for any
sufficiently large constants cp and cr such that cp − cr is also sufficiently large,
spect-max2sat(I) outputs its planted assignment with high probability.

Note that the expected number of clauses generated from Gn,p,r with parameters
stated in this theorem is Ω(n log n) while it is Ω(n1.5

√
log n) in [16].
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1.2 Related Works

We mention about two papers [6] and [15] which studied the average-case per-
formance for MAX2SAT. These average-case analyses are not in the planted
solution model, but w.r.t. uniform distribution over instances. In [15], they pro-
posed an expected polynomial time algorithm for very sparse instances, that
is, the expected number of clauses is at most n/2. In [6], they proposed an ex-
pected polynomial time approximation algorithm for sparse instances, that is,
the clauses/variables ratio is at least some constant.

2 Preliminaries

We assume that readers are familiar with CNF-formulas, in particular, 2-CNF
formulas. Let I be a 2-CNF formula over X . We let X = {1, . . . , n} throughout
this paper. Furthermore, we denote a set of negative literals of X by X =
{−1, . . . , −n}. Let t be a truth assignment (an assignment for short) to X . We
denote by 1 (resp. 0) truth value “true” (resp. “false”), and denote by t(x) = 1
(resp. t(x) = 0) that x is assigned 1 (resp. 0) by t. Furthermore, we denote by t
its complement, that is, t(x) = 1 − t(x) for every x ∈ X .

Next, we define our distribution over instances of MAX2SAT by giving a pro-
cedure generating formulas. For generating a random 2-CNF formula I, we first
choose an assignment (called a planted assignment, and denoted by φ throughout
this paper) uniformly at random, then independently generate clauses according
to the following probabilities: for 1 ≤ i ≤ j ≤ n,

Pr{(f(i) ∨ −f(j)) ∈ I} = Pr{(−f(i) ∨ f(j)) ∈ I} = p,
Pr{(f(i) ∨ f(j)) ∈ I} = Pr{(−f(i) ∨ −f(j)) ∈ I} = r,

where f(i) = i if variable i is assigned 1 by φ, and f(i) = −i otherwise 1.
We denote this distribution by Gn,p,r. We say that an event occurs with high
probability, denoted by whp, if the probability tends to one as n → ∞.

Theorem 2. [Watanabe and Yamamoto [16]] Let p = cp log n/n and r =
cr log n/n for any sufficiently large constants cp, cr. If cp ≥ 4cr, then the optimal
assignment of I ∈ Gn,p,r is identical to the planted assignment φ or φ whp.

In this paper, we focus on Gn,p,r where p
def= cp log n/n and r

def= cr log n/n for
any sufficiently large constants cp, cr such that cp − cr is also sufficiently large.

3 Analysis of the Average-Case Performance

In this section, we present an algorithm spect-max2sat for MAX2SAT, which
consists of two stages: (1) a spectral method, and (2) a log n-round message-
passing procedure, and then show that it solves MAX2SAT on Gn,p,r whp.
1 For i = j, we define (i ∨ j) (resp. (i ∨ j)) as unit clause (i) (resp. (i)). Furthermore,

we generate only (i ∨ i), and do not generate the other type (i ∨ i).



A Spectral Method for MAX2SAT in the Planted Solution Model 115

Before giving a description of the algorithm, we define some notions and no-
tations for it. Given a 2-CNF formula I over X , we define an incidence matrix
A, where rows and columns are indexed by literals 1, . . . , n, −1, . . . , −n in this
order, and the (a, b)-th entry of A is one if two literals corresponding to the
ath row and the bth column simultaneously occur in some clause of I, and zero
otherwise. Note that, since A is a 2n-by-2n symmetric matrix, it has 2n eigen-
values, denoted by λ1 ≥ · · · ≥ λ2n, and an orthonormal basis of 2n eigenvectors,
denoted by v(1), . . . , v(2n).

Given a 2-CNF formula I over X , let G = (V, E) be a directed graph con-
structed from I in the following manner: let V+

def= X , V−
def= X, and

V
def= V+ ∪ V−, E

def= {(−i, j), (−j, i) : (i ∨ j) ∈ I}.

Let t be an assignment to V . A directed edge (j, i) for i, j ∈ V is called a warning
edge at i under t iff j is assigned 1 by t.

Now, we present our algorithm spect-max2sat for MAX2SAT in Figure 1.
Here, observing that the expected number of occurrences of � is pn + rn for any

spect-max2sat(I)

step 0 Form the incidence matrix A from I . If there is a row having at least
2(pn + rn) 1s, then output failure.

step 1 Calculate the last eigenvector v(2n) of A.

step 2 Obtain an assignment t according to v
def
= v(2n) as follows: for 1 ≤ i ≤

n, t(i) = 1 if vi ≥ 0, and t(i) = 0 otherwise.
step 3 Construct the directed graph G = (V, E) from I , and output the better

assignment t and t by repeating the following procedure log n rounds:

for each variable i ∈ X do
Count the numbers W (i) and W (−i) of warning edges
at i and −i respectively under t.

If W (i) ≥ W (−i), then update t to t(i) = 1,
otherwise to t(i) = 0.

end-for-each

Fig. 1. Algorithm

literal � of I ∈ Gn,p,r, we note the following proposition which is easily obtained
by Chernoff bounds 2.

Proposition 1. For any sufficiently large cp, cr, the probability that algorithm
spect-max2sat(I) outputs failure for I ∈ Gn,p,r is o(1).

In the following two subsections, we analyze the average-case performance of
spect-max2sat(I) for I ∈ Gn,p,r, and show that it outputs φ or φ whp, therefore
the optimal assignment of I whp.
2 We can do it because we consider a somewhat dense instances, that is, the expected

number of occurrences of any literal is Ω(log n) while it is only a constant in [12].
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3.1 Spectral Arguments

In this subsection, we show the following theorem in the similar way to [12].

Theorem 3. For any suitably small δ > 0, and for any sufficiently large cp and
cr (depending on δ) such that cp − cr is also sufficiently large (depending on δ),
the assignment obtained from step 2 of spect-max2sat disagrees with φ on at
most δn variables whp.

We first define some key values, which depend on cp and cr. (See [12] for the
intuition for these values.) Consider the following 2-dimensional system:

(
cr cp

cp cr

) (
β
γ

)

= α

(
β
γ

)

By an elementary calculation, we obtain its eigenvalues α = cr ± cp. For those
two values, let

α+
def= cp + cr > 0 and α−

def= −(cp − cr) < 0.

Furthermore, two unit eigenvectors corresponding to α+ and α− are
(

β+

γ+

)
def=

(
1/

√
2

1/
√

2

)

and
(

β−
γ−

)
def=

(
1/

√
2

−1/
√

2

)

,

respectively. Note that β− and γ− have opposite signs. Let vT and vF be 2n-
dimensional vectors indexed by literals 1, . . . , n, −1, . . . , −n in this order, and
vT (�) = 1 if literal � is assigned 1 by φ, and vT (�) = 0 otherwise, and let
vF (�) = 1 − vT (�).

The following lemma holds, which is proved in the similar way to [12], which
is also similar to [1].

Lemma 1. Given I ∈ Gn,p,r. Let A be the incidence matrix for I, and λ1 ≥
· · · ≥ λ2n be the eigenvalues of A. Then, for any suitably small ε > 0, and for any
sufficiently large cp and cr (depending on ε) such that cp − cr is also sufficiently
large (depending on ε), the following holds whp:

(1) λ1 ≥ ((1 − ε)α+) log n,
(2) λ2n ≤ (1 − 2ε)α− log n, and
(3) |λi| ≤ 4

√
cp log n for 2 ≤ i ≤ 2n − 1.

Proof. Throughout this proof, we fix ε > 0 to be a suitably small constant. We
make use of Rayleigh quotient principle that

(∗) : λi = min
L

max
v∈L, v �=0

vTAv

vTv
= max

L′
min

v∈L′, v �=0
vTAv

vTv
,

where L (resp. L′) ranges over all (2n − i + 1)-dimensional (resp. i-dimensional)
subspaces of R2n.

Consider the following partition of A: A[i, j] for i, j ∈ {T, F}, where A[T, T ]
is a submatrix of A for literals assigned 1 by φ, and the other ones are similarly
defined. We estimate the number of 1s of A[i, j], that is, vT

i Avj , which is easily
proved by Chernoff bounds.
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Proposition 2. For any sufficiently large cp, cr, the following holds whp: for
i, j ∈ {T, F},

(1 − ε)crn log n ≤ vT
i Avj ≤ (1 + ε)crn log n for i = j, and

(1 − ε)cpn logn ≤ vT
i Avj ≤ (1 + ε)cpn logn for i �= j.

For proving part (1), we apply v+
def= β+vT + γ+vF to the minmax version of

(∗), and obtain the following whp:

vT
+Av+ = β2

+vT
T AvT + 2β+γ+vT

T AvF + γ2
+vT

F AvF

≥ ((1 − ε)n log n)
(
β2

+cr + 2β+γ+cp + γ2
+cr

)
(∵ β+, γ+ ≥ 0)

= ((1 − ε)n log n)
(

(
β+ γ+

)
(

cr cp

cp cr

) (
β+

γ+

))

= ((1 − ε)α+)n log n.

Since vT
+v+ = n, we conclude that λ1 ≥ ((1 − ε)α+) log n whp. (We also have

that λ1 ≤ ((1 + ε)α+) log n whp.)
For proving part (2), we apply L = {tv− : t ∈ R}, to the minmax version of

(∗), where v−
def= β−vT + γ−vF , and obtain the following whp:

(tv−)T A(tv−) ≤ (t2n)(1 − 2ε)α− log n.

(See Appendix for a derivation of the above.) Since (tv−)T(tv−) = t2n, we
conclude that λ2n ≤ (1 − 2ε)α− log n whp.

For proving (3), we need the following lemma [1]: Fix z > 0, say, z = 1/2.
Let S denote the set of all vectors of length n, every coordinate of which is an
integral multiple of z/

√
n, where the sum of coordinates is zero and l2-norm is

at most one. Let B be a random n-by-n 0/1-matrix, where each entry of B,
randomly and independently, is one with probability d/n. Then:

Lemma 2. [Alon and Kahale [1]] If d exceeds a sufficiently large absolute con-
stant, then whp, |xTBy| = O(

√
d) for every x, y ∈ S, for which xi = 0 if the

i-th row of B has more than 5d non-zero entries, and for which yi = 0 if the i-th
column of B has more than 5d non-zero entries.

We observe that the same statement above holds for a random n-by-n symmetric
0/1-matrix B, where each (a, b)-th entry for 1 ≤ a ≤ b ≤ n, randomly and inde-
pendently, is one with probability d/n. Then, we have the following proposition.
(See Appendix for a proof.)

Proposition 3. For any unit vector v with vTvT = 0 and vTvF = 0, we have
that |vTAv| ≤ 4

√
cp log n.

We need the following proposition, which is proved in the same way as [12]. (See
Appendix for a proof.)
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Proposition 4. For any sufficiently large cp, cr such that cp − cr is also suffi-
ciently large, the following holds whp:

‖(A − (α+ log n)I)v+‖2 ≤ (3
√

εα+ log n)2‖v+‖2, and
‖(A − (α− log n)I)v−‖2 ≤ (3

√
εα− log n)2‖v−‖2

Now, we are ready to prove part (3): for λ2 we apply L = {v : vTv+ = 0} to
the minmax version of (∗). Note that we can express v ∈ L as tv− + w for some
t ∈ R such that wTv+ = 0 and wTv− = 0. Thus, we have the following whp:

vTAv = (tv−)TA(tv−) + 2twTAv− + wTAw

= (tv−)TA(tv−) + 2twT(A − (α+ log n)I)v− + wTAw

≤ ((1 − 2ε)α− log n)t2‖v−‖2

+2t‖w‖‖(A − (α+ log n)I)v−‖ + 4
√

cp log n‖w‖2

≤ ((1 − 2ε)α− log n)t2‖v−‖2

+2t‖w‖
(
3
√

εα+ log n
)
‖v−‖ + 4

√
cp log n‖w‖2

≤ ((1 − 2ε)α− log n)‖v‖2 +
(
6
√

εα+ log n
)
‖v‖2 + 4

√
cp log n‖v‖2

≤ 4
√

cp log n‖v‖2, (∵ (1 − 2ε)α− + 6
√

εα+ < 0)

which comes from ‖w‖ ≤ ‖v‖ and t‖v−‖ ≤ ‖v‖. Thus, we conclude that λ2 ≤
4
√

cp log n whp.
For λ2n−1, applying L′ = {v : vTv− = 0} to the maxmin-version of (∗), we

obtain in the same way that λ2n−1 ≥ −4
√

cp log n whp. �

Using this lemma, we show the following lemma, from which we can obtain
Theorem 3 as its corollary.

Lemma 3. Let λ2n and v(2n) be as defined in the beginning of section 3. Let
v− = β−vT + γ−vF . Then, for any suitably small ε > 0, and for any sufficiently
large cp and cr (depending on ε) such that cp −cr is sufficiently large (depending
on ε), the sign of v(2n) or −v(2n) disagrees with v− on at most 72εn coordinates
whp.

Proof. We express v− as a linear combination of orthonormal eigenvectors of A:
that is, v− =

∑2n
i=1 civ

(i). Then, we have that

‖((α− log n)I − A)v−‖2 =

∥
∥
∥
∥
∥

2n∑

i=1

(α− log n − λi)civ
(i)

∥
∥
∥
∥
∥

2

=
2n∑

i=1

(α− log n − λi)2c2
i ≥

2n−1∑

i=1

(α− log n − λi)2c2
i ≥ ((α−/2) logn)2

2n−1∑

i=1

c2
i ,

where the last inequality comes from the previous lemma. On the other hand,
from Proposition 4, we have the following whp:

‖((α− log n)I − A)v−‖2 ≤ 9ε(α− log n)2n



A Spectral Method for MAX2SAT in the Planted Solution Model 119

Thus, we have the following whp:

2n−1∑

i=1

c2
i ≤ 9ε(α− log n)2n

((α−/2) logn)2
= 36εn.

Recall that each coordinate of v− has 1/
√

2 in absolute value. From this fact and
∑2n−1

i=1 c2
i ≤ 36εn, it is not difficult to derive this lemma: Let ṽ

def=
∑2n−1

i=1 civ
(i),

and let S be a set of coordinates of v(2n) on which the sign of v(2n) disagrees
with v−. Since c2nv(2n) = v− − ṽ, each coordinate i ∈ S of ṽ must exceed 1/

√
2

in absolute value. Thus, we have |S| ≤ 72εn from the following:

36εn ≥
2n−1∑

i=1

c2
i =

∥
∥
∥
∥
∥

2n−1∑

i=1

civ
(i)

∥
∥
∥
∥
∥

2

= ‖ṽ‖2 ≥ 1
2
|S|.

�
3.2 Counting Arguments

In this subsection, we show that the assignment after applying log n times the
procedure in step 3 is identical to φ whp, which together with Theorem 3 proves
Theorem 1.

Let G = (V, E), V+, and V− be as defined in the beginning of this section.
Let S

(k)
+ ⊂ V+ (resp. S

(k)
− ⊂ V−) be a subset of positive literals (resp. negative

literals) which are incorrectly assigned after the kth (0 ≤ k ≤ log n) round.
(Note that i ∈ S

(k)
+ iff −i ∈ S

(k)
− for any i and k.) We will show the following

lemma, from which we can easily conclude that the assignment after applying
log n times the procedure in step 3 is identical to φ whp.

Lemma 4. Let 0 < δ � 1 be a suitably small constant. For any sufficiently
large cp and cr (depending on δ) such that cp − cr is also sufficiently large
(depending on δ), and for every round k (1 ≤ k ≤ log n), if |S(k−1)

+ | ≤ δn, then
|S(k)

+ | ≤ |S(k−1)
+ |/2 whp.

We will show this lemma by assuming w.l.o.g. that φ = 1n. We here call any
directed edge (u, v) an implied edge at v. We first note the following proposition
which is obtained by Chernoff bounds.

Proposition 5. For sufficiently large cp, cr, we have the following whp: for
every vertex v ∈ V+ (resp. v′ ∈ V−), (1) the number of implied edges within
V+ at v (resp. within V− at v′) is within (1 ± 0.1)cp log n, and (2) the number
of implied edges (u, v) at v (resp. (u′, v′) at v′) with u ∈ V− (resp. u′ ∈ V+) is
within (1 ± 0.1)cr log n.

We here let d
def= cp log n. Consider a kth (1 ≤ k ≤ log n) round of step 3.

We claim that for every vertex i ∈ V+, if i ∈ S
(k)
+ , then at least one of the

following two surely occurs: (1) the number of implied edges (j, i) at i with
j ∈ S

(k−1)
+ is at least d/3, and (2) the number of implied edges (j, −i) at −i with
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j ∈ S
(k−1)
− is at least d/3. This is due to the following observation: consider the

contraposition of the claim, i.e., the numbers of such implied edges at i and −i
respectively are both less than d/3. Then, from the above proposition, we have
that W (i) ≥ 0.9d − d/3 and W (−i) ≤ d/3 + 1.1cr log n whp, therefore

W (i) − W (−i) ≥ 0.9d − 2d/3 − 1.1cr log n ≥ 0.1d − 1.1cr log n

= (0.1cp − 1.1cr) log n,

i.e., W (i) ≥ W (−i) whp if cp − cr is sufficiently large. This means i �∈ S
(k)
+ .

Using this claim as well as the following lemma, we prove Lemma 4, regarding
U , W as S

(k−1)
+ , S

(k)
+ respectively.

Lemma 5. We have the following whp: there are no two subsets U and W of
V+ such that |U | ≤ δn, |W | = |U |/2, and every vertex w of W has at least d/3
implied edges (u, w) with u ∈ U .

Proof. Fix arbitrarily U and W such that |U | ≤ δn and |W | = |U |/2. Observe
that if every vertex w of W has at least d/3 implied edges (u, w) with u ∈ U ,
then |(U × W ) ∩ E| ≥ d|W |/3. Note that all edges of U × W are mutually
independent. Thus, the probability that such two subsets exist is at most

δn/2∑

i=1

(
n

i

)(
n

2i

)(
2i2

di/3

) (
d

n

)di/3

= O

(
1

nΩ(d)

)

,

where the left-hand-side of the above is obtained from the identical calculation
to [1]. �

4 Conclusion

We have given an algorithm using the spectral method and the log n-round
message-passing procedure, and shown that it solves, whp, MAX2SAT on Gn,p,r

for somewhat dense formulas, i.e., the expected number of clauses is Ω(n log n).
An obvious future work is to analyze it for formulas with linear density. In [16],
they also proposed another distribution that such sparse formulas are generated.
The procedure defining this distribution is rather different from that of Gn,p,r:
it generates clauses with a certain dependency. Therefore, it is not obvious that
the same algorithm can be applied to such a distribution, in particular, the part
of the spectral method.
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natorial approximation algorithms yield efficient algorithms for random 2k-SAT.
Theoretical Computer Science 329, 1–45 (2004)

7. Coja-Oghlan, A., Krivelevich, M., Vilenchik, D.: Why almost all k-colorable graphs
are easy. In: Proceedings of 24th International Symp. on Theoretical Aspects of
Computer Science (STACS 2007), pp. 121–132 (2007)

8. Condon, A., Karp, R.M.: Algorithms for graph partitioning on the planted partition
model. Random Struct. Algorithms 18(2), 116–140 (2001)

9. H̊astad, J.: Some optimal inapproximability results. J. of the ACM 48, 798–859
(2001)

10. Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of message passing al-
gorithms for some satisfiability problems. In: Proceedings of APPROX-RANDOM
2006, pp. 339–350 (2006)

11. Feige, U., Vilenchik, D.: A local search algorithm for 3SAT. Technical report of the
Weizmann Institute of science (2004)

12. Flaxman, A.: A spectral technique for random satisfiable 3CNF formulas. In: Pro-
ceedings of 14th ACM-SIAM Symp. on Discrete Algorithms, SODA 20 03, pp.
357–363 (2003), See also http://www.math.cmu.edu./adf/research/spectralSat

13. Krivelevich, M., Vilenchik, D.: Solving Random Satisfiable 3CNF Formulas in Ex-
pected Polynomial Time. In: Proceedings of 17th ACM-SIAM Symp. on Discrete
Algorithms (SODA 2006), pp. 454–463 (2006)

14. McSherry, F.: Spectral Partitioning of Random Graphs. In: Proceedings of 42nd
Annual IEEE Symp. on Foundations of Computer Science (FOCS 2001), pp. 529–
523 (2001)

15. Scott, A.D., Sorkin, G.B.: Faster Algorithms for MAX CUT and MAX CSP, with
Polynomial Expected Time for Sparse Instances. In: Proceedings of APPROX-
RANDOM 2003, pp. 382–395 (2003)

16. Watanabe, O., Yamamoto, M.: Average-case Analysis for the MAX-2SAT Problem.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 277–282. Springer,
Heidelberg (2006)

Appendix

A derivation for part (2)

The derivation for part (2) is as follows:

(tv−)T A(tv−) = t2β2
−vT

T AvT + 2t2β−γ−vT
T AvF + t2γ2

−vT
F AvF

≤
(
t2n logn

) (
(1 + ε)β2

−cr + (1 − ε)2β−γ−cp + (1 + ε)γ2
−cr

)

(∵ β− > 0 and γ− < 0)

http://www.math.cmu.edu./adf/research/spectralSat
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=
(
t2n logn

)
(1 + ε)

(
β2
−cr + 2β−γ−cp + γ2

−cr

)

−
(
t2n log n

)
(2ε)(2β−γ−cp)

=
(
t2n logn

)
(

(1 + ε)
(

(
β− γ−

)
(

cr cp

cp cr

) (
β−
γ−

))

+ 2εcp

)

=
(
t2n logn

)
((1 + ε)α− + 2εcp)

≤ (t2n)(1 − 2ε)α− log n,

where the last inequality comes from the fact that cp − cr is sufficiently large.

A proof of Proposition 3

We bound it by bounding each |vT
i Avj| for i, j ∈ {T, F} since

|vTAv| ≤
∑

i,j∈{T,F}

∣
∣vT

i Avj

∣
∣ .

From Lemma 2, we can bound
∣
∣vT

i Avj

∣
∣ ≤

√
cp log n for i �= j. From the remark

just below Lemma 2, we can similarly bound
∣
∣vT

i Avj

∣
∣ ≤

√
cr log n for i = j.

Thus, we can bound |vTAv| ≤ 4
√

cp log n.

A proof of Proposition 4

We first give a proof to the first inequality. We have that

‖(A − (α+ log n)I)v+‖2 = vT
+(A − (α+ log n)I)T(A − (α+ log n)I)v+

= vT
+A2v+ − 2(α+ log n)vT

+Av+ + (α+ log n)2vT
+v+.

We bound each term of the last formula above. For bounding the first term, we
express v+ as a linear combination of orthonormal eigenvectors of A, that is,
v+ =

∑2n
i=1 civ

(i). Note that we have that λ1 ≤ (1 + ε)α+ log n whp. Thus, we
have the following whp:

vT
+A2v+ = ‖Av+‖2 =

∥
∥
∥c1Av(1) + · · · + c2nAv(2n)

∥
∥
∥

2

= λ2
1

∥
∥
∥c1v

(1)
∥
∥
∥

2

+ · · · + λ2
2n

∥
∥
∥c2nv(2n)

∥
∥
∥

2

≤ λ2
1

(
‖c1v

(1)‖2 + · · · + ‖c2nv(2n)‖2
)

≤ ((1 + ε)α+ log n)2‖v+‖2.

Note that we have the following whp:

vT
+Av+ ≥ ((1 − ε)α+)n log n

= (1 − ε)(α+ log n)‖v+‖2.
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Therefore, we have the following whp:

‖(A − (α+ log n)I)v+‖2 ≤ ((1 + ε)α+ log n)2‖v+‖2

−2(α+ log n)(1 − ε)(α+ log n)‖v+‖2

+(α+ log n)2‖v+‖2

=
(
(1 + ε)2 − 2(1 − ε) + 1

)
(α+ log n)2‖v+‖2

=
(
4ε + ε2

)
(α+ log n)2‖v+‖2

≤ (3
√

εα+ log n)2‖v+‖2.

We next give a proof to the second inequality. In the same way as above, we
have that

‖(A − (α− log n)I)v−‖2 = vT
−A2v− − 2(α− log n)vT

−Av− + (α− log n)2vT
−v−.

We bound each term of the right-hand-side of the above. For bounding the first
term, in the same way, we have the following whp:

vT
−A2v− ≤ ((1 + ε)α+ log n)2‖v−‖2.

For bounding the above with respect to α−, observe that for any ε > 0 and for
any sufficiently large cp, cr such that cp − cr is also sufficiently large, |α+| ≤
(1 + ε)|α−|. Thus, we can bound as

vT
−A2v− ≤ ((1 + ε)2α− log n)2‖v−‖2.

Furthermore, we have the following whp:

vT
−Av− ≤ (1 − 2ε)α−n log n

= (1 − 2ε)(α− log n)‖v−‖2.

Therefore, we have the following whp:

‖(A − (α− log n)I)v−‖2 ≤ ((1 + ε)2α− log n)2‖v−‖2

−2(α− log n)(1 − 2ε)(α− log n)‖v−‖2

+(α− log n)2‖v−‖2

=
(
(1 + ε)4 − 2(1 − 2ε) + 1

)
(α− log n)2‖v−‖2

≤ (3
√

εα− log n)2‖v−‖2.
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Abstract. Valiant introduced some 25 years ago an algebraic model of
computation along with the complexity classes VP and VNP, which can
be viewed as analogues of the classical classes P and NP. Prominent
examples of difficult (that is, VNP-complete) problems in this model
includes the permanent and hamiltonian polynomials. In this paper we
investigate the expressive power of easy special cases of these polyno-
mials. We show that the permanent and hamiltonian polynomials for
matrices of bounded treewidth both are equivalent to arithmetic formu-
las. Also, arithmetic weakly skew circuits are shown to be equivalent to
the sum of weights of perfect matchings of planar graphs.

1 Introduction

Our focus in this paper is on easy special cases of otherwise difficult to evaluate
polynomials, and their connection to various classes of arithmetic circuits. In
particular we consider the permanent and hamiltonian polynomials for matri-
ces of bounded treewidth, and sum of weights of perfect matchings for planar
graphs. It is a widely believed conjecture that the permanent is hard to eval-
uate. Indeed, in Valiant’s framework [15,16] the permanent is complete for the
class VNP. This is an algebraic analogue of his �P-completeness result for the
permanent [14]. For a book-length treatment of Valiant’s algebraic complexity
theory one may consult [4]. The same results (�P-completeness in the boolean
framework, and VNP-completeness in the algebraic framework) also apply to
the hamiltonian polynomial. The sum of weights of perfect matchings in an
(undirected) graph G is yet another example of a presumably hard to compute
polynomial since it reduces to the permanent when G is bipartite. However, all
three polynomials are known to be easy to evaluate in special cases. In particular,
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the permanent and hamiltonian polynomials can be evaluated in a polynomial
number of arithmetic operations for matrices of bounded treewidth [6]. An ear-
lier result of this flavour is Kasteleyn’s theorem [7] which states that the sum
of weights of perfect matchings of a planar graph can be computed in a polyno-
mial number of arithmetic operations. One can try to turn these three efficient
algorithms into general-purpose evaluation algorithms by means of reductions
(this is the approach followed by Valiant in [17], where he exhibits polynomial
time algorithms for several problems which previously only had exponential time
algorithms, by means of holographic reductions to perfect matchings of planar
graphs). For instance, in order to evaluate a polynomial P one can try to con-
struct a matrix of bounded treewidth A such that: Entries of A are constants or
variables of P , and the permanent of A is equal to P .

The same approach can be tried for the hamiltonian and the sum of weights of
perfect matchings in a planar graph. The goal of this paper is to assess the power
of these polynomial evaluation methods. It turns out that the three methods are
all universal - that is, every polynomial can be expressed as the sum of weights
of perfect matchings in a planar graph, and as a permanent and hamiltonian of
matrices of bounded treewidth. From a complexity-theoretic point of view, these
methods are no longer equivalent. Our main findings are that:
– The permanents and hamiltonians of matrices of polynomial size and bound-

ed treewidth have the same expressive power, namely, the power of polyno-
mial size arithmetic formulas. This is established in Theorem 1.

– The sum of weights of perfect matchings in polynomial size planar graphs
has at least the same power as the above two representations, and in fact
it is more powerful under a widely believed conjecture. Indeed, this repre-
sentation has the same power as polynomial size (weakly) skew arithmetic
circuits. This is established in Theorem 7. We recall that (weakly) skew arith-
metic circuits capture the complexity of computing the determinant [13]. It
is widely believed that the determinant cannot be expressed by polynomial
size arithmetic formulas.

Our three methods therefore capture (presumably proper) subsets of the class
VP of easy to compute polynomial families. By contrast, if we drop the bounded
treewidth or planarity assumptions, the class VNP is captured in all three cases.

Various notions of graph “width” have been defined in the litterature be-
sides treewidth (e.g. pathwidth, cliquewidth, rankwidth). They should be worth
studying from the point of view of their expressive power. Also, Barvinok [1]
has shown that if the underlying matrix has bounded rank, both the permanent
and the hamiltonian polynomials can be evaluated in a polynomial number of
arithmetic operations.

2 Definitions

2.1 Arithmetic Circuits

Definition 1. An arithmetic circuit is a finite, acyclic, directed graph. Vertices
have indegree 0 or 2, where those with indegree 0 are referred to as inputs. A



126 U. Flarup, P. Koiran, and L. Lyaudet

single vertex must have outdegree 0, and is referred to as output. Each vertex
of indegree 2 must be labeled by either + or ×, thus representing computation.
Vertices are commonly referred to as gates and edges as arrows.

By interpreting the input gates either as constants or variables it is easy to prove
that each arithmetic circuit naturally represents a polynomial.

In this paper various subclasses of arithmetic circuits will be considered: For
weakly skew circuits we have the restriction that for every multiplication gate, at
least one of the incoming arrows is from a subcircuit whose only connection to
the rest of the circuit is through this incoming arrow. For skew circuits we have
the restriction that for every multiplication gate, at least one of incoming arrows
is from an input gate. For formulas all gates (except output) have outdegree 1.
Thus, reuse of partial results is not allowed. For a detailed description of various
subclasses of arithmetic circuits, along with examples, we refer to [12].

Definition 2. The size of a circuit is the total number of gates in the circuit.
The depth of a circuit is the length of the longest path from an input gate to the
output gate.

A family (fn) belongs to the complexity class VP if fn can be computed by a
circuit Cn of size polynomial in n, and if moreover the degree of fn is bounded
by a polynomial function of n.

2.2 Treewidth

Treewidth for undirected graphs is most commonly defined as follows:

Definition 3. Let G = 〈V, E〉 be a graph. A k-tree-decomposition of G is a tree
T = 〈VT , ET 〉 such that:

(i) For each t ∈ VT there is a subset Xt ⊆ V of size at most k + 1.
(ii) For each edge (u, v) ∈ E there is a t ∈ VT such that {u, v} ⊆ Xt.
(iii) For each vertex v ∈ V the set {t ∈ VT |v ∈ Xt} forms a subtree of T .

The treewidth of G is the smallest k s.t. there exists a k-tree-decomposition for G.

An equivalent definition is in terms of graph grammars (HR algebras [5]):

Definition 4. A graph G has a k-tree-decomposition iff there exist a set of
source labels of cardinality k + 1 such that G can be constructed using a finite
number of the following operations:

(i) vera, loopa, edgeab (basic constructs: create a single vertex with label a, a
single vertex with label a and a looping edge, two vertices labeled a and b
connected by an edge)

(ii) rena↔b(G) (rename all labels a as labels b and all labels b as labels a)
(iii) forga(G) (forget all labels a)
(iv) G1 // G2 (composition of graphs: two vertices with same label are identified

as one vertex)
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The treewidth of a directed graph is defined as the treewidth of the underlying
undirected graph. The treewidth of an (n × n) matrix M = (mi,j) is defined as
the treewidth of the directed graph GM = 〈VM , EM , w〉 where VM = {1, . . . , n},
(i, j) ∈ EM iff mi,j �= 0, and w(i, j) = mi,j .

2.3 Permanent and Hamiltonian Polynomials

We take a graph theoretic approach to deal with permanent and hamiltonian
polynomials. The reason for this being that a natural way to define the treewidth
of a matrix, is by the treewidth of the underlying graph, see also e.g. [10].

Definition 5. A cycle cover of a directed graph is a subset of the edges, such
that these edges form disjoint, directed cycles (loops are allowed). Furthermore,
each vertex in the graph must be in one (and only one) of these cycles. The
weight of a cycle cover is the product of weights of all participating edges.

Definition 6. The permanent of an (n × n) matrix M = (mi,j) is the sum of
weights of all cycle covers of GM .

The hamiltonian polynomial ham(M) is defined similarly, except that we only
sum over cycle covers consisting of a single cycle (hence the name).

3 Matrices of Bounded Treewidth

In this section we work with directed graphs. All paths and cycles are assumed
to be directed, even if this word is omitted.

In [6] it is shown that the permanent and hamiltonian polynomials are in VP
for matrices of bounded treewidth. Here we show that both the permanent and
hamiltonian polynomials for matrices of bounded treewidth are equivalent to
arithmetic formulas. This is an improvement on the result of [6] since the set
of polynomial families representable by polynomial size arithmetic formulas is a
(probably strict) subset of VP.

Theorem 1. Let (fn) be a family of polynomials with coefficients in a field K.
The three following properties are equivalent:

– (fn) can be represented by a family of polynomial size arithmetic formulas.
– There exists a family (Mn) of poly. size, bounded treewidth matrices such that

entries of Mn are constants from K or variables of fn, and fn = per(Mn).
– There exists a family (Mn) of poly. size, bounded treewidth matrices such that

entries of Mn are constants from K or variables of fn, and fn = ham(Mn).

Theorem 1 follows immediately from Theorems 2, 3, 5 and 6.

Theorem 2. Every arithmetic formula can be expressed as the permanent of a
matrix of treewidth at most 2 and size at most (n + 1) × (n + 1) where n is the
size of the formula. All entries in the matrix are either 0, 1, or variables.
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Proof. The first step is to construct a directed graph that is a special case of
a series-parallel (SP) graph, in which there is a connection between weights of
directed paths and the value computed by the formula. The overall idea behind
the construction is quite standard, see e.g. [4] and [12]. SP graphs in general
can between any two adjacent vertices have multiple directed edges. But we
construct an SP graph in which there is at most one directed edge from any
vertex u to any vertex v. This property will be needed in the second step, in
which a connection between cycle covers and the permanent of a given matrix
will be established.

SP graphs have distinguished source and sink vertices, denoted by s and t. By
SW (G) we denote the sum of weights of all directed paths from s to t, where
the weight of a path is the product of weights of participating edges.

Let ϕ be a formula of size e. For the first step of the proof we will by induction
over e construct a weighted, directed SP graph G such that val(ϕ) = SW (G).
For the base case ϕ = w we construct vertices s and t and connect them by a
directed edge from s to t with weight w.

Assume ϕ = ϕ1 + ϕ2 and let Gi be the graph associated with ϕi by the
induction hypothesis. Introduce one new vertex s and let G be the union of
the three graphs 〈{s}〉, G1 and G2 in which we identify t1 with t2 and denote
it t, add an edge of weight 1 from s to s1, and add an edge of weight 1 from
s to s2. By induction hypothesis the resulting graph G satisfies SW (G) = 1 ·
SW (G1) + 1 · SW (G2) = val(ϕ1) + val(ϕ2). Between any two vertices u and v
there is at most one directed edge from u to v. We introduced one new vertex,
but since t1 was identified with t2 the number of vertices used equals |V1|+|V2| ≤
size(ϕ1) + 1 + size(ϕ2) + 1 = size(ϕ) + 1.

Assume ϕ = ϕ1 ∗ϕ2. We construct G by making the disjoint union of G1 and
G2 in which we identify t1 with s2, identify s1 as s in G and identify t2 as t in
G. For every directed path from s1 to t1 in G1 and for every directed path from
s2 to t2 in G2 we can find a directed path from s to t in G of weight equal to the
product of the weights of the paths in G1 and G2, and since all (s, t) paths in
G are of this type we get SW (G) = SW (G1) · SW (G2). The number of vertices
used equals |V1| + |V2| − 1 ≤ size(ϕ1) + size(ϕ2) + 1 < size(ϕ) + 1.

For the second step of the proof we need to construct a graph G′ such that
there is a relation between cycle covers in G′ and directed paths from s to t in
G. We construct G′ by adding an edge of weight 1 from t back to s, and loops
of weight 1 at all vertices different from s and t. Now, for every (s, t) path in G
we can find a cycle in G′ visiting the corresponding nodes. For nodes in G′ not
in this cycle, we include them in a cycle cover by the loops of weight 1. Because
there is at most one directed edge from any vertex u to any vertex v in G′ we
can find a matrix M of size at most (n + 1) × (n + 1) such that GM = G′ and
per(M) = val(ϕ). It can be shown that G′ can be constructed using an HR
algebra with only 3 source labels. 	


Theorem 3. Every arithmetic formula of size n can be expressed as the hamil-
tonian of a matrix of treewidth at most 6 and size at most (2n + 1) × (2n + 1).
All entries in the matrix are either 0, 1, or variables of the formula.
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Proof. The first step is to produce the graph G as shown in Theorem 2. The next
step is to show that the proof of universality for the hamiltonian polynomial in
[11] can be done with treewidth at most 6. Their construction for universality
of the hamiltonian polynomial introduces |VG| − 1 new vertices to G in order to
produce G′, along with appropriate directed edges (all of weight 1). The proof
is sketched in Figure 1.

Fig. 1. Universality of the hamiltonian polynomial

The additional vertices ti and edges permit to visit any subset of vertices of G
with a directed path of weight 1 from t to s using all ti’s. Hence, any path from
s to t in G can be followed by a path from t to s to obtain a hamiltonian cycle
of same weight. If one just need to show universality, then it is not important
exactly which one of the vertices ti that has an edge to a given vertex among si.
But in order to show bounded treewidth one carefully need to take into account
which one of the vertices of ti that has an edge to a particular si vertex. We show
such a construction with bounded treewidth, by giving an HR algebra which can
express a graph similar to the one in Figure 1 using 7 source labels.

Fig. 2. Series composition (simulating multiplication)

Series composition is done using the following operations (also see Figure 2):

forge[forgf [forgg[rend↔f (renb↔e(G1)) //

renc↔g(rena↔e(G2)) // edgeef // edgeeg // edgefg]]]

Labels a, b, c and d in Figures 2 and 3 plays the roles of s, t, t1 and tn respec-
tively in Figure 1. The above construction does not take into account, that G1

and/or G2 are graphs generated from the base case. For base cases vertices c and
d are replaced by a single vertex. However, it is clear that the above construction
can be modified to work for these simpler cases as well.

For parallel composition an additional vertex was introduced. It can be done
using the following operations (also see Figure 3):
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Fig. 3. Parallel composition (simulating addition)

forgf [rena↔e(renc↔g(
forga[forgc[edgeag // edgecg // rend↔f (edgeae // edgeac // G1)]] //

forga[forgc[edgeaf // edgecf // edgeae // edgeac // G2]]
))]

The final step in the construction, after all series and parallel composition
have been done, is to connect vertices a and c and connect vertices b and d. 	

By Definition 6, computing the permanent of a matrix M amounts to computing
the sum of the weights of all cycle covers of GM . In our algorithm we need to
consider partial covers, which are generalizations of cycle covers.

Definition 7. A partial cover of a directed graph is a union of paths and cycles
such that every vertex of the graph belongs to at most one path (and to none
of the cycles), or to at most one cycle (and to none of the paths). The weight
of a partial cover is the product of the weights of all participating edges. More
generally, for any set S of edges the weight w(S) of S is defined as the product
of the weights of the elements of S.

In contrast to cycle covers, for a partial cover there is no requirement that all
vertices be covered.

The following theorem from [2] is a standard tool in the design of parallel
algorithms for graphs of bounded treewidth (see also [3] and [8]).

Theorem 4. Let G = 〈V, E〉 be a graph of treewidth k with n vertices. Then
there exists a tree-decomposition 〈T, (Xt)t∈VT 〉 of G of width 3k + 2 such that
T = 〈VT , ET 〉 is a binary tree of depth at most 2�log 5

4
(2n)�.

Theorem 5. The permanent of a n × n matrix M of bounded treewidth k can
be expressed as a formula of size O(nO(1)).

Proof. We show how to construct a circuit of depth O(log(n)), which can then
be expressed as a formula of size O(nO(1)). Consider the graph G = GM and
apply Theorem 4 to obtain a balanced, binary tree-decomposition T of bounded
width k′. For each node t of T , we denote by Tt the subtree of T rooted at t,
and we denote by X(Tt) the set of vertices of G which belong to Xu for at least
one of the nodes u of Tt. We denote by Gt the subgraph of G induced by the
subset of vertices X(Tt).
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Consider a partial cover C of Gt. Any given edge (u, v) ∈ X2
t is either used

or unused by C. Likewise, any given vertex of Xt has indegree 0 or 1 in C, and
outdegree 0 or 1. We denote by λt = It(C) the list of all these data for every
edge (u, v) ∈ X2

t and every element of Xt. By abuse of language, we will say
that an edge in X2

t is used by λt if it is used by one partial cover satisfying
It(C) = λt (or equivalently, by all partial cover satisfying It(C) = λt).

We will compute for each possible list λt a weight w(λt), defined as the sum of
the weights of all partial covers C of Gt satisfying the following three properties:

(i) the two endpoints of all paths of C belong to Xt;
(ii) all uncovered vertices belong to Xt;
(iii) It(C) = λt.

Note that the number of weights to be computed at each node of T is bounded
by a constant (which depends on k′). When t is the root of T we can easily
compute the permanent of M from the weights w(λt): it is equal to the sums of
the w(λt) over all λt which assign indegree 1 and outdegree 1 to all vertices of
Xt. Also, when t is a leaf of T we can compute the weights in a constant number
of arithmetic operations since Gt has at most k′ vertices in this case. It therefore
remains to explain how to compute the weights w(λt) when t is not a leaf.

Our algorithm for this proceeds in a bottom-up manner: we will compute the
weights for t from the weights already computed for its left child (denoted l) and
its right child (denoted r). The idea is that we can obtain a partial cover of Gt

by taking the union of a partial cover of Gl and of a partial cover of Gr, and
adding some additional edges. Conversely, a partial cover of Gt induces a partial
cover of Gl and a partial cover of Gr. In order to avoid counting many times the
same partial cover, we must define the considered partial covers of Gl and Gr

to ensure that the partial cover of Gt induces a unique partial cover of Gl and
a unique partial cover of Gr. We will say that (λl, λr) is compatible with λt if
and only if the following holds:

- no edge in X2
t is used in λl or λr;

- for every vertex x ∈ Xt at most one of λt, λl, λr assigns indegree 1 to x;
- for every vertex x ∈ Xt at most one of λt, λl, λr assigns outdegree 1 to x;
- every vertex x ∈ Xl\Xt has indegree 1 and outdegree 1 in λl;
- every vertex x ∈ Xr\Xt has indegree 1 and outdegree 1 in λr .

We now have to prove two things. If there is a partial cover C of Gt which
satisfies the properties (i) and (ii) such that It(C) = λt then it induces a partial
cover Cl of Gl and a partial cover Cr of Gr such that Cl and Cr satisfy (i) and
(ii), Il(C) = λl, Ir(C) = λr, and (λl, λr) is compatible with λt. Conversely, if
(λl, λr) is compatible with λt, and Cl and Cr are partial covers of Gl and Gr

satisfying (i), (ii), Il(C) = λl, and Ir(C) = λr, then there exists a unique partial
cover C of Gt containing Cl and Cr such that It(C) = λt.

Consider a partial cover C of Gt which satisfies the properties (i) and (ii)
defined above. We can assign to C a unique triple (Cl, Cr, S) defined as follows.
First, we define S as the set of edges of C ∩ X2

t . Then we define Cl as the
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set of edges of C which have their two endpoints in X(Tl), and at least one of
them outside of Xt. Finally, we define Cr as the set of edges of C which have
their two endpoints in X(Tr), and at least one of them outside of Xt. Note that
w(C) = w(Cl) · w(Cr) · w(S) since (Cl, Cr, S) forms a partition of the edges of
C. Moreover, Cl is a partial cover of Gl and properties (i) and (ii) are satisfied:
the endpoints of the paths of Cl and the uncovered vertices of X(Tl) all belong
to Xl ∩ Xt. Likewise, Cr is a partial cover of X(Tr) and properties (i) and (ii)
are satisfied. If Il(C) = λl and Ir(C) = λr, it is clear that (λl, λr) is compatible
with λt. Any other partition of C in three parts with one partial cover of Gl,
one partial cover of Gr, and a subset of edges in X2

t would have an edge of X2
t

used by Cl or Cr. Hence (λl, λr) would not be compatible with λt.
Suppose now (λl, λr) is compatible with λt, and Cl and Cr are partial covers

of Gl and Gr satisfying (i), (ii), Il(C) = λl, and Ir(C) = λr. We define Sλt as
the set of edges of X2

t which are used by λt. It is clear that Sλt , Cl and Cr are
disjoint. Consider C = Sλt ∪ Cl ∪ Cr. Since (λl, λr) is compatible with λt, C is
a partial cover satisfying (i) and (ii). It is also clear that C is the only partial
cover containing Cl and Cr such that It(C) = λt. This leads to the formula:

w(λt) =
∑

(λl,λr)

w(λl) · w(λr) · w(Sλt).

The sum runs over all pairs (λl, λr) that are compatible with λt. The weight
w(λt) can therefore be computed in a constant number of arithmetic operations.
Since the height of T is O(log(n)) the above algorithm can be executed on a
circuit of height O(log(n)) as well, which then can be expressed as a polynomial
size formula by duplicating subcircuits. 	

Using techniques similar to that of Theorem 5 - but considering solely partial
cycle covers consisting of paths - one can prove the following theorem as well:

Theorem 6. The hamiltonian of a n × n matrix M of bounded treewidth k can
be expressed as a formula of size O(nO(1)).

4 Perfect Matchings of Planar Graphs

Definition 8. A perfect matching of a graph G = 〈V, E〉 is a subset E′ of E
such that every vertex in V is incident to exactly one edge in E′. The weight of
a perfect matching E′ is the product of weights of all edges in E′. By SPM(G)
we denote the sum of weights of all perfect matchings of G.

In 1967 Kasteleyn showed in [7] that SPM(G) can be computed efficiently if G is
planar. His observations was that for planar graphs SPM(G) could be expressed
as a Pfaffian.

Theorem 7. Let (fn) be a family of polynomials with coefficients in a field K.
The three following properties are equivalent:

(i) (fn) can be computed by a family of polynomial size weakly skew circuits.
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Fig. 4. Planar crossover widget for skew circuits

(ii) (fn) can be computed by a family of polynomial size skew circuits.
(iii) There exists a family (Gn) of polynomial size planar graphs with edges

weighted by constants from K or variables of fn such that fn = SPM(Gn).

The equivalence of (i) and (ii) is etablished in [12] and [13]. In [12] the com-
plexity class VDET is defined as the class of polynomial families computed by
polynomial size (weakly) skew circuits, and it is shown that the determinant is
VDET-complete. We have therefore shown that computing SPM(G) for a planar
graph G is equivalent to computing the determinant. Previously it was known
that SPM(G) could be reduced to computing Pfaffians [7]. The equivalence of
(iii) with (i) and (ii) follows immediately from Theorem 8 and Theorem 9.

Theorem 8. The output of every skew circuit of size n can be expressed as
SPM(G) where G is a weighted, planar, bipartite graph with O(n2) vertices.
The weight of each edge of G is equal to 1, to -1, or to an input variable of the
circuit.

Proof. Let ϕ be a skew circuit; that is, for each multiplication gate at least
one of the inputs is an input gate of ϕ (w.l.o.g. we assume it is exactly one).
Furthermore, by making at most a linear amount of duplication we can assume
all input gates have outdegree 1. Thus, every input gate of ϕ is either input to
exactly one addition gate or input to exactly one multiplication gate.

Consider a drawing of ϕ in which all input gates which are input to an addition
gate, are placed on a straight line, and all other gates are drawn on the same
side of that line. Assume all arrows in the circuit are drawn as straight lines.
This implies at most a quadratic number of places where two arrows cross each
other.We replace crossings with the planar crossover widget from Figure 4.

For each multiplication gate we have that exactly one of the input gates is
an input gate of ϕ, so these input gates can be placed arbitrarily close to the
multiplication gate in which they are used. Thus we obtain a planar skew circuit
ϕ′ computing the same value as ϕ.

The overall idea is that every monomial in the polynomial represented by ϕ′

will be encoded in our graph by a path-like subgraph from input s to output t.
Each such subgraph has a perfect matching with weight equal to the monomial
encoded on that path.
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Fig. 5. Initialization for input gates which are input to addition gates

Fig. 6. I) Non-output add. II) Non-output mult. III) Output add. IV) Output mult.

Consider a topological ordering of the gates in ϕ′ in which input gates that are
input to multiplication gates have numbers less than 1, and input gates that are
input to addition gates have the numbers 1 through i (where i is the number of
input gates that are input to addition gates). Let m be the number of the output
gate in this topological ordering of ϕ′. Steps 1 through i in the construction of
G are shown in Figure 5. Edge weight xi denote the input at the gate with
topological number i in ϕ′.

For each step i < m′ ≤ m an addition or multiplication gate is handled as
shown in Figure 6. White vertices indicate vertices that are already present in the
graph, whereas black vertices indicate new vertices that are introduced during
that step. For simulating an addition gate we add 2 vertices and 3 edges each
of weight 1. The edges are used to connect the 2 vertices that represent inputs
to the addition gate. For simulating a multiplication gate we append a path of
length 2 to an existing vertex. The edge weight w denote the value of the input
gate of ϕ′, which is input to that multiplication gate. Finally, the output gate of
ϕ′ is handled in a special way.

Correctness can be shown by induction using the following observation. For
each step 1 ≤ m′ < m in the construction of G the following properties will hold
for the graph generated so far: The labels �1, �2, . . . , �m′ have been assigned to
m′ distinct vertices. For all 1 ≤ j ≤ m′ if the vertex with label �j is removed
(along with all adjacent edges), then SPM of the remaining graph equals the
value computed at gate with topological number j in ϕ′. 	


Theorem 9. For any weighted, planar graph G with n vertices, SPM(G) can
be expressed as the output of a skew circuit of size O(nO(1)). Inputs to the skew
circuit are either constants or weights of the edges of G.

Proof. Let H be a weighted graph and
−→
H an oriented version of H . Then the

Pfaffian is defined as:
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Pf(
−→
H ) =

∑

M
sgn(M) · w(M),

where M ranges over all perfect matchings of
−→
H . The Pfaffian depends on how

the edges of
−→
H are oriented, since the sign of a perfect matching depends on this

orientation (details on how sign depends on orientation are not needed here).
It is known from Kasteleyn’s work [7] that all planar graphs have a Pfaffian

orientation of the edges. A Pfaffian orientation is an orientation of the edges
such that each term in the above sum has positive sign sgn(M). So for planar
graphs computing SPM(G) reduces to computing Pfaffians.

A Pfaffian orientation of G does not depend on the weights of the edges, it
only depends on the planar layout of G. In our reduction to a skew circuit we can
therefore assume that a Pfaffian orientation

−→
G is given with G, so computing

SPM(G) by a skew circuit is reduced to computing Pf(
−→
G) by a skew circuit.

From Theorem 12 in [9] we have that Pf(
−→
G) can be expressed as SW (G′)

where G′ is a weighted, acyclic, directed graph with distinguished source and
sink vertices denoted s and t (recall SW (G′) from Theorem 2). The size of G′

is polynomial in the size of
−→
G .

The last step is to reduce G′ to a polynomial size skew circuit representing
the same polynomial. Consider a topological ordering of the vertices of G′. The
vertex s is replaced by an input gate with value 1. For a vertex v of indegree 1 in
G′, assume u is the vertex such that there is a directed edge from u to v in G′,
and assume the weight of this edge is w. We then replace v by a multiplication
gate, where one arrow leading to this gate comes from the subcircuit representing
u, and the other arrow leading to this gate comes from a new input gate with
value w. Vertices of indegree d > 1 are replaced by a series of d − 1 addition
gates, adding weights of all paths leading here. 	
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Abstract. The 1-versus-2 queries problem, which has been extensively studied
in computational complexity theory, asks in its generality whether every efficient
algorithm that makes at most 2 queries to a Σp

k-complete set Lk has an efficient
simulation that makes at most 1 query to Lk. We obtain solutions to this problem
under hypotheses weaker than previously considered. We prove that:

1. For each k ≥ 2, P
Σ

p
k
[2]

tt ⊆ ZPPΣ
p
k
[1] =⇒ PH = Σp

k , and

2. P
NP[2]
tt ⊆ ZPPNP[1] =⇒ PH = Sp

2.
Here, for a complexity class C and integer j ≥ 1, we model ZPPC[j] to be the
class of problems solvable by zero-error randomized algorithms that always run
in polynomial time, make at most j queries to C, and succeed with probability
only 1/2 + 1/poly(·). This same model of ZPPC[j], also considered in [CC06],
subsumes the class of problems solvable by randomized algorithms that always
answer correctly in expected polynomial time and make at most j queries to C.

Hemaspaandra, Hemaspaandra, and Hempel [HHH98], for k > 2, and
Buhrman and Fortnow [BF99], for k = 2, had obtained the same consequence

as of ours in (1) using the stronger hypothesis P
Σ

p
k
[2]

tt ⊆ PΣ
p
k
[1]. Fortnow, Pavan,

and Sengupta [FPS] had obtained the same consequence as of ours in (2) using
the stronger hypothesis P

NP[2]
tt ⊆ PNP[1].

Our results may also be viewed as steps towards obtaining solutions to the
most general form of the 1-versus-2 queries problem: For any k ≥ 1, whether

P
Σ

p
k
[2]

tt can be simulated in BPPΣ
p
k
[1].

1 Introduction

1.1 Background

Krentel [Kre88] studied the functional version of the 1-versus-2 queries problem.
Krentel proved that if every deterministic polynomial-time computable function that
makes at most two queries to SAT has a deterministic polynomial-time simulation that
makes at most one query to SAT, then P = NP. That is, if FPNP[2] ⊆ FPNP[1], then
P = NP.

The decision version of the 1-versus-2 queries problem has been deemed to be more
difficult than its functional counterpart. A long succession of work on the decision ver-
sion of the 1-versus-2 queries problem is known in the literature. We review progress
made in these work.
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Kadin [Kad88] proved that if PNP[2] ⊆ PNP[1], then NP ⊆ coNP/poly. Yap
[Yap83] showed that the polynomial hierarchy collapses to the third level if NP ⊆
coNP/poly, and Cai et al. [CCHO05] improved this collapse of the polynomial hierar-
chy to SNP

2 under the same assumption, i.e., the assumption NP ⊆ coNP/poly. Thus,
Kadin’s result implies that if PNP[2] ⊆ PNP[1], then PH = SNP

2 . Wagner [Wag89] im-
proved Kadin’s result and showed that the polynomial hierarchy collapses to PΣp

2 under
the assumption PNP[2] ⊆ PNP[1]. Beigel, Chang, and Ogiwara [BCO93] built upon the
work of Wagner [Wag89] and Chang and Kadin [CK96] and made further improve-
ments to the solution of PNP[2] ⊆ PNP[1]. They showed that if PNP[2] ⊆ PNP[1], then
every set in the polynomial hierarchy can be solved by a deterministic polynomial-time
Turing machine that makes at most one query to an NP oracle and at most one query
to a Σp

2 oracle. Since it is known that PNP[2] ⊆ PNP[1] if PNP[2]
tt ⊆ PNP[1] [CK95], all

these results hold assuming the seemingly weaker hypothesis PNP[2]
tt ⊆ PNP[1].

Hemaspaandra, Hemaspaandra, and Hempel [HHH98] studied the 1-versus-2 queries

problem in a general context. They showed that for k > 2, if PΣp
k[2]

tt ⊆ PΣp
k[1], then

PH = Σp
k . They extended this result for the 1-versus-2 queries problem to the result for

an even more general problem: the m-versus-(m + 1) queries problem. In particular,
they showed that for each m > 0 and each k > 2, if every deterministic polynomial-
time Turing machine that makes at most m + 1 truth-table queries to a Σp

k-complete
set Lk has a deterministic polynomial-time simulation that makes at most m truth-table
queries to Lk, then the boolean hierarchy over Σp

k collapses to the m’th level. That

is, they showed that for each m > 0 and each k > 2, if PΣp
k[m+1]

tt ⊆ PΣp
k[m]

tt , then
DIFFm(Σp

k) = coDIFFm(Σp
k) = BH(Σp

k). Beigel, Chang, and Ogiwara [BCO93]
related the collapse of the boolean hierarchy to the collapse of the polynomial hierarchy.
Thus, as a consequence of this relationship between the two hierarchies, the result of
Hemaspaandra, Hemaspaandra, and Hempel [HHH98] also implies that for each m > 0
and each k > 2, if PΣp

k[m+1]
tt ⊆ PΣp

k[m]
tt , then the polynomial hierarchy can be solved by

a deterministic polynomial-time Turing machine that makes m − 1 truth-table queries
to Σp

k+1 and unbounded queries (strictly speaking, polynomially many queries since
a deterministic polynomial-time Turing machine cannot make more than a polynomial
number of queries) to Σp

k .
Hemaspaandra, Hemaspaandra, and Hempel [HHH98] left open the case k = 2 in

their solution to the 1-versus-2 queries problem, which was subsequently settled by

Buhrman and Fortnow [BF99]. Buhrman and Fortnow [BF99] showed that if PΣp
2 [2]

tt ⊆
PΣp

2 [1], then PH = Σp
2 . They also showed that no relativizable proof technique can

establish a similar result for NP. That is, they showed that the result “if PNP[2]
tt ⊆

PNP[1], then PH = NP” cannot be proved using relativizable proof techniques. In
spite of this negative result, they managed to obtain several other consequences, though
weaker than the much sought after consequence PH = NP, of the PNP[2]

tt ⊆ PNP[1]

hypothesis including (a) locally either NP = coNP or NP has polynomial-size circuits,
(b) PH = BPPNP[1], (c) Σp

2 ⊆ Πp
2/1, (d) Σp

2 = UPNP[1] ∩ RPNP[1], and (e) PNP =
PNP[1].

In another paper, for the case k = 2, Hemaspaandra, Hemaspaandra, and Hempel
[HHH05] extended the solution of the 1-versus-2-queries problem by Buhrman and
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Fortnow [BF99] to the solution of the m-versus-(m+ 1) queries problem. Hemaspaan-
dra, Hemaspaandra, and Hempel showed that even for the case k = 2 and for all m > 0,

if PΣp
k[m+1]

tt ⊆ PΣp
k[m]

tt , then DIFFm(Σp
k) = coDIFFm(Σp

k) = BH(Σp
k). We mention

here that for the case k = 1 and for any m > 1, no solution is known for the following

version of the m-versus-(m + 1) queries problem: whether PΣp
k[m+1]

tt has a simulation

in PΣp
k[m]

tt .
Fortnow, Pavan, and Sengupta [FPS] improved upon the result of Buhrman and Fort-

now [BF99] to show that if PNP[2]
tt ⊆ PNP[1], then PH = Sp

2, where Sp
2 satisfies

Sp
2 ⊆ ZPPNP ( [Cai07]) ⊆ Σp

2 ∩ Πp
2 . This was the first solution to the 1-versus-2

queries problem for the case k = 1 (i.e., NP oracle) that achieved a collapse of the
polynomial hierarchy to a level not above Σp

2 . A major ingredient in their proof was a
lemma, whose proof ideas were inspired from the paper of Bshouty et al. [BCG+96],
that states that for every n > 0 and every k > 0, if SAT has no circuit of size nk+2

at length n, then there exists a polynomial-size collection S of satisfiable formulae
of length n such that every circuit of size nk fails to produce any satisfying assign-
ment for at least one formula from S. This lemma has found applications elsewhere
(see [PSV06]).

Recently, Chakaravarthy and Roy [CR06] introduced new classes Op
2, YOp

2, and
NOp

2 as subclasses of Sp
2. These classes were introduced with the motivation of im-

proving several existing complexity results such as the classical Karp-Lipton theo-
rem [KL80] and a theorem of Yap [Yap83]. Chakaravarthy and Roy [CR06] showed
that these new classes have implication also on the solution to the 1-versus-2-queries
problem. They proved that if PNP[2]

tt ⊆ PNP[1], then PH = NOp
2 ∩ YOp

2. This gives a
slight improvement over the solution given by Fortnow, Pavan, and Sengupta [FPS].

More recently, Chang and Purini [CP07] proved that if the NP machine hypothesis
holds, then PNP[2]

tt ⊆ PNP[1] implies PH = NP. The NP machine hypothesis postulates
that there exist an ε > 0 and a nondeterministic polynomial-time Turing machine N
such that L(N) = 0� and for any 2nε

-time bounded deterministic Turing machine M ,
M(0n) produces an accepting path of N(0n) only for finitely many n.

1.2 Our Results

In this paper, we obtain solutions to the 1-versus-2 queries problem under the hypothe-

ses PΣp
k[2]

tt ⊆ ZPPΣp
k[1], for integers k ≥ 1. Note that PΣp

k
[1] is a subclass of ZPPΣp

k[1],

and so the hypotheses we consider here, namely, PΣp
k[2]

tt ⊆ ZPPΣp
k [1], are weaker than

the previously considered hypotheses (see the papers [Kad88,Wag89,BCO93,HHH98,

BF99, FPS, CR06]), namely, PΣp
k [2]

tt ⊆ PΣp
k
[1]. Our results may also be looked upon as

steps towards obtaining solutions to the general form of the 1-versus-2 queries problem,

which can be stated as whether every PΣp
k
[2]

tt algorithm has a BPPΣp
k [1] simulation.

The classes ZPPΣp
k[1], considered in the hypotheses of the statements of our results,

have been recently used in some inclusion relationships between complexity classes.
Cai [Cai07] proved that Sp

2 ⊆ ZPPNP; however, the question of whether this inclusion
is also an equality is open. Cai and Chakaravarthy [CC06] showed that if one restricts
a ZPP algorithm so that it is allowed to make at most one query to an NP oracle, then
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such an algorithm can be simulated in Sp
2. In other words, they proved that ZPPNP[1] ⊆

Sp
2. For k ≥ 2, they proved that ZPPΣp

k [1] ⊆ PΣp
k[2]. They observed that BPP ⊆

ZPPNP[1] (also proven implicitly in some other papers) and used this observation to
infer that it is unlikely to prove ZPPNP[1] ⊆ PNP unconditionally since otherwise it
will yield an unconditional containment of BPP in PNP, which has been open for a
long time.

In all these results, the success probability of ZPPC[1] algorithms, for an arbitrary
complexity class C, is considered to be only 1/2 + 1/poly(·).

2 Preliminaries

Our alphabet is Σ = {0, 1}. We assume familiarity with basic notions in computational
complexity theory such as complexity classes (P, NP, ZPP, BPP, Σp

k , Πp
k , PH, etc.),

decision problems (SAT, Σp
k-complete sets), oracles, reductions (≤p

m, ≤p
T , ≤p

tt), and
Turing machines (deterministic, randomized). Let 〈·, ·〉 be a multi-arity, polynomial-
time computable, and polynomial-time invertible pairing function. DPTM (DPOTM)
will stand for “deterministic polynomial-time (oracle) Turing machine,” and RPTM
(RPOTM) will stand for “randomized polynomial-time (oracle) Turing machine.” For
a deterministic Turing machine M and string x ∈ Σ∗, we use M(x) to denote the
computation of M on input x. Similarly, for a randomized Turing machine M and
strings x, r ∈ Σ∗, we use M(x; r) to denote the computation of M on input x and
random string r. At few places, we abuse notation for the sake of brevity and let
M(x) ∈ {Accept, Reject} also denote the outcome of a deterministic Turing machine
M on input x and let M(x; r) ∈ {Accept, Reject, ?} also denote the outcome of a
randomized Turing machine M on input x and random string r (which sense is being
used for M(x) or M(x; r) will be clear from the context).

We will need the following definition:

Definition 1. 1. [HHH98] For any oracles C and D, let M (C,D) denote a DPOTM
M making at most one query to C and at most one query to D in a truth-table
fashion, i.e., in parallel. Then, for complexity classes C and D,

P(C,D) =df {L ⊆ Σ∗ | (∃C ∈ C)(∃D ∈ D)(∃ DPOTM M)[L = L(M (C,D))]}.

2. For any oracle C and integer j ≥ 0, let MC[j] denote a DPOTM M making at
most j adaptive, i.e., sequential, queries to C. Then, for a complexity class C,

PC[j] =df {L ⊆ Σ∗ | (∃C ∈ C)(∃ DPOTM M)[L = L(MC[j])]}.

In this paper, we will consider zero-error randomized polynomial-time algorithms that
can make at most j queries, for some j ≥ 1, to an oracle C. The class of decision
problems solvable by such algorithms is denoted by ZPPC[j], where C is the oracle
and j is a bound on the number of queries to C made by the algorithm.

Some subtlety is involved when we talk about the success probability of a bounded
query randomized algorithm (e.g., a ZPPC[j] algorithm). In particular, while the success
probability of a ZPP algorithm can be amplified from 1/nO(1) to 1/2 + 1/nO(1) using
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a standard technique, which involves running the algorithm on several independently
chosen random strings and making a decision based on the outcome of the runs, the
same technique does not work for the case of ZPPC[j] algorithms since an application
of the same technique could result in an algorithm that asks more than the allowed
number (j) of queries to C. Hence, we need to fix our assumption regarding the success
probability of ZPPC[j] algorithms (because different bounds on the success probability
of ZPPC[j] algorithms could define different complexity classes).

Throughout this paper, we require the success probability of ZPPC[j] algorithms to
be only 1/2+1/poly(·). Cai and Chakaravarthy [CC06] imposed the same requirement
on the success probability of ZPPC[j] algorithms in proving their results ZPPNP[1] ⊆
Sp

2 and ZPPΣp
k [1] ⊆ PΣp

k[2] for integers k ≥ 2.
We next formally define ZPPC[j] for any arbitrary complexity class C and integer

j ≥ 1.

Definition 2 ([CC06]). Let C be a complexity class and j ≥ 1 be an integer. A set
L ∈ ZPPC[j] if there exist a RPOTM M(·; ·), an oracle C ∈ C, and a polynomial p(·)
such that M satisfies the following requirements for any input x ∈ Σ∗:

1. On any random string r, M(x; r) makes at most j adaptive (i.e., sequential) queries
to the oracle C.

2. For any random string r, the output MC[j](x; r) belongs to {Accept, Reject, ?}
such that (a) if x ∈ L, then MC[j](x; r) ∈ {Accept, ?} and (b) if x 
∈ L, then
MC[j](x; r) ∈ {Reject, ?}. That is, the machine M has zero-error.

3. M succeeds with probability at least 1/2 + 1/p(·). That is,

Probr

[
MC[j](x; r) = Accept or MC[j](x; r) = Reject

]
≥ 1

2
+

1
p(|x|) .

Remarks on the robustness of the class ZPPC[j] defined in Definition 2. The class
ZPP has two equivalent definitions:

1. The class of problems solvable by randomized algorithms that always answer cor-
rectly and run in expected polynomial time.

2. The class of problems solvable by zero-error randomized algorithms that always
run in polynomial time and succeed with probability at least 1/poly(·) (i.e., answer
correctly on at least 1/poly(·) fraction of time but may say “I don’t know” on the
remaining fraction of time).

These equivalences are not known to hold for ZPPC[j]. Our definition of ZPPC[j] in
Definition 2 requires the success probability to be at least 1/2 + 1/poly(·) (instead
of 1/poly(·)), and thus may partially capture the interpretation of ZPPC[j] as in (2).
However, we mention that our definition of ZPPC[j] does indeed fully capture the inter-
pretation of ZPPC[j] as in (1), and so in this sense our definition of ZPPC[j] is robust.
To see this, let P be a problem solvable by a randomized algorithm M that always
answers correctly in expected polynomial time p(·) and makes at most j queries to C.
Consider a randomized algorithm M ′ that on any input x, simulates M(x) for 4p(|x|)
steps, outputs according to M if M(x) halts within 4p(|x|) steps, and says “I don’t
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know” if M(x) does not halt within 4p(|x|) steps. By Markov’s inequality, it follows
that M ′ is a j-query zero-error randomized algorithm for P , always run in time 4p(·),
and succeeds with probability at least 3/4. Thus, P also belongs to the class ZPPC[j]

defined in Definition 2.

The class Sp
2 was introduced independently by Russell and Sundaram [RS98] and by

Canetti [Can96]. A formal definition of Sp
2 is as follows:

Definition 3 ([Can96, RS98]). Sp
2 is the class of all sets L for which there exist a

polynomial-time predicate R(·, ·, ·) and a polynomial p(·) such that for all x ∈ Σ∗,

x ∈ L =⇒ (∃py)(∀pz)R(x, y, z), and

x 
∈ L =⇒ (∃pz)(∀py)¬R(x, y, z),

where for any w, (∃pw) =df (∃w : |w| ≤ p(|x|) and (∀pw) =df (∀w : |w| ≤ p(|x|)).

For a complexity class C, the complexity class C/poly is defined as follows:

Definition 4 ([KL80]). For any complexity class C and function f : N → N, C/f
denotes the class of all sets L such that for some C ∈ C and for some arbitrary function
h : N → Σ∗ satisfying (∀n)[|h(n)| = f(n)], it holds that for all x ∈ Σ∗, x ∈ L ⇐⇒
〈x, h(|x|)〉 ∈ C.

A set L is said to be in C/poly if and only if L ∈ C/p(n) for some polynomial p.

An important structural property of SAT is its 2-query disjunctive self-reducibility. This
means that for any boolean formula φ(x1, x2, . . . , xn) of n variables, φ ∈ SAT if and
only if φ(x1 := true, x2, . . . , xn) ∈ SAT or φ(x1 := false, x2, . . . , xn) ∈ SAT.

Due to the space limit, all proofs are omitted. They will appear in the full version of
the paper.

3 Results

Hemaspaandra, Hemaspaandra, and Hempel [HHH98] showed that for any k > 2, if

PΣp
k[2]

tt ⊆ PΣp
k [1], then PH = Σp

k . Buhrman and Fortnow [BF99] showed that this result

extends also for the case k = 2: If PΣp
2 [2]

tt ⊆ PΣp
2 [1], then PH = Σp

2 . In Theorem 5, we
derive the same consequences under hypotheses weaker than the ones considered in the
above two results.

Assuming the hypothesis PΣp
k
[2]

tt ⊆ ZPPΣp
k[1], for k ≥ 2, we show that for a Σp

k-

complete set Lk, its complement Lk belongs to Σp
k . This will prove that if PΣp

k
[2]

tt ⊆
ZPPΣp

k
[1], then Πp

k ⊆ Σp
k and hence the polynomial hierarchy collapses to Σp

k .

Theorem 5. For any integer k ≥ 2,

P(NP,Σp
k
) ⊆ ZPPΣp

k
[1] =⇒ PH = Σp

k .
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We present the proof idea of Theorem 5. Fix an integer k ≥ 2. Let Lk be a Σp
k-complete

set. We define a set D =df Lk × SAT ∪ Lk × SAT = {〈x, ψ〉 | (x ∈ Lk and ψ 
∈
SAT) or (x 
∈ Lk and ψ ∈ SAT)}. Clearly, D ∈ P(NP,Σp

k), and hence by the hypoth-
esis P(NP,Σp

k) ⊆ ZPPΣp
k [1], we have D ∈ ZPPΣp

k[1] via a ZPPΣp
k [1] machine NLk[1]

such that D = L(NLk[1]). For the sake of clarity, in the discussion that follows we omit
referring to the polynomial-length bounds on quantifiers (∃, ∀).

Because the base computation of NLk[1] is a ZPP computation, we can easily de-
scribe a Σp

k-procedure to determine x 
∈ Lk for an input string x, if there exist a for-
mula ψ and a random string r such that NLk[1](〈x, ψ〉; r) has a definite outcome, i.e.,
the outcome is either Accept or Reject but not ?, and NLk[1](〈x, ψ〉; r) makes a query
τ ∈ Lk. We call such input strings x nice. For nice x, this Σp

k-procedure will include
(1) a guess for the formula ψ, (2) a guess for the random string r, (3) a Σp

k-procedure
for τ ∈ Lk, and (4) a Σp

2 -procedure for even k and a Πp
2 -procedure for odd k that

depend on whether the outcome NLk[1](〈x, ψ〉; r) is Accept or Reject, and whether ψ
is in SAT or SAT.

The difficult part of the proof is when the input string x is not nice. In that case, we
notice that for every formula ψ and for every random string r such that NLk[1](〈x, ψ〉; r)
reaches a definite outcome, i.e., the outcome ∈ {Accept, Reject}, the query τ made by
NLk[1](〈x, ψ〉; r) to Lk must be answered “no.” Since the base computation of NLk[1] is
a ZPP computation, therefore, for every formula ψ, the fraction of random strings r for
which NLk[1](〈x, ψ〉; r) reaches a definite outcome is large (actually, this fraction is at
least 1/2+1/poly(|〈x, ψ〉|)). Thus, it follows that if x is not nice, then for every formula
ψ, there is a large fraction of random strings r such that (1) NLk[1](〈x, ψ〉; r) reaches
a definite outcome ∈ {Accept, Reject} and (2) the query τ made by NLk[1](〈x, ψ〉; r)
to Lk is answered “no.” At this point, we define an RPTM Nno that on input 〈x, ψ〉,
simulates N(〈x, ψ〉) on a uniform random string r, answers “no” to the query τ made
by N , and outputs N(〈x, ψ〉; r). Note that Nno does not require oracle. We then make a
crucial observation that if x is not nice, then for every ψ, Nno determines 〈x, ψ〉 ∈ D in
a BPP fashion. That is, if x is not nice, then the following conditions hold for every ψ:
If 〈x, ψ〉 ∈ D, then Nno(〈x, ψ〉) accepts with high probability, and if 〈x, ψ〉 
∈ D, then
Nno(〈x, ψ〉) rejects with high probability. Since a BPP computation can be performed
in P/poly, therefore, if x is not nice, then there is deterministic polynomial-time simu-
lation of Nno that uses a polynomial-size advice string. (The P/poly simulation of Nno

requires amplifying the success probability of Nno, which can be accomplished with-
out any trouble, unlike the case of a bounded query randomized algorithm, since Nno

does not require oracle.) Thus, it follows that if x is not nice, then for every ψ, we can
determine 〈x, ψ〉 ∈ D in deterministic polynomial-time when given this advice string.
For k ≥ 2, we use the definition of D, the expression for Lk, the P/poly simulation
of Nno, and the self-reducibility of SAT to show that for a non-nice input x, there is
also a Σp

k-procedure to determine x 
∈ Lk (details omitted due to lack of space). We
combine the two Σp

k-procedures (one for nice input strings and the other for non-nice
input strings) to get a Σp

k-procedure for Lk.
We mention that our idea of partitioning input strings into nice and non-nice strings is

inspired from the proof of ZPPNP[1] ⊆ Sp
2 by Cai and Chakaravarthy [CC06]. However,

we would like to stress that the results of Cai and Chakaravarthy [CC06] do not have any
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direct, obvious bearings on the solutions (particularly, our solutions) to the 1-versus-2
queries problem.

We compare the proof technique of Theorem 5 with those used previously in ob-
taining solutions to the 1-versus-2-queries problem. The proof of the statement “if

PΣp
2 [2]

tt ⊆ PΣp
2 [1], then PH = Σp

2” by Buhrman and Fortnow [BF99] used the follow-
ing observation: If a set A ∈ PB[1] via a DPOTM M such that A = L(MB[1]), then
there is a deterministic polynomial-time computable function h : Σ∗ → Σ∗ × {+, −}
such that x ∈ A if and only if either h(x) = (z, +) and z ∈ B or h(x) = (z, −) and
z 
∈ B. Here z is the query made by M(x) to B if the outcome of M(x) depends on
the answer to the query, and z is some fixed string known to be in (or out of) B if the
outcome of M(x) is independent of the answer to the query. In our proof, the query
made by a ZPPB[1] computation MB[1] may vary with the choice of random string r.
Therefore, for our proof, we cannot say anything about the existence of a determinis-
tic polynomial-time computable function h along the lines of the proof in [BF99]. The

proof of the statement “for every integer k > 2, if PΣp
k[2]

tt ⊆ PΣp
k[1], then PH = Σp

k”
by Hemaspaandra, Hemaspaandra, and Hempel [HHH98]1 used the fact that PΣp

k[1]

has ≤p
m-complete sets. For our proof, we cannot use arguments similar to those in the

paper [HHH98], since it is not known whether ZPPΣp
k [1] has complete sets.

We next consider the hypothesis PNP[2]
tt ⊆ ZPPNP[1]. We show in Corollary 7 that

the polynomial hierarchy collapses to Sp
2 under this hypothesis. (Note that Sp

2 is known
to lie in between PNP and Σp

2 ∩Πp
2 .) Fortnow, Pavan, and Sengupta [FPS] obtained the

same consequence under the stronger hypothesis PNP[2]
tt ⊆ PNP[1]. That is, they proved

that if PNP[2]
tt ⊆ PNP[1], then PH = Sp

2. Earlier, Buhrman and Fortnow [BF99] showed

that if PNP[2]
tt ⊆ PNP[1], then locally either every unsatisfiable formula has a short proof

of unsatisfiability (i.e., coNP = NP) or SAT is decidable by a polynomial-size circuit.
The proof of Fortnow, Pavan, and Sengupta [FPS] was built on the consequence of this
result.

In Theorem 6, we derive the consequence stated in the aforementioned result of
Buhrman and Fortnow [BF99] under the weaker hypothesis PNP[2]

tt ⊆ ZPPNP[1]. Since
the proof of Fortnow, Pavan, and Sengupta [FPS] was built on this same consequence,
we are able to obtain a collapse of the polynomial hierarchy to Sp

2 under the hypothesis

PNP[2]
tt ⊆ ZPPNP[1].

Theorem 6. If PNP[2]
tt ⊆ ZPPNP[1], then there exist a polynomial-time predicate R

and a constant k > 0 such that for every n one of the following statements is true:

1. Locally NP = coNP, i.e., for every boolean formula φ of length n, it holds that
φ 
∈ SAT ⇐⇒ (∃w)R(φ, w), where |w| is polynomial in n.

2. there is a circuit of size nk that decides SAT at length n.

The proof of Theorem 6 builds on a technique developed by Buhrman and Fortnow
[BF99]. Their proof technique involved partitioning unsatisfiable formulas (SAT) into

1 In fact, Hemaspaandra, Hemaspaandra, and Hempel [HHH98] proved a somewhat stronger
statement. They proved that for any 0 ≤ i < j < k and i < k − 2, if P(Σp

j ,Σ
p
k
) ⊆ P(Σp

i
,Σ

p
k
),

then PH = Σp
k .
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sets EASY-i and HARD-i, for each i ∈ {I, II, III, IV }. Then, they made use of prop-
erties of these sets in proving their aforementioned result. We modify the definitions of
these sets for our purpose. We show that our new definitions of EASY-i and HARD-i
sets retain some of the properties that Buhrman and Fortnow made use of in their proof.
Our proof also makes use of a new notion called “P/poly-separator.” This notion is a
natural generalization of the notion of polynomial-time separator, which Buhrman and
Fortnow [BF99] coined in their proof argument.

Assume that the consequent in the statement of Theorem 6 holds. Fortnow, Pavan,
and Sengupta [FPS] used this assumption to show that the polynomial hierarchy col-
lapses to Sp

2. Recently, using the same assumption, Chakaravarthy and Roy [CR06]
showed that PH collapses to NOp

2 ∩ YOp
2. Thus, we get:

Corollary 7. PNP[2]
tt ⊆ ZPPNP[1] =⇒ PH = Sp

2 = NOp
2 ∩ YOp

2.

In a more recent work, Chang and Purini [CP07] showed that if the NP machine hypoth-
esis holds, then PNP[2]

tt ⊆ PNP[1] implies PH = NP. For this result, they redefined the
easy and hard sets in the proof given by Buhrman and Fortnow [BF99] of the statement
“PNP[2]

tt ⊆ PNP[1] implies that locally either NP = coNP or NP ⊆ P/poly.” Using
their new definition of the easy and hard sets, Chang and Purini [CP07] were able to
show that the advice in the P/poly case can be made polynomially shorter than the
input length. Thus, they showed that if the P/poly case occurs infinitely often, then it
would be possible to compute satisfiability in subexponential time in a way that violates
the NP machine hypothesis.

We observe that the advice strings used in the proof of Theorem 6 include random
strings r that can be too long for the NP machine hypothesis. Thus, it does not seem that
the technique of Chang and Purini could help in showing “if the NP machine hypothesis
holds, then PNP[2]

tt ⊆ ZPPNP[1] implies PH = NP.”

4 Conclusion and Open Problems

We obtain solutions to the 1-versus-2 queries problem under hypotheses weaker than

the previously considered hypotheses, namely, PΣp
k[2]

tt ⊆ PΣp
k [1]. We show that for each

k ≥ 2, if PΣp
k[2]

tt ⊆ ZPPΣp
k [1], then PH = Σp

k , and if PNP[2]
tt ⊆ ZPPNP[1], then

PH = Sp
2. We list some open problems.

The foremost open problem is to see if our solutions can be extended to the solutions
of the general 1-versus-2 queries problem: For any k ≥ 1, whether there is a simulation

of PΣp
k[2]

tt in BPPΣp
k[1]. Buhrman and Fortnow [BF99] asked for implications of the

hypothesis BPPNP[2] = BPPNP[1], which is closely related to the problem we posed
here. Hemaspaandra, Hemaspaandra, and Hempel [HHH98, HHH05] studied the m-
versus-(m + 1) queries problem. They obtained solutions to this problem under the

hypothesis PΣp
k[m+1]

tt ⊆ PΣp
k[m]

tt , for each k ≥ 2 and each m > 0. It could be possible

to obtain the same solutions under the weaker hypothesis PΣp
k[m+1]

tt ⊆ ZPPΣp
k[m]

tt , for
each k ≥ 2 and each m ≥ 2. It is interesting to note that no solution is known for

this problem under the hypothesis PΣp
k[m+1]

tt ⊆ PΣp
k[m]

tt , for the case k = 1 and any
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m ≥ 2. We would like to see a resolution of the m-versus-(m + 1) queries problem for

this special case not only under the hypothesis PNP[m+1]
tt ⊆ PNP[m]

tt but also under the

weaker hypothesis PNP[m+1]
tt ⊆ ZPPNP[m]

tt . Finally, in this paper we require the success
probability of ZPPC[j] algorithms, for any complexity class C and integer j ≥ 1, to be
at least 1/2 + 1/poly(·), where poly(·) can be any arbitrary polynomial. It would be
interesting to see whether our results also hold when we require the success probability
of ZPPC[j] algorithms to be less than 1/2.
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Abstract. CrossingNumber is one of the most challenging algorith-
mic problems in topological graph theory, with applications to graph
drawing and VLSI layout. No polynomial time constant approximation
algorithm is known for this NP-complete problem. We prove that a natu-
ral approach to planar drawing of toroidal graphs (used already by Pach
and Tóth in [21]) gives a polynomial time constant approximation algo-
rithm for the crossing number of toroidal graphs with bounded degree.
In this proof we present a new “grid” theorem on toroidal graphs.

Keywords: crossing number, approximation algorithm, toroidal graph,
edge-width, toroidal grid.
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1 Introduction

We assume the reader is familiar with the standard terminology of graph the-
ory. In this paper we consider finite graphs, with loops or multiple edges al-
lowed. Some standard topological graph theory terminology is briefly introduced
throughout this paper. For other related terminology and theory we refer the
reader to Mohar and Thomassen [19]. Here our main interest lies in toroidal
graphs, that is, graphs that can be embedded (meaning drawn without edge
crossings) on the torus.

The (planar) crossing number cr(G) of a graph G is the minimum number of
edge crossings in a drawing of G in the plane. To resolve ambiguity, we consider
drawings of graphs such that no edge passes through another vertex, and that no
three edges intersect in a common point which is not a vertex. Then a crossing
is an intersection point of two edges which is not a vertex.
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Computing crossing numbers has important applications in VLSI design, and,
naturally, in the graph drawing area. The algorithmic decision problem of cross-
ing minimization is formulated as follows:

CrossingNumber

Input: A (multi)graph G and an integer k.
Question: Is cr(G) ≤ k ? (Possibly: if so, find the corresponding drawing).

The problem is in NP since one could guess the optimal drawing, replace its
crossings with new (degree 4, subdividing) vertices, and verify planarity of the
resulting graph. It has been proved by Garey and Johnson [9] that crossing
minimization is NP-complete if k is a part of the input. The same assertion
has been proved true later by Hliněný [12] both for cubic graphs and for the
minor-monotone version (cf. [1]) of crossing number. An important, stubborn
open problem is to decide whether the crossing number of graphs with bounded
tree-width can be computed in polynomial time.

On the positive side, a surprising result from Grohe [11], recently improved
by Kawarabayashi and Reed [15], states that CrossingNumber is an FPT
problem. Unfortunately, these algorithms are not usable in practice, not even
for small values of k. Regarding approximability results, the best general result
known to date is a polynomial time algorithm by Even, Guha and Schieber [8],
which approximates cr(G) + |V (G)| up to a factor of log3 |V (G)| for graphs G
of bounded degree (notice the +|V (G)| term).

Our interest in the crossing number of graphs embedded in a given surface
follows a recent major trend in crossing numbers research, which emphasizes the
relationship of crossing number to topological graph theory and to structural
parameters (see for instance [1,2,3,10,15,23]). Böröczky, Pach and Tóth [3,21]
prove that the crossing number of a toroidal graph G is at most c · Δ(G)|V (G)|,
with an analogous generalization to any fixed surface. A refinement of this es-
timate bounds cr(G) by a factor of the sum of square degrees of G. In this
direction the asymptotically best possible estimate for graphs G of orientable
genus g = o(|V (G)|) is cr(G) ≤ c · gΔ(G)|V (G)| given by Djidjev and Vrt’o [6].
An even wider generalization of the problem by Telle and Wood [23] shows
that any class G of bounded-degree graphs excluding a fixed minor H satisfies
cr(G) ≤ cH,Δ · |V (G)| for every G ∈ G. Although all these estimates are tight in
the sense that there exist graph sequences attaining them asymptotically, they
give no good algorithmic approximation for CrossingNumber since many other
graphs in these classes also have arbitrarily smaller crossing number.

On the other hand, constant factor approximation algorithms of Cross-

ingNumber are known only for some particular families of graphs, such as [10]
for projective graphs of bounded degree with an approximation factor 4.5Δ(G)2;
or [13] for almost planar graphs of bounded degree with an approximation fac-
tor Δ(G). A graph is almost planar if deleting one edge leaves it planar. In this
relation one should mention that an older result of Riskin [22] implies that, for
almost planar graphs coming from cubic 3-connected planar subgraphs, the cross-
ing number can be determined exactly. Other structural aspects of the crossing
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number of almost planar graphs are dealt with by Mohar [18]. Now we extend
our attention to graphs embeddable on the torus.

The new contribution of our paper lies in a fine analysis of a natural planar-
drawing algorithm for toroidal graphs (analogous to the approach of Pach and
Tóth [21]), which is complemented with a matching lower bound on the crossing
number. This is summarized next. We refer to Section 2 for the definition of
edge-width, and to Lemma 3.2 for details on the o(1) term appearing there.

Theorem 1.1. Given a nonplanar toroidal graph G, one can construct in poly-
nomial O(n log n) time, where n = |V (G)|+ |E(G)|, a drawing of G in the plane

a) with at most
(
4.5Δ(G)2 + o(1)

)
· cr(G) crossings;

b) with at most 6Δ(G)2 · cr(G) crossings if G embeds in the torus with dual
edge-width at least 8Δ(G).

Hence for a fixed maximal degree bound Δ(G) ≤ Δ we get (b) a polynomial
time algorithm which approximates CrossingNumber up to a constant factor
6Δ2 for all graphs which have sufficiently “dense” toroidal embeddings. Notice
that, concerning time complexity of our algorithm, we may assume n = |V (G)|
if Δ(G) is bounded, or if G is simple.

Our paper is organized as follows. In Section 2 we describe Drawing Algo-
rithm 2.3 (cf. Theorem 1.1) and some details of its implementation. It uses a
natural idea of surgery along a manifold, extensively used in classical topology:
“cut and open” a toroidal embedding of a given graph G along a curve intersect-
ing the fewest number of edges, and then redraw the affected edges of G inside
the rest of the embedding in the best possible (crossing-wise) way. We prove in
Section 3 that this approach gives a good approximation of the correct crossing
number of G by exhibiting in G a special minor (a toroidal grid) which itself
has crossing number very close to the quantity computed in Algorithm 2.3. This
part represents the main new contribution of our paper, not appearing in any
of the related previous papers [3,21,23,2]. Theoretical details about finding this
grid minor are then given in Section 4.

2 The Algorithm

For the coming arguments we have to introduce some common topological terms.
A closed curve on a surface is simply called a loop. Two loops α, β on a surface
Σ are freely homotopic if α can be continuously transformed to β on Σ. A closed
curve on a surface is contractible if it is freely homotopic to a constant curve (it
can be continuously deformed to a single point).

Since we are going to work with a toroidal embedding of a given graph, we first
resolve the task of finding it. It is widely known how to test planarity efficiently,
and a strong generalization of that result by Mohar [17] claims:

Theorem 2.1 (Mohar). For every surface Σ there is a linear time algorithm
which, for a given graph G, either finds an embedding of G on Σ or returns a
subgraph of G that is a subdivision of a “minimal obstacle” for Σ.
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In particular, this result provides us a toroidal embedding of the input graph
which is known to be toroidal.

The second ingredient in our approach is a well-known concept of measuring
“dual density” of a graph embedding. Consider now a graph G embedded on a
nonplanar surface Σ (i.e. G is a topological rather than a combinatorial object,
and the embedding G itself determines the surface Σ). The edge-width ew(G) of
the embedding G is then defined as the length of the shortest cycle in G which
is not contractible on Σ.

The edge-width of a given embedding is efficiently computable [19, 4.2]. Faster
recent algorithms appear, e.g., in [5] or [16].

Theorem 2.2 (Kutz). Given an embedded graph H on an orientable surface,
one can compute in time O(n log n), where n = |V (H)|+ |E(H)|, the edge-width
k of the embedding H, and find a length-k noncontractible cycle in H.

The basic idea—“cut and open” a toroidal embedding of a given graph G while
affecting the fewest number of edges, appears in the core of the proof by Pach
and Tóth [21] (Böröczky et al [3]). We adopt it (with a slight modification –
using the topological dual instead of a triangulation) in an algorithmical setting.
See Fig. 1 for an informal hint to geometric idea of this algorithm.

Algorithm 2.3. Drawing a toroidal graph G in the plane.

1. Given a toroidal graph G, we first test planarity of G. (If G is plane, we are
done.) We construct an embedding Ḡ of G on the torus S1 using Theorem 2.1.

2. We construct the topological dual G∗ for Ḡ on S1. We compute k, the edge-
width of G∗, and the corresponding length-k cycle C∗ in G∗ as described in
Theorem 2.2.

3. Let γ be the simple loop of S1 formed by C∗. We transform S1 into a cylinder
R by “cutting along” γ. The cylinder R has two boundary curves γ1 and
γ2 which are the copies of γ. In this way the embedded (dual) graph G∗ is
naturally transformed into G� on R such that C�

1 and C�
2 are the two copies

of C∗ embedded as γ1 and γ2, respectively.
4. Let Go be the graph resulting from G� by contracting each of C�

1 and C�
2

into single vertices w1 and w2. Note that since G is not planar, it follows that
Go is connected. We then use breadth-first search to compute the shortest
path P o of length � between w1 and w2 in Go. Let δ be the simple curve on
R formed by the embedding of P o in G�. Hence δ connects a point x1 on γ1

to a point x2 on γ2, and δ intersects � edges of the original embedding Ḡ.
5. Let F ⊆ E(G) be the set of those edges in the embedding Ḡ which are

crossed by γ, and F ′ ⊆ E(G) be the set of those crossed by δ. Hence Ḡ − F
is actually embedded on R, and we extend this crossing-free subdrawing of
G−F into a new drawing G̃ of the whole graph G on R as follows: each edge
from F is newly drawn along an appropriate section of γ1 up to x1, then
along δ (crossing the � edges from F ′) until reaching x2, and finally along
an appropriate section of γ2. We output G̃ as a drawing of G.
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δ

x2

x1

γ1 γ2

Fig. 1. Cutting a toroidal embedding by γ, and redrawing the affected edges along δ

Lemma 2.4. The output graph G̃ in Algorithm 2.3 is a planar drawing of G with
at most k� + �k2/4� edge crossings, where k, � are computed in the algorithm.

Proof. Since cutting the torus along any noncontractible loop (Step 3) results
in a cylinder, the graph Ḡ − F is cylinder-embedded, and hence plane (F are
the edges intersected by γ, that is, dual to E(C∗)). Now since G is nonplanar,
k > 0 and the graph Go is connected. So in Step 4 we find a dual path P o and
the associated curve δ connecting x1 with x2 on the two boundaries γ1, γ2 of our
cylinder R.

The drawing Ḡ − F is disjoint from both γ1, γ2 in R, and by the definition
of F , each e = u1u2 ∈ F has ui on the face incident with γi, i = 1, 2. Hence
such e ∈ F can be drawn along γi from ui to xi without crossings, for i = 1, 2,
and (in the middle) along δ making � crossings with the edges from F ′. See in
Fig. 1. Furthermore, two edges e, e′ ∈ F must cross each other in G̃ if and only
if x1, x2 (visualized as points back on γ) separate the intersections e ∩ γ from
e′ ∩ γ. This makes at most �k/2��k/2	 = �k2/4� crossings in addition to the k�
crossings between F and F ′.

Lemma 2.5. Algorithm 2.3 runs in time O(n log n) where n = |V (G)|+ |E(G)|.

Proof. We represent an embedded graph by its rotation system (of edges at the
vertices). Step 1 runs in linear time with this representation, by Theorem 2.1.
Now the dual embedding G∗ is easily obtained in linear time, too, and so Step 2
runs in time O(n log n), by Theorem 2.2. The transformation into a cylindrical
embedding G� described in Step 3 is simply done in O(k) time: we duplicate C∗

into C�
1 , C�

2 and “split” the local rotations of V (C∗) accordingly. In Step 4 we
deal with an abstract graph Go, and the breadth-first search (for P o) on it also
runs in O(n) time. Then in Step 5 we get the embedding Ḡ − F in linear time
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as the plane dual of G�, excluding the C�
1 , C�

2 -faces. We also identify F ′ as the
edge set dual to E(P o) computed in Step 4.

Finally, we visualize each crossing in the final planar drawing G̃ as a
(“dummy”) degree 4 vertex in an associated planar graph G′. Knowing C∗ and
P o, and their dually associated edge sets F and F ′, the construction of G′ is
computationally achieved in time O(k�+k2) (see Lemma 2.4), which is also O(n)
by further Lemma 3.1 and Theorem 3.3.

3 Lower Crossing Bound

Let G be a graph with maximum degree Δ(G) = Δ. For simplification we con-
sider G already embedded in the torus. As we have observed in Lemma 2.4, Algo-
rithm 2.3 yields a drawing of G in the plane with at most k�+k2/4 crossings. Our
basic claim, in order to prove Theorem 1.1 that this drawing is a good estimate
for cr(G), is that the computed quantity k� is within a constant factor of cr(G)
(more precisely, a factor that depends only on Δ for large enough k). Equiva-
lently, there is a suitable function f(Δ) > 0 such that cr(G) ≥ (f(Δ)−ok(1))·k�.
The goal of this section is to prove this claim.

Assuming a cycle C and a path P with both ends on C, simultaneously
embedded in an orientable surface Σ, we say that P is C-separated if P is
internally disjoint from C, and the first and the last edges of P appear on
opposite sides of the loop C in Σ. To give formal mathematical meaning of
the variables k, � in Algorithm 2.3, we let ew∗(G) denote the dual edge-width
(the edge-width of the topological dual of G), and we let L(G) denote the set
of orthogonal widths, that is, the set of all integers � possessing the following
property: there is a noncontractible cycle C∗ of length ew∗(G) in the topological
dual G∗, such that � is the length of the shortest path P ∗ in G∗ with both ends
in V (C∗) which is C∗-separated. Note that P ∗ may be a cycle, and so with a
slight abuse of terminology we do allow the ends of P ∗ to be the same.

Clearly, Algorithm 2.3 computes k = ew∗(G) and � ∈ L(G).

Lemma 3.1. If k = ew∗(G) and � ∈ L(G), then � ≥ k/2.

Proof. Let C∗ be a dual cycle of G of length k, and P ∗ be path of length � as
above. Seeking a contradiction, we suppose that � < k/2. The ends of P ∗ on
C∗ determine two subpaths of C∗ (both with the same ends as P ∗), and one of
them, say Q∗, has length at most k/2. Then Q∗ ∪ P ∗ is noncontractible and its
length is at most � + k/2 < k/2 + k/2 = ew∗(G), a contradiction.

The main step towards Theorem 1.1 follows now.

Lemma 3.2. Let G be a graph embedded in the torus with maximum degree Δ,
k = ew∗(G) and � = maxL(G). Then

cr(G) ≥
(

1
12�Δ/2�2

− ok(1)
)

· k� ≥
(

1
3Δ2

− ok(1)
)

· k� ,

where ok(1) → 0 as k → ∞ with fixed Δ.
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Before we move on with the proof, we recall that the p × q toroidal grid is the
Cartesian product Cp × Cq of cycles of lengths p and q. This 4–regular graph
embeds naturally in the torus with the edge-width min{p, q}.

Proof. The main new ingredient for the proof is the following statement, which
guarantees the existence of a large toroidal grid minor contained in G.

Theorem 3.3. Let G be a graph embedded in the torus, k = ew∗(G) and � ∈
L(G). Then G contains a minor isomorphic to the toroidal grid of size

max
(⌊

2
3

k

�Δ/2�

⌋

,

⌈
�

�Δ/2�

⌉)

×
⌊

2
3

k

�Δ/2�

⌋

.

Assuming this result for the moment (we devote the next section to its proof),
we finish the proof of Lemma 3.2.

First we recall that if H is a minor of G, and H has maximum degree at most
4, then cr(G) ≥ 1

4 cr(H) [20]. It is known that the crossing number of the toroidal
grid of size p× q, where p ≥ q ≥ 3, is at least 1

2 (q − 2)p by [14]. Combining these
facts with Theorem 3.3, we obtain

cr(G) ≥ 1
4

· 1
2
(q − 2)p ≥ 1

8
· 2k

3�Δ/2� · �

�Δ/2� − O(�) ≥
(

1
12�Δ/2�2

− ok(1)
)

· k� .

To derive Theorem 1.1(a) from Lemmas 2.4, 2.5 and this estimate of Lemma 3.2,
we note that, using Lemma 3.1 in the first step,

k� + k2/4 ≤ k� + k�/2 ≤ cr(G) · 3
2

(
1

3Δ2
− ok(1)

)−1

≤ cr(G) ·
(

9
2
Δ2 + ok(1)

)

.

The same argument proves also part b) of Theorem 1.1, with a constant factor
3
2 4Δ2 = 6Δ2, if we adapt Lemma 3.2 without asymptotic terms:

Corollary 3.4. Let G be a graph embedded in the torus, k = ew∗(G) and � =
maxL(G). If k ≥ 16�Δ/2�, then cr(G) ≥ 1

4Δ2 · k�.

Proof. We just slightly modify the last line of the proof of Lemma 3.2:

cr(G) ≥ 1
8

(
2k

3�Δ/2� − 2
3

− 2
)

· �

�Δ/2� ≥ 1
8

· k

2�Δ/2� · �

�Δ/2� ≥ 1
4Δ2

· k� .

4 Finding a Grid Minor

For readers’ convenience, we use throughout the coming arguments the same
notation as introduced in Algorithm 2.3 and used in Theorem 3.3.

Thus, let G be a graph embedded in the torus S1 with maximum degree Δ,
and G∗ be its topological dual. Although its embedding may not be unique, the
following arguments can use any embedding G in S1 to derive the conclusions.
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Set k = ew∗(G) and choose any orthogonal width (see in Section 3) � ∈ L(G).
Consequently select any appropriate C∗, a length-k noncontractible cycle in G∗

such that the shortest C∗-separated path P ∗ in G∗ has length �, and denote by
γ the simple loop in S1 determined by C∗.

Recall, in order to finish the arguments of Section 3 we have to provide a
proof of Theorem 3.3, that is, find a sufficiently large toroidal grid minor in the
graph G relatively to the parameters k, �. The face-width fw(G) of an embedded
graph G is the smallest number of points in which a noncontractible loop on
the surface intersects G. It is strongly related to dual edge-width as ew∗(G) ≤
�Δ(G)/2� · fw(G). A nice result by de Graaf and Schrijver [7] says:

Theorem 4.1 (de Graaf and Schrijver). Any graph embedded on the torus
contains a minor isomorphic to the s × s–toroidal grid if s = �2 fw(G)/3� ≥ 5.

This theorem is, unfortunately, not directly usable in our context since the lower
bound on the size of a toroidal grid (cf. Theorem 3.3) implied by it would be
of order k × k, and not of k × � as we need. Hence we need a generalization of
it respecting our “two-directional” parametrization in k, �. We, however, do not
see (whether and) how to generalize the methods of de Graaf and Schrijver [7]—
their proof relies on difficult results within geometry of numbers. That is why
we turn to a graph-theoretical alternative here.

We remark that, although it would likely be possible to derive existence of a
Ω(k)×Ω(�) toroidal grid minor in our G from the details of the proofs in [4, Sec-
tion 8], that approach would not be immediate either, and our chosen elementary
way seems to provide better constants after all.

We start with the following two, similarly looking, claims. The first one has a
straightforward elementary proof using Menger’s theorem, while the second one
simply takes one of the two cycle families from Theorem 4.1.

Lemma 4.2. Let G, γ and k, � be as above. Then the embedded graph G contains
a) at least

⌈
�

�Δ/2�
⌉

pairwise disjoint cycles, all freely homotopic to γ.

b) at least
⌊

2
3

k
�Δ/2�

⌋
pairwise disjoint pairwise freely homotopic cycles which

are not homotopic to an iteration of γ.

We skip the easy proofs here, and we move onto the main theorem.

Proof of Theorem 3.3. Let our graph G be embedded in the torus S1. For
p =

⌈
�

�Δ/2�
⌉

and q =
⌊

2
3

k
�Δ/2�

⌋
, we denote by C1, C2, . . . , Cp the pairwise

disjoint cycles in G by Lemma 4.2(a) and by D1, D2, . . . , Dq those cycles by
Lemma 4.2(b). If p < q, then our statement is a consequence of Theorem 4.1. So
we may assume p ≥ q, and p ≥ 3 since for p ≤ 2 the statement is then trivial. To
simplify notation, we use cyclic indexing of the C-cycles modulo p and of the D-
cycles modulo q. We also let C+ := C1∪C2∪. . .∪Cp and D+ := D1∪D2∪. . .∪Dq.

Remark. It may appear that we already have the desired grid as a minor in
C+∪D+, since every Dj, j ∈ {1, . . . , q}, has to intersect each Ci, i ∈ {1, . . . , p}, in
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some vertex of G. This is because the homotopy types of Ci and Dj on torus are
distinct. The cycles Ci and Dj , however, could have many “zigzag” intersections,
and besides, Dj may “wind” many times in the direction orthogonal to Ci. These
problems will be dealt with in the coming proof.

First, we can assume that among all possible choices of the collection C1, . . . ,
Cp, we have gotten one which minimizes |E(C+) \ E(D+)|. An F -ear is a path
having both ends in a subgraph F , but otherwise disjoint from F . Then the
following is true for our choice:

Claim 4.3. No C+-ear contained in D+ has both ends on the same cycle Ci.

Indeed, if a C+-ear P ⊂ D+ with both ends on some Ci contradicted our claim,
we could rectify the cycle Ci by following P in the appropriate section, thus
decreasing the value of |E(C+) \ E(D+)|.

We further assume that the cycles C1, C2, . . . , Cp appear in this cyclic order
around the torus; precisely, that for none 2 < i < i′ ≤ p the cycles C1 and Ci

share a face in the toroidal (sub)embedding of C1 ∪ C2 ∪ Ci ∪ Ci′ . A quasicycle
is a graph-homomorphic image of a cycle without degree-1 vertices, implicitly
retaining its cyclic ordering of vertices. Consider an arbitrary quasicycle D′

j in
G homotopic to D1 (say, initially D′

j = Dj). We say that D′
j is C+-ear good if

(cf. Claim 4.3) no C+-ear of D′
j has both ends on the same Ci.

With respect to the chosen quasicycle D′
j , we define an intersection sequence

a(j, i), i = 1, . . . , sj , of integers such that D′
j intersects all the C-cycles in the

cyclic order C1 = Ca(j,1), Ca(j,2), . . . , Ca(j,sj), choosing appropriately sj and the
same orientation as with C1, . . . , Cp. We denote by Qj,t, t = 1, 2, . . . , sj , the
path of D′

j (possibly a single vertex) forming the corresponding intersection with
the cycle Ca(j,t), and by Tj,t the path of D′

j between Qj,t and Qj,t+1. Clearly,
a(j, t+1) �= a(j, t) if D′

j is C+-ear good, and hence |a(j, t+1)−a(j, t)| ∈ {1, p−1}
for t = 1, 2, . . . , sj .

A collection of C+-ear good quasicycles D′
1, D

′
2, . . . , D

′
q in G is quasigood if it

satisfies the property that whenever D′
n intersects D′

m in a path P (counting also
the case of a self-intersection with m = n), the following hold up to symmetry
between n and m: P ⊆ Qn,x for an appropriate index x of the intersection
sequence of D′

n for which a(n, x − 1) = a(n, x + 1) and a(n, x) − a(n, x − 1) ∈
{1, 1−p}, and the adjacent paths Tn,x−1,Qn,x,Tn,x of D′

n stay locally on one side
of the drawing of D′

m in S1. Informally, this means that if D′
n intersects D′

m in P ,
then D′

n makes a Ca(n,x−1)-ear with P “touching” D′
m from the left side. For

further reference we say that D′
n is locally on the left side of the intersection P .

Among all choices of a quasigood collection D′
1, D

′
2, . . . , D

′
q in G, we select

one minimizing s1 + . . . + sq where sj is the above length of the intersection
sequence for D′

j .

Claim 4.4. For all 1 ≤ j ≤ q the intersection sequence of D′
j satisfies a(j, t−1) �=

a(j, t + 1) for any 1 < t ≤ sj . Consequently, D′
1, D

′
2, . . . , D

′
q is a collection of

pairwise disjoint proper cycles in G.
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The idea of a proof of this claim is simple—if a(j, t − 1) = a(j, t + 1), then we
could rectify D′

j by following Ca(j,t−1) instead of Tj,t−1 ∪ Qj,t ∪ Tj,t; decreasing
sj by 2. We make this formally precise now.

Let Ri denote the (sub)cylinder of S1 between the boundaries Ci and Ci+1.
Notice that if a(j, t−1) = a(j, t+1) happens for a(j, t)−a(j, t−1) ∈ {−1, p−1},
then neccesarily for some other index t′ it holds a(j, t′ − 1) = a(j, t′ + 1) and
a(j, t′)−a(j, t′ −1) ∈ {1, 1−p}. So suppose for a contradiction that a(j, t−1) =
a(j, t+1) = i and a(j, t) = i+1. Then the path P = Tj,t−1 ∪Qj,t ∪Tj,t is drawn
in Ri with both ends on Ci and “touching” Ci+1. We denote by R0 ⊂ Ri the
open region bounded by P and Ci, and by P ′ the section of the boundary of R0

not belonging to D′
j .

Assuming that R0 is minimal possible over all choices of j for which a(j, t −
1) = a(j, t + 1), we show that no D′

m, m ∈ {1, . . . , q} enters R0: If some D′
m

intersected R0, then D′
m could not enter R0 across P by the “stay on one

side” property of a quasigood collection. Hence D′
m should enter and leave R0

across P ′ ⊆ Ci, but not touch Qj,t ⊆ Ci+1 by minimality of R0. So D′
m would

make a C+-ear with both ends on Ci, contradicting the assumption that D′
m is

C+-ear good.
Now we form Do

j as the symmetric difference of D′
j with the boundary of R0

(hence Do
j follows P ′). To argue that D′

1, . . . , D
o
j , . . . , D

′
q is a quasigood collection

again, it suffices to verify all possible new intersections of Do
j along P ′. So suppose

there is D′
n such that its intersection Qn,x with Ci contains some internal vertex

of P ′. Since D′
n is disjoint from (open) R0, it will “stay on one side” of Do

j . If
Qn,x intersects D′

j , then D′
n must be locally on the left side of this intersection,

and so it is also on the left side of the intersection with new Do
j according to

the above definition. If, on the other hand, Qn,x is disjoint from D′
j , then the

adjacent paths Tn,x−1 and Tn,x have to connect to Ci−1 by Claim 4.3, and so
we have a(n, x) = i and a(n, x − 1) = a(n, x + 1) = i − 1 as required by the
definition for D′

n on the left side. Hence Claim 4.4 is proved.

Claim 4.5. There is a collection of pairwise disjoint cycles D′′
1 , D′′

2 , . . . , D′′
q in G

where D′′
j ⊂ D′

j ∪ Cj , j = 1, 2, . . . , q, such that the cyclic intersection sequence
of each D′′

j is a(j, 1) = 1, a(j, 2) = 2, . . . , a(j, p) = p of length p.

By Claim 4.4 the intersection sequence of each D′
j has a “nice” form a(j, 1) =

1, a(j, 2) = 2, . . . , a(j, p) = p, a(j, p+1) = 1, . . . Our task is (unless already true)
to “shortcut” each D′

j such that it “winds only once” in the direction orthogonal
to the loop γ. First notice that, for all i = 1, . . . , p, every Ci-ear of each D′

j is
Ci-separated (cf. Section 3) by Claim 4.4. We implicitly orient every Ci-ear so
that it intersects Ci+1 before Ci+2. If we take any C1-ear T1 ⊂ D′

1 with start x1

and end y1 on C1, and any one W1 ⊂ C1 of the two paths between x1, y1, then
the cycle D′′

1 = T1 ∪ W1 has the desired intersection sequence.
Secondly, notice that since D′′

1 is not homotopic to D′
1, every D′

j has to inter-
sect D′′

1 in W1. We may assume that the cycles D′
2, . . . , D

′
q have this ordering of

their first intersections with W1 from x1. Now for j = 2, 3, . . . , q we do: let Qj,x

be the intersection of D′
j with W1 closest to x1, and let T ′

j ⊂ D′
j be the unique
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C1-ear starting at Qj,x. Then let Tj ⊂ D′
j be the unique Cj-ear starting inside

T ′
j (and hence not intersecting W1), and Wj ⊂ Cj be the path between the ends

of Tj disjoint from T1. We set D′′
j = Tj ∪ Wj . It is straightforward to verify that

D′′
1 , . . . , D′′

q is a collection of pairwise disjoint cycles in G.
Finally, with Claim 4.5 at hand it is easy to finish the whole theorem: con-

tractions of all the paths of D′′
j ∩ Ci, 1 ≤ i ≤ p, 1 ≤ j ≤ q, into single vertices,

create a subdivision of the q × p toroidal grid in G.

5 Conclusions

We observe that the apparent “weakness” of our approximation (Theorem 3.3) in
requiring large dual edge-width of Ḡ with respect to Δ is unavoidable. Indeed,
a toroidal embedded graph of dual edge-width k = 2 may easily be planar.
By multiplying edges of such a graph and some local modification one can get
(multi)graphs of crossing number one but arbitrarily large dual edge-width on
the torus, at the expense of growing Δ.

It is natural to ask whether our results can be extended to higher genus sur-
faces. The upper bound techniques, as worked out in [3] or [6], seem to provide a
road map for such an extension: Specifically, for G embedded on the orientable
surface Sg, we can iterate g-times the “cut and open” construction from Algo-
rithm 2.3. Denoting by ki the dual edge-width and by �i the associated orthog-
onal width obtained at steps i = 1, 2, . . . , g, we straightforwardly conclude with
a planar drawing of G of at most O

(
g2 · max{ki�i : i = 1, . . . , g}

)
crossings. On

the other hand, a nontrivial lower bound of order Ω(kg�g/Δ
2) is easy to obtain

using Theorem 3.3 at the last iteration. Unfortunately, this bound generally falls
way short of matching the upper bound within a constant factor, even with fixed
g and Δ. We have not yet been able to find a remedy for this problem.

Finally, we remark that our “grid” Theorem 3.3 itself seems to be of some
interest in structural topological graph theory.
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Abstract. Given an n-node plane graph G, the visibility representation
of G is concerned with drawing each node of G using a horizontal line
segment such that the line segments associated with any two adjacent
nodes of G are vertically visible to each other. Finding most compact
visibility representations of plane graphs is not only of theoretical im-
portance but also of practical interest, and has received much attention
in the community of algorithmic graph theory. In this paper, we give a
linear-time algorithm to find a visibility representation of G no wider
than � 4n

3 � − 2. Our result improves upon the previously known upper
bound 4n

3 + 2�√n�, providing a positive answer to a conjecture sug-
gested in the literature about whether an upper bound 4n

3 + O(1) on
the required width can be achieved for an arbitrary plane graph. In fact,
our visibility representation achieves optimality in the upper bound of
width because the bound differs from the previously known lower bound
� 4n

3 � − 3 only by one unit.

1 Introduction

Let G be an n-node plane graph. A visibility representation of G represents each
node of G as a horizontal line segment, called a node segment, such that the
node segments representing any two adjacent nodes of G are vertically visible to
each other (see Figure 1). Computing compact visibility representations of planar
graphs gets a lot of attention in the literature because it has many applications
in algorithmic graph theory [1,10] as well as VLSI layout design [8]. As far as the
area size of a visibility representation is concerned, one may apply the convention
of locating the endpoints of node segments on the grid points of an integer grid.
The compactness of a visibility representation is typically measured in terms
of the width and the size of the smallest bounding rectangle of the visibility
representation on the grid.

Otten and van Wijk [6] gave the first known algorithm for visibility repre-
sentations of planar graphs, although their algorithm reveals no bound for the

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 160–171, 2007.
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Fig. 1. (a) A plane triangulation and (b) its visibility representation

compactness of the output. Rosenstiehl and Tarjan [7], Tamassia and Tollis [9],
and Nummenmaa [5] independently proposed O(n)-time algorithms whose out-
puts are no wider than 2n − 5. Lin et al. [4] improved the required width to
� 22n−42

15 �, and conjectured that any n-node plane graph G has a visibility rep-
resentation no wider than 4n

3 + O(1). Zhang and He [11] further improved the
required width to � 13n−24

9 �. As for the required height, a visibility represen-
tation of G with height no more than n − 1 was reported in [7,9]. Zhang and
He [10,12,13] reduced the required height to � 15n

16 �, then � 5n
6 �, and finally � 4n−1

5 �.
Very recently, He and Zhang [2] proved that every plane graph has a visibility
representation with height at most 2n

3 +2�
√

n/2� and a visibility representation
with width at most 4n

3 + 2�
√

n�.
As for the required size, Zhang and He [12] showed that any visibility rep-

resentation of a planar graph requires a size at least � 2n
3 � × (� 4n

3 � − 3), which
provides a positive answer to Kant’s open question [3] about whether there exists
a plane graph such that all of its visibility representations require width greater
than c × n, where c > 1.

In this paper, we devise an O(n)-time algorithm to obtain a visibility repre-
sentation of a given plane graph with its width no wider than � 4n

3 � − 2. Since
the bound differs from the lower bound � 4n

3 � − 3 (reported in [12]) only by a
unit, the visibility representations produced by our algorithm achieve optimality
in terms of the width of the drawing area. In addition, our result improves upon
the previously known upper bound 4n

3 + 2�
√

n�, answering in the affirmative a
conjecture (by Lin et al. [4]) about whether an upper bound 4n

3 + O(1) on the
required width can be achieved for an arbitrary plane graph.

2 Constructive Ordering of a Plane Triangulation

Without loss of generality, we assume that the input graph G = (V, E) is an
n-node plane triangulation for n ≥ 3. A plane graph is a planar graph associ-
ated with a fixed planar embedding. The embedding of a plane graph divides
the plane into a number of connected regions, each of which is called a face.
The unbounded face of G is called the outer face, whereas the remaining faces
are inner faces. G is a plane triangulation if G has at least three nodes and
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the boundary of each face, including the outer face, is a triangle. In a visibility
drawing (a.k.a., visibility representation) of G, every node of G is represented by a
horizontal line segment, called a node segment, such that the node segments rep-
resenting any two adjacent nodes of G are connected by a vertical line segment,
called an edge segment. The visibility embedding of a drawing of G associates
to each node v a circular counterclockwise ordering of the incidence list (set of
neighbors) Adj(v) of v which is divided into two sublists: one is for the neighbor
nodes which are visible to v from the down side (denoted by Adj1(v)); the other
sublist includes the other nodes (denoted Adj2(v)). For example, in Figure 1(b),
Adj1(node 4) = nodes 2, 8, 3 and Adj2(node 4) = nodes 7, 6, 9, 5. Throughout
the paper, the degree of a node v is denoted deg(v); the x-coordinate of the left
(resp. right) endpoint of the node segment representing v in a visibility draw-
ing is denoted x−(v) (resp. x+(v)); and the y-coordinate of the node segment
representing v in the visibility drawing is denoted y(v).

For ease of explanation, we define the so-called coalescing and splitting oper-
ations of vk+1 with degree three, four, and five as follows. It suffices to define
the operations for degree five; the other operations are similar and simpler. In
Figure 2 (c), we say that the case when Gk+1 becomes Gk is due to coalescing
two nodes vk+1 and u, whereas the case when Gk becomes Gk+1 is due to split-
ting node vk+1 from the common node u of faces Fk,1, Fk,2, and Fk,3. Note that
a splitting operation also can be regarded as either attaching two new faces to
node u or inserting a node at faces Fk,1, Fk,2, and Fk,3. We denote by α3(vk+1, u)
the operation of coalescing vk+1 and u, whereas the operation of splitting vk+1

from u at faces Fk,1, Fk,2, Fk,3 is denoted by β3(vk+1, Fk,1, Fk,2, Fk,3). In a sim-
ilar way, α1(vk+1, u), β1(vk+1, Fk,1) for deg(vk+1) = 3 as well as α2(vk+1, u),
β2(vk+1, Fk,1, Fk,2) for deg(vk+1) = 4 are defined.

in Gk+1 in Gk in Gk+1 in Gk in Gk+1 in Gk

(b) deg(vk+1) = 4 in Gk+1(a) deg(vk+1) = 3 in Gk+1 (c) deg(vk+1) = 5 in Gk+1

1

1

vk+1

vr

vp = u

vq
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vr
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vq 2

2

3

3

vr

vp = u

vs

vq
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vt vq
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vr

vp = u

vt vq
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Fig. 2. Illustration of the coalescing and splitting operations

Let π = (v1, v2, ..., vn) be an ordering of all nodes in G, in which v1, v2, v3

are the three nodes of the outer face of G counterclockwise. For each integer k,
3 ≤ k ≤ n−1, the plane graph Gk+1 involving the k +1 nodes v1, v2, ..., vk, vk+1

is produced by splitting vk+1 from some node in Gk. Let Gn = G. We call π a
constructive ordering of a plane triangulation G if the following conditions hold
for each k, 3 ≤ k ≤ n:

(c1) Gk is a plane triangulation with outer edges v1v2, v2v3, v3v1;
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(c2) if 3 ≤ k ≤ n−1, then node vk+1 is split from a node in Gk, and the degree
of node vk+1 is three, four, or five in Gk+1.

We have the following lemma.

Lemma 1. Every n-node plane triangulation G has a constructive ordering,
which can be found in O(n) time.

3 Our Width-Optimal Drawing Algorithm

The section shows the following main result of this paper.

Theorem 1. Given an n-node plane triangulation G, a visibility representation
of G with its width bounded by � 4n

3 � − 2 can be obtained in time O(n).

Consider a constructive ordering π = (v1, v2, ..., vn) of G. Recall that, for k =
3 to n−1, Gk+1 involving k+1 nodes v1, v2, ..., vk, vk+1 is produced by splitting
vk+1 from some node in Gk. In our drawing algorithm, for k ∈ {3, 4, ..., n}, each
inner face in Gk is drawn as an L-shape depicted in Figure 3, which involves
four cases depending on whether the bottom node segment is as wide as the
top node segment and where the middle node segment is placed. The one with
the bottom node segment wider than the top node segment is called a regular
L-shape; otherwise, degenerated L-shape. The one with the middle node segment
placed on the left side is called left L-shape; otherwise, right L-shape. As far
as the width of the drawing of an inner face is concerned, the width of an L-
shape is measured by that of its bottom node segment, i.e., the middle node
segment of a degenerated L-shape is of zero width. Note that this is different
from the definition of the width of a visibility drawing of G, which is measured
by that of the bounding box of the drawing. If we only consider the visibility
embedding of an L-shape, then the regular and the degenerated L-shapes with
the same relationship of y-coordinates of the three node segments are viewed
as the same L-shape. By doing so, any visibility drawing D(Gk) of Gk in our
drawing algorithm is composed of a number of L-shapes. Since Gk is always a
plane triangulation, the contour of D(Gk) is also an L-shape.

(a) Regular L-shape (b) Degenerated L-shape
(left L-shape) (left L-shape)(right L-shape) (right L-shape)

Fig. 3. L-shapes

Our algorithm for generating a visibility representation of G no wider than
� 4n

3 � − 2 is stated as follows:
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Algorithm Visibility
Input: a plane triangulation G
Output: a width-optimal visibility drawing of G

1. A constructive ordering π = (v1, v2, ..., vn) of G is obtained by Lemma 1.
2. Initially, we draw all the (six) possible (L-shaped) visibility drawings of G3

as shown in Figure 4 (b)(i), where (vp, vq, vr) = (v1, v2, v3). Note that the
six drawings can be classified into three pairs, where each of the three nodes
v1-v3 serves as a bottom node segment in turn in each pair. Also note that
every drawing has the narrowest width (i.e., two).

3. For each node vk+1, k = 3, 4, ..., n − 1, we maintain six drawings of Gk+1 by
doing the following:
(a) If Deg(vk+1) = 3, then we execute the β1 operation shown in Figure 5.
(b) If Deg(vk+1) = 4, then we execute the β2 operation shown in Figure

6, depending on the shapes of drawings of Fk,1 and Fk,2 in each of six
drawings of Gk.

(c) If Deg(vk+1) = 5, then we execute the β3 operation shown in Figure 7,
depending on the shapes of drawings of Fk,1, Fk,2, and Fk,3 in each of
six drawings of Gk.

Appropriately adjust the drawings of the other faces on the left, right, top,
and bottom of the drawings transformed from the drawings of Fk,1, Fk,2,
and Fk,3.

4. Compress the width of each of the six drawings of Gn = G as much as
possible. Then output the drawing of G with the narrowest width.

Note that each of Figures 6 (a) and (b) includes four possible cases depending
on that the two input L-shapes are left (denoted l) or right (denoted r) L-shape,
e.g., Figure 6(a)(1-ii) is the case when the configuration of the two input L-
shapes is rl, which means that from the left to the right the first input L-shape
is a right L-shape and the second input L-shape is a left L-shape. According to
this classification, we demonstrate all possible cases of the β2 operation in Figure
6. In a similar way, all possible cases of the β3 operation are demonstrated in
Figure 7. As a result, we have the following observation, upon which Step 3 of
Algorithm Visibility is based.

Observation 1. If every inner face in Gk is drawn as an L-shape, then Fig-
ure 5 (resp., Figure 6 and Figure 7) illustrates all the possible cases of the β1

(resp., β2 and β3) operation. Furthermore, the bottom node segment of each of
the six drawings of any face rather than Fk,1–Fk,3 is not modified in executing
the operation.

Before showing the proof of the main theorem in detail, some notations are
given as follows. Recall that, in Figure 3, the width of L-shape D(F ) of an
inner face F is determined by that of its bottom node segment, so we denote
by wb(D(F )) the width of the bottom node segment of D(F ). Note that each
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(b) Six drawings of a good face with the narrowest width(a) A face F in Gk
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Fig. 5. The splitting operation of node vk+1 with degree three
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Fig. 7. The splitting operation of node vk+1 with degree five

iteration of Step 3 in our algorithm maintains six visibility drawings of Gk+1. Let
L denote a face or a subgraph in Gk+1. The L-shapes of L appearing in the six
drawings are denoted by D1(L)-D6(L), and D(L) = {D1(L), D2(L), ..., D6(L)}.



Width-Optimal Visibility Representations of Plane Graphs 167

Then we define ωb(L) = (wb(D1(L)), wb(D2(L)), ..., wb(D6(L))), and the sum
of widths of the six drawings is denoted as s(L) =

∑6
i=1 wb(Di(L)). With the

above notations, we have the following observation.

Observation 2. The six drawings of every face F in D(Gk+1) produced by Step
3 of Algorithm Visibility can be classified into three pairs, where each of the
three nodes of F serves as a bottom node segment in one of the three pairs.

By the above observation, the six visibility drawings D1(Gk+1)-D6(Gk+1) of
Gk+1 can be classified into three pairs, in which we say that D2i−1(Gk+1) and
D2i(Gk+1) are the i-th pair of drawings, 1 ≤ i ≤ 3, and each of the three nodes
of any face in Gk+1 serves as a bottom node segment in turn in each pair. If node
v serves as a bottom node segment in a certain pair, then we say that the pair is
based on node v. Note that the ordering of pairs does not matter. For example,
the first pair of a certain face in D(Dk) may be said to be the second pair of the
face in D(Gk+1). In fact, since our algorithm starts from the drawings shown
in Figure 4(b)(i), the two drawings of the same pair in D(Gk+1) produced by
Step 3 of our algorithm are almost the same in visualization except for the two
topmost node segments, and they have the same width. As a consequence, we
only need to consider D1(L), D3(L), and D5(L) in the following discussion.

Not only the six drawings of any face can be classified into three pairs, the
input L-shapes of any of the β1, β2, and β3 operations also can be classified into
three pairs according to Observation 2 and the nature of the input L-shapes.
The classification is summarized in Table 1, in which we assume that the nodes
appearing counterclockwise on the contour of the input adjacent faces Fk,1–Fk,3

(resp., Fk,1–Fk,2; Fk,1) for the β3 (resp., β2; β1) operation in Gk are denoted
by u1–u5 (resp., u1–u4; u1–u3), where u1 is the common node of faces Fk,1–Fk,3

(Fk,1–Fk,2; none). Note that there are three possible cases for the β3 operations
in Table 1, and one can check that the union of the three cases just corresponds
to all the possible cases of our β3 operation.

Two adjacent L-shapes are said to form a U-shape if they share the same
middle and bottom node segments (e.g., see the top drawing in Figure 6(2-ii)).
Given i adjacent L-shapes sharing the same bottom node segment in a certain
pair of visibility drawings, a degree-(i + 2) U-shaped insertion is to attach two
new L-shapes forming a U-shape to the bottom node segment, as shown in Figure
8(b). For convenience, the degree-(i+ 2) U-shaped insertion is also called the μi

operation. As executing a μi operation in a pair of drawings (Figure 8(b)), the
operation in the other two pairs must be of the case shown in Figure 8(c) by
Observation 2. Comparing Table 1 with Figure 8, one can observe that the β1

operation, the β2 operation, and the first case of the β3 operation in Table 1 are
just of the U-shaped insertions. Since we observe from Figure 8 that in general the
width vector ωb of the six drawings of Gk is increased by (+2, +2, +1, +1, +1, +1)
after executing a U-shaped insertion, hence, s(Gk+1) − s(Gk) = 8. As a result,
if our six visibility drawings are produced only by U-shaped insertions, then the
drawing with the narrowest width among the six ones must be no wider than
the average of the total sum of widths, i.e., � 12+8×(n−3)

6 � = � 4n
3 � − 2 (since

s(G3) = 12 and there are (n − 3) insertions), as required.
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Table 1. The three pairs of the input L-shapes (the six drawings) of the β1, β2, and
β3 operations

1st pair 2nd pair 3rd pair

β1 Figure 5: vp = u1 Figure 5: vp = u2 Figure 5: vp = u3
or μ1

β2 Figure 6(b): vp = u1 Figure 6(a): vr = u3, vq = u4 Figure 6(a): vr = u3, vq = u2
or μ2

β3 Figure 7(c): vp = u1 Figure 7(a) excluding (1-ii-b): Figure 7(a) excluding (1-ii-b):
or μ3 (vq, vr , vs) = (u2, u3, u4) (vq, vr, vs) = (u5, u4, u3)

Figure 7(b) (2-i-b), (2-ii-c): Figure 7(d) (2v-ii-a), (2v-ii-b): Figure 7(b) (2-i-a), (2-ii-a),
β3 (vp, vt) = (u1, u5); (vp, vq, vr) = (u1, u2, u3) (2-v), (2-vi-a):

Figure 7(b) (2-ii-b), (2-vi-c): {vr, vs} = {u3, u4}
(vp, vq) = (u1, u5)

β3 Figure 7(d) (2v-i-a), (2v-i-b): Figure 7(d) (2v-i-a), (2v-i-b): Figure 7(a)(1-ii-b):
(vp, vr) = (u1, u4) (vp, vr) = (u1, u3) vp = u1, {vq, vt} = {u2, u5}

(b) 1st pair (c) 2nd pair or 3rd pair
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Fig. 8. Illustration of the μi operation

With respect to D(G), a constructive ordering is called U-shaped construc-
tive ordering if a drawing in D(G) is constructed only by U-shaped insertions.
Fortunately, we have the following observation.

Observation 3. There exists a U-shaped constructive ordering with respect to
D(G), produced by Step 3 of Algorithm Visibility.

From Figure 5(ii), the drawing width is increased by two units after executing
a μ1 operation ( β1 operation) at an L-shape with wb = 1. Therefore, if the μ1

operation is executed at a face F where the number of pairs of the L-shapes
with wb = 1 is at least two, then s(Gk+1) − s(Gk) ≥ 10 > 8, which is not our
required result. As a result, in order to guarantee that s(Gk+1) − s(Gk) = 8,
we require to adjust the edge segments such that every μ1 operation is always
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executed at a so-called good face. We say that a face F is good in D(Gk) if
ωb(F ) = (p, p, q, q, r, r) such that

– at most one of p, q, r is one;
– p + q + r ≥ 6.

Figures 4 (b)(i) (ωb = (2, 2, 2, 2, 2, 2)) and (b)(ii) (ωb = (3, 3, 2, 2, 1, 1)) illustrate
two possible cases of a good face with narrowest width. Note that we need
condition p+ q + r ≥ 6 so that any face in the graph transformed after executing
more than one μ1 operation at face F can be adjusted to be good.

In our discussion, if there is a μ1 operation executed at a face F which is not
good, then face F may be adjusted to be good by borrowing a unit of width
from the other faces (in fact, adjusting the edge segments), without changing
the width of the whole drawing. After executing the μ1 operation, the unit of
width will be returned to its creditors. Take Figure 9 for example. Consider a
μ1 operation executed at face F2 with ωb(F2) = (3, 3, 1, 1, 1, 1) (which is not
a good face) in Figure 9(a). Face F2 may borrow a unit of width from region
v2v3v4 (each of faces v5v2v3 and v5v3v4 lends a unit of width) in the second pair
so that it turns out that ωb(F2) = (3, 3, 2, 2, 1, 1), which means that face F2 is
good. After inserting node v6, we observe that ω(F3) = (2, 2, 2, 2, 3, 3) in Figure
9(b), which implies that F3 is good even if D5(F3) is decreased by one unit of
width. Therefore, face F3 can return a unit of width to region v2v3v4 (each of
faces v5v2v3 and v5v3v4 obtains a unit of width), as shown in Figure 9(b). Note
that a region may lent a unit of width to face F and obtain a unit of width from
the other faces rather than F in different pairs. In light of the above, we realize
that it is a challenging endeavor to guarantee that a sequence of μ1 operations
is always executed at good faces.

For discussing whether a sequence of μ1 operations is always executed at good
faces, we say that a good graph gk, associated with six visibility drawings D(g),
is a graph that satisfies the following recursive conditions:

– any face in g can be adjusted to be good without changing the width of every
drawing in D(g); furthermore, if a face is adjusted to be good by borrowing
a unit of width from a certain region, then a unit of width will be returned
to the region after executing a next μ1 operation.

– if g′ is a graph transformed by executing a μ1 operation at a good face in g,
then g′ is a good graph.

Note that when the μ1 operation is executed at a good face, s(g′) = s(g) + 8
always holds.

In order to achieve the goodness of a face in a region consisting of faces, the
region may need to borrow a unit of width from the other certain region, and
vice versa. In this case, we say that the two regions are dependent; otherwise,
independent. We have the following lemmas (their proofs are omitted due to page
limitation).

Lemma 2. An independent good face is a good graph.
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Fig. 9. Illustration of borrowing and lending a unit of width

Lemma 3. Given a good graph g (associated with six visibility drawings D(g)),
a graph g′ transformed by executing a U-shaped insertion at g is a good graph.
In addition, s(g′) = s(g) + 8.

Based on the above, we are ready to present the proof of Theorem 1 as follows:

(Proof of Theorem 1) We claim that there exists a visibility drawing Dopt

with width � 4n
3 � − 2 which has the same visibility embedding Δ as the visibility

drawing Dour produced by Algorithm Visibility. Since Dour is the visibility
drawing with the minimum width under the visibility embedding Δ by Step 4
of Algorithm Visibility, Dour must be no wider than � 4n

3 � − 2.
Now we show the claim. By Observation 3, we have a U-shaped constructive

ordering with respect to D(G), produced by Step 3 of Algorithm Visibility.
With respect to the U-shaped constructive ordering π = (v1, v2, ..., vn) for D(G),
we proceed by induction on k = 3, 4, ..., n to show that Gk is a good graph;
s(Gk) = s(Gk−1) + 8 for k 
= 3. Initially, the six drawings of G3 is produced by
Step 2 of Algorithm Visibility, as shown in Figure 4(b)(i), i.e., G3 is a good
face. By Lemma 2, G3 is a good graph. Suppose that Gk is a good graph. By
Lemma 3, Gk+1 is a good graph and s(Gk) = s(Gk−1) + 8.

Since G3 is a good face whose drawings are shown in Figure 4(b)(i), s(G3) =
6×2 = 12. Since there are (n−3) U-shaped insertions, each of which contributes
8 units of width, hence, s(Gn) = 12 + (n − 3) × 8 = 8n − 12. As a result, the
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drawing with the minimum width among the six drawings of Gn must be no
wider than the average of s(Gn), i.e., � 8n−12

6 � = � 4n
3 � − 2, as claimed.

As for the running time, it is easy to see that Step 1 and Step 2 in Algorithm
Visibility take time O(n). Step 3 can be implemented in O(n) time as follows.
We do not adjust the drawings of the other faces in each iteration of Step 3.
We only record the relative positions of node and edge segments instead. After
finishing all iterations of Step 3, we produce the six final drawings according
to the information of the relative positions of node and edge segments. Step 4
can be implemented in O(n) time [4]. Consequently, the total running time of
Algorithm Visibility is O(n). ��
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Abstract. This paper studies the problem of computing an upward
topological book embedding of an upward planar digraph G, i.e. a topo-
logical book embedding of G where all edges are monotonically increas-
ing in the upward direction. Besides having its own inherent interest in
the theory of upward book embeddability, the question has applications
to well studied research topics of computational geometry and of graph
drawing. The main results of the paper are as follows.

– Every upward planar digraph G with n vertices admits an upward
topological book embedding such that every edge of G crosses the
spine of the book at most once.

– Every upward planar digraph G with n vertices admits a point-set
embedding on any set of n distinct points in the plane such that the
drawing is upward and every edge of G has at most two bends.

– Every pair of upward planar digraphs sharing the same set of n
vertices admits an upward simultaneous embedding with at most
two bends per edge.

1 Introduction

A book consists of a line called spine and of k half-planes, called pages, having
the spine as a boundary. A book embedding of a planar graph G is a drawing of G
on a book such that the vertices are aligned along the spine, each edge is drawn
in a page and shares with the spine only its end-vertices, and no two edges cross.
A well-known result is that all planar graphs have a book embedding on four
pages and that there exist some planar graphs requiring exactly four pages to
be book embedded [28]. Thus, book embeddings of planar graphs are in general
three-dimensional representations and if one wants to have a two dimensional
drawing of a planar graph where all vertices are collinear, edges must be allowed
to cross the spine. Drawings where spine crossings are allowed are known in
the literature as topological book embeddings [13]. In [10] it is proved that every
planar graph admits a topological book embedding in the plane such that every
edge crosses the spine at most once.
� This work is partially supported by the MIUR Project “MAINSTREAM: Algorithms
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Motivated by parallel process scheduling problems, upward book embeddings
of acyclic digraphs and of posets have also been widely investigated (see e.g.,
[1,19,20,21,26]). An upward book embedding of an acyclic digraph G is a book
embedding of G such that the ordering of the vertices along the spine is a topolog-
ical ordering of G. Informally, an upward book embedding is a book embedding
in which the spine is vertical and the directed edges are drawn as curves mono-
tonically increasing in the upward direction. In contrast to the result in [28]
concerning the book embeddability of undirected planar graphs, the minimum
number of pages required by an upward book embedding of a planar acyclic
digraph is unbounded [19], while the minimum number of pages required by an
upward book embedding of an upward planar digraph is not known [1,19,26].
Only some classes of upward planar digraphs requiring a constant number of
pages have been established to date (see, e.g. [1,9,21]).

This paper studies the problem of computing an upward topological book em-
bedding of an upward planar digraph G, i.e. a topological book embedding of G
in 2 pages, where all edges are monotonically increasing in the upward direction.
Besides having its own inherent interest in the theory of upward book embed-
dability, the question has applications to well studied research topics of graph
drawing and of computational geometry. The first and more immediate applica-
tion is in the context of computing drawings of hierarchical structures where it
is required to consider not only aesthetic constraints such as the upwardness and
the planarity but also semantic constraints expressed in terms of collinearity for
a (sub)set of the vertices; for example, in the application domains of knowledge
engineering and of project management, PERT diagrams are typically drawn by
requiring that critical sequences of tasks be represented as collinear vertices (see,
e.g., [8,27]).

Upward topological book embeddings turn out to be also a useful tool to
address a classical problem of computational geometry. Let G be a planar graph
with n vertices and let S be a set of n distinct points in the plane. A point-set
embedding of G on S is a planar drawing of G where every vertex of G is mapped
to a point of S. The problem of computing point-set embeddings of planar graphs
such that the number of bends along the edges be a small constant is the subject
of a rich body of literature (including, e.g., [3,4,18,22]). We shall discuss how to
use upward topological book embeddings in order to find new results in the
context of point-set embeddings of planar acyclic digraphs with the additional
constraint that all edges are oriented upward.

Finally, an emerging research direction in graph drawing studies the prob-
lem of representing and visually comparing multiple related graphs which typ-
ically come from different application domains including software engineering,
telecommunications, and computational biology. Simultaneous embeddings (see,
e.g., [5,6,11,14,16]) aid in visualizing multiple relationships between the same
set of objects by keeping common vertices of these graphs in the same posi-
tions. An additional contribution of this paper is to apply upward topological
book embeddings in the context of simultaneous embeddings of upward planar
digraphs.
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More precisely, the main results in this paper can be listed as follows.

– It is proved that every upward planar digraph G with n vertices admits
an upward topological book embedding such that every edge of G crosses
the spine of the book at most once. We recall that it is not known how
many pages may be required if the edges must be drawn upward but are
not allowed to cross the spine [1,19,26]. Our result can be regarded as the
upward counterpart of [10], where topological book embeddings of non-
oriented planar graphs are studied.

– It is shown that every upward planar digraph G with n vertices admits a
point-set embedding on any set of n distinct points in the plane, such that
the drawing is upward and every edge of G has at most two bends. Similar
results were previously known only for restricted families of upward planar
digraphs [9].

– Let G1 and G2 be any two upward planar digraphs defined on the same set
of n vertices. An upward simultaneous embedding of G1 and G2 is a pair
of upward planar drawings < Γ1, Γ2 > such that Γ1 is an upward planar
drawing of G1, Γ2 is an upward planar drawing of G2, and for each vertex v
the point representing v is the same in Γ1 and in Γ2.
It is shown that every pair G1, G2 admits an upward simultaneous embed-
ding < Γ1, Γ2 > such that every edge has at most two bends. Non-directed
counterparts of this result are in [11,14].

The proofs of the above results are constructive and give rise to polynomial
time algorithms. In particular, the drawing algorithm to compute upward topo-
logical book embeddings is based on an incremental technique that adds a face
at a time by exploiting the interplay between an st-numbering of the upward
planar digraph given as input and an st-numbering of its dual digraph.

The remainder of the paper is organized as follows. Basic definitions are given
in Section 2. The problem of computing upward topological book embeddings of
upward planar digraphs is studied in Section 3. Upward point-set embeddings
and upward simultaneous embeddings are the subject of Sections 4 and 5, re-
spectively. Finally, conclusions and possible directions for future research can be
found in Section 6. For reasons of space, proofs have been omitted and can be
found in [15].

2 Preliminaries

We assume familiarity with basic graph drawing terminology [2,23,25] and recall
in the following only those definitions and properties that will be extensively
used in the remainder of the paper.

Let G be a digraph and let u, v be any two vertices of G; (u, v) denotes the
directed edge from u to v. An st-digraph is a biconnected acyclic digraph with
exactly one source s and exactly one sink t, and such that (s, t) is an edge of the
digraph. A planar st-digraph is an st-digraph that is planar and embedded with
vertices s and t on the boundary of the external face. The digraph depicted in
Figure 1(a) is an example of a planar st-digraph.
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Property 1. Let v be a vertex of a planar st-digraph G such that v �= s and
v �= t. There exists a path P ⊂ G such that P is directed from s to t and P
includes v.

Property 2. The external face of a planar st-digraph consists of edge (s, t) and
of a directed path from s to t.

Let G be a planar st-digraph. For each edge e = (u, v) of G, we denote by left(e)
(resp. right(e)) the face to the left (resp. right) of e in G. Let s∗ be the face
right((s, t)), and let t∗ be the face left((s, t)). In the rest of the paper we shall
always assume that t∗ is the external face of G. Faces s∗ and t∗ are highlighted
in Figure 1(a).
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Fig. 1. (a) A planar st-digraph G with an st-numbering of its vertices. Digraph G is a
maximal planar st-digraph. (b) st-digraph G (solid) and its dual st-digraph (dashed).
The vertices of the dual st-digraph are numbered according to an st-numbering.

Let G be a planar st-digraph. The dual of G is the digraph denoted as G∗ such
that: (i) there is a vertex in G∗ for each face of G; (ii) for every edge e �= (s, t)
of G, G∗ has an edge e∗ = (f, g) where f = left(e) and g = right(e); (iii) G∗

has an edge (s∗, t∗). Figure 1(b) depicts with dashed edges the dual digraph of
the digraph of Figure 1(a).

Property 3. Let G be a planar st-digraph and let G∗ be the dual digraph of G.
Graph G∗ is a planar st-digraph with source s∗ and sink t∗.

A planar st-digraph is said to be maximal if all its faces are triangles, i.e. the
boundary of each face has exactly three vertices and three edges. Given any
planar st-digraph G, one can always add edges that split faces of G in order to
obtain a maximal planar st-digraph that includes G. Figure 1(a) is an example
of a maximal planar st-digraph.

Property 4. Let G be a maximal planar st-digraph with more than three vertices.
The dual of G is a planar st-digraph without multiple edges.
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A planar drawing of a digraph is upward if all of its edges are curves monoton-
ically increasing in a common direction which is called the upward direction of
the drawing. For example, upward directions of an upward planar drawing could
be the positive y-direction or the positive x-direction. Figure 1(a) is an example
of an upward planar drawing. A digraph that admits an upward planar drawing
is said to be upward planar. As proved in [7,24], upward planar digraphs are
exactly the subgraphs of planar st-digraphs. Also, an upward planar digraph
G can always be augmented to become a maximal planar st-digraph. This can
be done by adding extra edges that “saturate” the faces of an upward planar
drawing of G and by inserting at most two vertices on the external face of such
upward planar drawing of G. One of these two extra vertices is the source of the
external face of the drawing and the second one is the sink of the external face
of the drawing. By using results of [7,12,24] the following can be proved.

Lemma 1. Let G be an upward planar digraph with n vertices. There exists a
maximal planar st-digraph with at most n + 2 vertices that includes G. Also if
an upward planar drawing of G is given, such an st-digraph can be computed in
O(n) time.

An st-numbering of an st-digraph G with n vertices, is a numbering of its vertices
with the integers 1, . . . , n such that: (i) No two vertices have the same number;
(ii) For every edge (u, v), the number of u is less than the number of v. For
example, the indices of the vertices in Figure 1(a) are given according to an
st-numbering of the depicted st-digraph. The number associated to a vertex v
in an st-numbering of an st-digraph is called the st-number of v. Let u and v
be two vertices of an st-digraph with a given st-numbering; if the st-number of
u is less than the st-number of v we say that u precedes v and we denote it as
u <st v.

Lemma 2. [2] Let G be a planar st-digraph with n vertices. An st-numbering
of G can be computed in O(n) time.

3 Computing Upward Topological Book Embeddings

A 2-page book consists of a single vertical line, called spine, and of 2 half-planes
called pages that share the spine as a common boundary. The half-plane on the
left-hand side of the spine is the left page, the other one is the right page. Let p
and q be two points of the spine. We say that p is below q and denote it as p < q
if the y-coordinate of p is smaller than the y-coordinate of q. Let p and q be two
points of the spine of a 2-page book such that p < q. An upward arc (p, q) is a
circular arc contained in one of the pages and passing through p, q and r, where
r is a point of the perpendicular bisector of segment pq at a distance d(p,q)

2 from
the spine. Points p and q are the endpoints of (p, q).

Let G be an upward planar digraph. An upward topological book embedding
of G is an upward planar drawing Γ of G in a 2-page book such that: (i) All
vertices of G are represented as points of the spine (the spine will also be called



Computing Upward Topological Book Embeddings 177

spine of Γ ); (ii) Each edge (u, v) of G is represented in Γ as either an upward
arc or it consists of two upward arcs (u, z) and (z, v) such that (u, z) is in the left
page and (z, v) is in the right page. Let e = (u, v) be an edge of G represented in
Γ by two upward arcs (u, z) and (z, v); we say that z is the spine crossing of e in
Γ . Figure 2(a) shows an upward topological book embedding of the st-digraph
depicted in Figure 1(a). We remark that, by definition, in an upward topological
book embedding every edge can cross the spine at most once.

In the next subsections we study the problem of computing an upward topo-
logical book embedding of an upward planar digraph G. Based on Lemma 1,
we will describe the drawing procedure by assuming that the input digraph is a
maximal planar st-digraph. Subsection 3.1 introduces the notion of k-facial sub-
graph of an st-digraph, which is used as a guideline for the drawing procedure
described in Subsection 3.2.

3.1 The k-Facial Subgraph

Let G be a maximal planar st-digraph with more than three vertices and let
G∗ be the dual digraph of G. By Property 4, G∗ is a planar st-digraph without
multiple edges; by Lemma 2, its vertices can be numbered according to an st-
numbering. Hence, let {v∗1 = s∗, v∗2 , . . . , v∗m = t∗} be the set of vertices of G∗

where the indices are given according to an st-numbering of G∗. See, for example,
Figure 1(b), where the vertices of the dual are numbered according to an st-
numbering. By definition of dual st-digraph, a vertex v∗i of G∗ (1 ≤ i ≤ m)
corresponds to a face of G; in the remainder of the paper we shall denote as v∗i
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Fig. 2. (a) An upward topological book embedding of the maximal planar st-digraph
of Figure 1(a). The drawing is computed by using Algorithm Upward Spine Drawer of
Section 3.2. (b) The 8-facial subgraph of the maximal planar st-digraph of Figure 1(a).
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both the vertex of the dual digraph G∗ and its corresponding face in the primal
digraph G.

Let Vk be the subset of the vertices of G that belong to faces v∗1 , v∗2 , . . . , v∗k.
The subgraph of G induced by the vertices in Vk is called the k-facial subgraph
of G and is denoted as Gk. Face v∗k is called the k-th face of G. Observe that
the topology of a k-facial subgraph of G depends on the particular st-numbering
chosen for G∗. The drawing algorithm of the next section considers a sequence
of k-facial subgraphs of G all defined on a same st-numbering of G∗. Hence,
from now on we shall assume that G∗ is given together with an st-numbering.
As an example, Figure 2(b) shows the 8-facial subgraph of the maximal planar
st-digraph depicted in Figure 1(a) assuming that the st-numbering of its dual is
the one shown in Figure 1(b). The proof of Lemma 3 relies on properties of the
st-numbering of G and of its dual.

Lemma 3. Let G be a maximal planar st-digraph with m faces, let Gk−1 be the
(k − 1)-facial subgraph of G (2 ≤ k ≤ m) and let Gk be the k-facial subgraph of
G. Let v∗k be the k-th face of G consisting of edges (w, w′), (w′, w′′), and (w, w′′).
One of the following statements holds:

(S1): (w, w′′) is an edge of the external face of Gk−1; (w, w′) and (w′, w′′) are
edges of the external face of Gk.

(S2): (w, w′) and (w′, w′′) are edges of the external face of Gk−1; (w, w′′) is an
edge of the external face of Gk.

The following lemma can be proved by induction and by means of Lemma 3.

Lemma 4. Let G be a maximal planar st-digraph with m faces and let Gk be
the k-facial subgraph of G (1 ≤ k ≤ m). Gk is a planar st-digraph.

3.2 The Upward Spine Drawer Algorithm

Let G be a maximal planar st-digraph with m faces, and let v1 = s, . . . , vn = t be
the vertices of G ordered according to an st-numbering of G. Algorithm Upward
Spine Drawer receives G as input and it computes as output an upward topolog-
ical book embedding of G. The computed upward topological book embedding
respects the given upward planar embedding for G. In order to properly describe
the algorithm, we need two additional definitions. Let Γ be an upward topolog-
ical book embedding and let p be a point on the spine of Γ . We say that p is
visible from the right-hand side if the horizontal line through p does not intersect
any upward arc of Γ in the right page. Let v be a vertex of Γ and let p be a
point of the spine such that v < p. We say that segment pv is a safe interval of
v if: (i) Every point of pv is visible from the right-hand side and (ii) pv does not
contain endpoints of any upward arcs (either in the left or in the right page).
Note that the safe interval of v is assumed to be an open set.

A high-level description of Algorithm Upward Spine Drawer is as follows. The
algorithm computes an upward topological book embedding of G on a 2-page
book in m steps. At Step 1, it computes an upward topological book embedding
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of the 1-facial subgraph G1. Let Γk−1 be the drawing computed at the end of
Step (k − 1) (2 ≤ k ≤ m). At Step k, a drawing Γk of the k-facial subgraph Gk

is computed by adding a new face to the drawing Γk−1 of Gk−1. At each step
the following invariant properties are maintained.

I1: Let w and w′ be two vertices of the external face of Gk such that w <st w′

in the st-numbering of G. Then w < w′ in Γk.
I2: For each vertex w of the external face of Gk, w is visible from the right-hand

side and w has a safe interval.

A more detailed description of the steps executed by Algorithm Upward Spine
Drawer is given below; Λ denotes the spine of the 2-page book.

– Step 1, computation of Γ1: Let {s, t, w} be the vertices of the boundary of
face v∗1 . Draw s and t along Λ such that s is below t. Let z be a point of the
spine such that s < z < t. Let (s, z) be the upward arc from s to z in the
left page and let (z, t) be the upward arc from z to t in the right page. Draw
edge (s, t) in Γ1 as the curve formed by (s, z) followed by (z, t). Represent
w as point of the spine such that s < w < z. Select two points zs and zw

of the spine such that s < zs < w and w < zw < z. Edge (s, w) is drawn
as two upward arcs (s, zs), (zs, w) into the left and right page, respectively.
Edge (w, t) is drawn as two upward arcs (w, zw), (zw, t), into the left and
right page, respectively.

– Step k, computation of Γk (2 ≤ k ≤ m): Let Γk−1 be the drawing of Gk−1

and let w1 = s, w2, . . . , wh = t be the counterclockwise sequence of the
vertices along the external face of Γk−1. Add face v∗k to Γk−1 as follows.

• Statement S1 of Lemma 3 holds. The boundary of face v∗k is a three cycle
having two consecutive vertices of the external face of Γk−1, say wi and
wi+1 (1 ≤ i ≤ h − 1), and a vertex v of the external face of Gk. Let p be
a point above wi such that segment wip is the safe interval of wi. Draw
v as a point in the safe interval of wi. Let zwi be a point of Λ such that
wi < zwi < v. Draw edge (wi, v) as the upward arc (wi, zwi) in the left
page followed by the upward arc (zwi , v) in the right page. Let zv be a
point of Λ such that v < zv < p. Draw edge (v, wi+1) as the upward arc
(v, zv) in the left page followed by the upward arc (zv, wi+1) in the right
page.

• Statement S2 of Lemma 3 holds. The boundary of face v∗k is a three cycle
having three consecutive vertices of the external face of Γk−1 denoted
as wi, wi+1, and wi+2 (1 ≤ i ≤ h − 2). Drawing Γk is computed by
adding edge (wi, wi+2) to Γk−1 as follows. Let zwi be a point in the safe
interval of wi. Draw (wi, wi+2) as the upward arc (wi, zwi) in the left
page followed by the upward arc (zwi , wi+2) in the right page.

Figure 2(a) is an example of drawing computed by Algorithm Upward Spine
Drawer when the input is the maximal planar st-digraph of Figure 1(a).

Lemma 5. Let G be a maximal planar st-digraph. Algorithm Upward Spine
Drawer maintains Invariants I1 and I2.
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Lemma 6. Let G be a maximal planar st-digraph. Algorithm Upward Spine
Drawer computes an upward topological book embedding of G.

We are now ready to present the main result of this section.

Theorem 1. Every upward planar digraph G with n vertices admits an upward
topological book embedding. Also, if an upward planar drawing of G is given, such
upward topological book embedding can be computed in O(n) time.

In the next two sections we discuss applications of Theorem 1 to problems of
graph drawing and computational geometry. Namely, Section 4 is devoted to
upward drawings with constraints on the position of the vertices, while Section 5
is concerned with simultaneous embeddings of pairs of upward planar digraphs
sharing their vertex set.

4 Upward Point-Set Embeddings

Let S be a set of n distinct points on the plane and let G be an upward planar
digraph with n vertices. An h-bend upward point-set embedding of G on S is an
upward planar drawing of G such that each vertex is mapped to a distinct point
of S and every edge has at most h bends (notice that the mapping of the vertices
to the points of S is not part of the input). A digraph G is h-bend upward point-
set embeddable if it has an h-bend upward point-set embedding on any set of n
points in the plane. In [9] it has been proved that an upward planar digraph is
1-bend upward point-set embeddable if and only if it has an upward topological
book embedding such that no edge crosses the spine (i.e. it has an upward book
embedding on two pages). It has also been proved that the following classes
of digraphs admit this type of drawing: tree dags [21], unicyclic dags [21], and
two-terminal series-parallel digraphs [9]. Hence, all graphs in these families are
1-bend upward point-set embeddable. However, not all upward planar digraphs
have an upward topological book embedding without spine crossings [21] and
therefore at least two bends are necessary in the general case. By using Theorem 1
and techniques from [10,22] we can prove that two bends per edge are actually
always sufficient. In the following theorem the area of a drawing is the area of
the smallest axis-aligned rectangle enclosing the drawing.

Theorem 2. Every upward planar digraph G with n vertices admits a 2-bend
upward point-set embedding on any set S of n distinct points in the plane. Also, if
an upward planar drawing of G is given, such 2-bend upward point-set embedding
can be computed in O(n log n) time and in area O(W 3), where W is the width
of the smallest axis-aligned rectangle enclosing S.

5 Upward Simultaneous Embeddings

Let G1 and G2 be two planar graphs with the same vertex set, i.e. V (G1) =
V (G2) = V . A simultaneous embedding of G1 and G2 is a pair of drawings of
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G1 and G2 such that each drawing is planar and each vertex is represented by
the same point in both drawings. The problem of computing a simultaneous
embedding of two undirected planar graphs is a classical subject of investigation
in the graph drawing literature (see, e.g. [5,6,11,14,16]). This section considers
the upward version of this problem and uses Theorem 1 together with techniques
from [11,14] to establish upper bounds on the area and number of bends per edge
of the computed drawings.

Let G1 and G2 be two upward planar digraphs with the same vertex set, i.e.
V (G1) = V (G2) = V . An upward simultaneous embedding of G1 and G2 is a
pair of upward planar drawings Γ1 of G1 and Γ2 of G2 such that each vertex
is represented by the same point in both drawings. An upward simultaneous
embedding of G1 and G2 will also be denoted as < Γ1, Γ2 >. Note that the
upward directions of Γ1 and Γ2 in < Γ1, Γ2 > are not required to be the same.

Theorem 3. Every pair of upward planar digraphs G1 and G2 such that V (G1)
= V (G2) = V admits an upward simultaneous embedding with at most two
bends per edge. Also, if a pair of upward planar drawings of G1 and G2 is given,
such upward simultaneous embedding can be computed in O(n) time and in area
O(n2) × O(n2), where n = |V |.

6 Conclusions and Open Problems

In this paper we presented a unified approach to studying book-, point-set, and
simultaneous embeddability problems of upward planar digraphs. The approach
is based on a linear time strategy to compute an upward planar drawing of an
upward planar digraph such that all vertices are collinear and each edge has at
most two bends. Besides having impact in relevant application domains of graph
drawing and computational geometry, the presented results open new research
directions in the area of upward planarity with constraints of the positions of
the vertices. We therefore conclude this paper by discussing some of the most
interesting questions that can be inspired by the presented results.

Upward book embeddability: Theorem 1 shows that an upward topological book
embedding of an upward planar digraph can be computed such that every edge
crosses the spine at most once. It would be interesting to study the problem of
computing upward topological book embeddings with the minimum number of
spine crossings.

Upward point-set embeddability: Theorem 2 shows that every upward planar di-
graph with n vertices has a 2-bend upward point-set embedding on any set on n
distinct points in the plane. In [22] it is proved that point-set embeddings of undi-
rected planar graphs may require two bends per edge. This immediately implies
that the same lower bound also applies to the upward planar case, and therefore
the statement of Theorem 2 is tight in terms of bends per edge. However, it
is well-known that every (undirected) outerplanar graph with n vertices has a
point-set embedding on any set of n points in general position with straight-
line edges and that the outerplanar graphs are the largest family of graphs with
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this property [18]. It would be interesting to characterize those upward planar
digraphs that have an upward point-set embedding with straight-line edges on
any set of points in general position.

Upward simultaneous embeddability: Theorem 3 shows that any two upward pla-
nar digraphs have an upward simultaneous embedding with at most two bends
per edge. It would be interesting to understand whether the number of bends
per edge stated in Theorem 3 is also necessary in some cases. We recall that one
bend on some of the edges may be required to simultaneously embed pairs of
undirected planar graphs [5,14,17] and hence the same lower bound also applies
to the problem of computing upward simultaneous embeddings.

A related question asks whether a straight-line upward simultaneous embed-
ding of two upward planar digraphs G1 and G2 is always possible in the no-
mapping scenario. In this scenario, the goal is to compute a pair < Γ1, Γ2 > of
straight-line upward planar drawings of G1 and of G2 such that the set of points
representing the vertices is the same in Γ1 and in Γ2, but each vertex can have
different coordinates in the two drawings. For example, a straight-forward con-
sequence of the literature is that any number of tree dags and of unicyclic dags
can be upward simultaneously embedded without mapping and with straight-
line edges. Namely, in [21] it is proved that these graphs admit an upward book
embedding with all edges in the same page. Thus, choose a set S of n points in
general position such that: (i) the points are in convex position, (ii) all points
have distinct y-coordinates, and (iii) the two extreme points in the y-direction
are adjacent in the convex hull and all the remaining points are to the left of the
upward-directed line they define. Now compute a straight-line upward point-set
embedding of each tree or unicyclic dag with n vertices by mapping the vertices
to the points of S by increasing y-coordinate and according to the below-to-
above order of these vertices along the spine. We find it interesting to study the
general question about whether any pair of upward planar digraphs (not just
tree dags or unicyclic dags) admit an upward simultaneous embedding without
mapping.
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Abstract. We consider the problems of hypergraph and minor cross-
ing minimization, and point out a relation between these two problems
which has not been exploited before. We present some complexity results
regarding the corresponding edge and node insertion problems. Based on
these results, we give the first embedding-based heuristics to tackle both
problems and present a short experimental study. Furthermore, we give
the first exact ILP formulation for both problems.

1 Introduction

A drawing of a graph G on the plane is a one-to-one mapping of each vertex to a
point in R

2, and each edge to a curve between its two endpoints. The curve is not
allowed to contain other vertices than its two endpoints. A crossing is a common
point of two curves, other than their endpoints. The crossing number cr(G) then
is the smallest number of crossings in any drawing of G. The corresponding
crossing minimization (CM) problem has been widely studied in the literature,
see [15] for an extensive bibliography.

In this paper we consider the problem of finding the Hypergraph Crossing
Number, as defined in the following section. We do so by exploiting a connec-
tion between this crossing number and the Minor Crossing Number, i.e., the
smallest crossing number of any graph G′ which has G as its minor, denoted
by G � G′. Especially the latter concept has yet only been studied in the con-
text of theoretical lower and upper bounds [2,3], but was never before tackled
algorithmically.

Besides from their theoretical appeal, these problems also occur, e.g., for cross-
ing minimal layouts of electrical wiring schemes [3], cf. Fig. 1. Usually, the exact
topology of such a wiring scheme G′′ is not interesting for the connected sub-
graphs which have the same electric potential. Hence we can “merge” these
nodes into one node, which is exactly the operation to obtain a minor G, com-
pute the minor crossing number mcr(G) and expand the graph accordingly to
obtain G′. In this example, we can observe the connection to hypergraphs: by
seeing the impedances on the wires as nodes, we can interpret the wires on the
same potential as hyperedges, i.e., edges with multiple incident nodes.

The computation of both crossing numbers is NP-complete. In this context,
we investigate several subproblems of edge and node insertion (Sections 3 and 5),
and establish novel heuristics for both kinds of crossing numbers (Section 4). We
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(a) (b) (c)

Fig. 1. The wiring scheme (a) cannot be drawn without any crossing. By computing
a minor (b) and considering a realizing graph (c), we obtain an equivalent but planar
wiring scheme.

(a) Subset (b) Edge, tree-based (c) Edge, point-based

Fig. 2. A hypergraph, drawn using different drawing styles

also implemented these algorithms and give an experimental study in Section 7.
Furthermore, in Section 6 we sketch the first exact ILP formulation able to
provably solve both problems to optimality.

The next subsections will give the detailed definitions of the considered prob-
lems and summarize our results.

1.1 Definitions

A hypergraph H = (V, F) differs from an ordinary graph that instead of edges—
which have exactly two incident nodes—we consider hyperedges: a hyperedge
F ∈ F is a proper subset of V , i.e., F ⊂ V , with |F | ≥ 2. See, e.g., [10] for details.
There are two major variants on how to draw hypergraphs [12], cf. Fig. 2: the
subset-standard and the edge-standard. The first variant becomes very confusing
with more hyperedges, and it is ambiguous how to define a consistent notion
of crossings. Hence, most applications, cf. [5,11,14], focus on the edge-standard
which allows two subvariants: in the tree-based drawing style, each hyperedge
F is drawn as a tree-like structure of lines, whose leaves are the incident nodes
of F . If we restrict the tree-like structure of every hyperedge to be a star, we
obtain the point-based drawing style.

Formally, each hyperedge F ∈ F has a set of associated hypernodes NF , which
form the branching points of the line tree: each node v ∈ F is connected to exactly
one n ∈ NF , and all hypernodes NF are treewise connected. By this tree-based
transformation we obtain a traditional graph L. We denote the set of all graphs
L obtainable by such transformations by L(H), and can naturally define:
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Definition 1 (Tree-based Hypergraph Crossing Number). Let H be a
hypergraph. We define the tree-based hypergraph crossing number as

thcr(H) := min
L∈L(H)

cr(L).

The tree-based hypergraph crossing number has the elegant property that it is
equivalent to the traditional crossing number if all hyperedges have cardinality 2.
Because of this property, computing thcr(H) is NP-complete.

We further define the point-based transformation Λ(H) as the special tree-
based transformation, where each hyperedge has exactly one associated hyper-
node, i.e., Λ(H) := (V ∪ F , E(H)) with E(H) := {(v, F ) | v ∈ F, F ∈ F}.
Clearly, this leads to the point-based drawing style and the definition of the
point-based hypergraph crossing number phcr(H) := cr(Λ(H)).

Observation 1. For any L ∈ L(H) we have Λ(H) � L, i.e., the point-based
transformation of H is the minor of any tree-based transformation of H .

Point-based hypergraph planarity of H can be defined as phcr(H) = 0 straight-
forwardly and is equivalent to Zykov planarity [10]. It can be efficiently tested
by transforming H into Λ(H) in linear time and applying any traditional linear-
time planarity testing algorithm to Λ(H). Analogously, tree-based hypergraph
planarity can be defined as thcr(H) = 0. Since L ∈ L(H) is planar if and only
if Λ(H) is planar, all three planarity definitions are equivalent.

Obviously, the point-based hypergraph crossing minimization of H is equiv-
alent to the traditional crossing minimization on the graph Λ(H). Hence we
will focus on computing thcr(H). To understand this crossing number better,
we first have to focus on the minor crossing number [3], also known as the
minor-monotone crossing number, for traditional graphs:

Definition 2 (Minor Crossing Minimization Problem). Let G = (V, E)
be an undirected graph. The Minor Crossing Minimization Problem (MCM)
is to find a realizing graph G′ = (V ′, E′) � G with cr(G′) = mcr(G) :=
minG′′�G cr(G′′), i.e., the minor crossing number of G.

Let W ⊆ V . We can define a minor relation G′ �W G, i.e., G is a W -minor
of G′ if we can obtain G′ from G by only expanding nodes of W . This leads
to the more general W-restricted Minor Crossing Number mcrW (G), i.e., the
smallest crossing number of any graph G′ �W G, and the W-restricted Minor
Crossing Minimization Problem (RMCM). Clearly mcrW (G) = mcr(G), if W =
V . Since nodes with degree less than 4 are irrelevant for the differences between
the traditional and the minor crossing number, we have:

Proposition 1. Let F̂ := {F ∈ F | |F | ≥ 4}. The tree-based hypergraph cross-
ing number is equivalent to the F̂-restricted minor crossing number of Λ(H),
i.e., thcr(H) = mcrF̂ (Λ(H)).

Hence we have to find a realizing graph Λ′ �F ′ Λ(H) with smallest crossing
number, i.e., we may obtain Λ′ only by expanding hypernodes of degree at least 4.
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1.2 Edge and Node Insertion Results

The MCM problem was first stated in [3] and was shown to be NP-complete
in [9]. In Section 2, we will discuss two alternative viewpoints of MCM, which are
fundamental for the results presented thereafter. In the following we will always
consider the W -restricted variant of the minor crossing number. Since W may be
the full set V , the results clearly also hold for the traditional minor-monotonous
case. Note that we consider two embeddings, or rotation-systems, Γ of G and Γ ′

of G′ (G � G′) equivalent, if we can obtain Γ by performing the necessary minor
operations stepwise on G′ and Γ ′ in the natural way: let us merge the connected
nodes a and b with their respective cyclic orders πa = 〈{a, b}, e1, . . . , edeg(a)−1〉
and πb = 〈{b, a}, f1, . . . , fdeg(b)−1〉 of their incident edges. The new node c will
have the cyclic order πc = 〈e1, . . . , edeg(a)−1, f1, . . . , fdeg(b)−1〉.

Similar to the corresponding problems for the traditional crossing number, we
can state the following related problems:

Definition 3 (Minor Edge Insertion). Let G = (V, E) be a planar undi-
rected graph, and let e = {s, t} ∈ V × V \ E be an edge not yet in G. The
W -restricted Minor Edge Insertion Problem with Variable Embedding (MEIV)
is to find the W -restricted minor crossing number of the graph G+ e, under the
restriction that the realizing drawing induces a planar drawing of G.

Given a specific planar embedding Γ of G, the W -restricted Minor Edge Inser-
tion Problem with Fixed Embedding (MEIF) is to find the W -restricted minor
crossing number of the graph G + e, under the restriction that the realizing
drawing induces an embedding of G equivalent to Γ .

For both problems, the equivalent problems concerning the traditional crossing
number can be solved in linear time. In Section 3, we show:

Theorem 1. MEIF and MEIV can be solved optimally in linear time.

In Section 4, we show how to use this result to obtain a heuristic following the
planarization approach.

Definition 4 (Minor Node Insertion). Let G = (V, E) be a planar undi-
rected graph, let v �∈ V be a node not yet in G, and let E′ be edges connecting
v with nodes of V . Let W− := W and W+ := W ∪ {v}. The W−-restricted
(W+-restricted) Minor Node Insertion Problem with Variable Embedding is to
find the W−-restricted (W+-restricted) minor crossing number of the graph
G′ = (V ∪ {v}, E ∪ E′), under the restriction that the realizing drawing induces
a planar drawing of G. We abbreviate these problems MNIV− and MNIV+,
respectively.

Given a specific planar embedding Γ of G, the W−-restricted (W+-restricted)
Minor Node Insertion Problem with Fixed Embedding is to find the W−-restricted
(W+-restricted) minor crossing number of the graph G′, under the restriction that
the realizing drawing induces an embedding of G equivalent to Γ . We abbreviate
these problems MNIF− and MNIF+, respectively.
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The equivalent problem for the traditional crossing number and a fixed embed-
ding can be solved in O(|V | · |E′|) time. An analogous algorithm, together with
the ideas of Theorem 1, can be used to show (see Section 5):

Theorem 2. MNIF− is solvable in O(|V | · |E′|) time.

The problem for the traditional crossing number where all embeddings are con-
sidered, and therefore a special case of MNIV−, is still an open problem. In
contrast to these results, we can show that the problem is hard when the in-
serted node is allowed to be expanded:

Theorem 3. MNIF+ and MNIV+ are NP-complete. This also holds for the case
W = V , i.e., non-restricted minor-monotonicity.

Corollary 1. Let H = (V, F) be a hypergraph, and F �∈ F a hyperedge not yet
in H. Under the restriction that H has to be drawn planar and independent on
whether a specific embedding of H is given or not, we have: computing thcr(H +
F ) is NP-complete.

The theorem is based on the observation that we can turn any planar Steiner
tree problem instance (NP-complete, [6]) into a corresponding MNIF+ problem,
cf. Section 5. The corollary does not follow from Theorem 3 itself, but from its
proof. Furthermore, since computing thcr(H) is a special case of a W -resticted
minor crossing number we have in particular:

Observation 2. The heuristic and exact algorithms presented below can be
used to solve the tree-based hypergraph crossing number problem heuristically
and to optimality, respectively.

2 General Observations

In the following, we will always consider an undirected graph G = (V, E) with
W ⊆ V , and we are interested in mcrW (G). For the following algorithms, there
are two points of view which are helpful when discussing the problem of minor
crossing numbers: we can replace each node v ∈ W with deg(v) ≥ 4 by an
expansion tree Tv, which is incident to all nodes—or their respective expansion
trees—originally incident to v. The nodes of Tv are called the split nodes of v.
The RMCM problem can then be reformulated as finding a tree expansion G′,
i.e., a graph obtained by such transformations, with smallest crossing number.

Another possibility to view the problem is that in the traditional crossing num-
ber problem, edges are allowed to cross. For the minor crossing number, edges
are allowed to cross through vertices, and moreover vertices may even “cross”
other vertices. Such crossings can be seen as crossings between an expansion tree
and a traditional edge, or between two expansion trees, respectively.
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3 Optimal Edge Insertion

In this Section, we present linear time algorithms for MEIF and MEIV. Our task
is to find a tree expansion G′ of G along with an insertion path connecting s
and t, i.e., an ordered list of edges that are crossed when inserting e. Observe
that it is never necessary to expand s or t.

Fixed Embedding. Let Γ be an embedding of G. We define a directed graph
DΓ,s,t = (N, A) as follows. N contains a node nf for each face f ∈ Γ and a
node nv for each node v ∈ W ∪ {s, t}. Each arc a ∈ A has an associated cost
ca ∈ {0, 1}; we have the following arcs:

– For each pair f, f ′ of adjacent faces, we have two arcs (nf , nf ′) and (nf ′ , nf)
with cost 1.

– For each node v ∈ W \{s, t} and face f incident to v we have an arc (nv, nf)
with cost 1 and an arc (nf , nv) with cost 0.

– Finally, we have arcs (ns, nf ) for each face f incident to s and (nf , nt) for
each face f incident to t; all these arcs have cost 0.

Then, the solution to MEIF is the length of a shortest path p in DΓ,s,t from
ns to nt; each arc (nf , nf ′) in p corresponds to crossing an edge separating f
and f ′, and each subpath (nf , nv), (nv, nf ′) corresponds to splitting node v and
crossing the edge resulting from the split.

The number of nodes in N is bounded by |V | + |F |, where F is the set of
faces in Γ , and the number of arcs in A by 4 · |E|, since we have at most four
arcs per edge. Hence, we can apply breadth-first-search for finding a shortest
path in DΓ,s,t which takes time O(|V |+ |E|). We remark that BFS can easily be
extended to graphs with 0/1-arc costs. Thus, we can solve MEIF in linear time.

Variable Embedding. In order to solve MEIV, we adapt the algorithm by
Gutwenger et al. [8] which solves the problem for the traditional crossing num-
ber, i.e., W = ∅ and no tree expansions are possible. They showed that it is
sufficient to consider the shortest path B0, v1, B1, . . . , vk, Bk in the BC-tree of G
and independently compute optimal edge insertion paths in the (biconnected)
blocks Bi from vi to vi+1 (0 ≤ i ≤ k, v0 = s, and vk+1 = t). This is also true
when we are allowed to split the nodes W : concatenating the respective paths in
the blocks results in a valid insertion path, and alternately crossing edges from
different blocks or splitting (and crossing through) a cut vertex vi would result
in unnecessary crossings.

Thus, we can restrict ourselves to a biconnected graph G. Let T be the SPQR-
tree of G (an SPQR-tree represents the decomposition of a biconnected graph
into its triconnected components, please refer to [8] for details). We consider the
shortest path p = μ1, . . . , μh in T from a node μ1 whose skeleton contains s to a
node μh whose skeleton contains t. Let Si be the skeleton of μi (1 ≤ i ≤ h). The
representative rep(v) of a node v ∈ G in a skeleton Si is either v itself if v ∈ Si,
or the edge e ∈ Si whose expansion graph contains v. If W = ∅, the optimal
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algorithm only considers the R-nodes—triconnected components with therefore
unique embeddings—on p and independently computes optimal edge insertion
paths in fixed embeddings of the respective skeletons from rep(s) to rep(t). If
the representative is an edge, we assume that a virtual node is placed on this
edge and serves as start or endpoint of the insertion path.

This approach is invalid if W �= ∅: an optimal insertion path in a skeleton
Si might cross through an endpoint x of the edge representing t in Si, and
continuing this path from x in Si+1 might save a crossing. We circumvent this
problem by processing p in order from μ1 to μh: for each R-node μi where rep(t)
is an edge et = (x, y), we compute three insertion paths px, py, and pe in a fixed
embedding of Si, which are optimal insertion paths to x, y, and et, respectively.
Observe that for the respective lengths �x, �y, and �e of these paths we have
�e ≤ �x, �y ≤ �e + 1. If x ∈ W , �x = �e, and x is contained in the skeleton of
the next processed R-node μj , then x is a possible start node for an insertion
path in Sj; the analogous is true for y; rep(s) is always a possible start node.
We compute the optimal insertion paths in the R-node skeletons by slightly
modifying the search network introduced for MEIF. We introduce a super start
node s∗ and connect it to the possible start nodes. Then we compute shortest
paths from s∗ to rep(t) and, if this is an edge et, to the endpoints of et.

After processing all nodes on p, we reconstruct the optimal insertion path
backwards from t to s. The insertion path in Sh ends in t; we determine which
insertion path in the preceding R-node skeleton to chose by checking which start
node is used, until we reach s. This algorithm can be implemented in linear time,
thus showing that MEIV can be solved in linear time as well.

4 The Planarization Approach for RMCM

The planarization approach is a well-known and successful heuristic for tradi-
tional crossing minimization; see [7] for an experimental study. First, a planar
subgraph is computed, and then the remaining edges are inserted one after an-
other by computing edge insertion paths and inserting the edges accordingly,
i.e., edge crossings are replaced by dummy vertices with degree 4.

In order to apply the algorithms from the previous section in a planarization
approach for RMCM, we need to generalize them, since the insertion of edges
splits nodes and thereby expands them to trees. Furthermore, edges of G and
edges resulting from node splits get subdivided by dummy vertices during the
course of the planarization. We call the resulting paths edge paths and tree paths,
respectively. Hence, we are not simply given two nodes s and t but two node
sets S and T , and we have to find an insertion path connecting a node of S with
a node of T . Thereby, S (T ) is the set of all split nodes of s (t) and all dummy
nodes on edge or tree paths starting at a split node of s (t). The dummy nodes
in these sets have the property that a simple extension of a tree expansion is
sufficient to connect an insertion path to a correct split node; see Fig. 3 for a
visual description.
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(a) Dummy on target (b) Dummy near target (c) Dummy near source and target

Fig. 3. Modification of insertion paths ending at dummy nodes. Bold solid edges are
part of expansion trees, dummy-nodes are denoted by squares.

Before we discuss the details, we give an overview of the planarization ap-
proach for RMCM.

(1) Compute a planar subgraph G′ = (V, EP ) of G.
(2) For each edge e = {s, t} ∈ E \ EP :

(a) Compute S and T .
(b) Find an insertion path p from S to T in G′.
(c) Insert e into G′ according to p by splitting nodes if required and intro-

ducing new dummy nodes for crossings.

It remains to show how to generalize the edge insertion algorithms. In the fixed
embedding scenario, we simply introduce a super start node s∗ connected to
all nodes in S, and a super end node t∗ connected from all nodes in T in the
search network. The following lemma shows the key property for generalizing
the variable embedding case.

Proposition 2. 1. The blocks of G′ containing a node in S (T ) and the cut
vertices of G′ contained in S (T ) form a subtree of the BC-tree of G′.

2. Let T be the SPQR-tree of a block of G′. Then, the nodes of T whose skeletons
contain a node in S (T ) form a subtree of T .

This allows us to compute the shortest paths in the BC- and SPQR-trees in a
similar way as described above. The only difference is that we consider blocks
and skeletons containing any node in S (or T ). The computation of insertion
paths in R-node skeletons is generalized as for the fixed case if several nodes of
S or T are contained.

In [7], two important improvement techniques for the planarization approach
are described which are both also applicable for RMCR. The permutation strat-
egy calls step (2) several times and processes the edges in E \ EP in random
order. The postprocessing strategy successively removes an edge path and tries
to find a better insertion path. This can also be done for tree paths which in
fact is a key optimization of our approach, since it allows to introduce crossings
between two tree expansions as well. Finally, we remark that we also contract
tree paths during the algorithm if they no longer contain a dummy node and
thus become redundant.

5 Optimal Node Insertion

In this section we prove the theorems regarding the minor node insertions.



192 M. Chimani and C. Gutwenger

Algorithm for Theorem 2. We show that MNIF− is solvable in O(|V | · |E′|).
Let U be the nodes of V incident to edges of E′. We can solve the node

insertion problem with fixed topology for the traditional crossing number by
considering the dual graph D of G with respect to Γ . Each node in D is la-
beled with a number which is initially 0. We then start a BFS for each u ∈ U ,
augmenting D with edges between u and its incident faces. The nodes of U are
incremented by the BFS-depth, for each different u. Finally, each node of D
holds the sum of the shortest distances between itself and the nodes U . We then
simply pick a node of D with smallest number, and insert the new node v into
the corresponding face in Γ .

Using the ideas from the above sections, we can use the same algorithm but
allowing edges to cross through nodes. Since all inserted edges are incident to
v, they will not cross each other in any optimal node insertion. Therefore, no
conflicting edge-node crossings can occur, other then ones based on paths with
equal length. Such conflicts can easily be resolved by choosing any of the con-
flicting paths for both inserted edges. The correctness and running time of the
algorithm follows directly. ��

Proof of Theorem 3. We show that MNIF+ and MNIV+ are NP-complete.
We can restrict ourselves to MNIF+. Since a planar 3-connected graph has

only a unique planar embedding and its mirror, we naturally have NP-complete-
ness for MNIV+ if MNIF+ is NP-complete. We only briefly sketch the idea of
the proof.

We reduce to the planar Steiner tree problem, which is known to be NP-
complete [6]. Thereby we are given a planar graph D with integer edge-weights
and a subset of its nodes are marked as terminals. We ask for a weight-minimum
tree T connecting all terminals (and possibly some other nodes). Let G be the
dual of D, then finding the Steiner tree in D becomes equivalent to finding
a treewise expansion for the node v which we want to insert into G minor-
monotonously. Since the integer edge-weights can be bounded to be a polynomial
in the graph size, we can replace each edge of weight w by a simple path of w
edges, thus only polynomially enlarging the given graph. Hence we have NP-
completeness for MNIF+. ��

6 An ILP Formulation for RMCM

We briefly sketch how to construct an integer linear program to solve the RMCM,
and therefore also the hypergraph crossing minimization problem, to optimality.
We base our formulation on the ILP for CM, presented in [4]: its main idea is
to have variables xe,f for each pair of edges e and f , which are 1 if the edges
cross and 0 otherwise. To circumvent problems with the realizability checking of
solutions, the graph G is first modified such that each original edge is replaced by
a simple path of multiple edges. The ILP is then based on Kuratowski constraints,
i.e., for each K5 and K3,3 subdivision contained in (partial planarizations of) G
we have an inequality which requires at least one crossing.
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We can use this ILP by considering tree expansions of G. We replace each
node v ∈ W , with deg(v) ≥ 4, by a vertex set V ′

v with |V ′
v | = 2 deg(v) − 2.

Each edge originally incident to v is incident to a unique vertex of this set. By
augmenting V ′

v with edges, we can model any treewise connection of the vertices
{w ∈ V ′

v | deg(w) = 1}. Hence, considering the edges E′
v of the complete graph

on the set V ′
v , we introduce 0/1-variables ye for all e ∈ E′

v. If such a variable
is 1, the corresponding edge is used for the treewise connection of V ′

v .
We now require two main types of constraints: we can generalize the Kura-

towski constraints straight-forwardly. Let R be the set of edges with y variables
which are contained in some Kuratowski subdivision K. We can subtract the
term

∑
e∈R(1 − ye) on the right-hand side of the corresponding ≥-constraint,

i.e., we only require a crossing on K if all its edges are selected.
Additionally, we have to assure the treewise connection for each V ′

v . Therefore
we require to select exactly |V ′

v | − 1 edges of E′
v for each set V ′

v , and assure
connectivity via traditional cut constraints:

∀v ∈ W, deg(v) ≥ 4, ∀∅ �= S ⊂ V ′
v :

∑

u∈S,w∈V ′
v\S

y{u,w} ≥ 1.

Note that all these constraints can be added dynamically within a Branch-and-
Cut framework using known separation routines. Nonetheless, the resulting ILP
seems to be too large even for relatively small graphs, and it is therefore mainly
of theoretical interest.

7 Experiments

We implemented our algorithms as part of the open-source Open Graph Drawing
Framework (OGDF, [13]). We conducted two series of experiments on a Windows
PC with a Pentium 4 (3.4 GHz) processor and 2 GB RAM.

The first experiment uses the well-known Rome benchmark set [1], which has
been used for many studies on the traditional crossing number, e.g., [4,7]. It con-
sists of 11528 real-world graphs with 10–100 nodes. We restricted ourselves to
the 8013 non-planar graphs with at least 30 nodes, which have an average den-
sity of 1.34. Our main focus was to investigate how the minor crossing number
compares to the traditional crossing number in real-world settings. Fig. 4 shows
the average crossing numbers and minor crossing numbers per graph size. We
can see that the minor crossing minimization leads to roughly 35% less crossings
on average. While this diagram shows the results for variable embeddings, the
diagram looks nearly identical when considering random fixed embeddings, al-
though the absolute crossing numbers are of course a bit higher. In both cases, for
the large graphs, the realizing graphs have about 10% more nodes then the orig-
inal graphs, and roughly 8% of the graphs’ nodes are substituted by expansion
trees. All graphs can be solved clearly under a second for the fixed embedding
case and under 30 seconds for the variable case. For the latter, the 100-node
graphs required 5.5 seconds on average.
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Fig. 4. Results for the Rome graphs (variable embedding)

FIX VAR
name |V | |F| |E(H)| phcr time thcr time phcr time thcr time

b01 43 47 128 32 0.17 18 0.16 33 6.36 18 4.94
b02 25 27 73 12 0.05 8 0.06 12 0.78 8 0.59
b03 148 156 432 148 1.86 58 1.33 131 3:26.91 54 1:32.09
b06 42 50 134 54 0.33 26 0.28 55 13.44 24 7.80
b08 166 179 493 298 8.31 153 4.84 297 18:10.75 146 7:48.16
b09 167 169 472 179 2.27 78 1.77 165 4:47.84 68 2:19.27
b10 183 200 553 431 14.31 212 7.06 432 27:2.30 199 13:42.74
c17 4 11 16 0 0.02 0 0.00 0 0.00 0 0.00
c432 153 196 489 312 6.91 178 4.47 297 15:09.39 167 7:27.97
c499 170 243 578 452 21.19 206 9.78 454 42:55.81 197 20:05.69
s208a 111 122 300 28 0.42 19 0.19 26 15.81 16 9.19
s27a 12 17 33 0 0.00 0 0.00 0 0.00 0 0.00
s298 127 136 385 205 2.97 76 2.14 193 5:42.23 69 2:27.92
s344 164 184 448 57 1.12 38 0.81 57 2:01.20 35 1:01.39
s349 165 185 453 60 0.89 39 0.69 57 1:56.17 37 46.95
s382 173 182 500 206 4.14 88 2.49 186 11:17.64 81 3:58.50
s386a 158 172 511 897 3:22.22 258 16.25 850 147:30.55 238 23:40.38
s400 177 186 518 236 4.53 90 2.55 220 10:06.03 86 3:17.03
s420a 233 252 632 82 2.08 54 1.33 75 4:06.20 47 2:16.05
s444 196 205 569 213 3.77 76 2.11 213 8:31.56 77 3:06.83
s510 210 236 640 1159 2:26.14 489 1:01.41 1096 182:57.00 447 67:21.91
s526a 209 218 675 614 51.83 239 10.39 588 104:08.84 225 27:39.41

The second set of experiments deals with hypergraphs. Therefore we chose
all hypergraphs from the ISCA’85, ’89, and ’99 benchmark sets of real-world
electrical networks with up to 500 nodes in their point-based expansion. The
following table summarizes our heuristic results for these graphs, considering
both phcr, using our traditional crossing minimizer [7], and thcr. The times are
given in seconds. We can clearly see the benefit of considering the tree-based
drawing style, as compared to the relatively large point-based crossing numbers.
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Other papers like [5] considered the tree-based drawing style with certain ad-
ditional constraints, in particular requiring certain nodes to lie on the “outside”
of the drawing. Hence our solutions are not directly comparable. Nonetheless, we
think that the numbers show how promising our approach is: the common graphs
s298 and s400 required 428 and 400 crossings, respectively, using the best algo-
rithm in [5], while our best solutions are 69 and 86, respectively. Hence it seems
worthwhile to investigate how to include such constraints into our algorithm.
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2. Bokal, D., Czabarkab, É., Székely, L.A., Vrt’o, I.: Graph minors and the crossing
number of graphs. In: Proc. of 6th Czech-Slovak Int. Symp. on Comb. Graph
Theory, Alg. and Appl. ENDM, vol. 28, pp. 169–175 (2007)

3. Bokal, D., Fijavz, G., Mohar, B.: The minor crossing number. SIAM J. Discrete
Math. 20, 344–356 (2006)

4. Buchheim, C., Chimani, M., Ebner, D., Gutwenger, C., Jünger, M., Klau, G.W.,
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12. Mäkinen, E.: How to draw a hypergraph. Int. J. Comput. Math. 34, 177–185 (1990)
13. OGDF – Open Graph Drawing Framework (2007), See

http://ls11-www.cs.uni-dortmund.de/ogdf
14. Sander, G.: Layout of directed hypergraphs with orthogonal hyperedges. In: Liotta,

G. (ed.) GD 2003. LNCS, vol. 2912, pp. 381–386. Springer, Heidelberg (2004)
15. Vrt’o, I.: Crossing numbers of graphs: A bibliography (2007), See

ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf

http://ls11-www.cs.uni-dortmund.de/ogdf
ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf


On Mixing and Edge Expansion Properties in

Randomized Broadcasting�

Thomas Sauerwald

Department of Computer Science
Fürstenallee 11

33102 Paderborn, Germany
sauerwal@upb.de

Abstract. A very simple and natural broadcasting algorithm is the so-
called push algorithm which has several applications in the area of dis-
tributed computing. Initially, only one vertex of a graph G = (V, E) owns
a piece of information which is spread iteratively to all other vertices: in
each time step t = 1, 2, . . . every informed vertex chooses some neighbor
uniformly at random which then becomes informed and may itself in-
form other vertices in the succeeding time steps. The crucial question is
how many time steps are required such that all vertices become informed
(with high probability).

For various graph classes, involved methods have been developed in
order to show an upper bound of O(log N + diam(G)), where N is the
number of vertices and diam(G) denotes the diameter of G. However,
currently no asymptotically tight bound on the runtime of the push al-
gorithm based on the mixing time exists. In this work we fill this gap
by deriving an upper bound of O(log N + Tmix), where Tmix denotes
the mixing time of a certain random walk on G. After that we give a
simple but useful upper bound which is based on a certain average value
of the edge expansion of G. Unfortunately, both approaches do not give
the right bound for Hypercubes. Therefore, we develop a general way
to combine them and prove that the runtime of the push algorithm is
Θ(log N) on every Hamming graph.

1 Introduction

Models and Motivation: The study of information spreading in large net-
works has various fields of application in distributed computing. Consider for
example the maintenance of replicated databases on name servers in a large net-
work [3,10]. There are updates injected at various vertices, and these updates
must be propagated to all the vertices in the network. In each step, a processor
and its neighbors check whether their copies of the database agree, and if not,
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they perform the necessary updates. In order to be able to let all copies of the
database converge to the same content, efficient broadcasting algorithms have
to be developed.

Broadcasting is closely related to certain mathematical models of epidemic
diseases where each infected person infects some neighbor chosen uniformly at
random [21]. In most of these papers, spreaders are only active in a certain time
window, and the question of interest is, whether on certain networks modeling
personal contacts an epidemic outbreak occurs. Several threshold theorems in-
volving the basic reproduction number, contact number, and the replacement
number have been stated. See e.g. [12] for a collection of results concerning the
mathematics of infectious diseases. In contrast to the study of broadcasting, the
underlying networks are usually complete graphs [10].

There is an enormous amount of experimental and theoretical study of broad-
casting algorithms in various models and on different networks. Several (deter-
ministic and randomized) algorithms have been developed and analyzed. Here,
we focus on the time efficiency of randomized broadcasting and study the run-
time of the push algorithm [3] (and very similar algorithms) defined as follows.
Place at the initial time step t = 0 a piece of information r on one of the vertices
of a graph G = (V, E), where N := |V |. Then, in each succeeding time step
t = 1, 2, . . . any informed vertex forwards a copy of r to a communication part-
ner over an incident edge selected independently and uniformly at random. The
advantage of randomized broadcasting is in its inherent robustness against sev-
eral kinds of failures and dynamical changes compared to deterministic schemes
that either need substantially more time [11] or can tolerate only a relatively
small number of faults [15].

Related Work: Most papers dealing with randomized broadcasting analyze the
runtime of the push algorithm on different graph classes. Pittel [20] proved that
with a certain probability an information is spread to all vertices by the push
algorithm within log2 N + lnN + O(1) steps in a complete graph KN . Feige et
al. [10] gave general upper bounds holding for any graph, which were partially
improved and complemented by lower bounds in [7]. Moreover Feige et al. deter-
mined the runtime on random graphs and Hypercubes up to constant factors.
Notably, for Hypercubes the analysis was quite involved. In [8] we analyzed the
runtime of the push algorithm on several other Cayley graphs.

We should also note that various broadcasting models have been analyzed in
some scenarios that allow vertices and/or edges to fail during the algorithm is
executed (e.g. [13]). Most of these papers deal with the worst case asymptotic
behavior of broadcasting algorithms when the failures are governed by an adver-
sary, however, in some papers [7] the random failure scenario is also considered.

Due to the simple and natural definition of the push algorithm, we think that
this algorithm is of independent interest in theoretical computer science, beyond
the applications mentioned earlier. However, the push algorithm is much less
explored than random walks on graph. Therefore, we recently tried to reduce the
runtime of the push algorithm to the so-called mixing time [18] which measures
how fast a random walk converges towards the equilibrium distribution. More
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precisely, we showed in [8] that the runtime of the push algorithm is upper
bounded by the mixing time of a corresponding random walk and an additional
logarithmic factor. Also recently, Boyd et al. [1] considered so-called averaging
algorithms and related them to the mixing time of random walks and to a similar
broadcasting model.

While the focus of the papers cited above and of this one is only on the time
needed to broadcast some information to all nodes of a network, one might also
want to minimize the number of messages needed to do so. It was observed in
complete graphs of size N that the push algorithm needs at least Ω(N log N)
transmissions to inform all nodes of the graph, w.h.p. However, in the case of the
pull algorithm (in this algorithm uninformed vertices call a neighbor u.a.r., and
if this neighbor is informed the node itself becomes informed), if a constant frac-
tion of the nodes are informed, then within O(log log N) additional steps every
node of this graph becomes informed as well, w.h.p. [3,14]. This implies that in
such graphs at most O(N log log N) transmissions are needed if the distribution
of the information is stopped at the right time. Using this fact, in [14] Karp
et al. consider a push and pull algorithm, and presented a termination mecha-
nism in order to bound the number of total transmissions by O(N log log N) in
complete graphs.

Their analysis has been recently extended to random graphs. In the random
graph model considered there, every edge between two vertices exists indepen-
dently with probability p. Note that these graphs are frequently used for mod-
eling peer to peer networks, e.g. [2]. In [6], it was shown that the number of
transmissions is Θ(N log N/ log(pN)) in case of the push and pull algorithm
used by Karp et al. In a very recent work [9], we considered a slightly differ-
ent algorithm, where each vertex may choose 4 different neighbors for push and
pull transmission. Surprisingly, this minor change in the ability of the vertices
leads to an exponential decrease in the number of transmissions which reduces
to Θ(N log log N).

Our Results: The next section contains the basic notation and definitions re-
quired for our analysis. In Section 3 we show that the runtime of the push
algorithm is asymptotically upper bounded by the sum of the mixing time of a
certain random walk on G and log N . In Section 4 we state upper bounds using
edge expansion properties of G. Finally, in Section 5 we develop a completely
new technique which combines lower bounds on some edge expansion measure
with a weaker notion of mixing time. Our method easily applies to Hypercubes
and certain generalizations of them. The last section contains our conclusions.
Due to space limitations, some proofs are omitted.

2 Notation and Definitions

Let G = (V (G), E(G)) denote an unweighted, undirected, simple and connected
graph, where N := |V | denotes the size of the graph1. In most cases, we will

1 We prefer to preserve n for the dimension of certain graphs like Hypercubes.
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consider families of graphs Gn = (Vn, En), where |Vn| → ∞ for n → ∞. By
diam(G) we denote the diameter of G and N(v), deg(v) denotes the neighbor-
hood and degree of some vertex v ∈ V (G), respectively. Furthermore, let δ be
the minimum and Δ be the maximum degree. By Ki we denote the complete
graph formed by i vertices and × denotes the Cartesian product of two graphs.

As already mentioned before, in this paper we mainly consider the following
(parallel) randomized broadcasting algorithm (known as the push algorithm [3]):
Place at time t = 0 an information r on one vertex s of the graph G. In the
succeeding time steps (or rounds) each informed vertex forwards a copy of r
to a communication partner over an incident edge selected independently and
u.a.r. (shorthand for uniformly at random). Throughout this paper, we denote
by I(t) the set of informed nodes at time t. With this notation at hand, a
formal description of the push algorithm can be found in Figure 1 below. This
algorithm will be shortly denoted by RBApush. Note, that the so-called pull-
algorithm, RBApull, is defined similarly with the only difference that the roles of
u and v are interchanged. Here, in each time step each uninformed vertex calls
some neighbor u.a.r. and becomes informed if this neighbor has been already
informed.

Parallel Push Algorithm

1: t ← 0
2: I(t) ← {s}
3: while I(t) �= V do
4: I(t + 1) ← I(t)
5: for all nodes u ∈ I(t) do
6: choose v ∈ N(u) u.a.r.
7: I(t + 1) ← I(t + 1) ∪ {v}
8: end for
9: t ← t + 1

10: end while

Sequential Push Algorithm

1: t ← 0
2: I(t) ← {s}
3: while I(t) �= V do
4: choose u ∈ V u.a.r.
5: choose v ∈ N(u) u.a.r.
6: if u ∈ I(t) then
7: I(t + 1

N
) ← I(t) ∪ {v}

8: end if
9: t ← t + 1

N

10: end while

Fig. 1. Definition of the parallel (original) and sequential version of RBApush. Neglect-
ing constant factors, they have the same runtime on any graph.

Our objective is to determine how many time steps are required to inform
every node of G, whereas we make no assumption on the choice of s ∈ V .
Let Tpush(G, p) := min{t ∈ N | Pr [ I(t) = V ] ≥ 1 − p} denote the runtime of
RBApush in G, i.e. the number of time steps needed by the push algorithm to
inform all vertices of G with probability 1 − p. Note that the push algorithm
requires clearly at least max{log2 N, diam(G)} rounds on any graph [10].

All algorithms introduced yet work synchronously and in a parallel fashion.
However, it is useful to consider the following sequential push algorithm depicted
in Figure 1 whose runtime equals the one of its parallel counterpart, up to a
constant factor [8]. Note that in order to make both algorithms comparable,
the time axis consists now of discrete sub-time steps T := {i + j

N | i ∈ N, j ∈
{0, . . . , N − 1}}.
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We may also consider a sequential broadcasting algorithm RBApush &pull (see
also [14] for a similar parallel model) which combines the push and pull trans-
missions as follows. In each sub-time step t ∈ T a vertex u ∈ V (G) is chosen
u.a.r. which then chooses a neighbor v ∈ N(u) u.a.r. If any of the two vertices is
already informed, then both vertices will be informed after this sub-time step.

3 Mixing Time and Broadcasting Time

In this section we relate the mixing time of a certain random walk on G to
the runtime of the push-algorithm (For an introduction to random walks and
Markov chains, the reader is referred to e.g. [17], [18] or [19]). Typically, a random
walk moves in each step to some neighbor selected uniformly at random. More
generally, a random walk can described by a stochastic transition matrix Q,
with the property that Quv > 0 only if {u, v} ∈ E. Then, a random walk
located at some vertex u moves to some adjacent vertex v with probability
Quv. As usual, for any k ∈ N, Qk denotes the k-step transition matrix. If the
random walk (or the corresponding Markov chain) is ergodic, i.e. irreducible and
aperiodic, it is well-known that the distribution of the random walk converges to
its unique stationary distribution vector denoted by π = (π1, . . . , πN ). For two
given probability vectors (μi)N

i=1 and (νi)N
i=1 let ‖μ − ν‖ = 1

2

∑N
i=1 |μi − νi| be

the variation distance of these vectors. Then the mixing time captures the speed
of convergence, i.e.

TQ
mix(G, ε) := min{t ∈ N | ‖zQt − π‖ ≤ ε for any probability vector z}.

We also require the following generalization of the push-algorithm. Recall
that in the original push algorithm defined in Section 2, each vertex selects one
neighboring vertex u.a.r. Therefore, this selection can be modeled by a matrix
P, where

puv =

⎧
⎪⎨

⎪⎩

0 if u = v,
1

deg(u) if {u, v} ∈ E,

0 if {u, v} /∈ E.

In fact, all stochastic N × N -matrices Q such that quv = 0 for {u, v} /∈ E define
a variant of the sequential push algorithm RBAQ

push. Here, for each t ∈ T one first
chooses one vertex u ∈ V u.a.r. and then this vertex sends the information to
some neighbor chosen randomly according to the u-th row of Q. Notice that P is
perhaps the most natural choice, because all neighbors are selected equiprobable.

In [1] the authors provide a detailed analysis of the convergence rate of certain
averaging algorithms by mainly using spectral analysis and methods from convex
optimization. By combining Theorem 7 and Theorem 11 in [1] we obtain the
following.

Corollary 1. For any graph G and a symmetric stochastic matrix Q defining
an ergodic random walk it holds

TQ
push&pull(G, N−1) = O

(
log N + TQ

mix(G, N−2)
)
.
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Notice that on non-regular graphs, the matrix P as defined before is not symmet-
ric. Therefore, our objectives are to generalize this bound to the non-regular case
and to relate the push-algorithm to the push&pull-algorithm. In the following
two lemmas we only consider sequential algorithms.

Lemma 1. If Q is a symmetric and stochastic N × N -matrix, then

TQ
push(G, N−1) = TQ

pull(G, N−1),

TQ
push(G, N−1) = Θ

(
TQ

push&pull(G, N−1) + log N
)
.

Lemma 2. For P̃ := I − 1
Δ · L, where I is the identity and L is the Laplacian

Matrix of G, we have

TP
push(G, N−1) ≤ TP̃

push(G, N−1) =
Δ

δ
O

(
TP

push(G, N−1)
)
.

Combining both lemmas and Corollary 1 we arrive at the main result of this
section.

Theorem 1. For any graph G = (V, E) we have

TP
push(G, N−1) = O

(
log N + TP̃

mix(G, N−2)
)
.

Lemma 2 says the less Δ
δ is, the less we lose in the bound in Theorem 1 by

the replacement of P by P̃. As shown by the star K1,N−1, we have to replace
P by P̃, because TP

mix(K1,N−1, N
−1) = Θ(log N), but TP

push(K1,N−1, N
−1) =

Θ(N log N) due to the coupon collector’s problem.
We should mention here, that Theorem 1 gives an optimal bound of O(log N),

whenever TP̃
mix(G, N−2) = O(log N). This is in fact the case for various impor-

tant graph classes such as complete graphs, expanders [19], and random graphs.
Also to several Cayley graphs which occur in the analysis of card shuffling [4],
the theorem can be applied.

4 Edge Expansion Properties

In this section we consider the relationship between edge expansion properties
and the runtime of the push algorithm. First we define a certain measure which
captures the edge expansion properties for subsets of vertices having size m.

Definition 1. For any graph G and any integer m ∈ {1, . . . , N − 1} define

Φ(m) := min
X⊆V (G),|X|=m

∑
v∈X

degXc (v)
deg(v)

N
,

where degXc(v) denotes the number of neighbors of v within Xc. If G is regular,
then the first formula can be rewritten as

Φ(m) = min
X⊆V (G),|X|=m

|E(X, Xc)|
2 · |E| .

Here, E(X, Xc) denotes the set of edges connecting X and its complement Xc.
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Lemma 3. Let X1, . . . , XN be geometrically distributed random variables with
parameters p1, . . . , pN > 0. Let X :=

∑N
k=1 Xk, μ := E [X ] =

∑N
k=1 1/pk and

pmin := minN
k=1 pk such that μpmin = Ω(log N). Then Pr [ X ≥ αμ ] ≤ N−1, for

some proper constant α.

Intuitively, it is clear that good edge expansion properties should imply fast
broadcasting which is formalized below.

Theorem 2. For any graph G = (V, E) we have in the sequential model that

E [ Tpush(G) ] ≤
N−1∑

m=1

1
NΦ(m)

,

where Tpush(G) := min{t ∈ T | I(t) = V }. If for each 1 ≤ m′ ≤ N − 1,
(
∑N−1

m=1 1/Φ(m)) · Φ(m) = Ω(log N) then

Tpush(G, N−1) = O
(

N−1∑

m=1

1
NΦ(m)

)

.

Proof. Let Xi be the waiting time (in sub-time steps) until |I(t)| increased from
i to i + 1. Note, that this time is bounded in the sequential push algorithm by
the probability of first choosing a vertex u ∈ I(t) and then choosing a vertex
v ∈ N(v) ∩ I(t)c. Therefore, the probability that I(t) increases by 1 in one
sub-time step equals

∑

v∈I(t)

Pr [ v chosen ] · Pr [ u ∈ N(v) ∩ I(t)c chosen ] =
∑

v∈I(t)

1
N

degI(t)c(v)
deg(v)

.

Hence E [ Xi ] ≤ 1/Φ(i) and simply summing up over all i and translating this
into time steps yields the first claim. The second statement follows directly from
Lemma 3. 	

The next Proposition shows that the bound of Theorem 2 is almost tight.

Proposition 1. In the sequential model we have

1. If G = KN/2 × K2, where 2 divides N , then
∑N−1

m=1
1

NΦ(m) ≤ 2 lnN,

2. If G = KN , then
∑N−1

m=1
1

NΦ(m) ≤ 2N−1
N ln N.

3. On any graph G = (V, E) we have Tpush(G, f(N)) ≥ log
e1− 1

Δ
N + lnN −

o(ln N) ≥ 2 lnN − o(ln N), where f(N) is a proper function such that
limN→∞ f(N) = 1.

Note that we have TP̃
mix(KN/2×K2, Θ(1)) = Ω(N), but TP̃

push(KN/2×K2, N
−1)=

O(log N). This implies that the bound of Theorem 1 overestimates the runtime
on this graph drastically. The second point and third point of this proposition
imply that complete graphs have (up to low order terms) the lowest broadcasting
time among all graphs in the sequential model. Let us compare this result to
the parallel model. Here, the runtime on the complete graph is log2 N + lnN by
a result of Pittel [20], whereas a tight lower bound of log2 N + lnN − o(log N)
could only be shown for regular graphs [7].
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5 Combining Mixing Time and Edge Expansion
Properties

Actually, our investigations are motivated by the fact that the bound of Corollary
1 gives not an upper bound of O(log N) for the Hypercube, since in this case
TP̃

mix(G, Θ(1)) = Θ(log N log log N) (cf.[5]). In the same way, the bound based
on the edge expansion of Theorem 2 would also give a too weak bound. However,
by combining a certain alteration of mixing time with proper lower bounds on
Φ(m) for small m we will overcome these difficulties.

First we require the following technical definition.

Definition 2. [8] A node u ∈ V contacts another node v ∈ V within the time-
interval [a, b], if there exists a path (u1 := u, u2, . . . , um−1, um := v) with
the property ∃t1 < t2 < · · · < tm−1 ∈ [a, b] : ui chooses ui+1 at time ti, i ∈
{1, . . . , m − 1}.

Let us remark that if u is already informed at time a, then v will be also informed
at time b.

Before going into further details let us briefly describe our main idea. Suppose
that it is easy to show that x (x being some proper polynomial number in N)
vertices can be informed in time O(log N), e.g. by lower bounds on Φ(m). Fix
some vertex w. By some symmetry considerations, there also have to be x un-
informed vertices at some time t = O(log N) in order to keep w uninformed at
some time t′ = O(log N) > t. Now assign to each informed vertex one random
walker and let each random walk follow the directions indicated by the trans-
missions of the push algorithm. If after O(log N) steps, each random walk has a
not too small probability to get to an arbitrary vertex, then with a reasonable
chance one random walk will be located on one of these at least x uninformed
vertices and consequently, w will be informed at time t′.

We will now introduce a weaker notion of the mixing rate which turns out
to be very useful. Again it is convenient to consider transition matrices Q :=
1
c I + (1 − 1

c )P, where c′ > 0, to avoid periodicity problems.

Definition 3. For any graph G let ΨQ
t (G) := minu,v∈V Qt

uv.

Observe that for every graph ΨQ
TQ
mix(G,N−2)

(G) ≥ N−1 −N−2. However, Theorem

3 below only requires ΨQ
t (G) ≥ N−β, where β is some proper constant between

1 and 2.

Theorem 3. Suppose that a family of regular graphs satisfies the following prop-
erties,

1. Nα vertices can be informed in time t1 w.p. 1−N−1, regardless of the initial
placement of the information,

2. ΨQ
t2 ≥ N−β , where t2 = O(polylog N),

3. 0 < α < 1 and β < 2 are constants such that β < 3α − 1.
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Then we have that

TP
push(G, N−1) = O(t1 + t2).

Proof. First note that by Lemma 1 we may replace the matrix P by the matrix
Q which only makes the push algorithm slower. Using the first condition, we
have that |I(t1)| ≥ Nα w.p. 1 − N−1. Then let t′ = 2t1 + γt2, where γ > 0
is a sufficiently large constant. Fix some arbitrary vertex w. For some t ≤ t′

let Cw(t) be the set of vertices which contact w within the time-interval [t, t′].
Since G is regular and Q is symmetric, the sequence Cw(t) with decreasing t
evolves in the same way as I(t) with increasing t. Therefore, for a large enough
γ, |Cw(t′ − t1)| ≥ Nα holds with probability 1 − N−1. Let A be the event that
|I(t1)| ≥ Nα and |Cw(t′ − t1)| ≥ Nα occur.

Consider now the following model of interacting random walks (see also [8]).
There are m concurrent random walks on the graph. At each sub-time step
t ∈ T, some vertex is chosen u.a.r., and if it hosts one or more random walks, then
exactly one random walk is allowed to perform a transition according to Q. Here,
ties can be broken by the FIFO-rule, for example. In [8] we already remarked that
the sequential push algorithm can obviously simulate these m interacting random
walks. In particular, the random walks spread the information to the vertices of
G, if they are initially located at some informed vertex. Now distribute at time t1
Nα random walks among V , where each initial position is chosen independently
and u.a.r. Denote by R the set of the initial positions of these m random walks.
Let B be the event, that |I(t1)∩R| ≥ 3

4N2α−1 occurs. By a Chernoff-Bound [18,
p.66], we get

Pr
[

|I(t1 ∩ R)| ≤ 3
4
N2α−1

]

≤ e−
N2α−1

32

and therefore Pr [ B ] ≥ 1 − N−1, if N is large enough.
Then consider only the first t2 transitions of each of these random walks

where we only count sub-time steps in which the corresponding random walk
moves according to Q. After some random walk has performed t2 transitions,
we simply remove it from the graph G. Let us consider the probability that one
fixed random walk will visit some vertex u during these t2 transitions:

Pr [ u will be visited ] ≤
∑

v∈V

Pr [ Random walk starts at v ]
t2∑

t=1

Qt
vu

=
1
N

t2∑

t=1

∑

v∈V

Qt
vu =

t2
N

,

since the matrix Q is doubly stochastic due to the regularity of G. Therefore,
the probability that some fixed vertex is visited by at least 2

1−α different random
walks during their first t2 transitions is bounded by
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(
Nα

2
1−α

)( t2
N

) 2
1−α ≤ Nα 2

1−α N− 2
1−α t

2
1−α

2

≤ N
2

1−α ·(α−1)t
2

1−α

2 = N−2t
2

1−α

2 ≤ N− 3
2 ,

provided that N is large enough. Let C be the event that no vertex is visited by
more than 2

1−α different random walks. Hence, by the Union bound [18] over all
vertices, we get Pr [ C ] ≥ 1 − N− 1

2 . If C holds, then all random walks succeed in
performing t2 transitions after time γ := O( 2

1−α t2 + log N). Let D denote the
event that at least one random walk starting at I(t1) is located on one of the
vertices of Cw(t′ − t1) after having performed t2 transitions in G. Then

Pr [ D ] ≥ 1−
(
1 − |Cw(t′ − t1)| · Ψt2

)|I(t1)∩R| ≥ 1−
(
1 − 1

Nβ−α

) 1
4 (N2α−1)

≥ 1 − e−Nε

,

where ε > 0 is a proper constant, since β − α < 2α − 1. Putting everything
together, we have shown that

Pr [ w ∈ I(t′) ] ≥ Pr [ A ∧ B ∧ C ∧ D ] ≥ 1 − 2N−1 − N−1 − N−1/2 − e−Nε

,

which implies Pr [ w ∈ I(5t′) ] ≥ 1 − N−2. As a consequence, the expected num-
ber of uninformed vertices after 5t′ time steps is N−1 and an application of
Markov’s inequality yields the claim, as t1 = Ω(log n). 	


Note that it is straightforward, but tedious to reformulate Theorem 3 for non-
regular graphs.

We will now introduce the family of so-called Hamming graphs consisting of
the n-dimensional Hypercube as a special case for c = 2.

Definition 4. For any two integers c ≥ 2, n ≥ 1 denote by H(c, n) = Kn
c =∏n

k=1 Kc the (c, n)-Hamming graph, where Ki denotes the complete graph formed
by i vertices.

A moment’s reflection shows that each H(c, n) has N = cn vertices, is regular
of degree (c − 1)n and has a diameter of n. Note also that vertices can be
represented as vectors of [1, c]n. Furthermore, we state the following corollary of
the isoperimetric numbering of Hamming graphs given by Lindsey [16].

Corollary 2. For every Hamming graph H(c, n) we have

Φ(m) ≥
m · (c − 1)·

(
n − logc m�

)

cn · (c − 1) · n .

It is also not too difficult to bound Ψ6 diam = Ψ6n by relating it to the famous
coupon collector’s problem.

Lemma 4. For any H(c, n) we have Ψ6 diam(H(c, n)) ≤ N− 3
2 , whenever N is

large enough.
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Corollary 3. For any H(c, n) it holds that TP
push(H(c, n), N−1) = O(log N).

Proof. Using Corollary 2 and the methods in the proof of Theorem 2, the first
condition of Theorem 3 holds for any constant α < 1 and t1 = O(log N). Fur-
thermore, Lemma 4 gives t2 = O(log N) and β = 3

2 < 2, so the claim follows by
Theorem 3. 	


6 Conclusion

In this paper we derived results relating the push algorithm to the mixing time of
random walks and to edge expansion properties of graphs. In Section 3 we upper
bounded the runtime of this randomized broadcasting algorithm by the sum of
the mixing time and log N . In Section 4 we introduced a certain edge expansion
measure and bounded the runtime by this value. Since for some graphs the afore-
mentioned methods separately may not result in tight bounds, we combined them
in Section 5. Our general finding there easily applies to Hamming graphs and
gives an optimal upper bound of O(log N).

While in this paper, the push algorithm was related to the mixing time of
random walks, it might be also interesting to study its relationship to the cover
time (expected number of steps after a random walk has visited all vertices).
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Abstract. In this paper we propose a novel algorithm that, given a
source robot S and a target robot T , reconfigures S into T . Both S and
T are robots composed of n atoms arranged in 2 × 2 × 2 meta-modules.
The reconfiguration involves a total of O(n) atom operations (expand,
contract, attach, detach) and is performed in O(n) parallel steps. This
improves on previous reconfiguration algorithms [1,2,3], which require
O(n2) parallel steps. Our algorithm is in place; that is, the reconfigura-
tion takes place within the union of the bounding boxes of the source
and target robots. We show that the algorithm can also be implemented
in a synchronous, distributed fashion.

1 Introduction

A self-reconfiguring modular robot consists of a large number of independent
units that can rearrange themselves into a structure best suited for a given
environment or task. For example, it may reconfigure itself into a thin, linear
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shape to facilitate passage through a narrow tunnel, transform into an emergency
structure such as a bridge, or surround and manipulate objects in outer space.
Since modular robots are comprised of groups of identical units, they can also
repair themselves by replacing damaged units with functional ones. Such robots
are especially well-suited for working in unknown and remote environments.

Various types of units for modular robots have been designed and prototyped
in the robotics community. These units differ in shape and the operations they
can perform. In this paper, we consider homogeneous self-reconfiguring modular
robots composed of cubical units (atoms) arranged in a lattice configuration.
Each atom is equipped with an expansion/contraction mechanism that allows it
to extend its faces out and retract them back. Each face of an atom is equipped
with an attaching/detaching mechanism that allows it to attach to (or detach
from) the face of an adjacent atom. Prototypes of cubical atoms include crys-
talline atoms [4] and telecube atoms [5]. The collection of atoms composing a
robot is connected in the sense that its dual graph (vertices correspond to atoms,
edges correspond to attached atoms) is connected. When groups of atoms per-
form the four basic atom operations (expand, contract, attach, detach) in a
coordinated way, the atoms move relative to one another, resulting in a recon-
figuration of the robot. To ensure connectedness of the reconfiguration space,
the atoms are arranged in meta-modules, which are groups of k × k × k atoms
attached to one another in a cubic shape.

The complexity of a reconfiguration algorithm can be measured by the number
of parallel steps performed, as well as the total number of atom operations. In
a parallel step, many atoms may perform moves simultaneously. Reducing the
number of parallel steps has a significant impact on the reconfiguration time,
because the mechanical actions (expand, contract, attach, detach) performed
by the atoms are typically the slowest part of the system. Furthermore, since
atoms may have limited battery power, it is useful to reduce the total number
of mechanical operations (i.e., the atom operations) performed.

Our main contribution in this paper is a novel algorithm that, given a source
robot S and a target robot T , each composed of n atoms arranged in 2 × 2 × 2
meta-modules1, reconfigures S into T in O(n) parallel steps and a total of
O(n) atom operations. Our algorithm improves significantly the previously best-
known reconfiguration algorithms for cube-style modular robots [1,2,3], which
take O(n2) parallel steps as well as O(n2) atom operations. In addition, our
algorithm reconfigures S into T in place, in the sense that the reconfiguration
takes place within the union of the bounding boxes of S and T , while keeping
the robot connected at all times during the reconfiguration. An in place recon-
figuration is useful when there are restrictions on the amount of space that a
robot may occupy during the reconfiguration process. Note that in this work
we have not taken into consideration any issues regarding the robot’s mass or
inertia. However, the “in place” nature of our algorithms mitigates some of the
issues arising from such constraints.

1 Throughout the paper, n refers to the number of robot atoms and m refers to the
number of robot meta-modules, where n = 8m.
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2 Preliminaries

2.1 Robots as Lattices of Meta-modules

There exist atom configurations which cannot be reconfigured, e.g. a single row
of atoms. Connectedness of the reconfiguration space is guaranteed for robots
composed of meta-modules [1,2], where a meta-module is a connected set of k3

atoms arranged in a k×k×k grid. It is desirable that meta-modules be composed
of as few atoms as possible. In our reconfiguration algorithms, meta-modules are
of minimum size consisting of a 2 × 2 × 2 grid of atoms [6,2].

We define two basic meta-module moves (hardware independent) used by our
reconfiguration algorithms, similar to the ones described in [2].

Slide(dirSlide). Slides a meta-module one step in the direction dirSlide with
respect to some substrate meta-modules. This move is illustrated in Fig. 1,
where each box represents a meta-module. The preconditions for applying
this move are: (i) the sliding meta-module (A in Fig. 1a) is adjacent to a
meta-module in a direction orthogonal to dirSlide (B in Fig. 1a), which in
turn is adjacent to a meta-module in direction dirSlide (C in Fig. 1a) and (ii)
the target position for the sliding meta-module is free. This move allows the

Fig. 1. Examples of Slide(x−): (a) Meta-module A slides alone, (b,c) A carries adja-
cent meta-modules

sliding meta-module to “carry” other attached meta-modules (as in Figs. 1b-
c), as long as the target position for a carried meta-module is unoccupied
and the carried meta-module is only attached to other meta-modules moving
simultaneously in the same direction.

k-Tunnel(sPos, ePos). Pushes the meta-module located at sPos into the
robot, and pops a meta-module out of the robot in position ePos. There
are two preconditions for applying this move: (i) sPos is at a leaf node in
the dual graph of the starting configuration (i.e. it is attached to only one
other meta-module) and ePos is a leaf node in the dual graph of the end-
ing configuration, and (ii) there is an orthogonal path through the robot
starting at sPos and ending at ePos, with k orthogonal turns (see Fig. 2).
This move performs an “inchworm” move between successive turns. Thus the
contracted “mass” of sPos is transferred between turns using O(1) motions.

In [7], sequences of atom operations implementing Slide and k-Tunnel for
cube-style robots are illustrated. The robot stays connected at all times during a
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Fig. 2. Examples of Tunnel(Apos, Cpos) with orthogonal turns at Bi, i = 1, 2, 3, 4. (a)
1-Tunnel (b) 2-Tunnel (c) 3-Tunnel (d) 4-Tunnel

meta-module slide or tunnel move. In addition to these two moves, meta-modules
can also attach to and detach from adjacent meta-modules.

As for the complexity, attaching and detaching is done in O(1) parallel steps
using O(1) atom operations. The Slide operation is also implemented in O(1)
parallel steps using O(1) atom operations, no matter how many meta-modules
are carried in the move. The k-Tunnel is implemented in O(k) parallel steps
using O(k) atom operations, as long as no meta-modules are attached along the
path between consecutive turns. Our algorithms ensure this property and only
have the need for k ≤ 4.

2.2 Centralized and Distributed Complexity

We consider both centralized and distributed models of computation. In the cen-
tralized model algorithms (described in Sect. 3), computation is performed only
by a central processing unit in order to determine the sequence of reconfiguration
moves for each meta-module. In Sect. 4 we briefly discuss how to adapt our al-
gorithms to a synchronous distributed model. While this model does not depend
on a central processor, it assumes the existence of a clock, used to synchro-
nize the meta-module moves; each meta-module performs local computations to
determine the sequence of moves it needs to perform synchronously.

In this paper we do not address the issue of reducing the computation time;
however, we observe that straightforward implementations of our centralized
algorithms require O(n2) computation time. The amount of computation per-
formed by each meta-module in the distributed implementations is O(n). Com-
munication time in both models depends on whether information can be broad-
casted to all atoms simultaneously, or if information must propagate through
the network of atoms. Since a total of O(n) information must be communicated,
this takes O(n) time if broadcasted and O(n2) if propagated.

3 Centralized Reconfiguration

In this section we present an algorithm that reconfigures any given source robot,
S, into any given target robot, T , where S and T are each a connected set
of m meta-modules composed of n = 8m atoms. We describe the algorithm
first for reconfiguring 2D robots which consist of a single layer of meta-modules
(Sect. 3.1). We then generalize this to 3D robots (Sect. 3.2).
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3.1 Centralized Reconfiguration in 2D

The main idea behind the algorithm is to transform the source robot S into the
common comb configuration which is defined in terms of both S and T . Then
by executing in reverse the meta-module moves of this algorithm for T , we can
transform the common comb into T . In transforming S into the common comb,
there is an intermediate step in which S is reconfigured into a (regular) comb.

2D Robot to 2D Comb. In a comb configuration, the meta-modules form
a type of histogram polygon [8]. Specifically, the meta-modules are arranged in
adjacent columns, with the bottom meta-module of each column in a common
row (see Fig. 3e). This common row is called the handle; the columns of meta-
modules extending upward from the handle are called teeth.

Initially, the algorithm designates the row containing the topmost meta-
modules of S as the wall (see Fig. 3a). We view the wall as infinite in length.
The wall sweeps over the entire robot, moving down one row in each step. By
having certain meta-modules slide downward with the wall, the teeth of the
comb emerge above the wall. We call this process “combing” the robot. In what
follows we will refer to the row of meta-modules immediately above (below) the
wall as w+ (w−).

Fig. 3. The initial configuration is converted into a comb as it is swept by the wall

Algorithm 1 outlines the combing process. After initializing the wall in Step
1, the loop in line 2 slides the wall down row by row. In each iteration, Step
2.1 labels each wall meta-module as stationary (S) if it has a meta-module ad-
jacent below and moving (M) otherwise (see Fig. 3). Intuitively, moving meta-
modules will move downward to occupy the gap below. Step 2.2 identifies moving
wall components, which are maximal sequences of adjacent moving wall meta-
modules. In Fig. 3b for example, there are three moving wall components consist-
ing of the 1st, 3rd − 6th, and 8th wall meta-modules. A moving wall component
will always have a stationary meta-module adjacent to one or both ends, for
otherwise it would be disconnected from the rest of the robot.

Step 2.3 moves the wall down by one meta-module row. The moving compo-
nents and the teeth attached to them move down with the wall. This is done
by having each moving wall meta-module adjacent to a stationary meta-module
perform a Slide(y−) move, thus moving itself one row below w.r.t. the adjacent
stationary wall meta-module. Figures 3a-3e show the robot configuration after
successive moving wall steps.

A series of attach and detach operations in Step 2.4 prepares the robot for the
next iteration. First, the end meta-modules of the moved components attach on
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the left and right to any newly adjacent meta-modules (if not already attached).
Then each stationary meta-module (now in row w+) detaches itself from any
adjacent meta-modules to its left and right. Finally, all meta-modules in w−

that are now adjacent to a wall meta-module attach to this wall meta-module.

Algorithm 1. 2D-Combing(S)
1.Set wall to row containing topmost meta-modules of S.
2.while there are meta-modules below the wall do

2.1 Label wall meta-modules moving or stationary.
2.2 Identify moving wall components.
2.3 Move wall one row lower, carrying moving components and attached teeth.
2.4 Adjust meta-module attachments

Lemma 1. The robot configuration forms one connected component at all times.

Proof. Omitted.

Lemma 2. A 2D robot can transform into its comb configuration in place in
O(n) parallel steps and a total of O(n) atom operations.

Proof. Clearly the reconfiguration is within the bounding box of the source
robot. For each of the O(m) iterations, it performs one parallel set of meta-
module Slide operations and three parallel attachment operations, which is
O(m) = O(n) parallel steps. We now consider the total number of atom opera-
tions performed. For each stationary meta-module that emerges above the wall,
there are at most 2 moving meta-modules that slid past it, one on either side.
At most m stationary meta-modules emerge above the wall, so the total number
of Slide operations is bounded by 2m. Since a meta-module is in w+ and w− at
most once and enters the wall at most once, the number of meta-module attach
and detach operations done in Step 2.4 is O(m). The Slide and attach/detach
operations require O(1) atom operations, making the total number of atom op-
erations performed O(m) = O(n). ��

2D Comb to 2D Common Comb. For two combs CS and CT , this section
describes an algorithm to reconfigure CS into the common comb, an intermediate
configuration defined in terms of both CS and CT .

Let hS and hT be the number of meta-modules in the handles of CS and CT ,
and let h = max(hS , hT ). Let S1, S2, . . . , Sh denote the teeth of CS . If hS < hT ,
then let ShS+1, . . . , Sh be simply “empty teeth”. |Si| is the number of meta-
modules on top of the handle meta-module in tooth Si; it does not count the
handle meta-module. We will represent meta-modules by their “coordinates” in
the lattice. When referring to meta-modules by their coordinates, we’ll assume
the comb’s leftmost handle meta-module is at (1, 1). So the set {(i, j) | 2 ≤ j ≤
|Si|+1} is the set of meta-modules in tooth Si. All terms are defined analogously
for comb CT and for comb CU , whose description follows.
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Fig. 4. (a) CS, with meta-modules labeled in reverse lexicographical order. (b) CT

(c) Shaded meta-modules are CS after extending its handle’s length to match CU . CU

consists of all shaded and unshaded boxes. Labels indicate which meta-modules moved
to form the handle. (d) Shaded meta-modules form the common comb for CS and CT .

Let CU be a comb that is the union of CS and CT in the sense that the length
of CU ’s handle is h and its ith tooth has length max(|Si|, |Ti|), 1 ≤ i ≤ h. The
common comb is a subset of CU consisting of its h handle meta-modules and
a ‘right-fill’ of the m − h teeth meta modules into the shell defined by CU . For
example, Figs. 4a and 4b show CS and CT . In Fig. 4d, CU consists of all the
shaded and unshaded meta-modules; the common comb is all the shaded boxes.

Algorithm 2 describes in detail the process of converting CS to the common
comb. Step 1 initializes queue O with the teeth meta-modules of CS in reverse
lexicographical order on their coordinates. (See the labeled ordering in Fig. 4a.)
This is the order in which teeth will be moved to fill in missing meta-modules
in the common comb. Step 2 lengthens CS ’s handle so that it contains h meta-
modules, moving meta-modules from O to the handle using 1-Tunnel opera-
tions. Figure 4c shows the results of Step 2.

Once the handle is the proper length, then CS ’s teeth are lengthened to match
the lengths of CU ’s teeth, starting with the rightmost tooth. Since CU is the
union of CS and CT , each tooth Si of CS is either the same length as the
corresponding tooth in CU , or it is shorter. A key invariant of the algorithm is
that at the beginning of an iteration in Step 3, O contains exactly those meta-
modules in teeth S1, . . . Si of CS . This is certainly true in the first iteration
when i = h, and can be easily shown to be true inductively for all i. Therefore,
at the start of an iteration, if |Si| > 0 then the next |Si| meta-modules in O
are exactly the teeth meta-modules in Si. These meta-modules are already in
their final locations, and so they are just removed from O (Loop 3.1). Loop
3.2 then moves the next |Ui| − |Si| teeth meta-modules in O to tooth Si using
2-Tunnel operations. Figure 4d shows the resulting common comb.

Observe that in Loop 3.2, tooth oPos is always the top meta-module of the
first non-empty tooth to the left of tooth Si. Therefore, the orthogonal path
followed in the 2-Tunnel operation is from oPos down to the handle meta-
module at the base of the tooth, through a (possibly length 0) section of the
handle containing only empty teeth, and then up to the top of tooth i. No meta-
modules are attached between turns along this path, so the 2-Tunnel operation
requires only O(1) basic operations to complete.
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Algorithm 2 2D-Comb-To-Common-Comb(CS , CU )
1. Let O be a queue of the (i, j) coordinates of the teeth meta-modules (i.e., j > 1)

of CS, in reverse lexicographical order.
2. If hS < h then { extend CS’s handle to length h }

2.1 For i = hS + 1 to h
2.1.1 oPos = O.dequeue()
2.1.2 In CS, 1-Tunnel(oPos,(i, 1))

3. For i = h down to 1 { lengthen teeth of CS, from right to left }
3.1 For j = 1 to |Si| O.dequeue() { remove meta-modules already in tooth Si }
3.2 For j = |Si| + 1 to |Ui| { lengthen tooth Si }

3.2.1 if O.size() = 0 then exit
3.2.2 oPos = O.dequeue()
3.2.3 In CS, 2-Tunnel(oPos,(i, j))

Lemma 3. A 2D robot can transform into a common comb configuration in
place in O(n) parallel steps and a total of O(n) atom operations.

Proof. The reconfiguration takes place within the union of the bounding boxes
of CS and CT , which is contained within the union of the bounding boxes of S
and T . At most m modules are relocated, each by a 1-Tunnel or 2-Tunnel op-
eration requiring O(1) atom operations, resulting in O(m) = O(n) parallel steps
and atom operations. ��

Overall 2D Reconfiguration Algorithm. The general algorithm to reconfig-
ure any m meta-module robot S to any other m meta-module robot T consists of
fourmajor steps. FirstS reconfigures into combCS , then CS reconfigures into com-
mon comb CST . Then the reverse moves of the 2D-Comb-To-Common-Comb

and 2D-Combing algorithms reconfigure CST into CT and then CT into T .

Theorem 1. Any 2D source robot can be reconfigured into any 2D target robot
in place in O(n) parallel steps and a total of O(n) atom operations.

3.2 Centralized Reconfiguration in 3D

Analogous to the 2D case, in 3D the source robot S is also transformed into
a 3D common comb and then into target robot T . In transforming to the 3D
common comb there are two intermediate configurations, a terrain configuration
and a (regular) 3D comb configuration.

Source Robot to 3D Terrain. We use the 3D analog of the 2D-Combing

process, 3D-Combing, to reconfigure S into a 3D terrain. The 3D algorithm
is the same as in 2D, except the wall now consists of an entire 2D horizontal
layer of meta-modules, initially the topmost single layer of S. See Fig. 5. The
final result is that all meta-modules of S having the same (x, y) coordinates
are grouped together to form a contiguous tower of meta-modules. These towers
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Fig. 5. The 3D-Combing algorithm. (a) Meta-modules labeled M form one F -shaped
connected component. (b, c, d) Robot configuration after (1, 2, 3) algorithm iterations.
(d) Final terrain configuration.

extend in the z+ direction, rest on an arbitrarily-shaped, connected base layer
(in the xy-plane), and are attached only to the base layer.

Lemma 4. A 3D robot can transform into a 3D terrain in place in O(n) parallel
steps and a total of O(n) atom operations.

3D Terrain to 3D Comb. A 3D Terrain I is reconfigured into a 3D comb
by applying the 2D-Combing algorithm of Sect. 3.1 to its base layer, thus
reconfiguring the base layer into a 2D comb. As the base meta-modules move
during the reconfiguration, they carry along the towers resting on top. If B(I)
is the base of I, then a call to 2D-Combing(B(I)) using the Slide operation
that carries towers (see Fig. 1c) accomplishes this. After this second combing
pass, the resulting 3D comb robot consists of a 2D comb in the xy-plane (call
this the xy-comb), and each tooth and its handle module in the xy-comb form
the handle of a comb with teeth extending up in the z direction (call these the
z-combs). We immediately have the following result.

Lemma 5. A 3D terrain can transform into a 3D comb in place in O(n) parallel
steps and a total of O(n) atom operations.

3D Comb to 3D Common Comb. Given two 3D combs CS and CT , this
section describes an algorithm to reconfigure CS into the 3D common comb
determined by CS and CT . Let s(t) be the number of z-combs in CS (CT );
equivalently, s(t) is the handle length of CS ’s (CT ’s) xy-comb. We assume CS

(CT ) is positioned with the handle of its xy-comb starting at lattice coordinates
(1, 1, 1) and extending to (s, 1, 1) ((t, 1, 1)). Let Ci

S be the z-comb of CS in lattice
position i, let Si

j be the jth tooth of Ci
S , and let |Si

j | be the number of teeth
meta-modules in tooth Si

j (not counting the handle module at its base). Let hi
S

be the length of Ci
S ’s handle. All terms are defined analogously for combs CT

and CU .
As in 2D, comb CU is the union of CS and CT . Let u be the handle length

of CU ’s xy-comb. The common comb is a subset of CU consisting of the u
handle meta-modules in its xy-comb and its rightmost m − u meta-modules.
More precisely, for each z-comb Ci

U , i = u . . . 1, append to a list I the handle
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meta-modules (i, 2, 1) to (i, hi
U , 1) of Ci

U , followed by the teeth meta-modules of
Ci

U in descending order on their y coordinate (primary key) and increasing order
on their z coordinate (secondary key). The first m − u meta-modules of I are in
the common comb.

Algorithm 3 describes in detail the process of converting CS to the common
comb. In Step 1, the algorithm converts each z-comb Ci

S to the 2D common
comb determined by Ci

U = Ci
S ∪ Ci

T using Algorithm 2. Since Ci
S and Ci

T may
not contain the same number of meta-modules, there may not be enough meta-
modules in Ci

S to fill the entire handle of Ci
U , in which case Ci

S will become only
a portion of the handle that starts with module (i, 1, 1). See Fig. 6a.

Fig. 6. (a) Solid meta-modules are CS after each z-comb is converted to a common
comb. CU consists of the solid and the wireframe boxes. (b) CS after extending its
xy-comb handle to match that of CU . (c) CS during the execution of Step 4.3 of
Algorithm 3, as it lengthens the teeth of C7

S by tunneling meta-modules from C4
S. (d)

The 3D common comb (solid boxes only).

Step 2 creates a queue, O, of meta-modules, in the order in which they will
be used to fill meta-modules of CU . Step 3 extends the length of CS ’s xy-comb
handle so that it matches the length of CU ’s xy-comb handle. Figure 6b shows the
results of this step. The order of the meta-modules in O ensures that each leg of
the path is unattached to other meta-modules, thus allowing the Tunnel move
to be performed in O(1) time. In Step 4, the teeth of each z-comb in CS are
lengthened to match the lengths of the corresponding teeth in CU . Again, the
order of the meta-modules in O ensures that each Tunnel operation follows
a path whose segments are not attached to other meta-modules, allowing O(1)
tunnel moves. A stage of Step 4 is illustrated in Fig. 6c, with Fig. 6d showing
the resulting 3D common comb (solid meta-modules).

Lemma 6. A 3D robot can transform into a common comb configuration in
place in O(n) parallel steps and a total of O(n) atom operations.

Overall 3D Reconfiguration Algorithm. The general algorithm to recon-
figure any 3D m meta-module robot S to any 3D m meta-module target robot
T consists of six stages: S reconfigures into 3D terrain IS , then IS reconfigures
into 3D comb CS , then CS reconfigures into common comb CST , and finally the
reverse moves reconfigure CST into CT , CT into IT , and then IT into T .

Theorem 2. Any source robot can be reconfigured into any target robot in place
in O(n) parallel steps and a total of O(n) atom operations.
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Algorithm 3 3D-Comb-To-Common-Comb Algorithm(CS , CU )
1. For i = 1 . . . s

1.1 2D-Comb-To-Common-Comb(Ci
S , Ci

U ) (with combs parallel to the yz plane)
2. Let O be an empty queue

For i = s down to 1
2.1 Append to O the teeth meta-modules of Ci

S , ordered by increasing
y (primary key) and decreasing z (secondary key)

2.2 Append to O all handle meta-modules of Ci
S except for module (i, 1, 1),

ordered by decreasing y
3. If s < u then { extend the handle of CS ’s xy-comb to length u }

3.1 For i = s + 1 to u
oPos = O.dequeue()
In CS , k-Tunnel(oPos, (i, 1, 1)), for k ∈ {1, 2}

4. For i = u down to 1 { fill in missing meta-modules of each z-comb }
4.1 For j = 1 to |Ci

S | − 1 O.dequeue() { remove meta-modules already in Ci
S }

4.2 For j = hi
S + 1 to hi

U { lengthen handle of Ci
S }

If (O.size() == 0) exit
oPos = O.dequeue()
In CS , k-Tunnel(oPos, (i, j, 1)), for k ∈ {2, 3}

4.3 For j = hi
S down to 1 {lengthen short teeth of Ci

S }
For k = |Si

j | + 1 to |U i
j |

If (O.size() = 0) exit
oPos = O.dequeue()
In CS, k-Tunnel( oPos, (i, j, k) ), for k ∈ {3, 4}

4 Distributed Implementation

Our centralized algorithms can be executed by the meta-modules in a syn-
chronous, distributed fashion. The implementation must be synchronous since
both the Slide and k-Tunnel moves require strict coordination of motion
among the atoms in order to prevent collisions and disconnection of the robot.
To synchronize the operations, we assume each atom/meta-module can count
clock strikes modulo k, for any k ∈ N.

The Combing algorithm is easily adaptable to the synchronous distributed
model. During an initialization phase, each meta-module is sent its starting
(x, y, z) location and the wall’s starting position. Thereafter, each meta-module
can determine its next move in O(1) time using information on its current state
(moving or stationary), or by polling adjacent meta-modules on their state. For
example, each meta-module can determine its state by just checking if it is at-
tached to a module below. The reverse of this algorithm can be made distributed
in a similar way, sweeping the wall up instead of down.

The Comb-To-Common-Comb algorithms can also be distributed, albeit
with some stronger requirements. First, the initial and final configurations S
and T are communicated to each meta-module. In addition, each meta-module
requires a more powerful processor on board. Specifically, we require that each
meta-module can store information of size O(n) and can run an algorithm of
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complexity O(n) in O(n) time. These requirements are necessary because each
meta-module must initially run the Comb-To-Common-Comb algorithm to
precompute which operations it will perform on each clock strike, since local
information alone is not enough to determine a meta-module’s next operation.
For example, meta-modules at the turn locations in the k-Tunnel operations
must determine when they will be involved in such an operation in order to
coordinate their actions. The reverse of this algorithm is similarly distributed.

Acknowledgments. We thank Thomas Hackl for his suggestion on how to
reduce the size of the meta-modules [6]. We thank the other participants of the
2007 Workshop on Reconfiguration at the Bellairs Research Institute of McGill
University for providing a stimulating research environment.
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Abstract. We study the complexity of distributed protocols for the
classical information dissemination problem of distributed gossiping. We
consider the model of random geometric networks, one of the main models
used to study properties of sensor and ad-hoc networks, where n points
are randomly placed in a unit square and two points are connected by
an edge/link if they are at at most a certain fixed distance r from each
other. To study communication in the network, we consider the ad-hoc
radio networks model of communication. We examine various scenarios
depending on the local knowledge of each node in the networks, and show
that in many settings distributed gossiping in asymptotically optimal
time O(D) is possible, where D is the diameter of the network and thus
a trivial lower bound for any communication.

1 Introduction

In this paper we study basic communication properties of random geometric
networks as motivated by mobile ad hoc networks and sensor networks. Our main
goal is to study under what conditions the dissemination of information can be
performed efficiently, in particular, in time proportional to the diameter of the
underlying network. We concentrate on the classical communication problem of
gossiping: disseminating the messages in a network so that each node will receive
messages from all other nodes.

Network model. We consider the standard model of random geometric networks
[21]. A random geometric network N = (V, E) is an undirected graph with node
set V corresponding to the set of transmitter-receiver stations placed indepen-
dently and uniformly at random (i.u.r.) 1 in the unit square [0, 1]2. The edges E
of N connect specific pairs of nodes. We consider the unit disc graph model in
� Research supported in part by the Centre for Discrete Mathematics and its Appli-

cations (DIMAP), University of Warwick.
1 Another classical model assumes the points with Poisson distribution in [0, 1]2. All
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which for a given parameter r (called the radius) there is an edge between two
nodes p, q ∈ V if and only if the distance between p and q (denoted by dist(p, q))
is smaller than or equal to r.

To study communication in the network, we consider the so-called ad-hoc
radio networks model of communication [1,6,7,9,10,11,18]. We assume that all
nodes have access to a global clock and work synchronously in discrete time steps
called rounds. In radio networks the nodes communicate by sending messages
through the edges of the network. In each round each node can either transmit
the message to all its neighbors at once or can receive the message from one
of its neighbors (be in the listening mode). A node x will receive a message
from its neighbor y in a given round if and only if it does not transmit (is in
the listening mode) and y is the only neighbor of x that is transmitting in that
round. If more than one neighbor transmits simultaneously in a given round,
then a collision occurs and no message is received by the node. In that case,
we assume that the node cannot distinguish such a collision from the situation
when none of its neighbors is transmitting. Furthermore, we assume the length
of the message sending in one round is polynomial of n, and thus, each node can
combine multiple messages into one.

Geometric models of knowledge. We consider the model of ad-hoc networks,
in which the topology of the connections is not known in advance. In general,
the nodes do not know their positions nor they know the positions of their
neighbors, and each node only knows its ID (a unique integer in [1, nλ] for
an arbitrary constant λ; this assumption can be removed in the randomized
algorithm), its initial message, and the number of the nodes n in N . (Since in all
our settings, the running time is polynomial in n (because D is polynomial in n),
this assumption can be removed by the standard doubling technique, without
change the asymptotic time complexity.)

In many applications, one can assume that the nodes of the network have
some additional devices that allow them to obtain some basic (geometric) infor-
mation about the network. The most powerful model assumes that each node
has a low-power Global Position System (GPS) device, which gives the node
its exact location in the system [13]. Since GPS devices are relatively expen-
sive, GPS is often not available. In such situation, we consider a range-aware
model, the model extensively studied in the context of localization problem for
sensor networks [2]. In this model, the distance between neighboring nodes is
either known or can be estimated by received signal strength (RSS) readings
with some errors. We also consider another scenario, in which each node can be
aware of the direction of the incoming signals, that is, to measure the angles
between different neighbors [20].

Properties of random geometric networks. It is known that when r < (1− o(1)) ·√
ln n/(π n), the network is disconnected with high probability [14], and there-

fore gossiping is meaningless in that case. Therefore, in this paper we will always
assume that r ≥ c ·

√
log n/n for some sufficiently large constant c. This ensures

that the network is connected with high probability and therefore gossiping is
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feasible. With this assumption we can also make some further assumptions about
the structure of the input network. And so, it is well known (cf. [21]) that such
a random geometric network has diameter D = Θ(1/r) and the minimum and
maximum degree is Θ(n r2), where all these claims hold with high probability,
that is, with probability at least 1 − 1/nΩ(1). Therefore, from now on, we shall
implicitly condition on these events.

Related prior works. In the centralized scenario, when each node knows the entire
network, Kowalski and Pelc [18] gave a centralized deterministic broadcasting
algorithm running in O(D + log2 n) time and Ga̧sieniec et al. [11] designed a
deterministic O(D+Δ log n)-time gossiping algorithm, where D is the diameter
and Δ the maximum degree of the network.

There has been also a very extensive research in the non-centralized (dis-
tributed) setting in ad-hoc radio networks, see, e.g., [3,7,12,17,18] and the refer-
ences therein. In the model of unknown topology networks, randomized broad-
casting can be performed in the optimal O(D log(n/D) + log2 n) time [7,17];
fastest deterministic algorithm runs in O(n log2 D) time [7]. The fastest ran-
domized algorithm for gossiping in directed networks runs in O(n log2 n) time
[7]; fastest deterministic one runs in O(n4/3 log4 n) time [12]. For undirected net-
works, both broadcasting and gossiping have deterministic O(n)-time algorithms
[1,4].

Dessmark and Pelc [9] consider broadcasting in ad-hoc radio networks in a
model of geometric networks. They consider scenarios in which all nodes either
know their own locations in the plane, or the labels of the nodes within some
distance from them. The nodes use disks of possibly different sizes to define their
neighbors. Dessmark and Pelc [9] show that broadcasting can be performed in
O(D) time.

Recently, the complexity of broadcasting in ad-hoc radio networks has been
investigated in a (non-geometric) model of Gn,p random networks by Elsässer
and Ga̧sieniec [10], and Chlebus et al. [5], and in the model of random line-of-
sight ad-hoc radio networks by Czumaj and Wang [8].

New contributions. In this paper we present a thorough study of basic com-
munication primitives in random geometric ad-hoc radio networks. We study
information dissemination in various models of random geometric ad-hoc radio
networks and we demonstrate that in many scenarios, the random structure
of these networks allows us to perform distributed gossiping in asymptotically
optimal time O(D).

We begin with the most restrictive model of local knowledge, the unknown
topology model. In this model, the nodes have no global nor local information
about the structure of the network. Still, we show that it is possible to perform
distributed randomized gossiping in O(n r2 log n + D) time, with high proba-
bility. This is the first asymptotically optimal algorithm for random geometric
ad-hoc radio unknown topology networks with r ≤ O((n log n)−1/3), in which
case the running time is O(D).

Next, we consider deterministic distributed algorithms in three models in
which the nodes have some geometric local information about the network. In
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the first model we consider, if a node communicates with another node, then he
is able to determine the distance to the node with which he communicates. In
the next model, each node is able to determine directions to all its neighbors.
Finally we consider the most powerful model in which each node knows its own
position in [0, 1]2. The first two models are fairly similar and for them we design
a distributed deterministic algorithms complete gossiping in optimal O(D) time,
assuming r ≤ O(n−7/16 log−5/16 n). The model in which each node knows its
own location is more powerful and we use the techniques from [9] to get a O(D)-
time deterministic algorithm for even larger range of r, r ≤ O(n−2/5 log−1/5 n).

For majority of applications of random geometric ad-hoc radio networks the
underlying networks are sparse or are aimed to be as sparse as possible. There-
fore, even though we present our algorithms to work for all values of r ≥
c
√

log n/n, our main focus is on networks with small values of r, just a little
above connectivity threshold. For such networks, our algorithms have asymptot-
ically optimal running times for a large range of the parameter r.

2 Preliminaries

For any node v, define N(v) to be the set of nodes that are reachable from v
in one hop, N(v) = {u ∈ V : dist(v, u) ≤ r}, where dist(v, u) is the Euclidean
distance between v and u. Any node in N(v) is called a neighbor of v, and set
N(v) is called the neighboring set of v. For any X ⊆ V , let N(X) =

⋃
x∈X N(x).

Define the kth neighborhood of a node v, Nk(v), recursively as follows: N0(v) = v
and Nk(v) = N(Nk−1(v)) for k ≥ 1. The strict kth neighborhood of v, denoted
by SNk(v), is defined as SNk(v) = Nk(v) \ Nk−1(v).

Strongly-selective families. Let k and m be two arbitrary positive integers with
k ≤ m. Following [3], a family F of subsets of {1, . . . , m} is called (m, k)-strongly-
selective if for every subset X ⊆ {1, . . . , m} with |X | ≤ k, for every x ∈ X there
exists a set F ∈ F such that X ∩ F = {x}. It is known (see, e.g., [3]) that for
every k and m, there exists a (m, k)-strongly-selective family of size O(k2 log m).

With the concept of strongly-selective families, we are now ready to proceed
to the following lemma.

Lemma 1. In random geometric networks, for any integer k, in (determinis-
tic) time O(k·n2 ·r4 ·log n) all nodes can send their messages to all nodes in their
kth neighborhood. The algorithm may fail with probability at most 1/n2 (where
the probability is with respect to the random choice of a geometric network).

Proof. The proof uses nowadays standard approach of applying selective families
to broadcasting and gossiping in radio ad-hoc networks, see, e.g., [3]. ��

3 Randomized Gossiping in Optimal O(D) Time

In this section, we present a simple randomized algorithm for broadcasting and
gossiping problem in random geometric networks whose running time is asymp-
totically optimal for small values of r. We see our algorithm as an extension of
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the classical broadcasting algorithm in networks due to Bar-Yehuda et al. [1] (see
also [7]), which when applied to random geometric networks gives asymptotically
optimal runtime for a more complex task of gossiping (for small r).

repeat
in each round, each node independently does:

the node transmits with probability 1
n r2

Theorem 1. The algorithm above completes gossiping in a random geometric
network after O(n r2 log n + D) rounds with probability at least 1 − 1/n. If r ≤
O

(
1

(n log n)1/3

)
, then the number of rounds is O(D).

Before we proceed with the proof of Theorem 1, let us first introduce some basic
notation. Let us divide the unit square into 16/r2 blocks (disjoint squares), each
block with the side length of r/4. For a block B, we also use B to denote the set
of nodes in block B; in this case, |B| is the number of nodes in block B.

The following lemma follows easily from Chernoff bounds.

Lemma 2. For every block B with probability at least 1−1/n4: (i) n r2

32 ≤ |B| ≤
n r2, (ii) |N(B)| ≤ 20 n r2.

A gossiping within a block is the task of exchanging the messages between all
the nodes in the block. Gossiping within a block B is completed if every node
v ∈ B receives a message from every other u ∈ B.

Lemma 3. Gossiping within every block completes in O(n r2 log n) steps with
probability at least 1 − 1

n2 .

Proof. Fix a node v ∈ B. In any single round, the probability that node v
transmits and no other node from N(B) \ {v} transmits is at least 1

n r2 (1 −
1

n r2 )|N(B)\{v}| ≥ 1
n r2 (1 − 1

n r2 )20 n r2 ≥ 1
n r2 e−40. Hence, in any single step, v

will send its message to all other nodes in block B with probability at least
1

e40 n r2 . After τ steps, v sends its message to all other nodes in block B with
probability at least 1−(1− 1

e40 n r2 )τ . Hence, by the union bound, the probability
that the gossiping within every single block will be completed after τ steps is
greater than or equal to 1 − n · (1 − 1

e40 n r2 )τ . By choosing an appropriate large
value of τ = O(n r2 log n), this probability will be greater than 1− 1

n2 , as needed.

At any time step t, let Mt(v) be the set of messages currently held by node v. For
any block B, let Mt(B) denote the set of common messages that are currently
held by all nodes of B, that is, Mt(B) =

⋂
v∈B Mt(v).

Lemma 4. Let B and B′ be two adjacent blocks and suppose that the gossiping
within block B has been completed. Then, for any t, Mt(B)∪Mt(B′) ⊆ Mt+1(B′)
with constant probability.
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Proof. By Lemma 2, |N(B′)| ≤ 20 n r2 and |B| ≥ n r2/32 with high probability.
Therefore, conditioned on these two inequalities, with probability p ≥ |B| · 1

n r2 ·
(1− 1

n r2 )|N(B′)| ≥ n r2/32 · 1
n r2 ·(1− 1

n r2 )20 n r2
, among all nodes in N(B′), there

is exactly one node in B that transmits at a given time step. For n big enough,
p is greater than some positive constant c′. This yields the claim.

Now, we are ready to complete the proof of Theorem 1. Let us focus on two
blocks B and B′. By Lemma 3, gossiping within every block will be completed
after the first O(n r2 log n) steps w.h.p. For fixed blocks B and B′, there is
always a sequence of blocks B = B1, B2, . . . , Bk = B′, such that Bi and Bi+1

are adjacent for any 1 ≤ i ≤ k − 1, and that k ≤ 8/r. By Lemma 4, after
each step, Bi will send its message Mt(Bi) to Bi+1 with probability at least c′,
where c′ is a positive constant promised by Lemma 4. Therefore, by a simple
application of known concentration results for random variables with negative
binomial distribution, after O(k/c′+log n) = O(D+log n) steps, all the messages
from B will be successfully transmitted to B′ with probability at least 1− 1/n4.
By applying the union bound on all pairs of blocks, we conclude that gossiping
is completed with probability at least 1 − 1/n2. ��

Randomized broadcasting. Our analysis in Theorem 1 can be improved for the
broadcasting problem, where for every r we can obtain the running time of
O(D + log n). (Details deferred to the full version.)

4 Deterministic Distributed Algorithm: Knowing
Distances Helps

In this section, we assume that c
√

log n/n ≤ r ≤ O(n−7/16 log−5/16 n) and show
that the gossiping in random geometric networks can be done optimally in time
O(D) in the range-aware model.

Building a local map. The key property of our model that we will explore in
the optimal gossiping algorithm is that by checking the inter-point distances,
we can create a “map” with relative locations of the points. Indeed, if for three
points u, v, w, we know their inter-points distances, then if we choose u to be the
origin (that is, has location (0, 0)), we can give relative locations of the other
two points v and w. (The relative location is not unique because there are two
possible locations, but by symmetry, any of these two positions will suffice for
our analysis.) We will show later that with such a map, the gossiping task can be
performed optimally. (Let us point out that even with local coordinate system,
the global consistent position information is still unavailable.)

The following lemma easily follows from Lemma 1 and the discussion above.

Lemma 5. After O(D) communication steps, all nodes u ∈ N can learn dist(u, v)
for any node v ∈ N τ (u), where τ = 
1/(n2 r5 log n)�. (This algorithm may fail
with probability at most 1 − 1/n3.)
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This lemma implies not only that u ∈ N can learn dist(u, v) for any node v ∈
N τ (u), but also that it can set up its own local map of the nodes in N τ (u). From
now on, we will proceed with τ = 
1/(n2 r5 log n)�.

Boundary and corner nodes. In our algorithm we consider two special types of
nodes: boundary nodes and corner nodes.

If a node u observes that there is a sector with angle π/2 that is centered at
u so that every neighbor of u in that sector is at a distance at most r/

√
2, then

u marks itself as a boundary node. It is easy to see that with high probability, a
node is a boundary node only if its distance to the boundary of [0, 1]2 is less than
r, and also every node which is at a distance at most r/2 from the boundary is
a boundary node. Similarly, a node u marks itself as a corner node if there is a
line going through u for which all neighbors of u that are on one side of the line
have distance at most r/2 from u. It is easy to see that with high probability,
every corner node is at a distance at most r from a corner of [0, 1]2 and every
node that is at a distance at most r/4 from a corner of [0, 1]2 is a corner node.

Next, we select one corner representative node for each corner of [0, 1]2. It can
be done easily by Lemma 1.

Transmitting along boundary nodes. Now, we will show that the gossiping among
boundary nodes can be performed in optimal O(D) time.

The process of the gossiping among the boundary nodes is initialized by the
four corner representative nodes. Each corner representative node u checks its
map of the nodes in N τ (u) and selects two farthest boundary nodes, one for
each boundary. Then, it sends a message to these two nodes with the aim of
transmitting its message to the two neighboring corner representative nodes

The process of sending messages to the corners works in phases. In each phase,
there are up to eight pairs of nodes �j

i and �j
i+1 such that �j

i wants to trans-
mit a message to �j

i+1, with both �j
i and �j

i+1 being boundary nodes and
�j

i+1 ∈ N τ (�j
i ). At the beginning of the phase, �j

i checks its local map and
finds a path Pij from �j

i to �j
i+1 of length at most τ . Then, it transmits to

its neighbors and request that only the first node on Pij will transmit the mes-
sage to �j

i+1. Then, the first node on Pij will transmit to its neighbors and
will request that only the second neighbor on Pij will transmit, and so on, until
�j

i+1 will receive the message. Once �j
i+1 received a message, it sends back an

acknowledgement to �j
i that the message has been delivered. The algorithm for

sending an acknowledgement is a reverse of the algorithm for transmitting a
message from �j

i to �j
i+1. The last step of each phase is to establish the next

nodes �j
i+2. If �j

i sent a message to �j
i+1 then �j

i+1 checks its map and selects
as �j

i+2 a node in �j
i+2 ∈ N τ (�j

i+1) that is farthest from �j
i . As an exception,

if one of the corner representative nodes is in N τ (�j
i+1) \ {�j

i }, then this corner
representative node is selected as �j

i+2 and then the process stops, i.e., �j
i+3

will not be selected.
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Obviously, if there are no transmission conflicts between the eight pairs �j
i and

�j
i+1, then each phase can be performed in 2τ communication steps (including

sending the acknowledgements). The only way of having a transmission conflict
is that two pairs �j

i and �j
i+1, and �j′

i and �j′

i+1, are transmitting along the
same boundary and that in this phase N τ (�j

i ) ∩ N τ (�j′

i ) = ∅. If this happen,
then the nodes �j

i and �j′

i may not obtain an acknowledgement. In this case,
both �j

i and �j′

i repeat the process of transmitting their messages to �j
i+1 and

�j′

i+1, respectively, using the selector approach from Lemma 1 that ensures that
the phase will be completed in O(τ · n2 r4 log n) = O(D) communication steps.

Let �1 and �2 be two adjacent corner representative nodes, and (�2, �
j
1, �j

2,

�j
3, . . . �1) be a sequence of nodes initialized by �2 in the process described before.

It is easy to see that: (i) �1 receives all the messages of �2, �
j
1, �

j
2, �

j
3, . . ., (ii) �2

sends its message to all nodes in �j
1, �

j
2, �

j
3, . . . �1, and (iii) for any boundary

node v, there is a �j
i such that v ∈ N τ (�j

i ) (which holds because of the way we
pick �j

i ).
Therefore, each corner representative node will receive all messages from the

boundary nodes of its incident boundaries. If we repeat this process again, then
each corner representative node will receive the messages of all boundary nodes.
If we repeat this process once again, then all �j

i nodes will receive the messages
from all boundary nodes. If we now apply the approach from Lemma 1, then
each boundary node will receive a message from at least one �j

i , and hence it
will receive messages from all boundary nodes.

By our comments above, if there is no conflict in a phase, then the phase is
completed in 2τ communication steps, but if there is a conflict, then the number
of communication steps in the phase is O(τ n2 r4 log n). Now, we observe that if
a corner representative node originates a transmission that should reach another
corner representative node, then there will be at most a constant number of
phases in which there will be a conflict. Therefore, the total running time for
this algorithm is O(τ · D/τ) + O(τ n2 r4 log n) = O(D).

Lemma 6. The algorithm above completes gossiping among all boundary nodes
in O(D) time.

Gossiping via transmitting along almost parallel lines. Let � be the corner repre-
sentative node with the smallest ID. Let �∗ be the corner representative node that
shares the boundary with � (there are two such nodes) and that has the smaller
ID. Let � select O(D/τ) boundary nodes ς1, ς2, . . . such that (i) ςi+1 ∈ N �τ/4�(ςi)
for every i, and (ii) ςj ∈ N �τ/32�(ςi) for every i, j, i = j. It is easy to see
that such a sequence exists, and that � is able to determine it because after
Lemma 6, � knows all boundary nodes and their τ neighbors. Next, � informs
all boundary nodes about its choice using the process from the previous section.
We now present an algorithm in which all the nodes ςi will originate a pro-
cedure Straight-line transmission aiming at disseminating the information
contained by these nodes along a line orthogonal to the boundary shared by �
and �∗.
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There are a few problems with this approach that we need to address. First of
all, we do not know the boundary of the unit square and instead, the goal will be
to consider lines orthogonal to the line L going through � and �∗. The location of
L can be determined from the local map known to all the boundary nodes. Notice
that since the angle between the boundary of [0, 1]2 and L is at most O(r), L is a
good approximation of the boundary of [0, 1]2. Next, we observe that we will not
be able to do any transmissions along any single line because our network N does
not contain three collinear nodes with high probability. Therefore, our process
will need to proceed along an approximate line. We begin with the following
lemma that will help us quantify the angle between the perfect line we want to
transmit along and the line along which we will actually transmit. The lemma
easily follows from the Chernoff Bound.

Lemma 7. Let τ = 
1/(n2 r5 log n)� and r ≤ O
(

1
n7/16 log5/16 n

)
. Let u be a

node in N and let 
u be any ray (half-line) starting at u. If all points q ∈ 
u

with dist(u, q) ≤ τ · r are contained in [0, 1]2 then with high probability there is a
node w ∈ N �τ/4�(u) \ N �τ/32	(u) such that |�(
uuw)| ≤ O(τ2r2).

Now, we use Lemma 7 to design a scheme that allows a point to transmit a mes-
sage along an approximate line. Our procedure Straight-line transmission(s, μ, 
)
aims at transmitting a message μ from node s along (approximately) line 
s,
s ∈ 
s, so that all nodes that are close to 
s will receive the message μ.

In Straight-line transmission(s, μ, 
s), the node s initiates sending its message
μ along the line 
s. The transmission process is performed in phases ; each phase
consists of sending a message from a node �i to another node �i+1 such that

s is approximately equal to the line going through �i and �i+1, and �i+1 ∈
N �τ/4�(�i) \ N �τ/32�(�i). The nodes �i are determined recursively. Initially,
�0 = s and �1 is the node q ∈ N �τ/4�(s) \ N �τ/32�(s) for which |�(
ssq)| is
minimized. If i ≥ 1 and �i is determined, then (i) if N τ (�i)\{�i−1} contains a
boundary node then �i+1 is undefined and the process is stopped; (ii) otherwise,
�i+1 is selected to be u ∈ N �τ/4�(�i)\N �τ/32�(�i) for which |�(�i−1�i�i+1)−
π| is minimized. Since �i knows the locations of all nodes in N τ (�i), �i is able
to select �i+1 using its local map. Observe that by Lemma 7, for every node �i,
i ≥ 1, we have |�(�i−1�i�i+1) − π| ≤ O(τ2 r2), with high probability. Next,
since dist(�i�i+1) = Θ(τ · r), we conclude that the last representative �i will
have index O( 1

τ r ). Hence, for every i ≥ 2, we have |�(
su�i)| ≤ O( 1
τ r · τ2 r2) =

O(τ r) with high probability. The running time of each phase of Straight-line
transimmision is O(τ). So the running time of Straight-line transmission is O(τ ·
1

τ r ) = O(D).
We will run multiple calls to Straight-line transmission(s, μ, 
s) with s being

the nodes �, �∗, and ς1, ς2, . . ., as defined earlier and with line 
s being the line
going through s that is orthogonal to the line L (which is the line going through
� and �∗).

It is easy to see in random geometric networks, if u is the strict k(th) neighbor
of v, then dist(u, v) ≥ k r/4 with high probability. Hence the distance between
any of the points �, �∗, and ς1, ς2, . . . is at least Ω(τ r), so are the distance between
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the lines 
s. On the other hand, as we argued above, every procedure Straight-
line transmission(s, μ, 
s) is sending messages only among the nodes that are
at distance at most O(τ r) from the line 
s, where this claim holds with high
probability. Therefore, in particular, the communication in the calls to Straight-
line transmission(s, μ, 
s) will be done without any interference between the calls,
with high probability (to avoid collisions between adjacent lines we interleave
the transmissions in adjacent lines, yielding a O(1) factor slow-down).

Lemma 8. All calls to Straight-line transmission(s, μ, 
s) with s being �, �∗, and
ς1, ς2, . . . can be completed in O(D) communication steps, with high probability.

Observe that while running the procedures Straight-line transmission, each node
that is transmitting can include in its message also all the knowledge it contains
at a given moment. Therefore, in particular, each last node �k will receive all
the messages collected on its path from s.

Next, let us observe that for every node q in the network N either q has been
selected as one of the nodes �i in one of the calls to Straight-line transmission
or one of the nodes in N τ (q) has. Indeed, since the distance between the adja-
cent lines 
s is at most �τ/4� · r, for each point q ∈ N there is a line 
s with
dist(q, 
s) ≤ �τ/4�·r/2. Therefore, there will be at least one node �i for Straight-
line transmission(s, μ, 
s) with dist(q, �i) ≤ τ · r/2. This yields �i ∈ N τ (q) with
high probability. Because of this, if all nodes u ∈ N know the messages from
all nodes in N τ (u), then after completing the calls to Straight-line transmission,
for each node u ∈ N there will be at least one boundary node that received the
message of u.

If we do gossiping among the boundary nodes once again, all the bound-
ary nodes will have the messages from all the nodes in N . Next, we run again
Straight-line transmission(s, μ, 
s) with s being �, �∗, and ς1, ς2, . . . as defined
above. Then, all the nodes �i will obtain the messages from all nodes in N .
Finally, since each q ∈ N has in its τ -neighborhood a node �i, we can apply
Lemma 1 to ensure that all nodes in N will receive the messages from all other
nodes in N .

Theorem 2. Let c
√

log n/n ≤ r ≤ O
(

1
n7/16 log5/16 n

)
. In the range-aware

model, there is a deterministic distributed algorithm that completes gossiping
in a random geometric network can be completed in deterministic time O(D).
The algorithm may fail with probability at most 1/n2.

5 Deterministic Distributed Algorithm: Knowing Angles
Helps

One can modify the algorithm from Theorem 2 to work in the scenario in which
a node cannot determine the distance between its neighboring node but instead,
it is able to determine the relative direction where the neighbor is located.
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Theorem 3. Let c
√

log n/n ≤ r ≤ O
(

1
n7/16 log5/16 n

)
. If each node receiving

the message is able to determine the relative direction from which the message
arrives, then gossiping in a random geometric network can be completed in de-
terministic time O(D). The algorithm may fail with probability at most 1/n2.

The algorithm is essentially the same as that described in Section 4 with two
differences. First of all, now the local map of a node does not have the exact
distances but it may be re-scaled. That is, using the same approach as presented
in Section 4, each node can build its local map where all the angles in the
map are the actual angles between the points, but only the distances may be re-
scaled. Secondly, we need another approach to determine if a node is a boundary
node or it is a corner node. This can be done by comparing the density of the
neighborhoods of the nodes (Details deferred to the full version.)

6 Deterministic Distributed Algorithm: Knowing
Locations Helps

We consider also the gossiping problem in random geometric networks in the
power model, where each node knows its geometric position in the unit square.
In such model, Dessmark and Pelc [9] give a deterministic algorithm for broad-
casting that (in our setting) runs in O(D) time. We can prove a similar result for
gossiping by extending the preprocessing phase from [9] and use an appropriate
strongly-selective family to collect information about the neighbors of each point
(Details deferred to the full version.)

Theorem 4. If every input node knows its location [0, 1]2, then there is a deter-
ministic algorithm that completes gossiping in a random geometric network in
time O(n2 r4 log n+1/r). In particular, if r ≤ O

(
1

n2/5 log1/5 n

)
then the running

time is O(D). The algorithm may fail with probability at most 1/n2.

7 Conclusions

In this paper we presented the first thorough study of basic communication as-
pects in random geometric ad-hoc radio networks. We have shown that in many
scenarios, the random structure of these networks (which often may model well
realistic scenarios from sensor networks) allows us to perform communication be-
tween the nodes in the network in asymptotically optimal time O(D), where D is
the diameter of the network and thus a trivial lower bound for any communica-
tion. This is in contrast to arbitrary ad-hoc radio networks, where deterministic
bounds of o(n) are unattainable.

Our study shows also that while there is a relatively simple optimal random-
ized gossiping algorithm and a deterministic one when the nodes have knowledge
about their locations in the plane, the other scenarios are more complicated. In
particular, we do not know if O(D)-time deterministic gossiping is possible in
the unknown topology model.
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Abstract. Gossiping is an important problem in Radio Networks that
has been well studied, leading to many important results. Due to strong
resouce limitations of sensor nodes, previous solutions are frequently not
feasible in Sensor Networks. In this paper, we study the gossiping prob-
lem in the restrictive context of Sensor Networks. By exploiting the ge-
ometry of sensor node distributions, we present reduced, optimal running
time of O(D + Δ) for an algorithm that completes gossiping with high
probability in a Sensor Network of unknown topology and adversarial
wake-up, where D is the diameter and Δ the maximum degree of the
network. Given that an algorithm for gossiping also solves the broadcast
problem, our result proves that the classic lower bound of [16] can be
broken if nodes are allowed to do preprocessing.

1 Introduction

The Radio Network is a simplified abstraction of a radio-communication net-
work. The question of how to diseminate information within such networks has
led to different well-studied problems. Those problems differ on the number of
network nodes holding messages to transmit, the number of different messages
to be transmitted and the number of nodes that must receive those messages. A
message is the piece of information that a node holds which must be distributed
to other nodes. For settings where all nodes in the network must receive all the
messages, the problems studied differ in the number of nodes that hold those
messages, as follows. When k arbitrary nodes have a message the problem is
known as k-selection [14]. If k = 1 the problem is called Broadcast [1,16], and if
k = n, the size of the network, it is called Gossiping [17, 5].

We study the gossiping problem in Sensor Networks, a network where n sensor
nodes with processing, communication and sensing capabilities are distributed
randomly in an area of interest in order to self-organize as a radio-communication
network. Sensor Networks are expected to be used to gather information over
large remote areas in hostile environments. Sensor nodes have to transmit such
� This research was supported in part by NSF grants CCF0621425, CCF 05414009,
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information to distinguished nodes called sinks. The problem becomes challeng-
ing because sensor nodes are subject to strict resource limitations. Since the
identity or the location of those sinks are frequently assumed to be unknown to
the sensor nodes, gossiping is an important problem and its solution would yield
an efficient communication primitive in this setting.

Gossiping in Radio Networks is a well-studied problem for which important
results have been obtained. At least one of the following two crucial assumptions
is present in all of these results. It is frequently assumed that the size of a message
transmitted in one step is bounded only by the size of all the messages in the
network, thus, nodes can pad their own message with all messages received
and then re-transmit. In addition, a usual assumption is that either nodes start
simultaneously or a global clock is available. In the Weak Sensor Model [10], a
harsh and comprehensive model that summarizes the literature on sensor node
restrictions, none of these assumptions are feasible because memory is limited,
wake-up schedule is adversarial and no global clock is available.

Although in the asymptotic analysis n → ∞, the memory limitation can be
relaxed in practice when the magnitude of n is expected to be very large but
bounded. However, since the deployment is produced in hostile or remote large
areas, a global clock or a synchronous start is too strong of an assumption. Thus,
we study gossiping in a relaxed version of the Weak Sensor Model where memory
size is bounded only by a linear number of messages. We leave open the question
of how to improve these results for constant-bounded memory size.

Related Work. Bar-Yehuda, Israeli and Itai [2] presented a randomized algo-
rithm for Radio Networks with a topology modeled by an undirected graph, or
symmetric networks, that completes gossiping in O(n log2 n)1 on average. Briefly,
their technique, used previously in [4] and later re-utilized in [12], is to build an
underlying BFS tree to first collect all messages in the root node and later dis-
eminate all of them to all nodes. In that paper, nodes know the identity of their
neighbors, the size of the network n, and an upper bound on the maximum de-
gree. Nodes may transmit and receive only O(log n) bit messages in synchronous
time slots. However, they can store as many as needed. The same bound but
with high probability2 was proved in [5]. The algorithm relies on unbounded
message size and global synchronism.

For directed graph topologies or asymmetric networks, Chrobak, Ga̧sieniec
and Rytter [7] showed an upper bound of O(n log3 n log(n/ε)) with probability
1 − ε and O(n log4 n) in expectation. The main idea is to repeatedly run a
limited broadcast that doubles the number of copies of each message in the
network in each phase. Thus, unbounded message size is necessary as well as
global synchronism.

1 Througout this paper, log means log2 unless otherwise stated.
2 Define with high probability, or w.h.p. for short, to mean with probability at least

1 − O(n−O(1)). We say that a parameterized event Ep occurs with high probability if
for any constant γ > 0 there exists a valid choice of parameter p such that Pr{Ep} ≥
1 − n−γ .
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Using the same protocol, but improving the limited broadcast by adding ran-
domization to it, Liu and Prabhakaran [17] reduced that upper bound by a
logarithmic factor. More recently, Czumaj and Rytter [9] obtained a bound of
O(n log2 n) w.h.p. for this protocol by replacing the limited broadcast by a linear
randomized broadcast where the probabilities are chosen with a special distri-
bution. The model in all these results is a directed strongly connected graph
where nodes have unique ID’s in {1, . . . , n}, work synchronously, and memory
and messages are bounded only to the size of all messages.

Recently, Ravelomanana [20] studied the gossiping problem for the important
class of networks with topology modeled by a random geometric graph, a model
widely used in the Sensor Network area. The algorithm presented completes
gossiping in O(

√
n log n) w.h.p. In a first stage, nodes obtain an ID and define a

coloring in order to avoid collisions later in the gossiping phase. This algorithm
is claimed to be optimal, but the lower bound used to prove it is the well-
known result of Kushilevitz and Mansour [16] where nodes are not allowed to
do anything before receiving the broadcast message.

Regarding deterministic solutions, Chrobak, Ga̧sieniec and Rytter [6] pre-
sented a O(n3/2 log2 n) algorithm for asymmetric networks. The protocol makes
use of selecting sequences to ensure non-colliding transmissions. In this model
nodes have different ID’s in {1, . . . , n}, the topology is modeled by a directed
graph, memory and messages are unbounded and global synchronism is assumed.

Results for the broadcast problem can be used as lower bounds for gossiping
because the former can be solved using an algorithm for the latter. However, it
should be noticed that, in order to prove lower bounds, broadcast protocols are
defined leaving out solutions that include a pre-processing stage [16]. Bruschi and
Del Pinto [3] proved a Ω(D log n) lower bound, in a model where all nodes start
simultaneously and nodes know their message history. More recently, Clementi,
Monti and Silvestri [8] improved the lower bound to Ω(n log D) in symmetric
networks even if nodes are not synchronized. Kowalski and Pelc [15] constructed
a class of graphs of diameter 4, such that every broadcasting algorithm requires
time Ω(n1/4) on one of these graphs. The best general lower bound for random-
ized protocols is Ω(D log(n/D)) obtained by Kushilevitz and Mansour [16].

As for lower bounds for gossiping, Chlebus, Ga̧sieniec, Lingas and Pan-
gourtzis [5] proved that any deterministic oblivious gossiping algorithm requires
at least n2/2 − n/2 + 1 steps to complete. In the same paper, for the important
class of fair randomized protocols, i.e., protocols where all nodes use the same
probability of transmission in the same time step, it was proved that for any in-
teger n ≤ q ≤ n2/2 there exists an asymmetric network such that the expected
time to complete gossiping is Ω(q). More recently, Ga̧sieniec and Potapov [12]
showed lower bounds of Ω(n2) for asymmetric networks and Ω(n log n) for sym-
metric networks. The topology of the construction used for the later can not be
embeded in geometric graphs, therefore does not apply to Sensor Networks.

Our Results. We study the gossiping problem in a relaxed version of the Weak
Sensor Model where memory size is bounded only by a linear number of messages.
We present a randomized algorithm that, given a network of n nodes, with high
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probability completes gossiping in O(Δ+D) time steps after the last node starts
running the algorithm. Given that Ω(D) and Ω(Δ) are lower bounds for this
problem, this algorithm is optimal. This result improves over previous bounds
in time efficiency and makes no assumptions about global synchronism. Rather,
it exploits the geometry of the topology in Sensor Networks. Our result also
shows that the classical broadcast lower bound of Kushilevitz and Mansour [16]
can be broken if nodes are allowed to do some preprocessing before receiving a
message to transmit. In that paper, the lower bound is proved using a layered
structure, where a crucial assumption is that, in each layer, all nodes run the
same uniform protocol upon receiving the message to be broadcasted. By the
definition of a broadcast protocol given in that paper “any other processor is
inactive until receiving a message for the first time”. If preprocessing is allowed
the protocol may be non-uniform as in our protocol.

Roadmap. In the remainder of this paper we define the models used througout
in Section 2 and we present the details of our algorithm in Section 3.

2 The Model

Radio Networks is a vast area and there is a myriad of applications of such a
technology. Depending on the application, topologies and node constraints may
be very different. In Sensor Networks, nodes are expected to be deployed at ran-
dom in large quantities over an area of interest and two nodes can communicate
only if they are mutually in range. Thus, we model the topology as a Geomet-
ric Graph, where nodes are distributed arbitrarily in R

2, and a pair of nodes is
connected by an edge if and only if they are at an Euclidean distance of at most
a parameter r. We also assume that the topology is unknown to the nodes and
the only knowledge each node has is the number of nodes in the whole network
n, its unique identifier in {1, . . . , n}, and a constant parameter β to be defined
later.

In addition to topology and connectivity models, an appropriate model of the
constraints of the nodes in the network has to be defined in order to properly
design and analyze protocols. Bar-Yehuda, Goldreich and Itai [1] used a formal
model of a radio network that specifies many of those restrictions, including
limits on contention resolution, but they make no mention of computational
limits such as small memory. We use a relaxed version of the comprehensive
Weak Sensor Model [10] where memory size is bounded only by O(nm) where m
is the message size. Briefly, the following assumptions are included in this model.
The communication among neighboring nodes is through broadcast on a shared
channel, where a node receives a message only if exactly one of its neighbors
transmits. If more than one message is sent at the same time, a collision occurs
and no collision detection mechanism is available. Sensors nodes cannot receive
and transmit in the same time slot. The channel is assumed to have only two
states: transmission and silence/collision. Time is assumed to be slotted and all
nodes have the same clock frequency, but no global synchronizing mechanism
is available. Furthermore, they wake-up adversarially. We assume that sensor
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nodes can adjust their power of transmission but only to a constant number
of levels. Other limitations include: limited life cycle, short transmission range,
only one channel of communication, no position information, and unreliability.

3 An Optimal Algorithm

We describe now the gossiping protocol for Sensor Networks. Although global
synchronism is not required, for the sake of clarity, we assume first that nodes
start simultaneously and analyze each phase separately. Later we show that such
an assumption is not necessary. The protocol has the following four main phases.

1. Define nodes as master nodes in such a way that every node is within distance
at most ar of some master, and all master nodes are separated by a distance
at least ar, where r is the maximum range of transmission and a is a constant
such that 0 < a < 1/3. All non-master nodes are called slave nodes. Notice
that any node can be the slave of at most 6 masters.

2. Every master node reserves blocks of time steps for local use, so that each
master and its slaves can communicate without colliding with transmissions
from any nodes within radius r.

3. Every master node maintains a set of messages received, initially containing
only its own message. Using the reserved blocks, all slave nodes transmit their
message to their master nodes transmitting with radius ar. Every master
node adds messages received from its slaves to its set.

4. Using the reserved blocks, every master node deterministically transmits its
set of messages to all master nodes within radius at most r and repeatedly
adds the messages received from other masters and re-transmits.

The choice of the upper bound on a guarantees that communication between
master and slave nodes is achieved in a time slot that is not used by any neigh-
boring master-slave pair. Given that a is a constant, its effect is folded in the
other constants of the analysis. More precisely, as we will see in Section 3.2, the
more master nodes that are included in a circle of radius r the bigger is the block
of reserved time slots. Although the size of such a block is still a constant, for
constant-sensitive applications a must be made as big as possible. We now give
the details of each phase and the analysis.

3.1 Phase 1

This phase of the protocol can be implemented distributedly running a Maximal
Independent Set (MIS) algorithm with radius ar. For that purpose we use the
algorithm presented in [19] which works in two stages. In an initial bounding
stage, the number of neighboring nodes that will participate in the second stage
is upper bounded to O(log n). In a second stage, nodes keep a counter of the time
passed since their first transmission or the last reception of a sufficiently close
neighbor-counter. A long enough time without receiving a neighbor’s counter
enables a node to declare itself a member of the MIS with low probability of
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error. The second stage, tailored for the Sensor Network setting was presented
in [10]. We omit the details here for the sake of brevity.

Lemma 1. Under the restrictions of the Weak Sensor Model, for a given node
running the algorithm described above, at least one node within its transmission
range joins the MIS in O(log2 n) time steps and no two MIS nodes are within
range of each other with probability 1 − 1/nγ1 for some constant γ1 > 0.

Proof. As in [19] and [10]. ��

3.2 Phase 2

We implement this phase using a counter to break symmetry as in the previous
algorithm. The main idea is for each master node to reserve certain steps for
deterministic transmissions in a way that there are no collisions.

Algorithm 1. Algorithm of Phase 2. α1, α2, α3, α4, α5, b and β are
constants.

for each master node do1

set a step counter to 0.2

while true do3

if current step was not reserved then4

transmit the counter and ID with probability 1/α1 and radius r5

using non-reserved slots.
if not transmitting in the current time slot then6

if a neighbor’s counter is received and the absolute difference7

between the local and neighbor’s counter is ≤ α2 log n then
set local counter to 0.8

else9

if a neighbor’s reservation message is received then10

keep track of slots reserved.11

increase counter if transmitted at least once.12

if the counter reached �α3 log n� then13

choose a block of b contiguous available time slots in an interval14

of β.
for α5 log n available steps do15

transmit ID and the incoming time slots reserved with16

probability 1/α4 and radius r using non-reserved slots.

while true do17

transmit a beacon message in the reserved slot with radius18

ar.

The protocol, detailed in Algorithm 1, works as follows. α1, α2, α3, α4, α5, b
and β are constants. Each master node x maintains a step counter, initially set
to 0. In each step still not reserved by any of the master nodes within distance
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r, x transmits its counter and its identity with probability 1/α1 within a radius
of r. In each step that x does not transmit, it is in receiver mode. If x receives
the value of a neighbor’s counter which is ahead or behind x’s counter by less
than α2 log n, x resets its counter to 0. Upon reaching a final count of α3 log n, x
chooses a block of b contiguous available time slots to be used periodically with
period β.

Next, x informs to the neighboring master nodes which are the slots chosen. In
order to do that, x transmits a message containing the number of steps after the
current step in which its reserved block takes place. This message is repeatedly
transmitted with probability 1/α4, radius r and using only non-reserved slots.
Of course, the number of steps is updated appropriately in each step. As in [10],
master nodes within distance of r from this node are guaranteed to receive this
message within O(log n) steps and no neighboring master node can reach its
final count before that w.h.p.

After α5 log n steps, the master node synchronizes its slaves by repeatedly
transmitting a beacon message. After the first beacon message slave nodes move
to phase 3.

The block of b reserved slots is big enough to include one for slave transmis-
sions, one for master acknowledgements to slave transmissions, one for beacon
messages, and one for transmissions among master nodes in the last phase. The
period β is a constant big enough to ensure that each master node gets to reserve
some block. As we show in Lemma 2, the number of master nodes in any circle
of radius r is bounded by O(1). Thus, such a constant value β exists.

Lemma 2. There are at most 3�2/a
√

3	(�2/a
√

3	+1) master nodes within dis-
tance r of any master node with high probability.

Proof. All master nodes are separated by a distance of at least ar with high
probability as a result of phase 1. Consider the smallest regular hexagon whose
side is a multiple of ar and covers completely a circle of radius r. Consider a
tiling of such hexagon with equilateral triangles of side ar. As proved by Fejes-
Tóth in 1940 [11], the hexagonal lattice is indeed the densest of all possible plane
packings. Therefore, the number of vertices in such a tiling minus one is an upper
bound on the number of master nodes at a distance r of a master node located
in the center of such a hexagon. That number is 3�2/a

√
3	(�2/a

√
3	 + 1). ��

Lemma 3. After O(log n) time steps running the algorithm described above,
any master node reserves a block of b ∈ O(1) steps every β ∈ O(1) steps for
local use, i.e., this block does not overlap with the block of any other master node
separated by a distance at most r, with probability 1 − 1/nγ2 for some constant
γ2 > 0.

Proof. The running time of the algorithm can be proved as in [10].
To complete the proof we consider two cases.

Case 1 : we assume for the sake of contradiction that the blocks reserved by
some pair of master nodes separated by a distance at most r overlap. This implies
that at least one of them did not receive the message of the other. But, using the
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techniques in [10] it can be shown that the probability of that event is O(1/nγ3)
for some constant γ3 > 2, which ensures that the probability of failure over all
possible pairs is low.

Case 2 : we assume for the sake of contradiction that a master node x can not
reserve a contiguous block of b slots. This implies that after some neighboring
master nodes reserve their blocks, there are no contiguous b slots available. As
proved in Lemma 2 there are at most 3�2/a

√
3	(�2/a

√
3	 + 1) master nodes

within r distance of any master node w.h.p. But, making β ≥ (2b − 1)(1 +
3�2/a

√
3	(�2/a

√
3	 + 1)) there is always a block of b contiguous slots available

w.h.p. ��

3.3 Phase 3

In this phase we need to guarantee that all slave nodes transmit their message to
their master. A simple randomized algorithm can achieve this task in O(Δ log n)
but we show in this section that it can be done faster using the synchronism
achieved in the previous phase.

In order to implement this phase efficiently, we could use an approach sim-
ilar to the algorithm presented in [13]. This algorithm solves the problem of
realizing arbitrary h-relations in an n-node network with high probability in
Θ(h + log n log log n) steps. In an h-relation, each processor is the source as well
as the destination of h messages. However, the protocol requires that nodes know
h, in our problem Δ. So, instead, we use an scheme where the only topology in-
formation is the size of the whole network n.

As explained before, slave nodes periodically receive a beacon message from
their master node indicating the forecoming available slots for local use. A block
of reserved slots includes, among others, a slot for slave transmissions and a
slot for master acknowledgement. This acknowledgement informs a node that
its transmission was successful, implementing a collision detection mechanism.
Thus, we can take advantage of local synchronism achieved by the beacon mes-
sage and collision detection implemented by the acknowledgement. For the sake
of clarity, we focus here in the description of the algorithm ignoring these details
and the fact that nodes use only the reserved slots for transmissions.

The protocol, detailed in Algorithm 2, works as follows. The algorithm is
window-based, i.e., nodes repeatedly choose uniformly one time slot within an
interval, or window, of time slots to transmit its message. Regarding the size of
such a window, the protocol follows a back-on/back-off strategy, i.e., the window
is increased in an outer loop by the master and decreased in an inner loop by the
slaves. The master informs the slaves of the current window size in the beacon
message. In order to succeed with high probability when o(log n) messages are
left, Θ(log2 n) steps where nodes repeatedly transmit with probability 1/ logn
are included at the end of each phase of the outer loop.

The intuition for the algorithm is as follows. Assume nodes know the number
of nodes in their one-hop neighborhood, call it δ. Then, we think of the problem
as a random process where δ balls (modelling the messages) are dropped uni-
formly in δ bins (modelling time slots). We will show that, for large enough δ,
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Algorithm 2. Algorithm of Phase 3. α is a positive constant
for i = {�log log n�, �log log n� + 1, �log log n� + 2, . . . } do1

Each master node transmits i in the beacon message.2

Each slave node does the following.3

for j = 0 to i − 1 do4

Choose uniformly a step within the next 2i−j steps.5

Transmit the message in such a step and receive messages in all the6

other steps.

for α log2 n steps do7

Transmit the message with probability 1/ log n.8

Receive messages if not transmitting.9

with high probability a constant fraction of the balls fall alone in a bin. Now, we
can repeat the process removing this constant fraction of balls and bins until all
balls have fallen alone. Since nodes do not know the size of their neighborhood,
the outer loop increasing the number of bins is necessary.

We now concentrate in the analysis of this phase. First, we need the following
lemma about bins and balls.

Lemma 4. For δ ≥ (2e/(1 − eε)2)(1 + (γ4 + 1/2) lnn), if δ balls are dropped in
δ bins uniformly at random, the probability that the number of bins with exactly
one ball is smaller than εδ is at most 1/nγ4 for some constants γ4 > 0 and
0 < ε < 1.

Proof. The probability for a given ball to fall in a given bin is (1/δ)(1−1/δ)δ−1 ≥
1/eδ. Let Xi be a random variable that indicates if there is exactly one ball in bin
i. Then, Pr(Xi = 1) ≥ 1/e. To handle the dependencies that arise in balls and
bins problems, we approximate the joint distribution of the number of balls in all
bins by assuming the load in each bin is an independent Poisson random variable
with mean 1. Let X be a random variable that indicates the total number of
bins with exactly one ball. Then, μ = E[X ] = δ/e. Using Chernoff-Hoeffding
bounds,

Pr(X ≤ εδ) ≤ exp

(

− δ

2e
(1 − eε)2

)

.

As shown in [18], any event that takes place with probability p in the Poisson
case takes place with probability at most pe

√
δ in the exact case. Then, we want

to show

exp

(

− δ

2e
(1 − eε)2

)

e
√

δ ≤ n−γ .

Which is true for

δ ≥ 2e

(1 − eε)2

(

1 +
(

1
2

+ γ

)

ln n

)

. ��
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Lemma 5. The algorithm described above guarantees that a master node re-
ceives the message of all its slaves within O(Δ + log2 n logΔ) steps with proba-
bility 1 − 1/nγ5 for some constant γ5 > 0.

Proof. If δ ∈ O(log n), as shown in [10], all slave nodes achieve a non-colliding
transmission within O(log2 n) steps with probability at least 1 − n−γi for some
constant γi > 0.

If δ ∈ ω(log n), after the master node transmits a window size in Θ(δ), a
constant fraction ε of slave nodes succeed in each step j of the inner loop with
probability 1 − n−γj as shown in Lemma 4.

Taking each γj small enough and ε big enough and telescoping the running
time of each loop, the claim follows. ��

3.4 Phase 4

Each master node maintains a set of messages, initially containing only its own
message, adding all messages received in phases 3 and 4, and deterministically
re-transmiting this set in the time slots reserved for that purpose.

Lemma 6. Any master node running the algorithm of phase 4 receives all mes-
sages from other master nodes within O(D) time steps, where D is the diameter
of the network.

Proof. Given that the master nodes form a maximal independent set, the diame-
ter of the subgraph induced by them is in O(D). Since master nodes re-transmit
all messages ever received deterministically every β ∈ O(1) steps, the claim fol-
lows. ��

3.5 Overall Analysis

Two important restrictions of the Weak Sensor Model are that nodes start run-
ning the algorithm, or wake-up for short, according to an adversarial schedule,
and that their power supply is unrealiable resulting in potential on/off cycles.
In this section, we remove the assumption of simultaneous wake-up used in the
analysis and we show that in fact the algorithm and its efficiency are still the
same. Given that in order to solve the gossiping problem all nodes have to be
active, we analyze the time after the last node starts running the algorithm and
we assume that no node turns off before completion. Otherwise, any time analy-
sis would be meaningless in presence of an adversary that turns on and off nodes
forever.

The MIS algorithm used in phase 1 includes an initial waiting period, long
enough to ensure that nodes waking-up do not interfere with nodes already
running the algorithm. We extend this waiting period to the duration of the
first two phases of the protocol. If during the waiting period a node becomes a
slave of some master node, the slave waits for the beacon message doing nothing
and goes directly to the third phase after receiving it. If a node does not become
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a slave during its waiting period, it starts phase 1 using slots still available, i.e.,
slots that were not reserved by some master node within radius r. Choosing
β ∈ O(1) big enough, there is always some slot available every β slots. Choosing
the constant factors of the probabilities appropriately, nodes running phases 1
and 2 do not interfere with each other w.h.p. as proved in [10].

Nodes in phase 3 are synchronized by their master beacon-message. However,
if a node is woken up late enough with respect to its slave neighbors, it could
reach this phase after the window size of the outer loop is in ω(Δ). In order to
avoid this situation, whenever the master node does not receive transmissions
after receiving transmissions for a given window size, it resets the outer loop.
Given that the running time is analyzed after the last node is woken up the
claimed running time still holds.

Given that nodes running phases 1 and 2 use all slots not reserved there
is also no conflict with nodes running phases 3 and 4. The last two phases are
deterministic and utilize time multiplexing, synchronized by the beacon message.
Thus, there is also no conflict among nodes in these phases.

A straightforward application of the lemmata of previous sections, gives our
main theorem.

Theorem 1. Given a network of n nodes, after the last node starts running
the algorithm described in this section, the gossiping problem is solved with high
probability in O(D + Δ).

Proof. Using Lemmas 1, 3, 5, and 6 the overall complexity of the algorithm
including preprocessing is O(log2 n + log n + Δ + log2 n log Δ + D) with high
probability. Given the geometric constraints, the number of one-hop neighbor-
hoods is bounded by O(D2). In addition, the maximum number of nodes in any
one-hop neighborhood is at most Δ. Hence, D and Δ can not be simultanoeusly
in o(nc) for any constant c > 0 and the claim follows. ��

Given that Ω(D) and Ω(Δ) are lower bounds for this problem, the previous
result is tight.
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Abstract. We show that if a minimal-time solution exists for a funda-
mental distributed computation primitive, synchronizing arbitrary
undirected networks of finite-state processors, then there must exist an
“extraordinarily fast” Õ(D5E) algorithm1 in the RAM model of compu-
tation for exactly determining the diameter D of an arbitrary unweighted
undirected graph with E edges. The proof is constructive.

At present we know eight variations of the firing squad synchronization
problems whose solutions are known but whose minimal-time solutions
are not known. Our result essentially completes the program outlined
in [3] to show that it is highly unlikely for there to exist minimal-time
solutions for these variations.

1 Introduction

The firing squad synchronization problem (FSSP) is a famous problem originally
posed almost half a century ago with many variations. FSSP for undirected
networks, or UN(k) for short (k (≥ 3) is a parameter of the problem), is one of
its variations and can be formulated as follows.

The problem is to design a finite-state machine A that satisfies several con-
ditions. The machine A has k terminals. Each of the terminals works as both
an input terminal and output terminal. We construct a network N from copies
of A by connecting their terminals with bidirectional connections. The value of
i-th terminal as an output terminal at a time t is the pair (i, s) of its terminal
number i and the state s of the machine at the time. As an input terminal, the
value of a terminal is the value of the output terminal with which it is connected.
A terminal may be open and in that case it received a special value # as an

1 We use the notation Õ to represent standard asymptotic notation that ignores loga-
rithmic terms in the variables. Thus, for example, D log E = Õ(D).
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input terminal. The state of a machine at time t + 1 is determined by its state
and the values of its k input terminals at time t.

The machine A has at least three different states Q (the quiescent state), G
(the “general” state), and F (the firing state). Intuitively, Q is an inactive state.
If the state of A is Q and all values of its input terminals are either of the form
(i, Q) or # at a time t, its state at time t + 1 must be Q. One of the copies
of a network N is specified as the “general” of the network. Intuitively this is
the unique copy that is activated at time 0. At time 0 the state of a copy in a
network N is G if it is the general and Q otherwise (“soldiers”). Intuitively F is
the state of the machine in which it performs some action (“fire”).

The goal of the problem UN(k) is to design a machine A so that, for any
network N of copies of A there exists a time t0 such that the state of all copies
of N are F at the time t0 and the state of any copy at any time before the time
t0 is not F. In other words, all the copies of the networks N should enter the
firing state F simultaneously for the first time.

We call a machine A that satisfies these conditions a solution of UN(k). We call
the time t0 the firing time of the solution A for the network N . Assuming that
there exists a solution, for each network N we define the minimum firing time
of N as the minimum of firing times of solutions A for N , where the minimum
is over all solutions A. Moreover, we call a solution Ã a minimal-time solution
if its firing time for N is the minimum firing time of N for any network N .

The problem itself is interesting as a mathematical puzzle. More importantly,
there are also applications to the synchronization of small, fast processors in
large networks. In the literature on the subject, the problem has been referred
to as “macrosynchronization given microsynchronization” and “realizing global
synchronization using only local information exchange.” The synchronization of
multiple small but fast processors in general networks is a fundamental problem
of parallel processing and a computing primitive of distributed computation.

2 Variations of FSSP

The original FSSP was the one in which networks are restricted to linear arrays
and the general is the leftmost copy. There are many variations of the original
FSSP, for example, linear arrays with arbitrary position of the general, rings,
rectangles, cubes, directed networks, and undirected networks (UN(k)). To save
space, we omit the history and overview of these variations and refer the reader
to [4] and [1].

For many of these variations, minimal-time solutions are known. However,
there are several variations in which solutions are known but minimal-time solu-
tions are not known. In the following we will mention eight such variations. At
present, for each of them there exists no proof of nonexistence of minimal-time
solutions.

In the first variation 2PATH, a network is a path in the two-dimensional grid
space and the general is at one of the two endpoints. The second variation g-
2PATH is similar to 2PATH but the general may be at any position (“g” is for
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“generalized”). In the third variation 2REG, a network is a connected region in
the two-dimensional grid space and the general may be at any position. Three
other variations 3PATH, g-3PATH, 3REG are similar variations for the three-
dimensional grid space. Finally, DN(k) is the variation for directed networks
(k ≥ 2), and UN(k) is the variation mentioned previously (the variation for
undirected networks). In DN(k), a finite-state machine A has k input terminals
and k output terminals and connections are unilateral.

The variation 2PATH was originally studied by Kobayashi in [3]. The two-
dimensional path extension problem, or 2PEP for short, is the problem to decide,
for each given self-avoiding path in the two-dimensional grid space, whether there
exists a valid extension of the path such that the length is doubled. In [3], it
is shown that if 2PATH has a minimal-time solution, then 2PEP is solvable in
time O(n2) on a Turing Machine. Though 2PEP seems like a difficult problem,
its time complexity has yet to be resolved. This result also readily applies to the
other two-dimensional cases, g-2PATH and 2REG.

The remainder of the problems were studied by Goldstein and Kobayashi [1,2].
We could show that, for each of the three-dimensional variations 3PATH, g-
3PATH, and 3REG, if P �= NP then the problem has no minimal-time solution.

In [2], the authors showed that, for any k (≥ 2), if DN(k) had a minimal-time
solution, then there must exist an “extraordinarily fast” Õ((E+nD)D) algorithm
in the RAM model of computation for exactly determining the diameter of an
arbitrary unweighted directed graph.

Therefore, for seven of the eight variations 2PATH, g-2PATH, 2REG, 3PATH,
g-3PATH, 3REG, DN(k), UN(k), we know that finding a minimal-time solution
is at least as difficult as designing a very efficient algorithm for some problem.

In this work, we show that if a minimal-time solution exists for UN(k), then
there must exist a Õ(D5E) algorithm for exactly determining the diameter of
an arbitrary unweighted undirected graph. This will essentially complete the
program initiated in [3] to show that, for the eight variations mentioned above
it is highly unlikely for there to exist minimal-time solutions.

This result is curious. Note the difference between the Õ((E + nD)D) algo-
rithm presented in [2] and the Õ(D5E) algorithm presented here. Why should
the arbitrary undirected topology require more effort than the arbitrary directed
topology? One might believe upon seeing the proof of the directed case that the
undirected case would be a simple straightforward adaptation. In fact, the nec-
essary proof for the undirected case is significantly more complex and intricate
than the proof for the directed case, and the reasons seem to be inherent to the
problem itself (though, of course, we do not claim to have a proof of this).

3 The Results

3.1 Initial Definitions, Lemmas, and Constructions

Henceforward, we will identify a network N of copies of a finite-state machine A
with the underlying graph G that represents the connections. We also call the
general of a network its root.
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Definition 1. Given a directed graph G, define I(v) to be the set of edges with
terminal vertex v. For e ∈ I(v′), define de(v, v′) to be the length of the shortest
path from v to v′ such that the final edge in the path is e. Then for two vertices
v, v′ ∈ G, define d∗(v, v′) to be maxe′∈I(v′) de′(v, v′).

To calculate the value of d∗(v, v′) in an undirected graph, we replace each
undirected edge in G with two unidirectional edges, one in each direction. We
now specify that the value of d∗(v, v′) in the undirected case is equal to the value
computed when the bidirectional edges are replaced with two unidirectional edges.

Lemma 1. For each k (≥ 1) and each problem instance G = (V, E) of UN(k)
that is not the singleton network (the network with one node and no connections),
we have

mft(G) = max
v,v′∈V

{d∗(vroot, v) + d(v, v′)}

for the minimum firing time mft(G) of G.

Lemma 2. For each k ≥ 3, if UN(k) has a minimal-time solution, then UN(3)
has a minimal-time solution.

The remainder of this section will be devoted to proving the following theorem.

Theorem 1. If there exists a minimal-time solution for FSSP on the general
undirected network topology, UN(k), for any k ≥ 3, then there exists a determin-
istic algorithm in the RAM model of computation that can exactly determine the
diameter of a general unweighted directed graph in time Õ(D5E) where E is the
number of edges and D is the diameter of the graph,

We will assume that we are given an arbitrary undirected graph G = (V, E)
with n nodes and are operating in the RAM model of computation. A simple
depth-first search can be used to determine in time O(V + E) time whether the
graph has infinite diameter or not. We will assume that the diameter is found to
be finite. We can also check in O(E) time whether or not the graph has diameter
1; we will assume that the graph G has diameter strictly greater than 1.

Note that via Lemma 2, it will suffice to prove the result for k = 3. Thus, for
the remainder of the proof, we will assume k = 3.

We now proceed with a series of transformations of the graph G.

Transforming G to G′(s). Our main goal in this section will be to transform
the graph G of potentially unbounded degree to a graph G′(s) with degree
exactly 3. We perform this transformation in stages.

– Place a node in the center of every edge. In other words, replace each edge
v1

e↔ v2 with v1
e1↔ v′ e2↔ v2. This effectively doubles the length of each edge.

Let this new graph be G1 = (V1, E1). We refer to the set of vertices that were
originally in the graph G as V . (In this case, v1, v2 ∈ V and v1, v

′, v2 ∈ V1.)
– Vertices in G1 may have potentially unbounded degree. Our goal is now to get

the degree of the graph down to at most 3. We therefore replace each vertex v ∈
G1 with a cascaded binary tree of depth N = �log2 n� with root v. We connect
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each edge incident on v to the leaves of this binary tree. Call this altered graph
G2, and note that G2 has maximum degree 3. We refer to the set of vertices
V1 as the set of roots of these binary trees, vertices that were in the graph G1.
Note also that each v ∈ V1 at this point only has degree 2.

– In G2, let us consider the path from two vertices v1 and v2 that were adjacent
in the graph G. Essentially, the path between the two vertices is as follows:
start at v1, exit through v1’s binary tree, pass across the edge ev1,v′ , enter
and exit through v′’s binary tree, pass across edge ev′,v2 , enter v2’s binary
tree, and finally stop at v2. In this final transformation stage, we replace the
edges that are not in any binary tree (ev1,v′ and ev′,v2 in this case) with a
sequence of 2s edges, lengthening them by a factor of 2s. The value of s will
be a known constant whose value we will specify later. Let the center of this
long string of vertices be modified as shown in Figure 1.

Fig. 1. This illustrates the modification to the center vertex of the long string of 2s
vertices, transforming it into 2 vertices as shown

The result of performing this sequence of transformations will be the graph
G′(s).

Transforming G′(s) to G′′(s, r). We now create a graph G′′(s, r) from G′(s).
First, create |V1| bidirectional paths of length r, for some number r to be de-
termined later. These are the connectors. Connect one end of each of these
connectors to the “extra” port in each vertex in G1. Create a root node and
have the root cascade outwards, each branch of length �log2 |V1|�. Have these
link up with the other end of the connectors.

In terms of notation, B and C will refer to the set of vertices in the lower
binary tree and the connectors respectively.

Transforming G′′(s, r) to G′′(x, s, r). When we perform our calculations,
we will need an additional graph similar to G′′(s, r) but with some slight modifi-
cations. To form G′′(x, s, r) from G′′(s, r), we perform the following operations.

– For each connector that attaches to a vertex in G, elongate the connector
by x units.

– Elongate each path between two vertices in G1 by x units, and move each
of the “hangers” (illustrated in Figure 1) towards the vertices in G so that
the distance from the hanger to the nearest vertex in G is unchanged. Thus,
the total distance between two adjacent vertices in V1 is 2N + 2s + x after
this modification.
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Note that we will not use G′′(x, s, r) explicitly until the very end of the algo-
rithm, but we need to prove some facts about it. It is important to note that
G′′(0, s, r) = G′′(s, r).

Also, note that this transformation implicitly transform the graph G′(s) into
a graph G′(x, s). V ′(x, s) will refer to the vertices within G′(x, s).

3.2 Calculations

In this section, we will perform some of the calculations needed for the algorithm.

Definition 2. For a graph G, let the notation DG represent the diameter of the
graph G.

Definition 3. Let
f(v, v′) = d∗(vroot, v) + d(v, v′)

Recall that by Lemma 1, the minimal firing time of any network G is maxv,v′∈G

f(v, v′).
Before proceeding to the analysis, we need a few preliminary lemmas.

Preliminary Lemmas

Lemma 3. Assume that v, v′ ∈ V ′′(x, s, r) maximize the value of the function
f . Then we can assume without loss of generality that v ∈ V ′(x, s) and that v
is a vertex that is distance N + s from a vertex in G. (This places v just above
some hanger.)

Definition 4. Let Vv ⊂ V ′(x, s) be the set of vertices that are a distance N + s
from a vertex in G. We choose these names because if v, v′ ∈ V ′′(x, s, r) maximize
f , then by Lemma 3, without loss of generality v ∈ Vv.

Definition 5. Let the quantity dr(v, v′) (resp. dn(v, v′)) be the length of the
shortest path from v to v′ that does (resp. does not) pass through the lower
binary tree. If v′ happens to be in the lower binary tree, then we define dr(v, v′) =
dn(v, v′) = d(v, v′).

Assume that v, v′ maximize f in G′′(x, s, r). We know that we can assume v ∈ Vv

by Lemma 3, but we have three possible locations for v′: B, C, and V ′(x, s). We
will examine the three possibilities for the position of the vertex v′ and evaluate
the value of the function f in each case. To simplify our calculations, we note
that because v ∈ Vv, the value of d∗(vroot, v) = log2 |V1| + r + N + x + s + 2
is fixed and does not depend on the position of v′. Thus, when maximizing the
quantity f , we only need to consider the quantity maxv∈Vv ,v′∈V ′′(x,s,r) d(v, v′).

Lemma 4. N ≤ log2 |V1| ≤ 2N if n > 1.

Below, we will make repeated use of the following fact: If s > 2N (which we will
be assuming is always true in the algorithm), then because 2s > 4N ≥ 2 log2 |V1|
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(by Lemma 4), any shortest path from v ∈ Vv to v′ ∈ C that passes through the
lower binary tree will, once having left V ′(x, s)−C, never again enter V ′(x, s)−C.
Thus, if v ∈ Vv and v′ ∈ C, then the value of dr(v, v′) is higher the closer v′ gets
to V ′(x, s) and lower the further v′ gets from V ′(x, s).

Definition 6. – Let g : C → G1 be the map that takes a vertex v ∈ C and
maps it to the unique vertex in G1 above it in the connector.

– Let h : C → B be the map that takes a vertex v ∈ C and maps it to the
unique vertex in B directly below it in the connector.

Lemma 5. If r ≥ s ≥ 6N , maxv∈Vv ,v′∈C∪V ′(x,s) d(v, v′) > s + r + 5N + x.

Corollary 1. If r ≥ s ≥ 6N ,

max
v,v′∈V ′′(x,s,r)

d(v, v′) = max
v∈Vv ,v′∈C∪V ′(x,s)

d(v, v′)

Definition 7. Define C∗ ≡ C − V ′(x, s) − B.

Lemma 6. Assume that v, v′ maximize f in G′′(x, s, r) and r ≥ DG′(x,s). Then
v′ ∈ C∗.

Lemma 7. Let v, v′ maximize f within G′′(x, s, r). Assume that v′ ∈ C∗ and
s > 2N . Then we can conclude

1. |dr(v, v′) − dn(v, v′)| ≤ 1
2. d(v, v′) = �dr(v,v′)+dn(v,v′)

2 

Lemma 8. Assume that v ∈ Vv ⊂ V ′′(x, s, r), r ≥ s > 4N , and let v′ ∈ C.
Then

dr(v, v′) + dn(v, v′) = dr(v, g(v′)) + dn(v, g(v′))

Definition 8. Fix any vertex v ∈ V ′(x, s). We denote by vV , the vertex w ∈ V
such that dn(v, w) is minimized. A similar definition holds for vV1−V . Note that
for any vertex v ∈ Vv, the vertices vV and vV1−V by construction appear on
opposite ends of the edge in V ′(x, s) on which v appears.

Lemma 9. Let v ∈ Vv ⊂ V ′′(x, s, r) and let v′ ∈ C. Consider a shortest path
from v to v′ that does not pass through the lower binary tree. Let v∗ be a vertex
along this path such that dn(v∗, v′) ≤ s−N and if v∗ is not on the same connector
as v′ then v∗ ∈ V ′(x, s). Then either v∗ is on the same connector as v′ or the
path realized by dr(v, v∗) is required to pass through g(v′) and v′.

Definition 9. If v ∈ Vv and v′ ∈ C, define

dG1(v, v′) ≡ min{dG1(v
V , g(v′)), dG1(v

V1−V , g(v′))}

Corollary 2. Let v, v′ maximize f in G′′(x, s, r). By Lemma 3, we can as-
sume without loss of generality that v ∈ Vv. Assume that v′ ∈ C∗ and s ≥
N(dG1(v, v′) + 3) + x. Then dG1(v, v′) = DG1 − 1.
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Calculations within G′′(s, r). In this section, we will make calculations that
deal with G′′(s, r) = G′′(0, s, r). Lemmas in this section are specific to G′′(s, r);
we ignore the x value so as to simplify notation.

Before proceeding to the following lemma, we make a quick observation. Note
that if r is large enough and s is small compared to r, then if v1, v2 ∈ V ′(s),
most values of dr(v1, v2) are relatively close to each other in comparison with r.
In fact, we can put a quantitative bound on the maximum difference between
two such values:

Lemma 10. If v1, w1 ∈ Vv and v2, w2 ∈ V ′(s), then

dr(v1, v2) < dr(w1, w2) + 2s + 6N

Lemma 11. Let s > 4N and r ≥ 2s + 3N . Assume that v, v′ ∈ V ′′(s, r) maxi-
mize f and that v′ ∈ V ′(s). Consider the following two statements.

1. dr(v, v′) < dn(v, v′) + 2s + 6N
2. dn(v, v′) = d(v, v′) = maxb∈Vv ,b′∈V ′(s) dn(b, b′) ≤ dr(v, v′) ≤ dn(v, v′)+4N +

4s

If Statement 1 is not true, then Statement 2 must be true.

By Corollary 1 and Lemma 11, if v, v′ ∈ V ′′(s, r) maximize f , s > 4N , and
r ≥ 2s + 3N , then there are three (not necessarily mutually exclusive) regimes
that v′ may fall within. In all cases, by Lemma 4, without loss of generality
v ∈ Vv.

1. v′ ∈ V ′(s) and dr(v, v′) < dn(v, v′) + 2s + 6N
2. v′ ∈ V ′(s) and dn(v, v′) = d(v, v′) = maxb∈Vv ,b′∈V ′(s) dn(b, b′) ≤ dr(v, v′) ≤

dn(v, v′) + 4N + 4s
3. v′ ∈ C∗

Henceforward, whenever we refer to a graph as being in one of these three
regimes, we are implicitly assuming that s > 4N and r ≥ 2s + 3N . (When
we perform the algorithm below, these two restrictions will always be true.)

Regime Calculations for G′′(s, r). Our goal is now to show that if we pre-
dictably increase the value of r, for large enough r, the regime transitions are also
somewhat predictable. Again, this section deals only with G′′(s, r) = G′′(0, s, r).

Lemma 12. The firing time of a regime 1 graph G′′(s, r) is greater than or
equal to 3r − 3N + 4. The firing time of a regime 1 graph G′′(s, r) is less than
or equal to 3r + 3s + 9N + 3.

Lemma 13. Assume that G′′(s, r) and G′′(s, 4r) are both regime 2. Then the
difference in firing times between the two graphs is exactly 3r.

Lemma 14. Assume that G′′(s, r) and G′′(s, 4r) are both regime 3 and s ≥ 6N .
Then the difference in firing times between the two graphs is at least 6r − 8N
and at most 6r + 8N .
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Lemma 15. Assume that neither G′′(s, r) nor G′′(s, 4r) are regime 1 graphs. If
G′′(s, r) is a regime 3 graph, then G′′(s, 4r) is also a regime 3 graph.

The Estimation Lemma

Definition 10. If x < y, we use the notation [x, y] to indicate an unknown
number between x and y.

In the following lemma, the value O(N
s dG1(v, v′)) denotes a value X such that

X ≤ cN
s dG1(v, v′) for any G, s, and r. The value of the constant c is independent

of G, s, and r.

Lemma 16. Assume that G′′(s, r) is in regime 3. From the value of the minimal
firing time of G′′(s, r), it is possible to estimate dG1(v, v′) to within O(N

s dG1(v, v′)).

4 The Algorithm

We will describe the algorithm as a sequence of steps, proving their correctness
as we go along. Let s start at 6N and let r start at 2s + 3N .

1. Our first order of business is to guarantee that we eventually produce an r
value such that the graphs G′′(s, r) and G′′(s, 4r) are both regime 3. Con-
struct G′′(s, r) and G′′(s, 4r) and note the firing times of both.
– If the firing time of G′′(s, r) (resp. G′′(s, 4r)) is anywhere between 3r −

3N +4 and 3r +3s+9N +3 (resp. 12r−3N +4 and 12r+3s+9N +3),
we double the value of r and start again. If the firing time is outside
of this range, then we know by Lemma 12 that the graphs G′′(s, r) and
G′′(s, 4r) cannot be in regime 1. We claim that regime 3 graphs must
quickly move out of this range because the r dependence increase in the
firing time has at least a factor of 6 by Lemma 14. Because all graphs
become regime 3 for large enough r by Lemma 6 with x = 0, the firing
times of G′′(s, r) and G′′(s, 4r) must eventually cease being in this range.

– We also start again if the value of the difference in the two firing times
is anything less than 6r − 8N or more than 6r + 8N . The fact that the
firing times must eventually lie within this range is again guaranteed by
Lemma 6 with x = 0 and Lemma 14.

2. At this point, both graphs are in regimes 2 or 3. By Lemma 13, both graphs
cannot be in regime 2. Thus, at least one must be in regime 3. By Lemma 15,
G′′(s, 4r) must be in regime 3. Quadruple r so that G′′(s, r) is guaranteed
to be regime 3.

Throughout this section, we will use the following notation consistently: Let
v, v′ maximize f in G′′(s, r). By Lemma 3, v ∈ Vv, and because G′′(s, r) is
now in regime 3, v′ ∈ C∗.

Using Lemma 16 and G′′(s, r), we can estimate the value of dG1(v, v′).
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3. We continue doubling the value of s and starting again from the beginning
(resetting r to equal twice the value of this new doubled s plus 3N) until
DG1 has a unique value. In other words, we check the following two items in
order. (Obviously, we check the first before we check the second. If the first
fails, we automatically restart.)
(a) The error estimation in the calculations of Lemma 16 for dG1(v, v′) yields

a value strictly less than 1
2 . In other words, we know the exact value of

dG1(v, v′).
(b) The value of s satisfies s ≥ N(dG1(v, v′) + 3). By Corollary 2, we have

that dG1(v, v′) = DG1 −1 and therefore we know the exact value of DG1 .
4. Unfortunately, just because we know the value of DG1 does not mean that

we know the value of DG. Consider the following cases.
(a) There exists a diameter-length path in G1 with two endpoints in V , and

DG1 is even. We can conclude that DG = DG1
2 .

(b) Both endpoints of the diameter of G1 are required to be in V1 − V ,
and DG1 is even. We can conclude that DG = DG1−2

2 and v′ lies in the
connector of a vertex in V1 − V .

(c) DG1 is odd. If DG1 is odd, then we know that the maximal path has
exactly one endpoint on a vertex of G. Thus, if DG1 is odd, we can
conclude that DG = DG1−1

2 .
The remainder of the algorithm will be determining, if necessary, which of
the former two possibilities actually occurs. From this point onwards, we will
assume that DG1 is even.

5. There are two cases that need to be considered concerning the structure of
the graph G1.
(a) There exists two vertices vf , vt ∈ V such that dG1(vf , vt) = DG1 .
(b) All diameter length paths in G1 start and end at a vertex in V1 − V .
Let x∗ = N(DG1 + 3), s∗ = N(DG1 + 3) + x∗, r∗ = (DG1 + 1)(x∗ + 2s∗ +
2N), and let L = 2r∗ + 2s∗DG1 + x∗DG1 + 4N + 2NDG1. Form the graph
G′′(x∗, s∗, r∗). Let w, w′ maximize f in G′′(x∗, s∗, r∗). Note that by Lemma
6, w′ ∈ C∗.
Let us first assume that G1 is a Case 5b graph. Then we must have g(w′) ∈
V1 − V . We can upper bound the value of dr(w, w′) + dn(w, w′) as follows.
Note that the first vertex in V1 in a path realized by dn(w, w′) must be in V
because G1 is bipartite.

dr(w, w′) + dn(w, w′)
= dr(w, g(w′)) + dn(w, g(w′))
≤ s∗ + N + x∗ + r∗ + 2 log2 |V1| + r∗ + dn(w, g(w′))
≤ s∗ + x∗ + 2r∗ + 5N + dn(w, g(w′))
≤ s∗ + x∗ + 2r∗ + 5N + s∗ + (2N + 2s∗ + x∗)(DG1 − 1) + N

= 2s∗ + x∗ + 2r∗ + 6N + (2N + 2s∗ + x∗)(DG1 − 1) = L.

Now let us assume that G1 is a Case 5a graph. Then ∃vf , vt ∈ V such that
dG1(vf , vt) = DG1 . Let v ∈ Vv be any vertex in an edge adjacent to vf .
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We first claim that there exists v′ ∈ C such that g(v′) = vt and d(v, v′) =
�dr(v,v′)+dn(v,v′)

2 . To show this, let v′k ∈ C be the vertex k units above the
lower binary tree such that g(v′k) = vt. (Note that k is allowed to range from
0 to r∗ + x∗.) If we can show that dr(v, v′0) ≤ dn(v, v′0) and dn(v, v′r∗+x∗) ≤
dr(v, v′r∗+x∗), then because dr(v, v′k) is monotonically increasing unit for unit
with k and dn(v, v′k) is monotonically decreasing unit for unit with k, there
must exist a value for k at which |dr(v, v′k)−dn(v, v′k)| ≤ 1; at this value, we
can let v′ = v′k. So we get

dr(v, v′0) ≤ s∗ + x∗ + N + r∗ + 2 log2 |V1|
≤ s∗ + x∗ + 5N + r∗ ≤ dn(v, vt) + r∗ + x∗v = dn(v, v′0),

dr(v, v′r∗+x∗) ≥ s∗ + x∗ + N + r∗ + 2 + r∗ + x∗

= s∗ + x∗ + N + r∗ + 2 + (DG1 + 1)(x∗ + 2s∗ + 2N) + x∗

≥ dn(v, vt) = dn(v, v′r∗+x∗).

By the above discussion and Lemma 7, we have

�dr(w, w′) + dn(w, w′)
2

 = d(w, w′) ≥ d(v, v′) = �dr(v, v′) + dn(v, v′)
2

.

Therefore, we have that

dr(w, w′) + dn(w, w′) ≥ dr(v, v′) + dn(v, v′) − 1.

Note that in this case the first vertex in V1 in a path realized by dn(v, vt)
must be in V1 − V because G1 is bipartite. We can now lower bound the
value of dr(w, w′) + dn(w, w′) as follows. This leads to the following lower
bound.

dr(w, w′) + dn(w, w′)
≥ dr(v, v′) + dn(v, v′) − 1 = dr(v, vt) + dn(v, vt) − 1
≥ s∗ + N + x∗ + r∗ + 2 + r∗ + x∗ + dn(v, vt) − 1
> s∗ + 2x∗ + 2r∗ + N + dn(v, vt)
≥ s∗ + 2x∗ + 2r∗ + N + s∗ + x∗ + (2 + 2s∗ + x∗)(DG1 − 1) + N

= L + 2x∗ − 2NDG1 + 2DG1 − 2N − 2 = L + 2DG1 + 4N − 2
≥ L + 6

Hence, d(w, w′) = �(dr(w, w′) + dn(w, w′))/2 is at most L/2 for a Case 5b
graph and greater than L/2 for a Case 5a graph.
Moreover, the value of d∗(vroot, w) is the same value �log2 |V1|� + r∗ + N +
s∗ + x∗ + 2 in either case. Hence, it is possible to differentiate between
the two possible cases by running the minimal-time solution on the graph
G′′(x∗, s∗, r∗) and noting which regime the firing time falls into. This in turn
will yield the value of DG as described above.



The “Most General” Undirected Firing Squad Synchronization Problem 255

Time Analysis
As we have already noticed, the time to check that G is strongly connected and
D ≥ 2 is at most O(n + E). Now we estimate the time for the simulation of the
minimal-time solution.

For given values of x and s, the number of vertices in G′(x, s) is Õ(E(x+ s)).
Note that throughout the algorithm x ≤ s and therefore the number of vertices
in G′(x, s) can be expressed as Õ(Es). The number of vertices in the connectors
of G′′(x, s, r) is Õ((E+n)(r+x)), and the number of vertices in the lower binary
tree is Õ(n). Hence, the total number of vertices in G′′(x, s, r) is Õ((E + n)(r +
x) + Es). Each vertex has degree at most 3 by construction and so the total
number of edges is asymptotically this same expression Õ((E + n)(r + x) +Es).
Note that throughout the algorithm s ≤ r, and because G is assumed to be
connected n ≤ E + 1. Then the total number of edges in G′′(x, s, r) can be
expressed as Õ(Er).

By Lemma 1 the minimum firing time of G′′(x, s, r) is Õ(sDG +r) = Õ(rDG).
Hence the time for a simulation on G′′(x, s, r) is Õ(Er2DG). Because s and r are
increased geometrically, the total simulation time is asymptotically dominated by
the final run on G′′(x∗, s∗, r∗). At that point r∗ = Õ(D2

G). Thus, the asymptotic
time for the total simulation is Õ(D5

GE).
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Abstract. We consider a generalization of the well-known domination
problem on graphs. The (soft) capacitated domination problem with de-
mand constraints is to find a dominating set D of minimum cardinality
satisfying both the capacity and demand constraints. The capacity con-
straint specifies that each vertex has a capacity that it can use to meet
the demand of dominated vertices in its closed neighborhood, and the
number of copies of each vertex allowed in D is unbounded. The demand
constraint specifies that the demand of each vertex in V is met by the
capacities of vertices in D dominating it. In this paper, we study the
capacitated domination problem on trees. We present a linear time algo-
rithm for the unsplittable demand model, and a pseudo-polynomial time
algorithm for the splittable demand model. In addition, we show that
the capacitated domination problem on trees with splittable demand
constraints is NP-complete (even for its integer version) and provide a
3
2 -approximation algorithm. We also give a primal-dual approximation
algorithm for the weighted capacitated domination problem with split-
table demand constraints on general graphs.

1 Introduction

The domination problem on graphs is one of the well-known combinatorial op-
timization problems. The domination problem can be described as follows. Let
G = (V, E) denote an undirected graph with vertex set V and edge set E. G is
a weighted graph if each vertex v ∈ V is associated with a weight w(v) ∈ R

+.
A vertex v is said to dominate itself and each of its neighbors. A set D ⊆ V is
called a dominating set if every vertex in V is dominated by at least one vertex
in D. The goal is to find an optimal dominating set D∗ of minimum weight in
G. The weight of D∗ is equal to the sum of the weights of all the vertices in D∗,
and the minimum weight of D∗ is called the weighted domination number of G,
denoted γw(G). If the weight of each vertex is unity, then γw(G) would be the
cardinality of the optimal dominating set D∗, and it is called the domination
number of G, denoted γ(G).
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There has been considerable amount of research devoted to the metric case
of the capacitated facility location problem. The capacitated facility location
problem is defined as follows. Consider a set C of clients and a set F of facilities.
Each client has associated with it a demand and each facility has a capacity that
specifies the maximum service the facility can provide to its clients to meet their
demands. In addition a facility also has a setup or operating cost if it is opened
and service cost, which is based on a predefined function A : F × C → R

+,
among pairs of facilities and clients, where R

+ denotes the set of non-negative
real numbers, and A(f, c), f ∈ F, c ∈ C, denotes the service cost when client c is
assigned to be serviced by facility f . The metric service function A is nonnegative
and symmetric, and obeys the triangle inequality. The goal is to find a subset
K ⊆ F of facilities to set up and an assignment of clients to facilities, such
that the demand requirements of all the clients are satisfied, facilities capacities
are not violated, and the total cost, including facility setup and service cost, is
minimized. The capacity of a facility in the capacitated facility location problem
is said to be hard if the facility can be opened at most a certain limited number of
times to serve clients’ demands; it is said to be soft if the facility can be opened
without any restrictions on the number of times it can be opened. In addition, the
demand of a client is called unsplittable if we require that the entire demand of
the client is served by a single facility; otherwise, we call the demand splittable.
In general, for each client v, let the maximum number of distinct facilities to
serve a client v be called the demand split number of v, denoted kv.

The soft capacitated facility location problem was considered in the litera-
ture [1,13,14,22,24] and approximation algorithms based on some linear program-
ming techniques, like LP-rounding and primal-dual algorithms were
obtained. In 1997 Shmoys et al.[24] first presented a 5.69-approximation al-
gorithm for the soft uniform capacity model with demand constraints. Using
primal-dual method Jain and Vazirani[14] gave a 4-approximation algorithm for
the generalized nonuniform capacity model. Arya et al.[1] improved this approx-
imation factor to 2 +

√
3 based on local search heuristics. Following the method

of Jain and Vazirani[14], Jain et al.[13] further improved the factor to 3. The
latest result, with factor 2, due to Mahdian et al.[22], achieves the integrality
gap of the natural LP relaxation of this soft capacity model. The hard capaci-
tated facility location problem was treated differently however. Because of the
large integrality gap, linear programming techniques do not work efficiently, and
local search heuristics were proposed instead. Korupolu et al.[16] first gave a
(8 + ε)-approximation algorithm for the hard uniform capacity model. Chudak
and Williamson[5] improved the approximation factor to (6 + ε). Based on the
scaling technique, Charikar and Guha[3] improved the factor to (3 + 2

√
2). Levi

et al.[17] further improved the factor to 5. Pál et al.[23] presented a (9 + ε)-
approximation algorithm for the generalized hard nonuniform capacity model.
This was improved by Mahdian and Pál.[21], and Zhang et al.[25] to yield an
approximation factor (3 + 2

√
2).

In this paper we investigate the capacitated domination problem on graphs,
which is closely related to the capacitated facility location problem, in which
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the clients and facilities are vertices of the graphs, and the set of facilities we
open corresponds to the dominating set, and all the distances are either 0 or
∞. The capacitated domination problem was introduced by Haynes et al.[10],
who discussed a lot of variations of domination problem. In addition, the k-tuple
domination problem, i.e., to find a minimum vertex subset such that every vertex
in the graph is dominated by at least k vertices in this set, which was investi-
gated by Liao and Chang[18,19] in 2002, is slightly similar to the capacitated
domination problem with demand split number kv = k for each v.

The capacitated vertex cover problem is another famous problem related to
the capacitated domination problem on graphs. Chuzhoy and Naor[4] proved
weighted capacitated vertex cover problem with hard capacity and uniform de-
mand is at least as hard as the set cover problem and provided a logarithmic
approximation algorithm. For unweighted version with hard capacity and un-
splittable nonuniform demand, they proved that this model is unapproximable
unless P=NP and gave a 3-approximation algorithm for this model when each
edge demand is uniform. Gandhi et al.[7] further improved the approximation
ratio 3 of the latter model to 2, which is the best known ratio for the general
vertex cover problem. About the soft capacity model, Gandhi et al.[8] provided
an LP-rounding 2-approximation algorithm for the soft capacitated vertex cover
problem with uniform demand. Guha et al.[9] presented the same result by a
primal-dual method, and a 3-approximation algorithm for the generalized model
with soft capacity and splittable nonuniform demand. They also gave polyno-
mial time algorithms for some restricted cases of soft capacitated vertex cover
problem on trees.

Our Contribution
To the best of our knowledge this is the first paper considering both notions of
capacity and demand in domination problem on graphs, which is as hard as set
cover problem. In particular, we study the soft capacitated domination problem
with demand constraints on trees. We present a linear time algorithm for the
unsplittable demand model. For the splittable demand model on trees, we show it
is NP-complete even when the vertex capacity and demand are integers, in con-
trast to the linear time result of Guha et. al[9] for the same model of capacitated
vertex cover on trees. Furthermore, based on our NP-completeness reduction,
we develop a pseudo-polynomial time algorithm and further a combinatorial 3

2 -
approximation algorithm for splittable demand model on trees. We also give a
primal-dual (Δ + 1)-approximation algorithm for weighted capacitated domina-
tion problem with splittable demand constraints on general graphs, where Δ is
the maximum degree of the vertices. The approximation factor is almost equal
to one of the two well-known approximation ratios (Δ[2,11] and O(ln n)[6,15,20])
of general domination problem.

2 Preliminaries

Let G = (V, E) be an undirected graph with vertex set V and edge set E.
A vertex w ∈ V is said to be a neighbor of or adjacent to a vertex v ∈ V if
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(v, w) ∈ E. The neighborhood of a vertex v ∈ V is NG(v) = {w ∈ V | (v, w) ∈
E}. The closed neighborhood of v ∈ V is NG[v] = NG(v) ∪ {v}. The closed
degree of a vertex v ∈ V is deg[v] = |NG[v]|. The closed degree of a graph G is
Δ∗

G = maxv∈V deg[v].
In the capacitated domination problem with demand constraints, each vertex

v ∈ V has a positive demand d(v), required of service from vertices in NG[v], and
a positive capacity c(v), which is the maximum service v can provide to vertices
in NG[v]. A multi-set D ⊆ V , with a multiplicity function x : V → Z

+ ∪ {0}, is
called a capacitated dominating multi-set if there exists an assignment function
f : V × D → R

+ ∪ {0} such that for every v ∈ V and δ ∈ D ∩ V , the following
constraints (∗) are satisfied. Note that f(v, δ) denotes the amount of demand
requirement of each vertex v ∈ V that is assigned to a vertex δ ∈ D ∩ V , and
f(v, δ) = 0 if v /∈ NG[δ].

1.
∑

∀δ∈NG[v]∩D f(v, δ) ≥ d(v) (demand constraint for v)
2.

∑
∀v∈NG[δ] f(v, δ) ≤ x(δ)×c(δ) (capacity constraint for δ) (∗)

More formally, given a graph G = (V, E), a capacity function c : V → R
+∪{0},

and a demand function d : V → R
+ ∪ {0}, the capacitated domination problem

with demand constraints is to find a capacitated dominating multi-set D of G and
an assignment function f : V × D → R

+ ∪ {0}, which satisfies both the demand
constraint and capacity constraint (specified in (∗)) such that

∑
v∈V x(v) is

minimum, where x(v), defined by a multiplicity function x : V → Z
+ ∪ {0},

denotes the number of copies of v ∈ V that belongs to D.
∑

v∈V x(v) is the
cardinality or the size of the multi-set D, denoted |D|.

One can consider the weighted capacitated domination problem by associating
with each vertex a positive real weight w(v), which denotes the cost incurred
and may differ for different vertex v. Then the problem becomes that of finding
a capacitated dominating multi-set such that the total weight

∑
v∈V w(v)×x(v)

is minimum. There are also variations in the assignment of demands for each
vertex and in the selection of multiple copies of vertices. We say the demand
is unsplittable if we require that f(v, δ) is either d(v) or 0 for each v ∈ V and
δ ∈ NG[v] ∩ D, and splittable if no such restriction exists on f . The capacity is
said to be soft if the number of available copies of each vertex is unbounded and
hard otherwise.

3 Capacitated Domination on Trees

Guha, et al.[9] showed in 2002, that the weighted capacitated vertex cover prob-
lem on trees is NP-hard and that the unweighted case can be solved in linear
time. In this section, we reveal that there exists, however, a considerably big gap
between capacitated vertex cover problem and capacitated domination problem
on trees for the unweighted case when the demand is splittable.
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3.1 Unsplittable Demand Model

In this subsection we show that capacitated domination problem with unsplit-
table demand on trees can be solved in linear time. In particular, we con-
sider a stronger version of the original problem to find an optimal capaci-
tated dominating multi-set D with the maximum residue capacity at the root.
The residue capacity of a vertex δ, denoted by RC[δ], is the remainder of
its capacity after δ serves the demands of vertices in NG[δ], i.e., RC[δ] =
x(δ) × c(δ) −

∑
∀v∈NG[δ] f(v, δ). The algorithm runs in a bottom-up manner.

It processes one vertex at each iteration in postorder tree traversal. Since the
demand is unsplittable, we will use the words assign the demand of v to δ or
assign v to δ alternatively for convenience.

Given a tree T = (V, E) with a postorder tree traversal, let p(v) be the parent
of v ∈ V , Ch(v) the child set of v, and Tv the subtree rooted at v. At each
iteration i, we compute the minimum cardinality of the capacitated dominating
multi-set and the residue capacity of vi for Tvi when vi assigned to itself or to one
of its children in Ch(vi) or when vi assigned to its parent p(vi). The minimum
cardinality of the capacitated dominating multi-set and the residue capacity of
vi in the former case are denoted W↓[vi] and RC↓[vi] respectively and in the
latter they are denoted W↑[vi] and RC↑[vi] respectively. W↑[vi] is assumed to
be infinity if vi is the root of T . Note that in the former case when there is
more than one child of vi providing minimum W↓[vi], we select the one with the
maximum RC↓[vi], and in case of a tie, we break it arbitrarily. Due to space
constraint, we shall skip the proofs. More details can be found in Kao et al.[26].

Lemma 1. Given a postorder tree traversal v1, v2, . . . , vn, we can at each itera-
tion i, 1 ≤ i ≤ n, immediately determine the assignment of the demand of vi op-
timally to its parent p(vi) or otherwise, except for the case when W↓[vi] = W↑[vi]
and RC↓[vi] > RC↑[vi] (we call this case undetermined condition of vi).

The main idea of our algorithm, Algorithm MCDUT (see [26]), is described in
the following. Given a tree T = (V, E) with a postorder tree traversal v1, v2, . . . ,
vn, we shall process vertices one at a time in postorder. We maintain four vari-
ables, W↑[vi], W↓[vi], RC↑[vi], RC↓[vi], and one pointer from vi to vj , if nec-
essary, where vj is the child of vi which gives the optimal W↓[vi], among all
children of vi. For convenience we assume that the capacity of the parent of vi,
c(p(vi)) is available when we process vi. At each iteration i, we do the following
computations.
Case(1). Computation of W↑[vi] and RC↑[vi].
If vi is to be assigned to p(vi), we compute W↑[vi] as (1) the number of copies
of p(vi) needed, i.e., � d(vi)

c(p(vi))
, plus (2) the summation of min{W↓[u], W↑[u]}

for every child u of vi, and minus (3) the saving of copies of vi , i.e., �RC[vi]
c(vi)

�,
provided by the residue capacity of vi due to the assignments of its children, if
any, where RC[vi] =

∑
u∈Ch(vi),W↓[u]≥W↑[u](c(vi) − (d(u) mod c(vi))).

We compute RC↑[vi] as RC[vi] mod c(vi).
Case(2). Computation of W↓[vi] and RC↓[vi].



Capacitated Domination Problem 261

Case(2-1). If vi is assigned to itself, we compute W↓[vi] in a way similar to
Case(1) with some modifications: part (1) is modified to be the number
of copies of vi, i.e., �d(vi)

c(vi)
. The computation of part (2) is the same. The

computation of part (3) the savings of copies of vi, is the same as before,
i.e., �RC[vi]

c(vi)
�, except that RC[vi] given above needs to be adjusted by adding

(c(vi) − (d(vi) mod c(vi))).
Case(2-2). If vi is assigned to one of its children, say u∗ ∈ Ch(vi), we compute

W↓[vi] in a way similar to Case(1) with the following modifications: part (1)
is modified to be the number of copies of u∗, i.e., � d(vi)

c(u∗). The computation
of part (2) is the same as above and the computation of part (3) is modified,
depending on the status of u∗.
Case(2-2-1) assignment of u∗ is determined. We add the saving of

copies of u∗, �(RC[u∗] + (c(u∗) − (d(vi) mod c(u∗))))/c(u∗)�, to part
(3), where RC[u∗] = RC↑[u∗] if u∗ was assigned upward by Lemma 1;
and RC[u∗] = RC↓[u∗], if u∗ was assigned downward.

Case(2-2-2) assignment of u∗ is undetermined. In this case, W↑[u∗] =
W↓[u∗] and RC↑[u∗] < RC↓[u∗]. We need to consider both cases in which
u∗ is assigned upward and downward, in order to obtain the optimal
W↓[vi]. The case when u∗ is assigned upward is the same as Case(2-2-1).
For the case when u∗ is assigned downward, we need to modify RC[vi]
given in Case (1) by subtracting from it (c(vi) − (d(u∗) mod c(vi))) and
then compute for part (3) �RC[vi]

c(vi)
�+ �(RC↓[u∗] + (c(u∗) − (d(vi) mod

c(u∗))))/c(u∗)�.
We compute RC↓[vi] as RC[vi] mod c(vi) for each subcase Case(2-1) and
Case(2-2).

We shall select as the optimal W↓[vi] the assignment for vi that gives the
minimum W↓[vi] with the maximum RC↓[vi] among all the cases. In addition, if
the optimal W↓[vi] is obtained from the assignment of vi to a child û, we add a
pointer from vi to û, and furthermore if û was undetermined, we record which
assignment, upward or downward, of û in Case(2-2-2) yields the optimal W↓[vi].

Lemma 2. If vi is classified as undetermined at iteration i, then at most one
child of vi remains undetermined. Otherwise, if vi is classified as determined at
iteration i, then each child of vi is determined as well.

Corollary 1. (Invariant Condition) After each iteration i, 1 ≤ i ≤ n, there is
at most one path consisting of all undetermined vertices in Tvi starting with vi.

We remark that Algorithm MCDUT[26] can be modified to output the opti-

mal capacitated dominating multi-set (x(δ) = �
�

v∈N [δ] f(v,δ)

c(δ) , ∀δ ∈ D) as well.

Theorem 1. Algorithm MCDUT solves the capacitated domination problem
with unsplittable demand on trees in linear time.
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3.2 Splittable Demand Model

We next consider the case when the vertex demand is splittable. We first show
the problem is NP-complete even when the vertex capacity and demand are
integers. We shall reduce the decision problem Subset Sum, which is a well-
known NP-complete problem, to the decision version of capacitated domination
problem with splittable demand on trees. The Subset Sum problem is defined
as: Given a finite set S = {a1, a2, . . . , an}, ∀ai ∈ Z

+, and W ∈ Z
+, the decision

Subset Sum problem is to determine if there exists a subset A of {1, 2, . . . n} such
that

∑
i∈A ai = W . Without loss of generality, we assume that

∑n
i=1 ai ≥ W .

Let M = (
∑n

i=1 ai) + 1, W ′ = M · W , and a′
i = M · ai. Given an instance of

the decision Subset Sum problem, we build a capacitated domination problem
instance T , where T is a tree consisting of n + 2 vertices, where vn+1 is the root
with capacity 1 and demand W , v0 is the only child of vn+1 with capacity M
and demand

∑n
i=1 a′

i − W ′, and v0 has as children, v1, v2, . . . , vn, which are leaf
vertices and each leaf vi has capacity M + a′

i − ai and demand M − ai. It is not
difficult to see that there exists a subset A of {1, 2, . . . n} such that

∑
i∈A ai = W

if and only if there exists a feasible capacitated dominating multi-set D of size
n for T .

Theorem 2. The capacitated domination problem with splittable demand on
trees is NP-complete, even when the vertex capacity and demand are integers.

We then present a pseudo-polynomial time algorithm for splittable demand
model. Given a tree T = (V, E) with a postorder tree traversal, at each iteration
i, we maintain the residue demand of vi, denoted by RD[vi], and the residue
capacity of vi, denoted by RC[vi]. Initially we have RD[vi] = d(vi) and RC[vi] =
0 for every vi ∈ V . As the vertex vi is considered, the algorithm first uses up all
the available residue capacity, if any, from Ch(vi) and then from {vi}, attempting
to assign as much RD[vi] as possible so that either RD[vi] is satisfied or all the
available residue capacity is exhausted. We describe the first step, exhausting
all the available residue capacity from Ch(vi) ∪ {vi}, in detail later.

After the first step, if RD[vi] is satisfied, then RC[vi] is also maximized.
Otherwise, if RD[vi] �= 0, that is, the available residue capacity is used up
but RD[vi] is not satisfied, we process RD[vi] in a greedy manner as follows.
Find u∗ ∈ N [vi] such that c(u∗) is maxu∈N [vi]{c(u)}. Create �RD[vi]/c(u∗)�
copies of u∗ ∈ D to meet the demand RD[vi] of vi. We then have for vi a
new residue demand RD[vi] which is RD[vi] mod c(u∗). The algorithm further
decides whether the new RD[vi] can be determined immediately. We recall that
Lemma 1 characterizes the undetermined condition at each iteration i in the
unsplittable demand model. A similar undetermined condition also holds in the
splittable demand model.

Lemma 3. Given a tree T = (V, E) with a postorder tree traversal v1, v2, . . . , vn,
we can at each iteration i, 1 ≤ i ≤ n, immediately determine the optimal as-
signment of the residue demand RD[vi] of vi, except for the case when RD[vi] ≤
c(p(vi)) < c(vi) (this is called the undetermined condition of vi).
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If vi can be determined immediately, then we have RD[vi] = 0. Otherwise we
have RC[vi] = 0 by the first step and mark vi as undetermined. The two invariant
conditions hold after each iteration i, 1 ≤ i ≤ n, (1) RD[vi] ·RC[vi] = 0; and (2)
RD[vi] �= 0 only if RD[vi] ≤ c(p(vi)) < c(vi). Now we describe the first step,
exhausting all the available residue capacity from Ch(vi) ∪ {vi}, of our
algorithm in detail. When the vertex vi is considered, the algorithm exhausts
the available residue capacity from Ch(vi) first. Let Chd(vi) = {p1, p2, . . . , pl}
be the set of determined children of vi and Chu(vi) = {q1, q2, . . . , qm} be the
set of undetermined children of vi. Note that RD[pj] = 0, 1 ≤ j ≤ l, and
RD[qk] ≤ c(vi) < c(qk), 1 ≤ k ≤ m. The first step has the following two phases.

Phase(1). Exhaust the total residue capacity in Chd(vi), i.e.,
∑

pj∈Chd(vi)
RC[pj ].

We assign RD[vi] to p1, . . . , pl as far as possible. If RD[vi] ≤
∑

pj∈Chd(vi)
RC[pj ],

then RD[vi] can be satisfied. We then assign q1, q2, . . . , qm upward to vi since
it provides p(vi) more residue capacity, and the first step is done. Otherwise, if
RD[vi] >

∑
pj∈Chd(vi)

RC[pj], we update RD[vi] = RD[vi]−
∑

pj∈Chd(vi)
RC[pj ]

and enter the next phase.

Phase(2). Arrange the demand assignment of the vertices in Chu(vi) to satisfy
RD[vi] while RC[vi] is maximized.
If RD[vi] >

∑
qk∈Chu(vi)

(c(qk) − RD[qk]), then it is impossible that RD[vi] can
be satisfied by any arrangement of the total available residue capacity of Chu(vi),
since by the undetermined condition of qk, c(qk) > c(vi) for each qk ∈ Chu(vi)
and we assign q1, q2, . . . , qm downward to themselves. Subsequently, we use up
all available residue capacity in Chu(vi) to satisfy RD[vi], and then assign the
rest of RD[vi], RD[vi] −

∑
qk∈Chu(vi)

(c(qk) − RD[qk]), to itself with the residue
capacity of vi, RC[vi]. This completes the first step.

Otherwise, i.e., RD[vi] ≤
∑

qk∈Chu(vi)
(c(qk) − RD[qk]), we will proceed to

arrange the demand assignment of the vertices in Chu(vi) to satisfy RD[vi] while
maximizing RC[vi]. This problem reduces to the following Relaxed Knapsack

Problem, which is a variation of the well-known Knapsack Problem. Note that
the first invariant condition, that is, RD[vi] is satisfied or RC[vi] is exhausted,
holds in both phases.

Definition 1. (The Relaxed Knapsack Problem) Given a set of m or-
dered pairs (ak, bk) denoting respectively the size and profit of the kth item,
∀ak, bk ∈ Z

+ ∪ {0}, 1 ≤ k ≤ m, and a nonnegative integer W , find a subset
A ⊆ {1, 2, . . . , m} such that

∑
k∈A bk − max{0,

∑
k∈A ak − W} is maximized.

We select the items and place them into a knapsack of the relaxed size W to
maximize the sum of the profit

∑
k∈A bk. In particular, the additional compen-

sation
∑

k∈A ak − W is required if the total size of the selected items,
∑

k∈A ak,
exceeds W . The Relaxed Knapsack Problem can be solved in O(m2M)
pseudo-polynomial time[26], where M = max1≤k≤m{bk}.
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Theorem 3. The demand assignment of vertices in Chu(vi) can be optimally
determined in O(|Chu(vi)|2c(vi)) time such that RD[vi] is satisfied while maxi-
mizing RC[vi] for Phase(2) of the first step at each iteration i, 1 ≤ i ≤ n.

Corollary 2. There exists at most one undetermined vertex, namely vi, in Tvi ,
after each iteration i, 1 ≤ i ≤ n.

Theorem 4. Given a tree T = (V, E) with a postorder tree traversal, the capaci-
tated domination problem with splittable demand on T can be solved in O(C|V |2)
time, where C = maxvi∈V c(vi).

4 Approximation Algorithms

4.1 3
2 -approximation on Trees

In this subsection, we first give a fully polynomial time approximation scheme
(FPTAS) for the Relaxed Knapsack Problem. The idea is similar to the well-
known FPTAS result of Ibarra and Kim[12] for the Knapsack Problem. Based on
our FPTAS result, we then present a simple 3

2 -approximation algorithm for the
capacitated domination problem with splittable demand on trees. We remark
that our 3

2 -factor approximation for trees can be improved to a polynomial time
approximation scheme in a similar manner.

Algorithm FPTAS RKP (FPTAS for Relaxed Knapsack Problem)

1. Given ε > 0, let k = εM
2n+1 , a′

i = �ai

k , b′i = � bi

k �, and W ′ = �W
k �, where

M = max1≤i≤n{bi}.
2. Use (a′

i, b
′
i), 1 ≤ i ≤ n, and W ′ as input parameters of the new Relaxed

Knapsack Problem instance. Apply the dynamic programming method
given in [26] to obtain a max profit B∗.

3. Output the solution A∗ by the backtracking technique from B∗.

Lemma 4. Let A∗ be the solution obtained by Algorithm FPTAS RKP. We
have profit(A∗) ≥ (1 − ε)· profit(O), where O is the original optimal solution.

Theorem 5. Algorithm FPTAS RKP is an FPTAS for Relaxed Knapsack

Problem which gives a (1 − ε)-approximation in O(n2�M
k �) or O(n2�n

ε �) time.

Based on our FPTAS result of the Relaxed Knapsack Problem, we provide
a simple 3

2 -approximation algorithm for the capacitated domination problem
with splittable demand on a tree T = (V, E) in O(|V |3Δ) time, where Δ is the
maximum degree, as follows. Given a capacitated domination problem instance,
let ε = 1

Δ . Consider Phase(2) of our first step for every vi ∈ V in subsection 3.2.
We first verify whether one copy of vi, i.e., the capacity c(vi) is sufficient for the
residue demand of vi and the total residue demand in Chu(vi). That is, we place
all the items into the knapsack, i.e., A∗ = Chu(vi) in the Relaxed Knapsack

Problem, and c(vi) ≥ RD[vi] +
∑

qk∈Chu(vi)
RD[qk]. If it is true, we just have
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a copy of vi. If not, we have a copy of vj when Ch(vi) = Chu(vi) = {vj}.
Otherwise, we use Algorithm FPTAS RKP as above for Phase(2) of our first
step to arrange the demand assignment of vertices in Chu(vi), and have an
additional copy of vi after the arrangement.

Theorem 6. The approximation algorithm based on FPTAS RKP yields a 3
2 -

approximation factor for the capacitated domination problem with splittable de-
mand on a tree T = (V, E) in O(|V |3Δ) time, where Δ is the maximum degree.

4.2 Δ∗-approximation on General Graphs

In this subsection, we present a primal-dual algorithm[4,9,14] that gives a Δ∗-
approximation for weighted capacitated domination with splittable demand on
general graphs, where Δ∗ is the closed degree of the input graph. The algorithm
is based on the dual fitting technique.

The primal integer linear program (ILP) and its dual are given in Eq. (1) and
Eq. (2) respectively below. A feasible primal solution corresponds to a feasible
capacitated dominating multi-set on a given weighted graph. The additional
constraint d(vj)x(vi)−f(vj, vi) ≥ 0, which is unnecessary in the ILP formulation,
is required to bound the integrality gap between the fractional optimum and the
integral optimum in the relaxation. The objective value of a dual feasible solution
to Eq. (2) is a lower bound of any integral optimum of the primal program.

Minimize
�n

i=1 w(vi)x(vi)

c(vi)x(vi) −
�

vj∈N[vi]
f(vj , vi) ≥ 0, ∀i.

�
vj∈N[vi]

f(vi, vj) ≥ d(vi), ∀i.

d(vj)x(vi) − f(vj , vi) ≥ 0, vj ∈ N [vi].

x(vi) ∈ Z
+ ∪ {0}, ∀i.

Eq. (1)

Maximize
�n

i=1 d(vi)yi

c(vi)zi +
�

vj∈N[vi]
d(vj)gi,j ≤ w(vi), ∀i.

yi ≤ zj + gj,i, vj ∈ N [vi], ∀i.

yi ≥ 0, gj,i ≥ 0, vj ∈ N [vi], ∀i.

Eq. (2)

Given a weighted graph G = (V, E), let V φ ⊆ V denote the set of vertices
whose demand has not been assigned yet. For every vertex v, we use dφ

N (v) to
denote the total amount of unassigned demand of all the closed neighbors of v.
In addition, we define the inequality dφ

N (v) ≤ c(v) to be the critical condition of
v and Dc

uv̄ to be the amount of demand of a closed neighbor u of v, d(u), which
is to be assigned to vertices other than v after the critical condition of v is met.
Our Algorithm MCDAWG (see [26]) works as follows. In the dual program,
all the dual variables yi are zero initially. This is a dual feasible solution with
all zj = 0 and gj,i = 0. We increase all the dual variables yi simultaneously, for
each vertex vi ∈ V φ whose demand is unassigned, i.e., increase zj or gj,i, for
every vj ∈ N [vi]. To be more precise, if the closed neighbors of vj have a large
amount of unassigned demands, specifically, dφ

N (vj) > c(vj), then we increase zj .
Otherwise, we increase gj,i. When we increase the dual variables simultaneously
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for each vertex in V φ, we stop increasing vk as soon as the weight constraint of vk,
c(vk)zk+

∑
v�∈N [vk] d(v�)gk,� ≤ w(vk), is met with equality. We then mark vertex

vk open and assign to it dφ
N (vk) unassigned demand from the closed neighbors of

vk. In addition, if the critical condition of vk, i.e., dφ
N (vk) ≤ c(vk), holds, we also

reassign to vk Dc
uv̄k

demand from every closed neighbor u of vk. Note that for
every closed neighbor u of vk, we have to update Dc

uw̄, ∀w ∈ N [u]. All the demand
assignments can be arranged accordingly, and finally the capacitated dominating
multi-set is D = {v; v is marked open.} and x(v) = �(

∑
u∈N [v] f(u, v))/c(v),

∀v ∈ D.

Lemma 5. The total weight of each open vertex,
∑

v∈D w(v) · x(v), can be dis-
tributed so that each unit of the demand (say from vj) costs at most deg[vj ] · yj

weight.

Theorem 7. Algorithm MCDAWG obtains a Δ∗-approximation solution for
weighted capacitated domination problem with splittable demand on a general
graph G = (V, E), where Δ∗ is the closed degree of G.

5 Conclusion

In this paper we have presented a linear time algorithm for capacitated domina-
tion problem with unsplittable demand on trees. As for the splittable demand
model on trees, we have shown that it is NP-complete, and solvable in pseudo-
polynomial time. We have also provided two approximation algorithms. One is
3
2 -factor for trees and the other is Δ∗-factor by using primal-dual method for
general weighted graphs, where Δ∗ is the closed degree of the input graph. We re-
mark that our 3

2 -factor approximation for trees can be improved to a polynomial
time approximation scheme in a similar manner.
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6. Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research 4(3), 233–235 (1979)



Capacitated Domination Problem 267

7. Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved
approximation algorithm for vertex cover with hard capacities. Journal of Com-
puter and System Sciences 72(1), 16–33 (2006)

8. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and
its applications to approximation algorithms. Journal of the ACM 53(3), 324–360
(2006)

9. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. Journal of
Algorithms 48(1), 257–270 (2003)

10. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: The Theory.
Marcel Dekker, Inc., New York (1998)

11. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover
problems. SIAM Journal on Computing 11(3), 555–556 (1982)

12. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. Journal of the ACM 22(4), 463–468 (1975)

13. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location
problems. In: Proceedings of 34th ACM Symposium on Theory of Computing, pp.
731–740 (2002)

14. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation.
Journal of the ACM 48(2), 274–296 (2001)

15. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9(3), 256–278 (1974)

16. Korupolu, M., Plaxton, C., Rajaraman, R.: Analysis of a local search heuristic for
facility location problems. Journal of Algorithms 37(1), 146–188 (2000)

17. Levi, R., Shmoys, D.B., Swamy, C.: LP-based approximation algorithms for capaci-
tated facility location. In: Proceedings of 10th Conference on Integer Programming
and Combinatorial Optimization, pp. 206–218 (2004)

18. Liao, C.S., Chang, G.J.: Algorithmic aspect of k-tuple domination in graphs. Tai-
wanese J. Math. 6, 415–420 (2002)

19. Liao, C.S., Chang, G.J.: k-tuple domination in graphs. Inform. Process. Let-
ter. 87(1), 45–50 (2003)

20. Lovász, L.: On the ratio of optimal and fractional covers. Discrete Math. 13, 383–
390 (1975)

21. Mahdian, M., Pál, M.: Universal facility location. In: Proceedings of 11th European
Symposium on Algorithms, pp. 409–421 (2003)

22. Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility lo-
cation problems. SIAM Journal on Computing 36(2), 411–432 (2006)
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Abstract. The class of graphs where the size of a minimum vertex cover equals
that of a maximum matching is known as König-Egerváry graphs. These graphs
have been studied extensively from a graph theoretic point of view. In this paper,
we introduce and study the algorithmic complexity of finding maximum König-
Egerváry subgraphs of a given graph. More specifically, we look at the problem
of finding a minimum number of vertices or edges to delete to make the resulting
graph König-Egerváry. We show that both these versions are NP-complete and
study their complexity from the points of view of approximation and parameter-
ized complexity. En route, we point out an interesting connection between the
vertex deletion version and the Above Guarantee Vertex Cover problem where
one is interested in the parameterized complexity of the Vertex Cover problem
when parameterized by the ‘additional number of vertices’ needed beyond the
matching size. This connection is of independent interest and could be useful in
establishing the parameterized complexity of Above Guarantee Vertex Cover
problem.

1 Introduction

One of the celebrated min-max results of graph theory is the König-Egerváry theo-
rem which states that for bipartite graphs the size of a minimum vertex cover equals
that of a maximum matching. The class of graphs for which equality holds includes
bipartite graphs as a proper subclass and is known as König-Egerváry graphs. König-
Egerváry graphs have been studied extensively from a graph theoretic point of view.
A good characterization of König-Egerváry graphs was found independently by Dem-
ing [4] and Sterboul [16]. Recently in [7], Korach, Nguyen and Peis have presented
an excluded subgraph characterization of König-Egerváry graphs. In this paper, we
define various problems related to finding König-Egerváry subgraphs and study
their algorithmic complexity from the points of view of parameterized complexity and
approximation algorithms. More precisely the problems which we study in this
paper are:

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 268–279, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– König Vertex (Edge) Deletion Set (KVDS (KEDS)): Given a graph G = (V, E)
and a positive integer k, does there exist V ′ ⊆ V (E′ ⊆ E) such that |V ′| (|E′|) ≤ k
and G[V − V ′] (G′ = (V, E − E′)) is a König-Egerváry graph?

– Maximum Vertex (Edge) Induced König Subgraph (MVIKS (MEIKS)): Given a
graph G = (V, E) and a positive integer k, does there exist V ′ ⊆ V (E′ ⊆ E) such
that |V ′| (|E′|) ≥ k and G[V ′] (G′ = (V, E′)) is a König-Egerváry graph?

The KVDS and MVIKS problems (and similarly, KEDS and MEIKS) are equivalent
from the point of view of NP-completeness but differ in their approximability and pa-
rameterized complexity.

In order to explain one motivation for studying the König-Egerváry subgraph prob-
lem, we need to digress and discuss about parameterized complexity. In the framework
of parameterized complexity, one deals with decision problems whose inputs consist
of a pair (x, k), where k is called the parameter; the goal is to decide whether (x, k) is
a yes-instance or not in time O( f (k) · |x|O(1)), where f is a function of k alone. Deci-
sion problems that admit such algorithms are called fixed-parameter tractable (FPT).
Over the last decade or so a number of NP-hard problems have been shown to be
fixed-parameter tractable. One of the most famous fixed-parameter tractable problems
is Vertex Cover. An input to this problem is a graph G = (V, E) and a positive inte-
ger k and the goal is to decide whether there exists a set of at most k vertices which
covers all edges. Over the years a lot of work has been done to devise better FPT al-
gorithms for this problem; the current best algorithm runs in time O(1.2738k + kn),
where n = |V | [3].

Since the size of a maximum matching is a lower bound for vertex cover, a natural
generalization of the VertexCover problem is the following: AboveGuaranteeVertex
Cover (g-VC): Let G = (V, E) be a graph with maximum matching size μ(G) and k
a positive integer. The goal is to decide whether G admits a vertex cover of size at
most μ(G)+k, where k is the parameter. To the best of our knowledge, this problem was
first introduced in [15]. This problem (and in general, such above guarantee problems,
see [11]) seems difficult. In this paper, we show that this problem is fixed-parameter
equivalent to KVDS. As a corollary, we obtain an O(nk) algorithm for g-VC. To the
best of our knowledge, even this was not known before.

Our second reason for studying König-Egerváry subgraph problems is that the ver-
sions of König-Egerváry subgraph problems when the resulting graph we look for is
bipartite (i.e. replace König-Egerváry in the above problem definitions by bipartite)
are well studied in the area of approximation algorithms and parameterized complex-
ity [9,13,14]. König-Egerváry subgraph problems are natural generalizations of bipar-
tite subgraph problems but have not been studied algorithmically. We believe that this
can trigger explorations of other questions in König-Egerváry graphs. For the rest of
the paper, we use König as an abbreviation of König-Egerváry.

The remaining paper is organized as follows. In Section 2, we state some results and
notation that we make use of in the rest of the paper. In Section 3, we consider vertex
versions and in Section 4, the edge versions of the König Subgraph problem. We study
both versions from the points of view of approximation and parameterized complexity.
We conclude in Section 5 with a list of open problems.
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2 Preliminaries

We will make use of the following well-known results in the rest of the paper.

Lemma 1. [7] A graph G = (V, E) is König if and only if there exists a bipartition of
V = V1 � V2 such that V2 is independent and there exists a matching that saturates V1

and crosses the cut (V1,V2).

Lemma 2. [4] Given a graph G on n vertices and m edges and a maximum matching
of G, one can test whether G is König in time O(n + m). If G is indeed König then one
can find a minimum vertex cover of G in this time.

Since a maximum matching can be obtained in time O(m
√

n) [17], we have

Lemma 3. Let G be a graph on n vertices and m edges. One can check whether G is
König and if König find a minimum vertex cover of G in time O(m

√
n).

We use μ(G) and β(G) to denote, respectively, the size of a maximum matching and
minimum vertex cover of G. When the graph being referred to is clear from the context,
we simply use μ and β. We sometimes use τ(G) to denote the difference β(G) − μ(G).
We use κ(G) to denote the size of the smallest König vertex deletion set of G. Unless
otherwise stated, we will use n and m to denote, respectively, the number of vertices
and the number of edges of a graph. All graphs in this paper are simple and undirected.

We now briefly introduce the necessary concepts concerning parameterized com-
plexity. A parameterized problem is a subset of Σ∗ ×N, where Σ is a finite alphabet and
N is the set of natural numbers. An instance of a parameterized problem is therefore
a pair (I, k), where k is the parameter. In the framework of parameterized complexity,
the running time of an algorithm is viewed as a function of two quantities: the size of
the problem instance and the parameter. A parameterized problem is said to be fixed pa-
rameter tractable (fpt) if there exists an algorithm for the problem with time complexity
O( f (k) · |I|O(1)), where f is a function only depending on k. The class FPT consists of
all fixed parameter tractable problems.

A parameterized problem π1 is fixed-parameter reducible to a parameterized prob-
lem π2 if there exist functions f , g : N → N, Φ : Σ∗ × N → Σ∗ and a polynomial p(·)
such that for any instance (I, k) of π1, (Φ(I, k), g(k)) is an instance of π2 computable
in time f (k) · p(|I|) and (I, k) ∈ π1 if and only if (Φ(I, k), g(k)) ∈ π2. Two parame-
terized problems are fixed-parameter equivalent if they are fixed-parameter reducible
to each other. The basic complexity class for fixed-parameter intractability is W[1] as
there is strong evidence that W[1]-hard problems are not fixed-parameter tractable. To
show that a problem is W[1]-hard, one needs to exhibit a fixed-parameter reduction
from a known W[1]-hard problem to the problem at hand. For more on parameterized
complexity see [12].

3 Vertex Versions of the König Subgraph Problems

The problems we consider in this section are KVDS and MVIKS. Since König graphs
are a “generalization” of bipartite graphs and since the Vertex Bipartization problem
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is now known to be FPT [13], the parameterized complexity of the KVDS problem is
very interesting.

In the next subsection, we relate the KVDS problem with another important open
problem in the area of parameterized complexity, the g-VC. This also proves the NP-
completeness of the KVDS problem.

3.1 König Vertex Deletion Set and Above Guarantee Vertex Cover

We begin with a result which states essentially that for the g-VC problem we may,
without loss of generality, assume that the input graph has a perfect matching.

Let G = (V, E) be an undirected graph and let M be a maximum matching of G.
Construct G′ = (V ′, E′) as follows. Let I be the independent set with respect to the
matching M, that is, I = V − V[M]. Define V ′ = V ∪ {u′ : u ∈ I} and E′ = E ∪ {{u′, v} :
{u, v} ∈ E} ∪ {{u, u′} : u ∈ I}. Then M′ = M ∪ {{u, u′} : u ∈ I} is a perfect matching for
G′.

Theorem 1. Let G be a graph without a perfect matching and let G′ be the graph
obtained by the above construction. G has a vertex cover of size μ(G) + k if and only if
G′ has a vertex cover of size μ(G′) + k.

Proof. Let M denote a maximum matching of G, I denote the set V(G) \ V[M] and
I′ denote the new set of vertices that are added in constructing G′. Clearly, μ(G′) =
μ(G) + |I|.

(⇒) Let C be a vertex cover of G of size μ(G) + k. Define C′ = C ∪ I′. It is easy to
see that C′ covers all the edges of G′. Also, |C′| = μ(G) + k + |I′| = μ(G′) + k.

(⇐) Let C′ be a vertex cover of G′ of size μ(G′)+ k. Define M′ to be the set of edges
of the form {{u, u′} : u ∈ I and u′ ∈ I′} such that both endpoints are in C′. One can show
that C = (C′ ∩ V[M]) ∪ {u ∈ I : {u, u′} ∈ M′} is a vertex cover of G of size μ(G) + k.

The next theorem relates the vertex cover of a graph with the König vertex deletion set.

Theorem 2. Let G be an n-vertex graph with a perfect matching. G has a vertex cover
of size at most n

2 + k if and only if G has a König vertex deletion set of size at most 2k.

Proof. (⇒) Let P be a perfect matching of G and C a vertex cover of G of size at most
n
2 + k. Consider the subset M ⊆ P of matching edges both of whose endpoints are in C.
Clearly V[M] is a König vertex deletion set of G of size at most 2k.

(⇐) Conversely let K be a König vertex deletion set of G of size r ≤ 2k. Then G −K
is a König graph on n − r vertices and hence has a vertex cover C′ of size at most n−r

2 .
Clearly C = C′ ∪ K is a vertex cover of G of size |C′| + |K| ≤ n−r

2 + r = n+r
2 ≤ n

2 + k.

The following corollary follows from Theorems 1 and 2 and the fact that Vertex Cover
is NP-complete.

Corollary 1. The König Vertex Deletion Set problem is NP-complete.

Corollary 2. Let G be an n-vertex graph with a perfect matching P. A minimum vertex
cover of G is of size n

2 + k if and only if a minimum König vertex deletion set of G is
of size 2k. Moreover there exists an edge subset M ⊆ P of size k such that V[M] is a
minimum König vertex deletion set of G.
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If we let τ(G) = β(G) − μ(G), then the above corollary states: κ(G) = 2τ(G).
We have shown that for graphs with a perfect matching, the KVDS problem is fixed-

parameter equivalent to the g-VC problem. It is not obvious how to check whether a
graph G has a vertex cover of size μ(G) + k in time O∗(nk)1. The following theorem
shows how this may be done.

Theorem 3. Let G be a graph on n vertices and m edges. One can determine whether
G has a vertex cover of size at most μ(G) + k in time O(m

√
n +
(

n
k

)
(m + n)).

Proof. If G does not have a perfect matching, construct G′ as in Theorem 1 in linear
time. G′ has a perfect matching and at most 2n vertices and 2m edges. By Theorems 1
and 2, G has a vertex cover of size at most μ(G) + k if and only if G′ has a König
vertex deletion set of size at most 2k. By Corollary 2, to check whether κ(G′) ≤ 2k,
all we need to do is select subsets of k edges of a perfect matching of G′ and for each
edge set, delete the endpoints of the edges and check whether the remaining graph is
König. Obtaining a perfect matching takes time O(m

√
n). Cycling through all possible

edge sets and testing whether the remaining graph is König takes time O(
(
n
k

)
(m+ n)) by

Lemma 2. Hence the claim.

For a graph G with a perfect matching, Theorem 2 relates the size of a vertex cover of
G with that of a König vertex deletion set of G. For graphs without a perfect matching,
we have the following result.

Theorem 4. Let G be a graph without a perfect matching. If G has a vertex cover of
size μ(G) + k then G has a König vertex deletion set of size at most 2k. Moreover,
τ(G) ≤ κ(G) ≤ 2τ(G), where τ(G) = β(G) − μ(G).

Proof. Let M be a maximum matching of G and let C be a vertex cover of G of size
μ(G) + k. Define I = V \ V[M], CI = C ∩ I and M′ to be the subset of M both of whose
endpoints are in C. One can then verify that V[M′] ∪ CI is a König vertex deletion set
of G of size at most 2k.

This shows that κ(G) ≤ 2τ(G). To prove that τ(G) ≤ κ(G), suppose that there exists
S ⊆ V , |S | < τ(G), such that G \ S is König. Then the following easily verifiable
inequalities: (1) μ(G \ S ) ≤ μ(G) and (2) β(G \ S ) ≥ β(G) − |S | = μ(G) + τ(G) − |S |
imply that β(G \ S ) > μ(G \ S ), a contradiction.

3.2 Approximability Results

Chen and Kanj [2] obtain an approximation for the Vertex Cover problem on graphs
with a perfect matching by reducing Vertex Cover on graphs with a perfect matching
to 2-Sat and then using an approximation algorithm for Max 2-Sat. Observe that by
Theorem 1, we may assume without loss of generality that the input graph has a perfect
matching. We observe that using the approximation algorithm for Min 2-Sat Del gives
a good approximation for τ(G) and hence for κ(G) and thus for graphs whose vertex
cover size differs by a small amount from the maximum matching size.

1 The O∗ notation suppresses polynomial terms.
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We now describe the reduction to MinWeight 2-Sat Del. Recall that an instance of
MinWeight 2-Sat Del is a 2-CNF formula whose clauses have weights associated with
them and the question is to delete clauses of minimum total weight so that the resulting
formula is satisfiable. This problem is NP-complete. Let G = (V, E) be a graph with
a perfect matching P. For every vertex u ∈ V , define xu to be a Boolean variable. Let
F (G, P) denote the Boolean formula

F (G, P) =
∧

(u,v)∈P
(x̄u ∨ x̄v)

∧

(u,v)∈E
(xu ∨ xv).

The proof of the next lemma follows from Theorem 2 and the proof of Theorem 5.1
in [2].

Lemma 4. Let G = (V, E) be an n-vertex graph with a perfect matching P. Then the
following three statements are equivalent:

1. G has a vertex cover of size n
2 + k.

2. G has a König vertex deletion set of size 2k.
3. There exists an assignment that satisfies all but at most k clauses of F (G, P).

From the proof of Theorem 5.1 in [2], it follows that one can find (in polynomial time)
an assignment that satisfies all but at most k clauses of the form (x̄u∨ x̄v), where (u, v) ∈
P, that is, clauses that correspond to the perfect matching. This is important to our
approximation algorithm that we are about to present.

We need the following result on the MinWeight 2-Sat Del problem for our approx-
imation algorithm.

Lemma 5. [1,6] Let Φ be an instance of Min Weight 2-Sat Del with n variables.
One can in polynomial time obtain a solution that has weight O(log n log log n) times
the optimal. If we are willing to allow randomness, we can obtain a solution that has
weight O(

√
log n) times the optimal.

Our approximation algorithm for the g-VC and KVDS problems is presented in Fig-
ure 1. Given an n-vertex graph G with a maximum matching of size μ and a mini-
mum vertex cover of size β, this algorithm outputs a vertex cover of G of size at most
μ + O(log n log log n)(β − μ). From Lemmas 4 and 5, we get

Theorem 5. Let G be a graph on n vertices with a maximum matching of size μ and a
minimum vertex cover of size β. Then Algo-Above-Guar-Vertex-Cover finds a vertex
cover of G of size μ + O(log n log log n)(β − μ).
Note that V(S) in the algorithm is actually a König vertex deletion set of G. Since
|V(S)| ≤ O(log n log log n) (β − μ), we have

Theorem 6. Given a graph G on n vertices, there exists an algorithm that approximates
the König vertex deletion set of G to within a factor of O(log n log log n).

Thus this algorithm approximates the deficit between the sizes of a minimum vertex
cover and a maximum matching. There exists a 2-approximation algorithm for the Ver-
tex Cover problem which simply includes all vertices of a maximum matching. It is
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Algo-Above-Guar-Vertex-Cover

Step 1. If G does not have a perfect matching, construct G′ as in Theorem 1 and set H ←
G′; else set H ← G.

Step 2. Find a maximum matching M of H and construct F (H,M).
Step 3. Use the approximation algorithm for Min Weight 2-Sat Del to obtain an

O(log n log log n)-approximate solution S for F (H,M), where n = |V(H)|.
Step 4. Obtain a minimum vertex cover C of the König graph H − V(S), where V(S) is

the set of vertices corresponding to S.
Step 5. If H = G then return C ∪ V(S); else return (C ∪ V(S)) − (V(G′) − V(G)).

Fig. 1. Approximation Algorithm for Above Guarantee Vertex Cover

a long standing open problem to devise a polynomial time algorithm which has an ap-
proximation factor less than 2.

Our algorithm is better than any constant factor approximation algorithm for Ver-
tex Cover whenever β − μ = o( n

log n log log n ) and μ = Ω(n). To see this, note that a
c-approximate algorithm, c > 1, outputs a solution of size μc + (β − μ)c whereas our
algorithm outputs a solution of size μ + O(α(β − μ)), where α = log n log log n. Now if
β − μ = o( n

α ) and if μ = Ω(n), then our algorithm outputs a solution of size μ + o(μ),
which is better than βc = μ + μ(c − 1) + (β − μ)c ≥ μ + Ω(μ).

One can obtain a randomized algorithm for the g-VC and KVDS problems using the
O(
√

log n)-randomized approximation algorithm for MinWeight 2-SatDel, mentioned
in Lemma 5, in Step 3 of the algorithm. In the next subsection we show that the KVDS
problem cannot be approximated to within 1.7212 unless P = NP.

3.3 Hardness Results

In this subsection we show the hardness of approximating the MVIKS problem. We
show this by a reduction from the Independent Set problem to the MVIKS.

Theorem 7. There is no approximation algorithm for MVIKS with factor O(n1−ε), for
any ε > 0, unless P = NP.

Proof. We give a reduction from Independent Set to the MVIKS problem. Given an
instance (G, k) of Independent Set, construct a graph H as follows. The vertex set of H
consists of two copies of V(G) namely, V1 = {u1 : u ∈ V(G)} and V2 = {u2 : u ∈ V(G)}.
For all u ∈ V(G), (u1, u2) ∈ E(H). If (u, v) ∈ E(G), add the edges (u1, v1), (u2, v2),
(u1, v2) and (v1, u2) in E(H). H has no more edges.

We claim that G has an independent set of size k if and only if H has a König
subgraph of size 2k. Let I be an independent set of size k in G. Let K = {u1, u2 ∈
V(H) : u ∈ I}. Clearly G[K] is an induced matching on 2k vertices and hence König.
Conversely, let K be a König subgraph of H on 2k vertices. By Lemma 1, every König
graph on n vertices has an independent set of size at least n/2. Therefore let I′ be an
independent set of K of size at least k. Define I = {u ∈ V(G) : either u1 or u2 ∈ I′}.
It is clear that the vertices of I′ correspond to distinct vertices of G and hence |I| ≥ k.
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It is also easy to see that the vertices in I actually form an independent set. Since the
Independent Set problem can have no approximation algorithms with factor O(n1−ε),
for any ε > 0, unless P = NP [10,18], this completes the proof.

Note that the reduction in Theorem 7 is a fixed parameter reduction and since Indepen-
dent Set is W[1]-complete, we have

Corollary 3. The parameterized version of the MVIKS problem is W[1]-hard.

In the reduction above, |V(H)| = 2|V(G)| and (G, k) is a yes-instance of Independent Set
if and only if (H, 2k) is a yes-instance of MVIKS problem. Thus this reduction can also
be viewed as a reduction from Vertex Cover to KVDS problem. Dinur and Safra [5]
have shown that unless P = NP, the Vertex Cover problem cannot be approximated
to within 1.3606. Using this, one can easily show that the KVDS problem cannot be
approximated to within 1.3606 unless P � NP. The result of Dinur and Safra [5] also
holds for graphs with a perfect matching. Using this fact, we show a stronger hardness
result for the KVDS problem.

Corollary 4. Under the hypothesis P � NP, the KVDS problem cannot be approxi-
mated to within 1.7212.

Proof. It is sufficient to prove this result for graphs with a perfect matching. Let A be
a d-approximation algorithm for the KVDS problem in graphs with a perfect matching.
Let G be an n-vertex graph with a perfect matching. Using A, one can obtain a König
vertex deletion set of size at most dκ(G) and hence a vertex cover of size at most n−dκ(G)

2 +

dκ(G) = n+dκ(G)
2 . An optimum vertex cover of G has size n+κ(G)

2 . By Dinur and Safra [5],
we must have n+dκ(G)

n+κ(G) ≥ 1.3606. Simplifying this yields n
κ(G) ≤ d−1.3606

0.3606 . Note that n ≥
κ(G) and so d ≥ 1.7212.

4 Edge Versions of the König Subgraph Problem

In this section we look at edge versions of König Subgraph problem.

4.1 NP-Completeness

We show that MEIKS problem is NP-complete by reducing the NP-complete Min 2-Sat
Deletion problem to the KEDS problem.

Theorem 8. The König Edge Deletion Set (KEDS) problem is NP-complete.

Proof. We give a reduction from Min 2-Sat Deletion. Let Φ be a 2-Sat formula. Con-
struct a graph GΦ = (V, E) as follows. Suppose the formula Φ is composed of the lit-
erals {x1, x̄1, . . . , xn, x̄n}. Let V := {x1, x̄1, . . . , xn, x̄n, x11, x̄11, . . . , x1,k+1, x̄1,k+1, . . . , xn,1,
x̄n,1, . . . , xn,k+1, x̄n,k+1}; that is, V consists of k + 2 copies of xi, x̄i. The edge set E =
E1 ∪ E2 ∪ E3 ∪ E4, where E1, E2, E3, E4 are defined below.

E1 = {(xi, x̄i) : 1 ≤ i ≤ n}
E2 = {(xi, j, x̄i,l) : 1 ≤ j, l ≤ k + 1, 1 ≤ i ≤ n}
E3 = {(xi, x̄i, j), (x̄i, xi, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ k + 1}
E4 = {(yi, y j) : (yi ∨ y j) ∈ Φ}
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Note that GΦ has a perfect matching and that each clause of Φ corresponds to an edge
of GΦ (the edges in E4).

Claim. There exists an assignment satisfying all but k clauses of Φ if and only if there
exist at most k edges whose deletion makes GΦ König.

(⇒) Let α be an assignment to the variables of Φ that satisfies all but k clauses. Each
of these k clauses corresponds to a distinct edge in GΦ. Delete these edges from GΦ.
Then for each edge e in the remaining graph, at least one endpoint of e is assigned 1
by α. To prove that the remaining graph is König, by Lemma 1, we must demonstrate
a bipartition of the vertex set into V1 � V2 (say) such that V2 is independent and there
exists a matching saturating V1 which crosses the cut (V1,V2). If α(xi) = 1 then place the
vertices xi, xi,1, . . . xi,k+1 in V1; else place x̄i, x̄i,1, . . . x̄i,k+1 in V1. The remaining vertices
are placed in V2. As Φ satisfies all remaining clauses, V2 is independent. Note that if
xi ∈ V1 then x̄i ∈ V2 and vice versa. Also if xi, j ∈ V1 then x̄i, j ∈ V2 and vice versa.
Hence there exists a matching that saturates V1 and crosses the cut (V1,V2).

(⇐) Conversely suppose that deleting k edges makes GΦ König. We will assume that
this set of edges is a minimal edge deletion set. Call the resulting graph G′Φ. Then the
vertex set of G′Φ can be partitioned into V1 and V2 such that V2 is independent and there
exists a matching saturating V1 that crosses the cut (V1,V2).

Claim. For each 1 ≤ i ≤ n, it is not the case that xi, x̄i ∈ V1 or xi, x̄i ∈ V2.

If both xi and x̄i are in V1 then one can argue that there is no matching that saturates
both xi and x̄i. We skip the details. If both xi and x̄i are in V2 then one can show that we
end up deleting more than k edges.

Now it is easy to see that for each vertex yi, all copies yi,1, . . . , yi,k+1 of it must be
placed in the same partition as yi itself and hence all edges in E1, E2, E3 lie across the
cut (V1,V2). Therefore the edges that were deleted from GΦ were from E4. Each of
these edges corresponds to a distinct clause in Φ. If a vertex yi is in V1 assign the corre-
sponding literal the value 1; else assign the literal the value 0. Note that this assignment
is consistent as all copies of a vertex are in the same partition as the vertex itself and for
no variable do we have that xi, x̄i ∈ V1 or xi, x̄i ∈ V2. This assignment satisfies all but
the k clauses that correspond to the edges that were deleted.

The parameterized complexity of KEDS is open.

4.2 Approximation Results

For the MEIKS problem, it is easy to obtain a 2-approximation algorithm by sim-
ply finding a cut of size m/2 and then deleting all the other edges. In this subsec-
tion, we give a 4/3-approximation algorithm for graphs with a perfect matching and
a 5/3-approximation algorithm for general graphs based on following combinatorial
lemmas.

Theorem 9. Let G = (V, E) be a graph with a maximum matching M and let GM =

(VM, EM) be the graph induced on the vertices V(M) of M. Then G has an edge-induced
König subgraph of size at least 3|EM |

4 +
|E−EM |

2 +
|M|
4 .
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Proof. Randomly partition the vertex set of G into V1 � V2 as follows. For each edge
ei ∈ M, select an endpoint of ei with probability 1/2 and place it in V1. Define V2 =

V −V1. Note that the edges in M always lie across the cut (V1,V2). An edge of EM −M
is in G[V2] with probability 1/4; an edge in E − EM lies in G[V2] with probability
1/2. For each edge e ∈ E, define Xe to be the indicator random variable that takes
the value 1 if e ∈ G[V2] and 0 otherwise. Also define X =

∑
e∈E Xe. Then E[X] =∑

e∈E E[Xe] =
|EM−M|

4 +
|E−EM |

2 . Deleting the edges in G[V2] results in a König graph
with 3|EM |

4 +
|E−EM |

2 +
|M|
4 edges in expectation. This algorithm can be easily derandomized

by the method of conditional probabilities. This completes the proof.

If G = (V, E) has a perfect matching M then EM = E and |M| = |V |/2 and we have

Corollary 5. Let G = (V, E) be a graph on n vertices and m edges with a perfect
matching. Then G has a subgraph with at least 3m

4 +
n
8 edges that is König. This subgraph

can be found in time O(mn).

Theorem 10. Let G = (V, E) be an undirected graph on n vertices and m edges. Then
G has an edge-induced König subgraph of size at least 3m

5 .

Proof. Let M be a maximum matching of G and let G[VM] = (VM, EM) be the subgraph
induced by the vertices V(M) of M. Let η(G) denote the size of the maximum edge
induced König subgraph of G. By Theorem 9, η(G) ≥ |EM |+|M|

4 + |E|2 . Observe that by
deleting all the edges in G[VM] we obtain a König subgraph of G. In fact, this is a
bipartite graph with bipartition VM and V − VM. Therefore if |E − EM | ≥ 3m/5, the
statement of the theorem clearly holds. Otherwise, |EM | ≥ 2m/5 and by Theorem 9, we
obtain η(G) ≥ |M|/4 + 3m/5. This completes the proof.

The following theorem follows from Corollary 5 and Theorem 10 and the fact that the
optimum König subgraph has at most m edges.

Theorem 11. The optimization version of the MEIKS problem is approximable within
a factor of 5/3 for general graphs. This factor can be improved to 4/3 when restricted
to graphs with a perfect matching.

4.3 FPT Algorithms

Note that Theorem 10 actually shows that the parameterized version of the MKEIS
problem is fixed-parameter tractable. To see this, suppose that (G, k) is an instance of
the parameterized version of the MKEIS problem; we are to decide whether G has an
edge induced König subgraph with at least k edges. Note that if the parameter k ≤ 3m/5
then we answer yes and use the approximation algorithm described in the previous
subsection to obtain an edge induced König subgraph with at least k edges. If k > 3m/5
then we simply use a trivial O∗(2m) brute-force algorithm to decide the question. This
FPT algorithm has time complexity O∗(25k/3).

In this subsection, we give an O∗(2k) FPT algorithm for the MEIKS problem on con-
nected graphs by using an exact algorithm for the optimization version of the problem.
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To this end, we describe an O∗(2n) algorithm for this problem using a simple structural
result characterizing minimal König edge deletion sets of a graph.

Theorem 12. Let G = (V, E) be a graph. If E′ is a minimal König edge deletion set of
G then there exists V ′ ⊆ V such that E(G[V ′]) = E′, that is, the edge set of the subgraph
induced by V ′ is precisely E′.

Proof. Let E′ be a minimal König edge deletion set of G. Then G′ = (V, E − E′) is
König. Then the vertex set of G′ can be partitioned into V1 and V2 such that V2 is a
maximal independent set and there exists a matching saturating V1 that lies across the
cut (V1,V2). We claim that V ′ = V2. Since E′ is minimal, it is clear that E(G[V2]) = E′.
This completes the proof.

Our exact algorithm for the optimization version of MEIKS simply enumerates all pos-
sible subsets V ′ ⊆ V , deletes all edges E′ in G[V ′] and checks whether G−E′ is König.
The algorithm returns an edge set E′ = E(G[V ′]) of smallest size such that G − E′ is
König.

Theorem 13. Given an n-vertex graph G = (V, E), the optimization version of the
König Edge Deletion Set (KEDS) (and hence the optimization version of MEIKS) can
be solved in time O∗(2n) and space polynomial in n.

Theorem 14. The MEIKS problem can be solved in O∗(2k) time in connected undi-
rected graphs.

Proof. Let (G, k) be an instance of the MEIKS problem where G is a graph with m
edges and n vertices. A connected graph has a spanning tree which, being bipartite, is
König. Since a tree has n − 1 edges, if k ≤ n − 1 we answer yes; else n ≤ k + 1 and we
use Theorem 13 to obtain an O∗(2k) time algorithm for the MEIKS problem.

5 Conclusion and Open Problems

In this paper, we introduced and studied vertex and edge versions of the König Subgraph
problem from the points of view of parameterized complexity and approximation algo-
rithms. There are several open problems specified in the list below. Important among
them are whether the KVDS (g-VC) and KEDS problems are fixed parameter tractable.

Problem Parameterized Complexity Approximability

KVDS/g-VC Open. O(log n log log n) approximation algorithm; no PTAS.
KEDS Open. Open.
MVIKS W[1]-hard. no factor-O(n1−ε) approximation algorithm.
MEIKS FPT. 5/3-approximation algorithm for general graphs;

4/3-approximation algorithm for graphs with a per-
fect matching
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Abstract. An edge coloring of a multigraph is nearly equitable if,
among the edges incident to each vertex, the numbers of edges colored
with any two colors differ by at most two. It has been proved that this
problem can be solved in O(m2/k) time, where m and k are the numbers
of edges and given colors, respectively. In this paper, we present a re-
cursive algorithm that runs in O (mn log (m/(kn) + 1)) time, where n is
the number of vertices. This algorithm improves the best-known worst-
case time complexity. When k = O(1), the time complexity of all known
algorithms is O(m2), which implies that this time complexity remains
to be the best for more than twenty years since 1982 when Hilton and
de Werra gave a constructive proof for the existence of a nearly equi-
table edge coloring for any graph. Our result is the first that improves
this time complexity when m/n grows to infinity; e.g., m = nϑ for an
arbitrary constant ϑ > 1. We also propose a very simple randomized

algorithm that runs in O
�
m3/2n1/2/k1/2

�
time with probability at least

1 − 1/c for any constant c > 1, whose worst-case time complexity is
O(m2/k).

1 Introduction

Given a multigraph G = (V, E) with n vertices and m edges and a color set
C = {1, 2, . . . , k}, the nearly equitable edge coloring is an assignment of given
colors to edges in G such that, among the edges incident to each vertex, the
numbers of edges colored with any two colors differ by at most two. The no-
tion of the nearly equitable edge coloring was introduced in 1982 by Hilton and
de Werra [1] (a simplified version [2] was published in 1994), who also proved
that any graph has a nearly equitable edge coloring. Their proof is construc-
tive and easily leads to an algorithm for finding such a coloring in O(km2) time
as mentioned in [3]. Later, Nakano et al. [3] showed an algorithm that runs

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 280–291, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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in O(m2/k + mn) time. In 2004, Xie et al. [4] presented a more efficient algo-
rithm, which improved the running time to O(m2/k) and moreover satisfied the
following balanced constraint: The numbers of the edges colored with any two
colors differ by at most one. We call their algorithm BalCol in the following,
which stands for Balanced Coloring.

In this paper, we present a recursive algorithm that runs in
O (mn log (m/(kn) + 1)) time, and a very simple randomized algorithm that
runs in O

(
m3/2n1/2/k1/2

)
time with high probability and in O(m2/k) time in

the worst case. Moreover, the edge colorings obtained by both of the two al-
gorithms also satisfy the balanced constraint. We call the recursive algorithm
RecCol, which stands for Recursive Coloring, and call the randomized algo-
rithm RanCol, which stands for random coloring.

The time complexity of the recursive algorithm RecCol is better than the pre-
vious best known time bound O(m2/k) of algorithm BalCol. When k = O(1),
the time complexity of all known algorithms becomes O(m2), which implies that
the time complexity, derived from the proof of Hilton and de Werra as referred,
remains to be the best for more than twenty years. RecCol is the first algo-
rithm that improves this time complexity for the case when m/n → ∞ (n → ∞)
holds; e.g., when m = nϑ (ϑ > 1 is an arbitrary constant).

Both of RecCol and RanCol use a procedure that constitutes the core
part of algorithm BalCol presented by Xie et al. [4]. We call this procedure
ChkRec (Check and Recolor). Whenever the current edge coloring π is not
nearly equitable, algorithm ChkRec invokes an algorithm called Recolor to
modify π. Let Eπ(i) denote the set of edges colored with i. Xie et al. introduced
a potential Φπ and showed that Recolor runs in O(|Eπ(i) ∪ Eπ(j)|) time for
relevant colors i and j and decreases Φπ by at least one for each call to it. It
is therefore preferable to construct a coloring π such that potential Φπ is small
and |Eπ(i)| is small for all i ∈ C before calling algorithm ChkRec to keep its
computation time smaller.

When |E| ≤ kn, algorithm RecCol uses algorithm BalCol directly to ob-
tain a nearly equitable edge coloring π of G. Otherwise, it partitions E arbitrar-
ily into two subsets EL and ER of about the same size, and applies RecCol

to both of them to obtain edge colorings πL and πR of EL and ER, respec-
tively. It then constructs a coloring π of G by merging the two colorings πL

and πR after permuting them. We show that the resulting edge coloring π sat-
isfies |Eπ(i)| = O(m/k) for all colors i ∈ C and Φπ = O(kn).

Algorithm RanCol starts with repeatedly choosing �m/k� or 	m/k
 ran-
dom edges and assigning them a new color until all the edges are colored. We
show that such a coloring π satisfies |Eπ(i)| = O(m/k) for all colors i ∈ C and
Φπ = O

(
(kmn)1/2

)
with probability at least 1 − 1/c for any constant c > 1.

The rest of the paper is organized as follows. In Section 2, we give some
definitions. Section 3 introduces the previous results presented by Xie et al., and
Sections 4 and 5 explain the recursive algorithm and the randomized algorithm,
respectively. Finally, concluding remarks are in Section 6.
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2 Preliminaries

A multigraph G is a graph that allows multiple number of edges between ver-
tices. Let V and E denote the sets of vertices and edges of G, respectively. The
following definitions will be used throughout this paper.

– Let n = |V | and m = |E|. Note that m ≥ n − 1 holds for any connected
graph.

– We denote the given color set by C = {1, 2, . . . , k}, where k is the number of
given colors.

– We denote an edge coloring by a mapping π: E → C; i.e., if an edge e ∈ E
is colored with a color i, then π(e) = i.

– For each vertex v ∈ V , let N(v) = {(v, w) ∈ E} denote the edges incident to
v in G and d(v) = |N(v)| be its degree. Then, dπ(v, i) = |{e ∈ N(v) | π(e) =
i}| stands for the number of edges colored with i and incident to v, while
Eπ(i) = {e ∈ E | π(e) = i} stands for the set of edges in E colored with i.

– For any subset E′ ⊆ E, let VE′ be the set of end vertices of edges in E′; i.e.,
VE′ = {v ∈ V | ∃w ∈ V, (v, w) ∈ E′}. Then let GE′ = (VE′ , E′).

– Let Vπ(i, j) be the set of end vertices of edges in Eπ(i)∪Eπ(j); i.e., Vπ(i, j) =
{v ∈ V | ∃w ∈ V, (v, w) ∈ (Eπ(i) ∪ Eπ(j))}. Then let Gπ(i, j) = (Vπ(i, j),
Eπ(i) ∪ Eπ(j)) be the subgraph whose edges are Eπ(i) ∪ Eπ(j) and vertices
are their end vertices.

Then, the definitions of nearly equitable edge coloring introduced by Hilton and
Werra [1], and the balanced constraint introduced by Nakano et al. [3] are as
follows.

Definition 1 ([1]). Given a multigraph G = (V, E) and a color set
C = {1, 2, . . . , k}, the nearly equitable edge coloring π is an assignment of the
given k colors to all the edges in G, such that for any vertex v ∈ V and different
colors i, j ∈ C, |dπ(v, i) − dπ(v, j)| ≤ 2.

Definition 2 ([3]). An edge coloring π satisfies the balanced constraint if
||Eπ(i)| − |Eπ(j)|| ≤ 1 holds for any two colors i and j.

Without loss of generality, we assume that G is connected, |E| > 0 and k ≥ 2.

3 Previous Results for Nearly Equitable Edge Coloring

3.1 Previous Algorithm

In this section, we introduce a simplified version of algorithm BalCol, which is
presented by Xie et al. [4]. Algorithm BalCol initially assigns k colors 1, 2, . . . , k
to k uncolored edges repeatedly until all the edges are colored and then calls algo-
rithm ChkRec. Whenever the current coloring π has a vertex u that breaks the
condition of Definition 1, algorithm ChkRec chooses two colors α and β with
maximum and minimum dπ(u, i), respectively, and calls algorithm Recolor to
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recolor those edges in Eπ(α) ∪ Eπ(β). Algorithm Recolor first constructs an
augmented graph Ĝ = (V̂ , Ê) by adding a vertex v̂ and some edges to make
Gπ(α, β) connected and the degrees of all vertices even. It then finds an Euler
circuit in Ĝ starting at the additional vertex v̂ and colors the edges alternately
with α and β along the Euler circuit, so that the resulting coloring π′ is bal-
anced with respect to the two colors, i.e., ||Eπ′(α)| − |Eπ′(β)|| ≤ 1 holds after
recoloring.

Algorithm. BalCol(G, C)
Input: a multigraph G = (V, E) and a k-color set C = {1, 2, . . . , k}
Output: a nearly equitable edge coloring π for G

1. Generate an arbitrary permutation σ : {1, 2, . . . , m} → E, and then
let π : E → C be the edge coloring that satisfies π(σ(l)) ≡ l (mod k).

2. Let π ← ChkRec(G, C, π).
3. Output π and stop.

Algorithm. ChkRec(G, C, π)
Input: a multigraph G = (V, E), a k-color set C = {1, 2, . . . , k},

and an edge coloring π
Output: a nearly equitable edge coloring π for G

1. while there exists u ∈ V and different colors i, j ∈ C
such that |dπ(u, i) − dπ(u, j)| ≥ 3 do

2. For the vertex u, find two colors α, β ∈ C satisfying
dπ(u, α) = maxi∈C (dπ(u, i))
dπ(u, β) = mini∈C (dπ(u, i)) .

3. Call Recolor(G, α, β, π).
4. Output π and stop.

Algorithm. Recolor(G, α, β, π)
Input: a multigraph G = (V, E), colors α and β, and an edge coloring π
Task: modify the edge coloring π for Gπ(α, β)

1. Let V̂ ← Vπ(α, β) ∪ {v̂} (v̂ �∈ V ) and Ê ← Eπ(α) ∪ Eπ(β).
2. for each connected component H in Gπ(α, β) do
3. if H has at least one odd-degree vertex then
4. For each odd-degree vertex v in H , add an edge (v, v̂) into Ê.
5. else
6. if H has a vertex v such that |dπ(v, α) − dπ(v, β)| ≥ 2 then

Draw two parallel edges between v and v̂,
and add them into Ê.

7. else
Let v be an arbitrary vertex in H .
Draw two parallel edges between v and v̂,
and add them into Ê.
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8. Let Ĝ ← (V̂ , Ê).
9. Let a sequence of edges e1, e2, . . . , el be an Euler circuit of Ĝ such that

the tail of e1 is v̂. Then let π̂(et) ← α if t is odd and π̂(et) ← β otherwise
for all t = 1, 2, . . . , l.

10. Let π(e) ← π̂(e) for all edges e in Gπ(α, β), and stop.

3.2 Analysis of BalCol

It is obvious that when algorithm ChkRec stops, it outputs a nearly equitable
edge coloring for the given multigraph. As the initial phase of edge coloring
obviously uses O(m) time, the running time of BalCol is dominated by the
running time of ChkRec, which is decided by the running time of Recolor and
the number of calls to Recolor. To analyze the number of calls to Recolor,
Xie et al. introduced a potential Φπ, which is defined as follows. For all vertices
v ∈ V , let d̄(v) = 	d(v)/k
. Define

Φπ(v, i) = ϕ2
d̄(v)−1 (dπ(v, i))

Φπ(v) =
∑

i∈C
Φπ(v, i)

Φπ =
∑

v∈V

Φπ(v),

where ϕ2
d̄(v)−1

(dπ(v, i)) is defined by

ϕb
a(x) = max{x − a − b, a − x, 0} (1)

with x = dπ(v, i), a = d̄(v) − 1 and b = 2. By definition, Φπ ≥ 0 holds for any
coloring π.

Below we summarize some results in [4], which are necessary for analyzing the
time complexity of our algorithms RecCol and RanCol in the later sections.

Lemma 1 ([4]). Let π and π′ be the coloring before and after calling Recolor.
Then Recolor runs in O(|Eπ(α) ∪ Eπ(β)|) time,1 and the coloring π′ satisfies
||Eπ′(α)| − |Eπ′(β)|| ≤ 1.

Lemma 2 ([4]). Assume that there exists a vertex u and colors α, β such that
dπ(u, α) ≥ d̄(u) + 1, dπ(u, β) ≤ d̄(u) and dπ(u, α) − dπ(u, β) ≥ 3 for a coloring
π, and let π′ be the coloring after calling Recolor. Then Φπ′ ≤ Φπ − 1 holds.

The initial phase of edge coloring π satisfies ||Eπ(i)| − |Eπ(j)|| ≤ 1 for any i, j ∈
C, which implies that |Eπ(i)| = O(m/k) holds for all i ∈ C. Lemma 1 implies that
after invoking Recolor, the edge coloring π′ also satisfies
||Eπ′(i)| − |Eπ′(j)|| ≤ 1 for any i, j ∈ C; thus Recolor always runs in O(m/k)

1 Note that algorithm Recolor modifies the coloring for Gπ(α, β), which can be
extracted from G in O(|Eπ(α) ∪ Eπ(β)|) time if appropriately implemented.
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time. Since Φπ ≥ 0 holds for any π by definition, Lemma 2 implies that the num-
ber of calls to Recolor is bounded by the value of Φπ for the initial coloring π,
which can be calculated to be O(m). Thus, algorithm BalCol runs in O(m2/k)
time and the following theorem holds.

Theorem 1 ([4]). Algorithm BalCol solves the nearly equitable edge coloring
problem for multigraphs in O(m2/k) time, where m and k are the numbers of
edges and given colors, respectively. Moreover, the edge coloring π satisfies the
balanced constraint; i.e., ||Eπ(i)| − |Eπ(j)|| ≤ 1 for any two colors i, j, where
Eπ(i) denotes the set of edges colored with i.

4 A Recursive Algorithm for Nearly Equitable Edge
Coloring

4.1 Recursive Algorithm

When |E| ≤ kn, algorithm RecCol calls the previous algorithm BalCol to
obtain an edge coloring of G. Otherwise, it partitions E arbitrarily into two sub-
sets EL and ER so that they satisfy EL ∪ER = E, EL ∩ER = ∅, |EL| = �|E|/2�
and |ER| = 	|E|/2
, and then applies RecCol to GEL and GER to obtain their
edge colorings πL and πR, respectively. It then constructs a coloring π of G by
merging the two colorings πL and πR after permuting them so that the resulting
coloring π satisfies ||Eπ(i)| − |Eπ(j)|| ≤ 1 for any two colors i, j ∈ C, and calls
algorithm ChkRec.

Algorithm. RecCol(G, C)
Input: a multigraph G = (V, E) and a k-color set C = {1, 2, . . . , k}
Output: a nearly equitable edge coloring π for G

1. If |E| ≤ kn then
Let π ← BalCol (G, C).

2. else
3. Partition E into two subsets EL and ER so that they satisfy

E = EL ∪ ER, EL ∩ ER = ∅, |EL| = �|E|/2� and |ER| = 	|E|/2
.
4. Let πL ← RecCol(GEL , C).

Let πR ← RecCol(GER , C).
5. Sort the color indices so that

∣
∣EL

πL(i1)
∣
∣ ≥

∣
∣EL

πL(i2)
∣
∣ ≥ . . . ≥

∣
∣EL

πL(ik)
∣
∣

holds. Define a permutation σL : C → C by σL(il) = l
for all l = 1, 2, . . . , k. Let π(e) ← σL

(
πL(e)

)
for all e ∈ EL.

6. Sort the color indices so that
∣
∣ER

πR(j1)
∣
∣ ≤

∣
∣ER

πR(j2)
∣
∣ ≤ . . . ≤

∣
∣ER

πR(jk)
∣
∣

holds. Define a permutation σR : C → C by σR(jl) = l
for all l = 1, 2, . . . , k. Let π(e) ← σR

(
πR(e)

)
for all e ∈ ER.

7. Let π ← ChkRec(G, C, π).
8. Return π.
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4.2 Analysis of Algorithm RecCol

Since the edge coloring obtained by algorithm RecCol is the output of algo-
rithm BalCol or ChkRec, it is obvious that algorithm RecCol outputs a
nearly equitable edge coloring for the given multigraph when it stops. Let us
consider the time complexity of each recursive call to algorithm RecCol (i.e.,
the computation time except Line 4): The edge coloring π given by algorithm
BalCol of Line 1 uses O(m2/k) time by Theorem 1. The permutations in
Lines 5 and 6 can be computed in O(k) = O(m) time (recall that |E| > kn
holds when these lines are called), and hence the time complexities of Lines 3, 5
and 6 are O(m). Thus the remaining is the time for algorithm ChkRec, which
is determined by the running time of algorithm Recolor and the number of
calls to Recolor. Lemmas 1 and 2 imply that the running time of Recolor

is O (maxi∈C |Eπ(i)|) and the number of calls to Recolor is bounded by the
value of Φπ, where Eπ(i) and Φπ are those of the coloring π just before calling
ChkRec in Line 7. We first show the following lemmas.

Lemma 3. The edge coloring π output by algorithm RecCol satisfies the bal-
anced constraints; i.e., ||Eπ(i)| − |Eπ(j)|| ≤ 1 for any two colors i, j ∈ C.

Proof. We prove this by the induction on the number of edges.
When |E| ≤ kn, we call algorithm BalCol, and in this case, Theorem 1

implies that the edge coloring π given by algorithm BalCol satisfies the bal-
anced constraint. We now consider the case with |E| > kn, and assume that
the lemma holds for any multigraph whose number of edges is smaller than |E|.
Then, as |EL| and |ER| are smaller than |E|, after calling RecCol on both GEL

and GER in Line 4, the obtained two edge colorings πL and πR satisfy
∣
∣
∣
∣EL

πL(i)
∣
∣ −

∣
∣EL

πL(j)
∣
∣
∣
∣ ≤ 1 (2)

∣
∣
∣
∣ER

πR(i)
∣
∣ −

∣
∣ER

πR(j)
∣
∣
∣
∣ ≤ 1 (3)

for any two colors i, j ∈ C by the inductive hypothesis. Hence, after permuting
the colors in Lines 5 and 6, we have

||Eπ(i)| − |Eπ(j)|| ≤ 1 (4)

for any two colors i, j ∈ C, where π is the edge coloring just before calling
ChkRec. Then, Lemma 1 implies that this condition still holds after calling
algorithm ChkRec. ��

Lemma 4. The edge coloring π just before calling ChkRec in algorithm
RecCol satisfies

(i) ||Eπ(i)| − |Eπ(j)|| ≤ 1 for all i, j ∈ C, and
(ii) Φπ = O(kn).

Proof. (i) is obvious from the proof of Lemma 3. Below we give the proof of (ii).
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To make the proof simple, we define Φ̂π(v, i) and Φ̂π as follows:

Φ̂π(v, i) = ϕ0
d(v)/k (dπ(v, i)) =

∣
∣
∣
∣dπ(v, i) − d(v)

k

∣
∣
∣
∣ (5)

Φ̂π(v) =
∑

i∈C
Φ̂π(v, i)

Φ̂π =
∑

v∈V

Φ̂π(v),

where ϕ0
d(v)/k (dπ(v, i)) is defined by (1) with x = dπ(v, i), a = d(v)/k and b = 0.

It is easy to show that for any constants a, a′, b ≥ 0 and b′ ≥ 0 satisfying a ≤ a′

and a′ + b′ ≤ a + b, ϕb
a(x) ≤ ϕb′

a′(x) holds for all x. Thus, for d̄(v) − 1 ≤ d(v)/k

and (d(v)/k) + 0 ≤ (d̄(v) − 1) + 2, we obtain Φπ ≤ Φ̂π for all vertices v ∈ V and
all colors i ∈ C.

Let dL(v) denote the number of edges in EL incident to the vertex v and
dL

πL(v, i) denote the number of edges in EL that are incident to v and colored
with i under the coloring πL. The definitions of dR(v) and dR

πR(v, i) are similar.
After calling RecCol(GEL , C), the obtained coloring πL is nearly equitable for
GEL =

(
VEL , EL

)
, and hence

∣
∣dL

πL(v, i) − dL
πL(v, j)

∣
∣ ≤ 2 (6)

holds for any vertex v ∈ VEL and any two colors i, j ∈ C.
Since

min
i∈C

(
dL

πL(v, i)
)

≤ dL(v)
k

≤ max
i∈C

(
dL

πL(v, i)
)
,

we have
∣
∣
∣
∣d

L
πL(v, i) − dL(v)

k

∣
∣
∣
∣ ≤ 2 (7)

for any vertex v ∈ VEL and any color i ∈ C. For the same reason, the coloring πR

obtained by calling RecCol(GER , C) satisfies
∣
∣
∣
∣d

R
πR(v, i) − dR(v)

k

∣
∣
∣
∣ ≤ 2, (8)

for any vertex v ∈ VER and any color i ∈ C. Since dπ(v, i) = dL
πL

(
v,

(
σL

)−1 (i)
)
+

dR
πR

(
v,

(
σR

)−1 (i)
)

and d(v) = dL(v) + dR(v) hold by definition, (7) and (8)
imply that the coloring π before calling ChkRec satisfies

∣
∣
∣
∣dπ(v, i) − d(v)

k

∣
∣
∣
∣ ≤ 4. (9)

Hence we have Φπ ≤ Φ̂π ≤ 4kn. ��
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4.3 Running Time of Algorithm RecCol

We now consider the running time of algorithm RecCol. As discussed in Sec-
tion 4.2, the running time of each recursive call to RecCol is dominated by
the computation time of ChkRec in Line 7, which is determined by the run-
ning time of Recolor and the number of calls to Recolor. Lemma 4-(i) and
Lemma 1 imply that Recolor always runs in O (maxi∈C |Eπ(i)|) = O(m/k)
time, while Lemma 4-(ii) and Lemma 2 imply that the number of calls to
Recolor is bounded by Φπ = O(kn). Thus, the running time of ChkRec

becomes O(kn × (m/k)) = O(mn).
Let T (m, n, k) denote the total running time of algorithm RecCol. Then we

have

T (m, n, k) =
{

O(m2/k) if m ≤ kn
O(mn) + 2T (m/2, n, k) otherwise.

Since m2/k = O(mn) holds for m ≤ kn, we have T (m, n, k) =
O (mn log (m/(kn) + 1)) for m > kn. For m ≤ kn, T (m, n, k) = O(m2/k) is ob-
vious. Below we show that m2/k = Θ (mn log (m/(kn) + 1)) holds for m ≤ kn,
which implies that T (m, n, k) = O(mn log(m/(kn)+1)) holds for all range of m.
We also show that mn log(m/(kn)+1) = O(m2/k), which means that algorithm
RecCol is never slower than BalCol. For these, we use the following lemma.

Lemma 5. x ≤ lg(x + 1) holds for any x ∈ [0, 1], while lg(x +1) ≤ 2x holds for
any x ≥ 0, where lg = log2.

Proof. Considering the function

fc(x) = cx − lg(x + 1)

for x ≥ 0 and a constant c, we have

f ′
c(x) = c − 1

(x + 1) ln 2

f ′′
c (x) =

1
(x + 1)2 ln 2

> 0. (10)

For c = 1, since f1(0) = f1(1) = 0 holds and (10) implies that f1(x) is a convex
function, we have f1(x) ≤ 0 for x ∈ [0, 1], which implies that x ≤ lg(x + 1)
holds for any x ∈ [0, 1]. For c = 2, we have f ′

2(0) = 2 − 1/ ln 2 = 0.5573 · · · > 0
and (10) implies that f ′

2(x) is monotonically increasing with x, f ′
2(x) > 0 holds

for any x ≥ 0, which implies that f2(x) is monotonically increasing with x for
x ≥ 0. Then, by f2(0) = 0, we have f2(x) ≥ 0 for any x ≥ 0, which implies that
lg(x + 1) ≤ 2x holds for any x ≥ 0. ��

Lemma 5 implies that

mn lg
( m

kn
+ 1

)
≥ mn

m

kn
=

m2

k
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holds for 0 < m/(kn) ≤ 1, while

mn lg
( m

kn
+ 1

)
≤ mn

2m

kn
=

2m2

k

holds for any m, n and k. Thus, we conclude that T (m, n, k) =
O (mn log (m/(kn) + 1)) always holds, and algorithm RecCol is never asymp-
totically slower than algorithm BalCol. The results are summarized in the
following theorem.

Theorem 2. Algorithm RecCol solves the nearly equitable edge coloring prob-
lem for multigraphs in O (mn (log(m/(kn)) + 1)) time, where m, n and k are
the numbers of edges, vertices and given colors, respectively. Moreover, the edge
coloring π satisfies the balanced constraint; i.e., ||Eπ(i)| − |Eπ(j)|| ≤ 1 holds for
any two colors i, j ∈ C.

When k = O(1), the time complexity of all known algorithms becomes O(m2),
which implies that the time complexity, derived from the constructive proof of
Hilton and de Werra [1], remains to be the best. We now consider the ratio

mn log(m/n)
m2

=
log(m/n)

m/n
.

Then we have

lim
m/n→∞

log(m/n)
m/n

= 0,

which implies that algorithm RecCol needs less running time than O(m2) when
m/n grows to infinity; e.g., m = nϑ (ϑ > 1 is an arbitrary constant).

5 A Randomized Algorithm for Nearly Equitable Edge
Coloring

5.1 Randomized Algorithm

Algorithm RanCol starts by repeatedly choosing �m/k� or 	m/k
 random edges
and giving them a new color until all the edges are colored. This is equivalent to
the following rule: We first generate a random permutation σ : {1, 2, . . . , m} → E
of edges, and then give the edges colors 1, 2, . . . , k in this order in a circular man-
ner (i.e., the next color of k is 1) according the order of σ. Algorithm RanCol

then calls algorithm ChkRec.

Algorithm. RanCol(G, C)
Input: a multigraph G = (V, E) and a k-color set C = {1, 2, . . . , k}
Output: a nearly equitable edge coloring π for G

1. Generate a random permutation σ : {1, 2, . . . , m} → E
(each σ is generated with probability 1/m!),
and let π : E → C be the coloring that satisfies π(σ(l)) ≡ l (mod k).

2. Let π ← ChkRec(G, C, π).
3. Output π and stop.
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5.2 Time Complexity of Algorithm RanCol

As the initial phase of coloring randomly requires O(m) time, the running time of
algorithm RanCol is decided by the running time of Recolor and the number of
calls to Recolor. For the random coloring π, ||Eπ(i)| − |Eπ(j)|| ≤ 1 is automat-
ically satisfied for any two colors i, j ∈ C, which implies that |Eπ(i)| = O(m/k)
holds for all colors i ∈ C and hence Recolor runs in O(m/k) time by Lemma 1.
To analyze the number of calls to Recolor, we evaluate the values of Φπ and Φ̂π

with respect to the random coloring π. We summarize the results in the following
lemma, whose proof is elaborate and long, and is omitted due to space limitation.

Lemma 6. Given an n-vertex m-edge multigraph G = (V, E) and a k-color
set C = {1, 2, . . . , k}, use the way in Line 1 of algorithm RanCol to randomly
choose �m/k� or 	m/k
 edges and assign them a new color until all the edges are
colored. Then, such a random coloring π satisfies |Eπ(i)| = O (m/k) automati-
cally for all colors i ∈ C and Φπ ≤ c(14kmn)1/2 with probability at least 1 − 1/c
for any constant c > 1.

We now consider the total running time of algorithm RanCol. By Lemma 6,
|Eπ(i)| = O(m/k) for all colors i ∈ C and Φπ = O

(
(kmn)1/2

)
holds with prob-

ability at least 1 − 1/c after the initial random coloring. When this happens,
recalling that Φπ ≥ 0, Lemmas 1 and 2 imply that the running time of algo-
rithm RanCol is

O
(
(kmn)1/2

(m

k

))
= O

(
m3/2n1/2

k1/2

)

. (11)

It is also clear that its worst-case time complexity is the same as that of BalCol.
Consequently, we obtain the following theorem.

Theorem 3. Algorithm RanCol solves the nearly equitable edge coloring prob-
lem for multigraphs in O

(
m3/2n1/2/k1/2

)
time with probability at least 1 − 1/c

for any constant c > 1, and in O(m2/k) time in the worst case, where m, n and k
are the numbers of edges, vertices and given colors, respectively. Moreover, the
edge coloring π satisfies the balanced constraint; i.e., ||Eπ(i)|−|Eπ(j)|| ≤ 1 holds
for any two colors i, j ∈ C.

Though the time complexities of deterministic and randomized algorithms can-
not be compared directly, below we consider when m3/2n1/2/k1/2 becomes
smaller than m2/k and mn lg(m/(kn) + 1), the formulae giving the worst-case
time complexities of algorithms BalCol and RecCol, respectively, to observe
when it is beneficial to use the randomized algorithm RanCol.

The condition
m3/2n1/2

k1/2
<

m2

k

is equivalent to m/(kn) > 1. In such a case, RanCol runs faster than BalCol

with high probability.



New Bounds for the Nearly Equitable Edge Coloring Problem 291

It is not hard to show that

mn lg(m/(kn) + 1)
m3/2n1/2/k1/2

=
lg(m/(kn) + 1)
(m/(kn))1/2

= O(1)

holds. Thus, regarding the time complexity, RanCol has no merit over RecCol;
however, RanCol is still useful for its simplicity.

6 Concluding Remarks

In this paper, we presented two algorithms to compute nearly equitable edge col-
orings for multigraphs. The recursive algorithm runs in O (mn log (m/(kn) + 1))
time, where m, n and k are the numbers of edges, vertices and given colors, re-
spectively. The time complexity of the recursive algorithm is better than the pre-
vious best known time bound O(m2/k) presented by Xie et al. When k = O(1),
the time complexity of all known algorithms becomes O(m2), which implies that
this time complexity remains to be the best for more than twenty years since
1982 when Hilton and de Werra gave a constructive proof for the existence of
a nearly equitable edge coloring for any multigraph. Our recursive algorithm is
the first that improves this time complexity when m/n grows to infinity; e.g.,
m = nϑ (ϑ > 1 is an arbitrary constant). The randomized algorithm is very
simple, and it runs in O

(
m3/2n1/2/k1/2

)
time with a constant probability arbi-

trarily close to 1 and in O(m2/k) in the worst case.
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Abstract. We consider the minimum cost edge installation problem
(MCEI) in a graph G = (V, E) with edge weight w(e) ≥ 0, e ∈ E.
We are given a vertex s ∈ V designated as a sink, an edge capacity
λ > 0, and a source set S ⊆ V with demand q(v) ∈ [0, λ], v ∈ S. For any
edge e ∈ E, we are allowed to install an integer number h(e) of copies
of e. The MCEI asks to send demand q(v) from each source v ∈ S along
a single path Pv to the sink s. A set of such paths can pass through
a single copy of an edge in G as long as the total demand along the
paths does not exceed the edge capacity λ. The objective is to find a
set P = {Pv | v ∈ S} of paths of G that minimizes the installing cost�

e∈E h(e)w(e). In this paper, we propose a (15/8 + ρST)-approximation
algorithm to the MCEI, where ρST is any approximation ratio achievable
for the Steiner tree problem.

Keywords: Approximation algorithm, Graph algorithm, Routing prob-
lem, Network optimization.

1 Introduction

We study a problem of finding routings from a set of sources to a single sink in
a network with an edge installing cost. This problem is a fundamental and eco-
nomically significant one that arises in hierarchical design of telecommunication
networks [2] and transportation networks [8,9]. In telecommunication networks
this corresponds to installing transmission facilities such as fiber-optic cables,
which represent the edges of the network. In other applications, optical cables
may be replaced by pipes, trucks, and so on.

Consider an edge-weighted undirected graph G, where V (G) and E(G) denote
the vertex set and edge set of G, respectively. We are given a set S ⊆ V (G) of
vertices specified as sources and a vertex s ∈ V (G) specified as a sink. Each
source v ∈ S has a nonnegative demand q(v), all of which must be routed to s
through a single path. We are also given a finite set of different cable types, where
each cable type is specified by its capacity and its cost per unit weight. The costs
of cables obey economies of scale, i.e., the cost per unit capacity per unit weight
of a high capacity cable is significantly less than that of a low capacity cable.

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 292–303, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The single-sink buy-at-bulk problem (SSBB) (also known as the single-sink edge
installation problem [3]) asks to construct a network of cables in the graph by
installing an integer number of each cable type between adjacent vertices in G
so that given demands at the sources can be routed simultaneously to s. The
goal is to minimize the costs of installed cables.

The problem of buy-at-bulk network design was first introduced by Salman
et al. [8]. They showed that the problem is NP-hard by showing a reduction
from the Steiner tree problem. The Steiner tree problem is a classical NP-hard
optimization problem, and the current best approximation ratio for the Steiner
tree problem is a bit less than 1.55 [7]. Moreover, they showed that the problem
remains NP-hard even when only one cable type is available. The approximation
ratio for the SSBB problem was gradually reduced from O(log2 n) [1] to 24.92 [2]
by a series of papers, where n is the number of vertices of the underlying graph.

In this paper, we study a special case of the SSBB that arises from transporta-
tion networks [9]. A multinational corporation wishes to enter a new geographic
area, characterized by demand at each city. It has identified the location of its
manufacturing facility. Suppose the shipping of the good will be carried out by
some transport company. This transport company has only one truck type, with
a fixed capacity. For each truck, the transport company charges at a fixed rate
per mile, and offers no discount in the case where the truck is not utilized to full
capacity. The problem facing the corporation is to decide a shipping plan of the
finished good to each city, so that the total demand at each city is met and the
total cost is minimized.

In such a transportation network, we have a single cable type with a fixed
capacity λ > 0 for all edges, and we are interested in constructing a set P of
paths each of which connects one of given sources to a single sink s. The cost
of installing a copy of an edge e is represented by the weight of e. A subset
of paths of P can pass through a single copy of an edge e as long as the total
demand of these paths does not exceed the edge capacity λ; any integer number
of separated copies of e are allowed to be installed. However, the demand of each
source is not allowed to be split at any vertex or over two or more copies of
the same edge. The cost of a set P of paths is defined by the minimum cost of
installing copies of edges such that the demand of each source can be routed to
the sink under the edge capacity constraint, i.e.,

cost(P) =
∑

e∈E(G)

h(e)w(e),

where h(e) is the minimum number of copies of e required for routing the set of
all demands along e, simultaneously. The goal is to find a set P of paths that
minimizes cost(P). We call this problem, the minimum cost edge installation
problem (MCEI). Notice that, in order to get a feasible solution to the MCEI,
such edge capacity λ should be as much as the maximum demand in the network.
The MCEI can be formally defined as follows, where R+ denotes the set of
nonnegative reals.
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Minimum Cost Edge Installation Problem (MCEI)
Input: A connected graph G, an edge weight function w : E(G) → R+, a sink
s ∈ V (G), a set S ⊆ V (G) of sources, an edge capacity λ > 0, and a demand
function q : S → R+ such that q(v) ≤ λ, v ∈ S.
Feasible solution: A set P = {Pv | v ∈ S, {s, v} ⊆ V (Pv)} of paths of G.
Goal: Find a feasible solution P that minimizes cost(P).

The MCEI is closely related to the capacitated network design problem (CND),
which can be stated as follows. We are given an undirected graph G such that
each edge e ∈ E(G) is weighted by nonnegative real w(e), a subset S ⊆ V (G)
of sources, and a vertex s ∈ V (G) designated as a sink. Each source v ∈ S has
a nonnegative demand q(v), all of which must be routed to s through a single
path. A cable with fixed capacity λ is available for installing on the edges of the
graph, where installing i copies of the cable on edge e costs iw(e) and provides
iλ capacity. The CND asks to find a minimum cost installation of cables that
provides sufficient capacity to route all of the demand simultaneously to s. The
problem requires choosing a path from each source to the sink and finding the
number of cables to be installed on each edge such that all the demand is routed
without exceeding edge capacities. Demands of different sources may share the
capacity on the installed cables and the capacity installed on an edge has to
be at least as much as the total demand routed through this edge. For this
problem, Mansour and Peleg [6] gave an O(log n)-approximation algorithm for
a graph with n vertices. Salman et al. [8] designed a 7-approximation algorithm
for the CND based on a construction from [5]. Afterwards Hassin et al. [4] gave a
(2+ ρ

ST
)-approximation algorithm, where ρ

ST
is any approximation ratio achiev-

able for the Steiner tree problem. By using of a slight intricate version of this
algorithm, they improved the approximation ratio to (1+ρ

ST
) when every source

has unit demand. When all non-sink vertices are sources, the approximation ra-
tio of Hassin et al. [4] becomes 3 for general demands and 2 for unit demands,
since the Steiner tree problem in this case is a minimum spanning tree problem.

Note that, a solution to each of the MCEI and the CND can be characterized
by specifying for each source v, the path Pv along which the demand q(v) of
v will be sent to the sink. The cables installed on each edge of the network
are induced by these paths. In particular, for each edge e, a feasible solution
to the MCEI assigns an integer number of separated cable copies required for
routing all demands in {q(v) | e ∈ E(Pv)}, simultaneously. On the other hand,
a feasible solution to the CND assigns on e at least �

∑
v:e∈E(Pv) q(v)/λ� copies

of the cable. That is, on contrary to the MCEI, the CND allows the demand
from a source to be split among different copies of the same edge. Note that,
the algorithm of Hassin et al. [4] to the CND takes the advantage (over the
MCEI) of this assumption only for routing demands larger than λ to the sink.
Hence, their algorithms to the CND can be used to obtain approximate solutions
to the MCEI with approximation ratios 1 + ρ

ST
and 2 + ρ

ST
for the unit and

general demand networks, respectively. In this paper, we proved that there is a
(15/8 + ρ

ST
)-approximation algorithm to the MCEI with general demands. Our
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result is based on a new and elaborated method for partitioning the source set
of a given tree. When S = V (G), the approximation ratio becomes 2.875.

The rest of this paper is organized as follows. Section 2 introduces termi-
nologies on graphs and two lower bounds on the optimal value of the MCEI.
Section 3 describes some results on tree partitions. Section 4 gives a framework
of our approximation algorithm for the MCEI, analyzing its approximation ratio.
Section 5 makes some concluding remarks.

2 Preliminaries

This section introduces some notations and definitions. Let G be a simple undi-
rected graph. We denote by V (G) and E(G) the sets of vertices and edges in G,
respectively. An edge-weighted graph is a pair (G, w) of a graph G and a non-
negative weight function w : E(G) → R+. The length of a shortest path between
two vertices u and v in (G, w) is denoted by d(G,w)(u, v). Given a vertex weight
function q : V (G) → R+ in G, we denote by q(Z) the sum

∑
v∈Z q(v) of weights

of all vertices in a subset Z ⊆ V (G).
Let T be a tree. A subtree of T is a connected subgraph of T . For a subset

X ⊆ V (T ) of vertices, let T 〈X〉 denote the minimal subtree of T that contains X
(note that T 〈X〉 is uniquely determined). Now let T be a rooted tree. We denote
by L(T ) the set of leaves in T . For a vertex v in T , let Ch(v) and D(v) denote
the sets of children and descendants of v, respectively, where D(v) includes v. A
subtree Tv rooted at a vertex v is the subtree induced by D(v), i.e., Tv = T 〈D(v)〉.
For an edge e = (u, v) in a rooted tree T , where u ∈ Ch(v), the subtree induced
by {v} ∪ D(u) is denoted by Te, and is called a branch of Tv. For a rooted tree
Tv, the depth of a vertex u in Tv is the length (the number of edges) of the path
from v to u.

For a set Z, a set {Z1, Z2, ..., Z�} of pairwise disjoint subsets of Z is called a
partition of Z if ∪�

i=1Zi = Z.
The rest of this section presents two lower bounds on the optimal value to the

MCEI. The first lower bound has been proved and used to derive approximation
algorithms to the CND in [4].

Lemma 1. For an instance I = (G = (V, E), w, S, q, s, λ) of the MCEI, let
opt(I) be the weight of an optimal solution to I, and T ∗ be the minimum weight
of a tree that spans S ∪ {s} in G. Then

max
{

w(T ∗),
1
λ

∑

t∈S

q(t)d(G,w)(s, t)
}

≤ opt(I),

where w(T ∗) is the sum of weights of edges in T ∗. ��

The second lower bound is derived from an observation on the distance from
sources t ∈ S with q(t) > λ/2 to sink s.
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Lemma 2. For an instance I = (G = (V, E), w, S, q, s, λ) of the MCEI with
q(t) ∈ [0, λ], t ∈ S, let opt(I) be the weight of an optimal solution to I. Then

∑

t∈S′

d(G,w)(s, t) ≤ opt(I),

where S′ = {t ∈ S | q(t) > λ/2}.

Proof. The proof is followed directly by noting that for any two sources u, v ∈ S′,
the paths Pv and Pu of the optimal solution cannot share the capacity of a single
copy of any edge e ∈ E. ��

Given an instance I = (G = (V, E), w, S, q, s, λ) of the MCEI, our algorithm
firstly produces a tree T of G that spans all vertices in S ∪{s}, finds a partition
S of S, and assigns a vertex tZ ∈ Z for each subset Z ∈ S such that when all
demands in each subset Z ∈ S are routed to tZ simultaneously, the total flow
on each edge of T is at most λ, where we call such a vertex tZ the hub vertex
of Z. Afterward, for each Z ∈ S, we install a copy of each edge in a shortest
path SP (s, tZ) between s and tZ in G, and construct path Pt, t ∈ Z, by adding
SP (s, tZ) to the path between t and tZ in T . The running time of this algorithm
is dominated by the approximation algorithm for the Steiner tree problem to
compute tree T .

3 Tree Partition

The purpose of this section is to describe how to construct a tree partition in a
tree that spans a source set, that is, how to find a partition of the source set of
the tree. Such a tree partition will be the basis of our approximation algorithm
to the MCEI in the next section. We first present some results for special cases
of tree partitioning.

3.1 Tree Partition in Special Trees

In this subsection, we prepare several lemmas on tree partition problem for a
tree with special structure. We first introduce a subgraph which plays a key role
in our algorithm.

Definition 1. For a vertex v in a rooted tree, a source set Zv ⊆ V (Tv) − {v},
a demand function q : Zv → R+, and a positive number λ, a binary rooted tree
Tv is said to be a balance-tree if q(Zv) > λ holds and the total demand in each
of its branches is less than (4/7)λ.

We are given a binary rooted tree Tx with a source set Zx = L(Tx), an edge
capacity λ > 0, a demand function q : Zx → R+ such that q(t) ≤ λ/2 for
all t ∈ Zx, and a vertex weight function d : Zx → R+. Moreover, for each
u ∈ Ch(x), if q(V (Tu) ∩ Zx) ≥ (4/7)λ, then Tu contains a balance-tree and
satisfies q(V (Tu)∩Zx) < (8/7)λ. We partition Zx into subsets, and choose a hub
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vertex from each subset such that, when demands of each subset are routed to
its hub vertex simultaneously, the total flow on each edge of Tx is bounded from
above by λ. For brevity, we use (Tx, Zx, q, d, λ) to refer to this tree throughout
this subsection.

We present the following three lemmas without proofs due to space limitation.

Lemma 3. Given a tree (Tx, Zx, q, d, λ) with (8/7)λ ≤ q(Zx) < (12/7)λ, there
is a partition {X, Y } of Zx such that q(Y ) ≥ (4/7)λ, and when q(X) and q(Y )
are routed to tX = argmin{d(t) | t ∈ Zx} and tY = argmin{d(t) | t ∈ Y },
respectively, the total amount of these flow on each edge of Tx is at most λ. ��

Lemma 4. Given a tree (Tx, Zx, q, d, λ) with q(Zx) ≥ (12/7)λ, there is a par-
tition {A, B, C} of Zx and a subset Z ′

x ⊆ Zx with q(Z ′
x) ≥ (12/7)λ such that

q(A ∩ Z ′
x), q(B ∩ Z ′

x) > (3/7)λ, q(C ∩ Z ′
x) ≥ (5/7)λ, and when q(A), q(B), and

q(C) are routed to tA = argmin{d(t) | t ∈ Z ′
x}, tB = argmin{d(t) | t ∈ Z ′

x − A},
and tC = argmin{d(t) | t ∈ C ∩ Z ′

x}, respectively, the total amount of these flow
on each edge of Tx is at most λ. ��

Lemma 5. Given a tree (Tx, Zx, q, d, λ) with Zx �= ∅, there is a partition Z1∪Z2

of Zx such that q(Z) ≥ (5/7)λ for each Z ∈ Z1, q(Z) < (4/7)λ for each Z ∈ Z2,
and when demands in each Z ∈ Z1 and Z ∈ Z2 are routed to tZ = argmin{d(t) |
t ∈ Z} and x, respectively, the total amount of these flow on each edge of Tx is
at most λ. ��

3.2 Algorithm for Tree Partition

In this subsection, we present an algorithm that exploits the results in Lemmas 3-
5 to compute a partition of the source set of a general tree given in the next
theorem.

Theorem 1. Given a tree T rooted at s, an edge capacity λ > 0, a source set
S ⊆ V (T ), a demand function q : S → R+ such that q(t) ≤ λ/2, t ∈ S, and a
vertex weight function d : S → R+, there is a partition S = S1 ∪ S2 ∪ S3 ∪ S4

of S, where S3 = ∪1≤i≤k{Xi, Yi} and S4 = ∪1≤i≤�{Ai, Bi, Ci}, and a set H =
{tZ ∈ S | Z ∈ S} of hub vertices, that satisfy:

(i) For each subset Z ∈ S1, q(Z) < (4/7)λ and tZ = s.
(ii) For each subset Z ∈ S2, q(Z) ≥ (4/7)λ and tZ = argmin{d(t) | t ∈ Z}.
(iii) For i = 1, 2, . . . , k, q(Yi) ≥ (4/7)λ, q(Xi ∪Yi) ≥ (8/7)λ, tXi = argmin{d(t) |

t ∈ Xi ∪ Yi}, and tYi = argmin{d(t) | t ∈ Yi}.
(iv) For i = 1, 2, . . . , �, q(Ai ∩Z ′

x), q(Bi ∩Z ′
x) > (3/7)λ, and q(Ci ∩Z ′

x) ≥ (5/7)λ,
where Z ′

x ⊆ Ai ∪ Bi ∪ Ci with q(Z ′
x) ≥ (12/7)λ, and tAi = argmin{d(t) | t ∈

Z ′
x}, tBi = argmin{d(t) | t ∈ Z ′

x−Ai}, and tCi = argmin{d(t) | t ∈ Ci ∩Z ′
x}.

(v) When the total demand of each subset Z ∈ S is routed to tZ simultaneously,
the total amount of these flow on each edge of T is bounded from above by
λ.

Furthermore, such a partition S can be computed in polynomial time. ��
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To prove Theorem 1, we can assume without loss of generality that in a given
tree T , (i) all sources are leaves, i.e., S = L(T ), by introducing a new edge of
weight zero for each non-leaf source, and (ii) |Ch(v)| = 2 holds for every non-leaf
v ∈ V (T ), i.e., T is a binary tree rooted at s, by splitting vertices of degree more
than 3 with new edges of zero weights.

We prove Theorem 1 by showing that the next algorithm actually delivers a
desired partition S = S1 ∪ S2 ∪ S3 ∪ S4. We first choose a vertex v /∈ Q ∪ {s}
with the maximum depth in the current tree such that the total demand of a
source set Zv of the tree rooted at v is at least (4/7)λ, where Q is initialized
to be empty and is used to keep track of vertices v in the current tree such
that Tv contains a balance-tree and satisfies q(Zv) < (8/7)λ. Depending on the
total demand of Zv, we add Zv to S2, add v to Q, or compute a partition of Zv

by using Lemma 3 or 4. In the latter case, we add the subsets of the obtained
partition to one of S3 or S4. We then remove all sources in S2 ∪ S3 ∪ S4 from S
and repeat these steps on the minimal subtree of T that spans s and the current
source set until there is no such vertex v. Finally, we partition the remaining set
of sources by using Lemma 5 and add the resulting partition to one of S1 or S2.
A formal description of the algorithm is the following.

Algorithm. TreePartition

Input: A binary tree T̂ rooted at s, a capacity λ of each edge, a set S = L(T̂ )
of sources, a demand function q : S → R+ such that q(t) ≤ λ/2, t ∈ S, and a
vertex weight function d : S → R+.
Output: A pair (S, H) that satisfies the conditions in Theorem 1.
Initialize T := T̂ ; Q := H := S1 := S2 := S3 := S4 := ∅.
1 while there exists a vertex v ∈ V (T ) − {s} − Q such that

q(V (Tv) ∩ S) ≥ (4/7)λ do
2 Choose such v with the maximum depth from s;
3 Let Zv := DT (v) ∩ S; Tv := T 〈Zv〉;
4 begin /* Distinguish the next four cases. */
5 Case-1 q(Zv) ≤ λ: Let S2 := S2 ∪ {Zv};
6 tZv = argmin{d(t) | t ∈ Zv}; H := H ∪ {tZv};
7 Case-2 λ < q(Zv) < (8/7)λ: Let Q := Q ∪ {v};
8 Case-3 (8/7)λ ≤ q(Zv) < (12/7)λ:
9 Apply Lemma 3 to (Tv, Zv, q, d, λ) to get a partition {X, Y } of Zv

and vertices tX and tY that satisfy the conditions in the lemma;
10 S3 := S3 ∪ {X, Y }; H := H ∪ {tX , tY }
11 Case-4 (12/7)λ ≤ q(Zv) < (16/7)λ:
12 Apply Lemma 4 to (Tv, Zv, q, d, λ) to get a partition {A, B, C} of Zv

and vertices tA, tB, and tC that satisfy the conditions in the lemma;
13 S4 := S4 ∪ {A, B, C} and H := H ∪ {tA, tB, tC}
14 end; /* Cases-1,2,3,4 */
15 Let S := S − (S2 ∪ S3 ∪ S4); T := T 〈S ∪ {s}〉
16 endwhile;
17 if S �= ∅
18 Regard T as a tree Ts rooted at s and apply Lemma 5 to (Ts, S, q, d, λ)
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to get a partition Z1 ∪ Z2 of S and a vertex tZ for each Z ∈ Z1 ∪ Z2

that satisfy the conditions in the lemma, where tZ = s for each Z ∈ Z2;
19 S1 := Z2; S2 := S2 ∪ Z1; H := H ∪ {tZ | Z ∈ Z1 ∪ Z2}
20 endif.

Proof of Theorem 1. We first prove by induction the correctness of algorithm
TreePartition. We first consider the vertex v chosen in the first iteration of
the while-loop. By the choice of v, q(V (Tu) ∩ S) < (4/7)λ for all u ∈ Ch(v).
Hence (4/7)λ ≤ q(Zv) < (8/7)λ holds, which implies that q(Zv) ≤ λ or λ <
q(Zv) < (8/7)λ can occur in the first iteration. If q(Zv) ≤ λ holds, then Zv is
removed from S and added to S2. Otherwise λ < q(Zv) < (8/7)λ holds and
hence Tv is a balance-tree. In the latter case, v is added to a set Q.

Assume that the algorithm works correctly after the execution of the jth
iteration, and let T be the current tree. We show the correctness of the algorithm
during the execution of the (j+1)th iteration. Note that, for any vertex v chosen
by the algorithm, Zv will be removed from the current S except for the case where
λ < q(Zv) < (8/7)λ. Now let v be a vertex selected in the (j + 1)st iteration.
Then we see that, for each u ∈ Ch(v), either (i) q(V (Tu)∩S) < (4/7)λ holds (if u
has not been chosen before by the algorithm) or (ii) u ∈ Q holds and Tu contains
a balance-tree and satisfies q(V (Tu) ∩ S) < (8/7)λ (otherwise). Therefore, one
of (4/7)λ ≤ q(Zv) ≤ λ, λ < q(Zv) < (8/7)λ, (8/7)λ ≤ q(Zv) < (12/7)λ, and
(12/7)λ ≤ q(Zv) < (16/7)λ holds. Let B1

v and B2
v denote the two branches of

Tv, and let Zi
v denote the set of sources in Bi

v, i = 1, 2, where q(Z1
v ) ≥ q(Z2

v ).
Now if q(Zv) ≤ λ holds, then Zv is removed from the current S after it is added
to S2. If λ < q(Zv) < (8/7)λ holds, then Tv is a balance-tree (if q(Z1

v ), q(Z2
v ) <

(4/7)λ) or B1
v (consequently Tv) contains a balance-tree (by q(Z1

v ) ≥ q(Z2
v )). In

this case, v is added to a set Q. Finally, if (8/7)λ ≤ q(Zv) < (12/7)λ (resp.,
(12/7)λ ≤ q(Zv) < (16/7)λ) holds then Tv satisfies conditions of Lemma 3
(resp., Lemma 4) in this case. In the latter two cases, Zv is removed from the
current S after elements of its partition are added to appropriate subsets of S.
Therefore, the algorithm works correctly during the execution of all iterations
of the while-loop.

After the final iteration, there is no vertex v ∈ V (T ) − {s} − Q such that
q(V (Tv)∩S) ≥ (4/7)λ for the current tree T . If the current S �= ∅, then for each
u ∈ Ch(s), either (i) q(V (Tu) ∩ S) < (4/7)λ holds (if u has not been chosen
before by the algorithm) or (ii) u ∈ Q holds and Tu contains a balance-tree
and satisfies q(V (Tu) ∩ S) < (8/7)λ (otherwise). That is, the current tree T
satisfies the conditions in Lemma 5 and a desired partition of the current S can
be constructed.

Now we prove that the partition obtained from algorithm TreePartition

satisfies conditions (i)-(v) in Theorem 1. Conditions (i)-(iv) follow immediately
from construction of S1, S2, S3, and S4. Now we show (v). Let v be the vertex
chosen in line 2 of an arbitrary iteration of the algorithm, where the subtree Tv

of the current tree T is being processed in this iteration. Now, if Case-2 holds,
then we just add v to Q and then move to the next iteration (the current S
and T remain unchanged in this iteration). Otherwise (Case-1, 3, or 4 holds),
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the algorithm partitions the set Zv of all sources of Tv into subsets and chooses
a hub vertex from each of these subsets. We then remove Zv from the current
source set S, that is, none of the vertices of Tv will become a hub vertex in the
subsequent iterations of the algorithm. Thus it is sufficient to show that, overall
iterations of the algorithm, when the demand of each source in Zv is routed to
its hub vertex simultaneously, the total flow on each edge of Tv is bounded from
above by λ. Hence (v) follows from the conditions of Lemmas 3, 4, and 5. This
completes the correctness of TreePartition and the proof of Theorem 1. ��

4 Approximation Algorithm to MCEI

This section describes a framework of our approximation algorithm for the MCEI
and then analyzes its approximation ratio. The algorithm relies on the results
on tree partition we provided in Section 3.

The basic idea of the algorithm is to first produce a tree T of minimum cost
including all vertices in S ∪{s}. For each source t ∈ S with q(t) > λ/2, we install
a copy of each edge in a shortest path SP (s, t) between s and t in (G, w), and
let Pt := SP (s, t). We then find a partition S of the remaining sources in S, and
assign a hub vertex tZ for each subset Z ∈ S, such that when the total demand
of each subset is routed to its hub vertex simultaneously, the amount of these
flow on each edge of T is at most λ. Finally, for each set Z ∈ S, we install a
copy of each edge in a shortest path SP (s, tZ) between s and tZ in (G, w), and
construct a path Pt from the path between t and tZ in T by adding SP (s, tZ)
for all t ∈ Z.

Algorithm. ApproxMCEI

Input: An instance I = (G = (V, E), w, S, q, s, λ) of the MCEI.
Output: A solution P to I.

Step 1. Compute a Steiner tree T that spans S ∪ {s} in G.
Regard T as a tree rooted at s, and define d : S → R+ by setting

d(t) := d(G,w)(s, t), t ∈ S.

Step 2. Let S′ = {t ∈ S | q(t) > λ/2}.
For each t ∈ S′, choose a shortest path SP (s, t) between s and t in (G, w),
join t to s by installing a copy of each edge in SP (s, t), and let Pt := SP (s, t).

Step 3. Apply Theorem 1 to (T, S − S′, q, s, d, λ) to obtain a partition

S = S1 ∪ S2 ∪ S3 ∪ S4

of S − S′, where S3 = ∪1≤i≤k{Xi, Yi} and S4 = ∪1≤i≤�{Ai, Bi, Ci}, and a
set H = {tZ ∈ S | Z ∈ S} of hub vertices, that satisfy conditions (i)-(v) of
the theorem.

Step 4. For each t ∈ Z ∈ S1, let Pt be the path between t and s in T .
For each Z ∈ S − S1,
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Choose a shortest path SP (s, tZ) between s and tZ in (G, w) and
join tZ to s by installing a copy of each edge in SP (s, tZ).
For each t ∈ Z, let Pt be the path obtained from the path between
t and tZ in T by adding SP (s, tZ).

Step 5. Output P = {Pt | t ∈ S}. ��

Before analyzing the worst case performance of this algorithm, we show the
following lemma.

Lemma 6. Let S = S1 ∪ S2 ∪ S3 ∪ S4 be a partition from a tree T̂ by algorithm
TreePartition and let H = {tZ ∈ S | Z ∈ S} be the associated set of hub
vertices. Then, we have

∑

t∈Z∈S2∪S3∪S4

q(t)d(t) ≥ (4/7)λ
∑

Z∈S2∪S3∪S4

d(tZ).

Proof. First, consider a subset Z ∈ S2. Condition (ii) of Theorem 1 implies that
∑

t∈Z

q(t)d(t) ≥ q(Z)d(tZ) ≥ (4/7)λd(tZ). (1)

Now consider a pair of subsets Xi, Yi ∈ S3 defined in Theorem 1(iii). Let q(Yi) =
q1 + q2 such that q1 = (4/7)λ (q(Yi) ≥ (4/7)λ). Hence, we have

∑

t∈Xi

q(t)d(t) +
∑

t∈Yi

q(t)d(t) ≥ q(Xi)d(tXi ) + (4/7)λd(tYi) + q2d(tYi)

= (q(Xi) + q2)d(tXi) + (4/7)λd(tYi)
≥ (4/7)λ(d(tXi) + d(tYi)), (2)

since q(Xi ∪ Yi) ≥ (8/7)λ and d(tXi) ≤ d(tYi).
Finally, consider a triple of subsets Ai, Bi, Ci ∈ S4 defined in Theorem 1(iv).

Let q(Ci ∩ Z ′
x) = q1 + q2 + q3 such that q1 = (4/7)λ and q(Ai ∩ Z ′

x) + q2,q(Bi ∩
Z ′

x) + q3 ≥ (4/7)λ. Note that, Condition (iv) of Theorem 1 implies that q1, q2,
and q3 are well defined. Hence, we have

∑

t∈Ai

q(t)d(t)) +
∑

t∈Bi

q(t)d(t) +
∑

t∈Ci

q(t)d(t)

≥
∑

t∈Ai∩Z′
x

q(t)d(t) +
∑

t∈Bi∩Z′
x

q(t)d(t) +
∑

t∈Ci∩Z′
x

q(t)d(t)

≥ q(Ai ∩ Z ′
x)d(tAi) + q(Bi ∩ Z ′

x)d(tBi) + (4/7)λd(tCi) + (q2 + q3)d(tCi)

≥ (4/7)λ(d(tAi) + d(tBi) + d(tCi)), (3)

since d(tAi) ≤ d(tBi) ≤ d(tCi).
Hence the proof completes by summing inequalities (1), (2), and (3) overall

subsets in S2 ∪ S3 ∪ S4. ��
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We now turn to proving that the solution output from algorithm ApproxMCEI

is within a factor of (15/8 + ρ
ST

) of the optimal solution.

Theorem 2. For an instance I = (G = (V, E), w, S, q, s, λ) of the MCEI, algo-
rithm ApproxMCEI delivers a (15/8 + ρ

ST
)-approximate solution P, where ρ

ST

is the performance ratio for approximating Steiner tree problem.

Proof. Let opt(I) denote the weight of an optimal solution. By the construction,
the cost of P is bounded by

cost(P) ≤ w(T ) +
∑

t∈S′

d(t) +
∑

Z∈S2∪S3∪S4

d(tZ).

For a minimum Steiner tree T ∗ that spans S ∪ {s}, we have w(T ) ≤ ρ
ST

w(T ∗)
and w(T ∗) ≤ opt(I) by Lemma 1. Hence w(T ) ≤ ρ

ST
· opt(I) holds. To prove the

theorem, it suffices to show that
∑

t∈S′

d(t) +
∑

Z∈S2∪S3∪S4

d(tZ) ≤ (15/8)opt(I). (4)

To prove this inequality, we distinguish two different cases. In the first case,∑
t∈S′ q(t)d(t) ≥

∑
t∈S−S′ q(t)d(t). By Lemma 1, this implies that

opt(I) ≥ (1/λ)
∑

t∈S

q(t)d(t) = (1/λ)(
∑

t∈S′

q(t)d(t) +
∑

t∈S−S′

q(t)d(t))

≥ (2/λ)
∑

t∈S−S′

q(t)d(t)

≥ (2/λ)
∑

t∈Z∈S2∪S3∪S4

q(t)d(t)

≥ (8/7)
∑

Z∈S2∪S3∪S4

d(tZ), (5)

where the last inequality follows from Lemma 6. Inequality (5) and Lemma 2
prove (4) in this case.

In the second case,
∑

t∈S′ q(t)d(t) <
∑

t∈S−S′ q(t)d(t). Then it is easy to see
that there exist two real numbers 0 ≤ α, β ≤ 1 such that α + β = 1, α < β,
(1/λ)

∑
t∈S′ q(t)d(t) ≤ αopt(I), and (1/λ)

∑
t∈S−S′ q(t)d(t) ≤ βopt(I). Since

q(t) > λ/2 for all t ∈ S′, we have

(1/2)
∑

t∈S′

d(t) < (1/λ)
∑

t∈S′

q(t)d(t) ≤ αopt(I). (6)

On the other hand, Lemma 6 implies that

(4/7)
∑

Z∈S2∪S3∪S4

d(tZ) ≤ (1/λ)
∑

t∈Z∈S2∪S3∪S4

q(t)d(t) ≤ βopt(I). (7)
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By multiplying (6) and (7) by 2 and 7/4, respectively, and adding the obtained
inequalities, we have

∑

t∈S′

d(t) +
∑

Z∈S2∪S3∪S4

d(tZ) ≤ (2α + (7/4)β)opt(I) < (15/8)opt(I),

by the assumptions on α and β. ��

5 Concluding Remarks

In this paper, we have studied the minimum cost edge installation problem
(MCEI), a problem of finding a routing from a set of sources to a single sink
in networks. We have designed a (15/8 + ρ

ST
)-approximation algorithm for the

MCEI based on an elaborate tree partition, where ρ
ST

is any approximation ratio
achievable for the Steiner tree problem.
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Abstract. Given a graph G, the edge-disjoint cycle packing problem
is to find the largest set of cycles of which no two share an edge. For
undirected graphs, the best known approximation algorithm has ratio
O(

√
log n) [14,15]. In fact, they proved the same upper bound for the

integrality gap of this problem by presenting a simple greedy algorithm.
Here we show that this is almost best possible. By modifying integrality
gap and hardness results for the edge-disjoint paths problem [1,9], we
show that the undirected edge-disjoint cycle packing problem has an
integrality gap of Ω(

√
log n

log log n
) and furthermore it is quasi-NP-hard to

approximate the edge-disjoint cycle problem within ratio of O(log
1
2 −ε n)

for any constant ε > 0. The same results hold for the problem of packing
vertex-disjoint cycles.

1 Introduction

In the problem of edge-disjoint cycle packing (EDC) we are given a graph G
and our goal is to find a largest set of edge-disjoint cycles. The vertex analog
of the problem, vertex-disjoint cycle packing (VDC), is the problem of finding
a largest set of vertex-disjoint cycles in the given graph. The EDC problem
has been studied extensively in both directed and undirected settings (e.g. see
Balister et al. [3], Caprara et al.[5], and Seymour [18]). A discussion on the
applications of packing cycles to computational biology and reconstructing evo-
lutionary trees can be found in [3]. Both EDC and VDC are known to be NP-hard
even for undirected graphs and for very restricted cases of the problem (see e.g.
[10]). This motivates the study of approximation algorithms for these problems.
Caprara, Panconesi and Rizzi [5] showed that EDC is APX-hard even when re-
stricted on planar graphs. They also presented a simple greedy algorithm with
approximation ratio O(log n). Recently, Krivelevich et al. [14,15] showed that a
modification of the simple greedy algorithm of [5] with a more careful analysis
yields an O(

√
log n)-approximation for EDC on undirected graphs. In fact, the

algorithm obtains an integer solution that is within factor O(
√

log n) of the op-
timal fractional solution. They showed examples for which the solution obtained
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by the greedy algorithm was within Ω(
√

log n) of the optimal solution but it
falls short of proving any super-constant lower bound on the integrality gap or
approximability of the problem. They also presented an O(

√
n)-approximation

for EDC on directed graphs and an O(log n)-approximation for undirected VDC.
Subsequently, in [16,15], an integrality gap of Ω( log n

log log n ) for EDC on directed
graphs was proved. This result was followed by a hardness of approximation.
There was proved that unless NP ⊆ DTIME(npolylog(n)), it is hard to approx-
imate EDC on directed graphs within O(log1−ε n) for any ε > 0. However, the
best known lower bound on the approximability of EDC on undirected graphs
remains APX-hardness and the best lower bound for integrality gap is O(1). For
EDC on planar graphs, Caprara, Panconesi, and Rizzi give a 2+ε-approximation
algorithm [4].

For the related problem of edge-disjoint paths (EDP), on directed graphs the
best approximation algorithms have ratio O(min{n

2
3 log

1
3 n,

√
m}) [6,13,19] and

it is known the problem is hard to approximate within O(m
1
2−ε) for any ε > 0

[11]. For undirected graphs, the best known approximation ratio for EDP is
O(

√
n) [7] whereas the best known hardness result is only Ω(log

1
2−ε n) for any

ε > 0 [1,9]. The latter result was built on the major advance on the lower bound
of EDP (from APX-hardness to Ω(log

1
3−ε n)) by Andrews and Zhang [2].

In this paper, we improve the lower bounds for both EDC and VDC. More
specifically, we first present an integrality gap construction which shows that the
integrality gap upper bound of [14,15] is almost tight.

Theorem 1. The integrality gap of EDC on undirected graphs is Ω(
√

log n
log log n ).

Then we show almost the same bound for the hardness of approximation.

Theorem 2. The EDC problem on undirected graphs is hard to approximate
within O(log

1
2−ε n) for any ε > 0 unless NP ⊆ ZPTIME(npolylog(n)).

This shows that the simple greedy algorithm of [14,15] with approximation ratio
O(

√
log n) is almost best possible for EDC. The reduction in the proof of Theo-

rem 2 works, without modification, to prove the same hardness result for VDC.
Our results are heavily motivated by the hardness of the edge-disjoint paths
problem presented by Chuzhoy and Khanna in [9]. Nevertheless, they show a
rather surprising approximability threshold for a very natural packing problem.
In fact there are very few problems known to have a sub-logarithmic approx-
imability threshold ([8,12]). One other important message to be taken from our
results is that, in order to improve the hardness of approximation for EDP (from
Ω(log

1
2−ε n) to beyond Ω(

√
log n)), there has to be substantially new ideas de-

veloped that exploit the differences between EDC and EDP problems; since such
a hardness result should not be adaptable to work for EDC (because we already
have an O(

√
log n)-approximation for EDC).

The rest of the paper is separated into three more sections. In Section 2 we
describe the construction of a graph with large integrality gap for EDC. The
ideas from this section motivate the proof of hardness of approximation result
in the subsequent section.
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2 Integrality Gap

The construction of an instance of the EDC problem with a large integrality gap
is similar to the construction used by Chuzhoy and Khanna in [9]. We begin by
generating a random graph G and use this graph to generate another graph H .
With sufficiently large probability, the resulting graph H has a super-constant
integrality gap. We use a model of random graph different from [9] which enables
us to handle some tricky special cases that are overlooked in the analysis of [9].

2.1 Constructing the Gap

Given a sufficiently large integer n, define β1 =
√

log n
8 log log n and β2 = 5β1 ln β1.

The ultimate goal is to construct a graph with O(n2) nodes and integrality gap
Ω(β1). Start by building a random Hamiltonian cycle F on n vertices. Then we
add a random graph G1 = Gn,p to F with p = 2β2

n−1 , i.e. for each pair of nodes,
if there is no edge between them already (due to F ), we add it randomly (and
independently) with probability p = 2β2

n−1 . This is our graph G.

l

l

l

l

l

r

r

r

r

r

1 1

2 2

3 3

4 4

5 5

1

2 3

54

HG

v

Fig. 1. Constructing the canonical cycle for v

Now, from graph G we will create another graph H as follows. For each edge
ei ∈ G, add vertices �i and ri to H and connect them with an edge �iri which will
be called a special edge. Finally, for each vertex v of G, let ev1 , ev2 , . . . , evk

be the
edges incident with v in some arbitrary order. Add edges rvi�vi+1 to H for all 1 ≤
i ≤ k where vk+1 = v1. Call the sequence of vertices �v1 , rv1 , �v2 , rv2 , . . . , �vk

, rvk

the canonical cycle of v denoted by Cv. Notice that each special edge �iri in H
(corresponding to edge ei ∈ G) appears in exactly two canonical cycles Cu and
Cv where u and v are the endpoints of ei in the original graph G. Every other
edge appears in exactly one canonical cycle in H . Note that since the minimum
degree of G is 2, every vertex in G has a corresponding canonical cycle in H . So
we have n canonical cycles in H .

2.2 Analysis

If we assign a fractional value of 1
2 to each canonical cycle in H , each special

edge has total fractional value 1 and all the other edges have fractional value 1
2 .

Thus, no edge constraint is violated and we have a fractional packing of cycles
with total value n/2 in H (as there are n canonical cycles in H).
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We now bound the number of cycles in any integral packing C in H . First
observe that the expected degree of each node v in G1, E[d(v)], is 2β2. Using
Chernoff bound, Pr[d(v) < β2] ≤ Pr[d(v) < 1

2E[d(v)]] ≤ e−β2/8. So the expected
number of nodes with degree smaller than β2 in G1 is at most n · e−β2/8 ≤ n

8β1
.

Thus using Markov’s inequality, with probability at least 7
8 the number of nodes

with degree smaller than β2 in G1, and therefore in G, is at most n
β1

.
Second, let M1 = |E(G1)|. Since E[M1] = p ·

(
n
2

)
= β2n, again using Chernoff

bound, the probability of |M1 − β2n| > β2n/4 is exponentially small. So we can
assume that with probability at least 7

8 :

3
4
β2n < M1 <

5
4
β2n. (1)

If we define M = |E(G)|, since M1 ≤ M ≤ M1 + n, using (1), the probability
of event |M − β2n| > β2n/2 is at most 1

8 . Let the bad event E0 be the event
that either |M − β2n| > β2n/2 or there are more than n

β1
nodes with degree

smaller than β2. From above it follows with probability at least 3
4 event E0 does

not happen. Note that for every pair of nodes uv, for the probability of having
an edge e = uv in G we have:

Pr[e �∈ G] = Pr[e �∈ F ] · Pr[e �∈ G1|e �∈ F ] =
(

1 − 2(n − 2)!
(n − 1)!

)

·
(

1 − 2β2

n − 1

)

=
(

1 − 2
n − 1

)

·
(

1 − 2β2

n − 1

)

= 1 +
4β2

(n − 1)2
− 2β2 + 2

n − 1

Thus Pr[e ∈ G] = 2β2+2
n−1 − 4β2

(n−1)2 ≤ 3β2
n−1 . Defining p′ = 3β2

n−1 we can assume
each edge exists in G with probability at most p′. For g = 6β1β2, we say that a
cycle is short if it is of length less than g and long otherwise. Let C1, C2, and C3

be the set of canonical cycles, long cycles, and short cycles of C, respectively. So
C = C1 ∪ C2 ∪ C3. We will bound the size of each Ci by O(n/β1) which implies
|C| ∈ O(n/β1). Let the bad event E1 be the event that there are more than n/β1

edge-disjoint canonical cycles in C, i.e. |C1| > n/β1.

Lemma 1. The probability of bad event E1 happening is at most 1
4 .

Proof. Recall that each canonical cycle in H corresponds to a vertex in G and
two canonical cycles are edge-disjoint if and only if the corresponding vertices
in G are non-adjacent. So it is enough to show that w.h.p. every set of vertices
of size n/β1 has some edges. First we obtain a bound on the probability that
some fixed subset S ⊆ V (G) of size n/β1 doesn’t contain any edge. Since each
potential edge in G exists with probability at least 2β2

n−1 , the probability that a
fixed set S of size n/β1 is empty is at most:

(

1 − 2β2

n − 1

)(n/β1
2 )

≤
(

1 − 2β2

n

)n2/(4β2
1)

≤ e
−β2n

2β2
1 .

The number of such sets S is
(

n
n/β1

)
≤ (eβ1)n/β1 ≤ β

2n/β1
1 ; so by union bound

the probability of having any set S of size n/β1 that does not contain an edge
is at most:
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β
2n
β1
1 · e

−β2n

4β2
1 ≤ e

n
β1

�
2 ln β1− β2

2β1

�
= e−

n ln β1
2β1 ≤ 1

4
.

�	

To bound |C2|, first observe that graph H has 3M edges. Since all cycles in C2

are of length at least g then |C2| is easily bound by 3M
g ≤ n

β1
, assuming that E0

does not happen.
Now we bound the size of C3. First, obtain the multi-graph H ′ from H by

contracting all special edges �iri to a single vertex uei . So each such vertex uei

now corresponds to an edge ei in G. If there are two edges between two nodes
of H ′ then the only explanation can be that the edges come from the same
canonical cycle corresponding to a degree 2 vertex of G. If we assume bad event
E0 does not happen, there are at most n

β1
cycles of length 2 in H ′. Now we bound

the number of cycles of length 3 ≤ k < g in H ′. It is easy to see that a bound
on the number of cycles of length less than g in H ′ is an upper bound on the
number of cycles of length less than g in G. Denote by E2 the event that there
are more than n

β1
simple cycles in H ′.

Lemma 2. The probability of bad event E2 occurring is at most 1
4 .

Proof. We begin by bounding the expected number of cycles of some fixed length
3 ≤ k < g in H ′. Let C = ei1 , ei2 , . . . , eik

be an ordered sequence of edges forming
a cycle in H ′ where eij = uij uij+1 and all uij ’s are distinct for 1 ≤ j ≤ k where
ik+1 = i1. Denote the edge in G corresponding to uij by hij for all 1 ≤ j ≤ k. By
the construction of H ′, for each two consecutive nodes uij , uij+1 in C (1 ≤ j ≤ k),
the corresponding edges hij and hij+1 in G must be incident with a vertex
i.e. have a common end-point (note that hi1 , . . . , hik

do not necessarily form a
cycle in G since, for example, hij , hij+1 , and hij+2 can all be incident to the
same vertex). Given a sequence of pairs of nodes in G like hi1 , . . . , hik

, whose
corresponding nodes in H ′ form a simple cycle like C, the probability that all

pairs hi1 , . . . , hik
are actually edges in G is at most

(
3β2
n−1

)k

. A loose upper bound
on the number of such sequences of pairs of nodes in G (that correspond to a
simple cycle in H ′) is (2n)k since once we select a pair of nodes, there are at most
2n− 4 other pairs of nodes, each of which has an end-point in common with the
previous one. Also, every sequence of k edges in G, like hi1 , . . . , hik

corresponds
to a sequence of k nodes in H ′, say ui1 , . . . , uik

, and if this sequence forms a
(simple) cycle then it forms at most 2k cycles in H ′ because between every pair
of nodes in H ′ there are at most two edges. Thus, the expected number of cycles

of length k in H ′ is at most 2k · (2n)k ·
(

3β2
n−1

)k

≤ (16β2)k. Summing over all
cycle lengths 3 ≤ k < g gives an upper bound of (16β2)g on the expected number
of short (simple) cycles. By Markov’s inequality, the probability that there are
more than 4(16β2)g cycles of length 3 ≤ k < g in H ′ is at most 1

4 . We show that
this quantity is bound by n/β1.
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4(16β2)g ≤ β2g
2 = e2g ln β2 = e12β1β2 ln β2 ≤ e60β2

1 lnβ1 ln β2 ≤ e120β2
1 ln2 β1

≤ e
120 ln n

64(ln ln n)2
· (ln ln n)2

4 ≤ e
ln n
2 ≤ n

β1
.

Therefore, the probability that there are more than n/β1 short (simple) cycles
in C3 is at most 1

4 . �	

Therefore, assuming that E0 and E2 do not happen |C3| ≤ 2n/β1. By union
bound, the probability of E0 ∪ E1 ∪ E2 is at most 3

4 . So with probability at least
1
4 graph G (and accordingly graph H) with the above properties exist and so
any collection of disjoint cycles of H is of size at most |C| ≤ |C1| + |C2| + |C3| ≤
4n
β1

. Since we can pack n/2 cycles fractionally in H , then the integrality gap is

Ω(β1) = Ω
( √

log n
log log n

)
. The number of vertices of graph H is N = 2M ∈ O(n2).

Therefore, the integrality gap in H is Ω
( √

log N
log log N

)
.

3 The Hardness Construction

In this section we prove Theorem 2. We show how a modification of the con-
struction used to prove the hardness of approximating edge-disjoint paths by
Chuzhoy and Khanna in [9] can be used to show the same hardness for EDC.
Our starting point is a PCP characterization of NP introduced in [17].

3.1 A PCP Characterization of NP

To begin, we use the same PCP characterization of NP used in [9] which is a slight
modification of the characterization obtained by Samorodnitsky and Trevisan in
[17]. Let Φ be an instance of 3SAT with n variables. For any constant k > 0,
consider a PCP verifier that uses r = O(log n) random bits and queries q = k2

bits of a proof Π . Let R be a random string of length r and denote the indices of
the bits of the proof that are read given the random string R as b1(R), . . . , bq(R).
Define a configuration to be the tuple (R, a1, . . . , aq) where R is a random string
of length r and ai = Πbi(R) ∈ {0, 1}, for 1 ≤ i ≤ q , are the values of the bits
read in the proof. A configuration (R, a1, . . . , aq) is called accepting if the PCP
verifier accepts upon using random string R and reading proof bits a1, . . . , aq.
It follows ([9]) from the construction of [17] that for every constant k > 0 and
for sufficiently large constant β >> k2 there exists a PCP verifier for Φ with the
following properties:

– λr = O(log n log log n) random bits are used with r = O(log n) and λ =
2β log log n

k2 .
– Exactly q = λk2 = O(log log n) bits of the proof are queried for each random

string.
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– If Φ is satisfiable, then there exists a proof Π such that the acceptance
probability of the PCP verifier upon reading Π is at least 2−λ.

– If Φ is not satisfiable, then the acceptance probability of the PCP verifier
upon reading Π is at most 2−λk2

for all proofs Π .
– Every random string R participates in 2λ(2k−1) accepting configurations.
– For every random string R and for every j = 1 . . . q, the number of accepting

configurations with Πbj(R) = 0 and the number of accepting configurations
with Πbj(R) = 1 are equal.

– Let Zj to be the set of all accepting configurations with Πj = 0 and let Oj

be the set of all accepting configurations with Πj = 1. Let nj = |Zj | = |Oj |.
Then nj ≥ 2λr/2.

– Let A be the set of all accepting configurations. Then |A| ≤ 2λr · 22λk.

For a given instance of Φ of 3SAT with n variables, we assume that V is a PCP
verifier with aforementioned properties and we choose k to be a large enough
constant.

3.2 The Bit Gadget

The basic construction here is identical to that of [9]. Let M and X be two
parameters which will be specified later. We only note that X will be expo-
nentially larger than M , i.e. X >> 2M . For each proof bit Πi, we construct
a bit gadget G(i) in the following manner. Recall that Zi and Oi are the set
of accepting configurations in which bit Πi is zero and one, respectively. For
each accepting configuration α ∈ Zi ∪ Oi and for each 1 ≤ m ≤ M + 1, we
create X vertices vx,m(α, i), for 1 ≤ x ≤ X , called level m vertices. Let Zm(i) =
{v1,m(α, i), . . . , vX,m(α, i)} be the set of level m vertices when α ∈ Zi. Similarly
define Om(i) to be the set of level m vertices when α ∈ Oi. Between levels m
and m+1, for 1 ≤ m ≤ M , create Xni vertices Lm(i) = {�1,m(i), . . . , �Xni,m(i)}
as well as Xni vertices Rm(i) = {r1,m(i), . . . , rXni,m(i)} where ni = |Zi| = |Oi|.

The edges in the bit-gadget are specified as follows. For each 1 ≤ m ≤ M ,
create a random matching between the Xni level m vertices associated with
some α ∈ Zi and the vertices in Lm(i). Similarly, create a random matching
between the vertices in Rm(i) and the Xni level m + 1 vertices associated with
some α ∈ Zi. Repeat the same process between vertices associated with some
α ∈ Oi. Finally, for each 1 ≤ m ≤ M and for each 1 ≤ j ≤ Xni, join �m,j(i)
and rm,j(i) with an edge which we call a special edge. Figure 2 illustrates this
construction.

For each configuration α ∈ Zi ∪ Oi, we define a canonical path Px(α, i) for
1 ≤ x ≤ X , as being the path

(vx1,1(α, i), �a1,1(i), ra1,1(i), vx2,2(α, i), . . . , �aM ,M (i), raM ,M (i), vxM+1,M+1(α, i))

where the indices x1 = x and the remaining xm, am indices are defined by the
random matchings. Essentially, a canonical path corresponding to configuration
α begins at one of the X vertices vx,1(α, i) and follows the random matchings
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Fig. 2. Bit gadget construction for proof Πi

between levels while never visiting vertices in Oi if α ∈ Zi or never visiting
vertices in Zi if α ∈ Oi.

Note that the canonical paths corresponding to the Xni configurations in
Zi are all edge-disjoint. Similarly, the canonical paths to the configurations in
Oi are edge-disjoint. Each special edge belongs to exactly two canonical paths
(one corresponding to a configuration in Zi and one in Oi) and every other edge
belongs to exactly one canonical path. Consider the set of Xni special edges
at level m (1 ≤ m ≤ M). Since each such special edge participates in exactly
one canonical path representing a configuration in Zi and one canonical path
representing a configuration in Oi, the set of special edges in level m, defines
a matching between canonical paths corresponding to configurations in Zi and
canonical paths corresponding to configuratinos in Oi. This matching is random
(because of the random matchings placed before these special edges). So overall,
the M levels of special edges define M random matchings between the canonical
paths corresponding to configurations in Zi and in Oi.

Let Δ = M
8 log M , noting that M ≥ 8Δ logΔ holds. For each index i of proof Π ,

let P0(i) be the set of canonical paths corresponding to a configuration in Zi and
P1(i) be the set of canonical paths corresponding to a configuration in Oi. A bit
gadget G(i) is said to be bad if there is a pair of subsets A ⊆ P0(i), B ⊆ P1(i)
with |A| = |B| = Xni

Δ such that all paths in A ∪ B are edge disjoint. Define bad
event B1 to be the event that there is some bit gadget that is bad. The next lemma
claims that with sufficiently high probability B1 does not happen. The proof is a
simple first-moment analysis. The idea is that each path from A and each path
from B can be matched by any of the M random matchings defined by the special
edges, in which case the two paths are not edge-disjoint. Since our bit gadget is
identical to the bit gadget constructed in [9], the following result holds as well.

Lemma 3. [9] The probability that bad event B1 happens is at most 1
poly(n) .

3.3 The Main Construction

Here we show how to combine the bit gadgets into the final construction. This is
essentially the same construction as in [9] with the modification that the corre-
sponding source-sink pairs are connected by a new set of edges, called back-edges.

Let α = (R, ai1 , ai2 , . . . , aiq ) be an accepting configuration with i1, . . . , iq
being the indices of the proof bits queried upon reading the random string R. For
each 1 ≤ j < q, we connect bit gadget G(ij) to bit gadget G(ij+1) by creating a
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random matching between the sets of vertices {v1,M+1(α, ij) . . . vX,M+1(α, ij)}
and {v1,1(α, ij+1), . . . vX,1(α, ij+1). For each 1 ≤ x ≤ X , we define canonical
path Px(α) = (Px1(α, i1), . . . , Pxq(α, iq)) where the xj ’s are recursively defined
as follows: x1 = x and xj corresponds to the canonical path in G(ij) whose
start point is matched with the end-point of Pxj−1(α, ij−1) in G(ij−1) for each
2 ≤ j ≤ q. After performing the random matching, add an edge, called a back
edge, for each canonical path Px(α) between the start and end vertices in that
path. From this, we define a canonical cycle Cx(α) to be the cycle formed by
the canonical path and the associated back edge. Denote the set of all canonical
cycles by C. A few important facts about this graph are noted. First, the length
of each canonical cycle is (3M + 1)q ≤ 4Mλk2. Second, for each accepting
configuration α, there are X edge-disjoint canonical cycles associated with α.
Finally, the degree of each vertex is at most 3. Figure 3 illustrates this final
construction.

Random
Matching

Random
Matching

Random
Matching

Back Edges For α

G(i  )1 G(i  )2 G(i  )q

v   (   ,i  )α1,1 1

αv    (   ,i  )
X,1 1

1αv         (   ,i  )1,M+1 1,1v   (   ,i  )α 2
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X,M+1

α q

. . .

Fig. 3. The final instance for configuration α

We set X = 222λ(k2+4k)
and M = 2λ(k2+k) in the final construction. Then

X = 2polylog(n) and M = polylog(n). Each vertex and edge participate in at
least one canonical cycle and |C| ≤ X · 2λr · 2λ(2k−1) with the length of each
cycle in C being bound by 4Mλk2. Denoting the number of vertices in the final
construction by N we have N ≤ X · 2λr · M · 22λk ≤ X · 2O(log n log log n).

3.4 Analysis

Here we show that if Φ is a satisfiable instance of 3SAT then there are many
edge-disjoint cycles in the instance we built (those corresponding to the canonical
cycles). On the other hand if Φ is a no-instance then the number of edge-disjoint
cycles is small. For this part we show that the number of canonical as well as
non-canonical cycles is small.

Φ is Satisfiable. If Φ is satisfiable, then there exists a proof Π ′ for which the
probability of acceptance of verifier V is at least 2−λ. For each of the at least
2λr−λ random strings R that result in verifier V accepting proof Π ′, choose
all of the X canonical cycles corresponding to the configuration (R, a1, . . . , aq)
where the aj’s, 1 ≤ j ≤ q , are the values of the bits read in proof Π ′ when the
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random string is R. It is easy to see that the set of all these canonical cycles are
edge-disjoint. Denoting the number of edge-disjoint cycles when Φ is satisfiable
by CY I , we have CY I ≥ X · 2λr−λ ≥ |C|

22λk .

Φ is not satisfiable. Suppose that Φ is not satisfiable and let C′ be a collection
of edge-disjoint cycles of the constructed graph G. Define g = 22λ(k2+k). We
say a cycle is short if its length is less than g; otherwise the cycle is called
long. Partition C′ into sets C1, C2, and C3 where C1 is the set of all canonical
cycles in C′, C2 is the set of long non-canonical cycles, and C3 is the set of short
non-canonical cycles. We bound the sizes of each of C1, C2, and C3. The proofs
of the following two lemmas are essentially the same as the the corresponding
arguments in [9]. We skip repeating them here.

Lemma 4. If bad event B1 does not happen, then |C1| ≤ 2CY I

2λk2−2λk−λ
.

Lemma 5. |C2| ≤ |C|
2λk2 ≤ CY I

2λk2−2λk
.

To bound the number of short non-canonical cycles we have to be more careful.
For that we first define bad event B2 as the event |C3| > CY I

2λk2 .

Lemma 6. Event B2 happens with probability at most 1
3 .

Proof. Let G′ be the resultant graph when all of the special edges of G are
contracted. An upper bound for the number of cycles of length less than g in G′

is clearly an upper bound for the number of cycles of length less than g in G as
well. Consider any length g′ < g and let us bound the number of non-canonical
cycles of length g′. There are two types of edges in G′: those that come from
random matchings in G and those that are back-edges in G.

Claim. The probability of each edge e = uv appearing in the graph G′ given the
existence of g′ − 1 other edges that do not form a canonical path from u to v, is
at most 1

X−g′+1 .

This is easy to see for the case of a non-back-edge (i.e. random matching edge) as
each matching edge exists with probability at most 1

X−g′+1 given the existence
of g′ − 1 other edges. The case of a potential back-edge is different as the back-
edges are not completely random (each is created between the source and sink of
a canonical path; but the path is created randomly). Consider a potential back
edge e = uv between a source node u and a sink node v (note that u and v are
not necessarily the end points of a canonical path) and suppose we are given the
existence of up to g′ −1 other edges that do not form a canonical path from u to
v. Moreover, consider the partial canonical paths from u and from v using the
other at most g′ − 1 other edges. Since there is currently no canonical path from
u to v (otherwise we have a canonical cycle with e), then the probability that u
and v are endpoints of the same canonical path is exactly the probability that
they will be connected with a new random-matching edge. Thus, the probability
that e exists is at most 1

X−g′+1 . Using these arguments, for any potential non-
canonical cycle C of length g′ the probability that all edges of C exist is at most
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( 1
X−g′+1 )g′ ≤ (2/X)g′

. A coarse upper bound on the number of potential cycles

of length g′ in G′ is Ng′
which implies that the expected number of non-canonical

cycles of length g′ is no more than
(

2N
X

)g′

. Summing over all g′ < g, this yields
an upper bound of

(
2N
X

)g
on the expected number of short non-canonical cycles.

Since N ≤ X ·2λr+2λk+λ(k2+k), the expected number of cycles of length less than
g is at most 2λg(r+k2+4k) ≤ 23λrg. By Markov’s inequality, the probability that
the number of cycles of length less than g is greater than 24λrg ≥ 3 · 23λrg is at
most 1

3 . �	

Therefore, if event B2 does not happen, then: |C3| ≤ 24λrg ≤ 222λ(k2+3k)+log log n

,
because r = O(log n). Also, since λ = β log log n/k2 for β >> k2, then λk ≥
log log n resulting in |C3| ≤ 222λ(k2+4k) ≤ X ≤ CY I

2λ(r−1) ≤ CY I

2λk2 .

Wrap Up. If neither of bad events B1 nor B2 happens, then |C′| = |C1| +
|C2| + |C3| ≤ CY I

2λ(k2−3k) . So the gap between the size of the solution of G for
the case that Φ is a yes-instance and for the case that Φ is a no-instance of
3SAT is Ω(2λ(k2−3k)). Remembering that N ≤ X · 2λr · M · 22λk, we have
log N ≤ 22λ(k2+4k) + 3λr. By selecting β a large constant we have log N ≤
22λ(k2+5k) which yields

√
log N ≤ 2λ(k2−3k) · 28λk =

(
2λ(k2−3k)

)1+ 8
k−3

. There-

fore, 2λ(k2−3k) ≥ log
1
2− 4

k+5 N and so for any ε > 0, we can choose k = k(ε) > 0
such that the gap is at least log

1
2−ε N .

The probability of either of events B1 or B2 occurring is at most 1/(poly(n))+
1/3 ≤ 1/2. So, if a (log

1
2−ε n)-approximation algorithm exists for the edge-

disjoint cycles problem for any ε > 0, then a co-RPTIME(npolylog(n)) algorithm
for 3SAT exists, which in turn implies the existence of a ZPTIME(npolylog(n))
algorithm for 3SAT by a standard result. Thus, for any ε > 0, it is hard to ap-
proximate the edge-disjoint cycle packing problem within a factor of Ω(log

1
2−ε n)

unless NP ⊆ ZPTIME(npolylog(n)).

4 Concluding Remarks

Since each vertex has degree at most 3 in the construction of G, it is easy to
see that we get a similar hardness for the vertex-disjoint cycle packing problem.
Theorem 2 together with the results of [14,15] yield an almost tight ratio for
approximability of EDC in the undirected setting (O(

√
log n) v.s. Ω(log

1
2−ε n)

for any ε > 0). However, the gap between the best approximation ratio and
hardness lower bounds for undirected VDC as well as directed EDC (and VDC)
are pretty wide.
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Abstract. In many applications, the properties of an object being mod-
eled are stored as labels on vertices or edges of a graph. In this paper,
we consider succinct representation of labeled graphs. Our main results
are the succinct representations of labeled and multi-labeled graphs (we
consider vertex labeled planar triangulations, as well as edge labeled
planar graphs and the more general k-page graphs) to support various
label queries efficiently. The additional space cost to store the labels is
essentially the information-theoretic minimum. As far as we know, our
representations are the first succinct representations of labeled graphs.
We also have two preliminary results to achieve the main results. First,
we design a succinct representation of unlabeled planar triangulations
to support the rank/select of edges in ccw (counter clockwise) order in
addition to the other operations supported in previous work. Second, we
design a succinct representation for a k-page graph when k is large to
support various navigational operations more efficiently. In particular,
we can test the adjacency of two vertices in O(lg k lg lg k) time, while
previous work uses O(k) time (10; 14).

1 Introduction

Graphs are fundamental combinatorial objects, widely used to represent various
types of data. As modern applications often process large graphs, the problem
of designing space-efficient data structures to represent graphs has attracted
a great deal of attention. In particular the idea of succinct data structures, i.e.
data structures that occupy space close to the information-theoretic lower bound
while supporting efficient navigational operations, has been applied to various
classes of graphs (5; 6; 7; 8; 12; 14).

Previous work focused on succinct graph representations which support effi-
ciently testing the adjacency between two vertices and listing the edges incident
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to a vertex (5; 6; 14). However, in many applications, such connectivity informa-
tion is associated with labels on the edges or vertices of the graph, and the space
required to encode those labels dominates the space used to encode the connec-
tivity information, even when the encoding of the labels is compressed (11). For
example, when surface meshes are associated with properties such as color and
texture information, more bits per vertex are required to encode those labels
than to encode the graph itself. We address this problem by designing succinct
representations of labeled graphs, where labels from alphabet [σ] 1 are associated
with edges or vertices. These representations efficiently support label-based con-
nectivity queries, such as retrieving the neighbors associated with a given label.
Our results are under the word RAM model with word size Θ(lg n) bits.2.

We investigate three important classes of graphs: planar triangulations, planar
graphs and k-page graphs. Planar graphs, in particular planar triangulations,
correspond to the connectivity information underlying surface meshes. Triangle
meshes are one of the most fundamental representations for geometric objects: in
computational geometry they are one natural way to represent surface models,
and in computer graphics triangles are the basic geometric primitive (for efficient
rendering). k-page graphs have applications in several areas, such as sorting with
parallel stacks (17), fault-tolerant processor arrays (15) and VLSI (9).

2 Preliminaries

2.1 Related Work

Jacobson (12) first proposed to represent unlabeled graphs succinctly. His ap-
proach is based on the concept of book embedding (4). A k-page embedding is a
topological embedding of a graph with the vertices along the spine and edges
distributed across k pages, each of which is an outerplanar graph. The minimum
number of pages, k, for a particular graph has been called the pagenumber or
book thickness. Jacobson showed how to represent a k-page graph using O(kn)
bits to support adjacency tests in O(lg n) bit probes, and listing the neighbors
of a vertex in O(d lg n + k) bit probes, where d is the vertex degree.

Munro and Raman (14) improved his results under the word RAM model by
showing how to represent a graph using 2kn + 2m + o(kn + m) bits to support
adjacency tests and the computation of the degree of a vertex in O(k) time,
and the listing of all the neighbors of a given vertex in O(d + k) time. Gavoille
and Hanusse (10) proposed a different tradeoff. They proposed an encoding in
2(m+i) lg k+4(m+i)+o(km) bits, where i is the number of isolated vertices, to
support the adjacency test in O(k) time. As any planar graph can be embedded
in at most 4 pages (18), these results can be applied directly to planar graphs.
In particular, a planar graph can be represented using 8n + 2m + o(n) bits to

1 We use [σ] to denote the set {1, 2, . . . , σ} of references to arbitrary labels, as indeed
the alphabet of labels.

2 We use log2 x to denote the logarithmic base 2 and lg x to denote �log2 x�. Occasion-
ally this matters.
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support adjacency tests and the computation of the degree of a vertex in O(1)
time, and the listing of all the neighbors of a given vertex in O(d) time (14).

A different line of research is based on the canonical ordering of planar graphs.
Chuang et al. (8) designed a succinct representation of planar graphs of n vertices
and m edges in 2m+(5+ε)n+o(m+n) bits, for any constant ε > 0, to support the
operations on planar graphs in asymptotically the same amount of time as the
approach described in the previous paragraph. Chiang et al. (7) further reduced
the space cost to 2m+3n+ o(m+n) bits. When a planar graph is triangulated,
Chuang et al. (8) showed how to represent it using 2m + 2n + o(m + n) bits.

Based on a partition algorithm, Castelli Aleardi et al. (5) proposed a suc-
cinct representation of planar triangulations with a boundary. Their data
structure uses 2.175 bits per triangle to support various operations efficiently.
Castelli Aleardi et al. (6) further extended this approach to design succinct rep-
resentations of 3-connected planar graphs and triangulations using 2 bits per
edge and 1.62 bits per triangle respectively, which asymptotically match the
respective entropy of these two types of graphs.

2.2 Multiple Parentheses

Chuang et al. (8) proposed succinct representation of multiple parentheses,
a string of O(1) types that may be unbalanced. Thus a multiple paren-
thesis sequence of p types of parentheses is a sequence over the alphabet
{′(′1,′ (′2, ...,′ (′p,′ )′1,′ )′2, ...,′ )′p}. We call ′(′i and ′)′i type-i opening parenthesis and
type-i closing parenthesis, respectively. The operations considered are:
– m_rank(S, i, α): the number of parentheses α in S[1..i];
– m_select(S, i, α): the position of the ith parenthesis α;
– m_firstα(S, i) (m_lastα(S, i)): the position of the first (last) parenthesis

α after (before) S[i];
– m_match(S, i): the position of the parenthesis matching S[i];
– m_enclosek(S, i1, i2): the position of the closest matching parenthesis pair

of type k which encloses S[i1] and S[i2].

Chuang et al. (8) showed how to construct a o(|S|)-bit auxiliary data structure,
for a string S of O(1) types of parentheses stored explicitly, to support the above
operations in constant time. We show how to improve this result in Corollary 1,
and propose an encoding for the case when the number of types of parentheses
is non-constant in Theorem 3.

2.3 Succinct Indexes for Binary Relations

Barbay et al. (2) showed how to achieve data abstraction in succinct data struc-
tures by designing succinct indexes. Given an abstract data type (ADT) to ac-
cess the given data, the goal is to design auxiliary data structures (i.e. succinct
indexes) that occupy asymptotically less space than the information-theoretic
lower bound on the space required to encode the given data, and support an
extended set of operations using the basic operators defined in the ADT.
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Fig. 1. A triangulated planar graph of 12 vertices with its canonical spanning tree T 0

(on the left). On the right, it shows the triangulation induced with a realizer, as well
as the local condition.

They considered sequences of n objects where each object can be associated
with a subset of labels from [σ], this association being defined by a binary relation
of t pairs from [n]×[σ]. The operations include: object_access(x, i), the ith

label associated with x in lexicographic order; label_rank(α, x), the number of
objects labeled α up to (and including) x; label_select(α, r), the position of
the rth object labeled α; and label_access(x, α), whether object x is associated
with label α. They defined the ADT through object_access and designed a
succinct index of t · o(lg σ) bits to support other operators efficiently.

2.4 Realizers and Planar Triangulations

A key notion in this paper is that of realizers of planar triangulations (see Fig-
ure 1 for an example).

Definition 1 (Schnyder (16)). A realizer of a planar triangulation T is a
partition of the set of the internal edges into three sets T0, T1 and T2 of directed
edges, such that for each internal vertex v the following conditions hold:
– v has exactly one outgoing edge in each of the three sets T0, T1 and T2;
– local condition: the edges incident to v in ccw order are: one outgoing edge

in T0, zero or more incoming edges in T2, one outgoing edge in T1, zero or
more incoming edges in T0, one outgoing edge in T2, and finally zero or more
incoming edges in T1.

A fundamental property of realizers that we use extensively in Section 3 is:

Lemma 1 (Schnyder (16)). Consider a planar triangulation T of n ver-
tices, with exterior face (v0, v1, vn−1). Then T always admits a realizer R =
(T0, T1, T2) and each set of edges in Ti is a spanning tree of all internal vertices.
More precisely, T0, T1 and T2 are spanning trees of T \{v1, vn−1}, T \{v0, vn−1}
and T \ {v0, v1}, respectively.
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3 Vertex Labeled Planar Triangulations

3.1 Three New Traversal Orders on a Planar Triangulation

A key notion in the development of our results is that of three new traversal
orders of planar triangulations based on realizers. Let T be a planar triangulation
of n vertices and m edges, with exterior face (v0, v1, vn−1). We denote its realizer
by (T0, T1, T2) following Lemma 1. By Lemma 1, T0, T1 and T2 are three spanning
trees of the internal nodes of T , rooted at v0, v1 and vn−1, respectively. We
add the edges (v0, v1) and (v0, vn−1) to T0, and call the resulting tree, T 0, the
canonical spanning tree of T (8). In this section, we denote each vertex by its
number in canonical ordering, which is the ccw preorder number in T 0.

Definition 2. The zeroth order π0 is defined on all the vertices of T and is
simply given by the preorder traversal of T0 starting at v0 in counter clockwise
order (ccw order).

The first order π1 is defined on the vertices of T \ v0 and corresponds to
a traversal of the edges of T1 as follows. Perform a preorder traversal of the
contour of T0 in a ccw manner. During this traversal, when visiting a vertex v,
we enumerate consecutively its incident edges (v, u1), . . . , (v, ui) in T1, where v
appears before ui in π0. The traversal of the edges of T1 naturally induces an
order on the nodes of T1: each node (different from v1) is uniquely associated
with its parent edge in T1.

The second order π2 is defined on the vertices of T \ {v0, v1} and can
be computed in a similar manner by performing a preorder traversal of T0 in
clockwise order (cw order). When visiting in cw order the contour of T0, the
edges in T2 incident to a node v are listed consecutively to induce an order on
the vertices of T2.

Note that the orders π1 and π2 do not correspond to previously studied traversal
orders on the trees T1 and T2, as they are dependent on T0 through π0 (see
Figure 2). The following lemma is crucial (we omit the proof):

Lemma 2. For any node x, its children in T1 (or T2), listed in ccw order (or cw
order), have consecutive numbers in π1 (or π2). In the case of T0, the children of
x are listed consecutively by a DFUDS (or Depth First Unary Degree Sequence (3))
traversal of T0.

3.2 Representing Planar Triangulations

We consider the following operations on unlabeled planar triangulations:
– adjacency(x, y), whether vertices x and y are adjacent;
– degree(x), the degree of vertex x;
– select_neighbor_ccw(x, y, r), the rth neighbor of vertex x starting from

vertex y in ccw order if x and y are adjacent, and ∞ otherwise;
– rank_neighbor_ccw(x, y, z), the number of neighbors of vertex x between

(and including) the vertices y and z in ccw order if y and z are both neighbors
of x, and ∞ otherwise.
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Fig. 2. A planar triangulation induced with one realizer. The three orders π0, π1 and
π2, as well as the order induced by a DFUDS traversal of T0 are also shown.
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Fig. 3. The multiple parenthesis string encoding of the triangulation in Figure 2

– Πj(i), given the number of a node vi in π0 it returns the number of vi in πj ;
– Π−1

j (i), given the number of a node vi in πj it returns its rank in π0.

To represent a planar triangulation T , we compute a realizer (T0, T1, T2) of T
following Lemma 1. We then encode the three trees T0, T1 and T2 using a multiple
parenthesis sequence S of length 2m consisting of three types of parenthesis. S
is obtained by performing a preorder traversal of the canonical spanning tree
T 0 = T0∪(v0, v1)∪(v0, vn−1) and using different types of parentheses to describe
the edges of T 0, T1 and T2. We use parentheses of the first type, namely ′(′ and
′)′, to encode the tree T 0, and other types of parentheses, ′[′, ′]′, ′{′, ′}′, to encode
the edges of T1 and T2. We use S0, S1 and S2 to denote the subsequences of S
that contain all the first, second, and the third types of parentheses, respectively.
We construct S as follows (see Figure 3 for an example).

Let v0, . . . , vn−1 be the ccw preorder of the vertices of T 0. Then the string
S0 is simply the balanced parenthesis encoding of the tree T 0 (14): S0 can be
obtained by performing a ccw preorder traversal of the contour of T 0, writing
down an opening parenthesis when an edge of T 0 is traversed for the first time,
and a closing parenthesis when it is visited for the second time. During the
traversal of T 0, we insert in S a pair of parentheses ′[′ and ′]′ for each edge of T1,
and a pair of parentheses ′{′ and ′}′ for each edge in T2. More precisely, when
visiting in ccw order the edges incident to a vertex vi, we insert:
– A ′[′ for each edge (vi, vj) in T1, where i < j, before the parenthesis ′)′

corresponding to vi;
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– A ′]′ for each edge (vi, vj) in T1, where i < j, after the parenthesis ′(′

corresponding to vj ;
– A ′}′ for each edge (vi, vj) in T2, where i > j, after the parenthesis ′(′

corresponding to vi;
– A ′{′ for each edge (vi, vj) in T2, where i > j, before the parenthesis ′)′

corresponding to vj .

Thus S is of length 2m, consisting of three types of parenthesis. It is easy to
observe that the subsequences S1 and S2 are balanced parenthesis sequences of
length 2(n − 1) and 2(n − 2), respectively.

We first observe some basic properties of the string S. Recall that a node
vi can be referred to by its preorder number in T0, and by the position of the
matching parenthesis pair (i and )i (let pi and qi denote their positions in S).
Let be pf (or ql) be the position of the opening (or closing) parenthesis in S
corresponding to the first (or last) child of node vi in T0.

Property 1. The following basic facts hold:
– Two nodes vi and vj are adjacent if and only if there is one common incident

edge (vi, vj) in exactly one of the trees T0, T1 or T2;
– pi < pf < ql < qi;
– The number of edges incident to vi and not belonging to the tree T0 is

(pf − pi − 1) + (qi − ql − 1);
– If vi is not a leaf in T0, between the occurrences of the ′(′ that correspond to

the vertices vi and vi+1 (note that the ′(′ corresponding to vi+1 is at position
pf ), there is exactly one ′]′. Similarly, there is exactly one ′{′ between the ′)′

that correspond to the vertices vi and the ′)′ at position ql.

Observe that S0 is the balanced parenthesis encoding of the tree T0 (14), so
that if we store S0 and construct the auxiliary data structures for S0 as in (14),
we can support a set of navigational operators on T0. S can be represented
using the approach of Chuang et al. (8) (see Section 2.2) in 2m lg 6 + o(m) =
2m�log2 6� + o(m) = 6m + o(m) bits. However, this encoding does not support
the computation of an arbitrary word in S0, so that we cannot navigate in the
tree T0 without storing S0 explicitly, which will cost essentially 2 additional bits
per node. To reduce this space redundancy, and to decrease the item 2m�log2 6�
to 2m log2 6 + o(m), we have the following lemma (we omit the proof):

Lemma 3. The string S can be stored in 2m log2 6 + o(m) bits to support the
operators listed in Section 2.2 in constant time, as well as the computation of
an arbitrary word, or Θ(n) bits of the balanced parenthesis sequence of T0.

The same approach can be directly applied to a sequence of O(1) types of paren-
theses:

Corollary 1. Consider a multiple parenthesis sequence M of 2n parenthesis of
p types, where p = O(1). M can be stored using 2n log(2p)+ o(n) bits to support
in O(1) time the operators listed in Section 2.2, as well as the computation
of an arbitrary word, or Θ(n) bits of the balanced parenthesis sequence of the
parentheses of a given type in M .
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The following theorem shows how to support the navigational operations on
triangulations. While the space used here is a little more than that of (7), the
explicit use of the three parenthesis sequences seems crucial to exploiting the
realizers to provide an efficient implementation supporting Πj(i) and Π−1

j (i).

Theorem 1. A planar triangulation T of n vertices and m edges can
be represented using 2m log2 6 + o(m) bits to support adjacency, degree,
select_neighbor_ccw, rank_neighbor_ccw as well as the Πj(i) and Π−1

j (i)
operators (for j ∈ {1, 2}) in O(1) time.

Proof. We construct the string S for T as shown in this section, and store it using
2m log2 6 + o(m) bits by Lemma 3. Recall that S0 is the balanced parenthesis
encoding of T0, and that we can compute an arbitrary word of S0 from S.
Thus we can construct additional auxiliary structures using o(n) = o(m) bits
(13; 14) to support the navigational operations on T0. As each vertex is denoted
by its number in canonical ordering, vertex x corresponds to the xth opening
parenthesis in S0. We now show that these structures are sufficient.

To compute adjacency(x, y), recall that x and y are adjacent iff one is the
parent of the other in one of the trees T0, T1 and T2. As S0 encodes the balanced
parenthesis sequence of T0, we can trivially check whether x (or y) is the parent
of y (or x) using existing algorithms on S0 (14). To test adjacency in T1, we
recall that x is the parent of y iff the (only) outgoing edge of y, denoted by a ′]′,
is an incoming edge of x, denoted by a ′[′. It then suffices to retrieve the first ′]′

after the yth ′(′ in S, given by m_first′[′(S, m_select(S, y,′ (′)), and compute
the index, i, of its matching closing parenthesis, ′[′, in S. We then check whether
the nearest succeeding closing parenthesis ′)′ of the ′[′ retrieved, located using
m_first′)′(S, i), matches the xth opening parenthesis ′(′ in S. If it does, then x
is the parent of y in T1. We use a similar approach to test the adjacency in T2.

To compute degree(x), let d0, d1 and d2 be the degrees of x in the trees T0,
T1 and T2 (we denote the degree of a node in a tree as the number of nodes
adjacent to it), respectively, so that the sum of these three values is the answer.
To compute d0, we use S0 and the algorithm to compute the degree of a node
in an ordinal tree using its balanced parenthesis representation by Chuang et
al. (8). To compute d1 + d2, if x has children in T0, we first compute the indices,
i1 and i2, of the xth and the x + 1th ′(′ in S, and the indices, j1 and j2, of the
(n − x)th and the (n − x + 1)th ′)′ in S in constant time. By the third item of
Property 1, we have the property d1 + d2 = (i2 − i1 − 1)+ (j2 − j1 − 1). The case
when x is a leaf in T0 can be handled similarly.

To support select_neighbor_ccw and rank_neighbor_ccw, we make use
of the local condition of realizers in Definition 1. The local condition tells us that,
given a vertex x, its neighbors, when listed in ccw order, form the following six
types of vertices: x’s parent in T0, x’s children in T2, x’s parent in T1, x’s children
in T0, x’s parent in T2, and x’s children in T1. The ith child of x in ccw order
in T0 can be computed in constant time, and the number of siblings before
a given child of x in ccw order can also be computed in constant time using
the algorithms of Lu and Yeh (13). The children of x in T1 corresponds to the
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parentheses ′[′ between the (n − x)th and the (n − x + 1)th ′)′ in S, and because
of the construction of S, if u and v are both children of x, and u occurs before
v in π1, then u is also before v in ccw order among x’s children. The children of
x in T2 have a similar property. Thus the operators supported on S allow us to
perform rank/select on x’s children in T1 and T2 in ccw order. As we can also
compute the number of each type of neighbors of x in constant time, this allows
us to support select_neighbor_ccw and rank_neighbor_ccw in O(1) time.

To compute Π1(i), we first locate the position, j, of the ith ′(′ in S, which is
m_select(S, i,′ (′). We then locate the position, k, of the first ′]′ after position
j, which is m_first′]′(S, j). After that, we locate the matching parenthesis of
S[j] using m_match(S, j) (p denotes the result). S[p] is the parenthesis ′[′ that
corresponds to the edge between ui and its parent in T1, and by the construction
algorithm of S, the rank of S[p] is the answer, which is m_rank(S, p,′ [′). The
computation of Π−1

1 is exactly the inverse of the above process. Π2 and Π−1
2

can be supported similarly. ��

3.3 Vertex Labeled Planar Triangulations

In addition to unlabeled operators, we present a set of operators that allow effi-
cient navigation in a labeled graph (these are natural extensions to navigational
operators on labeled trees):
– lab_degree(α, x), the number of the neighbors of vertex x in G labeled α;
– lab_select_ccw(α, x, y, r), the rth vertex labeled α among neighbors of

vertex x after vertex y in ccw order, if y is a neighbor of x, and ∞ otherwise;
– lab_rank_ccw(α, x, y, z), the number of the neighbors of vertex x labeled α

between y and z in ccw order if y and z are neighbors of x, and ∞ otherwise.

We define the interface of the ADT of labeled planar triangulations through
node_label(v, i), which returns the ith label associated to vertex v (i.e. the vth

vertex in canonical ordering).
Recall that Lemma 3 encodes the string S constructed in Section 3.2 to sup-

port the computation of an arbitrary word of S0, which is the balanced paren-
thesis sequence of the tree T0. In this section, we consider the DFUDS sequence
of T0. We have the following lemma (we omit the proof).

Lemma 4. The string S can be stored in (2 log2 6 + ε)m + o(m) bits, for any ε
such that 0 < ε < 1, to support in O(1) time the operators listed in Section 2.2,
as well as the computation of an arbitrary word, or Θ(n) bits of the balanced
parenthesis sequence, and of the DFUDS sequence of T0.

As Barbay et al. (2) did for multi-labeled trees, we now construct succinct in-
dexes for vertex labeled planar triangulations. The main idea is to combine our
succinct representation of planar triangulations with three instances of the suc-
cinct indexes for related binary relations:

Theorem 2. Consider a multi-labeled planar triangulation T of n vertices, as-
sociated with σ labels in t pairs (t ≥ n). Given the support of node_label in
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f(n, σ, t) time on the vertices of T , there is a succinct index using t · o(lg σ)
bits which supports lab_degree, lab_select_ccw and lab_rank_ccw in
O((lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time.

To design a succinct representation of multi-labeled graphs using the above the-
orem, we use the approach of Barbay et al. (1) to encode R0 using t lg σ + O(t)
bits to support object_access in constant time, which directly supports
node_label in O(1) time. Thus:

Corollary 2. A multi-labeled planar triangulation T of n vertices, associated
with σ labels in t pairs (t ≥ n) can be represented using t lg σ + t · o(lg σ) bits
to support node_label in O(1) time, and lab_degree, lab_select_ccw and
lab_rank_ccw in O((lg lg lg σ)2 lg lg σ) time.

4 Edge Labeled Graphs with Pagenumber k

4.1 Multiple Parentheses

We now consider the succinct representation of multiple parenthesis sequences of
p types of parentheses, where p is not a constant. We consider the following op-
erations on a multiple parenthesis sequence S[1..2n] in addition to those defined
in Section 2.2: m_rank′(S, i), the rank of the parenthesis at position i among
parentheses of the same type in S; m_findopen(S, i) (m_findclose(S, i)), the
matching closing (opening) parenthesis of the same type for the opening (clos-
ing) parenthesis at position i in S. Note that m_findopen and m_findclose
are identical to the operator m_match. We define them here for the simplicity
of the proofs of the theorems in this section. We have the following theorem (we
omit all the proofs in this section because of space constraint):

Theorem 3. A multiple parenthesis sequence of 2n parentheses of p types, in
which the parentheses of any given type are balanced, can be represented us-
ing 2n lg p + o(n lg p) bits to support m_access, m_rank′, m_findopen and
m_findclose in O(lg lg p) time, and m_select in O(1) time. Alternatively,
(2 + ε)n lg p + o(n lg p) bits are sufficient to support these operations in O(1)
time, for any constant ε such that 0 < ε < 1.

4.2 Graphs with Pagenumber k for Large k

In this section, on unlabeled graphs with page number k, we consider the
operators adjacency and degree defined in Section 3.2, and the operator
neighbors(x), returning the neighbors of x.

Previous results on succinctly representing k-page graphs (10; 14) support
adjacency in O(k) time. The lower-order term in the space cost of the result of
Gavoille and Hanusse (10) is o(km), which is dominant when k is large. Thus
previous results mainly deal with the case when k is small. We consider large k.
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Theorem 4. A k-page graph of n vertices and m edges can be represented using
n + 2m lg k + o(m lg k) bits to support adjacency in O(lg k lg lg k) time, degree
in O(1) time, and neighbors(x) in O(d(x) lg lg k) time where d(x) is the degree
of x. Alternatively, it can be represented in n + (2 + ε)m lg k + o(m lg k) bits to
support adjacency in O(lg k) time, degree in O(1) time, and neighbors(x) in
O(d(x)) time, for any constant ε such that 0 < ε < 1.

4.3 Edge Labeled Graphs with Pagenumber k

We consider the following operations on edge labeled graphs:
– lab_adjacency(α, x, y), whether there is an edge labeled α between vertices

x and y;
– lab_degree_edge(α, x), the number of edges incident to vertex x that are

labeled α;
– lab_edges(α, x), the edges incident to vertex x that are labeled α.

We first design succinct representation of edge labeled graphs with one page:

Lemma 5. An outerplanar graph of n vertices and m edges in which
the edges are associated with σ labels in t pairs (t ≥ n) can be rep-
resented using n + t(lg σ + o(lg σ)) bits to support lab_adjacency and
lab_degree_edge in O(lg lg σ(lg lg lg σ)2) time, and lab_edges(α, x) in
O(lab_degree_edge(α, x) lg lg σ lg lg lg σ) time.

To support an edge labeled graph with k pages, we can use Lemma 5 to rep-
resent each page and combine all the pages to support navigational operations.
Alternatively, we can use Theorem 4 and a similar approach to Lemma 5 to
achieve a different tradeoff to improve the time efficiency for large k.

Theorem 5. A k-page graph of n vertices and m edges in which the
edges are associated with σ labels in t pairs (t ≥ n) can be repre-
sented using kn + t(lg σ + o(lg σ) bits to support lab_adjacency and
lab_degree_edge in O(k lg lg σ(lg lg lg σ)2) time, and lab_edges(α, x)
in O(lab_degree_edge(α, x) lg lg σ lg lg lg σ + k) time. Alternatively, it
can be represented using n + (2m + ε) lg k + o(m lg k) + m(lg σ +
o(lg σ)) bits to support lab_adjacency in O(lg k lg lg σ(lg lg lg σ)2) time,
lab_degree_edge in O(lg lg σ(lg lg lg σ)2) time, and lab_edges(α, x) in
O(lab_degree_edge(α, x) lg lg σ lg lg lg σ) time, for any constant ε such that
0 < ε < 1.

Corollary 3. An edge-labeled planar graph of n vertices and m edges in
which the edges are associated with σ labels in t pairs (t ≥ n) can be rep-
resented using 4n + t(lg σ + o(lg σ)) bits to support lab_adjacency and
lab_degree_edge in O(lg lg σ(lg lg lg σ)2) time, and lab_edges(α, x) in
O(lab_degree_edge(α, x) lg lg σ lg lg lg σ) time.
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5 Concluding Remarks

In this paper, we present a framework of succinctly representing the properties
of graphs in the form of labels. We expect that our approach can be extended to
support other types of planar graphs, which is an open research topic. Another
open problem is to represent vertex labeled k-page graphs succinctly.

Our final comment is that because Theorem 2 provides a succinct index for
vertex labeled planar triangulations, we can in fact store the labels in compressed
form as Barbay et al. (2) have done to compress strings, binary relations and
multi-labeled trees, while still supporting the same operations. This also applies
to Theorem 5, where we apply succinct indexes for binary relations.
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Abstract. There is a large literature devoted to the problem of finding
an optimal (min-cost) prefix-free code with an unequal letter-cost encod-
ing alphabet of size. While there is no known polynomial time algorithm
for optimally solving it, there are many good heuristics that all provide
additive errors to optimal. The additive error in these algorithms usually
depends linearly upon the size of the largest encoding letter.

This paper was motivated by the problem of finding optimal codes
when the encoding alphabet is infinite. Because the largest letter cost
is infinite, the previous analyses could give infinite error bounds. We
provide a new algorithm that works with infinite encoding alphabets.
When restricted to the finite alphabet case, our algorithm often provides
better error bounds than the best previous ones known.

1 Introduction

Let Σ = {σ1, σ2. . . . , σt} be an encoding alphabet. Word w ∈ Σ∗ is a prefix of
word w′ ∈ Σ∗ if w′ = wu where u ∈ Σ∗ is a non-empty word. A Code over Σ is
a collection of words C = {w1, . . . , wn}. Code C is prefix-free if for all i �= j wi

is not a prefix of wj . See Figure 1.
Let cost(w) be the length or number of characters in w. Given a set of as-

sociated probabilities p1, p2, . . . , pn ≥ 0,
∑

i pi = 1, the cost of the code is
Cost(C) =

∑n
i=1 cost(wi)pi. The prefix coding problem, sometimes known as

the Huffman encoding problem is to find a prefix-free code over Σ of minimum
cost. This problem is very well studied and has a well-known O(tn log n)-time
greedy-algorithm due to Huffman [13] (O(tn)-time if the pi are sorted in non-
decreasing order).

One well studied generalization of the problem is to let the encoding letters
have different costs. That is, let σi ∈ Σ have associated cost ci. The cost of
codeword w = σi1σi2 . . . σil

will be cost(w) =
∑l

k=1 cik
, i.e., the sum of the costs

of its letters (rather than the length of the codeword) with the cost of the code
still being defined as Cost(C) =

∑n
i=1 cost(wi)pi with this new cost function.
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x aaa aab ab b

cost(x) 3 5 4 3

x aaa aab ab aaba

cost(x) 3 5 4 6

Fig. 1. Two codes for Σ = {a, b}. Code {aaa, aab, ab, b} is prefix-free. Code
{aaa, aab, ab, aaba} is not prefix-free because aab is a prefix of aaba. The second row
of the tables contain the costs of the codewords when cost(a) = 1 and cost(b) = 3.
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ab
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Fig. 2. Two min-cost prefix-free codes for probabilities 2/6, 2/6, 1/6, 1/6 and their tree
representations. The code on the left is optimal for c1 = c2 = 1 while the code on the
right, the prefix-free code from Figure 1, is optimal for c1 = 1, c2 = 3.

The existing, large, literature on the problem of finding a minimal-cost prefix-
free code when the ci are no longer equal, which will be surveyed below, assumes
that Σ is a finite alphabet, i.e., that t = |Σ| < ∞. The original motivation of
this paper was to address the problem when Σ is unbounded, which, as will
briefly be described in Section 3 models certain types of language restrictions on
prefix-free codes and the imposition of different cost metrics on search trees. The
tools developed, though, turn out to provide improved approximation bounds
for many of the finite cases as well. More specifically, it was known [16,18]1 that
1
cH(p1, . . . , pn) ≤ OPT where H(p1, . . . , pn) = −

∑n
i=1 pi log pi is the entropy

of the distribution, c is the unique positive root of the characteristic equation
1 =

∑t
i=1 2−cci and OPT is the minimum cost of any prefix-free code for those

pi. Note that in this paper, log x will always denote log2 x.
The known efficient algorithms create a code T that satisfies

C(T ) ≤ 1
c
H(p1, . . . , pn) + f(C) (1)

where C(T ) is the cost of code T , C = (c1, c2, · · · , ct) and f(C) is some function
of the letter costs C, with the actual value of f(C) depending upon the particular
algorithm. Since 1

cH(p1, . . . , pn) ≤ OPT , code T has an additive error at most
f(C) from OPT. The f(C) corresponding to the different algorithms shared an
almost linear dependence upon the value ct = max(C), the largest letter cost.
They therefore can not be used for infinite C. In this paper we present a new
1 Note that if t = 2 with c1 = c2 = 1 then c = 1 and this reduces to the standard

entropy lower bound for prefix-free coding. Although the general lower bound is
usually only explicitly derived for finite t, Krause [16] showed how to extend it to
infinite t in cases where a positive root of 1 =

�∞
i=1 2−cci exists.
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algorithmic variation (all algorithms for this problem start with the same split-
ting procedure so they are all, in some sense, variations of each other) with a
new analysis:

– (Theorems 2 and 3) For finite C we derive new additive error bounds f(C)
which in many cases, are much better than the old ones.

– (Lemma 8) If C is infinite but dj = |{m | j ≤ cm < j + 1}| is bounded, then
we can still give a bound of type (1).

– (Theorem 4) If C is infinite but di is unbounded then we can not provide a
bound of type (1) but, as long as

∑∞
i=1 cm2−ccm < ∞, we can show that

∀ε > 0, C(T ) ≤ (1 + ε)
1
c
H(p1, . . . , pn) + f(C, ε) (2)

where f(C, ε) is some constant based only on C and ε.

We now provide some more history and motivation. The unequal letter cost
coding problem was originally motivated by coding problems in which different
characters have different transmission times or storage costs see e.g., [15]. Blach-
man [4], Marcus [17], and (much later) Gilbert [9] give heuristic constructions
without analyses of the costs of the codes they produced. Karp gave the first algo-
rithm yielding an exact solution (assuming the letter costs are integers); Karp’s
algorithm transforms the problem into an integer program and does not run in
polynomial time [15]. Later exact algorithms based on dynamic programming
were given by Golin and Rote [10] for arbitrary t and a slightly more efficient
one by Bradford et. al. [5] for t = 2.. These algorithms run in nθ(ct) time where
ct is the cost of the largest letter. Despite the extensive literature, there is no
known polynomial-time algorithm for the generalized problem, nor is the prob-
lem known to be NP-hard. Golin, Kenyon and Young [12] provide a polynomial
time approximation scheme (PTAS). Their algorithm is mainly theoretical and
not useful in practice. Finally, in contrast to the non-alphabetic case, alphabetic
coding has a polynomial-time algorithm O(tn3) time algorithm [14].

Karp’s result was followed by many efficient algorithms [16,8,7,18,2]. As men-
tioned above, 1

cH(p1, . . . , pn) ≤ OPT ; almost all of these algorithms produce
codes of cost at most C(T ) ≤ 1

cH(p1, . . . , pn)+f(C) and therefore give solutions
within an additive error of optimal. An important observation is that the addi-
tive error in these papers f(C) somehow incorporate the cost of the largest letter
ct = max(C). Typical in this regard is Mehlhorn’s algorithm [18] which provides
a bound of

cC(T ) − H(p1, . . . , pn) ≤ (1 − p1 − pn) + cct (3)

Thus, none of the algorithms described can be used to address infinite alphabets
with unbounded letter costs.

In this paper we are only interested in the general coding problem and not
the alphabetic one2 and will therefore have freedom to dictate the original order
2 Alphabetic coding is the same problem with the additional constraint that the code-

words must be chosen in increasing alphabetic order (with respect to the words to
be encoded).
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in which the pi are given and the ordering of the cm. We will actually always
assume that p1 ≥ p2 ≥ p2 ≥ · · · and c1 ≤ c2 ≤ c3 ≤ · · · . These assumptions are
the starting point that will permit us to derive better bounds. Furthermore, for
simplicity, we will always assume that c1 = 1. If not, we can always force this
by uniformly scaling all of the ci.

For further references on Huffman coding with unequal letter costs, see Abra-
hams’ survey on source coding [1, Section 2.7], which contains a section on the
problem.

Due to lack of space in this extended abstract, most of the proofs have been
omitted. They are available in the full paper [11].

2 Notations and Definitions

There is a very standard correspondence between prefix-free codes over alphabet
Σ and |Σ|-ary trees in which the mth child of node v is labelled with character
σm ∈ Σ. A path from the root in a tree to a leaf will correspond to the word
constructed by reading the edge labels while walking the path. Because of this
correspondence we will speak about codes and trees interchangeably.

Definition 1. Let C be a prefix-free code over Σ and T its associated tree. NT

will denote the set of internal nodes of T.

Definition 2. Set c to be the unique positive solution to 1 =
∑t

i=1 2−cci. Note
that if t < ∞, then c must exists while if t = ∞, c might not exist. We only
define c for the cases in which it exists. c is sometimes called the root of the
characteristic equation of the letter costs.

Definition 3. Given letter costs ci and their associated characteristic root c,
let T be a code with those letter costs. If p1, p2, . . . , pn ≥ 0 is a probability
distribution then the redundancy of T relative to the pi is R(T ; p1, . . . , pn) =
C(T ) − 1

cH(p1, . . . , pn). We will also define the normalized redundancy to be
NR(T ; p1, . . . , pn) = cR = cC(T ) − H(p1, . . . , pn). If the pi and T are under-
stood, we will write R(T ) (NR(T )) or even R (NR).

3 Examples of Unequal-Cost Letters

It is not a-priori as clear why infinite alphabets would be interesting. We now
discuss some motivation.

In what follows we will need some basic language notation. A language L is
just a set of words over alphabet Σ. The concatenation of languages A and B is
AB = {ab | a ∈ A, b ∈ B}. The i-fold concatenation, Li, is defined by L0 = {λ}
(the language containing just the empty string), L1 = L and Li = LLi−1. The
Kleene star of L, is L∗ =

⋃∞
i=0 Li.

We start with cost vector C = {1, 2, 3, . . . , } i.e, ∀m > 0, cm = m. An early
use of this problem was [19]. The idea there was to construct a tree (not a code)
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in which the internal pointers to children were stored in a linked list. Taking the
mth pointer corresponds to using character σm. The time that it takes to find
the mth pointer is proportional to the location of the pointer in the list. Thus
(after normalizing time units) cm = m.

We now consider a generalization of the problem of 1-ended codes. The prob-
lem of finding min-cost prefix-free code with the additional restriction that all
codewords end with a 1 was studied in [3,6] with the motivation of designing
self-synchronizing codes. One can model this problem as follows. Let L be a lan-
guage. In our problem, L = {w ∈ {0, 1}∗ | the last letter in w is a 1}. We say
that a code C is in L if C ⊆ L. The problem is to find a minimum cost code
among all codes in L.

Now suppose further that L has the special property that L = Q∗ where Q is
itself a prefix-free language. Then every word in L can be uniquely decomposed
as the concatenation of words in Q. If the decomposition of w ∈ L is w =
q1q2 . . . qr for qi ∈ Q then cost(w) =

∑r
i=1 cost(qi). We can therefore model the

problem of finding a minimum cost code among all codes in L by first creating
an infinite alphabet ΣQ = {σq | q ∈ Q} with associated cost vector CQ (in
which the length of σq is cost(q)) and then solving the minimal cost coding
problem for ΣQ with those associated costs. For the example of 1-ended codes
we set Q = {1, 01, 001, 0001, . . .} and thus have C = {1, 2, 3, . . . , } i.e, an infinite
alphabet with cm = m for all m ≥ 1.

Now consider generalizing the problem as follows. Suppose we are given an un-
equal cost coding problem with finite alphabet Σ = {σ1, . . . , σt} and associated
cost vector C = (c1, . . . , ct). Now let Σ′ ⊂ Σ and define L = Σ∗Σ′ = {w ∈ Σ∗ |
the last letter in w is in Σ′}. Now note that L = D∗ where D = (Σ − Σ′)∗Σ′

is a prefix-free language. We can therefore model the problem of finding a
minimum cost code among all codes in L by solving an unequal cost cod-
ing problem with alphabet ΣD and CD. The important observation is that
dj = |{d ∈ ΣD | cost(d) = j}|, the number of letters in ΣD of length j, satisfies
a linear recurrence relation. Bounding redundancies for these types of C will be
discussed in Section 6, Case 4.

As an illustration, consider Σ = {1, 2, 3} with C = (1, 1, 2) and Σ′ = {1};
our problem is find minimal cost prefix-free codes in which all words end with
a 1. L = {1, 2, 3}∗{1} = D∗, where D = {2, 3}∗{1}. The number of characters
in ΣD with length j is d1 = 1, d2 = 1, d3 = 2, d4 = 3, d5 = 5, and, in general,
di+2 = di+1 + di, so di = Fi, the Fibonacci numbers.

4 The Algorithm

All of the provably efficient heuristics for the problem, e.g., [16,8,7,18,2], use
the same basic approach, which itself is a generalization of Shannon’s original
binary splitting algorithm [20]. The idea is to create t bins, where bin m has
weight 2−ccm (so the sum of all bin weights is 1). The algorithms then try to
partition the probabilities into the bins; bin m will contain a set of contiguous
probabilities plm , plm+1, . . . , prm whose sum will have total weight ”close” to
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2−ccm . The algorithms fix the first letter of all the codewords associated with
the pk in bin m to be σm. After fixing the first letter, the algorithms then recurse,
normalizing plm , plm+1, . . . , prm to sum to 1, taking them as input and starting
anew. The various algorithms differ in how they group the probabilities and how
they recurse.

Here we use a generalization of the version introduced in [18]. The algorithm
first preprocesses the input and calculates all Pk = p1+p2+ . . .+pk (P0 = 0)and
sk = p1 + p2 + . . . + pk−1 + pk

2 . Note that if we lay out the pi along the unit
interval in order, then sk can be seen as the midpoint of interval pi. It then
partitions the probabilities into ranges, and for each range it constructs left
and right boundaries Lm, Rm. pk will be assigned to bin m if it “falls” into the
“range” [Lm, Rm).

If the interval pk falls into the range, i.e., Lm ≤ Pk−1 < Pk < Rm then pk

should definitely be in bin m. But what if pk spans two (or more) ranges, e.g.,
Lm ≤ Pk−1 < Rm < Pk? To which bin should pk be assigned? The choice made
by [18] is that pk is assigned to bin m if sk = p1 + p2 + . . . + pk/2 falls into
[Lm, Rm), i.e., the midpoint of pk falls into the range.

Our procedure CODE(l, r, U) will build a prefix-free code for pl, . . . , pr in
which every code word starts with prefix U . To build the entire code we call
CODE(1, n, λ), where λ is the empty string. Figure 3 gives pseudocode.

CODE(l, r, U);
{Constructs codewords Ul, Ul+1, . . . , Ur for pl, pl+1, . . . , pr.
U is previously constructed common prefix of Ul, Ul+1, . . . , Ur.}

If l = r
then codeword Ul is set to be U.

else {Distribute pis into initial bins I∗
m}

L = Pl−1; R = Pr; w = R − L

∀m, let Lm = L + w
�m−1

i=1 2−cci and Rm = Lm + w2−ccm .
set I∗

m = {k | Lm ≤ sk < Rm} }
{Shift the bins to become final Im. Afterwards,
all bins > M are empty, all bins ≤ M non-empty and ∀m ≤ M , Im = {lm, . . . rm}}

{shift left so there are no empty “middle” bins.}
M = 0; k = l;
while k ≤ r do

M = M + 1;

lM = k; rM = max
�
{k}

�
{i > k | i ∈ I∗

M}
�
;

k = rM + 1;

{If all pi’s are in first bin, shift pr to 2nd bin }
if r1 = r then

M = 2; r1 = r − 1; l2 = r2 = r;
for m = 1 to M do

CODE(lm, rm, Uσm);

Fig. 3. Our algorithm. Note that the first step of creating the I∗
m was written to simplify

the development of the analysis. In practice, it is not actually constructed.
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Fig. 4. The splitting procedure creates the bins I∗
m on the left. The shifting procedure

then creates the Im on the right.

Assume that we currently have a prefix of U assigned to pl, . . . , pr. Let v be
node in the tree associated with U. Let w(v) =

∑r
k=l pk.

(i) If l = r then word U is assigned to pl. Correspondingly, v is a leaf in the
tree with weight w(v) = pl.

(ii) Otherwise let L = Pl−1 and R = Pr. Split R − L = w(v) into t ranges3

as follows. ∀1 ≤ m ≤ t, Lm = L + (R − L)
∑m−1

i=1 2−cci, Rm = L + (R −
L)

∑m
i=1 2−cci. Insert pk, l ≤ k ≤ r in bin m if sk ∈ [Lm, Rm). Bin m will thus

contain the pk in I∗m(v) = {k | Lm ≤ sk < Rm}.
We now shift the items pk leftward in the bins as follows. Walk through the

bins from left to right. If the current bin already contains some pk, continue to
the next bin. If the current bin is empty, take the first pk that appears in a bin
to the right of the current one, shift pk into the current bin and walk to the next
bin. Stop when all pk have been seen. Let Im(v) denote the items in the bins
after this shifting. See figure 4.

We then check if all of the items are in I1(v). If they are, we take pr and move
it into I2(v) (and set M(v) = 2).

Finally, after creating the all of the Im(v) we let lm = min{k ∈ Im(v)} and
rm = max{k ∈ Im(v)} and recurse, for each m < M(v) building
CODE(lm, rm, Uσm)

Indeed, we can show the algorithm can be implemented with a running time
bounded by n +

∑
v∈NT

log nM(v) = O(n log n) with no dependence upon t.
The high level idea is we do not actually construct the bins I∗m(v) first. We
can more efficiently construct the Im(v) using a binary search each time. The
implementation details are omitted here and can be found in the full paper [11].

For comparison, we point out the algorithm in [18] also starts by first finding the
I∗m(v). Since it assumed t < ∞, its shifting stage was much simpler, though. It just
shifted pl into the first bin and pr into the tth bin (if they were not already there).

We will now see that our modified shifting procedure not only permits a finite
algorithm for infinite encoding alphabets, but, in conjunction with the added
assumption that the pi are sorted in non-decreasing order, also often provides a
provably better approximation for finite encoding alphabets.

5 Analysis

In the analysis we define w∗
m(v) =

∑
k∈I∗

m(v) pk, wm(v) =
∑

k∈Im(v) pk. Note that

w(v) =
∑t

m=1 w∗
m(v) =

∑t
m=1 wm(v) =

∑r
k=l pk. We first need some Lemmas

from [18].
3 In the description, t is permitted to be finite or infinite.
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Lemma 1. [18] Let T be a code tree and NT be the set of all internal nodes of
T . Then

1. The cost C(T ) of the code tree T is C(T ) =
∑

v∈NT

∑t
m=1 cm · wm(v).

2. The entropy H(p1, p2, . . . , pn) is H(p1, p2, . . . , pn) =
∑

v∈NT
w(v) ·

H
(

w1(v)
w(v) , w2(v)

w(v) , . . .
)
.

Lemma 1 permits expressing the normalized redundancy of T as

NR(T )=c · C(T )−H(p1, p2, . . . , pn)=
∑

v∈NT

w(v)

[
t∑

m=1

wm(v)
w(v)

(

log 2ccm+ log
wm(v)
w(v)

)]

.

Set E(v, m) = wm(v)
w(v)

(
log 2ccm + log wm(v)

w(v)

)
.

Note that NR(T ) =
∑

v∈NT
w(v)

(∑t
m=1 E(v, m)

)
. For convenience we will

also define E∗(v, m) = w∗
m(v)

w(v)

(
log 2ccm + log w∗

m(v)
w(v)

)
and NR∗(T ) =

∑
v∈NT

w(v)
(∑t

m=1 E∗(v, m)
)

. The analysis proceeds by bounding the values of NR∗(T ) and
NR(T ) − NR∗(T ).

Lemma 2. [18]4 (note: In this Lemma, the pi can be arbitrarily ordered.)
Consider any call CODE(l, r, U) with l < r. Let node v correspond to the word
U . Let sets I∗1 , I∗2 , . . . be defined as in procedure CODE.

a) If I∗m = ∅, then w∗
m(v) = 0.

b) If I∗m = {e}. then w∗
m(v) = pe.

c) If |I∗m| ≥ 2. Let e = min I∗m and f = max I∗m. E∗(v, m) ≤ pe+pf

w(v) . Further-
more, if m = 1 then E∗(v, m) ≤ pf

w(v) , while if m = t, then E∗(v, m) ≤ pe

w(v) .

Corollary 3. If the pi are sorted in nonincreasing order then in case (c) of
Lemma 2, if m = 1, E∗(v, m) ≤ pf

w(v) , while if m > 1, then E∗(v, m) ≤ 2pe

w(v) .

The following lemma bounds the gap between NR and NR∗.

Lemma 4. NR − NR∗ ≤ c(c2 − c1)
∑

i∈A pi where A = {i |i is right shifted at
some step}.

Lemma 5. NR∗ ≤ 2(1 − p1) +
∑

v∈NT

∑
1≤m≤t

|I∗
m(v)|=1

w(v)E∗(v, m).

Combining this Lemma with Lemma 4 gives

Corollary 6. NR≤2(1−p1)+c(c2−c1)
∑

i∈A pi+
∑

v∈NT

∑
1≤m≤t

|I∗
m(v)|=1

w(v)E∗(v, m).

We will now see different bounds on the last summand in the above expression.
Section 6 compares the results we get to previous ones for different classes of C.
Before proceeding, we note that any pi can only appear as I∗m(v) = {pi} for at
4 Slightly rewritten for our notation.
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most one (m, v) pair. Furthermore, if pi does appear in such a way, then it can
not have been made a leaf by a previous right shift and thus pi �∈ A.

We start by noting that, when t ≤ ∞ our bound is never worse than 1 plus
the old bound of (1 − p1 − pn) + cct stated in (3).

Theorem 1. If t < ∞ then NR ≤ 2(1 − p1) + cct.

For a tighter analysis we will need a better bound for the case |I∗m| = 1. The
following simple lemma is a direct result from our splitting procedure.

Lemma 7. (a) Let v ∈ NT . Suppose i is such that i ∈ I∗m(v). then pi

w(v) ≤
2 ·

∑t
j=m

1
2c·cj . (b) Further suppose there is some m′ > m such that I∗m′ �= ∅.

Then pi

w(v) ≤ 2 ·
∑m′

j=m
1

2c·cj ≤ 4 ·
∑m′−1

j=m
1

2c·cj .

Definition 4. Set βm = 2ccm
∑t

i=m 2−cci and β = sup{βm | 1 ≤ m ≤ t}

We can now show our first improved bound.

Theorem 2. If β < ∞ then NR ≤ 2(1 − p1) + max
(
c(c2 − c1), 1 + log β

)
.

This immediately gives an improved bound for many finite cases because, if
t < ∞, then βm = 2ccm

∑t
i=m 2−cci ≤ t − m + 1 so β ≤ t. Thus

Theorem 3. If t is finite then NR ≤ 2(1 − p1) + max
(
c(c2 − c1), 1 + log t

)
.

Definition 5. For all j ≥ 1, set dj = |{i | j ≤ ci < j + 1}|.

This permits us to give another general bound that also works for many infinite
alphabets. By evaluating β and from Theorem 2, we can get the following simple
lemma.

Lemma 8. If dj = O(1), then NR = O(1). In particular, if ∀j, dj ≤ K then β ≤
2cK

1−2−c so, from Theorem 2, NR ≤ 2(1−p1)+max
(
c(c2−c1), 1+c+log

(
K

1−2−c

))
.

For general infinite alphabets we are not able to derive a constant redundancy
bound but we obtain the following theorem.

Theorem 4. If C is infinite and
∑∞

m=1 cm2−ccm < ∞, then, for every ε > 0

R ≤ ε
1
c
H(p1, . . . , pn) + f(C, ε) (4)

where f(C, ε) is some constant based only on C and ε. Note that this is equivalent
to stating that C(T ) ≤ (1 + ε)OPT + f(C, ε).

6 Examples

We now examine some of the bounds derived in the last section and show how
they compare to the old bound of (1− p1 − pn)+ cct stated in (3). In particular,
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we show that for large families of costs the old bounds go to infinity while the
new ones give uniformly constant bounds.
Case 1: Cα = (c1, c2, . . . , ct−1, α) with α ↑ ∞ :
We assume t ≥ 3 and all of the ci, i < t, are fixed. Let c(α) be the root of the
corresponding characteristic equation 1 = 2−cα +

∑t−1
i=1 c−cci. Note that c(α) ↓ c̄

where c̄ is the root of 1 =
∑t−1

i=1 c−cci . Let (NRα) Rα be the (normalized)
redundancy corresponding to Cα.

For any fixed α, the old bound (3) would give that both of NRα and Rα

tend to ∞ as α increases. Compare this to Theorem 3 which gives a uniform
bound of NRα ≤ 2(1 − p1) + max

(
c(ct−1)(c2 − c1), 1 + log t

)
and Rα ≤ NRα

c(α) ≤
2(1−p1)+max(c(ct−1)(c2−c1),1+log t)

c̄ .

Example 1. Let t = 3 with c1 = c2 = 1 and c3 = α ≥ 1. The old bounds (3)
gives an asymptotically infinite error as α → ∞. The bound from Theorem 3 is
NRα ≤ 2(1 − p1) + max

(
c(α)(c2 − c1), 1 + log t

)
≤ 3 + log 3 independent of α.

Since c(α) ≥ c̄ = 1 we also get Rα = NRα

c(α) ≤ 3 + log 3.

Case 2: A finite alphabet that approaches an infinite one.
Let C be an infinite sequence of letter costs such that there exists a K > 0
satisfying for all j, dj = |{i | j ≤ ci < j}| ≤ K. Let c be the root of the char-
acteristic equation 1 =

∑∞
i=1 2−cci. Let Σ(t) = {σ1, . . . , σt} and its associated

letter costs be C(t) = {c1, . . . , ct}. Let c(t) be the root of the corresponding char-
acteristic equation 1 =

∑t
i=1 2−cci and (NRt) Rt be the associated (normalized)

redundancy. Note that c(t) ↑ c as t increases.
For any fixed t, the old bound (3) would be NRt ≤ (1−p1−pn)+c(t)ct which

goes to ∞ as t increases. Lemma 8 tells us that β(t) = max1≤m≤t 2c(t)cm
∑t

i=1

2c(t)ci ≤ 2cK

1−2−c(t)
≤ 2cK

1−2−c(2)
. so, from Theorem 2 and the fact that ∀t, c(2) ≤

c(t) < c, we get NRt ≤ 2(1 − p1) + max
(
c(c2 − c1), 1 + c + log K

1−2−c(2)

)
.

Example 2. Let C = (1, 2, 3, . . .). i.e., cm = m. The old bounds (3) gives an
asymptotically infinite error as α → ∞. For this case c = 1 and K = 1. c(2)

is the root of the characteristic equation 1 = 2−2 + 2−2c. Solving gives 2−c(2)
=√

5−1
2 and c(2) = 1 − log(

√
5 − 1) ≈ 0.694 . . . . Plugging into our equations gives

NRt ≤ 4.388 and Rt ≤ 6.232.

Case 3: An infinite case when dj = O(1). This permits applying Lemma 8 di-
rectly.

Example 3. Let C contain d copies each of i = 1, 2, 3, . . ., i.e., cm = 1+�m−1
d �.

Note that K = d. If d = 1, i.e., cm = m, then c = K = 1 and R = NR ≤
2(1 − p1) + 2. If d > 1 then A(x) =

∑∞
m=1 cmzm = dz

1−z . The solution α to
A(α) = 1 is α = 1

d+1 , so c = − logα = log(d + 1). The lemma gives NR ≤
2(1 − p1) +

(
1 + log

(
K

1−2−c

))
≤ 3 + log(d + 1), R ≤ 1 + 3

log(d+1) .
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Case 4: dj are integral and satisfy a linear recurrence relation.
In this case the generating function A(z) =

∑∞
j=1 djz

j =
∑∞

m=1 zcm can be writ-

ten as A(z) = P (z)
Q(z) where P (z) and Q(z) are relatively prime polynomials. Let γ

be a smallest modulus root of Q(z). If γ is the unique root of that modulus (which
happens in most interesting cases) then it is known that dj = Θ(jd−1γ−j) (which
will also imply that γ is positive real) where d is the multiplicity of the root.
There must then exist some α < γ such that A(α) = 1. By definition c = − logα.
Furthermore, since α < γ we must have that

∑∞
j=1 djjα

j =
∑∞

m=1 cmαcm also
converges, so Theorem 4 applies.

Note that h(x) =
∑∞

j=x djjα
j = O

(
∑∞

j=x jd−1j
(

α
γ

)j
)

= O
(
xd

(
α
γ

)x)
,

implying h−1(ε) = logγ/α 1/ε + O(log log 1/ε) where we define h−1(ε) = max{x |
h(x) ≤ ε, h(x − 1) > ε}. Working through the proof of Theorem 4 we find that
when the cm are all integral, for all m′, g(m′)=

∑
m≥m′ cmαcm ≤

∑
j≥cm′ jdjαj =

h(cm′). Recall that mε = max{m | cm ≤ Nε}. Then g(mε) ≤ h(Nε). Since
g(mε) ≤ ε/6, Nε ≤ h−1(ε/6) = logγ/α 1/ε+O(log log 1/ε) and thus our algorithm
creates a code T satisfying

C(T ) − OPT ≤ εOPT + logγ/α 1/ε + O(log log 1/ε). (5)

Example 4. Consider the case where dj = Fj , the jth Fibonacci number, F1 =
1, F2 = 1, F3 = 2,.... (5) gives a bound on the cost of the redundancy of our
code with γ

α = 2
(1+

√
5)(

√
2−1)

≈ 1.492 . . . .

Case 5: An example for which there is no known bound.
An interesting open question is how to bound the redundancy for the case of
”balanced” words L. i.e., all words which contain exactly as many 0’s as 1’s. Note
that L = D∗ where D is the set of all non-empty balanced words w such that
no prefix of w is balanced. Let dj = |{w ∈ D | cost(w) = j}|. ¿From standard
generating function, we can show dj = 0 for j = 0 and odd j and for even
j > 0, dj = 2Cj/2−1 where Ci = 1

i+1

(
2i
i

)
is the ith Catalan number. Plugging dj

into the characteristic function and using some generating function technique,
we show that c = 1. But on the other hand,

∑∞
m=1 cmxcm =

∑∞
j=1 jdjx

j =

2
∑∞

j=1

(
2(j−1)

j−1

)
(x2)j = x2√

1−4x2 does not converge when x = 1/2. Thus, we can
not use Theorem 4 to bound the redundancy. Some observation shows that this
C does not satisfy any of our other theorems either. It remains an open question
as to how to construct a code with “small” redundancy for this problem.

7 Open Questions

There are still many open questions left. The first arises by noting that, for the
finite case, the previous algorithms were implicitly constructing alphabetic codes.
Our proof explicitly uses the fact that we are only constructing general codes.
It would be interesting to examine whether it is possible to get better bounds
for alphabetic codes (or to show that this is not possible).
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Another open question is whether it is possible to improve Theorem 4 for
some general C to get a purely additive error rather than a multiplicative one
combined with an additive one?

Finally, it would be interesting to devise an analysis that would work for cases
where the root exists but

∑∞
m=1 cm2−ccm = ∞ ,such as case 5.
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Abstract. Let C denote a set of n mobile clients, each of which follows
a continuous trajectory on a weighted tree T . We establish tight bounds
on the maximum relative velocity of the 1-centre and 2-centre of C.
When each client in C moves with linear motion along a path on T
we derive a tight bound of Θ(n) on the complexity of the motion of
the 1-centre and corresponding bounds of O(n2α(n)) and Ω(n2) for a 2-
centre, where α(n) denotes the inverse Ackermann function. We describe
efficient algorithms for calculating the trajectories of the 1-centre and 2-
centre of C: the 1-centre can be found in optimal time O(n log n) when
the distance function between mobile clients is known or O(n2) when
the function must be calculated, and a 2-centre can be found in time
O(n2 log n). These algorithms lend themselves to implementation within
the framework of kinetic data structures, resulting in structures that are
compact, efficient, responsive, and local.

1 Introduction

Motivation. Finding a set of k points that are central to a collection of data
points drawn from a metric space is a fundamental problem of geometry and
data analysis. Within the context of facility location, this problem is commonly
known as the k-centre problem; given a set P of points (clients) in a metric space
S, a k-centre of P is a set of k points (facilities) such that the maximum distance
from any client to its nearest facility is minimized. Two common choices for S
are a Minkowski distance (typically �1, �2, or �∞) in Euclidean space and graph
distance on a weighted graph.

Recently, the k-centre problem has been explored under mobility. In one di-
mension, the mobile 1-centre problem reduces to maintaining the extrema of a
set of mobile clients [1,2,4,16]. Natural generalizations of this problem to higher
dimensions in R

d lead to the mobile Euclidean 1-centre [2,6,10], the mobile recti-
linear 1-centre [2,6], and the kinetic convex hull [4,5,16]. Although some mobile
k-centre problems can be modelled by motion in Euclidean space, several ap-
plications are better represented by motion on a graph. That is, the underlying
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graph remains fixed while clients and facilities move along its edges and ver-
tices. Examples include vehicles moving along a road network or mobile robots
following defined routes in an industrial setting [7].

Although the static k-centre problem on graphs is well understood, the corre-
sponding mobile problem remained unexplored. Any path in a weighted graph is
isometric to a line segment; we generalize the motion of a single client on the line
to motion on a path in a graph. That is, given a weighted graph G, each mobile
client follows a continuous trajectory along the edges and vertices of G. Continu-
ity and bounded velocity are natural constraints on any physical moving object.
It is straightforward to show that for any graph G that contains a cycle, there
exist sets of mobile clients on G whose 1-centre is discontinuous. As such, we pri-
marily focus our attention on metric spaces for which the k-centre is continuous.
In particular, graph distance on a tree maintains many properties of Euclidean
distance in R

d, such as a unique shortest path between two points and a unique,
continuous 1-centre, while introducing interesting algorithmic challenges to the
problem of maintaining a mobile k-centre.

Main Results. The 1-centre on a tree is unique [18]. We show its motion is
continuous and has relative velocity at most one. Since a 2-centre of a tree is not
unique, we identify a particular 2-centre which we call the equidistant 2-centre
and show that its motion is continuous and has relative velocity at most two.
The 3-centre is discontinuous even on a line segment; furthermore, no bounded-
velocity approximation is possible for the mobile 3-centre [9]. We consider values
of k for which the mobile k-centre is continuous: k ≤ 2.

When each client in C moves with linear motion along a path on T , the mo-
tions of the corresponding 1-centre and equidistant 2-centre are piecewise linear.
We derive a tight bound of Θ(n) on the complexity of the motion of the 1-centre,
an upper bound of O(n2α(n)) on the complexity of the motion of the equidistant
2-centre, and a worst-case lower bound of Ω(n2) on the complexity of the motion
of any 2-centre, where α(n) denotes the inverse Ackermann function. We describe
efficient algorithms for calculating the trajectories of the 1-centre and 2-centre
of C. When the all-pairs distance function between mobile clients is known at
all times, the 1-centre can be found in optimal time O(n log n). The distance
function can be calculated in time O(n2). The equidistant 2-centre can be found
in time O(n2 log n). Moreover, our algorithms have natural implementations as
kinetic data structures (KDS), resulting in structures that are compact, efficient,
responsive, and local. Although previous applications of KDSs have been to mo-
bile problems in Euclidean space, as we demonstrate, the KDS framework lends
itself naturally to mobile problems on graphs.

2 Definitions

Since a point refers to a fixed position in a metric space, we refer to a client in
the context of motion. Let C = {c1, . . . , cn} denote a set of mobile clients, where
I = [0, tf ] denotes a time interval, UT denotes the continuum of points defined
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by a weighted tree T = (V, E), and each ci is a continuous function ci : I → UT .
For every t ∈ I, let C(t) = {c(t) | c ∈ C} denote the set of points in UT that
corresponds to the positions of clients in C at time t. The position of a mobile
facility f is a function of the positions of a set of clients, f : P(UT ) → UT ,
where P(A) denotes the power set of set A.

A common assumption in problems involving motion in Euclidean space is
that the position of a mobile client is a linear function over time (e.g., [1,2,4]).
We make a similar assumption and consider clients with linear motion on trees
to establish combinatorial bounds. A mobile client or facility a has linear motion
if for all t ∈ I, d(a(0), a(t)) = t · va, where va is a non-negative constant and
d(b, c) denotes the graph distance between points b and c in UT . We refer to va

as the velocity of a. The union of the trajectories of a set of n mobile clients
that move with linear motion is a subgraph of UT that has at most 2n vertices
of degree one. Therefore, we assume that T has at most 2n leaves and at most
4n − 1 vertices, and that c(0) and c(tf ) are vertices of T , for each c ∈ C.

We assume an upper bound of one on the velocity of clients since we are inter-
ested in relative velocity. Unlike mobile clients, a mobile facility is not required
to travel along a path in T nor is its velocity required to remain constant. A
mobile facility f has maximum velocity vf if

∀t1, t2 ∈ I, d(f(C(t1)), f(C(t2))) ≤ vf |t1 − t2|, (1)

for all sets of mobile clients C defined on any tree T and any time interval I.
Continuity is a necessary condition for any fixed upper bound on velocity.

We say client c ∈ C is extreme at time t if c(t) does not lie in the interior
of any path through T between two clients in C(t). The convex hull of C(t)
corresponds to the union of all paths between two clients in C(t).

Definition 1. Given a weighted tree T and a set of points C in UT , a k-centre
of C is a set of k points in UT , denoted Ξ1(C), . . . , Ξk(C), that minimizes

max
c∈C

min
1≤i≤k

d(c, Ξi(C)). (2)

When k = 1, we omit the subscript and write Ξ(C). The definition of a mobile
k-centre of a set of mobile clients C follows directly from this static definition.

We refer to (2) as the k-radius of C or simply as its radius when k = 1. The
diameter of C is twice the radius of C [19] (for graphs, the diameter is at most
twice the radius). A diametric path of C is a path between two clients c1 and
c2 in C such that the distance between them is the diameter of C. We refer to
{c1, c2} as a diametric pair and to c1 and c2 as diametric clients. The 1-centre
of C is the unique midpoint of all diametric paths of C [18].

The 1-centre problem on graphs is also known as the absolute centre [18,19],
single centre [19], and minimax location problem [8,18]. A common variation
of the k-centre problem on graphs is known as the vertex k-centre or discrete
k-centre problem, for which the choice of locations for the facility is restricted
to vertices (clients) of the graph G. Maintaining continuity in the motion of a
mobile facility is impossible in the vertex centre model, as a facility could be
required to jump discontinuously from vertex to vertex (client to client).
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3 Related Work

Handler [18] gives linear-time algorithms for identifying the 1-centre and 2-centre
of a tree. Frederickson gives a linear-time algorithm for finding a k-centre of a
tree when k is fixed [13]. Kariv and Hakimi [23] provide an O(mn+n2 log n)-time
algorithm for the 1-centre problem on graphs, where n = |V | and m = |E|. See
[12,17,20,23,24,25] for reviews of k-centre problems on trees and on graphs.

Kinetic data structures (KDS), introduced by Basch et al. [4], allow the main-
tenance of an attribute (called the configuration function) of a set of mobile
objects moving continuously in some metric space. To do so, a KDS maintains a
dynamic set of certificates that guarantees the correctness of the configuration
function at any time during the motion. Each certificate c is associated with
a small set of mobile objects for which some property is verified. The failure
time of certificate c (called an event) is calculated as a function of the motion
of these objects. The failure time is added to a priority queue. Restoring the
configuration function following a certificate failure requires updating the set of
certificates (and the corresponding events in the queue).

Guibas [16] describes four properties used to evaluate the quality of a KDS.
A KDS is compact if the maximum number of certificates active at any given
time is linear in the degrees of freedom of the set of moving objects. A KDS
is responsive if the maximum number of certificates associated with any one
mobile object is polylogarithmic in the problem size. A KDS is local if at most a
small number of certificates require updating as a result of a certificate failure.
A KDS is efficient if the total number of certificate failures is proportional to the
number of external events (changes to the configuration function). See [3,4,5,16]
for a more complete description of the KDS framework.

In relation to our work on the mobile k-centre, KDSs have been constructed
to maintain various attributes of a set of mobile clients; these include extremal
elements in R [1,2,4,16], extent (e.g., diameter and width) in R

2 [1,2], approxima-
tions of the mobile 1-centre in R

2 [2,6,9,10], approximations of mobile 2-centres
in R

2 [11], the kinetic convex hull [4,5,16], an approximation of mobile k-centres
in R

d [15], and approximations of discrete rectilinear k-centres [14,22].

4 The Mobile 1-Centre on Trees

4.1 Properties of the Mobile 1-Centre

The mobile 1-centre is continuous in R
d [9]. Although the mobile 1-centre has

at most unit relative velocity in R, its relative velocity is unbounded in R
2 [6].

It can be shown that the mobile 1-centre is discontinuous on graphs. Restricted
to trees, however, we show that the mobile 1-centre remains continuous and has
at most unit relative velocity.

Theorem 1. The mobile 1-centre has relative velocity at most one on trees.
This bound is tight.
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Proof. Choose any t1, t2 ∈ I and let δ = |t1 − t2|. If Ξ(C(t1)) = Ξ(C(t2)), then
(1) holds trivially. Therefore, assume Ξ(C(t1)) �= Ξ(C(t2)). Let P denote the
path in T between Ξ(C(t1)) and Ξ(C(t2)). Let r1 and r2 denote the respective
radii of C(t1) and C(t2). Let L1 denote the subtree of T that includes all branches
of Ξ(C(t1)) except P . Note, L1 includes Ξ(C(t1)). Similarly, let L2 denote the
subtree of T that includes all branches of Ξ(C(t2)) except P .

L 1
a(t  )1

L 2

b(t  )2

(C(t  ))1Ξ

(C(t  ))2Ξ
P

Fig. 1. Illustration in support of Theorem 1

Let a be a client in C such that a(t1) ∈ L1 and d(a(t1), Ξ(C(t1))) = r1.
Similarly, let b be a client in C such that b(t2) ∈ L2 and d(b(t2), Ξ(C(t2))) = r2.
Such clients must exist since Ξ(C(t)) is the midpoint of a diametric path of C(t)
for all t. See Fig. 1. Therefore,

d(a(t1), b(t2)) ≤ d(a(t1), Ξ(C(t1))) + d(Ξ(C(t1)), b(t1)) + d(b(t1), b(t2))
≤ 2r1 + δ, (3a)

and d(a(t1), b(t2)) ≤ d(a(t1), a(t2)) + d(a(t2), Ξ(C(t2))) + d(Ξ(C(t2)), b(t2))
≤ 2r2 + δ. (3b)

Consequently,

d(a(t1), b(t2)) = d(a(t1), Ξ(C(t1))) + d(Ξ(C(t1)), Ξ(C(t2))) + d(Ξ(C(t2)), b(t2)),
⇒ d(Ξ(C(t1)), Ξ(C(t2))) = d(a(t1), b(t2)) − d(a(t1), Ξ(C(t1))) − d(Ξ(C(t2)), b(t2))

= d(a(t1), b(t2)) − r1 − r2

≤ δ,

by (3a) and (3b). The bound is realized when the two diametric clients move in
a parallel direction. ��

It follows that the mobile 1-centre is continuous on trees.

4.2 Complexity of the Motion of the 1-Centre

When n clients move along the real line, each with some constant velocity, the
identity of the client that realizes either extremum changes Θ(n) times in the
worst case [4]. In particular, any given client realizes each extremum at most once
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in the sequence of changes. When n clients move in R
2 along linear trajectories

with constant velocity, the diametric pair of clients changes Ω(n2) times in the
worst case [1]. As we show in Theorem 2, for a set C of n clients with linear
motion on a tree T , the identity of the diametric pair of C changes Θ(n) times
in the worst case. We begin with a definition.

Definition 2. Given a client c moving with velocity vc, the outward velocity of
c at time t, denoted �v(c(t)), is given by

�v(c(t)) =

⎧
⎨

⎩

−∞ if c(t) is not extreme in C(t),
−vc if c(t) moves towards the interior of the convex hull of C(t),

vc otherwise.

Lemmas 1 through 3 assume linear motion of a set of clients C on a tree T .
In addition, we assume that the diameter of C is non-zero at all times; a zero
diameter implies that all clients in C coincide in a point and any two clients
define a diametric pair. Furthermore, the interior of the convex hull is empty
and, consequently, outward velocity is ill defined. We consider a zero diameter
in the proof of Theorem 2.

Lemma 1. The outward velocity of client c ∈ C is non-decreasing while c re-
mains in a diametric pair of C.

Proof. Two cases are possible while c remains in a diametric pair of C.
Case 1. Assume c moves away from the interior of the convex hull of C initially.

Client c has linear motion along a path P ⊆ T . The subpath of P that remains
to be travelled by c lies outside the convex hull of C. Therefore the outward
velocity of c remains constant.

Case 2. Assume c moves towards the interior of the convex hull of C initially.
The outward velocity of c remains constant until c branches and turns away
from the interior of the convex hull. The remainder of the motion corresponds
to Case 1. ��
As we show in Lemma 2, any change in the outward velocity at either endpoint
of a diametric path must be increasing.

Lemma 2. Choose any t1 ∈ I and let {a1, b1} be a diametric pair of C(t1). If
{a2, b2} is a diametric pair of C(t2) and a1 is not in any diametric pair of C(t2)
for some ε > 0 and all t2 ∈ (t1, t1+ε), then �v(a1(t1)) < min{�v(a2(t2)), �v(b2(t2))}.
Proof. Since a1 is in a diametric pair of C(t1),

∀c ∈ C, d(a1(t1), b1(t1)) ≥ d(a1(t1), c(t1)). (4)

Since {a2, b2} is a diametric pair of C(t2) but a1 is not in any diametric pair of
C(t2),

∀c ∈ C, d(a1(t2), c(t2)) < d(a2(t2), b2(t2)). (5)

Since client motion is continuous and by (4) and (5),

d(a1(t1), b1(t1)) = d(a2(t1), b2(t1)). (6)

The result follows from (5) and (6). ��
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Lemma 3. A client c ∈ C becomes an endpoint of a diametric path of C at
most four times.

Proof. By Definition 2, the outward velocity of a client c in a diametric pair
(c is extreme) is one of two values: ±vc. By Lemma 2, a change in a diametric
pair corresponds to an increase in outward velocity. Therefore, a client c realizes
either endpoint of a diametric path at most twice, for a total of at most four
times. ��
Theorem 2. When each client in C moves with linear motion along a path on
T , the motion of the 1-centre of C is piecewise linear and is composed of Θ(n)
linear segments in the worst case, where n = |C|.
Proof. Case 1. Assume the diameter of C is non-zero throughout the motion.
The upper bound O(n) follows from Lemma 1 and 3 and the fact that the 1-
centre of C is the midpoint of a diametric pair.

Case 2. Assume the diameter of C is zero at some time during the motion. A
zero diameter implies that all clients in C coincide at a point; that is, all clients
cross simultaneously. This degeneracy occurs at most once since any two clients
cross at most once. Since clients in C have linear motion, the motion of the
1-centre of C has linear motion while all clients coincide. Before and after the
degeneracy, the motion of clients in C corresponds to Case 1. Therefore, the sum
of the number of linear segments of the motion of the 1-centre remains O(n).

The worst-case lower bound of Ω(n) follows from the corresponding result in
one dimension [4]. ��

4.3 Kinetic Maintenance of the Mobile 1-Centre

Given a set C of n mobile clients, each moving with linear motion in R, the 1-
centre of C is the midpoint of the extrema of C. The position of each extremum is
given by the upper (respectively, lower) envelope of the set of n linear functions
that correspond to the positions of clients in C relative to a fixed point in
R. Hershberger [21] gives an O(n log n) time algorithm which finds the upper
envelope by dividing the set of linear functions in two, recursively finding the
upper envelope of each set, and recombining the two envelopes to give the global
upper envelope.

Using a related idea, we describe an algorithm for identifying a sequence
of diametric pairs of a set of mobile clients, each moving with linear motion
on a tree. We then describe how to implement the algorithm as a KDS. The
algorithm makes use of the distance function d, where d(a(t), b(t)) returns the
graph distance on tree T between mobile clients a and b at time t. We begin
with the following lemma upon which our algorithm relies.

Lemma 4. Let C1 and C2 be sets of points on UT for some tree T . Let {ai, bi}
denote a diametric pair of Ci, for i = 1, 2. Set {e, f} is a diametric pair of
C1 ∪ C2, where

{e, f} = argmax
{e′,f ′}⊆{a1,b1,a2,b2}

d(e′, f ′). (7)

The proof of Lemma 4 was omitted due to space limitations.
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Algorithm Description. The set of mobile clients C is partitioned arbitrar-
ily into sets C1 and C2 of size n/2� and �n/2�. For each i = 1, 2, the algo-
rithm is called recursively to find a sequence of diametric pairs of Ci, denoted
{ai,1, bi,1}, . . . , {ai,mi , bi,mi}, and a corresponding partition of the time interval
I, denoted Ii,1, . . . , Ii,mi , such that for each j, ai,j(t) and bi,j(t) are a diametric
pair of Ci(t) for all t ∈ Ii,j . The recursion terminates when n ≤ 2, in which
case each client in C is in a diametric pair. We now describe how to compute a
corresponding sequence for C.

Consider a third partition of the time interval I, denoted I1, . . . , Im, such that
for each i, Ii = I1,j ∩I2,k, for some j, k. For all t ∈ Ii, diametric pairs of C1(t) and
C2(t) consist of four clients in C, say a1, b1, a2, and b2. Let e and f be defined as
in (7). By Lemma 4, e and f are a diametric pair of C(t). The sequence of pairs
of clients in {a1, b1, a2, b2} that realize e and f corresponds to the sequence of
pairs whose relative distance is maximized. That is, there are six combinations
of pairs in {a1, b1, a2, b2}, each of which corresponds to an inter-client distance
function. The upper envelope of these six functions determines the sequence of
identities of e and f during Ii. Thus, solutions to the recursive subproblems are
combined to find the sequence of diametric pairs of C.

Time Complexity. By Theorem 2, the complexity of the motion of the 1-
centres of C1 and C2 is O(n). That is, the time interval I can be partitioned into
O(n) subintervals such that the motion of each 1-centre is linear within every
subinterval (i.e., m ∈ O(n)). Within each subinterval, we find the maximum of
six piecewise-linear functions, each composed of at most four linear segments.
Therefore, the maximum function is also piecewise linear, consists of at most
24 linear segments, and can be found in constant time. Thus, the solutions to
the two subproblems are combined in O(n) time. The recursion tree has depth
log2 n�, resulting in a total runtime of O(n log n). The worst-case lower bound
of Ω(n log n) follows from the corresponding one-dimensional problem [21].

Distance Function. Depending on the formulation of the problem, the input
may not include the distance function. In this case, the input is given simply as
the set of clients, each of which specifies an origin and destination vertex pair in
T . In particular, the path of a client’s trajectory is not given.

We assume only a basic weighted edge adjacency list or matrix for the tree T .
Build a table A[i, j] that stores the following information for each vertex ui and
each client cj : d(ui, cj(0)), the velocity of cj(0) relative to ui, and the instant in
I (if any) at which the velocity of cj relative to ui becomes negated (that is, cj

takes a branch such that its motion changes from towards ui to away from ui).
This information encodes the two-segment piecewise-linear function d(ui, cj(t)).
Table A[i, j] has size O(n2) and can be calculated in time O(n2) by considering
each client cj and tracing its trajectory through T .

For any clients c1 and c2 inC, the client-to-client distance functiond(c1(t), c2(t))
can be calculated in constant time from table A. While c1 and c2 move towards
each other, d(c1(t), c2(t)) = |d(c1(0), c1(t))−d(c1(0), c2(t))|. After one client, say
c1, turns away from the other, d(c1(t), c2(t)) = |d(c1(tf ), c1(t))−d(c1(tf ), c2(t))|.
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KDS Implementation. We describe a KDS that maintains a diametric pair
over time along with a set of certificates that validates the identity of the pair
at any time during the motion.

Theorem 3. Given a tree T and a set of mobile clients C, each moving with
linear motion on a path of T , there exists a KDS to maintain the mobile 1-centre
of C that is local, responsive, efficient, and compact.

Proof. The set of certificates corresponds to the recursive hierarchy described
in our algorithm. At any time t, for each set C in the hierarchy, the certificate
for C(t) consists of five inequalities that confirm the maximum of six functions.
That is, the certificate verifies the identity of a diametric pair of C(t) in terms of
the diametric pairs of the subsets C1(t) and C2(t) by Lemma 4. The correspond-
ing properties are certified recursively for C1(t) and C2(t). Each set maintains a
single certificate defined in terms of four clients and the total number of certifi-
cates is O(n); therefore, the KDS is compact. Each client is contained in at most
O(log n) sets and, consequently, is associated with at most O(log n) certificates.
As a result, a motion plan update for a client results in changes to the failure
times of O(log n) certificates; therefore, the KDS is local.

A certificate failure occurs whenever the diametric pair of a set C changes.
Locally, the certificate for C is restored in constant time; however, a change in
the diametric pair of C may percolate upwards in the tree, resulting in O(log n)
additional certificate updates; therefore, the KDS is responsive. By Theorem 2,
each set C contributes at most O(|C|) certificate failures, resulting in a total
of O(n log n) certificate failures over the entire motion. Although this value is
asymptotically greater than Θ(n) (the worst-case number of external events for
a set of n clients), any offline algorithm for finding the trajectory of the 1-centre
requires Ω(n log n) time in the worst case, even in one dimension [21]. Therefore,
the KDS is efficient. ��

5 The Mobile 2-Centre on Trees

5.1 Properties of the Mobile 2-Centre

Although a 2-centre of a set of clients C on a tree is not unique (this is the
case even in one dimension [9]), any 2-centre of C, Ξ1(C) and Ξ2(C), defines a
natural bipartition of C, denoted {C1, C2}, such that

∀c ∈ C1, d(c, Ξ1(C)) ≤ d(c, Ξ2(C)) and ∀c ∈ C2, d(c, Ξ1(C)) ≥ d(c, Ξ2(C)).

We refer to {C1, C2} as a diametric partition of C. A diametric partition induced
by a given 2-centre is not unique. We refer to the local 1-centre, local radius, and
local diametric pair/path, respectively, in reference to the 1-centre, radius, and
diametric pair/path of C1 or C2. The local 1-centres of C1 and C2 are a 2-centre
of C [19]. Proofs of results in Sect. 5 were omitted due to space limitations.
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5.2 Equidistant 2-Centre

Even in one dimension the motion of a 2-centre defined by two local 1-centres is
not continuous. This is easily demonstrated by an example: position a client at
each endpoint of a line segment and let a third client move from one endpoint
to the other. Not all 2-centres are discontinuous; we describe a strategy for
defining the positions of a 2-centre on a tree whose motion is continuous and
whose relative velocity is at most two. We refer to this particular 2-centre as the
equidistant 2-centre:

Definition 3. Let {a, b} be a diametric pair of C. An equidistant 2-centre of
C, denoted {Ξ̇1(C), Ξ̇2(C)}, is a pair of points that lie on the path between a
and b at a distance ρ from a and b, respectively, where ρ denotes the 2-radius of
C.

A2 B2

T2

T1 A1 B1

local 2−centre

client
1−centre

equidistant 2−centre
diametric path
local diametric path
diametric partition

c

b

a

d

f

g

e

Fig. 2. Equidistant 2-centre examples

See Fig. 2 for an example. It is not difficult to show that the equidistance 2-
centre of C is unique and that it is a 2-centre of C. It follows that the equidistant
2-centre is independent of the choice of the diametric pair {a, b}.

Theorem 4. Each facility in the mobile equidistant 2-centre has relative velocity
at most two.

It follows that each facility in the mobile equidistant 2-centre is continuous. Since
no mobile 2-centre can guarantee relative velocity less than two in one dimension
[9], the maximum velocity of the equidistant 2-centre is optimal.

5.3 Complexity of the Motion of the 2-Centre

We establish the following bounds on the complexity of the motion of 2-centres:

Theorem 5. When each client in C moves with linear motion along a path on
T , the motion of each facility in the equidistant 2-centre of C is piecewise linear
and is composed of O(n2α(n)) linear segments, where n = |C|.

Theorem 6. There exists a set of mobile clients C, each moving with linear
motion in R, such that the motion of some facility in any 2-centre of C whose
motion is piecewise linear is composed of Ω(n2) linear segments, where n = |C|.
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5.4 Kinetic Maintenance of the Mobile 2-Centre

Capitalizing on our 1-centre results, we describe an algorithm for identifying
local 1-centres and the equidistant 2-centre of a set of mobile clients.
Algorithm Description. We first run our 1-centre algorithm to find a sequence
of diametric pairs of C, denoted {a1, b1}, . . . , {am, bm}, and a corresponding
partition of the time interval I, denoted I1, . . . , Im, such that m ∈ O(n). For
each time interval Ii, determine when each client c is closer to ai and when it is
closer to bi. This determines the sets C1(t) and C2(t) for all t ∈ Ii. Consider C1

(an analogous algorithm applies to C2). A diametric pair of C1(t) is given by ai(t)
and a furthest client from ai(t) in C1(t). Each local diametric pair determines
the motion of the corresponding local 1-centre and the local radius, from which
the motion of the equidistant 2-centre is straightforward to calculate.

Time Complexity. For a client c ∈ C, the functions d(c(t), ai(t)) and d(c(t),
bi(t)) are piecewise linear, each composed of at most four linear segments. There-
fore, c changes partitions O(1) times during interval Ii and calculating the inter-
val for which c resides in either partition is achieved in constant time. Finding
a furthest client from ai(t) for all t ∈ Ii corresponds to finding the upper en-
velope of n − 2 partially-defined, piecewise-linear functions, which can be done
in O(n log n) time using Hershberger’s [21] algorithm. Since there are O(n) time
intervals, the total runtime is O(n2 log n).
Theorem 7. Given a tree T and a set of mobile clients C, each moving with
linear motion on a path of T , there exists a KDS to maintain the mobile equidis-
tant 2-centre of C that is compact and has responsiveness O(n), locality O(n),
and efficiency O(n2 log n).

6 Directions for Future Research

As mentioned in Sect. 1, the mobile 1-centre is discontinuous on any cyclic
graph. This motivates the search for bounded-velocity approximations of the
k-centre on graphs. For the 1-centre, we have preliminary results showing that
no continuous (2 − ε)-approximation is possible for any ε > 0. A unit-velocity
2-approximation is given by selecting an arbitrary client c ∈ C and setting the
position of the facility to coincide with c(t). It is unknown whether any bounded-
velocity approximation exists for mobile 2-centres on graphs. Finally, it may be
possible to extend this work to maintain a discrete 1-centre and 2-centre of C.

Acknowledgements. The authors would like to thank David Kirkpatrick for
suggesting that mobile k-centres might be interesting to consider on trees.
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Abstract. Checking value-sensitive data structures in sublinear space
has been an open problem for over a decade. In this paper, we suggest
a novel approach to solving it. We show that, in combination with other
techniques, a previous method for checking value-insensitive data struc-
tures in log space can be extended for checking the more complicated
value-sensitive data structures, using log space as well. We present the
theoretical model of checking data structures and discuss the types of
invasions a checker might bring to the data structure server. We also
provide our idea of designing sublinear space checkers for value-sensitive
data structures and give a concrete example – a log space checker for the
search data structures (SDS).

1 Introduction

Checking the correctness of the computing results of a program with less ef-
forts than recomputing those results finds applications in different areas of com-
puter science. These applications include hardware and software reliability, fault
tolerant computing, soundness of algorithms, data authentication, and online
transaction auditing, just to name a few. Here we call a program that checks
the results of another program and reports errors the checker, and the program
under check the checkee. A checker is evaluated with its validity and efficiency.
That is, a checker should be able to catch all the errors and pass all the correct
results, and this should be done as efficiently as possible.

A checker is time efficient if its time complexity is lower than that of the
checkee and the space complexity is not higher than that of the checkee. Similarly,
we can define a checker of being space efficient when its space complexity is lower
and time complexity is not higher. We say that a checker is optimal if it has space
complexity logarithm of the checkee’s space complexity and time complexity
O(1) of checking each operation performed by the checkee. (Recall that O(log n)
is the information theoretic lower bound to encode n bits of information.) For
example, an optimal search data structure uses O(n) (linear) space and O(log n)
time to do a search, insert, or delete operation.
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1.1 Theoretic Model

Here we briefly introduce the theoretic model of checking data structures. Most
definitions and terminologies follow [1,3,9], but the idea of classifying invasions
into two types is new.

The encapsulation model. In this model, users access a data structure D through
a set of operations provided by D, for example, insert(x), delete(x), or search(x)
if D is a search data structure. The data structure D performs some computation
to realize the operation. For some operation, D returns a result to user, like for
search(x) it returns a boolean value indicating whether x is contained in D
or not. D encapsulates the realization of the operations so that it is irrelevant
to the users how and how efficient an operation is fulfilled in D. The checker
C is in between of users and D, the checkee, audits the operations issued by
users and the results returned by checkee, and reports “error” if any result of
an operation is incorrect. This model assumes that D is run on untrusted media
with possibility of mistakes or malicious malfunctions, however C is trustworthy.
Therefore if the soundness of C is proved, then C and the unreliable D together
would encapsulate a reliable D to users. A checker C in this model needs to be
individually designed for each data structure D.

Invasions. Checker C is invasive if it requires some augmentation of D to facil-
itate the checking, or if it issues extra operations to D that are not issued by
users. The checkers discussed in this paper and in related work are all invasive
checkers. (See Section 1.2). We categorize the invasions of those checkers into
the following two types:

– Storage Invasions. With such invasions, C requests D to associate additional
information to each data element stored in D, where the additional infor-
mation is not necessary for D to perform any operation it provides. As an
example, the RAM (random access memory) checker by Blum et al. in [3]
requests each value x to be stored as a pair (x, i), with i being a discrete
index indicating the time (order) of insertion.

– Operation Invasions. With such invasions, C issues extra operations to D
to follow up a operation issued by a user. Using again the example of Blum
et al.’s RAM checker [3], the checker C turns each read(x) into a read(x, i)
followed by a write(x, i′). In another example, the linear space SDS (search
data structure) checker by Bright and Sullivan in [5] turns an insert(x) into
an insert(x, i) followed by a predecessor(x).

Excessiveness. An invasion is excessive if it increases the asymptotic space com-
plexity of the checkee data structure D to store a data element or the asymptotic
time complexity of D to fulfill an original user operation. Otherwise the invasion
is non-excessive. A checker with only non-excessive invasions is a non-excessive
checker. For example, following up an insert(x) by an operation of O(n) time
is an excessive operation invasion to an efficient SDS, which ought to be able to
do insert(x) in O(log n) time. We are only interested in non-excessive checkers.
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As two extreme cases, the following invasions are always non-excessive, re-
gardless of the particular time and space complexities of the original unchecked
data structure D.

– An storage invasion that requires only O(1) size additional information to
be associated to each data element.

– An operation invasion such that the extra operations following each original
user operation can be realized in O(1) time by D.

We call such invasions minimal storage invasions and minimal operation inva-
sions. The checker we provide in this paper commits only minimal (storage and
operation) invasions.

Value-insensitive and value-sensitive data structures. Some fundamental data
structures have the property that the value stored at each data element plays
no role in determining how the data is stored and queried. We call them value-
insensitive data structures. Maps, arrays, stacks, queues, linked lists, and linked
directed graphs are all value-insensitive data structures. 1 When these data struc-
tures are queried, the answer is determined solely by the sequence of operations
or a specific argument in an operation, such as a memory address, an array in-
dex, or a link (pointer). In the opposite, in many advanced data structures such
as heaps or binary search trees, the structure to organize data elements and
the results of operations depend on a key value contained in each data element.
We call these data structures value-sensitive data structures. (See [3] for more
details.)

Blum et al.’s open problem. We conclude this brief introduction to theoretical
model with the following open problem raised by Blum et al. in [3]. This paper
will suggest and illustrate a novel approach of solving this problem.

Problem 1. Is there any checker under the encapsulation model that checks a
value-sensitive data structure such as a binary search tree or heap in sub-linear
space? The checker can have only non-excessive storage and operation invasions.

1.2 Related Work

Among the rich literatures on program checking, only a few papers addressed
the problem of sublinear space checking. In their fundamental paper [3], Blum et
al. gave a method of checking unreliable memory (RAM) of size n with a small
reliable memory of size O(log(n)), by using ε-biased hash functions. In the same
paper, authors also applied their method to check two other value-insensitive
data structures stacks and queues. Amato and Loui [1] further extended the
result to work on linked data structures including lists, trees and general graphs.
1 Despite its physical meaning, the random access memory (RAM) studied in [3] can

be viewed as a map data structure. It maps a memory address to the value stored
at this address and supports two operations – writing a value to an address and
reading the value from an address.
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These checkers all use the ε-biased hash functions discovered by J. Naor and M.
Naor [14]. Therefore we call them hash-based checkers. These checkers commit
storage and operation invasions but are extremely efficient. They use O(log n))
space and check each operation in O(1) time w.h.p. However, as pointed out by
Blum et al. in the open problem, extending this method onto checking value-
sensitive data structures is nontrivial.

Independent of Blum et al.’s work, some linear space checkers of value-
sensitive data structures have been developed using a different technique, which
we call the certificate-based checking. Sullivan, Wilson and Masson checked the
disjoint set union (DSU) and a simplified priority queue that doesn’t support
delete or change key in [15]. They also checked making convex hull (CH), sorting,
and single-source shortest paths (SSP) in [16]. Bright and Sullivan checked the
full priority queues (PQ) supporting delete and change key and the mergeable
priority queues (MPQ) [4]. These certificate-based checkers are offline because
they don’t report errors immediately but rather maintain a query-result sequence
as a certificate trail and verify the trail periodically to find errors. (Note that
the hash-based checkers are also offline.) Finkler and Mehlhorn gave a different
certificate-based checker for priority queues [9] with the same time and space ef-
ficiencies as the one in [4]. This checker is also offline but uses a trail other than
the sequence of query-result pairs. Online certificate-based checkers maintain no
trail but verify an individual certificate immediately after each operation. Such
checkers are developed by Bright and Sullivan for search data structures (SDS),
splittable search data structures (SSDS), and nearest neighbor queries (NN) [5].
All of the above certificate-based checkers, online or offline, take O(n) (linear)
space and O(1) time per operation. The online checkers commit storage and op-
eration invasions, while the offline checkers commit storage invasions only. There
was no clue of realizing a certificate-based checker in sublinear space.

1.3 Our Contribution

Inspired by both methods of the hash-based and the certificate-based checking,
we suggest a novel approach to checking value-sensitive data structures in sublin-
ear space. We argue that the correctness of value-sensitive data structures con-
sists of two components: integrity and validity. Then we observe that the hash-
based checking technique checks not only the correctness of value-insensitive
data structures but also the integrity of value-sensitive data structures. Next,
we propose the concept of self-certification of a (value-sensitive) data struc-
ture, which is an augmented implementation of the data structure such that
the result of an operation is self-certified to guarantee the validity. Using the
self-certification and the hash-based techniques together, we realize a checker
for SDS (search data structures), a fundamental value-sensitive data structure,
which takes O(log n) space and checks each operation in O(1) time w.h.p. Al-
though the self-certification for SDS is quite simple, this may not be the case
for other value-sensitive data structures. Thus, applying our method onto other
value-sensitive data structures is non-trivial. However, the frame of our approach
does isolate the process of self-certification as the only open part that needs to
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Table 1. Comparison of different checking techniques

Technique Space Time Invasions

1 hash-based O(log(n)) O(1) w.h.p. storage, operation
2 online certificate-based O(n) O(1) storage, operation
3 offline certificate-based O(n) O(1) storage
4 hash + self-certification* O(log(n)) O(1) w.h.p. storage, operation
∗: New in this paper.

Table 2. Data structures that have been checked

Technique Applicable to

1 hash-based RAM, stack, queue, linked structures
2 online certificate-based SDS, SSDS, NN, PQ
3 offline certificate-based DSU, PQ, MPQ, CH, sorting, SSP
4 hash + self-certification* SDS*

∗: New in this paper.

be designed individually for each data structure or each ADT (abstract data
type) operation. Therefore, we expect to see more sublinear space checkers of
value-sensitive data structures inspired by our work. A comparison of our result
and the previous results is shown in Table 1 and 2.

2 Our Idea

2.1 Describing Value-Sensitive Data Structures

We redefine any data structure D as a triple D = (E, P, R), where E, P, R are
the set of elements, operations and rules. Here we use the rules to describe
all value-sensitive properties of the operations. (Therefore, a value-insensitive
data structure is just a data structure with empty set of rules.) For example, a
priority queue can be defined as (E, P, R) where

– each data element e ∈ E stores a key value x;
– P includes operations of insert(x), delete(x), change key(x, x′), min, and

extract min; and
– R contains one rule: “the element accessed by min or extract min has the

minimum key value among all key values stored in E”.

That is, we consider a data structure as a repository of data elements (a bag
of balls) that users can check out and check in elements via some operations
following some rules. Observe that the only access or modification an operation
can make to E is to check out or check in an element, defined as the following
two basic operations :

– put(e): check in an element e into E, i.e., change the status from e �∈ E to
e ∈ E.

– get(e): check out an element e from E, i.e., change the status from e ∈ E to
e �∈ E.
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Any operation is described as the combination of put and get plus some rules
to follow. For example, the change key operation in the above priority queue
consists of a get(e) and a put(e′); and the min operation consists of a get(e) and
a put(e) following the rule that e contains the minimum value in E. Note that, as
showed with the min, even if we just want to take a look at an element, we need
to get it from E then put the same element back into E. In order to distinguish
the two basic operations get and put and the original operations provided to
users by the checkee, we call the original operations data operations.

2.2 Integrity and Validity

The correctness of an operation then bears two meanings: integrity and validity,
which we describe in the following.

– Integrity refers to the authentic execution of each get and put. That is, a)
e ∈ E is “true” before the execution of get(e) and becomes “false” after it;
and b) e ∈ E is “false” before the execution of put(e) and becomes “true”
after it.

– Validity of an operation means that all rules associated to this operation are
followed, such as min indeed gets the minimum value.

In another word, the integrity is to get or put a ball in the bag honestly, and
the validity is to pick the right ball. The data structure D functions correctly if
and only if the integrity and the validity are both guaranteed.

2.3 Checking Integrity and Validity Separately

Recall that we define the put and get as basic operations and the original opera-
tions supported by the data structure D as data operations. Given a data struc-
ture D (the checkee), we follow the encapsulation model to design a checker and
place it in between of users and D. The checker audits the queries and answers
communicated between users and D and reports errors. It maintains a (E, P, R)
description of D and checks the integrity and the validity in two separate com-
ponents.

The validity is checked online. The checker appends additional data operations
to a user’s data operation and sends them together to the checkee. Based on
the results of the additional operations, validity of the user’s operation can be
verified. Here we must augment D in advance to make it capable of certifying the
validity of one data operation with the results of some other data operations. We
call this technique the self-certification of D, which we will illustrate with SDS
in Section 3. Since the validity checking is done online and there is no need to
keep a trail, this part of the checker takes constant space. Furthermore, the self-
certification of SDS in this paper takes O(1) storage invasions and the additional
data operations appended to each user’s data operation are done in O(1) time
at the checkee. It remains open to do self-certification for other value-sensitive
data structures (such as priority queues) with O(1) storage invasions and O(1)
time overhead.
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In order to check the integrity, the checker transforms every data operation
it sends to the checkee (including those of users and those appended by the
checker itself) into basic operations and maintains a transcript of the data oper-
ations in the form of a sequence of basic operations. It then checks the integrity
offline, i.e., to ensure that the basic operations recorded in the transcript are
executed honestly at D, by using Blum et al.’s hash-based method in [3]. (See
Section 3.3.) Since the transcript can be encoded in O(log n) space using the
ε-biased hash functions, this part of the checker takes O(log n) space. Note that
a data operation with constant size of input and output will be transformed into
the combination of constant number of basic operations, regardless of the run-
ning time of that data operation at D. Therefore this integrity checking process
brings O(1) time overhead to any data structure that is already self-certificated.

The model of our checking scheme is showed in Figure 1. Next we’ll use SDS
as a concrete example to demonstrate how to design sublinear space checkers
for value-sensitive data structures using our scheme. In Section 3.2 we show how
to do self-certification and online validity checking for SDS. This part is not
a uniform procedure for all data structures. It must be individually designed
for each data structure. For many value-sensitive data structures, it could be
a challenging task to do self-certification with non-excessive invasions. This is
why our work is not a complete solution to Blum et al.’s open problem but
only a feasible approach. In Section 3.3 we cite the method provided in [14,3] to
show how to check the integrity of a sequence of put and get operations. This
part is uniform for the integrity checking of all data structures. The two parts
together give a complete checker for SDS, as well as an approach to checking
other value-sensitive data structures.

3 Checking Search Data Structures (SDS) in Log Space

3.1 The Search Data Structures (SDS)

SDS=(E, P, R) is defined as follows. Each element in E contains a key value,
and the values are comparable according to a total order. P includes the op-
erations insert(x), delete(x), search(x) predecesor(x), succesor(x), min and
max.2 Rules in R are summarized into two groups in the following.

1. Operation search(x) returns an element e ∈ E, if x is the key value e; or
returns “not exist” if x is not the key value of any e ∈ E.

2. Key values of the elements returned by predecessor(x), successor(x), min,
and max follow the sorted order of all values stored in E. (Predecessor of
the minimum and successor of the maximum are “null”.)

2 Some description to (a succinct version of) SDS contains only three operations
insert(x), delete(x), and search(x). However, it is straightforward to augment any
implementation of the succinct SDS to support the rest operations in the context by
using O(1) size storage invasions and O(1) time operation invasions. Therefore any
checker of the (full version) SDS in this paper also checks the succinct version SDS
with the same efficiencies and invasions, under Blum et al.’s model.
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Fig. 1. The scheme of checking value-sensitive data structures

In one word, SDS organizes a set of values in sorted order and supports order
preserving queries and updates. An efficient SDS would take O(n) space for
storage, O(log n) time to do each search, insert, or delete operation, and O(1)
time to do each of the other operations. A balanced binary search tree with
modest augmentations to support a sorted linked list as well (details are omitted)
is an example of efficient SDS implementations.

3.2 Self-certification and Validity Checking

We describe this process demonstrated with SDS.

Self-certification. Self-certification of a data structure D = (E, P, R) includes
the following three tasks.

1. The augmentation of each data element in E to associate additional infor-
mation to the element via non-excessive storage invasions. Here for SDS we
augment each element e ∈ E to be e = (x, predecessor(x), successor(x), i),
where x is the key value stored in e. Here predecessor(x) and successor(x)
associated to e are the key values of (not the links to) the predecessor and
successor of x in E according to the sorted order, and i is an integer index
indicating the order (discrete time) of insertion of x.
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Any data operation that updates the SDS elements, such as an insertion
or deletion, must be augmented accordingly as well in order to update the
augmented data items consistently. For example, insert(x) now needs to
update the elements containing the values predecessor(x) and successor(x)
after adding a new element containing x into E. This is like the process of in-
serting a new node into a linked list. The element containing predecessor(x)
must update its successor from successor(x) to x, and the element contain-
ing successor(x) must update its predecessor from predecessor(x) to x. We
omit the details of augmenting each SDS data operation.

2. A mapping from each data operation in P to a sequence of data operations
in P . When auditing the user-checkee correspondence, the checker will sub-
stitute the corresponding sequence of operations for each user operations,
and use the results of the sequence of operations as a certificate to verify
the result of the user operation. Operation invasions caused by this mapping
must be non-excessive, meaning that the time complexity of the sequence
of operations at D must not exceed that of the original user operation. The
mapping for SDS operations is showed in Table 3.

3. Algorithms for the checker to verify the result of each data operation with
the results of the sequence of data operations it maps to. This verification
checks the validity of the result of a user operation. (I.e., if there is no
integrity error, then the operation result follows the rules in R correctly. )
The verification algorithms for SDS are showed in the next.

Table 3. The operation mapping of SDS for validity checking

Data operation from user Sequence of data operations sent to D

insert(x) predecessor(x), successor(x), insert(x)
delete(x) predecessor(x), successor(x), delete(x)
search(x) search(x), predecessor(x), successor(x)

predecessor(x) predecessor(x), successor(x)
successor(x) predecessor(x), successor(x)

min min
max max

Verification algorithms. Algorithms showed below to verify the validity of SDS
data operations are straightforward and involve only simple value comparisons.
It is easy to justify the soundness of these algorithms, and to see that verifying
each data operation takes O(1) time and O(1) space at the checker.

Recall that an element in E with key value x is e = (x, y, z, i) where y and
z are the predecessor and successor of x. To assist the presentation, we also
denote by (x1, y1, z1, i1) the element returned by the operation predecessor(x),
and (x2, y2, z2, i2) the element returned by the operation successor(x).

– Certifying insert(x) or delete(x) with predecessor(x) and successor(x).
Checker verifies if z1 = x2, y2 = x1, and x1 < x < x2. Certifying delete(x)
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is similar. Note that if one of the predecessor(x) and successor(x) is null,
then verifying the other one still suffices the certification of validity. We omit
the details of doing so. We also omit the details when x is already in E be-
fore the insert(x) or when x �∈ E before the delete(x), for which cases the
verification is still necessary and the process of doing it is similar.

– Certifying search(x) with predecessor(x) and successor(x).
• If the search result is an element containing x, then the checker verifies

if z1 = x = y2.
• If it returns “not exist”, then the checker verifies if z1 = x2, y2 = x1,

and x1 < x < x2.
Again, if one of the predecessor(x) and successor(x) is null, then verifying
the other one is sufficient. Details are omitted.

– Certifying predecessor(x) with successor(x) or certifying successor(x) with
predecessor(x). Checker verifies either z1 = x = y2 or (z1 = x2, y2 = x1, and
x1 < x < x2). We again omit the cases when predecessor(x) or successor(x)
is null.

– Certifying min or max by itself. Simply verify if the predecessor value of the
assumed min is null, or the successor value of the assumed max is null.

The above algorithms yield the following result. We omit the proof in this
preliminary version.

Theorem 1. We can check the validity of each SDS data operation in O(1) time
and O(1) space, by introducing storage invasions of O(1) size per data element
and operation invasions of O(1) time per user operation, which are minimal.

3.3 Checking Integrity with Blum et al.’s Method

Properties of ε-biased hash functions were studied and fast algorithm to update
the hash values was provided by J. Naor and M. Naor in [14]. Its application in
checking value-insensitive data structures was discovered by Blum et al. in [3].
In fact this technique checks not only the value-insensitive data structures but
the integrity of any data structures. (The reason it works solely for checking
value-insensitive data structures is that these data structures have empty rules
so there is no validity to check.) We present the method in [3] of using hash-based
technique to check integrity in the following.

– Checker maintains an integer timer t that increases by 1 after each put,
which determines the index i of an element e = (x, y, z, i) that is put into E.

– Checker maintains two transcripts W and R to record respectively the se-
quence of elements that have been put into E and the sequence of elements
that have been got from E. Checker transforms every data operation sent
to the checkee (including the user’s operations and the checker’s invasive
operations appended to it for validity checking) into the form of put and get,
and appends them to the sequences W and R accordingly.
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– If an element e is got out of E and put back later, the time stamp i of it
must be updated to the current time t. In another word, the element put
back to E is not the one that was got out but a new element. This means
that each element is involved in exactly one put and one get in its life cycle.
Elements that are still contained in E have not experienced the get.

– Checker periodically scans E to get all elements out. Thus during this period
of time the transcripts R for the sequence of get and W for the sequence of
put should be identical. Comparing the two transcripts is sufficient to verify
the integrity of the execution of the basic operations put and get during the
past period. (The elements scanned are put back to E after the verification,
and those put operations are recorded in a new transcript W starting with
a new period of integrity checking.)

– Instead of maintaining R and W (each of length O(n)) explicitly, the checker
maintains the description of an ε-biased hash function h and two hash values
h(R) and h(W ) as fingerprints of R and W . This takes O(log n + k) space
with a constant parameter k. Whenever a new get or put is appended to R or
W , the checker updates h(R) or h(W ) accordingly. The amazing properties
of ε-biased hash functions allow updates to be done bit by bit, without re-
hashing the hash value, taking only O(k) time to record a get or put. All
together, the integrity checker uses O(log n) space and linear time (amortized
O(1) time per operation) with a constant parameter k, and reports integrity
errors offline (periodically) with probability 1 − 2−k.

We omit further details of how this method works. Interested readers are
referred to read [14,3]. The result of integrity checking is in the following.

Theorem 2. [14,3] The integrity of any data structure of size O(n) can be
checked with probability 1 − 2−k, k is a constant, by a hash-based checker using
O(log n) space and amortized O(1) time per operation. Such an integrity checker
commits O(1) size storage invasions per data element and O(1) time operation
invasions per data operation, which are minimal.

4 Conclusion

We have provided an approach to designing sublinear space checkers for value-
sensitive data structures. The framework and the integrity checking component
apply for all data structures. The validity checking component must be individ-
ually designed for each value-sensitive data structure. We’ve only showed as a
demonstration how to do it on SDS. The two components in Section 3.2 and 3.3
together fulfill a log space, optimal time, and minimal invasion checker for SDS.
We conclude with this result in the following theorem, which can be viewed as
a step towards a positive answer to the open problem of Blum et al. in [3].

Theorem 3. We can check a search data structure (SDS) with probability 1 −
2−k, k is a constant, in O(log n) space and amortized O(1) time per operation,
while committing only minimal storage and operation invasions.
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Abstract. This paper studies to which extent the social welfare of a
game can be influenced by an interested third party within economic rea-
son, i.e., by taking the implementation cost into account. Besides consid-
ering classic, benevolent mechanism designers, we also analyze malicious
mechanism designers. For instance, this paper shows that a malicious
mechanism designer can often corrupt games and worsen the players’
situation to a larger extent than the amount of money invested. Surpris-
ingly, no money is needed at all in some cases. We provide algorithms
for finding the so-called leverage in games and show that for optimistic
mechanism designers, computing the leverage or approximations thereof
is NP-hard.

1 Introduction

Consider the following extension of the well-known prisoners’ dilemma where
two bank robbers, both members of the Al Capone clan, are arrested by the
police. The policemen have insufficient evidence for convicting them of robbing
a bank, but they could charge them with a minor crime. Cleverly, the policemen
interrogate each suspect separately and offer both of them the same deal. If one
testifies to the fact that his accomplice has participated in the bank robbery,
they do not charge him for the minor crime. If one robber testifies and the
other remains silent, the former goes free and the latter receives a three-year
sentence for robbing the bank and a one-year sentence for committing the minor
crime. If both betray the other, each of them will get three years for the bank
robbery. If both remain silent, the police can convict them for the minor crime
only and they get one year each. There is another option, of course, namely to
confess to the bank robbery and thus supply the police with evidence to convict
both criminals for a four-year sentence (cf. G in Fig. 1). A short game-theoretic
analysis shows that a player’s best strategy is to testify. Thus, the prisoners will
betray each other and both get charged a three-year sentence. Now assume that
Mr. Capone gets a chance to take influence on his employees’ decisions. Before
they take their decision, Mr. Capone calls each of them and promises that if they
both remain silent, they will receive money compensating for one year in jail,1

� Research supported in part by theSwissNational ScienceFoundation (SNF).A full ver-
sion including all proofs, is available as TIK Report 277 at http://www.tik.ee.ethz.ch/.

1 For this scenario, we presume that time really is money!.

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 365–376, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Al Capone Police

Fig. 1. Extended prisoners’ dilemma: G shows the prisoners’ initial payoffs, where
payoff values equal saved years. The first strategy is to remain silent (s), the second
to testify (t) and the third to confess (c). Nash equilibria are colored gray, and non-
dominated strategy profiles have a bold border. The left bimatrix V shows Mr. Capone’s
offered payments which modify G to the game G(V ). By offering payments V ′, the
police implements the strategy profile (c, c). As V1(c, c) = V2(c, c) = 0, payments V ′

implement (c, c) for free.

and furthermore, if one remains silent and the other betrays him, Mr. Capone
will pay the former money worth two years in prison (cf. V in Fig. 1). Thus,
Mr. Capone creates a new situation for the two criminals where remaining silent
is the most rational behavior. Mr. Capone has saved his clan an accumulated
two years in jail.

Let us consider a slightly different scenario where after the police officers
have made their offer to the prisoners, their commander-in-chief devises an even
more promising plan. He offers each criminal to drop two years of the four-year
sentence in case he confesses the bank robbery and his accomplice betrays him.
Moreover, if he confesses and the accomplice remains silent they would let him go
free and even reward his honesty with a share of the booty (worth going to prison
for one year). However, if both suspects confess the robbery, they will spend four
years in jail. In this new situation, it is most rational for a prisoner to confess.
Consequently, the commander-in-chief implements the best outcome from his
point of view without dropping any sentence and he increases the accumulated
years in prison by two.

From Mr. Capone’s point of view, implementing the outcome where both
prisoners keep quiet results in four saved years for the robbers. By subtracting the
implementation cost, the equivalent to two years in prison, from the saved years,
we see that this implementation yields a benefit of two years for the Capone
clan. We say that the leverage of the strategy profile where both prisoners play
s is two. For the police however, the leverage of the strategy profile where both
prisoners play c is two, since the implementation costs nothing and increases the
years in prison by two. Since implementing c reduces the players’ gain, we say
the strategy profile where both play c has a malicious leverage of two.

In the described scenario, Mr. Capone and the commander-in-chief solve the
optimization problem of finding the game’s strategy profile(s) which bear the
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largest (malicious) leverage and therewith the problem of implementing the cor-
responding outcome at optimal cost. This paper analyzes these problems’ com-
plexities and presents algorithms for finding the leverage of games for cautious
and optimistic mechanism designers. We show that while the leverage of a sin-
gle strategy profile can be computed efficiently for both cautious and optimistic
mechanism designers, finding an optimal implementation for a set of strategy
profiles is NP-hard by a reduction from the SETCOVER problem, and we pro-
vide a lower bound for the approximation attainable by any polynomial-time
algorithm. Moreover, we prove that an optimistic mechanism designer cannot
compute the leverage of a game in polynomial time unless P=NP and finding
approximations thereof is hard as well.

Related Work. Algorithmic game theory and mechanism design have become
popular tools for gaining insights into the sociological, economical and politi-
cal complexity of today’s distributed systems such as politics, global markets
or the Internet (we refer to [6,7] for an introduction). Typically, when a game-
theoretic analysis reveals that a system may suffer from selfish behavior, appro-
priate countermeasures have to be taken in order to enforce a desired behavior
(e.g. [4]).

As it is often infeasible for a mechanism designer to influence the rules ac-
cording to which the players act in a distributed system, she has to resort to
other measures. One way of manipulating the players’ decision-making is to offer
them money for certain outcomes. Monderer and Tennenholtz [5] showed how
creditablility can be used to outwit selfish agents and influence their decisions; in
some cases no money actually has to be paid at all to implement a certain behav-
ior (cf. also [8]). The authors consider a mechanism designer who cannot enforce
behaviors and cannot change the system, and who attempts to lead agents to
adopt desired behaviors in a given multi-agent setting. The only way the third
party can influence the outcome of the game is by promising non-negative mon-
etary transfers conditioned on the observed behavior of the agents. Eidenbenz
et al. [2] have continued the analysis of [5] and have provided deeper insights
into the possibilities and algorithmic complexities of mechanism design based on
creditability. They presented algorithms for computing a strategy profile set’s im-
plementation cost and extended the notion of k-implementation to round-based
games, risk-averse player games and average payoff games. Moreover, they show
that the complexity results given in [5] are not correct.

This paper extends [2,5] by introducing the concept of leverage, a measure for
the change of behavior a mechanism design can inflict, taking into account the
social gain and the implementation cost. Regarding the payments offered by the
mechanism designer as some form of insurance, it seems natural that outcomes
of a game can be improved at no costs. However, as a first contribution, in this
paper, we show that a malicious mechanism designer can in some cases even
reduce the social welfare at no costs. Second, we present algorithms to compute
both the regular as well as the malicious leverage, and provide evidence that
several optimization problems related to the leverage are NP-hard.
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2 Model

Game Theory. A strategic game can be described by a tuple G = (N, X, U).
N = {1, 2, . . . , n} is the set of players and each Player i ∈ N can choose a strategy
(action) from the set Xi. The product of all the individual players’ strategies is
denoted by X := X1×X2×. . .×Xn. In the following, a particular outcome x ∈ X
is called strategy profile and we refer to the set of all other players’ strategies of
a given Player i by X−i = X1 × . . .×Xi−1 ×Xi+1 × . . .×Xn. An element of Xi is
denoted by xi, and similarly, x−i ∈ X−i; hence x−i is a vector consisting of the
strategy profiles available if Player i selects Strategy xi. U = (U1, U2, . . . , Un) is
an n-tuple of payoff functions, where Ui : X → R determines Player i’s payoff
arising from the game’s outcome. We will refer to the sum of the individual
player’s payoffs of a given strategy profile x ∈ X as the strategy profile’s gain
U(x) :=

∑n
i=1 Ui(x).

Let xi, x
′
i ∈ Xi be two strategies available to Player i. We say that xi dom-

inates x′
i iff Ui(xi, x−i) ≥ Ui(x′

i, x−i) for every x−i ∈ X−i and there exists at
least one x−i for which a strict inequality holds. xi is the dominant strategy
for Player i if it dominates every other strategy x′

i ∈ Xi\{xi}. xi is a non-
dominated strategy if no other strategy dominates it. By X∗ = X∗

1 × . . . × X∗
n

we will denote the set of non-dominated strategy profiles, where X∗
i is the set of

non-dominated strategies available to the individual Player i. A strategy profile
x ∈ X is a Nash equilibrium if no unilateral deviation in strategy by any single
player is profitable, that is ∀i ∈ N, Ui(xi, x−i) ≥ Ui(x′

i, x−i).

k-Implementation. We assume that players are rational and always choose
a non-dominated strategy. Moreover, they do not cooperate. We examine the
impact of payments to players offered by a mechanism designer (an interested
third party) who seeks to influence the outcome of a game. These payments
are described by a tuple of non-negative payoff functions V = (V1, V2, . . . , Vn),
where Vi : X → R

+, i.e. the payments depend on the strategy Player i se-
lects as well as on the choices of all other players. We assume that the players
trust the mechanism designer to finally pay the promised amount of money,
i.e., consider her trustworthy. The original game G = (N, X, U) is modified to
G(V ) := (N, X, [U +V ]) by these payments, where [U + V ]i(x) = Ui(x) + Vi(x),
that is, each Player i obtains the payoff of Vi in addition to the payoffs of Ui.
The players’ choice of strategies changes accordingly: Each player now selects a
non-dominated strategy in G(V ). Henceforth, the set of non-dominated strategy
profiles of G(V ) is denoted by X∗(V ). For a strategy profile x, the sum of the ad-
ditional payments to all players is denoted by the payment V (x) :=

∑n
i=1 Vi(x).

A strategy profile set O ⊆ X of G is a subset of all strategy profiles X . Simi-
larly to Xi and X−i, we define Oi := {xi|∃x−i ∈ X−i s.t. (xi, x−i) ∈ O} and
O−i := {x−i|∃xi ∈ Xi s.t. (xi, x−i) ∈ O}. The mechanism designer’s main ob-
jective is to force the players to choose a certain strategy profile or a set of
strategy profiles, without spending too much. This paper studies two kinds of
implementation costs: worst-case implementation costs and uniform implemen-
tation costs.
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First, we will consider a pessimistic scenario where the mechanism designer
calculates with the maximum possible payments for a desired outcome (worst-
case implementation costs). For a desired strategy profile set O, we say that
payments V implement O if ∅ ⊂ X∗(V ) ⊆ O. V is called (worst-case) k-
implementation if, in addition V (x) ≤ k, ∀x ∈ X∗(V ). That is, the players’
non-dominated strategies are within the desired strategy profile, and the pay-
ments do not exceed k for any possible outcome. Moreover, V is an exact k-
implementation of O if X∗(V ) = O and V (x) ≤ k ∀x ∈ X∗(V ). The cost
k(O) of implementing O is the lowest of all non-negative numbers q for which
there exists a q-implementation. If an implementation meets this lower bound,
it is optimal, i.e., V is an optimal implementation of O if V implements O
and maxx∈X∗(V ) V (x) = k(O). The cost k∗(O) of implementing O exactly is the
smallest non-negative number q for which there exists an exact q-implementation
of O. V is an optimal exact implementation of O if it implements O exactly and
requires cost k∗(O). The set of all implementations of O will be denoted by
V(O), and the set of all exact implementations of O by V∗(O). Finally, a strat-
egy profile set O = {z} of cardinality one – consisting of only one strategy profile
– is called a singleton. Clearly, for singletons it holds that non-exact and exact
k-implementations are equivalent. For simplicity’s sake we often write z instead
of {z} . Observe that only subsets of X which are in 2X1 × 2X2 × . . . × 2Xn , i.e.,
the Cartesian product of subsets of the players’ strategies, can be implemented
exactly. We call such a subset of X a convex strategy profile set.2 In conclusion,
for the worst-case implementation costs, we have the following definitions.

Definition 1 (Worst-Case Cost and Exact Worst-Case Cost). A
strategy profile set O has worst-case implementation cost k(O) :=
minV ∈V(O){maxz∈X∗(V ) V (z)}. A strategy profile set O has exact worst-case im-
plementation cost k∗(O) := minV ∈V∗(O){maxz∈X∗(V ) V (z)}.

The assumption that the cost of an implementation V is equal to the cost of
the strategy profile in X∗(V ) with the highest payments is pessimistic. This
paper therefore also looks at a less anxious mechanism designer who takes the
risk of high worst case costs if the expected costs are small. If players only
know their own utilities, assuming them to select one of their non-dominated
strategies uniformly at random, is a first simple model an optimistic mechanism
designer might apply. We define the uniform cost of an implementation V as
the average of all strategy profiles’ possible cost in X∗(V ). Thus we assume all
non-dominated strategy profiles x ∈ X∗(V ) to have the same probability.

Definition 2 (Uniform Cost and Exact Uniform Cost). A strategy profile
set O has uniform implementation cost kUNI(O) := minV ∈V(O){∅z∈X∗(V ) V (z)}
where ∅ is defined as ∅x∈X f(x) := 1/ |X | ·

∑
x∈X f(x). A strat-

egy profile set O has exact uniform implementation cost k∗
UNI(O) :=

minV ∈V∗(O){∅z∈X∗(V ) V (z)}.

2 These sets define a convex area in the n-dimensional hyper-cuboid, provided that
the strategies are depicted such that all oi are next to each other.
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(Malicious) Leverage. Mechanism designers can implement desired outcomes
in games at certain costs. This raises the question for which games it makes sense
to take influence at all. This paper examines two diametrically opposed kinds of
interested parties, the first one being benevolent towards the participants of the
game, and the other being malicious. While the former is interested in increasing
a game’s social gain, the latter seeks to minimize the players’ welfare. We define
a measure indicating whether the mechanism of implementation enables them to
modify a game in a favorable way such that their gain exceeds the manipulation’s
cost. We call these measures the leverage and malicious leverage, respectively.
Note that in the following, we will often write “(malicious) leverage” signifying
both leverage and malicious leverage.

As the concept of leverage depends on the implementation costs, we exam-
ine the worst-case and the uniform leverage. The worst-case leverage is a lower
bound on the mechanism designer’s influence: We assume that without the addi-
tional payments, the players choose a strategy profile in the original game where
the social gain is maximal, while in the modified game, they select a strategy
profile among the newly non-dominated profiles where the difference between
the social gain and the mechanism designer’s cost is minimized. The value of
the leverage is given by the net social gain achieved by this implementation mi-
nus the amount of money the mechanism designer had to spend. For malicious
mechanism designers we have to invert signs and swap max and min. Moreover,
the payments made by the mechanism designer have to be subtracted twice,
because for a malicious mechanism designer, the money received by the players
are considered a loss.

Definition 3 (Worst-Case (Malicious) Leverage). Let lev(O) :=
maxV ∈V(O){minz∈X∗(V ){U(z) − V (z)}} – maxx∗∈X∗ U(x∗) and mlev(O) :=
minx∗∈X∗ U(x∗) − minV ∈V(O){maxz∈X∗(V ){U(z) + 2V (z)}}. The leverage and
malicious leverage of a strategy profile set O are LEV (O) := max{0, lev(O)}
and MLEV (O) := max{0, mlev(O)}, respectively.

Observe that according to our definitions, leverage values are always non-
negative, as a mechanism designer has no incentive to manipulate a game if
she will lose money. If the desired set consists only of one strategy profile z,
i.e., O = {z}, we will speak of the singleton leverage. Similarly to the (worst-
case) leverage, we can define the uniform leverage for less anxious mechanism
designers.

Definition 4 (Uniform (Malicious) Leverage). Let levUNI(O) :=
maxV ∈V(O){∅z∈X∗(V )(U(z) − V (z))} − ∅x∗∈X∗ U(x∗) and mlevUNI(O) :=
∅x∗∈X∗ U(x∗) − minV ∈V(O){∅z∈X∗(V ){U(z) + 2V (z)}}. The uniform leverage
and malicious uniform leverage of a strategy profile set O are LEVUNI(O) :=
max{0, levUNI(O)} and MLEVUNI(O) := max{0, mlevUNI(O)}, respectively.

We define the exact (uniform) leverage LEV ∗(O) and the exact (uniform) mali-
cious leverage MLEV ∗(O) by simply changing V(O) to V∗(O) in the definition
of LEV(UNI)(O) and MLEV(UNI)(O). Thus, the exact (uniform) (malicious)
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leverage measures a set’s leverage if the interested party may only promise pay-
ments which implement O exactly.

3 Worst-Case Leverage

Singletons. Consider a mechanism designer seeking to implement a game’s best
singleton, i.e., the strategy profile with the highest singleton leverage. Dually, a
malicious designer attempts to find the profile of the largest malicious leverage.

Due to the fact that k(z) =
∑n

i=1 maxxi∈Xi{Ui(xi, z−i) − Ui(zi, z−i)} [5], the
leverage of a singleton can be computed efficiently.

Theorem 1. For a game where every player has at least two strategies, there
exists an algorithm which computes all singletons’ (malicious) leverage within a
strategy profile set O in O

(
n|X |2

)
time.

Strategy Profile Sets. Observe that implementing singletons may be opti-
mal for entire strategy sets as well, namely in games where the strategy profile
set yielding the largest (malicious) leverage is of cardinality 1. In some games,
however, dominating all other strategy profiles in the set is expensive and un-
necessary. Therefore, a mechanism designer is bound to consider sets consisting
of more than one strategy profile as well to find a subset of X yielding the max-
imal (malicious) leverage. Moreover, we can construct games where the differ-
ence between the best (malicious) set leverage and the best (malicious) singleton
leverage gets arbitrarily large. Fig. 2 depicts such a game.

A similar game can be used to show an arbitrarily large difference for the
malicious leverage: E.g., set the payoffs in the four upper right strategy profiles
of the game G in Fig. 2 to 100 instead of 10. V still implements O but switching
to O now decreases the social gain.

Although many factors influence a strategy profile set’s (malicious) lever-
age, there are some simple observations. First, if rational players already choose
strategies such that the strategy profile with the highest social gain is non-
dominated, a designer will not be able to ameliorate the outcome. Just as well, a

G =

20 0 11 9 10 10 10 10

11 9 20 0 10 10 10 10

19 10 10 19 9 11 0 20

10 19 19 10 0 20 9 11

V =

0 ∞ 0 ∞ 0 0 0 0

0 ∞ 0 ∞ 0 0 0 0

1 1 1 1 ∞ 0 ∞ 0

1 1 1 1 ∞ 0 ∞ 0

Fig. 2. Two-player game where set O bears the largest leverage. Implementation V
yields X∗(V ) = O. By offering payments V , a benevolent mechanism designer has cost
2, no matter which o ∈ O will be played. However, she improves the social welfare by
9. Thus O has a leverage of 7 whereas any singleton o ∈ O has a leverage of 0. By
reducing Player 2’s payoffs in the upper game half and Player 1’s payoffs in the right
game half, O ’s leverage gets arbitrarily large.
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malicious interested party will have nothing to corrupt if a game already yields
the lowest social gain possible.

Fact 2. (i) If a game G’s social optimum xopt := arg maxx∈X U(x) is in X∗ then
LEV (G) = 0. (ii) If a game G’s social minimum xworst := argminx∈X U(x) is
in X∗ then MLEV (G) = 0.

As an example, a class of games where both properties (i) and (ii) of Fact 2
always hold are equal sum games, where every strategy profile yields the same
gain, U(x) = c ∀x ∈ X, c : constant. (Zero sum games are a special case of equal
sum games where c = 0.)

Fact 3 (Equal Sum Games). The leverage and the malicious leverage of an
equal sum game G is zero: LEV (G) = 0, MLEV (G) = 0.

A well-known example of an zero sum game is Matching Pennies : Two players
toss a penny. If both coins show the same face, Player 2 gives his penny to Player
1; if the pennies do not match, Player 2 gets the pennies. This matching pennies
game features another interesting property: There is no dominated strategy.
Therefore an interested party could only implement strategy profile sets O which
are subsets of X∗. This raises the question whether a set O ⊆ X∗ can ever have
a (malicious) leverage. We find that the answer is no and moreover:

Theorem 4. The leverage of a strategy profile set O ⊆ X intersecting with the
set of non-dominated strategy profiles X∗ is (M)LEV = 0.

In general, the problem of computing a Algorithm 1 Exact Leverage
Input: Game G, convex set O with O−i ⊂ X−i∀ i
Output: LEV ∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗

i ;
4: return max{0, ExactLev(V, n) − maxx∗∈X∗ U(x∗)};

ExactLev(V , i):
Input: payments V , current Player i
Output: lev∗(O) for G(V )

1: if |X∗
i (V )\Oi| > 0 then

2: s := any strategy in X∗
i (V )\Oi; levbest := 0;

3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max{0, Ui(s, o−i)−

(Ui(oi, o−i) + Vi(oi, o−i))};
6: lev := ExactLev(V + W, i);
7: if lev > levbest then
8: levbest := lev;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return levbest;
12: if i > 1 return ExactLev(V , i − 1);
13: else return mino∈O{U(o) − V (o)};

strategy profile set’s (malicious) leverage
seems computationally hard. It is related
to the problem of computing a set’s im-
plementation cost, which is conjectured in
[2] to be NP-hard, and hence, we conjec-
ture the problem of finding LEV (O) or
MLEV (O) to be NP-hard in general as
well. In fact, we can show that comput-
ing the (malicious) leverage has at least
the same complexity as computing a set’s
cost.

Theorem 5. If the computation of a set’s
implementation cost is NP-hard, then the
computation of a strategy profile set’s (malicious) leverage is also NP-hard.

The task of finding a strategy profile set’s leverage is computationally hard.
Recall that we have to find an implementation V of O which maximizes the term
minz∈X∗(V ){U(z)−V (z)}. Thus, there is at least one implementation V ∈ V(O)
bearing O’s leverage. Since this V implements a subset of O exactly, it is also



Manipulation in Games 373

valid to compute O’s leverage by searching among all subsets O′ of O the one
with the largest exact leverage LEV ∗(O′).3

In the following we will provide an algorithm which computes a convex strat-
egy profile set’s exact leverage. It makes use of the fact that if X∗(V ) has to
be a subset of O, each strategy ōi /∈ Oi must be dominated by at least one
strategy oi in the resulting game G(V ) – a property which has been observed
and exploited before in [2] in order to compute a set’s exact cost. In order to
compute LEV (O), we can apply Algorithm 1 for all convex subsets and return
the largest value found.

Theorem 6. Algorithm 1 computes a strategy profile set’s exact leverage in time
O

(
|X |2 maxi∈N (|Oi|n|X

∗
i \Oi|−1) + n|O| maxi∈N (|Oi|n|X

∗
i \Oi|)

)
.

4 Uniform Implementation Cost

We will now turn our attention to the situation of less anxious mechanism de-
signers who anticipate uniform rather than worst-case implementation cost.

Note that for strategy profile sets O with k∗
UNI(O) = 0 any exact implemen-

tation V must have zero payments for any profile inside O, i.e. V (o) = 0 ∀o ∈ O.
Thus, for 0-implementable strategy profile sets, the concepts of worst case exact
cost and uniform exact cost coincide, i.e., k∗

UNI(O) = 0 iff k∗(O) = 0. Therefore,
Algorithm 2 from [2] decides if O has uniform exact cost of 0 for the uniform
case in polynomial as well.

Complexity. In the following we show that it is NP-hard to compute the
uniform implementation cost for both the non-exact and the exact case. We
devise game configurations which reduce SETCOVER to the problem of finding
an implementation of a strategy profile set with optimal uniform cost.

Theorem 7. In games with at least two (three) players, the problem of finding a
strategy profile set’s exact (non-exact) uniform implementation cost is NP-hard.

Proof. Exact Case: For a given universe U of l elements {e1, e2, . . . , el} and
m subsets S = {S1, S2, . . . , Sm}, with Si ⊂ U , SETCOVER is the problem
of finding the minimal collection of Si’s which contains each element ei ∈ U .
We assume without loss of generality that �(i �= j) : Si ⊂ Sj . Given a SET-
COVER problem instance SC = (U , S), we can efficiently construct a game
G = (N, X, U) where N = {1, 2}, X1 = {e1, e2, . . . , el, s1, s2, . . . , sm}, and
X2 = {e1, e2, . . . , el, d, r}. Each strategy ej corresponds to an element ej ∈ U ,
and each strategy sj corresponds to a set Sj . Player 1’s payoff function U1 is
defined as follows: U1(ei, ej) := m+1 if i = j and 0 otherwise, U1(si, ej) := m+1
if ej ∈ Si and 0 otherwise, U1(ei, d) := 1, U1(si, d) := 0, U1(x1, r) := 0
∀x1 ∈ X1. Player 2 has a payoff of 0 when playing r and 1 otherwise. In
3 Note that we do not provide algorithms for computing the malicious leverage but for

the benevolent leverage only. However, it is straightforward to adapt our algorithms
for the benevolent leverage.
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this game, strategies ej are not dominated for Player 1 because in column d,
U1(ej , d) > U1(si, d), ∀i ∈ {1, . . .m}. The set O we would like to implement is
{(x1, x2)|x1 = si ∧ (x2 = ei ∨ x2 = d)}. See Fig. 3 for an example.

Let Q = {Q1, Q2, . . . , Qk}, where each Qj cor-

Fig. 3. Payoff matrix for
Player 1 in a game which
reduces the SETCOVER
problem instance SC = (U , S)
where U = {e1, e2, e3, e4, e5},
S = {S1, S2, S3, S4}, S1 =
{e1, e4}, S2 = {e2, e4}, S3 =
{e2, e3, e5}, S4 = {e1, e2, e3}
to the problem of computing
k∗

UNI( O ). The optimal exact

implementation V of O
in this sample game adds
a payment V1 of 1 to the
strategy profiles (s1, d) and
(s3, d), implying that the
two sets S1 and S3 cover U
optimally.

responds to an Si. We now claim that Q is an
optimal solution for a SETCOVER problem, an
optimal exact implementation V of O in the cor-
responding game has payments V1(si, d) := 1
if Qi ∈ Q and 0 otherwise, and all payments
V1(si, ej) equal 0.

Note that by setting V1(si, d) to 1, strategy si

dominates all strategies ei which correspond to an
element in Si. Thus, our payment matrix makes
all strategies ei of Player 1 dominated since any
strategy ei representing element ei is dominated
by the strategies sj corresponding to Sj which
cover ei in the minimal covering set.4 If there are
any strategies si dominated by other strategies
sj , we can make them non-dominated by adjust-
ing the payments V1(si, r) for column r. Hence,
any solution of SC corresponds to a valid exact
implementation of O.

It remains to show that such an implemen-
tation is indeed optimal and there are no other
optimal implementations not corresponding to
a minimal covering set. Note that by setting
V1(si, d) := 1 and V1(si, r) > 0 for all si, all
strategies ej are guaranteed to be dominated
and V implements O exactly with uniform cost
∅o∈O V (o) = m/ |O|. If an implementation had
a positive payment for any strategy profile of
the form (si, ej), it would cost at least m + 1 to have an effect. However, a
positive payment greater than m yields larger costs. Thus, an optimal V has
positive payments inside set O only in column d. By setting V1(si, d) to 1, si

dominates the strategies ej which correspond to the elements in Si, due to our
construction. An optimal implementation has a minimal number of 1s in column
d. This can be achieved by selecting those rows si (V1(si, d) := 1), which form
a minimal covering set and as such all strategies ei of Player 1 are dominated
at minimal cost. Our reduction can be generalized for n > 2 by simply
adding players with only one strategy and zero payoffs in all strategy profiles.
We only prove the exact case here. For the non-exact case, we construct a similar

4 If |Sj | = 1, sj gives only equal payoffs in G(V ) to those of ei in the range of O2.
However, sj can be made dominating ei by increasing sj ’s payoff V1(sj , r) in the
extra column r.
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game with three players, forcing the mechanism designer to exactly implement
O. We refer to the technical report for details. �

Due to the nature of the reduction the inapproximability results of SETCOVER
[1,3] carry over to our problem.

Theorem 8. No polynomial-time algorithm can achieve an approximation ratio
better than Ω (n maxi{log |X∗

i \ Oi|}) for both the exact and non-exact implemen-
tation costs within any function of the input length unless P=NP.

5 Uniform Leverage

A mechanism designer calculating her average case cost is more optimistic than
an anxious designer. Thus, the observation stating that the uniform (malicious)
leverage is always at least as large as the worst-case (malicious) leverage does
not surprise.

Theorem 9. A set’s uniform (malicious) leverage is always larger or equal the
set’s (malicious) leverage.

Another difference concerns the sets O intersecting with X∗, i.e., O ∩ X∗ �= ∅:
Unlike the worst-case leverage (Theorem 4), the uniform leverage can exceed
zero in these cases, as can be verified by calculating O’s leverage in Fig. 3.

Complexity. We conclude our extended abstract with the following theorem
on the hardness of computing or approximating the uniform leverage and a proof
sketch. We show how the uniform implementation cost can be computed in poly-
nomial time given the corresponding leverage. Thus the complexity of computing
the leverage follows from the NP-hardness of finding the optimal implementa-
tion cost. The lower bounds are derived by modifying the games constructed
from the SETCOVER problem in Theorem 7, and by using a lower bound for
the approximation quality of the SETCOVER problem. If no polynomial time
algorithm can approximate the size of a set cover within a certain factor, we
get an arbitrarily small approximated leverage LEV approx

UNI ≤ ε while the actual
leverage is large. Hence the approximation ratio converges to infinity and, unless
P=NP, there exists no polynomial time algorithm approximating the leverage
of a game within any function of the input length.

Theorem 10. For games with at least two (three) players, the problem of com-
puting a strategy profile set’s exact (non-exact) uniform (malicious) leverage is
NP-hard. Furthermore, the (exact) uniform leverage of O cannot be approxi-
mated in polynomial time within any function of the input length unless P=NP.

Proof (Sketch). NP-Hardness: For benevolent mechanism designer the
claim follows in the exact case from the observation that if LEV ∗

UNI(O)
is found, we can immediately compute k∗

UNI(O) which is NP-hard (The-
orem 7). Due to the fact that any z ∈ O is also in X∗(V ) for any V ∈
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V∗(O), levUNI(O) = maxV ∈V∗(O){∅z∈X∗(V ){U(z) − V (z)}} − ∅z∈X∗ U(x∗)
= maxV ∈V∗(O){∅z∈X∗(V ) U(z) − ∅z∈X∗(V ) V (z)} − ∅x∗∈X∗ U(x∗) =
∅z∈X∗(V ) U(z) − minV ∈V∗(O){∅z∈X∗(V ) V (z)} − ∅x∗∈X∗ U(x∗) =
∅z∈X∗(V ) U(z) − k∗

UNI(O) − ∅x∗∈X∗ U(x∗). Note that ∅z∈X∗(V ) U(z) and
∅x∗∈X∗ U(x∗) can be computed in polynomial time. Moreover, it can be
shown that it is possible to efficiently construct a problem instance (G′, O)
from any (G, O) with the same cost, such that for G′: lev(UNI) = LEV(UNI).
This approach can be applied for the malicious mechanism designers and the
non-exact case as well.

Lower Bound Approximation: The game constructed from the SET-
COVER problem in Theorem 7 is modified for a benevolent mech-
anism designer in the exact case as follows: The utilities of Player
1 remain the same. The utilities of Player 2 are all zero except for
U2(e1, r) = (l + m)(

∑m
i=1 |Si|(m + 1)/(ml + m) − kLB − ε), where k is

the minimal number of sets needed to solve the corresponding SETCOVER
instance, ε > 0, and LB denotes a lower bound for the approximation
quality of the SETCOVER problem. Observe that X∗ consists of all
strategy profiles of column r. The target set we want to implement ex-
actly is given by O1 = {s1, ..., sm} and O2 = {e1, ..., el, d}. We compute
levopt

UNI = ∅o∈O U(o) − ∅x∈X∗ U(x) − k =
∑m

i=1 |Si|(m + 1)/(ml + m) −∑m
i=1 |Si|(m+1)/(ml +m)− (−kLB − ε)−k = k(LB −1)+ ε. As no polynomial

time algorithm can approximate k within a factor LB, LEV approx
UNI ≤ ε.

Since limε→0 LEV opt
UNI/LEV approx

UNI = ∞, the claim follows. A similar modi-
fication of the games in the proof of Theorem 7 and corresponding analysis
yield the same result for malicious mechanism designers and the non-exact
case. �
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Abstract. Most of the recent works on algorithmic mechanism design exploit
the solution concept of dominant strategy equilibria. Such work designs a proper
payment scheme so that selfish agents maximize their utility by truthfully reveal-
ing their types. It has been pointed out that these truthful mechanisms, the famous
among them being the VCG mechanisms, often incur high payments and fruglity
ratios. In this work, we exploit the solution concept of Nash implementation to
overcome this problem. Our mechanisms induce a set of Nash equilibria so that
selfish agents have incentive to act based on a Nash equilibrium. We prove that
our mechanisms enjoy substantial advantages over the truthful mechanisms in
terms of payment and frugality.

1 Introduction

Algorithmic mechanism design has attracted much attention of computer scientists
since the seminal work of Nisan and Ronen [13]. Following their results, most of
the works exploit the solution concept of dominant strategy equilibria [1,3,9,10,11,12].
Such work devises a proper payment scheme to ensure that, for each agent, truth-telling
will maximize its utility. The VCG mechanism [4,5,15] is probably the most famous
representative of the solutions enforcing truth-telling as the dominant strategy. We refer
to this class of mechanisms as truthful mechanisms. A number of reasons contribute to
the popularity of truthful mechanisms, including: (1) relieving each selfish agent from
second-guessing whether its declared type is its best choice; and (2) maximizing the
social efficiency of the outcome of the game.

In this paper, we introduce a different class of mechanisms which we call Nash Im-
plementation mechanisms. Their key difference is that instead of hoping the agents to
reveal their types, the proposed mechanisms induce a set of Nash equilibria so that
agents maximize their profits by acting based on any of the induced Nash equilibria.
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Moreover, given any of the induced equilibria, our mechanisms guarantee that the re-
sultant outcome would be the same as if every agent were telling the truth.

It is noteworthy that, as opposed to our mechanisms, the conventional truthful mech-
anisms, except the dominant strategy equilibrium, may contain other Nash equilibria
which may lead to undesirable outcomes. To demonstrate this possibility, consider the
following auction example. Suppose that agents a and b have true types ta = 2 and
tb = 4, respectively. The VCG mechanism works by giving the item to the highest
bidder (with tie-breaking rule that favors a) and charging him the cost of the second
highest bid. As is well-known, the dominant-strategy equilibrium warrants that the item
is given to agent b. However, consider the following scenario. Agent a bids 10 and agent
b bids 1. This is also a Nash equilibrium, but a gets the item, which is not the desired
outcome.

We shall formalize the concept of Nash implementation mechanisms in Section 2.
Here we first explain our motivation. Truthful mechanisms aim at soliciting the true
types from the agents. Unfortunately, this is often achieved at a high cost. As has been
pointed out in [2,8], the VCG mechanism may have to pay Θ(n) times the cost of the
second shortest path in the unicast game. The over-payment phenomenon of truthful
mechanisms is more precisely captured by the notion of the frugality ratio [10,14]. For
instance, Karlin et al. [10] proved certain lower bounds of truthful mechanisms, thus
implying that to acquire the true types from agents is often inherently costly.

To circumvent this over-payment problem, we relax the requirement of using the
dominant-strategy equilibrium to attain the desired outcome. We allow agents to scheme
together and to report their types, which correspond to a Nash equilibrium. The essence
of how to Nash implementation mechanisms boils down to how to create a proper in-
ducement so that agents profit by strategizing.

As we will show in the following sections, the most important advantages of Nash
implementation mechanisms are their smaller total payments and reduced frugality ra-
tios. Moreover, it is a more stable class of mechanisms in the sense that all Nash equi-
libria lead to the same desired outcome.

Our Results: To show how Nash implementation mechanisms work, we first present a
polynomial-time computable mechanism MLCPA for the unicast game. We prove that
its total payment is almost always smaller than that of the VCG mechanism; more gen-
erally, its payment is only slightly more than the cost of second shortest disjoint path,
while the VCG mechanism might pay Θ(n) times as much. Moreover, MLCPA has a fru-
gality ratio 2 + ε, while any truthful mechanisms has a frugality ratio at least Ω(

√
n).

We note that the frugality ratio of any Nash implementation for the unicast game is at
least 2, therefore MLCPA is almost optimal.

Considering the more general case of binary demand games, we prove that a neces-
sary condition for the existence of Nash implementation mechanisms is that the social
choice function must be monotonic, i.e., a selected agent will still be selected if it de-
clares a smaller cost. This condition turns out to be the same as for the truthful mecha-
nisms. Finally, we present a general framework for designing randomized Nash imple-
mentation mechanisms for binary demand games. We prove that our framework yields
a frugality ratio comparable to or significantly better than the truthful mechanisms. For
example, in the vertex cover game, the frugality ratio of the VCG mechanism is Θ(d),
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where d is the maximum degree in the graph. Our mechanism improves this to 1 + ε,
while 1 is clearly the lower bound.

Paper Structure: We review the definitions of mechanisms and introduce the necessary
notation in Section 2. Seciton 3 presents a Nash implementation mechanism for the
unicast game. Section 4 discusses the frugality ratio of this unicast mechanism. Sec-
tion 5 gives a general framework of Nash impelmentation for binary game. Section 6
concludes. Due to space constraint, some proofs are omitted here. See full version [6]
for details.

2 Preliminaries

A standard economic model for analyzing scenarios in which the agents act accord-
ing to their own self-interest is as follows. There are n agents. Each agent i, for i ∈
{1, · · · , n}, has some private information ti, called its type. The set of n agents define
a type vector t = (t1, t2, · · · , tn), which is called the profile. An output specification
maps each type vector t to a set of allowed outputs. Agent i’s preferences are given by
a valuation function vi that assigns a real number vi(ti, o) to each possible output o.
Given the action a of all agents, the utility (often called the profit) of agent i is denoted
as ui(a, ti). For a mechanism M = (O, P), we assume that the utility of every agent
is quasi-linear, i.e., ui(a, ti) = vi(ti, O(a)) + Pi(a).

Definition 1. A mechanism M contains two functions: an output function O and a
payment function P = (P1, · · · , Pn):
1. For each agent i, it has a set of strategies Ai. It can choose a strategy ai ∈ Ai.
2. For each strategy vector a = (a1, · · · , an), i.e., agent i plays strategy ai ∈ Ai, the

mechanism computes an output o = O(a) and a payment
P(a) = (P1(a), P2(a), · · · , Pn(a)). The payment Pi is the money given to each
participating agent i. If Pi < 0, it means that the agent has to pay −Pi to participate
in the action.

2.1 Truthful Mechanisms

By the well-known revelation principle, we can focus our attention on only the direct
revealing mechanisms, in which the types are part of the strategy space Ai for each
agent i. In practice, it is natural that these mechanisms should satisfy the two properties
below:

– Incentive Compatibility (IC): Revealing the type ti is a dominant strategy for
each agent i. In other words, for each agent i and any action a, we need that
vi(ti, O(a|iti))+Pi(a|iti) ≥ vi(ti, O(a))+Pi(a). Here, a|iti denotes that agent
i plays strategy ti and each of the other agents j �= i plays strategy aj .

– Individual Rationality (IR): This is also called Voluntary Participation. For each
agent i and any strategy vector a, it should have ui(a|iti, ti) > 0, i.e., agent i has
a non-negative profit if it reveals its true type ti.

Definition 2. A direct revealing mechanism is truthful (often referred to as strategy-
proof ) if it satisfies IR and IC.
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With a truthful mechanism, the agents have no incentive to deviate from the truthful
declaration because their overall utility would be no greater than it would have been if
they had told the truth. Moreover, the output function guarantees that, given the declared
profile d and the actual type vector t, O(t) = O(d).

2.2 Nash Implementation Mechanisms

A Nash implementation mechanism M is also composed of a pair of outcome function
O′ and a payment method P . It is associated with another social choice function O,
which maps a type vector t to a desirable outcome. The mechanism M should guarantee
that its output function O′ is “faithful” to the social choice function O. We first define
what do we mean by “faithful.”

Definition 3. The output function O and the social choice function O′ have the same
range, but may not have the same domain, O′(d) equals O(t), denoted by O′(d)�O(t),
if O′

i(d) = Oi(t) for every agent i.

Note that we allow the two functions O and O′ to have different domains. Therefore,
the declared profile d = (d1,d2, · · · ,dn) could be something different from a declared
type vector t′, i.e., the mechanism may require an agent to declare something other than
its own type ti. For example, as we will show in later sections, our mechanisms demand
agents to submit two bids to join the auction.

Having the above definition, we can now formalize what constitutes a Nash imple-
mentation mechanism.

Definition 4 (Nash Implementation Mechanism). Given a social choice function O,
a mechanism M = (O′, P) implements O in Nash equilibria if:
1. M induces a mapping T → D so that a type vector t ∈ T is mapped to a nonempty

subset of declared profiles M(t) ⊆ D.
2. Every declared profile d ∈ M(t) is a Nash equilibrium; conversely, every declared

profile forming a Nash equilibrium is in the set M(t).
3. Given any declared profile d ∈ M(t), O′(d)�O(t).

As mentioned earlier, we require that given any type vector, there should exist at least
one Nash equilibrium for the declared profile. Moreover, every Nash equilibrium in-
duced by this type vector should ensure that the outcome returned by O′ is the desirable
one as if everyone were behaving truthfully under the associated social choice function
O.

3 A Nash Implementation Mechanism for Unicast Game

We first review the unicast game. Assume G is a graph representing the network. Every
edge ei corresponds to a selfish agent and has a hidden cost ci for routing. We need
to “buy” a routing path from a source node s to a destination node t. This problem
is solvable by the VCG mechanism [13]. Specifically, the VCG mechanism will pick
up the least cost path LCP(s, t,d) (where d will be identical with the true costs c, as
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guaranteed by the mechanism), and pay each chosen edge ei on LCP(s, t,d) by the
amount Pk(d) = |LCP(s, t,d|k∞)| − |LCP(s, t,d|k0)|.

As Archer and Tardos [1] pointed out, the VCG mechanism in the unicast game can
be a costly solution. In certain cases, the payment is Θ(n) times the actual cost of the
second shortest path from s to t. To rectify this problem, Immorlica et al. [8] proposed
the first-price auction mechanism, in which agents are paid whatever the costs they
report if they are chosen finally. They point out that a Nash equilibrium may not exist
under this mechanism, but strong ε-Nash equilibria always do. Moreover, the payment
incurred by any strong ε-Nash equilibrium is never significantly more, and more often
less than that by the VCG mechanism. Our new mechanism is called the Least Cost
Path Auction (LCPA) mechanism, which is based on the work of Immorlica et al. [8].

The mechanism MLCPA = (OLCPA, PLCPA) implements the function OLCP in Nash
equilibria. The social choice function OLCP has bid vectors as domain and OLCP(b) =
LCP(s, t,b), returning the shortest path with regard to the bid vector b. The mechanism
MLCPA requires two bids 〈b,b′〉 from the agents (hence the domain of O′ is composed
of two sets of bid vectors); it maps the actual cost c to a nonempty set of Nash equilibria;
moreover, given any 〈b,b′〉 ∈ MLCPA(c), OLCPA(〈b,b′〉) = OLCP(c).

The details about MLCPA are given in Algorithm 1. We explain the high-level idea
here. First, we compute a shortest path LCP(s, t,b) based on the first bid b. Then we
construct another bid h so that given any edge i,

hi =
{

b′i if ei ∈ LCP(s, t,b);
bi if ei �∈ LCP(s, t,b). (1)

In other words, for those edges which are already on the path LCP(s, t,b), they can
raise their second bid in b′ (but only to a certain extent, as will be explained below).
Finally, we compute the shortest path LCP(s, t,h) and pay those chosen edges by the
values in h.

To adhere to Nash implementation, our primary concern is to make sure that
LCP(s, t,h) = LCP(s, t, c). Our main trick is to seek LCP(s, t, c) by the agents’ first
bid b. The difficulty lies in how to ensure that b = c. Our second concern is how
to guarantee that LCP(s, t,h) returns the same path. As mentioned above, the edges
on LCP(s, t,b) can alter the vector h by raising their second bid, and they benefit
from doing so since they will be paid the amount based on their second bid if they are
still chosen in LCP(s, t,h). Hence, we need to find a way to curb the over-aggressive
behavior of the agents in their second bid.

To address the above two concerns, we introduce the following reward-and-punish
device. In the beginning, every agent is given a small amount of premium (Line 1).
They then will be asked to send a dummy packet with a certain probability (Line 2). We
refer to this stage as the broadcast stage; this stage can be regarded as dealing out the
punishment to any agent who is not giving out its true cost in its first bid. The following
lemma captures the reason why we can guarantee that the first bid b is the same as the
actual cost c.

Lemma 1. For each link ei, its utility to broadcast gi(b) = −ρ ·ci + fi(s, t,b) strictly
decreases in [ci, +∞) and strictly increases in (−∞, ci] on bi.
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Algorithm 1. Least Cost Path Auction Routing Mechanism MLCPA = (OLCPA, PLCPA)
Input: A network G = (V, E), a source s ∈ V , a destination t ∈ V , d = 〈b,b′〉 the declared
profile, and two adjustable parameters τ and γ.
Output: A mechanism MLCPA.
Steps:

1: Set PLCPA
i (d) = fi(s, t,b), where fi(s, t,b) = τ ·

�
bu · (n · bu −

�
ej∈G−ei

bj) − b2i
2

�
,

for each edge ei ∈ G, and bu is the maximum cost any edge can declare.
2: With probability ρ = τ · (n · bu −

�
ei∈G

bi), each edge is asked to send a dummy packet.

3: Compute LCP(s, t,b); break ties by lexicographic order. For each edge ei on LCP(s, t,b),
set hi = b′

i, set hi = bi for other edges.
4: Compute LCP(s, t,h) and break ties according to the following rule: the edges on

LCP(s, t,b) have the highest priority while the other edges follow the lexicographic order.
5: Set OLCPA

i (d) = 1 and PLCPA
i (d) = PLCPA

i (d) + hi for each edge on LCP(s, t,h); i.e. the
edges on LCP(s, t,h) will receive the payment and relay the packet.

6: Set PLCPA
i (d) = PLCPA

i (d)−γ ·|b′
i−bi| for each edge in LCP(s, t,b) but not in LCP(s, t,h).

The edges on LCP(s, t,b) can raise their second bid to profit. The key idea is to make
sure that they can only raise their bids until a Nash equilibrium is reached. Exceeding
this point, the over-bidders will not be chosen in the final path LCP(s, t,h). Moreover,
they will be fined a certain amount (Line 6) because of their over aggressive behavior.
Those final chosen edges are asked to provide the service and are paid (Line 5). We refer
to their actual service (s−t routing) as the unicast stage. When computing LCP(s, t,b),
we break ties by some lexicographic order (Line 3). But when we compute LCP(s, t,h),
we give priority to those edges which are already chosen in LCP(s, t,b). This artifice
guarantees the existence of a Nash equilibrium (Line 4)1.

Nash Equilibria in MLCPA. We now build a set of bid vectors and prove that they
contain all the Nash equilibria induced by MLCPA.

Definition 5. 〈b,b′〉 is said to be a canonical form of the bid vectors if:
1. b = c.
2. For each edge ei ∈ LCP(s, t,b), bi ≤ b′

i ≤ |LCP(s, t, c|i∞)| − |LCP(s, t, c|i0)|
(which is indeed the payment edge ei gets under the VCG mechanism).

3.
∑

ei∈LCP(s,t,b) b
′
i =

∑
ej∈SLCP(s,t,c) cj , where SLCP(s, t, c) is the second shortest

s − t path disjoint from LCP(s, t, c).

In Lemma 2 below, we prove that all canonical bid vectors will be Nash equilibria and
vice versa in Lemma 3 below. Moreover, canonical bid vectors will lead to the outcome
demanded by MLCPA.

Lemma 2. (Necessity) A canonical bid vector 〈c, c′〉 is a Nash equilibrium for the
mechanism MLCPA. Moreover, such a bid vector guarantees that the final chosen path
is correct, i.e., LCP(s, t, c) = LCP(s, t,h).

1 The idea of using the costs of edges to break ties so as to guarantee the existence of a Nash
equilibrium is mentioned by Immorlica [7, Page 66].
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Lemma 3. (Sufficiency) Given a pair of bid vectors 〈b,b′〉 which forms a Nash equi-
librium, then it must be canonical. Moreover, such a bid vector guarantees that the final
chosen path is correct, i.e., LCP(s, t, c) = LCP(s, t,h).

Combining Lemma 2 and Lemma 3, we derive the major result of this section:

Theorem 1. Mechanism MLCPA implements the social choice function OLCP in Nash
equilibria. The social choice function OLCP selects the shortest parth from s to t.

By Definition 5 and Lemmas 2 and 3, the following theorem is immediate.

Theorem 2. The total payment under the mechanism MLCPA is at most ε more than
that of the VCG mechanism, where ε can be arbitrarily small. In particular, the total
payment is at most ε more than the actual cost of the second shortest path disjoint from
the shortest path.

Proof. The edges chosen in LCP(s, t,h) = LCP(s, t, c) will be paid at most what
they would have received under the VCG mechanism, because of the second part of
Definition 5. Moreover, by the third part of Definition 5, their collective payment will
be at most the cost of the disjoint second shortest path. Additionally, we still have to pay
an extra premium fi(s, t,b) to each agent i. To guarantee the total premium is smaller
than ε, we set τ ≤ ε/(n2b2

u). �

4 Frugality Ratio in MLCPA

In this section, we show that the frugality ratio of MLCPA is at most 2 + ε, while any
Nash implementation mechanism will have frugality at least 2 in the unicast game.
Hence MLCPA has an almost optimal ratio.

We first review the definition of a frugality ratio. Consider a binary demand game
G = (E , F ), where a set of elements E comprise the agents, and a certain task can
be accomplished by a feasible team f ∈ F of elements in E . Each element e provides
a service and incurs a fixed cost ce ∈ [0, ∞) for performing that task. A mechanism
M needs to find a team to perform this task and pay each element in the selected team
a certain amount such that certain properties are satisfied, e.g., individual rationality.
In [14], Talwar proposed to measure the overpayment for a binary demand game using
the frugality, which is defined as the total payment of the mechanism (e.g., VCG) over
the total cost of the second optimal team, which is the best team that does not intersect
with the team chosen by the mechanism. The frugality notion was then generalized by
Karlin et al. [10] to the case where the second optimal disjoint team may not exist. We
review their definition here. In a binary demand game with agents E and feasible sets
F , let Topt(c) be the feasible team with the optimal cost and υ(c) be the solution of
the following problem.

υ(c) = min
∑

ei∈Topt(c)

xi subject to (2)

1. xi ≥ ci for every agent ei ∈ E ;
2.

∑
ei∈Topt(c)−F xi ≤

∑
ej∈F−Topt(c) cj, ∀F ∈ F ; and
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3. for every ei ∈ Topt(c), there is a team F ∈ F such that ei �∈ F and∑
ei∈Topt(c)−F xi =

∑
ej∈F−Topt(c) cj .

Definition 6. The frugality, denoted by φM, of a truthful mechanism M for a given
game G is defined as φM = supc

P(c)
υ(c) , i.e., the maximum possible ratio of the total

payment by mechanism M over υ(c). The frugality of a game G = (E , F ) is defined
as φ(E ,F) = infM φM, where the infimum is taken over all truthful mechanisms M.

We can extend the frugality definition for truthful mechanisms to Nash implementation
truthful mechanisms in a natural way as follows.

Definition 7. The frugality, denoted by φM, of a Nash implementation mechanism M
for a given game G is defined as φM = supc

P(d)
υ(c) , i.e., the maximum possible ratio of

the total payment of the mechanism M over υ(c). Here d is a Nash equilibrium under
M when the true cost vector of agents is c. The frugality of a game G = (E , F ) based
on output method O is defined as φ(E ,F ,O) = infM φM, where the infimum is taken
over all Nash implementation truthful mechanisms M with respect to method O. The
frugality of a game G = (E , F ) is defined as φ(E ,F) = infM φM, where the infimum
is taken over all Nash implementation mechanisms M.

We show below that MLCPA achieves frugality 2 + ε, and this ratio is almost optimal.
Before we proceed, we should point out that Karlin et al. [10] proved that the VCG
mechanism has frugality Θ(n) and any truthful mechanism for the unicast game has
frugality Ω(

√
n). Clearly, Nash implementation mechanisms have better frugality.

Theorem 3. The frugality of the mechanism MLCPA is 2 + ε, and the frugality of any
Nash implementation mechanism based on LCP is at least 2.

5 Nash Implementation Mechanisms for Binary Demand Games

In this section, we give a general framework for a Nash implementation mechanism.
Assuming a social choice function Oopt which returns the team with minimum cost,
Algorithm 2 gives a mechanism implements Oopt in Nash equilibria. Without loss of
generality, we assume that the given set system (E , F ) is upwards closed, i.e. for every
S ∈ F and every superset T with S ⊆ T ⊆ E , we have T ∈ F . To avoid triviality, we
assume that the system is monopoly-free, i.e., there is no element present in all feasible
teams. For any set T ⊆ E , let w(T, c) =

∑
e∈T ce be the weight of the team T under

cost vector c.
The intuition for Algorithm 2 is similar to the Algorithm 1. In the beginning, every

agent is given a premium (Line 1). There is a chance that it will be recruited into the
team (Line 2) even if it does not belong to the optimal team. We make the final decision
based on h and punish the over-greedy bidders (Line 6).

Theorem 4. With probability 1 − ε, for arbitrarily small ε, the mechanism Mout im-
plements Oopt in Nash equilibria.
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Algorithm 2. General Framework to Design Nash Implementation Mechanisms for
Binary Demand Game

Input: A set system (E , F ), d = 〈b, b′〉 the declared profile, and two adjustable parameters τ
and γ.
Output: A mechanism implementing MoutinNashequilibria.
Steps:

1: Set Pout
i (d) = fi(s, t,b), where fi(b) = τ ·

�
bu · (n · bu −

�
ej∈E−ei

bj) − b2i
2

�
for each

agent i.
2: With probability ρ = τ · (n · bu −

�
ei∈E

bi), we select all elements and ask them to perform

the service.
3: Find the optimal teams and break ties by favoring teams with bigger sizes. After that, break

ties by lexicographic order. For every agent i on Topt(b), set hi = b′
i; otherwise set hi = bi.

4: Find the optimal teams on Topt(h) and break ties according to the rule that teams containing
members in Topt(b) have the highest priority and if two teams have the same cost, choose
the one that contains more agents in Topt(b).

5: Set Oout
i (d) = 1 and Pout

i (d) = Pout
i (d) + hi for each agent in Topt(h).

6: Set Pout
i (d) = Pout

i (d) − γ · |b′
i − bi| for each agent on Topt(b) − Topt(h).

The proof can be obtained through Lemmas 4 and 5 below. Here we only mention that
there is a small probability that the final recruited team is a superset of the optimal team.
To make sure the probability of this happening is smaller than ε, we make τ ≤ ε/(n2bu).

Similar to the mechanism MLCPA for unicast game, any Nash equilibrium for the
mechanism Mout has the following properties.

Lemma 4. If d = 〈b,b′〉 is a Nash equilibrium, then (1) b = c; (2) b′
i = ci if i �∈

Topt(c) and b′
i ≥ ci otherwise; (3) for any feasible team T , w(T,b′) ≥ w(Topt(c),b′).

Before we present our main results in Theorem 5 below, we first introduce the notion
of the worst and best Nash equilibria for binary demand games. Consider the linear
program (2); interestingly, each solution that satisfies all constraints corresponds to a
subvector of b′ in a Nash equilibrium d.

Lemma 5. There exists an one-to-one mapping between the feasible solution satisfying
the constraints of linear program (2) and b′ of a Nash equilibrium d for the mechanism
Mout.

Recall that the main part of payment is the sum of the bids in the subvector. Thus, for
convenience of presentation, we call each solution that meets all constraints of the linear
program (2) a NE bid. Thus, the solution to linear program (2) is the minimum NE bid,
denoted by Xmin. Next, we introduce a counterpart of the linear program (2). Let 	(c)
be the solution of the following linear program:

	(c) = max
∑

ei∈Topt

xi subject to (3)

1. xi ≥ ci for each agent ei ∈ E ;
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2.
∑

ei∈Topt(c)−T xi ≤
∑

ej∈T−Topt(c) cj , ∀T ∈ F ; and
3. For every ei ∈ Topt(c), there is a T ∈ F such that ei �∈ T and

∑
ei∈Topt(c)−T xi =

∑
ej∈T−Topt(c) cj .

The solution to linear program (3) is maximum NE bids, denoted by Xmax. The ratio

of the maximum and minimum NE bids is λ =
�

ei∈Topt(c)
xmax

i
�

ei∈Topt(c)
xmin

i
, which is called NE

ratio. Interestingly, NE ratio always equals the ratio between the price of stability over
the price of the anarchy. Let OPT (c) be the globally optimum solution. Recall that the
price of stability is defined as �(c)

OPT (c) , i.e., the ratio of the value of the largest Nash

equilibrium over the optimum solution. The price of anarchy is defined as υ(c)
OPT (c) ,

i.e., the ratio of the value of the smallest Nash equilibrium over the optimum solution.
Next, we show a relationship between the Nash equilibrium and the frugality of a Nash
implementation mechanisms.

Theorem 5. Let Mout = (O′, P) be the mechanism computed by Algorithm 2. Then
its frugality is λ + ε, where λ is the NE ratio and ε is a positive number depending on
parameters τ and γ.

Proof. From Lemma 5, if d is a Nash equilibrium of Mout, then b′ satisfies all the
constraints of linear program (3). Thus,

∑
ei∈Topt(c) b′i ≤

∑
ei∈Topt(c) xmax

i . Recall
that the total payment is

P(d) =
∑

ei

fi(b) +
∑

ei∈Topt(c)

b′i ≤
∑

ei∈Topt(c)

xmax
i + τ · n2b2

u

= (1 + ε) ·
∑

ei∈Topt(c)

xmax
i = (1 + ε) · λ ·

∑

ei∈Topt(c)

xmin
i .

This proves the theorem. �

Recall that in order to compute the NE ratio λ, we need to solve linear program (2),
which is still an open problem even for some special binary demand games, e.g., the
shortest path game. However, we are able to get tight bounds of the NE ratio for some
binary demand games using different approaches. Before we show how to bound the
NE ratio, we define some terms first.

We call a feasible team T a base-team if removing any elements from T makes it
unfeasible. Given a team T1 ⊆ T where T is a base team, we say that team T2 covers
T1 through T if (T − T1)

⋃
T2 is also a feasible team. T2 covers an element ei through

T if there exists an T1 ⊆ T such that ei ∈ T1 and T2 covers T1 through T .
A team set T is a team-cover of a base-team T if for each element ei ∈ T , there ex-

ists a team Ti ∈ T such that Ti covers ei through T . A team cover T of T is a minimal
team cover (MTC) of T if (1) T − Ti is not a team cover of T for any Ti ∈ T ; and (2)
for any team Ti ∈ T and ej ∈ T , (T −Ti)

⋃
(Ti−ej) is not a team cover. Given a base

team T and its minimal team cover T , the degree of an element ei ∈ T is the number of
different teams in T that covers ei through T , denoted by degi(T, T ). The maximum
degree of T and T is degmax(T, T ) = maxei∈T degi(T, T ); the minimum degree of
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T and T is degmin(T, T ) = minei∈T degi(T, T ). The degree ratio of T and T is

dr(T, T ) = degmax
(T,T )

degmin
(T,T )

and degree ratio of game G is dr(G ) = maxT,T dr(T, T ).

Theorem 6. Assume we are given a fixed cost vector c. We have λ ≤ dr(c). Here
dr(c) = maxT dr(Topt(c), T ) where T is a minimal team-cover of Topt(c).

Proof. From the definition of bmin, for every ei ∈ Topt(c), there exists a Ti ∈ F such
that ei �∈ Ti and∑

ej∈Topt(c)−Ti
xmin

j =
∑

ej∈Ti−Topt(c) cj . Let T ′
i = Ti −Topt(c) and Fi = Topt(c)−

Ti. Then T = {T ′
i : ei ∈ Topt(c)} is a team-cover of Topt(c). Let T � be any min-

imal team-cover that is a subset of T . Without loss of generality, we assume T � =
{T ′

1, . . . , T
′
k}. Thus, dr(c) ·

∑
ej∈Topt(c) xmin

j ≥
∑k

i=1

∑
ej∈Fi

xmin
j =

∑k
i=1

∑
ej∈T ′

i

cj . On the other hand, T ′
i covers Fi through T ,

∑
ej∈Fi

xmax
j ≤

∑
ej∈T ′

i
cj . Thus,

∑

ej∈Topt(c)

xmax
j ≤

k∑

i=1

∑

ej∈Fi

xmax
j ≤

k∑

i=1

∑

ej∈T ′
i

cj ≤ dr(c) ·
∑

ej∈Topt(c)

xmin
j .

Therefore, λ ≤ dr(c), which proves the theorem. �

Table 1. Summary of the frugalities for some binary demand games. Here, d is the maximum
degree of a vertex in the given graph.

frugality VCG mechanism Minimum frugality Nash Implementation
ratio Truthful mechanism mechanism Mout

Matroid Game 1 1 1 + ε
Unicast Game Θ(n) Ω(

√
n) 2 + ε

Vertex Cover Game Θ(d) Ω(
√

d) 1 + ε
Edge Cover Game Θ(n) Ω(n) d − 1 + ε

Next we show how to find the NE ratio via an example of the vertex cover game. In
the vertex cover game, given a graph G = (V, E) and each vertex vi has a cost ci, we
need to find a subset S ∈ V such that each edge has at least one vertex in S. Here every
vertex is an element and a base-team is a minimum vertex cover. For the vertex cover
game, we have the following lemma regarding dr(c).

Lemma 6. For the vertex cover game, given a fixed cost vector c, we have dr(c) = 1.

By definition, the NE ratio λ is at least 1. From Theorem 6 and Lemma 6, λ ≤ 1. Thus,
the NE ratio of a vertex set cover game is exactly one.

Theorem 7. For the vertex cover game, the frugality of the Nash implementation mech-
anism computed by Algorithm 2 is 1+ε and the frugality of the VCG mechanism is n−1,
where n is the number of the vertices. For any truthful mechanism, the frugality is at
least Ω(

√
n).

The frugality ratio of the edge cover game under various mechanisms is summarized in
Theorem 8 below.
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Theorem 8. Given a graph G with maximum degree d, the frugality ratio of the Nash
implementation mechanism computed by Algorithm 2 is d−1+ε and the frugality ratio
of the VCG mechanism is n − 1. Any truthful mechanism has the frugality ratio at least
Ω(n)

Table 1 summarizes the frugality ratios of several binary demand games under three dif-
ferent mechanisms: the VCG mechanism, the minimum frugality ratio truthful mech-
anism and our Nash implementation mechanism Mout defined by Algorithm 2. We
point out that sometimes the frugality ratio does not fully capture the over-payment of a
mechanism. For example, even though the VCG mechanism has a comparable frugality
ratio to Algorithm 2, the actual payment of the former can be Θ(n) times the latter. For
example, consider the following spanning tree game. Given a cycle with only one edge
having cost 1 while the others having cost 0. The VCG mechanisms pays n − 1 while
our mechanism only 1 + ε.

6 Discussions

In this paper, we propose a class of mechanisms which implement social choice func-
tions in Nash equilibria. Instead of relying on dominant strategy equilibria, these mech-
anisms aim at ensuring that any attainable Nash equilibrium will lead to the desirable
outcome. We show that these mechanisms enjoy advantages over truthful mechanisms
in terms of reduced payments and better frugality ratios.
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Abstract. We consider the problem of sharing the cost of multicast
transmissions in non-cooperative undirected networks with non-negative
edge costs. In such a setting, there is a set of receivers R who want to
be connected to a common source s. The set of choices available to each
receiver r ∈ R is represented by the set of all (s, r)-paths in the network.
Given the set of choices performed by each receiver, a public known
cost sharing method determines the cost share to be charged to each of
them. Receivers are selfish agents aiming to receive the transmission at
the minimum cost share and their interactions create a non-cooperative
game. We study the problem of designing cost sharing methods yielding
games whose price of anarchy (price of stability), defined as the worst-
case (best-case) ratio between the cost of a Nash equilibrium and that
of an optimal solution, is not too high. None of the methods currently
known in the literature is able to achieve a good behavior on the price
of anarchy and very little is known about their price of stability. We
first give a lower bound on the price of stability of such methods, then
we define and investigate some classes of cost sharing methods in order
to characterize their weak points. Finally, we propose a new method,
namely the free-riders method, which if from one hand it cannot improve
in general on the price of anarchy of multicast transmission games, on
the other one, it admits a polynomial time algorithm for computing a
pure Nash equilibrium whose cost is at most twice the optimal one.

1 Introduction

In many real life situations we are faced with systems populated by independent
selfish agents each operating according to their self-interest and optimizing an
individual objective function. Selfish behavior naturally evokes the use of Game
Theory [14] and Nash equilibria [12,13] in order to characterize solutions which
can be consistent with the presence of non-cooperative agents.

With the affirmation of the Internet and huge networks in general, the study
of non-cooperative networks has arisen as one of the most fervent research ar-
eas in Computer Science. Starting from the seminal paper by Koutsoupias and
Papadimitriou [10], lots of traditional optimization problems on communication
networks have been restated in a non-cooperative fashion and the notion of ap-
proximation ratio has been replaced by that of price of anarchy (the worst-case

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 390–401, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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ratio between the cost of a Nash equilibrium and that of an optimal solution) as
a measure on how well a given algorithm or communication protocol can solve
such problems. Network design, in particular, is an interesting area of applica-
tion for this new approach. In such a setting, an alternative measure to the price
of anarchy, that of price of stability [2], is often adopted. The price of stability
measures the best-case ratio between the cost of a Nash equilibrium and that of
an optimal solution. Its importance is due to the fact that a best Nash equilib-
rium can be considered as the optimal solution that can be proposed from which
no player will defect.

In this paper, we consider the problem of sharing the cost of multicast trans-
missions in non-cooperative networks. In the classical version of the problem,
we are given an undirected network G = (V, E, c) with c : E �→ R+, a source
node s ∈ V and a set of ρ receivers R ⊆ V \ {s}. The objective is to find a
minimum cost multicast tree, that is a tree of minimum total cost rooted at s
and spanning the set of receivers R. Clearly, this is the problem of determining
a minimum cost Steiner tree whose set of terminals is R∪{s}. Now, assume that
the cost of a multicast tree is shared among the receivers in order to recover
exactly its cost. The algorithm used to compute the cost share to be charged
to each receiver is called cost sharing method. In the non-cooperative version of
this problem, each receiver is a selfish agent only interested in being charged
the lowest possible cost share by the cost sharing method. Thus, a receiver may
not agree on a particular solution (for instance, the minimum cost one) if she
can be part of another solution yielding a lower cost share. Such a selfish be-
havior creates a non-cooperative game among ρ players (the receivers) which is
assumed to end up to a certain pure Nash equilibrium, if any. The input network
specifies the set of strategies available to the receivers: each receiver r ∈ R can
choose to adopt one of the possible (s, r)-paths in G. At each moment during
the game the set of choices performed by all the receivers defines the state of
the game. The state of the game is a subgraph of G containing an (s, r)-path
for each r ∈ R, but it can no longer be a tree. The payoff achieved by each
receiver on a particular state is given by the cost share charged to the receiver
by the cost sharing method. Each time a receiver detects a better path, she per-
forms an improving step (a move, for short). The sequence of moves performed
by the receivers generates a sequence of transitions between different states. We
say that a cost sharing method yields convergent games (or, that the method is
convergent) if such a sequence of transitions is always guaranteed to end up at
a Nash equilibrium starting from any initial state. The definition of a particular
cost sharing method is the only instrument available to the network manager
in order to keep the overall cost of the created network reasonably low. This is
precisely the task we pursue in this paper: determining convergent cost sharing
methods yielding a low price of anarchy and/or stability on all possible networks.

Related Works. The problem of sharing the cost of multicast transmissions in
non-cooperative networks has been studied according to two main approaches.
The first one is significantly different than ours and is based on the design of
good cost sharing mechanisms rather than on good cost sharing methods. In the
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underlying model, it is assumed that each player gets a certain utility from the
transmission. Such a value is only known to the player. Each player is asked to
report the network manager a utility value which may differ from the real one.
According to the set of reported utilities, the cost sharing mechanism determines
which players will receive the transmission, i.e., the set of receivers and the
relative multicast tree, while the cost sharing method determines the cost share
to be charged to each receiver. Since the reported utility values influence the
cost shares, players may lie by misreporting their utilities in order to receive
the transmission at a lower price. The main task pursued in this model is thus
that of designing strategyproof cost sharing mechanisms, that is mechanisms for
which the dominant strategy for each player is to declare her real utility value.
This is usually obtained by combining a standard cost sharing mechanism due to
Moulin and Shenker [11] together with one of two classical cost sharing methods,
namely the marginal cost method and the Shapley value method [17]. Several
papers [3,4,7,8,9,15,16] have addressed this problem.

The second approach is the one we adopt in this paper. As we have already ex-
plained, in this model the solution is obtained dynamically as an outcome of the
non-cooperative game created by the particular cost sharing method adopted
by the network manager. The problem of sharing the cost of multicast trans-
missions has been first considered in wireless networks [6] and then readdressed
to traditional wired ones and extended with new results in [5]. In these papers
four natural cost sharing methods are proposed and analyzed: the egalitarian,
the path-proportional, the egalitarian-path-proportional and the Shapley value
method. All methods but the path-proportional one are proved to yield conver-
gent games and a high price of anarchy is shown for all of them. In particular,
the egalitarian method has an unbounded price of anarchy, while all the others
have price of anarchy equal to ρ. The more general problem of non-cooperative
network design have been considered in [1]. In the underlying model, each player
has a set of terminal nodes that she wants to connect and the price of stability
of the Shapley value method is analyzed. From the results achieved in the paper,
it follows that the Shapley value method has price of stability equal to Hρ for
directed networks. This results clearly yields the same upper bound on undi-
rected networks (which is our scenario of investigation). The authors pose the
determination of the price of stability of the Shapley value method in undirected
networks as an interesting open problem. In the full version of their paper they
show that, for the case of multicast transmissions as defined in our paper, it is
equal to 4/3 for the case ρ = 2 thus improving on the value H2 = 3/2.

Our Contribution. We start our research by reconsidering the cost sharing
methods presented in [5]. We encompass the path-proportional, the egalitarian-
path-proportional and the Shapley value cost sharing methods into the more
general class of weakly fair cost sharing methods (see Section 2) and give the
first lower bounds on their price of stability. We note that the instances yielding
the worst-case lower bound on the price of anarchy of all known methods are
usually of the same form. We can also prove formally this empirical result for
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a subclass of cost sharing methods that we call topology independent strongly
fair monotone methods.

The intuition behind the analysis of these situations suggested us a new weakly
fair method, which we call the free-riders method. We prove that this method
yields convergent games and design a polynomial time algorithm for computing
one of its pure Nash equilibria. If from one hand the price of anarchy of the
free-riders method remains ρ on some extreme situations, we prove that the cost
of the Nash equilibrium computed by our algorithm is at most twice that of an
optimal solution and present also an instance showing that the analysis is tight.
This gives also an upper bound on the price of stability of the free-riders method
for which we also present a lower bound equal to ρ+2

ρ+1 .
As suggested by its name, the free-riders method encourages the phenomenon

of free-riders and so it can be considered somehow unfair. However, we prove that
any weakly fair method allowing no free-riders cannot achieve a price of anarchy
equal to 1. Moreover, no weakly fair method which is topology independent
(that is, a method always computing the same cost shares on the same states no
matter whether the underlying network topology may be different) can achieve
a price of stability equal to 1.

We list the results of this paper, together with the ones already known in the
literature, in Figure 1.

Cost sharing method Price of stability Price of anarchy

Egalitarian 1 ∞ [5]

Egalitarian-path-proportional [ 2ρ
ρ+1 ; ρ] [∗] ρ [5]

Path-proportional [ 1.915ρ
ρ+1.313 ; ρ] [∗] ρ [5]

Shapley value [ 12ρ
7ρ+5 ; Hρ] [1][∗] ρ [5]

Free-riders method [ ρ+2
ρ+1 ; 2] [∗] ρ [∗]

Fig. 1. Results for the price of Nash equilibria on multicast transmission games. Label
[∗] denotes the achievements of this paper.

Paper Organization. The paper is organized as follows. Next section con-
tains the necessary definitions and notation. Section 3 addresses the class of fair
cost sharing methods, while in Section 4 we present and analyze the free-riders
method. Finally, in the last section we give some concluding remarks and discuss
open problems. Due to space limitations all proofs have been removed and will
be given in the full version of the paper.

2 Definitions and Notation

An instance I = (G, R, s) of the multicast transmissions game is defined by an
undirected network G = (V, E, c) with c : E �→ R+, a source node s ∈ V and
a set of ρ receivers R ⊆ V \ {s}. Each receiver r ∈ R has a set of strategies
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Pr(G, s) which consists of all the (s, r)-paths in G. We denote as πr the strategy
chosen by receiver r. The union Π =

⋃
r∈R πr of the strategies played by all

the receivers is a state of the game and we define Π(I) as the set of all possible
states which can be obtained on instance I. The cost of a state Π is defined as
c(Π) =

∑
e∈Π c(e), while c(πr) =

∑
e∈πr

c(e) is the cost of the (s, r)-path in Π .
Once fixed a particular cost sharing method M, we consider the non-cooperative
game induced by M on I.

Definition 1. A cost sharing method M is a function that, given an instance
I = (G, R, s) and a state Π, associates a cost share Mr(I, Π) ≥ 0 to each
receiver r ∈ R in such a way that

∑
r∈R Mr(I, Π) = c(Π).

The payoff achieved by player r on state Π is defined as the cost share Mr(I, Π)
computed by the cost sharing method M. We denote as T ∗ a minimum cost
Steiner tree connecting the required set R ∪ {s} and as T (M, I) the set of
pure Nash equilibria for the multicast transmission game induced by M on
instance I. The price of anarchy (resp. stability) of M on instance I is defined
as PoA(M, I) = maxΠ∈T (M,I)

c(Π)
c(T ∗) (resp. PoS(M, I) = minΠ∈T (M,I)

c(Π)
c(T ∗) ).

We are interested in determining cost sharing methods inducing games whose
prices of anarchy and stability are as low as possible on any possible instance.
Hence we define the price of anarchy (resp. stability) of M as PoA(M) =
supI PoA(M, I) (resp. PoS(M) = supI PoS(M, I)).

As it can be easily imagined, one may design plenty of different cost sharing
methods. In the sequel we outline some properties allowing us to classify such
methods into general classes.

Definition 2. A cost sharing method M is

• weakly fair if Mr(I, Π) ≤ c(πr);
• strongly fair if the cost of each edge e ∈ Π is only shared among its users,

hence, if Mr(I, Π, e) denotes the fraction of c(e) charged by M to r, we have
Mr(I, Π) =

∑
e∈πr

Mr(I, Π, e);
• pure if Mr(I, Π) > 0 for each r ∈ R such that c(πr) > 0;
• aggregating if each of its Nash equilibria is a tree;
• topology independent if for any two instances I =(G, R, s) and I ′=(G′, R, s)

and any state Π ∈ Π(I) ∩ Π(I ′) it holds Mr(I, Π) = Mr(I ′, Π) for each
r ∈ R.

Clearly, it follows from definition that a strongly fair method is also weakly fair
since Mr(I, Π) =

∑
e∈πr

Mr(I, Π, e) ≤
∑

e∈πr
c(e) = c(πr).

The majority of natural cost sharing methods one can think of are fair ones.
This seems perfectly reasonable: why should a receiver pay for resources she is
not using? However, this is really true only for strongly fair methods. Weakly
fair methods, in fact, only give the receiver the feeling of paying only for the re-
sources she is using, since the cost share can also be influenced by the cost of the
resources used exclusively by other receivers (see for example the egalitarian-
path-proportional method). On the other hand, also pure methods are highly
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desired: why should a receiver not pay for the resources she is using? The defini-
tion of aggregating methods, instead, is more related to the notion of efficiency
of Nash equilibria: if a Nash equilibrium is not a tree, hence containing cycles,
it is more likely to yield a high price of anarchy. Finally, topology independent
methods guarantee that the cost share is only a function of the current state and,
not requiring a possibly onerous analysis of the network topology, are easier to
be computed. Throughout the paper, we will only deal with topology indepen-
dent cost sharing methods, hence, in order to simplify the notation, we will write
Mr(Π) instead of Mr(I, Π) when the instance I = (G, R, s) is fixed.

Given a state Π , let ne(Π) be the number of receivers using edge e in their
strategies. We introduce an ordering on the ne(Π) receivers using e and use
σe(Π, r) to define the position occupied by receiver r in the ordering defined on
edge e at state Π . A natural way to define such an ordering is to consider the
evolutionary behavior of the receivers during the game. One may start with an
arbitrary ordering defined on the initial state of the game. Then, each time a
receiver r changes her strategy from πr to π′

r, thus letting the game evolving from
state Π to state Π ′, we have σe(Π ′, r′) = σe(Π, r′)−1 for each e ∈ πr \π′

r and for
each receiver r′ such that σe(Π, r′) > σe(Π, r), while we have σe(Π ′, r) = ne(Π ′)
for each e ∈ π′

r \ πr.

Definition 3. A cost sharing method M is dynamic if Mr(I, Π) is a function
of σe(Π, r).

In such a setting, a state of the game is thus represented by the pair (Π, σ).
Throughout the paper we will make an intensive use of the parallel link graph

in order to model worst-case behavior of several cost sharing methods. The use
of such a topology in our multicast transmission games may look like a non-
sense since the parallel link graph is a multigraph and it assumes the presence
of multiple receivers residing at the same node and both of these properties are
indeed not allowed in our model. However, we stress here that the parallel link
graph can be seen as a compact way to represent a particular legal network
topology for our games as shown in Figure 2.

All the receivers have two different strategies in the first network, call it G,
that is, the one using the edge of cost x and the one using the edge of cost y.

Fig. 2. A network and its compact representation as a parallel link graph
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The same set of strategies, together with their cost, persists in the parallel link
graph representation G′. Hence, we have a bijection B between the set of states
of both the two networks. Clearly, for each considered cost sharing method and
receiver r it must be proved that Mr(G, R, s, Π) = Mr(G′, R, s, B(Π)).

The four cost sharing methods, proposed and studied so far in the literature
are:

• the egalitarian method [5], defined as Mr(I, Π) = c(Π)
ρ ;

• the egalitarian-path-proportional method [5], defined asMr(I,Π)= c(Π)·c(πr)�
r∈R c(πr);

• the path-proportional method [5], defined as Mr(I, Π, e) = c(e)·c(πr)�
r:e∈πr

c(πr) ;

• the Shapley value method [1,5], defined as Mr(I, Π, e) = c(e)
ne(Π) .

The fact that the last three methods are pure and topology independent is
quite clear from their definition. The path-proportional method and the Shapley
value method are also strongly fair. For the egalitarian-path-proportional one
we prove the following result.

Proposition 1. The egalitarian-path-proportional method is weakly fair.

As to the aggregating property, the egalitarian method is clearly an aggregating
one since removing cycles makes the overall cost of the state decrease. Also the
Shapley value method is aggregating as shown in [6]. We now prove that the
remaining two methods do not satisfy this property.

Proposition 2. The egalitarian-path-proportional and the path-proportional
methods are not aggregating.

3 Fair Cost Sharing Methods

The only non-fair method proposed in the literature is the egalitarian one which,
if from one hand is the only known method achieving a price of stability equal
to 1, from the other hand has a price of anarchy infinitively high.

The first result we propose in this section is an upper bound on the price
of anarchy of weakly fair cost sharing methods. This follows by extending the
proof presented in [5] for the path-proportional, egalitarian-path-proportional
and Shapley value cost sharing methods.

Theorem 1. PoA(M) ≤ ρ for any weakly fair cost sharing method M.

In order to obtain a matching lower bound on the price of anarchy of a fair
cost sharing method, we prove the following interesting result for the subcase
of topology independent strongly fair monotone methods. To this aim, we say
that a strongly fair method is monotone when adding a new user to an edge e
strictly decreases the maximum cost share yielded by e. More formally, let M
be a strongly fair method. We say that M is monotone if for each edge e and
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for each pair of states Π ′ and Π ′′ such that |R′
e| = |{r ∈ R : e ∈ π′

r}| < |R′′
e | =

|{r ∈ R : e ∈ π′′
r }|, it holds maxr∈R′

e
Mr(Π ′, e) > maxr∈R′′

e
Mr(Π ′′, e).

Theorem 2. If the price of anarchy of a topology independent strongly fair
monotone cost sharing method M is ρ, then there exists (an inconsequential
generalization of) a parallel link graph G′ for which PoA(G′, R, s, M) = ρ.

Besides of being topology independent strongly fair, the path-proportional and
the Shapley value cost sharing methods are also monotone. Hence, by apply-
ing the above theorem we can simplify the proofs presented in [5] for the lower
bounds on the price of anarchy yielded by these methods as it can be easily
seen on the parallel link graph depicted in Figure 2 where we set x = 1 and
y = ρ. Interestingly enough, such a worst-case behavior applies also to the egal-
itarian method by setting y = ε, with ε > 0 arbitrarily small, so as to obtain an
unbounded price of anarchy. The only exception is the egalitarian-path propor-
tional method which, in fact, is neither strongly fair nor monotone. As shown in
[5], a price of anarchy of ρ can be forced on this method by using a generalization
of the parallel link graph. Thus, even though it is rather difficult to prove this
claim in general, since one may design plenty of fancy cost sharing methods, one
can conjecture that the parallel link graph and its generalizations are likely to
exhibit the worst-case behavior on the price of anarchy of each of the methods
we have in mind.

As to the price of stability of the methods considered so far, no results are
known in the literature except for the trivial upper bound of Hρ for the Shapley
value method coming from the results presented in [1] for directed networks and
that the egalitarian method has price of stability equal to 1. We provide a first
characterization of the lower bounds on the price of stability of these methods
in the following theorem.

Theorem 3. The price of stability of the Shapley value cost sharing method is at
least 12ρ

7ρ+5 if ρ is odd and at least 12ρ
7ρ+4 if ρ is even, that of the path-proportional

method is at least 1.588ρ
0.829ρ+1.088 , while for any ρ ≥ 3 that of the egalitarian-path-

proportional method is at least 2ρ
ρ+1 .

We stress that for ρ = 2 our lower bound for the Shapley value method matches
the one given in [1] which is known to be tight.

4 The Free-Riders Cost Sharing Method

As an informal hint provided by Theorem 2 and its consequent discussion, we
have that, if we wish to design a cost sharing method yielding a low price of
anarchy, we should probably think of a method having good performances on
parallel link graphs.

Starting from this intuition, we propose a topology independent strongly fair
dynamic cost sharing method that we call the free-riders method.
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Definition 4 (Free-riders method)

Mr(I, Π, σ, e) =

{
c(e) if σe(Π, r) = ne(Π),
0 otherwise.

According to this method, each edge e is paid for by one and only one receiver,
hence all other receivers using e act as free-riders. It is easy to see that on the
instances yielded by parallel link graphs as depicted in Figure 2, the price of
anarchy of the free-riders method is 1 as long as x 
= y. In the case in which
x = y, we have that each solution in which some of the receivers use the link of
cost x and some other ones use that of cost y is a Nash equilibrium for the free-
riders method. This shows that such a method is not aggregating. By generalizing
this situation to the case in which there are ρ parallel links all having the same
cost and considering the Nash equilibrium in which each receiver uses a different
link, a lower bound of ρ on the price of anarchy of the free-riders method can be
still obtained. An upper bound of ρ for the price of anarchy comes from Theorem
1, since the free-riders method is weakly fair.

In order to be proposed in practice, we have to prove that this new method
yields convergent games. This is done in the following theorem.

Theorem 4. The free-riders method yields convergent games.

An interesting property is that each minimum cost path tree yields a Nash
equilibrium for the free-riders method.

Lemma 1. Each state (Π, σ) such that Π is a minimum cost path tree for the
set of receivers R in G is a Nash equilibrium for the free-riders method.

This lemma suggests us directly a suitable instance for lower bounding the price
of anarchy of the free-riders method even when restricting to Nash equilibria
exhibiting the tree property.

Theorem 5. The price of anarchy of the free-riders method is ρ even when
restricting to Nash equilibria which are trees.

Lemma 1 gives us a polynomial time algorithm for computing a Nash equilibrium
yielded by the free-riders method. However, we have seen that such an equilib-
rium may have a cost much greater than the minimum cost multicast tree. In
the sequel we show how to design a polynomial time algorithm computing Nash
equilibria with significantly better performances.

Given a path π we denote as V (π) the set of nodes touched by π. Given a
set of nodes A and a receiver ri /∈ A, we define the distance of ri from A as the
minimum among the distances between ri and any other node belonging to A.
Let v(i) be the node attaining such a minimum, we call the (v(i), ri)-path in G,
the connecting path of ri.

Algorithm NASH EQUILIBRIUM which, given an instance (G, R, s), com-
putes a Nash equilibrium for the game yielded by the free-riders method is given
below.
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Algorithm NASH EQUILIBRIUM:
Input: an instance (G, R, s).
Output: a Nash equilibrium (Π, σ) for the game yielded by the free-riders method on (G, R, s).
1. Π = ∅
2. A = {s}
3. while R ∩ A �= R do
4. let ri be the receiver at minimum distance from A and let πi be her connecting path
5. Π = Π ∪ πi

6. A = A ∪ V (πi)
7. for each e ∈ Π set σe(Π, ri) = ne(Π) if e ∈ πi

8. output(Π, σ)

We first show that the computed solution is a Nash equilibrium.

Theorem 6. The solution (Π, σ) computed by NASH EQUILIBRIUM is a Nash
equilibrium for the free-riders method.

In order to bound the ratio between the cost of the Nash equilibrium (Π, σ) com-
puted by our algorithm and that of an optimal solution, it suffices noting that c(Π)
is at most the cost of a minimum spanning tree rooted at s for the set of receivers
R. Such a value is known to be at most twice that of a minimum Steiner tree with
terminal vertices given by R. Hence, we can claim the following theorem.

Theorem 7. Let (Π, σ) be a Nash equilibrium computed by our algorithm. It
holds c(Π)

c(T ∗) ≤ 2.

By executing our algorithm on the network depicted in Figure 3 with x = 2,
y = 1 and z = 1+ ε, it is possible to see that such a bound is almost tight. From
this result we obtain the following corollary about the upper bound on the price
of stability of the free-riders method.

Corollary 1. The price of stability of the free-riders method is at most 2.

As for the lower bound, we can prove that it is strictly greater than 1.

Theorem 8. The price of stability of the free-riders method is at least ρ+2
ρ+1 .

The free-riders method is thus the first cost sharing method for which we have
a polynomial time algorithm for computing one of its equilibria and for which
we can prove a constant upper bound on the price of stability. Clearly, it has

Fig. 3. A network
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the drawback of allowing the proliferation of free-riders in the network, thus in
a sense it can be considered an unfair method. In the next result, however, we
show that no pure weakly fair method can achieve a price of anarchy equal to
1. We will prove, indeed, a stronger result for which we need a more general
definition of pure methods. To this aim, we say that a weakly fair cost sharing
method M is ε-pure if each receiver pays for at least ε times the cost of the path
she uses, i.e., Mr(Π) ≥ ε

∑
e∈πr

c(e) for each r ∈ R and each state Π . Since
Mr(Π) ≥ 0 for each r ∈ R and each state Π by definition, and there may exist
graphs for which a path can be shared by all the receivers, reasonable values for
such an ε will fall in the interval (0, 1

ρ ].

Theorem 9. No ε-pure weakly fair method can achieve a price of anarchy
smaller than 1

1−ε(ρ−1) , for any ε ∈ (0; 1
ρ ].

As another impossibility result, we show that a topology independent weakly
fair cost sharing method cannot achieve a price of stability equal to 1.

Theorem 10. Any topology independent weakly fair cost sharing method cannot
have a price of stability equal to 1.

5 Conclusions

We have studied the problem of sharing the cost of multicast transmissions in
non-cooperative networks and analyzed the price of Nash equilibria of some
cost sharing methods. The main achievement of this paper is the design and
analysis of a new method, the free-riders method. All the methods proposed in
the literature have a poor behavior with respect to their price of anarchy which
may either be unbounded, or grow linearly with the number of receivers. The free-
riders method does not improve directly on this bound, but gives us a polynomial
time algorithm computing a Nash equilibrium whose cost is at most twice that of
an optimal solution, thus making the free-riders method of practical use. Another
interesting contribution of this paper is the effort of classifying the cost sharing
methods according to some common properties and trying to outline powers and
limits of the various classes. It seems that, in general, unfair methods can yield
better performances with respect to fair ones; it would be intriguing to explore
deeply this situation. This is only an initial work and several improvements and
open problems are issued by our research.

The most important one is, of course, the determination of an upper bound
on the price of stability of the other cost sharing methods considered in the
paper. The classical techniques for upper bounding the price of stability, based
on the exploitation of a potential function, cannot be applied in our case. The
only exception is represented by the Shapley value method whose upper bound,
however, is significant only for the directed case. It would also be interesting
to understand if there is a correlation between the price of anarchy and that of
stability yielded by each particular instance. For example, all instances yielding
a price of anarchy equal to ρ for the considered cost sharing methods yield a
price of stability equal to 1. Is this relationship only casual?
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Finally, it would be intriguing to consider the effects of combining two or more
methods. For example one can share half of the cost of each edge according to
the free-riders method and the other half according to the Shapley value method.
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Abstract. The problem of finding dense structures in a given graph
is quite basic in informatics including data mining and data engineer-
ing. Clique is a popular model to represent dense structures, and widely
used because of its simplicity and ease in handling. Pseudo cliques are
natural extension of cliques which are subgraphs obtained by removing
small number of edges from cliques. We here define a pseudo clique by
a subgraph such that the ratio of the number of its edges compared to
that of the clique with the same number of vertices is no less than a
given threshold value. In this paper, we address the problem of enumer-
ating all pseudo cliques for given a graph and a threshold value. We
first show that it seems to be difficult to obtain polynomial time algo-
rithms using straightforward divide and conquer approaches. Then, we
propose a polynomial time, polynomial delay in precise, algorithm based
on reverse search. We show the efficiency of our algorithm in practice by
computational experiments.

1 Introduction

Let us consider the problem of finding dense structures from a given graph, i.e.,
finding vertex induced subgraphs including many edges. In graphs representing
similarity or relation, dense structures can be considered to represent groups
of similar objects or deeply related objects. Thus, the problem is important in
many scientific areas. This is especially true in data engineering and data mining,
where it is one of basic problems, and has many applications such as clustering,
community discovering, machine learning, Web search, etc. [1,6,8,9,10,11,14,20].
A clique is a subgraph that is a complete graph. It is a fundamental structure
for representing dense structures. It has several good mathematical properties,
and can be easily handled. As a result, clique detection has been used in many
researches. Cliques are considered as a part of dense structures, or seeds of dense
structures. The clique enumeration can be efficiently carried out thanks to the
increase of computation power, and new algorithms[12,16]. Currently, the bottle
neck of the computation in the practice is usually the output process, thus the
algorithm is almost optimal.

Then, as a next step, people wanted to use a richer model than cliques. In
very sparse graphs, a subgraph containing only small cliques can be considered

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 402–414, 2007.
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as a dense structure if it has many edges when compared to the others. If the
data is incorrect so that some edges are missing, then a vertex set should be a
clique will not be a clique. For robust computation, “pseudo cliques” should be
used. For example, such pseudo cliques are used for web page clustering[9].

We can consider several models to represent pseudo cliques. A possible model
is a subgraph that is obtained from a clique by removing at most θ edges, where
θ is a given threshold constant number. An advantage of this model is that in this
definition any subset of a pseudo clique is also a pseudo clique in the sense of the
vertex subset, thus the family of pseudo cliques satisfies the monotone property.
This is a useful property, and we can use many techniques in the literatures to
develop an efficient algorithm. However, a disadvantage of the model is that for
graphs of any size the threshold is the same, thus larger subgraphs can lose only
a small portion of its edges. This is contrary to the intuitions. Moreover, so many
small vertex sets will become pseudo cliques.

Another model is to define a pseudo clique by a subgraph that has at least
a constant ratio of edges compared to a clique of the same size. Precisely, we
define the density of a subgraphs by the number of edges over the number of all
its vertex pairs. A subgraph is a pseudo clique if its density is no less than the
given threshold value. In this definition, the family of pseudo cliques no longer
satisfies the monotone property. It is a disadvantage of this definition. On the
other hand, small subgraphs are pseudo cliques only if they are cliques, since
the limitation of the number of edge removals changes as the size of subgraphs.
This is an advantage of this definition.

In the literatures, a subgraph having many edges compared to the number
of its vertices is often called dense subgraph, heavy graph, or maximum edge
subgraph. However, all these terms are used to represent the subgraph having the
highest ratio of edges, thus it is mainly used in optimization. On the other hand,
in many areas in informatics, a subgraph having many edges thereby similar to
clique is often called a “pseudo clique” or “quasi clique”. In this paper, we use
the term pseudo clique.

The problem of maximizing the density among subgraphs of given size k
is NP-complete since it includes the maximum clique problem as its special
case[4]. However, if k = Θ(|V |) holds, there is a PTAS algorithm[2]. For the
edge weighted version, an O(|V |1/3−ε) approximation algorithm is known[4].
However, finding an induced subgraph maximizing average degree in it can be
solved in polynomial time[4].

In this paper, we address the enumeration problem of all pseudo cliques in a
given graph. We choose the latter definition for pseudo cliques. We first show the
existence of polynomial delay algorithm is non-trivial, by proving that straight-
forward back-tracking (branch-and-bound) approaches involve an NP-complete
problem in each iteration. Note that it does not assure that non-existence of
output polynomial time algorithm even when P �= NP .

In contrast, a reverse search works well for this problem. We will show that
for any pseudo clique, one of its vertex satisfies that its removal is also a pseudo
clique. From this, we can obtain an adjacency relation on pseudo cliques spanning
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all the pseudo cliques. Then we define a tree-shaped traversal route on all pseudo
cliques by this adjacency. Our algorithm traverses the route in a depth-first
manner with taking polynomial time on each pseudo clique, thus it is polynomial
delay algorithm. We then introduce a method to decrease the time complexity
and practical computation time. By computational experiments we show the
efficiency of our algorithm in practice.

The organization of this paper is as follows. Section 2 is for preliminaries. In
Section 3, we present the hardness result for straightforward approach. Section
4 describes the adjacency and the algorithm. In Section 5, we present the results
of our computational experiments, and conclude the paper in Section 6.

2 Preliminary

Let G = (V, E) be a graph with a vertex set V and an edge set E ⊆ V × V . In
this paper we consider graphs with no multiple edge. We say vertex v is adjacent
to vertex u if there is an edge e = {u, v} in E. We denote the degree of v by
deg(v), and the maximum degree by Δ.

For a vertex set U ⊆ V , the induced subgraph by U , denoted by G[U ] =
(U, E[U ]), is a graph composed of edges of G whose endpoints are both in U .
G[U ] is also called an induced subgraph. In Fig. 1, the subgraph induced by
vertex set {3, 5, 6, 9, 11} is the graph inside the gray circle without edges one of
its endpoint outside the circle. If U = ∅, we define G[U ] by the empty graph
(∅, ∅). If any two vertices in U are connected by an edge, U and G[U ] are called
a clique. In Fig 1, vertices {5, 7, 9, 11} form a clique. For a vertex v and a vertex
set U , we denote the number of edges connecting v and a vertex in U by degU (v).

Let clq(n) = n(n−1)
2 , where clq(n) is the number of edges in the clique of

n vertices. For a vertex subset U ⊆ V at a size of at least 2, the density of
G[U ] is defined by |E[U ]|/clq(|U |). The density is the ratio of the edges in G[U ]
compared to the complete graph of |U | vertices. In Fig 1, the density of the
subgraph induced by K = {3, 5, 6, 9, 11} is 7/10. We define the density of G[∅]
and graphs with one vertex by 1. Suppose that θ, 0 ≤ θ ≤ 1 be a constant number
called threshold. Then, an induced subgraph G[U ] is called a pseudo clique if its
density is no less than θ. We note that G[∅] and G[{v}] for any vertex v are
pseudo cliques for any threshold.

Let w be an edge weight function w : E → R. For an edge subset F ⊆ E, we
define the weight of F by the sum of weights of edges in F , and denote it by
w(F ). We also define the weight of G[U ] by w(E[U ]). For a given edge weight
function w : E → R, we define the weighted density of an induced subgraph
G[U ] by w(E[U ])/clq(|U |). We define the weighted density of the graphs with at
most one vertex by +∞. For a threshold θ ∈ R, an induced subgraph G[U ] is a
weighted pseudo clique if its weighted density is no less than θ.

We define the (weighted) density of a vertex set by that of the subgraph in-
duced by the vertex set. We often say U is a (weighted) pseudo clique if G[U ] is
a (weighted) pseudo clique. We here address the following enumeration problem.
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Fig. 1. An example of pseudo clique and other vertices

(Weighted) Pseudo Clique Enumeration Problem
For given graph G = (V, E) and threshold θ, (edge weight function w), output
all vertex sets whose induced subgraphs are (weighted) pseudo cliques of G

If an enumeration algorithm which outputs a set of solutions terminates in
time polynomial of the sum of the input and output sizes, the algorithm is said
to be output polynomial time. The longest computation time between the output
of any two consecutive solutions is called the delay. An algorithm is polynomial
delay if the delay is polynomial in the input size. The computation time of a
polynomial delay algorithm is linear in the output size, thus it is optimal for the
output size and considered to be practically efficient. Our goal in this paper is to
develop a polynomial delay algorithm for pseudo clique enumeration problem.

3 Hardness Result for Straightforward Approaches

A popular scheme for constructing an enumeration algorithm is so called binary
partition, which is a variant of branch and bound method. For the problem
of enumerating all the elements of an implicitly given subset family F ⊆ 2E ,
binary partition algorithm works in the following way. If |F| is less than a certain
constant number, it enumerates elements in F directly. Otherwise, it chooses an
element e ∈ E and divide F into two sets F+ and F− so that F+ consists
of all the elements of F including e, and F− consists of those not including e.
Then, we check whether each of F+ and F− is the emptyset or not, and if it
is not empty, we enumerate the elements recursively, by dividing F+ or F− by
choosing another element e′.

The algorithms so called “depth first search” or “back tracking” are also
considered to be a variant of binary partition algorithms. Binary partition works
for many problems, such as spanning trees, paths, and cycles[15], cliques and
independent sets[12], perfect matchings in bipartite graphs[5], etc.

The number of iterations of a binary partition algorithm is linear in |F|, which
is the size of output, thanks to the check whether either F+ or F− is an emp-
tyset. Thus, if the check can be done in polynomial time of the input size, the
binary partition algorithm is polynomial delay. When we want to enumerate the
pseudo cliques by binary partition, the check problem is defined as follows.
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input graph 
G=(V,E)
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Fig. 2. Construction of the graph for reduction

Problem: Pseudo Clique Existence
For given a graph G, a vertex subset U , and a threshold θ, check whether a
pseudo clique K including U exists.

However, as we prove below, this problem is NP-complete. Thus, a straight-
forward binary partition algorithm will possibly take exponential time in an
iteration. Note that this result does not assure that binary partition algorithms
will never be output polynomial time even if P �= NP . For example, a good
ordering of vertices in V can exist so that the pseudo clique existence in any
iteration can be solved in polynomial time. Moreover, even if one iteration takes
exponential time in the input size, the total computation time can be polynomial
in the output size since the output size can be also exponential in the input size.
In general, it is not easy to prove such statements, but also not impossible.

Theorem 1. The problem pseudo clique existence is NP-complete.

Proof. The problem obviously belongs to NP, thus we prove NP-hardness by
reducing the k clique problem which is to answer whether given graph G′ =
(V ′, E′) includes a clique of given size k. This problem is NP-complete[7].

We will construct a graph G = (V, E) from G′ as follows. Fig. 2 shows an
example. Without loss of generality we assume that G′ has at least a certain
number of vertices, say 10 vertices. Let V = V ′ ∪ U where U is a vertex set of
size 2|V ′|2. We choose two arbitrary vertices z1 and z2 from U . The edge set E
is defined by

E = E′ ∪ {(u, v) | v ∈ V ′, u ∈ U, u �= z1, z2} ∪ EU

where EU is an arbitrary edge subset EU ⊆ U × U such that |EU | = (2|V ′|2 −
1) × (|V ′|2 − 1). Then, the density of G[U ] is equal to (|V ′|2 − 1)/|V ′|2.

Let K be a subset of V ′. If and only if G[K] is a clique, the density of
G[K ∪ U ] is greater than (|V ′|2 − 1)/|V ′|2, since the density of G[{v} ∪ U ] is
equal to (|V ′|2 − 1)/|V ′|2 for any v ∈ V ′. For any K ⊂ V such that G[K] is a
clique, the density of G[K ∪ U ] is determined by the size of K. When K is the
empty set or composed of one vertex, its density is (|V ′|2 −1)/|V ′|2, and strictly
increases as the increase of the size of K. If the size of K is k, the density is

clq(k) + (2|V ′|2 − 1) × (|V ′|2 − 1) + k(2|V ′|2 − 2)
clq(k + |V ′|2) .
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Thus, by setting θ to this value, which is the density of G[U ∪ K], K ⊆ V ′

is no less than θ if and only if K is a clique of at least size k in G′. Thus, the
problem pseudo clique existence is NP-complete. ��

4 Polynomial Delay Enumeration of Pseudo Cliques

In the previous section we showed that a straightforward approach to the pseudo
clique enumeration may fail in the sense of the polynomiality. However, the prob-
lem can actually be solved in polynomial delay. In this section we describe a
polynomial delay algorithm for the non-weighted version of our problem. Neces-
sary modifications for adopting the weighted version is obvious, thus we omitted
them. The key to an efficient enumeration is that we construct a tree shaped
traversal route on the set of pseudo cliques, and perform a depth first search on
the tree, without having the traversal route explicitly on the memory. Such a
transversal route can be obtained by looking at an adjacency relation on pseudo
cliques spanning on all the pseudo cliques. This technique is called reverse search,
which is originally developed by Avis and Fukuda[3].

The idea of reverse search is as follows. We first define a parent for each
element to be enumerated, except for specified element called the root. The def-
inition of the parent has to be acyclic, that is, each element is not a proper
ancestor of itself. Then, the parent-child relation induces a spanning tree rooted
at the root on the set of elements to be enumerated. We call the tree the enu-
meration tree. The algorithm traverses the tree in a depth first manner. Reverse
search does not need to memorize the previously visit elements in memory space
to avoid duplications. It uses an algorithm for listing the children of an element.
By finding a child of an element, we can go deeper on the enumeration tree by
a recursive call. After we come back from the recursive call, we find the next
child and make a recursive call for it. In this way, we can perform the depth first
search with memory space linear in the height of the enumeration tree1.

First we observe the following property to obtain an adjacency relation on
pseudo cliques.

Lemma 1. Let v be a vertex in G[K] with the degree no greater than the average
of the degrees of vertices in G[K]. The density of K \ {v} is no less than the
density of K.

Proof. If |K| = 1, then K \{v} = ∅, thus the statement holds. Hence, we assume
that |K| ≥ 2. Let F1 and F2 be a partition of the set of pairs of vertices in U
such that F1 is the set of pairs of v and another vertex, and F2 is the set of
the remaining pairs. Let E1 = E[K] ∩ F1, and E2 = E[K] ∩ F2. Then, we can
observe that the density of U is between |E1|/|F1| and |E2|/|F2|. The density
multiplied by |U |−1 is equal to the average degree of vertices in G[K], and thus
it is no less than |E1|/|F1|. Since E[K \ {v}] = E[K]∩F2, the density of K \ {v}
It concludes the proof. ��
1 The space complexity of the original reverse search does not depend on the height

of the enumeration tree.
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From the lemma, we can see that for any pseudo clique K, K \ {v} is also
a pseudo clique for any vertex whose degree is no greater than the average.
This introduces an adjacency relation on pseudo cliques. Since any K has such a
vertex v, we can remove the vertices of K iteratively until K will be the emptyset,
passing through only pseudo cliques. Thus, the adjacency spans all the pseudo
cliques. The graph induced by the adjacency is not a tree, thus we introduce
parent-child relation to obtain a tree-shaped traverse route.

For a vertex set K �= ∅, we define v∗(K) by the minimum degree vertex
in G[K]. If there are more than one minimum degree vertices, we choose the
minimum index one. We define the parent Prt(K) of K �= ∅ by K \ {v∗(K)}.
From Lemma 1, Prt(K) is a pseudo clique if K is a pseudo clique. Since any
K has a unique parent, the graph induced by the parent-child relation forms
a tree. In Fig 1, the degrees of vertices in G[K] are degK(3) = degK(6) =
2, degK(5) = degK(9) = 3, degK(11) = 4, thus v∗(K) is vertex 3. The parent of
K = {3, 5, 6, 9, 11} is {5, 6, 9, 11}. We will describe an algorithm for traversing
the tree.

Now the remaining task is how to find the children of a pseudo clique. For
this task, we first observe the following property, immediately obtained from the
definition of the parent.
Property 1. For a pseudo clique K ⊆ V , K ′ is a child of K if and only if K ′\K =
{v} and v = v∗(K ′).

From the property, we can see that K has at most |V | − |K| children, each
of which is obtained by adding a vertex v not in K to K. Thus, we can list
the children of K by computing the density of K ∪ {v} and v∗(K ∪ {v}) for
each vertex v �∈ K. In this way, we can list the children thus can enumerate
all pseudo cliques. We describe the algorithm as follows, which enumerates all
pseudo cliques by calling with G and K = ∅.

Algorithm. EnumPseudoClique (G = (V, E), K)
1: output K
2: for each v �∈ K do
3: if K ∪ {v} is a pseudo clique then
4: if K ∪{v} is a child of K then EnumPseudoClique (G = (V, E), K ∪{v})

In a straightforward implementation, an iteration of the algorithm takes
O(|V |2) time, thus pseudo cliques can be enumerated O(|V |2) time for each.
The computation time can be reduced by a sophisticated process. We character-
ize vertices generating children in terms of degK , and describe a more efficient
algorithm. The density of K ∪{v} is (|E[K]|+degK(v))/clq(|K|+1), thus there
is a threshold value θ(K) = θclq(|K| + 1) − |E[K]| such that for any vertex v
with degK(v) ≥ θ(K), K ∪ {v} is a pseudo clique.

Lemma 2. Let K ⊆ V be a pseudo clique and v be a vertex not in K. Then,
K ∪ {v} is a pseudo clique if and only if degK(v) ≥ θ(K)

We use buckets for 0, ..., |V |−1 so that the bucket for i stores vertices v satisfying
degK(v) = i. Then, we can take the vertices generating pseudo cliques in constant
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time for each. We update the buckets in each iteration and it takes O(deg(v))
time for the last added vertex v.

To check whether v∗(K ∪ {v}) = v or not, we introduce a total order ≺U for
any vertex subset U �= ∅, defined by

u ≺U v ⇔ degU (u) < degU (v) or (degU (u) = degU (v) and u ≤ v),

here u ≤ v means that the index of u is less than that of v. Then, v∗(K) is the
vertex of U satisfying v∗(K) ≺U u for any other vertex u ∈ U . Then, we have
the following lemma.

Lemma 3. For any pseudo clique K and a vertex v not in K, K ∪{v} is a child
of K if and only if (1) K ∪ {v} is a pseudo clique, (2) the tuple (degK(v∗(K)),
v∗(K)) is lexicographically larger than the tuple (degK(v) − 1, v), and (3) v is
adjacent to any vertex u ∈ K, u ≺K v.

Proof. We first observe that for any vertex u, degK∪{v}(u) = degK(u) + 1 if v
is adjacent to u, and degK∪{v}(u) = degK(u), otherwise. Then, the only if part
of the statement is obvious; if (2) is violated, then v∗(K) ≺K∪{v} v. Hence we
prove the if part. It is sufficient to prove that conditions (2) and (3) lead that
v∗(K ∪ {i}) is v. v∗(K ∪ {i}) is v when any vertex u ∈ K satisfies u ≺K∪{i} v.

Suppose that conditions (2) and (3) hold for v. Then, from condition (3), any
vertex u ∈ K satisfying u ≺K v is adjacent to v. Thus, the vertex u satisfies
degK∪{v}(u) = degK(u) + 1. From condition (2), the tuple (degK∪{v}(u), u)
is lexicographically larger than (degK∪{v}(v), v) = (degK∪{v}(v), v). Thus, the
statement holds. ��
We show an example in Fig. 1. K ∪ {v} is a child of K for v = 1, 2, 4. Vertex 7
does not satisfy (3), and vertex 10 does not satisfy (2).

If a vertex v satisfies that K ∪ {v} is a pseudo clique and v ≺K v∗(K), then
K ∪ {v} is always a child of K. By keeping the above bucket sorted in the order
of indices, we can find all such vertices in O(log |V |) time for each. We note that
using a sophisticated heap algorithm which realizes constant time insertion, we
can still bound the computation time for update the buckets by O(deg(v)). We
then explain the way to efficiently find vertices v satisfying that v∗(K) ≺K v
but K ∪ {v} is a child of K.

Let L(K) be the sequence of first Δ vertices of K sorted by the order ≺K . If
K has less than Δ vertices then L(K) includes all vertices in K. For each vertex
v �∈ K, we define l(v, K) by the first vertex in L(K) which is not adjacent to
v. We define l(v, K) by +∞ if v is adjacent to all vertices in L(K). In Fig. 1,
L(K) = (3, 6, 5, 9, 11), l(2, K) = 10, and l(7, K) = 3. The following is obvious.

Lemma 4. Let v be a vertex satisfying that v∗(K) ≺K v and K∪{v} is a pseudo
clique. Then, K ∪ {v} is a child of K if and only if v ≺K l(v, K). In particular,
v is adjacent to v∗(K).

We choose the vertices u in L(K) in the order of ≺K and look at the vertices
adjacent to u, then l(v, k) can be computed for all vertices v adjacent to at least
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one vertex of L(K). This is done in O(min{Δ2, |V | + |E|}) time, hence all the
vertices v generating children and v∗(K) ≺K v can be found in O(min{Δ2, |V |+
|E|}) time.

To perform our reverse search, we have to keep L(K) and the buckets in the
memory. This requires O(|V | + |E|) space. We need no extra memory for other
operations, thus we have the following theorem.

Theorem 2. For a given graph G and threshold θ, all pseudo cliques can be
enumerated in O(min{Δ2, |V |+ |E|}) time for each within O(|V |+ |E|) memory.
In particular, the delay is O(min{Δ2, |V | + |E|}).

We note that the delay can be bounded by the computation time for one iteration
by using so called “odd-even output method”, described in [13,18]. We modify the
algorithm so that in each iteration, the algorithm outputs the solution before
generating recursive calls if the depth of the recursion is odd, and after the
recursive calls otherwise. By this, during the execution, any three consecutive
iterations output at least one solution, thus the delay is reduced to be equal to
the computation time for one iteration.

Considering the practice, the estimation of the computation time is too large,
since we are usually given a possibly large but sparse graphs thereby the pseudo
cliques are small in comparison to the graph sizes. Otherwise the number of
pseudo cliques explodes so that we can not handle the output. Thus, there will
be few candidates for children, and few vertices adjacent to v∗(K). Thus the
complexity we state here is possibly far from the practical computation time.

5 Computational Experiments

We here present the results of computational experiments to show the practi-
cal efficiency of our algorithm. The implementation is coded by C, compiled
by gcc, and executed in a notebook PC with a Pentium M 1.1GHz processor
with 256MB memory with cygwin which is an emulator of Linux environments
on Windows. The implementation is a simpler version of our algorithm, which
maintains only degK(v) for each vertex v, thus the worst computation time for
an iteration is O(|E| + |V |). The reason that we did not use the technique to
find the children in O(log |V |) time for each is that in practice we expected that
only few vertices satisfy degK(v) = degK(v∗(K)) on average. This was observed
in the computational experiments.

We examined several types of graphs as inputs of the implementation, ran-
domly generated graphs and graph taken from real world data. We had three
groups of random graphs which are generated in the following three different
ways. The first group consists of ordinary random graphs. For each pair of ver-
tices, we connected them by an edge with the same probability 0.1. The second
group is of so called locally dense graphs. Consider a necklace sequence obtained
by connecting the head and the tail of the vertex sequence (1, 2, . . . , |V |). For
each vertex v, we connected it to each its neighbor with probability 1/2. Here a
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locally dense random graph
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Fig. 3. Results for random graphs (left) and locally dense random graphs (right)

Fig. 4. Results for scale free graphs (left) and co-author graph (right)

neighbor of v is a vertex u with |u − v| ≤ r, or |u − v| ≥ |V | − r, for given r. In
the experiments we set r = 20.

The third was randomly generated scale free graphs. In a scale free graph,
the probability that the degree of a vertex is λ is 1/λΓ . Such a distribution is
called zip distribution, and such data is said to satisfy power law. The graphs
appearing in real world problems are often scale free graphs. Our scale free
graphs are generated by starting from a clique of k vertices and adding vertices
one-by-one to it, and then connect it to k vertices. The vertices to be connected
are chosen randomly such that a vertex is chosen with a probability proportional
to its degree. A graph generated in this way is known to be scale free. The graph
tends to have few locally dense structures which we can see many in real world
data, thus the average size of cliques in this graph is often small.

We run the implementations for these graphs with the thresholds θ = 0.8
and θ = 0.9. Since we could not find any implementations for the pseudo clique
enumeration problem, we compare the performance to that of an ordinary back-
tracking clique enumeration algorithm, which maintains degK(v) to find can-
didates for the addition. Since the clique enumeration is a special case of our
problem, it can be considered as a kind of upper bound of the performance of
the pseudo clique enumeration.

The results of the experiments are shown in figures. The left side of Fig. 3 shows
the results for ordinary random graphs, and the right side of Fig. 3 is for locally
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dense random graphs The left side of Fig. 4 is for scale free graphs. The horizon-
tal axis is the number of vertices in the input graphs, and the vertical axis is for
the computation time, computation time for 1 million (pseudo) cliques, and the
number of output (pseudo) cliques. All these are shown in log scales. The line al-
most horizontal in the figures display the computation time per one million pseudo
cliques. The computation time for each pseudo clique does not change with the
change in the threshold value θ, and does not differ very much from that of the
clique enumeration. This means that the performance of the pseudo clique enu-
meration is close to optimal, thus in the practice a high performance is expected.

The computation time is increasing with the increase of the graph sizes in
the scale free graphs and slightly increasing in random graphs. This is possibly
because of the increase in the average degree, and the decrease in the ratio
of children in the candidates of children. When we set threshold value θ to
a small value, the number of vertices v satisfying degK(v∗(K)) ≤ degK(v) ≤
degK(v∗(K)) + 1 increases. Since scale free graphs has a kind of locality, few of
them will be the children of K, on average.

For all the results, the diagonal lines represents the numbers of pseudo cliques
and cliques. For the random graphs, the ratio of these three values increases with
the increase in graph size. This could be because of the increase in the average
degree. It is interesting to note that the ratio does not change much in locally
dense random graphs, and is reduced for the scale graphs.

The right side of Fig. 4 is the result for the graph taken from the real world
data. The graph is a co-author graph[19] such that each vertex is a researcher
and two researchers are connected if they have a joint paper. The number of
vertices is about 30,000 and the number of edges is about 125,000. It is known
that the graph is a scale free graph. For this graph we observe the results by
changing the threshold θ. The leftmost point indicates the computation time of
the clique enumeration, thus it is faster than the others, but not different much
from that of the pseudo clique enumeration. The computation time does not
seem to depend on the threshold value.

6 Conclusion

In this paper we addressed the problem of finding dense structures from a graph.
The density is given by the ratio of the existing edges compared to a complete
graph, and we define a pseudo clique as a dense structure by a subgraph with
density no less than the given threshold value. In this term we define our problem
of enumerating all pseudo cliques of given a graph and a threshold.

We first showed that it is not easy to get polynomial time algorithm by
straightforward approach since in this way we encounter an NP-complete prob-
lem. On the other hand, we show that any pseudo clique has a proper subset
being a pseudo clique with one fewer vertices. This induces a relation spanning
all pseudo cliques. Using the relation we developed a reverse search algorithm
whose delay is O(min{Δ2, |E| + |V |}), thus computation time for each pseudo
clique is O(min{Δ2, |E| + |V |}).
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Recently, it has become popular to use dense structures to represent related
objects. One of the problems on practice is that the number of output solutions
is often larger than that of the cliques. The ”maximal” pseudo clique enumera-
tion may help, but it is not straightforward to introduce maximality because the
family of pseudo cliques does not satisfy the monotone property. Detailed char-
acterizations of the dense structures which would allow us to develop efficient
algorithms are important for applications, and an interesting open problem.
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Abstract. We study adaptive system-level fault diagnosis for multipro-
cessor systems. Processors can test each other and later tests can be
scheduled on the basis of previous test results. Fault-free testers cor-
rectly identify the fault status of tested processors, while faulty testers
can give arbitrary test results. The goal is to identify correctly the status
of all processors, assuming that the number of faults does not exceed a
given upper bound t, where n is the number of processors. Tests involv-
ing disjoint pairs of processors can be performed simultaneously in one
round.

Two most important measures of quality of a diagnosis algorithm are
its worst-case cost (the number of tests used) and time (the number of
rounds used). It is known that the optimal worst-case cost of a diagnosis
algorithm is n + t − 1. However, the known algorithms of this cost use
time Θ(n). We present an algorithm with optimal cost n + t − 1 using
time O(log t), provided that the upper bound t on the number of faults
satisfies t(t + 1) ≤ n. Hence, for moderate numbers of faults which we
assume, our algorithm achieves exponential speed-up, compared to the
previously known diagnosis algorithms of optimal cost.

1 Introduction

As the size of multiprocessor systems grows they become increasingly vulnerable
to component failures. This in turn enhances interest in the issue of reliability
of such systems. One of the major problems in this field, known as the fault
diagnosis problem, is to precisely locate all faulty processors in the system, i.e.,
to answer the question which processors are faulty and which are fault free.
The classic approach to fault diagnosis was originated by Preparata, Metze and
Chien [13]. Processors perform tests on each other, and diagnosis is based on
the collection of test results. It is assumed that fault-free processors always
give correct test results, while tests conducted by faulty processors are totally
unpredictable: A faulty tester can output any test result, regardless of the status
of the tested processor. The fault-status of a processor does not change during
testing and diagnosis. In [13] a worst-case scenario is adopted: it is assumed
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that at most t processors are faulty and that they are placed in locations most
disadvantageous for the diagnosis process.

In early stages, research on fault diagnosis mostly focused on one-step, or
nonadaptive diagnosis, already defined in [13]. In this type of diagnosis it is
assumed that all tests are determined in advance and they cannot be resched-
uled during the diagnosis process. Nakajima [10] was the first to modify this
assumption. He proposed a new approach called adaptive diagnosis in which a
test is determined only after seeing the results of previous ones. The flexibility
of this approach increases the efficiency of diagnosis. In [8,14,2,3,1] the parallel
time (number of rounds) of adaptive diagnosis was investigated, assuming that
only tests involving disjoint pairs of processors can be conducted in the same
round. It was shown that while locating t < n/2 faults requires worst-case time
at least t in the nonadaptive setting, adaptive diagnosis can locate less than
n/2 faults among n processors in constant time. On the other hand, Blecher
[5] showed that the cost, i.e., the number of tests required in the worst case to
identify t < n/2 faults, decreases from tn for nonadaptive diagnosis to n + t − 1
in the adaptive setting. He also showed that the latter is a lower bound for the
worst-case cost of adaptive diagnosis. However, the algorithm of Blecher, while
optimal from the point of view of the number of tests, is very slow: many tests
are scheduled sequentially and the time of the algorithm can be as large as Θ(n).
The same is true for the cost-optimal diagnosis algorithm for (2t − 1)-connected
graphs from [11]. On the other hand, constant time algorithms from [2,3,1] are
not cost-optimal. This raises the question of whether it is possible to maintain
the cost-optimality of adaptive fault diagnosis, i.e., use only n + t − 1 tests, at
the same time speeding up significantly the diagnosis process. Doing this is the
goal of the present paper.

Our results. We present an adaptive diagnosis algorithm for n-processor sys-
tems, with optimal cost n + t − 1 and using time O(log t), provided that the
upper bound t on the number of faults satisfies the condition t(t + 1) ≤ n.
Hence, for moderate numbers of faults which we assume, our algorithm achieves
exponential speed-up, compared to the previously known diagnosis algorithms of
optimal cost. For small values of t the speed-up is even more significant: indeed,
if t is logarithmic in n we get double-exponential speed-up, and for constant
t our algorithm uses constant time, while the previous optimal-cost algorithms
still use time Θ(n).

It remains open whether it is possible to perform logarithmic-time optimal-
cost t-diagnosis for any upper bound t < n/2 on the number of faults. Another
interesting question is whether Θ(log t) is a lower bound on the time of optimal-
cost diagnosis.

Related work. The PMC model described above and introduced in [13] was
the first analytic model for fault diagnosis. Many of its variations have been
subsequently studied in the literature (see the survey [6], where further bibli-
ography can be found). One of the important modifications of this model was
replacing the assumption of the fixed upper bound on the number of faults and
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their worst case location by a probabilistic approach where faults are assumed
to occur randomly (see the survey [9] and the bibliography therein). Another
modification, introduced in [10], was replacing one-step (nonadaptive) diagnosis
by the adaptive approach. This more flexible testing method enabled to dras-
tically cut diagnosis time. The first result in this direction was obtained in [8],
followed by [14], and by [2] where constant time was achieved for any number of
faults smaller than n/2. Then [3] and [1] further decreased the number of diagno-
sis rounds. However the above fast diagnosis algorithms were not cost-optimal.
The optimal cost of adaptive diagnosis was achieved in [5], under the assump-
tion that all processors can test each other. However this algorithm used Θ(n)
rounds of testing. Adaptive diagnosis assuming that processors fail randomly has
been studied in [12]. Another line of research concerned the case when tests that
may be conducted are restricted to some graph. For the k-hypercube, optimal-
cost diagnosis was achieved in [4] assuming an upper bound k on the number of
faults. On the other hand, fastest possible k-diagnosis of the k-hypercube, lasting
only 3 rounds, was achieved in [7]. In [11] optimal-cost t-diagnosis was presented
for arbitrary (2t − 1)-connected graphs. The authors provided also optimal-cost
diagnosis for cube-connected cycles.

2 Terminology and Preliminaries

Throughout the paper n denotes the number of processors in the system, and t
denotes the upper bound on the number of faults. We assume that t(t + 1) ≤ n.
Unless explicitly stated otherwise, logarithms are with base 2.

Consider a system U of n processors that can test each other. For processors
u, v ∈ U , the ordered pair (u, v) represents the test performed by u on v. In this
situation u is called the tester and v is called the tested processor. The outcome of
a test (u, v) is 1 (0), if u evaluates v as faulty (fault-free). According to the PMC
model from [13], the outcome of (u, v) is 0 if both u and v are fault free, and it is
1 if u is fault free and v is faulty. Thus fault-free testers always give correct test
results. No assumptions are made about the outcome of tests involving a faulty
tester. A test with outcome 0 (1) will be called a 0-arrow (1-arrow). In this case
the tester is called the beginning and the tested processor is called the end of
this 0-arrow (1-arrow). A 0-line is a sequence (u0, . . . , uk) of processors, such
that all tests (ui, ui+1), for 0 ≤ i < k, were performed and are 0-arrows. A spike
is a (possibly empty) 0-line (u0, . . . , uk) followed by a single 1-arrow beginning
at uk. (Thus a single 1-arrow is also a spike.)

A test assignment is a collection of tests (u, v) for some pairs of processors. It
can be modeled as a directed graph T = (U, A), where (u, v) ∈ A. In the case of
adaptive diagnosis, a test assignment is constructed dynamically, the next test
being a function of previous test results. The collection of all test results for a
test assignment T is called a syndrome. Formally, a syndrome is any function
S : A −→ {0, 1}. The set of all faulty processors in the system is called a fault
set. This can be any subset of U . A syndrome S is said to be compatible with a
fault set F ⊆ U if, for any (u, v) ∈ A, such that u ∈ U \ F , S(u, v) = 1 iff v ∈ F .
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This corresponds to the assumption that fault-free testers always give correct
test results. Since faulty testers can give arbitrary test results, any syndrome
compatible with a fault set F can occur when faulty processors in the system
are exactly those in F .

Consider an adaptive diagnosis algorithm. Since the test assignment T =
(U, A) is constructed adaptively, on the basis of previous test results, at the
end of the algorithm a syndrom S : A −→ {0, 1} is obtained. The algorithm is a
correct t-diagnosis if there is at most one fault set F of size at most t, compatible
with this syndrome. This means that the algorithm designs a test assignment in
such a way that any configuration of at most t faults can be correctly diagnosed
on the basis of the obtained syndrome, regardless of the behavior of faulty testers.
It follows from [13] that if a correct t-diagnosis exists then the number n of nodes
must exceed 2t.

An important measure of efficiency of an adaptive diagnosis algorithm is its
worst-case cost, i.e., the number of tests that it uses in the worst case. Blecher
[5] proved that the minimum cost of a t-diagnosis for n processors is n + t − 1,
provided that the necessary condition t < n/2 is satisfied.

Another measure of performance of adaptive fault diagnosis is the time, i.e.,
the number of rounds used for testing. It is assumed that tests involving disjoint
pairs of processors can be carried out in parallel, in the same round, while tests in
which at least one processor is common must be scheduled in different rounds. In
[1,2,3] it was shown how to diagnose a n-processor system with at most t < n/2
faults, in constant time, independent of n and t.

We will use the following propositions. The first is an immediate consequence
of the assumptions of the model.

Proposition 1. Let (u0, . . . , uk) be a 0-line. If the processor ui is fault-free then
so are all processors uj, for i < j ≤ k. If the processor ui is faulty then so are
all processors uj, for 0 ≤ j < i.

The second proposition is a well know algebraic property. It follows from the fact
that the geometric mean of positive numbers does not exceed their arithmetic
mean.

Proposition 2. Let x1, . . . , xk be positive reals such that x1 + · · · + xk = x.
Then log x1 + · · · + log xk ≤ k log(x/k).

3 Algorithm Fast-Minimum-Cost-Diagnosis

3.1 An Auxiliary Procedure

We start with the following procedure that will be used in our algorithm. The
input of the procedure is a 0-line (u0, . . . , uk) and a processor v different from
all ui and known to be fault free. The aim of the procedure is to diagnose all
processors ui using O(log k) tests. The idea of the procedure comes from the
algorithm to find an unknown integer using comparison queries: first confine the
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Procedure Fast-Line-Scan

Phase 1: jumping

perform tests (v, u2j−1), for j = 0, 1, 2, . . . , �log k�, until result 0 is obtained
if all results are 1 then perform test (v, uk)

if the last result is 1 then diagnose all processors as faulty
else a := 2�log k�; b := k − 1

else
r := the index for which (v, u2r−1) gives result 0
diagnose all processors ui, for 2r − 1 ≤ i ≤ k, as fault free
diagnose all processors ui, for 0 ≤ i ≤ 2r−1 − 1, as faulty
a := 2r−1; b := 2r − 2

Phase 2: binary search in [ua, ub]

m := �(a + b)/2�
while a < b do

perform test (v, um)
if the result is 0 then

diagnose all processors um, . . . , ub as fault free
b := m − 1

if the result is 1 then
diagnose all processors ua, . . . , um as faulty
a := m + 1

m := �(a + b)/2�

unknown integer within an interval [2i, 2i+1] by performing jumps 2j and then
locate it within this interval by binary search.

The following lemma is a consequence of Proposition 1.

Lemma 1. Procedure Fast-Line-Scan correctly diagnoses the 0-line (u0, . . . , uk).

The next lemma establishes the complexity of the procedure.

Lemma 2. Procedure Fast-Line-Scan uses at most 2 log t + 2 tests if t is an
upper bound on the number of faults in the 0-line (u0, . . . , uk).

Proof. Phase 1 uses at most log t + 2 tests and Phase 2 uses at most log t tests.

3.2 Overview of the Algorithm

Note that it is enough to describe and analyze the algorithm for t sufficiently
large. Below some threshold the algorithm of Blecher can be used. It uses n+t−1
tests and its time will not affect the asymptotic estimate O(log t).

Algorithm Fast-Minimum-Cost-Diagnosis is divided into 4 phases. The aim of
Phase 1 is to partition all processors into 0-lines and spikes. The aim of Phase
2 is to identify at least t + 1 fault-free processors. This is done by constructing
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at least one cycle of length at least t + 1 which is a 0-line and whose closing
test is also a 0-arrow (i.e., all clockwise tests in this cycle are 0-arrows). No such
cycle can contain faulty processors. (In one special case a cycle with the above
properties cannot be identified but then the diagnosis can be easily finished.) In
Phases 3 and 4 the processors diagnosed as fault free in Phase 2 are used to test
other processors. In Phase 3 short 0-lines and spikes are diagnosed in parallel,
in each of them proceeding from the beginning to end. Finally, in Phase 4 long
0-lines and spikes are diagnosed in parallel, in each of them proceeding from the
beginning to end, at some point possibly calling Procedure Fast-Line-Scan for
some of them in parallel, in order to maintain logarithmic diagnosis time.

3.3 Description of the Algorithm

Phase 1: Forming segments
Partition the set U of processors into pairwise disjoint sets A1, A2, . . . , At, of sizes
differing by at most 1. Let x = �log32/31 t	. Partition each set Ai into pairwise
disjoint sets of sizes between 2x and 3x. Call these sets segments. Let t (and
hence also n) be sufficiently large that each set Ai contains at least one segment.
Let S1, . . . , Sm be an enumeration of all segments. Enumerate the elements of
each Sj as follows: vj

1, v
j
2, . . ..

In at most 3x rounds perform the following tests. In round r perform all tests
(vj

r , v
j
r+1), for all j ≤ k in parallel, skipping those tests for which vj

r is the end
of a 1-arrow obtained in round r − 1. Call a segment pure if it is a 0-line. In any
set Ai containing at least two pure segments, order all its pure segments and
perform in all these sets in parallel (in one round) all tests (u, v), where u is the
last processor of a pure segment and v is the first processor of the next pure
segment.

Phase 2: Forming cycles using pure segments
In all sets Ai forming a single 0-line (u0, . . . , uk) at the end of Phase 1, perform
in parallel (in one round) all tests (uk, u0). For all sets Ai for which this test is
a 0-arrow, diagnose all processors in Ai as fault free.

If there is a 1-arrow (u, v) in every set Ai after performing the above tests (call
this case Special), then diagnose all processors in Ai other than u and v as fault
free. If u was already tested, diagnose it as fault free and diagnose v as faulty.
Otherwise, use some processor w ∈ Ai already diagnosed as fault free to test u.
All these tests should be done in all Ai in parallel in 1 round. If the resulting
test is a 1-arrow, diagnose u as faulty and v as fault free. If the resulting test is
a 0-arrow, diagnose u as fault free and v as faulty.

Lemma 3. 1. If the Special Case occurs in Phase 2 then diagnosis is com-
pleted. It uses at most n tests and O(log t) rounds.

2. If the Special Case does not occur in Phase 2 then all processors diagnosed as
fault free at the end of Phase 2 are indeed fault free. At least t+1 processors
are diagnosed as fault free.

Proof. 1. If the Special Case occurs in Phase 2, there is exactly one 1-arrow
and exactly one fault in each set Ai. Let (u, v) be the unique 1-arrow in Ai.
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Since the faulty node must be either u or v, all other nodes are fault free.
One of them is used to test u, hence the test result is reliable. Diagnosis of
v follows. If u was already tested, the test must have been a 0-arrow, hence
u must be fault free (otherwise there would be at least two faulty nodes in
this set Ai). If u has not been tested yet, one more test is used in this set Ai.
In any case, the total number of tests is at most n. The number of rounds is
at most 3x + 2 ∈ O(log t).

2. All sets Ai have size at least t+1. If the Special Case does not occur in Phase
2 then a processor identified as fault free was in a cycle of 0-arrows of size at
least t + 1. Any such processor must be indeed fault free (a faulty processor
in such a cycle would imply that all processors in the cycle are faulty, thus
contradicting the upper bound t). Since the Special Case did not occur, at
least one set Ai contains only fault-free processors. In all these sets cycles of
0-arrows were obtained and hence all processors in these sets were diagnosed
as fault free. This gives at least t + 1 fault-free processors.

In view of Lemma 3 we may assume in the sequel that the Special Case does
not occur in Phase 2. Let X be the set of processors diagnosed as fault free at
the end of Phase 2.

Phase 3: Testing non-pure segments
In Phase 3 processors from X are used as testers to test segments that were
not pure in Phase 1. (Since all processors in X are fault free, their test results
are reliable.) After Phase 1, any non-pure segment is partitioned into a pairwise
disjoint collection of spikes and possibly one 0-line. The first processor of each
spike and 0-line has not been tested yet. Some 0-lines and spikes in such a
segment may be very short, in fact a spike may be even reduced to a single
1-arrow. All of them have length at most 3x. Since each spike must contain at
least one faulty processor and there is at most one 0-line per segment (its final
part), the total number of spikes and 0-lines that come from non-pure segments
is at most 2t and hence there are enough processors in X to test one processor
from each such spike and 0-line in at most two rounds. Let T1, . . . , Tm be all
0-lines and spikes resulting from non-pure segments. Consider two cases.

Case 1. There was at least one pure segment in Phase 1 not yet diagnosed.
In this case testing of non-pure segments is done as follows. In the first round

of Phase 3 all first processors of T1, . . . Tm are tested. If a given test is a 0-arrow,
the entire corresponding Ti is diagnosed: the tested processor and all subsequent
ends of 0-arrows as fault free and the end of the final 1-arrow (if any) as faulty.
If a given test is a 1-arrow, the tested processor is diagnosed as faulty. Lines Ti

which are not yet entirely diagnosed, pass to the second round. In the rth round
of Phase 3, the rth processors of each line that passed to the rth round are tested
and diagnosis is as above, with lines corresponding to 1-arrows passing to round
r + 1. In the final round all last processors of all surviving lines are tested and
diagnosed.
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Case 2. There was no pure segment in Phase 1 not yet diagnosed.
In this case testing of non-pure segments is done slightly more carefully be-

cause at least one test has to be saved. In all rounds tests are performed as
in Case 1, except for testing of the last processor of each line. These tests are
delayed to the last round. Let t′ be the number of faulty processors diagnosed
until this round. If t′ < t then all remaining processors are tested and diagnosed
in the last round. If t′ = t then no further tests are performed.

Phase 4: Testing remaining segments
In Phase 4 processors from X are used to test processors that are not yet diag-
nosed at the end of Phase 3. Such non diagnosed processors exist only if there
was at least one pure segment in Phase 1. Consider a set Ai containing such
a segment. The last round of tests in Phase 1 joined all pure segments of Ai

in a line of processors where the first processor has not been tested and each
processor except the last one has tested the next processor in the line. Moreover,
there is at least one 1-arrow, and between any two 1-arrows there are more than
x consecutive 0-arrows.

We now partition each such line of processors into pairwise disjoint spikes and
a 0-line as follows. The first spike starts at the first processor of the line and
ends at the end of the first 1-arrow. The second spike starts at the processor
following it and ends at the end of the second 1-arrow. In general, the jth spike
starts at the processor following the end of the the (j − 1)th 1-arrow and ends
at the end of the jth 1-arrow. The unique 0-line starts at the processor following
the end of the last 1-arrow and ends at the last processor of the line.

Note that the total number of spikes thus obtained is at most t because there
must be at least one faulty processor in every spike. Moreover, there is exactly
one 0-line per set Ai remaining undiagnosed. In each such set there must have
been at least one 1-arrow and hence the number of these 0-lines is also at most t.
Any spike or 0-line obtained above will be called a string. Hence the total number
of strings is at most 2t ≤ 2|X |, and consequently there are enough processors in
X to test one processor per string in at most two rounds. This is how testing
proceeds in Phase 4. Also note that the length of each string is at least 2x.

Suppose that the number of processors diagnosed as faulty before Phase 4
is t′. Let τ = τ1 = t − t′. In the first round of Phase 4 the first processor in
each string is tested. If a given test is a 0-arrow, the entire corresponding string
is diagnosed: the tested processor and all subsequent ends of 0-arrows as fault
free and the end of the final 1-arrow (if any) as faulty. If a given test is a 1-
arrow, the tested processor is diagnosed as faulty. We denote by Z1 the set of
end segments of strings not yet diagnosed after round 1, by b1 the number of
processors diagnosed as faulty in round 1 and we put τ2 = τ1−b1. More generally,
let Zr be the set of end segments of strings not yet diagnosed after round r, let br

be the number of processors diagnosed as faulty in round r and τr = τr−1−br−1.
As long as br ≥ τr/32 and τr > 0, in round r + 1 the first processor of each end
segment from Zr is tested. Let r∗ be the first round for which br∗ < τr∗/32, if
such a round exists. Then, starting in round r∗+1 the Procedure Fast-Line-Scan
is called in parallel for all end segments in Zr∗ . If the end segment is a spike then
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if some processor in the 0-line forming it is diagnosed as fault free then the last
processor (the end of the final 1-arrow) is diagnosed as faulty; if all processors
in the 0-line are diagnosed as faulty then one additional test is used to diagnose
the end of the final 1-arrow.

4 Analysis

In this section we prove that Algorithm Fast-Minimum-Cost-Diagnosis is correct
and we analyze its cost and time.

Theorem 1. Algorithm Fast-Minimum-Cost-Diagnosis performs correct diag-
nosis of a system of n processors, provided that the upper bound t on the number
of faults satisfies t(t + 1) ≤ n.

Proof. It follows from Lemma 3 that diagnosis is correct until the end of Phase
2 and that |X | ≥ t + 1. Correctness of all diagnostic decisions in Phases 3 and
4, except in the possible calls of Procedure Fast-Line-Scan, follows from the fact
that fault-free testers are reliable: all these decisions have the form: a 0-line
starting from a fault-free processor is fault free and a 1-arrow with a fault-free
beginning must have a faulty end. Correctness of diagnostic decisions in the calls
of Procedure Fast-Line-Scan follows from Lemma 1. The fact that all processors
are diagnosed follows from the formulation of the algorithm.

The next theorem establishes the cost and the time of the algorithm.

Theorem 2. For n-processor systems, Algorithm Fast-Minimum-Cost-
Diagnosis uses O(log t) rounds and n + t − 1 tests in the worst case, provided
that the upper bound t on the number of faults satisfies t(t + 1) ≤ n.

Proof. We first estimate the number of rounds used by the algorithm. Phase 1
lasts at most 3x + 1 rounds. Phase 2 lasts at most 2 rounds. Phase 3 lasts at
most 3x+2 rounds. Consider Phase 4. The condition br ≥ τr/32 can be satisfied
at most for x = �log32/31 t	 rounds because during each such round at least 1/32
of the remaining pool of faults is revealed. Hence, if Procedure Fast-Line-Scan is
not called, Phase 4 lasts at most x rounds. If Procedure Fast-Line-Scan is called,
we have r∗ ≤ x and the procedure lasts at most 2 log t + 2 rounds, in view of
Lemma 2. Procedure Fast-Line-Scan is applied to end segments from Zr∗ which
are either 0-lines or spikes. For those end segments that are 0-lines, Procedure
Fast-Line-Scan is called without any change, for those that are spikes, it is called
for the 0-line part of the spike (all processors of the spike except the last one) and
the last processor is tested separately in the final round. In this case, one round
has to be added. Hence the total number of rounds is at most 7x + 2 log t + 8,
hence it is O(log t), in view of the definition of x.

We now proceed with the more difficult estimate of the number of tests per-
formed by the algorithm. Here we will use the method of charging tests either
to nodes or to discovered faults. Each test will be charged either to a node that
was not charged previously, or to a fault diagnosed as a consequence of this test.
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This will guarantee the upper bound n + t. In order to show the desired tight
bound n + t − 1 we will have to show that in every case either a node or a fault
remains uncharged.

First consider Phases 1 and 2. In these phases no faults are diagnosed and all
tests are charged to nodes. More precisely, each performed test is charged to the
node tested during it. As a consequence, in sets Ai where a cycle of 0-arrows was
constructed (and hence all processors were diagnosed as fault free), all nodes are
charged. In each remaining set Ai, all pure segments were joined in a single line
and hence the only uncharged node is the beginning of this line. Segments that
were not pure were partitioned into 0-lines and spikes, the beginning of each of
them being yet uncharged.

In Phase 3 there are two cases. In Case 1, when there was at least one pure
segment in Phase 1 not yet diagnosed by the start of Phase 3, our analysis may
be more loose because the required saving of one test will be done in Phase 4.
So in this case we charge as follows. Whenever a test is a 1-arrow, we charge this
test to the fault at the end of it. Whenever a fault is a 0-arrow and the tested
processor is in a spike, but not the end of it, we charge this test to the fault at
the end of the spike. Whenever a fault is a 0-arrow and the tested processor is
either in a 0-line or it is the last processor of a spike, we charge the test to the
node which is the beginning of this 0-line or spike. This covers all possible tests
in Phase 3.

In Case 2, when there was no pure segment in Phase 1 not yet diagnosed by
the start of Phase 3, the analysis in Phase 3 must be done more precisely, as
in this case Phase 3 is the final one and we must guarantee that some node or
(potential) fault remains uncharged. We do charging as before, except in the last
round when the last processor of each surviving 0-line and spike is tested. Let t′

be the number of faulty processors diagnosed until this round. If t′ < t then all
remaining processors are tested in the last round. We charge each of these tests
to the processor beginning the respective 0-line or spike. Thus the total number
of charges is at most n + t′ in this case. Since t′ < t, we guarantee the upper
bound n + t − 1. If t′ = t then no further tests are performed. Since at least one
0-line or spike surivived to this final round, the beginning of this 0-line or spike
remains uncharged and we have at most t + (n − 1) charges made.

Finally we analyze Phase 4. This phase is performed only if Case 1 in Phase
3 occured. There are two possibilities in Phase 4. First suppose that Procedure
Fast-Line-Scan was never called. This means that all faults were diagnosed by
round x of Phase 4. Let ρ be the last phase for which τρ > 0. Since strings
diagnosed in Phase 4 have length at least 2x, none of the last processors in these
strings is tested in round ρ. Charging is done as in Case 1 of Phase 3. Since
τρ > 0 and ρ is the last round of the algorithm in this case, it is impossible to
diagnose all processors as fault free in this round. Hence either some test is a
1-arrow, in which case the first processor of the corresponding string remains
uncharged, or all tests are 0-arrows but at least one of them corresponds to a
spike, in which case this test is charged to the fault in the last processor of this
spike, and the first processor of the spike remains uncharged. This implies that
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if Procedure Fast-Line-Scan was never called, the number of tests is at most
n + t − 1.

Next suppose that Procedure Fast-Line-Scan has been called starting in round
r∗ + 1, in parallel for all end segments in Zr∗ . Hence we have br∗ < τr∗/32. Let
F1, . . . , Fk, for k ≤ br∗ , be the end segments in Zr∗ , remaining to be diagnosed.
Let λ′ be the number of faults diagnosed until the end of round r∗ and let
λ = t − λ′. Since λ = τr∗ − br∗ > 31τr∗/32 and k ≤ br∗ < τr∗/32, we have
λ = αk, for some α > 31. Each Fi is either a 0-line or a spike. As mentioned
above, for those Fi that are 0-lines, Procedure Fast-Line-Scan is called without
any change, and for those that are spikes, it is called for the 0-line part of the
spike and the last processor is tested separately. Hence if fi is the number of
faults in Fi, the number of tests used to diagnose this set is at most 2 log fi + 3.

Suppose that m of the end segments F1, . . . , Fk have at most 3 faults. With-
out loss of generality we may assume that these are end segments F1, . . . , Fm.
Procedure Fast-Line-Scan uses at most 4 tests for each of them. By definition
we have fi ≥ 4 for all m + 1 ≤ i ≤ k. For these i, Procedure Fast-Line-Scan
uses at most 2 log fi + 3 < 4 log fi tests. Hence the total number of tests is at
most 4m +

∑k
i=m+1 4 log fi which is at most 4m + 4(k − m) log λ

k−m , in view of
Proposition 2. We have k/(k − m) ≥ 1 and α > 31, which implies

log α + log
k

k − m
<

α − 4
4

· k

k − m
.

It follows that
4(k − m) log

αk

k − m
< (α − 4)k,

and consequently

4m + 4(k − m) log
λ

k − m
≤ 4k + 4(k − m) log

λ

k − m
=

4k + 4(k − m) log
αk

k − m
< αk = λ.

This means that the total number of tests used in the calls of Procedure Fast-
Line-Scan for F1, . . . , Fk is strictly smaller than the upper bound λ on the num-
ber of faults remaining to be diagnosed. Consequently, at least one test is saved
and the total number of tests is at most n + t − 1 in this case as well.
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Abstract. In an uncertain data set S = (S, p, f) where S is the ground
set consisting of n elements, p : S → [0, 1] a probability function, and
f : S → R a score function, each element i ∈ S with score f(i) appears
independently with probability p(i). The top-k query on S asks for the set
of k elements that has the maximum probability of appearing to be the k
elements with the highest scores in a random instance of S . Computing
the top-k answer on a fixed S is known to be easy. In this paper, we
consider the dynamic problem, that is, how to maintain the top-k query
answer when S changes, including element insertion and deletions in
the ground set S, changes in the probability function p and the score
function f . We present a fully dynamic data structure that handles an
update in O(k log k log n) time, and answers a top-j query in O(log n+j)
time for any j ≤ k. The structure has O(n) size and can be constructed
in O(n log2 k) time. As a building block of our dynamic structure, we
present an algorithm for the all-top-k problem, that is, computing the
top-j answers for all j = 1, . . . , k, which may be of independent interest.

1 Introduction

Uncertain data naturally arises in a number of modern applications, e.g. im-
precise measurement in mobile and sensor data [6], fuzzy duplicates in data
warehouse [2], data integration [9], data cleaning [8,4], etc. These applications
have called for a lot of research activities in modeling and querying uncertain
data in recent years. An uncertain data model represents a probability distri-
bution of all the possible instances of the data set. For example, in the basic
uncertain data model [5,1], an uncertain data set S = (S, p) consists of a ground
set of elements S = {1, . . . , n} and a probability function p : S → [0, 1]. It is
assumed that each element i appears independently with probability p(i), i.e.,
the probability that S instantiates into I ⊆ S is

Pr[I | S] =
∏

i∈I

p(i)
∏

i∈S\I

(1 − p(i)).
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This basic model, in spite of its simplicity, has often been used to approximate
the uncertain nature of the underlying data set. We will also adopt this model in
this paper. In the following, we use I ∼ S to denote that I is a random instance
generated from S.

Top-k queries are perhaps the most common type of queries in such applica-
tions, and have attracted much attention recently. However, all of the existing
works can only handle one-time top-k computations [12,10,13]. When the under-
lying data changes, i.e., when the associated probabilities change, or elements
are inserted or deleted, the algorithm has to recompute the answer to the query.
This is often unacceptable due to the inherent dynamic nature of the uncer-
tain data in many applications. For instance in data integration, the probability
p(i) represents the confidence of its existence, as more data becomes available
from different sources, it is conceivable that the confidence levels might expe-
rience frequent changes. In this paper, we are interested in designing dynamic
data structures that can be used to efficiently maintain the correct top-k answer
as the uncertain data set undergoes a series of updates, including probability
updates, element insertions and deletions.

Problem definition. There exist a few definitions for top-k queries in the litera-
ture. We adopt the following natural definition [12], which also requires a score
function f : S → R.

Definition 1. [12] Let S = (S, p, f) be an uncertain data set. For any I ⊆ S,
let Ψk(I) be the top-k elements in I according to the score function f ; if |I| < k,
define Ψk(I) = ∅. Let T be any set of k elements. The answer T ∗ to a top-k
query on S is T ∗ = argmaxT PrI∼S [Ψk(I) = T ] = arg maxT

∑
Ψk(I)=T Pr[I | S].

Ties can be broken arbitrarily.

In other words, T ∗ is the set of k elements that has the maximum probability
of being at the top-k according to the score function in a randomly generated
instance. As a concrete example, S can be a collection of sensors deployed in an
environmental study, f represents their precipitation readings, and p measures
the probabilities that the sensors are functioning normally. Thus, the top-k result
gives us a good idea of where high precipitation occurs. Please see [12] for more
potential applications.

As a convention, we assume that all the scores are distinct and S is given in
the decreasing score order, i.e., f(1) > f(2) > · · · > f(n). Thus the probability
of a set T of size k being the top-k elements PrI∼S [Ψk(I) = T ] becomes

∏

j∈T

p(j)
∏

j<l(T ),j �∈T

(1 − p(j))

where l(T ) is the last element in T . The problem becomes finding the set of k
elements T ∗ that maximizes the above quantity. In this paper, we break ties by
choosing the T ∗ with a smaller l(T ∗).

Previous work. Quite a few uncertain data models have been proposed in the
database literature [11,3,1,5]. They range from the basic model that we use in
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this paper, to powerful models that are complete, i.e., models that can repre-
sent any probability distribution of the data set instances. However, complete
models have exponential complexities and are hence uninteresting computation-
ally. Some extensions to the basic model have been introduced to expand the
expressiveness of the model while keeping computation tractable. Notably, in
the TRIO [1] system, an uncertain data set consists of a number of x-tuples,
and each x-tuple may include a number of elements associated with probabil-
ities, and represent a discrete probability distribution of these elements being
selected. Independence is still assumed among the x-tuples.

Soliman et al. [12] first proposed the problem of top-k query processing in
an uncertain data set. Their algorithms have been recently improved by Yi et
al. [13], both in the basic uncertain data model and the x-tuple model. In the
basic model, if the elements are given in the sorted score order, there is a simple
O(n log k)-algorithm to compute the answer of the top-k query in one pass [13].
We scan the elements one by one, and maintain in a heap the k elements with
the highest probabilities seen so far. Every time the heap changes we also incre-
mentally compute the probability of these k elements being the top-k answer,
i.e., the probability that all of these k elements appear multiplied by the prob-
ability that none of the other seen elements appear. In the end we report the k
elements that achieve the maximum probability. However, this simple algorithm
is inherently static, it is not clear how to extend it to handle updates without re-
computation. As illustrated by the above sensor example, the uncertain data set
may experience frequent changes, therefore it is important to develop dynamic
algorithms for the problem.

There are a few other top-k query definitions proposed recently. For example,
Soliman et al. [12] also proposed the U-kRanks query that concerns with the
probability of an element appearing at a particular rank in a randomly generated
instance. Another different framework by Ré et al. [10] deals with the problem
of finding the k most probable answer for a given certain query, and there the
additional scoring dimension is not involved.

Our results. In this paper, we present a dynamic structure of size O(n) that
always maintains the correct answer to the top-k query for an uncertain data set
S. In fact, we support more general queries than just for a specific k. Given any
j ≤ k, our structure answers the top-j query in time O(log n+ j). We conjecture
that the problem does not necessarily become easier even if one only requires
support for the top-k query. Our structure takes O(k log k log n) time to process
a probability update, insert a new element into S, or delete an element from S.
Note that a score change can be simply accomplished by an element deletion
followed by an insertion. Given an uncertain data set whose elements are sorted
by score, it takes O(n log2 k) time to build the structure. The new structure uses
a different approach than the static algorithm, and is based on a decomposition
of the problem, which allows for efficient updates.

Before presenting our dynamic data structure, in Section 2 we consider a
generalized version of the top-k problem, the so called all-top-k problem, in
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which we want to compute the top-j answers for all j = 1, . . . , k. We give an
O(n log2 k+k2)-time algorithm for this problem. This algorithm is also a building
block of our dynamic data structure, which we describe in Section 3.

2 The All-Top-k Problem

In this section, we consider a slightly generalized version of the basic top-k
problem. Given an uncertain data set S, in the all-top-k problem, we want to
compute the answers to all the top-j queries, for j = 1, . . . , k. Näıvely applying
the basic algorithm in [13] for each j would result in a total running time of
O(nk log k). Below we give an O(n log2 k + k2) algorithm, which will also be
useful in our dynamic structure presented in Section 3. Note that the k2 term
in the upper bound is necessary because this problem has a total result size of
Θ(k2).

Henceforth we will denote the top-j answer as T ∗
j . We first observe that once

we know l(T ∗
j ), the last element in T ∗

j , the other j − 1 elements of T ∗
j are simply

the j − 1 highest-probability elements in [1, l(T ∗
j )]. In the following, we focus on

computing l(T ∗
j ) for all j, and present an algorithm that runs in O(n log2 k) time.

After we have the l(T ∗
j )’s, the T ∗

j ’s can be computed easily in O(n log k + k2)
time by scanning all the elements again while keeping a heap of size k. If only
the probabilities of these top-j answers are required, O(n log k) time suffices.

Algorithm outline. To simplify our notation, we use lj (for 1 ≤ j ≤ k) to
denote l(T ∗

j ), the last element in T ∗
j . We will progressively process the first i

elements of S and update the corresponding lj ’s, as i goes from 1 to n. When we
finish processing all n elements, we obtain the lj ’s for S. However, since there
are Θ(nk) such values (k values for each position i), we cannot even afford to
list all of them explicitly; instead, we store them in a “compressed list” that
allows for fast updates. The data structure makes essential use of the following
two properties of the changes these lj ’s may experience. The first property is
monotonicity. Note that the following lemma holds for all uncertainty data sets,
including those consisting of the first i elements of S.

Lemma 1. For any 1 ≤ j < j′ ≤ k, we have that lj ≤ lj′ .

Proof. We only need to prove the case when j′ = j+1, and the general statement
will be an easy consequence. Let T be a set of size j, and e �∈ T , denote by r(T, e)
the ratio of the probability of T ∪{e} being the top-(j +1) set to that of T being
the top-j. We have1

1 In this paper, we use the following convention to handle the multiplication and
division of zeros. We keep a counter on how many zeroes have been applied to a
product: incrementing the counter for each multiplication by 0 and decrementing for
each division by 0. We interpret the final result as 0 if the counter is positive, or ∞
if negative.
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r(T, e) =
PrI∼S [T ∪ {e} = Ψj+1(I)]

PrI∼S [T = Ψj(I)]
=

∏
h∈T∪{e} p(h)

∏
h<l(T∪{e}),h �∈T∪{e}(1 − p(h))∏

h∈T p(h)
∏

h<l(T ),h �∈T (1 − p(h))

=

{
p(e)

1−p(e) , if e < l(T ),
p(e)

∏
l(T )<h<e(1 − p(h)), if e > l(T ).

Note that when e > l(T ), r(T, e) = p(e)
1−p(e)

∏
l(T )<h≤e(1 − p(h)) ≤ p(e)

1−p(e) .
Now assuming on the contrary lj > lj+1, let e be an element in T ∗

j+1 but not
in T ∗

j . We will show that T ∗
j ∪ {e} is more likely to be the top-(j + 1) set than

T ∗
j+1, which leads to contradiction. Since e < lj , r(T ∗

j , e) = p(e)
1−p(e) ≥ r(T, e)

for any T . Because lj > lj+1, by the definition of T ∗
j and our tie breaking rule,

we must have PrI∼S [T ∗
j = Ψj(I)] > PrI∼S [T ∗

j+1 \ {e} = Ψj(I)]. Therefore, the
probability that T ∗

j ∪ {e} is the top-(j + 1) answer is

Pr
I∼S

[T ∗
j = Ψj(I)] · r(T ∗

j , e) > Pr
I∼S

[T ∗
j+1 \ {e} = Ψj(I)] · r(T ∗

j , e)

≥ Pr
I∼S

[T ∗
j+1 \ {e} = Ψj(I)] · r(T ∗

j+1 \ {e}, e)

= Pr
I∼S

[T ∗
j+1 = Ψj+1(I)],

a contradiction.

The second property is that, when we process the i-th element, lj either changes
to i or stays the same because all newly added j-sets contains i. By Lemma 1,
if lj changes to i, so do all lj′ ’s for j ≤ j′ ≤ k. Thus, to process element i, the
problem basically becomes finding the smallest j such that lj becomes i.

Updating the lj’s. We store l1, . . . , lmin{i,k} in a list, both j and the value of
lj . By Lemma 1 this list is automatically in the increasing order of both j and
lj . We further compress the list by representing the lj’s with equal values by
ranges. For example, if l1 = 1, l2 = l3 = l4 = 5, l5 = l6 = 6, then the list looks
like (1, [1, 1]), (5, [2, 4]), (6, [5, 6]). Suppose that we have a comparison method to
decide if lj becomes i for any j, then we can locate the minimum such j, denoted
j∗, as follows. We first visit the compressed list from right to left, checking the
boundaries of each range, until we locate the range that contains j∗. Next we do
a binary search inside the range to pin down its exact location. Finally, supposing
that the entry in the list whose range contains j∗ is (i′, [j1, j2]), we first truncate
all the trailing entries in the list, and then replace (i′, [j1, j2]) with (i′, [j1, j∗−1])
(if j1 ≤ j∗) and (i, [j∗, i]). Note that a special case is when j∗ does not exist, i.e.,
no lj becomes i. In this case if i ≤ k, we append (i, [i, i]) to the list; otherwise
we do nothing.

We bound the number of comparisons per element as follows. In the first step
when we scan the list from right to left, if we pass an entry, then it will be
removed immediately. Thus, the amortized number of comparisons is O(1) for
the first step. The second step involves a binary search inside a range of length
at most k, which needs O(log k) comparisons. Therefore, the algorithm performs
O(n log k) comparisons for all n elements.
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The comparison method. To complete the algorithm, we finally specify how to
conduct each comparison in the algorithm above, which decides whether some
lj should change to i. Let T ∗

j (l) be the highest-probability j-set whose last ele-
ment is l, i.e., T ∗

j (l) consists of l and the j − 1 elements in {1, . . . , l − 1} with
the largest probabilities. We need to compute both PrI∼S [Ψj(I) = T ∗

j (lj)] and
PrI∼S [Ψj(I) = T ∗

j (i)] and compare them. Recall that for a set T of size j,

Pr
I∼S

[Ψj(I) = T ] =
∏

e∈T

p(e)
∏

e<l(T ),e�∈T

(1 − p(e))

=
∏

e∈T

p(e)
1 − p(e)

∏

e≤l(T )

(1 − p(e)).

The second factor is simply a prefix-product and can be easily maintained for
all l(T ) with a table of size O(n). To compute

∏
e∈T

p(e)
1−p(e) for T = T ∗

j (lj) and
T = T ∗

j (i), we build a data structure that supports the following queries: given
any j, l, return the product of p(e)/(1 − p(e))’s for the j − 1 highest-probability
elements e in {1, . . . , l − 1}. Below we give such a structure, which answers a
query in O(log k) time and can be constructed in O(n log k) time. It is obvious
that with this structure, we can perform a comparison in O(log k) time, leading
to a total running time of O(n log2 k) to process all n elements.

Again we process the n elements one by one, and maintain a dynamic binary
tree (say a red-black tree) of k elements, storing the highest-probability elements
among the elements that have been processed, sorted by their probabilities. At
the leaf of the tree storing e, we maintain the value p(e)/(1 − p(e)), and in each
internal node u the product of all p(e)/(1 − p(e))’s in the subtree rooted at u. It
can be verified that this binary tree can be updated in O(log k) time per element.
The binary tree built after having processed the first lj −1 elements can be used
to compute

∏
e∈T

p(e)
1−p(e) for T = T ∗

j (lj) in O(log k) time. The same can be said
for i and T ∗

j (i). However, the comparison of T ∗
j (lj) and T ∗

j (i) requires queries
on both binary trees, which are not supported by the progressive processing.

To support queries for all binary trees that ever appear, we make the data
structure partially persistent, i.e., the structure has multiple versions, one cor-
responding to each binary tree ever built, and allows queries on any version,
but only allows updates to the current version. That is, when we process i, we
produce a new binary tree of version i without altering any of the previous ver-
sions. Since the binary tree clearly has bounded in-degree, we can use the generic
technique of Driscoll et al. [7] to make it partially persistent, without increasing
the asymptotic query and update costs. Thus, this persistent structure can be
built in O(n log k) time and supports a query on any version of the binary tree
in time O(log k). However, the space requirement increases to O(n log k).

This completes the description of the algorithm.

Theorem 1. There is an algorithm that computes l1, . . . , lk in O(n log2 k) time.

As described at the beginning of this section, this leads to the following corollary.
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Corollary 1. There is an algorithm that solves the all-top-k problem in
O(n log2 k + k2) time.

3 The Dynamic Data Structure

We present our dynamic data structure in this section. We begin with probabil-
ity updates, and assume that the ground set S is static. In Section 3.1, we de-
scribe our data structure, which can be updated in time with a näıve O(k2 log n)
algorithm. We then present a better node merging algorithm in Section 3.2, im-
proving the update time to O(k log k log n). Finally, in Section 3.3, we talk about
how to handle element insertions and deletions.

3.1 The Data Structure

The structure. We build a balanced binary tree T on {1, . . . , n}. Each leaf of T
stores between k and 2k elements. Thus there are a total of O(n/k) leaves, and
hence a total number of O(n/k) nodes in T . For any node u ∈ T , let Su be the
set of elements stored in the leaves of the subtree rooted at u, and Su be the
corresponding uncertain data set.

For each node u, we solve the all-top-k problem for Su, except that we do not
list or store the all-top-k sets (which takes time and space of Ω(k2)). Instead, we
only store the corresponding probabilities of the sets. More precisely, let T ∗

j (Su)
be the top-j answer for Su. We compute and store ρu

j = PrI∼Su [Ψj(I) = T ∗
j (Su)]

for all j = 1, . . . , k. Thus the all-top-k solutions for the whole set S can be found
at the root of the whole binary tree.

At each node u, we also compute k +1 auxiliary variables πu
j , for j = 0 . . . , k.

If we sort the elements in Su by their probabilities in descending order, and
suppose that eu

1 , eu
2 , . . . , eu

|Su| is such an order, then πu
j is defined as

πu
j =

j∏

h=1

p(eu
h)

|Su|∏

h=j+1

(1 − p(eu
h)). (1)

In other words, πu
j is the maximum probability for any j-set generated from Su.

Note that πu
0 =

∏
e∈Su(1− p(e)) is just the probability that none of Su appears.

This completes the description of our data structure. It is obvious that the
structure has a size of O(n).

Initializing and updating the πu
j ’s. Rewriting (1), we get

πu
j =

j∏

h=1

p(eu
h)

1 − p(eu
h)

|Su|∏

h=1

(1 − p(eu
h)) = πu

0 ·
j∏

h=1

p(eu
h)

1 − p(eu
h)

. (2)

Hence πu
j is just the j-th prefix product of the list p(eu

1 )
1−p(eu

1 ) ,
p(eu

2 )
1−p(eu

2 ) , . . . times πu
0 .

This suggests us to maintain the list up to the first k elements. These can be
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prepared for all the leaves u in O(n log k) time by sorting the elements in each
Su by their probabilities. For an internal node u with children v and w, we just
merge the two lists associated with v and w, which takes O(k) time. To compute
πu

0 takes O(k) time per leave, but only O(1) time for an internal node because
πu

0 = πv
0πw

0 . Given the list and πu
0 , all πu

j ’s can be computed in time O(k) for u.
Thus it takes time O(n log k) to initialize all the πu

j ’s. When there is probability
change at a leaf, we can update all the affected πu

j ’s in O(k log n) time along the
leaf-to-root path.

Initializing and updating the ρu
j ’s. Now we proceed to the more difficult part,

maintaining the ρu
i ’s. For a leaf e, the ρe

j ’s can be computed by invoking the
algorithm in Section 2, taking O(k log2 k) time per leaf and O(n log2 k) overall.
For an internal node u, ρu

i can be computed as specified in the following lemma.

Lemma 2. Let u be an internal node with v and w being its left and right child,
respectively. For any 1 ≤ j ≤ k,

ρu
j = max{ρv

j , max
1≤h≤j

πv
j−hρw

h }. (3)

Proof. Recall that the leaves of the tree are sorted in the descending order of
score. Thus the left child of u, namely v, contains elements with higher scores.

By definition, ρu
j is the top-j query answer for the uncertain data set Su.

There are two cases for the top-j query answer. Either we choose all of these j
elements from Sv, which has a maximum probability of ρv

j , or choose at least
one element from Sw. The latter case is further divided into j sub-cases: We can
choose j − h elements from Sv and h elements from Sw, for h = 1, . . . , j. For
each sub-case, the maximum probability is πv

j−hρw
h .

The näıve way to maintain the ρu
j ’s is to compute (3) straightforwardly, which

takes Θ(k2) time per internal node. In Section 3.2 we present an improved node
merging algorithm that computes all ρu

j ’s for u in time O(k log k). This will
lead to an overall initialization time of (n log2 k) for the whole structure, and an
update time of O(k log k log n).

Querying the structure. Once we have the structure available, we can easily
extract the top-k query answer by remembering which choice we have made for
each ρu

j in Lemma 2. We briefly outline the extraction algorithm here. We visit
T in a top-down fashion recursively, starting at the root querying for its top-k
answer. Suppose we are at node u ∈ T with children v and w, querying for its top-
j answer. If ρu

j = ρv
j , then we recursively query v for its top-j answer. Otherwise,

suppose ρu
j = πv

j−hρw
h for some h. We report ev

1, . . . , e
v
j−h and then recursively

query w for its top-h answer. It is not difficult to see that this extraction process
takes O(log n + k) time in total.

Note that our data structure is capable of answering queries for any top-
j, j ≤ k. It is not clear to us whether restricting to only the top-k answer
will make the problem any easier. We suspect that the all-top-k feature of our
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data structure is inherent in the problem of maintaining only the top-k answer.
For example, in the case when the probability of the element with the highest
score, namely p(1), is 0, we need to compute the top-k answer of the rest n − 1
elements. However, when p(1) is changed to 1, the top-k answer changes to {1}
union the top-(k − 1) answer of the rest of n − 1 elements. This example can be
further generalized. When p(1), p(2), . . . , p(k − 1) are changed from 0 to 1 one
after another, the top-k answer of the whole data set is changed from the top-k
answer, to the top-(k−1) answer, then to the top-(k−2) answer,. . . , and finally
to the top-1 answer of the rest n − k + 1 elements.

3.2 An Improved Node Merging Algorithm

Näıvely evaluating (3) takes Θ(k2) time. In this section, we present an improved
O(k log k)-time algorithm. In the following, we concentrate on computing the
second terms inside the max of (3), with which computing ρu

j ’s takes only k
max-operations. That is, we focus on computing ρ̄u

j = max1≤h≤j πv
j−hρw

h , for
j = 1, . . . , k.

Our algorithm exploits the internal structure of the problem. In Figure 1, we
represent each product πv

j−hρw
h by a square. Thus, each ρ̄u

j is the maximum over
the corresponding diagonal. We number the diagonals from top-left to bottom-
right, so that the product πv

j−hρw
h is in diagonal j. We will again make use of

the monotonicity property similar to that shown in Lemma 1. For two columns
h and h′ of Figure 1, we say column h beats column h′ at diagonal j, where
2 ≤ h ≤ j, if the product at the intersection of column h and diagonal j is larger
than that at the intersection of column h′ and diagonal j. The following lemma
shows that these comparisons between two columns exhibit monotonicity.

Lemma 3. For any 1 ≤ h′ < h ≤ j, if column h beats column h′ at diagonal j,
then column h beats column h′ at any diagonal j′, where j ≤ j′ ≤ k.

· · ·

· · ·

· · ·

ρw
1 ρw

2 ρw
3 ρw

4 · · · ρw
k

πv
0

πv
2

πv
3

· · ·

πv
k−1

πv
1

· · ·

· · ·· · ·

Fig. 1. A square represents the product of the corresponding πv
j−h and ρw

h . Each ρ̄u
j is

the maximum on a diagonal.
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Proof. By assumption, we have

πv
j−hρw

h > πv
j−h′ρw

h′ . (4)

Rewriting (4), we get
ρw

h

ρw
h′

>
πv

j−h′

πv
j−h

. (5)

Recalling (2), the RHS of (5) can be expressed as

j−h′
∏

t=j−h+1

p(ev
t )

1 − p(ev
t )

,

which becomes smaller when j becomes larger (remember that the ev
t ’s are sorted

by probabilities in descending order). Therefore, (5), and hence (4), will also hold
if we replace j with j′.

We will progress column by column, and for each diagonal keep the current
“winner”, i.e., the column that beats all the other columns seen so far. After we
have processed column j (the last column that has intersection with diagonal
j), the winner for diagonal j then determines ρ̄u

j , and we can remove diagonal j
from the current maintained list.

By Lemma 3, the way how the winners change exhibits the same pattern as
the lj ’s do in Section 2. More precisely, when we process column j, if h∗ is the
minimum h such that the winner of diagonal h changes to column j, then all
diagonals after h∗ will have their winners changed to j. Thus, we can use the
same algorithm (using a compressed list) that we designed for computing the lj ’s
in Section 2 to maintain the list of winners. Since here comparing two columns
at a particular diagonal takes O(1) time (as opposed to O(log k) in Section 2),
the total running time is O(k log k).

Therefore, we can compute the ρu
j ’s in O(k log k) time for each node u. To

summarize, when the probability of an element changes, we first update all the
πu

j values for all the nodes on a leaf-to-root path, taking O(k) time per node.
Next, we recompute the ρu

j values at the leaf containing the updated element.
This takes O(k log2 k) time using our all-top-k algorithm of Section 2. Finally,
we update the other ρu

j values for all nodes on the leaf-to-root path in a bottom-
up fashion, taking O(k log k) time per node. The overall update cost is thus
O(k log2 k + k log k log n) = O(k log k log n).

3.3 Handling Element Insertions and Deletions

We can handle element insertions and deletions using standard techniques. We
make the binary tree T a dynamic balanced binary tree, say a red-black tree,
sorted by scores. To insert a new element, we first find the leaf where the element
should be inserted. If the leaf contains less than 2k elements, we simply insert
the new element, and then update all the affected πu

i and ρu
i values as described
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previously. If the leaf already contains 2k elements, we split it into two, creating
a new internal node, which becomes the parent of the two new leaves. After
inserting the new element into one of the two new leaves, we update the πu

i and
ρu

i values as before. When the tree gets out of balance, we apply rotations. Each
rotation may require the recomputation of the πu

i and ρu
i values at a constant

number of nodes, but this does not change the overall asymptotic complexity.
Deletions can be handled similarly.

Therefore, we reach the main result of this paper.

Theorem 2. There is a fully dynamic data structure that maintains an uncer-
tain data set under probability changes, element insertions and deletions that
takes O(k log k log n) time per update, and answers a top-j query in O(log n+ j)
time for any j ≤ k. The structure has size O(n) and can be constructed in
O(n log2 k) time. All bounds are worst-case.

4 Concluding Remarks

In this paper we present a dynamic data structure for the top-k problem with
an update cost of O(k log k log n). We conjecture that there is an inherent Ω(k)
lower bound for the problem. As a building block of our main result, we also
present an all-top-k algorithm that runs in O(n log2 k + k2) time.

Many directions for this problem remain elusive. For example, we have only
considered the basic uncertain data model. It would be interesting if we can
extend our approach to other more powerful models, such as the x-tuple model
[1]. Another orthogonal direction is to consider other top-k definitions [12,10].
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Separating Populations with Wide Data: A Spectral
Analysis
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Abstract. In this paper, we consider the problem of partitioning a small data
sample drawn from a mixture of k product distributions. We are interested in the
case that individual features are of low average quality γ, and we want to use as
few of them as possible to correctly partition the sample. We analyze a spectral
technique that is able to approximately optimize the total data size—the product
of number of data points n and the number of features K—needed to correctly
perform this partitioning as a function of 1/γ for K > n. Our goal is motivated
by an application in clustering individuals according to their population of origin
using markers, when the divergence between any two of the populations is small.

1 Introduction

We explore a type of classification problem that arises in the context of computational
biology. The problem is that we are given a small sample of size n, e.g., DNA of n
individuals (think of n in the hundreds or thousands), each described by the values
of K features or markers, e.g., SNPs (Single Nucleotide Polymorphisms, think of K
as an order of magnitude larger than n). Our goal is to use these features to classify
the individuals according to their population of origin. Features have slightly different
probabilities depending on which population the individual belongs to, and are assumed
to be independent of each other (i.e., our data is a small sample from a mixture of k very
similar product distributions). The objective we consider is to minimize the total data
size D = nK needed to correctly classify the individuals in the sample as a function of
the “average quality” γ of the features, under the assumption that K > n. Throughout
the paper, we use pj

i and μj
i as shorthands for p

(j)
i and μ

(j)
i respectively.

Statistical Model: We have k probability spaces Ω1, . . . , Ωk over the set {0, 1}K. Fur-
ther, the components (features) of z ∈ Ωt are independent and PrΩt [zi = 1] = pi

t

(1 ≤ t ≤ k, 1 ≤ i ≤ K). Hence, the probability spaces Ω1, . . . , Ωk comprise the
distribution of the features for each of the k populations. Moreover, the input of the
algorithm consists of a collection (mixture) of n =

∑k
t=1 Nt unlabeled samples, Nt

points from Ωt, and the algorithm is to determine for each data point from which of
Ω1, . . . , Ωk it was chosen. In general we do not assume that N1, . . . , Nt are revealed
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to the algorithm; but we do require some bounds on their relative sizes. An important
parameter of the probability ensemble Ω1, . . . , Ωk is the measure of divergence

γ = min
1≤s<t≤k

∑K
i=1(p

i
s − pi

t)
2

K
(1)

between any two distributions. Note that
√

Kγ measures the Euclidean distance be-
tween the means of any two distributions and thus represents their separation. Further,
let N = n/k (so if the populations were balanced we would have N of each type) and
assume from now on that kN < K . Let D = nK denote the size of the data-set. In
addition, let σ2 = maxi,t pi

t(1 − pi
t) denote the maximum variance of any random bit.

The biological context for this problem is we are given DNA information from n
individuals from k populations of origin and we wish to classify each individual into
the correct category. DNA contains a series of markers called SNPs, each of which has
two variants (alleles). Given the population of origin of an individual, the genotypes can
be reasonably assumed to be generated by drawing alleles independently from the ap-
propriate distribution. The following theorem gives a sufficient condition for a balanced
(N1 = N2) input instance when k = 2.

Theorem 1. (Zhou 06 [25]) Assume N1 = N2 = N . If K = Ω( ln N
γ ) and KN =

Ω( ln N log log N
γ2 ) then with probability 1 − 1/ poly(N), among all balanced cuts in

the complete graph formed among 2N sample individuals, the maximum weight cut
corresponds to the partition of the 2N individuals according to their population of
origin. Here the weight of a cut is the sum of weights across all edges in the cut, and the
edge weight equals the Hamming distance between the bit vectors of the two endpoints.

Variants of the above theorem, based on a model that allows two random draws from
each SNP for an individual, are given in [3,25]. In particular, notice that edge weights
based on the inner-product of two individuals’ bit vectors correspond to the sample
covariance, in which case the max-cut corresponds to the correct partition [25] with
high probability. Finding a max-cut is computationally intractable; hence in the same
paper [3], a hill-climbing algorithm is given to find the correct partition for balanced
input instances but with a stronger requirement on the sizes of both K and nK .

A Spectral Approach: In this paper, we construct two simpler algorithms using spec-
tral techniques, attempting to reproduce conditions above. In particular, we study the
requirements on the parameters of the model (namely, γ, N , k, and K) that allow us to
classify every individual correctly and efficiently with high probability.

The two algorithms CLASSIFY and PARTITION compare as follows. Both algorithms
are based on spectral methods originally developed in graph partitioning. More pre-
cisely, Theorem 2 is based on computing the singular vectors with the two largest sin-
gular values for each of the n × K input random matrix. The procedure is conceptually
simple, easy to implement, and efficient in practice. For simplicity, Procedure Classify
assumes the separation parameter γ is known to decide which singular vector to exam-
ine; in practice, one can just try both singular vectors as we do in the simulations. Proof
techniques for Theorem 2, however, are difficult to apply to cases of multiple popula-
tions, i.e., k > 2. Procedure Partition is based on computing a rank-k approximation of
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the input random matrix and can cope with a mixture of a constant number of popula-
tions. It is more intricate for both implementation and execution than Classify. It does
not require γ as an input, while only requires that the constant k is given. We prove the
following theorems.

Theorem 2. Let ω = min(N1,N2)
n and ωmin be a lower bound on ω. Let γ be given.

Assume that K > 2n lnn and k = 2. Procedure CLASSIFY allows us to separate two

populations w.h.p., when n ≥ Ω
(

σ2

γωminω

)
, where σ2 is the largest variance of any

random bit, i.e. σ2 = maxi,t pi
t(1 − pi

t). Thus if the populations are roughly balanced,
then n ≥ c

γ suffices for some constant c.

This implies that the data required is D = nK = O
(
ln nσ4/γ2ω2ω2

min

)
. Let Ps =

(pi
s)i=1,...,K , we have

‖P1 − P2‖2 =
√

Kγ =

√
√
√
√

K∑

i=1

(pi
1 − pi

2)2 ≥ σ

ωminω

√
ln n. (2)

Theorem 3. Let ω = min(N1,...,Nk)
n . There is a polynomial time algorithm PARTITION

that satisfies the following. Suppose that K > n log n and n > Ckσ2

γω for some large
enough constant Ck and that ω = Ω(1). Then given the empirical n × K matrix com-
prising the K features for each of the n individuals along with the parameter k, PAR-
TITION separates the k populations correctly w.h.p.

Summary and Future Direction: Note that unlike Theorem 1, both Theorem 2 and
Theorem 3 require a lower bound on n, even when k = 2 and the input instance is bal-
anced. We illustrate through simulations to show that this seems not to be a fundamental
constraint of the spectral techniques; our experimental results show that even when n
is small, by increasing K so that nK = Ω(1/γ2), one can classify a mixture of two
populations using ideas in Procedure Classify with success rate reaching an “oracle”
curve, which is computed assuming that distributions are known, where success rate
means the ratio between correctly classified individuals and N . Exploring the tradeoffs
of n and K that are sufficient for classification, when sample size n is small, is both of
theoretical interests and practical value.

1.1 Related Work

In their seminal paper [21], Pritchard, Stephens, and Donnelly presented a model-based
clustering method to separate populations using genotype data. They assume that ob-
servations from each cluster are random from some parametric model. Inference for
the parameters corresponding to each population is done jointly with inference for the
cluster membership of each individual, and k in the mixture, using Bayesian methods.

The idea of exploiting the eigenvectors with the first two eigenvalues of the adja-
cency matrix to partition graphs goes back to the work of Fiedler [12], and has been
used in the heuristics for various NP-hard graph partitioning problems (e.g., [13]). The
main difference between graph partitioning problems and the classification problem
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that we study is that the matrices occurring in graph partitioning are symmetric and
hence diagonalizable, while our input matrix is rectangular in general. Thus, the contri-
bution of Theorem 2 is to show that a conceptually simple and efficient algorithm based
on singular value decompositions performs well in the framework of a fairly general
probabilistic model, where probabilities for each of the K features for each of the k
populations are allowed to vary. Indeed, the analysis of CLASSIFY requires exploring
new ideas such as the Separation Lemma and the normalization of the random matrix
X , for generating a large gap between top two singular values of the expectation ma-
trix X and for bounding the angle between random singular vectors and their static
correspondents, details of which are included in Section 2 with analysis in full version.

Procedure Partition and its analysis build upon the spectral techniques of McSh-
erry [18] on graph partitioning, and an extension due to Coja-Oghlan [4]. McSherry
provides a comprehensive probabilistic model and presents a spectral algorithm for
solving the partitioning problem on random graphs, provided that a separation con-
dition similar to (2) is satisfied. Indeed, [18] encompasses a considerable portion of
the prior work on Graph Coloring, Minimum Bisection, and finding Maximum Clique.
Moreover, McSherry’s approach easily yields an algorithm that solves the classification
problem studied in the present paper under similar assumptions as in Theorem 3, pro-
vided that the algorithm is given the parameter γ as an additional input; this is actually
pointed out in the conclusions of [18]. In the context of graph partitioning, an algorithm
that does not need the separation parameter as an input was devised in [4]. The main
difference between PARTITION and the algorithm presented in [4] is that PARTITION

deals with the asymmetric n×K matrix of individuals/features, whereas [4] deals with
graph partitioning (i.e., a symmetric matrix).

There are two streams of related work in the learning community. The first stream
is the recent progress in learning from the point of view of clustering: given samples
drawn from a mixture of well-separated Gaussians (component distributions), one aims
to classify each sample according to which component distribution it comes from, as
studied in [8,9,2,23,1,15,7]. This framework has been extended to more general distri-
butions such as log-concave distributions in [1,15] and heavy-tailed distributions in [7],
as well as to more than two populations. These results focus mainly on reducing the
requirement on the separations between any two centers P1 and P2. In contrast, we
focus on the sample size D. This is motivated by previous results [3,25] stating that
by acquiring enough attributes along the same set of dimensions from each component
distribution, with high probability, we can correctly classify every individual.

While our aim is different from those results, where n > K is almost universal
and we focus on cases K > n, we do have one common axis for comparison, the
�2-distance between any two centers of the distributions. In earlier works [9,2], the
separation requirement depended on the number of dimensions of each distribution; this
has recently been reduced to be independent of K , the dimensionality of the distribution
for certain classes of distributions [1,15]. This is comparable to our requirement in (2)
for the discrete distributions. For example, according to Theorem 7 in [1], in order to
separate the mixture of two Gaussians,

‖P1 − P2‖2 = Ω

(
σ√
ω

+ σ
√

log n

)

(3)
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is required. Besides Gaussian and Logconcave, a general theorem: Theorem 6 in [1]
is derived that in principle also applies to mixtures of discrete distributions. The key
difficulty of applying their theorem directly to our scenario is that it relies on a con-
centration property of the distribution (Eq. (10) of [1]) that need not hold in our case.
In addition, once the distance between any two centers is fixed (i.e., once γ is fixed
in the discrete distribution), the sample size n in their algorithms is always larger than
Ω

(
K
ω log5 K

)
[1,15] for log-concave distributions (in fact, in Theorem 3 of [15], they

discard at least this many individuals in order to correctly classify the rest in the sam-
ple), and larger than Ω(K

ω ) for Gaussians [1], whereas in our case, n < K always holds.
Hence, our analysis allows one to obtain a clean bound on n in the discrete case.

The second stream of work is under the PAC-learning framework, where given a
sample generated from some target distribution Z , the goal is to output a distribution
Z1 that is close to Z in Kullback-Leibler divergence: KL(Z||Z1), where Z is a mixture
of product distributions over discrete domains or Gaussians [16,14,5,6,20,10,11]. They
do not require a minimal distance between any two distributions, but they do not aim to
classify every sample point correctly either, and in general require much more data.

2 A Simple Algorithm Using Singular Vectors

As described in Theorem 2, we assume we have a mixture of two product distributions.
Let N1, N2 be the number of individuals from each population class. Our goal is to cor-
rectly classify all individuals according to their distributions. Let n = 2N = N1 + N2,
and refer to the case when N1 = N2 as the balanced input case. For convenience, let
us redefine “K” to assume we have O(log n) blocks of K features each (so the total
number of features is really O(K log n)) and we assume that each set of K features has
divergence at least γ. (If we perform this partitioning of features into blocks randomly,
then with high probability this divergence has changed by only a constant factor for
most blocks.) The high-level idea of the algorithm is now to repeat the following proce-
dure for each block of K features: use the K features to create an n×K matrix X , such
that each row Xi, i = 1, . . . , n, corresponds to a feature vector for one sample point,
across its K dimensions. We then compute the top two left singular vectors u1, u2 of
X and use these to classify each sample. This classification induces some probability
of error f for each individual at each round, so we repeat the procedure for each of the
O(log n) blocks and then take majority vote over different runs. Each round we require
K ≥ n features, so we need O(n log n) features total in the end.

In more detail, we repeat the following procedure O(log n) times. Let T =
15N
32

√
3ωminγ, where ωmin is the lower bound on the minimum weight min{ N1

2N , N2
2N },

which is independent of an actual instance. Let s1(X), s2(X) be the top two singular
values of X .

Procedure Classify: Given γ, N, ωmin. Assume that N � 1
γ ,

– Normalization: use the K features to form a random n × K matrix X ; Each
individual random variable Xi,j is a normalized random variable based on the
original Bernoulli r.v. bi,j ∈ {0, 1} with Pr[bi,j = 1] = pj

1 for Xi ∈ P1 and
Pr[bi,j = 1] = pj

2 for Xi ∈ P2, such that Xi,j = b+1
2 .
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– Take top two left singular vectors u1, u2 of X , where ui = [ui,1, . . . , ui,n], i = 1, 2.

1. If s2(X) > T = 15N
32

√
3ωminγ, use u2 to partition the individuals with 0 as

the threshold, i.e., partition j ∈ [n] according to u2,j < 0 or u2,j ≥ 0.
2. Otherwise, use u1 to partition, with mixture mean M =

∑n
i=1 u1,n as the

threshold.

Analysis of the Simple Algorithm: Our analysis is based on comparing entries in the
top two singular vectors of the normalized random n×K matrix X , with those of a static
matrix X , where each entry Xi,j = E[Xi,j ] is the expected value of the corresponding

entry in X . Hence ∀i = 1, . . . , N1, Xi = [μ1
1, μ

2
1, . . . , μ

K
1 ], where μj

1 = 1+pj
1

2 , ∀j, and

∀i = N1 + 1, . . . , n, Xi = [μ1
2, μ

2
2, . . . , μ

K
2 ], where μj

2 = 1+pj
2

2 , ∀j. We assume the
divergence is exactly γ among the K features that we have chosen in all calculations.

The inspiration for this approach is based on the following lemma, whose proof
is built upon a theorem that is presented in a lecture note by Spielman [22]. For a
n × K matrix A, let s1(A) ≥ s2(A) ≥ . . . ≥ sn(A) be singular values of A. Let
u1, . . . , un, v1, . . . , vn, be the n left and right singular vectors of X , corresponding to
s1(X), . . . , sn(X) such that ‖ui‖2 = 1, ‖vi‖2 = 1, ∀i. We denote the set of n left and
right singular vectors of X with ū1, . . . , ūn, v̄1, . . . , v̄n.

Lemma 4. Let X be the random n × K matrix and X its expected value matrix. Let
A = X − X be the zero-mean random matrix. Let θi be the angle between two vectors:
[ui, vi], [ūi, v̄i], where ‖[ui, vi]‖2 = ‖[ūi, v̄i]‖2 = 2 and [u, v] represents a vector that
is the concatenation of two vectors u, v.

‖ui − ūi‖2 ≤ ‖[ui, vi] − [ūi, v̄i]‖2 ≈ 2θi ≈ 2 sin(θi) ≤ 4s1(A)
gap(i, X )

, (4)

where gap(i, X ) = minj �=i |si(X ) − sj(X )|.

We first bound the largest singular value s1(A) = s1(X−X ) of (ai,j) with independent
zero-mean entries, which defines the Euclidean operator norm

‖(ai,j)‖ := sup

⎧
⎨

⎩

∑

i,j

ai,jxiyj :
∑

x2
i ≤ 1,

∑
y2

i ≤ 1

⎫
⎬

⎭
. (5)

The behavior of the largest singular value of an n × m random matrices A with i.i.d.
entries is well studied. Latala [17] shows that the weakest assumption for its regular
behavior is boundedness of the fourth moment of the entries, even if they are not iden-
tically distributed. Combining Theorem 5 of Latala with the concentration Theorem 6
by Meckes [19] proves Theorem 7 that we need 1.

1 One can also obtain an upper bound of O(
√

n + K) on s1(A) using a theorem on by Vu [24],
through the construction a (n + K) × (n + K) square matrix out of A.
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Theorem 5. (Bounded Norm of Random Matrices [17]) For any finite n × m matrix
A of independent mean zero r.v.’s ai,j we have, for an absolute constant C,

E ‖(ai,j)‖ ≤ C

⎛

⎜
⎝max

i

√∑

j

Ea2
i,j + max

j

√∑

i

Ea2
i,j +

⎛

⎝
∑

i,j

Ea4
i,j

⎞

⎠

1
4
⎞

⎟
⎠ . (6)

Theorem 6. (Concentration of Largest Singular Value: Bounded Range [19]) For
any finite n × m, where n ≤ m, matrix A, such that entries ai,j are independent r.v.
supported in an interval of length at most D, then, for all t,

Pr[|s1(A) − Ms1(A)| ≥ t] ≤ 4e−t2/4D2
. (7)

Theorem 7. (Largest Singular Value of a Mean-zero Random Matrix) For any finite
n × K , where n ≤ K , matrix A, such that entries ai,j are independent mean zero r.v.
supported in an interval of length at most D, with fourth moment upper bounded by B,
then

Pr
[
s1(A) ≥ CB1/4

√
K + 4D

√
π + t

]
≤ 4e−t2/4 (8)

for all t. Hence ‖A‖ ≤ C1B
1/4

√
K for an absolute constant C1.

2.1 Generating a Large Gap in s1(X ), s2(X )

In order to apply Lemma 4 to the top two singular vectors of X and X through

‖u1 − ū1‖2 ≤ 4s1(X − X )
|s1(X ) − s2(X )| (9)

‖u2 − ū2‖2 ≤ 4s1(X − X )
min (|s1(X ) − s2(X )| , |s2(X )|) , (10)

we need to first bound |s1(X ) − s2(X )| away from zero, since otherwise,
RHSs on both (9) and (10) become unbounded. We then analyze gap(2, X ) =
min (|s1(X ) − s2(X )| , |s2(X )|).

Let us first define values a, b, c that we use throughout the rest of the paper:

a =
K∑

k=1

(μk
1)2, b =

K∑

k=1

μk
1μk

2 , c =
K∑

k=1

(μk
2)2. (11)

For the following analysis, we can assume that a, b, c ∈ [K/4, K], given that X is
normalized in Procedure Classify.

We first show that normalization of X as described in Procedure Classify guarantees
that not only |s1(X ) − s2(X )| 
= 0, but there also exists a Θ(

√
NK) amount of gap

between s1(X ) and s2(X ) in Proposition 8:

gap(X ) := |s1(X ) − s2(X )| = Θ(
√

NK). (12)
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Proposition 8. For a normalized random matrix X , its expected value matrix X sat-

isfies 4c0
√

2NK
5 ≤ gap(X ) ≤

√
2NK, where c0 = |b|√ac

K(a+c) is a constant, given that
a, b, c ∈ [K/4, K] as defined in (11). In addition,

√
KN

4
≤ s1(X ) ≤

√
2NK, and

√
NK

2
≤ s1(X ) + s2(X ) ≤

√
2NK. (13)

We next state a few important results that justify Procedure Classify. Note that the left
singular vectors ūi, ∀i of X are of the form [xi, . . . , xi, yi, . . . , yi]T :

ū1 = [x1, . . . , x1, y1, . . . , y1]T , and ū2 = [x2, . . . , x2, y2, . . . , y2]T , (14)

where xi repeats N1 times and yi repeats N2 times. We first show Proposition 9 regard-
ing signs of xi, yi, i = 1, 2, followed by a lemma bounding the separation of x2, y2. We
then state the key Separation Lemma that allows us to conclude that least one of top two
left singular vectors of X can be used to classify data at each round. It can be extended
to cases when k > 2.

Proposition 9. Let b as defined in (11): when b > 0, entries x1, y1 in ū1 have the same
sign while x2, y2 in ū2 have opposite signs.

Lemma 10. |x2 − y2|2 ≤ Cmax
2N where Cmax =

(√
1

ω1
+

√
1

ω2

)2

≤ 4
ωmin

; |x2|2 ≥
Cx min

2N where Cx min = ω2
4ω2

1+ω1ω2
; |y2|2 ≥ Cy min

2N where Cy min = ω1
4ω2

2+ω1ω2
.

Lemma 11. (Separation Lemma) Kγ = s1(X )2(x1 − y1)2 + s2(X )2(x2 − y2)2.

Proof. Let Δ := P1 − P2 as in Theorem 2, and b = [1, 0, . . . , 0, −1, 0, . . . , 0]T , where
1 appears in the first and −1 appears in the N1+1st positions. Then Δ = XT b = [μ1

1−
μ1

2, μ
2
1 − μ2

2, . . . , μ
K
1 − μK

2 ]. Given X = s1(X )ū1v̄
T
1 + s2(X )ū2v̄

T
2 , we thus rewrite Δ

as: Δ = X T b = s1(X )v̄1ū
T
1 b+s2(X )v̄2ū

T
2 b = s1(X )v̄1(x1−y1)+s2(X )v̄2(x2−y2).

The lemma follows from the fact that ‖Δ‖2 =
√

Kγ and v̄1, v̄2 are orthonormal.

Combining Proposition 9, Lemma 10, (13), and Lemma 11, we have

Corollary 12. s2(X ) ≤
√

2NKγ√
cx min+

√
cy min

, and hence gap(2, X ) =
min(s2(X ), |s1(X ) − s2(X )|) = s2(X ) for a sufficiently small γ.

Finally, we show that the probability of error at each round for each individual is at
most f = 1/10, given the sample size n as specified in Theorem 2. Hence by taking
majority vote over the different runs for each sample, our algorithm will find the correct
partition with probability 1 − 1/n2, given that at each round we take a set of K > n
independent features. We leave the detailed analysis in full version.

3 The Algorithm PARTITION

As in Section 2, by repeating the partitioning process log n times, we may restrict our
attention to the problem of classifying a constant fraction of the individuals correctly.
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Let V = {1, . . . , n} be the set of all n individuals, and let ψ : V → {1, . . . , k}
be the map that assigns to each individual the population it belongs to. Further, set
Vt = ψ−1(t), define Nt = |Vt|, Γ = Kγ, and λ =

√
Kσ. In addition, let A = (avi)

denote the empirical n × K input matrix. Then the assumption from Theorem 3 can be
rephrased as nminKγ > Ckλ2.

If X = (xij)1≤i≤n,1≤j≤K is a n × K matrix, then we let ‖X‖ = max‖ξ‖=1 ‖Xξ‖
signify the operator norm of X , while ‖X‖F = (

∑
i,j x2

ij)
1
2 denotes the Frobenius

norm. The algorithm PARTITION computes a rank k approximation Â of the input ma-
trix A. That is, Â is a n × K matrix of rank at most k, and if B is any n × K matrix of
rank at most k, then ‖A − Â‖ ≤ ‖A − B‖. Such an Â can be computed in polynomial
time via singular value decomposition. Let Âv denote the v-row of Â.

Algorithm 13. PARTITION(A, k)
Input: A n × K matrix A and the parameter k. Output: A partition S1, . . . , Sk of V .

1. Compute a rank k approximation �A of A.
For j = 1, . . . , 2 log K do

2. Let Γj = K2−j and compute Q(j)(v) = {w ∈ V : ‖ �Aw − �Av‖2 ≤ 0.01Γ 2
j }

for all v ∈ V .
Then, determine sets Q

(j)
1 , . . . , Q

(j)
k as follows: for i = 1, . . . , k do

3. Pick v ∈ V \
�i−1

l=1 Q
(j)
l such that |Q(j)(v) \

�i−1
l=1 Q

(j)
l | is maximum.

Set Q
(j)
i = Q(j)(v) \

�i−1
l=1 Q

(j)
l and ξ

(j)
i = 1

|Q(j)
i |

�
w∈Q

(j)
i

�Aw.

4. Partition the entire set V as follows: first, let S
(j)
i = Q

(j)
i for all 1 ≤ i ≤ k.

Then, add each v ∈ V \
�k

l=1 Q
(j)
l to a set S

(j)
i such that ‖ �Av − ξ

(j)
i ‖ is

minimum.
Set rj =

�k
i=1

�
v∈S

(j)
i

‖ �Av − ξ
(j)
i ‖2.

5. Let J be such that r∗ = rJ is minimum. Return S
(J)
1 , . . . , S

(J)
k .

The basic idea behind PARTITION is to classify each individual v ∈ V according to
its row vector Âv in the rank k approximation Â. That is, two individuals v, w are
deemed to belong to the same population iff ‖Âv−Âw‖2 ≤ 0.01Γ 2. Hence, PARTITION

tries to determine sets S1, . . . , Sk such that for any two v, w in the same set Sj the
distance ‖Âv − Âw‖ is small. To see why classifying the individuals according to their
corresponding row vectors in Â is a good idea, we consider an auxiliary matrix E =
(Evi) with entries Evi = pi

ψ(v). Thus, the entries of E equal the expectations of the
entries of A.

Lemma 14. There is a constant C > 0 such that
∑

v∈V ‖Âv − Ev‖2 ≤ Ckλ2 whp.

Proof. Recall that Â and E both have rank ≤ k, we obtain
∑

v∈V

‖Âv − Ev‖2 = ‖Â − E‖2
F ≤ 2k‖Â − E‖ ≤ 8k‖A − E‖2 ≤ Ckλ2,

where the last inequality follows from Theorem 7.

Observe that Lemma 14 implies that for most v we have ‖Âv − Ev‖2 ≤ 10−6Γ , say.
For letting z = |{v : ‖Âv −Ev‖2 > 10−6Γ}|, we get 10−6Γz ≤

∑
v∈V ‖Âv −Ev‖2 ≤
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Ckλ2, whence z � nmin due to our assumption that nminΓ � kλ2. Thus, most rows
of Â are close to the corresponding rows of the expected matrix E. Since Γ is not given
to the algorithm as an input parameter, PARTITION has to estimate Γ on its own.

To this end, the outer loop goes through 2 log K “candidate values” Γj . These values

are then used to obtain a partition Q
(1)
1 , . . . , Q

(k)
1 in Steps 2–4, which are similar to the

algorithm presented in [18]. In addition, Step 4 computes the error parameter rj . Finally
Step 5 outputs the partition that minimizes the error parameter rj . More precisely, Step 2
uses Γj to compute for each v ∈ V the set Q(v) of elements w such that ‖Âw −
Âv‖ ≤ 0.01Γ 2

j . Then, Step 3 tries to compute “big” disjoint Q
(j)
1 , . . . , Q

(j)
k , where

each Q
(j)
i results from some Q(vi). Further, Step 4 assigns all elements v not covered

by Q
(j)
1 , . . . , Q

(j)
k to that Q

(j)
i whose “center vector” ξ

(j)
i is closest to Âv .

Thus, we need to show that eventually picking the partition whose error term rj

is minimum yields a good approximation to the ideal partition V1, . . . , Vk. The basic
reason why this is true is that ξ

(j)
i should approximate the expectation E

Vi for class

Vi well iff Q
(j)
i is a good approximation of Vi. Hence, if Q

(j)
1 , . . . , Q

(j)
k is “close” to

V1, . . . , Vk, then rj =
∑k

i=1

∑
v∈S

(j)
i

‖Âv −ξ
(j)
i ‖2 ≈ ‖Â−E‖2

F will be about as small

as ‖Â − E‖2
F (cf. Lemma 14). Furthermore, Lemma 16 shows that any partition such

that rj is small yields a good approximation of V1, . . . , Vk. Theorem 3 is an immediate
consequence of Lemmas 15 and 16.

Lemma 15. If 1
2Γ ≤ Γj ≤ Γ , then rj ≤ C0k

3λ2 for a certain constant C0 > 0.

Lemma 16. Let S1, . . . , Sk be a partition and ξ1, . . . , ξk a sequence of vectors such
that

∑k
i=1

∑
v∈Si

‖ξi − A∗
v‖2 ≤ C0k

3λ2. Then there is a bijection Ξ : {1, . . . , k} →
{1, . . . , k} such that the following holds.

1. ‖ξi − E
VΞ(i)‖2 ≤ 0.001Γ 2 for all i = 1, . . . , k, and

2.
∑k

i=1 |SiVΞ(i)| < 0.001nmin.

4 Experiments

We illustrate the effectiveness of spectral techniques using simulations. In particular,
we explore the case when we have a mixture of two populations; we show that when
NK > 1/γ2 and K > 1/γ, either the first or the second left singular vector of X shows
an approximately correct partitioning, meaning that the success rate is well above 1/2.
The entry-wise expected value matrix X is: among K/2 features, pi

1 > pi
2 and for the

other half, pi
1 < pi

2 such that ∀i, pi
1, p

i
2 ∈ { 1+α

2 + ε
2 , 1−α

2 + ε
2}, where ε = 0.1α. Hence

γ = α2. We report results on balanced cases only, but we do observe that unbalanced
cases show similar tradeoffs. For each population P , the success rate is defined as the
number of individuals that are correctly classified, i.e., they belong to a group that P is
the majority of that group, versus the size of the population |P |.

Each point on the SVD curve corresponds to an average rate over 100 trials. Since
we are interested in exploring the tradeoffs of N, K in all ranges (e.g., when N << K
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or N >> K), rather than using the threshold T in Procedure Classify that is
chosen in case both N, K > 1/γ, to decide which singular vector to use, we try both
u1 and u2 and use the more effective one to measure the success rate at each trial.
For each data point, the distribution of X is fixed across all trials and we generate an
independent X2N×K for each trial to measure success rate based on the more effective
classifier between u1 and u2.

One can see from the plot that when K < 1/γ, i.e., when K = 200 and 400, no
matter how much we increase N , the success rate is consistently low. Note that 50/100
of success rate is equivalent to a total failure. In contrast, when N is smaller than 1/γ,
as we increase K , we can always classify with a high success rate, where in general,
NK > 1/γ2 is indeed necessary to see a high success rate. In particular, the curves
for K = 5000, 2500, 1250 show the sharpness of the threshold behavior for increasing
sample size n from below 1/Kγ2 to above. For each curve, we also compute the best
possible classification one could hope to make if one knew in advance which features
satisfied pi

1 > pi
2 and which satisfied pi

1 < pi
2. These are the horizontal(ish) dotted lines

above each curve. The fact that the solid curves are approaching these information-
theoretic upper bounds shows that the spectral technique is correctly using the available
information.
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Fig. 1. Plots show success rate as a function of N for several values of K, when γ = (0.04)2.
Each point is an average over 100 trials. Horizontal lines (“oracles”) indicate the information-
theoretically best possible success rate for that value of K (how well one could do if one knew
in advance which features satisfied pi

1 > pi
2 and which satisfied pi

1 < pi
2; they are not exactly

horizontal because they are also an average over 100 runs). Vertical bars indicate the value of N
for which NK = 1/γ2.
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A Constant-Competitive Algorithm for

Online OVSF Code Assignment
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Pokfulam Road, Hong Kong

Abstract. Orthogonal Variable Spreading Factor (OVSF) code assign-
ment is a fundamental problem in Wideband Code-Division Multiple-
Access (W-CDMA) systems, which plays an important role in third
generation mobile communications. In the OVSF problem, codes must
be assigned to incoming call requests with different data rate require-
ments, in such a way that they are mutually orthogonal with respect to
an OVSF code tree. An OVSF code tree is a complete binary tree in
which each node represents a code associated with the combined band-
widths of its two children. To be mutually orthogonal, each leaf-to-root
path must contain at most one assigned code. In this paper, we focus on
the online version of the OVSF code assignment problem and give a 10-
competitive algorithm, improving the previous O(h)-competitive result,
where h is the height of the code tree, and also another recent constant-
competitive result, where the competitive ratio is only constant under
amortized analysis and the constant is never determined. Finally, we also
improve the lower bound of the problem from 3/2 to 5/3.

1 Introduction

Wideband Code-Division Multiple-Access (W-CDMA) technology is one of the
main technologies widely-developed in recent years for the implementation of
third-generation (3G) cellular systems. We consider the well-studied problem of
Orthogonal Variable Spreading Factor (OVSF) code assignment in W-CDMA
systems [5, 7, 11, 12, 14].

OVSF is an implementation of CDMA wherein, before each signal is trans-
mitted, the spectrum is spread according to a unique code, which is derived from
an OVSF code tree. An OVSF code tree is a complete binary tree. Users have
requests for different data rates, and the OVSF code tree accommodates these
different requests by assigning codes at different levels of the code tree, with
the root being at the highest level and representing the entire bandwidth of the
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wireless system. The code at any node other than the root denotes the band-
width half that of its parent in the tree. In any legal assignment in the code tree,
no two assigned codes lie on a single path from the root to a leaf, i.e., any two
assigned codes are mutually orthogonal. The subset of nodes in the code tree,
which forms a legal assignment, is called a code assignment. A node x is said
to be free if there are no assigned nodes in every root-to-leaf path containing
x, and thus making x an assigned node would still result in a legal assignment.
For convenience, we use the words “code” and “node” interchangeably. Fig. 1 is
an example of an OVSF code tree with the code assignment represented by the
darkened nodes marked as c, d, e, g and i.

level  4

level  3

level  2

level  1

level  0

a

b d g h

i

c e f

Fig. 1. An example of OVSF code tree, solid circles are the assigned codes

To illustrate the essence of the OVSF code assignment problem, consider the
configuration shown in Fig. 1. Let Req(x) denote the request to which code x
is assigned. Suppose a level-1 code request arrives followed by a level-2 code
request. If code b were assigned to the first request, we would have to make two
code reassignments before we can assign code a to the second request, e.g. assign
code h to Req(b) (and thereby freeing b) and assign f to Req(c) (freeing c and
consequently a). If, on the other hand, h were assigned to the first request, only
one reassignment would be needed to satisfy the second request, i.e. assign f to
Req(c), then assign code a to the second request.

Since each reassignment requires processing overhead and may affect the qual-
ity of communications, a natural idea is to design algorithms to minimize the
number of reassignments. Note that this problem will not be too difficult and
can be solved optimally by a greedy strategy if codes were never released. How-
ever, when codes can be released, the code tree can be fragmented and many
reassignments might be needed if a good assignment algorithm was not used.

In general, an algorithm for OVSF code assignment is expected to handle a
sequence σ = (C1, C2, . . . , Ck, . . .) of code operations over time, each operation
Ck being either to request a code at a particular level or to release an assigned
code. Note that, if the total bandwidth of any set of free codes is less than the
bandwidth required by a code request, the new code request has to be withdrawn.

The OVSF code assignment problem is hard, and the approach has often
been to produce heuristics, whose performance is measured by the approxima-
tion (or competitive) ratio, which compares the cost of the algorithm to the cost
of the optimal off-line scheme, where cost is the total number of assignments or
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reassignments done by the algorithm. The problem has been studied extensively
recently. There are several variations of this problem, including:

One-Step Off-line Code Assignment: Given a code assignment F and a new
level-i code request r, find a code assignment F ′, which satisfies the new request
with a minimal number of reassignments. For this variation, Minn and Siu [11]
gave a greedy algorithm, and Erlebach et al. [5] proved that this problem is NP-
hard and gave an O(h)-approximation algorithm, where h is the height of the
OVSF code tree.

General Off-line Code Assignment: Given a sequence σ of code operations,
find a sequence of code assignments such that the total number of reassignments
is minimum, assuming the initial code tree is empty. This variation was proved to
be NP-hard by Tomamichel [13], who also gave an exponential-time algorithm
for this variation.

Online Code Assignment: The operations C1, C2, C3, . . . in the sequence
σ = (C1, C2, . . . , Ck, . . .) arrive through time. At any time t > 0, we only know
about the operations until t and have no information about any future operations
Ct′ with t′ > t. Again, the problem is to find a sequence of code assignments such
that the total number of reassignments is minimum. For this variation, Erlebach
et al. [5] gave an O(h)-competitive algorithm, where h is the height of the code
tree. With resource augmentation, which means the online algorithm is allowed
to use more bandwidth than the optimal scheme, a 4-competitive algorithm with
a double-sized code tree was given in [5]. Using 1/8 extra bandwidth (less re-
source augmentation), Chin et al. [3] gave an 5-competitive algorithm. Recently,
Forǐsek et al. [6] gave an online algorithm whose competitive ratio is constant
under amortized analysis. In their paper, there is no estimate about the size of
the constant and the worst case can still be O(h).

In this paper, we focus on the online OVSF code assignment problem. We
first observe that the online algorithm in [5], which is O(h)-competitive, forces
the assigned codes in the OVSF code tree into a single fixed format. As observed
in [5], there are two worst-case single-format-respecting configurations which
make the performance of the algorithm in [5] poor, one which is bad (i.e. requires
a reassignment at each level of the OVSF code tree) for code request but good
(i.e. constant reassignments) for code release and the other which is bad for code
release but good for code request. Interestingly, these two code configurations
differ by only one code assignment (but differ much in their structure), and so
there exists a sequence of alternating code requests and releases, each of which
requires h code reassignments, and hence O(h) for the competitive ratio. By
allowing two types of format with similar structure, we are able to give a 10-
competitive algorithm, improving the previous O(h)-competitive result [5], and
the amortized O(1)-competitive result [6].

The rest of this paper is organized as follows. Sections 2 and 3 give the prelimi-
nary and the basic idea of our algorithm. Section 4 introduces a 10-competitive al-
gorithm. Section 5 gives the correctness proof of the algorithm. A new lower bound
of the problem, improving the bound from 3/2 to 5/3, is presented in Section 6.



A Constant-Competitive Algorithm for Online OVSF Code Assignment 455

2 Preliminaries

Let T be an OVSF code tree with a legal assignment A. In our discussion, we
assume that T is ordered. We say that node u is dead if either it is assigned or
at least one of its descendent is assigned. We say that a level � of T is compact if
any node at level � that is to the left of some dead node at � is also dead. We say
that A is compact if all levels of T are compact. The following lemma suggests
that the assigned nodes in a compact assignment are sorted; if we scan the OVSF
code tree from left to right, the levels of the assigned nodes are non-decreasing.

Lemma 1. Suppose that the legal assignment A is compact. Let u be an assigned
node at level i and v be an assigned node at level j where i < j. Then, the level-j
ancestor au of u must be to the left of v.

Proof. Since A is legal, au cannot be v. If au is to the right of v, the dead node
u has some nodes to its left, namely the level-i descendents of v, that are not
dead; a contradiction.

Intuitively, we should make the assignments compact in order to fully utilize the
bandwidth. There is a simple strategy to ensure compactness: To serve a level-�
code request r, we “append” it to the right-end of the list of dead nodes at �,
or more precisely, we assign to r the node u that is immediately after the last
dead node, i.e., the rightmost dead node at �. It is obvious that the resulting
assignment is also compact. However, it may not be legal; although u does not
have any assigned descendent (because it is not dead before the update), it may
have some assigned ancestor. To solve the problem, we distinguish two kinds of
levels. Consider any level �. Let u be the node immediately after the last dead
node at �; if � does not have any dead node, then let u be the leftmost node at
�. We say that � is rich if u is free, i.e., the node does not have any ancestor
or descendent that is assigned; otherwise, � is poor. (Note that a level may be
poor even if no nodes at � are assigned.) It is easy to verify that if � is rich,
then the resulting assignment is still legal after assigning u to r. Suppose that
� is poor. Then, u is not free and it must have an ancestor v assigned to some
request Req(v). After assigning u to r, we need to reassign Req(v), i.e., freeing
v followed by a code request Req(v), to make sure the assignment is legal. Note
that this may trigger other reassignments of requests at higher levels.

The algorithm below describes how this simple approach serves a level-� re-
quest r. It makes use of two procedures AppendRich and AppendPoor. Let u
be the node immediately after the last dead node at level � (if there is no dead
node at �, then u is its leftmost node). Procedure AppendRich(�, r) is used when
� is rich; it simply assigns u to request r. Procedure AppendPoor(�, r) is for the
case when � is poor. After assigning u to r, AppendPoor(�, r) frees the assigned
ancestor a of u, and returns the request to which a is assigned before it is freed.

1: while � is poor do
2: rg = AppendPoor(�, r); {rg is a level-g request.}
3: � = g; r = rg ;
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4: end while
5: AppendRich(�, r);

3 Some Ideas for Improvement

Note that the simple algorithm given in Section 2 might make a large number of
calls to AppendPoor, and hence make a lot of (re)assignments, to serve a request.
The following lemma is the key for reducing the number of (re)assignments.

Lemma 2. Suppose � is poor. After executing AppendPoor(�, r), � becomes rich.

Proof. Note that if the last dead node u at � is the left son of its parent p, then
� must be rich. It is because the right son v of p, which is immediately after u,
must be free; v is not dead (because u is the last dead node) and hence has no
assigned descendent, and u and v share the same set of ancestors and thus v
does not have any assigned ancestor. Thus, if � is poor, node u must be a right
son. After AppendPoor(�, r), the node after u, which is a left son, becomes the
new last dead node of �. As argued above, � becomes rich.

Note that if we call AppendPoor m times, then m levels will be changed from
poor to rich. This is good because the next time we serve any request on these
rich levels, we just need a simple assignment. The problem is that there might
be no more requests on these levels, and the effort is wasted. To overcome the
difficulty, we propose a lazy approach. Here is the idea. Suppose that there is a
level-� request r, and the levels �, �+1, . . . , k − 1 are all poor, and level k is rich.
Then, we will call AppendPoor k − � times and then call AppendRich once. Our
lazy approach will not make these k−� calls for AppendPoor; instead, it jumps to
the last step, calling AppendRich to assign the node u after the last dead node at
k to the level-� request r.1 Later, if there is some request on some level g ∈ [�, k],
we will do the necessary work that we have avoided previously in order to recover
the correct free node at g and assign it to the request. To summarize, the lazy
approach also aims at maintaining compact assignments. However, there may be
some nodes that are assigned to some lower-level requests; we call these nodes
partially assigned nodes. These partially assigned nodes induce some structures
called tanks of free nodes, or simply tanks, which are intervals [�, k] of levels with
the following properties: The level �, �+1, . . . , k−1 are all poor and the assigned
nodes at these levels are all fully assigned. For level k, the last dead node of k
is partially assigned to a level-� request, and the remaining assigned nodes are
fully assigned. We say that � is the bottom of the tank [�, k], and k is its top.

It is not difficult to implement the lazy approach in such a way that the num-
ber of (re)assignments needed for serving a request can be reduced substantially.
However, to achieve a constant number of (re)assignments, we need to impose
two extra structural properties on tanks. The first property is about the top of
1 We are generous here by assigning a level-k node to a level-� request. If we insist that

a level-� node must be assigned to r, then we can actually assign a level-� descendent
of u to r.



A Constant-Competitive Algorithm for Online OVSF Code Assignment 457

tanks. Given any level �, we say that � is locally rich if the last dead node at �
is a left son of its parent. The following fact is easy to verify from the definition
and the proof of Lemma 2.

Fact 1. A locally rich level is a rich level. Suppose � is locally rich. Then after
executing AppendRich(�, r), � is no longer locally rich. If � is poor, then after
executing AppendPoor(�, r), � becomes locally rich.

The first property on tanks that we need to maintain is the following:

(†) The top of every tank must be locally rich.

To describe the second structural property, we consider two tanks [bo, to] and
[b1, t1]. Suppose that [bo, to] is below [b1, t1], i.e, to < b1. We say that the two
tanks are merge-able if (i) all the levels between them, i.e., levels to + 1, to +
2, . . . , b1 − 1, are empty, i.e., the levels do not have any assigned nodes, and (ii)
the last dead node at level to is the leftmost level-to descendent of its level-b1

ancestor. We find that merge-able tanks are bad for our approach. Therefore,
our updating procedure will merge any two merge-able tanks as soon as they
appear. In other words, our algorithm keeps the following invariant:

(∗) There is no merge-able tank in the assignment.

As can be seen in Figure 2, it is easy to merge two merge-able tanks using two
(re)assignments, and the merging preserves the compactness of the assignment.

tank
[bo,to]

tank
[b1,t1]

Fig. 2. Merging of two tanks

4 A Lazy Algorithm

In this section, we describe the algorithm LAZY, which implements the lazy
approach efficiently. To simplify the description, we regard a locally rich level �
that does not belong to any tank is a tank [�, �] itself. Furthermore, when there
is no confusion, we will add a subscript to a request to indicate its level, e.g.,
the request rg is a level-g request. In addition to AppendPoor and AppendRich,
LAZY also makes use of the following two procedures.

– FreeTail(�): The level � must not be empty. The procedure frees the last
assigned node u at � and returns the request to which u is assigned.
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– ReAssign(r, r′): Here, r is a request in the assignment, and r′ is one that is
not in the assignment. Suppose that u is assigned to r. Then, the procedure
frees u from r, and then assigns u to r′.

We are now ready to describe LAZY. We first describe how it serves a code
request. Then, we explain how it releases a code.

4.1 Serving a Level-� Request r�

We have three different cases to consider.
Case 1: � is poor and does not belong to any tank. Let h be the lowest level above
� that either belongs to some tank, or is rich. If there is no such h, we report not
enough bandwidth (and we will prove in Section 5 that this is true). Note that
if h does not belong to any tank, then h is rich, but not locally rich (otherwise,
[h, h] itself is a tank). In such case, we simply call AppendRich(h, r�). It can be
verified that afterwards, h is locally rich and [�, h] becomes a tank. To ensure (∗),
we merge, if there is any, the merge-able tanks above or below [�, h]. Thus, the
total number of (re)assignments is at most 5. The case when h belongs to some
tank is more complicated. In such case, h must be the bottom of this tank [h, t].
By definition, the last assigned node at level t is partially assigned to a level-h
request rh. To serve r�, we first recover the free node at h by re-assigning rh

back to h. Then, we insert r� to a level lower than h so that the (re)assignments
can make use of the free node at h and stop.

1: if h �= t then
2: rh = FreeTail(t); {t becomes rich}
3: rg = AppendPoor(h, rh); AppendRich(t, rg); {[g, t] becomes tank}
4: end if
5: {At this point, h is not empty and is locally rich (Fact 1)}
6: Let k be the highest level below h that is not empty.
7: If (k < �) then let k = �.
8: s = AppendPoor(k, r�); {s must be from h and [�, k] becomes tank.}
9: AppendRich(h, s);

10: {From Fact 1, h is not locally rich and thus [h, h] is not a tank.}

It can be verified that the update needs at most 4 (re)assignments. Note that
the additional tanks [g, t] and [�, k] may be created. To ensure (∗), we need to do
some tank mergings. As pointed out in Line 10, [h, h] is not a tank. Furthermore,
there is no merge-able tank above [g, t] (because (∗) ensures there is none above
[h, t] before the update). Therefore, we only need to merge tank below [�, k],
which requires two extra (re)assignments. Thus, we need at most 6 assignments
to serve request r. However, if we need to merge [�, k] with a tank below, we can
save the assignment used by AppendPoor(k, r�) at Line 8; r� will be reassigned
during the merging. This reduces the number of (re)assignments to 5.
Case 2: � is poor and belongs to some tank [b, t]. For this case, we insert r� to
� directly, and the tank [b, t] may be broken into two tanks, one above, and one
below �.
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1: rg = AppendPoor(�, r�); {� becomes locally rich.}
2: rb = FreeTail(t); AppendRich(t, rg); {[g, t] becomes tank.}
3: {We have served r� successfully, but there is no node assigned to rb}
4: if b = � then
5: AppendRich(�, rb); {Now, � is not locally rich}
6: else
7: Let k be the highest level below � that is not empty.
8: If (k < b) then let k = b.
9: s = AppendPoor(k, rb); {s must be from � and [b, k] becomes tank.}

10: AppendRich(�, s); {Now, � is not locally rich.}
11: end if

It can be verified that the total number of (re)assignments made is at most 4.
Since � is not locally rich, [�, �] is not a tank, and as guaranteed by (∗), there is
no merge-able tanks above t or below b before the update. Therefore, [g, t] and
[b, k] have no merge-able tank above or below them, and this case does not need
any tank merging.

Case 3: � is rich. For this case, we do the followings.

1: if � does not belong to any tank then
2: AppendRich(�, r�);
3: else
4: {for this case � belongs to a tank, and since � is rich, it is the top of some

tank [b, �].}
5: if b = � then
6: AppendRich(�, r�)
7: else
8: rb = FreeTail(�); AppendRich(�, r�);
9: Let k be the highest level below � that is not empty.

10: If (k < b) then let k = b.
11: s = AppendPoor(k, rb); AppendRich(�, s);
12: end if
13: end if

It can be verified that after the possible merging of tanks, the total number of
(re)assignments made is at most 5.

Note that our algorithm uses AppendPoor and AppendRich to append a re-
quest after the last dead node of a level, and whenever we free a node, we will
immediately assign it to some other request. Therefore, the compactness of the
resulting assignment is preserved.

4.2 Release of a Level-� Node Assigned to Request r

We first consider the case when � is not in any tank. Then, � is not locally rich;
otherwise, [�, �] itself is a tank. For this case, we do the following:
1: r� = FreeTail(�);
2: if r �= r� then ReAssign(r, r�);
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From the fact that � is not locally rich before the update, it can be verified that
the resulting assignment is still compact. Together with the two possible tank
mergings, the update makes at most 5 (re)assignments. We now consider the
case when � is in some tank [b, t]. To release r, we do the following:

1: rb = FreeTail(t);
2: if b = � then
3: if r �= rb then ReAssign(r, rb);
4: else
5: Let k be the highest level below � that is not empty.
6: If (k < b) then let k = b.
7: s = AppendPoor(k, rb); {s must be from �, and [b, k] becomes tank.}
8: if r �= s then ReAssign(r, s);
9: end if

Note that after the execution, the assignment may not be compact; we have
freed the last assigned node at level t and did not reassign the node to any
request. This may create some hole, i.e., free node, between two dead nodes at
some levels above t. In such case, we need to fill up the hole as follows. Let z
be the lowest level above t that is not empty, and vhole be the free node, if any,
created at level z. Note that by (∗), there is no merge-able tank above [b, t]; this
implies z is not in any tank, and it is not locally rich. The following two steps
will restore the compactness of the assignment:

1: rz = FreeTail(z); {z is now locally rich}
2: Assign vhole to rz .

It is important to note that freeing the last assigned node u at level z will not
create any problem; since z is not locally rich, u must be the right son of its
parent p. After freeing u, p is still dead because its left son is dead. It can be
verified that the whole release procedure, together with possible tank mergings,
uses at most 5 (re)assignments in the worst case.

The following theorem summarizes our discussion in this section.

Theorem 1. Let A be a compact assignment satisfying (∗). LAZY serves any
code request or code release for A using at most 5 (re)assignments. The re-
sulting assignment is still compact and satisfies (∗). Furthermore, LAZY is 10-
competitive.

Proof. To see that LAZY is 10-competitive, suppose that there are m1 code
requests and m2 code releases. Obviously, m2 ≤ m1. To serve these requests
and releases, LAZY makes at most 5m1 + 5m2 ≤ 10m1 (re)assignments. Note
that the optimal algorithm has to make at least m1 assignments for the m1 code
requests. The theorem follows.

5 LAZY Fully Utilizes the Bandwidth

In this section, we prove that LAZY fully utilizes the bandwidth. More precisely,
we prove that if LAZY cannot find an assignment to satisfy all the requests, then
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no assignment can satisfy these requests. First, we need to define the notion of
leaf capturing. A node that is fully assigned captures all of its leaf descendents.
A node that is partially assigned to a level-� request captures its leftmost 2� leaf
descendents. For any node u, define F (u) to be the set of leaf descendents of
u that are not captured. For any set X of nodes, define F (X) =

∑
u∈X F (u).

Intuitively, for the root r, F (r) is the remaining bandwidth not used by the
current assignment. It is important to note that for a fixed set L of code requests,
different legal assignments for L have the same value of F (r).

Lemma 3. Let A be an assignment maintained by LAZY, and for any level �,
let D� be the set of dead nodes at level �. Then, |F (D�)| < 2�.

Proof. The lemma is obviously true for level 0. Suppose it is true for all levels
below �, and we consider the level �. Let u1, u2, . . . , uk be the sequence of dead
nodes at � where uk is the last dead node. First, we assume that there is no
partially assigned node at �. Let ui be the last node that is not assigned. Then,
F (D�) = F ({u1, u2, . . . ui}) + F ({ui+1, . . . , uk}). Since ui is the last node not
assigned, ui+1, . . . , uk are all assigned and the second term F ({ui+1, . . . , uk}) is
zero. To estimate the first term, let w be the last dead node at level � − 1. Note
that w must be a child of ui; it cannot be a child of the nodes to the right of ui

because these nodes are either assigned or not dead, and it cannot be a child of
u1, . . . , ui−1, otherwise ui is not dead (recall that ui is not assigned). If w is the
right child of ui, then F ({u1, . . . , ui}) = F (D�−1); otherwise F ({u1, . . . , ui}) =
F (D�−1) + 2�−1. Together with the induction hypothesis that F (D�−1) < 2�−1,
the lemma follows.

We now suppose that there is a partially assigned node at �. According to
LAZY, we conclude that the last dead node uk is the only partially assigned node
at �. Suppose that it is partially assigned by a level-g request. Then, [g, �] is a tank
and the levels g, g +1, . . . , �− 1 are all poor. Let w1, w2, . . . , wm be the sequence
of level-g descendents of u1, u2, . . . , uk−1. Then, F (D�) = F (u1, . . . , uk−1) +
F (uk) = F (w1, . . . , wm) + F (uk) = F (w1, . . . , wi) + F (wi+1, . . . , wm) + F (uk)
where wi is the last dead node at level g. By the induction hypothesis, we
conclude that F (Dg) = F ({w1, . . . , wi}) < 2g, and by the definition of captured
leaves for partially assigned node, we have F (uk) = 2� − 2g. In the rest of the
proof, we show that F (wi+1, . . . , wm) = 0 and the lemma follows.

Suppose to the contrary that F (wi+1, . . . , wm) > 0. Then, among the leaf
descendents of wi+1, . . . , wm, there is one that is not captured. Let w and u be
respectively the level-g and level-� ancestors of this leaf. Note that w is to the
right of wi and hence is not dead, and u is to the left of uk and hence is dead
. Let d be the last dead node along the path from u down to w. Suppose that
d is at level h. It follows that its left child vleft must be dead, and its right
child vright, which must be along the path from u to w, is not dead (because d
is the last dead node on this path). Since vleft is dead, none of its ancestors is
assigned, and since vright is not dead, none of its descendent is assigned. Note
that vleft and vright has the same set of ancestors and it follows that vright is
free. Therefore, we conclude that at level h − 1, where g ≤ h − 1 ≤ � − 1, there
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is a free node vright following the dead node vleft, and thus h − 1 is not poor; a
contradiction.

Theorem 2. Suppose that LAZY reports “not enough bandwidth” when serving
a level-� request r. Let L be the set of requests in the current assignment. Then,
there is no assignment that can safisfy all the requests in L ∪ {r}.

Proof. LAZY reports “not enough bandwidth” because level �, as well as all
levels above � are poor. Let u1, u2, . . . , ui be the sequence of dead nodes, and
ui+1, . . . , um be the remaining nodes, at �. Then there are F ({u1, . . . , ui}) +
F ({ui+1, . . . , um}) leaves that are not captured. By Lemma 3, we conclude that
F ({u1, . . . , ui}) < 2�. Since all levels above � are poor, we can use an argument
similar to the one used in the proof of Lemma 3 that F ({ui+1, . . . , um}) = 0.
It follows that F ({u1, u2 . . . , um} < 2�. Since assigning any node to r needs to
capture 2� leaves, there is no assignment that can satisfy all requests L ∪ {r}.

6 Lower Bound

In [5], it is shown that the competitive ratio of any online algorithm for the code
assignment problem must be at least 1.5. The following theorem shows that this
bound can be improved to 5/3 by modifying the main idea given in [5].

Theorem 3. No deterministic algorithm can solve the online code assignment
problem better than 5/3-competitive.

Proof. Consider a code tree with N leaves (leaf-codes) and a sequence of level-
0 code requests with each request assigned to each leaf code one by one. As
soon as both right and left subtrees of the root have at least N/4 assigned
leaf codes, the adversary will stop issuing any more level-0 code requests. Thus
there will be at most 3N/4 level-0 code requests in the sequence. Then the
adversary will repeatedly release those requests in the subtree with more than
N/4 assigned leaf codes until both subtrees have exactly N/4 assigned leaf codes.
The adversary will then make a level-(n − 1) request which will cause at least
N/4 code reassignments, which end up with either the right or the left subtree
with full assigned leaf codes. The adversary will then proceed recursively with
the subtree with full assigned leaf codes by releasing its every other node. This
process will be repeated log2 N − 1 times with a total of N/2− 1 reassignments.
On the other hand, the optimal algorithm can assign the leaf codes in such a
way that no extra reassignments will be needed. Thus the optimal algorithm
will take no more than 3N/4 + log2 N − 1 assignments, whereas the adversary
will take a total of 5N/4 + log2 N − 2 (re)assignments. As a consequence, the
competitive ratio will tend to be 5/3 asymptotically.
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Online Topological Ordering
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Abstract. Many applications like pointer analysis and incremental com-
pilation require maintaining a topological ordering of the nodes of a
directed acyclic graph (DAG) under dynamic updates. All known al-
gorithms for this problem are either only analyzed for worst-case in-
sertion sequences or only evaluated experimentally on random DAGs.
We present the first average-case analysis of online topological ordering
algorithms. We prove an expected runtime of O(n2 polylog(n)) under
insertion of the edges of a complete DAG in a random order for the algo-
rithms of Alpern et al. (SODA, 1990), Katriel and Bodlaender (TALG,
2006), and Pearce and Kelly (JEA, 2006). This is much less than the
best known worst-case bound O(n2.75) for this problem.

1 Introduction

There has been a growing interest in dynamic graph algorithms over the last
two decades due to their applications in a variety of contexts including operating
systems, information systems, network management, assembly planning, VLSI
design and graphical applications. Typical dynamic graph algorithms maintain a
certain property (e. g., connectivity information) of a graph that changes (a new
edge inserted or an existing edge deleted) dynamically over time. An algorithm
or a problem is called fully dynamic if both edge insertions and deletions are
allowed, and it is called partially dynamic if only one (either only insertion or
only deletion) is allowed. If only insertions are allowed, the partially dynamic
algorithm is called incremental; if only deletions are allowed, it is called decre-
mental. While a number of fully dynamic algorithms have been obtained for
various properties on undirected graphs (see (9) and references therein), the de-
sign and analysis of fully dynamic algorithms for directed graphs has turned
out to be much harder (e. g., (12, 23, 24, 25)). Much of the research on directed
graphs is therefore concentrated on the design of partially dynamic algorithms
instead (e. g., (3, 6, 13)). In this paper, we focus on the analysis of algorithms for
maintaining a topological ordering of directed graphs in an incremental setting.

A topological order T of a directed graph G = (V, E) (with n := |V | and
m := |E|) is a linear ordering of its nodes such that for all directed paths from
x ∈ V to y ∈ V (x �= y), it holds that T (x) < T (y). A directed graph has a
topological ordering if and only if it is acyclic. There are well-known algorithms
for computing the topological ordering of a directed acyclic graph (DAG) in
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O(m + n) time in an offline setting (see e. g. (7)). In a fully dynamic setting,
each time an edge is added or deleted from the DAG, we are required to update
the bijective mapping T . In the online/incremental variant of this problem, the
edges of the DAG are not known in advance but are inserted one at a time (no
deletions allowed). As the topological order remains valid when removing edges,
most algorithms for online topological ordering can also handle the fully dynamic
setting. However, there are no good bounds known for the fully dynamic case.
Most algorithms are only analyzed in the online setting.

Given an arbitrary sequence of edges, the online cycle detection problem is
to discover the first edge which introduces a cycle. Till now, the best known
algorithm for this problem involves maintaining an online topological order and
returning the edge after which no valid topological order exists. Hence, results for
online topological ordering also translate into results for the online cycle detec-
tion problem. Online topological ordering is required for incremental evaluation
of computational circuits (2) and in incremental compilation (15, 17) where a
dependency graph between modules is maintained to reduce the amount of re-
compilation performed when an update occurs. An application for online cycle
detection is pointer analysis (20).

The näıve way of computing an online topological order each time from
scratch with the offline algorithm takes O(m2+mn) time. Marchetti-Spaccamela,
Nanni, and Rohnert (16) gave an algorithm that can insert m edges in O(mn)
time. Alpern, Hoover, Rosen, Sweeney, and Zadeck (AHRSZ) proposed an algo-
rithm (2) which runs in O

(
|〉K̂〈| log(|〉K̂〈|)

)
time per edge insertion with |〉K̂〈|

being a local measure of the insertion complexity. However, there is no analysis
of AHRSZ for a sequence of edge insertions. Katriel and Bodlaender (KB) (13)
analyzed a variant of the AHRSZ algorithm and obtained an upper bound of
O(min{m

3
2 log n, m

3
2 +n2 log n}) for inserting an arbitrary sequence of m edges.

The algorithm by Pearce and Kelly (PK) (18) empirically outperforms the other
algorithms for random edge insertions leading to sparse random DAGs, although
its worst-case runtime is inferior to KB. Recently, Ajwani, Friedrich, and Meyer
(AFM) (1) proposed a new algorithm with runtime O(n2.75), which asymptoti-
cally outperforms KB on dense DAGs.

As noted above, the empirical performances on random edge insertion se-
quences (REIS) for the above algorithms are quite different from their worst-
cases. While PK performs empirically better for REIS, KB and AFM are the
best known algorithms for worst-case sequences. This leads us to the theoretical
study of online topological ordering algorithms on REIS.

Our contributions are as follows:

• We show an expected runtime of O(n2 log2 n) for inserting all edges of a
complete DAG in a random order with PK (cf. Section 4).

• For AHRSZ and KB, we show an expected runtime of O(n2 log3 n) for com-
plete random edge insertion sequences (cf. Section 5). This is significantly
better than the known worst-case bound of O(n3) for KB to insert Ω(n2)
edges.
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• Additionally, we show that for such edge insertions the expected number of
edges which force any algorithm to change the topological order (“invalidat-
ing edges”) is O(n

3
2
√

log n) (cf. Section 6), which is the first such result.

The remainder of this paper is organized as follows. The next section describes
briefly the three algorithms AHRSZ, KB, and PK. In Section 3 we specify the
random graph models used in our analysis. Sections 4-6 prove our upper bounds
for the runtime of the three algorithms and the number of invalidating edges.

2 Algorithms

This section first introduces some notations and then describes the three al-
gorithms AHRSZ, KB, and PK. We keep the current topological order as a
bijective function T : V → [1..n]. In this and the subsequent sections, we will use
the following notations: d(u, v) denotes |T (u) − T (v)|, u < v is a short form of
T (u) < T (v), u → v denotes an edge from u to v, and u � v expresses that v is
reachable from u. Note that u � u, but not u → u. The degree of a node is the
sum of its in- and out-degree.

Consider the i-th edge insertion u → v. We say that an edge insertion is
invalidating if u > v before the insertion of this edge. We define R

(i)
B := {x ∈

V | v ≤ x ∧ x � u}, R
(i)
F := {y ∈ V | y ≤ u ∧ v � y} and δ(i) = R

(i)
F ∪ R

(i)
B .

Let |δ(i)| denote the number of nodes in δ(i) and let ‖δ(i)‖ denote the number
of edges incident to any node of δ(i). Note that δ(i) as defined above is different
from the adaptive parameter δ of the bounded incremental computation model.
If an edge is non-invalidating, then |R(i)

B | = |R(i)
F | = |δ(i)| = 0. Note that for an

invalidating edge R
(i)
F ∩ R

(i)
B = ∅ as otherwise the algorithms will just report a

cycle and terminate.
We now describe the insertion of the i-th edge u → v for all the three algo-

rithms. Assume for the remainder of this section that u → v is an invalidating
edge, as otherwise none of the algorithms do anything for that edge. We define
an algorithm to be local if it only changes the ordering of nodes x with v ≤ x ≤ u
to compute the new topological order T ′ of G ∪ {(u, v)}. All three algorithms
are local and they work in two phases - a “discovery phase” and a “relabelling
phase”.

In the discovery phase of PK, the set δ(i) is identified using a forward depth-
first search from v (giving a set R

(i)
F ) and a backward depth-first search from u

(giving a set R
(i)
B ). The relabelling phase is also very simple. They sort both

sets R
(i)
F and R

(i)
B separately in increasing topological order and then allocate

new priorities according to the relative position in the sequence R
(i)
B followed

by R
(i)
F . They do not alter the priority of any node not in δ(i), thereby greatly

simplifying the relabeling phase. The runtime of PK for a single edge insertion
is Θ(‖δ(i)‖ + |δ(i)| log |δ(i)|).

Alpern et al. (2) used the bounded incremental computation model (23) and
introduced the measure |〉K̂〈|. For an invalidated topological order T , the set
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K ⊆ V is a cover if for all x, y ∈ V : (x � y ∧ y < x ⇒ x ∈ K ∨ y ∈ K). This
states that for any connected x and y which are incorrectly ordered, a cover K
must include x or y or both. |K| and ‖K‖ denote the number of nodes and edges
touching nodes in K, respectively. We define |〉K〈| := |K| + ‖K‖ and a cover
K̂ to be minimal if |〉K̂〈| ≤ |〉K〈| for any other cover K. Thus, |〉K̂〈| captures
the minimal amount of work required to calculate the new topological order T ′

of G ∪ {(u, v)} assuming that the algorithm is local and that the adjacent edges
must be traversed.

AHRSZs discovery phase marks the nodes of a cover K by marking some of
the unmarked nodes x, y ∈ δ(i) with x � y and y < x. This is done recursively
by moving two frontiers starting from v and u towards each other. Here, the
crucial decision is which frontier to move next. AHRSZ tries to minimize ‖K‖
by balancing the number of edges seen on both sides of the frontier. The recursion
stops when forward and backward frontier meet. Note that we do not necessarily
visit all nodes in R

(i)
F (R(i)

B ) while extending the forward frontier (backward
frontier). It can be proven that the marked nodes indeed form a cover K and
that |〉K〈| ≤ 3 |〉K̂〈|.

The relabeling phase employs the dynamic priority space data structure due to
Dietz and Sleator (8). This permits new priorities to be created between existing
ones in O(1) amortized time. This is done in two passes over the nodes in K.
During the first pass, it visits the nodes of K in reverse topological order and
computes a strict upper bound on the new priorities to be assigned to each node.
In the second phase, it visits the nodes in K in topological order and computes a
strict lower bound on the new priorities. Both together allow to assign new prior-
ities to each node in K. Thereafter they minimize the number of different labels
used to speed up the operations on the priority space data structure in practice.
It can be proven that the discovery phase with |〉K̂〈| priority queue operations
dominates the time complexity, giving an overall bound of O(|〉K̂〈| log |〉K̂〈|).

KB is a slight modification of AHRSZ. In the discovery phase AHRSZ counts
the total number of edges incident on a node. KB counts instead only the in-
degree of the backward frontier nodes and only the out-degree of the forward
frontier nodes. In addition, KB also simplified the relabeling phase. The nodes
visited during the extension of the forward (backward) frontier are deleted from
the dynamic priority space data-structure and are reinserted, in the same rela-
tive order among themselves, after (before) all nodes in R

(i)
B (R(i)

F ) not visited
during the backward (forward) frontier extension. The algorithm thus computes
a cover K ⊆ δ(i) and its complexity per edge insertion is O(|〉K〈| log |〉K〈|).
The worst case running time of KB for a sequence of m edge insertions is
O(min{m

3
2 log n, m

3
2 + n2 log n}).

3 Random Graph Model

Erdős and Rényi (10, 11) introduced and popularized random graphs. They
defined two closely related models: G(n, p) and G(n, M). The G(n, p) model
(0 < p < 1) consists of a graph with n nodes in which each edge is chosen
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independently with probability p. On the other hand, the G(n, M) model assigns
equal probability to all graphs with n nodes and exactly M edges. Each such
graph occurs with a probability of 1

/(
N
M

)
, where N :=

(
n
2

)
.

For our study of online topological ordering algorithms, we use the random
DAG model of Barak and Erdős (4). They obtain a random DAG by directing
the edges of an undirected random graph from lower to higher indexed vertices.
Depending on the underlying random graph model, this defines the DAG(n, p)
and DAG(n, M) model. We will mainly work on the DAG(n, M) model since it
is better suited to describe incremental addition of edges.

The set of all DAGs with n nodes is denoted by DAG n. For a random vari-
able f with probability space DAG n, EM (f) and Ep(f) denotes the expected
value in the DAG(n, M) and DAG(n, p) model, respectively. For the remainder
of this paper, we set E(f) := EM (f) and q := 1 − p.

The following theorem shows that in most investigations the models
DAG(n, p) and DAG(n, M) are practically interchangeable, provided M is close
to pN .

Theorem 1. Given a function f : DAG n → [0, a] with a > 0 and f(G) ≤ f(H)
for all G ⊆ H and functions p and M of n with 0 < p < 1 and M ∈ N.

1. If lim
n→∞ pqN = lim

n→∞
pN − M√

pqN
= ∞, then EM (f) ≤ Ep(f) + o(1).

2. If lim
n→∞ pqN = lim

n→∞
M − pN√

pqN
= ∞, then Ep(f) ≤ EM (f) + o(1).

The analogous theorem for the undirected graph models G(n, p) and G(n, M) is
well known. A closer look at the proof for it given by Bollobás (5) reveals that the
probabilistic argument used to show the close connection between G(n, p) and
G(n, M) can be applied in the same manner for the two random DAG models
DAG(n, p) and DAG(n, M).

We define a random edge sequence to be a uniform random permutation of the
edges of a complete DAG, i. e., all permutations of

(
n
2

)
edges are equally likely.

If the edges appear to the online algorithm in the order in which they appear in
the random edge sequence, we call it a random edge insertion sequence (REIS).
Note that a DAG obtained after inserting M edges of a REIS will have the same
probability distribution as DAG(n, M). To simplify the proofs, we first show our
results in DAG(n, p) model and then transfer them in the DAG(n, M) model by
Theorem 1.

4 Analysis of PK

When inserting the i-th edge u → v, PK only regards nodes in δ(i) := {x ∈ V |
v ≤ x ≤ u ∧ (v � x ∨ x � u)} with “≤” defined according to the current topo-
logical order. As discussed in Section 2, PK performs O(‖δ(i)‖ + |δ(i)| log |δ(i)|)
operations for inserting the i-th edge. Theorems 4 and 10 of this section show for
a random edge insertion sequence (REIS) of N edges that

∑N
i=1 |δ(i)| = O(n2)

and E
( ∑N

i=1 ‖δ(i)‖
)

= O(n2 log2 n). This proves the following theorem.
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Theorem 2. For a random edge insertion sequence (REIS) leading to a com-
plete DAG, the expected runtime of PK is O(n2 log2 n).

A comparable pair (of nodes) are two distinct nodes x and y such that either
x � y or y � x. We define a potential function Φi similar to Katriel and
Bodlaender (13). Let Φi be the number of comparable pairs after the insertion
of i edges. Clearly,

ΔΦi := Φi − Φi−1 ≥ 0 for all 1 ≤ i ≤ M ,
Φ0 = 0, and ΦM ≤ n(n − 1)/2. (1)

Theorem 3. For all edge sequences, (i) |δ(i)| ≤ ΔΦi + 1 and (ii) |δ(i)| ≤ 2ΔΦi.

Proof. Consider the i-th edge (u, v). If u < v, the theorem is trivial since
|δ(i)| = 0. Otherwise, each vertex of R

(i)
F and R

(i)
B (as defined in Sec-

tion 2) gets newly ordered with respect to u and v, respectively. The set⋃
x∈R

(i)
B

(x, v) ∩
⋃

x∈R
(i)
F

(u, x) = {(u, v)} as otherwise it will imply a discovered
cycle and the algorithm will report the cycle and terminate. This means that
overall at least |R(i)

F | + |R(i)
B | − 1 node pairs get newly ordered:

ΔΦi ≥ |R(i)
F | + |R(i)

B | − 1 = |δ(i)| − 1.

Also, since in this case ΔΦi ≥ 1, |δ(i)| ≤ 2ΔΦi.

Theorem 4. For all edge sequences,
N∑

i=1

|δ(i)| ≤ n(n − 1) = O(n2).

Proof. By Theorem 3 (i), we get
N∑

i=1

|δ(i)| ≤
N∑

i=1

(ΔΦi + 1) = ΦN + N ≤ n(n −

1)/2 + n(n − 1)/2 = n(n − 1).

The remainder of this section provides the necessary tools step by step to finally
prove the desired bound on

∑N
i=1 ‖δ(i)‖ in Theorem 10. One can also interpret

Φi as a random variable in DAG(n, M) with M = i. The corresponding function
Ψ for DAG(n, p) is defined as the total number of comparable node pairs in
DAG(n, p). Pittel and Tungol (21) showed the following theorem.

Theorem 5. For p := c log(n)/n and c > 1, Ep(Ψ) = (1 + o(1)) n2

2

(
1 − 1

c

)2.

Using Theorem 1, this result can be transformed to Φ as defined above for
DAG(n, M) and gives the following bounds for EM (Φk).

Theorem 6. For n log n < k ≤ N − 2n logn,

EM (Φk) = (1 + o(1))
n2

2

(

1 − (n − 1) log n

2(k + n logn)

)2

.

For N − 2n logn < k ≤ N − 2 logn,

EM (Φk) = (1 + o(1))
n2

2

(

1 − (n − 1) log n

2(k +
√

n (N − k))

)2

.
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The formal proof of the above theorem will be given in the full version of the paper.
The degree sequence of a random graph is a well-studied problem. The fol-

lowing theorem is shown in (5).

Theorem 7. If pn/ logn → ∞, then almost every graph G in the G(n, p) model
satisfies Δ(G) = (1+o(1)) pn, where Δ(G) is the maximum degree of a node in G.

As noted in Section 3, the undirected graph obtained by ignoring the directions
of DAG(n, p) is a G(n, p) graph. Therefore, the above result is also true for
the maximum degree (in-degree + out-degree) of a node in DAG(n, p). Using
Theorem 1, the above result can be transformed to DAG(n, M), as well.

Theorem 8. With probability 1 − O(1/n), there is no node with degree higher
than cM

n for n ≥ n0 and M > n log n in DAG(n, M), where c and n0 are fixed
constants.

The formal proof for c = 9 will be given in the full version of the paper.
As the maximum degree of a node in DAG(n, i) is O(i/n), we finally just

need to show a bound on
∑

i (i · |δ(i)|) to prove Theorem 10. This is done in the
following theorem.

Theorem 9. For DAG(n, M) and r := N − 2 logn,

E
( r∑

i=1

(i · |δ(i)|)
)

= O(n3 log2 n).

Proof. Let us decompose the analysis in three steps. First, we show a bound on
the first n log n edges. By definition of δ(i), |δ(i)| ≤ n. Therefore,

n log n∑

i=1

i · E(|δ(i)|) ≤
n log n∑

i=1

i · n = O
(
n3 log2 n

)
. (2)

The second step is to bound
∑t

i=n log n i · |δ(i)| with t := N − 2n logn. For this,
Theorem 3 (ii) shows for all k such that n logn < k < t that

E
( t∑

i=k

|δ(i)|
)

≤ 2E
( t∑

i=k

ΔΦi

)
= 2E(Φt − Φk−1) = 2E(Φt) − 2E(Φk−1).

Using Theorem 6 and the fact that the hidden functions of the o(1) are decreasing
in p (21), this yields (with s := n log n)

E
( t∑

i=k

|δ(i)|
)

≤ (1 + o(1))n2

(
(
1 − (n − 1) log n

2(t + s)

)2

−
(
1 − (n − 1) log n

2(k − 1 + s)

)2
)

= (1 + o(1))n2(n − 1) log n
( 2

2(k − 1 + s)
− 2

2(t + s)
+

(n − 1) log n

4

( 1
(t + s)2

− 1
(k − 1 + s)2

))

≤ (1 + o(1))n2(n − 1) log n

(
1

k − 1 + s
− 1

t + s

)

≤ (1 + o(1))n2(n − 1) log n
1

k − 1
. (3)
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By linearity of expectation and Equation (3),

E
( t∑

i=s+1

i |δ(i)|
)

=
t∑

i=s+1

(
iE(|δ(i)|)

)
≤

log (� t
s �)∑

j=1

(
2js

2js∑

i=2(j−1)s+1

E(|δ(i)|)
)

≤
log (� t

s �)∑

j=1

(
2js

t∑

i=2(j−1)s+1

E(|δ(i)|)
)

≤
log (� t

s �)∑

j=1

(
2js(1 + o(1))n2(n − 1) log n

1
2(j−1)s

)

=
log (� t

s �)∑

j=1

(
2(1 + o(1))n2(n − 1) log n

)

= 2(1 + o(1))n2(n − 1) log2 n = O(n3 log2 n).

For the last step consider a k such that t < k < r. Theorem 3 (ii) gives

E
( r∑

i=k

|δ(i)|
)

≤ 2E
( r∑

i=k

ΔΦi

)
= 2E(Φr − Φk−1) = 2E(Φr) − 2E(Φk−1).

Using Theorem 6 and similar arguments as before, this yields (with s(k) :=√
log n (N − k))

E
( r∑

i=k

|δ(i)|
)

≤ (1 + o(1))n2

(
(
1− (n − 1) logn

2(r + s(r))

)2

−
(
1− (n − 1) log n

2(k − 1 + s(k − 1))

)2
)

= (1 + o(1))n2(n − 1) log n

(
2

2(k − 1 + s(k − 1))
− 2

2(r + s(r))
+

(n − 1) log n

4

( 1
(r + s(r))2

− 1
(k − 1 + s(k − 1))2

)
)

.

Since k + s(k) is monotonically increasing for t < k < r, 1
(k+s(k))2 is a monotoni-

cally decreasing function in this interval. Therefore, 1
(r+s(r))2 − 1

(k−1+s(k−1))2 < 0,
which proves the following equation.

E
( r∑

i=k

|δ(i)|
)

≤ (1 + o(1))n2(n − 1) log n

(
1

k − 1 + s(k − 1)
− 1

r + s(r)

)

≤ (1 + o(1))n2(n − 1) log n
1

k − 1
. (4)

By linearity of expectation and Equation (4),
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E
( r∑

i=N−2n log n+1

i |δ(i)|
)

=
r∑

i=N−2n log n+1

(
i E(|δ(i)|)

)

≤ (N − 2 log n)
r∑

i=N−2n log n+1

E(|δ(i)|)

≤ (N − 2 log n) (1 + o(1)) n2(n − 1) log n
1

N − 2n log n − 1
= O(n3 log n).

Theorem 10. For DAG(n, M), E
( N∑

i=1

‖δ(i)‖
)

= O(n2 log2 n).

Proof. By definition of ‖δ(i)‖, we know ‖δ(i)‖ ≤ i and hence

n log n∑

i=1

‖δ(i)‖ = O(n2 log2 n).

Again, let r := N − 2 logn. Theorem 8 tells us that with probability greater
than

(
1 − c′

n

)
for some constant c′, there is no node with degree ≥ c i

n . Since the
degree of an arbitrary node in a DAG is bounded by n, we get with Theorems 4
and 9,

E
( r∑

i=n log n+1

‖δ(i)‖
)

= O
(

E
( r∑

i=n log n+1

c i |δ(i)|
n

)
+ E

( r∑

i=n log n+1

n c′ |δ(i)|
n

)
)

= O
( 1

n
E

( r∑

i=1

(i |δ(i)|)
)

+ n2
)

= O
( 1

n

(
n3 log2 n

)
+ n2

)
= O(n2 log2 n).

By again using the fact that the degree of an arbitrary node in a DAG is at
most n, we obtain

E
( N∑

i=r+1

‖δ(i)‖
)

= O
(
n · E

( N∑

i=r+1

|δ(i)|
))

= O
(
n ·

N∑

i=r+1

n
)

= O(n2 log n).

Thus,

E
( N∑

i=1

‖δ(i)‖
)

= E
( n log n∑

i=1

‖δ(i)‖
)

+ E
( r∑

i=n log n+1

‖δ(i)‖
)

+ E
( N∑

i=r+1

‖δ(i)‖
)

= O(n2 log2 n) + O(n2 log2 n) + O(n2 log n) = O(n2 log2 n).
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5 Analysis of AHRSZ and KB

Katriel and Bodlaender (13) introduced KB as a variant of AHRSZ for which a
worst-case runtime of O(min{m

3
2 log n, m

3
2 +n2 log n}) can be shown. In this sec-

tion, we prove an expected runtime of O(n2 log3 n) under random edge insertion
sequences, both for AHRSZ and KB.

Recall from Section 2 that for every edge insertion there is a minimal cover
K̂(i). In appendix C, we show that δ(i) is also a valid cover in this situation.
Therefore, by definition of |〉K̂(i)〈|, |〉K̂(i)〈| ≤ |〉δ(i)〈| = |δ(i)| + ‖δ(i)‖.

E
( m∑

i=1

|〉K̂(i)〈|
)

≤
m∑

i=1

|δ(i)| + E
( m∑

i=1

‖δ(i)‖
)

= O(n2 log2 n)

The latter equality follows from Theorems 4 and 10. The expected complexity
of AHRSZ on REIS is thus O

(
E

( ∑m
i=1 |〉K̂(i)〈| log n

))
= O(n2 log3 n).

KB also computes a cover K ⊆ δ(i) and its complexity per edge insertion is
O(|〉K〈| log |〉K〈|). Therefore, |〉K〈| ≤ |δ(i)|+‖δ(i)‖ and with a similar argument
as above, the expected complexity of KB on REIS is O(n2 log3 n).

6 Bounding the Number of Invalidating Edges

An interesting question in all this analysis is how many edges will actually in-
validate the topological ordering and force any algorithm to do something about
them. Here, we show a non-trivial upper bound on the expected value of the
number of invalidating edges on REIS. Consider the following random variable:
inval(i) = 1 if the i-th edge inserted is an invalidating edge; inval(i) = 0
otherwise.

Theorem 11. E
( m∑

i=1

inval(i)
)

= O(min{m, n
3
2 log

1
2 n}).

Proof. If the i-th edge is invalidating, |δ(i)| ≥ 2; otherwise inval(i) = |δ(i)| = 0.
In either case, inval(i) ≤ |δ(i)|/2. Thus, for s := n

3
2 log

1
2 n and t := min{m, N −

2n logn},

E
( t∑

i=s+1

inval(i)
)

≤ E
( t∑

i=s+1

|δ(i)|
2

)
≤ (1 + o(1))

2
n

3
2 log

1
2 n.

The second inequality follows by substituting k := s + 1 in Equation (3). Also,
since the number of invalidating edges can be at most equal to the total number
of edges,

∑s
i=1 inval(i) ≤ s.

E
( m∑

i=1

inval(i)
)

= E
( s∑

i=1

inval(i)
)

+ E
( t∑

i=s+1

inval(i)
)

+ E
( m∑

i=t

inval(i)
)

≤ O(s) + O(n
3
2 log

1
2 n) + O(n log n) = O(n

3
2 log

1
2 n).

The second bound E (
∑m

i=1 inval(i)) ≤ m is obvious by definition of inval(i).
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7 Discussion

On random edge insertion sequences (REIS) leading to a complete DAG, we
have shown an expected runtime of O(n2 log2 n) for PK and O(n2 log3 n) for
AHRSZ and KB while the trivial lower bound is Ω(n2). Extending the average
case analysis for the case where we only insert m edges with m � n2 still
remains open. On the other hand, the only non-trivial lower bound for this
problem is by Ramalingam and Reps (22), who have shown that an adversary
can force any algorithm which maintains explicit labels to require Ω(n log n)
time complexity for inserting n − 1 edges. There is still a large gap between the
lower bound of Ω(max{n logn, m}), the best average-case bound of O(n2 log2 n)
and the worst-case bound of O(min{m1.5 +n2 log n, m1.5 log n, n2.75}). Bridging
this gap remains an open problem.
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Abstract. The past few years have witnessed different scheduling al-
gorithms for a processor that can manage its energy usage by scaling
dynamically its speed. In this paper we attempt to extend such work
to the two-processor setting. Specifically, we focus on deadline schedul-
ing and study online algorithms for two processors with an objective
of maximizing the throughput, while using the smallest possible energy.
The motivation comes from the fact that dual-core processors are get-
ting common nowadays. Our first result is a new analysis of the energy
usage of the speed function OA [15,4,8] with respect to the optimal two-
processor schedule. This immediately implies a trivial two-processor al-
gorithm that is 16-competitive for throughput and O(1)-competitive for
energy. A more interesting result is a new online strategy for selecting
jobs for the two processors. Together with OA, it improves the compet-
itive ratio for throughput from 16 to 3, while increasing that for energy
by a factor of 2. Note that even if the energy usage is not a concern, no
algorithm can be better than 2-competitive with respect to throughput.

1 Introduction

Energy usage is an important concern in the design of modern processors. To be
more energy efficient, many modern processors adopt the technology of dynamic
speed scaling, where the processor can adjust its speed dynamically in some
range without any overhead. In general, running a processor at speed s would
consume energy at the rate sα, where α is a constant believed to be 2 or 3
(see, e.g., [7,9,13,14]). That is, a processor can save energy by running slower.
This energy saving capability has triggered a lot of work to revisit processor
scheduling; the concern is how to exploit this capability to reduce the energy
usage, while achieving as much as possible the original scheduling objectives
(such as throughput and flow time).

The pioneering work along this direction was due to Yao et al. [15]. They
considered the problem of deadline scheduling on a processor that can vary
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its speed between 0 and infinity. We call this the infinite speed model. In this
model, it is always feasible to complete all jobs by their deadlines; the concern
is how to adjust the processor speed and whether the total energy usage can be
O(1)-competitive. Yao et al. answered in the affirmative by showing an online
algorithm called AVR to be 2α−1αα-competitive, and they proposed another
algorithm called OA (Optimal Available), which is later proved by Bansal et
al. [4] to be αα-competitive. Bansal et al. also gave a new algorithm that is
2(α/(α − 1))αeα competitive. Note that all these algorithms only give a speed
function for the processor; all jobs are scheduled in an EDF (Earliest Deadline
First) manner. Recently several interesting results on flow time scheduling have
also been revealed under the infinite speed model (see [1,5,10]).

The infinite speed model is a convenient model for studying different speed
functions and their energy usage. Yet in reality, the speed of a processor is
bounded. Chan et al. [8] recently initiated the study of the bounded speed model,
where a processor can vary its speed between 0 and a fixed maximum speed T . In
this model, deadline scheduling becomes more complicated and even the optimal
offline algorithm may not be able to complete all jobs. A natural objective is to
maximize the throughput (i.e., the total work of jobs that can be completed by
their deadlines), while using the smallest possible energy. They showed that the
energy demanded by the speed function OAT, which is simply OA capped at T ,
is at most αα + 4αα2 times of the energy of any offline algorithm that produces
the maximum throughput. They further showed that OAT can support a job
selection strategy called FSA to be 14-competitive for throughput. More recently,
Bansal et al. [3] showed that OAT is indeed “fast” enough to support a more
aggressive job selection strategy called Slow-D, thus improving the competitive
ratio from 14 to 4. Note that even if the energy issue is ignored, no algorithm
can be better than 4-competitive with respect to throughput [6].

Many modern processors are indeed dual-core (or even quad-core) processors.
It is natural to extend the study of energy efficient scheduling to the multi-
processor setting. In this paper we take the first step to investigate the case of
two processors, and we would like to derive an online algorithm with a through-
put that can match or is close to the known lower bound, while being O(1)-
competitive on energy. In the infinite speed model, it is relatively trivial to
derive a two-processor algorithm that can complete all jobs (1-competitive for
throughput) and is O(1)-competitive for energy (see explanation below). It is
the bounded speed model that needs attention. In this model, if energy is not
a concern, it has been known that the two-processor algorithm Safe-Risky is
2-competitive for throughput [11], and no online algorithm can be better than
2-competitive [12]. Thus, it is natural to ask for an online algorithm for two pro-
cessors that is 2 or close to 2 competitive for throughput and O(1)-competitive
for energy.

To ease our discussion, we let Opt1 to denote the optimal offline algorithm
for a single processor that maximizes the throughput, while using the smallest
energy, and similarly Opt2 for the case of two processors. Furthermore, let EOpti

and WOpti denote respectively the energy usage and throughput of Opti, where
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i = 1 or 2. First of all, let us explain why scheduling two processors is relatively
trivial in the infinite speed model. When the processor speed is unbounded, all
jobs can be completed on time even using one single processor. Furthermore,
we can use a single processor, which runs sufficiently fast, to simulate any two-
processor schedule that completes all jobs; the energy usage increases by at most
2α−1 times. Thus, EOpt1 ≤ 2α−1EOpt2. Given two processors, a trivial algorithm
is to use OA for one processor and let the other idle. This would give an algorithm
that is 1-competitive for throughput and 2α−1αα-competitive for energy.

The rest of this paper is devoted to the bounded speed model. First of all,
let us look at the performance of the trivial algorithm that uses Slow-D and
OAT on one processor, leaving the other idle. The simulation argument above
is no longer valid in the bounded speed model, yet it is probably still true that
EOpt1 ≤ 2α−1EOpt2, implying that the energy usage of OAT (and Slow-D) is at
most (2α−1αα +23α−1α2)EOpt2. In this paper we give a better analysis of OAT,
showing that the energy usage of OAT is at most

(2α−1αα + 22α−1α2)EOpt2.

For the throughput, we can easily argue that WOpt1 ≥ WOpt2/4 (using the
notion of minimally infeasible job set given in [8]). Thus, the trivial two-processor
algorithm is 16-competitive for throughput and O(1)-competitive for energy.

The above competitive ratio for throughput is far from the lower bound of 2.
This motivates us to develop a non-trivial strategy to schedule jobs with both
processors. We develop a new job selection strategy called Slow-SR, with one
processor following a schedule similar to Slow-D and the other working like the
Risky processor of the Safe-Risky algorithm. The competitive ratio of throughput
is reduced from 16 to 3. Both processors are running at a speed not exceeding
that of OAT and the competitive ratio for energy becomes 2ααα + 4αα2.

In conclusion, we have devised a two-processor algorithm for the bounded
speed model, which is 3-competitive for throughput and 2ααα+4αα2-competitive
for energy. As to be explained, our algorithm requires job migration from the
Risky processor to the Slow-D processor. It is interesting to find a non-migratory
algorithm with similar performance (though in a dual-core processor, the two
CPUs share the same memory, so the overhead of migration is not as expensive
as the typical distributed model). We believe that for m ≥ 2 processors, it is
possible to have an algorithm that is O(1)-competitive for both throughput and
energy usage. Yet it is hard to generalize the algorithm given in this paper. On
the other hand, Albers et al. [2] have recently obtained some interesting results
on multiprocessor deadline scheduling for the infinite speed model. They focused
on the special case where jobs have agreeable deadlines (i.e., the deadlines of the
jobs follow the order of their release times), and they showed a non-migratory
multiprocessor algorithm that is αα16α-competitive for energy (recall that in
the infinite speed model, the competitive ratio of throughput is always one).

Organization of the paper. In Section 2, we describe the algorithm Slow-SR.
In Section 3, we establish a couple of key properties of the algorithm. Using
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these properties, we analyze the throughput of Slow-SR in Section 4. Finally, we
analyze the energy competitiveness of OAT in Section 5.

Definitions and Assumptions. Before we give the details of Slow-SR, let us
define the scheduling problem formally. There are two processors, the speed of
each can be independently scaled from 0 to a maximum speed T . A processor
running at speed s can process s units of work per unit of time, consuming
energy at the rate sα. Jobs are released in an online fashion. Each job j is
characterized by a release time rj , a deadline dj , and required work (or size) pj .
At any time, a job can be executed in only one of the two processors. Preemption
and migration is allowed with no penalty. A job j is said to be completed if pj

units of work has been processed by its deadline. Note that there may be too
many jobs to be completed. The objective of a scheduler is to maximize the
throughput, while minimizing the energy. An online algorithm is said to be c-
competitive for throughput and c′-competitive for energy if, for any job sequence,
its throughput is at least 1

cWOpt2 and its energy usage is at most c′EOpt2. To
simplify our discussion, we assume that some suitable scaling has been done to
the processor speed and job size so that T = 1.1

2 The Slow-SR Algorithm

The algorithm Slow-SR makes reference to the schedule of OA. Before describing
the algorithm Slow-SR, we need a review of OA.

OA works for one processor only. We characterize OA by the schedule it plans
to use at any time t, assuming no more jobs are released after t. Let I(t) be
the subset of jobs that has arrived up to time t. We use ρ(t1, t2) to denote the
remaining work of the jobs in I(t) with deadlines in the interval (t1, t2]. The speed
function that OA plans to use looks like a staircase, with speed reduced at certain
“critical” times c0, c1, . . . defined as follows. Let c0 = t. For any i, the speed
that OA plans to use immediately after ci is ρi+1 = maxt′>ci ρ(ci, t

′)/(t′ − ci);
OA maintains this speed until ci+1, defined as the earliest time after ci such
that ρ(ci, ci+1)/(ci+1 − ci) = ρi+1. The intervals [ci, ci+1] are called the critical
intervals. Within each critical interval, jobs with deadlines in this interval are
executed in an EDF order. Intuitively, OA is very lazy; within each critical
interval, OA just uses the minimum speed that would not cause any job to miss
a deadline. Note that if no more jobs are released, OA never changes the speed
planned as above.

Consider any time t. With respect to the speed function planned by OA at
time t, we define tslow ≥ t to be the first time when OA plans to use speed 1 or
less. Furthermore, we say that t is a “slow time” if OA actually runs at speed 1

1 Given a job set I to be scheduled on a processor with maximum speed T > 1,
we define another job set I ′ by scaling the work of each job j in I to pj/T . Then
any schedule for I ′ with maximum speed 1 can be transformed to a schedule for I
with maximum speed T (by increasing the speed by a factor of T ), and vice versa.
Therefore, the competitive ratios for throughput and energy both preserve.
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Data Structures:
Qslow, initially ∅
Qfast, initially ∅
Juc, initially nil

Scheduling framework:
At fast time, SP runs earliest deadline job in Qfast at speed 1
At slow time, SP runs earliest deadline job in Qslow at the same speed as OA
If Juc �= nil, RP runs Juc at speed 1

Event: Release of job j
1: Update the simulated OA schedule by adding j
2: Move jobs in Qslow with deadline at or before tslow to Qfast

3: if dj > tslow then
4: Add j to Qslow

5: else if {j} ∪ Qfast is feasible then
6: Add j to Qfast

Event: LST interrupt of job j
7: if Juc = nil or p(j) > p(Juc) then
8: Juc ← j

Event: Job completion in SP
9: Remove the completed job from Qslow or Qfast

10: if Juc �= nil and Qfast = ∅ then
11: Qfast ← {Juc}
12: Juc ← nil

Algorithm 1. Slow-SR

or less at t, and a “fast time” otherwise. By definition, OA plans to change speed
at tslow, and tslow is a critical time. That means, OA plans to execute only jobs
with deadlines at or before tslow until tslow.

Slow-SR is defined in Algorithm 1.The two processors are labeled as SP (Slow-
D Processor) and RP (Risky Processor), respectively. The algorithm keeps two
queues (sets), both on jobs committed to run on SP. The queue Qslow contains
jobs that OA plans to run “slowly” (at speed 1 or less), and the queue Qfast for
jobs that OA plans to run “quickly” (at speed over 1). The algorithm also keeps
a job Juc committed to run on RP. For each job j not in Qfast or Qslow, an LST
(latest-start-time) interrupt will occur at time dj − pj , which attempts to retain
job j as Juc for execution.

3 Relations of the Job Queues

We establish two main characteristics of Slow-SR in this section, namely that
SP completes all jobs that have ever entered Qfast and Qslow, and that RP is
busy only during fast time. For any time t, let tslow(t) denotes tslow at t, before
events at t (if any) are taken into account. A job j is said to be active at time t
if t < dj and j has not yet been completed by t. Before we begin, it is essential
for us to understand the following implications of slow time.
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Lemma 1. At any slow time, all active jobs are in Qslow.

Proof. Let t be a slow time. So tslow(t) = t. For any active job j, dj > t =
tslow(t) ≥ tslow(t′) for any t′ ∈ [rj , t], where the last inequality follows from the
nature of OA that tslow(t) increases monotonically with t. Thus j entered Qslow at
release, and is not moved to Qfast at or before t. So all active jobs are in Qslow. ��

Lemma 2. The schedules of OA and Slow-SR during slow time are exactly the
same (assuming they break ties of deadlines in the same way).

Proof. Since Slow-SR uses the speed of OA during slow time, we only need to
consider the choices of jobs of the two schedulers. Note that during slow time,
both schedulers always choose the earliest deadline active job (for Slow-SR this is
because Lemma 1 guarantees that Qslow contains all active jobs). So it suffices to
show that they have the same set of active jobs. Let t be the first slow time that
OA and Slow-SR have different set of active jobs, and thus can have different
scheduling. Let j be any job active at t in either scheduler, we will show that
it is active in both schedulers, meaning the active job sets are the same, i.e.,
contradiction. We just need to observe that neither scheduler runs j during fast
time before t, for OA it is because dj > t = tslow(t) ≥ tslow(t′) for any t′ < t, so
it has too late deadline; and for Slow-SR it is because the above implies that j
has never been in Qfast. In other words, scheduling of j before t must be exactly
the same in the two schedulers, so it must be active in both. ��

We now prove the two main properties of Slow-SR.

Property 1. SP completes all jobs that have ever entered Qfast or Qslow.

Proof. For jobs that are added to Qslow at release and are never moved to Qfast,
Lemma 2 guarantees that their scheduling is the same as OA and will be com-
pleted. We now show that Qfast remains feasible (using a speed 1 processor) at
any time, which implies that each job in Qfast is feasible at their deadlines, i.e.,
already completed at their deadlines. We first check that Qfast does not become
infeasible without jobs being added to it: if Qfast is non-empty but feasible at t,
there must be active jobs in Qfast, and Lemma 1 implies that it is fast time.
SP thus runs the earliest deadline job in Qfast using speed 1, so Qfast is feasible
immediately after t.

Now we turn to the cases when jobs enter Qfast. For cases where there is a
feasibility check, the feasibility after the job entering Qfast is trivial. The only
remaining case is when jobs are moved from Qslow to Qfast. If Qfast is feasible
before such a move, then Qfast ∪ Qslow must also be feasible before such a move
since their time of execution do not conflict: jobs in Qfast have deadlines at
or before tslow(t) and thus can only be processed at or before tslow(t), while
scheduling of Qslow is always the same as OA (Lemma 1) which plans to use
time after tslow(t) to work on Qslow. It is then obvious that the move does not
cause infeasibility. ��

Property 2. If Juc �= nil at t, then (1) Qfast �= ∅, and (2) t must be a fast time.
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Proof. Suppose at time t, Juc = j and Qfast = ∅. So j must have caused an LST
interrupt at some time tl < t, and remains as Juc since then. If Qfast is non-empty
at tl, there must be a time in (tl, t) at which Qfast changes from non-empty to
empty, when j would be moved to Qfast, contradicting that Juc = j at t. But
if Qfast is empty at tl, it means j can be completed with all jobs completed in
Qfast by tl, so j should enter Qfast at rj , contradicting that J caused an LST
interrupt. Therefore, Qfast �= ∅. This also implies that some active job is in Qfast

(Property 1), so by Lemma 1, the current time is a fast time. ��

4 Throughput Competitiveness

We analyze the throughput of Slow-SR in this section. This is done by parti-
tioning the set of jobs into two categories: Ls includes those that enter Qslow

on release, and Lf includes all other jobs. The jobs in Ls are all completed by
Slow-SR (Property 1), while Slow-SR can miss the deadlines of some jobs in Lf .
Note that the spans (i.e., time interval between release time and deadline) of
jobs in Lf are completely in fast time, putting a bound on the amount of work
that the optimal algorithm can complete for Lf . Let f denote the total length
of periods of fast time. The core of the proof is Lemma 5, allowing us to show
that Slow-SR completes f units of work, resulting into the following theorem.

Theorem 1. Slow-SR is 3-competitive on throughput.

Proof. The optimal offline schedule can at most complete all jobs in Ls and 2f
units of work in Lf , leading to a total throughput of WOpt ≤ p(Ls) + 2f . Slow-
SR completes all jobs in Ls, so its throughput WSlow-SR ≥ p(Ls). We will show
in Lemma 3 that for jobs with deadlines in each maximal period of fast time F ,
Slow-SR completes an amount of work no less than the length of F . Summing over
all such maximal periods, it means for jobs with deadlines in fast time, Slow-SR
completes no less than f units of work, leading to WSlow-SR ≥ f . In conclusion,
WOpt ≤ WSlow-SR + 2WSlow-SR ≤ 3WSlow-SR, completing the proof. ��

It is tricky to show that Slow-SR completes enough work during each maximal
period of fast time F . Although all jobs in SP meet deadlines (Property 1), and
SP always works at speed 1 during fast time, Slow-SR can be idle in some fast
time. So we consider each busy period within each maximal period of fast time.
Let t0, t1, . . . , tl be the list of times in F from earliest to latest when one of
the following happens: (1) F begins, (2) F ends, or (3) SP switches from idle
to busy. So F = [t0, tl]. Note that some job runs in SP at t0, since some jobs
with deadlines no later than tslow must be released at the beginning of any fast
time period, so if Qfast is not occupied by some previously released jobs, it must
accept one of those newly released jobs.

Lemma 3. For jobs with deadlines in a maximal period of fast time F , Slow-SR
completes an amount of work no less than the length of F .
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Proof. In Lemma 5, we will show that the amount of work completed before tn for
jobs with deadlines in (tslow(tn−1), tslow(tn)], plus the amount of work completed
during [tn−1, tn] for jobs with deadlines in (tn−1, tslow(tn−1)], is at least tslow(tn)−
tslow(tn−1). Now sum over all n from 1 to l. We can check that no work completed
bySlow-SR is being countedmore than once, and all of themare jobswithdeadlines
in F . So the work completed for jobs with deadlines inF is at least

∑l
n=1 tslow(tn)−

tslow(tn−1) = tslow(tl) − tslow(t0) = tl − t0, i.e., the length of F . ��

To establish Lemma 5, we depend on two facts. The first is that whenever a
job j cannot enter either Qfast or Qslow because a job j′ in Qfast ∪ {j} would
miss deadline, SP and RP of Slow-SR must be able to process an amount of useful
work no less than dj′ − rj . We say j′ repudiates j in such cases. The second is a
property of OA concerning tslow(t): the amount of work in jobs already released
at t with deadlines between t′ ≥ t and tslow(t) cannot be small.

Lemma 4. Let t be a fast time. For any t′ ∈ [t, tslow(t)), the amount of work in
jobs with deadlines in (t′, tslow(t)] released before t is more than tslow(t) − t′.

Proof. Immediately before t, consider the jobs that OA may plan to run during
[t′, tslow(t)]. It cannot run jobs with deadlines at or before t′, because these jobs
have deadlines passed. By the nature of OA, it does not plan to run jobs with
deadlines after tslow(t) until tslow(t). So it can only plan to run jobs with deadlines
[t′, tslow(t)]. Yet it plans to use faster than speed 1 during that whole period (so
that the period is fast). The lemma arrives immediately. ��

Lemma 5. Consider any n ∈ {1, . . . , l}. The amount of work completed be-
fore tn for jobs with deadlines in (tslow(tn−1), tslow(tn)], plus the amount of work
completed during [tn−1, tn] for jobs with deadlines in (tn−1, tslow(tn−1)], is at
least tslow(tn) − tslow(tn−1).

Proof. For t ∈ [tn−1, tn], let P (t) be the following proposition: If all jobs with
release time at or after t are not released, the amount of work completed by Slow-
SR before tslow(t) for jobs with deadlines in (tslow(tn−1), tslow(t)], plus the amount
of work completed by Slow-SR during [tn−1, tslow(t)] for jobs with deadlines in
(tn−1, tslow(tn−1)], is no less than tslow(t) − tslow(tn−1).

When t is set to be the last busy time tb in [tn−1, tn], this is exactly Lemma 5:
First, the work that would be done before tslow(tb) if no more jobs are released at
or after tb is exactly the same as the amount of work actually completed before tb
(since Slow-SR idles afterwards). Second, tslow(tb) is the same as tslow(tn) since it
cannot change between tb and tn, without causing a job to be accepted into Qfast

and extending the current busy period or starting a new one.
The base case t = tn−1 is trivial. Suppose P (t) is true for all t ∈ [tn−1, u).

We now establish P (u). It only uses release times less than t, so the transfinite
induction works (i.e., it always terminates after a finite number of steps).

Let S be the set of jobs with deadlines in (tslow(tn−1), tslow(u)] already released
before u. By Lemma 4, the amount of work in S must be more than tslow(u) −
tslow(tn−1). If all jobs in S enter Qfast or Qslow on release, P (u) is satisfied
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by just these jobs. We thus assume that some jobs in S are not accepted into
Qfast or Qslow on release, i.e., some repudiation occurred during [tn−1, u). Let jr

be the latest deadline repudiating job during these repudiations, which occurred
at tr < t. The set of jobs Γ with deadlines in (djr , tslow(u)] released before u
must all be accepted into Qfast or Qslow on release, since no job can repudiate
them. This also shows that djr must be larger than tslow(tn−1), otherwise all jobs
with deadlines in (tslow(tn−1), tslow(tn)] must be admitted into Qfast or Qslow,
contradicting our assumption.

If no job in Γ is run at any fast time before rjr , we can check that the total
completed work counted in P (u) is at least tslow(u)−tn−1 > tslow(u)−tslow(tn−1),
so P (u) is satisfied. The amount of work tslow(u)−tn−1 comes from three disjoint
parts of useful work processed by SP and RP: (1) Those processed before tslow(u)
with deadlines in (djr , tslow(u)]—at least tslow(u) − djr by Lemma 4; (2) Those
processed by SP during [tn−1, tr]—exactly tr−tn−1; and (3) Those with deadlines
at or before djr that are planned to be processed by SP at the repudiation time tr,
plus the job that is being repudiated or the replacement job that eventually get
completed by RP (with or without the help of SP)—the repudiation implies this
to be at least djr − tr.

Finally, we consider the case if some job je ∈ Γ runs at some fast time be-
fore rjr . Let te be a time immediately after such execution. Note that te ≥ tn−1:
otherwise je must be in Qfast and partially executed immediately before tn−1,
contradicting that SP is slow or idle by then. By P (te) (induction hypothesis),
the amount of work counted by P (te) is no less than tslow(te) − tslow(tn−1). To
see P (u) is satisfied, we note that P (u) includes the work completed for jobs
with deadlines in (tslow(te), tslow(u)], which is not counted in P (te). This is more
than tslow(u) − tslow(te) by Lemma 4, so the amount of work counted by P (u) is
more than tslow(te)− tslow(tn−1)+ tslow(u)− tslow(te) = tslow(u)− tslow(tn−1). ��

5 Energy Competitiveness

We analyze the energy consumption of the single processor schedule OA capped
at a maximum speed of 1 (OAT) in this section, showing that it is (2α−1αα +
22α−1α2)-competitive in energy against the minimum energy 2-processor offline
schedule that achieves the maximum throughput. By Property 2, the speeds of
both processors of Slow-SR never exceed that of OAT, so this implies that Slow-
SR is (2ααα + 22αα2)-competitive in energy against this offline schedule. The
competitive ratio of OAT also implies that Slow-D [3] is (2α−1αα + 22α−1α2)-
competitive in energy in the same setting.

The analysis of OAT against optimal 2-processor schedule is a modification of
the proof presented in [8]. Let’s review the notations used. At any time t, we use
EOAT(t) and EOpt(t) to denote the amount of energy already spent by OAT and
OPT respectively. We overload the speed function OAT with an actual schedule
that always executes the same job as OA, using the OAT speed function (i.e.,
capped at speed 1). This way, OAT always processes a job whenever its speed is
non-zero, but may not process enough work to complete some jobs. In contrast,
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OPT never processes a job without eventually completing it. We call work that
is done for a job completed by OPT to be type-1 work, and other work to be
type-0 work.

Consider OA at any time t. We use two functions φ(t) and β(t) (as in [8]).
The function φ(t) is 0 at the beginning and the end of the schedule, and changes
continuously except when jobs are released. The function β(t) is α2 times the
amount of type-0 work that would be completed by OAT if no more jobs are
released after t. Our main theorem and the outline of its proof is as follows.

Theorem 2. EOAT ≤ (2α−1αα + 22α−1α2)EOpt.

Proof. We will show that EOAT(t)+φ(t)−β(t) ≤ 2α−1ααEOpt(t). Before showing
how to prove the inequality, let’s consider its consequence. Consider a time te
after all job deadlines. At that time, EOAT(te) = EOAT, EOpt(te) = EOpt, and
φ(te) = 0. So EOAT − β(te) ≤ 2α−1ααEOpt. Lemma 6 will show that β(te) ≤
22α−1α2EOpt. The theorem arrives immediately.

We now prove that EOAT(t) + φ(t) − β(t) ≤ 2α−1ααEOpt(t). Before any job
is released, the inequality holds trivially, since all the terms are 0. Lemma 7 will
show that when no job is being released, the rate of changes of the terms in the
inequality satisfies EOAT(t)′+φ(t)′−β(t)′ ≤ 2α−1ααEOpt(t)′. Lemma 8 will show
that when a job is released, the change of the terms in the inequality satisfies
Δφ(t) − Δβ(t) ≤ 0. EOAT(t) and EOpt(t) obviously remain unchanged. Thus no
event invalidates the inequality since the time before any job is released. ��

Now we bound the amount of type-0 work that OAT eventually completes.

Lemma 6. If te is a time after the deadlines of all jobs, β(te) ≤ 22α−1α2EOpt.

Proof. We first bound EOpt. Let S be a subset of I, the input job set. We say S
is minimally infeasible if S is infeasible, but any proper subset of S is feasible,
using a speed-1 processor. The union of spans of jobs in a minimally infeasible
job set, span(S), forms a continuous time interval (otherwise one of the sub-
intervals alone must be infeasible). Let M be the set of all minimally infeasible
subsets of I. Let span(M) be the union of all spans of those subsets within M. A
job j is “overloaded” if its span is in span(M) completely, and “underloaded” if
otherwise. So all jobs in M are overloaded. In [8], it is shown that (1) all type-0
jobs are overloaded, and (2) underloaded jobs do not affect the feasibility of job
sets. Because of the latter, OPT must maximize the amount of work completed
in overloaded jobs.

Let M0 be a minimal subset of M with span(M0) = span(M). The spans
of minimally infeasible subsets in M0 must all have different start times in their
spans, otherwise one of them can be removed from M0, so M0 is not minimal.
So let M0 = {S1, S2, . . .}, where the start time of span of S1 is earlier than
that of S2, etc. The span of Si cannot overlap with the span of Si+2 or any
later subsets, since otherwise Si+1 can be removed from M0. It is thus feasible
to complete using one processor all jobs in S1, S3, . . . except the smallest job
in each subset; and to complete using the other processor all jobs in S2, S4,
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. . . except the smallest job in each subset, leading to an amount of work no less
than half of the total length of span(M) (which we will denote by |span(M)|).
The minimum energy schedule for OPT to complete this amount of work within
a time period of |span(M)| is to spread it over all the time in two processors.
This results in speed 1/4 throughout the span, so EOpt ≥ 2|span(M)|/4α. Recall
that β(te) is α2 times the amount of type-0 work completed by OAT. Since all
type-0 work are overloaded, they must be executed in span(M), resulting in
β(te) ≤ α2|span(M)| ≤ 22α−1α2EOpt as claimed. ��

To continue with the proof we need the definition of φ(t). Recall that the plan
of OA defines critical times c0, c1, . . . ; and during each critical interval [ci, ci+1],
OA plans to use constant speed ρi+1. Let wOAT (i) be the amount of unfinished
work under OAT in jobs with deadlines in (ci−1, ci], according to the schedule if
no more jobs are to be released after t. Let wOPT (i) be the amount of unfinished
type-1 work under OPT in jobs with deadlines in (ci−1, ci]. Then

φ(t) =
∑

i≥1

(min{ρi, 1})α−1(α wOAT (i) − α2wOPT (i)) .

We analyze the rate of change in terms of the inequality EOAT(t)+φ(t)−β(t) ≤
2α−1ααEOpt(t), when no job is released.

Lemma 7. When no job arrives, EOAT(t)′+φ(t)′−β(t)′−2α−1ααEOpt(t)′ ≤ 0.

Proof. Without new jobs, the expected schedule used by OAT is not changed,
so β(t)′ = 0. OAT runs at speed s = min{ρ1, 1}, so EOAT(t)′ = sα. For OPT,
assume its two processors run at speed s1 and s2, so EOpt(t)′ = sα

1 + sα
2 .

We need to bound φ(t)′ from above. The function φ(t) consists of two sets
of components, one for wOAT (i) and the other for wOPT (i). For wOAT (i), only
wOAT (1) is changing, at a rate of −s. For wOPT (i), we do not know which
i corresponds to the running jobs in the two processors, but i = 1 has the
largest scaling factor, which results in the largest change of φ(t). So we have
φ(t)′ ≤ sα−1(−αs + α2(s1 + s2)) = −αsα + α2sα−1(s1 + s2). Therefore,

EOAT(t)′ + φ(t)′ − β(t)′ − 2α−1ααEOpt(t)′

≤ sα − αsα + α2sα−1(s1 + s2) − 2α−1αα(sα
1 + sα

2 )

=
(1 − α)sα + 2α2sα−1s1 − 2αααsα

1

2
+

(1 − α)sα + 2α2sα−1s2 − 2αααsα
2

2
= (sα

1 f(s/s1) + sα
2 f(s/s2))/2 ,

where f(z) = (1 − α)zα + 2α2zα−1 − 2ααα. We note that f(0) = −2ααα <
0, and when z → ∞, f(z) → (1 − α)zα < 0. For maximum value, we set
f ′(z) = (1 − α)αzα−1 + 2α2(α − 1)zα−2 = 0, which implies that z = 2α, and
f(z) = (1 − α)(2α)α + 2α2(2α)α−1 − (2α)α = 0. So f(z) is non-positive for
any z ≥ 0, concluding our proof. ��
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Finally, we note that the proof in [8] can be used directly to show the following
lemma, which concerns with how the release of jobs (rather than the running of
jobs) affects φ(t) and β(t).

Lemma 8. At the time when a job is released, Δφ(t) − Δβ(t) ≤ 0.
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Abstract. In this paper we give a finer separation of several known
paging algorithms. This is accomplished using a new technique that we
call relative interval analysis. The technique compares the fault rate of
two paging algorithms across the entire range of inputs of a given size
rather than in the worst case alone. Using this technique we characterize
the relative performance of LRU and LRU-2, as well as LRU and FWF,
among others. We also show that lookahead is beneficial for a paging
algorithm, a fact that is well known in practice but it was, until recently,
not verified by theory.

1 Introduction

Paging is a fundamental problem in the context of the analysis of online algo-
rithms. A paging algorithm mediates between a slower and a faster memory.
Assuming a cache of size k, the algorithm decides which k memory pages to
keep in the cache without the benefit of knowing in advance the sequence of
upcoming page requests. After receiving the ith page request the online algo-
rithm must decide which page to evict, in the event the request results in a fault
and the cache is full. The objective is to design efficient online algorithms in the
sense that on a given request sequence the total cost, namely the total number of
faults, is kept low. Three well known paging algorithms are Least-Recently-Used
(LRU), First-In-First-Out (FIFO), and Flush-When-Full (FWF). On a fault,
if the cache is full, LRU evicts the page that is least recently requested, FIFO
evicts the page that is first brought to the cache, and FWF empties the cache.

The competitive ratio, first introduced formally by Sleator and Tarjan [20],
has served as a practical measure for the study and classification of online al-
gorithms. An algorithm (assuming a cost-minimization problem) is said to be
α-competitive if the cost of serving any specific request sequence never exceeds
α times the optimal cost (up to some additive constant) of an optimal offline
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algorithm which knows the entire sequence. The competitive ratio has been ap-
plied to a variety of online problems and settings: is relatively simple measure
to apply yet powerful enough to quantify, to a large extent, the performance of
many an online algorithm. On the other hand, it has been observed by numer-
ous researchers [5,7,14,21,10,17] that for paging it produces results that are too
pessimistic or otherwise found wanting. For example, experimental studies show
that LRU has a performance ratio at most four times the optimal offline algo-
rithm [21,19], as opposed to the competitive ratio k predicted by competitive
analysis. Furthermore, it has been empirically well established that LRU (and/or
variants thereof) are, in practice, preferable paging strategies to all other known
paging algorithms [18]. This is in contrast to competitive analysis in which the
competitive ratio of LRU is the same as FWF and worse than some randomized
algorithms. An additional drawback of competitive analysis, as can easily be
shown [6], is that finite lookahead yields no improvement in the performance of
an online algorithm. Once again, this is a rather counterintuitive conclusion: in
practice, one expects that lookahead should improve performance, and a “rea-
sonable” theoretical measure should reflect this “reality”.

A careful study of the competitive ratio reveals the nature of the shortcomings.
Chief among them are its focus on worst case behaviour and indirect comparison
of online algorithms via an offline optimal algorithm. In the former case, this
might lead, as observed above, to the competitive ratio declaring two wildly
differing algorithms “equal” if they happen to err by the same amount in their
worst possible input, even though in most other inputs one is superior to the
other (e.g. LRU versus FWF). As well the indirect comparison via an offline
optimal can introduce spurious artifacts from the comparison to an objects of a
different type, namely an online to offline algorithm.

Such anomalies have lead to the introduction of several alternatives to com-
petitive analysis of online algorithms, e.g., loose competitiveness [21,24], the
Max/Max Ratio [5], diffuse adversary [14,22,23,4], the random order ratio [13],
the relative worst order ratio [10,9,11], access graph [7], concave analysis [2],
and adequate analysis [17]. We refer the reader to the survey of Dorrigiv and
López-Ortiz [12] for a more comprehensive and detailed exposition. These mea-
sures achieve partial separation between well known algorithms for paging. Loose
competitiveness, diffuse adversary model, and adequate analysis provide more
realistic ratios for paging algorithms. The Max/Max ratio and the relative worst
order ratio provide direct comparison between online algorithms and reflect the
influence of lookahead. Recently, Angelopoulos et al. introduced Bijective Anal-
ysis and Average Analysis [3] which combined with the locality model of Albers
et al. [2], shows that LRU is the sole optimal paging algorithm on sequences
with locality of reference. This resolved an important disparity between theory
and practice of online paging algorithms, namely the superiority in practice of
LRU. A remaining question however, is how to characterize the full spectrum of
performance of the various known paging algorithms. As discussed above, the
competitive ratio focuses on the worst case which in this setting is known to be
the same for all algorithms. In this paper we compare instead the performance
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of two algorithms across the entire range of inputs; in that comparison we use
the fault rate measure instead of the competitive ratio. Aside from artifacts in-
troduced by the comparison to an offline algorithm, practitioners find the fault
rate a better indicator of performance. Formally, the fault rate of a paging algo-
rithm A on a sequence σ of length n is the number of faults that A incurs on A
divided by n. The fault rate of A on a set of sequences is the worst (maximum)
fault rate of A on any of those sequences. The idea behind the fault rate is that
sequences on which A incurs very few faults compared to the number of requests
are not that important, even if the number of faults happens to be much higher
than what can be achieved by an offline (or even online) optimum. Consider the
following example. Let A and B two online paging algorithms so that A incurs
fewer faults than B on most sequences. Suppose that the fault rate of A is much
lower than that of B, so clearly A is preferable to B. However, if there happens
to be an “easy” sequence σ of length 1000000 on which A incurs 100 faults, B
incurs 10 faults and optimal offline algorithm can serve σ by only 2 faults, then
the competitive ratio of A is 50 while that of B is 5 suggesting the opposite of
the logical conclusion. Note that the fault rates of A and B on σ are 0.01 and
0.001, respectively, which are miniscule and thus of no relevance in the actual
performance of a system using either algorithm.

Our results: In this paper we aim to provide a tool for finer study and separa-
tion of the relative performance characteristics of online paging algorithms. We
propose the relative interval approach which directly compares two online pag-
ing algorithms A and B, without any reference to the optimal offline algorithm.
They are compared across their entire performance spectrum (rather than on
the worst case alone) using a normalized measure of performance, similar to the
fault rate. Informally the relative interval of two algorithms reflects the range of
the difference between the fault rate of those algorithms. For every two online
paging algorithm A and B we define a relative interval I(A, B) = [α, β], where
−1 ≤ α ≤ 1 and −1 ≤ β ≤ 1 (Note that if we consider “sensible” methods such
that each is at least as good as ever other on at least some input then we have
−1 ≤ α ≤ 0 ≤ β ≤ 1). β > −α, shows that B is better than A according to the
relative interval. The more the difference, the better B is compared to A. Table 1
shows the summary of our results about the relative intervals of well-known pag-
ing algorithms. These results show that LRU and FIFO are better than FWF,
a result expected from practice and experience, yet not fully reflected by the
competitive ration model. We also show that the relative interval has another
good feature, namely we prove that it reflects the influence of lookahead.

2 Relative Interval Analysis

We introduce a new model for comparing online algorithms. In this model we
directly compare two online algorithms, i.e., we do not use the optimal of-
fline algorithm as the baseline of our comparisons. Let A and B be two online
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Table 1. Summary of the results for relative intervals of several paging algorithms

LRU FWF FIFO LIFO LRU-2

LRU [− k−1
k

, 0] ⊇ [− k−1
2k−1 , k−1

2k−1 ] [−1, k−1
k

] ⊇ [− k−1
k+1 , k−1

2k
]

FWF [0, k−1
k

] [0, k−1
k

]

FIFO ⊇ [− k−1
2k−1 , k−1

2k−1 ] [− k−1
k

, 0] [−1, k−1
k

]

LIFO [− k−1
k

, 1] [− k−1
k

, 1]

LRU-2 ⊇ [− k−1
2k

, k−1
k+1 ]

algorithms for the same minimization problem, e.g., paging. We define the fol-
lowing two functions:

MinA,B(n) = min
|σ|=n

{A(σ) − B(σ)},

and
MaxA,B(n) = max

|σ|=n
{A(σ) − B(σ)}.

Using these functions we define

Min(A, B) = lim inf
n

MinA,B(n)
n

, and Max(A, B) = lim sup
n

MaxA,B(n)
n

.

Note that Min(A, B) = −Max(B, A) and Max(A, B) = −Min(B, A). Now we
are ready to define the relative interval of A and B as

I(A, B) = [Min(A, B), Max(A, B)].

This interval gives useful information about the relative performance of A and
B. If Max(A, B) > |Min(A, B)| then B has better performance than A in this
model. In this case we say that B dominates A. Also if Max(A, B) is close to 0
then we can conclude that A is not much worse than B on any sequences. We
can interpret other situations in an analogous way.

We compute the value of Min(A, B) and Max(A, B) for various choices of
A and B. In some cases we obtained bounds or approximation of these values
instead. We say that [α, β] approximates the relative interval of A and B if
Min(A, B) ≤ α and β ≤ Max(A, B). We show this by I(A, B) ⊇ [α, β].

3 Relative Interval Analysis Applied to Paging
Algorithms

In this section we compare some well known paging algorithms using the new
model. First we define some other paging algorithms. On a fault, Last-In-First-
Out (LIFO) evicts the page that is most recently brought to the cache. LIFO
does not have a constant competitive ratio [6]. A paging algorithm is called
conservative if it incurs at most k faults on any sequence that contains at most
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k distinct pages. A marking algorithm A works in phases: all the pages in the
cache are unmarked at the beginning of each phase. We mark any page just
after the first request to it. When an eviction is necessary, A should evict an
unmarked page. LRU and FIFO are conservative algorithms, while LRU and
FWF are marking algorithms. LRU-2 is another paging algorithm proposed by
O’Neil et al. for database disk buffering [16]. On a fault, LRU-2 evicts the page
whose second to the last request is least recent. If there are pages in the cache
that have been requested only once so far, LRU-2 evicts the least recently used
among them. Boyar et al. proved that LRU-2 has competitive ratio 2k [8].

Lemma 1. For any two online paging algorithms A and B,

0 ≤ Max(A, B) ≤ 1.

Proof. For any n, there is a sequence σ of length n so that A(n) = n, i.e., A
incurs a fault on every request of σ. This sequence can be obtained by requesting,
at each step, the page that is evicted by A in the previous step. B incurs at most
n faults on every sequence of length n. Therefore B(σ) ≤ n and A(σ) − B(σ) ≥
0. Thus max|σ|=n{A(σ) − B(σ)} ≥ 0. Since this holds for every n, we have
Max(A, B) ≥ 0. For the upper bound, note that for every sequence σ of length
n, we have

A(n) ≤ n ⇒ A(n) − B(n) ≤ n ⇒ A(n) − B(n)
n

≤ 1.

Therefore Max(A, B) ≤ 1.

Corollary 1. For any two online paging algorithms A and B,

−1 ≤ Min(A, B) ≤ 0.

Theorem 1. I(FWF, LRU) = [0, k−1
k ].

Proof. Let σ be an arbitrary sequence of length n and consider the partition of
σ to phases of marking algorithms. At each phase, FWF incurs exactly k faults
while LRU incurs at most k faults. Therefore the cost of LRU on σ is at most the
cost of FWF on σ and we have Min(FWF, LRU) ≥ 0. According to Corollary 1
we have Min(FWF, LRU) = 0. At each phase, LRU incurs at least one fault and
each phase has length at least k. Therefore Max(FWF, LRU) ≤ k−1

k . Consider
the following sequence for some arbitrary integer m:

σ = {p1p2 · · · pkpk+1p2p3 · · · pk}m.

We have FWF (σ) = 2k × m and LRU(σ) = k + 1 + 2 × (m − 1) and thus
Max(FWF, LRU) ≥ k−1

k .

Using an analogous argument we can prove the following Theorem.

Theorem 2. I(FWF, FIFO) = [0, k−1
k ].
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Lemma 2. For any any conservative algorithm A and any online algorithm B,
we have Max(A, B) ≤ k−1

k .

Proof. Let σ be an arbitrary sequence of length n and partition σ into blocks
so that B incurs a fault only on the first request of each block. Therefore each
block has at most k distinct pages and B incurs at most k faults in each block.
Let b1, b2, · · · , bd be the sizes of blocks of σ. Then we have B(σ) = d and A(σ) ≤∑

bi≤k bi +
∑

bi>k k. Therefore

A(σ) − B(σ)
n

≤
∑

bi≤k bi +
∑

bi>k k − d
∑

bi≤k bi +
∑

bi>k bi
≤

∑
bi≤k(bi − 1) +

∑
bi>k(k − 1)

∑
bi≤k bi +

∑
bi>k k

.

If bi ≤ k, we have bi−1
bi

≤ k−1
k and thus
∑

bi≤k(bi − 1)
∑

bi≤k bi
≤ k − 1

k
.

Also we have ∑
bi>k(k − 1)
∑

bi>k k
≤ k − 1

k
.

Therefore
A(σ) − B(σ)

n
≤ k − 1

k
.

Since this is true for any σ, we have Max(A, B) ≤ k−1
k .

Theorem 3. I(LIFO, LRU) = [−k−1
k , 1].

Proof. Since LRU is conservative, according to Lemma 2 we have

Max(LRU, LIFO) ≤ k − 1
k

⇒ Min(LIFO, LRU) ≥ −k − 1
k

.

Now consider the sequence σ = {p1p2 · · · pkpk+1}m. LRU incurs a fault on every
request of σ while LIFO incurs a fault on every kth request. Thus

Min(LIFO, LRU) ≤ −k − 1
k

⇒ Min(LIFO, LRU) = −k − 1
k

.

For the other direction consider the sequence σ = p1p2 · · · pkpk+1{pkpk+1}m.
LIFO incurs a fault on every request while LRU only incurs a fault on the first
k + 1 pages. Since m can be arbitrarily large, we have Max(LIFO, LRU) ≥ 1.
According to Lemma 1 we have Max(LIFO, LRU) = 1.

The following theorem can be proved in an analogous way.

Theorem 4. I(LIFO, FIFO) = [−k−1
k , 1].

Lemma 3. I(FIFO, LRU) ⊇ [− k−1
2k−1 , k−1

2k−1 ].
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pk−1 pk−2 · · · p2 p1 pk+1 p1 p2 · · · pk−1
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pk pk−1 · · · p3 p2 p1 p2 p3 · · · pk
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Fig. 1. Blocks of sequence σ in the proof of Lemma 3

Proof. Max(FIFO, LRU): Consider the following sequence σ that consists of
k+1 distinct pages. σ starts with σ0 = p1p2 . . . pk. After this initial subsequence,
σ consists of several blocks. Each block starts right after the previous block and
contains 2k − 1 requests to k distinct pages. The first k blocks of σ are shown
in Fig. 1. The blocks repeat after this, i.e., the (k + 1)th block is the same as
the first block, the (k + 2)th block is the same as the second block and so on.
It is easy to verify that FIFO incurs a fault on the last k requests of each block
while LRU only incurs a fault on the middle request of every block. Let σ have
m blocks. Then we have FIFO(σ) = k+m×k and LRU(σ) = k+m. Therefore

FIFO(σ) − LRU(σ)
|σ| =

m(k − 1)
k + m(2k − 1)

,

and for sufficiently large values of m, this value becomes arbitrarily close to
k−1
2k−1 .

Min(FIFO, LRU): Consider the following sequence σ′ that consists of k + 1
distinct pages. σ′ starts with σ′

0 = p1p2 . . . pkpk−1pk−2 . . . p1. After this initial
subsequence, σ′ consists of m blocks. The first k blocks of σ′ are shown in Fig. 2.
The blocks repeat after this, e.g., the (k + 1)th block is the same as the first
block. It is easy to verify that LRU incurs a fault on all k requests of each block
while FIFO only incurs a fault on the first request of every block. Then we have
LRU(σ) = k + m × k and FIFO(σ) = k + m. Therefore

FIFO(σ) − LRU(σ)
|σ| =

−m(k − 1)
k + m(2k − 1)

,

and for sufficiently large values of m, this value becomes arbitrarily close to
− k−1

2k−1 .

Lemma 4. Max(LRU-2, LRU) ≥ k−1
k+1 .

Proof. Consider the sequence σ obtained by m times repetition of the block
p1p2 . . . pk−1pkpkpk−1 . . . p1pk+1pk+1. In the first block, LRU incurs k +1 faults.
In every other block, it only incurs two faults, one on the first request to pk, and
one on the first request to pk+1. Therefore we have LRU(σ) = k+1+2(m−1) =
2m + k − 1. LRU-2 incurs k + 1 faults in the first block and 2k faults in every
other block; it has a hit only on the second requests to pk and pk+1 in each block
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p1 pk+1 pk · · · p4 p3

p2 p1 pk+1 · · · p5 p4
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pk pk−1 pk−2 · · · p2 p1
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���������

Fig. 2. Blocks of sequence σ′ in the proof of Lemma 3

(other than the first block). Therefore we have LRU-2(σ) = k +1+2k(m− 1) =
2km − k + 1. Thus

LRU-2(σ) − LRU(σ)
|σ| =

2km − k + 1 − 2m − k + 1
m(2k + 2)

=
m(2k − 2) − 2k + 2

m(2k + 2)
,

and for sufficiently large values of m, this value becomes arbitrarily close to
2k−2
2k+2 = k−1

k+1 .

Lemma 5. Max(LRU-2, LRU) ≤ k−1
k .

Proof. Let σ be an arbitrary sequence of length n and partition σ to blocks so
that LRU incurs a fault only on the first request of each block. Let B1, B2, . . . , Bd

be the blocks of σ, and bi be the size of block Bi. Then we have LRU(σ) = d
and LRU-2(σ) ≤

∑
1≤i≤d bi. We show that LRU-2 incurs at most k faults in

each block. B1 contains requests to one page and LRU-2 incurs one fault on
it. Consider an arbitrary block Bi for i > 1, let p be the first request of Bi,
and let p1, p2, . . . , pk−1 be the k − 1 most recently used pages before the block
Bi in this order. We have p �∈ P = {p1, p2, . . . , pk−1}, because LRU incurs a
fault on p. We claim that each request of Bi is either to p or to a page of
P . Assume for the sake of contradiction that Bi contains a request to a page
q �∈ {p}∪P and consider the first request to q in Bi. All pages p, p1, p2, . . . , pk−1

are requested since the previous request to q. Therefore at least k distinct pages
are requested since the last request to q and LRU incurs a fault on q. This
contradicts the definition of a block. Therefore Bi contains at most k distinct
pages.

We claim that LRU-2 incurs at most one fault on every page q in block
Bi. Assume that this is not true and LRU-2 incurs two faults on a page q
in Bi. Therefore q is evicted after the first request to it in Bi. Assume that
this eviction happened on a fault on a request to page r and consider the
pages that are in LRU-2’s cache just before that request. Since r ∈ {p} ∪ P
is not in the cache and |{p} ∪ P | = k, there is a page s �∈ {p} ∪ P in the
cache. The last request to s is before the last request to pk−1 before the block
Bi, while the second last request to q is after this request. Therefore LRU-2
does not evict q on this fault, which is a contradiction. Thus, LRU-2 contains
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Odd: pk pk−1 . . . p2 p1 pk+1 pk pk−1 . . . p3 p2

Even: p2 p3 . . . pk pk+1 p1 p2 p3 . . . pk−1 pk

Fig. 3. A block of sequence σ in the proof of Lemma 6

at most k distinct pages in each block and incurs at most one fault on each page.
Hence LRU-2 incurs at most k faults in each block of σ. Therefore

LRU-2(σ) − LRU(σ)
n

≤
∑

bi≤k bi +
∑

bi>k k − d
∑

bi≤k bi +
∑

bi>k bi

≤
∑

bi≤k(bi − 1) +
∑

bi>k(k − 1)
∑

bi≤k bi +
∑

bi>k k
.

If bi ≤ k, we have bi−1
bi

≤ k−1
k and thus
∑

bi≤k(bi − 1)
∑

bi≤k bi
≤ k − 1

k
.

Also we have ∑
bi>k(k − 1)
∑

bi>k k
≤ k − 1

k
.

Therefore
LRU-2(σ) − LRU(σ)

n
≤ k − 1

k
.

Since this is true for any σ, we have Max(LRU-2, LRU) ≤ k−1
k .

Lemma 6. Min(LRU-2, LRU) ≤ −k−1
2k .

Proof. Consider the following sequence σ that consists of k + 1 distinct pages.
σ starts with σ0 = p1p2 . . . pk. After this initial subsequence, σ consists of m
blocks. Each block starts right after the previous block. The ith block consists
of one of the subsequences shown in Figure 3, depending on the parity of i. It
is easy to verify that LRU incurs a fault on the last k requests of each block
while LRU-2 only incurs a fault on the middle request of every block, i.e., pk+1

in Odd blocks and p1 in Even blocks. Then we have LRU(σ) = k + m × k and
LRU-2(σ) = k + m. Therefore

LRU-2(σ) − LRU(σ)
|σ| =

−m(k − 1)
k + m(2k)

,

and for sufficiently large values of m, this value becomes arbitrarily close to
−k−1

2k .

Therefore while Max(LRU-2,LRU) is almost 1, we have proven so far an upper
bound of almost -1/2 for Min(LRU-2,LRU). A natural question is whether we
can improve this bound, i.e., prove that Min(LRU-2,LRU) is less than -1/2.
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We believe that this is not true and prove it for the case that we only have
k + 1 distinct pages (note that all our examples are using k + 1 distinct pages).
While this is a counterintuitive result, in the sense that LRU-2 is preferable in
practice it adds to our understanding of the relative advantages of LRU and
LRU-2. This results indicates that in the fault rate model LRU is also preferable
to LRU-2 and hence additional assumptions need to be made in a model (such
as the independency of requests model [15]) that would accurately reflect the
superiority of LRU-2 observed in practice.

Lemma 7. If we have at most k + 1 distinct pages then Min(LRU-2,LRU)≥
−1/2.

Proof. We call a request a “disparity” if it is a fault for LRU and a hit for LRU-2.
Note that only a disparity may reduce the value of Min(LRU-2,LRU). Consider
an arbitrary sequence σ = σ1σ2 . . . σn and an arbitrary page p. Let S be the set of
all k distinct pages other than p. We prove that between any two request for p in σ
causing a disparity there should be a request to p that is not a disparity. Assume for
the sake of contradiction that this is not the case: σa and σb are disparity requests
to p, and there is no request to p between them. Let σx be the last request to p
before σa. Since pa is a fault for LRU, it has evicted p between px and pa. Therefore
all members of S are requested between px and pa. Similarly all pages of S are
requested between pa and pb. Since p is at LRU-2’s cache right before pa, there
should be at least one page in S that is not in its cache at that time. As all pages of
S are requested between pa and pb, LRU-2 incurs at least one fault in this interval.
Let py be the last request between pa and pb on which LRU-2 incurs a fault. We
claim that LRU-2 should evict p on the request py. Assume that LRU-2 evicts a
page q ∈ S on the fault py. The next request to q would be a fault for LRU-2
and since py is its last fault between pa and pb and q is requested in this range,
we conclude that q has been requested between pa and py. However this means
that the second last request to q is after px, while the second last request to p
is at px. Thus LRU-2 should evict p at py, and pb is a fault for LRU-2 which is
a contradiction. Hence corresponding to each request that may reduce the value
of Min(LRU-2,LRU) there is at least one request that does not. This proves the
bound of −1/2 for Min(LRU-2,LRU).

3.1 Influence of Lookahead

We demonstrate that the relative interval reflects the effects of lookahead. Let
LRU(�) be a modification of LRU defined for a lookahead of size � as follows [1].
On a fault, LRU(�) evicts a page in the cache that is least recently used among
the pages that are not in the current lookahead. It is shown [3] that LRU(�) incurs
no more faults than LRU on any sequence. Therefore Min(LRU, LRU(�)) = 0.
Now consider the sequence σ = {p1p2 . . . pkpk+1}m. LRU incurs a fault on every
request of σ while LRU(�) incurs a fault on every lth request. Hence

Max(LRU, LRU(�)) ≥ 1 − 1/l,

and thus LRU(�) dominates LRU.
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4 Conclusions and Open Questions

We have introduced a fault rate based metric to compare paging algorithms.
Using this metric, we have shown the superiority of LRU and FIFO to FWF.
The metric also model reflects the beneficial influence of lookahead.

Several natural open questions remain: filling in the remaining entries in Table
1 as well as refining the bounds that are not tight. Furthermore we believe that
the relative interval can be of interest in other online settings and even perhaps
for the comparison of offline algorithms.
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Abstract. We present improved and simplified i/o-efficient algorithms
for two problems on planar low-density subdivisions, namely map overlay
and point location. More precisely, we show how to preprocess a low-
density subdivision with n edges in O(sort(n)) i/o’s into a compressed
linear quadtree such that one can:
(i) compute the overlay of two preprocessed subdivisions in O(scan(n))

i/o’s, where n is the total number of edges in the two subdivisions,
(ii) answer a single point location query in O(logB n) i/o’s and k batched

point location queries in O(scan(n) + sort(k)) i/o’s.
For the special case where the subdivision is a fat triangulation, we
show how to obtain the same bounds with an ordinary (uncompressed)
quadtree, and we show how to make the structure fully dynamic using
O(logB n) i/o’s per update. Our algorithms and data structures improve
on the previous best known bounds for general subdivisions both in the
number of i/o’s and storage usage, they are significantly simpler, and
several of our algorithms are cache-oblivious.

1 Introduction

The traditional approach to algorithms design considers each atomic operation
to take roughly the same amount of time. Unfortunately this simplifying as-
sumption is invalid when the algorithm operates on data stored on disk: reading
data from or writing data to disk can be a factor 100,000 or more slower than
doing an operation on data that is already present in main memory. Thus, when
the data is stored on disk it is usually much more important to minimize the
number of disk accesses, rather than to minimize the CPU computation time.

This has led to the study of so-called i/o-efficient algorithms, also known as
external-memory or out-of-core algorithms. The by now standard way of ana-
lyzing i/o-efficient algorithms is with the model introduced by Aggarwal and
Vitter [1]. In this model, a computer has an internal memory of size M and an
� MdB and ST were supported by the Netherlands’ Organisation for Scientific Research

(NWO).
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arbitrarily large disk. The data on disk is stored in blocks of size B, and when-
ever an algorithm wants to work on data not present in internal memory, the
block(s) containing the data are read from disk. The i/o-complexity of an algo-
rithm is the number of i/o’s it performs—that is, the number of block transfers
between the internal memory and the disk. In this model, scanning—reading a
set of n consecutive items from disk—can be done in scan(n) = �n/B� i/o’s,
and sorting takes sort(n) = Θ((n/B) logM/B(n/B)) i/o’s.

One of the main application areas for i/o-efficient algorithms has always been
the area of geographic information systems (gis), because gis typically work with
massive amounts of data and loading all of it into memory is often infeasible.
In gis the data for a particular geographic region is stored as a number of
separate thematic layers. There can be a layer storing the road network, a layer
storing the river network, a layer storing a subdivision of the region according
to land usage or soil type, and so on. To combine the information from two
such layers—for example to find the crossings between the river network and the
road network—one has to compute the overlay of the layers. Even though the
map-overlay problem is one of the most basic algorithmic problems in spatial
databases and gis, which are main application areas for i/o-efficient algorithms,
the map-overlay problem has still not been solved satisfactorily in the i/o-model.

Background. In this paper we study the following map overlay problem, also
known as the red-blue intersection problem: given a set of non-intersecting blue
segments and a set of non-intersecting red segments in the plane, compute all
intersections between the red and blue segments. Arge et al. [3] showed how
to solve this problem in O(sort(n) + k/B) i/o’s, where k is the number of
intersections. Even though this is optimal in the worst case, it is not satisfac-
tory for several reasons. First, as pointed out by the authors, their solution is
complicated. Hence, the practical value of the solution is unclear. Second, the
algorithm presented by Arge et al. [3] uses Θ(n logM/B n/B) storage (that is,
Θ(n/B · logM/B n/B) disk blocks). A randomized solution for computing the
intersections in a set of line segments is described by Crauser et al. [10]. They
give the same expected i/o-bound of O(sort(n) + k/B) i/o’s and linear space
under some (realistic) assumptions for M, B, n. We do not know whether this
algorithm is practical.

Although the i/o-complexity of the above algorithms is optimal for general sets
of line segments, there are important special cases for which this is not clear. For
example, the overlay of two triangulations that are suitably stored—in a doubly-
connected edge list [14], say—can trivially be computed in O(n+k) time in inter-
nal memory, which raises the question whether the overlay of two suitably stored
triangulations can be computed in O(scan(n+k)) i/o’s. In fact, in internal mem-
ory one can overlay two subdivisions in O(n + k) time when these subdivisions
are connected [15]. This brings us to the topic of our paper: is it possible to do the
overlay of two planar maps in O(scan(n + k)) i/o’s? And can it be done cache-
obliviously [16], that is, can it be done without specifying the memory size M and
the block size B in our algorithms, so that no parameter tuning is necessary and
the i/o-behavior is good over all levels in a multilevel memory hierarchy?



502 M. de Berg et al.

Most research into i/o-efficient algorithms has focused on algorithms that are
efficient for any worst-case input. However, worst-case inputs are often artificial
constructions that do not usually occur in real life. In computational geometry this
has led to the study of input models where inputs are assumed to have properties
that make them resemble realistic inputs better [13]. The most common assump-
tion in such models is that the objects are fat, that is, they are not arbitrarily
long and narrow. Fatness has been studied extensively in computational geome-
try in the recent years, and solutions to many fundamental problems have been
improved by exploiting fatness and related notions, see De Berg et al. [13,12] and
references therein.

In this paper, we consider two types of subdivisions: fat triangulations and low-
density subdivisions. A δ-fat triangulation is a triangulation in which every angle
is bounded from below by a fixed positive constant δ. A λ-low-density subdivision
is a subdivision such that any disk D is intersected by at most λ edges whose length
is at least the diameter of D, for some fixed constant λ. We believe these two types
of subdivisions include most subdivisions encountered in practice, for reasonable
values of δ and λ.

The data structures on which we will base our solutions are modifications of
the so-called linear quadtree, which was introduced by Gargantini [17]. The lin-
ear quadtree is a quadtree variant where only the leaf regions are stored, and not
the internal nodes. To facilitate a search in the quadtree, a linear order is defined
on the leaves based on some space-filling curve; then a b-tree is constructed on
the leaves using this ordering—see Section 2 for details. The idea of using linear
quadtrees to store planar subdivisions has been used by Hjaltason and Samet [19].
They present algorithms for constructing (or: bulk-loading, as it is often called in
gis) the quadtree, for insertions, and for bulk-insertions. Although their exper-
iments indicate their method performs well in practice, it has several disadvan-
tages. First, the i/o-complexity of their algorithms is analysed in terms of vari-
ous parameters that depend on the data and the algorithm in a way that is not
well-understood. In particular, the performance of their algorithms does not seem
to be worst-case optimal. Second, the stopping rule for splitting quadtree cells is
based on two user-defined parameters (the maximum depth and a so-called split-
ting threshold), and so the method is not fully automatic.

Our results. In this paper we show how to overcome these disadvantages for fat
triangulations and low-density subdivisions and present improved and simplified
algorithms for map overlay and point location in external memory. Our results are
based on a quadtree which we define to ensure that (i) each leaf intersects only a
constant number of edges of the subdivision, (ii) that we create only O(n) leaves,
and (iii) that we can construct the leaves efficiently.

For fat triangulations our quadtree is defined by recursively splitting the unit
square into quadrants until all edges that intersect a cell are incident to a common
vertex. We prove that this stopping rule yields a quadtree of linear size. Neverthe-
less, due to the potentially large depth of the quadtree, it is still difficult or impos-
sible to build the quadtree i/o-efficiently by distributing the edges from the root
down into the quadtree while splitting nodes as needed. Fortunately our stopping
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rule makes a completely different approach possible: we give an algorithm that is
simple and elegant—simpler than the algorithm of Hjaltason and Samet [19]—and
uses only O(sort(n)) i/o’s.

For low-density subdivisions we continue splitting until each cell contains only
a single bounding-box vertex of any edge. This stopping rule leads to cells with a
constant number of edges, but the number of cells cannot be bounded. Therefore
we combine the ideas of compressed quadtrees and linear quadtrees to get a lin-
ear compressed quadtree, rather than a regular quadtree. We show that with the
stopping rule just defined, the compressed quadtree has linear size. We also give
a construction algorithm that uses only O(sort(n)) i/o’s.

Once we have proved that these quadtrees have linear size and each leaf re-
gion intersects a constant number of edges, our other results come almost for free:
overlaying two subdivisions boils down to a simple merge of the ordered lists of
quadtree leaves taking O(scan(n)) i/o’s, point location can be done in O(logB n)
i/o’s by searching in the b-tree built on top of the list of quadtree leaves, and
performing k batched point location queries can be done in O(scan(n) + sort(k))
i/o’s by sorting the points along the space-filling curve and merging the sorted list
with the list of quadtree leaves. The results for map overlay apply to pairs of fat
triangulations, low-density subdivisions, or low-density sets of line segments, as
well as to mixed pairs of maps of these types. The structure for fat triangulations
can be made fully dynamic at a cost of O(logB n) i/o’s per update.

An optimal static structure for point location in general planar subdivisions was
already given by Goodrich et al. [18] for the standard i/o-model and by Bender
et al. [5] for the cache-oblivious model. Batched point location can be done with
O(sort(n + k)) i/o’s in the i/o-model using the algorithm by Arge et al. [3]. The
result on dynamization, however, is new as far as we know: the best known dy-
namic i/o-efficient point location structures use O(log2

B n) i/o’s per query [2] in
the i/o-model. All our data structures and query algorithms are cache-oblivious.
Our construction and update algorithms for triangulations can be made cache-
oblivious, except that updates will then take O(logB n + 1

B log2 n) i/o’s. These
results constitute the first results for cache-oblivious map overlay, batched point
location and dynamic point location.

We omit all proofs from this extended abstract; please refer to the full paper
for the proofs.

2 Fat Triangulations

In this section we describe our solution for fat triangulations. A δ-fat triangulation
is a triangulation consisting of δ-fat triangles, that is, triangles all of whose angles
are at least δ for some fixed constant δ > 0. We assume that B = Ω(1/δ) and M =
Ω(1/δ3). We assume that all triangulations are triangulations of the unit square
[0, 1]2. (Our algorithms and proofs extend to triangulations of convex regions—we
leave the details for the full paper.) We can show the following:

Theorem 1. Let F be a δ-fat triangulation with n edges. Knowing the memory
size M and the block size B, we can construct, in O(sort(n/δ2)) i/o’s, a linear
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quadtree for F that stores O(n/δ2) cell-edge intersections. With this structure we
can perform the following operations:

(i) Map overlay: Given two δ-fat triangulations with n triangles in total, each
stored in such a linear quadtree, we can find all pairs of intersecting triangles
in O(scan(n/δ2)) i/o’s.

(ii) (Batched) point location: for any query point p we can find the triangle of
F that contains p in O(logB(n/δ)) i/o’s, and for any set P of k query points we
can find for each point p ∈ P the face of F that contains p in O(scan(n/δ2) +
sort(k)) i/o’s.

(iii) Updates: Inserting a vertex, moving a vertex, deleting a vertex, and flipping
an edge can all be done in O((logB n)/δ4) i/o’s.

In the cache-oblivious model the same bounds hold, except that updates then take
O((logB n + 1

B log2 n)/δ4) i/o’s.

2.1 The Quadtree Subdivision for Fat Triangulations

A quadtree is a hierarchical subdivision of the unit square into quadrants, where
the subdivision is defined by a criterion to decide what quadrants are subdivided
further, and what quadrants are leaves of the hierarchy. A canonical square is any
square that can be obtained by recursively splitting the unit square into quad-
rants. For a canonical square σ, let mom(σ) denote its parent, that is, the canoni-
cal square that contains σ and has twice its width. The leaves of the quadtree form
the quadtree subdivision; that is, a quadtree subdivision for a set of objects in the
unit square is a subdivision into disjoint canonical squares (quadtree cells), such
that each cell obeys the stopping rule while its parent does not. The stopping rule
we use is as follows:

Stopping rule for fat triangulations: Stop splitting when all edges inter-
secting the cell σ under consideration are incident to a common vertex.

Note that the stopping rule includes the case were σ is not intersected by any edges.
We can prove the following:

Lemma 1. Let F be a δ-fat triangulation of the unit square with n edges. Then
the stopping rule defined above leads to a quadtree subdivision with O(n/δ) cells,
each intersected by at most 2π/δ triangles.

2.2 Storing the Quadtree Subdivision and the Triangulation

We will store the quadtree subdivision defined above as a so-called linear quadtree
[17]. To this end, we define an ordering on the leaf cells of the quadtree subdivision.
The ordering is based on a space-filling curve defined recursively by the order in
which it visits the quadrants of a canonical square. We will use the z-order space-
filling curve for this, which visits the quadrants in the order bottom left, top left,
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bottom right, top right, and within each quadrant, the z-order curve visits its sub-
quadrants recursively in the same order. Since the intersection of every canonical
square with this curve is a contiguous section of the curve, this yields a well-defined
ordering of the leaf cells of the quadtree subdivision. We call the resulting order
the z-order.

The z-order curve not only orders the leaf cells of the quadtree subdivision,
but it also provides an ordering for any two points in the unit square—namely the
z-order of any two disjoint canonical squares containing the points. (We assume
that canonical squares are closed at the bottom and the left side, and open at the
top and the right side.) The z-order of two points can be determined as follows.
For a point p = (px, py) in [0, 1〉2, define its z-index Z(p) to be the value in the
range [0, 1〉 obtained by interleaving the bits of the fractional parts of px and py,
starting with the first bit of px. The value Z(p) is sometimes called the Morton
block index of p. The z-order of two points is now the same as the order of their
z-indices [19]. The z-indices of all points in a canonical square σ form a subinterval
[z1, z2〉 of [0, 1〉, where z1 is the z-index of the bottom left corner of σ. Note that
any subdivision of the unit square [0, 1〉2 into k leaf cells of a quadtree corresponds
directly to a subdivision of the unit interval [0, 1〉 of z-indices into k subintervals.

A simple (but novel) way of storing a triangulation in a linear quadtree is now
obtained by storing all cell-triangle intersections in a b-tree [9]: each cell-triangle
intersection (σ, �) of a cell σ corresponding to the z-index interval [z1, z2〉 is rep-
resented by storing triangle � with key z1. With this way of storing the linear
quadtree, the leaf cells of the quadtree are stored implicitly: each pair of consecu-
tive different keys z1 and z2 constitutes the z-index interval of a quadtree leaf cell.
For a cache-oblivious solution we can use a cache-oblivious b-tree [5,6,7].

In the remainder we will sometimes need to compute or compare z-indices.
Whether this takes constant time depends on the operations allowed by the model
of computation. In any case, since we care mainly about i/o-efficiency, such com-
putations do not effect the analysis of our algorithms.

2.3 Building the Quadtree I/O-Efficiently

The natural algorithm to build a quadtree would take a set of triangles and a
canonical square (initially all triangles and the unit square) as input, check if the
condition of the stopping rule is satisfied, and if not, distribute the triangles among
the four children and subdivide the children recursively. Unfortunately, this al-
gorithm takes O(n2) time and O(n2/B) i/o’s, as the quadtree may have height
O(n). Below we describe a faster algorithm that computes the leaf cells that result
with our stopping rule directly, using local computations instead of a top-down
approach.

For any vertex v of the given triangulation F , let star(v) be the star of v in
F ; namely, it is the set of triangles of F that have v as a vertex. Recall that a
canonical square is any square that can be obtained by recursively subdividing
the unit square into quadrants. For a set S of triangles inside the unit square, we
say that a canonical square of σ is active in S if it lies completely inside S and
all edges from S that intersect σ are incident to a common vertex, while mom(σ)
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intersects multiple edges of S that are not all incident to a common vertex. Thus
the cells of the quadtree subdivision we wish to compute for F are exactly the
active canonical squares in F . We can prove the following:

Lemma 2. Let � = (u, v, w) be a triangle of F and σ a canonical square that
intersects �. Then σ is active in F if and only if σ is active in star(u), star(v) or
star(w).

On the basis of this lemma we can construct the linear quadtree as follows:

1. Compute an adjacency list for each vertex.
2. Scan the adjacency lists for all vertices: for each vertex u load its adjacency

list in memory and compute the active cells of star(u), with for each cell σ the
triangles that intersect σ. Output each triangle with the key z1 of the z-index
interval [z1, z2〉 that corresponds to σ.

3. Sort the triangles by key, removing duplicates.
4. Build a (cache-oblivious) b-tree on the list of triangles with their keys.

Lemma 3. The quadtree described above for a δ-fat triangulation with n edges can
be constructed with O(sort(n/δ2)) i/o’s.

Eliminating superfluous cells. The i/o-complexity of the construction and the
storage requirements in practice can be reduced with an easy optimization: we
merge all active cells that lie properly inside triangles with their successors or pre-
decessors in the z-order. In fact, in step 2 of the algorithm, we will not even output
such cells. Instead we only output triangle-key pairs for triangle-cell intersections
such that an edge of the triangle intersects the cell. We sort these triangle-key
pairs, and then scan them. Whenever two consecutive triangles have different keys
z1 and z2, we identify the most significant bit that differs between them. Let z be
the lowest z-index in [z1, z2] for which this bit has value 1. For each triangle stored
with key z2, we now replace its key by z. Thus all cells with z-indices in [z1, z〉 are
merged with each other, and all cells with z-values in [z, z2] are merged with each
other.

Since the interval [z1, z〉 of the z-order curve covers a connected area in the
plane, all cells in the range [z1, z〉 that do not intersect any edge must be com-
pletely contained in a triangle that already intersects the cell that starts with
z-index z1. Similarly, [z, z2] and the cell that starts with z2 together cover a con-
nected area in the plane, so the triangles that intersect it must have been stored
with key z2 already. Hence no more triangles need to be stored as a result of merg-
ing cells.

Updates. We support the following operations: inserting a vertex, moving a vertex,
deleting a vertex, and flipping an edge. By Lemma 2, all leaf cells that intersect
a triangle � = (u, v, w) can be computed from the local quadtrees of star(u),
star(v) and star(w). Since the size of star(u), star(v) and star(w) is O(1/δ), by
Lemma 1 the total number of cells that intersect � is O(1/δ3). Since each of the
supported operations changes only O(1/δ) triangles, we can compute the struc-
ture of the quadtree locally in the area of the update, and determine what the
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changes entail for the data stored on the disk. All changes can thus be made in
O((logB n)/δ4) i/o’s when a normal b-tree is used, and in O((logB n+ 1

B log2 n)/
δ4) i/o’s when a cache-oblivious b-tree is used [5,6,7].

2.4 Overlaying Maps and Point Location

Lemma 4. The linear quadtree for δ-fat triangulations as described above sup-
ports map overlay in O(scan(n/δ2)) i/o’s, and point location in O(logB(n/δ))
i/o’s, where n is the number of points in the triangulation. Batched point location
for k points takes O(scan(n/δ2) + sort(k)) i/o’s.

Proof. Each triangulation’s quadtree, or rather, subdivision of the z-order curve,
is stored on disk as a sorted list of z-indices with triangles. To overlay the two
triangulations, we will scan the two quadtrees simultaneously in z-order, at any
point keeping in memory the triangles stored with the last key read from the first
list and those stored with the last key read from the second list. Starting from the
beginning of the lists, we repeat the following until both lists have been read com-
pletely: we read the next key from the list with the smallest unread key, we load
all triangles stored with that key into memory, and we compute the intersections
with the triangles in memory that were read from the other list. The input has size
O(n/δ2). The output consists of O(n/δ) intersections since a δ-fat triangulation
has density O(1/δ) [13], which implies the claim.

To perform point location with a point p, we compute the z-index Z(p) of p and
search the b-tree for the triangles with the highest keys less than or equal to Z(p).
To do batched point location, we sort the set P of query points by z-index, and
scan the leaves of the b-tree and P in parallel (similar to the overlay operation as
described above). ��

3 Low-Density Subdivisions

In this section we describe our solution for storing planar low-density subdivisions.
For a planar object o, let diam(o) denote the diameter of the smallest enclosing
disk of o. The density of a set S of objects in the plane is the smallest number λ
such that the following holds: any disk D is intersected by at most λ objects o ∈ S
such that diam(o) ≥ diam(D) [13]. We say that a planar subdivision F has density
λ if its edge set has density λ. In other words, any disk D is intersected by at most
λ edges whose length is at least the diameter of D. We assume that B = Ω(λ),
and that the input lies in the unit square [0, 1]2. In this section we describe the
following result.

Theorem 2. Let F be a subdivision or a set of non-intersecting line segments of
density λ with n edges. Knowing the memory size M and the block size B, we can
construct, in O(sort(λn)) i/o’s, a linear compressed quadtree for F with O(n) cells
that each intersect O(λ) edges. With this structure we can perform the following
operations:
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(i) Map overlay: If we have two subdivisions (or sets of non-intersecting line seg-
ments) of density λ with n edges in total, both stored in such a linear compressed
quadtree, then we can find all pairs of intersecting edges in O(scan(λn)) i/o’s.

(ii) (Batched) point location: for any query point p we can find the face of F
that contains p in O(logB n) i/o’s, and for any set P of k query points we
can find for each point p ∈ P the face of F that contains p in O(scan(λn) +
sort(k)) i/o’s.

The data structure, the overlay algorithm and the query algorithms are cache-
oblivious. (The algorithm that constructs the data structure is not.)

Any set of disjoint δ-fat triangles in the plane has density O(1/δ) [13]. Thus the
results of this section can be used for δ-fat triangulations. However, the solution
from the previous section is simpler and dynamic.

Below we explain our data structure, and how to construct it. The query algo-
rithms are the same as described in the previous section.

3.1 The Compressed Quadtree Subdivision for Low-Density Maps

Let F be a subdivision of the unit square with n edges and of density λ. In general
it is impossible to construct a standard quadtree on F consisting of a linear num-
ber of cells that are each intersected by a constant number of edges. Indeed, in a
general subdivision of the unit square there can be many vertices arbitrarily close
together, even if the subdivision has constant density. To overcome this problem
we shall use a so-called compressed quadtree.

Let G be the set of vertices of the axis-parallel bounding boxes of the edges of F .
This set has a nice property:

Lemma 5 ([11]). Any square σ that does not contain any bounding-box vertex of
an object in a set S with density λ, intersects O(λ) objects from S.

We now construct a quadtree for F with the following stopping rule.

Stopping rule for low-density subdivisions: Stop splitting when the cell σ
under consideration contains at most one point from G.

Consider the quadtree that we get from this stopping rule. Its cells intersect
O(λ) edges, but the number of cells cannot be bounded. Hence, we compress the
quadtree [20], by building it as follows. We recursively subdivide each canonical
square σ that contains more than one point from G into five regions. Let σ′ be the
smallest canonical square that contains all points of σ ∩ G. The first region is the
donut σ \ σ′. The remaining four regions are the four quadrants of σ′. Note that
the first region does not contain any points of G, so it is never subdivided further.
When σ′ = σ, the first region is skipped; when σ′ is smaller than σ, we call σ \ σ′

a proper donut.

Lemma 6. Let F be a subdivision of the unit square with n edges and of density λ.
Then a compressed quadtree subdivision based on the stopping rule defined above
has O(n) cells, and each cell is intersected by at most O(λ) edges.
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3.2 Storing the Compressed Quadtree Subdivision and the
Low-Density Map

We store the cell-edge intersections of the compressed quadtree subdivision in a
list sorted by the z-order of the cells, indexed by a (cache-oblivious) b-tree. The
only difference with the previous section is that we now have to deal with donuts as
well as square cells. Recall that a canonical square (a square that can be obtained
from the unit square by a recursive partitioning into quadrants) corresponds to
an interval on the z-order curve. For a donut this is not true. However, a donut
corresponds to at most two such intervals, because a donut is the set-theoretic dif-
ference of two canonical squares. Thus the solution of the previous section can be
applied if we represent each donut by two intervals [z1, z2〉 and [z3, z4〉; edges in-
tersecting the first part of the donut are stored with key z1 and edges intersecting
the second part are stored with key z3. As described in Section 2.3, we merge cells
that do not intersect any edge with their immediate successors or predecessors in
the z-order. We call the resulting structure—the b-tree on the cell-edge intersec-
tions whose keys imply a compressed quadtree subdivision—a linear compressed
quadtree. Map overlay and point location are done in exactly the same way as with
the linear quadtree described earlier.

3.3 Building the Compressed Quadtree I/O-Efficiently

We construct the leaves of the compressed quadtree, or rather, the corresponding
subdivision of the z-order curve, as follows. We sort G into z-order, and scan the
sorted points. For each pair of consecutive points, say u and v, we construct their
lowest common ancestor lca(u, v) by examining the longest common prefix of the
bit strings representing z(u) and z(v). We output the five z-indices that bound
and separate the z-order intervals of the four children of lca(u, v). To complete
the subdivision of the z-order curve, we sort the output into a list L by z-order,
removing duplicates.

Lemma 7. The above algorithm generates a subdivision of the z-order curve that
corresponds to a compressed quadtree on G in O(sort(n)) i/o’s.

Having constructed the compressed quadtree subdivision, we now distribute the
edges in F to the faces of the quadtree subdivision, or rather, to the corresponding
sections of the z-order curve.

To do so, we first build a b-tree on the subdivision of the z-order curve as com-
puted above. We then load the (roughly) M/B nodes of the b-tree, that reside
logB(M/B) levels below the root, in memory. Note that each of these nodes cov-
ers a certain section of the z-order curve, and together they form a subdivision of
the z-index interval covered by the root. We assign an output stream to each of
these nodes, and reserve a buffer of one block in memory for each of them. We now
read the edges from the input one by one, and distribute each edge to the output
streams of the nodes whose section of the z-order curve is intersected by the edge.
Note that each edge may be copied to several streams. Once all edges have been
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read, we distribute the edges in each node’s stream recursively into the subtree
rooted at that node.

After distributing all edges recursively to the leaves, we collect all edge-cell in-
tersections, ordered by the z-indices of the cells, and put a new b-tree on top of
them. Each cell σ without any intersecting edges is merged with the cells that pre-
cede or follow it in the z-order, up to a cell that stores an edge of the face of F that
contains σ (see Section 2.3 for an explanation).

Lemma 8. The compressed quadtree as defined above for a subdivision of density
λ with n edges can be constructed with O(sort(λn)) i/o’s.

4 Conclusions

We described how one can efficiently store and overlay planar maps in the i/o-
model of computation. Our algorithms work for planar maps that are fat triangu-
lations or have low density. The solution for triangulations is based on quadtrees, is
considerably simpler than previous solutions, and supports even dynamic
maintenance of the planar maps under updates. The second construction, for low
density planar maps, is based on compressed quadtrees and is somewhat more
complicated; however our analysis gives a better dependency on the parameter
that describes the input. Unfortunately it is not clear if the construction algo-
rithm can be made cache-oblivious and if the structure can be made to support
updates.

Both constructions use linear space, improving on the previous space bound of
O(n logM/B n) of Arge et al. [3]. Which of our two structures would give the most
compact data structure for triangulations in practice remains to be seen. The first
approach’s dependency on the fatness may be better than it seems (perhaps an
analysis in terms of average fatness is possible), while the second approach may
introduce many guards (a triangulation of n vertices has roughly 3n edges and
thus roughly 6n extra bounding box vertices as guards).

Our data structures can be used for range searching queries. In general this
would not be very efficient, but we believe it is possible to achieve good bounds
for approximate range searching [4]. However, the data structure for low-density
subdivisions as presented in this paper does not give good bounds immediately,
and needs to be subjected to some post-processing for this purpose. The post-
processing also reduces the size of the data structure to O(n), independent of the
density λ. We are currently working out the details.
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Abstract. We solve several fundamental geometric problems under a
new streaming model recently proposed by Ruhl et al. [2,12]. In this
model, in one pass the input stream can be scanned to generate an output
stream or be sorted based on a user-defined comparator; all intermediate
streams must be of size O(n). We obtain the following geometric results
for any fixed constant ε > 0:

– We can construct 2D convex hulls in O(1) passes with O(nε) extra
space.

– We can construct 3D convex hulls in O(1) expected number of passes
with O(nε) extra space.

– We can construct a triangulation of a simple polygon in O(1) ex-
pected number of passes with O(nε) extra space, where n is the
number of vertices on the polygon.

– We can report all k intersections of a set of 2D line segments in
O(1) passes with O(nε) extra space, if an intermediate stream of
size O(n + k) is allowed.

We also consider a weaker model, where we do not have the sorting
primitive but are allowed to choose a scan direction for every scan pass.
Here we can construct a 2D convex hull from an x-ordered point set in
O(1) passes with O(nε) extra space.

1 Introduction

Nowadays, applications with massive data sets are emerging rapidly in different
areas, such as internet applications, geographic information systems, and sensor
networks. Researchers have thus proposed algorithms that use small amounts
of memory space under different space-conscious models. In in-place algorithms
(e.g. see [4]), all input data are stored in memory, and the extra amount of
memory used by the program is small or even constant. However, such algorithms
are not suitable for data sets, which are larger than the size of memory. These
massive data sets are considered under one-pass streaming models and multi-pass
streaming models. In the one-pass streaming model, all input data are accessed
once sequentially by the program, and the amount of memory used must be
sublinear in the size of input or even constant. Algorithms under this model
can process data sets larger than the size of the memory, but most of them
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can only compute approximate solutions. An alternative model is the multi-pass
streaming model. In this model, the input data can be accessed sequentially
multiple times. Algorithms under this model can compute exact solutions, but
typically the number of passes taken by these algorithms grows when the size of
input gets larger. In computational geometry, fundamental problems have been
considered in all these models [4,5,6]. Not only efficient algorithms are proposed,
but lower bounds [6] are also proved for several problems.

Sorting is one of the most studied general-purpose problems for massive data
sets. Consequently, sorting is a fully optimized primitive under most applications
and operating systems. Ruhl et al. [2,12] recently proposed a practical streaming
model augmented with a sorting primitive, which will be defined precisely at the
end of this section. Roughly speaking, unlike the previous multi-pass streaming
models, we can work with intermediate streams and can sort a stream in a single
round; we want to minimize the number of rounds.

Note that, as Ruhl et al. [2,12] showed, many parallel circuits, and conse-
quently many parallel algorithms, can be simulated in the streaming model aug-
mented with a sorting primitive. Several known geometric algorithms [1] can be
simulated directly. However, all of the transformed algorithms take O(polylog n)
passes. Our algorithms are the first solutions only taking O(1) passes. 1

In this paper, we study several of the most fundamental problems in com-
putational geometry [8,10,11] in the streaming model augmented with a sort-
ing primitive. For any fixed ε, all of the following problems are solved with
a constant number of passes and O(nε) space. These are the first results for
these problems that achieve simultaneously a small number of passes and a
reasonably small amount of space in a realistic streaming model. Specifically,
these problems are: 1. constructing the convex hull from a set of 2D points, 2.
constructing the convex hull from a set of 3D points, 3. constructing a trian-
gulation of a simple polygon. Some of these problems have been even proved
unsolvable with a constant number of passes in the original multi-pass stream-
ing model [6]. If the size of the intermediate data stream is allowed to be larger,
namely O(n + k), we can solve a fourth problem: report all k intersections of a
set of 2D line segments with a constant number of passes and O(nε) space in
memory.

In a weaker model, which will also be defined precisely at the end of this
section, we can still construct a 2D convex hull from an x-ordered point set in
a constant number of passes with O(nε) space in memory. This has also been
proved unsolvable in the multi-pass streaming model.

Some of the techniques we use are standard. For example, for the 3D con-
vex hull and segment intersection problems, we adapt well-known random
sampling techniques. To solve the triangulation problem, however, we need to
introduce some new geometric observations and use a combination of several
ideas.

1 Indeed, we have just learned that Lammersen and Sohler [9] have independently
considered geometric algorithms in the same stream-sort model, but they were only
able to obtain O(polylog n) algorithms for the 2D convex hull problem.
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1.1 The Streaming Model with a Sorting Primitive

In this subsection, we precisely define the streaming model with a sorting prim-
itive (stream-sort model for short), describe one divide-and-conquer technique
that we will use throughout in this paper, and also define a weaker model, which
we call the direction-flexible streaming model.

In the stream-sort model, the input data are given in one data stream. There
are two ways to access these data. One is the scan pass. The input stream
is scanned sequentially, and one output stream is generated. The other is the
sorting pass. The input stream is sorted based on a user-defined comparator,
and data are sorted in the output stream based on that order. The generated
output stream of data is called an intermediate stream. In the next scan, this
intermediate stream becomes the input stream, and another output stream is
generated. All intermediate streams must be of size O(n). At the end, we count
how many passes are used in total, and how much space is used in memory by
the program in the scan passes.

Divide-and-conquer is a general strategy commonly used under this model.
With this strategy, the data set of the problem is divided into data sets for several
subproblems. We describe a technique that can help us solve all subproblems
simultaneously in one pass.

This technique can be described as follows. Given a stream containing multiple
independent data sets and one data set per subproblem, if the elements of each
data set are grouped together in the stream, we can process these data sets one
after another in a single pass. In the scan pass, after scanning over the data set
for one subproblem, we reset memory for the data set of the next subproblem.
Using a sorting pass, we can group the element for the same data set together.
This can be done by adding a field in each element to identify which data set it
belongs to. Storing this extra field only lengthens the stream by O(n).

Now we treat the recursive calls in a divide-and-conquer algorithm as a tree
structure. Each node represents one subproblem we need to solve. We can solve
all problems in the same level of the recursion tree in the same pass. Therefore,
we can bound the number of passes by the number of levels in the recursion tree.

Since the sorting pass is the most expensive part, we define a simpler and
self-contained model in which the sorting pass is not allowed. Instead, we can
only choose a direction to scan the stream (forward or backward). We call this
model the direction-flexible model. This model is weaker than the stream-sort
model. For example, it is impossible to sort data in order in a constant number
of passes in the direction-flexible model, if the extra space allowed is sublinear.

2 Convex Hulls

2D convex hulls. As the first example, we sketch a simple solution to the
problem of constructing the convex hull of 2D points, which is equivalent to
constructing the lower envelope of a set of halfplanes in dual space [8]. We
divide the halfplanes into B groups and compute the lower envelope of each group
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recursively. The B lower envelopes can be merged in a constant number of passes
in the stream-sort model by a sweep from left to right. By setting B = O(nε),
we finish the recursion in O(1) levels. With the technique in Section 1.1, we can
build the hull in a constant number of rounds.

3D convex hulls.Next, we consider the 3D convex hull problem and highlight
another useful technique: random sampling.

Given a set of 3D points, we transform them into dual space. Each point in
primal space maps to a halfspace in dual space. Constructing the convex hull of
a set of 3D points is equivalent to constructing the lower envelope of a set of 3D
halfspaces [8] in dual space. We first describe our algorithm in the traditional
memory model, and then modify it to fit in the stream-sort model. The notations
are defined as follows. The cell Δf defined by a triangle f refers to the vertical
prism underneath f . The set of planes intersecting Δf is denoted by Hf . In the
algorithm, the input H is a set of n 3D halfspaces, and the output E is the
set of faces in the lower envelope. (See [10] for the definition of the canonical
triangulation.)

Algorithm. 3D Envelope(H)
Initialize an empty set R
If |H | ≤ B

Solve the problem directly in memory and return the answer
Repeat

Sample a random subset R of size B in H
Find the lower envelope ER of R
Build the canonical triangulation T for ER

Until
∑

f∈T |Hf | = O(n) and maxf∈T |Hf | = O((n/B) log B)
For each f ∈ T

Ef = 3D Envelope(Hf)
Merge all the Ef ’s to form E and return E

The set R is a randomly selected subset. By the analysis from Clarkson and
Shor [7] for randomly selected samples, it is known that the expected value
of

∑
f∈T |Hf | is O(n). Therefore, we have

∑
f∈T |Hf | ≤ cn with probability

greater than a constant, for a sufficiently large constant c. It is also known [10]
that maxf∈T |Hf | ≤ c′(n/B) log B with probability greater than a constant, for a
sufficiently large constant c′. Therefore, the expected number of iterations before
both conditions satisfied is constant.

We modify this algorithm to fit in the stream-sort model. We set B to nε.
Thus, R and ER takes O(nε) space in memory. The operation for choosing the
set R can be done in one scan pass. Constructing ER can be done in memory
using O(nε) extra space.

By keeping T in memory, verifying the conditions to terminate the loop can
be done by one scan pass. One iteration of the first loop can be done in O(1)
passes with O(nε) extra space.
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For the second loop structure, we proceed as follows. We create a copy of
h for each cell Δf intersected by the halfspace h. We also attach a label to
each copy to identify the corresponding cell. This operation can be done in one
scan pass. In the following sorting pass, we use the attached label as the key.
All halfspaces are grouped together in the data stream. With the technique
introduced in Section 1.1, all subproblems in the same level of the recursion tree
are solved simultaneously in one scan passes.

Because the total number of intersections between halfspaces and cells is O(n),
the duplication of halfspaces only lengthens the size of the intermediate stream
by a constant factor times. The size of any subproblem is O(n1−ε log n), since
B = nε. The number of levels of the recursion tree is constant, since the size of
the intermediate stream increases by a constant factor every round. Therefore,
all intermediate streams are of size O(n).

Because the first loop in the above algorithm terminates in a constant expected
number of iterations, this algorithm takes O(1) expected number of passes in one
round. Therefore, the expected total number of passes is also O(1).

The merging step at the end of the algorithm can be done by a sorting pass
and a scan pass. In the sorting pass, we use the planes containing facets as the
key and group all facets in the same plane together.

Theorem 1. Given a set of 3D points, its convex hull can be constructed in
O(1) expected number of passes with O(nε) extra space, for any fixed ε > 0.

Remark: The algorithm can also be derandomized in the same bounds. Instead
of making the set R random, we can use a (1/B)-net to make the set, where
B = O(nε). A streaming algorithm by Bagchi et al. [3] can deterministically
compute this (1/B)-net in one pass with O(polylogn) space.

3 Triangulation of Simple Polygons

In this section, we present our main result of the paper, which is on triangulating
a simple polygon. This algorithm is not only based on the general techniques
discussed in previous sections, but also based on new interesting properties of a
type of special polygons proposed in Section 3.4.

More generally, our algorithm can triangulate an arbitrary set of disjoint line
segments. Given a set L of n disjoint line segments in a plane, we show how
to construct a triangulation of L (covering the convex hull of the endpoints of
L and not using extra vertices) in O(1) expected number of passes with O(nε)
extra space, for any fixed ε > 0.

Before we describe our algorithm, we define some terms. By a unimonotone
polygon, we mean an x-monotone polygon with one edge connecting its leftmost
and rightmost vertex. We call this edge the long edge of the polygon.

Our algorithm consists of four major phases. In Section 3.1, we explain the
construction of a trapezoidal decomposition of the line segments. In Section 3.2,
we describe the transformation of the trapezoidal decomposition to a decompo-
sition of unimonotone polygons. In Section 3.3, we describe the decomposition of
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each unimontone polygons to a set of special polygons. In Section 3.4, we show
how to triangulate a special polygon. In Section 3.5, we put these four phases
together to obtain the overall algorithm.

3.1 Trapezoidal Decomposition of Line Segments

We construct the trapezoidal decomposition of a set of disjoint line segments
recursively. This algorithm also uses the well-known random sampling approach
[7,10]. The input L is a set of n disjoint line segments. The output T is the
trapezoidal decomposition for T . We denote the set of line segments intersecting
a trapezoid t by Lt. The parameter B will be determined later in this section.

Algorithm. Trap Decomp(L)
If |L| ≤ B

Solve directly in memory
Repeat

Randomly select a subset R of size B from L
Build the trapezoidal decomposition TR of R

Until
∑

t∈TR
|Lt| = O(n) and maxt∈TR |Lt| = O((n/B) log B)

For each t ∈ TR

Tt = Trap Decomp(Lt)
Merge all the Tt’s together to form T and return T

The set R is a randomly selected subset. Similar to analysis in Section 2, the
first loop iterates only a constant expected number of times.

In the stream-sort model, we keep the set R and TR in memory. By setting
B = nε, these two structures only take O(nε) space in memory. With TR in
memory, we can check the conditions to terminate the first loop in O(1) passes.

We use the same the duplication idea used in Section 2. To prepare for the
recursive calls in the second loop, in a scan pass, we create one copy of the
segment for each trapezoid intersected and attach a label to each copy to identify
the intersected trapezoid. In the sorting pass, we use the attached label as the
key and group segments by the trapezoids intersected. Because maxt∈TR |Lt| =
O(n1−ε) log n, the number of levels of recursions is O(1). Because

∑
t∈TR

|Lt| =
O(n), the intermediate stream for one level contains O(n) line segments. Since
there are only O(1) levels of recursive calls, any intermediate stream contains
O(n) line segments.

The merging step can be done with one sorting pass and one scan pass. Each
trapezoid is bounded by an upper edge, a lower edge, and two walls. In the
sorting pass, we use the line segment of the upper edge as the primary key and
the left-to-right order as the secondary key to sort all trapezoids. In the scan
pass, trapezoids bounded by the same walls are all merged together.

We simultaneously solve subproblems in the same level in the same pass using
the technique described in Section 1.1. Our algorithm can build the trapezoid de-
composition in O(1) rounds. Since the expected number of pass to obtain a valid
trapezoid is O(1), our algorithm takes O(1) expected number of passes in total.
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3.2 Decomposition of Line Segments into Unimonotone Polygons

In this section, we show how to construct a decomposition of line segments into
unimonotone polygons. This is a well-known algorithm described in [8]. We only
adapt it in the stream-sort model. The input T is a set of trapezoids from the
trapezoidal decomposition described in the previous subsection. The output M
is the set of unimonotone polygons from this decomposition.

(Case 1) (Case 2) (Case 3) (Case 4)

L1

L
2

L 1

L2

L1

L3

L 2

L1

L 2

L3 L4

Fig. 1. Different cases to split a trapezoid

Algorithm. Monotone-Decomposition(T )
Initialize S = ∅
Check for each t ∈ T //split trapezoids

Case 1: the upper or lower edge of t is a whole segment
Put t into S

Case 2: two vertices are endpoints of line segments,
but they are not from the same edge

Draw the diagonal between the two vertices
Split t into t↑ and t↓
Put t↑ and t↓ into S

Case 3: one vertex p is an endpoint of a line segment
and another endpoint q of a line segment is on a vertical edge

Draw the edge pq
Split t into a triangle Δt and trapezoid Qt

Put Δt and Qt into S
Case 4: no vertices are endpoints of line segments
and two endpoints, p1 and p2 are on the vertical edges

Draw the edge p1p2

Split t into two trapezoids T1 and T2 and put T1 and T2 into S
For each line segment l //merge polygons

Sort all polygons using l as the upper edge from left to right
Merge all these polygons to form a unimonotone polygon m
Put m into M
Do the same for all polygons using l as the lower edge

Return M

Now we modify both steps of the algorithm for the stream-sort model. Step 1 can
be simply done by a scan pass. Instead of writing the results to a data structure
S, we write them into the output stream. For step 2, in a sorting pass, we use
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the segment of the upper edge as the primary key and the left-to-right order
as the secondary key to group and sort polygons. In a scan pass, we merge the
polygons, whose upper edges are of the same segment, to a unimonotone polygon
and write the polygon to the output stream. We do the same for the polygons
whose lower edges are of the same segment. Both of these two steps take O(1)
passes with O(1) extra space.

3.3 Decomposition of a Unimonotone Polygon into Special Polygons

It is not obvious how to triangulate unimonotone polygons directly in the stream-
sort model. In this section and the next, we introduce nontrivial new ideas that
differ from the approaches in previous (sequential or parallel) polygon triangu-
lation algorithms. The following definition is the key:

Definition 1. Given a direction d, a unimonotone polygon is a special polygon
at direction d, if its chain of edges is monotone in direction d and both vertices
of the long edge are higher than any other vertices in the direction perpendicular
to d.

...

B c oncave chains 

Q

...

B c oncave chains 

Q'

Fig. 2. Decomposition of Q into special polygons

The decomposition is built recursively. Given the unimonotone polygon P , we
divide the monotone chain into B parts with equal size, and build the upper
hull for each part. Below the upper hulls, the decomposition will be built re-
cursively. Above the upper hulls, we obtain a new unimonotone polygon, whose
monotone chain Q is formed by at most B concave chains. See Fig. 2. The follow-
ing top-down sweeping algorithm decomposes Q into a set of special polygons.
Interestingly, this part is inspired by a well-known algorithm for constructing
the 2D maxima of a set of points [11]. The input Q is an x-monotone chain
formed by B concave chains. The output C is the set of edges of the special
polygons. Without loss of generality, we assume the right end is higher than the
left end.

Algorithm. Special Decomp(Q)
Initialize v to the right end of the long edge and C empty
Put all vertices along the y-direction in a sorted list L in decreasing order
For each vertex vi in decreasing y-order

If vi is left of v
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Add edge (vi, v) to C
v = vi

Return C

By this algorithm, we connect the right endpoint of the long edge to the left
end with an xy-monotone chain, and all regions below this chain are special
polygons along the x-direction, as one can easily see. Consider the region Q′

above the xy-monotone chain. (See Fig. 2.) This is also a special polygon,
where, this time, the direction d is perpendicular to the long edge. In the
scan pass, we only need to keep v and vi in memory. Any created edge in C
is written into the output stream as scan proceeds. With a sorting pass, we use
sort all edges using the x-coordinate of the first point as the primary key and
the x-coordinate of the second point as the secondary key. Then, with another
scan pass, we can obtain the xy-monotone chain in order. Therefore, in the
stream-sort model, the above algorithm takes O(1) passes with O(1) space in
memory.

By setting B to nε, the number of levels of the recursion is O(1). Then we
simultaneously solve all problems in the same level of the recursion tree in one
round. Because any edge we write to the output stream is an edge in the final
triangulation and the size of the triangulation is O(n), the size of all interme-
diate streams is O(n). Since the upper hulls are computed by our algorithm in
Section 2, it takes O(B) space in memory with O(1) passes.

3.4 Triangulation of a Special Polygon

We build a triangulation for a special polygon, say in the direction of the x-
axis, by a top-down sweeping procedure. In this algorithm, we maintain a tree
structure bridges in memory. It stores a set of pairs (left, right). Each pair
corresponds to one portion of the chain intersecting the sweepline. They are
ordered left to right in direction y. For p, which is a query point or a pair in
bridges, its predecessor and successor in bridges refer to the bridge immediately
left of and right of p, denoted as p− and p+, respectively. There are two types of
events: 1. the sweepline touches a vertex which does not belong to an edge already
intersecting the sweepline and 2. the sweepline touches a vertex which belongs
to an edge already intersecting the sweepline. The input p is a special polygon
whose monotone chain is monotone in x direction without loss of generality. For
any other special polygon in other directions, we can rotate the coordinate plane,
so that the polygon is a special polygon in direction of y-axis.

Sweepline

Triangulated area

New triangle

v

v-.left

v+.right

Sweepline 

Triangulated area

New triangle

v

v-.left

v+.right

Fig. 3. Adding a new triangle into the triangulated area
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Algorithm. SpecialTriangulate(P )
Put all vertices on the monotone chain top-down in direction y in a sorted list L
Let the left end point of the vertex be El and the right one be Er

Initialize bridges with two pairs (−∞, El) and (Er, ∞)
While L is not empty

Pick the next vertex v from L
Add triangle (v−.right, v, v+.left) to T
Case 1: v causes an event of the type 1 // see Fig. 3 (right)

Add (v, v) to bridges
Case 2: v causes an event of the type 2 // see Fig. 3 (left)

If the left side of v along the sweepline is inside P
v+.left = v

Else if the right side of v along the sweepline is inside P
v−.right = v

Else
Merge v− and v+ to (v−.left, v+.right)

The proof of the correctness is presented in the full version of this paper.
In the stream-sort model, we use a sorting pass to prepare L. Then we perform

the loop part of the algorithm and write all triangles into the output stream in
one scan pass, and store only bridges in memory. Therefore the extra space used
in memory is linear to the maximum number of edges intersecting the sweepline.

Lemma 1. Given a special polygon at direction d, it can be triangulated in O(1)
passes with O(m) extra space, where m is the maximum number of edges of the
polygon intersected by a line in direction d.

3.5 Triangulation of Line Segments

By solving multiple subproblems in one round, we simultaneously construct the
triangulation of all special polygons decomposed from the same level of the re-
cursive calls in the monotone decomposition algorithm described in Section 3.3.
Recall that the special polygons are decomposed from a unimonotone polygon
whose monotone chain is composed of nε upper hulls. We conclude that the
special polygon Q′ above the xy-monotone chain and all obtained special poly-
gons below the xy-monotone chain (see Fig. 2) have O(nε) edges intersecting
its sweepline. The extra space used to triangulate one special polygon is O(nε).
Note that all of the four phases take O(1) passes with O(nε) space.

Theorem 2. A triangulation of a set of disjoint line segments can be con-
structed in O(1) expected number of passes with O(nε) extra space, for any fixed
ε > 0.

Remark: We also can adapt the trapezoidal decomposition algorithm to report
intersections for a set of line segments with intersections. We modify the random
sampling verification step used in the algorithm in Section 3.1. Here we use∑

t∈TR
|Lt| ≤ c(n + kB/n) [7], where k is the number of intersections detected
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so far. If this is a valid random sample, we build the trapezoidal decomposition
on this sample, break the segment intersecting the boundary of the trapezoidal
decomposition into two segments, one above the boundary and one below the
boundary.

4 Constructing the 2D Convex Hull of x-Ordered Points
in a Weaker Streaming Model

The sorting operation is expensive in the stream-sort model. We here describe
how to construct the 2D convex hull of a set of x-ordered points in O(1) passes
with O(nε) extra space, in the direction-flexible model. This result also contrasts
with the near-

√
n lower bound result for the same problem given by Chan and

Chen [6] in the original multi-pass stream model.
We only describe how to construct the upper hull, because constructing the

lower hull is symmetric. Computing the lower hull simultaneously at most dou-
bles the size of the intermediate stream.

Given a set P of 2D points and a vertical line h, we define the bridge at h
as the edge of the upper hull of P intersecting h. To compute the bridge at h,
we transform the problem in dual space. In dual space, each point becomes a
halfplane and a bridge corresponds to an extreme point in the intersection of
halfplanes. This point can be computed using linear programming. With O(nε)
extra space in memory, this linear programming problem can be solved under
the multi-pass model in O(1) passes by the results of Chan and Chen [6].

We find all points not on the upper hull by divide-and-conquer. The input is
a set P of 2D points sorted in x-order. In the output, all points not on the upper
hull are marked. In the final pass, we scan this output, and report all unmarked
points in x-order, which form the upper hull of P .

Algorithm. MarkUH(P )
If |P | = O(Bnε)

Solve the problem directly in memory
Else

Divide P into B groups: P1, P2, ..., PB

Find the set H of vertical lines between any two adjacent groups
For P , compute the bridges at each h ∈ H .
Mark any p ∈ P if p is under one of these bridges
For each Pi

MarkUH(Pi)

Again, we solve all subproblems in one level simultaneously. For each subprob-
lem, we need to compute B − 1 bridges. The computation for each bridge
corresponds one linear-programming problem. We use the multi-pass linear-
programming algorithm mentioned above. This algorithm scans an array of data
sequentially multiple times without modifying it, and the order of the scan does
not affect the algorithm. However, between scans, addition information must be
kept by the algorithm in memory.
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In each subproblem, we compute all B − 1 bridges by simulating this multi-
pass linear programming algorithm. The memory contents of these simulations
are kept in memory. After all data of one subproblem are scanned, we write
all memory contents to the output stream after the data of that subproblem.
Then the memory is reset for the next subproblem in the stream. Thus, in
intermediate streams, data and memory contents of the multi-pass algorithm are
interleaved. For the next scan, this output stream becomes the input stream. We
start from the other end of the stream, so that we can reload the memory content
of each subproblem back in memory, before any data point of that subproblem
is accessed. After the final pass, all bridges are determined. They are written
into the stream after the corresponding data set. To mark points under a bridge,
we start from the other end. All bridges are loaded into memory, before the
corresponding data set is accessed. This step takes O(1) passes. By setting B =
O(nε), the height of the tree is constant. Therefore, the total number of passes
is O(1) and the memory required is O(n2ε).

Besides one mark for each item, all extra information written into the stream
consists of the memory contents produced by the multi-pass algorithm. At each
level, the total number of bridges to compute is at most O( n

Bnε ). The total extra
space is O(n/B) = o(n). By setting 2ε = δ, we have:

Theorem 3. Given a set of x-ordered 2D points, its convex hull can be con-
structed in O(1) passes with O(nδ) extra space in the direction-flexible streaming
model, for any fixed δ > 0.

Acknowledgement. I thank Timothy Chan for suggesting the topic of geo-
metric algorithms in the stream-sort model, and for help in the revision of the
manuscript.
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Abstract. In this paper we present external memory data structures for
orthogonal range reporting queries on a grid. Our data structure for two-
dimensional orthogonal range reporting queries uses O((N/B) log2 N)
blocks of space of size B and supports queries in optimal O(log2 logB U +
T/B) time, where U is the size of universe, N is the number of elements
in the data structure, and T is the size of the answer. Our data structure
for three-sided range reporting queries that uses O(N/B) blocks of space
and supports queries in O(log2 logB U +T/B) time. In the case of three-
sided range reporting on a N × N grid, we describe a O((N/B) log2

B N)
space data structure with O(T/B) query time, a O((N/B) log∗

B N) data
structure with O(log∗

B N + T/B) query time, and a O(N/B) space data

structure with O(log
(k)
B N + T/B) query time for any constant k.

1 Introduction

In the I/O model the data is stored in disk blocks of size B, a block can be read
into internal memory from disk (resp. written from internal memory into disk)
with one I/O operation, and computation can only be performed on data stored
in the internal memory. We refer to e.g. [22] or [1] for a detailed description of
the I/O model and its variants. The I/O complexity of different data structures
was studied extensively during the last decades (see e.g. [22], [5] for surveys).
In the comparison model, when only comparisons between elements in the in-
ternal memory are allowed, Ω(logB N) is a natural lower bound for many data
structure problems of size N . In this paper we show that the Ω(logB N) barrier
can be surpassed for range reporting queries in the case when the universe size
is bounded (say, by a polynomial function of the number of elements) and other
operations besides comparisons are allowed.

A number of searching problems can be solved more efficiently in the different
variants of the internal-memory RAM model when the size of the universe is
bounded, i.e. when the elements (resp. point coordinates) are integers in the
range [0, U − 1] for an appropriate U . The well known example is the van Emde
Boas data structure [11] that supports predecessor queries in O(log2 log2 U) time
and uses linear space. There are efficient data structures for several geometric
problems: data structures described by Overmars [17] and Alstrup et al. [2]
support two-dimensional orthogonal range reporting queries in O(log2 log2 U+T )
time, where T is the size of the answer, three-dimensional orthogonal range
reporting queries can be answered in O(log2 log2 U+(log2 log2 N)2+T ) time [16],
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point location in two- and three-dimensional rectangular subdivisions can be
answered in O(log2 log2 U) and O((log2 log2 U)2) time respectively using the data
structure of de Berg et al. [8]; general two-dimensional point location queries can
be answered in O(log2 log2 U) time using the data structure of Amir et al. [3],
but the space usage can be very high in the worst case. Recently, Chan [9] and
Pǎtraşcu [18] independently presented a linear space data structure for two-
dimensional point location queries with O(

√
log2 U/ log2 log2 U) query time.

External memory data structures for three-sided range reporting and two-
dimensional range reporting were studied in a number of papers, e.g. [14], [20],
[21], [13], [6]. Arge et al. [6] present a data structure that supports two-
dimensional orthogonal range reporting queries in O(logB N +T/B) query time,
where T is the number of points in the answer, and uses O((N/B) log2 N/
log2 log2 B) space. The space usage of the data structure of [6] is optimal in
certain computational models [21], [6]. In the same paper [6] the authors also
describe a linear space data structure for three-sided queries with O(logB N +
T/B) query time. A linear space data structure of [13] supports general two-
dimensional range queries in O(

√
N/B + T/B) time.

In this paper we present for the first time external memory data structures
that support range reporting queries on a U ×U grid. We describe a data struc-
ture for orthogonal range reporting queries with O(log2 logB U + T/B) query
time and O((N/B) log2 N) space. According to the lower bound for predeces-
sor queries of [19] and the reduction of two-dimensional emptiness queries to
predecessor queries [15], our data structure achieves the optimal query time.
Our data structure for three-sided range reporting on a grid uses O(N/B)
blocks of space and supports queries in O(log2 logB U + T/B) time, and thus
achieves optimal space and query time. We also consider the problem of three-
sided range reporting on N × N grid, i.e., the x-coordinates belong to [1, N ]
and y-coordinates are arbitrary integers. We show that O(T/B) query time
can be achieved with O((N/B) log2

B N) space data structure. Two other space-
time trade-offs for three-sided queries on N × N grid are also described: the
O((N/B) log∗B N) space data structure supports queries in O(log∗B N + T/B)
time and O(N/B) space data structure supports queries in O(log(k)

B N + T/B)
query time 1 for an arbitrary integer constant k. Our data structures for three-
sided queries on N × N grid use only comparisons and indirect addressing. Data
structures for queries on a U × U grid use multiplications and divisions. If
the set of allowed operations is limited by comparisons, indirect addressing,
additions, and bit shifts, then queries on a U × U grid can be supported in
O(

√
logB U + T/B) time, see Theorem 2.

Throughout this paper N denotes the number of elements in the data struc-
ture, T denotes the number of elements in the answer, B denotes the disk block
size, and U denotes the size of the universe. In this paper we use the number of
I/O operations as the time measure; the space usage of the data structures is
measured in the number of disk blocks.

1 We define log∗
B N = min{k| log(k)

B N ≤ B}, where log
(1)
B N = logB N and log

(k)
B N =

logB(log
(k−1)
B N) for k > 1.
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2 Preliminaries

Let the predecessor and the successor of an element x in the set S be defined
as pred(x, S) = max{e ∈ S|e ≤ x} and succ(x, S) = min{e ∈ S|e ≥ x}. The
following result is shown in [19], for completeness we provide a sketch of the
proof here.

Statement 1. Given a set S ⊂ [1, U ], there exists a O(N/B) space data struc-
ture for S that supports predecessor and successor queries in O(log2 logB U)
time.

Proof. This result can be achieved by a combination of sub-sampling with the
van Emde Boas data structure [11]. A data structure that uses O(N) blocks of
space can achieve O(log2 logB N) query time by applying the van Emde Boas
approach. The van Emde Boas data structure enables us to reduce the size of the
universe from U to

√
U in O(1) time. Hence, in O(log2(log2 U/ log2 B)) time the

size of the universe can be reduced to B. Clearly, a predecessor query in a universe
of size B can be answered in constant time with a O(1) space data structure.
There are O(N) such data structures; hence, this construction uses O(N) blocks
of space. Finally, a O(N) space data structure can be turned into O(N/B) data
structure using sub-sampling. The set S is divided into S1, S2, . . . , SN/B, such
that each Si contains B consecutive elements of S and each element in Si is
smaller than each element in Sj for i < j. The set S′ contains one element from
each Si. The predecessor e′ of x in S′ can be found in O(log2 logB N) time with
O(N/B) space data structure. The predecessor of e in S is found in O(1) time
by searching in the group Si that corresponds to e′.

In the case when the set of possible operations is limited by comparisons, ad-
ditions, indirect addressing, and bit shifts, the following data structure can be
constructed

Statement 2. Given a set S ⊂ [1, U ], there exists a O(N/B) space data struc-
ture for S that supports predecessor and successor queries in O(

√
logB U) time

and uses only comparisons, additions, indirect addressing, and bit shifts.

Proof. This data structure is a modification of the data structure of [23] for the
external memory. The set S is divided into subsets Si of size B

√
logB U+1

√
logB U

each, so that every element in Si is smaller than every element in Sj for i < j.
Let S′ be the set that contains exactly one representative element for each subset
Si. We construct a trie Tt with node degree B

√
logB U for the elements of S. Each

trie node uses O(B
√

logB U−1) disk blocks. The height of the trie is O(
√

logB U).

S′ contains O(N/(B
√

logB U+1
√

logB U)) elements; hence, the total number of

nodes is O(N/B
√

logB U+1). Therefore, the trie for S′ can be stored in O(N/B)
blocks. For each Si we construct a B-tree Ti. All B-trees also use O(N/B) blocks
of space.

To find pred(x, S) for some x, we find e′ = pred(x, S′) in O(
√

logB U) time
using the trie Tt. Clearly, pred(x, S) belongs either to Si or to Si+1 , where Si
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is the set that contains e′; hence, pred(x, S) can be found in O(
√

logB U) time
with help of Ti or Ti+1.

The data structure of Statement 2 can be dynamized, although this is not rel-
evant for the further exposition. Details of the dynamic data structure will be
given in the full version of this paper.

3 Three-Sided Range Reporting on N × N Grid

Three-sided queries are a special case of two-dimensional orthogonal range
queries when the query range Q is a product of a closed interval [a, b] and a
half-open interval [c, +∞). Dominance queries are a special case of three-sided
queries when the query range ia a product of two half-open intervals. In this sec-
tion we describe three fast data structures for three-sided range reporting queries
on N × N grid, i.e. in the case when the x-coordinates of points are bounded by
N and the y-coordinates are arbitrary integers. A three-sided query on a U × N

grid can be reduced to a three-sided range query on a N × N grid using the
reduction to rank space technique [10]. Data structures for range reporting on a
U × U grid will be described in section 4.

Lemma 1. There exists a data structure A that uses O(N
B log2

B N) blocks of
space and supports three-sided range reporting queries in O(T/B) time.

Proof. The main idea of our approach is the search of the leaf-to-root paths of the
external memory priority search tree [6]. A similar approach was also used in the
internal memory data structure of Fries et al. [12]. However, in our construction
we show that a three-sided query can be answered by answering one-dimensional
queries to certain data structures for leaf-to-root paths; this allows us to achieve
constant query time.

We construct a B-tree Tx on the set of all possible x-coordinates, i.e all integers
in [0, N −1] are stored in the leaves of Tx. For a leaf x of Tx, πx is the path from x
to the root of Tx. For a path πx we define two sets of nodes: π+

x and π−
x . For every

internal node v that belongs to πx, π+
x contains nodes vj+1, vj+2 . . . , vB of Tx,

where vj is a child of v that belongs to πx and vj+1, . . . , vB are the children of v
that follow vj . Analogously, for every internal node v on πx π−

x contains all nodes
v1, . . . , vj−1, where vj is a child of v that belongs to πx and v1, . . . , vj−1 are the
children of v that precede vj . Observe that all π+

x and π−
x contain O(B logB N)

nodes. For a node v, lev(v) is the number of edges between v and a leaf of Tx.
Let π+

a (q) and π−
b (q) denote the sets of nodes on levels 1, 2, . . . , lev(q) − 2 that

belong to π+
a and π−

b respectively. For simplicity we will sometimes say that a
data structure supports range reporting queries in constant time if the query
time is O(T/B), where T is the number of points in the answer.

We say that a point p belongs to an internal node v if it is stored in a leaf
descendant of v. We construct a set Yv for every internal node v of T starting
with the root. Yv consists of B points with maximal y-coordinates among all
points that belong to v and are not stored in sets Yw for any ancestor w of v.
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q

aL bL

Fig. 1. An illustration of the algorithm for three-sided range reporting. Points with
x-coordinates a and b are stored in leaves La and Lb. The lowest common ancestor
q of La and Lb, and all nodes on πa and πb that are descendants of q are drawn as
rectangles. All nodes on π+

a (q) and π−
b (q) are drawn as ovals.

We denote by minv the point with minimum y-coordinate stored in Yv and say
that minv represents the node v. For every leaf-to-root path πx and each node
q ∈ πx we construct four data structures: S+

x (q), S−
x (q), M+

x (q), and M−
x (q).

Data structure S+
x (q) contains elements of sets Yv for all nodes v that belong to

π+
x (q). Data structure S−

x (q) contains all elements of sets Yv for all nodes v that
belong to π−

x (q). M+
x (q) (M−

x (q)) contains points minv for all nodes v that belong
to π+

x (q) (π−
x (q)). For each node q on every path πx there are data structures

G+
x (q) and G−

x (q): G+
x (q) (G−

x (q)) contains all points p, such that p belongs to
some node u on π+

x (π−
x ) on levels 1, 2, . . . , lev(q) − 2 and p is stored in a set

Yw for some ancestor w of u. Points in all S+
x (q), S−

x (q), M+
x (q), M−

x (q), G+
x (q)

and G−
x (q) are stored in the descending order of their y-coordinates, so that one-

dimensional queries [c, +∞) can be answered in constant time. In every node v
we store data structure Dv that contains all elements of Yvi for all children vi of
v and supports three-sided range reporting queries. Additionally, in every node
v there is a data structure Fv: for all ancestors w of v, Fv contains information
about those points in Yw that belong to the node v. For every point p = (x, y)
that is stored in some Yw and belongs to v we store the point (i, y) in Fv, where
i is such that p belongs to the i-th child vi of v. We will show later in this section
how Fv can support three-sided queries in constant time.

Given a query [a, b]× [c, +∞), let q denote the lowest common ancestor of the
leaves La and Lb that contain a and b. Let qa and qb be the children of q that
belong to πa and πb respectively. If the x-coordinate of a point p is contained
in the interval [a, b], then one of the following three conditions is satisfied: 1.
p belongs to a node v on π+

a or a descendant of a node on π+
a . 2. p belongs

to a node v on π−
b or a descendant of a node on π−

b . 3. p belongs to one of
the nodes qa+1, qa+2, . . . , qb−1 (i.e. to one of the children of node q between qa

and qb). Hence the search procedure must examine: 1. Points stored in sets Yv

where v is a node that belongs to π+
a (q); if necessary, the sets Yw for some

descendants w of the nodes that belong to π+
a (q) are also examined. 2. Points

stored in sets Yv where v is a node that belongs to π−
b (q); if necessary, the sets
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Yw for some descendants w of the nodes that belong to π−
b (q) are also examined.

3. Points stored in the sets Yqa+1 , Yqa+2 , . . . , Yqb−1 , where qa+1, qa+2, . . . , qb−1 are
the children of q between qa and qb; if necessary, the sets Yw for some descendants
w of qa+1, qa+2, . . . , qb−1 are also examined. 4. Some points that belong to one of
the nodes qa+1, . . . , qb−1 can be stored in a set Yw for some ancestor w of q; such
points can be tested with help of the data structure Fq. Some points that belong
to one of the nodes v, v ∈ π+

a (q) (v ∈ π−
b (q)) may be stored in a set Yu for some

ancestor u of v; such points can be tested with help of the data structure G+
πx,q

(G−
πx,q). In every set of points examined by the above search procedure we must

output all points whose y-coordinates are not smaller than c.
All points with y-coordinates not smaller than c stored in sets Yv, where v

is a node that belongs to π+
a (q), can be found by a query [c, +∞) to S+

a (q).
We can decide which nodes of the π+

a (q) must be visited by the same query
[c, +∞) to M+

a (q). In every visited node w we use Dw to report all points in
the sets Yw1 , Yw2 , . . . , YwB , where w1, w2, . . . wB are the children of w, whose
y-coordinates are at least c. If all B points in some set Ywi have y-coordinates
that are greater than or equal to c, then the node wi is also visited. In every
visited descendant u of w, we use Du to identify points whose y-coordinates are
greater than or equal to c that were not output when the ancestors of u were
processed. Then we recursively visit all children ui of u, such that Yui contains
B points whose y-coordinates are greater than or equal to c. The points that
belong to the query range and are stored in some set Yv, where v belongs to
π−

b (q), or in some set Yw, where w is a descendant of a node that belongs to
π−

b (q), can be found with the same procedure. Finally, we identify all points
in Yqa+1 , Yqa+2 , . . . , Yqb−1 whose y-coordinates are not smaller than c using a
corresponding three-sided query to Dq and visit the children qi of q, such that
a < i < b and Yqi contains B points with y-coordinates equal to or exceeding c.
In every visited node qi we identify the points stored in Dqi with y-coordinate
at least c, and we recursively visit such descendants w of qi that Yw contains B
points whose y-coordinates are greater than or equal to c. Some of the points
that belong to children qa+1, . . . , qb−1 of q may be stored in sets Yu for some
ancestor u of q. Such points, if their y-coordinates are not smaller than c, can
be reported with a query [a + 1, b − 1] × [c, +∞) to Fq. Some of the points that
belong to some node v on π+

a (q) (π−
b (q)) may also be stored in sets Yu for some

ancestor u of v. The relevant points can be found with a query [c, +∞) to G+
πa,q

(G−
πb,q). It remains to test the points that are stored in the set Yq. Since Yq

contains O(B) elements, all points in Yq that are contained in the query range
[a, b] × [c, +∞) can be reported in O(1) time.

Since every point is stored in one set Yv, all data structures Dv use O(N/B)
blocks of space. The data structure Fv with f elements uses O(max(1, f/B))
blocks of space. Since every point occurs in O(logB N) data structures and there
are O(N/B2) internal nodes of Tx, all data structures Fv use O((N/B) logB N)
blocks of space. Each data structure S+

x (v), S−
x (v), G+

x (v) or G−
x (v) for a path

πx uses O(B logB N) blocks; hence, all data structures S+
x (v), S−

x (v), G+
x (v) and

G−
x (v) for all nodes on all paths πx use O(NB log2

B N) blocks of space. All data
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structures M+
x (v), and M−

x (v) use O(N log2
B N) blocks of space. To sum up, all

data structures associated with all paths πx use O(NB log2
B N) blocks, and all

data structures associated with all internal nodes v of Tx use O((N/B) logB N)
blocks.

The space usage can be reduced to O((N/B) log2
B N) using a standard sub-

sampling technique. We subdivide [1, N ] into the intervals of size B2. The set
P ′

x contains one representative element of Px ∩ Ij for each interval Ij , where
Ij = [B2(j − 1) + 1, B2j] and Px is the set of x-coordinates of all points in
P . All points whose x-coordinates belong to an interval Ij are stored in a data
structure Cj ; Cj supports three-sided queries in O(1) time because Ij contains
O(B2) points [6]. Data structures S+

x (q), S−
x (q), M+

x (q), M−
x (q), G+

x (q) and
G−

x (q) are stored only for those leaves of Tx that correspond to elements of P ′
x.

Let a′ = succ(a, P ′
x), b′ = pred(b, P ′

x). To answer a query Q = [a, b]× [c, +∞), we
report all points in [a, a′ −1]× [c, +∞) using Ca, all points in [b′ +1, b]× [c, +∞)
using Cb, and if a′ 	= b′, we report all points in [a′, b′] × [c, +∞) using data
structures for πa′ and πb′ as described above.

In the above description we assumed that all points have different x-
coordinates. The case when many points can have the same x-coordinates can
be dealt with as follows. Let P ′ be the set that contains (at most) B points with
maximal y-coordinates for any possible x-coordinate x. All points of P with the
same x-coordinate x are stored in the list Lx sorted by their y-coordinates. All
lists Lx can be packed in O(N/B) blocks of space. The points of the set P ′ may
be stored in the data structure described above with slight modifications: we
associate two blocks of space with every leaf of Tx, so that all points with the
same x-coordinate are stored in one leaf, and the number of points stored in
every leaf is at least B. All data structures for nodes and leaf-to-root paths of
Tx are constructed in the same way as above. All points (x, y) ∈ P , such that
there are at most B points with x-coordinate x that belong to the query range
[a, b]× [c, +∞) can be found with a query to P ′. Let P ′′ be the set that contains
for every x ∈ [0, N − 1], such that P ′ contains B points with x-coordinate x, the
point with the minimum y-coordinate among all points of P ′ whose x-coordinate
equals to x. All points of P ′′ have different x-coordinates; hence, the same data
structure as described above can be used. For every point (x, y) ∈ P ′′ that be-
longs to the query range we examine the corresponding list Lx and report all
points whose y-coordinate is at least c. All relevant lists Lx can be examined
in O(T/B) time. Hence, all points (x, y) ∈ P such that there are more than B
points with x-coordinate x that belong to [a, b] × [c, +∞) can be reported in
O(T/B) time.

To complete the proof, it remains to describe how the data structure Fv is
implemented. Let P be the set of points in Fv, and let P ′, P ′′, and Lx be defined
as in the previous paragraph. Since Fv contains O(B) points with different x-
coordinates, P ′ and P ′′ contain O(B) and O(B2) points respectively, and three-
sided queries on P ′ and P ′′ can be supported in constant time. Hence, queries
on P can be also supported in constant time in the same way as described in
the previous paragraph.
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We can obtain two furher space-time trade-offs for three-sided queries on N × N

grid. These results are obtained by an application of the bootstrapping paradigm
to the slightly modified construction of Lemma 1.

Lemma 2. Given a data structure A that uses s(N) blocks of space and supports
three-sided range reporting queries on N × N grid in q1(N) + O(T/B) time and
dominance reporting queries on N×N grid in q2(N)+O(T/B) time. Then there is
also a data structure D that uses s(N)+O(N

B ) blocks of space and supports three-
sided range reporting queries on N × N grid in max(q1(logB N), 2q2(logB N)) +
O(1) + O(T/B) time and dominance reporting queries on N × N grid in q2

(logB N) + O(1) + O(T/B) time.

Proof. The construction is alomst the same ass in the proof of Lemma 1, but
sub-sampling is applied in a different way. We subdivide [1, N ] into the intervals
of size B2 log2

B N . The set P ′
x contains one representative element of Px ∩ Ij

for each interval Ij where Ij = [(j − 1)B2 log2
B N + 1, jB2 log2

B N ]. All points
whose x-coordinates belong to Ij are stored in an interval data structure Cj that
supports three-sided queries in O(q(logB N)+T/B) time. Again, data structures
S+

x (q), S−
x (q), M+

x (q), M−
x (q), G+

x (q) and G−
x (q) are stored only for those leaves

of Tx that correspond to elements of P ′
x. Besides that, data structures Fv are

stored only for the nodes v that belong to some path πx, x ∈ P ′
x. All of those

data structures use O(N/B) blocks of space. All data structures Cj use at most
s(N) blocks of space.

The query is answered in the same way as in Lemma 1. Given a query Q =
[a, b] × [c, +∞), let a′ = succ(a, P ′

x), b′ = pred(b, P ′
x). If a ≤ b, then all points

in [a‘, b] × [c, +∞) can be reported in constant time as describd in the proof of
Lemma 1. All points in [a, a) × [c, +∞) and all points in (b, b] × [c, +∞) can be
reported with two dominance reporting queries to interval data structures. Thus
the query is answered in 2q2(logB N)+O(1)+O(T/B) time. If a > b, then [a, b]
is contained in one interval, and all points can be reported with one three-sided
query to an interval data structure in q1(logB N) + O(1) + O(T/B) time.

Lemma 3. There exists a data structure that uses O(N
B log∗B N) blocks of space

and supports three-sided range reporting queries on N × N grid in O(log∗B N +
T/B) time.

Proof. Start with a data structure of [6] that uses O(N/B) blocks and supports
three-sided queries in O(logB N) time and apply Lemma 2 log∗B N times. The
total number of recursive calls to interval data structures is O(log∗B N).

Finally, we can construct a linear space data structure

Lemma 4. There exists a data structure that uses O(N
B ) blocks of space and

supports three-sided range reporting queries on N ×N grid in O(log(k)
B N +T/B)

time for an arbitrary integer constant k.

Proof. We start with the data structure of [6] and apply k times Lemma 2.
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4 Range Reporting on a U × U Grid

Applying the reduction to rank space technique (see e.g. [10],[2]) and Statement 1
to Lemma 4 we obtain a O(N/B) space data structure for range reporting on a
U × N grid

Lemma 5. There exists a data structure that uses O(N
B ) blocks of space and

supports three-sided range reporting queries on U × N grid in O(log2 logB U +
T/B) time.

A O(s(N)) space data structure that supports three-sided range reporting
queries can be transformed into a O(s(N) log2 N) data structure that supports
general orthogonal range reporting queries (see e.g. [21], [6]). For completeness,
we describe this construction in the Appendix. Thus we obtain:

Theorem 1. There exists a O((N/B) log2 N) space data structure that supports
two-dimensional range reporting queries on a U×U grid in O(log2 logB U+T/B)
time.

It was shown in [15] that two-dimensional orthogonal emptiness queries have
the same complexity as predecessor queries (see also [7]). Therefore, according
to the lower bound of [19], the data structure of Theorem 1 achieves optimal
query time. A data structure for three-sided queries with o(log2 logB U + T/B)
query time would imply a data structure for two-dimensional range reporting
queries with o(log2 logB U +T/B) query time. Hence, the query time of the data
structure of Lemma 5 is also optimal.

Unlike many other external memory data structures, we assume in Theo-
rem 1 and Lemma 5 that the set of allowed operations includes multiplications
and divisions. If the set of operations is restricted by comparisons, additions,
indirect addressing, and bit shift operations, we can apply Statement 2 instead
of Statement 1 and achieve the following result:

Theorem 2. There exists a data structure that uses O(N
B ) blocks of space and

supports three-sided range reporting queries on a U × N grid in O(
√

logB U +
T/B) time. There exists a O((N/B) log2 N) space data structure that supports
two-dimensional range reporting queries on a U ×U grid in O(

√
logB U +T/B)

time. The set of operations consists of comparisons, additions, indirect address-
ing, and bit shift operations.
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18. Pǎtraşcu, M.: Planar Point Location in Sublogarithmic Time. In: Proc. FOCS, pp.
325–332 (2006)
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Appendix

In this Appendix we show how an s(N) space data structure for three-sided range
reporting queries can be transformed into a O(s(N) log2 N) space data structure
for two-dimensional range reporting queries using a standard technique (see e.g.
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[21], or see [16] for a description of a variant of this technique for a bounded
universe).

Using a reduction to rank space technique [10], [2] a two-dimensional range
reporting query on a U × U grid can be reduced to a two-dimensional range
reporting query on an N ×N grid so that query time is increased by an additive
factor of O(log2 logB U). Now Px ⊂ [1, N ], where Px is the set of x-coordinates
of all points in P . The interval U0 = [0, N −1] is divided into two intervals U1 =
[0, N/2 − 1] and U2 = [N/2, N − 1] of size N/2. Each interval U i is recursively
sub-divided into two intervals U2i and U2i+1 of equal size. This division continues
as long as the interval U i contains elements from Px and the size of the interval
is bigger than 1. For every interval U i there are two data structures for three-
sided range reporting queries that contain all points whose x-coordinates belong
to U i and support three-sided queries that are open to the left and three-sided
queries that are open to the right. Every such data structure uses linear space
and supports queries in O(log2 logB N + T/B) time. Hence all data structures
for three-sided queries use O(N log2 N) space. An interval U i splits an interval
[a, b], if either a or b belongs to U i, but [a, b] 	⊂ U i. The bounds of all non-empty
intervals of size N/2l are stored in a data structure Dl that is implemented
according to Statement 1. Using Dl, we can find for an arbitrary x a non-empty
interval U i of size N/2l that contains x, or report that no such U i exists in
O(log2 logB N) time.

Suppose that a query [a, b] × [c, d] is to be answered. Using table look-up, we
can find in O(1) time such k that N/2k ≤ b − a + 1 < N/2k−1. Then either
for m = k − 1 or for m = k or for m = k + 1, there are two consecutive
intervals U i, U i+1 of size N/2m that split [a, b] (one of those intervals or both
of them may be empty). Such intervals U i = [li, ri] and U i+1 = [ri + 1, ri+1]
can be found in O(log2 logB N) time with help of Dk−1,Dk, and Dk+1. After
this, a query [a, b] × [c, d] can be answered by answering two three-sided queries
[a, ri +1)× [c, d] and (ri, b]× [c, d] to data structures that store the points whose
x-coordinates belong to U i and U i+1 respectively.
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Abstract. In this paper, we present two linear-size external memory
data structures for approximate range searching. Our first structure, the
BAR-B-tree, stores a set of N points in R

d and can report all points
inside a query range Q by accessing O(logB N + εγ + kε/B) disk blocks,
where B is the disk block size, γ = 1 − d for convex queries and γ = −d
otherwise, and kε is the number of points lying within a distance of
ε ·diam(Q) to the query range Q. Our second structure, the object-BAR-
B-tree, is able to store objects of arbitrary shapes of constant complexity
and provides similar query guarantees. In addition, both structures also
support other types of range searching queries such as range aggrega-
tion and nearest-neighbor. Finally, we present I/O-efficient algorithms
to build these structures.

1 Introduction

Range searching is one of the most studied topics in computational geometry. In
the basic problem, range reporting, we would like to build a data structure on a
set of N points in R

d such that given a query range Q, all points inside Q can be
reported efficiently. As the data sets are often massive in modern applications
such as spatial databases, GIS, etc., the resulting data structures often have to
be stored on disks. Thus, it is important to design efficient external memory,
or I/O-efficient data structures that optimize disk block transfers instead of
CPU time. The design of external memory range searching structures, sometimes
called spatial indexes, has attracted a lot of interest in both the algorithm and
database communities in the past decades.

Ideally, one would like the structure to have a linear size and logarithmic
query cost. Unfortunately, this cannot be achieved except for very restricted
query ranges. In two dimensions, when the queries are half-spaces, linear space
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and O(logB N + k/B) queries can be simultaneously achieved [1], where B is
the disk block size, and k is the output size. However, if the queries are axis-
parallel rectangles, in order to achieve a query bound of O(logB N + k/B), a
super-linear space of Ω(N

B
log(N/B)
log logB N ) disk blocks is required, and there is also

such a structure matching this bound [7]. If linear space is required, the best
obtainable query bound is O((N/B)ε + k/B) for any constant ε > 0 [7]. These
bounds become much higher in dimensions greater than 2. We refer the reader
to the surveys [14,20,5] for other external memory range searching structures.

Given the theoretical hardness of the problem, practitioners often seek
heuristic-based structures. Among them the R-tree and its many variants [16]
tend to perform well. In addition, R-trees have several appealing features that
make them a popular choice in practice. First, an R-tree usually has a small size,
typically not much larger than the raw data size. Second, they support arbitrary
query ranges, and can store not only points, but also objects of other shapes.
Third, besides the basic range reporting query, they also support other kinds of
range searching queries, for example nearest-neighbor, point location, aggregation
queries, etc. Fourth, they easily generalize to higher dimensions. As a result, the R-
trees have received tremendous research attention with many variants proposed,
and are heavily used in practice, in spite of the their lack of good performance
guarantees. In fact it was shown [3] that in the worst case, a query has to visit
Ω((N/B)1−1/d + k/B) blocks using any variant of R-trees built on N points in
R

d. This lower bound is reached by a recently developed R-tree variant [6], but
the result holds only if both the queries and objects are axis-parallel hypercubes.
If the objects are just points in R

d, other practical structures such as the K-D-B
tree [19], the quad tree [20], etc., are also often used.

Approximate range searching and the BAR-tree. Given the fact that exact range
searching either uses non-linear storage or incurs super-logarithmic query time, it
is natural to seek for approximate solutions. The concept of ε-approximate range
searching was first introduced by Arya and Mount [8]. Here one considers, for
a parameter ε > 0 and a query range Q of constant complexity, the ε-extended
query range Qε, which is the locus of points lying at distance at most ε ·diam(Q)
from Q, where diam(Q) is the diameter of Q. For a point set P of N points in
R

d, the following approximate range searching queries can be defined:

(Q1) Range reporting: Return a set P ∗ such that P ∩ Q ⊆ P ∗ ⊆ P ∩ Qε.
(Q2) Range aggregation: Supposing each point p ∈ P is associated with a

weight ω(p) ∈ R, compute
⊕

p∈P ∗ ω(p) for some P ∗ such that P ∩ Q ⊆ P ∗ ⊆
P ∩ Qε, where ⊕ is an associative and commutative operator. We say that the
aggregation is duplicate-insensitive if x ⊕ x = x for any x. For example max is
a duplicate-insensitive aggregation while + is not.

(Q3) Nearest-neighbor: For a query point q, return a point p ∈ P such that
d(p, q) ≤ (1 + ε)d(p∗, q), where p∗ is the true nearest neighbor of q and d(p, q) is
the Euclidean distance between p and q.

These problems were first considered by Arya and Mount [8], who proposed
the BBD-tree. Later, a similar, but simpler structure, called the BAR-tree, was
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proposed by Duncan et al. [13]. Our structures will be based on the BAR-tree,
which we describe briefly below.

A BAR-tree [13,12] is a binary tree T that represents a binary space partition
(BSP). We briefly describe the two-dimensional version below; generalization to
R

d is similar. Each data point p ∈ P is stored at a leaf of T . Each node u ∈ T
is associated with a region Ru that encloses all the points stored below u. The
region associated with the root of T is the entire R

2. For any internal node u, Ru

is partitioned into two sub-regions Rv and Rw where v and w are the children
of u. A (Q1) range reporting query Q can be answered using such a BSP by
visiting all nodes of T recursively whose regions intersect Q. To support range
aggregation queries, we in addition store at u the aggregate of the weights of
all points stored below u. For a (Q2) query Q, we start from the root of T and
traverse the tree while keeping a running aggregate. The only difference here is
that we skip an entire subtree at some u if Ru is either completely inside Qε or
outside Q. A (Q3) query can be answered by keeping a priority queue storing
all the candidate nodes [12].

In a BAR-tree, all the regions Ru are convex, have aspect ratios bounded
by some constant, and the boundary of each Ru consists of a constant number
of vertical, horizontal, and diagonal line segments. Duncan et al. [13,12] proved
that even under these constraints, using at most two splits, any Ru can be
partitioned into 2 or 3 cells, such that the number of points in any cell is at most
a constant fraction of the number of points in Ru. Thus the height of the tree
can be bounded by O(log N). Note however that some subtrees in a BAR-tree
may not be balanced, since sometimes the first split may have to partition the
points in Ru into two subsets with drastically different cardinalities.

A BAR-tree obviously uses linear space, and because of the properties of the
regions, the number of nodes visited during a query can be effectively bounded
using a packing argument [8]. As a result, it is shown [13] that (Q1) takes
O(log N + εγ + kε) time for any query range Q, where γ = 1 − d for convex
ranges and γ = −d otherwise, and kε is the number of points inside Qε.1 (Q2)
can be answered in time O(log N +εγ) and (Q3) in time O(log N +ε1−d log(1/ε)).

The I/O-model and previous work. For the analysis of external memory data
structures, the standard I/O model by Aggarwal and Vitter [4] is often used. In
this model, the memory has a limited size M but any computation in memory
is free. In one I/O a disk block consisting of B items are read from or written to
the external memory. Only the number of I/Os is considered when analyzing the
cost of an algorithm. The size of a data structure is measured in the number of
disk blocks it occupies. Many fundamental problems have been solved in the I/O
model. For example, sorting N elements takes sort(N) = Θ(N/B logM/B(N/B))
I/Os. Please refer to [21,5] for comprehensive surveys on I/O-efficient algorithms
and data structures.

1 As noted by Haverkort et al. [15], the actual bound of (Q1) is O(log N+minε{εγ+kε})
since Qε is only used in the analysis and not by the query algorithm, which just uses
Q to visit T and always reports the correct answers P ∩ Q.
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Table 1. Summary of our results for the BAR-B-tree on a set of N points and the
object-BAR-B-tree on a set of N objects in R

d for any fixed d. For (Q1) and (Q2),
γ = 1 − d if the range is convex, and −d otherwise. The update bound is amortized.
(∗)This bound holds only for duplicate-insensitive aggregations.

BAR-B-tree object-BAR-B-tree

Size O(N/B) O(λN/B)
Construction O(sort(N)) O(sort(λN))

(Q1) O(logB N + εγ + kε/B) O(logB N + �λ/B�εγ + λkε/B)

(Q2) O(logB N + εγ) O(logB N + �λ/B�εγ)(∗)

(Q3) O(logB N + ε1−d(1 + 1
B

logM/B(1/ε)))

O(logB N + �λ/B�ε1−d(1 + 1
B

logM/B(1/ε)))

Update O(logB N + 1
B

logM/B(N/B) log(N/B)) -

There has been some work on efficient disk layouts of the BAR-tree. By using
standard techniques such as a breadth-first blocking scheme and I/O-efficient
priority queues, it is pretty straightforward to lay out a BAR-tree on disk such
that (Q2) and (Q3) can be answered with O(logB N + εγ) and O(logB N +
ε1−d(1 + 1

B logM/B(1/ε))) I/Os, respectively. For a range reporting query (Q1)
that has a potentially large output, it is crucial to have an output term of
O(k/B) rather than O(k). As typical values of B are on the order of hundreds to
thousands, the difference between O(k/B) I/Os and O(k) I/Os can be significant.

In his thesis [12] Duncan gave an I/O-efficient variant of the BAR-tree, which
uses a breadth-first blocking scheme. The number of blocks visited for answering
a (Q1) query is claimed to be O(logB N + εγ + kε/B). However this result relies
on the incorrect premise that all blocks contain Θ(B) nodes. Some leaves may
contain a small number of points and the query bound is in fact O(logB N +εγ +
kε) in the worst case. Agarwal et al. [2] gave a general framework for externalizing
and dynamizing weight-balanced partitioning trees such as the BAR-tree. Like
Duncan [12], they use a breadth-first blocking scheme for storing the BAR-tree
on disk. To remove the assumption made by Duncan they group blocks together
which contain too few nodes. As a result there is at most one block containing
too few nodes. This improvement ensures that the resulted layout only uses
O(N/B) disk blocks, but (Q1) query cost is still O(logB N + εγ + kε), since the
kε points that need to be visited could spread to Ω(kε) blocks.

Our results. We obtain two main results in this paper. We first give a new
blocking scheme for the BAR-tree that yields the first disk-based data structure,
the BAR-B-tree, which answers all of the aforementioned approximate queries
efficiently. In particular, the BAR-B-tree answers an approximate range report-
ing query (Q1) in the desired O(logB N + εγ + kε/B) I/Os2 , i.e., achieving an
O(logB N) search term and an O(kε/B) output term simultaneously. Such terms
are optimal when external memory structures are concerned [5]. Unfortunately
it seems difficult to reduce the O(εγ) term. The bounds for other queries and

2 By the same observation of [15], the actual bound is O(logB N + minε{εγ + kε/B}),
but we will not write out minε explicitly.
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operations match the previous results on externalizing BAR-trees [12,2]. In ad-
dition, we can also construct and update the BAR-B-tree efficiently. Please see
Table 1 for the detailed results.

Next, we generalize the BAR-B-tree to the object-BAR-B-tree, which stores
not just points, but arbitrary spatial objects of constant complexity. The approx-
imate range searching queries (Q1), (Q2), and (Q3) are generalized to objects
as follows. Let S be a set of objects in R

d and Q the query range. For (Q1)
and (Q2), we return a subset S∗ ⊆ S (or the aggregation

⊕
o∈S∗ ω(o)) where S∗

includes all objects in S that intersect Q, does not include any object that does
not intersect Qε, and may optionally include some objects that intersect Qε but
not Q. For (Q3), the definition remains the same with the distance definition
between an object o and the query point q being d(o, q) = minp∈o d(p, q). Our
idea is based on range searching data structures for low-density scenes [11,10].
The density of S is the smallest number λ such that the following holds: any ball
b is intersected by at most λ objects o ∈ S with ρ(o) ≥ ρ(b) where ρ(o) denotes
the radius of the smallest enclosing ball of o [10]. It is believed that for many
realistic inputs, λ is small. For example, if all objects of S are disjoint and fat
(i.e., have bounded aspect ratio), then λ is a constant. The object-BAR-B-tree
exhibits the same performance bounds as the BAR-B-tree if λ is a constant,
and the costs grow roughly linearly with λ for all operations except for updates.
Please refer to Table 1 for the detailed bounds of various operations.

To summarize, with the BAR-B-tree and the object-BAR-B-tree, we present
the first external memory data structures that have all the nice features the
R-trees have, and in addition provide provable guarantees, albeit in the approxi-
mate sense. In addition, these two structures are not difficult to implement, and
we expect them to be fairly practical as well. It would be interesting to compare
them with R-trees, K-D-B trees, etc., to see how well they behave in practice.

2 The BAR-B-tree

In this section we describe the BAR-B-tree, an efficient layout for the BAR-tree
on disk that achieves all the desired bounds listed in Table 1. We introduce
our two-stage blocking scheme in Section 2.1, and analyze its query cost when
answering a range searching query (Q1) in Section 2.2. The analysis for (Q2)
and (Q3) is similar to that in [2,12], and hence is omitted. Finally we briefly talk
about construction and updates in Section 2.3. For the remainder of the paper
we assume that T has at least B nodes, otherwise the problem is trivial.

2.1 The Blocking Scheme

For any node u ∈ T , let Tu be the subtree rooted at u, and we define |Tu|, the
size of Tu, to be the number of nodes in Tu (including u). Our blocking scheme
consists of two stages. In the first stage the tree is blocked such that for any
u ∈ T , Tu is stored in O(�|Tu|/B	) blocks. As we will see, this property will
guarantee the O(kε/B) term in the query bound. However, a root-to-leaf path
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in T may be covered by Θ(log N) such blocks. In the second stage we make
sure that any root-to-leaf path can be traversed by accessing O(logB N) blocks,
leading to the desired bound.

Algorithm 1. Algorithm to construct
tree-blocks
Input: a binary tree T
Output: a set of tree-blocks stored on disk

initialize S := {root of T }, and a block1

B := ∅;
while S �= ∅ do2

remove any node u from S ;3

initialize a queue Q := {u};4

while Q �= ∅ do5

remove the first node v from Q, let6

v1, v2 be v’s children;
if |Tv| ≤ B then7

put Tv in a new block B′;8

write B′ to disk;9

else if |Tv1 | ≥ B/2 and |Tv2 | ≥ B/210

then
add v to B;11

add v1, v2 to Q;12

else13

suppose |Tv1 | < B/2;14

if |B| + |Tv1 | + 1 ≤ B then15

add v and Tv1 to B;16

add v2 to Q;17

else18

add v to S ;19

if |B| = B then20

write B to disk and reset B := ∅;21

add all nodes of Q to S ;22

set Q := ∅;23

if |B| �= ∅ then24

write B to disk and reset B := ∅;25

First stage. In the first stage
we block the tree into tree-
blocks that satisfy the property
mentioned above. The blocking
procedure is detailed in Algo-
rithm 1. We traverse the tree T
in a top-down fashion, and keep
in a set S all nodes u for which
a block will be allocated such
that u is the topmost node in
the block. Initially S only con-
tains the root of T . For any
node u ∈ S, we find a connected
subtree rooted at u to fit in one
block using an adapted breadth-
first strategy with a queue Q.
Throughout the blocking algo-
rithm we maintain the invariant
that |Tu| ≥ B/2 for any u that
is ever added to S or Q. The
invariant is certainly true when
the algorithm initializes (line 1).

For a node u ∈ S, we fill
a block with a top portion of
Tu by an adapted breadth-first
search (line 4–23). The BFS
starts with Q = {u} (line 4),
which is consistent with the in-
variant since u is a node from S.
For each node v encountered in
the BFS search, we distinguish
among the following three cases.
(a) If |Tv| ≤ B, then we allocate
a new block to store the entire

Tv (line 7–9). Note that this block contains at least B/2 nodes by the invariant.
(b) Let v1, v2 be the two children of v. If both Tv1 and Tv2 have more than B/2
nodes, then we add v to the block and continue the BFS process (line 10–12).
It is safe to add v1, v2 to Q as we have ensured the invariant. (c) Otherwise,
it must be the case that one of the subtrees is smaller than B/2 nodes while
the other one has more than B/2 nodes. Without loss of generality we assume
|Tv1 | < B/2, and then check if Tv1 plus v itself still fits in the current block. If
so we put v and the entire Tv1 in the current block, add v2 to Q and continue
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ν

μ

Fig. 1. Three tree-blocks (white, light
gray and dark gray) obtained using the
blocking scheme for B = 8. A black
triangles denotes a subtree of size at
least B/2. The right subtree of ν is
placed completely in the white block.
The node μ and its right subtree do
not fit in the light gray block so a new
block must be started at μ.

Fig. 2. A bad example for tree-blocks.
All black triangles represent subtrees of
size B/2−1, and all white triangles rep-
resent subtrees of sufficiently large size.
The rightmost path L will be split into
Θ(log N) blocks.

the BFS (notice that |Tv2 | > B/2); else we put v into S, and will allocate a
new block for v (line 14–19). Notice that the second time v is considered by the
algorithm, line 19 will never be reached again since with a new empty block,
Tv1 and v must be able to fit. Please refer to Figure 1 for an illustration of this
blocking algorithm.

Lemma 1. For any u ∈ T , the nodes in Tu are stored in O(�|Tu|/B	) blocks.

Proof. First consider the case where u is the topmost node in some block, i.e., u
has been added to S. Suppose a tree-block B contains less than B/2 nodes of the
tree Tu. There is at least one block below B since by the invariant the subtree of
T rooted at the topmost node in B has size at least B/2. We claim that at least
one block B′ directly below B contains at least B/2 nodes. Now suppose for a
contradiction that no block directly below B contains more than B/2 nodes. Let
B′ be a block below B containing less than B/2 nodes and let v be the highest
node in B′. The node v was not placed in B either because the size of Tv is
between B/2 and B (case (a)) or because the size of one of its subtrees, say Tv1 ,
is less than B/2 (case(c)). The former case immediately leads to a contradiction.
The latter case also leads to a contradiction since Tv1 , together with v, fits in
B and would then have been placed in B. So there must be a block B′ below B
whose size is at least B/2. We charge B to B′. Each block containing at least
B/2 nodes is charged at most once, namely by the block directly above it. The
number of tree-blocks is thus O(�|Tu|/B	).

Next consider the case where u ∈ B but u is not the topmost node in
B. Let u1, . . . , ut be the t nodes of Tu stored immediately below B. By the
blocking algorithm’s invariant, we have |Tui | ≥ B/2, so |Tu| > t · B/2, or
t < 2|Tu|/B. Applying the case above, the number of blocks used to store Tu is
thus 1 + O(

∑t
i=1(�|Tui |/B	) = O(|Tu|/B + t + 1) = O(�|Tu|/B	).
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The blocked BAR-tree resulting after the first stage might have depth as bad as
Θ(log N), as illustrated by the following example. Consider a root-to-leaf path
L in a BAR-tree T of length Θ(log N). In a BAR-tree, at every other node on
L the split may be unbalanced. In particular each unbalanced split at a node
v might have one subtree, say Tv1 , of size B/2 − 1 (see Figure 2). Therefore
our algorithm will try to store v and Tv1 in the current block. However this
attempt will always fail, and we will end up with storing every two nodes on L
in a different block, thus L is split over Θ(log N) blocks. In the second stage we
introduce path-blocks, which ensure that O(logB N) blocks have to be accessed
in order to visit all nodes on any root-to-leaf path.

Second stage. To identify the places where a path-block has to be introduced, we
visit T in a top-down fashion. For a node u, if |Tu| ≤ B we stop. From Lemma 1
we know that Tu is already covered by O(1) tree-blocks. Otherwise we consider
the top subtree of B nodes of Tu obtained by a BFS starting from u. We denote
this subtree by T̂u. We check all root-to-leaf paths in T̂u. If there is at least one
such path that is covered by more than c tree-blocks for some integer constant
c ≥ 2, then we introduce a path-block that stores T̂u. We also remove all nodes of
T̂u from the tree-blocks where they are stored. Finally we continue this process
recursively with each subtree below T̂u.

This completes our two-stage blocking scheme. With the introduction of path-
blocks, now we have the following.

Lemma 2. Any root-to-leaf path in T can be traversed by accessing O(logB N)
blocks.

Proof. Note that for any root-to-leaf path L in any T̂u, if it does not reach a leaf
of T , then L is at least log B long. Therefore, we can traverse log B consecutive
nodes in any root-to-leaf path of T by accessing O(1) blocks, hence the proof.

Since any path-block has at least B/2 nodes, it is easy to see that Lemma 1 still
holds. In particular, we obtain the desired space bound for the BAR-B-tree.

Theorem 1. A BAR-B-tree on N points in R
d takes O(N/B) disk blocks.

Since our blocking scheme has no redundancy, i.e., each node of T is stored
in only one block, after the two-stage blocking process we can group blocks
together such that all of them are at least half-full. So the space utilization of
the BAR-B-tree can be at least 50%.

2.2 Analysis of the Range Reporting Query Time

Since no node is stored in multiple blocks we can use the standard query algo-
rithm for BSPs, that is, we start from the root, and visit all nodes u of T where
the region associated with u intersects with the query range Q. The traversal can
be performed in either a BFS or DFS manner, with the use of an I/O-efficient
stack or queue such that the extra overhead is O(1) I/Os per B nodes. So we
only need to bound the number of blocks that store all the visited nodes.
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Theorem 2. A (Q1) range reporting query Q in a BAR-B-tree can be answered
by accessing O(logB N + εγ + kε/B) blocks.

Proof. Fix any ε. Note that any visited node must be of one of the following
two types: (a) the nodes whose regions intersect Q and also the boundary of Qε,
and (b) the nodes whose regions are completely contained in Qε. Note that some
type-(b) nodes may not be visited by the query algorithm.

We start by proving a bound on the number of blocks containing the type-(a)
nodes. From [13,12], we know that the number of such nodes is O(log N + εγ).
The O(log N) term comes from a constant number of root-to-leaf paths in T .
By Lemma 2 these nodes are covered by O(logB N) blocks. So in total we need
to access O(logB N + εγ) blocks for nodes of type (a).

Next we give a bound on the number of blocks that cover all the type-(b)
nodes. These nodes are organized in t disjoint subtrees Tu1 , . . . , Tut , such that
Rui ⊆ Qε and Rp(ui) 
⊆ Qε, where p(ui) denotes the parent of ui. Note that
since Rui is contained in Qε, Rp(ui) must intersect the boundary of Qε, i.e., a
type-(a) node. Each parent p(ui) has only one child whose region is inside Qε,
since otherwise Rp(ui) would be completely inside Qε. From [13,12] we know that
there are in total O(εγ) type-(a) nodes who have a child associated with a region
completely inside Qε, hence t = O(εγ).

Note that the subtree Tui stores at least |Tui |/2 points of P inside Qε. By
Lemma 1, Tui is stored in O(�|Tui |/B	) blocks. Thus the total number of blocks
covering all the t subtrees is O

(∑t
i=1�|Tui |/B	

)
= O

(
t +

∑t
i=1 |Tui |/B

)
=

O(εγ + kε/B).

2.3 Construction and Updates

The construction algorithm of the BAR-B-tree can be based on the “grid” tech-
nique [2] and uses O(sort(N)) I/Os. Due to space limit we omit the details from
this abstract. We can also use the partial rebuilding technique [17,2] to handle in-
sertions and deletions for the BAR-B-tree. To insert a point into the BAR-B-tree,
we first follow a root-to-leaf path to find the leaf block where the point should be
located. According to Lemma 2 this takes O(logB N) I/Os. After inserting the
point we check the nodes on this path to see if any of them contains too many
points. Among all those nodes, we rebuild the whole subtree rooted at the highest
one. Deletions can be handled similarly. Using standard analysis, it can be shown
that the amortized cost of an update is O(logB N + 1

B logM/B(N/B) log(N/B))
I/Os, and we omit the details.

3 Extension to Objects: the Object-BAR-B-tree

In this section we show how to externalize the object-BAR-tree [11], for a set
S of objects of constant complexity with density λ. We first briefly review the
object-BAR-tree below.
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The object-BAR-tree is based on the idea of guarding sets [9]. For a subset X ⊆
S, a set of points GX is called a λ-guarding set (simply called a guarding set in the
following) of X if the region associated with any leaf in the BAR-tree constructed
on GX intersects at most O(λ) objects of X . To build the object-BAR-tree on
S, we first for each object o ∈ S compute a constant number of points, called
the guards of o, with the property that the guards of any subset X of S form a
guarding set for X . Let G be the set of all guards. We build the object-BAR-tree
by first constructing a BAR-tree T on G, with the adaptation that whenever we
are going to build a subtree for a region R with a subset G′ ⊂ G, we delete all
guards from G′ whose objects do not intersect R. Then we store at each leaf of
T all objects of S that intersect the region associated with the leaf. Because G is
a guarding set of S, each leaf stores O(λ) objects. It was shown [11] that a (Q1)
query can be answered in time O(log N +λ(εγ +kε)) using the object-BAR-tree.

σ

Fig. 3. The gua-
rds for anobject in
R

2

3.1 Building the Object-BAR-B-tree

We first build all the guards with a scan over S. For R
2 we can

use the simple construction (Figure 3) of De Berg et al. [11].
For R

d, d ≥ 3 the construction is more involved and the details
can be found in [18].

Next we build the BAR-B-tree on the set of all guards G.
The adaptation of removing guards during the construction
as described above can easily be accommodated in the algo-
rithm, and we can build and lay out the tree T on disk in
O(sort(λN)) I/Os. During the process we can also compute
for each leaf v of T , the set of at most O(λ) objects that intersect the region
Rv. We omit the technical details.

Finally, for each leaf block B of T , we store all the intersecting objects con-
secutively on disk. More precisely, consider a block B and let L be the set of
leaves stored in B. The objects intersecting the regions of the nodes in L are
stored together in one list as follows. Let v1, · · · , v|L| be the leaves in L ordered
according to an in-order traversal of T . We first store the objects intersecting
Rv1 , then the objects intersecting Rv2 , etc. Note that an object might be stored
more than once in the list. At every leaf vi we store a pointer to the first and
last object in the list intersecting Rvi . Since each leaf has O(λ) intersecting ob-
jects, each such list occupies O(λB/B) = O(λ) disk blocks, so the overall space
usage of these lists is O(λN/B) blocks. This completes the description of the
object-BAR-B-tree. Note that the object-BAR-B-tree automatically reduces to
the BAR-B-tree when all the objects are points.

Theorem 3. Let S be a set of N objects in R
d with density λ. An object-BAR-

B-tree on S takes O(λN/B) blocks and can be constructed in O(sort(λN)) I/Os.

3.2 Analysis of the Query Cost

In this section we prove the bounds stated in Table 1 for the object-BAR-B-tree.
The query bounds for (Q2) and (Q3) follow from the bounds on (Q2) and (Q3)
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for the BAR-B-tree and the fact that for every visited leaf v, we now have to
check the �λ/B	 blocks containing the objects intersecting Rv. However, note
that since in an object-BAR-B-tree an object might be stored at several leaves,
we can only handle duplicate-insensitive aggregations for (Q2). We are left with
proving the query bound on (Q1).

Theorem 4. Let S be a set of N objects of constant complexity in R
d with

density λ. An object-BAR-B-tree for S answers a (Q1) query Q using O(logB N+
�λ/B	εγ + λkε/B) I/Os, where kε is the number of objects intersecting Qε.

Proof. The query cost of answering a range searching query Q consists of two
parts: the cost to visit the nodes of T and the cost to read the object lists. Since
T is a BAR-B-tree with possible removal of guards during construction, which
only reduces the number of nodes, the cost of visiting T can still be bounded by
Theorem 2. So we only concentrate on the cost of reading the object lists of the
visited leaves.

Fix any ε. Any visited leaf must fall into one of the following two categories:
either its region intersects Q and also the boundary of Qε, or its region is com-
pletely contained in Qε. There are at most εγ leaves of the former type [12]. For
these leaves we can check all objects intersecting their regions using O(�λ/B	)
I/Os each.

The latter type of leaves can be covered in t disjoint subtrees Tu1 , . . . , Tut , such
that Rui ⊆ Qε and Rp(ui) 
⊆ Qε, where p(ui) denotes the parent of ui. Note that
there are O(εγ) such subtrees [12,13]. For any ui, let k(ui) denote the number
of objects that intersect Rui and have at least one guard in Rui . Since Tui is a
BAR-tree built on the O(k(ui)) guards of these objects (with pruning), and each
object has a guard in at least one of the leaves of Tui , we have |Tui | = O(k(ui)).
Furthermore, since each object intersecting Qε has guards in at most a constant
number of these subtrees, we have

∑t
i=1 k(ui) = O(kε).

Consider some Tui , and let v1, v2, . . . be the leaves of Tui ordered according
to an in-order traversal of T . From our blocking algorithm for the BAR-B-tree,
we know that these leaves are partitioned into O(�|Tui |/B	) pieces, each stored
in a block. Since in a block, the objects intersecting consecutive leaves are also
stored consecutively in the object list, the total number of I/Os to read these
objects is O(�|Tui |/B	 + λ|Tui |/B) = O(�λ|Tui |/B	). Thus, the total number of
I/Os for reading the object lists for all the leaves whose regions are completely
inside Qε is

O

(
t∑

i=1

⌈
λ|Tui |

B

⌉)

=O

(

t +
t∑

i=1

λ|Tui |
B

)

=O

(

t +
t∑

i=1

λk(ui)
B

)

=O(εγ+λkε/B).

Updating the object-BAR-B-tree. The object-BAR-B-tree can be updated by first
updating the BAR-B-tree T , followed by updating the object lists. Since each
object only has a constant number of guards, the cost of the former is the same
as the update cost of the BAR-B-tree asymptotically. However, we do not have a
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worst-case or amortized bound for the latter, as one object may intersect many
regions of the leaves of T . Nevertheless, since an object only intersects O(λ) such
regions on average over all stored objects, we expect the actual update cost to
be small in practice.
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Abstract. We study the explicit deterministic treasure hunt problem in an n-
vertex network. This problem was firstly introduced by Ta-Shma, and Zwick in
[9] [SODA’07]. It is the variant of the well known rendezvous problem in which
one of the robot (the treasure) is always stationary. We obtain an O(nc(1+ 1

λ
))-

time solution for this problem, which significantly improves the currently best
known result of running time O(n2c) in [9], where c is a fixed constant from the
construction of an universal exploration sequence in [8,9], λ is a constant integer
and λ � 1. The treasure hunt problem motivates the study of strongly universal
exploration sequences. We give a better explicit construction of strongly univer-
sal exploration sequences than the one in [9].

Keywords: design and analysis of algorithms, distributed computing, networks,
rendezvous, strongly universal exploration sequences.

1 Introduction

In the rendezvous problem ([3,6,9]), two robots are placed in an unknown environment
modeled by a finite, connected, undirected graph G = (V, E). We assume that |V | = n.
The size of the network, i.e., the number of vertices in the graph is not known to the
robots. The edges incident on a vertex u ∈ V are numbered 0, 1, 2, · · · , deg(u) − 1, in
a predetermined manner, where deg(u) is the degree of u. In general, the numbering is
not assumed to be consistent, i.e., an edge (u, v) ∈ E may be the i-th edge of u but the
j-th edge of v, where i �= j.

When a robot is in a vertex u ∈ V it is told the degree deg(u) of u. However, all
vertices of the same degree are not distinguishable. The robots are not allowed to put
any information such as tokens or markers at the vertices that they visit. At any time step
a robot is only allowed to either traverse an edge, or stay in place. When the robot is at a
vertex u it may ask to traverse the i-th edge (u, v) ∈ E of u, where 0 ≤ i ≤ deg(u)−1.
The robot observes itself at vertex v, the another endpoint of this edge. As described
before, the i-th edge of u is the j-th edge of v, for some 0 ≤ j ≤ deg(v)−1. In general
j �= i.

There are two different variants of the model used in the field. In the first one, the
robot is told the index j of the edge it used to enter v. This allows the robot to return to u
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T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 549–560, 2007.
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at the next step, if it wants to do so. This variant of the problem is called the rendezvous
problem with backtracking. In the second variant of the model, the robot observes itself
at vertex v without knowing which edge it used to get there. We call this variant of the
problem the general rendezvous problem.

Same as most of work [3,6,9] described, the main strategy is to give the two robots
deterministic sequences of instructions which will gurrantee that two robots would
eventually meet each other, no matter in which graph they are located, and no mat-
ter when they are activated. It is, however, expected that such a meeting would happen
as soon as possible. A robot is unaware of the whereabouts of another robot, even it is
very close to another one in the graph. The two robots meet only when they are both
active and are at same vertex at same time. In particular, the two robots may traverse
the same edge but in different directions, and still miss each other.

For the deterministic solutions, it has to be assumed that two robots have different
labels, e.g. L1 �= L2. Without such an assumption there is no deterministic way of
breaking symmetry and no deterministic strategy is possible. An example has been
shown in [9] if the two robots are completely identical. Assume G is a ring on n vertices
and that the edges are labeled so that out of every vertex, edge 0 goes clockwise, while
edge 1 goes anti-clockwise. If the two robots start the same time at different vertices and
follow the same instructions, they would never meet! Same as the previous work [9],
We also assume that the moves of the two robots are synchronous after both of them are
activated. The crutial feature of this problem is that the two robots may be activated at
different times which decides arbitrarily by the adversary. A meeting can happen only
when both robots are active. The time complexity of any solution is bounded by the
number of steps used to complete such a task, which counts from the activation of the
second robot.

The treasure hunt problem is the variant of the rendezvous problem in which the
robots are assigned the labels 0 and 1 and robot 0, the treasure, cannot move, which
firstly introduced in [9]. As in the rendezvous problem, the treasure and the seeking
robot are not necessarily activated at the same time.

1.1 Previous Work

Dessmark et al. [3] presented a deterministic solution of the rendezvous problem which
guarantees a meeting of the two robots after a number of steps which is polynomial
in n, the size of the graph, l, the length of the shorter of the two labels, and τ , the
difference between their activation times. More specifically, the bound on the number
of steps that they obtain is Õ(n5

√
τl + n10l). In the same paper, Dessmark et al. [3]

also ask whether it is possible to obtain a polynomial bound that is independent of τ .
Kowalski and Malinowski [6] have recently presented a deterministic solution to the
rendezvous problem that guarantees a meeting after at most Õ(n15 + l3) steps, which
is independent of τ , and also firstly answer the open problem of [3] when backtracking
is allowed. Very recently in [9], Ta-Shma, and Zwick propose a deterministic solution
that guarantees a rendezvous within Õ(n5l) time units after the activation of the second
robot, and also does not use backtracking. This is the currently best known solution. All
the solutions mentioned above rely on the existence of a universal traversal sequences,
introduced by Aleliunas et al. [1], and are therefore non-explicit. The first explicit
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solution for both rendezvous problem and treasure hunt problem can be found in [9].
This work allows backtracking, by using the explicit construction of a strongly univer-
sal exploration sequence SUES. The time complexity of the solutions for both problems
is O(n2c), where c is a huge constant. Other variants of the rendezvous problem could
be found in [5].

Note if randomization is allowed, then both the rendezvous problem and the treasure
hunt problem have the trivial solutions using a polynomial number of steps in term of
the size of the graph with high probability, e.g. a random walk by Coppersmith et al. [2].

1.2 Our Results

We mainly study here the explicit deterministic treasure hunt problem with backtracking
in a n-vertex network. It is the variant of the well known rendezvous problem in which
one of the robot (the treasure) is always stationary. We obtain an O(nc(1+ 1

λ ))-time
solution for such a problem, which significantly improves currently best known result
with running time O(n2c) in [9], where c is a fixed constant from the construction of an
universal exploration sequence in [8,9], λ is a constant integer and λ � 1. The treasure
hunt problem motivates the study of strongly universal exploration sequences. We give
a better explicit construction of strongly universal exploration sequences (SUESs) than
the one in [9]. The improved explicit SUESs could be also used to improve the explicit
solution of the rendezvous problem in [9].

2 The Treasure Hunt Problem

The treasure hunt problem is the variant of the well known rendezvous problem in which
one of the robots, the treasure, is always stationary. A seeking robot and the treasure are
placed in an unknown location in an unknown environment, modeled again by a finite,
connected, undirected graph. Same as in the rendezvous problem, the treasure and the
seeking robot searching for it are not necessarily activated at the same time. The most
difficult case of the problem is when the seeking robot is activated before the treasure.

To clarify our presentation, we give a formal definition for the treasure hunt problem,
which is a modified version from the rendezvous problem by Ta-Shma and Zwick [9].

Formally, a deterministic solution for the general treasure hunt problem (without
backtracking) is a deterministic algorithm that computes a function f : Z+ × Z+ →
Z+, where for d ≥ 1 and t ≥ 0 we have 0 ≤ f(d, t) ≤ d − 1. This function defines the
walk carried out by the seeking robot as follows: at the t-th time unit since activation,
when at a vertex of degree d, use edge number f(d, t) to walk in the next step.

A deterministic solution for the treasure hunt problem with backtracking is a deter-
ministic algorithm that computes a function f : Z+ × Z+ × (Z+)∗ → Z+, where for
every d ≥ 1, t ≥ 0, and T ∈ (Z+)∗ we have 0 ≤ f(d, t, T ) ≤ d − 1. This function
defines the walk carried out by the seeking robot as follows: at the t-th time unit since
activation, when at a vertex of degree d, if the sequence of edge numbers assigned to
the edges that were used to enter the vertices at the previous time units is T ∈ (Z+)∗

the robot will exit the current node using the edge number f(d, t, T ), in the next step.
In our solutions that use this model, the function f depends on T only through its last
element, which is the same as [9].
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Throughout most of this paper we shall assume that the graph G in which the robots
(seeking robot and the treasure robot) are placed is a d-regular graph, for some d ≥ 3.
Note it is easy to extend the solutions given for the d-regular graphs to general graphs
using the ideas from [3].

3 Universal and Strongly Universal Exploration Sequences

For clarity of presentation, we use the same definitions as in [9].
Let G = (V, E) be a d-regular graph. A sequence τ1τ2 · · · τk ∈ {0, 1, 2, · · · , d−1}k

and a starting edge e0 = (v−1, v0) ∈ E define a walk v−1, v0, · · · , vk as follows: For
1 ≤ i ≤ k, if (vi−1, vi) is the s-th edge of vi, let ei = (vi, vi+1) be the (s + τi)-th edge
of vi, where we assume here that the edges of vi are numbered 0, 1, · · · , d − 1, and that
s + τi is computed modulo d.

Definition 1. (Universal Exploration Sequences (UESs) [9]) A sequence τ1τ2 · · · τl ∈
{0, 1, · · · , d − 1}l is a universal exploration sequence for d-regular graphs of size at
most n if for every connected d-regular graph G = (V, E) on at most n vertices, any
numbering of its edges, and any starting edge (v−1, v0) ∈ E, the walk obtained visits
all the vertices of the graph.

Reingold [8] obtains an explicit construction of polynomial-size UES:

Theorem 1. ([8]) There exists a constant c ≥ 1 such that for every d ≥ 3 and n ≥ 1,
a UES of length O(nc) for d-regular graphs of size at most n can be constructed,
deterministically, in polynomial time.

Definition 2. (Strongly Universal Exploration Sequences (SUESs) [9]) A possibly infi-
nite sequence τ = τ1τ2 · · · , where τi ∈ {0, 1, · · · , d− 1}, is a strongly universal explo-
ration sequence (SUES) for d-regular graphs with cover time p(·), if for any n ≥ 1, any
contiguous subsequence of τ of length p(n) is a UES for d-regular graphs of size n.

Let O(nc) be the length of a UES (see [8,9]), the main Theorem of this section shows
that strongly universal exploration sequences (SUESs) do exist and they can be con-
structed deterministically in polynomial time with cover time p(n) = O(nc(1+ 1

λ )),
which significantly improves the currently best known result in [9] with p(n) = O(n2c),
where c is a fixed constant from the construction of an universal exploration sequence
in [8,9], λ is a constant integer and λ � 1.

In this section, we firstly give a weak solution with p(n) = O(n
3
2 c), then we show

our main result described above.

3.1 Explicit SUESs with p(n) = O(n
3
2c)

In this section, we propose a new explicit strongly universal exploration sequence with
cover time p(n) = O(n

3
2 c) for the d-regular graphs of size at most n, where c is the same

constant as was used in [8,9]. It is a weak version (a special case) of our main result in
Section 3.2, but which gives more intuition on our new approaches in Section 3.2.
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Properties of Exploration Sequences. A very useful property of exploration
sequences [9] is that walks defined by an exploration sequence can be reversed. For
τ = τ1τ2 · · · τk ∈ {0, 1, · · · , d − 1}k, we let τ−1 = τ−1

k τ−1
k−1 · · · τ−1

1 , where τ−1
i =

d − τi. It is not difficult to see that a walk defined by an exploration sequence τ can
be backtracked by executing the sequence 0τ−10. Note that if e0, e1, · · · , ek is the se-
quence of edges defined by τ , starting with e0, then executing 0τ−10, starting with ek

defines the sequence ek, ẽk, ẽk−1, · · · , ẽ0, e0, where ẽ is the reverse of edge e. Also, if
τ is a universal exploration sequence for graphs with size at most n, then so is 0τ−1

starting with the last edge defined by τ .

Construction of SUESs. Let Un be a sequence of length n which is a universal ex-
ploration sequence for d-regular graphs of size at least bn

1
c , for some constants b > 1,

and c > 1, which can be constructed, deterministically, in polynomial time of n due to
Theorem 1. We are interested in sequences Un only if n is a power of 2. We assume
from now that for every k = 2i and n = 2j , where i < j, Uk is a prefix of Un, e.g.,
Un = U1U1U2U4 · · · Un

2
.

A strongly universal exploration sequence Sn is a sequence defined in a recursive
manner. Our approach is based on the similar idea in [9], but different interleaving
components between the symbols which originate from Un. We begin with S1 = U1.
Assume that Un = u1u2 · · · un and that n ≥ 2.

Define,

Sn = u1Sr10S−1
r1

0u2Sr20S−1
r2

0u3 · · ·uiSri0S−1
ri

0ui+1 · · · un−1Srn−10S−1
rn−1

0un,

for every 1 ≤ i ≤ n
2 , we set ri = 〈i〉, where 〈i〉 = max{2j|2 3

2 j ≤ i, j ∈ Z+}. For
every n

2 < i < n, we also assign ri = rn−i. Note that as n = 2j , for some j ≥ 1, for
every k = 2p, where p < j, the sequence Sk is a prefix of Sn.

Furthermore, the sequence S−1
n differs with Sn only on the symbols that originate

from Un and in the alignment of the 0′s:

S−1
n = u−1

n 0Sr10S−1
r1

u−1
n−1 · · · u−1

i+10Srn−i0S−1
rn−i

u−1
i · · · u−1

2 0Srn−10S−1
rn−1

u−1
1 .

Note that ri ≤ 3
√

i2. Thus, if rn
2

= 3
√

(n
2 )2, the first half of Sn is equal to

Sn
2
S 3

√
( n

2 )2
0, and ends with a full copy of S 3

√
( n

2 )2
, followed by a 0. Similarly, the

second half of Sn starts with a full copy of S−1
3
√

( n
2 )2

. In the following, we bound the

length of Sn.

Lemma 1. For every n = 2j, where j ≥ 1, |Sn| < 258n.

Proof. Let sn = |Sn|. It is not difficult to see that s1 = 1, s2 = 6, s4 = 16, s8 =
46, s16 = 126, s32 = 286, · · · , s256 = 3426. The claim that sn ≤ 258n for every
n ≥ 512 then follows by using simple induction. It is not difficult to see that

|S2i | = |U2i | + (|U2i | − 1) · 2(|S1| + 1) +
� 2i

3 �−1∑

j=1

� |U2i | − 1

2
3j
2

� · 2(|S2j | − |S2j−1 |)
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s2i ≤ 2i + 4 · 2i + 2i ·
� 2i

3 �−1∑

j=1

2(s2j − s2j−1)

2
3j
2

= 2i + 4 · 2i + 2i · (
4∑

j=1

2(s2j − s2j−1)

2
3j
2

+
� 2i

3 �−1∑

j=5

2(s2j − s2j−1 )

2
3j
2

)

≤ 5 · 2i + 2i ·
4∑

j=1

2(s2j − s2j−1)

2
3j
2

+ 2i ·
� 2i

3 �−1∑

j=5

2(s2j−1 + 2s
2

2(j−1)
3

+ 2)

2
3j
2

≤ 5 · 2i + 2i ·
4∑

j=1

2(s2j − s2j−1)

2
3j
2

+ 2i ·
+∞∑

j=5

2(s2j−1 + 2s
2

2(j−1)
3

+ 2)

2
3j
2

≤ 5 · 2i + 2i ·
4∑

j=1

2(s2j − s2j−1)

2
3j
2

+ 2i ·
+∞∑

j=5

2(s2j−1 + 2s
2

2(j−1)
3

)

2
3j
2

+ 2i ·
+∞∑

j=5

4

2
3j
2

< 6 · 2i + 2i ·
4∑

j=1

2(s2j − s2j−1)

2
3j
2

+ 2i ·
+∞∑

j=5

2(s2j−1 + 2s
2

2(j−1)
3

)

2
3j
2

≤ 6 · 2i + 2i · (5 +
35

√
2

8
) + 2i ·

+∞∑

j=5

2(s2j−1 + 2s
2

2(j−1)
3

)

2
3j
2

≤ 6 · 2i + 12 · 2i + 2i ·
+∞∑

j=5

2(s2j−1 + 2s
2

2(j−1)
3

)

2
3j
2

≤ 18 · 2i + 2i ·
+∞∑

j=5

2(258 · 2j−1 + 2 · 258 · 2 2(j−1)
3 )

2
3j
2

≤ 18 · 2i + 2i · 258 · (
2−

5
2

1 − 1√
2

+
2−

17
6

1 − 1

2
5
6

)

< 18 · 2i + 2i · 258 · (0.93)
= (257.94) · 2i

< 258 · 2i.

The sequence Sn possesses the following interesting combinatorial property:

Lemma 2. Let k and n ≥ 2k
3
2 be powers of 2. Then, every subsequence T of Sn or

S−1
n of length s

2k
3
2

+1 = |S
2k

3
2
|+1 ≤ 516k

3
2 contains, as a contiguous subsequence,

Sk or 0S−1
k .

Proof. We prove the claim by induction on n. If n = 2k
3
2 then the claim is vacuously

satisfied as Sn contains a full Sk.
Assume, therefore, that the claim holds for every m = 2j′

that satisfies 2k
3
2 ≤ m <

n = 2j . We show that it also holds for n. Let T be a subsequence of Sn of length
s
2k

3
2

+ 1. Essentially the same argument works if T is a subsequence of such length
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of S−1
n . We use the exactly same arguments as in Lemma 6.2 [9]. For completeness of

our presentaion, we reproduce the analysis from [9].
We consider the following cases:

Case 1: T is completely contained in a subsequence Sm or S−1
m of Sn, for some m < n.

The claim then follows immediately from the induction hypothesis.
Case 2: T is completely contained in a subsequence Sm0S−1

m of Sn, for some m < n.
In this case, T = T ′0T ′′, where T ′ is a suffix of Sm and T ′′ is a prefix of S−1

m .
Either |T ′| ≥ 1

2s
2k

3
2

or |T ′′| ≥ 1
2s

2k
3
2

. Assume that |T ′′| ≥ 1
2s

2k
3
2

. Another case is

analogous. As T ′′ is a prefix of S−1
m , and |T ′′| ≥ 1

2s
2k

3
2

, it follows that m ≥ 2k
3
2 .

Now, S−1
k is almost a prefix of S−1

m , in the sense that they differ only in symbols that
originate directly from Sm. In particular, a prefix of S−1

m of length 1
2s

2k
3
2

, half the
length of S

2k
3
2

, ends with a full copy of Sk, followed by 0.

Case 3: T contains a symbol ul of Sn that originates from Un.
In this case, T = T ′ulT

′′. Again, we have either |T ′| ≥ 1
2s

2k
3
2

or |T ′′| ≥ 1
2s

2k
3
2

.

Assume again that |T ′′| ≥ 1
2s

2k
3
2

. Another case is analogous. Let

Sn,l = ulSrl
0S−1

rl
0ul+1 · · ·un−1Srn−10S−1

rn−1
0un

be the suffix of Sn that starts with the symbol ul that originates from the l-th symbol
of Un. We claim that the prefix of Sn,l of length 1

2s
2k

3
2

contains a copy of Sk. Let

l′ =  l

k
3
2
�k 3

2 be the first index after l which is divisible by k
3
2 . Clearly rl′ ≥ k and

hence Sk is a prefix of Srl′ . Thus, S′ = ulSrl
0S−1

rl
0 · · ·ul′Sk is a prefix of Sm,l which

ends with a complete Sk. As for every l ≤ i < l′ we have ri = r
i mod k

3
2
, we have that

S′ is contained in the first half of S
2k

3
2
, and hence |S′| ≤ 1

2s
2k

3
2

as expected.

We are now ready to prove the following Theorem.

Theorem 2. If for any n ≥ 1 of the power of 2 there exists an UES of length O(nc) for a
d-regular graph of size at most n, then there is an infinite SUES for this d-regular graph
with cover time p(n) = O(n

3
2 c), where c is the fixed constant from the construction of

an universal exploration sequence in [8,9]. Furthermore, the SUESs can be constructed
deterministically in polynomial time.

Proof. Let us look at the recursive definition of Sn and ignore all the recursive com-
ponents of Sj such as j < n, and their inverses, which because that 0S−1

j 0 reverses
the actions of Sj . The left parts are Un = u1, u2, u3, · · · , un. However, note that Un

is a UES for for d-regular graphs of size at least bn
1
c , for some constants b ≥ 1 and

c > 1 due to Theorem 1. Theorem 1 also show that such a UES can be constructed,
deterministically, in polynomial time. According to Lemma 2, we know that every sub-
sequence T of the SUES we constructed of length s

2n
3
2

+ 1 = O(n
3
2 ) contains, as a

contiguous subsequence, a full copy of Sn. Consequently, there is an infinite SUES for
d-regular graphs with cover time p(n) = O(n

3
2 c), where c is the fixed constant from

the construction of an universal exploration sequence in [8,9]. Furthermore, the SUESs
can be constructed deterministically in polynomial time.
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This thus gives us an explicit solution to the treasure hunt problem. In fact, the seeking
robot just need run the SUES. The adversary will decide when the treasure is put into
the graph. But note that the subsequence of a SUES with length p(n) starting at the
activation point forms a UES, and then the seeking robot finds the treasure by following
the instruction of the sequence.

3.2 Explicit SUESs with p(n) = O(nc(1+ 1
λ ))

In this section, we propose our main result, a new explicit strongly universal exploration
sequence with cover time p(n) = O(nc(1+ 1

λ )), which significantly improves the cur-
rently best known result in [9] with p(n) = O(n2c), where c is the fixed constant from
the construction of an universal exploration sequence in [8,9], λ is a constant integer
and λ � 1.

Treasure Sequences. A treasure sequence is an infinite sequence Q(λ) = q1, q2, q3, q4,
· · · , based on a constant integer λ � 1 such as

qi =
+∞∑

j=i

(2
−j
λ + 2−( 2λ+1

λ2+λ
·j+ λ

λ+1−2) + 2−( λ+1
λ ·j−2)),

where i ≥ 1. It is easy to see that the treasure sequences Q(λ) are monotonely de-
creasing, limi→+∞ qi = 0. We call the first element or term qi < 1 in Q(λ) a golden
ball, where i ≥ 1. Similarly, we call the fixed index i of the golden ball of Q(λ) as the
golden point, where λ is a fixed integer constant and λ � 1.

The following Lemma follows directly.

Lemma 3. There exists a golden ball in the treasure sequence.

The property of the treasure sequence will be used to further reduce the length of the
cover time p(n) of the SUESs later.

Construction of SUESs. Same as in Section 3.1, let Un be a sequence of length n
which is a UES for d-regular graphs of size at least bn

1
c , for some constants b ≥ 1, and

c > 1. And for every k = 2i and n = 2j , where i < j, Uk is a prefix of Un.
We now define recursively a sequence Sn of strongly universal exploration

sequences. We start with S1 = U1. Assume that Un = u1u2 · · ·un and that n ≥ 2.
Define,

Sn = u1Sr10S−1
r1

0u2Sr20S−1
r2

0u3 · · ·uiSri0S−1
ri

0ui+1 · · · un−1Srn−10S−1
rn−1

0un,

where for every 1 ≤ i ≤ n
2 , we set ri = 〈〈i〉〉, where 〈〈i〉〉 = max{2j|2 λ+1

λ j ≤ i, j ∈
Z+}. Also for every n

2 < i < n, we assign ri = rn−i. Note that as n = 2j , for some
j ≥ 1, for every k = 2p, where p < j, the sequence Sk is a prefix of Sn.

Note that ri ≤ λ+1
√

iλ. Thus, if rn
2

= λ+1

√
(n

2 )λ, the first half of Sn is equal to

Sn
2
S λ+1

√
( n

2 )λ0, and ends with a full copy of S λ+1
√

( n
2 )λ , followed by a 0. Similarly, the

second half of Sn starts with a full copy of S−1
λ+1

√
( n

2 )λ
.
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We next bound the length of Sn.
Let q

[λ]
g , g denote the golden ball and golden point of the treasure sequence Q(λ),

respectively. Further more, if g ≥ 2, we set Cfinite =
∑g−1

j=1
2(|S2j |−|S2j−1 |)

2
(λ+1)j

λ

, and

Cmax = max{y|y = S2j

2j , for 1 ≤ j ≤ g − 1}, otherwise Cfinite = Cmax = 0 (e.g.

g = 1). Consequently, q
[λ]
g , g, Cfinite, and Cmax are constants due to the definition of

the treasure sequence and the fact that only a finite number of terms are involved in the
calculations, where 0 < q

[λ]
g < 1, and g ≥ 1.

We are now ready to prove the following Lemma.

Lemma 4. For every n = 2j, where j ≥ 1, |Sn| < (5+Cfinite

1−q
[λ]
g

+ Cmax)n.

Proof. Let sn = |Sn|. For every n ≤ 2g−1, we know it is true due to the definition of
the constant Cmax. The claim that sn < (5+Cfinite

1−q
[λ]
g

+ Cmax)n for every n ≥ 2g then

follows by using the induction. It is not difficult to see that

|S2i | = |U2i | + (|U2i | − 1) · 2(|S1| + 1) +
� λ

λ+1�·i−1
∑

j=1

� |U2i | − 1

2
(λ+1)j

λ

� · 2(|S2j | − |S2j−1 |)

s2i ≤ 2i + 4 · 2i + 2i ·
� λ

λ+1 �·i−1
∑

j=1

2(s2j − s2j−1)

2
(λ+1)j

λ

= 2i + 4 · 2i + 2i ·
g−1∑

j=1

2(s2j − s2j−1)

2
(λ+1)j

λ

+ 2i ·
� λ

λ+1 �·i−1
∑

j=g

2(s2j − s2j−1)

2
(λ+1)j

λ

< 5 · 2i + 2i ·
g−1∑

j=1

2(s2j − s2j−1)

2
(λ+1)j

λ

+ 2i ·
+∞∑

j=g

2(s2j − s2j−1 )

2
(λ+1)j

λ

≤ 5 · 2i + Cfinite · 2i + 2i ·
+∞∑

j=g

2(s2j−1 + 2s
2

(j−1)λ
λ+1

+ 2)

2
(λ+1)j

λ

< 5 · 2i + Cfinite · 2i + 2i · (5 + Cfinite

1 − q
[λ]
g

+ Cmax) ·
+∞∑

j=g

2(2j−1 + 2 · 2 (j−1)λ
λ+1 + 2)

2
(λ+1)j

λ

= 5 · 2i + Cfinite · 2i + 2i · (5 + Cfinite

1 − q
[λ]
g

+ Cmax) · q[λ]
g

< 5 · 2i + Cfinite · 2i + 2i · Cmax · (1 − q[λ]
g ) + 2i · (5 + Cfinite

1 − q
[λ]
g

+ Cmax) · q[λ]
g

= 2i · (5 + Cfinite

1 − q
[λ]
g

+ Cmax).

Using the same arguments as in Lemma 2, we can prove the following Lemma.
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Lemma 5. Let k and n ≥ 2k
λ+1

λ be powers of 2. Then, every subsequence T of Sn or
S−1

n of length s
2k

λ+1
λ

+ 1 = O(k
λ+1

λ ) contains, as a contiguous subsequence, a full of

Sk or 0S−1
k .

Proof. We prove the claim by induction on n. If n = 2k
λ+1

λ then the claim is vacuously
satisfied as Sn contains a full Sk.

Assume, therefore, that the claim holds for every m = 2j′
that satisfies 2k

λ+1
λ ≤

m < n = 2j . We show that it also holds for n. Let T be a subsequence of Sn of length
s
2k

λ+1
λ

+ 1. Essentially the same argument works if T is a subsequence of such length

of S−1
n .

Same as in Lemma 2, we study the following cases:
Case 1: T is completely contained in a subsequence Sm or S−1

m of Sn, for some m < n.
The claim then follows immediately from the induction hypothesis.

Case 2: T is completely contained in a subsequence Sm0S−1
m of Sn, for some m < n.

In this case, T = T ′0T ′′, where T ′ is a suffix of Sm and T ′′ is a prefix of S−1
m . Either

|T ′| ≥ 1
2s

2k
λ+1

λ
or |T ′′| ≥ 1

2s
2k

λ+1
λ

. Assume that |T ′′| ≥ 1
2s

2k
λ+1

λ
. Another case is

analogous. As T ′′ is a prefix of S−1
m , and |T ′′| ≥ 1

2s
2k

λ+1
λ

, it follows that m ≥ 2k
λ+1

λ .

Now, S−1
k is almost a prefix of S−1

m , in the sense that they differ only in symbols that
originate directly from Sm. In particular, a prefix of S−1

m of length 1
2s

2k
λ+1

λ
, half the

length of S
2k

λ+1
λ

, ends with a full copy of Sk, followed by 0.

Case 3: T contains a symbol ul of Sn that originates from Un.
In this case, T = T ′ulT

′′. Again, we have either |T ′| ≥ 1
2s

2k
λ+1

λ
or |T ′′| ≥

1
2s

2k
λ+1

λ
. Assume again that |T ′′| ≥ 1

2s
2k

λ+1
λ

. Another case is analogous. Let

Sn,l = ulSrl
0S−1

rl
0ul+1 · · ·un−1Srn−10S−1

rn−1
0un

be the suffix of Sn that starts with the symbol ul that originates from the l-th symbol
of Un. We claim that the prefix of Sn,l of length 1

2s
2k

λ+1
λ

contains a copy of Sk. Let

l′ =  l

k
λ+1

λ

�k λ+1
λ be the first index after l which is divisible by k

λ+1
λ . Clearly rl′ ≥ k

and hence Sk is a prefix of Srl′ . Thus, S′ = ulSrl
0S−1

rl
0 · · ·ul′Sk is a prefix of Sm,l

which ends with a complete Sk. As for every l ≤ i < l′ we have ri = r
i mod k

λ+1
λ

,

we have that S′ is contained in the first half of S
2k

λ+1
λ

, and hence |S′| ≤ 1
2s

2k
λ+1

λ
as

expected.

Furthermore, by the same arguments as in Theorem 2, we have:

Theorem 3. If for every n ≥ 1 of the power of 2 there is a UES of length O(nc) for
d-regular graphs of size at most n, then there is an infinite SUES for d-regular graphs
with cover time p(n) = O(nc(1+ 1

λ )), where c is the fixed constant from the construction
of an universal exploration sequence in [8,9], λ is a constant integer and λ � 1.
Furthermore, the SUESs can be constructed deterministically in polynomial time.

Proof. Let us ignore all the recursive components of Sj from Sn such as j < n, and
their inverses, which because that 0S−1

j 0 reverses the actions of Sj . The left parts are
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Un = u1, u2, u3, · · · , un.Moreover, note thatUn is a UES for for d-regular graphs of size
at least bn

1
c , for some constants b ≥ 1 and c > 1 due to Theorem 1. Theorem 1 also show

that such a UES could be constructed, deterministically, in polynomial time. According
to Lemma 5, we know that every subsequence T of the SUES we constructed of length
s
2n

λ+1
λ

+1 = O(n
λ+1

λ ) contains, as a contiguous subsequence, a full copy of Sn. Conse-

quently, there is an infinite SUES for d-regular graphs with cover time p(n) = O(n
λ+1

λ c),
where c is the fixed constant from the construction of an universal exploration sequence in
[8,9]. Furthermore, the SUESs can be constructed deterministically in polynomial time.

Finally, by employing the standard double techniques in d-regular graphs of size at most
n, we get the desired result.

Theorem 4. If for every n ≥ 1 there is a UES of length O(nc) for d-regular graphs
of size at most n, then there is an infinite SUES for d-regular graphs with cover time
p(n) = O(nc(1+ 1

λ )), where c is the fixed constant from the construction of an universal
exploration sequence in [8,9], λ is a constant integer and λ � 1. Furthermore, the
SUESs can be constructed deterministically in polynomial time.

Remark 1. It is easy to extend the solutions given for the d-regular graphs to general
graphs using the ideas from [3,9]. More details would appear in the full version of the
paper.

4 Conclusion and Open Problems

We obtained improved explicit deterministic solutions for the treasure hunt problem
with backtracking. More percisely, we presented an O(nc(1+ 1

λ ))-time solution for the
treasure hunt, which significantly improves the currently best known result with running
time O(n2c) in [9], where c is the fixed constant from the construction of an universal
exploration sequence in [8,9], λ is a constant integer and λ � 1. We also give a better
explicit construction of strongly universal exploration sequences (SUESs) than the one
in [9]. The improved explicit SUESs could be also used to improve the explicit solution
of the rendezvous problem with backtracking in [9].

The existence of strongly universal exploration sequences without backtracking is
left as an intriguing open problem.
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1 Introduction

1.1 Background and Problem Definition

Optical wavelength division multiplexing (WDM) is today the most promising
technology to accommodate the explosive growth of Internet and telecommuni-
cation traffic in wide-area, metro-area, and local-area networks. Using WDM,
the potential bandwidth of 50 THz of a fiber can be divided into multiple non-
overlapping wavelength or frequency channels. Since currently the commercially
available optical fibers can support over a hundred frequency channels, such a
channel has over one gigabit-per-second transmission speed. However, the net-
work is usually required to support traffic connections at rates that are lower
than the full wavelength capacity. In order to save equipment cost and improve
network performance, it turns out to be very important to aggregate the multiple
low-speed traffic connections, namely requests, into higher speed streams. Traffic
grooming is the term used to carry out this aggregation, while optimizing the
equipment cost. In WDM optical networks the most accepted criterion is to mi-
nimize the number of electronic terminations, which is unanimously considered
as the dominant cost, rather than the number of wavelengths.

SONET ring is the most widely used optical network infrastructure today. In
these networks, a communication between a pair of nodes is done via a lightpath,
and each lightpath uses an Add-Drop Multiplexer (ADM ), i.e. an electronic ter-
mination, at each of its two endpoints. If each request uses 1

g of the capacity of
a wavelength, g is said to be the grooming factor. The problem is equivalent to
assigning a wavelength to each request in such a way that for any wavelength and
any link of the network, there can be at most g requests using this link on this
wavelength. The aim is to minimize the total number of ADMs. In the graph-
theoretical approach that we use, the set of requests is modeled by a graph R,
and each vertex in the subgraph of R corresponding to a wavelength represents
an ADM. The problem, in the case where the communication network is a ring,
can be formally stated as follows :

Ring Traffic Grooming

Input : A cycle Cn on n vertices (network), a graph R (set of requests) on
vertices of Cn, and a grooming factor g.
Output : Find for each edge r = {x, y} of R, a path P (r) in Cn between x
and y, and a partition of the edges of R into subgraphs Rω, 1 ≤ ω ≤ W , such
that for each edge e in E(Cn) and for all ω, the number of paths P (r) using e,
r being an edge of Rω, is at most g.
Objective : Minimize

∑W
ω=1 |V (Rω)|.

The statement of Path Traffic Grooming is analogous, replacing Cn by Pn.
To fix ideas, consider a ring on five nodes and the complete graph of Fig. 1 as
request graph, and let g = 2. We exhibit two valid solutions of the problem,
both using two subgraphs (i.e. two wavelengths). The second solution is better
because it uses 9 vertices instead of 10.
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10 ADMs

9 ADMs

Fig. 1. Two valid partitions of K5 when g = 2, using different number of ADMs

1.2 Previous Work and Our Contribution

The notion of traffic grooming was introduced in [13] for the ring topology.
Since then, traffic grooming has been widely studied in the literature (cf. [9],
[18], [21] for some surveys). The problem has been proved to be NP-complete
for ring networks and general g [5]. Many heuristics have been done [8], but exact
solutions have been found only for certain values of g and for the uniform all-to-
all traffic case in unidirectional ring [3], bidirectional ring [4], and path topologies
[3]. On the other hand, there was no result on the inapproximability of the
problem for fixed g ≥ 1. In [6] the authors conjecture that Traffic Grooming

is Max SNP-hard (or equivalently, APX-hard, modulo PTAS-reductions) for
any fixed value of the grooming factor. We answer affirmatively to this question in
Theorem 2, providing the first hardness result for the Ring Traffic Grooming

problem for fixed values of the grooming factor g.
Considering g as part of the input, in [15] it was proved that Path Traffic

Grooming does not accept a constant-factor approximation unless P = NP.
For fixed values of g, Path Traffic Grooming was proved to be in P for
g = 1 [3], but the complexity for fixed g ≥ 2 has been an open question for a
while. Recently, it has been proved in [19] that Path Traffic Grooming for
fixed g > 1 is NP-complete for bounded number of wavelengths. Our method
permits us to improve this result in Sect. 3, by proving the APX-completeness
of Path Traffic Grooming for any fixed g > 1 and unbounded number of
wavelengths. In particular, this extends the NP-completeness result of [19] to
the case where the number of wavelengths is not bounded.

The main ingredient of our approach is the proof of the APX-completeness
(given in Sect. 2) of the problem of finding the maximum number of edge-disjoint
triangles in a graph with bounded degree B : Maximum Bounded Edge Cove-

ring by Triangles (MECT-B for short). The proof is obtained by L-reduction
from Maximum Bounded Covering by 3-Sets, which was proved to be MAX

SNP-complete in [16]. A simple modification of this technique permits us to
prove the APX-completeness of finding the maximum number of edge-disjoint
odd cycles of given length in a graph. This later claim is then used to extend
our results to arbitrary values of g, see Sections 2, 3 and [1].
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The design of approximation algorithms for Traffic Grooming is the topic
of the second part of this paper. We present the results for the ring topology,
but the same algorithm works also for the path topology. As we show in Sect.
3, it is trivial to obtain a O(

√
g)-approximation with running time polynomial

in g and n. For g = 1, the best algorithm in rings achieves an approximation
ratio of 10/7 [10]. For general g, the best approximation algorithm [12] achieves
an approximation factor of O(log g), but the problem is that the running time
is exponential in g (that is, ng). Since in practical applications SONET WDM
rings are widely used as backbone optical networks [9], [18], the grooming factor
is usually greater than the size of the network, i.e. g ≥ n. For those networks, the
running time of this algorithm becomes exponential in n. Thus, it turns out to be
important to find good approximation algorithms with running time polynomial
in both n and g. In Sect. 4 we provide such an approximation algorithm, consi-
dering g as part of the input. Our algorithm finds a solution of Ring Traffic

Grooming that approximates the optimal value within a factor O(n1/3 log2 n)
for any g ≥ 1. To the best of our knowledge, this is the first polynomial-time
approximation algorithm for the Ring Traffic Grooming problem with an
approximation ratio which does not depend on g. Although the performance of
this algorithm seems not to be very good at first sight, in fact we conjecture
that for the general instance of the problem it is not possible to get rid of a
factor nδ, for some constant δ > 0. Finally, we show that the general scheme of
the algorithm yields a O(log2 n)-approximation if the request graph excludes a
fixed graph as minor, for example if R is planar or of bounded genus. The main
theoretical contribution of the second part of this paper is to relate the Traffic

Grooming problem to the Dense k-Subgraph problem [11]. We conclude by
proposing some further research directions to better understand the complexity
of Traffic Grooming.

2 APX-Completeness of MECT-B

In complexity theory, the class APX (Approximable) stands for all NP-hard
optimization problems that can be approximated within a constant factor. The
subclass PTAS (Polynomial Time Approximation Scheme) contains the pro-
blems that can be approximated in polynomial time within a ratio 1 + ε for
all constants ε > 0. Intuitively, these problems are the easiest ones among all
NP-complete problems. Since, assuming P �= NP, there is a strict inclusion of
PTAS into APX (for instance, Vertex Cover ∈ APX \ PTAS), an APX-
hardness result for a problem implies the non-existence of a PTAS. MECT-B

has been proved to be NP-complete [14], and the APX-hardness when requiring
node-disjoint triangles was proved in [16]. The proof of the APX-hardness of
MECT-B that we provide can be extended to obtain the APX-completeness of
the problem of finding the maximum number of edge-disjoint cycles of length
2g + 1 for any fixed g ≥ 1, as it is shown in [1]. For convenience, we prove
the Max SNP-hardness of MECT-B, which is known to be the same as the
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APX-hardness modulo PTAS-reductions. MECT-B is trivially in APX, since
a simple greedy algorithm provides a 3-approximation.

Theorem 1. (a) MECT-B, B ≥ 10 is Max SNP-complete. Furthermore,
the problem remains Max SNP-complete in tripartite graphs.

(b) More generally, given a (2g+1)-partite graph G of girth 2g+1, consisting
of (2g + 1) parts A0, . . . , A2g such that the only edges are between Ai and
Ai+1 (mod 2g + 1), i = 0, . . . , 2g, and such that all the graphs induced by
V (G) \ Ai in G, for all i = 0, . . . , 2g, form a forest, the problem of finding
the maximum number of edge disjoint C2g+1’s in G is APX-complete.

Proof: We give the proof of part (a), the proof of part (b) is given in [1]. L-
reduction from Max 3SC-B

1 and L-reduction to Indep. Set-B
2 :

We define h : MECT-B → Indep. Set - (3/2(B-2)) as follows : given a graph
G as instance I of MECT-B, we define the following instance h(I) of Indep.

Set - (3/2(B-2)) : the graph h(G) contains a node vT for every triangle T in
G. There is an edge {vT0 , vT1} in h(G) iff T0 and T1 share an edge in G. Given
a solution A of h(I), we define a solution Sh(A) of I by taking the triangles
corresponding to nodes in A. It is easily verified that (h, Sh) is an L-reduction.

Now, we define f : Max 3SC-B → MECT-(3B+1) in the following way :
suppose that we are given as instance I, a collection C of 3-element subsets of
a set X such that every element of X belongs to at most B members of C. The
problem for I consists in finding the maximal number OPT (I) of disjoint subsets
in C. We construct an instance f(I) of MECT-(3B+1), i.e. we construct a graph
G = (V, E) in which we ask for the maximum number OPT (f(I)) of edge-disjoint
triangles. Let C = {c1, . . . , cr}, with |ci| = 3. The local replacement f substitutes
for each element ci = {x, y, z} ∈ C, the graph Gi = (Vi, Ei) depicted in Fig. 2.

To avoid confusion, note by t any element in ci, i.e. t ∈ {x, y, z}. Note that,
for each element t, the nodes t[0] and t[1], and the edge t[0]t[1] (corresponding

1
2

3
4

5
6

7
8

9
10

11
12

13

x [0] x[1] y [0] y [1] z[0] z [1]

a [1]i
a [2]i

a [3]i
a [4]i

a [5]i
a [6]i a [7]i

i

a [8]i
a [9]i

Fig. 2. Gadget used in the reduction of the proof of Theorem 1

1
Maximum Bounded Covering by 3-Sets : Given a collection of 3-subsets of a
given set, each element appearing in at most B subsets, find the maximum number
of disjoint subsets.

2
Maximum Bounded Independent Set : Given a graph of maximum degree ≤ B,
find a maximum independent set.
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to the thick edges in Fig. 2) appear only once in G, regardless of the number
of occurrences of t. On the other hand, we add 9 new vertices ai[j], 1 ≤ j ≤ 9
for each subset ci, 1 ≤ i ≤ |C|. More precisely, G = (V, E) = ∪|C|

i=1Gi, where
V =

⋃
t∈X{t[0], t[1]} ∪

⋃|C|
i=1{ai[j] : 1 ≤ j ≤ 9} and E =

⋃|C|
i=1 Ei.

Now, given a solution A of f(I) of cost (or equivalently, size) c2, we modify
in polynomial time this solution to another equal or better solution A′ in the
following way : in each Gi, if the three triangles covering the edges x[0]x[1],
y[0]y[1], and z[0]z[1] (numbered 1, 7, 13 in Fig. 2) belong to A, we choose the
seven odd triangles of Gi to belong to A′. If not, we take the six even tri-
angles. Let c′2 ≥ c2 be the cost of A′. Then, we define a solution Sf (A) of
I by choosing the subset ci to be in Sf (A) if and only if A′ contains exactly
7 triangles in Gi. We claim that the pair (f, Sf ) is an L-reduction : in each
Gi there are 13 different triangles, numbered from 1 to 13 in Fig. 2. The only
way to choose 7 edge-disjoint triangles in Gi is by taking all the odd triangles,
and thus by covering the three edges x[0]x[1], y[0]y[1], and z[0]z[1]. All other
choices of triangles yield at most 6 edge-disjoint triangles. The key observation
is that we are able to choose 7 triangles exactly OPT (I) times. Indeed, each
time we choose 7 triangles we cover the edges corresponding to 3 elements of ci,
and since the number of disjoint ci’s in C is OPT (I), this can be done exactly
OPT (I) times. On the other hand, one can easily see that OPT (I) ≥ |C|

3B . Hence :

OPT (f(I)) = 7·OPT (I)+6(|C|−OPT (I)) ≤ OPT (I)+18B·OPT (I) = (18B+1)OPT (I)

To conclude, note that if the solution Sf (A) of I has cost c1, we have OPT (I)−
c1 ≤ OPT (f(I)) − c2. To see this, we observe that OPT (f(I)) = 6r + OPT (I),
and also c′2 = 6r + c1, and so OPT (f(I)) − OPT (I) = c1 − c′2 ≤ c1 − c2.

Both (f, Sf ) and (h, Sh) are L-reductions and MAX 3SC-B, B ≥ 3 and
Indep. Set-B, B ≥ 5 are Max SNP-complete [16]. Thus, MECT-B, B ≥ 10
is Max SNP-complete.

To prove the last claim, note that the graph G = (V, E) used in the proof is
tripartite, where the vertex sets defining the tripartition are :

V0 =
|X|⋃

t∈X

t[0] ∪
|C|⋃

i=1

{ai[2], ai[5]}, V1 =
|C|⋃

i=1

{ai[j] : j = 1, 4, 7, 8, 9}, V2 =
|X|⋃

i=1

t[1] ∪
|C|⋃

t∈X

{ai[3], ai[6]}� �

3 APX-Completeness of Traffic Grooming

In this section we prove the hardness results for Ring Traffic Grooming and
Path Traffic Grooming. First we prove that Ring Traffic Grooming

belongs to APX when g is fixed. The same result holds for Path Traffic

Grooming.
Let us define the density ρ of a graph G as its edges-to-vertices ratio : ρ(G) =

|E(G)|
|V (G)| . To see that Ring Traffic Grooming is in APX for any fixed g ≥ 1,
we have to find a constant-factor approximation algorithm. We use the fact that
the best possible density ρ∗ of any subgraph used in the partition of the request
graph is O(

√
g), given by (possibly a subgraph of) a circulant graph [4]. We prove
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that the cost A of any solution R1, . . . , RW is in the interval [ |E(R)|
ρ∗ , 2|E(R)|].

This clearly implies that any solution has cost at most 2ρ∗ = O(
√

g) times the
optimal cost. To see this, note that each edge of R contributes at most twice to
the cost, so A ≤ 2|E(R)|. On the other hand, we have

A =
W∑

ω=1

|V (Rω)| =
W∑

ω=1

|E(Rω)|
ρ(Rω)

≥
W∑

ω=1

|E(Rω)|
ρ∗

=
|E(R)|

ρ∗

Thus, a O(
√

g)-approximation is obtained just by taking any partition of the
request graph.

Theorem 2. Ring Traffic Grooming is APX-complete for all fixed g ≥ 1.
Thus, it does not accept a PTAS unless P = NP.

Proof: We prove that Ring Traffic Grooming is APX-complete even if we
suppose that the degree of the request graph is bounded by a constant B ≥ 10.
First, we prove the result for g = 1. We consider a set of requests R made of
a tripartite graph with the three partition classes placed consecutively on the
ring, as shown in Fig. 3a. To simplify the presentation, suppose that R can be
partitioned into triangles. In any solution, the only possible involved subgraphs
are P2, P3, P4, and K3. It is clear that the best we can do is to groom the
requests into triangles (since triangles have the highest density) obtaining an
optimal cost of |E(R)|. From this we derive that |E(R)| is a lower bound for the
number of ADMs of any solution, and that each path used in a given solution
adds an additional unity of cost. For each solution S, the additional cost is at
least 4/3 times the number of edges covered by paths of S. This bound is tight
if all the paths are P4’s. Thus, the number A of ADMs used by S (i.e. the cost
of S), satisfies A ≥ (1 − ε)|E(R)| + ε 4

3 |E(R)| = (1 + ε
3 )|E(R)|, where ε is the

percentage of edges of R not covered by triangles in S. By Theorem 2, there
exists a constant ε0 such that we can find in polynomial time at most a fraction
(1 − ε0) of the triangles of R. This means that (1 + ε0

3 )OPT is the best solution
we may obtain by a polynomial-time algorithm, implying the non-existence of a
PTAS.

For g > 1, we take a (2g + 1)-partite graph as the request graph, in such way
that each cycle makes at least g tours around the center of the ring. Now, we
can reduce the grooming problem to the problem of finding a maximum number
of cycles of length 2g +1 in this graph (as in the case g = 1). This later problem
is also APX-complete, see Theorem 1. The details can be found in [1]. Hence,
Ring Traffic Grooming is Max SNP-complete for bounded number of re-
quests per node B ≥ 10. �
Theorem 3. Path Traffic Grooming is APX-complete for any fixed g ≥ 2.

Proof: Again, the result holds even for bounded number B of requests per
node, B ≥ 10. We prove the result for g = 2, proceeding for g > 2 as in the
proof of Theorem 2. Consider a set of requests R made of a tripartite graph with
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b)a)

Fig. 3. Request graph used in the proof of APX-completeness of Traffic Grooming :
a) in the ring for g = 1 ; b) in the path for g = 2

the three partition classes placed consecutively on the path one after another, as
shown in Fig. 3b. Since each triangle induces load 2, minimizing the number of
ADMs corresponds to finding the maximum number of edge-disjoint triangles.
Therefore, it does not accept a PTAS unless P = NP. �

4 Approximating Ring Traffic Grooming

We are now interested in finding good approximation algorithms considering g
as part of the input. As we saw in Sect. 3, obtaining a O(

√
g)-approximation is

trivial. Since in practical applications SONET WDM rings are widely used as
backbone optical networks [9], [18], the grooming factor is usually greater than
the size of the network, i.e. g ≥ n. Thus, it turns out to be important to find
approximation algorithms with an approximation ratio not depending on g. A
general approximation algorithm with this property is the main result of this
section. It provides in the worst case a O(n1/3 log2 n)-approximation. We des-
cribe it for the ring, but exactly the same arguments provide an algorithm for
the path. The main idea is to greedily find subgraphs with high density using ap-
proximation algorithms for the Dense k-Subgraph problem, which is defined
as follows : given a graph G and an integer k, find an induced subgraph H ⊆ G
on k vertices with the highest density among all subgraphs on k vertices. In
[11] the authors provide a polynomial-time algorithm with approximation ratio
2n1/3. To simplify the presentation, suppose that n = 2t for some t > 0 :

Algorithm A

Step 1) Divide the request set into log n classes, such that in each class Ci the
length of the requests lies in the interval [2i, 2i+1), i = 0, . . . , log n − 1. For
each class Ci, the ring can be divided into intervals of length 2i such that
the only requests are between consecutive intervals. In this way we obtain n

2i

subproblems for each class : each one consists in finding an optimal solution
in a bipartite graph of size 2 · 2i. More precisely, each subproblem can be
formulated as :
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Bipartite Traffic Grooming

Input : A bipartite graph R, and a grooming factor g.
Output : Partition of the edges of R into subgraphs Rω with at most g
edges, 1 ≤ ω ≤ W .
Objective : Minimize

∑W
ω=1 |V (Rω)|.

Solve all these Bipartite Traffic Grooming subproblems independently,
and output the union of all solutions.

Step 2) To solve each Bipartite Traffic Grooming subproblem in a bi-
partite graph R, proceed greedily (until all edges are covered) by finding at
step i a subgraph Ri of G \ (R1 ∪ · · · ∪ Ri−1) with at most g edges in the
following way :
For each k = 2, . . . , 2g find a subgraph Bk of R \ (R1 ∪ · · · ∪ Ri−1) using
the algorithm of [11] for the Dense k-Subgraph problem.
• If for some k∗, |E(Bk∗)| > g, and |E(Bi)| ≤ g for all i < k∗, remove

|E(B∗
k)| − g arbitrary edges of Bk∗ and replace B∗

k with this new graph.
Stop the search at k∗, and output the densest graph among B2, . . . ,Bk∗−1,
Bk∗ .

• If not, output the densest subgraph among B2, . . . , B2g.

Let OPT be the optimal solution of Ring Traffic Grooming, and let OPT1

be the cost of the solution obtained by solving optimally all the subproblems
generated by Step 1 of Alg. A. We prove a lemma before stating the theorem.

Lemma 1. Let β be a given number. Suppose that we can find in any bipartite
graph R on at most n vertices, a subgraph with at most g edges which has density
at least 1/β times the density of the densest subgraph with at most g edges. Then
in the greedy procedure of Step 2 of Algorithm A we obtain a solution of cost
OPT2 such that OPT2 ≤ O(log n) · β · OPT1.

Proof: Let m be the number of edges of the request graph R, and let R1, R2, . . . ,
Rr be the subgraphs generated in order by the above algorithm, and covering
all the edges. We will prove that

∑
|V (Ri)| ≤ log(m) · β · OPT1. To prove this,

we first enumerate the edges of R in order of appearance in Ri’s : all the edges
in R1 will be enumerated e1, . . . , eg1 (g1 = |E(R1)| ≤ g), all the edges in R2

will be enumerated eg1+1, . . . , eg1+g2 (g2 = |E(R2)| ≤ g), and so on. Let ρi be
the density of the subgraph Ri, i.e. ρi = |E(Ri)|

|V (Ri)| , and Σ =
∑

|V (Ri)| the total
cost of the solution. For every edge ej ∈ Ri, we define c(ej) = 1

ρi
. We claim

that
∑

j c(ej) = Σ. To prove this equality just note that
∑

ej∈E(Ri)
c(ej) =

|E(Ri)|
ρi

= |V (Ri)|, and so
∑

j c(ej) =
∑

i |V (Ri)| = Σ. Let us define R′
i to be

the union of Ri, Ri+1, . . . , Rr. We define ρ′i to be the density of the densest
subgraph of R′

i containing at most g edges. Let us take an optimal solution for
R′

i, i.e. a decomposition of R′
i into subgraphs A1, . . . , As such that

∑s
k=1 |V (Ak)|

is minimum. Let ρ1, . . . , ρs be the density of these subgraphs. We have :
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• ∀k ≤ s, ρk = dens(Ak) ≤ ρ′i : because each Ak is a subgraph of R′
i

containing at most g edges, and ρ′i is the density of the densest subgraph
with at most g edges in R′

i.
• ρ′i ≤ βρi : because we suppose that we can find an approximation of ρ′i up

to a factor 1/β./

This implies that
1
ρk

≥ 1
βρi

, and so
∑

k

|V (Ak)| =
∑

k

|E(Ak)|
ρk

≥
∑

k

|E(Ak)|
βρi

=
|E(R′

i)|
βρi

But an optimal solution for R provides a solution for R′
i of cost at least

the optimal solution for R′
i, i.e.

∑
k |V (Ak)| ≤ OPT1. Using this in the above

inequality we get 1
ρi

≤ β·OPT1
|E(R′

i)| , and so for an edge ej ∈ Ri we have c(ej) = 1
ρi

≤
β·OPT1
|E(R′

i)| ≤ β·OPT1
m−j+1 , and this proves that

Σ =
∑

j

c(ej) ≤ β ·(
∑

j

1
m − j + 1

)·OPT1 ≤ β ·log(m)·OPT1 ≤ 2β ·log(n)·OPT1

�
Theorem 4. A is a polynomial-time approximation algorithm that approximates
Ring Traffic Grooming within a factor O(n1/3 log2 n) for any g ≥ 1.

Proof: Algorithm A returns a valid solution of Ring Traffic Grooming,
because each request is contained in some bipartite graph, and no request is
counted twice. The runtime is polynomial in both n and g, because we run at
most 2g − 1 times the algorithm of [11] for each subproblem, and there are
n(

∑t−1
i=0

1
2i ) − 1 = 2n − 3 subproblems. We prove the approximation guarantee :

• We claim that OPT1 ≤ 2 logn · OPT . Indeed, let ci be the optimal cost of
the subset of requests of length in the interval [2i, 2i+1), i = 0, . . . , log(n)−1.
It is clear that ci ≤ OPT for each i , and thus

∑log n−1
i=0 ci ≤ log n · OPT .

Finally, OPT1 ≤ 2
∑log n−1

i=0 ci, because each vertex is taken into account in
two subproblems.

• The greedy procedure described in Step 2 of Algorithm A outputs a graph
whose density is at least 1

2n1/3 times the highest density (with at most g
edges) of the updated request graph. To see that, note that the optimal
density is achieved by a subgraph on at most 2g vertices (it would be
the case of g disjoint edges). Then, for each value of k, the algorithm of
[11] finds a 2n1/3-approximation of the maximum number of edges of an
induced subgraph on k vertices3. Thus, if we take the densest subgraph
among B2, . . . , B2g (removing edges if necessary) we also obtain a 2n1/3-
approximation of the highest density of a subgraph with at most g edges.
Let ρk be the density of Bk before removing edges. The explicit formula of
the highest density ρ that we output in Step 2 of Algorithm A is :

ρ := max
k∈{2,...,2g}

min
(
ρk,

g

k

)

3 In fact, the improved approximation ratio of the Dense k-Subgraph problem is
O(nδ) for some constant δ < 1/3 [11]. Obviously, the same applies to our algorithm,
replacing the exponent 1/3 with δ < 1/3.
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Looking at the formula we understand why we stop at k = k∗ in the algo-
rithm. In other words, we can use β = 2n1/3 in Lemma 1.

• By combining the remarks above and Lemma 1 we obtain that the cost A
returned by Algorithm A satisfies A ≤ 2n1/3 ·OPT2 ≤ 4n1/3 log n ·OPT1 ≤
8n1/3 log2 n · OPT. �

We can improve the approximation ratio of the algorithm if all the requests
have short length compared to the length of the ring. This situation is usual
in practical applications since nodes may want to communicate only with their
nearest neighbors. Let f(n) be any function of n. If all the requests have length
at most f(n), then the above algorithm provides an approximation ratio of
O(f(n)1/3 log2 n). Indeed, in Step 2 of Algorithm A, we have to find dense
subgraphs in bipartite graphs of size at most 2f(n), hence the factor 2n1/3 can
be replaced with 2(2f(n))1/3.

Remark that all the instances of Dense k-Subgraph problem in our algo-
rithm are bipartite. Using the results of [20], it is possible to obtain a better
approximation ratio when the request graph is bipartite and satisfies some uni-
form density conditions. We omit the proof due to lack of space.

Corollary 1. If the request graph R is such that in any large enough subgraph
H ⊆ R, a densest subgraph (A∪B, E) satisfies |A|, |B| = O(

√
g) and |E| = Ω(g),

then for any constant ε > 0 there exists a polynomial-time algorithm for Ring

Traffic Grooming with approximation ratio O(nε log2 n).

To end this section, note that the results of [7] show that the density can be
approximated within a constant factor two in the class of graphs excluding a fixed
graph H as minor. Thus, if the request graph R is H-minor free (for instance if
R is planar, or of bounded genus,...), our algorithm achieves an approximation
factor of O(log2 n).

5 Conclusions and Further Research

This article deals with Traffic Grooming, a central problem in WDM optical
networks. The contribution of this work can be divided in two main parts : on
the one hand, we state the first hardness results for Ring Traffic Grooming

and Path Traffic Grooming for fixed values of g. More precisely, we prove
that Ring Traffic Grooming is APX-complete for fixed g ≥ 1, and that
Path Traffic Grooming is APX-complete for fixed g ≥ 2. In other works,
we rule out the existence of a PTAS for fixed values of g. To prove this results
we reduce Ring Traffic Grooming for g = 1 to the problem of finding the
maximum number of edge-disjoint triangles in a graph of degree bounded by
B (MECT-B for short). We prove that MECT-B is APX-complete, and we
generalize this reduction for Path Traffic Grooming and for all values of
g ≥ 1. On the other hand, we provide the first polynomial-time approximation
algorithm for Ring and Path Traffic Grooming with an approximation ratio
not depending on g, considering g as part of the input.
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There remains still a lot of work to be done. It is a challenging open problem
to close the complexity gap of Traffic Grooming, that is, to provide an ap-
proximation algorithm with an approximation ratio matching the corresponding
inapproximability result. We are convinced that the inherent difficulty of the
problem resides in finding dense subgraphs with bounded number of edges. This
problem is strongly related to the problem of finding the densest subgraph with
bounded number of vertices, which has been recently proved to have, essentially,
the same difficulty as the Dense k-Subgraph problem [2]. The non-existence
of a PTAS for the Dense k-Subgraph problem has been proved in [17] in-
volving very technical proofs, and this is the best existing hardness result. A
long-standing conjecture claims that there exists some constant ε > 0 such that
finding a nε-approximation for Dense k-Subgraph is NP-hard [11]. As we pro-
ved in Sect. 4, an α-approximation for Dense k-Subgraph yields a O(α log2 n)-
approximation for Ring Traffic Grooming. We suspect that a similar result
in the other direction should also exist. Because of this, we conjecture that :

Conjecture 1. There exists some constant δ > 0, such that Ring Traffic

Grooming is hard to approximate within nδ when g is part of the input.

Acknowledgement. Many thanks to David Coudert, Mordechai Shalom and
Shmuel Zaks for helpful discussions.

References
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Abstract. Social networks support efficient decentralized search: people
can collectively construct short paths to a specified target in the network.
Rank-based friendship—where the probability that person u befriends
person v is inversely proportional to the number of people who are closer
to u than v is—is an empirically validated model of acquaintanceship
that provably results in efficient decentralized search via greedy routing,
even in networks with variable population densities. In this paper, we
introduce cautious-greedy routing, a variant of greedy that avoids taking
large jumps unless they make substantial progress towards the target.
Our main result is that cautious-greedy routing finds a path of short
expected length from an arbitrary source to a randomly chosen target,
independent of the population densities. To quantify the expected length
of the path, we define the depth of field of a metric space, a new quantity
that intuitively measures the “width” of directions that leave a point in
the space. Our main result is that cautious-greedy routing finds a path
of expected length O(log2 n) in n-person networks that have aspect ratio
polynomial in n, bounded doubling dimension, and bounded depth of
field. Specifically, in k-dimensional grids under Manhattan distance with
arbitrary population densities, the O(log2 n) expected path length that
we achieve with the cautious-greedy algorithm improves the best previous
bound of O(log3 n) with greedy routing.

1 Introduction

As large-scale datasets of social interactions have become widespread, computer
scientists have begun to explore social networks, graphs in which nodes represent-
ing people are connected by edges representing friendships. Social networks are a
particularly appealing domain for interdisciplinary application of computational
thinking: a graph-theoretic, algorithmic approach can lend interesting insight
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to questions traditionally in the domain of the social sciences. The well-known
small-world phenomenon—first observed explicitly by Stanley Milgram’s inge-
nious experiments [21], in which people demonstrated an ability to collectively
construct short chains of acquaintances to pass a message to a specified target
person—is a marked example [15]. A key observation of Jon Kleinberg [12, 13],
made some thirty years after Milgram’s original experiment, is that these results
are at heart algorithmic: people are able to use some sort of distributed algorithm
to construct short paths through the social network, with each node having only
limited, local information about the friendships in the network. Kleinberg gave
a simple model that suffices to produce a navigable small world. Start from a
k-dimensional grid of people, with k = Θ(1), where we view proximity in the grid
as corresponding to similarity in geographic location, occupation, or some other
attribute. Connect each person to 2k local neighbors, her immediate neighbors in
the grid. Also endow each person u with one long-range link, chosen randomly so
that Pr[u → v] ∝ d(u, v)−β , where d(u, v) is the Manhattan distance between u
and v and β ≥ 0 is a parameter of the model. (The presence of additional long-
range links does not substantially affect the results.) Kleinberg studied greedy
routing—to route a message from s to t, person s forwards the message to the
friend of s who is closest in lattice distance to t—and showed that this algorithm
finds paths of expected length O(log2 n) in n-person networks when β = k, and
of length nΩ(1) when β �= k. A Ω(log2 n) bound on the expected length of the
path found by greedy routing when β = k has also been shown [4, 20].

These results have subsequently been extended and adapted to situations
in which the underlying network is not a grid, but is instead, for example, a
tree [14] or a network that has low treewidth [8], bounded growth rate [6, 7],
or low doubling dimension [24]. But an important feature present in the real
world is lacking in almost all of these models: whatever one chooses as the space
in which to measure similarity, people are not uniformly distributed among the
points in this space. The group-structure model [14] can handle differential pop-
ulation density, as can rank-based friendship [16, 18]. We focus on the latter,
which has been shown empirically to be a close match for friendship patterns
in a real large-scale online social network [18]. The model is still based on an
underlying similarity measure, but an arbitrary number of people can live at
each point. Define the rank of a person v with respect to u as the number of
people who live at least as close to u as v does. We generate long-range links
probabilistically using rank instead of distance: a person u chooses a long-range
link v so that Pr[u → v] is proportional to the rank of v with respect to u.
(Rank-based friendship implicitly handles the dimensionality of the underlying
similarity measure: in a k-dimensional grid with Θ(1) population at each point,
we have ranku(v) = Θ(d(u, v)k), matching the navigable distribution that ex-
plicitly involves k in Kleinberg’s distance-based setting.)

In joint work of Ravi Kumar, Andrew Tomkins, and the third author [16],
greedy routing was shown to perform well in rank-based social networks, in the
following sense. In a Θ(1)-dimensional grid with arbitrary positive population
at every point and with total population n, the greedy algorithm finds a path
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of expected length O(log3 n) from an arbitrary source to the point of a target
chosen uniformly from the population. In fact, these results were shown in a much
more general setting [16]: if similarity is measured by proximity in any metric
space, then Greedy finds a path of expected length O(log n · log2 Δ · 2O(α))
to a randomly chosen target, where n is the population size; Δ is the distance
between maximally distant people; and α is the doubling dimension of the metric
space, a combinatorial measure of its implicit dimensionality (see [10,2,24], e.g.).

Our contributions. The theorem for rank-based networks with variable popu-
lation densities restricted to k-dimension grids under Manhattan distance says
that Greedy finds a path of expected length O(log3 n) to a randomly chosen
target. This result is weaker than Kleinberg’s theorem in two ways: there is an
additional O(log n) factor in the path length; and there is “in expectation for
a random target” in place of “for any target.” (These negatives are, of course,
counterbalanced by the increased generality of the model, which can handle
essentially arbitrary population distributions.)

In this paper, we improve the upper bound on expected path length to
O(log2 n) in k-dimensional grids with arbitrary population densities, closing the
gap with Kleinberg’s analysis of the uniform-population case. We achieve this
bound with the cautious-greedy algorithm, a variation on greedy routing that
we introduce. Intuitively, the greedy algorithm can get into trouble in variable-
density networks as follows. Imagine a person s who only lives near points with
unit population. Suppose that s has a friend u so that d(u, t) = d(s, t) − ε but
the jump from s to u “overshoots” the target t. If there is a city with massive
population near u (but farther from t than u is), then s may be making a mistake
by choosing u as the next step in the chain: because u is in the “shadow” of the
city, then we have Pr[s → t] � Pr[u → t]. Indeed, the same is true from u for all
points close to t, and showing that Greedy is making progress at every step is
difficult. (This difficulty seems intuitive: if s and t live 60 and 25 miles due west
of New York City, respectively, then overshooting t from s by jumping to a friend
in Manhattan seems like a bad idea, because the chain is now stuck inside New
York’s “basin of attraction.”) CautiousGreedy differs from Greedy in that
it conservatively takes local links unless there is a long-range link that halves
the distance to the target, in which case it follows that link. We are able to show
that, in rank-based social networks with arbitrary population distributions de-
rived from k-dimensional grids under Manhattan distance, the expected length
of the CautiousGreedy(s, t) path for a randomly chosen target t is O(log2 n).
We also show that this bound is tight in the 1-dimensional case.

The result for k-dimensional grids is a corollary of our main theorem, which
shows that cautious-greedy routing performs well in expectation for social net-
works with similarity measures derived from arbitrary metric spaces. As usual,
the performance of the algorithm depends on certain properties of the metric
space, including the aspect ratio Δ and the doubling dimension α. We also
uncover a new quantity ρ ∈ (0, 1] characterizing metric spaces, intuitively mea-
suring the smallest “width” of each direction leaving a point in the space, that is
crucial to our analysis. By analogy to the corresponding concept in photography,
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we call ρ the depth of field of the metric space. More precisely, the depth of field
is the minimum over points s and t of the ratio r(s, t)/d(s, t), where r(s, t) is the
maximum radius of a ball B around t so that a shortest path from s to every
point in B has the same first step. In networks with large depth of field (e.g.,
Manhattan distance in k-dimensional grids), we can prove much better routing
bounds than in networks with small depth of field (e.g., Euclidean distance in
k-dimensional grids). Our main result is that CautiousGreedy finds a path of
expected length O(log n · log Δ · (cρ)−α) for constant c, improving by a O(log Δ)
factor the bound from [16] in networks with bounded ρ and α.

Other related work. Although Greedy is the most commonly analyzed de-
centralized social-network routing algorithm, there has been significant work
on other algorithms as well. Typically—and in contrast to CautiousGreedy,
which still uses only completely local information in constructing the path—these
algorithms endow individuals with additional structural information about the
network, such as awareness of friend’s friends (e.g., [9,19,20,17,24]). Other studies
of the navigability of social networks and, in particular, good local-information
algorithms for navigation have been performed, largely focusing on simulations
and empirical studies of real networks (e.g., [23, 25, 3, 5]). There has also been
recent relevant work in metric embeddings in which the underlying metric space
can be simplified without large distortion of distances between nodes that are
close together [1] and in designing peer-to-peer systems where node distributions
are nonuniform in keyspace [11].

2 Depth of Field in Metric Spaces

Consider a metric space M = 〈X, d〉. For convenience, throughout the paper
we scale every metric space so that minx �=y d(x, y) = 1. We first mention a few
standard notions that we use throughout:

– Let Δ := maxx,y∈X d(x, y) denote the aspect ratio of the metric space.
– Let Br(x) := {y : d(x, y) < r} denote the open radius-r ball around x ∈ X .
– Let α denote the doubling dimension of the metric space: α is the smallest

value such that, for every r > 0, every set Y ⊆ X of radius 2r can be covered
by at most 2α subsets of X , each of radius r.

We will need to develop a notion that quantifies the following intuition: if a
point s is far away from a point t, then making a small step closer to t from s
should bring one closer to points near t as well. We will define the depth of field
of the metric space to quantify the notion of “near t.” (Our use of this term is
inspired by the same term in photography: for a camera focused on a point t,
“depth of field” refers to the range of points around t that are also in focus. A
large depth of field means that many points near t are also in focus.) Let r > 0
denote the largest radius so that some point u is on a shortest path from s to
every point in the ball Br(t). The farther apart s and t are, the larger one would
expect r to be; thus, we will be concerned with the ratio between r and d(s, t).
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Definition 1 (Depth of field). For arbitrary points s, t, u ∈ X with s /∈ {t, u},
define ru(s, t) as the maximum value such that

∀z ∈ X d(z, t) < ru(s, t) ⇒ d(s, z) = d(s, u) + d(u, z).

We define the depth of field of s and t as ρ(s, t) := maxu�=s ru(s, t)/d(s, t). The
depth of field of the metric space M is ρ(M) := mins�=t ρ(s, t).

Lemma 2. For any metric space M, we have 0 < ρ(M) ≤ 1.

Proof. Consider arbitrary distinct s, t. For sufficiently small r, the ball Br(t) is
just {t}. So rt(s, t) > 0, and ρ(s, t) > 0. On the other hand, we have s ∈ Br(t)
for r > d(s, t). Thus ru(s, t) ≤ d(s, t) for every u. Thus 0 < ρ(s, t) ≤ 1. ��

One can give similar intuitive descriptions of the depth of field and the doubling
dimension of a metric space: they both aim to quantify the number of distinct
directions emanating from a point in the metric space. However, they measure
“number of distinct directions” in different ways. Informally, doubling dimension
counts something like the number of directions one can go from s; depth of field
counts something like the “width” of the narrowest of these directions.

Denote depth of field and doubling dimension by ρ and α, respectively. In
what follows, we will find algorithms whose running times depend exponentially
on α and 1/ρ, so we are most interested in metric spaces where both α and 1/ρ
are bounded. To clarify the relationship between these quantities, we note metric
spaces where one or the other or both of these quantities is/are small:

– a k-dimensional grid under Manhattan distance has ρ = 1/k and α = Θ(k).
– a 2-by-n grid under Euclidean distance has ρ = 1/n and α = Θ(1).
– a metric space in which distances are given by shortest paths in an n-node

star graph (a tree with n − 1 leaves) has ρ = 1 and α = log n.

3 Social Networks, Rank-Based Friendship, and Routing
Algorithms

A social network is a directed graph 〈P, E〉, where a node represents a person and
an edge denotes a friendship between its endpoints. Let Γ (u) denote the friends
of u ∈ P . Our general framework consists of some attributes of the people in P ,
with friendships derived in some way from these attributes. (We use terminology
suggestive of a geographic interpretation, but other attributes are equally valid
in this setting.) The attributes will be globally known to all people, but the
friendships will be known only to the people involved. As a formal encoding of
this framework, we consider the following structures throughout:

– a finite set L of points ;
– a distance metric d : L×L → R

≥0 on the points (so 〈L, d〉 is a metric space);
– a finite set P of people; and
– a location function loc : P → L so that loc(u) is the point where u ∈ P lives.
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We will permit ourselves to write an element u of P in contexts where an element
of L is expected, with the understanding that u is shorthand for loc(u). For 
 ∈ L
or L′ ⊆ L, let pop(
) := |{u ∈ P : loc(u) = 
}| and pop(L′) :=

∑
�∈L′ pop(
)

denote the population of a point or set of points. Write n := pop(L) = |P |
for the total population. We will also impose a condition called neighbor con-
nectivity [16] on the social networks that we consider. For every p, q ∈ P with
loc(q) �= loc(p), we require that p have a friend in some location 
 such that
d(loc(p), 
)+d(
, loc(q)) = d(loc(p), loc(q)). (Formally, if Gd is the minimal graph
on L where shortest paths correspond to the metric d, then p must have a friend
in every neighbor of loc(p) in Gd.) Among other things, this guarantees that, for
people s, t ∈ P with loc(s) �= loc(t), person s has a friend u with d(s, t) > d(u, t).

3.1 Rank-Based Friendships

For two people u, v ∈ P , the rank of v with respect to u is the number of people
w ∈ P who are closer to u than v, so ranku(v) := |{w ∈ P : d(u, w) < d(u, v)}|.
For concreteness, we will specify that ranku(u) := 1 for every person u ∈ P .
Ties in distance are broken using a canonical ordering on P , so for any person
u ∈ P and any rank i ∈ {1, . . . , n}, there is exactly one person v such that
ranku(v) = i. A rank-based friendship for a person u ∈ P is one generated
as follows: a friend v is chosen randomly for u according to the probability
distribution Pr[u links to v] ∝ 1/ranku(v). Let Hn = Θ(log n) denote the nth
harmonic number. By normalization, we have the following:

Pr[a rank-based link from u is u → v] = 1/(Hn · ranku(v)). (1)

We endow each person with ≥ 1 rank-based friendship, chosen according to (1),
along with an arbitrary set of local neighbors satisfying neighbor connectivity.

3.2 Decentralized Routing Algorithms

Given source and target individuals s, t ∈ P , a routing algorithm seeks a path
σ = 〈u0, u1, . . . , uk〉 from s = u0 to uk with loc(uk) = loc(t) in the graph
〈P, E〉. (We do not model routing within points in this paper.) A decentralized
algorithm computes the next step ui+1 from the current person ui without taking
the entire graph 〈P, E〉 as input: only the edges in E incident to ui are available
to the algorithm. (Full information about L, d, P , and loc is available to the
algorithm; thus, for example, a person s can compute ru(s, t) for any u, t in the
sense of Def. 1.) We focus on two particular decentralized algorithms. Under the
well-studied greedy algorithm, the current person ui simply chooses her friend
who is closest to t as the next step in the path. We also introduce and analyze
the cautious-greedy algorithm, which is a conservative variant of Greedy that
refuses to take long jumps that do not make significant progress (specifically, by
halving the distance) to the target, instead opting for a “safe” local link.
CautiousGreedy(s, t):

(halving step.) Let u := argminu∈Γ (s)d(u, t). If d(u, t) ≤ d(s,t)
2 , forward to u.

(nonhalving step.) Else forward to argmaxu∈Γ (s)ru(s, t) in the sense of Def. 1.
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Lemma 3. Suppose the network is neighbor connected and let ρ be the depth of
field of 〈L, d〉. If CautiousGreedy(s, t) takes a nonhalving step from s to w,
then d(s, z) = d(s, w) + d(w, z) for every z such that d(z, t) < ρ · d(s, t). ��

(The proof is omitted due to space constraints.) As a corollary, we note that both
Greedy and CautiousGreedy make strict progress towards their targets in
every step. Among other things, this fact guarantees that every person is encoun-
tered only once by a run of the algorithm. Thus we can invoke the principle of
deferred decisions in our analysis (see [22]): we proceed as if the long-range links
of each person are generated only once the algorithm encounters that person.

4 An Upper Bound for Cautious Greedy Routing

Consider fixed L, d, P, loc as defined previously. Let ρ and α, respectively, denote
the depth of field and doubling dimension of the metric space 〈L, d〉. We will
be interested in the length of the path found by CautiousGreedy(s, t), where
s ∈ P is arbitrary and t ∈ P is chosen uniformly at random from the population.
Most of our effort will be focused on analyzing the number of steps required to
halve the distance to the target—or, more precisely, to reach a person u such that
d(u, t) < 2i−1 from a source s when t is chosen randomly from {t : d(s, t) < 2i}.

Halving the Distance to the Target

Fix a source person s and some integer i ∈ Z
≥1. Let B := B2i(s) denote the

ball of radius 2i around s. It will turn out to be handy to fix notation for
D := B2i(s)−{z : d(s, z) ≤ 2i−1}, the “donut” formed by removing the (closed)
ball of radius 2i−1 centered at s from B.

We will use a cover of B by a small (in terms of α and 1/ρ) set of balls of
radius ρ · 2i−2. This radius is chosen carefully to ensure the following: whenever
we take a nonhalving step towards target t from a node u with d(u, t) ≥ 2i−1, we
have stepped along a shortest path to every node in the ball containing t that
is included in the cover.

Lemma 4. There is a set Q ⊆ B where |Q| ≤ (8/ρ)α and
⋃

�∈Q Bρ·2i−2(
) ⊇ B.

Proof (sketch). By repeatedly applying the definition of doubling dimension, we
find that we can cover B with a set of at most 2(3+log2(1/ρ))α = (8/ρ)α balls of
radius at most ρ ·2i−2 that cover B. We let Q denote the set of their centers. ��

Throughout this section, fix Q to denote this set, so that, for every u ∈ B, there
exists a point q ∈ Q such that d(u, q) ≤ ρ ·2i−2. Write q(u) := argminq∈Qd(q, u),
and write C(u) := B ∩ Bρ·2i−2(q(u)). Notice that u ∈ C(u).

Lemma 5. Let t ∈ B be arbitrary. Suppose CautiousGreedy(s, t) arrives at
node u with d(u, t) > 2i−1. Let v ∈ C(t) be arbitrary. Then Bd(u,v)(u) ⊆ B.
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Proof (by induction on the number of steps taken by CautiousGreedy(s, t)).
If no steps have been taken by CautiousGreedy(s, t), then the claim is trivial,
because u = s and C(t) ⊆ B. Otherwise, suppose that u was reached by a step
from a node w. Notice that every step that CautiousGreedy(s, t) has taken
before reaching u must be nonhalving: otherwise, there was a halving step from
some u∗ with d(s, t) ≥ d(u∗, t) to a neighbor v∗ with d(v∗, t) ≤ d(u∗, t)/2; but
then u would not satisfy the conditions of the lemma, as d(v∗, t) ≤ d(u∗, t)/2 ≤
d(s, t)/2 ≤ 2i−1. Observe that d(v, t) < ρ · 2i−1:

d(v, t) ≤ d(v, q(t)) + d(q(t), t) < (ρ · 2i−2) + (ρ · 2i−2) = ρ · 2i−1.

by the triangle inequality and the fact that v, t ∈ C(t) ⊆ Bρ·2i−2(q(t)) by the def-
inition of v and C(t). We also have that d(w, t) > d(u, t) > 2i−1 by assumption.
Therefore, because we took a nonhalving step from w to u, Lemma 3 implies that
d(w, v) = d(w, u) + d(u, v), because d(v, t) < ρ · 2i−1 implies d(v, t) < ρ · d(w, t).
To complete the proof of the lemma, consider a generic point x. We show that
x ∈ Bd(u,v)(u) ⇒ x ∈ B:

x ∈ Bd(u,v)(u) ⇐⇒ d(x, u) < d(u, v)
⇐⇒ d(x, u) < d(w, v) − d(w, u)

(d(w, v) = d(w, u) + d(u, v) as above)

⇒ d(x, w) < d(w, v)
(d(x, w) ≤ d(x, u) + d(u, w) by the triangle inequality)

⇐⇒ x ∈ Bd(w,v)(w)
⇒ x ∈ B (inductive hypothesis). ��

For arbitrary t ∈ B, let Xt be a random variable denoting the number of steps
that CautiousGreedy(s, t) takes before it reaches a person u with d(u, t) ≤
2i−1. Note that, for t ∈ B − D, we have Xt = 0: the node s itself satisfies the
desired condition for u. For t ∈ D, it suffices to reach a node u ∈ C(t): we have

d(u, t) ≤ d(u, q(t)) + d(q(t), t) < ρ · 2i−2 + ρ · 2i−2 = ρ · 2i−1 ≤ 2i−1

by the triangle inequality, the definition of C(t) and q(t) and the fact that
t ∈ C(t), and Lemma 2. Note CautiousGreedy(s, t) will take a halving step
to follow a link to any node in C(t) if d(s, t) > 2i−1, as d(u, t) < 2i−2 < d(s, t)/2;
thus it suffices to compute the probability that a node has a link to C(t).

Lemma 6. For t ∈ D, we have E[Xt] ≤ Hn · pop(B)/pop(C(t)).

Proof. Suppose CautiousGreedy has generated a partial path to t and that u
is the last node on that path. If d(u, t) ≤ 2i−1, we are done, so consider a node u
such that 2i−1 < d(u, t) ≤ d(s, t) ≤ 2i, as every step of CautiousGreedy

moves closer to the target t. The probability that a rank-based link from such a
node u goes into C(t) is

Pr[u → C(t)] =
∑

v∈C(t)

1
Hn · ranku(v)

≥
∑

v∈C(t)

1
Hn · pop(B)

=
pop(C(t))

Hn · pop(B)
(2)
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by (1) and Lemma 5. Thus at every step while CautiousGreedy is farther
than 2i−1 from the target, the probability of the current node having a rank-
based link to C(t) is given by (2). Thus the expected number of steps until
CautiousGreedy either reaches a point within distance 2i−1 of t through non-
halving steps or reaches a person in C(t) via a halving step is no larger than
the expected waiting time for success in geometric random process with success
probability pop(C(t))/(Hn · pop(B)). The claim follows. ��

Lemma 7. Let t be a target chosen uniformly at random from B. Then the
expected length of CautiousGreedy(s, t) before it arrives at some node u with
d(u, t) ≤ 2i−1 is at most |Q| · Hn, where the expectation is taken both over the
random construction of the network and over the random choice of t.

Proof. Let X be a random variable denoting the length of the path found by
CautiousGreedy(s, t) before it arrives at a node u with d(u, t) ≤ 2i−1 when t
is drawn uniformly at random from B. Then

E[X ] = E[X | t ∈ D] · Pr[t ∈ D | t ∈ B]
+ E[X | t ∈ B − D] · Pr[t ∈ B − D | t ∈ B]

= E[X | t ∈ D] · Pr[t ∈ D | t ∈ B] (t ∈ B − D is done in zero steps)

=

[
∑

t∈D

E[Xt] · 1
pop(D)

]

· pop(D)
pop(B)

≤
∑

t∈D

Hn · pop(B)
pop(C(t))

· 1
pop(D)

· pop(D)
pop(B)

(Lemma 6)

= Hn

∑

t∈D

1
pop(C(t))

= Hn

∑

q∈Q

pop(C(q))
pop(C(q))

( 1
pop(C(q)) is summed once for each person in C(q))

= Hn · |Q|. ��

Reaching the Target

Lemma 7 establishes that, for a fixed source s and a fixed i, the expected number
of steps for CautiousGreedy to get to within distance 2i−1 of a target chosen
uniformly at random from the ball of radius 2i around s is small as long as |Q| is
small. By repeated invocations of this lemma, we can establish a polylogarithmic
upper bound on the expected length of the path found by CautiousGreedy:

Theorem 8. Fix a neighbor-connected rank-based social network with popula-
tion size n, depth of field ρ, doubling dimension α, and aspect ratio Δ. Let s be
an arbitrary source person, and let t be a target person chosen uniformly at ran-
dom from the population. Then the expected length of the CautiousGreedy(s, t)
path from s to loc(t) is O(log n · log Δ · (8/ρ)α), where the expectation is taken
over both the random construction of the network and the random choice of t.
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Proof. Let Yu,i be a random variable that denotes the number of people that
CautiousGreedy(u, t) encounters before it reaches a person within distance
2i−1 of a target t chosen uniformly at random from B2i(u). For any u and i, by
Lemma 7, we have E[Yu,i] ≤ |Q|·Hn ≤ (8/ρ)α·Hn. Choose a target t uniformly at
random from the population. For any u and any i, conditioned on d(u, t) < 2i, the
target t is a uniformly chosen person from B2i(u). Thus, starting from any source
node ui, conditioned on the distance to the target being at most 2i, the expected
number of steps before CautiousGreedy reaches a node within distance 2i−1

of the target is O(log n · (8/ρ)α). The total length of the CautiousGreedy(s, t)
is at most the number of steps required to reduce the distance to the target
from Δ down to 1/2—i.e., O(log Δ) iterations of this process. By linearity of
expectation and the above bound, the theorem follows. ��

5 A Tight Lower Bound on Cautious Greedy

We have shown that Et[|CautiousGreedy(s, t)|] = O(log2 n) in networks with
constant doubling dimension, constant depth of field, and aspect ratio that is
polynomial in the population size. In this section, we exhibit a network with
α = Θ(1), 1/ρ = Θ(1), and Δ = n such that the expected length of the path
CautiousGreedy(s, t) for a randomly chosen t is Ω(log2 n). Our results rely
heavily on a lower bound proven by Martel and Nguyen [20] on Greedy: in a
k-dimensional grid with Pr[u → v] ∝ d(u, v)−k, for any source–target pair 〈s, t〉
with d(s, t) > cn, the expected length of Greedy(s, t) is Ω(log2 n), where a de-
pendence on the constant c is hidden by the Ω(·). Because rank-based link prob-
abilities differ by only a constant factor from Pr[s → t] ∝ d(s, t)−k in uniform-
population grids [16], we need only connect CautiousGreedy to Greedy to
derive a lower bound.

Consider a uniform-population rank-based social network Rn
uniform where the

underlying metric space is a ring (that is, we take L = {0, 1, . . . , n} and d(i, j) =
min(|i− j|, |j− i|) and exactly one person living at each point). For a target per-
son t, write gs(t) := E[|Greedy(s, t)|] and cs(t) := E[|CautiousGreedy(s, t)|]
to denote the expected length of the paths found by the two algorithms to a
particular target t. (Here the expectation is taken only over the random choices
of the rank-based friendships.)

Lemma 9. In Rn
uniform , (i) if n/4 ≥ d(s′, t) ≥ d(s, t), then gs′(t) ≥ gs(t); and

(ii) if d(s, t) ≤ n/4, then cs(t) ≥ gs(t). ��

(The proofs, both by induction on d(s, t), are omitted due to space constraints;
the proof of claim (ii) relies on claim (i).)

Theorem 10. In Rn
uniform , for any source s and a target t chosen uniformly at

random, CautiousGreedy(s, t) has expected length Ω(log2 n).

Proof. For any constant c ∈ (0, 1/4), there are Ω(n) people t with cn < d(s, t) ≤
n/4. Thus with Ω(1) probability, the random target t satisfies cn < d(s, t) ≤ n/4.
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For any such target t, the expected length of CautiousGreedy(s, t) satisfies
cs(t) ≥ gs(t) = Ω(log2 n) by Lemma 9(ii) and the aforementioned theorem of
Martel and Nguyen [20], trivially adapted to handle the differences between
the distance-based and rank-based models, which can affect probabilities by a
constant factor. For a constant fraction of the choices of t, then, we have an
Ω(log2 n) bound on the expected length of CautiousGreedy(s, t). ��

6 Future Directions

We have shown that, in rank-based networks, cautious-greedy routing performs
well, in expectation for a randomly chosen target, as long as the underlying
metric space has small aspect ratio, small doubling dimension, and large depth
of field. In particular, we have been able to improve by a O(log Δ) factor the
results on Greedy [16]. But two natural questions remain:

– Is the expected length of the path found by Greedy to a randomly chosen
target also short, say O(log2 n) in a Θ(1)-dimensional grid under Manhattan
distance? (Or can CautiousGreedy be much better than Greedy?)

– Do either Greedy or CautiousGreedy achieve short paths—say of length
O(logΘ(1)(n+Δ) ·f(ρ, α))—for an arbitrary target (in expectation only over
the random construction of the network)?

In fact, these questions appear to be intimately connected. In Sect. 1, we gave an
example in which Greedy appears to hurt itself by taking a long-range link that
brings it very close to a “distracting” point of high population, which attracts a
large fraction of the rank-based links from people that Greedy subsequently en-
counters. But it is not too hard to see that Greedy “escapes” from the shadow
of a distracting point in polylog(n) steps, because there is a reasonable proba-
bility of increasing one’s distance from the distraction by a factor of 3/2 at any
step. However, it is an open question as to whether some adversarial construc-
tion of a set of distracting points of various sizes might cause a particular target
to be hard to reach efficiently. This question appears to be closely related to the
question of whether the distracting points that Greedy may encounter in fact
substantially slow down its performance. (For example, a natural analogue to
Lemma 5 does not appear to hold for Greedy unless the ball B is expanded, as
was done in previous analysis [16], which had the carryover effect of the extra
logarithmic factor.)

It would also be interesting to better understand the role of the depth of
field of the metric space. It is known, for example, that for doubling dimen-
sion α = ω(log log n), there is no decentralized routing algorithm that achieves
polylogarithmic routing time for all pairs of nodes [10]. The interaction between
doubling dimension and depth of field is an interesting direction for further
study—for example, is there a similar lower bound in networks with low dou-
bling dimension but very small depth of field?
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3 Dipartimento di Matematica, Università di Tor Vergata, 00133 Roma, Italy
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Abstract. Let G = (V, E) denote an undirected weighted graph of n
nodes and m edges, and let U ⊆ V . The relative eccentricity of a node
v ∈ U is the maximum distance in G between v and any other node of
U , while the radius of U in G is the minimum relative eccentricity of
all the nodes in U . Several facility location problems ask for partitioning
the nodes of G so as to minimize some global optimization function of
the radii of the subsets of the partition. Here, we focus on the problem
of partitioning the nodes of G into exactly p ≥ 2 non-empty subsets,
so as to minimize the sum of the subset radii, called the total radius of
the partition. This problem can be easily seen to be NP-hard when p
is part of the input, but when p is fixed it can be solved in polynomial
time by reducing it to a similar partitioning problem. In this paper, we
first present an efficient O(n3) time algorithm for the notable case p = 2,
which improves the O(mn2 + n3 log n) running time obtainable by ap-
plying the aforementioned reduction. Then, in an effort of characterizing
meaningful polynomial-time solvable instances of the problem when p is
part of the input, we show that (i) when G is a tree, then the problem
can be solved in O(n3p3) time, and (ii) when G has bounded treewidth
h, then the problem can be solved in O(n4h+4p3) time.

Keywords: Facility location problems, Graph partition, Graph radius,
Graph treewidth, NP-hardness.
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to use the service provided by the facilities. One can define several variants in
this class of problems, depending on various parameters, like the opening cost of
a facility as a function of the selected site, or the nature of the embedding space,
and many others. For a comprehensive survey on facility location problems, we
refer the reader to [5,8,10].

In a graph-theoretic setting, which is of interest for this paper, facility location
is the following problem family: Given an undirected graph G = (V, E) of n nodes
and m edges with positive weights, and given a positive integer p ≤ n, return
a set of p distinct nodes for installing the facilities and an assignment of each
node to one of the facilities, in such a way that some cost function defined on the
shortest paths in G between any node and its respective facility is minimized.
We study the cost function that considers for each facility the distance of the
farthest assigned node, and that takes the sum of these distance over all facilities.
It is important that the distance here is measured as the length of a shortest
path in the entire graph G.

1.1 Related Work

Up to now, the research on graph location problems was generally founded
on the basic assumption that each demand node has to be associated with its
nearest (w.r.t. to the underlying graph shortest-path distance) facility. Within
this framework, the unquestionably most extensively studied problems are the
p-median and the p-center, for which we refer the reader to [8,10,6,7,11,14].
The aforementioned assumption conforms to the traditional customer-centric
approach, in which the objective is to minimize the maximum effort that a cus-
tomer has to make for using the service supplied by a facility. Many practical
situations, however, are facility-centric, in the sense that the set-up and the op-
erational cost of a facility might depend upon the maximum effort that a facility
has to make to serve a customer. Problems of this sort arise in robotics appli-
cations, in multipoint delivery service systems, and in radio antenna network
design, where the desired reach of an antenna (implied by the distance of its far-
thest assigned customer) limits the choice of suitable antenna models. In either
case, the total cost depends on the service radius of each single installed facility
(i.e., the distance in G of the farthest assigned node), and thus constraining a
facility to serve all of its neighborhood (i.e., the set of nodes closer to it than to
any other facility) might result in an overall drawback.

The stimulating applications defined by this different perspective motivated
a series of papers aiming to solve the most immediate facility-centric location
problem, namely that in which the total service radius (i.e., the sum of the
facility service radii) has to be minimized. Initially, the attention of researchers
has focused on the geometric setting. Here the problem can be formulated as
that of covering a given set of n points in a d-dimensional Euclidean space by
means of a set of at most p circles of radius ri, whose center positions can be
constrained in several different ways. The objective function is to minimize the
sum of rα

i over all these circles, where α is a constant that is typically 1 or larger,
depending on the boundary conditions. For a summary of results in this general



Locating Facilities on a Network to Minimize Their Average Service Radius 589

framework we refer the reader to a recent paper by Alt et al. [1]. However, for
the case α = 1, which is close in spirit to our setting, the complexity of the
problem is still unknown. Moreover, two PTAS’s in Euclidean spaces of constant
dimension are known, for both the case in which the number of circles is left
unspecified (i.e., any p ≤ n is acceptable) but the center positions are restricted
to a given set of possible locations [9], and in the (more general) case in which
the number of circles is bounded and centering a circle at any given point has a
variable non-negative cost [2].

Moving from Euclidean to discrete metric spaces, the problem becomes that
of aggregating the given input elements into a set of p clusters, so as to minimize
the sum of cluster radii. In this setting, an algorithm is known that computes,
for any given ε > 0, an approximate solution within a factor of 3.504 + ε of the
optimum, in nO(1/ε) time [4].

Finally, moving from metric spaces to graphs, recently in [12] the authors
studied the so-called p-radius problem, which asks for partitioning the nodes of
a graph into exactly p non-empty subsets, so as to minimize the sum of radii
of the corresponding induced subgraphs. Note the important distinction from
the problem we study in this paper: While here, a path from a node to its
facility is allowed to pass through arbitrary other nodes (and facilities), the p-
radius problem requires that the path from a node to its facility visit only nodes
assigned to the same facility (that is, paths must remain inside subgraphs). The
authors showed that this problem is NP-hard, when p is part of the input, even
if the input graph is metric, and provided for the special case p = 2 an algorithm
requiring O(mn2 + n3 log n) time, and for the general case p > 2 an algorithm
requiring O(n2p/p!) time.

1.2 Our Results

In this paper, we therefore aim at locating p facilities on the nodes of a graph, and
then assigning each node to a facility, in such a way that the total service radius
(recall that this is the sum of all service radii) is minimized. For this problem,
that we call the p-Location with Minimum Total Radius (p-LMTR, from now on)
problem, we first show an equivalence (based on a polynomial-time reduction)
with the p-radius problem, which immediately implies the NP-hardness for our
problem when p is part of the input. Afterwards, we present an efficient O(n3)
time algorithm for the case p = 2, which can be used to return, thanks to
the aforementioned reduction, a solution for the 2-radius problem, without any
additional time charge. In this way, we improve the result presented in [12] for
this problem. Then, we focus our attention on the especially notable case in
which the input graph is a tree, and we show that the problem can be efficiently
solved in O(n3p3) time (which can be actually improved to O(n2p3) time if the
given tree is unweighted). Finally, we further extend in a non-trivial way the
techniques developed for trees to graphs with a bounded treewidth h, for which
we show that our problem can be solved in O(n4h+4p3) time.

The paper is organized as follows: after stating the problem in Section 2, in
Section 3 we show the equivalence with the p-radius problem and we present the
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efficient algorithm for the case p = 2; in Section 4, we analyze the case in which
G is a tree, while finally in Section 5 we study the problem when G has bounded
treewidth.

2 Problem Statement

Let G = (V, E) be an edge-weighted graph with weight function w : E → R
+.

For any two given nodes a, b in G, we denote by δG(a, b) the distance (i.e.,
the length of a shortest path) in G between a and b. Given a subset U ⊆ V
and a node v ∈ U , we define the relative (i.e., w.r.t. U) eccentricity of v in
G to be εG(v, U) = maxu∈U δG(u, v), and we denote by rG(U) the radius of
U in G, defined as rG(U) = minv∈U εG(v, U). The term radius will also refer
to the associated path. We say that a node v ∈ U is a center of U in G if
εG(v, U) = rG(U). The radius of G can now be expressed as rG(V ).

The p-LMTR problem is formally defined as follows:

Input: An undirected weighted graph G = (V, E), w : E → R
+, and p ∈ N.

Output: A pair 〈L, P〉, where L = {c1, . . . , cp} ⊆ V is a set of p distinct
location nodes (these are the nodes where the facilities will be installed),
and P = {V1, . . . , Vp} is a partition of V (meaning that all nodes in Vi are
associated with the location node ci, i = 1, . . . , p), such that the following
cost function is minimum:

φ(G, L, P) =
p∑

i=1

max
v∈Vi

{δG(ci, v)} =
p∑

i=1

εG(ci, Vi). (1)

Notice that, for any given partition, the selected cost function implies that the
best possible choice for a location node of any subset of the partition is exactly
a center of that subset in G. Because a center of a subset is easy to find, from an
algorithmic point of view, our problem reduces to that of finding a p-partition
(i.e., a partition of size p) P = {V1, . . . , Vp} of V such that the following cost
function is minimized:

ϕ(G, P) =
p∑

i=1

rG(Vi). (2)

Thus, in the rest of the paper, we will adopt this viewpoint, and our algorithms
will deal with the minimization of (2).

3 Solving Efficiently the 2-LMTR Problem

A problem related to ours is the p-radius problem [12], which asks for a p-
partition of V such that

∑p
i=1 rG[Vi](Vi) is minimized, where G[Vi] denotes the

subgraph of G induced by Vi. It is worth noticing that rG[Vi](Vi) may be different
from rG(Vi). In the following, we show how to exploit this relationship between
the two problems in order to provide efficient algorithms for the 2-LMTR and
the 2-radius problem. We start by proving the following:
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Lemma 1. Let p ∈ N and let G = (V, E) be an undirected weighted graph having
n nodes, m edges, and positive edge weights. Then any solution of value ϕ̃ for the
p-LMTR problem can be transformed in O(np (m+n log n)) time into a solution
V ′

1 , . . . , V ′
k for the p-radius problem such that

∑p
i=1 rG[V ′

i ](V ′
i ) ≤ ϕ̃.

Proof. Let P = {V1, . . . , Vp} be the partition associated with the given solution
of the p-LMTR problem, and for each i, let ci be a center of Vi. We compute
for each ci a shortest paths tree SG(ci) of G rooted at ci. Now, let Ti denote
the minimal subtree of SG(ci) spanning Vi, and let V (Ti) be the node set of Ti.
In the following, we consider Ti as rooted at ci. It is easy to see that the radius
of Ti is equal to the radius of Vi. Then, we have that

∑p
i=1 rTi (V (Ti)) = ϕ̃.

Note that trees Ti may share some nodes, hence their node sets do not identify
a partition of V . Our idea is to built p trees T ′

1, . . . , T
′
p from T1, . . . , Tp such that

V (T ′
1), . . . , V (T ′

p) is a partition of V and, for every i, the radius of T ′
i is not

greater than the one of Ti.
We say that a node v is used k times if it belongs to k trees. We proceed

in steps, until no node is used more than once. At each step, we consider node
used more than once, say v. Let Ti, Tj be two trees each containing v, and let
�i (resp., �j) be the length of a longest directed path in Ti (resp., Tj) starting
at v and leading away from ci, i.e., going to a leaf of Ti. W.l.o.g. we can assume
that �i ≤ �j . Then we remove the subtree of Ti rooted at v from Ti, and we add
the corresponding nodes to V (Tj). Then, we compute the shortest paths tree
SG[V (Tj)](cj), and the result is our new Tj . Notice that after having transformed
Ti and Tj as described, the radii of both trees do not increase, and we have
decreased the number of time this node is used by at least 1.

Concerning the time complexity, observe that the initial phase is dominated by
the computation of all the centers, that can be accomplished in O(mn+n2 log n)
time by solving the all-pairs shortest paths problem in G. Afterwards, any node
v ∈ V is used at most p times, and so the number of steps for eliminating
shared nodes is bounded by O(np). Finally, each step can be easily performed
in O(m + n log n) time. The claim follows. �	

Notice that, since any feasible solution for the p-radius problem is also a feasible
solution for the p-LMTR problem with at most the same cost, from Lemma 1
we know that the optimum solutions to both problems have the same objective
value. In particular, it follows that the p-LMTR problem is NP-hard when p
is part of the input, and polynomial time solvable for constant values of p.
Moreover, it is not too hard to see that the O(1)-approximation algorithm in [4]
can be used to obtain the same approximation ratio for the p-LMTR problem.
Indeed, we can compute an approximate solution for the p-LMTR problem by
running the algorithm in [4] on the metric closure of the input graph. Then, from
Lemma 1, it follows that the same approximation ratio holds for the p-radius
problem as well.

Now, we focus on the case p = 2, and we provide an efficient algorithm for
both the p-LMTR problem and the p-radius problem. This improves the result
in [12].
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Theorem 1. Both the 2-LMTR and the 2-radius problem can be solved in O(n3)
time.

Proof. Let us concentrate on the 2-LMTR problem. Our algorithm is the fol-
lowing. We start by solving the all-pairs shortest paths problem in G. Moreover,
for each node v, we sort all the other n − 1 nodes in a non-decreasing order of
distance from v. Both operations can be accomplished in O(mn+n2 log n) time.

Then, we consider all the possible pairs of nodes in G, since each of these
pairs is a feasible pair for the subset centers. For each fixed pair, we compute
an optimal bipartition of V w.r.t. the fixed pair, namely a distribution of the
nodes into two subsets in such a way that the sum of the radii (computed w.r.t.
the two fixed centers) of the two subsets is minimum. Finally, out of all feasible
pairs, we select a pair minimizing the sum of the radii.

Given c1, c2 ∈ V , we can compute an optimal bipartition of V w.r.t. c1, c2

as follows. We consider n − 1 (not necessarily distinct) values for the radius of
the subset having center c1, say r1, . . . , rn−1, such that for each i the number
of nodes having distance at most ri from c1 is at least i. In other words, let
c1 = v0, v1, . . . , vn−1 be the nodes ordered by non-decreasing distance from c1,
then we set ri = δG(c1, vi). For each i from n − 1 up to 0, we consider the
partition {V i

1 = {v0, . . . , vi} \ {c2}, V i
2 = V \ V i

1 }, and we compute its total
radius. Since we have sorted the nodes by distances, we can find the sum of the
radii of each partition in O(1) time. Then finding an optimal bipartition w.r.t. a
fixed pair c1, c2 takes O(n) time, which implies that the overall time complexity
of the algorithm for the 2-LMTR problem is bounded by O(n3). Moreover, notice
that from Lemma 1, the same time complexity holds for the 2-radius problem as
well, since the reduction takes O(mn+n2 log n) time, and the claim follows. �	

4 An Efficient Algorithm for Trees

In this section we provide an efficient algorithm for the p-LMTR problem for
trees. To this aim, we focus on the p-radius problem on trees, and we provide
a polynomial-time algorithm for solving it. Recall that the p-LMTR problem
and the p-radius problem have the same objective value of an optimum solution,
and hence the solution for the p-radius problem provided by the algorithm is an
optimal solution for the p-LMTR problem as well.

Before describing the algorithm, we give the following definition. Let G =
(V, E) be a (weighted or unweighted) graph, and let V1, . . . , Vp be a p-partition
of V . We call each set of the p-partition a cluster. For a given subgraph G′ of G,
we say that a cluster Vi is external to G′ (or simply external) if the center ci of
Vi does not belong to G′, otherwise Vi is said to be internal.

The basic idea of the algorithm (whose pseudo-code is given below) is the
following: given a weighted tree T and an integer p ∈ N, we root T at any
arbitrary node, and we consider each subtree of T in a bottom-up order. For each
subtree T ′ with root x, we consider O(np) subproblems, each of them described
by a pair of values, say Δ ∈ R and k ∈ N, and denoted by Γ Δ,k

T ′ . Before giving
the definition of Γ Δ,k

T ′ , we need some additional notations.
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Algorithm 1 The p-LMTR algorithm for weighted trees.
Input: T = (V, E), w : E → R

+, p ∈ N

Output: a p-partition of V minimizing the sum of the radii
1: root T at any arbitrary node x̄ ∈ V
2: for each x ∈ V in a bottom-up order do
3: let T ′ be the subtree of T rooted at x
4: for each k = 1, . . . , p do
5: find an optimal solution for Γ −1,k

T ′

6: end for
7: for each v ∈ V (T ′) \ {x} do
8: Δ = δT ′ (x, v)
9: for each k = 1, . . . , p do

10: find an optimal solution for Γ Δ,k
T ′

11: end for
12: end for
13: end for
14: return the solution for Γ −1,p

T

Given a subtree T ′ with root x, and a value Δ, we define V Δ
T ′ = {v ∈ V (T ′) |

δT ′(x, v) ≤ Δ}. Then, for a given k ∈ {1, . . . , p}, we define Γ Δ,k
T ′ to be the

problem of finding a subset U ⊆ V Δ
T ′ and a k-partition {V1, . . . , Vk} of V (T ′)\U ,

such that
∑k

i=1 rG[Vi](Vi) is minimum. We refer to this problem as the problem
of finding an optimal k-partition for T ′ with option Δ. The idea is that we aim at
solving Γ Δ,k

T ′ whenever we are considering a solution for T with (p − k) clusters
external to T ′, and in which each node v ∈ V Δ

T ′ is within the radius of some
cluster external to T ′; this means that v can be picked either in some external
cluster without increasing the sum of the radii, or in some cluster internal to T ′.
All Γ Δ,k

T ′ with Δ < 0 are equivalent, since all vertices of T ′ have to be picked in
internal clusters. We use Γ−1,k

T ′ as a representative of this case.
Let T ′ be a subtree of T with root x. Now, we show how to solve Γ Δ,k

T ′ for
each k = 1, . . . , p. If the number of nodes in V (T ′) \ V Δ

T ′ is no more than k,
then Γ Δ,k

T ′ has a solution of cost 0, as we can make each node in V (T ′) \ V Δ
T ′ a

singleton cluster, and put all the remaining nodes in U . Otherwise, we have two
cases:

Case Δ < 0. Since x must belong to some cluster Vx internal to T ′, we consider
all possible pairs of center and radius for Vx, and for each pair, say 〈c, r〉
(with r ≥ δT ′(c, x)), we find an optimal k-partition for T ′ w.r.t. 〈c, r〉, and
we select the one minimizing the sum of the radii. To compute the optimal
k-partition for T ′ w.r.t. 〈c, r〉, we proceed as follows. We remove from T ′ the
(unique) path in T ′ joining c and x, and we obtain a forest F consisting of
a certain number of smaller subtrees.1 Let T1, . . . , Th be these trees listed in
any arbitrary order, and, for each i = 1, . . . , h, let yi be the root of Ti. Then,

1 Notice that, if we put c and x in the same cluster Vx, then we have to put all the nodes
on the path joining them in Vx, otherwise the radius of Vx would be unbounded.
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Fig. 1. An example of the execution of the algorithm for the problem Γ −1,4
T ′ for the

case Δ < 0 and x covered by an internal cluster of center c and radius 20

for each i, we consider the value Δi = r − δT ′(c, yi). Observe that the nodes
of Ti with distance at most Δi from yi are the nodes that can be picked
in Vx without increasing the radius of Vx, and therefore we only have to
consider those trees with V Δi

Ti
�= V (Ti), which cannot be placed completely

within Vx. Moreover, notice that, for each i, we have already computed an
optimal solution for Γ Δi,k

′

Ti
for k′ = 1, . . . , p.2 Hence, we can combine these

solutions by means of a quite standard dynamic programming technique in
order to obtain an optimal k′-partition for F . Due to the lack of space,
we do not present this dynamic programming algorithm here, and we refer
the reader to the technical report. Notice that once we have computed an
optimal k′-partition for F , this in turn provides an optimal (k′+1)-partition
for T ′ w.r.t. to 〈c, r〉. More formally, let ki be the number of centers used for
Ti in the optimal k′-partition for F , and let Ui be the subset of nodes of Ti

of the solution for Γ Δi,ki

Ti
. Then, the optimal (k′ + 1)-partition for T ′ w.r.t.

〈c, r〉 consists of all cluster of each ki-partition for Γ Δi,ki

Ti
, plus the cluster

Vx containing all the nodes in the path between x and c, and all nodes in⋃h
i=1 Ui. In Figure 1, we show an example of the execution of the algorithm.

Case Δ ≥ 0. We take the best solution between the two following ones: (i) the
optimal solution picking x in some cluster internal to T ′, and (ii) the optimal
solution picking x in some cluster external to T ′. The computation of these
solutions is described below.
(i) In this case, since x must belong to some internal cluster, then every

node of T ′ must be picked in some internal cluster, otherwise there would
exist some cluster external to T ′ with unbounded radius. Hence, Γ Δ,k

T ′ is
equivalent to Γ−1,k

T ′ , that we have already solved.
(ii) Observe that, in this case, the problem Γ Δ,k

T ′ is equivalent to Γ−1,k+1
T ′

w.r.t. 〈c := x, r := Δ〉, for which we have already computed an optimal

2 Indeed, we have already computed the optimal solution for Γ Δv,k′

Ti
, for each k′ and

each Δv = δTi(yi, v), v ∈ V (Ti), but it is not too hard to see that, if we denote by
v1, v2, . . . the nodes of Ti sorted by non-decreasing distance from yi, the optimal

solution for Γ Δi,k′

Ti
coincides with the optimal solution for Γ

Δvj
,k′

Ti
, where j is the

maximum index such that Δvj ≤ Δi < Δvj+1 .
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solution. Hence, this solution can be available in constant time if, when
we are considering the case Δ < 0, we explicitly store the solution for
Γ−1,k+1

T ′ w.r.t. 〈c, r〉, whenever c = x.

As far as the correctness of the algorithm is concerned, this can be shown
by proving that, for each subtree T ′ of T with root x, the algorithm finds an
optimal solution for Γ Δv ,k

T ′ , Δv = δT ′(x, v), v ∈ V (T ′), k = 1, . . . , p. This in turn
can be proved by induction on the height of T ′, and immediately follows by
construction.

Concerning the time complexity, the number of all possible pairs 〈c, r〉 for Vx

in Step 5 is bounded by O(n2). If the obtained forest F has more than p trees,
then there is no solution for Γ−1,p

T ′ w.r.t. 〈c, r〉. Otherwise, we can distribute the
k = 1, . . . , p centers to F in O(p3), and thus Steps 4-6 can be accomplished in
O(n2p3) time, since by evaluating the center of the cluster containing x in depth-
first order with increasing radius, it is possible to access the Γ Δi,ki

Ti
at amortized

constant time, even though the Δi are not discrete. Steps 7-12 take O(np) time,
since the number of different values of Δ is bounded by n+1 (including Δ < 0),
and since an optimal solution for Γ Δ,k

T ′ for each k and each Δ can be found
in O(1) time. Then, since the number of managed subtrees of T is n, we have
that the overall time complexity of the algorithm is bounded by O(n3p3). Hence,
because every optimal solution for the p-radius is also an optimal solution for
the p-LMTR, we can state the following

Theorem 2. For weighted trees, both the p-LMTR problem and the p-radius
problem can be solved in O(n3p3) time. �	

4.1 How to Reduce the Time Complexity for Unweighted Trees

On unweighted trees, we can use the following property to reduce the time
complexity of the p-partition algorithm.

Lemma 2. Let G = (V, E) be an unweighted graph and let p ∈ N. Then, there
exists an optimal solution for the p-LMTR problem whose associated partition
P satisfies the following property: ∀i �= j with |Vi| �= 1 and |Vj | �= 1, we have
δG(ci, cj) > ri + rj, where ci, cj and ri, rj are the centers and the radii of Vi and
Vj, respectively.

Proof. Let P = {V1, . . . , Vp} be a p-partition of an optimal solution not satisfying
the property; then, we transform it into another optimal solution which satisfies
the property by repeatedly using the following argument. Let Vi and Vj with
|Vi| �= 1 and |Vj | �= 1, such that δG(ci, cj) ≤ ri + rj . Then there is a vertex c′

on a path between ci and cj with δG(ci, c
′) ≤ rj and δ(c′, cj) ≤ ri. Every vertex

u ∈ Vi has distance at most δG(u, ci)+δG(ci, c
′) ≤ ri+rj from c′; correspondingly,

δG(u, c′) ≤ rj + ri for all u ∈ Vj . Therefore we can replace Vi and Vj with V ′

and V ′′, where V ′′ is a single vertex from Vj \ {c′} and V ′ = Vi ∪ Vj \ V ′′. This
replacement preserves both the number of sets and the sum of the radii. �	
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To find an optimal p-partition of an unweighted tree with the property specified
in Lemma 2, we can ignore all Γ Δ,k

T ′ with Δ ≥ 0, since every vertex u with
δT (u, ck) ≤ rk must be in Vk. Correspondingly, the cluster Vx with center c that
contains the root x of T ′ has radius r = δ′T (c, x), since any larger r would overlap
with the radius of the cluster containing the parent of x. Thus, for unweighted
trees, we can remove Steps 7-12 from Algorithm 1, and Steps 4-6 can be accom-
plished in O(np3) time. The overall solution is obtained by computing Γ−1,p

T

with all possible centers c and radii r ≥ δT (c, x̄) in O(n2p3) time, thus resulting
in an overall time complexity of O(n2p3). Hence we can state the following

Theorem 3. For unweighted trees, both the p-LMTR problem and the p-radius
problem can be solved in O(n2p3) time. �	

5 A Polynomial-Time Algorithm for Graphs with
Bounded Treewidth

In this section we sketch a dynamic programming algorithm for the p-radius
problem for graphs with bounded treewidth. The algorithm is based on the
same techniques used in Section 4. Before explaining how the algorithm works,
we recall the concepts of tree-decomposition and treewidth of a graph which
have been introduced in [13].

Definition 1. A tree-decomposition of a graph G = (V, E) is a pair 〈{Xi | i ∈
I}, T = (I, F )〉 with {Xi | i ∈ I} a family of subsets of V , one for each node of
T , and T a tree such that

–
⋃

i∈I Xi = V ;
– for all edges (u, v) ∈ E, there exists an i ∈ I with u ∈ Xi and v ∈ Xi;
– for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩ Xk ⊆ Xj.

The treewidth of a tree-decomposition 〈{Xi | i ∈ I}, T = (I, F )〉 is maxi∈I |Xi| −
1. The treewidth of a graph G is the minimum treewidth over all possible tree-
decompositions of G. Given a subtree T ′ of the tree of a tree-decomposition of
G, we will denote by GT ′ the subgraph of G induced by

⋃
j∈V (T ′) Xj . For every

edge (i, j) ∈ F , let T1, T2 be the two subtrees of T obtaining by removing the
edge (i, j). By definition of tree-decomposition of G, observe that Y = Xi ∩ Xj

separates the graph into 2 components G′
1, G

′
2, where, G′

1 is the graph induced
by V (T1) \ Y , while G′

2 is the graph induced by V (T2) \ Y , respectively.
The algorithm is an extension of the dynamic programming algorithm given

in Section 4, with the main difference that it traverses over the nodes of the tree
decomposition instead of the graph vertices. Given the tree T (rooted at any
vertex) of a tree-decomposition 〈{Xi | i ∈ I}, T = (I, F )〉 of a graph G with
treewidth h,3 we consider each subgraph GT ′ induced by a subtree T ′ of T in a
bottom-up order. For each subtree T ′ with root i, we consider O((p + h)n2h+2)
3 Notice that T is part of the input. For graphs with constant treewidth, a tree-

decomposition of G can be computed in linear time [3].
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subproblems, each of them parametrized with the number of clusters and with a
cluster per vertex in Xi. More precisely, let [c, r] be the cluster vector associating
with every vertex xj ∈ Xi a cluster with center cj and radius rj that covers xj .
Then, we define Γ

[c,r],k
T ′ to be the subproblem of finding a k-partition V1, . . . , Vk

of GT ′ such that
∑k

i=1 rG[Vi](Vi) is minimum, under the restriction that vertex
xj ∈ Xi is in a cluster with center cj and radius rj .4 Observe that, since every
non-leaf Xi is a separating set and we are solving k-radius problem, we can
simulate an external cluster 〈cj , rj〉 covering a vertex xj ∈ Xi with a cluster
〈c′j := xj , r

′
j := rj − δG(cj , xj)〉 which still covers xj . This implies that we do not

need to take into account the option Δ we used for weighted trees. On the other
hand, we need to compute Γ

[c,r],k
T ′ for all k ≤ p + h, since one external cluster

may be simulated with up to h + 1 internal ones.
Assume that a vertex i of T is fixed, and assume that T ′ is the subtree of T

with root i. For all the values k = 1, . . . , p + h, the algorithm explores the space
of all possible cluster vectors [c, r] for Xi, and it finds an optimal solution for the
subproblem Γ

[c,r],k
T ′ . So, assume that [c, r] and k are fixed. Now, we show how

the algorithm computes an optimal solution for Γ
[c,r],k
T ′ . For the sake of clarity,

let us assume that node i has only one child, say �, in T . We will deal with the
case in which i has more than one child later. W.l.o.g, assume that some vertices
of GT ′ are not covered by any cluster in the cluster vector [c, r]. Denote by T ′′

the subtree of T with root �. As every vertex xj ∈ Xi is covered by the cluster
with center cj and radius rj , then all the vertices in Y = Xi ∩ X� are already
covered. As observed above, since Y separates the vertices in V (GT ′) \ Y from
those in V \ V (GT ′ ), then we need to cover the vertices of GT ′ that we have
not yet covered by using clusters which are internal to GT ′′ . Assume that the
cluster vector [c, r] contains exactly k′ different centers. Hence, we take the best
solution among the ones for the subproblems Γ

[c′,r′],k−k′

T ′′ , where each of these
cluster vectors [c′, r′] is such that, for every vertex in Xi ∩X�, the corresponding
cluster in [c, r] and [c′, r′] is identical.5. As a consequence, the time complexity
for solving one subproblem in the case in which i has only one child, is O(n2h).

The case in which i has t > 1 children, say �1, . . . , �t, then, for every j =
1, . . . , t and for every k′ = 1, . . . , p, the algorithm selects the best solution among
the ones for the subproblems Γ

[c′,r′],k′

Tj
, where (i) Tj is the subtree of T with root

�j, and (ii) [c′, r′] is a cluster vector such that, for every vertex in Xi ∩ X�j , the
corresponding cluster in [c, r] and [c′, r′] is identical. As observed at the beginning
of this section, Xi separates the graph into t components G′

1, . . . , G
′
t, where, for

each j = 1, . . . , t, G′
j is the graph induced by V (Tj)\Xi. Hence we can use again

a standard dynamic programming technique (due to the lack of space, we refer
the reader to the technical report) for combining the optimal solutions for the

4 Clearly, if 〈cj , rj〉 = 〈ct, rt〉 for some j 	= t, then we will consider it as one cluster,
hence we will sum up r = rj = rt to the objective function only once.

5 Once again, if a cluster pair center-radius has more than one occurrence in all the
cluster vectors we are considering, then it will contribute only once in the objective
function of the problem Γ

[c,r],k
T ′ .
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subproblems. In this case, the time complexity for solving all the subproblems
for each child of i is O(pn2h). Since a node i has at most O(n) children [3],
the overall time complexity for solving Γ

[c,r],k
T ′ is O(pn2h+1). Moreover, as we

have to solve O((p+h)n2h+2) subproblems per node in T , and since T has O(n)
nodes [3], we can state the following:

Theorem 4. For undirected weighted graphs with treewidth h, both the p-LMTR
problem and the p-radius problem can be solved in O(n4h+4p2) time. �	
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Abstract. The algorithms of Mahajan and Vinay compute determinant
and Pfaffian in a completely non-classical and combinatorial way, by re-
ducing these problems to summation of paths in some acyclic graphs. The
attractive feature of these algorithms is that they are division-free. We
present a novel algebraic view of these algorithms: a relation to a pseudo-
polynomial dynamic-programming algorithm for the knapsack problem.
The main phase of MV-algorithm can be interpreted as a computation of
an algebraic version of the knapsack problem, which is an alternative to
the graph-theoretic approach used in the original algorithm. Our main
results show how to implement Mahajan-Vinay algorithms without divi-
sions, in time Õ(n3.03) using the fast matrix multiplication algorithm.

Keywords: Algorithm, Determinant, Graph, Matrix, Pfaffian.

1 Introduction

Computation of a determinant is a very classical problem. The related concept
is a Pfaffian of a matrix defined for skew-symmetric matrices. For such matrices
the Pfaffian is the square root of the determinant, however it can be computed
without involving the square root operation by replacing (in the definitions of
the determinant) permutations by perfect matching. Pfaffians have important
application in graph-matching problems, see [7].

The classical algorithm for computing the determinant is Gaussian elimina-
tion. It needs O(n3) (or O(n2.38) if the fast matrix multiplication is used) addi-
tions, subtractions, multiplications and divisions. On the other hand, the explicit
definition of the determinant as the sum of n! products, shows that it can be
computed without divisions. Avoiding divisions seems attractive when working
over a commutative ring which is not a field, for example when the entries are
integers, polynomials, or rational or even more complicated expressions. Such a
computation of determinants arise in combinatorial problems, see [6]. Strassen
[11] has given a general recipe for converting an algorithm that uses divisions to
obtain an integral final result into an algorithm without divisions. Divisions are
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simulated by expanding expressions into truncated power series. This is some-
how reminiscent of the recursion which also involves power series that can be
truncate because the result is a polynomial. Strassen’s algorithm has the run
time O(n5) (or Õ(n3.38) if the fast matrix multiplication algorithm and the fast
Fourier transformation algorithm are used).

In this paper we translate Mahajan and Vinay [9] beautiful graph-theoretic
algorithm for division-free computation of determinant into a very simple O(n3.5)
algebraic algorithm and show how matrix multiplication is the key operation
in our Õ(n3.03) version. MV-algorithm originally work in O(n4) time and by
Mahajan and Vinay was put to a different use, namely that of computing the
characteristic polynomial [10] of a matrix without divisions, counting additions,
subtractions and multiplications in the commutative ring of entries. Our result
in the case of characteristic polynomial are in many ways analogous to those
for the determinant. By the technique of Baur and Strassen [1] we obtain the
adjoint of a matrix in the same division-free complexity.

We will also consider the Pfaffian of a skew-symmetric matrix, a quantity
closely related to the determinant. Pfaffian arise naturally in the study of match-
ings, the Pfaffian of an oriented graph is just the sum over all possible perfect
matchings except that each matching has an associated sign as well, dictated by
the orientation. The results in the case of Pfaffian are in many ways analogous
to those for the determinant.

We consider only to n × n integer matrices, but our algorithms apply to
matrices over any commutative ring. The determinant of A, det(A), is defined
as

det(A) = (−1)n ·
∑

σ

sgn(σ) · w(σ),

where the sum ranges over all permutations σ of the permutation group on
{1, 2, . . . , n}, Sn, sgn(σ) is (−1)k, where k is the number of cycles in cycle
decomposition of σ and the weight of σ is w(σ) = A[1, σ(1)] · A[2, σ(2)] · . . . ·
A[n, σ(n)].

The determinant of a skew-symmetric matrix (A = −AT ) is the square of
another expression, which is called the Pfaffian [7]. Formally, the Pfaffian of a
skew-symmetric matrix A with an even number n of rows and columns is defined
as

Pf(A) =
∑

M
sgn(M) · w(M),

where the sum ranges over all perfect matchings M. Here, a perfect matching
M is a partition of the set {1, 2, . . . , n} into m = n/2 unordered pairs and is
written as

M = {{i1, j1}, {i2, j2}, . . . , {im, jm}},

where, by convention, ik < jk for each k = 1, 2, . . . , m and i1 < i2 < . . . < im.
The sign of the matching M, sgn(M), is define as the sign of permutation

σM =
(

1 2 3 4 · · · n − 1 n
i1 j1 i2 j2 · · · im jm

)

.
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The weight of M is

w(M) = A[i1, j1] · A[i2, j2] · . . . · A[im, jm].

2 Algebraic View of MV Algorithm for Determinant

We introduce a modified knapsack problem: we have n types of items, for each
type (i) we have m items of type (i). The item Itemi,j has weight j and value
A[i, j]. We have to choose a subset {Itemi1,j1 , Itemi2,j2 , . . . , Itemik,jk

} of the set
of items, each type should be represented at most once. The total value should
be maximum and total weight should equal n.

In other words we have to choose from each row of A at most one element,
such that sum j1+j2+ . . .+jk of column indices equals n and the sum A[i1, j1]+
A[i2, j2] + . . . + A[ik, jk] of chosen elements is maximal.

2.1 Algebraic Knapsack Problem

The modified knapsack problem can be formulated in more algebraic terms as
follows. Assume we have two operations ⊕, ⊗ of a semi-ring S. For a rectangular
n × m matrix A denote by Kt(A) the sum (with respect to ⊕) of all products
A[i1, j1] ⊗ A[i2, j2] ⊗ . . . ⊗ A[ik, jk], where 1 ≤ i1 < i2 < . . . < ik ≤ n, 1 ≤
j1, j2, . . . , jk ≤ m and j1 + j2 + . . . + jk = t.

If ⊕ = max and ⊗ = +, then Kt(A) is the maximum value of taking a set
of items from a set of n items, with constraints that the total sum of weights
of these items is t and the values of the items are given by the table A. Hence
this is the knapsack problem. If A is an integer n × n matrix and the operations
⊕, ⊗ are classical arithmetic operation +, · then we denote

Knapsack(A) = Kn(A).

In our version of MV-algorithm we have two phases, the first corresponds to a
variation of the transitive closure, called in the paper SkewClosure. The second
one corresponds to an algebraic generalization of the knapsack problem.

2.2 Skew Closure of the Matrix

We can think of A as a weighted directed complete graph GA in which the
vertices are labeled {1, 2, . . . , n} and each edge (i, j) has weight A[i, j]. Let π =
(i0, i1, . . . , ik) be a path of length k in GA. The weight of π is the product of the
weights of the edges it contains

weight(π, A) = A[i0, i1] · A[i1, i2] · . . . · A[ik−1, ik].

We say that π is a closed walk with a head h if i0 = ik = h and it > h for each
0 < t < k. By Πh,k we denote the set of all closed walks of length k with a head
h and by Â[h, k] the sum of the weights of all closed walks from Πh,k, i.e.

Â[h, k] =
∑

π∈Πh,k

weight(π, A).
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The matrix Â is called the skew-closure of A and denoted by SkewClosure(A).
Our version of MV algorithm, using the knapsack operation, can be formulated

as follows.

Algorithm ComputeDeterminant(A)
/∗ Algebraic version of MV-algorithm ∗/

Â := SkewClosure(A);
return (−1)n · Knapsack(−Â);

end;

Mahajan and Vinay [9] have shown that det(A) can be defined in terms of sum
of paths in a certain (layered) directed acyclic graph. We can reformulate the
theorem of Mahajan and Vinay in an equivalent algebraic formulation.

Theorem 1 (Correctness Theorem). ThealgorithmComputeDeterminant(A)
is correct:

det(A) = (−1)n · Knapsack(−SkewClosure(A)).

Proof. A closed walk sequence is an ordered sequence of closed walks whose total
length is n and whose heads are in strictly increasing order. The weight in A of
a closed walk sequence C is the product of the weights of the edges it contains,
i.e.

weight(C, A) =
∏

(i,j)∈C
A[i, j].

The sign of C, sgn(C) is (−1)k, where k is the number of closed walks in C.
Note that the sum of (−1)n · sgn(C) · weight(C, A) over only those closed walk
sequences that are cycle covers of the graph is exactly the determinant of A.
Moreover, Mahajan and Vinay in [9] show that in fact

det(A) = (−1)n ·
∑

C
sgn(C) · weight(C, A),

where the sum is over all closed walk sequences.
We group the closed walk sequences based on heads and on the lengths of

the individual closed walks. In a closed walk sequence C, if the length of closed
walk C with head h is l, then any closed walk with head h and length l can
replace C in C and still give a closed walk sequence. Because Â[h, l] is the total
weight of all closed walks which have a vertex h as a head and length l, then
(−1)n ·det(A) is the sum of all products (−1)k · Â[h1, l1] · Â[h2, l2] · . . . · Â[hk, lk],
where 1 ≤ h1 < h2 < . . . < hk ≤ n, 1 ≤ l1, l2, . . . , lk ≤ n, l1 + l2 + . . . + lk = n
and this is exactly Knapsack(−Â) = Knapsack(−SkewClosure(A)). ��



Faster Combinatorial Algorithms for Determinant and Pfaffian 603

2.3 Computing Knapsack(A)

Let A[k] be the matrix A with only the first k rows taken. The classical com-
putation Kt(A) is done by dynamic programming using the table Table[i, j] =
Kj(A[i]). Table(1, j) = A(1, j) for all j and for i, j from 1 to n we compute

Table[i, j] = ⊕0<p<j ( Table[i − 1, p] ⊗ A[i, j − p] ) ⊕ Table[i − 1, j].

Consequently we have:

Lemma 1. If A is an n×n matrix then Knapsack(A) can be computed in O(n3)
time using operations of summation and multiplication.

3 Speeding-Up the Algorithm for Determinant

First we describe the simple version of our algorithm computing SkewClosure(A)
which works in O(n3.5) time. We do not consider here the use of the fast matrix
multiplication algorithm.

We have to compute the entries of the matrix Â = SkewClosure(A), where
Â[h, k] is the sum of the weights of all closed walks of length k with a head
h. Denote by Ah the matrix A with all rows and columns not greater than h
zeroed, i.e. Ah[i, j] = A[i, j] if i > h and j > h, 0 otherwise and by ah (ah) the
hth row (column) of the matrix A with the first h entries zeroed. We look for
the sequence of ring elements

Â[h, k] = ah · Ak−2
h · ah,

for h = 1, 2, . . . , n and k = 2, 3, . . . , n (Â[h, 1] = A[h, h]).
We can compute this as follows. Let γ = �

√
n
, η = �n/γ
 and denote u

[q]
h =

ah · Aq·γ
h , v

[r]
h = Ar

h · ah, Zh = Aγ
h, w

[r]
h = a′

h · Ar
h−1, where a′

h is the hth row of
A with the first h − 1 entries zeroed and let v

[−1]
h [i] = w

[−1]
h [i] = 1 if i = h, 0

otherwise. Zn is the all-zeroes matrix.

Algorithm SkewClosure(A)
for h = n − 1, n − 2, . . . , 1 do

Step 1 for r = 0, 1, . . . , γ do

v
[r]
h ← Ah · v

[r−1]
h ; w

[r]
h ← w

[r−1]
h · Ah−1;

Step 2 Zh ← Zh+1 +
∑γ

k=0(v
[k−1]
h+1 · w[γ−k−1]

h+1 );

Step 3 for q = 1, 2, . . . , η do u
[q]
h ← u

[q−1]
h · Zh;

Step 4 for r = 0, 1, . . . , γ do
for q = 0, 1, . . . , η do Â[h, q · γ + r + 2] ← u

[q]
h · v[r]

h ;

return Â;
end;
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We shall analyze our algorithm. The costly steps are Step 1, Step 2 and Step

3 and each of them works in time O(n2.5). Step 4 need only O(n2) time and
is dominated by this cost. Consequently our algorithm has the time complexity
O(n3.5).

The correctness proof is implicit in Fig. 1 and Fig. 2. [!h]

Fig. 1. Splitting of the path π of length k from a vertex h to h by vertices greater
than h into two paths of length 1, q paths of length γ and a path of length r, where
k = q · γ + r + 2, 0 ≤ r < γ

Fig. 2. Unique splitting of the path π of length γ from a vertex v to w by vertices
greater than h, but including a vertex h + 1 into a path of length k from v to h + 1
by vertices greater than h + 1 and a path of length γ − k from h + 1 to w by vertices
greater or equal h+1. The paths by vertices greater than h (see Step 2 of the algorithm
SkewClosure(A)) can be divided into two kind of paths, namely the paths by vertices
greater than h + 1 and that ones including a vertex h + 1. The second one we divide
with respect to the first position of h + 1 on this path.

3.1 Using the Fast Matrix Multiplication Algorithm

As stated in the Introduction, sub-cubic matrix multiplication algorithms can
be employed to improve the theoretical complexity of the above approach. Now
let ω be the exponent for fast matrix multiplication algorithm. By Coppersmith
and Winograd (1990) we may set ω = 2.3755, see [3]. The considerations in this
section are of a purely theoretical nature.

The γ here is no longer than nε, but nε, and ε is a constant which will be
specified at the end.

Note that in Step 1 the vector v
[r]
h = Ah · v

[r−1]
h is the same as a vector

A · v
[r−1]
h with the first h entries zeroed. Denote by V [r] the n × n matrix with

columns v
[r]
1 , v

[r]
2 , . . . , v

[r]
n for r = 0, 1, . . . , γ and by ∇(M) the matrix M with

the diagonal and all entries over it zeroed. Then we have

V [0] = ∇(A); V [r+1] = ∇(A · V [r]).
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Similarly the vector w
[r]
h = w

[r−1]
h · Ah−1 is the same as a vector w

[r−1]
h · A with

the first h − 1 entries zeroed. Let now W [r] be the n × n matrix with rows
w

[r]
1 , w

[r]
2 , . . . , w

[r]
n for r = 0, 1, . . . , γ and Δ(M) be the matrix M with all entries

below diagonal zeroed. Then

W [0] = Δ(A); W [r+1] = Δ(W [r] · A).

Cost of computing all matrices V [r] and W [r] for r = 0, 1, . . . , γ is O(γ · nω).
The accumulated change of Zh in Step 2 is

v
[−1]
h+1 · w[γ−1]

h+1 + v
[0]
h+1 · w[γ−2]

h+1 + v
[1]
h+1 · w[γ−3]

h+1 + . . . + v
[γ−1]
h+1 · w[−1]

h+1 = Vh+1 · Wh+1,

where Vh+1 is an n × γ matrix with columns v
[−1]
h+1 , v

[0]
h+1, . . . , v

[γ−1]
h+1 and Wh+1 is

a γ × n matrix with rows w
[γ−1]
h+1 , w

[γ−2]
h+1 , . . . , w

[−1]
h+1. The matrix Vh+1 · Wh+1 can

be computed using the fast matrix multiplication algorithm but as we shall show
we do not need computed all these matrices. We compute matrices Zh only for
h = n, n − η, . . . , n − (γ − 1) · η. We can do this simply in time O(γ · nω) since

Zh = Zh+η + Vh+η · Wh+η + Vh+η−1 · Wh+η−1 + . . . + Vh+1 · Wh+1

= Zh+η + [Vh+η|Vh+η−1| . . . |Vh+1] ·

⎡

⎢
⎢
⎣

Wh+η

Wh+η−1

...
Wh+1

⎤

⎥
⎥
⎦ = Zh+η + V(h) · W(h),

where V(h) and W(h) are n × n matrices.
In Step 3 we can apply a similar technique as in Step 1. Namely for i =

1, 2, . . . η

u
[q]
h+i = u

[q−1]
h+i ·Zh+i = u

[q−1]
h+i ·Zh+η+u

[q−1]
h+i ·[Vh+η|Vh+η−1| . . . |Vh+i+1]·

⎡

⎢
⎢
⎣

Wh+η

Wh+η−1

...
Wh+i+1

⎤

⎥
⎥
⎦

and the second part of this sum is the same as a vector u
[q−1]
h+i · V(h) with the

last i · γ entries zeroed multiplied by the matrix W(h). Denote by U
[q]
h for

h = n, n − η, . . . , n − (γ − 1) · η and q = 0, 1, . . . , η the η × n matrix with
rows u

[q]
h+η, u

[q]
h+η+1, . . . , u

[q]
h+1 and let ∇	(M) be the η × n matrix, such that

∇	(M)[i, j] = M [i, j] if j ≤ γ · (i − 1), 0 otherwise. Then

U
[q]
h = U

[q−1]
h · Zh+η + ∇	(U

[q−1]
h · V(h)) · W(h).

Cost of computing U
[r]
h is proportional to the cost of multiplying an η × n matrix

by an n × n matrix. We now appeal to fast methods for rectangular matrices, see
[2], which show how to multiply an n×n matrix by an n×ν matrix in Õ(nω−θ ·νθ)
arithmetic operations (by blocking the n×n matrix into (t×t)-sized blocks and the
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n×ν matrix into (t×tζ)-sized blocks such that n/t = ν/tζ and that the individual
block products only take Õ(t2) arithmetic steps each), where θ = (ω − 2)/(1 − ζ)
with ζ = 0.2946289. So we can compute all matrices U

[r]
h for h = n, n− η, . . . , n−

(γ − 1) · η and q = 0, 1, . . . , η in Õ(n1+ω−θ · ηθ) time.
The whole time complexity of Steps 4 is dominated by the complexities of

other steps.
Consequently the overall running time of the algorithm SkewClosure(A) is

Õ(γ · nω + n1+ω−θ · ηθ) and for γ = �n0.65
, η = �n/γ
 it is Õ(n3.03). We have
proven:

Lemma 2. The skew-closure can be computed in Õ(n3.03) time.

Due to Lemmas 1, 2 and Theorem 1 we have:

Theorem 2 (Complexity-Analysis Theorem). det(A) can be computed in
Õ(n3.03) time without division.

4 Pfaffian

Pfaffian arise naturally in the study of matchings, the Pfaffian of an oriented
graph is just the sum over all possible perfect matchings except that each match-
ing has an associated sign as well, dictated by the orientation. This gives it a
flavour similar to that of a determinant. In the absence of the sign, they would
calculate the number of the perfect matchings in a graph, a problem that is well-
known to be in #P [12]. Also, in the case of special graphs, it is known that the
graph may be oriented in such a way that all the terms of the Pfaffian turn out to
be positive. This obviously means there would be no cancellation and hence the
Pfaffian would count the number of perfect matchings in the underlying graph.
Such orientations of graphs are called Pfaffian orientation.

The Pfaffian can be computed using divisions by an elimination procedure
that is similar to Gaussian elimination for symmetric matrices. Alternatively,
the square root of the determinant gives the Pfaffian up to the correct sign. Both
approaches may be undesirable if divisions or square roots should be avoided.
Knuth [5] gives a short history of Pfaffians and argues that Pfaffians are in some
way more fundamental than determinant to which they are closely related.

Generalizing the combinatorial characterization of determinant Mahajan,
Subramanya and Vinay [8] shown that Pf(A) can be defined in terms of sum of
paths in a certain (layered) directed acyclic graph, as well.

5     6

13    14

5    6    7    8

1    2    3    4

matrix A
Shrink(A)

ExchRows(A)

13  14   15   16

9   10   11   1213  14   15   16

9   10   11   12

5    6    7    8

1    2    3    4

Let A be a skew-symmetric matrix (A = −AT ). Denote by Shrink(A) the
n/2 × n/2 matrix Ξ(A) with all odd rows deleted and all columns greater than
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n/2 deleted, i.e. Ξ(A)[i, j] = A[2i, j] for 1 ≤ i, j ≤ n/2. Denote by ExchRows(A)
the matrix resulting by exchanging odd-even neighboring rows of A. These op-
erations are illustrated in the figure above for an example matrix.

Algorithm ComputePfaffian(A)
A	 ← ExchRows(A);
for i, j = 1, 2, . . . , n do

A	[i, j] := (−1)i+1 A	[i, j] ;
Â	 := SkewClosure(A	); Ξ(Â	) := Shrink(Â	);
return Knapsack(−Ξ(Â	));

Theorem 3. The algorithm ComputePfaffian(A) is correct:
Pf(A) = Knapsack(−Shrink(SkewClosure(A	))).

Proof. Mahajan, Subramanya and Vinay in [8] show that Pf(A) =
∑

C sgn(C) ·
weight(C, A	), where the sum is over all closed walk sequences whose total
length is n/2 and heads are even. As in the case of determinant we group the
closed walk sequences based on heads and on the lengths of the individual closed
walks. Because Â	[h, l] is the total weight in A	 of all closed walks which have
a vertex h as a head and length l, then Pf(A) is the sum of all products (−1)k ·
Â	[h1, l1] · Â	[h2, l2] · . . . · Â	[hk, lk], where h1, h2, . . . , hk are even, 1 ≤ h1 <
h2 . . . < hk ≤ n, 1 ≤ l1, l2, . . . lk ≤ n/2, l1 + l2 . . . + lk = n/2 and this is exactly
Knapsack(−Shrink(Â	)) = Knapsack(−Shrink(SkewClosure(A	))). ��

Due to Lemmas 1, 2 and Theorem 3 we have:

Theorem 4. Pf(A) can be computed in Õ(n3.03) time without division.

5 Characteristic Polynomial and Adjoint

The technique of Mahajan and Vinay can be used as easily to compute all
coefficients of the characteristic polynomial of A, see [10]. Similarly as before we
can speed-up original MV algorithms computing the characteristic polynomial.
We omit in this version the proof of the following result.

Theorem 5. The characteristic polynomial of the matrix can be computed in
Õ(n3.03) time without division. By the results of Baur and Strassen [1] we obtain
the adjoint of a matrix in the same division-free complexity.
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3. Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progres-
sions. In: Proceedings of the nineteenth Annual ACM Conference on Theory of
Computing, pp. 1–6 (1987)
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Abstract. We propose a polynomial-time-delay polynomial-space algo-
rithm to enumerate all efficient extreme solutions of a multi-criteria
minimum-cost spanning tree problem, while only the bi-criteria case was
studied in the literature. The algorithm is based on the reverse search
framework due to Avis & Fukuda. We also show that the same technique
can be applied to the multi-criteria version of the minimum-cost basis
problem in a (possibly degenerated) submodular system. As an ultimate
generalization, we propose an algorithm to enumerate all efficient extreme
solutions of a multi-criteria linear program. When the given linear pro-
gram has no degeneracy, the algorithm runs in polynomial-time delay and
polynomial space. To best of our knowledge, they are the first polynomial-
time delay and polynomial-space algorithms for the problems.

1 Introduction

The multi-criteria optimization is a vast field in optimization theory, operations
research, and decision science. In a multi-criteria optimization problem, we usu-
ally need to enumerate the solutions which have a certain specified property, for
example, the Pareto optimality or the efficiency.1 See Ehrgott [3] for detail.

There have been two main streams in algorithm design for the multi-criteria
optimization: exact approach and approximate approach. In the exact approach,
the enumeration has to be exact, namely, all the solutions have to be output
(without any duplication). For example, in the multi-criteria linear program-
ming many exact algorithms have been proposed which enumerate all efficient
extreme solutions or enumerate all efficient faces (see Ehrgott [3] and refer-
ences therein). For bi-criteria combinatorial optimization problems, Ulungu &
Teghem [8] proposed the so-called two-phase method which first determines the

1 The word “efficient” is used differently in multi-criteria optimization and in algo-
rithm theory. In multi-criteria optimization (or economics) efficiency is just another
name for Pareto optimality. We hope that the reader is never confused.

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 609–620, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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extreme efficient solutions then enumerate the rest of the efficient solutions. On
the other hand, in the approximate approach the enumeration is partial. See Zit-
zler, Laumanns & Bleuler [11] for example. A bit different approximate approach
was done by Papadimitriou & Yannakakis [7], which has a certain approximation
guarantee. See a recent short survey by Zaroliagis [10].

This work concentrates on the exact approach and we will exploit techniques
from enumeration algorithmics. Despite many algorithm have been reported for
multi-criteria optimization from the exact approach viewpoint, few of them have
a certain theoretical guarantee of complexity. Observe that enumeration of the
Pareto-optimal extreme solutions of a single-criteria linear program is equivalent
to enumeration of the vertices of a convex polyhedron, and a recent result by
Khachiyan, Boros, Borys, Elbassioni & Gurvich [5] shows that this problem
admits no polynomial total time algorithm unless P = NP. This looks one of
the obstructions for a theoretical investigation. So, we concentrate on a simpler
problem to reveal the difficulty for the development of an algorithmic theory of
multi-criteria enumeration problems.

As a sample problem, we study the multi-criteria minimum-cost spanning tree
problem: given a connected undirected graph and several edge-cost functions, we
have to find all spanning trees which minimize some convex combinations of the
cost functions. In the multi-criteria optimization terminology, the outputs are
exactly the solutions for all possible weighted sum scalarizations, and they cor-
respond to the extreme efficient solutions. The determination of the extreme
efficient solutions is a first step for complete enumeration of the efficient solu-
tions, for example in the two-phase method [8].

We will compare two main methods in enumeration algorithmics. One is the
binary partition method, and the other is the reverse search method. In the
binary partition method, we recursively divide the solution space until we get
trivial instances. In the reverse search method proposed by Avis & Fukuda [1], we
implicitly define a rooted tree on the solutions to be enumerated, and traverse it.

We try to apply the two enumeration methods above to the multi-criteria
minimum-cost spanning tree problem. For the binary partition method, we prove
that a subproblem arising from a natural binary partition approach is NP-
complete. This implies that an approach by the binary partition method seems
difficult. On the other hand, with the reverse search method we design an algo-
rithm which runs with polynomial-time delay and in polynomial space. This is
the first algorithm for this problem with such a complexity guarantee.

Our reverse-search algorithm can be extended to the multi-criteria version of
the minimum-cost base problem in matroids and submodular systems. Further-
more, a similar algorithm turns out to work for the multi-criteria linear program-
ming. Although there have been many algorithms proposed for the multi-criteria
linear programming, none of them has a performance guarantee as running with
polynomial-time delay and in polynomial space (see Ehrgott [3] and references
therein). Indeed, these algorithms store all the outputs as a list in the working
memory to get rid of duplication, which looks a bottleneck for the efficiency. We
may accomplish the polynomial-time delay by a small modification (for example,
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using a balanced binary search tree instead of a list). However, it appears diffi-
cult for these algorithms to achieve the polynomial space by a small modification;
namely, the essential improvement for memory usage is by far hard. On the other
hand, our reverse-search algorithm can achieve both of the goals. This exhibits the
power of the reverse search, and we hope that this work initiates a more fruitful
connection of the multi-criteria optimization with the algorithms community.

The paper is organized as follows. In the next section, we give an introduc-
tion to enumeration algorithmics terminology and a concise description of the
multi-criteria minimum-cost spanning tree problem. Section 3 discusses some
existing methods to enumerate the spanning trees and observe how natural ex-
tensions of these methods fail. This includes the NP-completeness result of a
natural subproblem arising from a binary partition method. Then in Section 4,
we consider how we can overcome this issue, and design an algorithm running
in polynomial-time delay and polynomial space with the reverse search method.
Section 5 discusses a possible generalization of our reverse search algorithm to
the multi-criteria linear programming. The final section concludes the paper with
some open questions.

2 Preliminaries

An enumeration problem asks to output all objects, called solutions, which sat-
isfy a given condition. To measure the efficiency of enumeration algorithms, we
have to take into account the size of output (i.e., the number of solutions) ex-
plicitly since it could be exponentially large in terms of the size of input. An
enumeration algorithm runs in polynomial-time delay if for any output object
the next output object can be obtained in polynomial time in the size of input;
it runs in polynomial-space if the working space it uses is bounded by a polyno-
mial of the size of input. Note that we only count the working space, excluding
the space for outputs. Intuitively speaking, the working space is a read/write
memory and the output space is a write-only disk.

A convex combination of k functions c1, c2, . . . , ck is a function
∑k

i=1 λici

for some non-negative real numbers λ1, λ2, . . . , λk summing up to one. We call
the vector (λ1, . . . , λk)� ∈ IRk of coefficients the barycentric coordinate of the
combination.

Given a connected undirected graph G = (V, E), a spanning tree of G is an
edge subset T ⊆ E of size |V | − 1 which embraces no cycle. For a non-negative
edge-cost function c : E → IR+, a minimum-cost spanning tree of G with respect
to c is a spanning tree T of G which minimizes the total cost c(T ) =

∑
e∈T c(e).

We study the following problem.

Problem: MC-MCST
Input: a connected undirected graph G = (V, E) and k distinct non-
negative edge-cost functions c1, . . . , ck : E → IR+

Enumerate: the spanning trees of G each of which is minimum-cost
with respect to some convex combination of c1, . . . , ck.
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We call a spanning tree of G feasible if it is minimum-cost with respect to some
convex combination of c1, . . . , ck (i.e., if it is to be output in MC-MCST).

3 Failed Attempts for Generalization by Straightforward
Approaches

In this section, we first describe two existing methods for enumeration of span-
ning trees in a given connected graph, and observe why the straightforward
generalizations of them to MC-MCST do not give efficient algorithms.

3.1 Binary Partition Method

Let us first look at a simple binary partition approach to enumerate all spanning
trees in a given connected undirected graph G = (V, E). First of all, we choose an
arbitrary edge e1 ∈ E and classify the spanning trees of G into two groups: those
containing e1 and those not containing e1. Then, we choose another arbitrary
edge e2 ∈ E\{e1}, and divide the groups similarly. This will give a recursion tree,
and we stop the recursive call when the obtained group is ensured to contain no
spanning tree. In this way, we can reduce redundant computation. The problem
to decide whether a group contains a spanning tree can be formulated as “for
disjoint subsets E1, E2 ⊆ E, does there exist a spanning tree of G which contains
the edges in E1 but does not contain any edges in E2?” This can be solved in
linear time.

To solve MC-MCST in the same way, we have to solve the following problem.

Problem: BinaryPartition
Input: a connected undirected graph G = (V, E), two disjoint sub-
sets E1, E2 ⊆ E and k distinct non-negative edge-cost functions
c1, . . . , ck : E → IR+

Question: Does there exist a spanning trees of G which contains the
edges in E1 but does not contain any edges in E2 and is minimum-cost
with respect to some convex combination of c1, . . . , ck.

If the problem BinaryPartition can be solved in polynomial time, then we
can use the same binary partition strategy as above to obtain an algorithm to
solve MC-MCST in polynomial-time delay and polynomial space. However, the
following theorem shows that it is quite unlikely for us to achieve this goal.

Theorem 1. The problem BinaryPartition is NP-complete.

Proof. We can easily see the membership of the problem in NP. We show NP-
hardness. To this end, we reduce the satisfiability problem (SAT) to BinaryPar-
tition. An instance of SAT is given as a set of boolean variables x1, . . . , xn and
a set of clauses C1, . . . , Cm each of which consists of (possibly several) literals.
Each literal is either a variable or its negation.
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Fig. 1. Reduction in the proof of Theorem 1. This is an example for the formula
C1 ∧ C2 ∧ C3, where C1 = x1 ∨ x2 ∨ x3, C2 = x2 ∨ x3. C3 = x1 ∨ x3 ∨ x4. A black
thin edge belongs to E \ (E1 ∪ E2); a blue thick edge belongs to E1; a red broken edge
belongs to E2.

Table 1. Summary of the costs

{vr
i , vt

i} {vr
i , vf

i } {vt
i , v

f
i } {vr

i , r} {vr
i′ , vt

i′} {vr
i′ , v

f
i′} {vt

i′ , v
f
i′} {vr

i′ , r}
ci 0 1 1/n 1 0 0 1/n 1
ci 1 0 1/n 1 0 0 1/n 1

{wr
j , wq

j } {wr
j , r} {wq

j , u�
j} {wr

j , u�
j}

ci 2 − 1/(2n) 1 1 1 if � = xi, 2 otherwise
ci 2 − 1/(2n) 1 1 1 if � = xi, 2 otherwise

From the given instance of SAT, we construct a connected graph G = (V, E).
For each variable xi we set up three vertices vr

i , vt
i , v

f
i . For each clause Cj we set

up two vertices wr
j , wq

j , and for each literal � of Cj we set up one vertex u�
j . We

also use an extra vertex r. They are the vertices of G.
Next, we draw the edges of G. For each variable xi, we draw edges {vt

i , v
f
i } ∈

E1, {vr
i , vt

i} ∈ E \ (E1 ∪E2), {vr
i , v

f
i } ∈ E \ (E1 ∪E2), and {vr

i , r} ∈ E1. For each
clause Cj we draw an edge {wr

j , w
q
j} ∈ E2, {wr

j , r} ∈ E1, and for each literal �

of Cj we draw edges {wr
j , u

�
j} ∈ E \ (E1 ∪ E2), {wq

j , u
�
j} ∈ E1. This completes

the description of G. Fig. 1 shows an example.
Now, we set up 2n cost functions, each of which is identified with a variable or

its negation (i.e., a literal). Namely, for each positive literal xi, we define the cost
function ci and, Similarly, for a negative literal xi, we define the cost function ci.
The definition is as follows. They are summarized in Table 1: ci({vr

i , vt
i}) = 0,

ci({vr
i , vf

i }) = 1, ci({vt
i , v

f
i }) = 1/n, ci({vr

i , r}) = 1; for every i′ ∈ {1, . . . , n}\{i},
ci({vr

i′ , vt
i′}) = 0, ci({vr

i′ , v
f
i′}) = 0, ci({vt

i′ , v
f
i′}) = 1/n, ci({vr

i′ , r}) = 1; for every
j ∈ {1, . . . , m} and every literal � of the clause Cj , ci({wr

j , w
q
j }) = 2 − 1/(2n),

ci({wr
j , r}) = 1, ci({wq

j , u
�
j}) = 1, and
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ci({wr
j , u�

j}) =

{
1 if � = xi,

2 otherwise.

Similarly, ci({vr
i , vt

i}) = 1, ci({vr
i , vf

i }) = 0, ci({vt
i , v

f
i }) = 1/n, ci({vr

i , r}) = 1;
for every i′ ∈ {1, . . . , n} \ {i}, ci({vr

i′ , vt
i′}) = 0, ci({vr

i′ , v
f
i′}) = 0, ci({vt

i′ , v
f
i′}) =

1/n, ci({vr
i′ , r}) = 1; for every j ∈ {1, . . . , m} and every literal � of the clause

Cj , ci({wr
j , wq

j}) = 2 − 1/(2n), ci({wr
j , r}) = 1, ci({wq

j , u
�
j}) = 1, and

ci({wr
j , u�

j}) =

{
1 if � = xi,

2 otherwise.

Thus, we complete the construction of an instance of MC-MCST.
We may prove that there exists a spanning tree of G which is minimum-cost

with respect to some convex combination of the ci and the ci, i ∈ {1, . . . , n} if
and only if the given SAT instance is satisfiable. We omit the detail here due to
the page limitation in this proceedings version. ��

Hence, we give up adapting the binary partition method, and try another method.

3.2 Reverse Search Method

The reverse search method, proposed by Avis & Fukuda [1], is one of the most
powerful techniques in enumeration algorithmics. Let G = (V, E) be a given
undirected connected graph, and we want to enumerate the spanning trees in G.
To do this, we set up a rooted tree R on the spanning trees of G, namely, each
node of R is a spanning tree of G. The enumeration will be done by traversing R
in a depth-first-search manner, but we do not store the entire rooted tree itself;
we just specify a parent-child relation which implicitly defines R. In enumeration,
we recursively move to children by the depth first search. Therefore, to design
an efficient reverse-search algorithm it is enough for us to provide a parent-child
relation so that we can find a parent/child efficiently. Since we do not need to
store the entire family of spanning trees, but only a spanning tree under current
investigation, this enables us to obtain an algorithm which runs in polynomial
time delay and polynomial space. See Avis & Fukuda [1] and Nakano & Uno [6]
for detail.

First of all, we define an adjacency relation on the family of spanning trees
of G. Two distinct spanning trees T and T ′ of G are adjacent if the symmetric
difference of T and T ′ is of size two. Through this adjacency relation, we naturally
define the undirected graph G(G) which has the spanning trees of G as the node
set. We can easily see that the number of nodes adjacent to one node is O(|V ||E|),
and it is well-known [9, Exercise 2.1.62] that G(G) is connected.

On G(G) we define a rooted tree R. For this purpose, we assume that the edges
of G are labeled according to some fixed total order ≺ as e1 ≺ e2 ≺ · · · ≺ em.
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Then, the root of R is defined as a (unique) lexicographically maximum spanning
tree with respect to ≺, and a parent of a spanning tree T of G in the rooted tree
R is a (unique) lexicographically maximum neighbor of T in G(G). This parent-
child relation gives a well-defined rooted tree, and we can find a root, a parent of a
non-root spanning tree, and the children of a non-leaf spanning tree in polynomial
time. Therefore, this leads to an algorithm running in polynomial-time delay and
polynomial space for enumerating the spanning trees in an undirected connected
graph.

Let us try to generalize this approach to MC-MCST. We are given an undi-
rected connected graph G = (V, E) and k edge-cost functions c1, . . . , ck. In this
case, we consider the subgraph of G(G) induced by the feasible spanning trees
(i.e., to be enumerated in MC-MCST). Denote this induced subgraph by GM (G).
Although GM (G) depends on the edge-cost functions, we think them fixed thus
do not include in the notation for convenience. Ehrgott [2] showed that the graph
GM (G) is always connected. Therefore, we can define a rooted tree R on GM (G).
The most natural way is to use the same strategy as in enumeration of the span-
ning trees of a connected graph. Namely, we assume that the edges of G are
labeled according to some fixed total order ≺ as e1 ≺ e2 ≺ · · · ≺ em. Then, the
root of R is defined as a (unique) lexicographically maximum spanning tree with
respect to ≺, and a parent of a spanning tree T of G in the rooted tree R is a
(unique) lexicographically maximum neighbor of T in GM (G).

However, as opposed to the spanning trees enumeration case, for MC-MCST
we have (at least) two troubles here. The first problem is that we do not know
how to find a root in polynomial time. Actually, a greedy method fails since there
can be many ≺-maximal feasible spanning trees in GM (G). The second problem
is even worse: the graph R may not be connected. Therefore, the rooted tree is
not well-defined in general.

Hence, we need to devise another way to specify a rooted tree on GM (G) if
we wish to solve MC-MCST via reverse search.

4 The Proposed Algorithm

In our reverse-search algorithm for MC-MCST, we use GM (G) defined in the
previous section. Then, we have to define a promised rooted tree R. For this
purpose, we associate the following type of sequence to each feasible spanning
tree. We assume that the edges of G are labeled according to some fixed total
order ≺ as e1 ≺ e2 ≺ · · · ≺ em. This order ≺ will be used to break a possible
tie. For a feasible spanning tree T of G, let λT ∈ IRk be a lexicographically
maximum barycentric coordinate of a convex combination of c1, . . . , ck which T
minimizes. The following lemma shows that λT can be computed in polynomial
time.

Lemma 2. For every feasible spanning tree T of G, the vector λT can be found
in polynomial time.
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Proof. We can phrase the problem in the following form.

lex-max. λ

subj. to
∑

e∈T

k∑

i=1

λici(e) ≤
∑

e∈T ′

k∑

i=1

λici(e) for all feasible T ′ adjacent to T,

k∑

i=1

λi = 1,

λi ≥ 0 for all i ∈ {1, . . . , k}.

Note that in the first constraint we do not need to take into account all of the
spanning trees of G, but we only need the spanning trees adjacent to T . This
is due to the convexity (or matroid property) of the minimum-cost spanning
tree problem (we omit the detail). Since the number of spanning trees adjacent
to T is O(|V ||E|), the number of constraints is polynomial. This lexicographic
maximization problem can be solved by maximizing λi one by one in increasing
order of i ∈ {1, . . . , k}, and each maximization is reduced to a linear program.
Thus, using any polynomial-time algorithm for linear programming, we can solve
the problem in polynomial time. ��

The root of R is chosen as a feasible spanning tree R of G which has a lexi-
cographically maximum λT among all feasible spanning tree T . Namely, such
a barycentric coordinate λR should satisfy (λR)1 = 1 and (λR)i = 0 for all
i ∈ {2, . . . , k}. Thus, R is a minimum-cost spanning tree with respect to c1. If
there are several minimum-cost spanning trees with respect to c1, then we choose
a ≺-maximum one as a root. Such a tree R is unique, and can be found in poly-
nomial time by any polynomial-time minimum-cost spanning tree algorithm.

To specify the parent of a non-root feasible spanning tree T of G, we distin-
guish two cases. In the first case, we assume that λT = (1, 0, 0, . . . , 0)�. Then,
T and R both minimize c1. Therefore, as the following lemma certifies, we can
obtain another minimum-spanning tree with respect to c1 from T by deleting
one edge from T and adding one edge from R.

Lemma 3. Let G = (V, E) be a connected undirected graph, c : E → IR+ be a
non-negative edge-cost function, and T1, T2 ⊆ E be minimum-cost spanning trees
of G with respect to c. Then, there exist two edges e1 ∈ T1 \ T2 and e2 ∈ T2 \ T1

such that (T2 ∪ {e1}) \ {e2} is also a minimum-cost spanning tree of G with
respect to c.

Although this is a well-known fact as, for example, in [9, Exercise 2.3.13], we
give a proof here since we actually use the argument in the constructive proof
below for the construction of our rooted tree.

Proof. Let us choose a minimum-cost edge e1 ∈ T1 \ T2, namely c(e1) ≤ c(e)
for every e ∈ T1 \ T2. Then, we can see that T2 ∪ {e1} embraces a unique
cycle, say C. Note that C contains e1. Now, we choose a maximum-cost edge
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e2 ∈ C \ {e1} ⊆ T \ {e1}, namely, c(e2) ≥ c(e) for every edge e ∈ C \ {e1}. Then,
T = (T2 ∪ {e1}) \ {e2} is a spanning tree of G.

Now we look at the cost. If c(e1) < c(e2), then it follows that c(T ) = c(T2) +
c(e1) − c(e2) < c(T2). Hence it contradicts the minimality of T2. On the other
hand, suppose that c(e1) > c(e2). Then by the choice of e1 it follows that c(e) >
c(e2) for all e ∈ T1 \T2. We consider a (unique) cycle C′ in T1 ∪{e2} and pick an
arbitrary edge from e′ ∈ C′\{e2}. Then, T ′ = (T1∪{e2})\{e′} is a spanning tree
of G and the cost is c(T ′) = c(T1) + c(e2) − c(e′) < c(T1). Hence it contradicts
the minimality of T1. Thus, it must hold that c(e1) = c(e2) and hence T is also
a minimum-cost spanning tree of G with respect to c. ��

The parent of T is constructively defined as follows. First we choose a minimum-
cost edge eR ∈ R \ T (with respect to c1), and if there are several choices, we
choose a ≺-maximum one. This makes the choice of eR unique. Then, T ∪ {eR}
contains a cycle C and we choose a maximum-cost edge eT ∈ C \ {eR} (with
respect to c1), and if there are several choices, we choose a ≺-minimum one. From
these choices, define the parent of T as T ′ = (T∪{eR})\{eT }. From the discussion
above, we can see that T ′ is a feasible spanning tree and |R�T ′| < |R�T |. Note
that T ′ can be found in polynomial time from T .

In the next case, we assume that λT �= (1, 0, 0, . . . , 0)�. Then, we consider
the corresponding λT . Let j ∈ {2, . . . , k} be the minimum index such that
(λT )j �= 0. Then, we take μ ∈ IRk obtained from λT by increasing the first
component by a sufficiently small ε > 0 and decreasing the j-th component by
ε. By our assumption for the second case, we can see that such an ε exists which
keeps μT to be a barycentric coordinate. Let S be a minimum-cost spanning
tree of G with respect to

∑k
i=1 μici. If there are several minimum-cost spanning

trees, then we choose a ≺-maximum one. By the lexicographic maximality of
λT and the fact that μ is lexicographically larger than λT , we see that S is
different from T . Since ε is sufficiently small, S is also a minimum-cost spanning
tree with respect to c =

∑k
i=1(λT )ici. Hence, by Lemma 3 similarly to the first

case, we choose an edge eS ∈ S \ T such that c(eS) ≤ c(e) for all e ∈ S \ T (if
there are more than one such edges, then we choose the ≺-maximal one), and
for a (unique) cycle C of T ∪ {eS} we choose an edge eT ∈ C \ {eS} such that
c(eT ) ≤ c(e) for all e ∈ C \ {eS} (if there are more than one such edges, then we
choose the ≺-minimal one). Then, we can see (from the proof of Lemma 3) that
T ′ = (T ∪ {eS}) \ {eT } is a minimum-cost spanning tree with respect to c, and
|S�T ′| < |S�T | holds. We define the parent of T as T ′, and we can find T ′ in
polynomial time from T . In this way, the definition of a parent is completed. By
the construction, the parent of T is adjacent to T in GM (G), and it is unique.
Furthermore, the next lemma is important.

Lemma 4. Let G = (V, E) be a connected undirected graph and c1, . . . , ck : E →
IR+ be non-negative edge-cost functions. Then, the parent-child relation defined
above is well-defined. Namely, from a non-root feasible spanning tree T ⊆ E, by
moving to the parent step by step we can arrive at the root R.
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Proof. Let T be a non-root feasible spanning tree and T ′ its parent. The in-
vestigation is divided into two parts according to the case distinctions above.
Let us first consider when the first case is applied. In this case it holds that
λT ′ = λT = (1, 0, 0, . . . , 0)� and |R�T ′| < |R�T |. Therefore, we can arrive R
at some point.

Next let us consider when the second case is applied. Let T = T0, T
′ = T1, and

in general denote the parent of Tj by Tj+1. This construction can continue unless
λTj = (1, 0, 0, . . . , 0)�. Hence, it suffices to show that for every j there exists
some j′ > j such that λTj′ is lexicographically larger than λTj . If this is true, then
at some point (when the index is j, say) it must hold that λTj = (1, 0, 0, . . . , 0)�

and the case is reduced to the first one.
Fix an arbitrary j. We are done if λTj+1 is lexicographically larger than λTj .

Therefore, we assume λTj+1 = λTj . Let Sj be a spanning tree used to obtain Tj

as S was used to obtain T in the text above. Since Sj and Sj+1 are dependent
only on λTj and λTj+1 respectively, it holds that Sj = Sj+1. However, for any i
it holds that |Si�Ti+1| < |Si�Ti|. Therefore, there cannot be an infinitely long
sequence Si = Si+1 = Si+2 = · · · of identical spanning trees. Thus, there must
exist some j′ > j such that λTj′ is lexicographically larger than λTj . ��

From the discussion above, we finally obtain the following theorem.

Theorem 5. By the reverse search algorithm described above, we can solve MC-
MCST in polynomial-time delay and polynomial space.

5 Generalization

The reverse search algorithm in the previous section can be generalized in several
ways. A close inspection of the discussion shows that we only used the matroid
property of the minimum-cost spanning tree problem in the algorithm. Therefore,
we can conclude that the multi-criteria minimum-cost base problem in matroids
can be solved in polynomial-time delay and polynomial space, when a matroid
is given as the independent set oracle. More generally, we can solve the multi-
criteria minimum-cost base problem in submodular systems in polynomial-time
delay and polynomial space when a submodular function is given as a value-
giving oracle. To this end, we need to identify the adjacent bases of a given base
in a submodular system. This task is an instance of the submodular function
minimization problem, which can be solved in polynomial time [4].

As an extreme generalization, we can consider the multi-criteria linear pro-
gramming. In a linear program, we are given a system of inequalities Ax ≥ b, x ≥
0 where A ∈ IRm×n is a matrix, and b ∈ IRm is a vector. Then we want to find,
for a given c ∈ IRn, a solution x to the inequality system which minimizes c�x.

The inequality system above defines a convex polyhedron, called the feasible
region of the problem. Here we assume (without loss of generality) that it is
bounded and non-empty. With this assumption, a feasible region has at least
one extreme point, and furthermore there exists an optimal solution which is
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an extreme point of the polyhedron. We call such a solution an extreme opti-
mal solution. In a multi-criteria linear program, we are given a system of lin-
ear inequalities Ax ≥ b, x ≥ 0, and we want to enumerate the extreme opti-
mal solutions which minimize some convex combination of given k cost vectors
c1, . . . , ck ∈ IRn.

Problem: MC-LP
Input: a matrix A ∈ IRm×n, two vectors b ∈ IRm and c1, . . . , ck ∈ IRn

Enumerate: the extreme solutions x to the inequality system Ax ≥
b, x ≥ 0 which minimize some convex combination of c1, . . . , ck.

We call an instance of MC-LP non-degenerated if every extreme point of the
polyhedron determined by the given inequality system lies on n facets.

Theorem 6. The non-degenerated MC-LP can be solved in polynomial-time de-
lay and polynomial space.

Proof (sketch). In the feasible region every extreme solution is adjacent to other
extreme solutions through edges. This adjacency naturally defines an undirected
graph, and in the same way as we did for MC-MCST we can implicitly specify a
rooted tree in this graph. For a non-degenerated linear program, every extreme
solution is adjacent to at most n other extreme solutions, and the adjacent
extreme solutions can be found by pivot operations in polynomial time. The
connectedness of the analogue of GM (G) is known [3]. Furthermore, we can
obtain propositions similar to Lemmas 2, 3 and 4 (the proofs are similar), and
thus Theorem 6 is proven. ��

Note that MC-LP with possible degeneracy seems very difficult to tackle. It is
known that the vertex enumeration of a degenerated convex polyhedron, which
corresponds to the enumeration of the extreme solutions to a single-criterion
linear program, cannot be performed in polynomial total time (hence not in
polynomial-time delay and polynomial space) unless P = NP [5].

6 Concluding Remark

We have looked at some multi-criteria optimization problems from the view-
point of enumerative algorithmics. There seem many problems in multi-criteria
optimization to which the algorithm theory can potentially contribute.

A key fact in our reverse search algorithm for MC-MCST is that there are
at most polynomially many spanning trees adjacent to one spanning tree. This
is no longer the case if we consider the bipartite matching problem. So far,
we do not know how to obtain a polynomial-time delay and polynomial-space
algorithm for the multi-criteria assignment problem (i.e., maximum bipartite
matching problem). We can show that a natural binary partition approach does
not work in the same way as we did in Section 3. We leave this issue as an open
problem.
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Another problem is concerned with Lemma 2, where we saw that λT can
be obtained in polynomial time. However, it uses a polynomial-time linear pro-
gramming algorithm, hence not a strongly polynomial-time algorithm. We do
not know whether it can be computed in strongly polynomial time.
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Abstract. We consider the parameterized complexity of the Unique

Coverage problem: given a family of sets and a parameter k, we ask
whether there exists a subfamily that covers at least k elements exactly
once. This NP -complete problem has applications in wireless networks
and radio broadcasting and is also a natural generalization of the well-
known Max Cut problem. We show that this problem is fixed-parameter
tractable with respect to the parameter k. That is, for every fixed k, there
exists a polynomial-time algorithm for it. One way to prove a problem
fixed-parameter tractable is to show that it is kernelizable. To this end,
we show that if no two sets in the input family intersect in more than c
elements there exists a problem kernel of size kc+1. This yields a kk kernel
for the Unique Coverage problem, proving fixed-parameter tractabil-
ity. Subsequently, we show a 4k kernel for this problem. However a more
general weighted version, with costs associated with each set and profits
with each element, turns out to be much harder. The question here is
whether there exists a subfamily with total cost at most a prespecified
budget B such that the total profit of uniquely covered elements is at
least k, where B and k are part of the input. In the most general set-
ting, assuming real costs and profits, the problem is not fixed-parameter
tractable unless P = NP. Assuming integer costs and profits we show
the problem to be W [1]-hard with respect to B as parameter (that is, it
is unlikely to be fixed-parameter tractable). However, under some rea-
sonable restriction, the problem becomes fixed-parameter tractable with
respect to both B and k as parameters.

1 Introduction

In this paper, we consider the parameterized complexity of the Unique Cov-

erage problem. This problem was introduced by Demaine et al. [2] as a nat-
ural maximization version of Set Cover and has applications in several ar-
eas including wireless networks and radio broadcasting. Unique Coverage is
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defined as follows. Given a ground set U = {1, 2, . . . , n}, a family of subsets
S = {S1, . . . , St} of U and a positive integer k, we ask whether there exists a
subcollection S′ ⊆ S such that at least k elements are covered uniquely by the
members in S′. An element is covered uniquely if it appears in exactly one set
of S′. The optimization version requires to maximize the number of uniquely
covered elements.

The weighted version of Unique Coverage is called Budgeted Unique

Coverage and is defined as follows. Given a ground set U = {1, 2, . . . , n}, a
profit pi for each element i ∈ U , a family of subsets S of U , a cost ci for each
set Si ∈ S, a budget B and a positive integer k, we ask whether there exists
a subset S′ ⊆ S such that the total cost of S′ is at most B and such that the
profit of the uniquely covered elements is at least k. The optimization version
asks for a subset S′ of total cost at most B such that the profit of uniquely
covered elements is maximized.

The original motivation for this problem is a real-world application arising
in wireless networks [2]. Assume that we are given a map of the densities of
mobile clients along with a set of possible base stations, each with a specified
building cost and a specified coverage region. The goal is to choose a set of base
stations, subject to a budget on the total building cost, in order to maximize the
density of served clients. The difficult aspect of this problem is the interference
between base stations. A mobile client’s reception is better when it is within the
range of a few base stations. An ideal situation is when every mobile client is
within the range of exactly one base station. This is the situation modelled by
the Budgeted Unique Coverage problem. The Unique Coverage problem
is closely related to a single “round” of the Radio Broadcast problem [1]. For
more about this relation, see Demaine et al.’s work [2].

One can also view the Unique Coverage problem as a generalization of
the Max Cut problem [2]. The input to the Max Cut problem consists of a
graph G = (V, E) and the goal is to find a cut (T, T ′), where ∅ �= T ⊂ V and T ′ =
V \T , that maximizes the number of edges with one endpoint in T and the other
endpoint in T ′. Let U denote the set of edges of G and for each vertex v ∈ V
define Sv = {e ∈ E : e is incident to v}. Finally let S = ∪v∈V {Sv}. Then G
has a cut (T, T ′) with at least k edges across it if and only if S′ = ∪v∈T {Sv}
uniquely covers at least k elements of the ground set.

Known Results. (Budgeted) Unique Coverage was introduced by Demaine
et al. [2]. They have considered the approximability of this problem. On the
positive side, they give an Ω(1/ logn)-approximation for Budgeted Unique

Coverage. Moreover, if the ratio between the maximum cost of a set and the
minimum profit of an element is bounded by B, then there exists an Ω(1/ log B)-
approximation. Concerning approximation hardness, they show that Unique

Coverage is hard to approximate to within a factor of O(1/ logc n) for some
constant 0 < c ≤ 1, and they strengthen this inapproximability to O(1/ log n)
based on a hardness hypothesis for Balanced Bipartite Independent Set.

Our Results. In this paper, we give first-time results on the parameterized com-
plexity of Unique Coverage and Budgeted Unique Coverage. Compared
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Unique Coverage (Parameter: k) Result Sect.

Each element occurs in at most b sets (k − 1)b kernel 3.1
Intersection size bounded by c kc+1 kernel 3.2

General 4k kernel 3.3

Each set of size at most b 2b+k kernel 3.3

Budgeted Unique Coverage

Arbitrary costs/profits (pars. B and k) Not FPT (unless P = NP) 4.1
Integer weights (par. B) W [1]-hard 4.1

Integer weights (intersection number f(k);
pars. B and k)

O∗((B · 2f(k))B+k)-time algo. 4.2

Integer weights (pars. B and k) Open

Fig. 1. Main results in this paper

to the related Set Cover problem, which is W[2]-complete with respect to
the number of sets in the solution as parameter1, Unique Coverage becomes
fixed-parameter tractable with respect to the number of uniquely covered ele-
ments. In other words, the number of uniquely covered elements seems to be a
good parameter in order to exploit and reveal the inherent structure of coverage
problems in general. Our results indicate that the budgeted variant, Budgeted

Unique Coverage, is a much harder problem. More specifically, we show the
following.

We show that a special case of Unique Coverage where any two sets in
the input family intersect in at most c elements is fixed-parameter tractable
by demonstrating a polynomial kernel of size kc+1. This leads to a problem
kernel of size kk in the general case, proving that Unique Coverage is fixed-
parameter tractable. However, the general case can be improved using results
from extremal combinatorics on strong systems of distinct representatives to
obtain a 4k kernel. For the Budgeted Unique Coverage problem there are
several variants. If the profits and costs are allowed to be arbitrary positive real
numbers, then Budgeted Unique Coverage, with parameters B and k, is
not fixed-parameter tractable unless P = NP. If we restrict the costs and profits
to be positive integers and parameterize by B, then the problem is W [1]-hard. In
the case when the number of sets intersecting any given set of the input family
is bounded by a function of k, the problem is fixed-parameter tractable with
parameters B and k. The main results of this paper along with the relevant
sections in which they appear are depicted in Figure 1.

2 Preliminaries

We briefly introduce the necessary concepts concerning parameterized complex-
ity. A parameterized problem is a subset of Σ∗ × N, where Σ is a finite alphabet
1 This can be shown by a reduction from Dominating Set [3,6].
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and N is the set of natural numbers. An instance of a parameterized problem is
therefore a pair (I, k), where k is the parameter. In the framework of parameter-
ized complexity, the running time of an algorithm is viewed as a function of two
quantities: the size of the problem instance and the parameter. A parameterized
problem is said to be fixed parameter tractable (FPT) if there exists an algo-
rithm for the problem with running time f(k) · |I|O(1), where f is a computable
function only depending on k.

A common method to prove that a problem is fixed-parameter tractable is to
provide data reduction rules that lead to a problem kernel. A data reduction rule
is a polynomial-time algorithm which takes a problem instance (I, k) and either

– outputs yes or no according as (I, k) is a yes or a no-instance, or
– replaces (I, k) by an equivalent instance (I ′, k′) such that |I ′| ≤ |I| and k′≤k,

where two problem instances (I, k) and (I ′, k′) are equivalent if they are both
yes-instances or both no-instances. An instance to which none of a given set of
data reduction rules applies is called reduced with respect to this set of rules. A
parameterized problem is said to have a problem kernel if the resulting reduced
instance has size f(k) for a function f depending only on k. If a parameterized
problem has a kernel, then it is clearly fixed-parameter tractable. Simply use
brute-force on the kernel to decide whether the given instance is a yes-instance
or not.

A parameterized problem π1 is fixed-parameter reducible to a parameterized
problem π2 if there exist functions f, g : N → N, Φ : Σ∗ ×N → Σ∗ and a polyno-
mial p(·) such that for any instance (I, k) of π1, (Φ(I, k), g(k)) is an instance of π2

computable in time f(k) ·p(|I|) and (I, k) ∈ π1 if and only if (Φ(I, k), g(k)) ∈ π2.
The basic complexity class for fixed-parameter intractability is W [1] as there is
strong evidence that W [1]-hard problems are not fixed-parameter tractable [3].
To show that a problem is W [1]-hard, one needs to exhibit a fixed-parameter
reduction from a known W [1]-hard problem to the problem at hand. For more
on parameterized complexity see [3,5].

We write O∗(f(k)) to denote a running time of O(f(k) · poly(n, k)), where n
is the input size and k is the parameter. That is, we use the O∗(·) notation to
suppress polynomial factors in the running time.

3 The Unique Coverage Problem

Let (U = {1, 2, . . . , n}, S = {S1, S2, . . . , Sm}, k) be an instance of Unique Cov-

erage. Apply the following data reduction rules on (U , S, k) until no longer
applicable.

R1. If there exists Si ∈ S such that |Si| ≥ k, then the given instance is a
yes-instance.

R2. If there exists S1, S2 ∈ S such that S1 = S2, then delete S1.

These reduction rules are obviously correct. In the following we always assume
that the given instance of Unique Coverage is reduced with respect to the
above rules.
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3.1 Bounded Number of Occurrences

We begin with the simple case where each element e ∈ U is contained in at
most b sets of S. A special case of this situation is Max Cut (b = 2).

Lemma 1. If each element e ∈ U occurs in at most b sets of S then the Unique

Coverage problem admits a kernel of size b(k − 1).

Proof. Find a maximal collection S′ of pairwise disjoint sets in S. If |∪S∈S′ S| ≥
k, we are done. Therefore assume | ∪S∈S′ S| ≤ k − 1. Since every set in S − S′

intersects some set in S′ and since every element occurs in at most b sets in S,
we have |S − S′| ≤ (k − 1)(b − 1). But |S′| ≤ k − 1 and so |S| ≤ b(k − 1). ��

The proof of Lemma 1 applies a proof principle which is a basis for the proof of
the following more complicated case.

3.2 Bounded Intersection Size

Consider the situation where for all Si, Sj ∈ S we have |Si ∩ Sj| ≤ c, for some
constant c. In this case we say that the problem instance has bounded intersection
size c and show that the problem admits a polynomial kernel of size O(kc+1).
First consider the case when |Si ∩ Sj | ≤ 1.

Lemma 2. Suppose that for all Si, Sj ∈ S, i �= j, we have |Si ∩ Sj| ≤ 1. If an
element e ∈ U is covered by at least k + 1 sets, then one can obtain a solution
covering k elements uniquely in polynomial time.

Proof. Suppose an element e ∈ U is covered by the sets S1, . . . , Sk+1. Then by
reduction rule R2, at most one of these sets can have size 1. The remaining k
sets uniquely cover at least one element each. ��

One can now easily obtain a kernel of size k2 for the case when the intersection
size is at most 1.

Lemma 3. Suppose that for all Si, Sj ∈ S, |Si ∩Sj | ≤ 1. If |S| ≥ k2, then there
exists T ⊆ S that covers at least k elements uniquely.

Proof. Greedily find a maximal collection S′ = {S1, . . . , Sp} of pairwise disjoint
sets in S. Note that if |∪Si∈S′Si| ≥ k, then we are done. Therefore assume, |∪S∈S′

S| ≤ k − 1 (this also implies p ≤ k − 1). Since |S| ≥ k2, and since every set in S
intersects with at least one set in S′, by the pigeonhole principle there exists an
element e ∈ ∪S∈S′S such that at least k+1 sets T1, . . . , Tk+1 in S −{S1, . . . , Sp}
contain e. For otherwise, each element in ∪S∈S′S is contained in at most k sets
of S \ S′, which implies that |S| ≤ (k − 1)k + p < k2, a contradiction. By
Lemma 2, this collection T = {T1, . . . , Tk+1} of k + 1 sets uniquely covers at
least k elements. ��

Next, we generalize these observations to the case when |Si ∩ Sj | ≤ c, for some
constant c.
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Theorem 1. Suppose that for all Si, Sj ∈ S we have |Si ∩ Sj | ≤ c, for some
positive constant c. If |S| ≥ kc+1 then there exists T ⊆ S that covers k elements
uniquely.

Proof. By induction on c. For c = 1, this follows from Lemma 3. Assume the the-
orem to hold for c > 1. Greedily obtain a maximal collection S′ = {S1, . . . , Sp}
of pairwise disjoint sets. If | ∪Si∈S′ Si| ≥ k then we are done. Therefore as-
sume | ∪S∈S′ S| ≤ k − 1 (this also implies p ≤ k − 1). Since |S| ≥ kc+1, and
since every set in S intersects with at least one set in S′, there exists e ∈ ∪S∈S′S
such that at least kc + 1 sets in S − {S1, . . . , Sp} contain e. For otherwise,
|S| ≤ (k − 1)kc + p < kc+1, a contradiction. Let T1, . . . , Tkc+1 be some kc + 1
such sets. Delete e from each of these sets. We obtain at least kc nonempty
distinct sets T ′

1, . . . , T
′
kc (there is at most one set consisting of the element e

only which is deleted in this process). Note that any two of these sets inter-
sect in at most c − 1 elements. By induction hypothesis, there exists a collec-
tion T ′ ⊆ {T ′

1, . . . , T
′
kc} that uniquely covers at least k elements, and thus there

exists a collection T ⊆ {T1, . . . , Tkc} that uniquely covers at least k elements
(just take the solution for T ′ and add e to every set in it). This proves the the-
orem. ��

Corollary 1. Unique Coverage admits a kernel of size kc+1 for bounded
intersection size c.

Note that c ≤ k−1 and therefore for the general case we have a kernel of size kk.

Corollary 2. The Unique Coverage problem is fixed-parameter tractable and
admits a problem kernel of size kk.

An algorithm that checks all possible subsets of a family of size kk to see whether
any of them uniquely covers at least k elements is an FPT algorithm with time
complexity O∗(2(kk)). But note that we can assume without loss of generality
that every set in the solution covers at least one element uniquely. Thus it suffices
to check whether subfamilies of size at most k uniquely cover at least k elements.
This can be done in time O∗(kk2

) = O∗(2k2 log k). However, this kernelization
result is tailored especially for the bounded intersection size case. It turns out
that a much better kernel can be obtained for the general case.

3.3 General Case

We now show that Unique Coverage has a kernel of size 4k using a result on
strong systems of distinct representatives.Given a family of setsS = {S1, . . . , Sm},
a system of distinct representatives for S is an m-tuple (x1, . . . , xm) where the el-
ements xi are distinct and xi ∈ Si for all i = 1, 2, . . . , m. Such a system is strong
if we additionally have xi /∈ Sj for all i �= j. The next theorem due to Füredi and
Tuza appears in Jukna’s textbook [4].

Theorem 2. In any family of more than
(
r+s

s

)
sets of cardinality at most r, at

least s + 2 of its members have a strong system of distinct representatives.
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Given an instance (U = {1, . . . , n}, S = {S1, . . . , Sm}, k) of Unique Coverage,
put r = k − 1 and s = k in the statement of the above theorem and we have a
kernel of size

(
2k−1
k−1

)
≤

(
2k
k

)
≤ 22k.

Corollary 3. Unique Coverage admits a problem kernel of size 4k.

Note that this implies that there is an O∗(4k2
) time FPT algorithm for the

Unique Coverage problem.
For the case where each set of the input family has size at most b, for some

constant b, there is a better kernel. By Theorem 2, if there exists at least
(
b+k

k

)

sets in the input family, then there exists at least k sets with a strong system of
distinct representatives.

Corollary 4. If each set S ∈ S has size at most b then the Unique Coverage

problem has a kernel of size O(2b+k).

4 The Budgeted Unique Coverage Problem

In this section we consider the Budgted Unique Coverage problem where
each set in the input family has a cost and each element in the universe has a
profit; the goal is to decide whether there exists a subcollection of total cost at
most B that uniquely covers elements of total profit at least k. By parameterizing
on k or B or both we obtain different parameterized versions of this decision
question.

4.1 Hardness Results

We first consider the Budgeted Max Cut problem which is a specialization
of the Budgeted Unique Coverage problem. An instance of this problem is
an undirected graph G = (V, E) with a cost function c : V → R

+ on the vertex
set and a profit function p : E → R

+ on the edge set; positive real numbers B
and k. The question is whether there exists a cut (T, T ′) such that the total cost
of the vertices in T is at most B and the total profit of the edges crossing the
cut is at least k.

We first show that the Budgeted Max Cut problem with arbitrary positive
real costs and profits is probably not FPT.

Lemma 4. The Budgeted Max Cut problem with arbitrary positive costs
and profits with parameters B and k is not FPT, unless P = NP.

Proof. Suppose there exists an algorithm for the Budgeted Max Cut problem
(with arbitrary positive costs and profits) with running time O(f(k, B)·poly(n)).
We will use this to solve the decision version of Max Cut in polynomial time.
Let (G = (V, E), k) be an instance of the Max Cut problem, where |V | = n.
Assign each vertex of the input graph cost 1/n and each edge profit 1/k. Let the
budget B = 1/2 and the profit k′ = 1. Clearly, G has a maximum cut of size at
least k iff there exists S ⊆ V of total cost at most B such that the total profit
of the edges crossing the cut (S, V − S) is at least k′. And this can be answered
in time O(f(1, 1/2) · p(|V |)), implying P = NP. ��
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Theorem 3. The Budgeted Unique Coverage problem with arbitrary pos-
itive costs and profits is not FPT, unless P = NP.

Henceforth by the ‘budgeted’ version we mean the case when the costs and profits
are positive integers. We next show that the Budgeted Max Cut problem
parameterized by the budget B alone is W [1]-hard.

Lemma 5. The Budgeted Max Cut problem parameterized by the budget is
W [1]-hard.

Proof. To show W [1]-hardness, we exhibit a fixed-parameter reduction from the
Independent Set problem to the Budgeted Max Cut problem with unit
costs and profits. Let (G = (V, E), B) be an instance of Independent Set

with |V | = n. For every vertex u ∈ V add |V | − 1 − deg(u) new vertices and
connect them to u. Call the resulting graph G′. Note that every vertex u ∈ G
has degree |V |−1 in G′. We let (G′ = (V ′, E′), B, k = B(n−1)) be the instance
of Budgeted Max Cut.

Claim. G has an independent set of size B iff G′ has a cut (S, V ′ − S) such
that |S| = B and at least k = B(n − 1) edges lie across it.

If G has an independent set S of size B, then clearly S is independent in G′. The
cut (S, V ′ −S) does indeed have B(n − 1) edges crossing it, as every vertex of S
has degree n − 1. Next suppose that G′ has a cut (S, V ′ − S) such that |S| = B
and B(n − 1) edges cross the cut. Note that every vertex in S must be a vertex
from G. Otherwise the cut cannot have B(n − 1) edges crossing it. Suppose two
vertices u and v in S are adjacent. Then both u and v contribute less than n− 1
edges to the cut. Since each vertex in S contributes at most n − 1 edges to
the cut, the number of edges crossing the cut must be less than B(n − 1), a
contradiction. Hence S is independent in G′ and hence G has an independent
set of size B. ��

Since the Budgeted Unique Coverage problem is a generalization of Bud-

geted Max Cut we have

Theorem 4. The Budgeted Unique Coverage problem parameterized by
the budget B is W [1]-hard.

4.2 A Fixed-Parameter Tractability Result

In this subsection, we give an FPT algorithm for Budgeted Unique Cover-

age, when B and k are parameters, assuming that for every set S in the input
family the number of sets with a non-empty intersection with S is at most some
function of k. This is a natural situation in real-world applications; for example,
in wireless networks. For the Budgeted Max Cut problem, for instance, every
set is intersected by at most k − 1 sets.

Let (U = {1, . . . , n}, S = {S1, . . . , Sm}, c, p, B, k) be an instance of the Bud-

geted Unique Coverage problem where c : S → N and p : U → N. For T ⊆ S,
define c(T ) =

∑
S∈T c(S) and p(T ) to be the total profit of the elements uniquely
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covered by T . If Si ∈ S, define N [Si] to be the set of all members of S that
have a nonempty intersection with Si. We can without loss of generality assume
that c(Si) ≤ B and |Si| ≤ k − 1 for all 1 ≤ i ≤ m. In what follows, we assume
that for all Si ∈ S, we have |N [Si]| ≤ f(k) for some function f .

The FPT algorithm that we describe here builds the solution in stages. Note
that if we decide to include a set S in the solution, there is no way of deciding how
many elements S covers uniquely unless we make choices for each set in N [S]. To
get around this, the algorithm, at any stage, decides whether or not to include
a subfamily A ⊆ N [S] for some set S. If it includes A in the solution, then it
automatically excludes N [S] \ A from it. The current solution is a pair (T , T ′),
where T , T ′ ⊆ S and T ∩ T ′ = ∅. The sets included by the algorithm in the
solution till the current stage are in T ; those excluded from the solution are
in T ′.

Call a pair (T , T ′) a feasible solution for an instance of Budgeted Unique

Coverage if T ′ = S − T , c(T ) ≤ B and p(T ) ≥ k. A pair (T , T ′) is a partial
solution if T , T ′ ⊆ S and T ∩T ′ = ∅. A partial solution (T , T ′) can be extended
to a feasible solution if there exist X , X ′ ⊆ S − (T ∪ T ′) such that X ∩ X ′ = ∅
and (T ∪ X , T ′ ∪ X ′) is a feasible solution. A partial solution (T , T ′) is strong
if for each set Si ∈ T , N [Si] ⊆ T ∪ T ′. Given a strong partial solution (T , T ′),
let U1, . . . , Ut be a partition of S − (T ∪ T ′) according to costs. That is, all
members in any set Ui have the same cost ci and for all i �= j, ci �= cj . Note
that t ≤ B. For each Ui, let Umax

i denote a member of Ui with maximum total
profit.
Lemma 6. Let (T , T ′) be a strong partial solution and let U1, U2, . . . , Ut be a
partition of S −(T ∪T ′) according to costs. Suppose (T , T ′) can be extended to a
feasible solution by adding a member of Ui to T . Then there exists an extension
of (T , T ′) into a feasible solution such that T ∩ N [Umax

i ] �= ∅.
Proof. Suppose (T , T ′) can be extended to a feasible solution (X , X ′) by adding
a member U ∈ Ui to T and that X ∩ N [Umax

i ] = ∅. This means N [Umax
i ] ⊆ X ′.

Remove U from X and replace it by Umax
i . Note that every element of Umax

i

is uniquely covered and that the total profit of these newly uniquely covered
elements is at least as that of those covered by U . Since c(U) = c(Umax

i ), the
new solution continues to be feasible. ��
One can use Lemma 6 to develop an FPT algorithm with time complexity O∗((B·
2f(k))B+k). Suppose there exists a feasible solution to the given input instance.
We start with a strong feasible solution (T = ∅, T ′ = ∅). Partition the input
family S according to costs into the subfamilies U1, . . . , Ut. Note that t ≤ B.
Since there exists a feasible solution, it has to include a set from one of the
subfamilies Ui. For each choice of a subfamily, Lemma 6 assures us that it is
sufficient to consider a set S in the subfamily which maximizes profit. We con-
sider all possible bipartitions (A, A′) of N [S] such that A �= ∅ and each member
in A uniquely covers at least one element. For each such bipartition (A, A′),
set T ← T ∪ A and T ′ ← T ′ ∪ A′. Since by our assumption, |N [S]| ≤ f(k),
there are at most 2f(k) such bipartitions. This gives an initial branching factor
of B · 2f(k).
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We then recurse using Lemma 6. In order to recurse, we must first ensure that
the current partial solution is strong. We achieve this by considering all possible
bipartitions of N [T ]− (T ∪T ′) for all sets T ∈ T for which N [T ]− (T ∪T ′) �= ∅.
As before, we are interested in bipartitions (A, A′) which have the property
that each set in T ∪ A uniquely covers at least one element. For each such
bipartition (A, A′), we set T ← T ∪ A and T ′ ← T ′ ∪ A′. There are at most 2k

such bipartitions and for each bipartition, we either increase the cost of the
solution or total profit of uniquely covered elements by at least 1. If at any
stage of recursion, we find that there is no subfamily Ui such that for U ∈
Ui, c(U) ≤ B − c(T ), we abort that branch. If p(T ) ≥ k, at any stage, we
halt and output yes. The overall depth of the recursion tree is at most B + k
and the branching factor is at most B · 2f(k). The overall time complexity is
therefore O∗((B ·2f(k))B+k). If the algorithm does not return a solution then we
can safely conclude that the given instance is a no-instance.

Theorem 5. Suppose (U , S, c, p, B, k) is an instance of the Budgeted Unique

Coverage problem where for every set S ∈ S, we have |N [S]| ≤ f(k). Then
there is an algorithm with time complexity O∗((B · 2f(k))B+k) for this problem.

The Budgeted Max Cut problem is a special case where |N [S]| ≤ k − 1 for
all S ∈ S, and the following corollary is immediate.

Corollary 5. The Budgeted Max Cut problem with positive integer costs
and profits is fixed-parameter tractable when parameterized by B and k. There
is an algorithm with time complexity O∗((B · 2k)B+k) for this problem.

5 Concluding Remarks

In this paper, we considered the parameterized complexity of the Unique Cov-

erage problem. There are several directions in which to proceed. Firstly, the
reduction rules that we give are almost trivial and the kernel that we obtain is
exponential in k. Kernelization is a very important topic in the design of FPT
algorithms and the challenge is to devise reduction rules to obtain a polyno-
mial (linear?) kernel or prove that no such kernel exists under some plausible
complexity-theoretic assumption. Are there reduction rules that lead to a bet-
ter problem kernel? In particular, is there a polynomial kernel for the Unique

Coverage problem?
At this point, all we can show is that with respect to a broader set of reduction

rules, which we do not state here, the kernel size is at least Ω(2k/
√

k/2). The
following example illustrates this situation. Let U = {1, 2, . . . , k}, S = S1 ∪
S2, where S1 consists of all subsets of U of size exactly �k/2� + 1 and S2 is
some collection of subsets of U of size at most k/4. Note that |S1| =

(
k

�k/2�+1

)
,

which by Stirling’s approximation is, Ω(2k/
√

k/2). If S2 = ∅ then one can show
that the given instance is a no-instance. But we can always produce an S2 �=
∅ such that the given instance is a yes-instance and such that our reduction
rules do not change the size of the input instance. For instance, if we take
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S2 = {{�k/2� + 2}, . . . , {k}}, then this is a yes-instance and we can show that
our reduction rules do not alter the size of the input.

Another important question is whether there exists a good branching algo-
rithm for Unique Coverage. The algorithm that we gave runs in time O∗(4k2

).
Finally, is the Budgeted Unique Coverage problem with positive integer
costs/profits, with parameters B and k, fixed-parameter tractable?

Acknowledgements. We thank Saket Saurabh for pointing out the connection
between Unique Coverage and strong systems of distinct representatives.
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Abstract. We study the complexity of structurally restricted homomorphism and
constraint satisfaction problems. For every class of relational structures C, let
LHOM(C, _) be the problem of deciding whether a structure A ∈ C has a ho-
momorphism to a given arbitrary structure B, when each element in A is only
allowed a certain subset of elements of B as its image. We prove, under a certain
complexity-theoretic assumption, that this list homomorphism problem is solv-
able in polynomial time if and only if all structures in C have bounded tree-width.
The result is extended to the connected list homomorphism, edge list homomor-
phism, minimum cost homomorphism and maximum solution problems. We also
show an inapproximability result for the minimum cost homomorphism problem.

Keywords: Computational complexity, constraint satisfaction, homomorphism,
relational structure, inapproximability.

1 Introduction

A large class of problems in different areas of computer science can be viewed as con-
straint satisfaction problems [2,7,13,15,20,23]. This includes problems in artificial in-
telligence, database theory, scheduling, frequency assignment, graph theory and satis-
fiability. The main model [13] considers constraint satisfaction problems with a fixed
template determining the size of the domain and the set of allowed constraint types in
an instance. Feder and Vardi [13] observed that constraint satisfaction problems can be
described as homomorphism problems for relational structures. For an excellent intro-
duction to and survey of the strongly related subject of graph homomorphisms, we refer
to [17]. For every two classes of relational structures C, D, let HOM(C, D) be the prob-
lem of deciding whether a structure A ∈ C has a homomorphism to a given arbitrary
structure B ∈ D. To simplify the notation, if either C or D is the class of all structures,
we just use the placeholder ‘_’. Grohe [15] has studied so called structural restrictions,
i.e. the question of how to restrict C, so that HOM(C, _) is polynomial-time solvable.
He proves the following:

Assume that FPT �= W[1]. Then for every recursively enumerable class C of struc-
tures of bounded arity, HOM(C, _) is polynomial-time solvable if and only if the core of
every structure in C has tree-width at most w (for some fixed w).
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FPT �= W[1] is a standard assumption from parameterised complexity theory that is
widely believed to be true. A core of a relational structure A is a substructure A′ ⊆ A
such that there is a homomorphism from A to A′, but no homomorphism from A′ to a
proper substructure of A′. All cores of a structure A are isomorphic, so it is reasonable
to speak of the core of A.

In the list homomorphism problem [2,6,7,9,10,11,12], LHOM(C, D), the goal is to
decide whether there is a homomorphism from a structure A ∈ C to a given structure
B ∈ D, when each element in A is only allowed a certain subset of elements in the
universe of B as its image. Such list homomorphisms generalise e.g. list colourings and
have many natural applications. We show the following:

Assume that FPT �= W[1]. Then for every recursively enumerable class C of struc-
tures of bounded arity, LHOM(C, _) is polynomial-time solvable if and only if every
structure in C has tree-width at most w (for some fixed w).

Incidentally, this complexity-theoretic classification coincides with that of Dalmau
and Jonsson’s in [3], where they study the problem of counting homomorphisms. Our
result is then extended to the connected list homomorphism problem [6], where every
list has to induce a connected substructure of the right hand side input structure and to
the edge list homomorphism problem [8], where the lists contain tuples from the re-
lations of the right hand side input structure that the tuples on the left hand side have
to map to. We remark that our hardness results still apply when the classes of rela-
tional structures are restricted to graphs. We also extend the result to two optimisation
problems. The minimum cost homomorphism problem was introduced by Gutin et al.
in [16], where it was motivated by a real-world problem in defence logistics. Here, map-
ping an element from the left hand side to an element on the right hand side is afflicted
with costs and the objective is to find a homomorphism of minimum cost. This prob-
lem includes as special cases the list homomorphism problem and the general optimum
cost chromatic partition problem [24]. In the maximum solution problem [21], the right
hand side elements are assumed to be a finite subset of the natural numbers and the
objective is to find a homomorphism that has maximum possible total weight. In some
sense, see [21], this is a generalisation of integer programming and captures e.g. the
INDEPENDENT SET problem. When the right hand side is restricted to {0, 1} this is the
well-studied MAX ONES problem. The hard instances of the minimum cost homomor-
phism problem are also shown to be inapproximable as well. To our knowledge, this is
the first inapproximability result for this problem.

The rest of this paper is organised as follows. Section 2 introduces the requisite
background material and problem definitions for several variants of the homomorphism
problem. Section 3 contains proofs of our intractability and inapproximability results.
Finally, Section 4 concludes the paper and presents possible future work.

2 Preliminaries

Most of the terminology presented in this section comes from [3,14,15,16]. In the next
three subsections, we provide the necessary background material on relational struc-
tures and graph theory, homomorphism problems and parameterised complexity, re-
spectively.
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2.1 Relational Structures and Graph Theory

A vocabulary τ is a finite set of relation symbols of specified arities, denoted ar(·). The
arity of τ is max{ar(R) | R ∈ τ}. A τ -structure A consists of a finite set A (called the
universe of A) and for each relation symbol R ∈ τ , a relation RA ⊆ Aar(R). We say
that a class C of structures is of bounded arity if there is an r such that every structure
in C is at most r-ary. A substructure of a τ -structure A is a τ -structure B with universe
B ⊆ A and relations RB ⊆ RA for all R ∈ τ .

A substructure B is induced if for all R ∈ τ , say, of arity r, RB = RA ∩ Br. We
define the size ‖A‖ of the structure A as ‖A‖ = |τ | + |A| +

∑
R∈τ |RA| · |ar(R)|.

‖A‖ is roughly the size of a reasonable encoding of A.
Let A and B be τ -structures. We define A ∪ B to be the τ -structure with universe

A ∪ B and such that for all R ∈ τ , RA∪B = RA ∪ RB

Let E be a binary relation symbol. We view graphs as {E}-structures G and assume
that they are undirected and loop-free. A graph H is a minor of a graph G if H is
isomorphic to a graph that can be obtained from a subgraph of G by contracting edges.
We define a minor map from H to G to be a mapping μ : H → 2G having the following
properties:

1. for all v ∈ H , the set μ(v) is non-empty and connected in G;
2. for all v, w ∈ H with v �= w, the sets μ(v) and μ(w) are disjoint; and
3. for all edges {v, w} ∈ EH, there are v′ ∈ μ(v) and w′ ∈ μ(w′) such that

{v′, w′} ∈ EG.

We call a minor map μ from H to G onto if
⋃

v∈H μ(v) = G. It is easy to see that
there is a minor map from H to G if and only if H is a minor of G. Moreover, if H is a
minor of a connected graph G, then we can always find a minor map from H onto G.

A tree-decomposition of a graph G is a pair (T, β) where T is a tree and β : T → 2G

satisfies the following conditions:

1. for every v ∈ G, the set {t ∈ T | v ∈ β(t)} is non-empty and connected in T; and
2. for every e ∈ EG, there is a t ∈ T such that e ⊆ β(t).

The width of a tree-decomposition (T, β) is max{|β(t)| | t ∈ T } − 1, and the tree-
width ω(G) of a graph G is the minimum w such that G has a tree-decomposition of
width w.

For k, � ≥ 1, the (k × �)-grid is the graph with vertex set {1, . . . , k} × {1, . . . , �}
and an edge between (i, j) and (i′, j′) if and only if |i− i′| + |j − j′| = 1. It is not hard
to see that the (k × k)-grid has tree-width k. Robertson and Seymour have proved the
following theorem which is known as the Excluded Grid Theorem:

Theorem 1. [25] For every k there exists a w(k) such that the (k × k)-grid is a minor
of every graph of tree-width at least w(k).

We will now generalise some of the graph-theoretic notions defined above to arbitrary
relational structures. The Gaifman graph of a τ -structure A is the graph G(A) with
vertex set A and an edge between a and b if a �= b and there is a relation symbol R ∈ τ ,
say, of arity r, and a tuple (a1, . . . , ar) ∈ RA such that a, b ∈ {a1, . . . , ar}. Henceforth,
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we say that a subset B ⊆ A is connected in a structure A if it is connected in G(A).
A tree-decomposition of a τ -structure A is viewed as a tree-decomposition of G(A). A
minor map from A to B is a mapping μ : A → 2B that is a minor map from G(A) to
G(B).

2.2 Homomorphism Problems

A homomorphism from a τ -structure A to a τ -structure B is a mapping h : A → B
such that for all R ∈ τ , say, of arity r, and all tuples (a1, . . . , ar) ∈ RA, we have
(h(a1, . . . , h(ar)) ∈ RB .

For two classes C and D of structures, HOM(C, D) is the following problem:

INSTANCE: A ∈ C, B ∈ D.
OUTPUT: “yes” if a homomorphism from A to B exists, “no” if no homomorphism
from A to B exists.

If D is the class of all finite structures, we write HOM(C, _) instead of HOM(C, D).
In the list homomorphism problem, each element of the left hand side input structure

is given together with a set, called a list, of possible images in the right hand side
input structure. This problem has been well studied with regard to restrictions to the
right hand side input structure, see e.g. [2,6,7,9,10,11,12] for some results. We denote
it LHOM(C, D):
INSTANCE: A ∈ C, B ∈ D, La ⊆ B for each a ∈ A.
OUTPUT: “yes” if a homomorphism h from A to B such that h(a) ∈ La for each a ∈ A
exists, “no” otherwise.

By restricting LHOM(C, D) to those inputs in which each list La induces a connected
subgraph of the Gaifman graph G(B) of B, we get the connected list homomorphism
problem, CLHOM(C, D), introduced for graphs in [6]:

INSTANCE: A ∈ C, B ∈ D, La ⊆ B for each a ∈ A, such that each La induces a
connected substructure in B.
OUTPUT: “yes” if a homomorphism h from A to B such that h(a) ∈ La for each a ∈ A
exists, “no” otherwise.

Feder and Hell introduce the edge list homomorphism problem for undirected graphs
in [8]. Here we generalise this to arbitrary relational structures and let ELHOM(C, D)
be the following problem:

INSTANCE: A ∈ C, B ∈ D, lists of tuples from the relations of B for each tuple of the
relations in A.
OUTPUT: “yes” if a homomorphism h from A to B such that each tuple in the relations
of A maps to a tuple in the corresponding list of tuples from B exists, “no” otherwise.

In [16] an optimisation problem is introduced, where every graph homomorphism is
associated with a cost. We generalise this framework to arbitrary relational structures.
If each element a ∈ A is associated with, positive integral, costs cb(a), b ∈ B, then
the cost of a homomorphism h is

∑
a∈A ch(a)(a) and the minimum cost homomorphism

problem, MINHOM(C, D), is the following problem:

INSTANCE: A ∈ C, B ∈ D, positive integer costs cb(a), where a ∈ A and b ∈ B.
OUTPUT: The cost of a minimum cost homomorphism from A to B, “no” if no homo-
morphism from A to B exists.
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If we let the universes B of the right hand side input structures of HOM(C, D) be
finite subsets of the natural numbers equipped with the usual total order <, the maximum
solution problem [21], MAX SOL(C, D), is the following problem:

INSTANCE: A ∈ C, B ∈ D, weight function ω : A → IN
OUTPUT: The maximum of

∑
a∈A ω(a) · h(a) for any homomorphism h from A to B,

“no” if no homomorphism from A to B exists.

We note that MAX SOL is an extension of the MAX ONES problem and, as in [22],
where Khanna et al. classify the approximability of MAX ONES with respect to restric-
tions to the right hand side input structure, we restrict our attention to instances of MAX

SOL satisfying the following restriction: if a, a′ occur in the same tuple (a1, . . . , ar) in
some relation in A, then a �= a′ must hold. We say that a structure having this property
is replication free.

2.3 Parameterised Complexity

Finally, we need some facts concerning parameterised complexity theory. Here we relax
the classical notion of tractability, polynomial time computability, by admitting algo-
rithms whose running time is exponential in some parameter of the problem instance
that can be expected to be small in the typical application.

A parameterisation of a problem P ⊆ Σ∗ is a polynomial time computable mapping
κ : Σ∗ → IN. If (x, k) ∈ Σ∗ × IN is an instance of a parameterised decision problem,
we call x the input and k the parameter. For example, the parameterised clique problem
p-CLIQUE, is the following problem:

INPUT: graph G.
PARAMETER: k ∈ IN.
OUTPUT: “Yes” if G has a clique of size k, “no” otherwise.

A parameterised problem (P, κ) over Σ is fixed-parameter tractable if there is a
computable function f : IN → IN, a constant c ∈ IN and an algorithm that given
(x, k) ∈ Σ∗ × IN computes the solution in time f(k) · |x|c. FPT denotes the class of all
fixed-parameter tractable parameterised problems.

An fpt-reduction from a parameterised problem (P, κ) over Σ to a parameterised
problem (P ′, κ′) over Σ′ is a mapping R : Σ∗ → (Σ′)∗ such that for all x ∈ Σ∗ we
have R(x) ∈ P ′, R is computable in time f(κ(x)) · |x|c and κ′(R(x)) ≤ g(κ(x)) (for
computable functions f, g : IN → IN and a constant c).

Hardness and completeness of parameterised problems for a parameterised complex-
ity class are defined in the usual way. Downey and Fellows [4] defined a hierarchy W[1]
⊆ W[2] ⊆ · · · of parameterised complexity classes. They conjecture that this hierarchy
is strict and that FPT is strictly contained in W[1]. p-CLIQUE is shown to be W[1]-
complete under fpt-reductions in [5]. This theorem is used in our hardness proofs.

The problems we are interested in are the homomorphism problems defined in Sub-
section 2.2 parameterised by the size of the left hand side input structure. E.g. we
have the following definition of the parameterised list homomorphism problem, p-
LHOM(C, D):
INPUT: A ∈ C, B ∈ D, La ⊆ B for each a ∈ A.
PARAMETER: ||A||.
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OUTPUT: “yes” if a homomorphism h from A to B such that h(a) ∈ La for each a ∈ A
exists, “no” otherwise.

The parameterised versions of the other problems in Subsection 2.2 are defined analo-
gously and with the same parameter.

3 Main Results

We are now ready to prove the main results. First, we make the observation that when
our homomorphism problems are restricted to classes of structures that have bounded
tree-width, standard techniques using tree-decompositions, cf [17,19], may be
employed to solve the problems in question in polynomial time. Then we see that what
is left to do to get a classification of our problems, with regard to structural restrictions,
is to prove hardness for classes of structures with unbounded tree-width. The proofs
need a bit of preparation, that is taken care of in Subsection 3.1. Subsection 3.2 con-
tains the actual proofs.

3.1 The Structure B

Let A be a connected τ -structure. Let k ≥ 2, K =
(
k
2

)
, and μ : {1, . . . , k} ×

{1, . . . , K} → 2A a minor map from the (k × K)-grid onto A. Let us assume that
we have fixed some bijection � between {1, . . . , K} and the set of all unordered pairs
of elements of {1, . . . , k}. For improved readability, we write i ∈ p instead of i ∈ �(p).

Let the {E}-structure G be a graph. We now concentrate on the τ -structure B =
B(A, μ,G), as defined by Grohe [15]. The universe B of B is given by:

{(v, e, i, p, a)| v ∈ G, e ∈ EG,
1 ≤ i ≤ k, 1 ≤ p ≤ K s.t. (v ∈ e ⇐⇒ i ∈ p),
a ∈ μ(i, p)}

We define the function Π : B → A by letting Π(v, e, i, p, a) = a. As usual, we extend
Π and Π−1 to tuples by defining it component-wise.

For every relation R ∈ τ , say, of arity r, and for all tuples (a1, . . . , ar) ∈ RA,
we add to RB all tuples (b1, . . . , br) ∈ Π−1(a1, . . . , ar) satisfying the following two
constraints for all b, b′ ∈ {b1, . . . , br}:

(C1) if b = (v, e, i, p, a) and b′ = (v′, e′, i, p′, a′), then v = v′; and
(C2) if b = (v, e, i, p, a) and b′ = (v′, e′, i′, p, a′), then e = e′.

In the remainder of this paper, we will focus on homomorphisms from A to B such
that each a ∈ A is mapped to an element b ∈ B that was ”generated” by a, i.e. b ∈
Π−1(a). We will denote this by saying that for a homomorphism h : A → B, h(a) =
(_, _, _, _, a) for each a ∈ A, where the placeholders ‘_’ are used to indicate that the
values in question are arbitrary, as long as the element is a member of B. To proceed
we need the following fact:

Lemma 2. The graph G contains a k-clique if and only if there exists a homomorphism
h from A to B such that h(a) = (_, _, _, _, a) for all a ∈ A.
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Proof. In the proof of Lemma 3.1 in [3] it is shown that the graphG contains a k-clique if
and only if there exists a homomorphismh from A to B satisfying Π ◦ h = id, where id
is the identity function on the set A. Now, if h is a homomorphism from A to B such that
h(a) = (_, _, _, _, a) for all a ∈ A, h obviously satisfies Π ◦ h = id and vice versa. ��

3.2 Hardness Results

The problem p-LHOM(C, _) is trivially in FPT when LHOM(C, _) is in FP, and we
know that LHOM(C, _) is solvable in polynomial time if the structures in C have bound-
ed tree-width. What is left to prove, to achieve the result announced in Section 1, is that
if p-LHOM(C, _) is in FPT, then the structures in C have bounded tree-width. We do
this by assuming that p-LHOM(C, _) is in FPT even when C has unbounded tree-width
and showing that this implies p-CLIQUE is in FPT, in contradiction with the fact that it
is W[1]-complete. This is accomplished by exhibiting an fpt-reduction from p-CLIQUE

to p-LHOM(C, _), where the result in the previous subsection is applied. As the same
reasoning applies to the four other problems under study, this proof is then adapted
and extended to fit our different problem variations. However, due to space constraints,
some proofs are omitted from this paper.

Lemma 3. Let C be a recursively enumerable class of structures of bounded arity
that does not have bounded tree-width. If either p-LHOM(C, _), p-CLHOM(C, _), p-
ELHOM(C, _) or p-MINHOM(C, _) is in FPT, then FPT = W[1].

Proof. Let (G, k) be an instance of p-CLIQUE. By the Excluded Grid Theorem, there
is some structure A in C such that the (k × K)-grid is a minor of the Gaifman graph of
A. We enumerate the recursively enumerable class C until we find such an A = A(k).
Then we compute a minor map μ from the (k × K)-grid to A. Let A1, . . . ,Am be
a decomposition of A into its connected components. We can assume, without loss of
generality, that the (k × K)-grid is a minor of (the Gaifman graph of) A1 and that the
minor map μ is onto A1.

Let B = (A, μ,G) constructed as above. By Lemma 2, we know that in order to
decide if there exists a k-clique in G we only need to check if there is a homomorphism
h from A1 to B such that h maps every a ∈ A1 to some (_, _, _, _, a) ∈ B, since such
an h exists if and only if G has a k-clique. We would like to differentiate B, so that
only homomorphisms mapping a ∈ A1 to (_, _, _, _, a) ∈ B are allowed. Fortunately,
the list homomorphism problem lets us enforce precisely such a differentiation of B.

To do this construct B′ as B∪A2 ∪ . . . ∪Am and lists La ⊆ B′, a ∈ A defined by:

La =
{

{b | b ∈ B and b = (_, _, _, _, a)} if a ∈ A1

{b | b ∈ B′ \ B, b = a} otherwise

This way, we will always be able to find a homomorphism from A \ A1 to B′ \B: it is
just a matter of selecting the only element b available in La for each a ∈ A \ A1. Since
b = a in each case this obviously results in a homomorphism from A \ A1 to B′ \ B.

It is also clear that the only possible homomorphisms h from A1 to B (and hence
also the only possible homomorphisms from A to B′), under our lists, are the ones
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obeying the condition that h maps each a ∈ A1 to some (_, _, _, _, a) ∈ B, due to the
definition of the lists for elements a ∈ A1.

Thus, the conclusion is that if G contains a k-clique, then we will be able to find a
homomorphism from A to B′, since then a homomorphism h from A1 to B, obeying
h(a) = (_, _, _, _, a) for each a ∈ A1, exists (by Lemma 2). If G has no k-clique, then
we will not be able to find any homomorphism from A to B′.

The construction of A only depends on k and is polynomial-time because C is re-
cursively enumerable. Computing the minor map μ may require exponential time in the
size of A, but this is still bounded in terms of k. The size of an r-ary relation RB is at
most |Π−1(Ar)| ≤ (|V G| · |EG| · |A|)r. This is polynomial in ||A|| and ||G|| since the
arity of C is bounded. It follows that the size of B and B′ is polynomially bounded in
terms of ||A|| and ||G|| and so, B′ can be computed in polynomial time. The lists La

for a ∈ A \ A1 are easy to compute and only hold one element each. While generating
B it is easy to construct the lists La for a ∈ A1 and the size of these lists are linear in
the size of B. This shows that the reduction from G, k to A, B′, La is an fpt-reduction.

To be able to prove hardness for CLHOM we have to modify the structure B a bit;
by adding some dummy elements to B we make our lists of elements in B induce
connected substructures of B. The result for ELHOM follows from a straightforward
adaption of the proof for LHOM. Finally, the hardness result for MINHOM follows
from transforming the instance of LHOM, in the proof of Lemma 3, to an instance of
MINHOM by assigning cb(a) = 1 if b ∈ La and cb(a) = 2 otherwise. ��

An immediate consequence of the above is that the problem of counting list homomor-
phisms [18] is hard when C does not have bounded tree-width.

In the last reduction in the proof of Lemma 3, from p-CLIQUE to p-MINHOM(C, _),
a gap that can be utilised to show the following (For further details regarding approx-
imability we refer to [1].) is produced:

Proposition 4. Let C be a recursively enumerable class of structures that does not have
bounded tree-width. If MINHOM(C, _) is approximable within 2p(|A|), (where p is a
fixed polynomial), for every structure A ∈ C, then FPT = W[1].

Before we continue dealing with our hardness results, a remark about our chosen proof
method is in place. Why do we need to use the structure B at all, could we not just
reduce LHOM(C, _) to HOM(C′, _), for some suitable class C′, i.e. for A ∈ C, let A′ ∈
C′ be the expansion of A having a relation Ra for each a ∈ A such that RA′

a = {(a)},
and go from there? This way, an instance (A,B) of LHOM reduces to (A′,B′), where
B′ has RB′

a = La and RB′
= RB for all other relations R. The error in this line of

reasoning, is that the structure A might not allow unary relations on all its members.
To illustrate this point, think of the problems HOM(C, _) for a class C of structures with
unbounded tree-width. Using the method of adding unary relations to the structures in C,
described above, we can now modify the proof of Lemma 3 to become a hardness proof
for HOM(C, _)! This is, of course, contradictory to Grohe’s result. (If C is restricted to
classes of structures that have all unary singleton relations, the cores of the structures
can not be smaller than the structures themselves and the tree-widths of the structures
and their respective cores coincide.)
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In the hardness proof for MAX SOL, we are able to exploit the fact that we have
to impose some total order on the elements in B; by letting elements of the form
(_, _, _, _, a), for some a ∈ A, have essentially the same values and inter-spacing these
clusters with large gaps, the positive and negative instances of p-CLIQUE are separated.

Lemma 5. Let C be a recursively enumerable class of replication free structures of
bounded arity that does not have bounded tree-width. If p-MAX SOL(C, _) is in FPT,
then FPT = W[1].

Proof. We start out as in the proof of Lemma 3 and construct B′ as B∪A2 ∪ . . .∪Am.
To proceed, we have to impose some total order on the elements in B′. Fix the natural
order < on IN. The intuition is to let elements in B on the form (_, _, _, _, a), for some
a ∈ A1, have essentially the same values in B′. If these small intervals where the
(_, _, _, _, a) ∈ B reside, for each a, are inter-spaced by large gaps and the weights
assigned to a ∈ A1 are chosen accordingly we might be able to separate the positive
and negative instances of p-CLIQUE.

Let σ = maxa∈A1 |Π−1(a)|, the maximum number of elements in B “generated”
by an element in A1. Clearly, σ is bounded in terms of k and ||G||.

Let B′ \ B = {1, . . . , d}. Also, let w(a) = 0 when a ∈ A \ A1. Furthermore,
take an a ∈ A1, let w(a) = d + 1 and let each b ∈ Π−1(a) have a distinct value
in [d + 1, d + σ]. The next a ∈ A1 gets w(a) = d + Δ + 1 while the associated
b ∈ Π−1(a) get distinct values in [d + Δ + 1, d + Δ + σ]. We continue this process
until A1 is exhausted and end up with the arrangement in Figure 1.

a21

a2n2

...

...

amn2

am1

...
Am

A2

1 (a21)

...

d (amn2)
...

B′ \ B

a11 d + 1 ∈ Π(a11)

...

d + σ ∈ Π(a11)
d + Δ + 1 ∈ Π(a12)

d + Δ + σ ∈ Π(a12)

a12

d + (|A_1| − 1)Δ + σ ∈ Π(a1|A1|)
...

a1|A1| d + (|A1| − 1)Δ + 1 ∈ Π(a1|A_1|)

...

...
...

A1 B

Fig. 1. The total order imposed on B′
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We are interested in homomorphisms h between A1 and B, such that each a ∈ A1

maps to some (_, _, _, _, a) ∈ B, i.e. where the a ∈ A1 with highest weight get mapped
to some (_, _, _, _, a) ∈ B in the highest interval of values, the a ∈ A1 with second
highest weight get mapped to some (_, _, _, _, a) ∈ B in the second highest interval of
values and so on. Such an h will receive a measure mid with

(d + 1)2 + (d + Δ + 1)2 + . . . + (d + (|A1| − 1)Δ + 1)2 ≤ mid ≤
≤ (d + 1)(d + σ) + (d + Δ + 1)(d + Δ + σ) + . . .+

+(d + (|A1| − 1)Δ + 1)(d + (|A1| − 1)Δ + σ).

It is easy to extend h to a homomorphism h′ from A to B′ (by mapping each a ∈ A\A1

to the b ∈ B′ \ B with b = a) and the measure for h′ will still be mid.
What false positives could we get? Recall that for each relation R ∈ τ and for all

tuples (a1, . . . , ar) ∈ RA1 , we add tuples (b1, . . . , br) ∈ Π−1(a1, . . . , ar) satisfying
certain conditions to RB and that, in this case, A1 is replication free. This means that B
is constructed so that any homomorphism h from A1 to B must have the property that
the image of h contains at most one element from each interval, [d+nΔ+1, d+nΔ+σ],
of values in B.

That leaves the possibility that some intervals of values have been permuted in some
way, i.e. at least a pair of elements in A1 have been mapped to somewhere in “each
others” intervals. It can be shown by induction that the maximum measure of such
a homomorphism occurs when the two elements in A1 that have lowest weight have
swapped intervals, i.e. we have h(a11) = (_, _, _, _, a12) and h(a12) = (_, _, _, _, a11)
in Figure 1, and the maximum value of each interval is picked as image. This measure
matches the maximum possible mid except for the two first summands.

The difference, denoted δ, between the lowest possible mid and the measure of such
a homomorphism is

δ =
|A1|∑

n=1

(d + (n − 1)Δ + 1)2 − (d + 1)(d + Δ + σ) − (d + Δ + 1)(d + σ)−

−
|A1|∑

n=3

(d + (n − 1)Δ + 1)(d + (n − 1)Δ + σ),

which is the same as (omitting the calculations) δ being equal to

Δ2 +
(
|A1|2 − |A1| − σ|A1|2 + σ|A1|

)
Δ/2 + |A1| + d|A1| − dσ|A1| − σ|A1|.

If we choose Δ large enough, for example Δ = d2σ2|A1|2, the difference δ will be
positive and hence, we can say that if we find a homomorphism with measure mid, G
has a k-clique and that if the maximum measure of any homomorphism from A to B′

is strictly less than the smallest possible mid, G contains no k-clique. ��

4 Conclusions and Open Questions

We have utilised the structure B defined by Grohe to classify a number of homomor-
phism problems by computational complexity with regard to structural restrictions, un-
der the assumption that FPT �= W[1]. It is interesting to note that while the variants of
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the homomorphism problem we have treated have their boundary between tractability
and intractability at bounded tree-width of the left hand side input structure, the original
HOM(C, _) problem exhibits the same boundary at bounded tree-width for the core of
the structures in C. It would be interesting to characterise exactly what properties make
the computational complexity of our problems different from that of the “regular” ho-
momorphism problem.

Of course it would be nice to classify further homomorphism problems. E.g. the
retraction problem, also known as the one-or-all list homomorphism problem, see [6],
would be an interesting subject. Here, inputs of the list homomorphism problem are
restricted to each list containing only a single element or the entire universe of the right
hand side input structure.

In the reduction from p-CLIQUE to p-MINHOM(C, _) a gap that can be used to show
inapproximability properties of the intractable instances is produced. A gap is also pro-
duced in the MAX SOL case, but it is not exploitable in the same way. Is it possible to
change the reduction somewhat to achieve a gap large enough for proving inapproxima-
bility?

A further observation is that the structure B, so far, only has been applied when
classifying homomorphism problems: is it possible to modify the structure B, or the
analysis of it, so that hardness proofs for problems where the solution is not necessarily
a homomorphism, e.g. MAX CSP, becomes plausible?
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Abstract. Given a set P of points in the plane, and a set D of unit
disks of fixed location, the discrete unit disk cover problem is to find a
minimum-cardinality subset D′ ⊆ D that covers all points of P . This
problem is a geometric version of the general set cover problem, where
the sets are defined by a collection of unit disks. It is still NP-hard, but
while the general set cover problem is not approximable within c log |P|,
for some constant c, the discrete unit disk cover problem was shown to
admit a constant-factor approximation. Due to its many important appli-
cations, e.g., in wireless network design, much effort has been invested in
trying to reduce the constant of approximation of the discrete unit disk
cover problem. In this paper we significantly improve the best known
constant from 72 to 38, using a novel approach. Our solution is based on
a 4-approximation that we devise for the subproblem where the points
of P are located below a line l and contained in the subset of disks of D
centered above l. This problem is of independent interest.

1 Introduction

We consider the problem of covering a given set of points in the plane by a given
set of unit disks. Formally, we are given a set of points P in the plane, and a
set of disks D = {D1, D2, ..., Dn} of radius 1 and centers O = {o1, o2, ..., on}.
We would like to find a minimum-cardinality subset D′ ⊆ D, such that for each
point p ∈ P there exists a disk D ∈ D′ that contains p. We call this problem
discrete unit disk cover.

The discrete unit disk cover problem (DUDC) has numerous applications,
in particular in wireless network design. We are given a set of potential planar
locations for placing base stations, and a set of points in the plane representing
static clients. All wireless base stations have the same transmission range, where
a client can “hear” the signals of a base station if and only if he/she is located
within a disk of radius 1 around the base station. We are required to choose a
minimum set of base stations such that each client is served by one or more base
stations of the chosen set.

The problem of covering a given set of points by unit disks where the disk
center locations are not restricted to a given set of points but rather may be
chosen at any point in the plane, is studied in [4,5]. A polynomial-time approx-
imation scheme (PTAS) is given for this problem using a grid-shifting strategy.

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 644–655, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The discrete case, studied in this paper, where the center locations are restricted
to a given set, is harder to approach since in order to cover the points within a
constant size square one might need more than a constant number of the given
disks.

This problem is a geometric set cover problem, where the given sets are defined
by unit disks. It is still NP-hard [6]. However, this geometric restriction on the
sets allows us to achieve a constant factor approximation, while the general set
cover problem is not approximable within c log |P|, for some constant c, [9]. Due
to the importance of the discrete unit disk cover problem, a continuous attempt
has been made to achieve a constant approximation algorithm with a good con-
stant factor. Brönnimann and Goodrich [1] gave an ε-net based algorithm where
the constant factor is not specified. A 108-approximation for the discrete unit
disk cover problem was presented in [2]. Narayanappa and Vojtechovsky [8] later
improved this constant to 72 and stated that this is the best constant that can
be achieved using their technique. In this paper we show that this constant can
be reduced to 38 using a new approach.

Our algorithm is based on the single line problem, in which there exists a
separating line such that the points to be covered are all located on one side
of the line and contained in unit disks centered on the other side of the line.
The covering disks may be chosen from both sides of the line. We present a
4-approximation algorithm for this special case and use this solution for approx-
imating the general case. We partition the plane by a grid of width 3/2 and
apply the 4-approximation twice for each grid line (once for each direction). We
then consider each grid cell separately in order to take care of the uncovered
points.

2 A 4-Approximation for the Single Line Problem

2.1 Setting

Let l be a horizontal line. Let U denote the disks of D centered above l and
let L = D \ U . We first provide some notation for the arrangement formed by
the disks of U below l. Let B denote the region below l covered by the disks of
U . A disk D ∈ U is called a lower boundary disk if it contributes an arc to the
boundary of B, or equivalently, if there exists a point p ∈ D ∩ B that does not
belong to any other disk. (Otherwise it is called a non-boundary disk.) We then
call the region D ∩B a lower boundary segment and the arc circ(D)∩B a lower
boundary arc (see Figure 1).

Let S be the set of all lower boundary segments of U . Consider the arrange-
ment Cells(S) formed by the segments in S. Assume the boundary disks are
indexed according to their left intersection point with l, and associate with each
cell of Cells(S) the set of the indices of the segments that contain it. The next
lemma (whose proof is omitted for lack of space) states that for each cell in
Cells(S), the set of indices associated with it forms a consecutive set of indices
i, i + 1, . . . , j for some i ≤ j. We call such a cell an interval cell and denote it by
icell(i, j). We then say that S forms a semi-chain.
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Fig. 1. Segments and arcs

Lemma 1. Each cell of Cells(S) is an interval cell.

Consider the basic problem of covering the points of P that belong to B using
only lower boundary disks. The following observation implies that the restriction
to the set of lower boundary disks (rather than to the set U) increases the size
of the solution by a factor of at most 2.

Observation 1. For any non-boundary segment s, there exist two consecutive
boundary disks Di, Di+1 that completely cover s. I.e., P ∩ s ⊆ Di ∪ Di+1.

Proof. Take the disk Di to be the boundary disk that appears immediately
before s (according to the left intersection point with the line l). ��

An interval cell is said to be occupied if it contains a point of P . For an interval
[i, j] ⊆ [1, k] let Occ(i, j) denote the set of points of P contained in the occupied
cells that correspond to subintervals of [i, j]. The following greedy algorithm
finds a cover C of the points of P that belong to B, using a minimum subset
of boundary disks. Initially set C = ∅. At each step of the algorithm let i be
the largest index such that all the points of Occ(1, i) are covered by the disks in
C ∪ Di, and add Di to C. It is straightforward to see that the cover C is indeed
of minimum cardinality if the covering set must consist of boundary disks.

2.2 Assisted Covers

Let S be the semi-chain formed by the lower boundary segments. Consider a
disk D̃ centered below l, that intersects B. An interval [i, j] ⊆ [1, k] with i < j is
said to be assisted by D̃ if the set {Di, Dj, D̃} covers all the points in Occ(i, j).
We then say that {Di, Dj, D̃} is an assisting set for [i, j]. (For j = i+1, we take
the assisting set of [i, j] to be {Di, Dj}). A left assisting pair of an interval [i, j]
with i < j is a pair {Di, D̃} where {Di, Dj, D̃} forms an assisting set for [i, j].
(For j = i + 1 or i = k (the last disk), we take the left assisting pair of [i, j]
to be Di, that is, each chain disk itself is considered to be a left assisting pair.)
Given the semi-chain S, an assisted cover for S is a family F of left assisting
pairs that covers all the points of P contained in Cells(S).

In the example shown in Figure 2, the intervals [1, 3] and [2, 4] are assisted
by D̃. The assisting sets are {D1, D3, D̃}, {D1, D2}, {D2, D3}, {D2, D4, D̃} and
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Fig. 2. D̃ assists the intervals [1, 3] and [2, 4]

{D3, D4}. The left assisting pairs are {D1, D̃}, {D1}, {D2}, {D2, D̃}, {D3} and
{D4}. The family F = {{D1}, {D2, D̃}, {D4}} forms an assisted cover.

Let D∗ denote a minimum-cardinality (regular) cover of the points of P con-
tained in B. Note that D∗ can make use of all the disks in D. Put d∗ = |D∗|. We
now define the minimum assisted cover problem for S, and show that a solution
to this problem approximates d∗.

Minimum Assisted Cover Problem: Given a semi-chain S, find a minimum-
cardinality assisted cover F for S.

For this problem we have the following lemma.

Lemma 2. The minimum assisted cover problem has a polynomial-time solution.

Proof. Given the semi-chain S, the solution is constructed via an immediate
reduction to the minimum half-open interval cover problem, defined as follows.
Given a set I of points on the real line, and a family J of half-open intervals
of the form [a, b) (where a and b are both integers), find a minimum-cardinality
family J ′ ⊆ J that covers the points of I (assuming such a cover exists).

This one-dimensional problem can be solved easily using a greedy algorithm.
The reduction is constructed as follows. For each point p ∈ P ∩ B consider the
largest index i such that si contains p. Let I be the set of indices corresponding
to the points of P ∩B. The family J consists of all half-open intervals [i, j) such
that for some D̃, {Di, D̃} is a left assisting pair for the interval [i, j], including
the half open intervals of the form [i, i + 1) (and the interval [k]). ��

Let Single Line denote the procedure that solves the minimum assisted cover
problem for the semi-chain S using the reduction defined above, obtaining a
family F of left assisting pairs. Partition the disks participating in F into two
sets: the set U ′ of disks that belong to S (centered above l) and the set L′ of
assisting disks. Clearly U ′ ∪ L′ is a cover of the points of P contained in B. Our
goal is to show that |U ′ ∪ L′| ≤ 4d∗.

Let us now analyze the sizes of the sets U ′ and L′. We have the following
lemmas.
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Lemma 3. The family F and the set U ′ obtained by invoking Procedure Single Line
satisfy |F| = |U ′|.

Proof. Thisholdssincethechaindisksofthe leftassistingpairs inF aredistinct. ��

Lemma 4. The sets U ′ and L′ obtained by invoking Procedure Single Line, sat-
isfy |L′| ≤ |U ′|.

Proof. Follows from the definition of left assisting pairs; for each assisting disk
taken into L′, at least one additional disk is taken into U ′. ��

Consider an assisting disk D̃. Let l(D̃) (respectively, r(D̃)), denote the leftmost
(respectively, rightmost) point at which D̃ intersects the boundary of S. Let
left(D̃) denote the index i such that Di contains l(D̃). Let right(D̃) denote the
index j such that Dj contains r(D̃). We refer to the disk Dleft(D̃) (respectively,
Dright(D̃)) as the left bounding disk (respectively, right bounding disk) of D̃. In
Figure 2, left(D̃) = 1 and right(D̃) = 4.

For two assisting disks D̃ and D̃′, we say that D̃ is dominated by D̃′ with
respect to the interval [i, j] if all points in Occ(i, j) that are covered by D̃ are
also covered by D̃′. An assisting disk D̃ is called strong assisting if its center
point o(D̃) lies above at least one of the points l(D̃) or r(D̃) (defined above).
Otherwise D̃ is called weak assisting. For an assisting disk D̃, let the left-right
arc of D̃ denote the upper part of circ(D̃) enclosed between l(D̃) and r(D̃).

We now have the following observations.

Observation 2. Consider an interval [i, j] and two weak assisting disks D̃ and
D̃′ such that left(D̃) ≤ i and left(D̃′) ≤ i. Then either circ(D̃) and circ(D̃′)
intersect each other exactly once in Cells(i + 1, j − 1), or there is a dominance
relationship between D̃ and D̃′ with respect to [i + 1, j − 1].

Proof. By the definition of weak assisting disks, the left-right arcs of D̃ and D̃′
belong to the upper half-circles of circ(D̃) and circ(D̃′), respectively. Therefore
these arcs intersect each other at most once within Cells(S). If they do not
intersect each other within Cells(i+1, j −1) (see Figure 3(b)), then there must
be a dominance relationship between them with respect to [i+1, j−1]. Moreover,
as shown in Figure 3(a), if they do intersect each other within Cells(i+1, j−1),
then the subarc of the left-right arc of D̃ to the right of the intersection point is
contained in D̃′ (or vice versa). ��

Observation 3. Let D̃ be a strong assisting disk, and suppose w.l.o.g. that
o(D̃) is above r(D̃). Then D̃ intersects its right bounding disk above the line l.

Proof. Let D be the right bounding disk of D̃, and let a and b denote the two
intersection points of D and D̃, where a = r(D̃). By symmetry considerations,
segments o(D̃), a and o(D), b are parallel. Therefore b must be above o(D) which
is above l. ��
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Fig. 4. {Di, Dj , D̃} is an assisting set for the interval [i, j]

Observation 4. Consider an assisting disk D̃ that covers the intersection point
of arc(i) and arc(j) of the chain S, such that left(D̃) ≤ i and right(D̃) ≥ j.
Then {Di, Dj, D̃} is an assisting set for the interval [i, j].

Proof. Consider the disks Di, Dj and Dk, where i < k < j. Consider an assist-
ing disk D̃ that satisfies the conditions of Observation 4, i.e., D̃ contains the
intersection point c of arc(i) and arc(j) and left(D̃) ≤ i and right(D̃) ≥ j. Let
a be the intersection point of Di and Dk below l, and let b be the intersection
point of Dk and Dj below l. As shown is Figure 4, D̃ intersects Di in two points,
with one point to the left of a and one point to the right of c. This implies that
the arc between a and c is contained in D̃. Similarly, the arc between c and b is
contained in D̃. Also D̃ intersects Dk in two points, with one point to the left of
a and one point to the right of b. Therefore, all the area of segment(k) outside
Di ∪ Dj is contained in D̃. ��

We now show that the number of disks participating in the minimum assisted
cover F is bounded by four times the size d∗ of D∗, the minimum-cardinality
cover of the points of P contained in B.

Lemma 5. The set U ′ obtained by invoking Procedure Single Line satisfies |U ′| ≤
2d∗.
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Proof. Let U∗ be the subset of U used in the optimal solution D∗, and let L∗

be the assisting disks used in D∗. We now transform U∗ into a set of boundary
disks that, together with L∗, forms an assisted cover.

If U∗ contains non-boundary segments, then we replace each non-boundary
segment s in U∗ by the two boundary segments that contain it (see Observa-
tion 1). This manipulation results in a set U∗∗ of boundary disks with |U∗∗| ≤
2|U∗|.

We now differentiate between the strong and weak assisting disks in L∗. Set
Uw = ∅. Note that by Observation 2, the weak assisting disks D̃ in L∗ can be
ordered from left to right according to their leftmost intersection l(D̃) with the
boundary of B. For each disk D̃i in this ordered set, if the left-right arcs of D̃i

and ˜Di+1 intersect each other within B, then add a disk of S that contains this
intersection point to the set Uw. Otherwise, add Dright(D̃i)

to Uw.
For the strong assisting disks, let Us be the set of their left and right bounding

disks, i.e.,

Us = {Di | i = left(D̃) or i = right(D̃) for some strong D̃ ∈ L∗} .

Consider the combined set of upper disks U∗∗ ∪Uw ∪Us. We now show that this
combined set forms together with L∗ an assisted cover.

Consider two consecutive disks Di and Dj in U∗∗∪Uw∪Us, under the ordering
of the semi-chain S. If there are occupied inner cells, i.e., if Occ(i+1, j − 1) �= ∅,
then the points in these cells are covered in the optimal solution D∗ by the disks
of L∗. We will show that a single disk of L∗ is enough to cover the points in
Occ(i+1, j −1). Let L∗

(i,j) denote the set of disks in L∗ that actually participate
in covering the points in Occ(i + 1, j − 1) in the optimal solution. (I.e., disks
that are dominated with respect to [i + 1, j − 1] are not taken into L∗

(i,j)). If
L∗

(i,j) includes a strong assisting disk D̃, we know that left(D̃) is outside the
interval [i + 1, j − 1] (because Dleft(D̃) ∈ Us and Dk /∈ Us for i < k < j) and
similarly right(D̃) is outside the interval [i+1, j−1]. Consider the following two
cases. If both left(D̃) and right(D̃) are on the same side of [i+1, j − 1], then D̃
does not cover any internal points of Cells(i + 1, j − 1) and thus cannot assist
this interval. If left(D̃) ≤ i and right(D̃) ≥ j, then by the definition of strong
assisting disk and by Observation 4, we have that {Di, Dj, D̃} is an assisting set
for this interval. Therefore, if such a strong assisting disks exists then no more
disks are needed.

Otherwise, we know that L∗
(i,j) consists only of weak assisting disks and let D̃

be the leftmost disk in L∗
(i,j). But if more than one weak assisting disk is needed

to cover the points in Occ(i + 1, j − 1), then by Observation 2, the successor of
D̃ in the weak assisting ordering, intersects D̃ within Cells(i + 1, j − 1). This
cannot happen since Di and Dj are consecutive. (Note that the left-right arcs
of D̃ and its successor are not disjoint, otherwise we would have added the right
bounding disk of D̃).

We have shown that for each pair of consecutive disks Di, Dj ∈ U∗∗ ∪Uw ∪Us

there exists at most one assisting disk D̃ ∈ L∗ such that {Di, Dj, D̃} is an
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assisting set for the interval [i, j]. We can now claim that the set L∗∪U∗∗∪Uw∪Us

forms an assisted cover F ′ and the number of left assisting pairs in F ′ is at most
|U∗∗ ∪ Uw ∪ Us| ≤ 2(|U∗| + |L∗|).

As Procedure Single Line finds a minimum-cardinality assisted cover F for S,
recalling Lemma 3 we have that |U ′| = |F| ≤ |F ′| ≤ 2(|U∗| + |L∗|) = 2d∗. ��
Corollary 1. The number of disks of D participating in F is at most 4d∗.

Proof. The number of disks participating in F is |U ′| + |L′| ≤ 2|U ′| ≤ 4d∗. ��
The following theorem summarizes the result of this section.

Theorem 1. One can compute a 4-approximation for the Single Line Problem
by invoking Procedure Single Line.

3 A 38-Approximation Algorithm for DUDC

In this section we present an approximation algorithm for our main problem:
Given a set P of points in the plane and a set D of unit disks, find a subset
D′ ⊆ D of minimum cardinality, such that P ⊆ ∪D∈D′D. We show that this
algorithm computes a 38-approximation.

The algorithm first lays a regular grid over the input scene, such that the dis-
tance between two consecutive vertical lines (alternatively, horizontal lines) is 3/2.
Let V (resp., H) be the set of vertical lines (resp., horizontal lines) of the grid.

The algorithm consists of two stages. In the first stage, for each line l ∈ V ∪H
such that there exists a disk in D that is intersected by l, we apply the 4-
approximation algorithm for the single line problem (presented in Section 2)
twice; once for each side of l. For a more detailed description, assume w.l.o.g.
that l is vertical and let Dl

l ⊆ D (resp., Dr
l ⊆ D) be the subset of disks that are

intersected by l and whose centers lie to the left (resp., to the right) of l. We
apply the 4-approximation algorithm twice. Once to the set Dl

l (using the disks
in D \ Dl

l as assisting disks), in order to cover the points in P that lie in the
union of the disks in Dl

l and to the right of l, and once to the set Dr
l in order to

cover the points in P that lie in the union of the disks in Dr
l and to the left of l.

Consider now an arbitrary point p ∈ P . If there exists a disk in D that contains
p and whose center does not lie in the same grid-square as p, then p is already
covered in the first stage of the algorithm. Let Q ⊆ P be the subset of points
that are not yet covered. Then, for each p ∈ Q, p can only be contained in disks
whose centers lie in the grid-square of p. Thus, in the second stage, we consider
each (non-empty) grid-square separately. For each such square S (of side length
3/2), we would like to cover the points in Q ∩ S by disks whose centers lie in
S. This can be done by applying the 6-approximation algorithm described in
Section 4.

3.1 Analysis

It is clear that at the end of the second stage each point in P is covered. We
now prove that the size of the subset (i.e., cover) computed by our algorithm is



652 P. Carmi, M.J. Katz, and N. Lev-Tov

hi+1

l1 l2

S1 S2

S3

l3

l4

hi

vj vj+1
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at most 38 times the size of an optimal cover. We first claim that a disk in D
can participate in at most 8 applications of the algorithm of Section 2.

Claim. Let D be a disk in D. Then, in the first stage of the above algorithm, D
can participate in at most 8 applications of the algorithm of Section 2.

Proof. Let o be the center of D, and let S be the grid-square in which o lies.
Divide S into 9 equal squares by lines l1, l2, l3, and l4, as depicted in Figure 5.
We distinguish between three cases, depending on the location of o within S.

Case 1: o ∈ S1 (or in any other corner sub-square of S). In this case D can
participate as a non-assisting disk in at most 2 applications of the algorithm of
Section 2 (namely, vj (left) and hi (up)). It can also participate as an assisting
disk in at most 6 applications (namely, vj−1 (right), vj (right), vj+1 (left), and
hi−1 (down), hi (down), hi+1 (up)). Thus in total D can participate in at most
8 applications of the algorithm of Section 2.
Case 2: o ∈ S3 (i.e., in the middle sub-square of S). In this case D can participate
as a non-assisting disk in 4 applications of the algorithm of Section 2 (namely,
vj (left), vj+1 (right), and hi (up), hi+1 (down)). It can also participate as an
assistant disk in 4 applications (namely, vj (right), vj+1 (left), hi (down), and
hi+1 (up)). Thus in total D can participate in at most 8 applications.
Case 3: o ∈ S2 (or in any other of the remaining sub-squares of S). In this case
D can participate as a non-assisting disk in 3 applications of the algorithm of
Section 2 (namely, vj (left), vj+1 (right), and hi (up)). It can also participate
as an assisting disk in 5 applications of the algorithm of Section 2 (namely, vj

(right), vj+1 (left), and hi−1 (down), hi (down), hi+1 (up)). Thus in total D can
participate in at most 8 applications. ��

Theorem 2. The algorithm above computes a 38-approximation for DUDC.

Proof. Consider a disk D in an optimal solution. By Claim 3.1 we know that
D can contribute to the solution of at most eight single line problems and one
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single square problem. Since each of these problems is solved separately, and
since the approximation ratio for the single line problem is 4 and for the single
square problem is 6, we obtain that the approximation ratio of the algorithm
above is 8 × 4 + 1 × 6 = 38. ��

Remark. The choice of grid-square size 3/2 × 3/2 seems to be optimal (in our
approach). By increasing the grid-square size one can reduce the number of
applications of the single line algorithm a disk participates in. For example, for
a square size 2 × 2 this number is 6, and for a square of size 3 this number is
only 4. However, the approximation ratio for the single square problem increases,
and the final approximation ratio that is obtained is greater than 38. Trying to
decrease the squares to, e.g.,

√
2 ×

√
2 increases the number of applications of

the single line algorithm a disk participates in to 10, which already gives a final
approximation ratio that is greater than 38.

4 A 6-Approximation for the Single
(3

2 × 3
2

)
-Square

Problem

Let S be a grid square of side length 3/2. In this section we devise a constant-
factor approximation algorithm for covering the points P ′ of P that lie in S using
the centers O′ of O that lie in S; moreover we show that this constant is 6.

We divide the square S into nine equal squares by lines l1, l2, h1 and h2

as shown in Figure 6, and distinguish between the different cases according to
the location of the center points of O′ with respect to the nine subsquares. For
each such case, we first check if there exists an optimal solution consisting of at
most two centers, and if yes we return this solution. Otherwise, we apply the
appropriate combination of claims from the following series of nine claims, and
verify that by doing so we obtain an at most 6-approximation. For lack of space
only the first two claims are included in this version.

Claim 1. Any two centers oi and oj such that oi ∈ S1 and oj ∈ S3 satisfy
S2 ⊆ D(oi) ∪ D(oj), where D(o) is a unit disk centered at o.

Proof. Let p be a point in S2, and assume w.l.o.g. that p lies in the right side of
S2. Then the disk D(oj) covers p. ��

h2

l1 l2

h1

S1 S2 S3

S6S5S4

S7 S8 S9

Fig. 6. Square S



654 P. Carmi, M.J. Katz, and N. Lev-Tov

p

l1 l2

h1

S1 S3

S5S4

S7 S8 S9

S2

S6 l′
h2

o

Fig. 7. Claim 2

Remark. Claim 1, as well as all subsequent claims, has several symmetric for-
mulations.

Claim 2. Consider the centers that lie in S3 (alternatively S1, S7, or S9). Then
there exists a line l′ such that all the centers in S3 lie above l′, and there exists
a center o in S3 such that all points in S2 and S6 above l′ are covered by D(o).

Proof. Let o be the center in S3 closest to the intersection point p of lines h1

and l2. Draw a disk centered at p of radius d(p, o) (where d(p, o) is the distance
between p and o), and let l′ be the line defined by the intersection points of this
disk with the boundary of S3. See Figure 7.

W.l.o.g. we show that D(o) covers all points of S6 above l′. Notice that the
greatest distance between a point in the triangle formed in S6 and a point on
the arc is S3 is determined by the intersection point of l′ and the right side of
S and the intersection point of l′ and l2; moreover this distance is actually the
length of the diagonal of the squares Si (1 ≤ i ≤ 9) which is smaller than one.
Therefore, regardless of the location of o on the arc, D(o) covers all points of S6

above l′. ��

We now use the claims to obtain a 6-approximation for the singe (3/2 × 3/2)-
square problem. There are many cases to consider, depending on the location of
the center points. We have generated all of the cases systematically, and have
verified for each of them that an at most 6-approximation can be computed by
applying the appropriate combination of claims from the series of claims. Due
to the large number of cases and the resemblance between them, let us consider
two cases for example.

Example 1. All the centers are in one square Si (1 ≤ i ≤ 9). In this case we
optimally solve the problem of covering the points of P ′ using the centers in Si,
applying the algorithm of Lev-Tov [7] (that is not restricted to congruent disks).
Example 2. Assume all the centers are in squares S1 and S8. Apply Claim 2 to
the square S1 to obtain a line l′ and a center o ∈ S1, such that all the centers
in S1 are above l′ and all points above l′ in S2 and in S4 are covered by D(o).
We now apply the algorithm of Section 2 to the line l′ using the centers in S8 as
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assisting centers. Finally, the remaining uncovered points are covered optimally
using only the centers in S8. It is easy to verify that the approximation factor
in this case is 6 (actually, 5 1

3 ).
The following theorem summarizes the main result of this section.

Theorem 3. One can compute a 6-approximation for the single (3/2 × 3/2)-
square problem.
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Abstract. Let P be a simple polygon of n vertices and let S be a set
of N points lying in the interior of P . A geodesic disk GD(p, r) with
center p and radius r is the set of points in P that have a geodesic
distance ≤ r from p (where the geodesic distance is the length of the
shortest polygonal path connection that lies in P ). In this paper we
present an output sensitive algorithm for finding all N geodesic disks
centered at the points of S, for a given value of r. Our algorithm runs in

O((n + (kn)
2
3 + k) logc n) time, for some constant c and output size k.

It is the basis of a cluster reporting algorithm where geodesic distances
are used.

1 Introduction

Motivation. Clustering is the determination of relatively large subsets of a set
that are in each other’s proximity [12,13,14]. It is one of the most important and
generally applicable techniques in data analysis. Often, the original data is a set
of objects with various attribute values which are used as coordinates in a two-
or higher-dimensional space. A cluster is a subset of the objects with similar
attribute values, and a clustering of the objects is a partitioning into subsets so
that objects in the same subset are similar, whereas objects in different subsets
are not similar. To determine similarity, or distance, between two objects, a
distance measure is needed, for which any Lp-metric (like the Euclidean metric)
can be used.

In geographic situations, an important type of clustering is for sets of points
in the real world [16,18]. The coordinates of the points do not stand for attribute
values but for a specific location. Depending on the origin of the points, the real
world may also include other objects like obstacles that influence the distance
between points, and therefore the clusters. Obstacles can be bodies of water that
are not crossed by certain land animals, or large open areas that are not used
by forest animals like squirrels.

Suppose that we are given a set S of N points in a geographic situation like
an island, and we wish to find clusters. Clusters are large enough subsets of
S that lie within a region of a maximum radius. The value m that represents
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pi

pj

r

Fig. 1. Polygonal island with points, each with a radius-r Euclidean circle shown. The
three open markers are centers of circles that contain four points. Only the rightmost
one gives a cluster center if geodesic distances are used.

the minimum size of a cluster, and the radius r that represents the maximum
extent of a cluster region, are fixed and specified by domain experts (biologists).
Distances need to be measured by paths that go over the island only, which
means that the length of a geodesic shortest path determines the distance. The
geometric problem that arises is: Given a set S of N points inside a simple
polygon P with n vertices, determine all subsets of S of size at least m for which
a center point q exists that has geodesic distance at most r to all points in the
subset (see Figure 1).

Related research. There is a large body of literature on clustering [19,8,20]. For
more on clustering with respect to obstacles, see [6] for a recent survey. There are
also several papers that compute clusters in a point set instead of a clustering
of a point set [15, 5].

A recent approach to geographic clustering is given by Gudmundsson et al. [9].
The basic assumption is that in certain situations, there are regions where points
can occur and regions where they cannot occur, and therefore a subset of points is a
cluster if (i) the subset is large enough, (ii) the region has small enough radius, and
(iii) the area where points can occur is small enough. The situation corresponds
to nesting locations of sea birds on a group of islands, since nests cannot be in the
water. Note that the Euclidean distance is still valid in this situation.

Problems concerning the geodesic distance with respect to a simple polygon
have been studied mostly in the past. Among them are the computation of the
geodesic center of a given simple polygon, and its geodesic diameter [4,17]. Given
a simple polygon P with n edges in the plane and a set of point sites in its interior
or on its perimeter, Aronov [3] studied computing the Voronoi diagram of the
set of sites with respect to geodesic distance.

Results of this paper. We solve our cluster reporting problem using geodesic
distances inside a polygon by inverting the problem: we generate boundaries of
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Fig. 2. Boundary of a geodesic disk in a simple polygon. The dotted circle is a normal
radius-r circle.

radius-r geodesic disks centered at the points of S, and find points that lie inside
at least m geodesic disks. A geodesic disk GD(p, r) with radius r and center p is
the set of points in P that have a geodesic distance ≤ r from p. It is easy to see
that a geodesic disk is a shape that is bounded by circular arcs (not necessarily
of the same radius) and pieces of the perimeter of P (see Figure 2). The main
problem that arises is the computation of the N geodesic disks of the points of
S inside polygon P . We present an output-sensitive algorithm for this problem
that runs in O((n + (kn)

2
3 + k) logc n) time for some constant c and output size

k. Note that k = Ω(N) and O(n ·N). To appreciate this result, note that a direct
approach to computing a geodesic disk would treat each point p ∈ S separately
by computing the shortest path tree of p inside P , and then determining the
circular arcs and boundary parts inside each funnel [10]. This procedure takes
O(n) time per geodesic disk, and O(n · N) time in total. In our application we
expect k to be significantly smaller than Θ(n · N), hence the objective to design
an output-sensitive algorithm.

Overview of this paper. The remainder of this paper is organized as follows.
Section 2 gives the general algorithm to compute a geodesic disk in an output-
sensitive manner. It is based on two data structures, which are presented in
Section 3. In Section 4 we show how to produce the geodesic disk boundaries
from the output of the queries. The analysis of the algorithm is given in Section 5,
and Section 6 shows how the geodesic clusters are determined.

2 A Query Algorithm to Compute a Geodesic Disk
Boundary

Let S = {p1, p2, · · · , pN} be a set of N points inside or on the perimeter of a
simple polygon P = {v1, v2, · · · vn} whose n vertices are given in clockwise order.
For a fixed real number r, we present an algorithm that computes all geodesic
disks GD(pi, r), for i = 1, . . . , N .

The boundary of P is denoted as ∂P . For two vertices vi, vj ∈ ∂P , let ∂P [vi, vj ]
be the part of boundary of P in clockwise order from vi to vj . A ray

−→
pvi is a
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half line which starts at p and goes through vi. For a point p in P that is visible
from vi, vj , we have two rays

−→
pvi and

−→
pvj . We use wedge(p, vi, vj) to denote the

wedge which starts from ray
−→
pvi and rotates around p clockwise until it reaches

ray
−→
pvj . Before illustrating our algorithm to compute a geodesic disk GD(p, r)

in P , we assume there exist two query algorithms that use preprocessed data
structures. We will discuss the details of the data structures and query algorithms
in Section 3.

1. CLSF(p, vi, vj): the inputs are a point p in P and two vertices vi, vj of P ,
where p can see vi, vj . The query reports the closest line segment or vertex
from p among the line segments and vertices of ∂P [vi, vj ] that are visible
from p. If the output is a vertex, then we can use either line segment which
is on ∂P [vi, vj ] and is incident to that vertex as the output.

2. FVSP(p, vi): the inputs are a point p in P and a vertex vi of P , the query
reports the first vertex of the shortest path from p to vi.

The inputs of the algorithm GD(p, vi, vj , r
′) are a point p inside P , two ver-

tices vi, vj of P such that p is visible to vi, vj , and the radius r′. The output is
the set of line segments of ∂P [vi, vj ] such that the shortest path distances from
p to those line segments are ≤ r′. To compute the geodesic disk itself, some
straightforward extra work is needed; this is deferred to the full paper. At the
beginning, p is some point of S, r′ = r, and vi = vj , where vi is a vertex of P
that is visible to p, which means the query range is the whole boundary of P .
The algorithm runs as follows: using CLSF(p, vi, vj) we find the closest line seg-
ment from p among all line segments of ∂P [vi, vj ]. Let that closest line segment
be vqvq+1. If the distance from p to vqvq+1 is larger than r, then we are done.
Otherwise vqvq+1 is reported and there exists a closest point a ∈ vqvq+1.

Lemma 1. The closest point a to p (by geodesic distance in P ) of the line
segment reported by CLSF(p, vi, vj) is visible from p.

Proof. Suppose the line segment [vq, vq+1] is reported by CLSF(p, vi, vj) and the
closest point of [vq, vq+1] to p is a. If a is not visible from p, then the first vertex
vb of the shortest path from p to a is inside or on the boundary of wedge(p, vi, vj)
and vb ∈ ∂P [vi, vj ]. So there is at least one line segment [vb, vb+1] or [vb−1, vb]
which is ∈ ∂P [vi, vj ] that is closer to p than [vq, vq+1]. �

We assume without loss of generality that a is vertically above p (see Figure 3).
The shortest path from p to vq is a convex chain and its vertices are vertices of
P . Let this convex chain be pvl1vl2vl3 . . .vlkvq. We know that pvl1vl2vl3 . . . vlkvq

is on the left side of the line though p, a. Similarly, we have the shortest path
from p to vq+1 which is a convex chain pvh1vh2vh3 . . . vhk′ vq+1 on the right side
of the line through p, a.

∂P [vi, vj ] is partitioned into several parts: ∂P [vi, vl1 ], ∂P [vl1 , vl2 ], ∂P [vl2 , vl3 ],
. . . , ∂P [vlk , vq], ∂P [vq+1, vhk′ ], . . . , ∂P [vh2 , vh1 ], ∂P [vh1 , vj ]; see Figure 3. They
give rise to subproblems that we solve sequentially and recursively. Since the sub-
problems on the left are the same as those on the right, we discuss the situation
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Fig. 3. Illustration of the algorithm

on the left. First, we solve subproblems GD(p, vi, vl1 , r) and GD(p, vh1 , vj , r)
recursively. For all other parts ∂P [vl1 , vl2 ], ∂P [vl2 , vl3 ], . . . , ∂P [vlk , vq], as long as
the shortest path distance from p to vlt (1 ≤ t ≤ k) is < r, we solve the sub-
problem GD(vlt , vlt+1, vlt+1 , r − (|pvl1 | + · · · + |vlt−1vlt |)) recursively. We don’t
need to compute the whole shortest path from p to vq. We only need to find
pvl1 by FVSP(p, vq). If the distance from p to vl1 is < r, then we find vl1vl2 by
FVSP(vl1 , vq), and so on.

There is one special case. If the output of CLSF(p, vi, vj) is vi or vj , then
there are two cases: (assume that vi is the one reported by CLSF(p, vi, vj))

1. If vi+1 is inside wedge(p, vi, vj), then the algorithm continues normally.
2. If vi+1 is outside wedge(p, vi, vj), then we need to do a ray shooting query

with
−→
pvi. Suppose

−→
pvi first hits vkvk+1, which is a line segment of ∂P [vi, vj ].

Then the shortest paths from p to vk and vk+1 separate ∂P [vi, vj ] into several
subparts and the problem becomes several subproblems. We can solve those
subproblems sequentially and recursively as above.

Lemma 2. The algorithm GD(p, vi, vj , r
′) reports all line segments of ∂P [vi, vj ]

that have geodesic distance at most r′ from p at most once, and vertices at most
twice.

Proof. Omitted. �

3 Data Structures for CLSF and FVSP

In this section we describe the two data structures and query algorithms needed
in the algorithm for geodesic disks. We also used a ray shooting data structure;
this is standard with O(log n) query time in preprocessed simple polygons [7].

3.1 Closest Boundary Point in Subpolygon Queries

In this section we discuss how to find, for a given query point p and two vertices vi

and vj of a simple polygonP , the point of the boundary of P between vi and vj that
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Fig. 4. Edges of P of cases 2, 3, and 4 (cases 3 and 4 are shown thicker). Note that
the vertex of ∂P [vi, vj ] closest to p, the square, is not in W .

is closest to p. Vertices vi and vj can also be the answer to the query.Weassume that
pvi and pvj lie completely inside P (in other words: p sees vi and vj). To compute
geodesic disks, we only need to solve the query problem with this restriction. The
closest point q that is found must also be such that segment pq lies inside P .

Assume that some point q on the boundary of P between vi and vj is the
point closest to p. Because pq lies inside P and p sees vi and vj , the angle of

−→
pq

must be between the angles of
−→
pvi and

−→
pvj .

Without the restriction that pq must be inside P , we could have built a binary
search tree T on v1, . . . , vn, and construct a Voronoi diagram preprocessed for
planar point location as associated structure with every internal node of T . A
query would be answered by determining the search paths in T to vi and vj , and
for all maximal subtrees strictly between these search paths, query the associated
structure. But then a point may be found that does not see p inside the whole
polygon P (see Figure 4).

The solution is to adapt the data structure so that we only query inside
the wedge W bounded by the rays

−→
pvi and

−→
pvj . We have to take care to treat

edges that lie partially inside this wedge correctly. We use five different data
structures to handle all cases. In each case the main tree T is a binary search
tree on v1, . . . , vn, and the final associated structure is a planar point location
structure on some Voronoi diagram. The first few associated structures (levels
between the main tree and the point location structure) allow us to select the
vertices or edges to which the case applies [1,2]. The five cases are the following.

Case 1: vertices inside W .
Case 2: edges of which both endpoints lie inside W .
Case 3: edges that intersect the ray

−→
pvi, have one endpoint inside W , and

whose angle with
−→
pvi is less than π/2, measured inside the wedge and closer

to p (see Figure 4).
Case 4: edges that intersect the ray

−→
pvj , have one endpoint inside W , and

whose angle with
−→
pvj is less than π/2, measured inside the wedge and closer

to p (see Figure 4).
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Case 5: edges that intersect both rays
−→
pvi and

−→
pvj , and both angles are less

than π/2.

For the first case we use a partition tree as the main tree. For the second case
we use two levels of partition trees. We treat the third case in more detail, the
fourth case is the same and the fifth case can be treated in the same manner.

For the third case, let T be the main tree with v1, . . . , vn in the leaves. An
internal node μ corresponds to a subchain vs, . . . , vt of the boundary of P . Let
Eμ = {vsvs+1, . . . , vt−1vt} be the edges in this subchain. To be able to select
all edges that have one endpoint in the wedge W we take one endpoint of each
edge and use a partition tree as the second level structure. To select the edges
that intersect

−→
pvi among these, we store the other endpoints in a partition tree

as well as the third level structure, and the points dual to the supporting lines
of the edges as the fourth level structure. In the fifth level structure we select
further on the angle condition. This can be done using a binary search tree on the
orientations of the edges. The sixth and last level structure is the point location
structure on the Voronoi diagram of the edges. The fourth and fifth cases use
similar multi-level trees.

For any query wedge, we can use the levels of the tree to select the edges for
which each of the cases apply, and query in the Voronoi diagram to find the
closest one. Each of the five cases may give an answer, and we can simply take
the closest one as the actual closest vertex or edge. All structures use storage
O(n logc n) and query time O(

√
n logc n) for some constant c. Combinations of

cutting trees and partition trees allow us to get faster query times at the expense
of storage and preprocessing [1,2]. For any n ≤ m ≤ n2, we can get storage and
preprocessing time of O(m logc n) and query time O((n/

√
m) logc n).

3.2 First Vertex of the Shortest Path Queries

We partition P into O(n) geodesic triangles in O(n) time [7]. The three vertices
of a geodesic triangle are vertices of P . The three edge chains are three shortest
concave paths inside P . In [7] Chazelle et al. show that any line segment interior
to P crosses at most O(log n) geodesic triangles. So the line segment pa in
Figure 3 crosses at most O(log n) geodesic triangles. We observe two properties
about the intersections of pa with those O(log n) geodesic triangle edge chains.

Lemma 3. pa only intersects each geodesic triangle edge chain at most once.

Proof. Omitted. �

Lemma 4. pa intersects at most two edge chains of one geodesic triangle.

Proof. Omitted. �

Suppose pa crosses a geodesic triangle bcd. According to Lemmas 3 and 4, pa
intersects one (if p is inside bcd) or two edge chains of bcd and pa only intersects
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Fig. 5. (a) pa intersects the edge chain b–c. b′ is the candidate for FVSP(p, vq). (b)
pa does not intersect the edge chain b–c. The tangent point b′ is the candidate for
FVSP(p, vq).

those intersected edge chains once. For an intersected edge chain, suppose the
intersected line segment is xx′ and x is on the left side of pa and x′ is on the
right side of pa. Then x is a candidate for the first vertex of the shortest path
from p to vq, and x′ is a candidate for first vertex of the shortest path from p to
vq+1. For a non-intersected edge chain, the vertex on a tangent line through p to
this edge chain is also a candidate for the first vertex of the shortest path from p
to vq, provided the edge chain is on the left side of pa, and symmetrically, a non-
intersected edge chain right of pa may provide a candidate for the first vertex
of the shortest path from p to vq+1. We explain those two cases by focusing on
one edge chain b–c:

1. pa intersects the edge chain b–c, see Figure 5(a). Suppose the line segment
of the edge chain from b to c intersecting pa is b′b′′, and b′ is on the same
side of the line through p and a as vq. Then b′ is the only possible vertex
from b–c that can be the first vertex of the shortest path from p to vq. Given
the edge chain b–c, we can find b′ in O(log n) time.

2. pa does not intersect the edge chain b–c and b–c is on the same side of the
line through p and a as vq, see Figure 5(b). The only candidate for the first
vertex from p to vq on the edge chain b–c is the vertex on a line through p
that is tangent to the edge chain b–c. Given the edge chain b–c, we can find
that tangent vertex in O(log n) time.

Any geodesic triangle intersecting pa gives at most three candidate vertices.
To decide whether a candidate vertex y is the first vertex of the shortest path
from p to vq, we do a ray shooting query with

−→
py . The first vertex of the shortest

path from p to vq is y if and only if py does not intersect any other line segment
of ∂P and the first intersection point of

−→
py after y with ∂P is on vqvq+1. This

can also be tested in O(log n) time. Since there are O(log n) geodesic triangles
we need to check, the total running time of FVSP(p, vq) is O(log2 n).
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Fig. 6. Finding the intersection points of the edges of P with the circular arcs that
form the geodesic disk boundary

4 Computing the Geodesic Disk Boundary

The algorithm as presented so far finds the set of edges of P that have some point
at geodesic distance at most r from p, and a set of circular arcs that contain
points at geodesic distance exactly r from p. To determine the boundary of the
geodesic disk itself, we must combine this information into a simple polygon that
has straight edges and circular arcs. Whenever an edge vqvq+1 is detected to be
part of the boundary of the geodesic disk, we have the point p (or a vertex of
P ) which is the query center, and we have a wedge W in which the circular arc
of radius r is valid. The following cases can be distinguished (we only treat the
case of the left of the closest point a, like in Section 2):

If vqvq+1 intersects the circular arc inside W , then we have found the (left)
intersection point on vqvq+1 that gives a vertex of the geodesic disk.
If vqvq+1 does not intersect the circular arc inside W , but W contains all of
vqvq+1 left of point a, then all of vqa is part of the boundary of the geodesic
disk.
Otherwise, we repeat the above tests iteratively with vl1 , vl2 , . . ., until we
either find an intersection point left of a, or discover that all of vqa is part
of the boundary of the geodesic disk.

In Figure 6, the edge vqvq+1 is found when p was the query center. The dashed
lines show the wedge in which p is valid as an arc center, and we test whether
the edge vqvq+1 intersects the circular arc inside the wedge. In the figure we only
find the intersection point (square) when we test with vl2 .

The tests can easily be integrated into the algorithm that finds the edges
of P within geodesic distance r. Hence, the algorithm can also determine the
boundary of the geodesic disk centered at p.

5 Complexity Analysis

If the output size of N geodesic disks is O(k), then the algorithm will per-
form O(k) FVSP and CLSF queries. The preprocessing is O(n) time, plus the
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time needed to build the multi-level trees of Subsection 3.1. We observed that a
preprocessing time/query time trade-off exists: O(m logc n) preprocessing time
leads to O((n/

√
m) logc n) query time. Assume we know k in advance. Then we

can choose m to be such that the total query time and preprocessing time are
of the same order: k · (n/

√
m) logc n = m logc n, giving m = (kn)

2
3 (provided

n ≤ m ≤ n2).
Unfortunately, the output size k is not known, so we can not balance query

time and preprocessing time easily. To overcome this problem, we will guess k,
run the algorithm, and if it turns out that the guess was too low, we double our
guess of k and start again: We build a data structure with slightly higher prepro-
cessing time and slightly faster queries. Our initial guess is k′ = max(n

1
3 , 2N),

since we know that k ≥ N . Since we also know that k ≤ n ·N , we will restart the
algorithm at most log2 n times. The running time is O((n + (k′n)

2
3 + k′) logc n)

in each round. Summation over the rounds yields O((n+(kn)
2
3 +k) logc n) time,

for some constant c.
The adaptations made to find the boundaries of the geodesic disks themselves

do not influence the asymptotic running time.

Theorem 1. Given a simple polygon P with n vertices, a set S of N points
inside P , and a positive real r, all N geodesic disks centered at the points of S
can be computed in O((n + (kn)

2
3 + k) logc n) time, for some constant c, where

k is the total boundary complexity of the geodesic disks.

6 Geodesic Clustering in a Simple Polygon

In this section, we will show how to solve the geodesic clustering problem: given
a simple polygon P with n edges, a set S of N points inside P , a radius r, and
a subset size m, find all geodesic disks with radius r which contain at least m
points of S. We define a geodesic cluster center as a point p in P such that
GD(p, r) contains at least m points of S. We define two cluster centers to be
distinct if they contain different subsets of S, otherwise they are equivalent.

We compute N geodesic disks with the algorithm described before. Suppose
the complexity of the N geodesic disks is O(k); recall that k = Ω(N) and k =
O(n·N). We can compute the arrangement of the geodesic disks in O(k log k+K)
time and O(k + K) space, where K is the number of intersection points in the
arrangement [11]. Since any two geodesic disk boundaries can have at most
two proper intersections, K = O(k + N2). One can expect that for the cluster
reporting application, K is considerably smaller than quadratic in N .

After building the arrangement, we determine for each cell by how many
geodesic disks it is covered. For one cell we do this brute-force in O(k) time.
After that, we do an arrangement traversal (e.g., depth-first) to visit all cells.
If we cross a cell boundary that adds a geodesic disk to the cover, we put a
one higher value in the cell, and otherwise we put a one lower value in the cell.
Hence, entering an adjacent cell and determining the value takes only O(1) time.
Therefore, the whole traversal takes time linear in the number of cells.
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Reporting all distinct cluster centers comes down to identifying the cells with
value at least m. All points inside such a cell are equivalent cluster centers.

Theorem 2. Given a simple polygon P with n vertices, a set S of N points
inside P , a positive real r, and a positive integer m, all distinct cluster centers
can be reported in O((n+(kn)

2
3 +k) logc n+k log k+K) time, for some constant

c, where k is the total boundary complexity of the geodesic disks, and K is the
number of intersection points in the arrangement of N geodesic disks.

7 Conclusions

The main contribution of this paper is a new algorithm to determine N geodesic
disks inside a simple polygon with n vertices. Instead of treating every point sep-
arately, we use preprocessed data structures, which made it possible to develop
an output-sensitive algorithm for computing the geodesic disks. If the output size
is k, then the running time is O((n + (kn)

2
3 + k) logc n) time, for some constant

c. We used this algorithm to solve a cluster reporting problem: find all subsets
of the points of at least some size that lie inside a geodesic disk with radius at
most a specified value.

Although the geodesic disk algorithm is output-sensitive, the cluster reporting
algorithm is not in the true sense. It is an open problem to determine clusters
with a truely output-sensitive algorithm. Also, the output-sensitive algorithm for
geodesic disks does not have the desired running time of the form O(f(n) + k)
or O(f(n)+k log n), where k is the output size and f(n) = o(n ·N). It is also an
open problem to find such an algorithm. An important extension of our research
is to deal with polygons that have holes, or, a set of polygonal obstacles. It is
unclear how to design any output-sensitive algorithm for this case.
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Abstract. We present an algorithm to compute a shortest path for a
robot between two points that avoids n discs growing at a common speed
in the plane. Our algorithm runs in O(n2 log n) time, thus improving
upon the best previous solution by a factor of n. The complexity for the
growing disc problem matches the known bound for the more restricted
case when the discs are static.

1 Introduction

A well-studied and fundamental problem in computational geometry is the de-
termination of shortest paths (see e.g., [5] for a survey). It finds applications in
a number of key areas such as GIS, VLSI design, graphics, computer games, and
robotics. In robotics, the problem comes up in the context of planning collision-
free motions for a robot operating in an environment containing obstacles. An
important algorithmic challenge arises when the obstacles themselves move, as
is the case in dynamic environments. This challenge is increased further, if the
obstacle motion is unpredictable.

A recently introduced model [6,7], presents a first step to capture such un-
predictability. The unpredictability of the obstacle locations is modeled by discs
growing over time at some (maximum) speed. The velocity by which the discs
grow is assumed to be a constant and to be less than the maximum velocity of
the robot. Solutions are typically given in configuration space, where a circular
robot shrinks to a point and obstacles are augmented appropriately by the ra-
dius of the robot. One is therefore interested in finding shortest paths which are
guaranteed to be collision-free for a point robot operating in an unpredictable
environment.

We state the resulting geometric problem, called shortest path among
growing discs to be addressed in this paper: given a point robot, moving with
maximum velocity V and a set of discs D = {C0, C1, ..., Cn} in Euclidean space,
where the radii of the discs grow at speed v, with v < V , find a shortest path
from a start location s to goal location g for the robot that avoids the grow-
ing discs. This problem has been introduced by van den Berg and Overmars
[6,7]. Their O(n3 log n) solution is employed in the context of motion planning
in virtual environments such as commercial video games.

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 668–680, 2007.
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In this paper, we present an O(n2 log n) algorithm for the shortest path among
growing discs problem. By deriving some geometric insights into shortest paths
among growing discs and, as tools, using a circular sweep technique and addi-
tively weighted Voronoi diagrams, we are able to reduce the existing O(n3 log n)
solution to O(n2 log n). In [4], an O(n2 log n) algorithm to find a shortest path
from s to g among a set of discs is presented where the discs are static. Our
solution for the growing disc problem instance therefore matches the complexity
derived for the simpler static (fixed disc) case [2].

Section 2 presents preliminaries, Section 3 outlines our algorithms, Section 4.1
presents the preprocessing step, and the key algorithms are described in the
remainder of Section 4. We conclude with Section 5

2 Preliminaries

In this section we introduce notion beginning with a formal definition for the
shortest path among growing discs problem.

Let D = {C0, C1, ..., Cn} be a set of discs. Disc Ci ∈ D at time t is denoted
by Ci(t) =(Oi, ri(t)) with center Oi and a radius ri(t) at time t. A path π is a
function [ta, tb] → R2 where π(tx) denotes the location of the robot R, at time
tx. Thus, at the initial time, ta, R is located at π(ta) and R reaches π(tb) at time
tb. A point π(tx) is collision-free with respect to D at time tx if π(tx) is outside⋃

Ci(tx), i = 0, ..., n. A path π from π(ta) to π(tb) is collision-free if every point
π(tx) on π is collision-free at time tx, where tx in [ta, tb]. The problem of finding
a shortest collision-free path from a start location s to a goal location g in
R2 is to find a collision-free path π: [ts, tg] → R2 which minimizes |tg − ts|.

Since the discs grow over time, it is easily seen that the robot should always
move at maximal velocity. Thus, if we know a path together with its starting
time, we can determine its arrival time at any point on the path. In particular,
segments on the robot’s path are time encapsulated, but, for ease of notation,
the time parameter t is omitted when no ambiguity arises.

To solve the problem, van den Berg and Overmars [6,7] use a cone model
with time as the third dimension and apices located at the centers of the discs.
They show that any shortest path from s to g for the robot is composed of
alternating straight line segments of slope v

V which are tangent to pairs of cones
and logarithmic spiral segments which lie on the surface of each individual cone.

We solve the problem in 2-d thereby avoiding 3-dimensional geometric objects,
operations and primitives. We first focus on the tangents between growing disk.
A tangent line segment l, also called tangent, between two discs Ci(tp) and Cj(tq)
is a line segment from a tangent point p on Ci to a tangent point q on Cj , such
that for robot R traveling on l, it holds l(tp)=p and l(tq)=q. The direction of l

(from p to q) is written as
−→
l .

A tangent half line lH is a half-line with endpoint originating at p and directed
along

−→
lH . A tangent l(= pq) from p ∈ Ci to q ∈ Cj that is collision free with

respect to other growing discs is called a valid tangent. There are four types
of tangents between a pair of discs Ci and Cj with starting time T0 at disc
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l0i
rr l0i

rl l0i
lr l0i

ll

Ci(T0)
Ci(T0) Ci(T0) Ci(T0)

Cj(t1) Cj(t2) Cj(t3) Cj(t4)

Cj(T0) Cj(T0) Cj(T0) Cj(T0)

Fig. 1. Right-right, right-left, left-right, left-left tangents from disc Ci(T0) to disc Cj ,
which is originally Cj(T0)

Ci. These are: right-right, right-left, left-right, and left-left tangents, denoted
by lijrr(t), lijrl(t), lijlr(t), and lijll (t), respectively, t ≥ T0. Knowing that these are
time-encapsulated, we often use the short forms lijrr, lijrl, lijlr , and lijll .

Refer to Figure 1. The four tangents are divided into two groups: one group,
discussed here, consists of the right-right and right-left tangents, and the other
group, which can be handled analogously, consists of the left-left and left-right
tangents.

As functions of time, the endpoints of the tangents on some starting growing
disc Ci form continuous curves called departure curves and the corresponding
endpoints on the growing arrival disc Cj form arrival curves. A departure curve
for a particular tangent is the trace, over time, of the tangent’s endpoints that
are located on the starting disc as the disc grows. Similarly, an arrival curve for
the tangent is the trace of the tangent’s endpoints on the growing arrival disc.

Departure curves for right-right and left-left tangents from Ci to Cj are
straight lines. Those for right-left and left-right tangents are projections of 3-d
sin-like curves [7].

Each departure curve is cut by at most n−1 growing discs which are defining
O(n) intervals. However, we will identify, for each disc pair, only one interval
referred to as buffer. A buffer has the property that any shortest path passing
through a departure curve must pass through it. For a pair of discs Ci and Cj ,
the buffer (or buffer zone) is the set of endpoints on the departure curve of Ci of
all valid tangents for Ci, Cj , refer to Figure 2. It is easy to see that each buffer
zone for a pair of growing discs forms an interval. Each interval corresponds to
a unique time interval. We will use time or geometric description of the buffer
zone as appropriate for the discussion.

Let the departure curve and the arrival curve for a pair of discs Ci and Cj be
μ and ν, respectively. The buffer on the departure curve μ has two endpoints (if
they exist), called the left endpoint, μ(T0), and the right endpoint, μ(Tr), with
two associated critical times, the starting time T0 and Tr. There is a collision
free tangent from a point on μ(t) to a point on ν for all times t, for which
T0 ≤ t ≤ Tr. Tr is denoted by Tr(lijrr) (Tr(l

ij
rl)) for lijrr (lijrl, respectively).
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We call the disc C0 which contains the starting points of tangents. The tan-
gents originating from C0 are sorted in counter clockwise (CCW) order by CCW
angles. These angles are between the horizontal line passing through the center
of C0 (O0) in direction +∞ and each tangent. The tangent points on C0 have
the same order as the order of the tangents. Define slope as the angle of a tan-
gent. Around C0, starting from direction +∞, in CCW order, the slopes of the
tangents increase. The slope of a line l oriented from some point a on l to point
b on l is defined as the CCW angle from the positive x-axis to ab.

Let lH be a tangent half line from C0 to Ci. If the projection of Oj onto lH lies
on the corresponding tangent l, then Cj is lower than Ci along

−→
l . Otherwise,

Cj is higher than Ci along
−→
l .

A point p is said to be to the left (right) of a segment ab if its projection is
on ab and a, b, p is a left-turn (right-turn). A disc is to the left (right) of ab if
its center is to the left (right) of ab. (We will only consider discs that do not
intersect ab.) A line is to the left (right) of a segment ab if all its points are either
to the left (right) of ab or their projections are outside ab.

Let lH be a tangent half line from C0. The distance from Ci(t) to lH is defined
as |Oip| − ri(tp), where, p is the projection of Oi on lH , tp is the time that the
robot arrives at point p from the tangent point on C0 at time t along

−→
lH .

Lemma 1. Let l be an oriented line located to the left of lijll . If lijll ‖ l, then Ci

and Cj are equi-distant to l. If the slope of lijll is smaller than that of l, then Ci

is closer to l than Cj . Otherwise, Cj is closer.

Lemma 2. Let lijrr be valid. Then, for any T0 < t ≤ Tr, lijrr(t) ‖ lijrr(T0), and
lijrr(t) is located to the right of lijrr(T0), where, T0 and Tr are the two time values
determining the buffer zone of lijrr.

It is well known that the Voronoi diagram of a set of discs does not change when
the discs are growing at the same speed. Each departure curve μ on a disc Ci

intersects the boundary of the Voronoi cell of Ci (written as VCi), at some point
p, and the corresponding arrival curve ν on a disc Cj intersects the boundary
of VCj at some point q. Points p and q define two tangents. One starts from
p ∈ μ and arrives at a point on ν. The other one starts from p′ ∈ μ and arrives
at q ∈ ν, refer to Figure 2. This determines two time values, say Tp and Tp′ ,
associated with p and p′, respectively.

Lemma 3. Let l be a tangent from Ci to Cj. Let Tp be the time that the depar-
ture curve of l intersects with the boundary of VCi , and Tp′ be the starting time
of l on Ci such that the intersection of l with the arrival curve on Cj is on the
boundary of VCj . Then, for the maximum time value, Tr(l), of the buffer zone
of l holds: Tr(l) ≤ min{Tp, Tp′}.

3 An Overview of Our Approach

Our approach is based on constructing a graph which, during run-time, will contain
all shortest path information required to solve shortest path among growing discs
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Ci

Cj

VCi

VCj

pp′

q

μ

ν

l
ij
rr(T0)

l
ij
rr(Tp)

l
ij
rr(T ′

p)

CR

buffer zone

Fig. 2. The Voronoi diagram of a set of discs. The departure curve μ and arrival curve
ν for Ci and Cj , and tangent lijrr(T0). Tangent lijrr(Tp) intersects the Voronoi cell of Ci

with p. Tangent lijrr(T
′
p) intersects the Voronoi cell of Cj with point q. p ∈ μ, p′ ∈ μ,

q ∈ ν. The bold segment on μ is the buffer zone for lijrr, and CR is the determining disc.

problem. In contrast to [6,7] though, our graph has substantially fewer vertices and
edges. We review their graph construction first. In their cone-based approach, each
departure curve is cut by at most n − 1 cones thus defining O(n) intervals. Each
interval becomes a node in a graph G. For each interval, only the collision free path
that arrives at the interval earliest is kept. Each node has two edges in G: a collision
free tangent between two cones, and a piece of spiral segment between two neigh-
bouring departure curves on a cone. The edges in G are obtained by computing
the arrangement of the cones and the departure curves, and the trapezoidal map
for the arrangement. There are O(n3) nodes and O(n3) edges in the graph G, thus
applying Dijkstra’s algorithm they obtain an O(n3 log n) solution.

Our technique is based on the fact that in 3-d, along the Z direction, the
projection of the intersection of the set of cones, whose bases are discs and
parallel to the X − Y plane, and apices located below the bases along the Z
direction, is a Voronoi diagram in 2-d. The Voronoi diagram is the same as
the Voronoi diagram of the set of discs obtained by cutting the cones with
a horizontal plane. The Voronoi diagram plays a key role in our algorithm,
thus avoiding the computation costs of the arrangement of the set of cones.
For a departure curve, we compute its buffer zone (defined above) which has
the property that any shortest path passing through a departure curve must
pass through it. We efficiently pre-compute the buffer zones on each disc by
deriving some geometric insights into shortest paths among growing discs. By
employing buffers zones, we can decease the number of nodes and edges in the
graph G to O(n2), and thus are able to reduce the existing O(n3 log n) solution
to O(n2 log n). The main steps of our algorithm are:
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Step 1: Construct a graph G = (V, E) for shortest path computation

G =:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Nodes V := {all departure curves on discs, s and g}

Edges

⎧
⎪⎪⎨

⎪⎪⎩

E := E1

⋃
E2, where

E1 := {spirals between two neighbouring departure curves
around each disc}

E2 := {selected edges between discs}
Step 2: Efficient construction of edges in E2

2-1. Compute the valid tangents between each pair of discs (see Section 4.1).
2-2. For all valid tangents compute the buffer zone (see the remainder of

Section 4).
2-3. For every buffer zone define an edge (partial) in E2 from the node

corresponding to the departure curve associated with the buffer to the
corresponding disc (at run time, the exact edge and the arriving node
will be known). With each edge associate the buffer zone, i.e., a time
interval. Edge costs are determined at run time.

Step 3: With each spiral edge associate its buffer zone, i.e., a time interval
after which the edge expires. Edge costs are determined at run time.

Step 4: Find time-minimal shortest path from s to g in G.

Recall that there are four types of tangents between any two discs. Therefore,
there are four types of departure curves and we will describe the computation of
the buffer zones of the right-right and right-left departure curves (the left-right
and left-left departure curves are handled analogously).

The buffer zone computation depends on the following fact: if t̄ is the last
starting time for a tangent l, between C0 and Ci to be valid, i.e., l becomes
invalid at any time t′ > t̄, then, there must be a third disc, say Cj , such that
C0, Cj and Ci are co-tangent. Thus, the key in the buffer zone computation is
to find such Cj for l.

First, the departure curve for a pair of discs C0 and Ci is trimmed by the
Voronoi cells of C0 and Ci, respectively, since, the starting point of a tangent
on C0 must be located inside the Voronoi cell of C0, and the arriving point of
the tangent on Ci must be inside the Voronoi cell of Ci. The arriving point has
an associated starting time. The buffer zone is initially set to the minimum of
the two starting times (see Lemma 3). The buffer zones of the valid right-right
and right-left tangents are computed separately. For the valid right-left tangent
l, which is tangent to C0 and Ci, the buffer zone may be affected by a disc to the
left of l or a disc to the right of l. The buffer zone is the minimum time among
the three values: (i) the time restricted by the Voronoi cells, (ii) the time when
C0, disc to the left of l, and Ci are tangent to a line. (iii) the time when C0,
disc to the right of l, and Ci are tangent to a line.

The buffer zone of a valid right-right tangent l, for C0 and Ci, may be affected
by a disc to the right of l. We aim to maintain a convex chain of the discs to
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the right of l, which contains a disc CR with minimum distance to l in the
direction perpendicular to

−→
l . The disc CR may contribute to the buffer zone.

The buffer zone is the minimum time of the two values: (i) the time restricted
by the Voronoi cells, (ii) the time when C0, CR and Ci are tangent to a line. For
efficiency reasons, we cannot maintain the convex chain for l directly. In place
of that, for each disc C0, we divide the plane around it into wedges based on
Voronoi neighbours of C0. We show that a certain angular property is satisfied
in these wedges and the number of wedges around a disc is proportional to the
number of its Voronoi neighbours. The angular property helps us in computing
convex chains and nearest neighbours for each valid right-right tangent within a
wedge. The computation of buffer zones for valid right-right tangents is the most
challenging part of the algorithm and the details are provided in Section 4.2. We
also determine the time-intervals (buffer zones) for spiral segments after which
time they can no longer be part of a shortest path. This comparatively simple
step is omitted here. So, with each edge, we have an associated “expiry time” that
the algorithm uses during execution. We summarize our result in the following
theorem.

Theorem 1. The shortest path among n growing discs problem can be solved in
O(n2 log n) time.

Proof. The Voronoi diagram of a set of n discs can be computed in O(n log n)
time, e.g., see [3]. By Lemma 8, right-right buffers can be computed in O(n2 log n)
time. By Lemma 9, right-left buffers can also be computed in O(n2 log n) time.
The graph has O(n2) nodes corresponding to departure curves, and O(n2) edges
corresponding to the spiral segments and relevant valid tangents. Thus, using
Dijkstra’s algorithm on edges that have expiry times, a shortest path can be
determined in O(n2 log n) time. �

4 Computation of Buffer Zones

In this section, we discuss the key computation of buffer zones where we focus on
right-right tangents in Section 4.2 and sketch right-left tangents in Section 4.3.
We first describe, as preprocessing phase, the computation of valid tangents in
Section 4.1.

4.1 Computation of Valid Tangents

We sketch how to find all valid tangents starting from disc C0. First, we compute
all tangents from C0 to each disc and sort them in an angular order. Then we
consider the discs in increasing order of distance from C0, where, the distances
are the lengths from the disc centers to O0. Let Ci be the disc under considera-
tion. We remove all the tangents in the sorted order that lie between l0i

rr and l0i
rl ,

and decide whether l0i
rr and l0i

rl are valid or not. If they are valid, then they have
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not been removed before, and the tangent points must be inside the Voronoi cell
of Ci. All the tangents around C0 are stored in a balanced binary tree according
to their slopes. Each deletion/insertion in the tree takes logarithmic time. The
following lemma is easily obtained.

Lemma 4. All valid tangents around a disc C0 can be computed in O(n log n)
time.

4.2 Right-Right Buffer Zones

In this section, we describe the computation of the buffer zones for all valid
right-right tangents l0j

rr, 1 ≤ j ≤ n of one disc, say C0∈ D = {C0, C1, . . . , Cn}.
The section is organized as follows: we first show which discs constrain the buffer
zone of a valid l0i

rr. Then, we present how to compute the buffer zones for all
valid l0j

rr, 1 ≤ j ≤ n, when C0 is point (r0 = 0). We finish by showing how to
compute the buffer zones when the radius r0 > 0. Since all computations of the
buffer zones are for valid right-right tangents, we may assume that all right-right
tangents used in this section are valid.

Let l be a right-right tangent. We denote by PR(l) the set of discs that are
to the right of l. We will define the predecessor disc of a valid tangent line l0i

rr.
Without loss of generality, we assume that the slope of l0i

rr is 90o. A disc Cj ∈
PR(l0i

rr)is a predecessor disc of l0i
rr if slope(l0j

rl )= max(slope(l0k
rl )), Ck ∈ PR(l0i

rr).
We denote by Pred(l0i

rr) the predecessor disc of l0i
rr.

One of these discs affects the maximum value of each buffer zone associated
with l0i

rr as given in the next observation.

Observation 1. The maximum value of the buffer zone associated with l0i
rr is

determined by one of these discs:
1. a disc that is a Voronoi neighbour of C0, or Ci, or
2. disc Ck ∈ PR(l0i

rr) with the minimum distance to l0i
rr.

Determining the effect of Voronoi neighbours on the buffer zone is easy (see
Lemma 3). Thus, we focus on finding the disc Ck defined in Observation 1
case 2.

A brute force approach for determining Ck is as follows: evaluate the distance
of each disc in PR(l0i

rr) and select the disc with the minimum distance. However,
this approach would take O(n) time for each l0j

rr, 1 ≤ j ≤ n. Thus, yielding O(n2)
time to determine the buffer zones associated with l0j

rr, 1 ≤ j ≤ n. This would
result in an O(n3) time algorithm for computing the buffer zones associated with
each lijrr, 1 ≤ i, j ≤ n, i �= j.

Next, we show how to compute Ck efficiently. We start by defining a convex
chain of discs. We omit from the definition of the convex chain, the degenerate
cases where the convex chain only consists of one, or two discs.

Definition 1. An ordered set of discs U = {C1, . . . , Cm}, U ⊆ PR(l) forms a
convex chain along l, if (i) the projections of the disc centers onto l appear in
the order O1, . . . , Om, (ii) the CCW angle from l

(i−1)i
ll to l

i(i+1)
ll , 2 ≤ i ≤ m − 1,
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does not exceed 180◦ and (iii) the concave opening of the convex chain is to the
right of l.

A convex chain X , as defined in Definition 1, is not merely a chain that consists
of an alternating sequence of discs and tangents between the discs. The convex
chain X is constructed with respect to time. Let T1 be a time associated with C1.
The line segment which connects C1 to C2 in X is not a tangent in the standard
mathematical sense, but rather is a time-dependent tangent, l12ll , between C1 and
C2 as defined in Section 2. Thus, l12ll determines the time associated with C2, which
is denoted by T2. When constructing l23ll we use the radius of C2, at time T2. In
general, when constructing l

i(i+1)
ll we use the radius of Ci, at time Ti.

Next we show how to use a convex chain to determine the maximum value of
the buffer zone associated with l0i

rr.

Lemma 5. Let X be a convex chain such that all discs of PR(l0i
rr) are contained

in the concave part of X. The extreme disc, Cj of X with respect to l0i
rr has the

smallest distance to l0i
rr.

Another important property of the convex chain which is used to determine the
buffer zone associated with l0i

rr is given in the following lemma.

Lemma 6. Let X be a convex chain such that all discs of PR(l0i
rr) are contained

in the concave part of X and let c =Pred(l0i
rr). The convex chain X contains c.

The following observation immediately follows from Lemmas 5 and 6.

Observation 2. Let X= C1, . . . , Cm be a convex chain such that all discs of
PR(l0i

rr) are contained in the concave part of X and let Cj ∈ X =Pred(l0i
rr). The

extreme disc with respect to l0i
rr is either the predecessor disc Cj, or the extreme

disc of the discs appearing before Cj, i.e, C1, . . . , Cj−1.

So far, we have established several properties and relationships between l0i
rr and

the disc that determines the buffer zone of l0i
rr. We divide the plane into four

quadrants, Q1, Q2, Q3, and Q4, around C0 with origin O0 = (0, 0), listed in CCW
order, with Q1 being the North-East quadrant. A corollary from Observation 1
is that the disc that determines the buffer zone of l0i

rr in Q1 is either in Q1 or in
Q4. Therefore, we must ensure that to determine the buffer zones of the discs
in Q1 we must also consult the discs in Q4. We do so by constructing convex
chains for the discs in Q4 which are termed external convex chains. Once the
external convex chains are constructed, a buffer zone of l0i

rr ∈ Q1 is determined
by finding predecessor discs and then determining the extreme disc in each of
the associated convex chains.

First, we describe our algorithm for the case where C0 is a point and then
generalize it to the case where C0 is a disk. We show how to compute
the buffer zones of all disks Cj ∈ D such that l0j

rr is in the North-East
quadrant, Q1.
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Algorithm 1. Compute buffer zones when C0 is a point.

1. Sort all l0j
rl 1 ≤ j ≤ n by slope(l0j

rl ).
2. Incrementally build convex chains by adding one disc at a time in order of

slopes. Let l0j
rl be the current slope to be processed. Disc Cj is a candidate

for being a predecessor disc. Since it has the largest slope among the discs
considered so far, it must appear on the convex chain constructed so far.
Moreover, we need to keep only the part of the convex chain where Cj is
the last disc (Observation 2). We try to insert Cj as the last disc of the
current chain. If this preserves the convexity of the chain then we are done.
Otherwise, we delete the last disc from the current convex chain and repeat
this process until Cj can be successfully inserted into the current convex chain
as last element. Figure 3 provides an illustration.

3. By adapting the algorithm of [1] determine Pred(l0i
rr), 1 ≤ i ≤ n.

4. Incrementally compute the external convex chains of the discs in Q4.
5. Sort all l0i

rr 1 ≤ j ≤ n by slope(l0i
rr).

6. Compute the buffer zone for each l0i
rrin sorted order of slopes(l0i

rr):
(a) Find the predecessor disc in Q1.
(b) Find the disc in Q4 such that it projects to l0i

rr and is extreme in the
direction perpendicular to l0i

rr.
(c) Compute the extreme disc in the convex chain associated with the prede-

cessor disc found in Step 6a.
(d) Set the buffer zone with respect to the disc with minimum distance to l0i

rr

as computed in Steps 6b and 6c. Next, take as buffer zone, the minimum
of this value and the values Tp and Tp′ as defined in Lemma 3.

Lemma 7. The buffer zone for each valid right-right tangent can be computed
in O(n log n) time inside each quadrant when C0 is a point using Algorithm 1.

Now consider the case when C0 is a disc with non-zero radius and therefore C0

has a curvature. To overcome the associated difficulties, we modify our partition-
ing scheme. Instead of partitioning into quadrants, we use neighbours of disc C0

in the Voronoi diagram of the discs in D to partition the plane into wedges. De-
pending on the size of a wedge and the arrangement of the discs within a wedge,
we may need to further partition the wedges into sub-wedges. This subdivision
is based on the empty circle property of Voronoi diagrams of discs and results in
each wedge being further divided into at most three sub-wedges. Once the plane
is partitioned, each resulting wedge allows us to apply Algorithm 1. This step is
fairly technical and details will be provided in the full version of this paper. We
now present the algorithm:
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(1)

(2)

(3)

(4)

(5)

(6)

C1

C2

C3

C4

C5

C7

C6

C8

C0

(7)

Ci

l (8)

Fig. 3. Incrementally construct convex chains. Disc C1, ..., C8 are sorted in order of
slopes of its right-left tangents from C0 (point). E.g., convex chain (1): C1; convex
chain (2): C1, C2; convex chain (4): C4; and convex chain (8): C4, C7, C8. The growth
of the discs is not shown in the figure.

Algorithm 2. Compute buffer zones when C0 is a disc.
(1) Find Voronoi neighbours of C0. Let CA and CB be two Voronoi neighbours

of C0 such that they are adjacent.
(2) Divide the plane into wedges around C0. The boundary edge L1 (resp. L2) of

a wedge passes through the centers of C0 and CA (resp. CB).
(3) Refine the partitioning of the wedges into at most three sub-wedges.
(4) In each wedge, execute Algorithm 1.

Lemma 8. The buffer zones for all the valid right-right tangents in the plane
can be computed in O(n2 log n) time.

Proof. In Algorithm 2, the number of wedges for disc C0 can be bounded by the
number of its Voronoi neighbours. Within each wedge, we spend O(n log n) time
using Algorithm 1. �

4.3 Right-Left Buffer Zones

Lastly, because of space constraints, we can only sketch our algorithm for com-
puting buffer zones of right-left departure curves on disc C0. Two discs may have
effects on the buffer zone of a right-left tangent l. One is to the right of l, say
CR, and the other one is to the left of l, say CL.

Let l be a right-right (right-left) tangent. The first tangent l′, either to the
left of l or to the right of l, with center projection of the corresponding disc
center onto l outside of l, can be computed in O(log n) time, after O(n log n)
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Algorithm 3 Compute-right-left-buffer-on-Disc-C0

Input: Disc set D, C0 ∈ D, all tangents.
Output: Tr(l

0i
rl), for all valid tangents l0i

rl (as computed in Section 4.1).
For each valid right-left tangent l0i

rl ,
(1) Find the disc, CL, (if it exists) to the left of l0i

rl , where, C0, CL and Ci determine
Tr(l

0i
rl): l0L

rr has the smallest slope larger than the slope of l0i
rl among all the l0k

rr ,
where, Ck is to the left of l0i

rl . Compute the start time, T ′, on C0 for the robot
traveling along the line tangent to C0, CL and Ci.

(2) Find the disc, CR, (if it exists) to the right of l0i
rl , where, C0, CR, and Ci determine

Tr(l
0i
rl): lRi

ll is the first left-left tangent to Ci to the right of l0i
rl . Compute the start

time, T ′′, on C0 for the robot traveling along the line tangent to C0, CR, and Ci.
(3) Determine Tp and Tp′ by using Lemma 3.
(4) Tr(l

0i
rl) = min{Tp, Tp′ , T ′, T ′′}.

C0

CL

CR

Ci

l

C0

CR

Ci

l

C0

CL

Ci

l

(a) (b) (c)

l′
l′

l0L
rr

lRi
ll

Fig. 4. (a) The buffer zone of the right-left tangent l may be affected by CL to the left
of l, or CR to the right of l. (b) The new tangent to C0, CL and Ci, shown in bold. (c)
The new tangent to C0, CR and Ci, shown in bold.

preprocessing time. This is done by adapting the solution to all-nearest-smaller-
value problem described in [1] to our scenario (details are available in the full
version of this paper).

Lemma 9. The buffer zone of each valid right-left tangent can be computed
in O(log n) time. All buffer zones for right-left tangents can be determined in
O(n2 log n) time.

5 Conclusions

The result of this paper is an algorithm to compute a collision-free shortest
path between two points among a set of n discs growing at the same speed in
O(n2 log n) time. It is an interesting problem to consider the scenario when the
discs grow at different speeds.
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Abstract. There are many ways to triangulate a simple n-gon; for cer-
tain optimization criteria such as maximization of the smallest internal
angle it is known how to efficiently compute the best triangulation with
respect to this criterion. In this paper we consider a natural extension
of this problem: Given a simple polygon P and one Steiner point p in
its interior, determine the optimal location of p and a triangulation of
P and p which is best amongst all triangulations and placements of p.
We present a polynomial-time algorithm for this problem when the opti-
mization criterion is maximization of the minimum angle. Furthermore,
we also provide a more general polynomial-time algorithm for finding
the optimal placement of a constant number of Steiner points under the
same optimization criterion.

1 Introduction

Triangulations of simple polygons arise in many applications. Some triangulation
of a given simple polygon can even be computed in linear time using Chazelle’s
algorithm [6]. Optimizing some criterion over all triangulations is also possible.
For example, a popular optimization criterion is to maximize the minimum angle
of any triangle. Such a triangulation is known as a constrained Delaunay trian-
gulation; it can be obtained in O(n log n) time for an n-gon [7]. We could also
find a minimum-weight triangulation that minimizes the total length of chords
required for triangulation using dynamic programming. Dynamic programming
is also powerful enough to find a triangulation in which the worst aspect ratio of
resulting triangles is minimized, where the aspect ratio of a triangle is the ratio
of length of the longest side to its width, i.e., its smallest height.

In this paper we are interested in what happens when we allow one Steiner
point in the triangulation. More precisely, given a simple polygon P , we want to
find a point p in the interior of P such that the quality of the optimal triangula-
tion of P +{p} is optimized under a given optimization criterion. If maximization
of the minimum internal angle is the goal, we want to find a location of an inte-
rior point p such that the minimum angle of the optimal triangulation of P +{p}
is maximized among all possible interior points p. As far as the authors know,
there is no previous study of the question. Our main concern in this paper is to
develop a polynomial-time algorithm.

A natural extension of this problem is to allow for more Steiner points to
be inserted or to use different optimization criteria for the triangulation. The

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 681–691, 2007.
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extension to multiple Steiner points is not trivial at all. In fact, it seems no simple
algorithm exists for finding an optimal set of Steiner points. We present a fairly
involved polynomial-time algorithm that optimally places any constant number
k of Steiner points. Using a different optimization criterion is also interesting.
Minimization of the largest internal angle, minimization of the largest slope, and
minimization of the largest aspect ratio are rather popular criteria [3,4], but no
O(n log n) algorithm is known for these criteria except for that of maximization
of the smallest angle (if adding Steiner points is not permitted). So, although it
is challenging to extend our ideas to other criteria, in this paper we shall only
consider the maxmin angle criterion for which we can design polynomial-time
algorithms for the case of one or a constant number of Steiner points.

This problem is closely related to mesh improvement. Given a triangulation
of some bounded domain, we sometimes want to improve the quality of the tri-
angulation by relocating internal vertices (we assume internal vertices can be
moved while vertices on the domain boundary are fixed). In the so-called Lapla-
cian method (see, e.g., [9]) an internal vertex is relocated to the barycenter of
the polygon defined by its incident triangles. It works well in practice, but the
barycenter is not always the best location for a vertex. We want to emphasize
that in the Laplacian method the topology of the triangulation, that is its under-
lying graph, is unchanged. Hence the barycenter is just a candidate for a good
location when the topology is fixed. It is not known what a good location for the
vertex is when the topology is allowed to change. Naturally one might expect
better triangulations when topology changes are allowed.

Further closely related results are known in the literature under the heading
of Delaunay refinement. Here one is given a planar straight line graph (PSLG)
represented by a set of vertices and non-intersecting edges, and the goal is to
triangulate this PSLG using ‘fat’ triangles, the latter being important if the
obtained subdivision is used for example in finite element method calculations.
‘Fatness’ can be achieved by maximizing the smallest angle in the computed
triangulation. Delaunay refinement algorithms repeatedly insert Steiner points
until a certain minimum angle is achieved; the major goal here is to bound the
number of necessary Steiner points. In some way our paper approaches the same
problem from the opposite direction: how much can we improve the ‘fatness’ of
our triangulation with few Steiner points. See [14] for an excellent survey on
Delaunay refinement techniques.

This paper is organized as follows: Section 2 describes a polynomial-time
algorithm for computing the optimal location for a single Steiner point. The more
general case of a constant number of Steiner points is considered in Section 3.
Section 4 includes conclusions and future work.

2 Triangulation Using One Steiner Point

The main problem we address in this section is the following:

Problem 1. Given a simple n-gon P , find a triangulation of the interior of P
with one Steiner point maximizing the smallest internal angle.
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To that end we will consider the following more general problem:

Problem 2. Given a set of points X and a set of non-crossing edges E with
endpoints in X . Find a triangulation of X and one Steiner point which respects
the edges in E and maximizes the smallest internal angle.

As we will see below, our solution to Problem 2 also provides us with a solution
to Problem 1.

Before proceeding, we need several definitions. Given a set of points X and a
set of non-crossing edges E with endpoints in X , we say a ∈ X sees b ∈ X iff
the line segment ab does not cross any edge in E (note that, for a line segment
ab ∈ E, a sees b). Point a is visible to a set Y if a can be seen from some point
in Y .

Definition 1. The constrained Delaunay triangulation (CDT) of a set of points
X and a set of non-crossing edges E with endpoints in X contains exactly those
edges (a, b), a, b ∈ X for which either (a, b) ∈ E, or (1) a sees b and (2) there
exists a circle through a and b such that no c ∈ X contained in the interior of
the circle is visible from ab.

A constrained Delaunay triangulation CDT(X, E) for (X, E) can be computed in
O(n log n) time and for non-degenerate (free of cocircular quadruples of points)
point sets forms a proper triangulation, i.e., a decomposition of the convex hull of
X into triangles. It maximizes the minimum interior angle of any triangulation of
(X, E) that uses only the points of X as triangulation vertices; in fact, the CDT
lexicographically maximizes the list of angles from smallest to largest, see [5] for
an extensive list of references.

In the following we are interested in how the constrained Delaunay triangu-
lation changes when some point p is added to X . Definition 1 implies that the
circumcircle of �abc ∈ CDT(X, E) cannot contain a vertex other than a, b, c vis-
ible from the interior of �abc. Hence the insertion of p can only affect triangles
in CDT(X, E) in the circumcircle of which p lies. More precisely, we say an edge
e /∈ E is invalidated by p iff p lies in the intersection of the circumcircles of the
two adjacent triangles of e and p is visible from the interior of both triangles (for
an edge on the convex hull of X consider the artificial triangle with one vertex
at infinity and the corresponding ‘circumhalfplane’).

Lemma 1. D(p) := CDT(X∪{p}, E) can be obtained from D := CDT(X, E) by
deleting all edges in CDT(X, E) invalidated by p and retriangulating the resulting
‘hole’ H in a star fashion from p.

Proof Clearly all edges in D not invalidated by p are part of D(p) according
to Definition 1. Furthermore, it is not possible that D(p) contains an edge vw
which was not present in D, with v, w �= p, since the insertion of p only decreases
the number of admissible edges on the original vertices. Therefore, new edges in
D(p) have to have p as one endpoint. Connecting p to all visible vertices of H is
the only way to obtain a triangulation again. �
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Consider the arrangement A defined by the triangles of D and their circumcircles.
(For a technical reason explained below, we further refine A into constant-size
“trapezoids,” by replacing it with its trapezoidal decomposition [2, p. 124].) We
argue that the topology of D(p) does not change when p is moved within one
cell σ of this arrangement.

Lemma 2. If a point p ∈ σ can be seen from the interior of a triangle �abc ∈ D
whose circumcircle contains p, then all points within σ can be seen from the
interior of �abc.

Proof Let x be a point in �abc which sees p and assume there exists a point
p′ ∈ σ which cannot be seen from x. Consider the line segment xq as q moves
towards p′ along pp′. If p′ cannot be seen from x, at some point xq must hit a line
segment e ∈ E obstructing the view, at an endpoint of e. Hence this endpoint
must be visible from x and must lie in the interior of the circumcircle of �abc,
contradicting �abc ∈ D. �
Since all points within a cell σ also lie within the same set of circumcircles, we
have shown that all points within σ of the above arrangement invalidate the
same set of edges. It remains to show that all points p within this cell σ behave
the same in terms of visibility from vertices of triangles of which at least one
edge was invalidated by p.

Lemma 3. Let e = (b, c) be an edge of CDT(X, E), �abc and �bcd the respective
adjacent triangles to e. If e is invalidated by p then p sees a, b, c and d.

Proof Let x ∈ �abc be visible from p and suppose, without loss of generality,
that x cannot see a. Consider the line segment yp as y moves along xa towards
a. At some point xp must meet a constraining edge e ∈ E at a vertex of X lying
in the interior of the circumcircle of �abc, contradicting the assumption that
�abc ∈ D. �
We have shown that all points within a cell σ behave identically in terms of
invalidation of edges as well as visibility hence leading to the identical topology
of D(p). Furthermore observe that the complexity of A is O(n2) since the ar-
rangement of O(n) circles has complexity O(n2) and the additional O(n) line
segments only add O(n2) intersection points. We summarize our findings in the
following corollary.

Corollary 1. The arrangement A defined by the triangles of D and their cir-
cumcircles characterizes the different topologies of CDT(X ∪{p}, E) after inser-
tion of a Steiner point p in the sense that all placements of p within the same
cell of A lead to the same topology. The size of A is O(n2).

We note that the arrangement will in general be overrefined in a sense that
points in different cells of A might lead to the same topology of D(p).

For our original Problem 1 of triangulating a polygon P with one Steiner point p
we compute the arrangement A with respect to CDT(X, E) where X are the poly-
gon vertices and E the polygon edges, and only consider the cells of A inside P .
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Fig. 1. A point p in the interior of a simple polygon is contained in the circumcircles
of the two Delaunay triangles T128 and T238, but not in that of T378

Fig. 1 shows an example. The interior of the polygon (shaded) is partitioned
into cells by all triangles and their respective circumcircles. The circumcircles
of the triangles T128 and T238 (shaded darker) contain the point p and p is
visible from both triangles. So, edge 28 cannot be included in the constrained
Delaunay triangulation after insertion of p. On the other hand, p lies outside the
circumcircle of T378 and thus this triangle is left unchanged after the insertion.

We have seen that when a point p is placed somewhere within a cell σ ∈ A,
a fixed set of edges is invalidated, producing a star-shaped ‘hole’ H = H(σ) in
CDT(X, E). We then optimize the minimum angle in the triangulation, over all
possible placements of p ∈ σ, only focusing on the interior angles in the star
triangulation of H , as the rest of the triangulation is unaffected by the insertion
of p.

Algorithm for finding an optimal location of a Steiner point
Input: a set X of points and a set of non-crossing edges E with endpoints in X

1. Compute the constrained Delaunay triangulation D := CDT(X, E).
2. Construct the arrangement induced by all triangles of D and their circum-

circles. Refine it by a trapezoidal decomposition to obtain A.
3. For each cell σ of A:

– Determine the set of edges invalidated by any Steiner point in σ and
remove them to form the hole H

– Compute an angular Voronoi diagram for H , truncated to within σ.
– For each Voronoi edge in the truncated Voronoi diagram, find a point

maximizing the minimum angle along the edge.
– For each connected component of a boundary edge of the cell σ lying in

the same cell of the truncated Voronoi diagram, find a point maximizing
the minimum angle along this curve.

4. Return the triangulation yielding the best angle found.

The next section will describe in detail how to actually treat a cell σ ∈ A
using angular Voronoi diagrams. Note that the above algorithm also solves our



686 B. Aronov, T. Asano, and S. Funke

original Problem 1 of optimizing the triangulation of a simple polygon P using
one Steiner point: In step 3 of the algorithm we only need to consider cells that
lie in the interior of P and when maximizing the minimum angle we also only
consider triangles that lie in the interior of P .

Finding an optimal triangulation with fixed topology. It remains to find an opti-
mal point p within a specified cell σ bounded by circles and lines within a given
star-shaped polygon H := H(σ) that maximizes the smallest interior angle in
the star-triangulation of H from p.

Given a star-shaped polygon H , we can find an optimal point p that maximizes
the smallest visual angle from p to all edges of H , i.e., the angle at which any edge
of H is seen from p. Matoušek, Sharir and Welzl [12] gave an almost linear-time
algorithm within the framework of LP-type problems. Asano et al.[1] also gave
efficient algorithms for the same problem using parametric search or the so-called
angular Voronoi diagram. Our question is slightly different. It is not enough to
maximize the smallest visual angle around the point p to be inserted: the smallest
internal angle may be incident to the boundary of H rather than p! Another
difficulty is that we want to find an optimal point p constrained to lie in σ, a cell
in the arrangement A bounded by circular arcs and straightline segments, rather
than ranging over all of H . It seems to be hard to adapt the aforementioned
algorithms based on LP-type problem formulation or parametric search for this
purpose, but fortunately the one using the angular Voronoi diagram can be
adapted here.

The angular Voronoi diagram for a star-shaped polygon H is defined as a
partition of the plane according to the polygon edge that gives the smallest
visual angle [1]. A point p belongs to the Voronoi region of a polygon edge e if
the visual angle from p to e is smaller than that to any other polygon edge of
H . It is known that it consists of straight line segments or curves of low degree
and has total complexity O(n2+ε), for any ε > 0 and with implied constant
depending on ε.

We have to modify the definition of the angular Voronoi diagram to take into
account the angles associated with polygon edges as well. Given a star-shaped
polygon H as a set of its bounding edges {e0, e1, . . . , en := e0} and a point p
in the plane, for each edge ei we form the triangle Tr(p, ei) by connecting the
endpoints to p. The value f(p, ei) is defined to be the smallest internal angle
in the triangle Tr(p, ei). The region Vor(ei) of an edge ei is defined by a set of
points p at which f(p, ei) is smallest among all edges, that is,

Vor(ei) := {p ∈ R
2 | f(p, ei) ≤ f(p, ej) ∀ej ∈ H}.

Given a line segment ab, we partition the plane into four regions by two circles
Ca and Cb centered at a and b, respectively, with the radius |ab| and the perpen-
dicular bisector lab of ab. Refer to Fig. 2. If the point p lies to the left of the line
lab (more precisely, the halfplane defined by the line lab that contains the point
a) and in the exterior of Cb, then the smallest internal angle of �abp is ∠apb. If
p lies in the same halfplane but in the interior of Cb, then ∠abp is smallest. The
smallest angle in the right halfplane is similarly defined. Fig. 2 illustrates three
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p1

p2

p3 lab

CbCa

Fig. 2. Partition of the plane into regions according to which angle of �abp is smallest

different situations, with points p1, p2, p3 lying outside, on the boundary of, and
inside Ca, respectively.

Fig. 3 in which Voronoi regions are painted by colors associated with polygon
edges gives an example of such a modified angular Voronoi diagram. The given
polygon H is indicated by solid white lines.

Fig. 3. Modified angular Voronoi diagram (left) and original angular Voronoi diagram

Once we construct the modified angular Voronoi diagram, we can look for an
optimal placement for p at Voronoi vertices, along Voronoi edges, or along the
boundary of σ just like in the original angular Voronoi diagram [1]; it is easy to
see that the maximum does not occur in the interior of Voronoi regions. Recall
that we have refined A so that a cell σ ∈ A is a constant-complexity region.
In particular, each function f(p, ei), viewed as truncated to within σ, is a well-
behaved function with a constant-complexity domain. Hence standard results of
envelope theory [13] imply that the modified angular Voronoi diagram truncated
to within σ has at most O(n2+ε) edges, including connected portions of Voronoi
edges within σ and portions of Voronoi cells lying along the boundary of σ. The
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computations can be performed in time O(n2+ε) per cell, for a total of O(n4+ε),
since cell processing dominates the runtime of the algorithm.

3 Triangulation Using Several Steiner Points

We now turn our attention to the situation when two Steiner points, p and q,
are permitted to be placed in a simple n-gon P . We start with the triangulation
D := CDT(X, E). We consider the space P 2 := P ×P of all possible placements
of the two points. We aim to identify the best placement of p, q in order to
maximize the smallest angle in the resulting constrained Delaunay triangulation
D(p, q) := CDT(X ∪{p, q}, E) (where as before X is the set of vertices of P and
E is the set of its edges). As in the previous section, we partition P 2 according
to the topology of D(p, q), then use an analog of the modified angular Voronoi
diagram from previous section to determine which angle is smallest in the tri-
angulation for every choice of (p, q) ∈ P 2 and search the resulting diagrams for
the placement maximizing the minimum angle. This plan is complicated by the
need to explicitly identify all possible triangulation topologies. Instead, we will
arrive at this partition indirectly, as detailed below.

In this section, we focus on constructing a polynomial-time algorithm, without
any attempt at optimizing the running time. Such an optimization might be a
good topic for further research, especially when coupled with some heuristics to
eliminate infeasible placements of p and q in order to reduce the search space,
which we have developed but have been unable to include in this version due to
space limitations.

We first recall a standard fact, the analogue of Definition 1 [7].

Fact 1. A triangle �abc, for a, b, c ∈ X is present in CDT(X, E) if and only
if a, b, c are pairwise visible and no other vertex of E visible from any point in
�abc lies in the circumcircle of �abc.

Consider D(p, q) as defined above and consider a potential triangle �abc in
it. Let f(a, b, c; p, q) be a partial function defined as follows: it is defined for
(p, q) ∈ P 2 if and only if �abc is present in D(p, q) and the value of f is the
measure of ∠abc. Then clearly the smallest angle in D(p, q) is

m(p, q) := min
(a,b,c)

f(a, b, c; p, q),

where the minimum is taken over all triples of distinct elements in X ∪{p, q}, for
which the function f(a, b, c; p, q) is defined at (p, q). The desired triangulation
maximizing the minimum angle is just the maximum of function m(p, q) over all
of P 2.

We would like to apply envelope theory to compute m(p, q) for all p, q. In a
typical lower envelope argument [13], however, functions are well-behaved (e.g.,
algebraic of bounded degree) and defined over domains of constant description
complexity (say, by a constant-length semialgebraic condition of bounded de-
gree). In our case, the form of functions f is simple enough (if one uses, for
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example, cos2∠abc to compare angles, to avoid transcendental functions, this is
a low-degree rational function of the coordinates of the points).

The difficulty is in their domains of definition—they are in general not of
constant complexity and hence the envelope analysis is not applicable directly.
We instead decompose P 2 into constant-size cells in such a manner that each
function is either total, or totally undefined on every cell c of the decomposition.

In order to construct such a decomposition, we observe that the boundaries of
the domain of definition of a function f(a, b, c; p, q) are given precisely by Fact 1.
Namely, if we view p and q as moving, a triangle �abc formed by three points
from among the vertices of P and/or p, q can cease to belong to D(p, q) only
when some visibility constraint is violated (two possibilities: a vertex becomes
collinear with pq, or p or q becomes collinear with a line defined by two vertices)
or when a cocircularity is created or destroyed (again, two possibilities: p or
q becomes cocircular with three vertices, or both p and q become cocircular
with two vertices). All four possibilities correspond to a low-degree hypersurface
in R

4, and the number of possibilities is clearly polynomial, since there are n
vertices in all.

We collect all these hypersurfaces, add boundaries of P 2 to the arrangement,
and truncate it to within P 2. We then refine the resulting partition of P 2 to
contain only constant-size cells (e.g., via a cylindrical algebraic decomposition
or a vertical decomposition [8,10]); the resulting decomposition A is still of poly-
nomial size.

A is a subdivision of P 2 into polynomial number of constant-complexity cells
σ with the property that each function f(a, b, c; ·, ·) is either defined on the entire
cell σ or undefined on all of σ. Functions are algebraic of bounded degree. There is
a polynomial number of functions. Hence standard envelope theory [13] concludes
that the minimization diagram (i.e., the decomposition of space into maximal
connected portions over each of which a fixed function or set of functions achieves
the pointwise minimum) of this collection of functions can be computed and, if
necessary, further refined to constant-complexity cells, in polynomial time. Over
each cell of the minimization diagram, a single function appears on the lower
envelope, so we can determine in constant time its largest value. Taking the
maximum over all cells, we obtain the placement of p, q ∈ P that maximizes
the minimum angle of any triangulation of P with two Steiner points p, q, in
polynomial time, as promised.

We summarize our findings in the following theorem.

Theorem 2. Given a polygon P with n vertices, or more generally a set of n
points X and a collection E of non-crossing edges connecting them, we can find
two points p and q such that the minimum angle of the constrained Delaunay
triangulation CDT(X ∪{p, q}) (and thus of any other triangulation with vertices
X ∪ {p, q} respecting E) is maximized in time polynomial in n.

The same method applies almost verbatim to any constant number of Steiner
points. We omit the details due to space limitations.
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4 Conclusions and Future Work

In this paper we have presented polynomial-time algorithms for finding optimal
placement of one, or a constant number of, Steiner points to be inserted in a
simple n-gon to maximize the minimum internal angle of triangulation. It would
be interesting to improve the dependence of the latter algorithm on the number
of Steiner points, to construct practical algorithms for solving the problems, and
to extend our analysis to other optimization criteria.
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Abstract. In this paper, we study an interesting geometric partition
problem, called optimal field splitting, which arises in Intensity-Modulated
Radiation Therapy (IMRT). In current clinical practice, a multi-leaf col-
limator (MLC) is used to deliver the prescribed intensity maps (IMs).
However, the maximum leaf spread of an MLC may require to split a
large intensity map into several overlapping sub-IMs. We develop the
first optimal linear time algorithm for solving the field splitting problem
while minimizing the total complexity of the resulting sub-IMs. Mean-
while, our algorithm strives to minimize the maximum beam-on time of
those sub-IMs. Our basic idea is to formulate the field splitting prob-
lem as computing a shortest path in a directed acyclic graph, with a
special “layered” structure. The edge weights of the graph satisfy the
Monge property, which enables us to speed up the algorithm to optimal
linear time. To minimize the maximum beam-on time of the resulting
sub-IMs, we consider an interesting min-max slope path problem in a
monotone polygon which is solvable in linear time. The min-max slope
path problem is of its own interest.

1 Introduction

In this paper, we study an interesting geometric partition problem, called opti-
mal field splitting with feathering, which arises in Intensity-Modulated Radiation
Therapy (IMRT). IMRT is a modern cancer therapy technique that aims to
deliver a highly conformal radiation dose to a target tumor while sparing the
surrounding normal tissues. The quality of IMRT crucially depends on the ability
to accurately and efficiently deliver the prescribed dose distributions of radia-
tion, commonly called intensity maps (IMs). An intensity map is specified by a
set of nonnegative integers on a 2-D grid. The number in a grid cell indicates
the amount of radiation to be delivered to the corresponding body region.

An advanced tool today for IM delivery is the multileaf collimator (MLC) [9]
(Figure 1 (a)). An MLC consists of a number of pairs of tungsten alloy leaves of
the same rectangular shape and size. The leaves can move left and right to form
a rectilinear region, called an MLC-aperture. The cross-section of a cylindrical
radiation beam is shaped by an MLC-aperture. Each MLC-aperture is associated
with an integer representing the radiation units delivered by its radiation beam.

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 692–703, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The mechanical design of the MLCs restricts what kinds of beam-shaping re-
gions are allowed [9]. One common constraint is called the maximum leaf spread:
Each MLC leaf can only travel away from the vertical center line of the MLC
within a certain threshold distance. Note that during the delivery of an IM, the
vertical center line of the MLC is always aligned with the center of the IM. Geo-
metrically, the maximum leaf spread means the rectilinear y-monotone polygon
corresponding to each MLC-aperture has a maximum horizontal “width” ≤ w
(e.g., w = 14.5cm for the Varian MLCs).

One popular IMRT approach for delivering IMs using an MLC is the “step-
and-shoot” technique [9]. Mathematically, the “step-and-shoot” delivery plan-
ning can be viewed as the following IM segmentation problem: Given an
intensity map A defined on a 2-D m × n grid, decompose A into the form of
A =

∑κ
k=1 αkSk, where Sk is a special 0-1 matrix specifying an MLC-aperture,

αk is the amount of radiation delivered through Sk, and κ is the number of
MLC-apertures used to deliver A . To deliver the IM, MLC leaves move to form
each of those κ MLC-apertures, Si, and to deliver αi units of radiation. The
reader is referred to [9] for more details on the step-and-shoot IMRT technique.

Two criteria are usually used to measure the efficiency of the step-and-shoot
delivery: (1) the beam-on time which is given by

∑κ
i=1 αi , and (2) the number

κ of MLC-apertures used. The beam-on time is the actual time that the patient
is exposed under the radiation beams. Increasing the efficiency of the delivery is
crucial since as the total treatment delivery time increases, there are several bad
clinical consequences: patient motion increases and tumor cells may be able to
better repair themselves during the treatment. All these will make the treatment
less effective. The beam-on time and the number of MLC-apertures are closely
associated with the complexity of the IM A, which, however, is not well defined.
In this paper, we use the sum of positive gradients of the intensity map along the
direction of leaf motion to measure the complexity C(A) of an IM A [2, 8, 4], more
precisely, C(A) =

∑m
i=1

(
ai,1 +

∑n
j=2 max(0, ai,j − ai,j−1)

)
. That complexity

measure has been used in medical physics literature. For example, Bortfeld et al
adopted the same complexity measure of an IM to quantify the tradeoff between
complexity and conformality of an IMRT plan [2]. Siochi also used that IM
complexity to measure the delivery quality in a method for increasing the spatial
resolution of the MLC leaf width without using additional hardware [8].

In current clinical radiation therapy, large intensity maps frequently occur [10].
Due to the maximum leaf spread constraint of the MLC design, a large IM needs
to be split into several sub-IMs each being delivered separately using the step-
and-shoot delivery technique. However, such splitting may result in prolonged
beam-on time and increased complexity, and thus compromise the treatment
quality. The field splitting problem, roughly speaking, is to split an IM of a large
size into multiple sub-IMs whose sizes are no larger than a threshold size, such
that the treatment quality is optimized.

One simple way to split a large IM is to use straight lines, yielding abutting
sub-IMs. One of the problems associated with this method is the field mismatch-
ing problem that occurs in the field junction region due to the uncertainties in
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Fig. 1. Illustration of (a) multileaf collimator (b) hotspot and coldspot caused by field
splitting, the top profile shows the desired profile split at xj , due to field mismaching,
the left end of right field is positioned at x′

j and the fields may overlap as in bottom
left to cause hotspot or be separated as in bottom right to cause coldspot, and (c) field
splitting without (top) and with (bottom) feathering. The feathering region consists of
two columns.

setup and organ motion [7, 10]. If the borders of two abutting sub-IMs do not
precisely align each other, it may result in hotspots or coldspots, as illustrated
in Figure 1(b). To alleviate the field mismatching problem, a commonly used
medical practice is to apply a so-called field feathering technique [7, 10]. Using
this technique, a large IM A is split into a set of sub-IMs, subjected to the
maximum leaf spread constraint, and any two adjacent sub-IMs overlap over a
central feathering region. Note that in the latter method, each cell of the feath-
ering region can belong to two adjacent sub-IMs, with non-negative intensity
value in both sub-IMs, as illustrated in Figure 1 (c). While splitting an IM into
multiple sub-IMs with minimum total complexity, it is also desirable to minimize
the maximum beam-on time of the resulting sub-IMs. The motivation for this
optimization is that, during the delivery of each sub-IM, the patient may move,
and the longer the beam-on time of a sub-IM, the higher the chance of body
motion is.

A few field splitting algorithms have been recently reported in the literature.
To our best knowledge, Kamath et al. [6] first gave an O(mn2) time algorithm to
split an m×n IM using vertical lines into at most three sub-IMs while minimizing
the total beam-on time. Wu [11] formulated the field splitting problem for an
arbitrary field width using vertical lines as a k-link shortest path problem and
developed an O(mnw) time algorithm, where w is the maximum allowed field
width. Kamath et al. recently studied the field splitting with feathering [7].
However, their algorithm is optimal only for the case that the input IM has one
row and the width of the IM is ≤ 3w. Chen and Wang [3] further developed an
O(mn+mξd−2) time algorithm for optimally splitting an IM of size m×n, where
d is the number of the resulting sub-IMs and ξ is the reminder of n divided by
w. Very recently, field splitting while addressing delivery accuracy was studied
in [12, 4]. Although it is useful to consider field splitting with feathering to
minimize the total complexity, to our best knowledge, no such algorithm has
been studied.

In this paper, we study the following optimal field splitting with balanced
beam-on times (OFSB) problem. Given an IM A = (ai,j)m×n of size m × n,
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an integral maximum leaf spread w > 0, and the width range [δ .. Δ] of each
feathering region (0 < δ < Δ < w), split A into a sequence of d = � n−δ

w−δ� (≥ 2)
sub-IMs, such that: (1) the width of each sub-IM is w; (2) any two neighboring
sub-IMs in the sequence overlap each other and the width of the overlapping
(feathering) region ranges from δ to Δ; (3) no sub-IM overlaps completely with
its neighboring sub-IM(s); and (4) the total sum of the complexity of all these d
sub-IMs is minimized. The resulting d sub-IMs, however, may have a large mini-
mum beam-on time. We thus seek to further decompose the induced (d-1) feath-
ering regions of those d sub-IMs, yielding a set S of d sub-IMs {S1, S2, . . . , Sd}
(from left to right), such that the maximum Mbot(S) of all the minimum beam-
on times Tbot(·) of these sub-IMs in S is minimized, while imposing the lower
bound on the total complexity of the splitting S. Note that d is the minimum
number of sub-IMs needed. We may use more sub-IMs, which, however, could
undesirably increase the total treatment time. We also assume that each sub-IM
has a maximum width w since we can introduce columns filled with 0’s to the
sub-IM without increasing its complexity.

We present the first linear time algorithm for solving the above field splitting
problem. In our algorithm, we first model the computation of an “optimal” set
of (d-1) feathering regions (i.e., with minimum total increase of the complex-
ity) as a shortest path problem in a directed acyclic graph (DAG) with O(n)
vertices and O(n(Δ − δ)) edges. This DAG has a special “layered” structure,
which consists of d layers of vertices with any two adjacent layers inducing a
bipartite graph. We are able to calculate each edge weight in constant time after
a certain preprocessing. Moreover, the edge weights satisfy the Monge prop-
erty [1] which enables us to speed up our algorithm to optimal O(mn) time.
Then, the decomposition of the resulting feathering regions is modeled as com-
puting a min-max slope path problem in a special monotone polygon. We de-
velop an interesting geometric algorithm, which runs in linear time, for solving
the min-max slope path problem. Due to the page limit, all proofs have been
omitted.

2 Computing an Optimal Set of Feathering Regions

In this section, we compute in an optimal O(mn) time a set F of (d-1) feathering
regions for a given instance of the OFSB problem, such that the decomposition
of the feathering regions in F yields a splitting of the input IM A with minimum
total complexity. The problem is modeled as computing a shortest path in a
DAG, for which we can exploit the Monge property to speed up the computation.

2.1 The Shortest Path Model

Denote by A[j] the j-th column of IM A, and A[j .. k] consists of all rows of
A from Column j to Column k. Since the width of each sub-IM is fixed as w,
d vertical lines {j1, j2, . . . , jd} are needed to determine the starting column of
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each sub-IM in the splitting (including the first vertical line which is always
corresponding to the first column of A, i.e., j1 = 1). The k-th feathering region
Fk consists of multiple columns of A starting from Column jk+1 to Column
jk +w−1 denoted by A[jk − δ +1 .. jk]. Fk = (fi,j) is somehow decomposed into
F

(0)
k = (f (0)

i,j ) and F
(1)
k = (f (1)

i,j ) such that Fk = F
(0)
k + F

(1)
k (i.e., the value of

every element in Fk is decomposed into two non-negative integers, one in F
(0)
k

and the other in F
(1)
k ). Then, a feasible splitting S = {S1, S2, . . . , Sd} of A is,

as follows. For each k = 1, 2, . . . , d, Sk = F
(1)
k−1 || A[jk−1 + w .. jk+1 − 1] || F (0)

k ,

where || is a concatenation operator, F
(1)
0 = F

(0)
d = ∅, and jd+1 = n + 1. The

decomposition of each feathering region Fk may increase the total complexity.
Our goal is to find a set F of (d-1) feathering regions such that the total increase
of the complexity resulting from the decomposition is minimized. We next model
this problem as computing a shortest path in a weighted directed acyclic graph
G = (V, E).

1) The graph G has d layers of vertices, where each vertex in the k-th layer
(denoted by Lk) defines a possible starting column of the k-th sub-IM. The
first layer L1 consists of only one vertex v1. For the k-th sub-IM Sk, there are
k − 1 (resp., d − k) sub-IMs to the left (resp., right) of it. Thus, the rightmost
(resp., leftmost) possible starting column of sub-IM Sk is (k − 1)(w − δ) + 1
(resp., (k − 1)(w − δ) + 1 − μ), where μ = (n − δ)mod(w − δ). Thus, each
layer Lk (k = 2, . . . , d) contains μ vertices {vj | (k − 1)(w − δ) + 1 − μ ≤ j ≤
(k − 1)(w − δ) + 1}. Note that no sub-IM overlaps with non-neighboring sub-
IMs to achieve the minimum number of sub-IMs. Hence, the maximum width Δ
of a feathering region is less than (w − δ), and the layers are mutually exclusive.

2) For each vertex vj ∈ Lk in G, there is a directed edge from vj to every
vj′ ∈ Lk+1 as long as the two corresponding sub-IMs overlap each other with an
overlapping region of width between δ and Δ. Thus, each edge (vj , vj′) defines
a feathering region A[j′ .. j + w − 1].

3) For any edge e = (vj , vj′ ) in G, we compute the minimum increased com-
plexity of the corresponding feathering region, which is precisely defined in Sec-
tion 2.2, and assign it as the weight of the edge, denoted by c(vj , vj′ ).

4) For the ease of our algorithm description, we introduce a dummy vertex t.
Each vertex in the d-th layer Ld has a directed edge to t with a weight of 0.

Our algorithm then computes a shortest v1-to-t path v1 → vj2 → · · · →
vjd−1 → vjd

→ t in G, where vjk
∈ Lk. Obviously, the d sub-IMs defined by the

starting columns in {1, j2, . . . , jd−1, jd} specifies a feasible splitting S∗ of A. The
total increase of the complexity due to the splitting of S∗ equals the total path
weight c(p), which is minimized. Thus, S∗ is a splitting of A minimizing the total
increase of the complexity, i.e., the total complexity of S∗ is minimized.

We next show how to efficiently compute the minimum increase of the com-
plexity for all feathering regions in O(m) time after an O(mn) time preprocess-
ing. In Section 2.3, we exploit the Monge property of the graph G to speed up
the shortest path computation, to optimal linear O(mn) time.
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2.2 Computing the Minimum Increase of the Complexity for a
Feathering Region

In this section, we characterize the complexity increase due to the feathering
region decomposition. Then, a linear time algorithm is developed for the optimal
decomposition of each feathering region.

Characterizing the Increase of the Complexity. Consider a feathering
region Fk = A[l .. r], which is the overlapping region of sub-IMs Sk−1 and Sk

with δ ≤ r − l = W ≤ Δ (1 < l < r < n), where W is the region width. As-
sume that the decomposition of Fk is F

(0)
k = (xi,j)m×W plus F

(1)
k = (yi,j)m×W .

Defining R(A[l .. r]) as
∑m

i=1

∑r+1
j=l max{0, ai,j − ai,j−1}, it is mathematically

trivial to show the increase of the complexity due to the decomposition is
R(F (0)

k )+R(F (1)
k )−R(Fk). We next develop a linear time algorithm for optimal

decomposition of a feathering region, minimizing the increased complexity.
Observing that the decomposition of Fk can be performed row by row, we

define the following optimal vector decomposition (OVD) problem. Define
the weight Wovd(z) of a vector z = (z1, z2, . . . , zN) as

∑N
j=2 max{0, zj − zj−1}.

Given a non-negative integer vector b = (b1, b2, . . . , bN ), decompose b into two
non-negative vectors x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ), such that
(1) x1 = b1 and yN = bN ; (2) for each j = 1, 2, . . . , N , bj = xj + yj , and (3) the
total weight of x and y (i.e., Wovd(x) + Wovd(y)) is minimized.

Then, for a given feathering region Fk = A[l .. r], we may view each ex-
tended row (ai,l−1, ai,l, . . . , ai,r, ai,r+1) as a vector ai. Applying the OVD al-
gorithm, ai is decomposed into two vectors, xi = (ai,l−1, xi,l, . . . , xi,r, 0) and
yi = (0, yi,l, . . . , yi,r, ai,r+1), with Wovd(xi)+Wovd(yi) being minimized. Clearly,
(xi)m

i=1 and (yi)
m
i=1 can be used to specify an optimal decomposition of Fk.

Chen and Wang [3] also studied this OVD problem for a different purpose
and developed a linear time algorithm. We independently solved the OVD prob-
lem in linear time. Our algorithm is ready to be extended to more general
cases.

Linear Time Algorithm for Optimal Vector Decomposition (OVD)
Problem. This section presents our optimal O(N) time algorithm for com-
puting an optimal decomposition of a given vector b = (b1, b2, . . . , bN ). The
OVD problem is modeled as computing a shortest path in a directed acyclic
graph (DAG) of pseudo-polynomial size. By exploiting the convexity of the edge
weight functions of the graph, we show that the OVD problem can be optimally
solved in linear time without explicitly constructing and searching the whole
graph. The solution space of the optimal decomposition of a vector b is then
judiciously characterized, which is crucial for our OFSB algorithm.

Define a non-negative vector x∗ = (x1, x2, . . . , xN ) as follows.

xj =

⎧
⎨

⎩

b1, j = 1
max {0, xj−1 − max{0, bj−1 − bj}} , 1 < j < N
0, j = N

(1)
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Then, for every j = 1, 2, . . . , N , yj = bj −xj . Obviously, x∗ and y∗ is a feasible
decomposition of b. We can further prove that the total weight of x∗ and y∗is
minimized. Thus, we have Lemma 1.

Lemma 1. Given a non-negative vector b = (b1, b2, . . . , bN), an optimal decom-
position x∗ and y∗ of b can be computed in O(N) time; furthermore, Wovd(x∗) = 0
and the total weight of x∗ and y∗, Wovd(x∗)+Wovd(y∗) = max{bN ,

∑N
j=2 max{0,

bj − bj−1}}

Lemma 2 further characterizes the optimal solution space of the OVD problem.
Denote by ρ(b) the total weight of an optimal decomposition of b., i.e., ρ(b) =
Wovd(x∗) + Wovd(y∗).

Lemma 2. Given a non-negative vector b = (b1, b2, . . . , bN ) and a nonnegative
integer τ , there exists an optimal decomposition x and y of b with Wovd(x) = τ
if and only if τ ≤ ρ(b)− bN . The decomposition can be computed in O(N) time.

Computing the Minimum Increase of the Complexity. Based on Lemma
1, the minimum increase of the complexity for Fk, denoted by Icpl(Fk), is
∑m

i=1 max{0, ai,r+1−
∑r+1

j=l max{0, ai,j − ai,j−1}}. We thus can introduce an
additional matrix B = (bi,j)m×n such that bi,j =

∑j+1
k=1 max{0, ai,k − ai,k−1}}

(ai,0 = ai,n+1 = 0). The matrix B can be computed in O(mn) time. Then,
Icpl(Fk) for any feathering region Fk can be obtained in O(m) time.

Lemma 3. After an O(mn) time preprocessing, the minimum increase Icpl(Fk)
of the complexity for any feathering region Fk = A[l .. r] can be computed in O(m)
time, with Icpl(Fk) =

∑m
i=1 max{0, ai,r+1 −

∑r+1
j=l max{0, ai,j −ai,j−1}}, and the

decomposition of Fkcan be obtained in O(mn) time.

2.3 Speeding Up the Computation of the Shortest v1-to-t Path in G

In this section, we exploit the Monge property [1] of the graph G = (V, E) .This
enables us to compute a shortest v1-to-t path in G in O(n) = O(|V |) time.

Lemma 4. Given four vertices vj′ , vj′+1 ∈ Lk and vj′′ , vj′′+1 ∈ Lk+1 in G with
2 ≤ k < d, c(vj′ , vj′′ ) + c(vj′+1, vj′′+1) ≤ c(vj′ , vj′′+1) + c(vj′+1, vj′′ ).

The Monge property as shown in Lemma 4 can be used to speed up the com-
putation of the shortest v1-to-t path in G. For every vertex vl in the k-th layer
Lk, let swk(l) denote the shortest path length from v1 to vl ∈ Lk in G. Clearly,
swk(l) = min{swk−1(l′) + c(vl′ , vl) |vl′ ∈ Lk−1 and w − Δ ≤ l − l′ ≤ w − δ}.
Recall that an edge (vl′ , vl) ∈ E if and only if vl′ ∈ Lk−1, vl ∈ Lk, and
w − Δ ≤ l − l′ ≤ w − δ. Hence, the set of all outgoing edges of each vertex
vl′ and the set of all incoming edges of each vl can be represented implicitly
(such that we can access any edge of G in O(1) time and compute its weight in
O(m) time as shown in Section 2.2). Note that the Monge property is normally
defined on a matrix [1]. Lemma 4 actually shows the Monge property of the
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matrix containing the path weight swk−1(l′) + c(vl′ , vl) for every edge (vl′ , vl)
between the vertices on two consecutive layers Lk and Lk+1 of G, with 1 < k < d.
Thus, applying the matrix-searching technique in [1], it takes O(m(w − δ)) time
to compute all shortest paths from v1 to all vertices on the k-th layer when
knowing all swk−1(l′)’s of Layer Lk−1. Hence, a shortest v1-to-t path in G can
be obtained in O(dm(w − δ)) = O(mn) time.

Lemma 5. Given an instance of the OFSB problem, an optimal set of feathering
regions can be computed in O(mn) time.

After obtaining an optimal set of feathering regions, we can decompose each ex-
tended row of every feathering region by Lemma 1, yielding an optimal splitting.
However, the resulting sub-IMs may have an undesirably large minimum beam-
on time. We thus consider the following min-max beam-on time (MMBoT)
problem: Given an optimal set of feathering regions {Fk | k = 1, 2, . . . , d− 1}, de-
compose the feathering regions to achieving a set S of d sub-IMs {S1, S2, . . . , Sd} ,
such that the maximum Mbot(S) of all the minimum beam-on times Tbot(·) of these
sub-IMs in S (i.e., Mbot(S) = maxSk∈S Tbot(Sk)) is is minimized, while imposing
the lower bound on total complexity of the splitting.

2.4 Linear Time Algorithm for Solving the MMBoT Problem

In this section, we formulate the MMBoT problem as computing a polygonal
path in a polygon, such that the maximum slope of the segments on the path is
minimized, which can be solved in linear time.

The Min-max Slope Path Model. Assume that each feathering region
Fk = A[jk+1 .. jk + w − 1] is decomposed into F

(0)
k and F

(1)
k , and denote by

αk(i) and βk(i) the weights of each row i of F
(0)
k and F

(1)
k , respectively, as

defined in Section 2.2. Since we impose the lower bound on the total complex-
ity of the splitting while performing the decomposition of Fk, by Lemma 1,
αk(i) + βk(i) is a fixed constant, denoted by ρk(i), and 0 ≤ αk(i), βk(i) ≤ ρk(i).
Then, for each k = 1, 2, . . . , d, as shown in Section 2.1, the k-th sub-IM in the
splitting S, Sk = F

(1)
k−1 || A[jk−1 + w .. jk+1 − 1] || F (0)

k . For a given set of (d − 1)
feathering regions, A[jk−1 + w .. jk+1 − 1] in each Sk is fixed, and thus we let
ck(i) =

∑jk+1−1
l=jk−1+w max{0, ai,l − ai,l−1}, which is a constant. Note that the min-

imum beam-on time Tbot(B) of an IM B = (bi,j)m′×n′ equals to maxm′

i=1{bi,1 +
∑n′

j=2 max{0, bi,j − bi,j−1}} [5]. Hence, Tbot(Sk) = maxm
i=1(βk−1(i) + ck(i) +

αk(i)), where αk(i) and βk(i) are varying depending on the decompositions of
Fk’s. Then, the maximum Mbot(S) of all the minimum beam-on times of the
sub-IMs in S is maxSk∈S maxm

i=1(βk−1(i) + ck(i) + αk(i)), that is, Mbot(S) =
maxm

i=1 maxd
k=1(βk−1(i) + ck(i) + αk(i)), where β0(i) = αd(i) = 0.

Thus, to minimize Mbot(S), we need to solve the following problem: Given a
vector ρ = {ρ0, ρ1, . . . , ρd−1, ρd} with ρ0 = ρd = 0 and ρk ≥ 0 (k = 1, 2, . . . , d −
1), and a vector c = (c1, c2, . . . , cd) with ck ≥ 0 for every k = 1, 2, . . . , d, de-
compose ρ into two vectors α = (α0, α1, . . . , αd) and β = (β0, β1, . . . , βd), such
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that: (1) αk + βk = ρk for each k = 0, 1, . . . , d; (2) 0 ≤ αk, βk ≤ ρk; and (3)
maxd

k=1(βk−1 + ck + αk) is minimized. Without loss of generality, we assume
that ρk > 0 for k = 1, 2, . . . , d − 1. Interestingly, we can model this problem as
a min-max slope path (MMSP) problem in a polygon, as follows.

Define a monotone polygon P in the 2-D x-y plane, whose boundary consists
of two y-monotone polygonal chains, the upper chain Cu and the lower one
Cl. Both Cu and Cl, each consisting of d + 1 chain vertices, start at the point
s(0, 0) and end at the point t(d,

∑d
i=1 ci +

∑d
i=0 ρi). The k-th vertex on the

lower (resp., upper) chain Cl (resp., Cu) is at Bk(k,
∑k

i=1 ci +
∑k−1

i=0 ρi) (resp.,
Bk(k,

∑k
i=1 ci +

∑k
i=0 ρi)) for k = 1, 2, . . . , d − 1. Let x(P ) (resp, y(P )) denote

the x-coordinate (resp., y-coordinate) of a point P . The min-max slope path
problem seeks a polygonal path L = P0P1 . . . Pq−1Pq in P such that (1) P0 = s
and Pq = t and (2) the maximum slope of the line segments on L, denoted by
MS(L) (i.e., MS(L) = maxq

i=1
y(Pi)−y(Pi−1)
x(Pi)−x(Pi−1)

), is minimized. Such a path L is
called a min-max slope path from s to t.

For any feasible decomposition of ρ, α = (α0, α1, . . . , αd−1, αd) and β =
(β0, β1, . . . , βd−1, βd), we define a polygonal path L = P0P1, . . . , Pd−1Pd with
P0 = s, Pd = t, and Pk = (k, y(Bk)+αk) for k = 1, 2, . . . , d−1. It is not difficult
to see that L is in the polygon P , and MS(L) = maxd

k=1(βk−1 + ck + αk).

Computing a Min-Max Slope s-to-t Path. In the polygon P , the line seg-
ments (Bk, Bk) (resp., (Bk, Bk+1) ) are called type I diagonals (resp., type II
diagonals) of P . Let vk and vk be the two end points of a diagonal dk with vk

having a larger y-coordinate than vk. Denote by D(s, vk) and D(s, vk), respec-
tively, the min-max slope paths from s to vk and vk. There is a unique common
vertex u of both D(s, vk) and D(s, vk), which is the furthest one from s on ei-
ther path. Obviously D(u, vk) and D(u, vk) have no common edge. Denote by
Dk the region enclosed by D(u, vk), D(u, vk), and dk. The vertex u is called the
tip point of Dk. Lemma 6 characterizes the inward-convexity of D(u, vk) and
D(u, vk). Lemma 7 shows that a min-max slope s-to-t path in P may only use
the polygonal vertices of P .

Lemma 6. If neither of D(u, vk) and D(u, vk) is empty, both D(u, vk) and
D(u, vk) are inward-convex polygonal chains.

Lemma 7. There exists a min-max slope s-to-t path L∗ = P0P1 . . . Pd−1Pd such
that P0 = s, Pd = t, and Pk is a polygonal vertex of P for every k = 1, 2, . . . , d−1.

Now, the following algorithm can find a min-max slope s-to-t path L∗ in P :
Step 1: Construct D1 by connecting s to v1 = B1 and v1 = B1. Set k = 1

and dk = vkvk.
Step 2: Let u be the tip point of Dk, at which the two subchains uaua+1 . . . ub

and uaua−1 . . . u0 diverge, where u = ua, vk = u0, vk = ub. Consider the next
diagonal dk+1 = vk+1vk+1, where vk+1 = vk. Based on the definition of a diag-
onal, vk+1 is also determined. Starting from u0, scan the sequence u0, u1, . . . , ub

and let j be the smallest index for which vk+1uj becomes a supporting segment
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(a line segment is a supporting segment of an open convex curve if it has at least
one point on the convex curve and the whole convex curve is on one side of the
line segment) of the boundary of Dk. Here we have four possible cases:

(i) dk+1 is a type I diagonal and j ≤ a (Figure 2(a)). Remove all edges uiui+1

for 0 ≤ i ≤ j − 1 and add edge ujvk+1.
(ii) dk+1 is a type I diagonal and j > a (Figure 2(b)). Remove all edges uiui+1

for 0 ≤ i ≤ j − 1 and add ujvk+1; uj becomes the tip point of Dk+1.
(iii) dk+1 is a type II diagonal and j ≤ a (Figure 2(c)). Remove all edges uiui+1

for j ≤ i ≤ b − 1 and add edge ujvk+1; uj becomes the tip point of Dk+1.
(iv) dk+1 is a type II diagonal and j > a (Figure 2(d)). Remove all edges uiui+1

for j ≤ i ≤ b − 1 and add edge ujvk+1.

Step 3: Let k = k + 1 and repeat Step 2 until t is reached.

Lemma 8. A min-max slope s-to-t path in P can be computed in O(N) time,
where N is the number of vertices on P.

Solution Integerization. The min-max slope s-to-t path L∗ in P computed
in Section 2.4 may not intersect with each line x = k (k = 1, 2, . . . , d − 1) at a
point whose y-coordinate is an integer. This prevents us from defining a valid
decomposition of ρ for solving the MMBoT problem.

However, if the maximum slope of a min-max slope s-to-t path L∗ in P is Smax,
an s-to-t path L′∗ in P , which intersects with each line x = k (k = 1, 2, . . . , d−1)
at an integer point, can be found by using the following integerization operations
and the maximum slope of the segments on L′∗ is �Smax�. Obviously, this is an
integer solution with maximum slope of �Smax�, which is obviously an optimal
integer solution.

Suppose Pk = (x, y) and Pk+1 = (x+Δx, y +Δy) are two adjacent polygonal
vertices on the path L∗. We define the following integerization operation: For
each i = 1, 2, . . . , Δx − 1, we insert a new point (x + i, �y + iΔy/Δx�). It is easy
to show that none of the slopes of all these segments is larger than �Δy/Δx�.

Performing this integerization operation on each line segment of L∗, we then
obtain an s-to-t path L′∗ whose vertices are integer points and maximum slope
is �Smax�. Consider each point P (k, y(Bk) + αk) ∈ L′∗ for k = 1, 2, . . . , d − 1.
Then, ρk can be decomposed into αk and βk with βk = ρk − αk. Thus, ρ can be
decomposed into α and β such that maxd

k+1(βk−1 + ck + αk) is minimized.

Fig. 2. Illustrating the algorithm for computing the min-max slope path in P . (a), (b),
(c), and (d) are four possible cases in Step 2 of the algorithm.
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To compute an optimal splitting of IM A, we perform the following steps: (1)
Compute an optimal set of d − 1 feathering regions Fk’s. (2) For each row i of
these feathering regions, compute ρ(i) = (ρ1(i), ρ2(i), . . . , ρd−1(i)) by Lemma 1.
(3) Using our MMSP algorithm to decompose each ρ(i) into α(i) and β(i). (4)
Based on Lemma 2, each row i of every feathering region Fk can be optimally
decomposed into two vectors xk(i) and yk(i). We thus obtain an optimal spitting
S = {S1, S2, . . . , Sd} from the vectors xk(i) and yk(i) (k = 1, 2, . . . , d − 1 and
i = 1, 2, . . . , m). We now have the following theorem.

Theorem 1. Given an IM A = (ai,j)m×n ,an integral maximum leaf spread
w > 0, and the width range [δ .. Δ] of each feathering region (0 < δ < Δ < w),
the OFSB problem can be solved in O(mn) time.

3 Implementation and Experiments

To study the performance of our new OFSB algorithm with respect to clinical ap-
plications, we implemented the algorithm using Matlab on Windows XP system.
We performed experiments on 1000 randomly generated intensity maps for each
problem configurations and also 105 sets of clinical intensity maps obtained from
the Department of Radiation Oncology, the University of Iowa. We conducted
comparisons with Chen and Wang’s FSMP algorithm [3], which devotes to mini-
mize the total beam-on time for field splitting with feathering. Comparisons were
also made between results before and after splitting using our OFSB algorithm.
Both beam-on time and the number of MLC apertures were used as measures
of the results. The minimum feathering width δ was set to 3 for comparisons
between before and after splitting, while 0 for comparisons between OFSB and
FSMP to make sure that the numbers of resulting sub-IMs were equal.

For the randomly generated IMs, the widths of the tested intensity maps
were 25, 35, 45, 60, and 75, to get different number of sub-IMs. The maximum
intensity level was set to 100. The average increment of the total beam-on time of
our OFSB algorithm was only 6.09% over Chen and Wang’s FSMP algorithm. In
term of the number of MLC apertures, our algorithm slightly outperformed the
FSMP algorithm. Our experiments also revealed the increase of the total beam-
on time and the number of MLC-apertures were pretty small. For example, while
the IMs needed to be split into 7 sub-IMs, the total beam-on time only increased
by less than 20% and the number of MLC-apertures by about 30%.

For clinical data, the widths of the tested intensity maps ranged from 15 to 47.
The maximum intensity level of each IM was normalized to 100. The maximum
leaf spreads used were 14, 16, and 18. For the tested IMs, the total beam-on
time using our OFSB algorithm was only slightly larger than that obtained by
Chen and Wang’s FSMP algorithm, with an average increase of 6.2%; while the
number of MLC apertures output by our algorithm was comparable to that by
Chen’s algorithm, with an average increase of 0.9%.

Our algorithm runs very fast, comparing to Chen and Wang’s FSMP algo-
rithm, for most of the intensity maps, the execution time was within a second,
while the FSMP algorithm took hundreds of seconds.
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Abstract. This paper presents an algorithm for rotating a subimage in
place without using any extra working array. Due to this constraint, we
have to overwrite pixel values by interpolated values. Key ideas are local
reliability test which determines whether interpolation at a pixel is carried
out correctly without using interpolated values, and lazy interpolation
which stores interpolated values in a region which is never used for output
images and then fills in interpolated values after safety is guaranteed.
It is shown that linear interpolation is always safely implemented. An
extension to cubic interpolation is also discussed.

1 Introduction

Demand for scanners is growing toward paper-less society. There are a number
of problems to be resolved in the current scanner technology. One of them is
to detect the direction of a document scanned, i.e., which side is the top of the
document. One way is to use OCR technology to read characters which is now
common to scanners. Of course, we want to avoid using OCR since it takes time.
Another common problem which we address in this paper is correction of rotated
documents. If the document contains only characters, then OCR is definitely a
solution. Since it is costly, a geometric algorithm for such correction is required.
It consists of two phases. In the first phase we detect rotation angle. Some
scanners are equipped with a sensor to detect rotation angle. If no such sensor
is available, we could rely on another algorithm called Hough transform [1,2] for
finding line components to detect rotation angle. To simplify the discussion, we
assume a hardware sensor to detect rotation angle.

Once rotation angle is obtained, the succeeding process is rather easy if suffi-
cient working storage is provided. Suppose input intensity values are stored in a
two-dimensional array a[., .] and another array b[., .] of the same size is available.
Then, at each lattice point (pixel) in the rotated coordinate system we compute
an intensity value using appropriate interpolation (linear or cubic) using intensity
values around the lattice point (pixel) in the input array and then store the com-
puted interpolation value at the corresponding element in the array b[ ]. Finally, we
output intensity values stored in the array b[ ]. It is quite easy. This method, how-
ever, requires too much working storage, which is a serious drawback for devices
such as scanners in which saving memory is a serious demand for their built-in
softwares and their costs. Is it possible to implement the interpolations without
using any extra working storage? This is our question in this paper.

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 704–715, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We propose an efficient algorithm for correcting rotation of a document with-
out using any extra working storage. A simple way of doing this is to compute an
interpolation value at each pixel in the rotated coordinate system and store the
computed value somewhere in the input array a[ ] near the point in the original
coordinate system. Once we store an interpolation value at some element of the
array, the original intensity value is lost and it is replaced by the interpolation
value. Thus, if the neighborhood of the pixel in the rotated coordinate system
includes interpolated values then the interpolation at that point is not correct
or reliable. One of keys is a condition to determine whether interpolation at a
given pixel is reliable or not, that is, whether any interpolated value is included
in the neighborhood or not. Using the condition, we first classify pixels in the
rotated coordinate system into reliable and unreliable ones. In the first phase
we compute interpolation at each unreliable pixel and keep the interpolation
value in a queue, which consists of array elements outside the rotated subimage.
Then, in the second phase we compute interpolation at every pixel (x, y) in the
rotated coordinate system and store the computed value at the (x, y)-element in
the array. Finally, in the third phase for each unreliable pixel (x, y) we move its
interpolation value stored in the queue back to the (x, y)-element in the array.

There are increasing demands for such memory-efficient algorithms. The work
in this paper would open a great number of possibilities in such directions in
applications to computer vision, computer graphics, and build-in software design.
Image rotation is one of the most important topics for devices such as scanners. In
fact there are a number of patents such as [3] proposing a method for rotating
images so that the number of disc accesses is minimized and [4] using JPEG
compression. Unfortunately, as far as the authors know, there are no theoretical
results on this topics.

This paper is organized as follows. In Section 2 we give a mathematical de-
scription of our problem after preparing necessary notations and definitions.
Then, in Section 3 we present a condition to determine whether interpolation
at a given pixel is reliable or not only using local geometric information. Using
the condition, we give an in-place algorithm for correcting a rotated subimage
without using any extra working storage. We conclude the paper together with
some open problems.

2 Problem Definition

In this section we formulate a problem mathematically. An input is an image
which contains a subimage rotated by some angle θ. We assume that the rotation
angle is a part of our input. Furthermore, for simplicity of argument we assume
that the document is rotated in a counter-clockwise way. Rotation in the opposite
direction can be dealt with in a symmetric manner.

Refer to Figure 1. The leftmost one is an image taken by a scanner. A doc-
ument part in the figure is rotated. Given such a rotated image, we want to
correct the rotation. The right figures ullustrate our strategy in this paper. We
first execute interpolation at each pixel in the rotated subimage and store those
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θ

H

W

h

w

Fig. 1. An image containing a rotated subimage. A schematic illustration for correcting
rotation is given in the right figures.

interpolated values over the input image. Finally, we shift the subimage to the
center position.

2.1 Input Image and Rotated Subimages: Gwh and RW H

Input image G consists of h × w pixels. Each pixel (x, y) is associated with an
intensity level. The set of all those pixels (or lattice points in the xy-coordinate
system) is denoted by G#

wh and its bounding rectangle by Gwh.
Rotated subimage R consists of h×W pixels, which form a set R#

WH of pixels
(or lattice points in the XY -coordinate system). Intensity levels at each pixel
(X, Y ) is calculated by interpolation using intensity levels in the neighborhood.

2.2 Output Image and Location Function

An interpolation value calculated at a pixel (X, Y ) ∈ R#
WH in the rotated subim-

age is stored (or overwritten) at some pixel s(X, Y ) ∈ G#
wh in the original input

image. The function s( ) determining the location is referred to as a location
function. A simple function is s(X, Y ) = (X, Y ) which maps a pixel (X, Y ) in
R#

WH to a pixel (X, Y ) in G#
wh. We could use different location functions, but

this simple function seems best for row-major and column-major raster scans.
So, we implicitly fix the function.

Then, an output image after correcting rotation is a range of the function. It
is rather easy to move the output image to the center position of the original
rectangle Gwh in an in-place manner.
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2.3 Correspondence Between Two Coordinate Systems

Let (x0, y0) be the xy-coordinates of the lower left corner of the rotated document
(more exactly, the lower left corner of the bounding box of the rotated subimage).
Now, a pixel (X, Y ) in R#

WH is a point (x, y) in the rectangle Gwh with

x = x0 + X cos θ − Y sin θ,

y = y0 + X sin θ + Y cos θ.

The corresponding point (x, y) defined above is denoted by p(X, Y ).

2.4 Scan Order σ(X, Y )

Let σ be a scanning order over the pixels in R#
WH . It is a mapping from R#

WH

to a set of integers {0, 1, . . . , WH −1}, that is, σ(X, Y ) = i means that the pixel
(X, Y ) is scanned in the i-th order. If σ is a row-major raster scan, σ(X, Y ) =
X + Y × W where X = 0, . . . , W − 1 and Y = 0, . . . , H − 1. A column-major
raster order is symmetrically characterized by σ(X, Y ) = Y + X × H .

2.5 Window Nd(x, y) for Interpolation

Following the scan order σ, we take pixels in the rotated image and for each pixel
(X, Y ) we compute an intensity value at (X, Y ) by interpolation using intensity
values of pixels in the neighborhood of the corresponding point (x, y) = p(X, Y ).
There are a number of algorithms for interpolation. The simplest one called
the nearest neighbor algorithm copies an intensity level from the nearest pixel.
Linear interpolation performs interpolation by linear combination of intensity
values at the four immediate neighbors. An algorithm using cubic polynomials for
interpolation is called a cubic interpolation. Window used for the interpolation is
denoted by Nd(x, y), where d is a parameter to determine the size of the window.
The value of d is 1 for linear interpolation and 2 for cubic interpolation. The
window size of the nearest neighbor algorithm is at most 1, but only one point
is used for interpolation. The window Nd(x, y) is defined by

Nd(x, y)={(x′, y′) ∈ G#
wh|x′=�x�−d+1, . . . , �x�+d, y′ = �y�−d+1, . . . , �y�+d}.

The set Nd(x, y) consists of at most 4d2 elements. We do not describe how linear
or cubic interpolation is calculated.

2.6 Basic Interpolation Algorithm and Its Problem

The following is a basic algorithm for interpolation with a scan order σ and
location function s( ).

Basic interpolation algorithm
(1) Scanning
for each (X, Y ) ∈ R#

WH in the scan order σ do
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· Calculate the location p(X, Y ) = (x, y) in the xy-coordinate system.
· Execute interpolation at (x, y) using intensity levelsin the window Nd(x, y).
· Store the interpolation value at a pixel s(X, Y ) ∈ G#

wh specified by the
location function.

(2) Clear the margin
for each (x, y) ∈ G#

wh do
if no interpolation value is stored at (x, y)

then the intensity level at (x, y) is set to white.

The basic algoritm above is simple and efficient. Unfortunately, it may lead
to incorrect interpolations since to calculate an interpolation value at some pixel
it may reuse intensity levels resulting from past interpolations. More precise
description follows:

We say interpolation at (X, Y ) ∈ R#
WH is reliable if and only if none of the

pixels in the window Nd(x, y) keeps interpolation value. Otherwise, the inter-
polation is unreliable. ”Unreliable” does not mean that the interpolation value
at the point is incorrect. Consider an image of the same intensity level. Then,
interpolation does not cause any change in the intensity value anywhere. Other-
wise, if we use interpolated value for interpolation, the resulting value is different
from the true interpolation value. We use the terminology ”unreliable” in this
sense. A pixel (X, Y ) is called reliable if interpolation at (X, Y ) is reliable and
unreliable otherwise.

Figure 2 shows how frequently and where unreliable interpolations occur. In
these figures those internal images are rotated counterclockwisely by degrees
5 without any left or bottom margins. When we scan the images by a usual
row-major raster order with d = 1 (window size), those unreliable interpolations
occur consecutively near the left boundary. If we use a column-major raster order
instead, then we have mush less unreliable pixels as shown in (b) in the figure. If
we make the window size d larger then the more unreliable pixels we have. The
figure in (c) shows the case for d = 2.

3 Lazy Interpolation and Local Reliability Test

An idea to avoid such incorrect interpolation is to find all unreliable pixels and
keep their interpolation values somewhere in a region which is not used for output
image. In the following algorithm we use a queue to keep such interpolation
values.

[Lazy Interpolation]
Q: a queue to keep interpolation values at unreliable pixels.
for each pixel (X, Y ) ∈ R#

WH in the order σ do
if (X, Y ) is unreliable

then push the interpolation value at (X, Y ) into the queue Q.
for each pixel (X, Y ) ∈ R#

WH in the order σ do
Calculate the interpolation value at (X, Y ) and store the value at the pixel
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(a) (b) (c)

Fig. 2. Distribution of unreliable pixels colored red (dark, if no color is available):
image size = 234 × 170, rotation angle = 5 degrees counterclockwisely. (a) Row-major
raster with d = 1, (b) column-major raster with d = 1, and (c) row-major raster with
d = 2.

s(X, Y ) ∈ G#
wh.

for each pixel (X, Y ) ∈ R#
WH in the order σ do

if (X, Y ) is unreliable then
pop a value up from the queue Q and store the value at the pixel s(X, Y ).

Here are two problems. One is how to implement the queue. The other is how
to check unreliability of a pixel. It should be remarked that both of them must
be done without using any extra working storage.

Suppose we scan pixels in a rotated subimage R#
WH according to a scan order σ

and interpolation using a window of size d around each point (X, Y ) is calculated
and stored at an array element s(X, Y ) specified by the location function. Now
we can define another sequence τ to determine an order of all pixels in G#

wh to
receive interpolated values. That is, the function τ is defined so that

τ(s(X, Y )) = σ(X, Y )

holds for any (X, Y ) ∈ R#
WH . Since rotated subimage is smaller than the original

image, some pixels in the original image are not used for output image. That
is, there are pixels (x, y) in G#

wh such that there is no (X, Y ) in R#
WH with

(x, y) = s(X, Y ). For such pixels (x, y) we define τ(x, y) = WH . More precisely,
τ is a mapping from G#

wh to {0, 1, . . . , WH} such that

τ(x, y) = i < WH if i-th computed interpolation value is stored at (x, y) in G#
wh,

τ(x, y) = WH if no interpolation value is stored at (x, y).

Then, interpolation at (X, Y ) is reliable in the sense defined in the previous sec-
tion if none of the pixels in the window does not keep interpolated value, that is,
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Fig. 3. Two rectangles Gwh and RWH

τ(x, y) ≥ σ(X, Y ) for each (x, y) ∈ Nd(p(X, Y )).

This condition referred to as the reliability condition.
Figure 3 illustrates two rectangles, ABCD for Gwh and PQRS for RWH .

3.1 Row-Major Raster Scan for Counterclockwise Rotation

Consider a simple case where σ is a row-major raster scan. Let (x, y) = p(X, Y ),
that is,

x = x0 + X cos θ − Y sin θ, y = y0 + X sin θ + Y cos θ.
If we order those pixels in the interpolation window of size d around (x, y) in the
order of receiving interpolation values, then the first point is (�x�−d+1, �y�−d−
1) because interpolation values are also filled in G#

wh in the same row-major raster
order (restricted to the part 0 ≤ x < W and 0 ≤ y < H). If the first part has not
received any interpolation value, that is, if τ(�x�−d+1, �y�−d−1) ≥ σ(X, Y ),
then the pixel (X, Y ) is reliable. Otherwise, it is unreliable. By the definition of
σ and τ , we have a simpler expression of the condition.

Lemma 1. [Local Reliability Condition] Assuming a row-major raster or-
der for σ and τ , pixel (X, Y ) ∈ R#

WH is unreliable if and only if
(1) x0 + X cos θ − Y sin θ − d + 1 < X and y0 + X sin θ + Y cos θ − d < Y , or
(2) x0 + X cos θ − Y sin θ − d + 1 < W and y0 + X sin θ + Y cos θ − d + 1 < Y .
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Proof. By the condition stated above, a pixel (X, Y ) is unreliable if and only
if
(1) �x0+X cos θ−Y sin θ�−d+1 ≤ X−1 and �y0+X sin θ+Y cos θ�−d+1 ≤ Y ,
or
(2) �x0 +X cos θ−Y sin θ�−d+1 ≤ W −1 and �y0 +X sin θ+Y cos θ�−d+1 ≤
Y − 1.

Let a and b be two arbitrary positive real numbers. Then, �a� ≥ �b� holds if
and only if a ≥ �b�. Also, �a� ≤ �b� holds if and only if a < �b� + 1. Using these
inequalities, the above condition can be restated as in the lemma. �
An importance of Lemma 1 is that it suggests a way of testing reliability of
interpolation at each pixel without using any working array. That is, it suffices
to check the two conditions in the lemma.

By Lemma 1, a pixel (X, Y ) is unreliable if and only if

(1) Y > − 1−cos θ
sin θ X + x0−d+1

sin θ and Y > sin θ
1−cos θX + y0−d

1−cos θ or

(2) Y > cos θ
sin θ X − W−x0+d−1

sin θ and Y > sin θ
1−cos θ X + y0−d+1

1−cos θ .

By L1, L2, L3 and L4 we denote the four lines above:

L1 : Y = − 1−cos θ
sin θ X + x0−d+1

sin θ , L2 : Y = sin θ
1−cos θ X + y0−d

1−cos θ ,

L3 : Y = cos θ
sin θ X − W−x0+d−1

sin θ , L4 : Y = sin θ
1−cos θ X + y0−d+1

1−cos θ .

Then, a pixel (X, Y ) is unreliable if and only if the point (X, Y ) is above the
two lines L1 and L2 or above the two lines L3 and L4.

3.2 Column-Major Raster Scan for Counterclockwise Rotation

How about a column-major raster order instead of row-major order? By similar
arguments we have a similar observation.

Lemma 2. Assuming a column-major raster order for σ and τ , a pixel (X, Y ) ∈
R#

WH is unreliable if and only if
(1’) x0 + X cos θ − Y sin θ − d < X and y0 + X sin θ + Y cos θ − d + 1 < Y , or
(2’) x0+X cos θ−Y sin θ−d+1 < X and H > y0+X sin θ+Y cos θ−d+1 ≥ Y .

By Lemma 2, a pixel (X, Y ) is unreliable if and only if

(1′) Y > − 1−cos θ
sin θ X + x0−d

sin θ and Y > sin θ
1−cos θ X + y0−d+1

1−cos θ or

(2′) Y > − 1−cos θ
sin θ X + x0−d+1

sin θ and Y < − sin θ
cos θX + H−y0+d−1

cos θ .

By L′
1, L

′
2, L

′
3 and L′

4 we denote the four lines above:

L′
1 : Y = − 1−cos θ

sin θ X + x0−d
sin θ , L′

2 : Y = sin θ
1−cos θ X + y0−d+1

1−cos θ ,

L′
3 : Y = − 1−cos θ

sin θ X + x0−d+1
sin θ , L′

4 : Y = − sin θ
cos θX + H−y0+d−1

cos θ .

Figures 4 (a) and (b) depict the four lines and the region of unreliable pixels
bounded by them for each of row-major and column-major raster orders.
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Fig. 4. Regions of unreliable pixels, (a) for row-major raster order, and (b) for column-
major raster order

3.3 Lazy Interpolation for d = 1

Now we know how to detect possibility of unreliable pixel each in constant time.
If each pixel is reliable, we just perform interpolation. Actually, if the bottom
margin y0 is large enough, then the location s(X, Y ) to keep interpolation value
is far from a point (X, Y ) and thus it does not affect interpolation around the
point. Of course, if the window size d is large, then interpolations become more
frequently unreliable.

Here we present an in-place algorithm for correcting rotation. For the time
being we shall concentrate ourselves in the simpler case d = 1. A key to our
algorithm is the local test on reliability. In our algorithm we scan R#

WH three
times. In the first scan, we check whether (X, Y ) is a reliable pixel or not each
in constant time. If it is not reliable, we calculate interpolation value and store
it somewhere in G#

wh using pixels outside the rectangle determining the output
image. Such a region is called a refuge.

In-place algorithm for correcting rotation

Phase 1: For each (X, Y ) ∈ R#
WH check whether a pixel (X, Y ) is reliable or

not. If it is not, then calculate interpolation there and store the value in the
refuge F .

Phase 2: For each (X, Y ) ∈ R#
WH calculate interpolation there and store the

value at (X, Y ) ∈ G#
wh.

Phase 3: For each (X, Y ) ∈ R#
WH check whether interpolation at (X, Y ) is

reliable or not. If it is not, then update the value at (X, Y ) ∈ G#
wh by the

interpolation value stored in the refuge F .

The algorithm above works correctly when d = 1. The most important is
that the total area of refuge available is always greater than the total number of
unreliable pixels.
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Theorem 1. The algorithm above correctly computes interpolations for row-
major and column-major raster scans with the location function s(X, Y ) =
(X, Y ).

Proof. We do not prove correctness of the algorithm due to space limit. We
only prove that we can always find a refuge F sufficiently large. Because of
similarity we only prove the theorem for the row-major raster scan.

As described earlier, the region of unreliable pixels is divided into two regions,
oneboundedby the two linesL1andL2, and theother byL4and the left boundaryof
RWH . The two regions are denoted by R1 and R2 in this order, as shown in Figure 4.

We have two rectangles Gwh corresponding to an input image and RWH to
a rotated subimage. With the location function s(X, Y ) = (X, Y ), the output
image is determined by rotating RWH clockwisely by the angle θ and translating
it so that the lower left corner coincides with the lower left corner of Gwh.
Drawing the horizontal line through the upper right corner and vertical line
through the lower right corner of RWH , we have two regions FL and FA, as
shown in Figure 3, which can be used as refuge. In other words, we can store
any values there without affecting correct interpolations to be output.

To ease the proof we assume that there is no margin between the two rectan-
gles Gwh and RWH , that is, the four corners of RWH all lie on the boundary of
Gwh. In this case we have x0 = (H − 1) sin θ and y0 = 0. Since d = 1, the line
L1 passes through (0, H − 1) and L4 does (0, 0). The angle α between the line
L4 and the vertical line is smaller than θ because

tan(α) =
1 − cos θ

sin θ
< tan θ.

Thus, the area of the region (R1 in Figure 4 (a)) bounded by L4 and the left
boundary is smaller than the refuge FR bounded by the line RQ and the right
boundary of Gwh (see Figure 3).

By the same reason we can also prove that the area of the region R2 bounded
by L1 and L2 is smaller than that of the region FA above the line SR in Figure 3.
This completes the proof. �

3.4 Lazy Interpolation for d = 2

With a larger window of size d ≥ 2 the algorithm above does not work due to
insufficient area of the refuge. Fortunately, if the lower margin, y0, is at least
d − 1, then the lazy interpolation for the column-major raster works correctly.
When y0 = d−1 and d ≥ 2, the unreliable region is the union of the two regions
R1 above L′

1 and L′
2 and R2 above L′

3 and below L′
4. The line L′

2 passes through
the origin, we can use the right refuge FR as before for R1.

What about the region R2 bounded by L′
3 and L′

4? The line L′
4 is parallel to

the horizontal side of the rectangle Gwh and the line L′
3 has smaller slope than

the upper side of the rotated rectangle. Hence, the angle between L′
3 and L′

4

is smaller than θ. This implies that the region R2 bounded by L′
3 and L′

4 has
smaller area than the upper refuge FA. See Figure 5 for illustration.
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Fig. 5. The region of unreliable pixels and right and top refuges FR and FA

Unfortunately we cannot use the algorithm above for a larger window, d = 2
since we have so many unreliable pixels even in the case. The idea here is to
use a queue to store interpolation values at unreliable pixels and pop them up
whenever storing them does not cause any harm for interpolations. The region
outside the rotated image and the output image, shown in Figure 5, can be used
for the purpose.

Assume a row-major raster order. Suppose we are going to calculate interpo-
lation at pixels in a row Y . Then, the pixel values below the row �y0+Y cos θ�−d
(including the row) are never used for interpolations. Let us call the row the high
limit for Y . If it is greater than the previous high limit, i.e., �y0+(Y −1) cosθ�−d,
then we can safely store interpolation values at the row. This observation leads
to the following algorithm.

In-place algorithm 2 for correcting rotation

Q = a queue containing interpolated values, using the region in the refuge.
for each row Y = 0 to H − 1 do

for each X = 0 to W − 1
if (X, Y ) is unreliable

then push the interpolation value at (X, Y ) into the queue Q.
if �y0 + Y cos θ� − 2 > �y0 + (Y − 1) cos θ� − 2

then Y ′ = �y0 + Y cos θ� − 2.
for each X = 0 to W − 1

if (X, Y ) is unreliable
then store the value popped from Q at s(X, Y ).
else calculate interpolation value at (X, Y ) and store it at s(X, Y ).

Unfortunately, no formal proof has not been obtained for correctness of the al-
gorithm above. However, it has caused no problem for practical applications.
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4 Concluding Remarks and Future Works

In this paper we have presented in-place algorithms for correcting rotation of
a subimage contained in an image using interpolation. We have shown that as
long as interpolation is implemented by linear interpolation algorithm we can
always correct any rotation without using any extra working array. Correctness
proof for a larger window used for cubic interpolation has been left as an open
problem.

In this paper we considered two scan orders, row-major and column-major
raster orders. Many other scan orders are possible. In addition to row- and
column major raster scans we could scan an image at any angle. One of promising
scans is the following: First, find a rotation angle θ. Then, round it to an anlge
θ′ defined by two pixels in a rotated subimage. Using this approximate angle, we
can scan all of pixels in the rotated subimage without any extra working storage.

It is interesting to evaluate and compare those scan orders by the number of
unreliable pixels. The best scan order may depend on margins. In our experience,
if the bottom margin is greater than the left margin then the row-major raster is
better than the column-major one. If the left margin is larger than the bottom
margin, the column-major raster outperforms row-major raster. But there is no
formal proof.
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Abstract. We address the problem of computing critical area for opens
in a circuit layout in the presence of multilayer loops and redundant in-
terconnects. The extraction of critical area is a fundamental problem in
VLSI yield prediction. We first model the problem as a graph problem
and we solve it efficiently by exploiting its geometric nature. We intro-
duce the opens Voronoi diagram of polygonal objects, a generalization of
Voronoi diagrams based on concepts of higher order Voronoi diagrams of
segments. Higher order Voronoi diagrams of segments had not received
much attention in the literature. The approach expands the Voronoi
critical area computation paradigm [1,2,3] with the ability to accurately
compute critical area for missing material defects even in the presence
of loops and redundant interconnects spanning over multiple layers.

1 Introduction

Catastrophic yield loss of integrated circuits is caused to a large extent by
random particle defects interfering with the manufacturing process resulting in
functional failures such as open or short circuits. All yield models for random
manufacturing defects focus on critical area, a measure reflecting the sensitiv-
ity of the design to random defects during manufacturing (e.g. [4,5,6]). Reliable
critical area extraction is essential for today’s IC manufacturing especially when
DFM, i.e., design for manufacturability, initiatives are under consideration.

The critical area of a circuit layout on a layer A is defined as

Ac =
∫ ∞

0

A(r)D(r)dr

where A(r) denotes the area in which the center of a defect of radius r must fall
in order to cause a circuit failure and D(r) is the density function of the defect
size. D(r) has been estimated as D(r) = r2

0/r3, where r0 is some minimum
optically resolvable size. Critical area analysis is typically performed on a per
layer basis and results are combined to estimate total yield.

In this paper we focus on critical area extraction for open faults resulting from
broken interconnects generalizing upon the results of [2]. Opens are net-aware,
that is, a defect is considered a fault only if it actually breaks a net. A net is
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said to be broken if there exist terminal points that get disconnected. In order
to increase design reliability and reduce the potential for open circuits designers
are increasingly introducing redundant interconnects creating interconnect loops
that may span over a number of layers (see e.g. [7]). Redundant interconnects
reduce the potential for open faults at the expense of increasing the potential for
shorts. The ability to perform trade-offs is important requiring accurate critical
area computation for both.

In this paper we first model the problem as a graph problem and we solve
it efficiently by exploiting the geometric nature of it. We formulate the opens
Voronoi diagram, a generalization of Voronoi diagrams based on concepts of
higher order Voronoi diagrams of segments. To the best of our knowledge higher
order Voronoi diagrams of segments have not received much attention in the lit-
erature with the recent exception of [8] for the farthest segment Voronoi diagram.
Once the opens Voronoi diagram is available the entire critical area integral for
opens can be computed analytically in linear time similarly to [1,9,2].

For computational simplicity we have adapted the L∞ metric throughout this
paper [9]. This is consistent with the common practice of modeling defects as
squares to facilitate critical area computation. For simplicity figures are depicted
in Manhattan geometry, however, the method is general and it is applicable to
layouts of arbitrary geometry as well as other metrics of potential interest such as
the Euclidean or the k-gon metric. The algorithms presented in this paper have
been integrated into the IBM Voronoi Critical Area Analysis tool (Voronoi CAA)
which is used extensively by IBM manufacturing for the prediction of yield. For
results on the industrial use of our tool and comparisons with previously available
tools see [10].

2 Review of L∞ Voronoi Diagrams for Opens

The Voronoi diagram of a set of polygonal sites in the plane is a partitioning of
the plane into regions, one for each site, called Voronoi regions, such that the
Voronoi region of a site s is the locus of points closer to s than to any other
site. The Voronoi region of s is denoted as reg(s) and s is called the owner of
reg(s). The boundary that borders two Voronoi regions is called a Voronoi edge,
and consists of portions of bisectors between the owners of the neighboring cells.
The bisector of two polygonal objects (such as points, segments, polygons) is the
locus of points equidistant from the two objects. The point where three or more
Voronoi edges meet is called a Voronoi vertex. The combinatorial complexity of
the Voronoi diagram is linear in the number and complexity of the sites. In the
interior of a simple polygon the Voronoi diagram is also called medial axis1. Any
point p on the boundary of reg(s) is weighted by w(p) = d(p, s). The disk D
centered at p of radius w(p) is empty, that is, no site intersects the interior of D.

The L∞ distance is used throughout this paper. The L∞ distance between
two points p = (xp, yp) and q = (xq , yq) is d(p, q) = max {|xp − xq|, |yp − yq|}. In

1 There is a minor difference in the definition which we ignore in this paper (see [11]).
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the presence of additive weights, the (weighted) distance is dw(p, q) = d(p, q) +
w(p) +w(q), where w(p) and w(q) denote the weights of points p, q respectively.
In case of a weighted line l, the (weighted) distance between a point t and l is
dw(t, l) = min{d(t, q)+w(q), ∀q ∈ l}. The (weighted) bisector between polygonal
elements si, sj is b(si, sj) = {y | dw(si, y) = dw(sj , y)}. In this paper we use the
term core element, i.e., core segment and core point, to denote a portion of
interest along a bisector (such as a medial axis segment, a Voronoi edge or a
Voronoi vertex). Fig. 1 illustrates examples of core segments. The endpoints and
the open line segment portion of a core segment are always differentiated and
they are treated as distinct entities.

(a) (b)

Fig. 1. The regions of influence of the core elements of a core segment

In L∞ core segments can be treated as additively weighted ordinary segments.
Let s be a core segment induced by the polygonal elements el, er, that is, s
is portion of bisector b(el, er). Every point p along s is weighted with w(p) =
d(p, el) = d(p, er). The 45◦ rays2 emanating from the endpoints of s partition the
plane into the regions of influence of either the open core segment portion or the
core endpoints. (In the Euclidean metric the corresponding rays would be rays
perpendicular to el and er). Fig.1 illustrates the partitioning of space induced
by a core segment in the L∞ metric. Shaded regions are equidistant from both
the core endpoint and the open core segment. In this paper equidistant regions
are always assigned to the core endpoint. In the region of influence of a core
point p distance is measured in the ordinary weighted sense, that is, for any
point t, dw(t, p) = d(t, p) + w(p). In the region of influence of an open core
segment s distance in essence is measured according to the farthest polygonal
element defining s, that is, dw(t, s) = d(t, el) where el is the polygonal element
at the opposite side of the line through s than t (indicated by arrows in Fig.1).
In L∞ this is equivalent to the ordinary weighted distance from s. The bisector
between two core elements, and therefore the Voronoi diagram of a set of core
elements, can now be defined as usual. The (weighted) Voronoi diagram of core
medial axis segments was introduced in [2] as a solution to the critical area
computation problem for a simpler notion of an open based solely on geometric
information called break.

2 A 45◦ ray is a ray of slope ±1.
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3 A Graph Representation for Nets

From a layout perspective a net N is a collection of interconnected shapes span-
ning over a number of layers. The portion of N on a given layer X is denoted as
NX = N ∩X and consists of a number of connected components interconnected
through different layers. Every connected component is a collection of overlap-
ping polygons that can be unioned into a single shape (a simple one or one with
holes). Some of the shapes constituting net N are designated as terminal shapes
representing the entities that the net must interconnect. A net remains func-
tional as long as all terminal shapes comprising the net remain interconnected.
Otherwise the net is said to be broken. Fig. 2(a) illustrates a simple net N span-
ning over two metal layers, say M1 and M2, where M2 is illustrated shaded.
The two contacts illustrated as black squares have been designated as terminal
shapes. In Fig. 2(b) defects that create opens are illustrated as dark squares
and defects that cause no fault are illustrated hollow in dashed lines. Note that
hollow defects do break wires of layer M1 but they do not create an open as they
do not break net N .

(b)(a)

Fig. 2. (a) A net N spanning over two layers. (b) Dark defects create opens while
transparent defects cause no faults.

We define a compact graph representation for N , denoted G(N), as follows.
There is a graph node for every connected component of N on a conducting
layer. A node containing terminal shapes is designated as a terminal node. Two
graph nodes are connected by an edge iff there exists at least one contact or via
connecting the respective components of N . To build G(N) some net extraction
capability needs to be available. Net extraction is a well studied topic beyond
the scope of this paper. For the purposes of this paper we assume that G(N)
can be available for any net.

To perform critical area computation on a layer A we derive the extended
graph of N on layer A, denoted as G(N, A), that can be obtained from G(N) by
expanding all components of NA by their medial axis. For every via or contact
introduce an approximate point along the medial axis representing that via or
contact, referred to as a via-point, and a graph edge connecting the via-point
with the node of the connecting component of N . If a contact or via has been
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(a) (b)

Fig. 3. The net graph of Fig. 2 before (a) and after (b) cleanup of trivial parts

designated as terminal shape, designate also the corresponding via point as ter-
minal. In the presence of via clusters we can keep only one via point representing
the entire cluster. Any portion of the medial axis induced by edges of terminal
shapes is also identified as terminal. Fig. 3a illustrates G(N, A), where A = M1,
for the net of Fig. 2. Terminal points are indicated by hollow circles. Dashed
lines represent the original M1 polygon and are not part of G(N, M1).

Given G(N, A) we can detect biconnected components, bridges and articulation
points using depth-first search (DFS) as described in [12,13]. For our problem we
only maintain some additional terminal information to determine whether the
removal of a vertex or edge actually breaks G(N, A), i.e., whether it disconnects
G(N, A) leaving terminals in both sides. For this purpose we chose the root of the
DFS tree to be a terminal node or terminal point and at every node i of the DFS
tree we keep a flag indicating whether the subtree rooted at i contains a terminal
point. Any bridges or any articulation points whose removal does not disconnect
terminals of G(N, A) are called trivial. Similarly any biconnected component
incident to only trivial articulation points that contains no terminal points is
called trivial. Trivial bridges, trivial articulation points and trivial biconnected
components can be easily determined and removed from the graph with no effect
on the net connectivity regarding opens. In the following we assume that G(N, A)
has been cleaned up from all trivial parts, and thus, the removal of any bridge or
any articulation point results in a fault. Fig. 3(b) illustrates the net graph after
the cleaning of all trivial parts. Hollow circles indicate terminal and articulation
points. The graph has exactly one bi-connected component.

4 Modeling Net-Aware Opens

In this section we formalize the definition of a net-aware open.

Definition 1. A minimal open is a defect D that breaks a net N and D has
minimal size, that is, if D is shrunk by ε > 0 then D no longer breaks N . D
breaks N if any two terminal shapes of N get disconnected or if a terminal shape
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itself gets destroyed. A minimal open is called strictly minimal if it contains no
other minimal open in its interior. An open is any defect entirely covering a
minimal open. The size of a minimal open centered at a point t is called the
critical radius of t.

Definition 2. The center point of an open D is called a generator point for D
and it is weighted with the size (radius) of D. A segment formed as a union of
generator points is called a generator segment or simply a generator.

Definition 3. The core of the extended net graph G(N, A) on layer A, denoted
core(N, A), is the set of all medial axis vertices, including articulation, via,
and terminal points, and all medial axis edges, except the standard-45◦ edges3.
G(N, A) is assumed to have been cleaned up from any trivial components, trivial
bridges, or trivial articulation points. The union of core(N, A) for all nets N is
denoted as core(A).

A core segment is assumed to consist of three distinct core elements: two endpoints
and an open line segment. Given a net N , core(N, A) induces a unique decompo-
sition of the portion of N on layer A into well defined wire segments. In particular,
any core element s induces a wire segment R(s) = ∪p∈sR(p), where R(p) denotes
the disk (the square in L∞) centered at core point p having radius w(p). Those
wire segments may overlap and their union reconstructs NA (excluding the trivial
portions of NA). In Fig. 3b all depicted medial axis vertices and segments consti-
tute core(N, A). The dark shaded disks of Fig. 2 are strictly minimal opens.

Definition 4. A defect D is classified as order k, k ≥ 1, if D overlaps k wire
segments as induced by k distinct core elements of core(A). The center point of D
is classified as a kth order generator, k ≥ 1. In case of core elements equidistant
(in weighted sense) from the center of D, a kth order defect is allowed to overlap
more than k wire segments.

Definition 5. A cut is a collection of core elements C ⊂ core(N, A), such that
G(N, A) − C is disconnected leaving non-trivial articulation or terminal points
in at least two different sides. A cut C of k elements is called minimal if C −{c}
is not a cut for any element c ∈ C

Lemma 1. The set of 1st order generators for strictly minimal opens on layer
A consists exactly of the all the bridges, terminal edges, articulation points, and
terminal points of G(N, A) ∩ core(N, A) for every net N .

5 A Higher Order Voronoi Digram Modeling Opens

The Voronoi diagram for opens on layer A, referred to as the opens Voronoi
diagram, is a subdivision of the layer into regions such that each region reveals
3 The term standard-45◦ refers to portions of bisectors of axis parallel lines of slope

±1.
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the critical radius for opens for every point in that region. Recall that the critical
radius of a point t, rc(t), is the size of the smallest defect centered at t causing
a circuit failure. A circuit failure here corresponds to an open. For any point t
in a region reg(h) of the opens Voronoi diagram the critical radius of t should
be derived as a distance function from the owner h, specifically rc(t) = dw(t, h)
for h ∈ core(A). In the following we formulate the opens Voronoi diagram as a
higher order Voronoi diagram of core segments.

Consider the (weighted) Voronoi diagram of all core elements on layer A,
denoted as V (A). If there are no loops associated with layer A then all elements of
core(A) must be 1st order generators and V (A) must provide the opens Voronoi
diagram on layer A (see also [2]). Fig. 4 illustrates V (A) for the net graph of
Fig. 2. To model opens appropriately we follow some additional conventions for
V (A) as follows: A region equidistant from a core segment and its endpoint is
always assigned to the endpoint. All regions of 1st order generators are colored
red. Coloring a region red indicates that the critical radius of every point in the
region is determined by the owner of that region.

Fig. 4. The Voronoi diagram V (A) for a net N on layer A

Let us now define the order-k Voronoi diagram of layer A, denoted as V k(A).
For k = 1, V k(A) = V (A). A non-red region of V k(A) is a locus of points with
the same k nearest neighbors (in a weighted sense) among the core elements in
core(A). A red region of V k(A) is a locus of points with the same r, 1 ≤ r ≤ k,
nearest neighbors among the core elements in core(A), such that the set C of
those r core elements constitutes a minimal cut for some net N . If |C| > 1
the red Voronoi region reg(C) is further subdivided into finer subregions by the
farthest Voronoi diagram of C, denoted Vf (C). Fig. 5 illustrates V 2(A) for the
net of our example. Voronoi regions of V 2(A) are illustrated in solid lines and
red regions are illustrated shaded. The thick dashed lines indicate Vf (C) for cuts
C, |C| = 2.

There are two types of red regions in V k(A): those that are expanded red
regions of V k−1(A), referred to as old red regions, and new red regions of cuts
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Fig. 5. The 2nd order Voronoi diagram V 2(A)

determined in V k(A). Clearly any red region of V k(A) remains red in V k+1(A).
In Fig. 5 new red regions are illustrated darker. The thick dashed axis-parallel
segments in the new red regions of Fig. 5 are the 2nd order generators for minimal
opens.

Theorem 1. The Voronoi diagram for opens on layer A is the minimum order-
k Voronoi diagram of core(A), V k(A), such that all regions of V k(A) are colored
red. Any region reg(H) such that H consists of more than one core element is
further subdivided into finer regions by Vf (H), the farthest Voronoi diagram of
H. The critical radius for any point t in a Voronoi region reg(H) is rc(t) =
max{dw(t, h), h ∈ H}. In particular, if t is in the subregion reg(h) ⊂ reg(H) ∩
Vf (H) then rc(t) = dw(t, h).

Corollary 1. The higher order generators for strictly minimal opens on layer
A are exactly the farthest Voronoi edges and vertices (except the standard-45◦

Voronoi edges) of the opens Voronoi diagram on layer A constituting the farthest
Voronoi subdivisions in the Voronoi region of any cut C of size |C| > 1.

To the best of our knowledge higher order Voronoi diagrams of segments have not
received much attention in the literature unlike higher order Voronoi diagrams
of points, see e.g. [11,14,15]. The problem can have different flavors depending
on whether segments are treated as closed entities or whether the open portions
of segments are treated as distinct from their endpoints. In this paper we only
deal with the latter interpretation as this is the one modeling our application.

5.1 Computing the Opens Voronoi Diagram

To obtain the Voronoi diagram for opens we can adapt the simple iterative
process to obtain higher order Voronoi diagrams of points (see e.g. [11]) as we are
primarily interested in small values of k. The main difference with the standard
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case of points is that an open core segment s does not exist in the region of its
endpoint p, that is, s can not be considered as a higher order nearest neighbor
in reg(p). Furthermore, in L∞, there can be regions equidistant from more than
one element. As a result, unlike the Euclidean metric, the k-tuples owning two
neighboring Voronoi regions may differ in more than one element.

We first obtain V (A) by plane sweep modifying the algorithm of [9] to accom-
modate weights and the convention of assigning priority to endpoints as opposed
to the open portion of segments. Note that weights are special ensuring no dis-
connected Voronoi regions. The latter convention can be accommodated either
by modifying the original algorithm to include the bisectors (45◦ rays in L∞)
between the open portion of core segments and their endpoints, or after the origi-
nal Voronoi diagram is constructed by drawing the additional bisectors in linear
time. Intersections among the additional bisectors can be resolved arbitrarily.
All Voronoi subregions associated with the same core point p are unified into
a single Voronoi region for p. The properties and the asymptotic combinatorial
complexity of the Voronoi diagram remain the same.

Let’s now assume that V k(A), k ≥ 1, is available. We show how to compute
V k+1(A). Let reg(H) be a non-red region of V k(A) and let s(H) denote the
superset of H defined as H union all open core segments incident to the core
points in H . Let N(H) denote the union of all core elements owning Voronoi
regions neighboring the regions of elements in s(H). Compute the (weighted)
L∞ Voronoi diagram of N(H) − s(H) and truncate it within the interior of
reg(H); this gives the (k + 1)-order subdivision within reg(H). Each (k + 1)-
order subregion within reg(H) is attributed to a (k + 1)-tuple H ∪ {c}, where
c ∈ N(H)−s(H). Once the (k+1)-order subdivision has been performed within
the non-red regions of V k(A) we remove the edges and vertices of V k(A) that are
not part of V k+1(A), merge the incident (k + 1)-order subregions of V k(A) into
the (k + 1)-order Voronoi regions of V k+1(A), and determine the red regions of
V k+1(A). Unlike the standard higher order Voronoi diagram case, not all Voronoi
edges of V k(A) are necessarily deleted from V k+1(A). In the following we give
the details of this process.

Let reg(H) be a non-red region of V k(A) and let c, c 	∈ H , be a core element
inducing a (k+1)-order subregion in reg(H). Let reg(H ∪{c}) denote the union
of all (k + 1)-order subregions of V k(A) owned by H ∪ {c}. Recall that no
(k + 1)-order subdivision is performed within red regions of V k(A), that is, no
portion of reg(H ∪{c}) is red other than possibly some bounding Voronoi edges.
Any Voronoi element of V k(A) in the interior of reg(H ∪ {c}) gets deleted from
V k+1(A) (unless colored red, see below) and all subregions of reg(H ∪ {c}) get
merged into a new (k + 1)-order region of V k+1(A). It remains to determine
whether H ∪ {c} forms a cut for the biconnected component B such that c ∈ B.
There are two cases:

1. If reg(H ∪{c}) is incident to an already red Voronoi region reg(R) of V k(A)
such that R ⊂ H ∪{c} then clearly H ∪{c} forms a cut. Then reg(H ∪{c}) is
colored red and reg(H ∪{c}) gets merged within reg(R). Since no portion of
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reg(H ∪{c}) is already red in V k(A) it is not hard to see that the portion of
V k(A) in the interior of reg(H ∪ {c}) is in fact the corresponding portion of
the farthest Voronoi diagram of R, Vf (R). We say that that the region of the
cut R expands into reg(H ∪{c}) keeping R as the sole owner of the expanded
region. The portion of V k(A) in the interior of reg(H ∪ {c}) remains as a
finer subdivision of the expanded region.

2. Otherwise we need to check whether H ∪ {c} forms a new cut (see below),
i.e., whether reg(H ∪ {c}) becomes a new red region of V k+1(A). If H ∪ {c}
is indeed a new cut of biconnected component B, let C = B ∩ (H ∪ {c});
C is assigned as the owner of reg(H ∪ {c}), which is now denoted simply
as reg(C), and it is colored red. The interior of reg(C) gets partitioned into
finer subregions by Vf (C), the farthest Voronoi diagram of C, as given by
the portion of V k(A) in the interior of reg(C). It is not hard to see that
no information is lost by assigning C as the owner of reg(H ∪ {c}) as no
core element in (H ∪ {c}) − C can be the farthest one among elements of
H ∪ {c} for any point t ∈ reg(H ∪ {c}). In fact any element of H that is
not represented in the (complete) farthest Voronoi diagram of C, can be
excluded from C.

The following Lemma can be derived using the properties of standard higher
order Voronoi diagrams of points (see [11]).

Lemma 2. The opens Voronoi diagram on layer A has size O(k(n−k)), where n
denotes the number of polygonal edges on layer A, and k is the maximum number
of iterations performed in the construction of the diagram until all regions are
colored red. The number k depends on the connectivity of G(N, A).

A simple (almost brute force) algorithm to determine new cuts of V k+1(A) is as
follows. Let reg(H) be a non-red region of V k(A) and let B be a biconnected
component associated with set H . That is, B ∩ H 	= ∅ and there is a Voronoi
edge bounding reg(H) induced by core elements b, h such that b ∈ B − H and
h ∈ H . Remove the elements of H from B and determine new non-trivial bridges,
articulation points and biconnected components of B − H . Clearly H ∪ {c} is
a new cut of B if and only if c is a new non-trivial bridge or articulation point
of B − H . It is now easy to determine any new cut associated with the non-red
Voronoi edges or vertices bordering reg(H) in V k(A). Note that any new cut of
V k+1(A) corresponds to at least one Voronoi element of V k(A).

To determine the new cuts of V 2(A) (i.e., generators of order 2) a much faster
algorithm could be obtained by partitioning biconnected components of G(N, A)
into triconnected components (see [16]). However this is not easily generalizable
to k > 2. Many biconnected components in actual VLSI designs are expected
to have low connectivity to the extent of being simple cycles. For simple cycles
the problem is easy and can be answered using a simple coloring scheme on the
DFS tree of the corresponding biconnected component.

The time complexity of the entire algorithm is described in the following
lemma.
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Lemma 3. The Voronoi diagram for opens on a VLSI layer A can be computed
in time O(k2n logn) plus a total O(k2n2) time to determine cuts associated with
higher order generators, where k is the maximum number of iterations performed
and n is the complexity of layer A. In case of biconnected components forming
simple cycles or if the maximum number of iterations is bounded by k = 2 the
bound simplifies to O(n log n).

6 A Hausdorff Voronoi Diagram for Opens

Once the set of cuts C claiming a region in the opens Voronoi diagram on
layer A have been identified, the opens Voronoi diagram can be interpreted
as the Hausdorff Voronoi diagram of C. Given a cut C and a point t, the Haus-
dorff distance between t and C simplifies to the maximum (weighted) distance
of t from any core element in C, i.e., dh(t, C) = max{dw(t, c), c ∈ C}. The
Hausdorff Voronoi diagram of a set of cuts S is the Voronoi diagram of S un-
der the Hausdorff distance, where the Hausdorff Voronoi region of a cut C is
reg(C) = {t | dh(t, C) ≤ dh(x, Cj), Cj ∈ S} (for the definition of an ordinary
Hausdorff Voronoi diagram see e.g [17,3]). Assuming that some superset of cuts
S ⊇ C can be identified, the Hausdorff Voronoi diagram of S provides an alterna-
tive definition for the opens Voronoi diagram on a layer A. This observation can
help reduce the number of iterations in computing the final opens Voronoi dia-
gram and speed up the construction in practice. Namely, once a sufficient set of
cuts C′ has been identified the iteration can stop and the Hausdorff Voronoi dia-
gram of C′ can be directly computed in the non-red portion of the current V k(A).
Furthermore, one can localize the higher order Voronoi diagram computation by
applying the iterative process to identify cuts to each biconnected component
independently. Computing the Hausdorff Voronoi diagram of cuts for all bicon-
nected components union the 1st order generators provides the opens Voronoi
diagram. Practical limits on the number of iterations for each biconnected com-
ponent can be easily imposed to gain speed with only minimal potential loss in
accuracy (if any). For a plane sweep algorithm to compute the Hausdorff Voronoi
diagram for clusters of points see [3].

Often it is desirable to compute one critical area value combining intercon-
nect opens on layer A and via-blocks on the neighboring via layers into a single
estimate of critical area for missing material defects. A via-block is a defect
entirely destroying a connection (a via or cluster of vias) between neighboring
conducting layers. The problem of computing critical area for via-blocks reduces
to computing a Hausdorff Voronoi digram of polygons representing clusters of re-
dundant vias (see [2,3]). To compute the combined Voronoi diagram for missing
material defects we simply need to substitute V (A), with Vh(A′), the Hausdorff
Voronoi diagram of all core elements on layer A union clusters of vias on the
neighboring via layers. Voronoi regions of via-clusters represent via-blocks and
are always colored red. Vh(A′) can be computed by plane sweep by adapting the
plane sweep construction of [3]. The iterative process to compute new cuts and
the final Voronoi diagram for missing material defects remains similar.
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Abstract. We consider a distributed representation scheme for trees,
supporting some special relationships between nodes at small distance.
For instance, we show that for a tree T and an integer k we can assign
local information on nodes such that we can decide for any two nodes u
and v if the distance between u and v is at most k and if so, compute
it only using the local information assigned. For trees with n nodes,
the local information assigned by our scheme are binary labels of
log n + O(k log(k log(n/k))) bits, improving the results of Alstrup, Bille,
and Rauhe (SODA ’03).

Keywords: distributed data-structures, ancestry, tree, distance.

1 Introduction

A distributed representation scheme is a scheme maintaining global information
on a network using local data structures (or labels) assigned to nodes of the
network. Such schemes play an important role in the fields of distributed com-
puting. Their goal is to locally store some useful information about the network
and make it conveniently accessible. For instance, implicit representation of net-
works is a distributed representation scheme that supports adjacency queries,
i.e., adjacency between two nodes can be determined only by examining the lo-
cal information stored by the two nodes. So, the network can be manipulated
by keeping only its labels in memory, any other global information on the graph
(like its matrix) can be removed. The goal is to minimize the maximum length
of a label associated with a vertex while keeping fast queries.

Distributed representation is widely used in distributed computing, e.g.
in [14,18]. Kannan, Naor and Rudich [17] investigated in particular implicit rep-
resentation for several families of graphs, including trees with labels of 2 logn
bits1 where n is the number of nodes of the tree. Actually, parent and ancestry
queries for rooted trees can be done with 1.5 logn + O(log log n) bit labels [2],
and this has been improved to log n+O(

√
log n ) [1]. If we insist only on implicit

representation of trees, the label length can be reduced. Chung [9] improved
in a non-trivial way to log n + log log n + O(1) bits, and further improved to
log n + O(log∗ n) bits2 by Alstrup et al. [6].
� Both authors are supported by the project CÉPAGE of INRIA Futur, and the ANR-

projects GEOCOMP and GRAAL.
1 The log function denotes the logarithm in base two.
2 log∗ n denotes the number of times log should be iterated to get a constant.
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1.1 Related Works

Motivated by applications in XML search engines, and distributed applications
as peer-to-peer networks or network routing, several queries on distributed data-
structures have been investigated recently. In this framework, distributed data-
structure can be seen as a label assigned to each node such that queries can be
answered by inspecting the labels only, without any other source of information.
For instance, address-based routing in trees [11,19,21] or in a specific class of
networks [8,10], distance queries for cycles [20], for interval and permutation
graphs [7,13], or for hyperbolic graphs [3,12], ancestry in rooted trees [1], etc.
have optimal O(log n)-bit distributed data-structures.

In this paper, we consider labeling scheme for various relationships between
nodes of small distance in trees. For instance, we construct a simple distributed
representation scheme supporting parent and sibling queries with labels of size
log n + 2 log log n + O(1), the best bound was log n + 5 log log n + O(1) [5]. The
current lower bound on the label length for schemes supporting sibling queries
in trees is log n + log log n + O(1) [4].

We stress that improving the second order term on the label length com-
plexity is not only of theoretical interest. It does matter in practice because,
as mentioned in [2], engines for indexing XML files use such schemes for huge
database in which each item is associated with a label. Therefore decreasing by
one byte the length of the labels results a save of gigabytes of main memory
for large database. Moreover and interestingly, every distributed representation
can be interpreted as a universal matrix [20]: row and column indexes of the
matrix correspond to all the labels of the scheme, and the value of entry (i, j) in
the matrix is the answer of the query applied to two nodes labeled respectively
i and j by the scheme. In the case of implicit representation for instance, the
universal matrix is Boolean and corresponds to the adjacency matrix of a graph,
called induced-universal graph, having the property of containing all graphs of
the family as induced subgraph. So, proving a complexity of f(n) for label length
transfers to the existence of universal matrix of dimension O(2f(n)). So improv-
ing the second order term in the label length actually improves the complexity
of the matrix dimension. For concreteness, the difference between the 2 log n-bit
labeling scheme of [17] and the log n+log log n+O(1) scheme of [9] corresponds
to an improvement from O(n2) to O(n log n) on the size of the smallest induced-
universal graphs containing all n-node trees as induced subgraphs.

1.2 Our Contribution

In a rooted tree, two nodes u and v with nearest common ancestor z are (k1, k2)-
related if the distance from u to z is k1 and the distance from v to z is k2. For
any integer k, a k-relationship scheme is a distributed representation scheme
that supports tests for whether u and v are (k1, k2)-related for all nodes u and
v, and all integers k1, k2 � k.

For instance, a 1-relationship scheme supports tests for whether two nodes are
(0, 0), (1, 0), (0, 1) or (1, 1)-related, and so supporting parent and sibling queries.
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Let us observe that a k-relationship scheme supports also distance queries for
nodes at distance at most k.

In this paper we propose a k-relationship scheme for trees of n nodes with la-
bels of size log n+O(k log(k log(n/k))) bits. This improves the scheme presented
in [4,5] that uses labels of log n + O(k2 log(k log n)) bits. Our scheme is simple
and easy to implement, and we show3 that the time to preprocess the tree and
for constructing the n labels is O(kn + n log n). Our scheme also implies that
distance between nodes at distance o(log n/ log log n) can be determined with
labels of log n + o(log n) bits. In contrast, it has been proved in [15] that labels
of Ω(log2 n) bits are required for arbitrary distance queries in trees.

A k-relationship scheme has query time complexity t if one can check whether
a pair of nodes is (k1, k2)-related or not, in time at most t, for any pair of nodes
and all integers k1, k2 � k.

Our result is summarized in the following statement:

Theorem 1. The family of n-node rooted trees enjoys a k-relationship scheme
with labels of log n + O(k log(k log(n/k))) bits with constant query time.

For k = 1, we show that labels are of length log n+2 log log n+O(1), improving
the log n + 5 log log n + O(1) scheme of [5]. Moreover, for k = o(log n/ log log n),
we derive directly from Theorem 1 that:

Corollary 1. The family of n-node trees enjoys a distributed representation
supporting distance with labels of log n + o(log n) bits for nodes at distance
o(log n/ log log n) .

In Section 2, we present the k-relationship scheme, and we conclude in Section 3
with some open problems.

2 A Relationship Scheme

2.1 Preliminaries

The basic idea of our scheme is to store into the label of each node u, some
identifiers for u and for its k closest ancestors. Indeed, to test if u and v are
(k1, k2)-related, it suffices to test if the ancestor at distance k1 of u is equal to
the ancestor at distance k2 of v, and the ancestor at distance k1 − 1 of u differs
from the ancestor at distance k2 − 1 of v. A naive implementation would lead to
O(k log n)-bit labels for arbitrary identifiers. We can significantly decrease this
complexity with a better choice of the identifiers exploiting correlations between
nodes.

Let T be a rooted tree of n nodes. We define the k-ancestry of a node u as the
set of ancestors of u at distance at most k, u included. A branch of T is a path
leading from the root to a leaf of T . We denote by G[X ] the subgraph induced
by the set of nodes X .

The main notion we introduce below is illustrated on Fig. 2.1.
3 Due to space limitation the time complexity of the scheme is detailed in the full

version only.
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Fig. 1. An example of a k-ancestor decomposition B of an input tree T where the
4-ancestry of u, the set Au = {u, x, au, y, z}, lies on the branch ”010” of B

Definition 1. A k-ancestor decomposition of a rooted tree T is a rooted binary
tree B where nodes, called parts, form a partition of V (T ) such that, for any
k-ancestry A of T , the set of parts containing a node of A is contained in a
branch of B.

2.2 Finding an Nice Ancestor Decomposition

This paragraph is devoted to the proof of the following key lemma for our result.

Lemma 1. Every n-node tree T has a k-ancestor decomposition such that every
part of depth h contains at most (k + 1) · (log(2n/(k + 1)) − h) nodes of T .

Before the formal proof of this result, let us give an overview. The idea is to
construct from T a graph G, called hereafter k-augmentation of T , obtained
by adding an edge between every u and its proper ancestors at distance � k.
We then observe that every subgraph H of G has a subset of k + 1 nodes,
called half-separator, whose removal leaves H in connected components with less
than |V (H)|/2 nodes. The root of the willing decomposition B is constructed
by finding iteratively O(log(n/k)) half-separators in G, and by grouping all the
resulting connected components in two sets V1, V2, each with less than n/2 nodes.
By this way we can guarantee that there are no edges of G between V1 and V2

since these two sets are separated by an union of separators in G. The tree B is
completed by performing similarly and recursively the subgraphs of G[V1] and
G[V2]. Eventually, B is a k-ancestor decomposition since we observe that:

1. k-ancestries of T induce cliques in G; and
2. all edges of G belong to the same branch in B.
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Let us now formalize the proof, and let us first show that:

Property 1. Every induced subgraph of the k-augmentation of T has a half-
separator of size at most k + 1 that is a clique.

Proof. It is known [16] that every chordal graph G, that is a graph without any
induced cycle of length greater than three, has a half-separator of size at most
the maximum clique size of G. Moreover, such a half-separator can be computed
in linear time, i.e., O(|V (G)| + |E(G)|) time.

So Property 1 is derived from the fact that every induced subgraph of a chordal
graph is a chordal graph as well, and that the k-augmentation of T is a chordal
graph of maximum clique size k + 1.

Let G be the k-augmentation of T . Assume G has a clique K of size > k + 1.
Observe that in G there is no edge between unrelated nodes of T . (Two nodes
of a rooted tree are said related if one is the ancestor of the other. They are
unrelated otherwise.) In other words, all the nodes of K belong to the same
branch of T . It follows that the distance in T between the closest node (from
the root of T ), say u, and the farthest node, say v, of K is � k + 1. Because u
and v are related and are at distance > k in T , they are not adjacent in G: a
contradiction with the fact that u and v belong to a clique of G.

Assume now G has a induced cycle C length > 3. Since G has no edges
between unrelated nodes, there must exist three consecutive nodes in C, say
u, v, w, such that u is ancestor of v, and w is ancestor of v (otherwise C would
be a path). Either w is ancestor of u, or u is ancestor of w. In both cases, u and w
are related and at distance � k in T , so there are adjacent in G: a contradiction
with the fact that C is an induced cycle of length > 3.

We have therefore proved that G is chordal and of maximum clique size � k+1.
��

In the following let us denote by G the k-augmentation of T , and let us denote
by Half-Separator(H) a function that returns a half-separator for a subgraph
H satisfying Property 1, that is a separator whose size is at most the maximum
clique size of H .

We now restrict our attention on specific half-separators. A half-separator S of
a graph H is said binary if the connected components of H \S can be partitioned
in at most two sets, each with a total number of nodes at most |V (H)|/2.

We consider the following procedure (Algorithm 1) that given a graph satis-
fying Property 1 returns a binary half-separator R and the resulting partition
(V1, V2) for the nodes of H \ R.

To construct the k-ancestor decomposition B for T we apply Algorithm 1 on
G, and we select R as the root of B. The tree B is then completed by applying
recursively Algorithm 1 on G[V1] and G[V2], and linking to R the resulting
decompositions if they are non-empty. Such a recursive approach is possible
because Property 1 holds for any induced subgraph of G, so in particular for
G[V1] and G[V2].

Eventually B is a k-ancestor decomposition of T because every k-ancestry
of T induces a clique in G, and no edge connects G[V1] to G[V2] since R is a
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Algorithm 1: Binary Half-Separator

Input : a subgraph G satisfying Property 1

Output: a binary half-separator R and the associated node partition (V1, V2)

H := G; V1 := V2 := R := ∅

while |V (H)| > k + 1 do
S := Half-Separator(H); H := H \ S; R := R ∪ S
forall connected component C of H except the largest do

H := H \ C;
if |V1| > |V2| then V2 := V2 ∪ V (C) else V1 := V1 ∪ V (C)

R := R ∪ H

half-separator. So, every k-ancestry of T belongs to parts contained in a same
branch of B.

It remains to estimate the size of R, V1, and V2 returned by Algorithm 1.
At each iteration of the while-main the size of H is divided by at least two since

all the resulting components of H \ S are removed from H , and the remaining
largest component is of size at most |V (H)|/2. So, there is at most log(n/(k+1))
iterations where n = |V (G)|.

At each step the size of R increases by at most k+1 vertices, and the final step
add at most k + 1 vertices to R. Therefore, |R| � (k + 1) · (log(n/(k + 1))+1) =
(k + 1) · (log(2n/(k + 1)) − h) with h = 0.

In order to insure the correctness of the decomposition, we need to show the
following loop invariant (P ).

(P ) : |V1|, |V2| � n/2 and V (H) ∪ V1 ∪ V2 ∪ R = V (G)

It is straightforward to verify that (P ) is true at the beginning of the main
loop. Let us show that (P ) remains true at the end of the nested loop. The loop
invariant clearly remains true after computation of half-separator and statement
H := H \ S and R := R ∪ S. Assume w.l.o.g. that |V1| � |V2|. We have V (H) ∪
V1 ∪ V2 ⊆ V (G) since (P ) is true. We obtain the following relation for the size
of the sets.

|V (H)| + |V1| + |V2| � n

|V (H)| � n − |V1| − |V2| � n − 2|V2| (|V1| � |V2|)
|V (H)|/2 � n/2 − |V2|

|V (C)| � n/2 − |V2| (there is yet another larger component in H)
|V (C)| + |V2| � n/2

Property (P ) remains true at the end of the nested loop. Property (P ) is a loop
invariant and so is true at the end of the main loop. We have that |V1|, |V2| � n/2.
Moreover, there is no edge linking vertices of V1 to vertices of V2 since what we
add to V1 or V2 is a full connected component of H .

Since the size of V1 and V2 are � n/2, by induction, the size of the root part
in the decomposition of G[V1] and G[V2] (so parts of depth h = 1 in B) would
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be at most (k + 1) · (log(2(n/2)/(k + 1))) = (k + 1) · (log(2n/(k + 1)) − 1). And
more generally, for an arbitrary depth h � 0, the parts of depth h are of size at
most (k +1) · (log(2(n/2h)/(k +1)))) = (k +1) · (log(2n/(k+1))−h) as claimed.

This completes the proof of Lemma 1.

2.3 The Labels

Let X be a part of B at depth h. We denote by path(X) the binary word of
length h defining the unique path from the root of T to X . We associated with
each u ∈ X its rank, a unique integer rank(u) ∈ [0, |X |), and its position, defined
by the pair pos(u) = (h, rank(u)).

The apex of a k-ancestry A is the node a ∈ A with the deepest part and, if
equality, with the largest rank (see the yellow node of Fig. 2.1). Observe that
the positions are relative to a branch of B: every pair of nodes whose parts are
on the same branch have distinct positions, and thus the parts of any two nodes
having the same positions cannot be related.

Let u be a node of T , let Au be its k-ancestry, au the apex of Au, and Bau the
part in B that contains au. The label of u is defined by the following quadruple:

label(u) = (path(Bau), rank(au), dau , Pu)

where:

– dau is the distance in T from u to au; and
– Pu = {pos(v) | v ∈ Au, v �= au}.

In order to optimize the query time, we assume that Pu is implemented as an
array ordered by distances from u. For concreteness, the label of u in the example
of Fig. 2.1 is4:

label(u) = (”010”, 0, 2, {(1, 5), (2, 0), (1, 3), (0, 9)}) .

Let pos(Au) = {pos(v) | v ∈ Au}. It is not difficult to see that any k-ancestry
Au is uniquely defined by the pair (pos(Au), path(Bau)), i.e., the set of its posi-
tions and the path leading to its apex. Indeed, as said previously, nodes lying on
a same branch of B have pairwise distinct positions, and nodes lying on differ-
ent branches can be identified from the path of their apices (that must therefore
differ). The set pos(Au) is not a field of label(u), Pu misses pos(au). However, it
can be computed since pos(au) = (|path(Bau)|, rank(au)).

We first bound the length of the labels. Then we will explain how to solve a
(k1, k2)-relation query, and we will detail an efficient implementation.

Lemma 2. The label length is log n+O(k log (k log(n/k))). For k = 1, the label
length is log n + 2 log log n + O(1).

4 Ranks of nodes in each part are ordered by rows from left to right and then from
top to bottom rows.
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Proof. Let M = 	(k + 1) log(2n/(k + 1))
. By Lemma 1, the parts of B have at
most M nodes. Consider label(u), and let h = |path(Bau)| be the depth of Bau .

The binary word path(Bau) is of length exactly h. We have rank(au) ∈ [0, M),
so log M + O(1) bits suffice. The value dau ∈ [0, k], so O(log k) bits suffice. Each
position (h′, r′) ∈ Pu can be stored with log h + log M + O(1) bits since h′ � h
and r′ < M . Moreover, |Pu| = k, so k · (log h + log M) + O(k) bits suffices for
Pu.

Overall, given h, the length of label(u) is at most:

|label(u)| � h + log M + k · (log h + log M) + O(k) .

We will now upper bound the length of each term by a function depending
only on the parameters of the problem (here n and k), and not on parameters
depending on a tree or a particular node, like h. Therefore, each of the four
fields of label(u) can be coded by a binary string of predefined length, and do
not require extra field separators.

By Lemma 1, the size of the parts in B that are at depth log(n/(k + 1)) are
of size at most (k + 1) · (log(2n/(k + 1)) − log(n/(k + 1))) � k + 1. From the
while-condition in Algorithm 1, if |V (H)| � k + 1, then the input graph is not
separated at all, implying that the part is actually a leaf of B. Therefore B has
depth at most h0 � log(n/(k + 1)) < log(n/k). So bounding h � h0 we obtain:

|label(u)| � h0 + log M + k · (log h0 + log M) + O(k)
� h0 + k log h0 + (k + 1) log M + O(k)
� log(n/k)+k log log(n/k)+(k + 1) log((k+1) log(2n/(k+1)))+O(k)
� log(n/k) + (2k + 1) log log(n/k) + O(k log k)
� log(n/k) + O(k) · (log log(n/k) + log k)
� log n + O(k log(k log(n/k))) .

For k = 1, the above formula gives log n + 3 log log n + O(1) from the above
4th equation. We can slightly improved the above analysis by observing that
the two first fields of label(u), namely path(Bau) and rank(au), can be jointly
encoded with log n + O(1) bits instead of h0 + log M ∼ log(n/k) + log log(n/k)
bits.

We remark that for k = 1, the k-augmentation G of T is T itself. As a
consequence, the size of the half-separator in Property 1 can be reduced since it
is well-known that every forest has a single node that halves the forest, rather
than a clique separator of size k + 1 = 2. It follows that in such 1-ancestor
decomposition of T the parts of depth h contain at most α = log n − h + O(1)
nodes instead of (k+1)(log(2n/(k+1))−h) = 2(log n−h) as claimed in Lemma 1.
A direct consequence is that the two first terms of label(u) can be coded jointly
by a string W of log n + O(1) bits as follows: W is composed of path(Bau) of
length h concatenated to the word 1 ◦ 0rank(au), i.e., the unary representation
of rank(au) preceded with a 1. The length of this word is h + 1 + α = log n +
O(1), and clearly the two fields can be extracted by seeking the least significant
bit of W . The two remaining fields of label(u) still have a length bounded by
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2k log log(n/k)+ O(k log k). Overall, the label length of label(u), for k = 1, is at
most log n + 2 log log n + O(1).

This completes the proof of Lemma 2. ��

Actually a finer analysis shows that the label length for k = 1 is no more than
log n + 2 log log n + 2 for every n � 16.

2.4 Relationship Testing

Let u, v be two nodes of T with k-ancestry Au and Av respectively. Consider
any pair (k1, k2) of integers � k. Recall that to check whether (u, v) is (k1, k2)-
related or not it suffices to check if the nearest common ancestor between u and
v (which is a node z ∈ Au ∩ Av) is at distance k1 from u and k2 from v.

Observing that there is exactly one ancestor zu ∈ Au at distance k1 from u,
and one ancestor zv ∈ Av at distance k2 from v, it suffices to check that zu = zv,
and that zu is the least common ancestor, that is there is no z ∈ Au ∩ Av at
distance k1 − 1 from u and k2 − 1 from v.

Let label(u) = (path(Bau), rank(au), dau , Pu) and label(v)= (path(Bav ),
rank(av), dav , Pv). We denote by path(X)[0..h] the prefix of length h of5 path(X).

The following lemma tell us how to check that z ∈ Au∩Av from the position of
z and the labels of u and v. Recall that positions are relative to the branches of B,
so a given position (h, r) may correspond to different nodes of T . Unfortunately,
we cannot simply check that pos(z) ∈ pos(Au) ∩ pos(Av).

Property 2. Assume z ∈ Au, and pos(z) = (h, r). Then, z ∈ Av if and only if
pos(z) ∈ pos(Av) and path(Bau)[0..h] = path(Bav )[0..h].

Proof. Let z ∈ Au, and let Bz be its part in the decomposition B. We have
that path(Bz) is a prefix of path(Bau) since z ∈ Au. If the depth of z is h,
then path(Bz) = path(Bau)[0..h]. Similarly, z ∈ Av implies that path(Bz) =
path(Bav )[0..h]. Obviously, z ∈ Av implies pos(z) ∈ pos(Av). Therefore, we
have shown that z ∈ Av implies pos(z) ∈ pos(Av) and path(Bau)[0..h] =
path(Bav )[0..h] = path(Bz).

Conversely, if pos(z) = (h, r) ∈ pos(Av) and path(Bau)[0..h] =
path(Bav )[0..h], then, since z ∈ Au, the part of z, Bz is given by path(Bz) =
path(Bau)[0..h] = path(Bav )[0..h]. It follows that the position (h, r) corresponds
to a node of Bz which is moreover in Av. In Bz, there is a unique node whose
rank is r: node z. So z ∈ Av. ��

For every distance i ∈ {0, . . . , k}, let us denote by pos(Au)[i] the position of the
ith ancestor of u, i.e., at distance i from u. Note that pos(Au)[i] can be extracted
from label(u) in constant time as follows (assuming that Pu is ordered according
to the distance from u):

Extract pos(Au)[i] (given label(u)):
5 Such prefix can be extracted (shift) in constant time in the word RAM model,

because path(X) is a binary word of length � log n.
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1. If i = dau , then return pos(au), i.e., (|path(Bau)|, rank(au)).
2. If i > dau , then i = i − 1.
3. Return Pu[i].

According to Lemma 2, to check whether z ∈ Au ∩ Av we have to check that
pos(z) = (h, r) ∈ pos(Au) ∩ pos(Av) and that the two prefixes of length h
corresponds. This leads to the following test procedure:

Final Test (whether (u, v) is (k1, k2)-related given label(u) and label(v)):

1. Extract (hu, ru) = pos(Au)[k1] and (hv, rv) = pos(Av)[k2].
2. If (hu, ru) �= (hv, rv), then return False.
3. If path(Bau)[0..hu] �= path(Bav )[0..hv], then return False.
4. If k1 = 0 or k2 = 0, then return True.
5. Extract (h′

u, r′u) = pos(Au)[k1 − 1] and (h′
v, r′v) = pos(Av)[k2 − 1].

6. If (h′
u, r′u) �= (h′

v, r′v), then return True.
7. If path(Bau)[0..h′

u] �= path(Bav )[0..h′
v], then return True.

8. Return False.

Lemma 3. Any k-relationship can be tested in constant time.

Proof. The above procedure clearly takes a constant time, and its validity is
derived from Property 2. ��

Combining Lemma 1, Lemma 2, and Lemma 3, we have proved Theorem 1.

3 Conclusion and Further Works

We have constructed in this paper a k-relationship scheme for n-node trees with
log n + O(k log(k log(n/k))) bit labels. This scheme implies that distances in
trees can be computed as well with labels of log n + o(log n) bits if the distance
is o(log n/ log log n). We leave open the following two questions:

– Design a distance labeling scheme for trees with log n + o(log n) bit labels
and for larger distances, say for distances up to log n.

– Design a distance labeling scheme for small distances for bounded treewidth
graphs.
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Abstract. We show how to represent sets in a linear space data struc-
ture such that expressions involving unions and intersections of sets can
be computed in a worst-case efficient way. This problem has applications
in e.g. information retrieval and database systems. We mainly consider
the RAM model of computation, and sets of machine words, but also
state our results in the I/O model. On a RAM with word size w, a
special case of our result is that the intersection of m (preprocessed)
sets, containing n elements in total, can be computed in expected time
O(n(log w)2/w + km), where k is the number of elements in the inter-
section. If the first of the two terms dominates, this is a factor w1−o(1)

faster than the standard solution of merging sorted lists. We show a
cell probe lower bound of time Ω(n/(wm log m) + (1 − log k

w
)k), meaning

that our upper bound is nearly optimal for small m. Our algorithm uses
a novel combination of approximate set representations and word-level
parallelism.

1 Introduction

Algorithms and data structures for sets play an important role in computer
science. For example, the relational data model, which has been the dominant
database paradigm for decades, is based on set representation and manipulation.
Set operations also arise naturally in connection with database queries that can
be expressed as a boolean combination of simpler queries. For example, search
engines report documents that are present in the intersection of several sets
of documents, each corresponding to a word in the query. If we fix the set of
documents to be searched, it is possible to spend time on preprocessing all sets,
to decrease the time for answering queries.

The search engine application has been the main motivation in several recent
works on computing set intersections [14, 5, 13]. All these papers assume that
elements are taken from an ordered set, and are accessed through comparisons.
In particular, creating the canonical representation, a sorted list, is the best pos-
sible preprocessing in this context. The comparison-based model rules out some
algorithms that are very efficient, both in theory and practice. For example, if the
preprocessing produces a hashing-based dictionary for each set, the intersection
of two sets S1 and S2 can be computed in expected time O(min(|S1|, |S2|)). This
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is a factor Θ(log(1 + max( |S1|
|S2| ,

|S2|
|S1| ))) faster than the best possible worst-case

performance of comparison-based algorithms.
In this paper we investigate non-comparison-based techniques for evaluating

expressions involving unions and intersections of sets on a RAM. (In the search
engine application this corresponds to expressions using AND and OR opera-
tors.) Specifically, we consider the situation in which each set is required to be
represented in a linear space data structure, and propose the multi-resolution
set representation, which is suitable for efficient set operations. We show that it
is possible in many cases to achieve running time that is sub-linear in the total
size of the input sets and intermediate results of the expression. For example, we
can compute the intersection of a number of sets in a time bound that is sub-
linear in the total size of the sets, plus time proportional to the total number of
input elements in the intersection. In contrast, all previous algorithms that we
are aware of take at least linear time in the worst case over all possible input
sets, even if the output is the empty set. The time complexity of our algorithm
improves as the word size w of the RAM grows. While the typical word size
of a modern CPU is 64 bits, modern CPU design is superscalar meaning that
several independent instructions can be executed in parallel. This means that in
most cases (with the notable exception of multiplication) it is possible to sim-
ulate operations on larger word sizes with the same (or nearly the same) speed
as operations on single words. We expect that word-level parallelism may gain
in importance, as a way of making use of the increasing parallelism of modern
processor architectures.

1.1 Related Work

Set Union and Intersection. The problem of computing intersections and
unions (as well as differences) of sorted sets was recently considered in a number
of papers (e.g. [14, 5]) in an adaptive setting. A good adaptive algorithm uses a
number of comparisons that is close (or as close as possible) to the size of the
smallest set of comparisons that determine the result. In the case of two sorted
sets, this is the number of interleavings when merging the sets. In the worst case
this number is linear in the size of the sets, in which case the adaptive algorithm
performs no better than standard merging. However, adaptive algorithms are
able to exploit “easy” cases to achieve smaller running time. Mirzazadeh in his
thesis [17] extended this line of work to arbitrary expressions with unions and
intersections. These results are incomparable to those obtained in this paper:
Our algorithm is faster for most problem instances, but the adaptive algorithms
are faster in certain cases. It is instructive to consider the case of computing the
intersection of two sets of size n where the size of the intersection is relatively
small. In this case, an optimal adaptive algorithm is faster than our algorithm
only if the number of interleavings of the sorted lists (i.e., the number of sublists
needed to form the sorted list of the union of the sets) is less than around n/w.

Another idea that has been studied is, roughly speaking, to exploit asymmetry.
Hwang and Lin [15] show that merging two sorted lists S1 and S2 requires
Θ(|S1| log(1 + |S2|

|S1| )) comparisons, for |S1| < |S2|, in the worst case over all
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input lists. This is significantly less than O(|S1| + |S2|) if |S1| � |S2|. This
result was generalized to computation of general expressions involving unions
and intersections of sets by Chiniforooshan et al. [13]. Given an expression, and
the sizes of the input sets, their algorithm uses a number of comparisons that
is asymptotically equal to the minimum number of comparisons required in the
worst case over all such sets.1 The bounds stated in [13] do not involve the size
of the output, meaning that they pessimistically assume the output to be the
largest possible, given the expression and the set sizes. In contrast, our bounds
will be output sensitive, i.e., involve also the size of the result of the expression.
We further compare our result to that of [13] in section 1.2.

Approximate Set Representations. There has been extensive previous work
on approximate set representations, mainly motivated by applications in network-
ing and distributed systems [8]. Much of this work builds upon the seminal paper
on Bloom filters [7]. A Bloom filter for a set S is an approximate representation of
S in the sense that for any x �∈ S the filter can be used to determine that x �∈ S with
probability close to 1. However, for an ε fraction of elements not in S, called false
positives, the Bloom filter is consistent with a set that includes these elements.
The advantage of allowing some false positives, rather than storing S exactly, is
that the space usage drops to around O(n log(1/ε)) bits, practically independent
of the size of the universe of which S is a subset. Two Bloom filters for sets S1 and
S2 can be combined to form a Bloom filter for S1 ∩ S2 (resp. S1 ∪ S2), in a very
simple way: By taking bitwise AND (resp. OR) of the data structures.

Bloom filters have been used in connection with computation of relational
joins, which are essentially multiset intersections, in the I/O model of computa-
tion. The idea is to use a Bloom filter for the smaller set to efficiently find most
elements of the larger set that are not in the intersection. If the Bloom filter
can fit into internal memory, this is a highly efficient procedure for reducing the
amount of data that needs to be considered in the join. The algorithm presented
in this paper also uses approximate set representations to eliminate elements
that will not contribute to the result. However, using Bloom filters does not ap-
pear to yield an efficient solution, essentially because the information pertaining
to a particular element of S is distributed across the data structure. This makes
it hard to locate the set of input elements represented by a particular Bloom
filter. Instead, we use the approximate set representation of Carter et al. [11]
(see also [18]), which consists of storing, in a compact way, the image of the set
under a universal hash function.

1.2 Setup and Results

We consider fully parenthesized expressions with binary operators. That is, we
have a rooted binary tree with input sets at the leaves and internal nodes
1 After personal communication with the authors, we have had confirmed that the

algorithm described in [13] is not optimal in certain cases. Specifically, it does not
always compute the union of sets in the optimal bound. However, the authors have
informed us that the algorithm can be slightly modified to remove this problem.
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corresponding to union and intersection operations. Given the sizes of all in-
put sets, we may associate with any node v two numbers (notation from [13]):

– ψ(v) is the maximum possible number of elements in the subexpression
rooted at v. (Can be computed bottom-up by summing child values at union
nodes, and choosing the minimum child value at intersection nodes.)

– ψ∗(v) is the maximum possible number of elements in the subexpression
rooted at v that can appear in the final result. This is the minimum value
of ψ(v) on the path from v to the root.

We denote by V the set of nodes in the expression (internal as well as leaves),
and let v0 denote the root node.

Theorem 1. Given suitably preprocessed sets of total size n, we can compute the
value of an expression with binary union and intersection operators in expected
time O(k′ +

∑
v∈V �ψ∗(v)

w log2( nw
ψ∗(v) )�), where k′ is the number of occurrences in

the input of elements in the result. Preprocessing of a set of size n1 uses linear
space and expected time O(n1 log w).

Theorem 1 requires some effort to interpret. We will first state some special cases
of the result, and then discuss the general result towards the end of the section.
It is not hard to see that the terms in the sum of Theorem 1 corresponding to
intersection nodes do not affect the asymptotic value. That is, we could alterna-
tively sum over the set of leaf nodes and union nodes in the expression. In the
case where the expression is an intersection of m sets we can further improve
our algorithm and analysis to get the following result:

Theorem 2. Given m preprocessed sets of total size n, we can compute the
intersection of the sets in expected time O(n log2 w/w + km), where k is the
number of elements in the intersection.

We show the following lower bound, implying that the time complexity of Theo-
rem 2 is within a factor (log w)2m log m of optimal, assuming w = (1+Ω(1)) log n.
Our lower bound applies to the class of functions whose union-intersection expres-
sion has an intersection operation on any root-to-leaf path (an element needs to
be in at least two input sets to appear in the result). Note that if there is a path
consisting of only union operations, there exists a set where all elements must be
included in the result, so this requirement is no serious restriction.

Theorem 3. Let f be a function of m sets given by a union-intersection ex-
pression with an intersection node on any root-to-leaf path. For integers n and
k ≤ n/m, any (randomized) algorithm in the cell probe model that takes represen-
tations of sets S1, . . . , Sm ⊆ {0, 1}w, where

∑
i |Si| ≤ n and |f(S1, . . . , Sm)| ≤ k,

and computes |f(S1, . . . , Sm)| must use expected time at least Ω(n/(wm log m)+
(1 − log k

w )k) on a worst-case input. The lower bound holds regardless of how the
sets are represented.

Possibly the best way of understanding the general result in Theorem 1 is to
compare the complexity to the comparison-based algorithm of [13]. Though it
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might not result in the best running time for our algorithm, we make the com-
parison in the case where any group of adjacent union operators is arranged
as a perfectly balanced tree in the expression tree (we could modify our al-
gorithm to always make this change to the expression). The algorithm of [13]
takes an expression where operators have unbounded degree, and where union
and intersection nodes alternate. It can be applied in our setting by combining
groups of adjacent union and intersection operators. The time usage is at least
Ω(k′ +

∑
v∈V ψ∗(v)) (in fact, the complexity also involves a logarithmic factor

on each term, but it is not easily comparable to the factor in our result). Thus,
if the word length is sufficiently large, e.g. w = (log n)ω(1), our algorithm gains
a factor w1−o(1) compared to [13].

We observe that all our results immediately imply nontrivial results in the I/O
model [1]. For the upper bounds, this is because any RAM algorithm can be simu-
lated in the same I/O bound as long as w is bounded by the number of bits in a disk
block. In other words, if B is the number of words in a disk block, we can get I/O
bounds by replacing w by Bw in the results. In fact, the power of 2 in the bounds
can be reduced to 1 in this setting, as the I/O model does not count the cost of
computation. Our lower bound also holds in the I/O model, with w replaced by
Bw, independently of the size of internal memory. (The same proof applies.)

1.3 Technical Overview

Our results are obtained through non-trivial combination of several known tech-
niques. We use the idea of Carter el al. [11] to obtain an approximate represen-
tation of a set by storing a set h(S) of hash function values rather than the set
S itself. Storing the approximation in a näıve way (using at least log n bits per
element) does not lead to a significant speedup in general. Instead, a compact
representation of the set h(S) is needed. We use a bucketed set representation, as
in the dictionary of Brodnik and Munro [9], to get a compact representation of
h(S) that is suitable for word-parallel set operations. Specifically, we show how
set operations on small integers packed in words can be efficiently implemented,
using ideas from [2, 3]. This allows us to quickly approximate the intersection
of any two sets in the sense that we get a compressed list of references to the
elements in the intersection plus a small fraction of the elements not in the inter-
section. To compute the intersection we compute the intersection of the subsets
of “candidates” in the standard way, using hashing. The generalization to the
case of expressions involving arbitrary unions and intersections is an extension
of this idea, using a variant of a technique from [13] to keep the sizes of the
sets we have to deal with as small as possible. Our lower bound is shown by a
reduction to multi-party communication complexity.

2 Main Algorithm and Data Structure

In this section we present most of our algorithm and data structure, postponing
the material on word-level parallelism to Section 3 (which is used as a blackbox
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in this section). Specifically, we show how to reduce the problem of performing
unions and intersections on sets of words to the problem of performing these
operations on sets from a smaller universe. Due to space constraints we refer to
the technical report version of this paper [6] for the time and space analysis.

2.1 Overview of Special Case: Intersection

We first present the main ideas in the case where the expression is an intersection
of m sets. The basis of the approach is to map elements of {0, 1}w to a smaller
universe using a hash function h, and compute the intersection H = h(S1)∩· · ·∩
h(Sm). Now, if x ∈ S1∩· · ·∩Sm then h(x) ∈ H . On the other hand, if x �∈ S1∩· · ·∩
Sm then, if h is suitably chosen, we will have h(x) �∈ H with probability close to
1. Thus, we can regard H as representing a good approximation of S1 ∩· · ·∩Sm.
In particular, if we compute the sets S′

i = {x ∈ Si | h(x) ∈ H}, i = 1, . . . , m,
we expect that S′

i does not contain many elements of Si\(S1 ∩ · · · ∩ Sm). Since
Si ⊇ S′

i ⊇ S1 ∩ · · · ∩ Sm we can compute the intersection of S1, . . . , Sm as
S′

1 ∩ · · · ∩ S′
m — using a standard linear time hashing-based algorithm. The

challenge of this approach is to keep the cost of computing H and the sets S′
i

low. We store preprocessed, compressed representations of the sets h(Si) using
only O(log w) bits per hash value, which allows us to compute H in time that
is sub-linear in the size of the input sets. The elements of S′

i are extracted in
additional time O(|Si|). The details of these steps appear in sections 2.3 and 3.
Readers mainly interested in the case of computing a single intersection may
skip the description of the general case in the next subsection.

2.2 The General Case

In the rest of the paper we let f denote the function of m input sets given by
the expression to be evaluated. Since f(S1, . . . , Sm) is monotone in the sense
that adding an element to an input set can never remove an element from
f(S1, . . . , Sm) we have that for any x ∈ f(S1, . . . , Sm) it holds that h(x) ∈
f(h(S1), . . . , h(Sm)). This means we can compute f(S1, . . . , Sm) by the follow-
ing steps:

1. Compute H = f(h(S1), . . . , h(Sm)).
2. For all i compute the set S′

i = {x ∈ Si | h(x) ∈ H}.
3. Compute f(S′

1, . . . , S
′
m) to get the result.

We will show how, starting with a suitable, compressed representation of the
sets h(S1), . . . , h(Sm), we can efficiently perform the first two steps such that
the sets S′

i are significantly smaller than the Si in the following sense: Most of
the elements that do not occur in f(S1, . . . , Sm) have been removed. This means
that, except for negligible terms, the time for performing the third step, using
the standard linear time hashing-based algorithm, depends on the number of
input elements in the output rather than on the size of the input. Conceptually,
the first step computes the expression on approximate representations of the
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sets S1, . . . , Sm. Then the information extracted from this is used to create a
smaller problem instance with the same result, which is then used to produce
the answer.

Assume for now that h is given, and that we have access to data structures
for h(S1), . . . , h(Sm). The details on how to choose h appear in Section 2.3. The
computation of f(h(S1), . . . , h(Sm)) is done bottom-up in the expression tree
in the same order as the algorithm of [13]: For an intersection node v we first
recursively process the child subtree whose root has the smallest value of ψ∗

— the children of union nodes are processed recursively in arbitrary order. We
adopt another idea of [13]: If the set computed for the subtree rooted at v has size
more than 2ψ∗(v), we reduce the size of the set to at most ψ∗(v) by computing
the intersection with the smallest child set of an intersection node on the path
from v to the root. Observe that this will only remove elements that are not in
the output. Due to the way we traverse the expression tree, the relevant child
set will already have been computed. For every node v in the expression tree,
we store the result Iv of the subexpression rooted at v.

For the root node v0 define I ′
v0

= Iv0 . To compute the sets S′
i we first tra-

verse the tree top-down and compute for every non-root node v the intersection
I ′

v = I ′
v ∩ I′

p(v), where p(v) is the parent node of v. Observe that, by induction,
I ′

v = Iv ∩ f(h(S1), . . . , h(Sm)). We will see that the time for this procedure is
dominated by the time for computing f(h(S1), . . . , h(Sm)). At the end we have
computed h(S′

i) = f(h(S1), . . . , h(Sm)) ∩ h(Si) for all i. All that remains is to
find the corresponding elements of S′

i, which is easily done by looking up the
hash function values in a hash table that stores h(Si) with the corresponding
elements of Si as satellite information.

Finally, we compute f(S′
1, . . . , S

′
m) by first identifying all duplicate elements

in the sets (by inserting them in a common hash table), keeping track of which
set each element comes from. Then for each element decide whether it is in the
output by evaluating the expression. This can be done in time proportional to the
number of occurrences of the element: First annotate each leaf and intersection
node in the expression tree with the nearest ancestor that is an intersection node.
Then compute the set corresponding to each intersection node bottom-up. The
time spent on an intersection node is bounded by the total size of the sets at
intersection nodes immediately below it, but the intersection of these sets has
size at most half of the total size. This implies the claimed time bound by a
simple accounting argument.

2.3 Data Structure

The best choice of h depends on the particular expression and size of input sets.
For example, when computing the intersection S1 ∩S2 we want the range of h to
have size significantly larger than the smaller set (S1, say). This will imply that
most elements in h(S2\S1) will not be in h(S1), and there will be a significant
reduction of the problem instance in step 2 of the main algorithm. On the other
hand, the time and space usage grows with the size of the range of the hash
function used, so it should be chosen no larger than necessary. In conclusion, to
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be able to choose the most suitable one in a given situation, we wish to store
the image of every set under several hash functions, differing in the size of their
range. The images of the set under various hash functions can be thought of
as representations of the set at different resolutions. Hence, we name our data
structure the multi-resolution set representation. As we show in the full version
of this paper [6], it suffices to use a hash function with range {0, 1}r, where
r = log n + O(log w) and n is the total size of the input sets.

The hash functions will all be derived from a single “mother” hash function
h∗, a strongly universal hash function [10, 19] with values in the range {0, 1}w.
This is a global hash function that is shared for all sets. The hash function hr, for
1 ≤ r ≤ w is defined by hr(x) = h∗(x) div 2w−r, where “div” denotes integer
division (we use the natural correspondence between bit strings and nonnegative
integers). Note that hr has function values of r bits. To store hr(S) for a particular
set S, r ≥ log |S|+1, requires |hr(S)|(r − log |hr(S)|+Θ(1)) bits, by information
theoretical arguments. Since we may have |hr(S)| = |S| the space usage could
be as high as |S|(r − log |S| + Θ(1)). Note that the required space per element is
constant when r ≤ log |S| + O(1), and then grows linearly with r.

If we store hr(S) for all r, log |S| < r ≤ w, the space usage may be Ω(w)
times that of storing S itself. To achieve linear space usage we store hr(S) only
for selected values of r, depending on |S|, namely r ∈ {�log |S|� + 2i | i =
0, 1, 2, . . . , log(w − log |S|)�}. These sets are stored using the bucketed set rep-
resentation of Section 3 which gives a space usage for hr(S) of O(|S|(r− log |S|+
log w)) bits. To get the representation of hr(S) for arbitrary r we access the
stored representation of hr′ , where r′ > r, and throw away the r′ − r least sig-
nificant bits of its elements (see Section 3 for details). Choosing r′ as small as
possible minimizes the time for this step. We build the bucketed set representa-
tion of the largest value of r in O(|S|) time by hashing, and then apply Lemma 4
iteratively to get the structures for the lower values of r.

The final thing we need is a hash table that allows us to look up a value hr(x)
and retrieve the element(s) in S that have this value of hr. This can be done by
using the �log |S|� most significant bits of hr as index into a chained hash table.
Since the values of these bits are common for all hr, log |S| < r ≤ w, we only
need to store a single hash table. Note that the size of the hash table is Θ(|S|),
which means that the expected lookup time is constant.

3 Bucketed and Packed Sets

We describe two representations of sets of elements from a small universe and
provide efficient algorithms for computing union and intersection in the represen-
tations. Proofs of the lemmas in this section can be found in the full version [6].

3.1 Packed Sets

Given a parameter f we partition words into k = w/(f + 1) substrings, called
fields, numbered from right to left. The most significant bit of a field is called
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the test bit and the remaining f -bits are called the entry. A word is viewed as
an array A capable of holding up to k bit strings of length f . If the ith test bit is
1 we consider the ith field to be vacant. Otherwise the field is occupied and the
bit string in the ith entry is interpreted as the binary encoding of a non-negative
integer. If |A| > k we can represent it in �|A|/k� words; each storing up to k
elements. We call an array represented in this way a packed array with parameter
f (or simply packed array if f is understood from the context). For our purposes
we will always assume that fields are capable of storing the total number of fields
in a word, that is, f ≥ log k. In the following we present a number of useful ways
to manipulate packed arrays.

Suppose A is a packed array containing x occupied fields. Then, compacting A
means moving all the occupied fields into the first x fields of A while maintaining
the order among them.

Lemma 1 (Andersson et al. [3]). A packed array A with parameter f can be
compacted in O

(
|A|

⌈
f2/w

⌉)
time.

Let X = x1, . . . , xm be a sequence of f -bit integers. If X is given as a packed
array with parameter f , such that the ith field, 1 ≤ i ≤ m, holds xi, we say that
X is a packed sequence with parameter f . We use the following result:

Lemma 2 (Albers and Hagerup [2]). Two sorted packed sequences X1 and
X2 with parameter f can be merged into a single sorted packed sequence in
O

(
(|X1| + |X2|)

⌈
f2/w

⌉)
time.

We refer to a sorted, packed sequence of integers as a packed set.

Lemma 3. Given packed sets S1 and S2 with parameter f , the packed sets S1 ∪
S2 and S1 ∩ S2 with parameter f can be computed in O

(
(|S1| + |S2|)

⌈
f2/w

⌉)

time.

3.2 Bucketed Sets

Let S be a set of l-bit integers. For a given parameter b ≤ l we partition S
into 2b subsets, S0, . . . , S2b−1, called buckets. Bucket Si contain all values in the
range [2i(l−b), 2(i+1)(l−b) − 1], and therefore all values in Si agree on the b most
significant bits. Hence, to represent Si it suffices to know the b most significant
bits together with the set of the l − b least significants bits. We can therefore
compactly represent S by an array of length 2b, where the ith entry points to
the packed set (with parameter l − b) of the l − b least significant bits of Si. We
say that S is a bucketed set with parameter b if it is given in this representation.
Note that such an encoding of S uses O(2bw + |S|(l − b)) bits. As above, we
assume that fields in packed sets are capable of holding the number of fields in
a word, that is, we assume that (l − b) ≥ log w − log(l − b + 1)) in any bucketed
set. We need the following results to manipulate bucketed sets.

Lemma 4. Let S be a bucketed set of l-bit integers with parameter b. Then,

1. Given an integer b′ we can convert S into a bucketed set with parameter b′

in time O
(
2max(b,b′) + |S|

⌈
(l − min(b, b′))2/w

⌉)
.
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2. Given an integer b < x ≤ l we can compute the bucketed set S′ = {j div 2x |
j ∈ S} of l − x bit integers with parameter b in O

(
2b + |S|

⌈
(l − b)2/w

⌉)

time.

Let S be a bucketed set of l-bit integers with parameter b. We say that S is
a balanced bucketed set if b is the largest integer such that b ≤ log |S| − log w.
Intuitively, this choice of b balances the space for the array of buckets and the
packed sets representing the buckets. Since l ≥ log |S| the condition implies that
l − b ≥ l − log |S| + log w ≥ log w − log(l − b + 1). Hence, the field length of the
packed sets representing the buckets in S is as required. Also, note that the space
for a balanced bucketed set S is O(2bw + |S|(l − b)) = O(|S|(l − log |S|+log w)).

Lemma 5. Let S1 and S2 be balanced bucketed sets of l-bit integers. The bal-
anced bucketed sets S1 ∪ S2 and S1 ∩ S2 can be computed in time

O
(
(|S1| + |S2|)

⌈
(l − log(|S1| + |S2|) + log w)2/w

⌉)
.

If l = Θ(log(|S1| + |S2|)) Lemma 5 provides a speedup by a factor of w/ log2 w.

4 Lower Bound

In this section we show Theorem 3. The proof uses known bounds from t-party
communication complexity, where t communicating players are required to com-
pute a function of n-bit strings x1, . . . , xt, where xi is held by player i, using
as little communication as possible. We consider the blackboard model where a
bit communicated by one player is seen by all other players, and consider the
following binary functions:

EQ(x1, x2) which has value 1 iff x1 = x2. (Here t = 2.)
DISJn,t(x1, . . . , xt) which has value 1 iff there is no position where two bit

strings xi and xj both have a 1 (i.e., all pairs are “disjoint”). We consider
this problem under the unique intersection assumption, where either all pairs
are disjoint, or there exists a single position where all bit strings have a 1.
We allow the protocol to behave in any way if this is not the case.

Solving EQ exactly requires communication of Ω(n) bits, for both deterministic
and randomized protocols [20,16]. That is, the trivial protocol where one player
communicates her entire bit string is optimal. Chakrabarti at al. [12], based
on work by Bar-Yossef et al. [4], showed that solving DISJn,t exactly requires
Ω(n/(t log t)) bits of communication in expectation, even under the unique in-
tersection assumption and when the protocol is randomized.

Our main observation is that if sets S1, . . . , St have been independently pre-
processed, we can view any algorithm that computes f(S1, . . . , St) as a commu-
nication protocol where each player holds a set. Whenever the algorithm accesses
the representation of Si it corresponds to w bits being sent by player i. Formally,
given any (possibly randomized) algorithm that computes |f(S1, . . . , St)|, where
S1, . . . , St have been individually preprocessed in an arbitrary way, we derive
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communication protocols for EQ and DISJn,t, and use the lower bounds for
these problems to conclude a lower bound on the expected number of steps used
by the algorithm. We note that this reduction from communication complex-
ity is different from the reduction from asymmetric communication complexity
commonly used to show data structures lower bounds.

Let n and k, 1 ≤ k ≤ n/t, denote integers such that the algorithm correctly
computes |f(S1, . . . , St)| provided that the sum of sizes of the sets is at most n+1,
and that |f(S1, . . . , St)| ≤ k. Let τ denote the number of cell probes on a worst-
case input of this form. Given vectors x1, . . . , xt ∈ {0, 1}n satisfying the unique
intersection assumption, we consider the sets Si = {j | xi has a 1 in position j}
and their associated representations (which could be chosen in a randomized
fashion). Observe that the total size of the sets is at most n + 1, and that
|f(S1, . . . , St)| = 0 if and only S1, . . . , St are disjoint (using the assumptions
on f). By simulating the algorithm on these representations, we get a commu-
nication protocol for DISJ using τw bits in expectation. By the lower bound
on DISJn,t we thus have τw = Ω(n/(t log t)) on a worst case input, i.e., τ =
Ω(n/(wt log t)) cell probes are needed.

Consider the function f ′(S1, S2) = f(S1, . . . , S1, S2). Clearly, a lower bound
on the cost of computing f ′ applies to f as well. We denote by

({0,1}w

k

)
the set

of subsets of {0, 1}w having size k. Let q = log2 |
({0,1}w

k

)
|�, and let φ be any

injective function from {0, 1}q to
({0,1}w

k

)
. Given two vectors x, y ∈ {0, 1}q we

consider the sets S1 = φ(x) and S2 = φ(y), which satisfy |f ′(S1, S2)| ≤ k and
(t−1)|S1|+ |S2| ≤ n. Since φ is injective, we have that x = y iff |f ′(S1, S2)| = k.
Thus, similar to above we get a communication protocol for EQ that uses τw
bits in expectation on a worst-case input. By the lower bound on EQ we have
τ = Ω(q/w), implying that τ = Ω(k(w − log2 k)/w). The maximum of our two
lower bounds is a factor of at most two from the sum stated in the theorem,
finishing the proof.

5 Conclusion and Open Problems

We have shown how to use two algorithmic techniques, approximate set repre-
sentations and word-level parallelism, to accelerate algorithms for basic set op-
erations. Potentially, the results (or techniques) could have a number of applica-
tions in problem domains such as databases (relational, textual,. . . ) where some
preprocessing time (indexing) may be invested to keep the cost of queries low.

It is an interesting problem whether our results can be extended to handle
non-monotone set operators such as set difference. The technical problem here
is that one would have to deal with two-sided errors in the estimates of the in-
termediate results.

Acknowledgement. We thank Mikkel Thorup for providing us useful insight
on the use of word-level parallelism on modern processors.
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Abstract. We design a faster algorithm for the k-maximum sub-array
problem under the conventional RAM model, based on distance matrix
multiplication (DMM). Specifically we achieve O(n3

�
log log n/ log n +

k log n) for a general problem where overlapping is allowed for solution
arrays. This complexity is sub-cubic when k = o(n3/ log n). The best
known complexities of this problem are O(n3 + k log n), which is cubic
when k = O(n3/ log n), and O(kn3

�
log log n/ log n), which is sub-cubic

when k = o(
�

log n/ log log n).

1 Introduction

The maximum subarray (MSA) problem is to compute a rectangular portion in
a given two-dimensional (n, n)-array that maximizes the sum of array elements
in it. If the array elements are all non-negative we have the trivial solution of
the whole array. Thus we normally subtract the mean or median value from each
array element. This problem has wide applications in graphics and data mining
for marketing, as described in [4].

This problem was first introduced by Grenander and brought to computer
science by Bentley [7] with an algorithm of O(n3). Tamaki and Tokuyama [22]
obtained a sub-cubic algorithm based on distance matrix multiplication (DMM),
by reducing the problem to DMM and showing that the time complexities of the
two problems are of the same order. Takaoka [19] simplified the algorithm for
implementation.

The k-maximum subarray (k-MSA) problem is to obtain the maximum sub-
array, the second maximum subarray, ..., the k-th maximum subarray in sorted
order for k up to O(n4). We can define two such problems. One is the general case
where we allow overlapping portions, and the other is for disjoint portions. We
consider the general problem in this paper. Let M(n) be the time complexity for
DMM for an (n, n)-matrix. We solve the problem in O(M(n) + k log n) time for
the general problem with an (n, n)-array, where M(n) = O(n3

√
log log n/ log n).

Preceding results for the one-dimensional problem are O(kn) by Bae and
Takaoka [1], O(min(n

√
k, n log2 n)) by Bengtsson and Chen [5], O(n log k) by

Bae and Takaoka [2], O(n+k log n) by Bae [4], Cheng, et. al. [11], Bengtsson, et.
al. [6], O(n log n + k) expected time by Lin, et. al. [17], and O(n + k) by Brodal,

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 751–762, 2007.
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et. al. [8]. Obviously we can solve the two-dimensional problem by applying the
one-dimensional algorithm to all O(n2) strips of the array, resulting in the time
complexity multiplied by O(n2). For the algorithms specially designed for the
two-dimensional case, we have O(kn3(log log n/ log n)1/2) by [2] and O(n3 + k)
by [8]. The last is for k maximum subarrays in unsorted order.

These results are mainly based on extension of optimal algorithms for the
one-dimensional problem to the two-dimensional problem. Our results in this
paper and [2] show an extension of an optimal algorithm in one dimension to two
dimensions does not produce optimal solutions for the two-dimensional problem.

The best known results for the disjoint case are the straightforward O(kM(n)),
which is sub-cubic for small k such as k = o(

√
log n/ log log n), where M(n) is

the time for DMM, and O(n3 + kn2 log n) by Bae and Takaoka [3] for larger k.
The problem here is to find the maximum, the second maximum, etc. from the
remaining portion.

In the application of graphics, our problem is to find the brightest spot, second
brightest spot, ..., k-th brightest spot. In the application of data mining, sup-
pose we have a sales database with records of sales amount of some commodity
with numerical attributes such as age, annual income, etc. Then the rectangular
portion of age and annual income in some range that maximizes the amount cor-
responds to obtaining the association rule that maximizes the confidence that if
a person is in the range, then he is most likely to buy the commodity. Similarly
we can identify the second most promising customer range, etc.

The computational model in this paper is the conventional RAM, where
only arithmetic operations, branching operations, and random accessibility with
O(log n) bits are allowed.

The engine for our problem is an efficient algorithm for DMM. Since a sub-
cubic algorithm for DMM was achieved by Fredman [14], there have been several
improvements [18], [15], [16], [20], [23], [21], [9], [10]. We modify the algorithm
in [18] for DMM whose complexity is O(n3

√
log log n/ log n), and extend it to

our problem. The recent improvements for DMM after [18] are slightly better,
and it may be possible they can be tuned for speed-up of the k-MSA problem.

The main technique in this paper is tournament. Specifically we reorganize
the structure of the maximum subarray algorithm based on divide-and-conquer
into a tournament structure, which serves as an upper structure. We also reor-
ganize the DMM algorithm into a tournament, which works as a lower structure.
Through the combined tournament, the maximum, second maximum, etc. are
delivered in O(log n) time per subarray.

In section 2, basic definitions of tournaments and DMM are given. In section
3, the X + Y problem is defined and a well-known algorithm for it is described
for the later development.

In section 4, we give the definition of the maximum subarray problem and a
divide-and-conquer algorithm for it. In section 5, we reorganize the algorithm in
section 4 into a tournament style, and explain how to combine it with DMM to
solve the k-MSA problem. The X+Y algorithm is used as glue in this combination.
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The DMM algorithm used is based on two-level divide-and-conquer. In section
6, the upper division is described. In section 7, the lower division is handled
through a table look-up. The table in [18] is enhanced to handle several integers
in an encoded form, rather than a single integer, at each table entry.

Section 8 concludes the paper, discussing possibilities for further speed-up
and extension of similar ideas to the disjoint problem.

This paper achieves a new time complexity through a combination of known
methods and tools. Note that we use the same name k in two different meanings;
indexing in arrays, and the k for the k-MSA problem.

2 Basic Definitions

An r-ary tournament T is an r-ary tree such that each internal node has r
internal nodes and some external nodes as children, or some external nodes only
as children. It also has a key, which originates from itself if it is an external
node, or is extracted from one of its children if it is an internal node. Each
external node has a numerical datum as a key. External nodes can be regarded
as participants of the tournament. A parent has the minimum of those keys of
its children. We call this a minimum tournament. A maximum tournament is
similarly defined. In other words a parent is the winner among its children. The
external nodes form the leaves of the tree. We form a complete r-ary tree as far as
internal nodes are concerned. Also a node maintains some identity information
of the winner that reached this node, such as the original position of the winner,
etc. The key and this kind of information eventually propagates to the root, and
the winner is selected. The size of the tournament, defined by the number of
nodes, is O(n), if there are n external nodes.

If we use a binary tournament for sorting, the identity can be the position
of the data item in the original array. We can build up a minimum tournament
for n data items in O(n) time. After that, successive k minima can be chosen in
O(k log n) time. This can be done by replacing the key of the winning item at the
bottom level, that is, in a leaf, by ∞ and performing matches along the winning
path spending O(log n) time for the second winner, etc. Thus k minima can be
chosen in O(n + k log n) time in sorted order. If k = n, this is a sorting process
in O(n log n) time, called the tournament sort. We use a similar technique of
tournament in the k-MSA problem.

The distance matrix multiplication is to compute the following distance prod-
uct C = AB in (1) for two (n, n)-matrices A = [aij ] and B = [bij ] whose elements
are real numbers. We can define (1) with “max” also.

cij = minn
k=1{aik + bkj}, (i, j = 1, ..., n) (1)

The operation in the right-hand side of (1) is called distance matrix multi-
plication of the min version, and A and B are called distance matrices in this
context. The index k that gives the minimum in (1) is called the witness for cij .
If we use max instead we call it the max version.
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Suppose we have a three layered acyclic graph for which A is a connection
matrix from layer 1 to layer 2, and B is that from layer 2 to layer 3. Each layer
has vertices 1, ..., n, and the distance from i in layer 1 to j in layer 2 is aij , and
that from layer 2 to layer 3 is bij . Then cij is the shortest distance from i in
layer 1 to j in layer 3.

To solve the k-MSA problem, we want to find up to k shortest distances
from layer 1 to layer 3 between any vertices. We use this version of extended
DMM in this paper, whereas k-DMM in [2] computes k shortest paths for each
pair (i, j) with i in layer 1 and j in layer 3, which is rather time consuming.
If we solve DMM in M(n) time in such a way that a tournament of some size
becomes available for the extended DMM within the same time complexity, then
k shortest distances can be found in O(M(n) + k log n) time for k up to O(n3),
as shown in Sections 6 and 7.

We actually need at most k shortest distances in total for all DMMs used in
our k-MSA algorithm, and our requirement is that the newly designed DMM
algorithm return the next shortest distance for any pair (i, j), that is, i in layer
1 to j in layer 3, in O(log n) time.

3 X + Y Problem

Let X and Y be lists of n numbers. We want to choose k smallest numbers from
the set Z = {x + y|(x ∈ X) ∧ (y ∈ Y )}. We organize a tournament for each of X
and Y in O(n) time. Let the imaginary sorted lists be X = (x1, ..., xn) and Y =
(y1, ..., yn). Actually they are extracted from the tournaments as the computation
proceeds. We successively take elements from those sorted lists, one in O(log n)
time. Obviously x1 +y1 is the smallest. The next smallest is x1 +y2 or x2 +y1. Let
us have an imaginary two-dimensional array whose (i, j)-element is xi+yj . As the
already selected elements occupy some portion of the top left corner, which we call
the solved part, we can prepare a heap to represent the border elements adjacent
to the solved region. By keeping selecting minima from the heap, and inserting
new bordering elements, we can solve the problem in O(n + k log n) time.

See the figure below for illustration.

y1 y2 y5 y6

-----------------------------------------

x1 | x1+y1 x1+y2 __|//| Hatched part is in priority queue

x2 | x2+y1 __|//| If x2+y5 is chosen with delete-min,

x3 | |//| it is moved from the hatched to the

|__________________|//| solved part, and x3+y5 and x2+x6

|//////////////////| are inserted to the heap.

If we change the tournaments from minimum to maximum, we can find k max-
ima in the same amount of time. Also with similar arrangements, we can select k
largest or smallest from X − Y = {x − y|(x ∈ X) ∧ (y ∈ Y )} in the same amount
of time. We use this simple algorithm rather than sophisticated ones such as [13],
since these two are equivalent in computing time for k minima in sorted order.
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4 The Maximum Subarray Problem

Now we proceed to the maximum subarray problem for an array of size (m, n).
The cubic algorithm for this problem given by Bentley [7] was improved to
sub-cubic by Tamaki and Tokuyama [22]. We review the simplified sub-cubic
version in [19]. We give a two-dimensional array a[1..m, 1..n] of real numbers as
input data. The maximum subarray problem is to maximize the sum of the array
portion a[k..i, l..j], that is, to obtain the sum and such indices (k, l) and (i, j). We
suppose the upper-left corner has co-ordinates (1,1). Bentley’s algorithm finds
the maximum subarray in O(m2n) time, which is cubic O(n3) when m = n.

For simplicity, we assume the given array a is a square (n, n)-array. We com-
pute the prefix sums s[i, j] for array portions of a[1..i, 1..j] for all i and j with
boundary condition s[i, 0] = s[0, j] = 0. Obviously this can be done in O(n2)
time for an (n, n)-array. The outer framework of the algorithm is given below.
Note that the prefix sums once computed are used throughout recursion.

Algorithm M: Maximum subarray
1. If the array becomes one element, return its value.
2. Let Atl be the solution for the top left quarter.
3. Let Atr be the solution for the top right quarter.
4. Let Abl be the solution for the bottom left quarter.
5. Let Abr be the solution for the bottom right quarter.
6. Let Acolumn be the solution for the column-centered problem.
7. Let Aleft−row be the solution for the row-centered problem for the left half.
8. Let Aright−row be the solution for the row-centered problem for the right half.
9. Let the solution A be the maximum of those seven.

The coverage of a solution array is the smallest square region, defined by the
above recursive calls, in which the solution is obtained. It is given by index
pairs. The scope of a solution array is the index pairs ((k, l), (i, j)) if the solu-
tion is a[k..i, l..j]. A coverage is also defined by the co-ordinates of the top-left
corner, and those of the bottom-right corner. If we call the above algorithm
for a[1..n, 1..n], for example, the coverage of A is ((1, 1), (n, n)), that of Atr is
((1, n/2 + 1), (n/2, n)), etc.

Here the column-centered problem is to obtain an array portion that crosses
over the central vertical line with maximum sum, and can be solved in the
following way. Aleft−row and Aright−row can be computed similarly.

Acolumn = max
i−1,n/2−1,n,n
k=0,l=0,i=1,j=n/2+1{s[i, j] − s[i, l] − s[k, j] + s[k, l]}.

In the above we first fix i and k, and maximize the above by changing l and j.
Then the above problem is equivalent to maximizing the following for i = 1, ..., n
and k = 0, ..., i − 1.

Acolumn[i, k] = max
n/2−1,n
l=0,j=n/2+1{−s[i, l] + s[k, l] + s[i, j] − s[k, j]}
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Let s∗[i, j] = −s[j, i]. Then the above problem can further be converted into

Acolumn[i, k] = −min
n/2−1
l=0 {s[i, l] + s∗[l, k]} + maxn

j=n/2+1{s[i, j] + s∗[j, k]}

The first part in the above is distance matrix multiplication of the min version
and the second part is of the max version. Let S1 and S2 be matrices whose (i, j)
elements are s[i, j − 1] and s[i, j + n/2]. For an arbitrary matrix T , let T ∗ be
that obtained by negating and transposing T . As the range of k is [0 .. n − 1] in
S∗

1 and S∗
2 , we shift it to [1..n]. Then the above can be computed by multiplying

S1 and S∗
1 by the min version, multiplying S2 and S∗

2 by the max version,
subtracting the former from the latter, that is, S = S2S

∗
2 − S1S

∗
1 , and finally

taking the maximum from the lower triangle. We will re-organize this maximizing
operation into a tournament later. We call the operations of extracting a triangle
triangulation. This is effectively done by putting −∞ in the upper triangle of
S including the diagonal. We call this converted matrix S′.

For simplicity, we assume n is a power of 2. Then all size parameters appear-
ing through recursion in Algorithm M are power of 2. We define the work of
computing the three subarrays, Acolumn, Aleft−row. and Aright−row, to be the
work at level 0. The algorithm will split the array horizontally and vertically
into four through the recursion to go to level 1.

Now let us analyze the time for the work at level 0. We can multiply (n, n/2)
and (n/2, n) matrices by 4 multiplications of size (n/2, n/2), and there are two
such multiplications in S = S2S

∗
2 −S1S

∗
1 . We measure the time by the number of

comparisons, as the rest is proportional to this. Let M(n) be the time for mul-
tiplying two (n/2, n/2) matrices. At level 0, we obtain an Acolumn, Aleft−row,
and Aright−row, spending 12M(n) comparisons. Thus we have the following re-
currence for the total time T (n). The following lemma [19] is obvious.

T (1) = 0, T (n) = 4T (n/2) + 12M(n).

Lemma 1. Let c be an arbitrary constant such that c > 0. Suppose M(n)
satisfies the condition M(n) ≥ (4 + c)M(n/2). Then the above T (n) satisfies
T (n) ≤ 12(1 + 4/c)M(n).

Clearly the complexity of O(n3(log log n/ log n)1/2) for M(n) satisfies the condi-
tion of the lemma with some constant c > 0. Thus the maximum subarray prob-
lem can be solved in O(n3(log log n/ logn)1/2) time. Since we take the maximum
of several matrices component-wise in line 9 of our algorithm and maximum from
S′, we need an extra term of O(n2) in the recurrence to count the number of
operations. This term can be absorbed by slightly increasing the constant 12 in
front of M(n) in the above recurrence.

5 The k-Maximum Subarray Problem

When we solve the maximum subarray problem with Algorithm M, within the
same asymptotic time complexity, we organize a four-ary tournament along the
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four-way recursion as internal nodes, and the three sub-problems; column cen-
tered, left-row centered, and right-rowcentered as external nodes, in Algorithm M.
Those sub-problems are organized into tournaments in the next section. For now
we regard them as leaves and assume they can respond to our request in our desired
time. When we make the four-ary tournament along the execution of Algorithm
M, we copy necessary portions of array a for the seven sub-problems from line 2
to 8. The total overhead time and space requirement for this part are O(n2 log n).

Suppose the maximum subarray was returned at level 0, whose coverage and
scope are ((K, L), (I, J)) and ((k, l), (i, j)). If this array is a single element, that
is, returned at the bottom of recursion, i.e., line 1 of the algorithm, we put −∞
at the leaf, and reorganize the tournament for the second maximum subarray
towards the root along the winning path. The necessary time is O(log n).

If the maximum subarray is not from the bottom of recursion, it must be from
one of Acolumn, Aleft−row, and Aright−row of some coverage at some level. Those
three problems are organized into a tournament each, so that they can return
the second maximum in O(log n) time. The coverage and scope information
can identify which of the three produced the winner. We can reorganize the
tournament along the winning path from this second maximum towards the root.
Thus the k-maximum subarray problem can be solved in O(M(n)+k log n) time,
where M(n) = O(n3

√
log log n/ logn).

Let us assume K = 1, I = n, L = 1, and J = n without loss of generality. Also
assume A was obtained from Acolumn, which is in turn obtained from S′, that is,
the lower triangle of S = S2S

∗
2 − S1S

∗
1 . We rewrite this equation as S = Q − P ,

where P = S1S
∗
1 and Q = S2S

∗
2 . We assume that S[i, k] for some k < i gives

Acolumn with the witnesses l and j for P and Q respectively. We need to find the
next value for S′. To do so, we need to find the next minimum value for P [i, k]
and next maximum for Q[i, k] with witnesses different from l and j. As is shown
in the following sections, the next value for P [i, k] and Q[i, k] are returned in
O(log n) time. Then using the X+Y algorithm, we can choose the next value for
S[i, k] in O(log n) time, which is delivered to the tournament for S′ where other
elements are intact. Thus the next value for the chosen one of the above three
problems, Acolumn, Aleft−row and Aright−row, can be found in O(log n) time.

We observe at this stage that any DMM algorithm, that can deliver successive
minimum distances from layer 1 to layer 3 in the context of Section 2 in O(log n)
time, can be fitted into the framework of our algorithm.

6 Distance Matrix Multiplication by Divide and Conquer

We review the DMM algorithm of min-version in [18]. The max-version is sim-
ilar. Matrices A, B, and C in DMM are divided into (m, m)-submatrices for
N = n/m as follows:

⎛

⎝
A1,1 ... A1,N

...
AN,1 ... AN,N

⎞

⎠

⎛

⎝
B1,1 ... B1,N

...
BN,1 ... BN,N

⎞

⎠ =

⎛

⎝
C1,1 ... C1,N

...
CN,1 ... CN,N

⎞

⎠
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Matrix C can be computed by

C = (Cij), where Cij = minN
k=1{AikBkj}(i, j = 1, ...N). (2)

Here the product of submatrices is defined similarly to (1) and the “min” op-
eration is defined on submatrices. Since comparisons and additions of distances
are performed in a pair, we measure the time complexity by the number of key
comparisons, and omit counting the number of additions for measurement of
the time complexity. We have N3 multiplications of distance matrices in (2).
Let us assume that each multiplication of (m, m)-submatrices can be done in
T (m) computing time, assuming precomputed tables are available. The time
for constructing the tables is reasonable when m is small. The time for min
operations in (2) is O(n3/m) in total. Thus the total time excluding table con-
struction is given by O(n3/m + (n/m)3T (m)). As shown below, it holds that
T (m) = O(m2

√
m). Thus the time becomes O(n3/

√
m).

Now we further divide the small (m, m)-submatrices into rectangular matrices
in the following way. We rename the matrices Aik and Bkj in (2) by A and B.
Let M = m/l, where 1 ≤ l ≤ m. Matrix A is divided into M (m, l)-submatrices
A1, ..., AM from left to right, and B is divided into M (l, m)-submatrices B1,
..., BM from top to bottom. Note that Ak are vertically rectangular and Bk are
horizontally rectangular. Then the product C = AB can be given by

C = minM
k=1Ck, where Ck = AkBk (3)

As shown in the next section, AkBk can be computed in O(l2m) time. Thus the
above C in (3) can be computed in O(m3/l + lm2) time. Setting l =

√
m yields

O(m2
√

m) time.
We define a u/l-tournament. Let us find k minima from (n, n)-matrices X1, ...,

Xm for general m and n. The right-hand side of X = minm
�=1X� is to take

minimum values of matrices component-wise. For each (i, j) we organize (i, j)
elements of those m matrices into a lower tournament through index �. Then
we organize the n2 roots of those tournaments, which give X , into an upper
tournament, We can draw k minima of those matrices from the root of the
upper tournament. We call this tournament structure a u/l- tournament.

Now for the extended DMM algorithm, the “min” operation in (2) for each
(i, j) is reorganized into a u/l-tournament within the same asymptotic complex-
ity as that of DMM, by the substitution Xk = AikBkj . As C in (2) is regarded as
an (N, N)-matrix of (m, m)-matrices, we organize a tournament of N2 roots of
these u/l-tournaments. We note that the matrix C in (3) can be updated by the
next minimum in some AkBk in O(M) = O(m/l) time by sequential scanning,
that is, without a tournament structure

From this construction, we can find the next minimum for the extended DMM
in O(log n) time, since the next minimum in AkBk in (3) can be found in O(1)
time, as is shown next.
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7 How to Multiply Rectangular Matrices

We rename again the matrices Ak and Bk in (3) by A and B. In this section we
show how to compute AB, that is,

minl
r=1{air + brj}, for i = 1, ..., m; j = 1, ..., m. (4)

Note that we do not form tournaments for this “min” operation.
We assume that the lists of length m, (a1r − a1s, ..., amr − ams), and (bs1 −

br1, ..., bsm − brm) are already sorted for all r and s (1 ≤ r < s ≤ l). The
time for sorting will be mentioned later. Let Ers and Frs be the corresponding
sorted lists. For each r and s, we merge lists Ers and Frs to form list Grs. In
case of a tie, we put an element from Ers first into the merged list. Let Hrs

be the list of ranks of air − ais (i = 1, ..., m) in Grs and Lrs be the list of
ranks of bsj − brj (j = 1, ..., m) in Grs. Let Hrs[i] and Lrs[j] be the ith and jth
components of Hrs and Lrs respectively. Then we have Grs[Hrs[i]] = air − ais

and Grs[Lrs[j]] = bsj − brj.
The lists Hrs and Lrs for all r and s can be made in O(l2m) time, when the

sorted lists are available. We have the following obvious equivalence for r < s.

air + brj ≤ ais + bsj ⇐⇒ air − ais ≤ bsj − brj ⇐⇒ Hrs[i] ≤ Lrs[j]

Fredman [14] observed that the information of ordering for all i, j, r, and
s in the rightmost side of the above formula is sufficient to determine the
product AB by a precomputed table. This information is essentially packed
in the three dimensional space of Hrs[i](i = 1..m; r = 1..l; s = r + 1..l), and
Lrs[j](j = 1..m; r = 1..l; s = r + 1..l). This can be regarded as the three-
dimensional packing.

In [18] it is observed that to compute each (i, j) element of AB, it is enough to
know the above ordering for all r and s. This can be obtained from a precomputed
table, which must be obtained within the total time requirement. This table is
regarded as a two-dimensional packing, which allows a larger size of m. leading to
a speed-up. In [20] and [21], a method by one-dimensional packing is described.

For simplicity, we omit i from Hrs[i] and Lrs[i], and define concatenated
sequences H [i] and L[i] of length l(l − 1)/2 by

H [i] = H1,2 . . . H1,lH2,3 . . .H2,l . . .Hl,l−1

(5)
L[i] = L1,2 . . . L1,lL2,3 . . . L2,l, . . . Ll,l−1

For integer sequence (x1, . . . , xp), let h(x1, . . . , xp) = x1μ
p−1 + . . . + xp−1μ + xp.

Let h(H [i]) and h(L[i]) be encoded integer values for H [i] and L[i], where p =
l(l − 1)/2 and μ = 2m. The computation of h for H [i] and L[i] for all i takes
O(l2m) time. By consulting a precomputed table table with the values of h(H [i])
and h(L[j]), we can determine the value of r that gives the minimum for (4) in
O(1) time. For all i and j, it takes O(m2) time. Thus the time for one AkBk in (3)
is O(�2m), since l2 = m. M such multiplications take O(M�2m) = O(�m2) time.
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To compute table[x][y] for any positive integers x and y, x and y are decoded
into sequences H and L, which are expressed by the right-hand sides of (5). If
Hs,r > Ls,r for s < r or Hr,s < Lr,s for r < s, we can say r beats s in the sense
that air + brj ≤ ais + bsj if H and L represent H [i] and L[j]. We first fix r and
check this condition for all such s. We repeat this for all r. If r is not beaten by
any s, it becomes the table entry, that is, table[x][y] = r. If there is no such r, the
table entry is undefined. There are O(((2m)l(l−1)/2)2) possible values for all x and
y, and one table entry takes O(l(l−1)/2) time. Thus the table can be constructed
in O((l(l − 1)/2)(2m)2l(l−1)/2) = O(cm log m) time for some constant c. Let us set
m = log n/(log c log log n). Then we can compute the table in O(n) time.

If r is beaten by i participants, the rank of r becomes i + 1. Let ri be at rank
i. Then we fill the (x, y) entry of table′, table′[x, y], by h(r1, ..., rl) with p = l.
That is, using this function h, we encode not only the winner, but second winner,
third winner, etc., into the table elements. This can also be done in O(n) time,
by a slight increase of constant c in the previous page.

To prepare for the extended DMM, we extend equation (4) in such a way that
cij is the l-tuple of the imaginary sorted sequence, (air1 + br1j , ..., airl

+ brlj),
of the set {air + brj|1 ≤ r ≤ l}. Note that we do not actually sort the set. The
leftmost element of cij , that is, the minimum, participates in the tournament
for “min” in (3). If cij = (x1, x2, ..., xl) and x1 is chosen as the winner, cij is
changed to (x2, ..., xl, ∞), etc. As k can be up to O(n3), many of cij will be all
infinity towards the end of computation.

This can be implemented by introducing an auxiliary matrix C′. When we
compute DMM, we compute C′, where c′ij = table′[h[H [i]), h(L[j])] =h(r1, ..., rl).
Each rk (k = 1, ..., l) is obtained in O(1) time. The elements of the sorted list of
cij is delivered by decoding C′[i, j] one-by-one when demanded from up-stream
of the algorithm.

Example 1. m = 5, 2m = 10, h(H) = 456, and h(L) = 329. Since H1,2 >
L1,2 and H2,3 < L2,3, the winner is 2, that is, table[456, 329] = 2. Also we see
table′[453, 329] = 213, since H [1, 3] > L[1, 3].

H =

⎡

⎣
− 4 5
− − 6
− − −

⎤

⎦ , L =

⎡

⎣
− 3 2
− − 9
− − −

⎤

⎦

We note that the time for sorting to obtain the lists Ers and Frs for all k in
(3) is O(Ml2m log m). This task of sorting, which we call presort, is done for all
Aij and Bij in advance, taking O((n/m)2(m/l)l2m log m) = O(n2l log m) time,
which is absorbed in the main complexity. Thus we can compute k shortest
distances in O(M(n) + k log n) time.

8 Concluding Remarks

We showed an asymptotic improvement on the time complexity of the k-maximum
subarray problem based on a fast algorithm for DMM. The time complexity
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is sub-cubic in n, when k = o(n3/ log n). If we use recent faster algorithms for
DMM, it may be possible to have a better complexity bound for the k-MSA prob-
lem.

Another challenge is to use the same idea of tournament technique for the
disjoint k-MSA problem. Once the maximum subarray is found, we need to
exclude the occupied portion from further considerations. This was done by “hole
creation” in [3], achieving a cubic time for k = O(n/ log n). A “hole” causes many
tournaments to be updated to offer the best subarrays to be chosen. It remains
to be seen whether a similar technique can be used in the disjoint case to achieve
a sub-cubic time for the same range of k.

The authors are very grateful to reviewers, whose constructive comments
greatly helped us improve the description of this revised version.
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Abstract. Trajectory data is becoming increasingly available and the
size of the trajectories is getting larger. In this paper we study the prob-
lem of compressing spatio-temporal trajectories such that the most com-
mon queries can still be answered approximately after the compression
step has taken place. In the process we develop an O(n logk n)-time im-
plementation of the Douglas-Peucker algorithm in the case when the
polygonal path of n vertices given as input is allowed to self-intersect.

1 Introduction

Technological advances in location-aware devices, surveillance systems, and elec-
tronic transaction networks are producing more and more opportunities to trace
moving individuals. Consequently, an eclectic set of disciplines including geog-
raphy [7], database research [9], animal-behaviour research [12], and transport
analysis [14] shows an increasing interest in movement patterns of various enti-
ties moving in various spaces over various times scales (see also the survey by
Gudmundsson et al. [8]).

Large sets of data on the movement of entities create the problem of storing,
transmitting, and processing this data. Hence, simplifying this data becomes
an important problem. Recently, Cao et al. [4] proposed a way of modelling
trajectories in 3-dimensional space so that a 3-dimensional path simplification
techniques could be applied. Their idea works well in practice and in their ex-
periments the compression rate is in most cases well over 90%. However, their
approach has two main drawbacks that we improve on in this paper.

1. They argued that most spatio-temporal queries in databases are
composed of the following five types of queries: where-at , when-at , intersect ,
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nearest-neighbour and spatial -join . However, in their paper they were only able
to prove that their approach is “sound” (to be defined) for three of the five query
types. In this paper we show that by making a small modification to their model
one can prove that all the queries can be approximated.

2. They used the Douglas-Peucker path simplification algorithm which in 3-
dimensional space has a running time of O(n2). In our specific case we show that
it can be approximated in O(n logk n) time, where k depends on the model.

Simplifying polygonal paths is a well-researched area in cartography, geo-
graphic information systems, digital image analysis, and computational geom-
etry. However, trajectories differ from polygonal paths, because trajectories do
not only contain information about a sequence of locations, but also when an
entity has been at these locations. Therefore, simplifying trajectories differs from
simplifying polygonal paths, as we might wish to preserve some temporal infor-
mation. The movement of a point object p is described by a sequence of coordi-
nates given at n time steps 〈(x1, y1, t1), . . . , (xn, yn, tn)〉. The aim is to simplify
the trajectory such that both spatial and temporal information is maintained.

In this paper we propose an approach that enables us to use 3-dimensional
path simplification algorithms that compute a simplified path containing a sub-
set of the vertices of the original path. The computational problem of path
simplification is to compute an optimal or minimum ε-simplification, i.e. an
ε-simplification with as few vertices as possible. In applications, this can consid-
erably reduce storage space and processing time.

Imai and Iri [13] formulated the path simplification problem graph theoret-
ically: construct a directed acyclic graph that models all possible edges in a
simplification and compute a shortest path in the graph. Their algorithm runs
in O(n2 log n) time. Chan and Chin [5], and Melkman and O’Rourke [15] improve
this running time to quadratic. Most of the known algorithms use O(n2) time
and space. An exception is the algorithm by Agarwal and Varadarajan [1] that
achieves O(n4/3+δ) time and space, where δ > 0 is an arbitrarily small constant.
However, their algorithm only works for the L1 metric.

Since the problem of developing a near-linear time algorithm for computing
the optimal ε-simplification remains unsolved, several heuristics have been pro-
posed. The most widely used heuristic is the Douglas-Peucker method [6] (and
its variants), originally proposed for simplifying curves under the Hausdorff error
measure. For a real number ε > 0, the polygonal path 〈v1, . . . , vn〉 is approx-
imated as follows. If every vertex vi, for 1 < i < n, has a distance at most ε
to the line � determined by v1 and vn, accept the line segment (v1, vn) as an
approximation for the whole path. Otherwise, split the path at a vertex further
than ε from line � and recursively approximate the two pieces. A straightforward
implementation requires O(n) time to find the point furthest from line �. Since
the recursion depth can be linear, the running time is bounded by O(n2).

In this paper we show how the algorithm can be implemented more efficiently
if we allow the distance computation to be approximate. That is, assume that
we are given ε > 0 and that a segment � is about to be tested. Let p be the point
furthest from �, and let d be the smallest distance between p and �. We say that
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we have an α-approximation, for α > 1, if and only if � is accepted if d ≤ ε and
discarded if d > α · ε. Note that this implies that � can be either accepted or
discarded if ε < d ≤ α · ε.

A crucial aspect of simplification algorithms is how the distance between a
point and a line segment is measured. Originally in the Douglas-Peucker algo-
rithm, the Euclidean distance between a point and a line is used (line model),
where the line is defined by the corresponding line segment. This can lead to
counter-intuitive simplifications. That is why we also use the Euclidean dis-
tance from a point to a line segment (line-segment model). Even though the
Douglas-Peucker algorithm does not output the minimum number of vertices
and its worst-case running time is O(n2), it is often used due to its simplicity
and efficiency in practice. However, in the case where the path is assumed to
be non-self-intersecting, or even monotone, faster methods have been developed.
Hershberger and Snoeyink [10] showed that in the line model the running time
can be improved in the case where the path does not self-intersect by making
use of the fact that the furthest point has to be a vertex of the convex hull of the
point set. Allowing O(n log n) preprocessing they showed how the furthest point
can be found in O(log n) time. This was later improved further to O(n log∗ n)
in [11] by the same authors. We will use a similar approach with two crucial
differences: the input path may self-intersect, and we consider both the line and
the line-segment models. The contribution of this paper is threefold:

1. We consider the problem of simplifying trajectories and modify the model
by Cao et al. [4], such that the five types of queries proposed in [4] can be
approximated in a sound way (Section 2). As a result it follows that the
3-dimensional path simplifications can be used to compress trajectories.

2. We propose an algorithm that produces an approximate Douglas-Peucker
simplification of a trajectory, i.e. a z-monotone path in 3-dimensional space
(Section 4). That is, given two real values ε > 0 and δ > 0, the output is a
(1 + δ)ε-simplification. The running time of our algorithm is O( 1

δ2 n log2 n)
in the line model and O( 1

δ2 n log3 n) in the line-segment model. Previously
no sub-quadratic time (approximation) algorithm was known.

3. In the process we present an O(n log2 n)-time (line model) and an O(n log3 n)-
time (line-segment model) implementation of the Douglas-Peucker algorithm
in the plane in the case where the polygonal path can self-intersect (Sec. 3).

Due to space constraints, all proofs and figures have been omitted and can be
found in the full version.

2 Modelling Trajectories

In this section, we introduce our model for trajectories, which generalises the
results in [4]. We give some preliminary definitions e.g. of spatio-temporal queries
and soundness of distance functions. Then we describe our model and prove its
effectiveness regarding soundness.
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2.1 Preliminaries

According to Cao et al. [4] most spatio-temporal queries are composed of the
following five types of queries: where-at , when-at , intersect , nearest-neighbour
and spatial -join . We state the semantics of the two most basic queries where-at
and when-at on a trajectory T = 〈(x1, y1, t1), . . . , (xn, yn, tn)〉 as follows.

– where-at(T, t) returns the location of the entity corresponding to T at time
t according to T . If t < t1 or t > tn, then the answer is undefined.

– when-at(T, x, y) returns the time t at which a moving object on trajectory
T is expected to be at location (x, y). If the location is not on the trajectory,
or the moving object visits the location more than once, or is stationary at
the location, then the answer is undefined.1

Also the notion of soundness of distance functions is discussed in [4]. For a tra-
jectory T , let q(T ) denote the answer of some spatio-temporal query q with input
T . To make the dependence on both ε and the underlying distance function dist
explicit, we let a (dist , ε)-simplification denote a simplification that is computed
using dist .

Definition 1. Let T be a trajectory and T ′ its (dist , ε)-simplification. The dis-
tance function dist is sound for query q, if for each ε there exists a bound δ,
such that |q(T, .) − q(T ′, .)| ≤ δ. For the where-at query |q(T, t) − q(T ′, t)| is the
Euclidean distance between the two points given as answers, and for the when-
at query |q(T, x, y)− q(T ′, x, y)| is the difference between the two returned times.

Cao et al. [4] define distance functions between a point pm and a line seg-
ment pipj in 3-dimensional space: E2 (2-dimensional Euclidean distance), E3 (3-
dimensional Euclidean distance), Eu (Eu(pm, pipj) =

√
(xm − xc)2 + (ym − yc)2

where pc is the point on pipj with tm = tc) and Et (Et(pm, pipj) = |tm − tc|
where pc is the point on the 2-dimensional projection of pipj onto the xy-plane
that is closest to the 2-dimensional projection of pm onto the xy-plane). They
also show that only the distance function Eu is sound for the where-at query,
and only the distance function Et is sound for the when-at query. Hence, they
propose to use a combined distance function based on Eu and Et which is sound
for both queries. This approach combines the strength of both single distances,
but also their weaknesses. This combined distance function results in the worst
compression ratio among the researched distance functions.

We argue that using Eu gives rise to another problem. Consider a trajectory
where an entity moves with high speed along the x-axis (i.e. y = 0) and changes
slightly its speed. (The effect can be amplified by repeating this pattern.) From
a practical point of view we might wish to simplify this trajectory to a line
segment, as we are not interested in preserving the marginal speed changes of
an entity (e.g. a car) on a long line segment (e.g. a motorway). However, with
the Eu distance we are unable to do so.
1 This definition is taken from [3]. The definition in [4] is similar but considers the

stationary case as a special case.
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2.2 Our Model

As in [4], we think of a trajectory as a polygonal path in 3-dimensional space.
The x- and y-dimensions correspond to the two spatial dimensions in which the
entities move. The third dimension is the time t, which enables us to preserve
temporal information. If we want to apply a path-simplification algorithm on
such a 3-dimensional path, we need a distance measure between points (or lines
or line segments) in 3-dimensional space. The two spatial dimensions have the
same physical units, but the time dimension has a different unit. We choose to
use the Euclidean distance in 3-dimensional space and therefore propose to use
a conversion parameter α that transforms time units into space units. Given a
point p in 3-dimensional space, the 3-dimensional ball Bp with centre at p and
radius ε contains exactly those points within distance at most ε from p. Hence,
if we would like to know whether point p′ is within distance ε of p, then this is
the same as asking whether p′ is inside Bp.

In our distance function distα, the impact of α can be seen in two different
ways: either as ‘stretching’ the t-axis or as ‘flattening’ the ball Bp. In the former,
we can say that the bigger α, the longer the time axis (i.e. the more spatial length
units that correspond to one time unit), and always consider a perfect ball B as
basis for the distance between two points. In the latter, we keep the coordinate
system fixed, but the bigger α the flatter the ball B in the t-dimension. Formally,
the distance function is defined as follows.

Definition 2. The distance distα between a point pm = (xm, ym, tm) and a line
segment pipj is the shortest Euclidean distance in 3-dimensional space from pm

to a point pc on pipj where 1 time unit is equivalent to α space units, i.e.:

distα(pm, pipj) =
√

(xm − xc)2 + (ym − yc)2 + α · (tm − tc)2

The three distance functions E2, E3, and Eu defined in [4] are special cases
of our distance function, namely dist0 ≡ E2 (where ‘≡’ denotes equivalence),
dist1 ≡ E3, and dist∞ ≡ Eu. Choosing α = 0 renders the time information
irrelevant, and hence it is equivalent to projecting the line segment onto the
xy-plane and using the Euclidean distance on it. This distance function has the
advantage that it does simplify trajectories but it is not sound for the where-
at query. The other extreme, α → ∞, denoted as dist∞, means the ball Bp is
flattened into a 2-dimensional disk, which is parallel to the xy-plane. This means
that the distance between a point p and a line segment pipj is the Euclidean
distance between p and p′, where p′ is the point on pipj that has the same time
value. This distance function has the advantage that it is sound for the where-
at query, but it does not simplify trajectories.

Apart from being more general, our approach to be able to choose α has the
advantage of allowing any distance function between dist0 ≡ E2 and dist∞ ≡ Eu.
Intuitively, we can fine-tune the trade-off between ‘soundness’ and ‘sensible sim-
plification’, and we can prove distα to be sound for all α under certain condi-
tions. To make this more precise, we incorporate the speed of entities in our
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considerations, where the speed s� along the line segment � is defined as the
distance in the xy-plane divided by the time difference corresponding to �.

Theorem 1. Let � = pipj be a line segment with speed s� that is part of a
(distα, ε)-simplification of the trajectory T = 〈p1, . . . , pi, . . . , pj , . . . , pn〉, and let
t be any moment of time with i ≤ t ≤ j. Then we have:

|where-at(T, t) − where-at(�, t)| ≤ δs :=
ε

sin(arctan α
s�

)

The previous theorem tells us that the bigger α
s�

becomes the smaller gets δs.
Hence, the distance function distα is sound according to Definition 1 for the
where-at query for any α > 0 as long as 0 < s� < ∞. However, in practice only a
restricted range of values for α might be sensible. For instance setting α = smax,
where smax is the maximum speed along the trajectory, results in δs ≤

√
2 · ε for

the entire trajectory. Also values smaller than smax might make sense for α in
practice. In this case, the slower the speed on a line segment of the simplification
is, the smaller δs is. In the same way as for the where-at query we also obtain
that the when-at query is sound for distα, if α 	= 0 and s� > 0.

Theorem 2. Let � = pipj be a line segment with speed s� that is part of a
(distα, ε)-simplification of the trajectory T = 〈p1, . . . , pi, . . . , pj, . . . , pn〉, and
let (x, y) be any point that lies exactly once on both the projections of � and
〈pi, . . . , pj〉 onto the xy-plane. Then we have:

|when-at(〈pi, . . . , pj〉, x, y) − when-at(�, x, y)| ≤ δt :=
ε

sin(arctan s�

α )

Hence, the smaller s�

α is, the bigger δt is. In practice it is sensible to assume that
the speed of entities is bounded from above, it is unreasonable to assume that
all entities have a minimum speed; this would forbid an entity to be stationary.
Being able to choose α allows a user to fine-tune the trade-off between spatial
and temporal soundness of distα, as reflected by Theorems 1 and 2.

Cao et al. show in [4] that, if a distance function is sound for the where-at
query, then it is also sound for the nearest -neighbour and intersect queries, and
hence, Theorem 1 carries over to those queries, too. The spatial -join is special
in the sense that the query itself uses a distance function between trajectories.
For α1 ≤ α2 we have that distα1(pm, pipj) ≤ distα2(pm, pipj). From results in [4]
it then follows that distα2 is sound for the spatial -join that uses the Hausdorff
distance function based on distα1 as distance function between trajectories.

We believe that the definition of the when-at query as given in [4] is too
strict. When considering the soundness of a distance function, we compare the
original trajectory T and its simplification T ′. Although all points of T ′ have
a distance to T of at most ε, we could expect that when-at(T, x, y) or when-
at(T ′, x, y) is undefined for almost all points (x, y), which renders any reasoning
about soundness to be difficult. Hence, we propose different semantics for the
when-at query. As simplified trajectories are approximations anyway, we allow
a query region instead of a query point.
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– apx -when-at(T, x, y, λ) returns a time t at which a moving object on trajec-
tory T is expected to be within distance λ from location (x, y). If there is no
such location on the trajectory, then the answer is undefined.

It seems impossible to prove the soundness of this query in the same sense as
above. However, we can prove that apx -when-at will report a point at time t
for which it holds that the entity must have been close to (x, y) at some point
in time that is close to t. That is, we can prove a ‘soundness’ bound that has
both a spatial and temporal error. To simplify the statement of the theorem we
define set-apx -when-at(T, x, y, λ) as reporting the set of time points when the
trajectory T is within distance λ from (x, y). For a trajectory T we use T (t) to
denote the position in the xy-plane of the entity along T at time t.

Theorem 3. Let P be a (distα, ε)-simplification of trajectory T = 〈p1, . . . , pn〉.
Given a query point q = (x, y) in the xy-plane, let t1 be the time reported
by apx -when-at(P, x, y, λ + ε). There exists a time point t2 in set-apx -when-
at(T, x, y, λ + 2ε) such that |t1 − t2| ≤ ε/α and |T (t1) − P (t2)| ≤ ε.

Note that if we set α to be greater than the largest speed of the entity then both
where-at and apx -when-at can be sound for small errors at the same time for
any input path. This is the first time any such bound has been shown using a
single distance function, even though it is approximate in both time and space.

3 A Fast Implementation of the Douglas-Peucker
Algorithm for Self-intersecting Polygonal Paths

In this section we present a fast implementation of the Douglas-Peucker algo-
rithm in the case when the polygonal path may self-intersect. We consider two
variants of the algorithm, one which works in the line-segment model and an-
other which works in the line model. Hershberger and Snoeyink [11] gave an
O(n log∗ n)-time algorithm working in the line model when the path does not
self-intersect. However, their approach heavily rely on the fact that the path does
not self-intersect since additional structure can be used in this case to develop
efficient algorithms. Furthermore, their algorithm is developed to work in the
line model, not in the line-segment model. In the self-intersecting case, only the
trivial O(n2) time bound is known, to the best of the authors’ knowledge.

As a first step, we will prove that, just as in the line model, the furthest point
has to be a vertex on the convex hull of the point set (this is the only structural
result we were able to reuse from [10,11]). For simplicity we will throughout this
section assume that no three points lie on a line.

Lemma 1. Given a set of n ≥ 3 points S and a line segment �, the maximum
distance between S and � is defined between a vertex p on the convex hull of S.

An important subproblem that we need to consider is the following.

Problem 1. (Line-segment furthest-point queries (LSFP-queries)) Preprocess an
ordered set of n points p1, . . . , pn in convex position in the plane into a data
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structure supporting the following query: given a line segment (pi, pj), 1 ≤ i <
j ≤ n, report the point pk that is furthest from (pi, pj) such that i < k < j.

Below we will prove that the LSFP-query problem can be transformed into
the following problem with only a small loss in time and space complexity.

Problem 2. (Half-plane furthest-point queries (HPFP-queries)) Preprocess a set
of n points p1, . . . , pn in convex position in the plane into a data structure sup-
porting the following query: given a point q and a directed line �, report the
point pi that is furthest from q subject to being to the left of �.

Lemma 2. A set S of n points in convex position in the plane can be prepro-
cessed in 2F (n)+O(n log n) time using O(n)+S(n) space such that LSFP-queries
can be answered in 2Q(n)+ O(log n) time, where F (n) is the preprocessing time
needed to store S in a data structure of size S(n) that answers HPFP-queries in
Q(n) time.

The O(n log n) time bound in the above lemma comes from the fact that we
need to compute the convex hull of S. However, if the points in S are sorted
with respect to their x-coordinates in increasing order, then this step can be
done in O(n) time. Unfortunately this improvement will not affect the overall
time complexity of the Douglas-Peucker algorithm.

3.1 Half-Plane Furthest-Point Queries

The HPFP-query problem was first studied by Aronov et al. [2] and they showed
the following two results:

Fact 1. (Corollary 5 in [2]) There is a data structure that requires O(n1+β)
space and preprocessing time, and supports HPFP-queries in O(21/β log n) time
on n points in convex position, for any real number β > 0.

Fact 2. (Corollary 11 in [2]) There is a data structure that requires O(n log3 n)
space and polynomial preprocessing time, and supports HPFP-queries in O(log n)
time on n points in convex position.

We present a data structure that has slightly higher query time, but because of
smaller preprocessing time and smaller space consumption our approach leads
to a more efficient implementation of the Douglas-Peucker algorithm.

Lemma 3. One can preprocess a planar set S of n points in convex position
in O(n log n) time using O(n log n) space such that HPFP-queries on S can be
answered in O(log2 n) time.

3.2 Path Simplification in the Line-Segment Model

In this section we merge the results into one single data structure. In particular,
we study the problem of preprocessing a polygonal path P with n vertices such
that, given a line segment � and a subpath P ′ of P , the point in P ′ furthest from
� is reported. We will prove the following lemma.
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Lemma 4. A polygonal path P = 〈v1, v2, . . . , vn〉 with n vertices in the plane
can be preprocessed in time O(n log2 n) +

∑log n
i=0 2i+1F ( n

2i )), using O(n log n) +
∑log n

i=0 2iS( n
2i ) space such that, given a line segment � and a subpath P ′ =

〈vi, . . . , vj〉 of P , the point in P ′ furthest from � can be reported in time
O(log2 n) + 2

∑log n
i=0 Q( n

2i ), where F (n) is the preprocessing time needed to con-
struct a data structure of size S(n) that can answer HPFP-queries in Q(n) time.

The standard Douglas-Peucker algorithm iterates over at most n line segments.
Thus, by combining Lemmas 2, 3 and 4 we obtain the following theorem.

Theorem 4. (line-segment model) For a polygonal path P with n vertices in the
plane, the Douglas-Peucker algorithm can be implemented in time O(n log3 n)
using O(n log n) space.

Note that in Lemma 4 presorting could be used to improve the preprocessing
time by a logarithmic factor, but this does not have any effect on the asymptotic
efficiency of the Douglas-Peucker algorithm.

3.3 Path Simplification in the Line Model

Even if Theorem 4 also holds in the line model, the inclusive structure of the
distance queries is not fully utilised. It turns out that path simplification is easier
in the line model. Next we show how both the time and the space bounds can be
improved by a logarithmic factor. The tools used in this improved construction
are basically the same as those used before. The main reason for obtaining this
improvement is that a vertex of a convex hull furthest from a line can be reported
fast by binary search [16] by determining the two tangents parallel to the given
line and returning the furthest of the vertices on these tangents.

The algorithm operates in four steps. First, the vertices on the given polygonal
path P of size n are partitioned into canonical sets whose size is a power of 2.
Let the collection of these sets be P = {P1, P2, . . . , Ph}. The size of P1 should
be the largest power of 2 no greater than n, the size of P2 the largest power
of 2 no greater than n − |P1|, and so on. That is, h ≤ �log n�. Second, the
canonical sets of P are presorted according to their x-coordinate. Let S be the
corresponding collection of sorted sets of vertices. Also, associate each vertex in
a sorted set with its index in the polygonal path. Third, the convex hulls of the
canonical sets are computed. Let the resulting collection be C. Due to presorting,
the computation of each convex hull only takes linear time if we use Graham’s
convex-hull algorithm. Fourth, the recursive subroutine, to be described next, is
called with ε, P , P , S, and C.

Assume that the input of the recursive subroutine is real number ε and polyg-
onal path 〈vi, vi+1, . . . , vk〉 together with the corresponding collections of canoni-
cal sets, sorted sets, and convex hulls. The functioning of the recursive subroutine
is as follows:

1. Compute the furthest point between the polygonal path and the line � deter-
mined by vi and vk. This is done by computing the furthest point between
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� and the convex hulls, one by one, and by determining the overall furthest
point. Let vj be this vertex.

2. If the distance between line � and vertex vj is less than or equal to ε, return
the line segment (vi, vk) as a simplification for P and stop this branch of
recursion.

3. Split the path into two subpaths 〈vi, vi+1, . . . , vj〉 and 〈vj , vj+1, . . . , vk〉. Cor-
respondingly, split the canonical set containing vj into smaller canonical sets
whose size is a power of 2. This is done by repeatedly halving the canonical
set containing vj until vj forms a singleton set. For each canonical set cre-
ated during this process, compute the sorted set of vertices by scanning the
sorted set corresponding to the parent canonical set. Finally, compute the
convex hulls of the new canonical sets created. After halving a canonical set,
it and the corresponding sorted set and convex hull are disposed.

4. Call the recursive routine for both subpaths together with the corresponding
collections of canonical sets, sorted sets, and convex hulls.

Let us now analyse the performance of this algorithm for a polygonal path of
n vertices. The amount of work done in the three first steps of the main routine is
dominated by that required by sorting, i.e. the running time is O(n log n). In the
recursive subroutine in connection with each halving, sorted sets are scanned
and convex hulls may be computed, both requiring time linear on the size of
the subpaths considered. Since each vertex is involved in O(log n) halvings, the
overall running time of all splits is O(n log n). At each recursive step, in the
furthest-point calculation the number of convex hulls to be considered is bounded
by O(log n) and each distance computation between a line and a convex hull
takes O(log n) time. Naturally, the number of recursive calls is linear in the
worst case. Therefore, the total running time of the algorithm is O(n log2 n).
At any given point in time, each vertex can be in at most one canonical set.
Hence, the space bound is O(n). The above discussion can be summarised as
follows:

Theorem 5. (line model) For a polygonal path P with n vertices in the plane,
the Douglas-Peucker algorithm can be implemented in time O(n log2 n) using
O(n) space.

4 A fast Implementation of the Douglas-Peucker
Algorithm in 3-dimensional Space

In this section, we present a fast, approximate version of the Douglas-Peucker
algorithm in R

3. The algorithm can be used for 3-dimensional paths that are
monotone along the z-axis or for trajectories with two spatial dimensions and
one temporal dimension. In addition to taking as input a distance error thresh-
old ε, it takes a real number δ > 0, and produces a simplified path that is within
a distance of (1 + δ)ε from every vertex of the original path. It is possible to set
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ε = ε∗

1+δ to obtain a distance error bound of exactly some desired value ε∗. In
this case, δ does not affect the distance threshold, but a larger δ may result in
a larger number of vertices in the simplified path. As for the original Douglas-
Peucker algorithm, this approach is a heuristic, and we present no bound on the
number of vertices.

The general idea of the algorithm is as follows. First, we project the vertices of
the original path onto O(1/δ2) rotations of the xy-plane, equally spaced in angle
around the y- and z-axes, yielding a 2-dimensional projection of the original
path that may contain self-intersections. One of the 2-dimensional algorithms
of Section 3 is then executed on each of the planes, up to the point where the
simplified path is to be split at a vertex. At this point, a split vertex has been
chosen for each projection plane, based on the distance in the projection between
that vertex and the proposed simplified line segment. From these potential split
vertices, take the one with the maximum distance to the line segment over all of
the projection planes. Split at this vertex in all planes, and continue executing.
We will show that the original distance between the vertex and the line segment
in R

3 is at most (1 + δ) times the maximum projected distance over all of
the planes. This property allows us to construct an approximate simplification
efficiently in 3-dimensional space.

We start by defining a set Ψ of projection planes. Given two angles 0 ≤ α ≤ π
and 0 ≤ β ≤ 2π, let ψα,β be the plane obtained by rotating the xy-plane around
the y-axis by α radians and around the z-axis by β radians, i.e. the plane with
normal vector 〈sin α cosβ, sin α sin β, cosα〉. Suppose we wish to perform k =
�2π/arccos(1/(1 + δ))� discrete rotations around the y-axis, and 2k around the
z-axis. The angle between successive rotations around either of the axes will be
θ = π/k. Note that for any real δ > 0, it holds that 0 < θ < π/4. Now we can
define a set of projection planes Ψ = {ψiθ,jθ | i, j ∈ Z, 0 ≤ i < (k/2), 0 ≤ j < k}.

Lemma 5. Given a plane with normal vector n̂, there exists a plane ψ∗ ∈ Ψ
with normal vector n̂∗ such that the angle between n̂ and n̂∗ is no more than θ.

Given a point p ∈ R
3 and a plane ψ ∈ Ψ , let proj (p, ψ) be the orthogonal

projection of p onto the plane ψ, defined as the point of intersection between
ψ and the line orthogonal to ψ passing through p. To prove an approximation
bound, we first need a bound on the distance between two projected points from
their original distance in R

3.

Lemma 6. Given two points p, q ∈ R
3, it holds that

|pq| cos θ ≤ max
ψ∈Ψ

|proj (p, ψ)proj (q, ψ)| ≤ |pq|

In the Douglas-Peucker algorithm, we are not only interested in the distance
between two points, but also in the distance between a point and a line. We
therefore need to look at the projection of the triangle given by the point and
two points on the line.
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Lemma 7. Given three points p, q, r ∈ R
3 such that ∠pqr > 2θ, it holds that

dist(q, pr) ≥ max
ψ∈Ψ

dist(proj (q, ψ), proj (p, ψ)proj (r, ψ)) ≥ dist(q, pr)√
2 − cos2 θ

We are now ready for the final result of this section.

Theorem 6. Given a real number δ > 0, a (1+δ)-approximate Douglas-Peucker
simplification can be computed in the line-segment model in O( 1

δ2 n log3 n) time
using O( 1

δ2 n log n) space, and in the line model in O( 1
δ2 n log2 n) time using

O( 1
δ2 n) space.
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Abstract. Widespread availability of location aware devices (such as
GPS receivers) promotes capture of detailed movement trajectories of
people, animals, vehicles and other moving objects, opening new op-
tions for a better understanding of the processes involved. We investigate
spatio-temporal movement patterns in large tracking data sets. Specifi-
cally we study so-called ‘popular places’, that is, regions that are visited
by many entities. We present upper and lower bounds.

1 Introduction

Technological advances of location-aware devices, surveillance systems and elec-
tronic transaction networks produce more and more opportunities to trace mov-
ing individuals. Consequently, an eclectic set of disciplines including geography,
market research, data base research, animal behaviour research, surveillance, se-
curity and transport analysis shows an increasing interest in movement patterns
of entities moving in various spaces over various times scales [1,7,11]. In the case
of moving animals, movement patterns can be viewed as the spatio-temporal ex-
pression of behaviours, e.g. in flocking sheep or birds assembling for the seasonal
migration. In a transport context, a movement pattern could be a traffic jam.

In this paper we will focus on the problem of computing ‘popular places’ (also
called ‘convergence patterns’ in [13,14]) among geospatial lifelines. The input
is a set E of n moving point objects Λ1, . . . , Λn whose locations are known at
τ consecutive time-steps t1, . . . , tτ , that is, the trajectory of each object is a
polygonal line that can self-intersect, see Fig. 1. For brevity, we will call moving
point objects entities from now on, and when it is clear from the context, we
use Λ to denote an entity or its trajectory. It is assumed that an entity moves
between two consecutive time steps on a straight line, and the velocity of an
entity along a line segment of the trajectory is constant. Given a set of n entities
in the plane, an integer k > 0 and a real value r > 0, a popular place is a square
of side length r, that is visited by at least k entities. Throughout the article
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σσ̃

Fig. 1. An example where three entities Λ1, Λ2 and Λ3 are traced during 16 time steps.
For k = 3 the square �σ is a popular place only in the continuous model. While σ is a
popular place for k = 3 in both the discrete and continuous model.

we will for simplicity assume r = 1. Note that the entities do not have to be
in the square simultaneously. Spatio-temporal patterns have traditionally been
considered in two settings: the discrete case where only the discrete time steps
are considered and the continuous case where the polygonal lines connecting the
input points are considered. Recently it has been argued [5,8] that the continuous
model is becoming more important since trajectories will have to be compressed
(simplified) to allow for fast computations. Nowadays it is not unusual that the
coordinates are recorded with a frequency of one second. A popular place in the
two different models is defined as follows (see Fig. 1).

Definition 1. Given a set of n moving entities in the plane, an integer k > 0
and a real value r > 0. An axis aligned square σ of side length r is a popular
place in the discrete model if σ contains input points from at least k different
entities. In the continuous model σ is a popular place if it is intersected by
polylines from at least k different entities.

Recently, there has been considerable research in the area of analysing and mod-
elling spatio-temporal data. In the database community research has mainly fo-
cussed on indexing databases so that basic spatio-temporal queries concerning
the data can be answered efficiently. Typical queries are spatio-temporal range
queries, spatial or temporal nearest neighbours, see for example the work by
Sǎltenis et al. [16] and Hadjieleftheriou et al. [12]. From a data mining perspec-
tive Verhein and Chawla [17] used association rule mining to detect patterns in
spatio-temporal sets. They defined a region to be a source, sink or a thorough-
fare depending on the number of objects entering, exiting or passing through the
region. Mamoulis et al. [15] studied periodic patterns, e.g. yearly migration pat-
terns or daily commuting patterns. There have been several papers considering
the problem of detecting flock patterns and leadership patterns [2,3,4,9].

Precursory to this work Laube et al. [13,14] proposed the REMO framework
(RElative MOtion) which defines similar behaviour in groups of entities. They
defined patterns such as ‘flock’, ‘convergence’, ‘trend-setting’ and ‘leadership’
based on similar movement properties such as speed, acceleration or movement
direction, and gave algorithms to compute them efficiently. They proposed an
input model where a ray was drawn from the current position of each entity
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that corresponds to its direction. The aim is to find or forecast a popular place
(assuming the entities do not change their direction).

As mentioned in earlier work [4,9,10], specifying exactly which of the patterns
should be reported is often a subject for discussion. For the discrete model we
design a general algorithm that can generate the following output:

– the popular place with the most number of entities (detect maximum),
– a set of rectangles of width 1 and height 2 such that each reported rectangle

contains a popular place and all popular places are covered by the reported
rectangles (approximate),

– a set of polygons H(E) such that any axis-aligned unit square with centre
in a polygon of H(E) is a popular place (report all).

In the continuous model we only describe how to find the set H(E). However,
one can easily modify it to any of the output models listed above.

In Section 2 we present an algorithm for the discrete model, followed by an
O(τ2n2) time algorithm in the continuous model. And in Section 4, we present
lower bounds and hardness results. We omitted proofs and some details due to
space constraints in this extended abstract.

2 A Fast Algorithm in the Discrete Model

A set of n entities is traced over a period of τ time steps, generating τn points
in the plane that correspond to the positions of the tracked entities. We will
refer to the τn points as input points. The input parameter k > 0 defines the
minimum number of entities defining a popular place, see Definition 1.

The idea of our algorithm is to use a vertical sweep line � sweeping the points
from left to right. Together with the sweep line we sweep a vertical strip str�

of width 1 whose right boundary is �. Each of the τn input points induces two
event points, one when the point enters str� and one when the point leaves str�.
We refer to these types as start and end events.

For a start event, say that an input point p belonging to entity Λ enters str�,
we update our data structures and check for the largest popular place located
in str� that is visited by Λ. Such a popular place must obviously be contained
in the axis-aligned rectangle Rp having width 1, height 2 and p on the midpoint

�

1

2

Λ

Λ′

pRp

�

Λ

(a) (b)
str�str�

Fig. 2. (a) Finding the popular places in Rp visited by Λ. (b) The set IΛ is indicated
by the bold, solid line segments on �.
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of its right vertical segment, see Fig. 2a. If we check at every start event p for a
largest popular place within Rp then we will find the maximum popular place.
For an end event, say a point p belonging to Λ is about to leave str�, we simply
remove it from the current data structures.

We are going to show how we can maintain a set of trees such that given a
y-interval [a, b] (the y-coordinates of the top- and bottom side of Rp), we can
find the y-value of the centre of a unit square that contains the largest number
of different entities in O(log τn) time per query. Below we will show how we can
achieve this by maintaining a tree for each entity separately in O(log τ) time per
event, and then we show how we can merge this information into one tree Tint

that can be queried and updated in O(log τn) time.

One Structure for Each Entity. During the sweep, we maintain a set of
disjoint y-intervals IΛ, for each entity Λ, such that IΛ contains exactly the y-
intervals for which a square s in str� with centre in an interval in IΛ contains
a point of Λ, see Fig. 2b. The square containing a maximum popular place is a
square whose centre is contained in a maximum number of such y-intervals.

We will maintain two trees BΛ and TΛ for each entity Λ. The tree BΛ is a
balanced binary search tree on the points of Λ currently within str� and ordered
with respect to their y-coordinates. The tree TΛ will store the set IΛ of intervals
w.r.t. the current position of �. The leaves of TΛ store the endpoints of the
intervals in IΛ ordered on their y-coordinates. Each leaf also contains a pointer
to the leaf in TΛ containing the other endpoint. Inserting and deleting a new
interval can be done in O(log τ) time per update.

Assume we are about to process a start event pΛ = (x, y). Let I = [y −
1/2, y + 1/2] and note that any unit square within str� with centre in I will
contain pΛ. The point is inserted into BΛ and then a range query is performed
in TΛ that reports the intervals of IΛ intersecting I. Since the intervals in IΛ

are disjoint and have length at least one, I may intersect at most two intervals
in IΛ. Thus, finding the intersecting intervals can be done in O(log τ) time. If the
number of intersecting intervals is zero then I is inserted into TΛ. If I intersects
one interval I1 then I1 is deleted and the interval I ∪ I1 is inserted, and if two
intervals I1 and I2 are intersected then they are deleted and I∪I1∪I2 is inserted.

In the case when str� is about to process an end event pΛ = (x, y), update
the trees in a similar manner. Report the two adjacent neighbours p1 = (x1, y1)
and p2 = (x2, y2) of pΛ in BΛ, and delete pΛ. Assume without loss of generality
that y1 < y < y2. Let I be as defined above, and let I ′ be the interval in IΛ

containing I. We have to distinguish three cases:

1. If |y2 − y1| ≤ 1 then we are done since I ′ does not change.
2. If min{|y − y1|, |y − y2|} > 1 then I ′ = I is deleted from TΛ.
3. If |y − y1| > 1 and |y − y2| ≤ 1, or vice versa, then I ′ is deleted from TΛ, and

the interval I ′ \ [y − 1/2, y2 − 1/2) is inserted.

We denote the set of all trees TΛ and BΛ by T ent and Bent, respectively. Since
the total number of events is 2τn the below corollary follows immediately.
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Corollary 1. Throughout the sweep, the sets T ent and Bent can be maintained
in O(τn log τ) time requiring O(τn) space.

Maintaining the Status of the Sweep. We store all intervals that are cur-
rently in str� in a balanced binary tree Tint. We use Tint to perform the maximum
popular place query for Rp. Let I =

⋃
Λ IΛ. We assume that all start and end

points of intervals in I are pairwise disjoint. The leaf set of Tint corresponds to
the set of start and end points in I ordered w.r.t. their y-coordinates.

Since there are τn points, Tint contains at most O(τn) leaves and thus at most
O(τn) vertices at all times. During the sweep Tint is maintained as follows: every
time a tree TΛ is updated we perform the corresponding update operation in
Tint. One update in TΛ requires the deletion and insertion of a constant number
of leaves in Tint. Thus, one update operation in TΛ induces update operations
in Tint that can be performed in O(log τn) time. Since the sweep conducts 2τn
update operations, we have the following:

Lemma 1. Throughout the sweep, the tree Tint can be maintained in O(τn log τn)
time requiring O(τn) space.

We now show how we can store appropriate information in Tint in order to
perform maximum popular place queries.

Extending Tint to Allow for Efficient Queries. A point p = (x, y) is said
to stab an interval [a, b] if y ∈ [a, b]. The stabbing number of p w.r.t. a set of
intervals I is the number of intervals in I that p stabs. Note that for a start
event p we have to find the point in � ∩ Rp having maximum stabbing number
w.r.t. I. We maintain this information implicitly in order to do updates as well
as queries in O(log τn) time.

For this we store two values, sum(V ) and maxpre(V ), with each vertex V in
Tint, see Fig. 3. For leaves L we define sum(L) and maxpre(L) to be +1 if L
corresponds to an interval start point and to be −1 otherwise. For inner vertices
V let Vleft and Vright denote the left and the right child of V , respectively. Then,
sum and maxpre are defined as follows:

sum(V ) := sum(Vleft) + sum(Vright), and
maxpre(V ) := max{maxpre(Vleft), sum(Vleft) + maxpre(Vright)}

Let L1(V ), . . . , Lm(V ) be the sequence of all leaves contained in the subtree
rooted at V enumerated from left to right. The intuition of the definitions is that
sum(V ) =

∑m
j=1 sum(Lj(V )) and maxpre(V ) = max1≤i≤m

∑i
j=1 sum(Lj(V )).

When performing an update operation in Tint, i.e. deleting or inserting a leaf
L, updating sum and maxpre is only required on the path from L to the root.
Hence, updating sum and maxpre takes O(log τn) time per update operation.

Lemma 2. Throughout the sweep, the values sum and maxpre can be maintained
in O(τn log τn) time requiring O(τn) space.
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Fig. 3. The values sum (left) and maxpre

(right) for the depicted tree Tint

Fig. 4. Querying Tint for the maximum
stabbing number maxl,r

Recall the processing of the sweep. When we arrive at a start event p = pΛ, we
first perform the required updates in BΛ and TΛ, update Tint accordingly and
then query Tint for the most popular place in Rp. Next, we show how the query
can be done in O(log τn) time.

Let L1, L2, . . . be the set of leaves in Tint ordered from left to right. Each of the
leaves in Tint is associated with the y-value of the stored start or end point. By per-
forming two searches in Tint we can find the leftmost leaf Ll in Tint whose y-value
is at least yp − 1/2 and the rightmost leaf Lr whose y-value is at most yp + 1/2 in
O(log τn) time. This defines our query range within Tint: the goal is to find the leaf
between (and including) Ll and Lr whose stored point stabs the maximum num-
ber of intervals among these leaves. We denote this maximum stabbing number by
maxl,r. We have that maxl,r = maxl≤m≤r{

∑m
j=1 sum(Lj)}. We claim that maxl,r

canbe calculatedby walking along the searchpaths fromLl and Lr, respectively, to
the root R of Tint. We sketch how this is done. Note that the sketch comprises that
a leaf with stabbing number maxl,r can be found and reported in O(log τn) time.

Let R′ be the least common ancestor of Ll and Lr and let mid, with l ≤
mid < r, be the index such that Lmid is the rightmost leaf in the left subtree of
R′, see Fig. 4. Set sumprefix := 0, and consider the traversal of the search path
from R to Ll. Every time the search path descends into the right subtree of a
vertex V add sum(Vleft) to sumprefix, see Fig. 4. When the search path reaches
Ll we have sumprefix =

∑l−1
j=1 sum(Lj). Let maxl = maxl≤m≤mid

∑m
j=l sum(Lj)

and maxr = maxmid+1≤m≤r

∑m
j=mid+1 sum(Lj). Once we know maxl and maxr,

the maximum stabbing number can be computed by maxl,r = max{sumprefix +
maxl, sum(R′

left)+maxr}. It remains to show how to compute maxl and maxr.
We compute maxl by walking along the path from Ll to R′

left. Initially,
we set maxl := maxpre(Ll), and a helper variable sumseen := sum(Ll). Let
Ll = V 0, V 1, . . . , R′

left be the sequence of nodes that are traversed when walk-
ing from Ll to R′

left in Tint. Each time we encounter a vertex V i having V i−1

as a left child we look for a new maximum in the right subtree, i.e. maxl :=
max{maxl, sumseen + maxpre(V i

right)} and update sumseen to sumseen :=
sumseen + sum(V i

right). It is not hard to see that in the end of the traversal
maxl holds the right value. There are O(log τn) vertices on the path from Ll to
R′, and each vertex is processed in constant time. Thus, the time to compute
maxl is O(log τn).
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In a similar fashion we compute maxr. Here, we walk along the path from
R′

right to Lr, let R′
right = V 0, V 1, . . . , Lr be the sequence of traversed vertices.

Initially, we set maxr := 0 and sumseen := 0. Each time we encounter a vertex
Vi which is a right child of its parent we look for a new maximum in the left
subtree, i.e. maxr := max{maxr, sumseen+maxpre(V i−1

left )} and update sumseen to
sumseen := sumseen+sum(V i−1

left ). Arriving at Lr we get maxr by the final update
maxr = max{maxr, sumseen+maxpre(Lr)}. Now, we are ready to summarise the
results obtained in this section.

Lemma 3. Given Tint and a y-interval [l, r] one can, in O(log τn) time, return
the highest stabbing number maxl,r for any point in [l, r] together with a point
p ∈ [l, r] having this stabbing number.

Theorem 1. Given a set E of n moving point objects in the plane the unit
square containing the maximum number of different entities in the discrete model
can be computed in O(τn log τn) time using O(τn) space.

Approximating and Reporting all Popular Places. For a start event
p = pΛ we have seen how we can detect a unit square in Rp that contains
the maximum number kmax of different entities in the discrete model among all
unit squares contained in Rp. If we now find that kmax ≥ k we can report Rp as
an approximation for (potentially) all popular places that are contained in Rp.
This leads directly to the following result.

Theorem 2. Given a set E of n entities in the plane we can report rectangles
of width 1 and height 2 such that each reported rectangle contains a popular
place and all popular places are covered by the reported rectangles. This requires
O(τn log τn) time and O(τn) space.

It gets more involved when we want to report the set of polygons H(E) such that
any axis-aligned unit square with centre in a polygon of H(E) defines a popular
place and each centre of a popular place is contained in H(E). However, we can
extend the above technique in order to show the following theorem.

Theorem 3. Given a set E of n moving point objects in the plane the poly-
gons H(E) can be reported in O(τn log τn + M log τn) time using O(τn + M)
space, where M is the number of all popular place defining intervals that we find
throughout the algorithm.

3 An Exact Algorithm in the Continuous Model

In this section we consider the continuous model and present an O(τ2n2) time
algorithm using O(τn) space. Later we will argue that it is unlikely to find
an asymptotically faster algorithm. Our algorithm takes as input a set E of n
entities Λ1, . . . , Λn moving in the plane over τ time steps. The output of the
algorithm will be a set H(E) of polygons. H(E) is the minimal point set in the
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plane such that any axis-aligned unit square whose centre lies in H(E) intersects
at least k trajectories of E. Note that these polygons are in general not rectilinear
polygons.

We first show how to construct an arrangement A of lines. The general idea is
to sweep the arrangement A and then building H(E). For ease of presentation, we
will initially describe an algorithm using a standard sweep-line technique with
running time O(τ2n2 log τn) using O(τ2n2) space. This sweep-line algorithm
identifies the edges that contribute to the polygons in H(E). In a second sweep
over these edges, we will construct the polygons in H(E). Note that the presented
algorithms work for inputs with degeneracies and are easy to implement. We then
observe that our methods do not require a sweep by a straight line. Hence, we
can use a topological plane sweep introduced by Edelsbrunner and Guibas [6] to
improve the running time to O(τ2n2) and the used space to O(τn).

Constructing the Line Arrangement. Recall that we use Λ to denote both
an entity and its trajectory. Also recall that a trajectory is a polygonal path de-
scribed by τ points, and that two consecutive points are connected by a straight-
line segment s. Consider the following polygon construction: for a trajectory Λ
sweep an axis-aligned unit square σ along the trajectory such that its centre
moves on Λ as shown in Fig. 5(a). The region swept by σ induces a polygon
which we denote by P (Λ), see Fig. 5(b). Now consider a set W of polygons and
a point q in the plane. The depth of q with respect to W is the number of poly-
gons in W intersecting q. This definition allows us to describe H(E) as follows:

Observation 1. H(E) consists of the set of points having depth at least k with
respect to {P (Λ1), . . . , P (Λn)}.

However, we do not explicitly store the polygons P (Λ) for each Λ. Instead, the
following approach will be used. For each segment s of Λ consider the region
swept along s by the unit-square σ. This region is a polygon P (s) with at most
six edges, see Fig. 5(c). When considering the two points that specify an edge ei

of P (s), we call the point with the smaller x-coordinate (or smaller y-coordinate,
in case the x-coordinates are equal) the start point of ei and the other one the
end point of ei. For each edge ei of P (s), we construct an infinite line li that
contains ei. For each line li, we store the start and end point of ei on li, and
to which side s lies, and Λ. We refer to ei as a visible edge and to the rest of
li as the invisible line. The set of all lines constructed as above yields the line
arrangement A, which we will sweep. Note that A contains O(τn) lines.

The First Sweep. The algorithm will sweep the arrangement A from left to
right using a vertical sweep line �. The status structure of the sweep line is stored
in a list S of size O(τn). For convenience we sometimes use S as an ordered string.
It contains the current intersections between � and the visible edges in A ordered
along � from top to bottom. Initially, S is empty. For each intersection between
� and a visible edge e, we store a bracket br in S with pointers between br, the
corresponding edge e and the line corresponding to e. A bracket is formally a
tuple 〈i, type, level, depth〉, where i is the entity number corresponding to the
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σ

(a)

Λ

(b)

P (Λ)

(c)

s

P (s)σ

Fig. 5. (a) The square σ that sweeps along a trajectory Λ, (b) the polygon P (Λ)
obtained from the sweep, (c) the polygon P (s) and the lines li generated by P (s)
(dashed)

edge; type is either open or closed depending on whether we are entering or
exiting the polygon P (s) as we go down �. The brackets will always come in
open-closed pairs, because P (s), for a segment s, is a convex region. Note that
we can consider them as matching pairs of brackets for the same entity, and
that the matching brackets do not have to come from the same polygon P (s).
The depth value of a bracket is the depth with respect to {P (Λ1), . . . , P (Λn)}
of points immediately after this bracket until the next bracket as we go down �.
Note that depth only counts each entity once.

An event of the sweep is the intersection of exactly two lines of the arrange-
ment A. These events happen at the vertices of the arrangement A, which we
call event points from now on. By our construction it will happen that three or
more lines of A intersect in one point. Hence, multiple events can occur at a
single event point. The moment at which the sweep line reaches an event point
x the status of the sweep line is updated according to all events that happen at
that event point. All events and event points are computed, sorted and stored
beforehand. In the following, we categorise a line li that passes through an event
point x into: (i) ‘x coincides with the end point of ei’, (ii) ‘x coincides with the
start point of ei’ and (iii) ‘other’. During the sweep, we process all event points
in turn and for each event point x we will do the following.

• Let L be the set of lines of A that go through x. We have Θ(|L|2) events.
• Let S′ be the substring of S that contains all the brackets that correspond

to lines that go through x.
• Let S′′ be a new string that contains copies of exactly those brackets con-

tained in S′. From now on, we will modify (brackets of) S′′.
• For all pairs of lines l1 and l2 in L, let l1 and l2 be associated with an edge of

P (s1) and P (s2) for some segments s1 and s2, respectively. We distinguish
the following cases, which are illustrated in Fig. 6:

(a) Both l1 and l2 are of category (ii). If P (s1) = P (s2) then we encountered
a new polygon P (s) and we insert a pair of brackets (anywhere) into S′′.

(b) Both l1 and l2 are of category (i). If P (s1) = P (s2) then we finish
sweeping a polygon P (s) and delete the corresponding brackets in S′′.

(c) l1 is of category (i), l2 is of category (ii). If P (s1) = P (s2) then we
need to change a pointer. More specifically, let br be the bracket in S′′
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l1

l2

� �
(a) (b) (c)

x

Fig. 6. Cases at an event point x during the line-arrangement sweep

corresponding to the visible segment of l1. We have to change the pointer
of br that points to l2 so that it now points to l1.

(*) For all other cases, we do not make any changes.
• We sort the brackets in S′′ in non-increasing order according to the slope of

their corresponding lines.
• Recalculate all the level and depth values from scratch for all the brackets

in S′′. This can be done by looping over S′′ using the information in S′.
• Replace S′ by S′′ in S.

All this can be done in time linear in the number of events at x.

Lemma 4. The status of the sweep line can be maintained during the sweep in
total time O(τ2n2) and O(τn) space.

Constructing the Output. In the above we did not describe what our al-
gorithm outputs. In this section, we will make up for this, by adding a few
steps to the previous sweep. Recall that the output of our algorithm will be a
set H(E) which consists of all points having depth at least k with respect to
{P (Λ1), . . . , P (Λn)}.

Whenever we have a bracket br where the two faces above and below the edge
e corresponding to br have depth k−1 and k then we call that bracket a boundary
bracket. A boundary bracket br corresponds to a boundary edge, which is a part
of the edge e that is an edge of a polygon in H(E). The start and end points
of boundary edges are the event points of the sweep where a bracket becomes a
boundary bracket, or where a boundary bracket ceases to be a boundary bracket,
or where a boundary bracket is inserted, or where a boundary bracket is deleted.
To identify the set B of all boundary edges, we extend the procedure of the
previous section. We add the following steps to that procedure just before we
replace S′ by S′′.

• For all brackets br ∈ S′′ \ S′: If br is a boundary bracket, then add a new
boundary edge b to B. The start point of b will be the current event point.
Associate b with the boundary bracket br.

• For all brackets br ∈ S′ \ S′′: If br is a boundary bracket, then the current
event point is the end point of the boundary edge associated with br.
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• For all brackets br ∈ S′ ∩S′′: If br is a boundary bracket in S′′ but not in S′,
then add a new boundary edge b to B. The start point of b will be the current
event point. Associate b with the boundary bracket br. If br is a boundary
bracket in S′ but not in S′′, then the current event point is the end point of
the boundary edge associated with br. If br is a boundary bracket in S′ and
in S′′, but br corresponds to different lines in S′ and S′′, then x is a start
and end point of boundary edges, which needs to be handled as above.

Having the information about all the boundary edges allows us to build H(E)
by performing a second sweep traversing the set B of boundary edges with a
vertical sweep line �. The sweep and the construction of H(E) can be done in
O(|H(E)|) time, where |H(E)| denotes the complexity of H(E). Recall that the
first sweep processed O(τ2n2) events, so together we have:

Theorem 4. Given a set E of n entities moving in the plane over τ time steps,
the set H(E) can be computed in O(τ2n2 log τn) time using O(τ2n2) space.

Using a Topological Sweep. If we examine the above sweep-line algorithms
we can observe that there is no need to process the points strictly from left to
right. Also, we only need to keep the events and event points in memory that
correspond to the current sweep line. This observation suggests the use of a
topological sweep line introduced by Edelsbrunner and Guibas [6]. As a result
the above bounds can be improved.

Theorem 5. Given a set E of n entities moving in the plane over τ time steps,
the set H(P ) can be computed in O(τ2n2) time using O(τn + |H(P )|) space.

4 Lower Bounds and Hardness Results

We present a lower bound for the popular places problem in the discrete model,
and we argue that the popular places problem in the continuous model is at least
as hard as 3-sum, i.e. it is likely that every algorithm in the continuous model
of the problem requires quadratic time in the worst case.

Theorem 6. Let T be a set of n trajectories over τ time-steps, for any τ ≥ 1.
The problem to decide in the discrete model whether there exists a popular place
in T has an Ω(τn log τn) lower bound.

Theorem 7. Let T be a set of n trajectories over τ time-steps, for any τ ≥ 1.
There exists no o(n2τ2) time algorithm to decide whether there exists a popular
place in the continuous model with input T , unless there exists an o(N2) time
algorithm to decide 3-sum for an input of total size N .
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Abstract. We consider two non-convex enclosing shapes with the minimum
area; the L-shape and the quadrant hull. This paper proposes efficient algorithms
computing each of two shapes enclosing a set of points with the minimum area
over all orientations. The algorithms run in time quadratic in the number of given
points by efficiently maintaining the set of extremal points.

1 Introduction

Given a set of geometric objects in the plane, there has been a fair amount of work on
the smallest enclosing shapes (such as the convex hull, the smallest enclosing disk or
the minimum enclosing rectangle) of the objects [2, 10, 11, 12].

In many cases, the enclosing shape is invariant to orientation, that is, the shape does
not change over all orientations. Therefore, the enclosing shape for any fixed orientation
is the optimal enclosing shape over all orientations (for example, the smallest enclosing
circle and the convex hull.) If, however, this is not the case, that is, if the enclosing shape
for some fixed orientation changes over different orientations, computing an optimal
enclosing shape over all orientations becomes more difficult (for example, the minimum
enclosing rectangle of points in the plane.)

Given a set P of points in the plane, we consider two enclosing shapes which are
non-convex: the L-shape and the quadrant hull. For a fixed orientation, the L-shape can
be defined as R \ R′, where R is an axis-aligned rectangle and R′ is a sub-rectangle of
R containing the upper right corner of R. Thus, the smallest enclosing L-shape L(P )
of P can be found by taking R as the smallest enclosing rectangle of P and R′ as the
largest empty sub-rectangle of R containing the upper right corner of R.

The quadrant hull QH(P ) of P is defined as follows: For a fixed orientation, a
quadrant is the intersection of two half-planes whose supporting lines are axis-aligned
and make the right angle. We call a quadrant free with respect to P if its interior contains
no point in P . Then, the quadrant hull QH(P ) of P is

QH(P ) := R
2 −

⋃

Q quadrant free to P

Q.

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 788–799, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(a) (b)

Fig. 1. The minimum enclosing L-shape and the quadrant hull of the same set of points in a fixed
orientation

Another equivalent definition of the quadrant hull was suggested by Matoušek [4]. The
quadrant hull QH(P ) is also known as orthogonal convex hull, which for a fixed orien-
tation can be constructed in time O(n log n) [7, 8, 9], or faster using integer searching
data structures for points with integer coordinates [3].

In this paper, we present efficient algorithms computing a smallest L-shape and quad-
rant hull of n given points in the plane over all orientations. In doing so, we reveal
relations between both enclosing shapes and extremal points. We call a point p in P
extremal if there is no such point q ∈ P that qx > px and qy > py , where px and py

are the x- and y-coordinates of p in a specific coordinate system.1 Extremal points form
a linear order, for instance, x-coordinate increasing order, and we can build a staircase
from those ordered points in a natural way (See the dashed segments in Figure 1.) Ob-
serve that such a staircase can be described by a sequence of free quadrants supporting
two consecutive extremal points.

A minimum enclosing L-shape for a fixed orientation can be obtained by first com-
puting the staircase in the upward and the rightward directions and then picking the best
one among the pairs of consecutive points which describe the staircase as in Figure 1(a).
On the other hand, the quadrant hull QH(P ) can be described by four staircases as in
Figure 1(b). In either case, staircases can be computed in O(n log n) time, and they
allow us in linear time to compute both minimum-area enclosing shapes for a fixed ori-
entation. Therefore, if we could maintain the staircases efficiently while we rotate the
coordinate system, it would be helpful to use them in finding an optimal orientation for
both enclosing shapes.

Following this motivation, we consider the problem of maintaining the staircase over
all orientations in Section 2. We first present a simple, quadratic-time algorithm and
then a subquadratic solution with a time/space tradeoff. Sections 3 and 4 are devoted
to explaining the algorithms for optimal orientations for both enclosing shapes, which
implicitly maintain the staircase and run in quadratic time. Finally, we conclude this
paper in Section 5.

2 Maintaining the Staircase

Here, we rotate our coordinate system. We shall denote by orientation θ the coordinate
system with axes rotated by θ around the origin in counter-clockwise direction. Let P

1 In this paper, we deal only with orthogonal coordinate systems where two axes make the right
angle.
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be a set of n points. We denote by Xθ(P ) the set of extremal points of P in orientation
θ. Let ≺θ be the order of increasing x-coordinate on P in orientation θ. For Xθ(P ) =
{p1, · · · , pk} ⊂ P , where the indices are given in order ≺θ, we draw two axis-parallel
rays until both meet; one downwards from pi and the other leftwards from pi+1. Then
we get a step sθ(pi, pi+1) between pi and pi+1 with 1 ≤ i < k and we denote such
a sequence of steps by the staircase Sθ(P ) of P in orientation θ. Observe that each
quadrant obtained by extending a step is free to P .

Our goal in this section is to maintain Xθ(P ) and Sθ(P ) while θ increases from 0 to
2π. Once the points in Xθ(P ) are given in order ≺θ, we can easily build Sθ(P ) from
Xθ(P ). Therefore, we would like to efficiently update Xθ(P ) to obtain Xθ+ε(P ) for
sufficiently small positive ε. To achieve our goal, we focus on when a change between
Xθ(P ) and Xθ+ε(P ) occurs. We call an orientation ϕ ∈ [0, 2π) an event orientation
if Xϕ−ε(P ) �= Xϕ+ε(P ) for any ε > 0. At each event orientation, an “event” occurs;
either a new point in P appears at the staircase or an existing one disappears. We call
the former type of events in-events and the latter out-events.

We use standard data structures. The event queue Q is a priority queue which stores
events indexed by their occurring time (or, orientation). We also store the points in
Xθ(P ) in a balanced binary search tree T , in order ≺θ, so that we can add and delete a
point in O(log n) time.

If an in-event occurs at orientation θ, a point q ∈ P \Xθ−ε(P ) appears to Xθ(P ) and
also to Sθ(P). Say that q appears between p and r in Sθ(P ). Then, at orientation θ, the
step sθ(q, r) between q and r degenerates to a line segment, that is, q lies on sθ(p, r).
Similarly, when an out-event occurs and q between p and r with p, q, r ∈ Sθ(P ) is
about to disappear, sθ(p, q) degenerates to a line segment and q lies on sθ(p, r). Figure
2 shows some changes on Sθ(P ) as θ increases, including an in-event and an out-event.

Observation 1. When an event occurs at orientation θ, there is a degenerate step in
Sθ(P ) and one of its two corresponding points is the event point.

Now, we consider the disk with diameter pr with p and r consecutive in Xθ(P ) with
respect to ≺θ, and its half-disk D(p, r) containing the triangle Tθ defined by sθ(p, r)
and pr. See Figure 2(a). The corner of sθ(p, r) goes along the circular arc of D(p, r)
counter-clockwise as θ increases, since Tθ is always a right triangle. We denote two
segments of sθ(p, r) by sh

θ (p, r) and sv
θ(p, r), horizontal and vertical ones. Observe

that as θ increases sh
θ (p, r) sweeps region in D(p, r), and if it encounters a point q ∈

P , we have an in-event and q comes up to the staircase. Among in-events are those
corresponding to new extreme points in y-direction; just imagine that we have one more
point at infinity in −x direction whose y-coordinate is the same as the point with largest
y-coordinate in the current orientation. Also, when sh

θ (p, q) degenerates to q we have
an out-event and q will disappear from the staircase. See Figure 2.

Observation 2. Let p and r be two consecutive points in Xθ(P ) with respect to ≺θ.
The next upcoming in-event between p and r occurs by another point q that is first
encountered by sh

θ (p, r) among points in D(p, r) as θ increases. The out-event of q
occurs when sh

θ (p, q) degenerates to q.

By those observations, we know that every event can be captured locally. It is easy in
O(n) time to predict the very next in-event between two consecutive extremal points
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Fig. 2. Changes on Sθ(P ) as θ increases; (a) q lies in D(p, r). (b) sh
θ (p, r) hits q, an in-event

occurs, and q rises up. (c) Sθ(P ) contains q. (d) sh
θ (p, q) degenerates to point q, an out-event

occurs, and q is about to disappear. (e) After the out-event. All the other points in P lie in the
shaded side of each figure.

with respect to ≺θ and the out-event of each extremal point at the current orientation.
Indeed, one can reduce this time complexity to predict next events to sublinear by using
some complicated data structures, which will be discussed at the end of this section.

Initially, we compute X0(P ) and S0(P ), and store it into T in O(n log n) time.
Then, we predict in-events and out-events corresponding to S0(P ) and insert them into
Q. Now, we are ready to run the main loop. As usual, we extract the upcoming event
from the event queue Q, and handle it according to its type. We end this loop if the
current orientation θ is at least 2π:

In-event . We put the new point q between p and r into T . Compute the in-events be-
tween p and q, and between q and r; also the out-event of q. Insert all the computed
events into Q.

Out-event . Remove the disappearing point q between p and r from T , and in-events
in which q is involved from Q. Compute the in-event between p and r, and insert it
into Q.

The total running time is proportional to the number of events we handle during the
algorithm. The following lemma answers the essential question.

Lemma 3. Any point in P can appear in Xθ(P ) at most four times as θ increases from
0 to 2π.

Proof. We claim that if a point q ∈ Xθ(P ) is about to disappear at orientation θ, then q
cannot appear again to Xθ+ϕ(P ) for 0 < ϕ < π/2. This simply implies the lemma.

We now prove our claim. Assume that q ∈ Xθ(P ) is about to disappear from Xθ(P ),
that is, the out-event of q occurs at θ. Recall by definition that a point q′ ∈ Xθ(P ) if and
only if the intersection of two quadrants by extending two steps incident on q′ is free to
P . (Obviously, the intersection is a quadrant again.) Thus, in orientation θ, observe that
there is a point p ∈ P directly above q since q will disappear after θ (See Figure 2(d).)

Note that maintaining the staircase is invariant under rigid motions. Also, increasing
θ is equivalent to rotating the points P clockwise. Now, we transform P by an affine
mapping so that q is mapped to the origin. Instead of increasing θ, we rotate p clockwise
around q. It is easy to see that p lies in the first quadrant until we rotate the points by
more than π/2. Thus, we conclude our claim and then the lemma. ��

Finally, we conclude one of our main results.
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Theorem 4. The staircase has at most O(n) combinatorial changes while rotating the
orientation. These changes can be maintained in O(n2) time and O(n) space.

2.1 Predicting an In-Event in Sublinear Time

In this subsection, we present a faster way to maintain the staircase. Indeed, the bottle-
neck of our algorithm is the part of predicting an in-event. Note that predicting an out-
event can be preformed in constant time. Here, we present how to predict an in-event in
sublinear time so that the total running time of the algorithm reduces to subquadratic,
and moreover a time/space tradeoff can be obtained.

Observe that the next in-event between p and q occurs by a point contained in the
lune shape Lθ(p, q) defined by D(p, q) and the half-plane below sh

θ (p, q). The first key
idea is to restrict candidates to those inside Lθ(p, q) by the range searching with such a
lune shape, which is the intersection of a disk and a half-plane. Since a disk range on the
plane can be processed by a half-space range in 3 dimensional space by a well-known
lifting-up transformation, the lune shape range searching in R

2 can be viewed as the
range searching with intersections of two half-spaces in R

3. Thus we adopt the range
searching structure by Matoušek:

Theorem 5 (Matoušek [6]). Let P be an n-point set in R
d and let m be a param-

eter, n ≤ m ≤ nd. The range searching problem with the ranges being intersec-
tions of p half-spaces, 1 ≤ p ≤ d + 1, can be solved with space O(m), query time

O
(

n
m1/d logp−(d−p+1)/d m

n

)
, and preprocessing time O(n1+δ +m(log n)δ), for δ > 0.

We fix d = 3 and p = 2 so that we have a structure Rm(P ) for the lune range searching
among P . This structure can report all the points in the queried lune shape Lθ(p, q), but
what we need is only one point that will cause the in-event between p and q. In order
to get such a point without reporting other points in the range, we make use of special
secondary data structures. Note that the range searching structure Rm(P ) is based on
a partition tree [1, 5, 6]. Thus, with each internal node v, we associate a secondary
structure C(Pv) for its canonical subset Pv ⊆ P . The structure C(Pv) is supposed
to be able to answer a point r ∈ Pv which we first meet with the line supporting
sh

θ (p, q) rotated counter-clockwise at q. Such a point r should be in convex position and
indeed be the contact point of a tangent line to conv(Pv) through q. Hence, once we
have computed the convex hull conv(Pv) of Pv, it can be done in time O(log |Pv|) =
O(log n).

Processing a query Lθ(p, q), we search Rm(P ) and get at most O(n/m1/3 log4/3

m/n) number of canonical subsets. Then, at each corresponding internal node of Rm(P )
we find the same number of candidates for the in-event point. This query process takes
O(n/m1/3 log7/3 m/n) time. The preprocessing and the storage need an extra factor
of O(log m) = O(log n), since Rm(P ) has depth at most O(log m). Thus, we can
conclude the following time/space tradeoff result.

Theorem 6. While rotating the orientation, the staircase of n points can be main-

tained in O
(
n1+δ log n + m(log n)1+δ + n2

m1/3 log7/3 m
n

)
time and O(m log n) stor-

age, where m is a parameter with n ≤ m ≤ n2.
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Consequently, if we choose m = n3/2, then the above theorem yields an algorithm
which runs in O(n3/2 log7/3 n) time and O(n3/2 log n) space.

3 Minimum Enclosing L-Shapes

In this section, we present an efficient algorithm for computing an optimal orientation
for minimum-area enclosing L-shapes of a set P of n points. First, we observe the
following.

Observation 7. In any orientation, the smallest enclosing L-shape of P touches at least
one point in P on each of the six sides of its boundary.

Thus, we can restrict our candidate L-shapes for each side to have at least one point, and
can describe them as these (possibly not disjoint) six points. Note that these points can
be shared by two adjacent sides, or possibly by more than two sides when some of them
have length zero. Let Rθ be the smallest enclosing rectangle of P in orientation θ and
Eθ be the largest empty rectangle which shares the upper right corner with Rθ. Then the
smallest enclosing L-shape Lθ(P ) is represented by Lθ(P ) = Rθ −Eθ . Let p1, · · · , p6

be six points touching each side of Lθ(P ); the index is ordered counter-clockwise from
the point on the top side of Rθ as shown in Figure 3. Now, we assume pi’s with 1 ≤ i ≤ 6
to represent the smallest L-shapes Lθ(P ) during orientation 0 ≤ α < θ < β < 2π; that
is, for any α < θ < β, the boundary of Lθ(P ) touches the same sequence of six points
in P . The following lemma shows how to get a local optimal orientation over [α, β].

Lemma 8. One can minimize the area of Lθ(P ) over 0 ≤ α ≤ θ ≤ β < 2π, where we
have the same sequence of six points representing Lθ(P ) in orientation θ ∈ (α, β).

Proof. We use all the symbols as defined above. Furthermore, we need more terms.
Define d1 := length(p1p3), d2 := length(p2p4), c1 := length(p1p5), and c2 :=
length(p4p6). Let q1, · · · , q6 be the six corners of Lα(P ) that are ordered by travers-
ing its boundary counter-clockwise from the upper left corner q1. In orientation α, we
consider following angles as in Figure 3: Let θ1 := ∠p1p3q3, θ2 := ∠p4p2q2, φ1 :=
∠p5p1q6, and φ2 := ∠p6p4q4. We then have area(Rα+δ) = d1d2 sin(θ1−δ) sin(θ2−δ)
and area(Eα+δ) = c1c2 sin(φ1 + δ) sin(φ2 − δ), where 0 ≤ δ ≤ β − α. Thus, we
can express the area of Lθ(P ) as a function AL of δ: AL(δ) := area(Lα+δ(P )) =
area(Rα+δ)−area(Eα+δ). In order to obtain the minimum of AL on (0, β −α), if any,
we solve the equation A′

L(δ) = 0, where A′
L is the first derivative of AL. Through some

tedious work on equations, we get A′
L(δ) = d1d2 sin(2δ−θ1−θ2)+c1c2 sin(2δ+φ1−

φ2). Solving A′
L(δ) = 0, we have δ = θ1+θ2

2 − 1
2 arctan

(
c1c2 sin(θ1+θ2+φ1−φ2)

d1d2+c1c2 cos(θ1+θ2+φ1−φ2)

)
.

Since 0 < δ < β − α < 2π, the equation A′
L(δ) = 0 has at most a constant number

of solutions in the domain, which are either local minima or maxima. A local optimal
orientation can be searched among those orientations. ��

Now, we are ready to conclude the main theorem of this section.
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Fig. 3. The smallest L-shape Lα(P ) of P in orientation α with six defining points and other
properties

Theorem 9. Given a set P of n points, one can decide an optimal orientation, which
minimizes the area of L-shape Lθ(P ) enclosing P over 0 ≤ θ < 2π, in O(n2) time and
O(n) space.

Proof. In this proof, we present an algorithm for computing optimal orientations for
L-shapes, which applies the algorithm maintaining the staircase presented in Section 2.
Also, we make use of the method described in the proof of Lemma 8. By Lemma 8, if
we can fix one point on each side of Lθ(P ) during α ≤ θ ≤ β for some 0 ≤ α ≤ β,
then we are able to decide the local optimum in the domain for those at most 6 points.

We need to handle another type of events that occur when the current orientation
θ is parallel or perpendicular to an edge of conv(P ). Such an event is easy to predict
once we have computed conv(P ). The total number of all events still remains linear
in n. Let αi be the event orientations ordered by their occurrences. For each interval
[αi, αi+1], we have the same four points determining Rθ for every θ ∈ (αi, αi+1) and
further Xθ(P ) does not change in the interval. Recall that Lθ(P ) = Rθ − Eθ and Eθ

is determined by one step of Xθ(P ). Thus, we minimize every L-shape determined by
each of step in Xθ(P ) in the interval [αi, αi+1], and then pick the minimum of these
minima. This in |Xθ(P )| time gives us the local optimal orientation in the orientation
interval. Since we have O(n) number of such intervals, all the process can be done in
O(n2) time in order to get a global optimum from gathered local optima. ��

Note that the bottleneck of our algorithm is part of computing a local optimum in each
step, consuming at most O(n) time. If one could improve this, a subquadratic algorithm
will be obtained.

One might wonder if there exists such a nice nature that, for instances, optimal ori-
entations are parallel or perpendicular to an edge of the convex hull of P , or there are
at least two points on a segment of the boundary of the L-shape in optimal orientation.
If so, one can easily compute the smallest enclosing L-shape over all orientations by
testing a small number of candidate orientations. However, L-shapes do not have such
a property.

See Figure 4. Let P := {(1, tan ε), (tan ε, 1), (0, 0)}. Then, for 0 < ε < π/12, it is
not difficult to check that 0 is the only optimal orientation, which does not come from
any pair of points in P . Precisely, there exists such a set P of points that no orientations
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Fig. 4. Three points P and their enclosing L-shapes L0(P ) and Lε(P )

parallel or perpendicular to a line through a pair of points in P are optimal for the area
of L-shapes.

4 Minimum Quadrant Hulls

In this section, we consider how to find an optimal orientation for quadrant hulls. As
aforementioned, we make use of maintaining the staircase described in Section 2 to
get an efficient solution. First, recall that the quadrant hull QHθ(P ) in orientation θ
can be described by four staircases, Sθ(P ), Sθ+π

2
(P ), Sθ+π(P ), and Sθ+ 3

2 π(P ). We
call two staircases Sθ(P ) and Sθ′(P ) opposite staircases if θ and θ′ differ by π , and
adjacent staircases if θ and θ′ differ by π/2. We denote the set of the four staircases
by Sθ(P ). Note that QHθ(P ) = QHπ/2+θ(P ) and Sθ(P ) = Sπ/2+θ(P ). We are thus
interested only in orientations up to π/2, and each event orientation ϕ = π

2 k + ϕ′ with
0 ≤ ϕ′ < π

2 will be processed at ϕ′.

(a) (b) (c)

Fig. 5. A set P of 6 points and its quadrant hulls in three orientations

As in the L-shape problem, there seems no hope to restrict the number of candidate
orientations for the minimum quadrant hull to a small number. Figure 5 shows a set P
of points such that no orientations parallel or perpendicular to a line through a pair of
points in P are optimal. Explicitly, P = {(−3, −2), (0, −2), (3, −2), (−3, 2), (0, 2),
(3, 2)}, and Figure 5(a) and (b) show QHtan−1 2

3
(P ) and QHtan−1 3

4
(P ); these two ori-

entations come from pairs of the points. However, QHπ/4(P ) as shown in Figure 5(c)
is indeed optimal.

We thus devise a solution to the quadrant hull in a similar way as done in L-shapes.
Furthermore, we have another difficulty in calculating the area of QHθ(P ); as seen in
Figure 6, two staircases among those in Sθ(P ) can cross each other. We observe the
following about such overlaps.

Observation 10. At most one pair of opposite staircases can cross each other. If a step
crosses another, it does not cross any other and thus all such overlaps are axis-aligned
rectangles.
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Fig. 6. (a) Two steps in opposite staircases. (b) A step-cross event occurs. (c) The shaded region
is the overlap. (d) A step-release event occurs. (e) Two steps are separated.

Considering overlaps, we should refine the definition of combinatorially equivalent
quadrant hulls since the shape of QHθ(P ) can be changed regardless of the equivalence
of Sθ(P ). Thus we take how Sθ(P ) crosses also into account, and define step-cross and
step-release events as when two steps in opposite staircases start crossing and when
both become free to each other, respectively.

Predicting and handling these events including in-events and out-events is not very
difficult if we are allowed O(n) time: For a step s in Sθ(P ), we check all steps in the
opposite staircase to s whether and when each will cross s, and pick the earliest one.
We call the resulting event “the step-cross event of a step s”. The step-release event of
a pair of crossed steps is easy to compute.

In-event . An in-event removes a step but creates two new steps. We perform the same
operations as in maintaining the staircase. Further, compute the corresponding step-
cross events, if any, and insert them into Q and delete the useless step-cross event
of the removed step from Q.

Out-event . Similarly, compute corresponding step-cross events and delete useless
events from Q.

Step-cross event . Compute the step-release event of the involved pair of steps and
insert it to Q.

Step-release event . Compute the step-cross event of each of the two involved steps
and insert them into Q.

Lemma 11. We have at most O(n) events in total.

Proof. In Section 2, we have shown that there are at most O(n) number of in-events
and out-events. Here, we show that we have only O(n) step-cross events, which implies
the same number of step-release events, and thus at last O(n) events in total.

If we have a step-cross event at θ, we can see two corresponding steps just meeting
and a segment joining two points among the four points in the two steps. In Figure 6(b),
we can see segment sq as the union of horizontal segments of two steps at the moment
of the step-cross event. We call the segment sq a step-cross segment. Now, we draw
such a step-cross segment whenever we have a step-cross event. We claim that no two
step-cross segments cross each other. This implies that we have drawn a plane graph on
n points and thus we have at most O(n) such segments.

Let G = (P, E) be a graph whose vertices are P and edges are drawn as explained
above. Assume to the contrary that there exist ab, pq ∈ E such that the two correspond-
ing step-cross segments cross. There should be involved steps, namely, sθ1(b, c) and
sθ1(d, a), and sθ2(q, r) and sθ2(s, p). Without loss of generality, assume that a is to the
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left of b in orientation θ1. We can find two lines �1 and �2 perpendicular to ab and pq,
respectively, that separate c and d, and r and s, respectively.

In orientation θ1, �1 and the line supporting ab partition the plane into four quadrants.
We denote the left upper region by LU1 and the right lower region by RL1. c ∈ LU1

and d ∈ RL1. Note that there is no point in the right upper and the left lower regions
since these two regions are contained in the two quadrants defined by two steps sθ1(b, c)
and sθ1(d, a). Thus, p and q must be separated by �1 since ab and pq cross. Now, we
can assume that p ∈ LU1 and q ∈ RL1. Also in orientation θ2, the line supporting pq
and �2 partition the plane into four regions. Similarly, we define two regions LU2 and
RL2, and then r ∈ LU2 and s ∈ RL2.

Since ab and pq cross and p ∈ LU1, we know that a lies below pq and b lies above
pq. Thus, a must lie in RL2 and b in LU2. This implies that a lies to the left of �1 and
to the right of �2, and b lies to the right of �1 and to the left of �2. �1 and �2 divide the
plane into four cones. We let A be one of the cones where a is located and B be where b
is located. The angle of A (or B) at apex �1 ∩ �2 should be larger than π/2 since �1 and
ab are perpendicular. However, this is turned to be false: Since p ∈ LU1 and q ∈ RL1,
p lies to the left of �1 and of �2, and q lies to the right of �1 and of �2. Since �2 and pq
are also perpendicular, it is required for other cones than A and B to have angle at the
apex larger than π/2, which leads to a contradiction to our assumptions. ��

The main loop is performed while θ < π/2; since we handle four staircases at the same
time, all the required events occur before π/2. The space of orientations is partitioned
into a linear number of intervals [αi, αi+1), where i runs from 0 to the total number of
events. The following subsection gives us a way to compute a local optimum in each
such interval in linear time.

4.1 Finding Local Optima of QHθ(P )

Here, we assume that an orientation interval (α, β) does not contain any event ori-
entation and the current orientation θ runs in between (α, β). Thus, we can also say
that Sθ(P ) contains m points of P and k overlaps. Let p1 be the first point in Sθ(P )
(or the point with highest y coordinate in orientation θ), and pi be the i-th point in
Sθ(P ) in clockwise order. We get a polygon P by a sequence of m sides pipi+1 with
1 ≤ i ≤ m−1, and pmp1. Observe that two sides cannot cross each other so that we can
compute the area of P in O(m) time. Recall that since we have no event in θ ∈ (α, β),
these extremal points and P do not change in the interval. Also, we let si(θ) be the step
of pi and pi+1 at θ, and �i(θ) be the right triangle defined by si(θ) as in Section 2.

Let �j(θ) be the rectangle defined by each overlap in Sθ(P ), where 1 ≤ j ≤
k. Then, the area of QHθ(P ) is area(QHθ(P )) = area(P) −

∑
i area(�i(θ)) +∑

j area(�j(θ)). To minimize the area of QHθ(P ) over θ ∈ (α, β), we analyze the
functions area(�i(θ)) and area(�j(θ)), and obtain a nice representation so that we
can get an optimum in an analytic way.

Lemma 12. Let (α, β) with 0 ≤ α < β < π/2 be an orientation interval such that
it contains no event orientation. Once we have computed Sα(P ) and QHα(P ), it is
possible in linear time to compute a local optimal orientation in which the area of
QHθ(P ) is minimized over θ ∈ (α, β).
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Proof. Let di be the length of the hypotenuse of �i(α) and φi be the internal angle of
�i(α) at pi. Then, area(�i(θ)) = d2

i cos(φi +(θ−α)) sin(φi +(θ−α)). Substituting
θ − α by ϕ, we get area(�i(θ)) = d2

i cos(φi + ϕ) sin(φi + ϕ) = 1
2d2

i sin 2(φi + ϕ) =
1
2d2

i sin 2φi cos 2ϕ+ 1
2d2

i cos 2φi sin 2ϕ, which is linear in cos 2ϕ and sin 2ϕ. Therefore,
the sum over all i is of the same form:

∑
i area(�i(θ)) = 1

2

(∑
i d2

i sin 2φi

)
cos 2ϕ +

1
2

(∑
i d2

i cos 2φi

)
sin 2ϕ.

Now, we deal with each overlap �j(θ) in which two steps sa(θ) and sb(θ) are
involved. Assume without loss of generality that sa(θ) belongs to Sθ(P ) and sb(θ)
to Sπ+θ(P ). If the coordinate of pi in orientation α is (xpi , ypi), area(�j(α)) =
|xpa − xpb

| × |ypa+1 − ypb+1 |, where | · | returns the absolute value. The point pi

in orientation θ = α + ϕ can be regarded as the transformed points by rotation by
−ϕ in orientation α. Also, the area of �j(θ) is invariant under translations. Thus,
area(�j(θ)) = area(�j(α+ϕ)) = |xp′

a
−xp′

b
|×|yp′

a+1
−yp′

b+1
| = |(xpa −xpb

) cos ϕ+
(ypa − ypb

) sin ϕ| × |(ypa+1 − ypb+1) cosϕ − (xpa+1 − xpb+1) sin ϕ| = C1 cos2 ϕ +
C2 sin2 ϕ + C3 sinϕ cosϕ, where p′i is the rotated point of pi by −ϕ with ϕ < π/2,
and C1, C2, and C3 are constants. This equation can be reformed to be linear in sin 2ϕ
and cos 2ϕ again area(�j(θ)) = C′

1 + C′
2 cos 2ϕ + C′

3 sin 2ϕ, where C′
1 = C1+C2

2 ,
C′

2 = C1−C2
2 , and C′

3 = C3
2 .

Consequently, the area of QHθ(P ) with α < θ < β can be represented by a function
f of ϕ which is linear in sin 2ϕ and cos 2ϕ, where 0 < ϕ < β − α. By solving
f ′(ϕ) = 0, where f ′ is the derivative of f , we get a local minimum (or maximum)
of the area of QHθ(P ) with θ ∈ (α, β). All this process is sufficiently done in linear
time. ��

Now, we conclude the following theorem.

Theorem 13. Given a set P of n points, one can decide an optimal orientation, which
minimizes the area of the quadrant hull QHθ(P ) over 0 ≤ θ < 2π, in O(n2) time and
O(n) space.

5 Concluding Remarks

We presented algorithms for computing the smallest enclosing L-shape and quadrant
hull of given points for arbitrary orientation. Our solutions for finding smallest en-
closing shapes internally maintain extremal points, constituting the staircase, over all
orientations. Indeed, maintaining extremal points has its own interest. In computational
geometry, dynamic data structures have been intensively researched over last several
decades; they mainly focus on how to efficiently handle online updates of their un-
derlying data. Our problem of maintaining the staircase deals with predictable updates
over bounded domain, and was proven to be useful in solving geometric optimization
problems which are variant to orientations. We carefully expect that many such opti-
mization problems could be efficiently solved by maintaining a certain data structure
over all orientations.
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Abstract. Given a monomial ideal I = 〈m1, m2, · · · , mk〉, where mi are
monomials, and a polynomial f as an arithmetic circuit the monomial Ideal Mem-
bership Problem is to test if f ∈ I . We show that the problem has a randomized
polynomial time algorithm for constant k. Furthermore, if k is constant and f is
computed by a ΣΠΣ circuit with output gate of bounded fanin then we can test
whether f ∈ I in deterministic polynomial time.

1 Introduction

Let F[x1, x2, · · · , xn] be the ring of polynomials over a field F with indeterminates
x1, x2, · · · , xn. Let I ⊆ F[x1, x2, · · · , xn] be an ideal given by a finite generator set
{g1, g2, · · · , gr} of polynomials. Then I = {

∑r
i=1 aigi | ai ∈ F[x1, x2, · · · , xn]}, and

we write I = 〈g1, g2, · · · , gr〉. Given an ideal I = 〈g1, g2, · · · , gr〉 and a polynomial
f ∈ F[x1, x2, · · · , xn] the Ideal Membership problem is to decide if f ∈ I .

Ideal Membership Testing is a fundamental algorithmic problem with important
applications [Cox92]. In general, however, Ideal Membership Testing is notoriously
intractable. The results of Mayr and Meyer show that it is EXPSPACE-complete
[MM82, Mayr89]. Nevertheless, because of its important applications, algorithms for
this problem are widely studied, mainly based on the theory of Gröbner bases [Cox92].

Polynomial Identity Testing (PIT) is a well-known problem in the field of computa-
tional complexity and randomization: given an arithmetic circuit C computing a poly-
nomial in F[x1, x2, · · · , xn], the problem is to determine whether the polynomial com-
puted by C is identically zero. Over the years, the question whether PIT is in P has
emerged as an important open problem (see, for example, [AB03, KI03]).

In this paper we show interesting connections between Monomial Ideal Membership
and Polynomial Identity Testing. Monomial ideals are central to Gröbner basis theory
[Cox92]. Suppose I = 〈m1, m2, · · · , mk〉 is a monomial ideal in F[x1, x2, · · · , xn] gen-
erated by the monomials mi. If f ∈ F[x1, x2, · · · , xn] is given explicitly as an F-linear
combination of monomials, then testing membership in the monomial ideal I is trivial:
we only need to check if each monomial occurring in f is divisible by some generator
monomial mi. However, as we show in this paper, the problem becomes interesting
when f is given by an arithmetic circuit. Given a monomial ideal I in F[x1, · · · , xn]
and an arithmetic circuit C over F defining a polynomial f ∈ F[x1, x2, · · · , xn], the

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 800–811, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Monomial Ideal Membership problem is to decide if f ∈ I .1 It turns out that the prob-
lem is still tractable for constant k, and its complexity is similar to that of polynomial
identity testing. We give a randomized test for Monomial Ideal Membership when f
given by an arithmetic circuit and I = 〈m1, m2, · · · , mk〉 for constant k. This is analo-
gous to the Schwartz-Zippel polynomial identity test [Sch80, Zip79]. We give a similar
randomized test for f given by a black-box when f has small degree. When k is unre-
stricted we show the problem is coNP-hard but it is in the counting hierarchy.

We study different versions of the problem by placing restrictions on the arithmetic
circuit C and the number of monomials generating the ideal I . The identity testing
problem for ΣΠΣ circuits has recently attracted a lot of research [DS05, KS07]. The
main open problem is whether there is a deterministic polynomial-time identity test
for ΣΠΣ circuits. For ΣΠΣ circuits with bounded fanin output gate Kayal and Sax-
ena [KS07] recently gave an ingenious deterministic polynomial-time test. We consider
Monomial Ideal Membership, where f is computed by a ΣΠΣ circuit with bounded
fanin output gate, and I = 〈m1, m2, · · · , mk〉 for constant k. Using ideas from [KS07]
we give a deterministic polynomial-time algorithm for this problem. More interestingly,
we develop the algorithm and its correctness proof based on Gröbner basis theory. As
a byproduct, this gives us a different understanding of the identity testing algorithm of
[KS07]. We also consider Ideal Membership testing for ideals I = 〈f1, · · · , f�〉 when
fi ∈ F[x1, · · · , xk] are arbitrary polynomials but the number of variables k is a constant
and show similar upper-bound results. We omit some of the proofs due to lack of space.

2 Preliminaries

We now explain the rudiments of Gröbner basis theory [Cox92, Su98]. Let x̄ denote in-
determinates {x1, x2, · · · , xn}. Let F[x̄] denotes the polynomial ring F[x1, x2, · · · , xn].
Let R be a commutative ring. A subring I ⊆ R is an ideal of R if IR ⊆ R. The Hilbert
basis theorem [Cox92] states that any ideal I of F[x1, x2, · · · , xn] is finitely generated.
I.e. we can express I = {

∑r
i=1 pigi | pi ∈ F[x1, x2, · · · , xn]}, where the finite collec-

tion of polynomials {g1, g2, · · · , gr} is a generating set (or basis) for I . Gröbner bases
are defined w.r.t. monomial orderings. We consider only the lexicographic monomial or-
dering. For ᾱ = (α1, α2, · · · , αn) ∈ N

n, let x̄ᾱ denote the monomial xα1
1 xα2

2 · · · xαn
n .

Definition 1. Let ᾱ = (α1, α2, · · · , αn) and β̄ = (β1, β2, · · · , βn) ∈ N
n. We say

ᾱ > β̄ if, in the vector difference ᾱ − β̄ ∈ N
n, the left-most nonzero entry is positive.

We say, x̄ᾱ > x̄β̄ (equivalently, x̄β̄ < x̄ᾱ) if ᾱ > β̄.

The monomial ordering fixes a leading monomial LM(f) for a given polyno-
mial f . Let LC(f) denote the coefficient of LM(f). The leading term of f is
LT (f) = LC(f)LM(f). We now state the general form of the division algorithm
over F[x1, x2, · · · , xn].

Theorem 1 (Theorem 3, pp.61). [Cox92] Let f ∈ F[x̄] and (f1, f2, · · · , fs) be an
ordered s-tuple of polynomials in F[x̄]. Then f can be written as, f = a1f1 + a2f2 +

1 Whenever an ideal is given by a generating set of polynomials, we assume that the exponent
of any variable appearing in a generator is in unary.
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· · · + asfs + r, where ai, r ∈ F[x̄], and either r = 0 or r is an F-linear combination of
monomials, none of which is divisible by any of LT (f1), LT (f2), · · · , LT (fs).

We give a brief outline of the proof. Let f̄ denote (f1, f2, · · · , fs). The proof describes
a division algorithm Divide(f ; f̄) which first sorts f by the monomial ordering. The
algorithm iteratively tries to eliminate the leading monomial in the current remainder
by attempting to divide it with the fi’s in the given order. The fi that succeeds is the first
one whose leading monomial divides the leading monomial of the current remainder.
Finally, the remainder r that survives has the property claimed in the theorem. The
algorithm terminates since the monomial ordering is a well ordering. The following
time bound for Divide(f ; f̄) is easy to obtain.

Fact 2 (Section 6, pp.12-5). [Su98] The running time of Divide(f ; f̄) is
O(s

∏n
i=1(di +1)O(1)), where di is the maximum degree of xi among f, f1, f2, · · · , fs.

Clearly, f ∈ 〈f1, · · · , fs〉 if the remainder r = 0 is output by Divide(f ; f̄). How-
ever, the converse is not true in general. Divide(f ; f̄) can give a nonzero remainder for
f ∈ 〈f1, · · · , fs〉. In order to make this an ideal membership test, we define Gröbner
bases. Fix < as the monomial ordering, and let J ⊆ F[x̄] be any ideal. Then, the
polynomials g1, g2, · · · , gt form a Gröbner basis for J if J = 〈g1, g2, · · · , gs〉 and
〈LT (g1), · · · , LT (gt)〉 = 〈LT (J)〉.
Lemma 1. Let G = {f1, f2, · · · , fs} be a Gröbner basis for an ideal J ⊆ F[x̄] and
f ∈ F[x̄]. Then there is a unique polynomial r ∈ F[x̄] such that f can be writ-
ten as, f = a1f1 + a2f2 + · · · + asfs + r, for ai ∈ F[x̄], and either r = 0
or r is an F-linear combination of monomials, none of which is divisible by any of
LT (f1), LT (f2), · · · , LT (fs).

By Lemma 1, if ideal J is given by a Gröbner basis {f1, f2, · · · , fs} we can indeed
test if f ∈ J by computing Divide(f ; f̄) and checking if the remainder is zero. The
following theorem gives us a sufficient condition for Gröbner bases.

Theorem 3 (Theorem 3, proposition 4, pp.101). [Cox92] Let I be a polynomial ideal
given by a basis G = {g1, g2, · · · , gs} such that all pairs i �= j LM(gi) and LM(gj)
are relatively prime. Then G is a Gröbner basis for I .

An immediate consequence of the next lemma is that we can test in deterministic poly-
nomial time if an explicitly given polynomial f ∈ F[x̄] is in a monomial ideal I .

Lemma 2 (Lemma 2, Lemma 3, pp.67-68). [Cox92] Let I = 〈m1, m2, · · · , ms〉 be a
monomial ideal and f ∈ F[x̄]. Then, f ∈ I if and only if each monomial of f is in I .
Furthermore, a monomial m is in the ideal I if and only if there exist i ∈ [s], such that
mi divides m.

3 Monomial Ideal Membership

In this section we consider monomial ideal membership when f is given by an arith-
metic circuit. We show that the problem is in randomized polynomial time if number of
generators k for the monomial ideal I is a constant. When k is not a constant we show
that it is coNP-hard and is contained in coAMPP.
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Lemma 3. Let, I = 〈m1, m2, · · · , mk〉 be a monomial ideal in F[x1, x2, · · · , xn]. For
i ∈ [k], let mi = xei1

1 xei2
2 · · · xein

n . Let v̄ be a k-tuple given by v̄ = (j1, j2, · · · , jk),
where ji ∈ [n]. Define the ideal, Iv̄ = 〈xe1j1

j1
, · · · , xekjk

jk
〉. Then f ∈ I if and only if,

∀v̄ ∈ [n]k, f ∈ Iv̄ .

Proof. Given f ∈ I , it can be written as f = p1m1 + u2m2 + · · · + pkmk, where
pi ∈ F[x̄] for all i. Then, clearly ∀v̄ ∈ [n]k, f ∈ Iv̄ . Conversely, suppose f �∈ I . Write
f = c1M1 + c2M2 + · · · + ctMt, where Mi are the monomials of f and ci ∈ F.
As f �∈ I , we have Mj �∈ I for some j. Thus, mi does not divide Mj for any i.
Consequently, each mi contains some x�i , such that the exponent of x�i is greater than
the exponent of x�i in Mj . Let {�1, �2, · · · , �k} be k such indices. Consider the ideal
Iw̄, where w̄ = (�1, �2, · · · , �k). By Lemma 2, Mj �∈ Iw̄ and hence f �∈ Iw̄.

Using Lemma 3, we generalize the Schwartz-Zippel Lemma to a form tailored for
Monomial Ideal Membership.

Lemma 4. Let f ∈ F[x1, x2, · · · , xn] be a polynomial of total degree d and I =
〈xe1

1 , xe2
2 , · · · , xek

k 〉 be a monomial ideal as described in lemma 3. Fix a finite subset
S ⊆ F, and let r1, r2, · · · , rn−k be chosen independently and uniformly at random
from S. Then, Probri∈S [f(x1, x2, · · · , xk, r1, r2, · · · , rn−k) ∈ I | f �∈ I] ≤ d

|S| .

Proof. Write f =
∑

v̄ xj1
1 · · ·xjk

k fv̄(xk+1, · · · , xn), where v̄ = (j1, · · · , jk). Any
term in the above expression with ji ≥ ei is already in I . Thus, it suffices to con-
sider the sum f̂ of the remaining terms. More precisely, Let A = [e1 − 1] × [e2 −
1] × · · · × [ek − 1]. We can write f̂ =

∑
v̄∈A xj1

1 · · · xjk

k fv̄(xk+1, · · · , xn) where

v̄ = (j1, j2, · · · , jk) ∈ A. As f̂ �∈ I , not all fv̄ are identically zero. Choose and fix
one such ū. By the Schwartz-Zippel lemma [MR01], Probri∈S [fū(r1, r2, · · · , rn−k) =
0 | fū(xk+1, xk+2, · · · , xn) �≡ 0] ≤ d

|S| . For any v̄ = (j1, j2, · · · , jk) ∈ A, notice that

the monomial xj1
1 · · ·xjk

k is not in I . Thus, f(x1, x2, · · · , xk, r1, r2, · · · , rn−k) ∈ I iff
∀v̄, fv̄(r1, r2, · · · , rn−k) = 0. But fū(r1, r2, · · · , rn−k) = 0 with probability at most
d/|S|.

Theorem 4. Let f ∈ F[x̄] be given by an arithmetic circuit C and the ideal I =
〈m1, m2, · · · , mk〉 generated by monomials mi’s where k is a constant. For such in-
stances Monomial Ideal Membership can be solved in randomized polynomial time (in
nO(k) time).

Proof. First, we construct all the ideals, {Iv̄ | v̄ ∈ [n]k} as described in Lemma 3.
Then for each such Iv̄ , we check if f ∈ Iv̄ . The correctness of the algorithm fol-
lows from Lemma 3. Let Iv̄ = 〈xe1

1 , xe2
2 , · · · , xek

k 〉. To check f ∈ Iv̄ , we assign
random values to xk+1, · · · , xn from S and then evaluate the circuit C in the ring
R = F[x1, x2, · · · , xk]/Iv̄ . To evaluate the circuit in R, we need to compute each gate
operation modulo Iv̄ , starting from the input gates. Notice that, as 〈xe1

1 , xe2
2 · · · , xek

k 〉
is a Gröbner basis for Iv̄ , by Lemma 1 the actual order in which we evaluate the gates
is not important. Let, e =

∑k
i=1 ei. Then it is easy to see that the running time of the

algorithm is poly(n, s, ek) (notice that ei’s are in unary). Furthermore, by Lemma 4,
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the success probability of the algorithm is seen to be ≥ 1 − (d/|S|). So, it is enough to
consider sampling from a set S s.t, |S| = 2d using O(log d) random bits.

When the monomial ideal I is not generated by a constant number of monomials the
monomial ideal membership problem is coNP hard over any field. The easy proof is
omitted.

Theorem 5. Given a polynomial f as an arithmetic circuit, and a monomial ideal I =
〈m1, m2, · · · , mk〉, it is coNP-hard to test whether f ∈ I .

On the other hand, using standard counting arguments we can show the following upper
bounds for Monomial Ideal Membership when the number of monomial generators is
not restricted to a constant.

Theorem 6. 1. For F = Q, Monomial Ideal Membership is in coAMPP where the
input monomial ideal I = 〈m1, m2, · · · , mk〉 is given by a list of monomials and
f ∈ F[x̄] is given by an arithmetic circuit C.

2. For F = Fp, Monomial Ideal Membership is in coNPModpP.

We now show that if the polynomial f is accessed only via a black-box and if f has de-
greepolynomial in the input size we can still solve monomial ideal membership in ran-
domized polynomial time (assuming I is generated by constant number of monomials).
In [OT88], Ben-Or and Tiwari gave an interpolation algorithm for sparse multivariate
polynomials over integers.

Theorem 7. [OT88] Let f ∈ Z[x1, x2, · · · , xn] be a t-sparse multivariate polynomial
given as a black-box (by t-sparse we mean the number of monomials in f is bounded
by t), d be the degree of f , and b be a bound on the size of its coefficients. There is a
deterministic algorithm that queries the black-box for values of f on different inputs
and reconstructs the entire polynomial f in time poly(t, n, d, b).

Ben-Or and Tiwari’s result directly gives a deterministic polynomial time algorithm for
Monomial Ideal Membership when f is a t-sparse black-box polynomial over Z, and I
is any monomial ideal. The algorithm simply reconstructs f and checks if each of its
monomials is in I . Next, suppose f is a black-box polynomial of small degree and I is
a monomial ideal generated by constant number of monomials. The following result is
an easy consequence of Lemma 3 and Theorem 7.

Theorem 8. Let f ∈ Z[x̄] of degree d given as a black-box such that b is a bound on
the size of its coefficients. Suppose I = 〈m1, m2, · · · , mk〉 for constant k. Then we can
test if f ∈ I in randomized time poly(nk, dk, b).

4 Monomial Ideal Membership for ΣΠΣ Circuits

Consider instances (f, I) of Monomial Ideal Membership where f is given by a ΣΠΣ
circuit with top gate of bounded fanin and I = 〈m1, m2, · · · , mk〉 a monomial ideal
for constant k. By Lemma 3 this problem reduces to testing if f is in a monomial ideal
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of the form I = 〈xe1
1 , xe2

2 , · · · , xek

k 〉. As the quotient ring F[x1, x2, · · · , xk]/I is a local
ring and f ∈ I if and only if f ≡ 0 over the local ring F[x1, x2, · · · , xk]/I we can
apply the Kayal-Saxena deterministic identity test [KS07] for such ΣΠΣ circuit over
local rings2 to check this in overall time polynomial in the circuit size.

However, we develop the algorithm and its correctness proof based on Gröbner ba-
sis theory. The algorithm is essentially from [KS07]. But the Gröbner basis approach
is somewhat simpler and direct. It avoids invoking properties such as chinese remain-
dering in local rings and Hensel lifting. The added bonus is that we get a different
correctness proof for the Kayal-Saxena identity test.

Definition 2. A ΣΠΣ circuit C with n inputs over a field F computes a polynomial of
the form: C(x1, x2, · · · , xn) =

∑k
i=1

∏di

j=1 Lij(x1, x2, · · · , xn), where k is the fanin
of the top Σ gate, and di are the fanins of the k different Π gates and Lij’s are linear
forms over F[x1, x2, · · · , xn].

First, we transform the circuit C into another circuit C′ as follows: Let Lij =∑n
t=1 αijtxt+β for αijt, β ∈ F. We replace each such Lij by L′

ij =
∑n

t=1 αijtxt+βy,
where y is a new indeterminate. Let d be the maximum of the fanins of the Π gates.
For a Π gate of fanin di introduce d − di new input fanin wires each carrying y. Notice
that after this transformation the resulting ideal is not a monomial ideal.

Proposition 1. For I = 〈xe1
1 , xe2

2 , · · · , xek

k 〉 and a ΣΠΣ circuit C defined as above,
C ∈ I if and only if C′ ∈ 〈xe1

1 , xe2
2 , · · · , xek

k , y − 1〉.

We can assume that in the circuit C itself every Lij is of the form
∑n

t=1 αtxt and the
degree of the polynomial computed at each Π gate is d. We can naturally associate
to Lij its coefficient vector (α1, α2, · · · , αn) ∈ F

n. A collection of linear forms is
independent if their coefficient vectors forms a linearly independent set in F

n.
First we fix some notation. Let R denote the polynomial ring F[x1, x2, · · · , xk],

where k will be clear from the context where R is used. For α = (ek+1, ek+2, · · · , en) ∈
N

n−k, let x̄ᾱ denote x
ek+1
k+1 x

ek+2
k+2 · · · xen

n . The only monomial ordering we use is the lex-
ordering defined in Definition 1 w.r.t. the order x1 < x2 < · · · < xn. We can consider
an f ∈ F[x1, · · · , xn] as a polynomial in R[xk+1, xk+2, · · · , xn]. More precisely, we
can write f =

∑
ᾱ∈Nn−k Aᾱx̄ᾱ, where Aᾱ ∈ F[x1, x2, · · · , xk] \ {0}. Let ᾱ1 be such

that x̄ᾱ1 is the lex-largest term such that Aᾱ1 �= 0. Then we denote the R-leading
term Aᾱ1 x̄

ᾱ1 of f by LTR(f). Likewise, LMR(f) = x̄ᾱ1 and LCR(f) = Aᾱ1 is
the R-leading monomial and R-leading coefficient of f . For any f, g ∈ F[x1, · · · , xn],
it is clear that LMR(fg) = LMR(f)LMR(g), LCR(fg) = LCR(f)LCR(g). Let
f ∈ F[x1, · · · , xn] and I = 〈f1, f2, · · · , f�〉 be an ideal such that each fi is in
F[x1, x2, · · · , xk]. Then the following easy lemma states a necessary and sufficient con-
dition for f to be in I .

Lemma 5. Let I ⊆ F[x̄] be an ideal generated by the polynomials f1, f2, · · · , f� such
that for all i ∈ [�], fi ∈ F[x1, x2, · · · , xk]. Let g be any polynomial in F[x̄]. Write
g =

∑
ᾱ∈Nn−k Aᾱx̄ᾱ. Then g ∈ I if and only if for all ᾱ, Aᾱ ∈ I .

2 More precisely, over local rings that allow polynomial-time arithmetic in them.
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Consider polynomials f, g ∈ F[x1, x2, · · · , xn] and an ideal I such that g ∈ 〈I, f〉. The
following useful lemma gives a sufficient condition on f under which the remainder r
obtained when we invoke Divide(g; f) (of Theorem 1) is in the ideal I .

Lemma 6. Let I = 〈f1, f2, · · · , f�〉 be an ideal in F[x1, · · · , xn] where fi ∈
F[x1, · · · , xk] = R. Suppose f is a polynomial such that LM(f) contains only vari-
ables from {xk+1, xk+2, · · · , xn} (i.e. LM(f) = LMR(f)). Then for any polynomial
g in the ideal 〈I, f〉 we can write g = qf + r for polynomials q and r such that r ∈ I
and no monomial of r is divisible by LM(f).

Proof. The lemma is an easy consequence of the properties of the Divide algorithm
explained in Theorem 1. Notice that Divide(g; f) will stop with a remainder polynomial
r such that g = qf + r with the property that no monomial of r is divisible by LM(f).
However, we only know that r ∈ 〈I, f〉, because both g and qf are in 〈I, f〉. We now
show that r must be in I . First, as r ∈ 〈I, f〉 we can write r =

∑�
i=1 aifi + af , for

polynomials ai and a. Following Lemma 5, we write ai =
∑

ᾱ aiᾱx̄ᾱ for each i and
also a =

∑
ᾱ aᾱx̄ᾱ. Notice that we can assume aᾱ �∈ I for all nonzero aᾱ. Otherwise,

we can move that term to the
∑

aifi part. Since LM(f) does not divide any monomial
of r, it follows that LM(af) does not occur in a nonzero term of r. Therefore, LT (af)
must be cancelled by some term of

∑�
i=1 aifi. Clearly, LT (af) is of the form c · aβ̄ x̄ᾱ

for some α, β, where LC(f) = c ∈ F and aβ̄ = LCR(a). Now, in
∑�

i=1 aifi the

coefficient of x̄ᾱ is
∑�

i=1 aiᾱfi which must be equal to −c · aβ̄ . Since c ∈ F it follows
that aβ̄ is in I contradicting the assumption that none of the nonzero aγ̄ is in I .

Again, let I = 〈f1, f2, · · · , f�〉 such that the fi are in F[x1, x2, · · · , xk]. Consider two
polynomials f and g such that LM(f) contains only variables from xk+1, xk+2, · · · , xn

and either LM(f) > LM(g) or LMR(f) = LMR(g) and LCR(g) ∈ I . Then, g is in
the ideal 〈I, f〉 if and only if g ∈ I .

Lemma 7. Let I = 〈f1, f2, · · · , f�〉 be an ideal in F[x1, · · · , xn] such that each fi is in
F[x1, x2, · · · , xk] = R. Suppose f is a polynomial such that LM(f) is over the vari-
ables only from {xk+1, xk+2, · · · , xn} (i.e. LM(f) = LMR(f)). Then for any polyno-
mial g such that either LM(f) > LM(g), or LMR(f) = LMR(g) and LCR(g) ∈ I ,
g is in the ideal 〈I, f〉 if and only if g is in the ideal I .

Proof. Suppose g ∈ 〈I, f〉 and g �∈ I . We can write g = a + bf , for polynomials
a and b, where a ∈ I . Also, we can assume that b �∈ I , for otherwise g ∈ I and we
are done. Let b =

∑
ᾱ∈Nn−k bᾱx̄ᾱ, where bᾱ ∈ F[x1, x2, · · · , xk] and we can assume

bᾱ �∈ I for all ᾱ (otherwise we can move that term as part of a). Notice that LTR(bf) =
LTR(b) · LTR(f) = cbβ̄LMR(b)LMR(f) = cbβ̄x̄γ̄ for some γ̄ and for some bβ̄ ,
where c = LCR(f) ∈ F. Since bβ̄ �∈ I it follows that LCR(bf) �∈ I . Write a =∑

ᾱ∈Nn−k aᾱx̄ᾱ. By Lemma 5, a ∈ I implies each aᾱ ∈ I . In particular, aγ̄ ∈ I
and is not equal to −LCR(b · f) = −cbβ̄ as bβ̄ �∈ I . Thus, the monomial LMR(bf)
survives in a + bf . It follows that LMR(g) = LMR(a + bf) ≥ LMR(bf) ≥ LMR(f)
which forces LMR(f) = LMR(g) and LCR(g) ∈ I by assumption. If b /∈ R then
LMR(b ·f) > LMR(f) which implies LMR(g) > LMR(f) contradicting assumption.
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If b ∈ R then LTR(g) = LTR(a + bf) = (aᾱ + b)LMR(f) for some aᾱ, which forces
b ∈ I because both LTR(g), aᾱ ∈ I .

Let I ⊆ F[x1, · · · , xn] be an ideal and g1, g2 are two polynomials such that f is in
the ideals 〈I, g1〉 and 〈I, g2〉. Using some Gröbner basis theory we give a sufficient
condition on I , g1 and g2 under which we can infer that f is in the ideal 〈I, g1g2〉.

Lemma 8. Let I = 〈f1, f2, · · · , f�〉 be an ideal of F[x1, x2, · · · , xn], where fi are
polynomials in F[x1, x2, · · · , xk]. Suppose g1 and g2 are polynomials such that: g2 =
∏d2

i=1(xk+1 − αi), where each αi is a linear form over x1, x2, · · · , xk, and the leading
term LT (g1) of g1 has only variables from {xk+2, xk+3, · · · , xn}. Then f ∈ 〈I, g1g2〉
if and only if f ∈ 〈I, g1〉 and f ∈ 〈I, g2〉.

Proof. The forward implication is obvious. We prove the reverse direction. Suppose
f ∈ 〈I, g1〉 and f ∈ 〈I, g2〉. As f ∈ 〈I, g2〉, we can write f = a+bg2, where a ∈ I and
b is an arbitrary polynomial. Notice that it suffices to prove bg2 is in the ideal 〈I, g1g2〉.
Now, since f ∈ 〈I, g1〉 and a ∈ I it follows that bg2 = f − a ∈ 〈I, g1〉. By apply-
ing Lemma 6 to ideal I and polynomial g1 observe that we can write bg2 = αg1 + β,
where β is a polynomial in I such that none of the monomials of β is divisible by
LT (g1). We have the following equation b ·

∏d2
j=1(xk+1 −αj) = αg1 +β. Substituting

xk+1 = α1 in the above equation, we get (αg1)|xk+1=α1 = −β|xk+1=α1 . Notice that
LT (g1|xk+1=α1) = LT (g1), as LT (g1) contains variables only from xk+2, · · · , xn.
Thus the above substitution implies LT (β|xk+1=α1) = −LT ((αg1)|xk+1=α1) =
−LT (α|xk+1=α1) · LT (g1|xk+1=α1) = −LT (α|xk+1=α1) · LT (g1).

Thus LM(g1) divides LM(β|xk+1=α1). On the other hand, since LM(g1) does not
divide any monomial of β, LM(g1) cannot divide any monomial of LM(β|xk+1=α1) as
the substitution only introduces variables from {x1, · · · , xk}. This gives a contradiction
unless β|xk+1=α1 = 0, which in turn implies α|xk+1=α1 = 0. Thus we have proved that
(xk+1 − α1) is a factor of both α and β. This leads us to the following similar identity:
b·

∏d2
j=2(xk+1−αj) = α1g1+β1, where α1 = α/(xk+1−α1) and β1 = β/(xk+1−α1).

Clearly, by repeating the above argument we finally get, b = α′g1 + β′, for some
polynomials α′ and β′ where α = α′g2 and β = β′g2. Putting it together we get
bg2 = α′g1g2 + β′g2 = α′g1g2 + β. As β ∈ I , it follows that bg2 is in the ideal
〈I, g1g2〉.

Let I = 〈P1, P2, · · · , Pk〉 be an ideal in F[x1, · · · , xn] such that Pi ∈ F[x1, x2, · · · , xi]
and LT (Pi) = xdi

i for each i. For i �= j the leading terms LT (Pi) = xdi

i and

LT (Pj) = x
dj

j are clearly relatively prime. Therefore by Theorem 3, it follows that
{P1, P2, · · · , Pk} is in fact a Gröbner basis for I . We summarize this observation.

Lemma 9. Let I = 〈P1, P2, · · · , Pk〉 be an ideal in F[x1, · · · , xn] such that each Pi is
in F[x1, x2, · · · , xi] and LT (Pi) = xdi

i . Then {Pi}i∈[k] is a Gröbner basis for I .

Let f ∈ F[x1, x2, · · · , xk] and d be the maximum of deg(f) and deg(Pi), 1 ≤ i ≤ k.
We can invoke Divide(f ; P1, P2 · · · , Pk) (Theorem 1) to test whether f ∈ I . By Fact 2
the running time for this test is O(dk). Now we state the main theorem of this section.
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Theorem 9. Let C ∈ F[x1, x2 · · · , xn] be given by a ΣΠΣ(�, d) circuit for a constant
� and I = 〈m1, m2, · · · , mk〉 be a monomial ideal for constant k. For such instances,
Monomial Ideal Membership can be checked in deterministic polynomial time. Specifi-
cally, the running time is bounded by nkpoly(n, dmax{�,k}).

By Lemma 3 it clearly suffices to give a polynomial-time deterministic algorithm for
testing if a ΣΠΣ(�, d) circuit C is in a monomial ideal of the form 〈xe1

1 , · · · , xek

k 〉. As
explained before, using a new indeterminate y we can transform C to C′ with homoge-
neous linear forms, and C ∈ I if and only if C′ ∈ 〈xe1

1 , · · · , xek

k , y − 1〉. The following
theorem along with Lemma 3 yields Theorem 9.

Theorem 10. Let C be a given ΣΠΣ(�, d) circuit for a constant � and I =
〈P1, P2, · · · , Pk〉 be an ideal in F[x1, · · · , xn] such that Pi ∈ F[x1, x2, · · · , xi] and
LT (Pi) = xdi

i for each i. Further, suppose di ≤ d for all i ∈ [k]. Then testing if C ∈ I
can be done in deterministic time poly(dmax{�,k}).

Proof. We can assume that all linear forms appearing in C and C itself is a homoge-
neous degree d polynomial. By Lemma 9, the generating set for I is a Gröbner basis.
Let C(x1, x2, · · · , xn) =

∑�
i=1 Ti. For all i ∈ [�], Ti =

∏d
j=1 Lij , where Lij’s are the

linear forms over F[x1, x2, · · · , xn].
If � = 1, then C = T1. Let g(x1, x2, · · · , xk) be the product of those linear forms of

T1 using only variables from {x1, x2, · · · , xk}. Clearly, g(x1, x2, · · · , xk) has at most
dk monomials. We explicitly compute g by multiplying out all such linear forms. By
Lemma 5, clearly C ∈ I if and only if g ∈ I , which can be checked in time poly(dk) fol-
lowing the Fact 2. Now, assume � > 1. If all the linear forms appearing in T1, T2, · · · , T�

are only over {x1, x2, · · · , xk}, then again the ideal membership testing is easy. Be-
cause, in time poly(dk) we can write C itself as an F-linear combination of monomials
in x1, x2, · · · , xk and apply Fact 2 to check if f ∈ I in time poly(dk).

Now we consider the general case. By inspection we can write each Ti = βiT
′
i where

the βi are products of linear forms over only x1, x2, · · · , xk, whereas each linear form
in T ′

i involves at least one other variable.3 If βi ∈ I (which we can test in polynomial
time using Fact 2) we drop the term Ti from the sum

∑�
i=1 Ti. This enables us to write

C as C = β1T
′
1 + β2T

′
2 + · · · + βmT ′

m for some m ≤ �, where we have assumed for
simplicity of notation that βi �∈ I for first m terms.

As before, let R = F[x1, x2, · · · , xk]. W.l.o.g, assume that LMR(T ′
1) ≥ LMR(T ′

i )
for all i ∈ [2, 3, · · · , m]. We can determine LTR(T ′

i ) for each T ′
i in polynomial time

since they are given as product of linear forms. Thus, LMR(T ′
1) ≥ LMR(C). Now, let

r ∈ R be the coefficient of LMR(T ′
1) in C. We can compute r in polynomial time by

computing the coefficient of LMR(T ′
1) in each T ′

i and adding them up. Then we check
that r ∈ I (which is a necessary condition for C to be in I by Lemma 5). By Fact 2
we can check r ∈ I in time poly(dk). It is clear that, either LMR(T ′

1) > LMR(C)
or LMR(T ′

1) = LMR(C) and r ∈ I . Thus, by the Lemma 7, C ∈ I if and only if
C ∈ 〈I, T ′

1〉. Next, we group the linear forms in T ′
1: let, T ′

1 = T11T12 · · ·T1t, such that
for all i ∈ [t], T1i =

∏i
j=1(Li + misj ), where {Li}t

i=1 are distinct linear forms in

3 If there are no linear forms contributing to the product βi (respectively, T ′
i ) we will set it to 1.
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F[xk+1, · · · , xn] and misj ’s are linear forms in F[x1, · · · , xk]. Notice that the polyno-
mials T1i are relatively prime to each other.

Then we compute t linear transformations {σ1, σ2, · · · , σt} from F
n to F

n with
the following property: for i ∈ [t], σi fixes {xi}k

i=1, maps Li to xk+1 and maps
{xk+2, xk+3, · · · , xn} to some suitable linear forms in such a way that, σi is an invert-
ible linear transformation. As Li’s are over {xk+1, · · · , xn}, it is easy to see that such
σi exist and are easy to compute. Let C1 =

∑
j∈[�]\{1} Tj . For i ∈ [t], let C1i = σi(C1)

and let I1i be the ideal 〈I, σi(T1i)〉. The algorithm recursively checks that each of the
ΣΠΣ(� − 1, d) circuits C1i is in the ideal I1i, and declares C ∈ I if and only if C1i ∈
I1i for each i. Notice that the ideal I1i has generating set G = {P1, P2, · · · , Pk, Pk+1},
where Pk+1 ∈ F[x1, x2, · · · , xk+1] and LM(Pk+1) = x

dk+1
k+1 . By Lemma 9, G is a

Gröbner basis for I1i.
To argue correctness of the algorithm, we claim that for each s : 1 ≤ s ≤ t, we

have C ∈ 〈I, T11T12 · · · T1s〉 if and only if C1i ∈ I1i for 1 ≤ i ≤ s. In particular,
C ∈ 〈I, T ′

1〉 if and only if C1i ∈ I1i for 1 ≤ i ≤ t. We now establish the claim. If
C ∈ 〈I, T11T12 · · · T1s〉 then clearly C ∈ 〈I, T1i〉 for each 1 ≤ i ≤ s. As each σi is an
invertible linear map it follows in turn that σi(C) ∈ 〈I, σi(T1i)〉 = I1i for 1 ≤ i ≤ s.
Since C1i = σi(C) − σi(T1) and σi(T1) ∈ 〈σi(T1i)〉 it follows that C1i ∈ I1i for
1 ≤ i ≤ s. We prove the other direction of the claim by induction on s. The base case
s = 1 is trivial. Inductively assume it is true for s−1. I.e. if C1i ∈ I1i for 1 ≤ i ≤ s−1
then C ∈ 〈I, T11T12 · · · T1(s−1)〉. We now prove the induction step for s. Suppose
C1i ∈ I1i for 1 ≤ i ≤ s. Let T = T11T12 · · · T1(s−1). By induction hypothesis we have
C ∈ 〈I, T 〉. Furthermore, C1s ∈ I1s implies by definition that C ∈ 〈I, T1s〉. Now we
apply the linear map σs to obtain σs(C) ∈ 〈I, σs(T )〉 and σs(C) ∈ 〈I, σs(T1s)〉. The
map σs ensures that LT (T1s) is of the form xdeg T1s

k+1 . Furthermore, by the definition of
σs it follows that LT (σs(T )) has only variables in {xk+2, · · · , xn}. Letting g1 = σs(T )
and g2 = σs(T1s) in Lemma 8, it follows immediately that σs(C) ∈ 〈I, σs(T · T1s)〉
which implies the induction step since σs is invertible.

We show that the above algorithm runs in time poly(n, dmax{�,k}). Let T (�, n) be the
time to test C ∈ I . It is easy to see from the description of the algorithm that, T (�, n) ≤
tT (� − 1, n) + poly(n, dk). Hence, T (�, n) = poly(n, dmax{�,k}) as t = O(d).

5 Bounded Variable Ideal Membership

We now consider the ideal membership problem when I = 〈f1, · · · , f�〉 such that fi ∈
F[x1, · · · , xk] for a constant k and the polynomial f is given by an arithmetic circuit.
We call this variant bounded variable Ideal Membership. We first recall Hermann’s
fundamental result.

Theorem 11. [He26] Consider polynomials f, f1, f2, · · · , fm ∈ F[x1, x2, · · · , xk] for
a field F such that max{deg(f1), deg(f2), · · · , deg(fm), deg(f)} ≤ d. If f is in the
ideal I = 〈f1, f2, · · · , fm〉 then f can be expressed as f =

∑m
i=1 gifi where deg(gi) ≤

(2d)2
k

for each i.

Suppose f is given explicitly as an F-linear combination of terms. Using the bounds
of Hermann’s theorem, Hermann’s algorithm treats the coefficients of gi as unknowns
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and does membership testing in 〈f1, f2, · · · , fm〉 by solving a system of linear equa-
tions with m(2d)k2k

unknowns using Gaussian elimination in time mO(1)(2d)O(k2k).
Similarly, for an explicitly given f ∈ F[x1, · · · , xn], using Lemma 5 in combination
with Hermann’s algorithm we can test if f ∈ 〈f1, f2, · · · , fm〉 in time polynomial in
the size of f and mO(1)(2d)O(k2k). If k is a constant, this gives a polynomial running
time bound.

A natural question here is the complexity of Ideal Membership when f is given by
an arithmetic circuit whose membership we want to test in ideal I = 〈f1, f2, · · · , fm〉,
where fi ∈ F[x1, · · · , xk] for constant k. We consider polynomials f computed by
arithmetic circuits of polynomial degree in the input size. We can follow essentially
the same proof idea in the Theorem 4. Notice that f ∈ I if and only if f ≡ 0 in the
ring R[xk+1, xk+2, · · · , xn] where R = F[x1, x2, · · · , xk]/I . We need the following
proposition about zeros of a univariate polynomial over an arbitrary ring.

Proposition 2. Let R be an arbitrary commutative ring containing a field F. If f ∈
R[x] is a nonzero polynomial of degree d then f(a) = 0 for at most d distinct values of
a ∈ F.

Proof. Suppose f(ai) = 0 for distinct points ai ∈ F, 1 ≤ i ≤ d+1. Write f(x) = (x−
a1)q(x) for q(x) ∈ R[x]. Dividing q(x) by x−a2 yields q(x) = (x−a2)q′(x)+q(a2),
for some q′(x) ∈ R[x]. Thus, f(x) = (x − a1)(x − a2)q′(x) + (x − a1)q(a2). Putting
x = a2 yields (a2 − a1)q(a2) = 0. It forces q(a2) = 0 since a2 − a1 �= 0 is a unit in
F. Therefore, f(x) = (x − a1)(x − a2)q′(x). Repeating this argument for the other ai

yields f(x) = g(x)
∏d+1

i=1 (x − ai) for some nonzero polynomial g(x) ∈ R[x], which
forces deg(f) ≥ d + 1 contradicting the assumption.

An easy induction argument yields the following analog of the Schwartz-Zippel test for
arbitrary commutative rings.

Lemma 10. Let R be an arbitrary commutative ring containing a field F. Let g ∈
R[x1, x2, · · · , xm] be any polynomial of degree at most d. If g �≡ 0, then for any finite
subset A of F we have Proba1∈A,···,am∈A[g(a1, a2, · · · , am) = 0 | g �≡ 0] ≤ md

|A| .

Now we describe our ideal membership test: Choose and fix S ⊆ F of size 2(n − k)d
and randomly assign values from S to the variables in {xk+1, · · · , xn}. Clearly f ,
given by a polynomial degree arithmetic circuit C, is in I if and only if f ≡ 0 in
R[xk+1, xk+2, · · · , xn], where R = F[x1, x2, · · · , xk]/I . After the random substitution
we are left with an arithmetic circuit C′(x1, · · · , xk). By Lemma 10 if f �∈ I then
C′(x1, · · · , xk) /∈ I with probability at least 1/2. It suffices to test if C′ is in I . As C′

is of polynomial degree d and k is a constant, notice that C′ is an F-linear combina-
tion of at most dk monomials. Clearly, we can test if C′ ∈ 〈f1, · · · , f�〉 in polynomial
time using Hermann’s algorithm as k is a constant. Similarly, Theorem 8 for black-box
polynomials can be easily extended to bounded variable Ideal Membership.

Finally, when f is given by a ΣΠΣ circuit with bounded fanin output gate, we can
follow the algorithm in the proof of Theorem 10 to end up with the problem of testing
if a polynomial g given by a ΠΣ circuit is in an ideal 〈f1, · · · , f�〉, where fi are all
in F[x1, · · · , xt] for a constant t. Again, we can apply Hermann’s algorithm to check
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this in time polynomial in (m + n + d)O(t2t) which is a polynomial time bound as t is
constant.

Theorem 12. Let I = 〈f1, f2, · · · , fm〉 be an ideal in F[x1, x2, · · · , xn] where each
fi ∈ F[x1, x2, · · · , xk] for constant k. If f be a polynomial given by an arithmetic
circuit of polynomial degree, then in randomized polynomial time we can test if f ∈ I .
This result holds even if f is given by a black-box and the degree of f is polynomial in
the input size. Further, if f is given by a ΣΠΣ(�, d) circuit with � constant, then we
can test whether f ∈ I in deterministic polynomial time.
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Abstract. This paper shows that it is NP-hard to generate a minimum
complete test set for stuck-at faults on the wires of a reversible circuit. We
also show non-trivial lower bounds for the size of a minimum complete
test set.

1 Introduction

Reversible circuits, which permute the set of input vectors, have potential ap-
plications in nanocomputing [3], low power design [1], digital signal processing
[6], and quantum computing [4]. This paper shows that given a reversible circuit
C, it is NP-hard to generate a minimum complete test set for stuck-at faults
which fix the values of wires in C to either 0 or 1. This is the first result on the
complexity of fault testing for reversible circuits, as far as the authors know. We
also show non-trivial lower bounds for the size of a minimum complete test set.

A gate is reversible if the Boolean function it computes is bijective. If a re-
versible gate has k input and output wires, it is called a k × k gate. A circuit
is reversible if all gates are reversible and are interconnected without funout or
feedback. If a reversible circuit has n input and output wires, it is called an n×n
circuit.

We shall focus our attention to detecting faults in a reversible circuit C which
cause wires to be stuck-at-0 or stuck-at-1. Let W (C) be the set of all wires of C.
W (C) consists of all output wires of C and input wires to the gates in C. W (C)
is the set of all possible fault locations in C. For an n × n reversible circuit C, a
test is an input vector in {0, 1}n. A test set is said to be complete for C if it can
detect all possible single and multiple stuck-at faults on W (C). Patel, Hayes, and
Markov [5] showed that for any reversible circuit C, there exists a complete test
set for C. Let τ(C) be the minimum cardinality of a complete test set for C.

We first show that it is NP-hard to compute τ(C) for a given reversible circuit
C. Let MTS (Minimum Test Size) be a problem of deciding if τ(C) ≤ B for a
given reversible circuit C and integer B. We show in Section 3 that MTS is
NP-complete.

Patel, Hayes, and Markov [5] showed a general upper bound for τ(C) as
follows. They showed that

τ(C) = O(log |W (C)|) (1)

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 812–821, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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for any reversible circuit C. We show the first non-trivial existential lower bound
for τ(C). We show in Section 4 that there exists a reversible circuit C such that

τ(C) = Ω(log log |W (C)|). (2)

A k-CNOT gate is a (k +1)× (k +1) reversible gate. It passes some k inputs,
referred to as control bits, to the outputs unchanged, and inverts the remaining
input, referred to as target bit, if the control bits are all 1. The 0-CNOT gate is
just an ordinary NOT gate. A CNOT gate is a k-CNOT gate for some k. Some
CNOT gates are shown in Fig. 1, where a control bit and target bit are denoted
by a black dot and ring-sum, respectively. A CNOT circuit is a reversible circuit
consisting of only CNOT gates. A k-CNOT circuit is a CNOT circuit consisting
of only k-CNOT gates. Any Boolean function can be implemented by a CNOT
circuit since the 2-CNOT gate can implement the NAND function.

t t

(a) 0-CNOT gate.

t c ⊕ t
cc

(b) 1-CNOT gate.

t (c1 ∧ c2) ⊕ t

c1c1
c2c2

(c) 2-CNOT gate.

Fig. 1. CNOT gates

Chakraborty [2] showed that

τ(C) ≤ n (3)

if C is an n × n CNOT circuit with no 0-CNOT or 1-CNOT gate. We show in
Section 5 that there exists an n × n 2-CNOT circuit C such that

τ(C) = Ω(log n). (4)

It is an interesting open problem to close the gaps between the upper bounds
(1) and (3), and our lower bounds (2) and (4), respectively.

2 Complete Test Sets

A wire w of a reversible circuit C is said to be controllable by a test set T if
the value of w can be set to both 0 and 1 by T . A set of wires S ⊆ W (C) is
said to be controllable by T if each wire of S is controllable by T . The following
characterization for a complete test set is shown in [5].

Theorem I. A test set T for a reversible circuit C is complete if and only if
W (C) is controllable by T . ��
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3 NP-Completeness of MTS

The purpose of this section is to prove the following:

Theorem 1. MTS is NP-complete.

Proof. A minimum complete test set T for a reversible circuit C can be verified
in polynomial time, since |T | = O(log |W (C)|) by (1). Thus MTS is in NP.

We show a polynomial time reduction from 3SAT, a well-known NP-complete
problem, to MTS. Let x = (x1, , x2, . . . , xn) and

φ(x) =
m∧

j=1

ρj

be a Boolean function in conjunctive normal form in which each clause ρj has
3 literals for j ∈ [m] = {1, 2, . . . , m}. For a Boolean variable x, literals x and x
are denoted by x0 and x1, respectively.

We use generalized CNOT gates for simplicity. A generalized k-CNOT gate
has k control bits x1, . . . , xk and a target bit t. The output of the target bit is
defined as

(xα1
1 ∧ xα2

2 ∧ · · · ∧ xαk

k ) ⊕ t.

A control bit xi is said to be positive if αi = 1, and negative if αi = 0. Notice
that a CNOT gate is a generalized CNOT gate with no negative control bit.
Notice also that a negative control bit is equivalent to a positive control bit with
a 0-CNOT gate on the input and output wires. A generalized CNOT [k-CNOT]
circuit is a reversible circuit consisting of only generalized CNOT [k-CNOT]
gates.

We first construct a generalized CNOT gate Gj for each clause ρj . Let

ρj = x
σj1
j1 ∨ x

σj2
j2 ∨ x

σj3
j3 ,

where σjl ∈ {0, 1} and xjl ∈ {xi|i ∈ [n]} for l ∈ [3]. We construct a generalized
3-CNOT gate Gj for ρj as follows. The gate Gj has 3 control bits xj1, xj2, xj3,
and a target bit t. A control bit xjl is defined to be positive if σjl = 0, and
negative if σjl = 1. For an n × n circuit C and an input vector v ∈ {0, 1}n, we
denote by C(v) the output vector of C for v. The following lemma is immediate
from the definition of Gj .

Lemma 1. Gj(xj1, xj2, xj3, t) = (xj1, xj2, xj3, ρj ⊕ t). ��

Lemma 1 means that Gj changes the target bit t for input vector (xj1, xj2, xj3,
t) if and only if ρj(xj1, xj2, xj3) = 0. As an example, for a Boolean function:

ψ(x1, x2, x3) = ρ1 ∧ ρ2,
ρ1 = x1 ∨ x2 ∨ x3, and
ρ2 = x1 ∨ x2 ∨ x3,

⎫
⎬

⎭
(5)
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x1

x2

x3

t

(a) G1.

 

x1

x2

x3

t

(b) G2.

x1

x′
1

x2

x′
2

x3

x′
3

G11 G12 G21 G22

t

(c) 6-CNOT circuit C(ψ).

Fig. 2. Generalized 3-CNOT gates and 6-CNOT circuit

generalized 3-CNOT gates G1 and G2 are shown in Fig. 2(a) and (b), where a
negative control bit is denoted by an empty circle.

We next construct a (2n + 1)× (2n + 1) generalized 6-CNOT circuit C(φ) for
φ. For x = (x1, , x2, . . . , xn), y = (y1, , y2, . . . , yn) ∈ {0, 1}n, and t ∈ {0, 1}, let
x = (x1, x2, . . . , xn) and (x, y, t) = (x1, , x2, . . . , xn, y1, , y2, . . . , yn, t). Let G′

j be
a copy of Gj with control bits x′

j1, x
′
j2, x

′
j3, and a target bit t for any j ∈ [m].

For any j, h ∈ [m], Gjh is a generalized 6-CNOT gate with control bits xj1, xj2,
xj3, x

′
h1, x

′
h2, x

′
h3, and a target bit t. A control bit xjl[x′

hl] is positive in Gjh if
and only if xjl[x′

hl] is positive in Gj [G′
h]. We construct a (2n + 1) × (2n + 1)

generalized 6-CNOT circuit C(φ) which is a cascade consisting of m2 gates Gjh

(j, h ∈ [m]). As an example, C(ψ) for the Boolean function ψ defined in (5) is
shown in Fig. 2(c). We have the following by Lemma 1.

Lemma 2. Gjh

(
(x, x′, t)

)
=

(
x, x′,

(
ρj(x) ∧ ρh(x′)

)
⊕ t

)
. ��

Lemma 2 implies that Gjh changes the target bit if and only if ρj(x) = 0 and
ρh(x′) = 0.

We now show that φ is satisfiable if and only if τ(C(φ)) ≤ 2. For a gate G
of C, G[v] is the output vector of G generated by an input vector v of C. Also,
w[v] is the value of a wire w in C generated by v.

Lemma 3. A test set T = {v1, v2} of a generalized CNOT circuit C with no
0-CNOT gate is complete if and only if T satisfies the following conditions:

(i) v2 = v1, and

(ii) G[vi] = vi (i ∈ [2]) for every gate G of C.

Proof. It is easy to see that if T satisfies (i) and (ii), then W (C) is controllable
by T . Thus T is complete for C by Theorem I.

Suppose T is complete for C. Then W (C) is controllable by T by Theorem I.
Since the input wires of C are controllable by T , we have v2 = v1. Thus, T sat-
isfies (i). Suppose T does not satisfy (ii), that is G[vi] 
= vi for some generalized
k-CNOT gate G and some i, say i = 1. That is, if wti and wto are the input and
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output wires of the target bit of G, we have

wto[v1] = wti[v1]. (6)

Since the input wires of G are controllable by T , we have

win[v2] = win[v1] (7)

for every input wire win of G. Thus we conclude that

wti[v2] = wti[v1]. (8)

By (6), (7), and k ≥ 1, there exists an input wire win of control bit of G such
that win[v2] = 1 if win is a negative control bit, and win[v2] = 0 otherwise. This
implies that

wto[v2] = wti[v2]. (9)

By (6), (8), and (9), we have

wto[v1] = wto[v2],

which means thatwto is not controllable by T , a contradiction.Thus T satisfies (ii).
��

Now, we are ready to prove the following.

Lemma 4. φ is satisfiable if and only if τ(C(φ)) ≤ 2.

Proof. It is easy to see from Lemmas 2 and 3 that if φ(x) = 1 for some
x ∈ {0, 1}n, then a test set {(x, x, 0), (x, x, 1)} is complete for C(φ). Thus,
τ(C(φ)) ≤ 2.

Notice that τ(C) ≥ 2 for any reversible circuit C by Theorem I. Suppose
τ(C(φ)) = 2, and let T be a complete test set of size two. By Lemma 3, T =
{(x, y, 0), (x, y, 1)} for some x, y ∈ {0, 1}n. Also by Lemma 3, Gjh[(x, y, 0)] =
(x, y, 0) and Gjh[(x, y, 1)] = (x, y, 1) for any j, k ∈ [m]. Thus by Lemma 2,

ρj(x) ∧ ρh(y) = 0 and ρj(x) ∧ ρh(y) = 0

for any j, h ∈ [m], that is,

ρj(x) ∨ ρh(y) = 1 and ρj(x) ∨ ρh(y) = 1

for any j, h ∈ [m]. If ρj(x) = 1 for any j ∈ [m], then φ(x) = 1, and φ is
satisfiable. If ρj(x) = 0 for some j ∈ [m], then ρh(y) = 1 for any h ∈ [m]. Thus
φ(y) = 1, and φ is satisfiable. ��

Since C(φ) can be constructed in polynomial time, we complete the proof of the
theorem. ��
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4 Lower Bounds for 1-CNOT Circuits

The purpose of this section is to prove the following:

Theorem 2. There exists a 1-CNOT circuit C such that

τ(C) = Ω(log log |W (C)|). ��

Before proving the theorem, we need some preliminaries.

4.1 Preliminaries

The level of a wire of a reversible circuit is defined as follows. The input wires
of the circuit are at level 0, and the output wires of a gate are at one plus the
highest level of any of input wires of the gate. In cases where an input wire of
a gate is at level i and the output wires are at level j > i + 1, we say the input
wire is at all levels between i and j − 1 inclusively.

It is easy to see the following lemmas.

Lemma 5. If C3 is a reversible 2 × 2 circuit consisting of just one 1-CNOT
gate, then τ(C3) = 3. ��

Lemma 6. If B is a 2 × 2 1-CNOT circuit shown in Fig. 3, then B(v) = v for
any v ∈ {0, 1}2 . ��

Fig. 3. 2 × 2 1-CNOT circuit B

Lemma 7. If C is an n×n 1-CNOT circuit with g gates, then |W (C)| = n+2g.
��

4.2 Proof of Theorem 2

We prove the theorem by constructing such circuits. Let Ch (h ≥ 3) be a 1-CNOT
circuit defined as follows. Let C3 be a 1-CNOT circuit consisting of just one 1-
CNOT gate. For h ≥ 4, Ch is recursively defined as follows. Let C

(0)
h−1, C

(1)
h−1, . . . ,

C
(�h−1)
h−1 be 	h−1 + 1 copies of Ch−1, where 	h−1 = |W (Ch−1)|. Construct an

nh−1 × nh−1 1-CNOT circuit Dh−1 by concatenating C
(1)
h−1, C

(2)
h−1, . . . , C

(�h−1)
h−1 ,

where nh−1 is the number of input wires of Ch−1. Let W (C(k)
h−1) = {w

(k)
1 , w

(k)
2 , . . . ,

w
(k)
�h−1} for 0 ≤ k ≤ 	h−1 such that if the level of w

(k)
i is not greater than the level

of w
(k)
j , then i ≤ j. Ch is constructed from Dh−1 and C

(0)
h−1 by inserting a copy of

1-CNOT circuit B shown in Fig. 3 for each wire of C
(i)
h−1, i ∈ [	h−1], such that

the wire of C
(i)
h−1 is the control bit and w

(0)
i is the target bit of the 1-CNOT gates.

As an example, D3 and C4 are shown in Fig. 4 and Fig. 5, respectively.
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Fig. 4. 1-CNOT circuit D3

C
(0)
3

C
(1)
3 C

(2)
3 C

(3)
3 C

(4)
3

w
(0)
1

w
(0)
2

w
(0)
3

w
(0)
4

Fig. 5. 4 × 4 1-CNOT circuit C4

Let gh be the number of gates in Ch. From the definition of Ch, we have

nh = 2h−2 (10)

for h ≥ 3. We also have

gh =
(
	h−1 + 1

)
gh−1 + 2	2

h−1

=
(
nh−1 + 2gh−1 + 1

)
gh−1 + 2(nh−1 + 2gh−1)2 (11)

= 10g2
h−1 + gh−1(9nh−1 + 1) + 2n2

h−1 (12)

for h ≥ 4, where (11) follows from Lemma 7. Since each input wire of Ch is an
input wire of a gate, and every 1-CNOT gate has two input wires, we have

nh ≤ 2gh (13)

for h ≥ 3.

Lemma 8. h = Ω(log log |W (Ch)|).

Proof. By (12) and (13), we have

gh ≤ 36g2
h−1 + gh−1 ≤ 37g2

h−1.

It follows that 37gh ≤ (37gh−1)2, and so

log gh + log 37 ≤ 2(log gh−1 + log 37) ≤ 2h−3(log g3 + log 37).

Thus, we have

log gh ≤ 2h−3(0 + log 37). (14)
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By Lemma 7 and (13), we have 	h = nh + 2gh ≤ 4gh for h ≥ 4, and so

log log 	h ≤ log log gh + 1 ≤ h − 3 + log log 37 + 1

by (14). Thus we conclude that

h = Ω(log log 	h).

��

Lemma 9. τ(Ch) ≥ h.

Proof. The proof is by induction on h. τ(C3) = 3 by Lemma 5. Suppose τ(Ch−1)
≥ h−1. We will show that τ(Ch) ≥ h. Suppose contrary that τ(Ch) = h−1. Let
T = {v1, v2, . . . , vh−1} be a complete test set for Ch, and vl = (v(1)

l , v
(2)
l ) for

v
(1)
l , v

(2)
l ∈ {0, 1}nh−1 (l ∈ [h− 1]). Let T ′ = {v1, v2, . . . , vh−2}, and T ′

k = {v
(k)
1 ,

v
(k)
2 , . . . , v

(k)
h−2} for k ∈ [2].

Since τ(Ch−1) ≥ h − 1 by the inductive hypothesis, W (Ch−1) is not control-
lable by T ′

k, k ∈ [2]. Thus there exists i such that w
(0)
i in C

(0)
h−1 is not controllable

by T ′
2. There also exists j such that w

(i)
j in Dh−1 is not controllable by T ′

1. Thus,
we have

(w(i)
j [v(1)

l ], w(0)
i [v(2)

l ]) = (w(i)
j [v(1)

m ], w(0)
i [v(2)

m ]) (15)

for any vl, vm ∈ T ′.
Let G be the left 1-CNOT gate of a copy of B whose control bit is at w

(i)
j

and target bit is at w
(0)
i , wc be the input wire of control bit of G, and wt be the

input wire of target bit of G. Then by Lemma 6,

(wc[vl], wt[vl]) = (w(i)
j [v(1)

l ], w(0)
i [v(2)

l ]) (16)

for any vl ∈ T ′. By (15) and (16), we have

(wc[vl], wt[vl]) = (wc[vm], wt[vm]) (17)

for any vl, vm ∈ T ′. By Lemma 5 and (17), we conclude that W (G) is not
controllable by T = T ′∪{vh−1}, a contradiction. Thus, we have τ(Ch) ≥ h. ��

From Lemma 8 and 9, we obtain the theorem.

5 Lower Bounds for 2-CNOT Circuits

The purpose of this section is to prove the following.

Theorem 3. There exists an n×n 2-CNOT circuit C such that τ(C) = Ω(log n).

Proof. We need the following two lemmas, which can be easily seen.
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(a) 3×3 2-CNOT circuit E3. (b) 3 × 3 2-CNOT circuit F .

Fig. 6. 3 × 3 2-CNOT circuits E3 and F

Lemma 10. If E3 is a 3×3 2-CNOT circuit shown in Fig. 6(a), then τ(E3) = 3.
��

Lemma 11. If F is a 3 × 3 2-CNOT circuit shown in Fig. 6(b), then F (v) = v
for any v ∈ {0, 1}3. ��

We prove the theorem by constructing such circuits. Let Eh (h ≥ 3) be a 2-CNOT
circuit defined as follows. Let E3 be a 2-CNOT circuit shown in Fig. 6(a). For h ≥
4, Eh is recursively defined as follows. Let E

(i)
h−1 for 0 ≤ i ≤ 	h−1 and E

(j,k)
h−1 for

j, k ∈ [	h−1] be copies of Eh−1, where 	h−1 = |W (Eh−1)|. Construct an nh−1 ×
nh−1 2-CNOT circuit Hh−1 by concatenating E

(1)
h−1, E

(2)
h−1, . . . , E

(�h−1)
h−1 , and con-

struct an nh−1 ×nh−1 2-CNOT circuit Jh−1 by concatenating E
(1,1)
1 , E

(1,2)
1 , . . . ,

E
(1,�h−1)
1 , E

(2,1)
2 , E

(2,2)
2 , . . . , E

(2,�h−1)
2 , . . . , E

(�h−1,�h−1)
�h−1 ,

where nh−1 is the number of input wires of Eh−1. Let W (E(i)
h−1) = {w

(i)
1 , w

(i)
2 , . . . ,

w
(i)
�h−1} and W (E(j,k)

h−1 ) = {w
(j,k)
1 , w

(j,k)
2 , . . . , w

(j,k)
�h−1} such that if the level of w

(∗)
i

is not greater than the level of w
(∗)
j , then i ≤ j. Eh is constructed from Jh−1,

Hh−1, and E
(0)
h−1 by inserting a copy of F for each wire w

(i,j)
k with i, j, k ∈ [	h−1]

such that w
(i,j)
k of E

(i,j)
h−1 in Jh−1 is the top bit of the copy of F , w

(i)
j of E

(i)
h−1 in

Hh−1 is the middle bit of the copy of F , and w
(0)
i of E

(0)
h−1 is the bottom bit of

the copy of F .
From the definition of Eh, we have nh = 3h−2, and so the following.

Lemma 12. h = Ω(log nh). ��

Lemma 13. τ(Eh) ≥ h.

Proof (Sketch). The proof is by induction on h. τ(E3) = 3 by Lemma 10.
Suppose τ(Eh−1) ≥ h − 1. We will show that τ(Eh) ≥ h. Suppose contrary
that τ(Eh) = h − 1, and let T = {v1, v2, . . . , vh−1} be a complete test set for
Eh. Since τ(Eh−1) ≥ h − 1, W (Eh−1) is not controllable by T ′ = {v1, v2, . . .

vh−2}. Thus there exist i, j, k ∈ [	h−1] such that none of w
(0)
i , w

(i)
j , and w

(i,j)
k

is controllable by T ′. It follows that if Fi,j,k is a copy of F with the top bit on
w

(i,j)
k , and Ei,j,k is a copy of E consisting of the left three gates of Fi,j,k, then

W (Ei,j,k) is not controllable by Lemmas 10 and 11, a contradiction. Thus, we
have τ(Eh) ≥ h. ��
From Lemmas 12 and 13, we obtain the theorem. ��
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6 Concluding Remarks

It should be noted that (1) is merely an existential upper bound. It is an inter-
esting open problem to find a polynomial time algorithm to construct a complete
test set of such size.

We can show that τ(Eh) = Ω(log log |W (Eh)|), though the proof is rather
complicated.
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Abstract. We show that isomorphism testing of k-trees is in the class
StUSPACE(log n) (strongly unambiguous logspace). This bound follows
from a deterministic logspace algorithm that accesses a strongly unam-
biguous logspace oracle for canonizing k-trees. Further we give a logspace
canonization algorithm for k-paths.

1 Introduction

It often turns out that NP-hard graph problems when restricted to the class of
partial k-trees for constant k have efficient polynomial-time algorithms [Bod88,
SS87]. Partial k-trees are also known as the class of graphs of treewidth k.
For constant k, in general, they are known as bounded treewidth graphs (formal
definitions are given in Section 3).

Graph Isomorphism is the problem of deciding whether two given graphs are
isomorphic. I.e. the problem is to test whether there is a bijective function that
maps vertices of the first graph to vertices of the second graph and preserves
the edge relation. Graph Isomorphism has attracted much algorithmic research.
It is one of the few problems in NP that is neither known to be computable
in polynomial time nor to be NP-complete. Polynomial time algorithms have
been designed for the problem for several interesting restricted graph classes
[Luk82, Mil83, Bab86], including the class of partial k-trees [Bod90]. Bodlaender
[Bod90] gave the first polynomial-time algorithm for testing the isomorphism of
partial k-trees. Bodlaender’s algorithm, based on dynamic programming, runs
in time O(nk+4.5).

Our interest is in a complexity-theoretic characterization of Graph Isomor-
phism for partial k-trees using space bounded complexity classes. We explain
our motivation for studying the space complexity of k-tree isomorphism. On the
one hand, we have Lindell’s result [Lin92, JKMT03] that tree canonization is
complete for deterministic logspace,1 which tightly characterizes the complex-
ity of both isomorphism and canonization of trees. What about partial k-tree
isomorphism? The recent TC1 upper bound for isomorphism of partial k-trees
by Grohe and Verbitsky [GV06] raises the question about a tight complexity-
theoretic classification of the problem. It is tempting to conjecture that partial
1 Provided that the tree is given in the pointer notation; using the parenthesis notation

the problem is NC1-complete [Bus97, JKMT03]
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k-tree isomorphism should also be complete for deterministic logspace, just like
ordinary tree isomorphism. However, the best known complexity bound for even
recognizing partial k-trees is LOGCFL (the class of decision problems that are
logspace many-one reducible to CFLs) [Wan94].

The TC1 bound of [GV06] suggests that we can put the problem in a natural
complexity class contained in TC1 like LOGCFL or DET, or perhaps somewhere
in the logspace counting hierarchy. The logspace counting classes, introduced
in the seminal paper [AO96], contain many natural problems sitting in NC2

and have been used to characterize most natural problems in NC2 satisfactorily
from a complexity-theoretic viewpoint. A comprehensive study can be found in
Allender’s survey article [All04].

In this paper we show that full k-tree canonization is in FLNL. Recall that
the canonization problem for graphs is to produce a canonical form canon(G)
for a given graph G such that canon(G) is isomorphic to G and canon(G1) =
canon(G2) for any pair of isomorphic graphs G1 and G2. Canonization is clearly
at least as hard as Graph Isomorphism. In fact, it is easy to see that Graph
Isomorphism is even AC0 reducible to Graph Canonization. However, in general
it is not known if the two problems are even polynomial-time equivalent.

Interestingly, the NL oracle required for k-tree canonization is a language
computed by an NL machine M that is strongly unambiguous: for any two
configurations x and y of machine M there is at most one computation path
from x to y. The class of languages accepted by such NL machines is denoted
StUSPACE(log n) (StUL for short) by Allender and Lange [AL89]. As shown in
[AL89], StUL is in fact contained in DSPACE(log2 n/ log log n), improving the
DSPACE(log2 n) bound given by Savitch’s theorem. Furthermore, the complex-
ity class StUL is closed under complementation and even closed under logspace
Turing reductions [BJLR91, Corollary 15]. Thus, it follows that k-tree isomor-
phism is in StUL. The class StUL is not known to be contained in L. In fact,
it contains the class ULIN of unambiguous linear languages [BJLR91] which is
not known to be in L. To the best of our knowledge, no explicit example of a
language in StUL is known that is not already in L. Thus, k-tree isomorphism
is the first natural problem in StUL which is not known to be in L.

We note that parallel algorithms are known for k-tree isomorphism. For ex-
ample, in [GSS02] a processor efficient AC2 algorithm was given for k-tree iso-
morphism. Since StUL ⊆ UL ⊆ NL ⊆ AC1, our upper bound is tighter than
previously known bounds from a complexity-theoretic perspective. We also look
into the problem of canonizing k-paths, a special case of k-trees, and give a
logspace canonization algorithm for k-paths.

2 Preliminaries

By graphs we mean finite simple graphs. For basic graph theoretic definitions
we refer the reader to [Die97]. For a graph G, let V (G) denote its vertex set and
E(G) denote its edge set. The set {w ∈ V (G) | {v, w} ∈ E(G)} of all neighbors of



824 V. Arvind, B. Das, and J. Köbler

v ∈ V (G) is denoted by N(v). For a subset U ⊆ V (G), we use G[U ] to denote the
induced subgraph of G, where V (G[U ]) = U and E(G[U ]) = {e ∈ E(G) | e ⊆ U}.

Two graphs G and H are isomorphic if there is an edge-preserving bijection
τ : V (G) → V (H), i.e., for all u, v ∈ V (G), {u, v} ∈ E(G) if and only if
{τ(u), τ(v)} ∈ E(H). In case the vertices of G and H are labeled, then the
isomorphism τ must also preserve the labels.

Next we recall some complexity classes defined by circuits and some space
bounded classes.

A language A is in the complexity class NCi (resp. ACi) if there is a uniform
family of circuits {Cn}n of depth O(logi n) and size poly(n) with internal AND ,
OR and NOT gates with bounded (resp. unbounded) fan-in that accepts A. TCi

is the extension of ACi where we additionally allow unbounded MAJORITY
gates.

The complexity class L consists of all languages A accepted by a deterministic
O(log n) space bounded Turing machine. NL is defined in the same way by using
nondeterministic machines. FL is the class of all functions computable by a
deterministic O(log n) space bounded Turing machine.

A nondeterministic Turing machine M is called unambiguous, if for any input
x, it has at most one accepting computation path.

M is said to be reach-unambiguous if it is unambiguous and for any input x,
there is at most one computation path from the starting configuration to any
other configuration.

M is said to be strongly unambiguous if it is unambiguous and for any pair of
configurations u and v of M there is at most one computation path from u to v.

A mangrove is a directed acyclic graph such that there is at most one directed
path from i to j for any two nodes i and j in the graph. In other words, a directed
graph is a mangrove if and only if for any node u the subgraph induced by u
and all nodes reachable from u is a rooted directed tree.

Note that an unambiguous machine M is strongly unambiguous if and only
if its configuration graph is a mangrove.

A language A is in the class UL (RUL, StUL) if there is an O(log n)
space bounded unambiguous (reach-unambiguous, strongly unambiguous, re-
spectively) Turing machine accepting A. It is well known that

NC1 ⊆ L ⊆ StUL ⊆ RUL ⊆ UL ⊆ NL ⊆ AC1 ⊆ TC1 ⊆ NC2.

The following result of Allender and Lange [AL89] shows that Savitch’s log2 n
space deterministic simulation of NL can be improved for StUL and RUL.

Theorem 1. [AL89] StUL ⊆ RUL ⊆ DSPACE(log2 n/ log log n).

3 k-Tree Canonization

Let G be a class of (encodings of) graphs. We say that f computes a complete
invariant for G, if

∀G, H ∈ G : G ∼= H ⇔ f(G) = f(H).
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A complete invariant f for G that computes for any graph G ∈ G a graph f(G)
that is isomorphic to G is called a canonization for G. We call f(G) the canon
of G (w.r.t. f).

Notice that if there is a polynomial time computable canonization for G then
the graph isomorphism problem restricted to G can also be solved in polynomial
time. As shown by Gurevich, canonization of general graphs is polynomial-time
equivalent to computing a complete invariant [Gur97].

Certain complete invariants are known to be intractable. For example, it is
NP-hard to compute the lexicographically least graph (w.r.t. some specific rep-
resentation) isomorphic to the given graph [BL83]. However, the approach of
computing complete invariants has been successful for solving the graph isomor-
phism problem efficiently for some graph classes [BL83, Spi96].

The classes of k-trees and partial k-trees were introduced by Arnborg and
Proskurowski (see e.g. [AP89]).

Definition 2. The class of k-trees is inductively defined as follows.

– A clique with k vertices (k-clique for short) is a k-tree.
– Given a k-tree G′ with n vertices, a k-tree G with n + 1 vertices can be

constructed by introducing a new vertex v and picking a k-clique C in G′

and then joining v to each vertex u in C. Thus, V (G) = V (G′) ∪ {v},
E(G) = E(G′) ∪ {{u, v} | u ∈ C}.

A partial k-tree is a subgraph of a k-tree.

Before we go into the k-tree canonization we notice that the following charac-
terization of k-trees gives a logspace algorithm for recognizing k-trees.

Definition 3. [Klo94] Let G = (V, E) be a graph. A subset S of V is called a
vertex separator for two nonadjacent vertices u, v ∈ V , if in the subgraph of G
induced by the vertex set V − S the two vertices u, v are in different connected
components. A vertex separator S for u, v is called minimal, if no proper subset
of S is a vertex separator for u and v. A subset S ⊆ V is a minimal vertex
separator if S is a minimal vertex separator for some pair of vertices u, v ∈ V .

Lemma 4. [CI88] A graph G with n > k vertices is a k-tree if and only if

– every pair of nonadjacent vertices u and v has a k-clique as a minimal vertex
separator and

– E(G) contains exactly
(
k
2

)
+ k(n − k) edges.

It is easy to see that the two conditions of Lemma 4 can be checked in logspace.
Hence, from now on we can assume that the input graph G is a k-tree. Further
we assume that V (G) = {1, . . . , n}.

Our algorithm for k-tree canonization works by reducing the problem to the
problem of canonizing certain labeled trees that encode essential information
about k-trees. Our initial goal is to define this labeled tree. For this we use the
concept of the layer decomposition of a k-tree with respect to a base B. This
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concept was introduced in [KCP82] for testing isomorphism in hookup classes.
Subsequently, it was used in [Cha90, GSS02] for the design of efficient k-tree
isomorphism algorithms.

Definition 5. (cf. [KCP82, GSS02]) Let G = (V, E) be a k-tree and let B ⊆
V be a k-clique in G. Then the B-decomposition of G is the sequence of sets
B(0), . . . , B(p) such that B(0) = B and p = max{i ≥ 0 | B(i) 
= ∅}, where
B(i + 1) is inductively defined by

B(i + 1) = {v ∈ V − B[i] | N(v) ∩ B[i] is a k-clique}.

Here, B[i] denotes the union B[i] = B(0) ∪ · · · ∪ B(i).

The set B(i) is called the ith layer of the B-decomposition of G. Intuitively, the
layers of the B-decomposition indicate the order in which vertices could be added
to G when we choose B as the initial k-clique. More precisely, starting with the
k-tree G0 = G[B], Gi+1 = G[B[i + 1]] can be constructed from Gi = G[B[i]]
by adding the vertices in B(i + 1) to Gi. Recall that v can be added to Gi if
and only if the set N(v) ∩ B[i] of v’s neighbors in B[i], henceforth denoted by
Ni(v), induces a k-clique in Gi. In [KCP82], this set Ni(v) is called the support
of v ∈ B(i)).

If this process is successful, i.e., if each vertices of G is covered by some layer
B(i), then B is called a base of G (cf. [KCP82]).

We first show that any k-clique B in G can be used as a base for constructing
G (see Lemma 9).

Definition 6. (cf. [GSS02]) A vertex v of a k-tree G is called simplicial, if N(v)
induces a k-clique in G.

Claim 7. Any k-tree G with n ≥ k + 2 vertices has at least two nonadjacent
simplicial vertices.

Proof. The proof is by induction on n. If n = k + 2, then G is obtained from
a (k + 1)-clique G′ by choosing a k-clique C in G′ and introducing a new node
v which is joined to each vertex in C. Let u be the unique vertex in G′ not
covered by C. Then u and v are two nonadjacent simplicial vertices in G. For
the inductive step assume that G has n > k + 2 vertices. Then G has been
obtained from a k-tree G′ by introducing a new node v and joining it to each
vertex in a k-clique C of G′. Clearly, v is simplicial in G. Further, by the induction
hypothesis, G′ has two nonadjacent simplicial vertices u1 and u2. Since u1 and
u2 are nonadjacent, at least one of them does not belong to C and therefore it
is also simplicial in G. �

Claim 8. Let B be a k-clique of a k-tree G with n ≥ k +1 vertices. Then G has
a simplicial vertex v /∈ B.

Proof. If n = k + 1, then the only vertex not in B is simplicial. If n > k + 1,
then Claim 7 guarantees the existence of two nonadjacent simplicial vertices that
cannot be both in B. �
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Lemma 9. For any k-tree G = (V, E) and any k-clique B, the B-decomposition
forms a partition of V .

Proof. The proof is by induction on n. The base case n = k is clear. For the induc-
tive step assume that n ≥ k + 1 and let B(0), . . . , B(p) be the B-decomposition
of G. By Claim 8, G has a simplicial vertex v not in B. It is easy to prove that
G − v is a k-tree and hence, by the induction hypothesis, the B-decomposition
B′(0), . . . , B′(p′) of G−v forms a partition of V −{v}. Now let i ≥ 0 be the mini-
mum integer such that N(v) ⊆ B′[i]. Then it follows that B(i+1) = B′(i+1)∪{v}
and B(j) = B′(j) for all j 
= i + 1, implying that V = B[p]. �

The following properties of the B-decomposition have been proved in [KCP82].

Proposition 10. If B is a base for a k-tree G = (V, E), then the B-
decomposition B(0), . . . , B(p) has the following properties.

1. Any two vertices in B(i), i ≥ 1, are nonadjacent. Hence, Ni−1(v) = Ni(v)
for any vertex v ∈ B(i).

2. Any vertex v ∈ B(i), i ≥ 2, has a unique neighbor f(v) ∈ B(i − 1), called
the father of v w.r.t. B.

In order to efficiently compute information on the B-decomposition of a k-tree
G we use a directed graph D(G, B) which is defined as follows (whenever G and
B are clear from the context we simply write D instead of D(G, B)). D has the
vertex set

V (D) = {B} ∪ {(C, v) | v 
∈ C and C ∪ {v} is a (k + 1)-clique in G}

and the vertices of D are joined by the directed edges in the set

E(D) = {(B, (B, v)) | (B, v) ∈ V (D)} ∪
{((C, v), (C′, v′)) | v ∈ C′, v′ 
∈ C, ‖C ∩ C′‖ = k − 1}.

This means that in D we provide a transition from (C, v) to (C′, v′) if C′ can be
obtained from C by replacing some vertex u ∈ C by v, i.e., C′ = (C −{u})∪{v}.
Our next aim is to show that D is a mangrove (see Lemma 13).

Claim 11. For any vertex v ∈ B(i), i ≥ 1, D has a directed path of length i
from B to (Ni−1(v), v).

Proof. We prove the claim by induction on i. The base case i = 1 is clear. For
the inductive step assume that v ∈ B(i), i ≥ 2 and let f(v) ∈ B(i − 1) be
the father of v. By the induction hypothesis it follows that D has a directed
path of length i − 1 from B to (Ni−2(f(v)), f(v)). Clearly, f(v) ∈ Ni−1(v) and
v 
∈ Ni−2(f(v)). Further, since f(v) is the only vertex in Ni−1(v) belonging to
B(i − 1), the remaining k − 1 vertices belong to B[i − 2] and, as they are also
neighbors of f(v), they belong to the support Ni−2(f(v)) of f(v). This shows
that D has an edge from (Ni−2(f(v)), f(v)) to (Ni−1(v), v). �
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Claim 12. If D has a directed path B, (C1, v1), . . . , (Ci−1, vi−1), (C, v) of length
i ≥ 1 from B to some vertex (C, v), then v ∈ B(i) and C = Ni−1(v) ⊆ B ∪
{v1, . . . , vi−1}.

Proof. Again the proof is by induction on i. If E(D) contains the edge (B, (B, v)),
then clearly v ∈ B(1) via the support N0(v) = B.

For the inductive step let us assume that B, (C1, v1), . . . , (Ci−1, vi−1), (C, v)
is a directed path of length i ≥ 2 from B to (C, v). Then by the induction hy-
pothesis it follows that vi−1 ∈ B(i − 1) via the support Ci−1 = Ni−2(vi−1) ⊆
B ∪ {v1, . . . , vi−2}. As Ni−2(vi−1) = Ni−1(vi−1) by part 1 of Proposition 10,
this implies that Ci−1 contains all neighbors of vi−1 in B[i − 1]. Since v is a
neighbor of vi−1 that does not belong to Ci−1, v cannot be in B[i − 1]. As
((Ci−1, vi−1), (C, v)) ∈ E(D), it follows that C is obtained from Ci−1 by re-
placing some vertex u in Ci−1 by vi−1, i.e., C = (Ci−1 − {u}) ∪ {vi−1} ⊆
B ∪{v1, . . . , vi−1}. Hence, all vertices in C belong to B[i−1] and are adjacent to
v, implying that v ∈ B(i) via the support Ni−1(v) = C (notice that C � Ni−1(v)
would imply v /∈ B[p]). �

Lemma 13. For any k-clique B in a k-tree G, the graph D(G, B) is a mangrove.

Proof. We first show that D = D(G, B) does not have different paths from B
to the same node (C, v).

By Claim 12, all paths from B to (C, v) have the same length. In order
to derive a contradiction let i be minimal such that there are two different
paths B, (C1, v1), . . . , (Ci−1, vi−1), (C, v) and B, (C′

1, v
′
1), . . . , (C

′
i−1, v

′
i−1), (C, v)

of length i from B to some node (C, v). Then vi−1 and v′i−1 must be different,
since otherwise Claim 11 implies that Ci−1 = Ni−2(vi−1) = Ni−2(v′i−1) = C′

i−1,
contradicting the minimality of the path length i. But now Claim 12 implies
that vi−1 and v′i−1 both belong to B(i − 1) as well as to the support C of v,
contradicting part 2 of Proposition 10.

To complete the proof suppose there are different directed paths between
two nodes (C, v) and (C′, v′) in D(G, B). Then we would also have different
directed paths between the two nodes C and (C′, v′) in D(G, C), contradicting
the argument above. �

Now let T = T (G, B) be the subgraph of D(G, B) induced by the vertices
reachable from B. Then Lemma 13 implies that T is a directed rooted tree with
root B.

In fact, from Claims 11 and 12 it is immediate that by projecting the first
component out from the nodes (C, v) ∈ V (T ) we get exactly the tree T (G)
defined in [KCP82]. There, the following labeling with respect to a bijection
θ : B → {1, 2, . . . , k} has been defined.

Let (C, v) be a node in T . W.l.o.g. suppose that C = {v1, . . . , vk} where
C ∩ B = {v1, . . . , vm} for some m ≤ k. Notice that by part 1 of Proposition 10,
the k −m vertices in C −B belong to k −m different layers B(i1), . . . , B(ik−m).
Then vertex (C, v) is labeled by the set {θ(v1), . . . , θ(vm), k + i1, . . . , k + ik−m}.
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We denote the tree T together with this labeling by T (G, B, θ). The following
theorem is due to [KCP82].

Theorem 14. Let G and G′ be two k-trees, let B be a base for G and let
θ : B → {1, . . . , k} be a bijection. Then G and G′ are isomorphic if and only
if there exists a base B′ for G′ and a bijection θ′ : B′ → {1, . . . , k} such that the
two labeled trees T (G, B, θ) and T (G′, B′, θ′) are isomorphic.

The proof of Theorem 14 crucially hinges on the fact that each isomorphic copy
T ′ of the labeled tree T (G, B, θ) provides enough information to reconstruct G
from T ′ up to isomorphism. To see why, for i ≥ 1 let Bi be the set of vertices of T ′

that have distance i from the root of T ′ and let p be the maximum distance of any
vertex in T ′ from the root. Then starting with a k-clique G0 we can successively
add in parallel all the vertices v ∈ Bi to Gi−1 for i = 1, . . . , p. The crucial
observation is that the labeling {θ(v1), . . . , θ(vm), k + i1, . . . , k + ik−m} of the
node v in T ′ tells us to which vertices in Gi−1 vertex v should be connected (recall
that Claim 12 guarantees that all vertices in the support of a node either belong
to the base or lie on the path from the root to that vertex in the corresponding
tree).

To canonize k-trees we use Lindell’s [Lin92] deterministic logspace canoniza-
tion algorithm for trees which can be made to work for any labeled tree by
constructing gadgets for labels. More precisely, consider the algorithm A that
on input a k-tree G computes the canon of all labeled trees T (G, B, θ) for all
k-cliques B in G and all bijections θ : B → {1, . . . , k} and picks the lexicograph-
ically least among them. Then Theorem 14 implies that

– if two k-trees G and H are isomorphic then any tree of the form T (G, B, θ)
is isomorphic to some tree of the form T (H, B′, θ′) and

– if G and H are non-isomorphic then no tree of the form T (G, B, θ) is iso-
morphic to some tree of the form T (H, B′, θ′).

Hence, A outputs the same tree T for both k-trees G and H if and only if G and
H are isomorphic, implying that A computes a complete invariant for k-trees.

Furthermore, as explained above, the output tree T of A on input G provides
enough information to reconstruct G from T in logspace up to isomorphism.
The combination of A with this reconstruction procedure thus yields the desired
canonization algorithm A′ for k-trees. It remains to show that A can be imple-
mented in FLStUL. In the next lemma we show that the labeled trees T (G, B, θ)
can be computed in logspace relative to some oracle in StUL. The following claim
provides this oracle.

Claim 15. The problem of deciding whether a vertex (C, v) of D has distance i
from B is in StUL.

Proof. The algorithm tries to guess a path of length i from B to (C, v) in the
tree T = T (G, B). For that, starting with vertex B, it iteratively guesses a next
node (C′, v′) and checks if T provides an edge from the actual node to that node.
If after i steps the algorithm reaches (C, v) then it accepts, otherwise it rejects.
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Clearly, the algorithm runs in logspace since it has to store only two nodes of T
and some counters. Since D(G, B) is a mangrove by Claim 13, it is easy to see
that the configuration graph is also a mangrove. �

Lemma 16. On input a k-tree G, a k-clique B and a bijection θ : B →
{1, . . . , k}, the labeled tree T (G, B, θ) can be computed in logspace relative to
some oracle in StUL.

Proof. The algorithm for generating T = T (G, B, θ) first outputs V (T ) by check-
ing for each node (C, v) in V (D) whether it is reachable from B by using the
StUL oracle of Claim 15. If so, it computes the label of (C, v) by recomputing
the layer numbers of all the vertices in C (again using the StUL oracle). Finally,
for each distinct pair of nodes in V (T ) it checks whether D provides a directed
edge between them. �

This shows that the algorithm A described above can indeed be implemented in
logspace relative to some oracle in StUL. Hence, we can state our main result.

Theorem 17. For each fixed k there is a canonizing algorithm for k-trees that
runs in FLStUL.

As StUL is closed under logspace Turing reductions [BJLR91, Corollary 15], we
immediately get the following complexity upper bound for testing isomorphism
for k-trees.

Corollary 18. The isomorphism problem for k-trees is in StUL.

4 k-Path Canonization

A k-path is a special type of k-tree. The subgraphs of k-paths are called par-
tial k-paths. They coincide with the graphs of pathwidth at most k [Pro89]. In
[GNPR05] a polynomial time algorithm for subgraph isomorphism for bounded
pathwidth graphs was given. Here we look at the space complexity of the can-
onization problem for k-paths.

Definition 19. An interval graph is a graph whose vertices can be put in one
to one correspondence with a set of open intervals on the real line such that two
vertices are adjacent if and only if the corresponding intervals have a nonempty
intersection.

Definition 20. [Klo94] A k-path is a k-tree which is an interval graph.

An alternative constructive definition of k-paths is given in [GNPR05]. The idea
is to restrict the choice of the k-clique used as support for adding a new vertex
depending on the support of the previously added vertex. The restriction can be
best described by maintaining the notion of current clique.
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Initially the starting clique is the current clique. When a new vertex is added
it is joined to each vertex in the current clique. After adding the new vertex the
current clique may remain the same (in that case the new vertex added becomes
simplicial) or it may change by dropping a vertex and adding the new vertex in
the current clique. Clearly, when a vertex is dropped it cannot come back in the
current clique.

The difference between the definition of k-tree and the constructive definition
of k-path is that for k-trees a new vertex can be joined to any k-clique when
expanding a k-tree, whereas for k-paths a new vertex can only be added to the
current clique of a k-path.

From this constructive definition of k-paths the following characterization of
k-paths in the terminology of Section 3 can be obtained. Recall that a caterpillar
is a rooted tree in which each node has at most one child that is not a leaf.

Lemma 21. A k-tree G is a k-path if and only if for some base B of G, the
tree T (G, B) is a caterpillar.

Proof (sketch). Assume that G = (V, E) is a k-path and let Ci, i = k, . . . , n − 1,
be the current k-clique that has been used as support for adding vertex vi+1

to Gi = G[{v1, . . . , vi}], where Ck = {v1, . . . , vk} is the initial k-clique. Notice
that Ci 
= Ci+1 implies Cj 
= Ci for all j > i. Now it is easy to verify that T =
T (G, C1) is a caterpillar with vertices Ck, (Ck, vk+1), . . . , (Cn−1, vn) containing
for each j ≥ k with Cj = Ck the edge (Ck, (Ck, vj+1)) and for each pair i, j with
Ci 
= Ci+1 = Cj the edge ((Ci, vi+1), (Cj , vj+1)).

For the backward direction assume that T = T (G, B) is a caterpillar and let
B(0), . . . , B(p) be the B-decomposition of G. We call v ∈ V − B a leaf node
if (Ni−1(v), v) is a leaf in T . Now we can order the vertices of G in such a
way that all the vertices in B(i) precede the vertices in B(i + 1) and within
each layer B(i), i > 0, the leaf nodes come first. Let v1, . . . , vn be such an
ordering. Then it is easy to verify that we can construct G from the initial k-
tree Gk = G[B] = G[{v1, . . . , vk}] by successively adding the vertices vi+1 to
Gi = G[{v1, . . . , vi}] using Ni(vi+1) as the current clique. �

To canonize a given k-path G we use a similar approach as the one that we used
in Section 3 for k-trees. In fact, the only difference is that now our algorithm
A additionally checks for each base B whether T (G, B) is a caterpillar. Notice
that this can easily be done in logspace as follows.

Starting with the root B as the current node, the algorithm verifies that the
current node has at most one child (C′, v′) in T (G, B) that is not a leaf and then
proceeds with (C′, v′) as the next current node (if the current node has two or
more non leaf children, the algorithm detects that T (G, B) is not a caterpillar).

As soon as the algorithm reaches a node that has only leaves as children it
decides that T (G, B) is a caterpillar and starts to compute the canons of the
labeled trees T (G, B, θ) for all bijections θ : B −→ {1, . . . , k} as explained in
Section 3.

Since for a caterpillar T (G, B) the oracle described in Claim 15 is clearly
decidable in logspace, we have proved the following result.
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Theorem 22. For each fixed k there is a logspace canonizing algorithm for k-
paths. Hence, the isomorphism problem for k-paths is in L.
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Kraj́ıček, J. (ed.) Complexity of Computations and Proofs, Seconda Uni-
versita di Napoli. Quaderni di Matematica, vol. 13, pp. 33–72 (2004)

[AO96] Allender, E., Ogihara, M.: Relationships among PL, #L and the deter-
minant. R.A.I.R.O. Informatique Théorique et Applications 30(1), 1–21
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Abstract. Given a sequence of n real numbers A = (a1, a2, . . . , an), two
integers L and U with 1 ≤ L ≤ U ≤ n, and a score function f : IR+ ×
IR → IR, the Length-Constrained Max-Score Segment Problem

is to find a segment A[i, j] = (ai, ai+1, . . . , aj) maximizing f(j − i +
1,
�j

h=i ah) subject to j − i + 1 ∈ [L, U ]. In this paper, we solve the
Length-Constrained Max-Score Segment Problem for the case
where the given score function f(�, w) = w

r√
�

for any constant r > 1. Our

algorithm runs in O(nT (L1/2)
L1/2 ) time, where T (n′) is the time required

to solve the all-pairs shortest paths problem on a graph of n′ nodes. By

the latest result of Chan [7], T (n′) = O(n′3 (log log n′)3

(log n′)2 ), so our algorithm

runs in subquadratic time O(nL (log log L)3

(log L)2 ). Lipson et al. [21] studied a

more restricted case where the score function f(�, w) = w
2√

�
and there

are no length constraints, i.e., L = 1 and U = n. They also showed how
to apply their algorithm to analyzing DNA copy number data. However,
their algorithm takes Ω(n2) time in the worst situation. Since the length
lower bound L for the case considered by Lipson et al. is a constant, our
algorithm solves it in O(n) time.

1 Introduction

Given a sequence of n real numbers A = (a1, a2, . . . , an), two integers L and
U with 1 ≤ L ≤ U ≤ n, and a score function f : IR+ × IR → IR, define the
length, weight, and score of a segment A[i, j] = (ai, . . . , aj) to be length(i, j) =
j − i + 1, weight(i, j) =

∑j
h=i ah, and score(i, j) = f(length(i, j), weight(i, j))

respectively. The Length-Constrained Max-Score Segment Problem is
to find a segment A[i, j] = (ai, ai+1, . . . , aj) maximizing score(i, j) subject to
length(i, j) ∈ [L, U ].
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1.1 Results

In this paper, we propose an algorithm to cope with the case where the score func-
tion f(�, w) = w

r√
�

for a constant r > 1. Our algorithm runs in O(nT (L1/2)

L1/2 ) time,
where T (n′) is the time required to solve the all-pairs shortest paths problem on
a graph of n′ nodes. By the latest result of Chan [7], T (n′) = O(n′3 (log log n′)3

(log n′)2 ),

so our algorithm runs in subquadratic time O(nL (log log L)3

(log L)2 ). There was no
known subquadratic time algorithm before even for the more restricted case:
f(�, w) = w

2√
�

and there are no length constraints, i.e., L = 1 and U = n. Our
algorithm is the first subquadratic time algorithm which can cope with score
functions of the form f(�, w) = w

r√�
, where r > 1, and runs in linear time when

there are no length constraints.

1.2 Related Work

The Length-Constrained Max-Score Segment Problem has been stud-
ied for the following cases.

– For the case where f(�, w) = w, Bernholt et al. [4], Fan et al. [10] , and Lin
et al. [20] presented O(n)-time algorithms.

– For the casewhere f(�, w)=w/�, theproblem iswell studied in [4,8,13,16,18,20]
and can be solved in O(n) time using the algorithms proposed by Bernholt
et al. [4], Chung and Lu [8], and Goldwasser et al. [13].

– For the case where f is quasiconvex, Bernholt et al. [4] proposed O(n)-
time algorithms. A function f : IR+ × IR → IR is said to be quasiconvex
if and only if for all points u, v ∈ IR+ × IR and all λ ∈ [0, 1], we have
f(λ · u + (1 − λ) · v) ≤ max{f(u), f(v)}. Many known score functions, like
w, w

� , and |w|
2√�

, are quasiconvex; however, the score functions considered in
this paper, like w

2√
�

and w
3√

�
, are not quasiconvex.

– For the case where f(�, w) = w
2√

�
and there are no length constraints, Lipson

et al. [21] proposed an approximation scheme. Given any ε ∈ (0, 1/5], their
approximation scheme runs in O(nε−2) time and outputs a segment A[i, j]
such that score(i, j) is at least Opt/α(ε), where Opt is the maximum seg-
ment score and α(ε) = (1−

√
2ε(2 + ε))−1. Note that our result immediately

implies an O(n)-time exact algorithm for this case. To the best of our knowl-
edge, it is the first exact algorithm with runtime better than O(n2) for this
case.

1.3 Applications to DNA Copy Number Data Analysis

After the Human Genome Project was completed in 2003, many issues concern-
ing human genome variations are raised [19,26]. Among all the different kinds of
genome variations, copy number variations have attracted considerable attention
and widely examined in the laboratory [17,28]. Copy number variations (CNVs)
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of a target DNA sequence are DNA segments which are larger than 1kb and
present at variable copy number in comparison with a reference genome. As we
know, many genetic diseases, like cancer, are related to CNVs [25].

Let P = (p1, p2, ..., pn) be a sequence of short DNA segments (probes) sorted
by their appearing locations in the DNA sequences. The approaches for measur-
ing the DNA copy number changes, like array CGH [24], can provide a vector
V = (v1, v2, ..., vn) of intensity signals such that if the target DNA sequence
contains more copies of pi than the reference DNA sequence does, the value of
vi will be higher than normal. On the other hand, if the target DNA sequence
contains fewer copies of pi than the reference DNA sequence does, the value of
vi will be lower than normal.

CNVs are caused by either amplification events (insertions or duplications
of DNA segments) or deletion events (deletions of DNA segments) [12]. The
goal is to locate where the events occurred. Specifically, we want to locate the
amplification regions and the deletion regions. The amplification regions are
regions Iamp = [�amp, ramp] ⊆ [1, n] such that for all i ∈ Iamp, the target DNA
sequence contains more copies of pi than the reference DNA sequence does, so the
intensity signal vi with i ∈ Iamp expects to have higher value than normal. The
deletion regions are regions Idel = [�del, rdel] ⊆ [1, n] such that for all i ∈ Idel,
the target DNA sequence contains fewer copies of pi than the reference DNA
sequence does, so the intensity signal vi with i ∈ Idel expects to have lower value
than normal.

However, the intensity signals may be skewed due to noise. Thus, a statisti-
cal model for assessing the significance of amplification and deletion regions is
needed. Lipson et al. [21] proposed a statistical model by assuming that the noise
in the CNV data is independent for distinct probes. Denote by μ and σ the mean
and standard derivation of the normal genomic data. Let the null hypothesis be
that there are no events present in the target DNA sequence. Given a region I,
define ϕsig(I) by:

ϕsig(I) =
∑

i∈I

vi − μ

σ
√

|I|
.

When looking for amplification regions, we can let samp(I) = ϕsig(I) be the
score of region I. samp(I) is then used to assess the significance of values in I.
By the central limit theorem, the distribution of ϕsig(I) is a normal distribution
with mean = 0 and standard deviation = 1, and thus we have

Prob(samp(I) > z) ≈ 1
2

· 1√
2π

· 1
z
e−

1
2 z2

.

When looking for the deletion regions, we can let sdel(I) = −ϕsig(I) be the
score of region I. The distribution of ϕsig(I) is a normal distribution with mean
= 0 and standard deviation = 1, and thus we have

Prob(sdel(I) > z) ≈ 1
2

· 1√
2π

· 1
z
e−

1
2 z2

.

When we look for aberrant regions and don’t care what kinds of the aberrance
(amplification or deletion) are, we can let sA(I) = |ϕsig(I)| be the score of
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region I. The distribution of ϕsig(I) is a normal distribution with mean = 0 and
standard deviation = 1, and thus we have

Prob(|ϕsig(I)| > z) ≈ 1√
2π

· 1
z
e−

1
2 z2

.

Given a vector V , we then find the max-score region Imax, which is most
possible to be the region we look for.

It is noticed that the central limit theorem can be applied reasonably only
when the region I spans over more than than 25 probes [15]. Moreover, the
lengths of amplification regions and deletion regions are usually less than 1Mb
[26]. Thus we want to add length constraints on the located regions.

Bernholt et al.’s algorithm [4] can cope with the score function sA in O(n) time.
Our algorithm can cope with the score functions samp and sdel in O(nT (L1/2)

L1/2 )
time, where T (n′) is the time required to solve the all-pairs shortest paths prob-
lem on a graph with n′ nodes. For the case where there are no length constraints,
as considered by Lipson et al. [21], our algorithm runs in linear time.

2 Preliminaries

It is clear that length(i, j) = j − i + 1 can be evaluated in constant time. To
evaluate weight(i, j) =

∑j
h=i ah in constant time, we have to construct the

prefix-sum array of A first. An array PS[0, . . . , n] is said to be the prefix-sum
array of A if and only if PS[i] = a1+a2+. . .+ai for each i > 0 and PS[0] = 0. The
prefix-sum array PS[0, . . . , n] can be computed in linear time by setting PS[0] to
0 and PS[i] to PS[i − 1] + ai for i from 1 to n. After constructing the prefix-sum
array PS[0, . . . , n], each evaluation of weight(i, j) can be done in constant time
because weight(i, j) = PS[j] − PS[i − 1]. When analyzing the running time, we
will assume that the evaluation of f(�, w) can be done in constant time. It is
obviously the case for the typically-considered functions like f(�, w) = w and
f(�, w) = w/

√
�.

In the following, we review some definitions and theorems. For more details,
readers can refer to [1,4,5,10,30].

Definition 1. A score function f : IR+×IR → IR is said to be quasiconvex if and
only if for all points u, v ∈ IR+×IR and all λ ∈ [0, 1], we have f(λ·u+(1−λ)·v) ≤
max{f(u), f(v)}.

Lemma 1. [5] Let r > 1. Define f ′ : IR+ × IR by letting

f ′(�, w) =
{ w

r√�
if w ≥ 0;

0 otherwise.

Then f ′ is quasiconvex.

Theorem 1. [4] Given a sequence of n real numbers A = (a1, a2, . . . , an), two
integers L and U with 1 ≤ L ≤ U ≤ n, and a score function f : IR+ × IR → IR,
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there exists an algorithm, denoted by MSSQ(A, L, U, f), which can solve the
Length-Constrained Max-Score Segment Problem in linear time if the
given score function f is quasiconvex.

By the fact that f(�, w) = w is quasiconvex and Theorem 1, we have the following
corollary, which was also proved in [10,20].

Corollary 1. There exists an O(n)-time algorithm for finding a segment A[p′, q′]
maximizing weight(p′, q′) subject to length(p′, q′) ∈ [L, U ].

By Corollary 1, we can find the max-weight segment A[p′, q′] in linear time.
Clearly, if weight(p′, q′) = 0, then A[p′, q′] is also the max-score segment. If
weight(p′, q′) > 0, then we know there is at least one segment satisfying the
length constraints with positive weight. Thus we can first change the original
score function f(�, w) = w

r√
�

to

f ′(�, w) =
{ w

r√
�

if w ≥ 0;
0 otherwise,

and then call MSSQ(A, L, U, f ′) to find the max-score segment in linear time.
However, when weight(p′, q′) < 0, i.e., all segments satisfying the length con-
straints have negative weights, the situation becomes complex. The following
lemma is useful when we have to face this complex situation.

Lemma 2. Let r > 1 and score function f(�, w) = w
r√

�
. If weight(p, q) < 0 for

all (p, q) with length(p, q) ∈ [L, U ], then length(p∗, q∗) < 2L, where (p∗, q∗) =
arg max

length(p,q)∈[L,U ]
score(p, q).

Proof. Let (p∗, q∗) = arg max
length(p,q)∈[L,U ]

score(p, q). Suppose for the contradic-

tion that lenght(p∗, q∗) ≥ 2L. Let c1 = 	(p∗ + q∗)/2
 and c2 = c1 + 1. Then
we have length(p∗, c1) ∈ [L, U ] and length(c2, q

∗) ∈ [L, U ]. Since weight(p∗,q∗)
length(p∗ ,q∗) =

weight(p∗,c1)+weight(c2,q∗)
length(p∗,c1)+weight(c2,q∗) , we have

weight(p∗, q∗)
length(p∗, q∗)

≤ weight(p∗, c1)
length(p∗, c1)

or
weight(p∗, q∗)
length(p∗, q∗)

≤ weight(c2, q
∗)

weight(c2, q∗)
.

Without loss of generality, we assume weight(p∗,q∗)
length(p∗ ,q∗) ≤ weight(p∗,c1)

length(p∗ ,c1)
.

Since weight(p∗,q∗)
length(p∗ ,q∗) ≤ weight(p∗,c1)

length(p∗,c1)
<0 and length(p∗, q∗)1−1/r >length(p∗,c1)1−1/r,

we have

length(p∗, q∗)1−1/r · weight(p∗, q∗)
length(p∗, q∗)

<
length(p∗, c1)1−1/r · weight(p∗, c1)

length(p∗, c1)

⇔ weight(p∗, q∗)
length(p∗, q∗)1/r

<
weight(p∗, c1)

length(p∗, c1)1/r

⇔ score(p∗, q∗) < score(p∗, c1).

It contradicts that (p∗, q∗) = arg max
length(p,q)∈[L,U ]

score(p, q). �
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3 Min-Plus Convolution

In the following we shall design an algorithm for the Min-Plus Convolution

Problem. Although it appears to be a digression at first, we shall reveal its rele-
vance to our original problem in the next section (see Lemma 5). The min-plus con-
volution of two vectors x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) is a vec-
tor z = (z0, z1, . . . , zn−1) such that zk = mink

i=0{xi +yk−i} for k = 0, 1, . . . , n−1.
Given two vectors x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1), the Min-

Plus Convolution Problem is to compute the min-plus convolution z of x
and y. This problem has appeared in the literature with various names such
as “minimum convolution,” “epigraphical sum,” “inf-convolution,” and “lowest
midpoint” [2,3,11,22,23,27,29]. Although it is easy to obtain an O(n2)-time al-
gorithm, no subquadratic algorithm was known until recently Bremner et al.
[6] proposed an O(n2/ log n)-time algorithm. In the following, we shall give an
O(n1/2T (n1/2))-time algorithm for the Min-Plus Convolution Problem,
where T (n) is the time required to solve the all-pairs shortest paths problem on
a graph of n nodes. To date, the best algorithm for computing the all-pairs short-
est paths problem on a graph of n nodes runs in O(n3 (log log n)3

(log n)2 ) time [7]. Thus,

our work implies an O(n2 (log log n)3

(log n)2 )-time algorithm for the min-plus convolution
problem, which is slightly superior to the first subquadratic O(n2/ log n)-time
algorithm recently proposed by Bremner et al. [6].

Definition 2. The min-plus product BC of a d × n′ matrix B = [bi,j ] and an
n′ × d matrix C = [ci,j ] is a d × d matrix D = [di,j ] where di,j = minn′−1

k=0 {bi,k +
ck,j}.

Note that the notion of “min-plus product” is different from the notion of “min-
plus convolution”. It is well known [1] that the time complexity of computing
the min-plus product of two n′ × n′ matrices is asymptotically equal to that of
computing all pairs shortest paths for a graph with n′ vertices. The proof of the
next lemma was also given in [30], and we include it here for completeness.

Lemma 3. Given a T (n′)-time algorithm for computing the min-plus product of
any two n′ × n′ matrices, the computation of the min-plus product of B and C,
where B is a d×n′ matrix and C is an n′ × d matrix, can be done in O(n′

d T (d))
time if d ≤ n′.

Proof. For simplicity we assume that d divides n. We first split B into n′/d
matrices B1, . . . , Bn′/d of dimension d×d and C into n′/d matrices C1, . . . , Cn′/d

of dimension d × d. Then we can compute {B1C1, B2C2, . . . , Bn′/dCn′/d} in
O(dT (n′/d)) time by the given algorithm. The (i, j)-th entry of the min-plus
product of B and C is minn′/d

k=1 {the (i, j)-th entry of BkCk}. �

Our new algorithm for the Min-Plus Convolution Problem is as follows.
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Algorithm: MinPlusConvolution

Input: x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1).
Output: z = (z0, z1, . . . , zn−1) such that zk = mink

i=0{xi + yk−i} for k =
0, 1, . . . , n − 1.

1. Construct an �n1/2� × (2n − 1) matrix B = [bi,j ] such that the ith

row of B is equal to (∞, . . . , ∞, x0, x1, . . . , xn−1, ∞, . . . , ∞
︸ ︷︷ ︸

i×�n1/2�

) for

i = 0, 1, . . . , �n1/2� − 1.
2. Construct a (2n − 1) × �n1/2� matrix C =[ci,j ] such that the transpose

of the jth column of C is equal to (∞, . . . , ∞
︸ ︷︷ ︸

j

, yn−1, yn−2, . . . ,

y0, ∞, . . . , ∞)
for j = 0, 1, . . . , �n1/2� − 1.

3. Let D = [di,j ] be the min-plus product of B and C.
4. For k = 0, 1, . . . , n − 1 do

Find i, j such that k = i × �n1/2� + j, where 0 ≤ j < �n1/2�.
Set zk to di,j .

5. Output z = (z0, z1, . . . , zn−1).

The following lemma ensures the correctness.

Lemma 4. In MinPlusConvolution, di,j =mini×�n1/2�+j
t=0 {xt+yi×�n1/2�+j−t}

if 0 ≤ i × �n1/2� + j ≤ n − 1.

Proof.

di,j =
2n−1
min
t=0

{bi,t + ct,j}

= min{
n−2−i×�n1/2�

min
t=0

{bi,t + ct,j},
n+j−1

min
t=n−1−i×�n1/2�

{bi,t + ct,j},
2n−1
min

t=n+j
{bi,t + ct,j}}

= min{
n−2−i×�n1/2�

min
t=0

{∞ + ct,j},
n+j−1

min
t=n−1−i×�n1/2�

{bi,t + ct,j},
2n−1
min

t=n+j
{bi,t + ∞}}

=
n+j−1

min
t=n−1−i×�n1/2�

{bi,t + ct,j}

= min{x0 + yi×�n1/2�+j , x1 + yi×�n1/2�+j−1, . . . , xi×�n1/2�+j + y0}

=
i×�n1/2�+j

min
t=0

{xt + yi×�n1/2�+j−t}

�

We now analyze the time complexity. Let T (n) denote the time required to
compute the min-plus product of two n×n matrices. Steps 1 and 2 take O(n3/2)
time, and by Lemma 3, Step 3 takes O(2n−1

n1/2 T (�n1/2�)) = O(n1/2T (n1/2)) time.
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Steps 4 and 5 take O(n) time. Therefore, the total runtime is O(n1/2T (n1/2) +
n3/2). Since T (n) = Ω(n2), we have O(n1/2T (n1/2) + n3/2) = O(n1/2T (n1/2)).
Theorem 2 summarizes our work for the Min-Plus Convolution Problem.

Theorem 2. The running time of MinPlusConvolution is O(n1/2T (n1/2)),
where T (n) is the time required to compute the min-plus product of two n × n
matrices.

4 The Algorithm

In this section, we show how to solve the Length-Constrained Max-Score

Segment Problem in O(nT (L1/2)
L1/2 ) time for the case where the given score func-

tion f(�, w) = w
r√

�
for a constant r > 1. To make use of the min-plus convolution

algorithm developed in the previous section, we need the following Lemma.

Lemma 5. [3] Given a sequence X = (x1, . . . , xn), the Maximum Consec-

utive Weights Problem is to compute a sequence W = (w1, . . . , wn) where
wi = max{xp +xp+1 + . . .+xq|q−p+1 = i} for each i = 1, ..., n. The Maximum

Consecutive Weights Problem can be reduced to the Min-Plus Convo-

lution Problem in linear time.

The next corollary follows directly from Theorem 2 and Lemma 5.

Corollary 2. Given a sequence X = (x1, . . . , xn), we can compute a sequence
W = (w1, . . . , wn) in which wi = max{xp +xp+1 + . . .+xq|q−p+1 = i} for each
i = 1, ..., n in O(n1/2T (n1/2)) time, where T (n) is the time required to compute
the min-plus product of two n × n matrices.

We now describe our algorithm. To avoid notational overload, we assume that 4L
divides n. First we have to compute (p′, q′) = arg max

length(p′,q′)∈[L,U ]
weight(p′, q′).

Then there are three cases to consider: (1) weight(p′, q′) = 0; (2) weight(p′, q′) >
0; (3) weight(p′, q′) < 0. If it is Case 1, we know A[p′, q′] is already a correct
solution. If it is Case 2, then we know there is at least one segment satisfying the
length constraints with positive weight. By Lemma 1 and Theorem 1, we can
find the length-constrained max-score segment in linear time. If it is Case 3, by
letting Ai be A[2iL+1, 2iL+4L], i = 0, 1, 2, ..., n

2L −2, we can divide the sequence
A into n

2L − 1 segments of length 4L. See Figure 1 for illustration. By making
use of Corollary 2, we are able to compute the length-constrained max-score
segment s∗i contained in Ai in O(L1/2T (L1/2)) time for each i = 0, 1, ..., n

2L − 2.
By Lemma 2, some s∗i must be the correct solution. The detailed algorithm is
given below.

Algorithm MSS(A, L, U, f)
Input: a sequence A = (a1, a2, . . . , an), two integers L and U with 1 ≤ L ≤

U ≤ n, and score function f : IR+ × IR → IR with f(�, w) = w
r√�

for any
constant r > 1.
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A

A0
A1

A2
A3

A(n/2L)-2
A(n/2L)-3

A(n/2L)-4

n

2L
4L

Fig. 1. Illustration of Ai, i = 0, 1, 2, ..., n
2L

− 2

Output: a segment A[p, q] maximizing score(p, q) subject to L ≤ length(p, q) ≤
U .
1. Compute (p′, q′) = arg max

length(p′,q′)∈[L,U ]
weight(p′, q′).

2. If weight(p′, q′) = 0, then return A[p′, q′].
3. If weight(p′, q′) > 0 then

1. define f ′ : IR+×IR by letting f ′(�, w) = w
r√�

if w ≥ 0 and 0, otherwise;
2. return MSSQ(A[1, n], L, U, f ′).

4. Else, execute the following steps.
1. For i from 0 to n

2L − 2,
(a) compute (w1, . . . , w4L), where wj = max{weitht(p, q)|length

(p, q) = j and 2iL+1 ≤ p ≤ q ≤ 2iL+4L} for each i = 1, . . . , 4L;
(b) compute sj = wj

r
√

j
for each j = 1, . . . , 4L;

(c) let si∗ = max{sL, . . . , smin{2L−1,U}};
(d) set s∗i to the max-score segment in {A[p, q]|length(p, q) = i∗ and

2iL + 1 ≤ p ≤ q ≤ 2iL + 4L}.
2. Return the max-score segment in {s∗0, s

∗
1, . . . , s

∗
n
2L−2}.

Theorem 3. Given a sequence A = (a1, a2, . . . , an), two integers L and U with
1 ≤ L ≤ U ≤ n, and score function f : IR+ × IR → IR with f(�, w) = w

r√�
,

MSS(A, L, U, f) finds a segment A[p, q] maximizing f(j − i+1,
∑j

h=i ah) subject

to j − i + 1 ∈ [L, U ] in O(nT (L1/2)
L1/2 ) time, where T (n′) is the time required to

compute the min-plus product of two n′ × n′ matrices.

Proof. We begin by considering the correctness. Let (p′, q′)=arg max
length(p′,q′)∈[L,U ]

weight(p′, q′) and (p∗, q∗) = arg max
length(p∗,q∗)∈[L,U ]

score(p∗, q∗).

In the case where weight(p′, q′) = 0, we have score(p, q) = weight(p,q)
r
√

length(p,q)
≤

0 for all (p, q) with length(p, q) ∈ [L, U ]. It follows that 0 ≥ score(p∗, q∗) ≥
score(p′, q′) = 0, so A[p′, q′] is a correct solution.

In the case where weight(p′, q′) > 0, we have score(p∗, q∗) ≥ score(p′, q′) > 0.
Let f ′(�, w) = w

r√
�

if w ≥ 0 and 0, otherwise. Since score(p∗, q∗) > 0, it does not
matter to replace f with f ′, i.e., doing so won’t change the solution. Furthermore,
f ′ is quasiconvex by Lemma 1. Thus by Theorem 1, MSSQ(A, L, U, f ′) will return
a correct solution.
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In the case where weight(p′, q′) < 0, we have length(p∗, q∗) < 2L by Lemma 2.
It follows that A[p∗, q∗] must be contained in A[2iL + 1, 2iL + 4L] for some
i ∈ [0, n

2L − 2] and thus the solution returned at Step 4 must be correct.
Now we analyze the runtime. By Corollary 1, Step 1 takes O(n) time. Step 2

takes constant time. By Theorem 1, Step 3 takes O(n) time. By Corollary 2, each
iteration of the loop at Step 4.1 takes O(L1/2T (L1/2) + L) time. Thus Step 4.1
takes O(n

LL1/2T (L1/2) + n) = O(nT (L1/2)
L1/2 ) time. Step 4.2 takes O(n/L) time.

Therefore the total runtime is O(nT (L1/2)
L1/2 ). �

5 Concluding Remarks

In this paper, we study the problem of finding the max-score segment of a se-
quence with length constraints. We give an O(nL (log log L)3

(log L)2 )-time algorithm to
cope with any score function of the form f(�, w) = w

r√�
, where r ≥ 1. Even for

the case where there are no length constraints, there was no known subquadratic
time algorithm for this class of score functions before. Our algorithm is the first
subquadratic time algorithm for this class of score functions and runs in linear
time when there are no length constraints. To our best knowledge, there is not
any non-trivial lower bound proved so far. Thus, there is still a large gap be-
tween the trivial lower bound of O(n) and the upper bound of O(nL (log log L)3

(log L)2 ).
Bridging this gap remains an open problem.
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Abstract. Given a text T of length n, the classical indexing problem for
pattern matching is to build an index for T so that for any query pattern
P , we can report efficiently all occurrences of P in T . Cole et al (2004)
extended this problem to allow don’t care characters (wildcards) in the
text and pattern, and they gave the first index that supports efficient
pattern matching. The space complexity of this index is linear in n (text
length) but exponential in terms of the number of wildcards. Motivated
by bioinformatics applications, we investigate indexes whose size depends
on n only. In the literature, space efficient indexes for wildcard matching
are known only for the special case when wildcards appear only in the
pattern (Iliopoulos and Rahman, 2007); the space required is O(n). Not
much has been heard for the case when wildcards appear in the text
only, or in both the text and pattern. In this paper we give an O(n)
space index to support efficient wildcard matching in all three cases.
Our solution to the pattern-only case improves the matching time of the
previous work tremendously in practice. In addition, our solution can be
extended to handle optional wildcards, each of which can match zero or
one character.

1 Introduction

The classical indexing problem for pattern matching is to build an index for a
text T so that for any query pattern P we can report efficiently all positions
s such that T [s .. s+ |P |−1] = P . We call these positions s the matches of P
in T . The problem is fundamental and finds application in many areas such as
text retrieval, computational biology, data mining and network security. Near
optimal solutions were known since 1970s. Suffix trees [9,7] use O(n) space and
achieve the optimal searching time, i.e. O(m + occ), where n and m are the
length of T and P , respectively, and occ is the number of matches of P in T .

Some applications however require more sophisticated forms of searching.
Fischer and Paterson [4] extended the pattern matching problem by introduc-
ing wildcards. A wildcard, denoted as φ, is a special character that can match
any character. In their problem setting, we are given P and T , both of which
� Part of the work is supported by Hong Kong RGC Grant 7140/06E.

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 846–857, 2007.
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may contain wildcards, and we need to find all matches of P in T . Cole et
al. [3] further considered indexing the text to speed up the matching process.
Given a text with k ≥ 0 wildcards and an integer d ≥ 0, they showed how to
build an index of O(n logk+d n) space to allow searching for any pattern with
at most d wildcards. For a pattern containing g ≤ d wildcards, the matching
takes O(m + 2g logk n log log n + occ) time1. The drawback of this solution is its
enormous space requirement. In bioinformatics applications, the text is typically
a genome with millions or even billions of characters long. The factor logk+d n
would imply a prohibitive amount of memory for even a few wildcard characters
in either the text or pattern. Another drawback is that the index, once built for
a fixed d, only allows searching for patterns with at most d wildcards.

A recent work [6] by Iliopoulos and Rahman gave an O(n) space index for
a text without wildcard to support searching for a pattern with any number of
wildcards. To understand the time complexity, we need the following notations.
Denote a pattern P = P1φ

g1P2φ
g2 · · · φghPh+1 where φgi denotes a group of

gi ≥ 1 wildcards, and each Pi is a pattern segment containing no wildcards. Let
α be the sum of the number of matches of every pattern segment Pi in T . They
gave an index for T with O(n) space and support searching for all matches of
P in T in O(m + α) time. The drawback is that one malicious pattern segment
(say, a very short one) may contribute many matches and make α really big.
Searching would be slow since α maybe Θ(n). To the best of our knowledge,
space efficient solution for indexing text with wildcards has not been known.

Following the previous works, we naturally consider three different settings:
wildcards can be present in the pattern only, the text only, and both the text
and the pattern. We give O(n) space indexes for all three settings. In particular,
our index for wildcards in pattern only improves the searching time of Iliopoulos
and Rahman [6]. Analogous to partitioning P into pattern segments, we denote
T = T1φ

k1T2φ
k2 · · ·φk�T�+1 for a text with � groups of wildcards. For ease of

discussion, we use occ(X, Y ) to denote the total number of matches of string X
in string Y , considering wildcards in the strings if any. Note that occ = occ(P, T ).

A. Wildcards in pattern only. Given a text T without wildcard. We can build
an O(n) space index so that, for any pattern P with h groups of wildcards,
searching takes O(m+hβ) time, where β = min1≤i≤h+1 occ(Pi, T ). Note that
hβ ≤ α (recall that α =

∑
i≤i≤h+1 occ(Pi, T )), and the searching time of our

index is upper bounded by that of Iliopoulos and Rahman [6]. Intuitively, β is
large only when all Pi generate plenty of matches. The case where β = Θ(n)
still exists, but is less likely to happen.

B. Wildcards in text only. Given a text T with � groups of wildcards. We
can build an O(n) space index so that, for any pattern P without wildcard,
searching P takes O(m log n + γ + occ) time, where γ =

∑�+1
j=1 occ(Tj, P ). It

1 In their paper, they claimed a searching time of O(m+ ck+d

(k+d)! logk+d n log log n+occ)
where c is a constant. We believe that their searching time can also be expressed
in the way we specified. In addition, they claimed only the case where pattern has
exactly d wildcards, and we believe the index can also support patterns with less
than d wildcards.
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is useful to observe the following upper bounds of γ. First, since occ(Tj , P ) ≤
m, γ ≤ m(� + 1). Next, we give a tighter bound depending on how many re-
peating prefixes the text contains. For two strings X and Y , let pre(X, Y ) =
1 if X is a prefix of Y , and 0 otherwise. We define the prefix-complexity of a
text T to be pc(T ) = max1≤j≤�+1

∑
1≤i≤�+1 pre(Ti, Tj). It is easy to observe

that γ ≤ m · pc(T ) ≤ m(�+1).
C. Wildcards in text and pattern. Given a text T with � groups of wild-

cards. We can build an O(n) space index so that, for any pattern P with h
groups of wildcards, searching P takes O(m log n+hβ+γ +occ) time, where
β = min1≤i≤h+1 occ(Pi, T ) and γ =

∑�+1
j=1(occ(Tj , P1) + occ(Tj , P2) + . . . +

occ(Tj , Ph+1)). Note that the inequality γ ≤ m(� + 1) still holds.

We further consider allowing a wildcard to match any single character as
well as no character. We call such a wildcard an optional wildcard. Note that
a group of x consecutive wildcards can match zero to x characters. An earlier
work of Rahman et al. showed that an O(n) space index of a text (containing no
wildcard) can support checking the existence of a match for a pattern containing
optional wildcards in O(m + α log log n) time where α is defined as before.

In the case of optional wildcards, it can happen that P matches both T [s..t1]
and T [s..t2] where t1 > t2. Since all these matches are similar, to avoid redun-
dency, we modify the definition of a match to include all of these matches in a
single match. Precisely, a match is a position s in T such that P matches T [s..t]
for some t ≥ s. In other words, s is the starting position of a substring of T that
matches P . This definition will be used throughout the paper.

In this paper, we give space efficient indexes for optional wildcards that allows
searching for all matches of P in T in three different settings namely, P contains
optional wildcards, T contains optional wildcards and both P and T contains
optional wildcards.

D. Optional wildcards in pattern only. Given a text T without wildcard. We
can build an O(n) space index so that, for any pattern P with h groups
of totally g wildcards, searching for P takes O(m + ghβ) time, where β =
min1≤i≤h+1 occ(Pi, T ).

E. Optional wildcards in text only. Given a text T with � groups of totally
k wildcards. We can build an O(n) space index so that, for any pattern P
without wildcard, searching takes O(m2 log n+m log2 n+γ log n+occ) time,
where γ =

∑�+1
j=1 occ(Tj , P ). We also give an O(n log n) space index so that

searching takes O(m log2 n + γ log n + occ) time.
F. Optional wildcards in text and pattern. Given a text T with � groups of

wildcards. We can build an O(n) space index so that, for any pattern P with
h groups of totally g=

∑h
i=1 gh wildcards, searching P takes O(m2 log n +

m log2 n + ghβ + γ log n + occ) time, where β = min1≤i≤h+1 occ(Pi, T ) and
γ =

∑�+1
j=1(occ(Tj , P1)+ occ(Tj , P2)+. . .+occ(Tj , Ph+1)). We also give an O(n

log n) space index so that searching takes O(m log2 n+ghβ+γ log n+occ) time.

The following table summarizes thepreviousandnewresults indifferent settings.
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Setting Space Time

Wildcards in pattern only
O(n logg n) O(m + 2g log log n + occ) [3]
O(n) O(m + α) [6]
O(n) O(m + hβ) †

Optional wildcards in pattern only O(n) O(m + ghβ) †
Wildcards in text only

O(n logk n) O(m + logk n log log n + occ) [3]
O(n) O(m log n + γ + occ) †

Optional wildcards in text only
O(n) O(m2 log n + m log2 n + γ log n + occ) †
O(n log n) O(m log2 n + γ log n + occ) †

Wildcards in both text and O(n logg+k n) O(m + 2g logk n log log n + occ) [3]
pattern O(n) O(m log n + hβ + γ + occ) †
Optional wildcards in both text O(n) O(m2 log n + m log2 n + ghβ + γ log n + occ) †
and pattern O(n log n) O(m log2 n + ghβ + γ log n + occ) †
Notations: α =

�
1≤i≤h+1 occ(Pi, T ), β = min1≤i≤h+1 occ(Pi, T ), γ =

�
1≤i≤h+1
1≤j≤�+1

occ(Tj , Pi),

† = our result

We remark that our index can be combined with the index of Cole et al.[3] to
form an index which occupies O(n logd n) space and avoids the Θ(n) worst-case
searching time if the number of wildcards in pattern does not exceed d. We will
discuss the details in the last section.

2 Preliminaries

2.1 Suffix Trees and Auxiliary Data Structures

Consider a text T [1..n] with some wildcards. Denote T = T1φ
k1T2φ

k2 · · ·φk�T�+1,
where φki is a group of ki ≥ 1 wildcards, and each Ti is a text segment containing
no wildcard. In the case where T contains no wildcard, then T = T1. Similarly,
we denote a pattern P = P1φ

g1P2φ
g2 · · · φghPh+1, where each Pi is a pattern

segment containing no wildcard. Again, if P contains no wildcard, then P = P1.
As mentioned in the introduction, we assume that a wildcard can match any
single character, and an optional wildcard can match any character as well as
no character.

For each text segment Ti, we append a distinct character ‘$i’ which does not
appear anywhere in T . Let U be the set of all suffixes of Ti$i for all 1 ≤ i ≤ �+1.
A generalized suffix tree ST is a compact trie comprising all strings in U [5].
Note that every edge in ST represents a certain substring of some Ti, and ST
occupies O(n) space. Below a location in ST refers to either a node or somewhere
inside an edge, representing a prefix of a suffix in U . To ease later discussion,
for each suffix of Tj , if the location in ST representing Tj[i..|Tj |] is inside an
edge, we modify ST to convert this location to a node (with only one child) and
splitting the edge into two edges. We introduced O(n) more nodes, hence O(n)
extra space.

Pattern matching. Given a string P without wildcard, we can use O(|P |) time
to determine the location in ST representing P in the sense that the descendant
leaves of this location correspond uniquely to all strings in U that have P as a
prefix. Furthermore, suppose we use O(n) extra space to store on each node of
ST the number of descendant leaves, then we have the following lemma.
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Lemma 1. Given ST , it takes O(|P |) time to compute t, the total number of
matches of P in all Tj. We can also report all these matches using an addition
of O(t) time.

Dictionary Matching. The suffix tree ST can be used to answer another query.
Given a pattern P [1..m] with no wildcard, we ask for the matches of each text
segment Tj in P . In other words, we want to find, for all Tj , all positions i such
that the substrings P [i .. i+|Tj|−1] equals Tj. We will add some extra information
to ST to support this query. For each Tj , let v be the node in ST representing
Tj. We mark at v with a label Tj . For every node in ST , we store a pointer up to
the nearest marked ancestor. A location in ST maybe marked more than once;
in this case we store in the location a list of all the labels. All the node splitting
and marking information take O(n) space. To perform a dictionary matching
for a pattern P [1..m] with no wildcard, we first locate, for each 1 ≤ i ≤ m,
the location vi in ST representing the longest prefix of P [i..m], then traverse
repeatedly the up pointers from vi until all marked ancestors of vi are visited.
Each marked ancestor Tj represents a match of Tj with P [i .. i+|Tj|−1]. By using
suffix links [3], it takes only O(m) time to locate all vi.

Lemma 2. Given ST , for any pattern P with no wildcard, it takes O(m + t)
time to locate all matches of Tj in P for all 1 ≤ j ≤ �+1, where t is the number
of matches reported.

2.2 Auxiliary Data-Structure for Fast String Comparison

We give a numbering scheme to assign a subinterval of [1, 16n] to each node in
ST so as to facilitate a certain kind of string searching. The subinterval is called
the span of the node. Below we show an algorithm to assign one or more integers
to each node and edge in ST . We begin with a counter c that is initially zero.
We perform a depth first search on ST starting from the root, visiting the leaves
of ST in its lexicographical order. Every time when we visit an edge or a node,
we first increment c and then assign c to the edge or the node. Each internal
node v is assigned at least 2 numbers. If a and b are the smallest and largest
numbers assigned, we call the range [a, b] the span of v. Each edge e is assigned
exactly 2 numbers, say, p and q where p < q. We call the range [p, q] the span of
e. Each leaf u is assigned exactly one number. We call it the leaf number of u.
The span information can all be stored using O(n) extra space.

We now define the span for any string X as follows. Let v be the location in
ST representing the longest prefix of X , and let [p, q] be the span of the node or
edge where v resides. If v represents the whole string X (i.e., X is a substring
of some Ti), we define the span of X to be [p, q], and [p, p] otherwise.

Given a text T [1..n], if we have built ST with the span information, then we
can perform the following string comparison: Given the span [p, q] of a string X
and the span [d, e] of any suffix Y of some Tj, determine whether X is a prefix of
Y and whether Y is a prefix of X . The lemma below states that this comparison
can be done in O(1) time.
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Lemma 3. Given the span [p, q] of a string X and the span [d, e] of a suffix Y
of some Tj, we have: (1) X is a prefix of Y if and only if p ≤ d ≤ e ≤ q, and
(2) Y is a prefix of X if and only if d ≤ p ≤ q ≤ e.

To exploit Lemma 3 in our solution for wildcard matching, we will precompute
the span of every suffix of Tj and uses O(n) extra space to store these span
information. Then, given a pattern P , it takes O(m) time to compute the span
of every suffix of P . Afterwards we can compare any suffix of P and any suffix
of Tj in O(1) time.

We can extend the above lemma to support comparing any prefix of P with
any prefix of some Tj in O(1) time. We can achieve this by storing a generalized
suffix tree ST ′ comprising the suffixes of the reverse of every $iTi, and the span
information on ST ′. The spans of every suffix of the reverse of Tj and every
suffix of the reverse of P are computed similarly.

2.3 Orthogonal Segment Intersection

Given a set H of n horizontal line segments in the Cartesian plane. We want
to find efficiently all segments in H that intersect with a given vertical line
segment.

Lemma 4. [1] We can build an O(n) space data structure for H such that when
a vertical line segment is given, we can compute t, the number of intersecting
horizontal segments in H, in O(log n) time, and report all these horizontal seg-
ments in O(t) time.

3 Wildcards in Pattern Only

As a warm-up, this section considers the simplest setting where the text T con-
tains no wildcards, and wildcards can only appear in a pattern. In this case, the
O(n)-space data structures described in Section 2 (i.e., the suffix tree ST and
the auxiliary information about the number of descendant leaves and span) are
already sufficient to support efficient pattern matching.

Below we will first consider wildcards that each must match a character,
then we study the optional wildcards. Suppose that we are given a pattern
P of length m, containing h ≥ 0 groups of consecutive wildcards, i.e., P =
P1φ

g1P2φ
g2 · · ·φghPh+1. First of all, using O(m) time, we find the spans of

P1, P2, . . . , Ph+1. Then we make use of these spans to find all matches of P
in T (i.e. all positions i such that T [i .. i+|P |−1] = P ) in O(hβ) time. Details of
the matching algorithm are as follows. It first finds a set of candidate positions
i in T which is a superset of all matches of P in T , then it verifies whether each
of them is really a match.

Lemma 5. We can verify in O(h) time if a candidate position i gives a match
of P in T .
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Proof. Let s1 = i, s2 = s1+|P1| + g1, . . . , and sh+1 = sh+|Ph| + gh. Note that
i is a match of P in T if T [s1 .. s1+|P1|−1] = P1, T [s2 .. s2+|P2|−1] = P2, . . .,
and T [sh+1 .. s2+|Ph+1|−1] = Ph+1. Recall that the span of each Pi is known.
By Lemma 3, the comparison of each Pi takes O(1) time. Thus, it takes O(h)
time to verify a position i. ��

Next, we show how to generate candidate positions that cover all matches of P
in T . For any substring of T that matches P , it must contain all P1, P2, . . . , Ph+1

as substrings. Thus the matches of any particular Pi in T are sufficient to be
a set of candidates. The key question is which Pi to use. By Lemma 1, we
can count, for all Pi, the number of matches of Pi in T (i.e., occ(Pi, T )) using
O(|P1| + |P2| + . . . + |Ph+1|) = O(m) time. We pick i∗ such that Pi∗ generates
the least number of matches. Then, by Lemma 1 again, we can locate all the
matches for Pi∗ in occ(Pi∗ , T ) time, and, by Lemma 5, we verify each match in
O(h) time. The total time complexity is stated below.

Theorem 1. We can build an O(n)-space index for a text T without wildcard
so that searching all the matches of any pattern P with h groups of wildcards
takes O(m + hβ) time, where β = min

1≤ı≤h+1
occ(Pi, T ).

Optional Wildcards. The index described above can also deal with optional
wildcards. We only need to modify the matching algorithm and, in particular,
the verification of a candidate. The time required for the latter increases to
O(gh), where g =

∑h
i=1 gi is the total number of wildcards in P . Details are as

follows. Again, we first choose a pattern segment Pi that minimizes occ(Pi, T )
among all pattern segments, and locate all matches of Pi in T . These matches
form a set of candidates for further verification.

For each match of Pi in T , we further check whether there is also a match
with φgiPi+1φ

gi+1 . . . φghPh+1, as well as a match with P1φ
g1 . . . φgi−2Pi−1φ

gi−1 .
Both checking can be done in a simple iterative manner. Let us consider the tail
first. Suppose there is a match of Pi at position s of T , i.e., Pi = T [s .. s+|Pi|−1].
Intuitively, we want to skip some ci ∈ [0, gi] characters starting from s+ |Pi|,
and check whether Pi+1 can match at position si+1 = s .. s+ |Pi|+ ci. Such
checking has to be done for every ci ∈ [0, gi] and takes O(gi) time. Let Wi

be the set of all ci’s that pass this checking. If Wi is non-empty, we proceed
to verify Pi+2. This time we want to check weather there is a match for Pi+2

at position si+2 = s + |Pi| + |Pi+1| + ci+1, where ci+1 = x + y for some x ∈
Wi and y ∈ [0, gi+1]. Note that 0 ≤ ci+1 ≤ gi + gi+1, and the checking due
to Pi+2 takes O(gi + gi+1) time. We repeat this procedure until there is no
match for some Pj where j > i or Ph+1 has been verified. The time required is
O(gi + (gi + gi+1) + (gi + gi+1 + gi+2) + .. +

∑h
j=i gj) = O(gh).

The checking for P1φ
g1 . . . φgi−2Pi−1φ

gi−1 can be done in a similar way. We
start with Pi−1 and work backward to P1. The time required is also O(gh). After
we have matched P1, we record the position in T that matches P1. Note that
there are β = min1≤ı≤h+1 occ(Pi, T ) candidates to verify and the time required
is O(ghβ). We note that the same position can be recorded multiple times, and
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we need to remove the duplicates. Using constant time initialization technique[2]
on an array of size n, duplicates are removed in O(ghβ) time.

Theorem 2. We can build an O(n)-space index for a text T without wildcard
so that searching all the matches for any pattern P with h groups of totally g
optional wildcards, takes O(m + ghβ) time.

4 Wildcards in Text Only

When the text is allowed to contain wildcards, building a space-efficient index
to support efficient pattern matching is no longer trivial even if patterns have no
wildcards. This section and the next section consider this setting for (ordinary)
wildcards and optional wildcards, respectively.

Suppose T is a text with � groups of wildcards, i.e. T =T1φ
k1T2φ

k2 · · ·φk�T�+1.
Given a pattern P without wildcard, we classify each substring of T that matches
P into one of the followings.

Type 1. It is a substring of some Tj, 1 ≤ j ≤ �+1.
Type 2. It matches T [s..t] which contains exactly one wildcard group φkj

where 1 ≤ j ≤ �.
Type 3. It matches T [s..t] which contains more than one wildcard groups.

Let occ1, occ2, occ3 be the number of Type 1, Type 2, and Type 3 matches,
respectively. Note that occ = occ1 + occ2 + occ3. Given ST , Type 1 matches can
be found in O(m + occ1) time by Lemma 1. In the next two subsections, we will
show how to build extra data structures to support finding Type 2 and Type 3
matches efficiently.

4.1 Finding Type 2 Matches

To find Type 2 matches efficiently, we define the notion of a split of T . We will
show that there are at most O(n) splits. More interestingly, we can preprocess
these splits using the suffix tree ST and represent them as horizontal line seg-
ments. We further build an index for orthogonal segment intersection for these
splits. Then finding Type 2 matches can be reduced to a query in the form of a
vertical segment to the latter index.

If P matches a substring of T containing exactly one wildcard group, then P
is a substring of Tjφ

kj Tj+1 for some 1 ≤ j ≤ �.

Definition 1. The d-split of Tjφ
kj Tj+1 is a pair of strings (X, Y ) such that X

is a suffix of Tj, Y = Tj+1, and |X | + kj = d. The set of d-splits of T is the set
of d-split of Tjφ

kj Tj+1 for all j = 1, 2, . . . , �.

Suppose that there is a Type 2 match of P inside Tjφ
kj Tj+1. Then for some

d ≤ m, the d-split (X, Y ) of Tjφ
kj Tj+1 satisfies the relation that X is a prefix

of P [1 .. d], and P [d+1 .. m] is a prefix of Y . The following lemma is the key to
finding Type 2 matches.
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Lemma 6. Given a text T [1..n], we can build an O(n)-space data structure to
store all splits of T . Then, given an integer d and a string Q[1..q], suppose we
know the span of Q[1..d] and Q[d+1..q] in ST , we can find in O(log n) time the
number of d-splits (X, Y ) such that X is a prefix of Q[1..d] and Q[d+1..q] is a
prefix of Y . Furthermore, if there are t such d-splits, we can report in O(t) time
the matches of Q corresponding to these d-splits.

Proof. We reduce the problem to orthogonal segment intersection. For every
d ∈ [1, n], we build an orthogonal segment intersection data structure OSId

which contains one horizontal line for each d-split (X, Y ) of Tjφ
kj Tj+1. For a

d-split (X, Y ), let y be the leaf number of the leaf in ST representing Y $, and
let [x1, x2] be the span of the string X in ST ; we put a horizontal segment
(x1, y)—(x2, y) in OSId. Note that any string having X as a prefix has a span
that is enclosed by [x1, x2] and any string that is a prefix of Y has a span that
encloses y.

For any given string Q, let [x′
1, x

′
2] be the span of Q[1..d] and [y′

1, y
′
2] be the

span of Q[d+1..q]. If Q[1..d] is a prefix of X , then [x′
1, x

′
2] is enclosed by [x1, x2]. If

Q[d+1..q] is a prefix of Y , [y′
1, y

′
2] encloses y. By querying for horizontal segments

in OSId that intersect the vertical segment (x′
1, y

′
1)—(x′

1, y
′
2), we can find all d-

split (X, Y ) such that X is a prefix of Q[1..d] and Q[d+1..q] is a prefix of Y . ��

We are ready to show how to find all Type 2 matches of a pattern P [1..m]. For
every 2 ≤ d ≤ m, we use Lemma 6 to find all d-splits matching P [1..m]. Each
of them is reported as a Type 2 match. Now we analyze the space and time
complexity of the above data structure and searching algorithm. By definition,
each Tjφ

kj Tj+1 contributes exactly one (kj +x)-split for all x ∈ [0, |Tj|]. Since
every Tjφ

kj Tj+1 contributes a total of |Tj |+1 splits, there are totally O(n) splits
for text T [1..n], and the data structure requires O(n) space. By Lemma 4, each
orthogonal segment intersection query takes O(log n+t) time to report t matches.
The search makes m queries for P [1..d] and P [d+1..m] for every 1 ≤ d ≤ m,
where each Type 2 match is reported exactly once.

Lemma 7. We can locate all Type 2 matches in O(m log n + occ2) time.

4.2 Finding Type 3 Matches

Now we consider the remaining case where P matches a substring of T containing
more than one wildcard group. It is easy to see that if P matches at least two
wildcard groups, then P has some Tj as a substring. We will use all these Tj

which are matches in P as a basis to find Type 3 matches. Using Lemma 2, we
can find all matches of Tj in P . Now we need to check whether we can combine
these matches to form Type 3 matches.

Suppose we know that Tj = T [s..t] is a prefix of P [i..m]. If Tj forms part
of a Type 3 match, then this match starts at position s− i+1 in T . We first
determine these candidate positions from all matching Tj . Then we can verify
each candidate position whether it gives a Type 3 match. We declare an array
A[1..n], where A[r] > 0 indicates r is candidate position. First, we initialize all
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elements as zero. For each Tj = T [s..t] being a prefix of P [i..m], we increment
A[s−i+1] by 1. Now A[r] stores the number of times it is marked as a candidate
position. We remain to verify these candidate positions, i.e. all r where A[r] > 0.

Let aj = 1 +
∑j−1

i=1 (|Ti| + ki) denote the starting position of Tj in T for all
1 ≤ j ≤ �+1. We perform the following steps for each r where A[r] > 0. Pick the
smallest j1 such that aj1 ≥ r and the largest j2 such that aj2 + |Tj2 | ≤ r+m. We
have chosen j1 and j2 such that Tj1 , Tj1+1, . . . , Tj2 are the only text segments
that are fully contained in T [r .. r+m−1], i.e. text segments that should be a
substring of P . By comparing A[r] with j2 − j1 + 1, we can check whether every
of Tj1 , Tj1+1, . . . , Tj2 has been found as a substring of P at the correct position.
What remains is to verify whether the two ends of P matches the incomplete
parts of Tj1−1 and Tj2+1 that fall into T [r .. r+m−1], i.e., whether they match
the corresponding prefix and suffix of P . Precisely, a position r in T is verified
to be a match of P if (1) A[r] = j2 − j1 + 1, (2) Tj2+1[1 .. r+m−aj2+1] is a suffix
of P when aj2 + kx ≤ r + m − 1, and (3) Tj1−1[aj1−1−r .. |Tj1−1|] is a prefix of
P when aj1 − kj1−1 ≥ r + 1.

Lemma 8. Type 3 matches can be located in O(m+γ) time, γ =
∑�+1

j=1 occ(Tj , P ).

Proof. Locating all matches of Tj in P takes O(m+γ) time. We use the constant
time initialization technique again[2] so that the array is initialized on demand
in amortized O(1) time per cell. When we want to loop over all A[r] > 0, we can
simply scan each of the γ matches. For each r, we verify the above conditions by
Lemma 3. We mark A[r] = 0 after we are done so as to avoid r being processed
again. ��
Combining Lemmas 7 and 8, we have the following theorem.

Theorem 3. We can build an index for a text T containing � groups of wild-
cards in O(n) space so that for any pattern P without wildcard, searching takes
O(m log n+ γ + occ) time where γ =

∑
1≤ı≤�+1 occ(Ti, P ) and occ is the number

of matches of P in T .

When the pattern P contains no wildcard and the text T contains optional
wildcards. The problem can be solved similarly by classifying the matches into
three types. The detail will be described in the full version. We have the following
theorem.

Theorem 4. We can build an index for a text T containing � groups of wild-
cards in O(n) space so that for any pattern P without wildcard, searching takes
O(m2 log n + m log2 n + γ log n + occ) time where γ =

∑
1≤ı≤�+1 occ(Ti, P ) and

occ is the number of matches of P in T . If O(n log n) space is given, searching
time is reduced to O(m log2 n + γ log n + occ).

5 Wildcards in Both Pattern and Text

Now we consider the string matching problem where both the text and the
pattern contains wildcards, for both types of wildcards. We basically combine
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the results in the previous sections. Similar to Section 2, we evaluate all pattern
segments and picks the one which generates the fewest candidates in T , where
a candidate is a match of the pattern segment in T . Then we retrieve all the
candidates and verify each of them against other pattern segments.

Let us first consider (ordinary) wildcards. We can count the number of can-
didates for each pattern segment Pi as follows. Lemmas 1 and 7 allow us to
count the number of Type 1 and Type 2 matches using O(|Pi|) and O(|Pi| log n)
time respectively. We can also retrieve all Type 3 matches of Pi using O(|Pi| +
∑�+1

j=1 occ(Tj , Pi)) time. Now we pick Pi∗ and retrieving all its candidates similar
to Section 3. Lemma 9 allows us verify every other pattern segment in O(1) time.
and hence we can verify each candidate in O(h) time. Thus, we have Theorem 5.

Lemma 9. Suppose we have already computed Type 3 matches of every Pi.
Given a pattern segment Pi, we can determine in O(1) time whether it matches
T [s..t].

Theorem 5. We can build an index for a text T with � groups of wildcards
in O(n) space so that for any pattern P with h groups of wildcards, search-
ing takes O(m log n + γ + hβ) time where β = min

1≤ı≤h+1
occ(Pi, T ) and γ =

∑�+1
j=1(occ(Tj , P1) + occ(Tj , P2) + · · · + occ(Tj , Ph+1)).

For optional wildcards, as shown in the full version, we have the following theo-
rem.

Theorem 6. We can build an index for a text T with � groups of optional wild-
cards in O(n) space so that for any pattern P with h groups of totally g optional
wildcards, searching takes O(m2 log n+m log2 n+γ log n+ghβ+occ) time where
β = min1≤ı≤h+1 occ(Pi, T ) and γ =

∑�+1
j=1(occ(Tj , P1) + · · · + occ(Tj , Ph+1)). If

O(n log n) space is given, searching time is reduced to O(m log2 n + γ log n +
ghβ + occ).

6 More Space for Pattern with Wildcards

For the cases where the pattern P contains (ordinary) wildcards, we note that
the time complexity includes a term containing β. Since β is the minimum of
occ(Pi, T ) over all Pi, it can be very large when compared with the other terms.
We give a trade-off solution which allows using more space to decrease the de-
pendency on β while slightly increasing other terms of the searching time.

Recall that our algorithm in Section 3 first locates all “candidates” of some Pi∗

by the suffix tree, and then verify each candidate with all other pattern segments.
We can do better if we have an index more powerful than the suffix tree. Consider
a substring XφY of P where φ is a wildcard. We note that occ(XφY, T ) can be
much smaller than both occ(X, T ) and occ(Y, T ). The index by Cole et al.[3] as
mentioned in the introduction can report all matches of XφY efficiently. Using
this index to generate candidates, we only need to verify occ(XφY, T ) candidates.
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Given an integer d, let Ψd be the set of all maximal substrings of P such that
(1) it contains at most d wildcards, and (2) neither of its first and last characters
are wildcard. We can build the index of Cole et al. for T using O(n logd n) space,
such that we can pick Q ∈ Ψd that gives the smallest occ(Q, P ) using O(m +
|Ψd|2min{g,d} log log n) time, and locate its matches in O(2min{g,d} log log n +
occ) time. As a result, candidate generation takes O(|Ψd|2min{g,d} log log n) time
and verification takes O(|Ψd|βd) time. That is, we can build an index using
O(n logd n) space so that searching takes O(m + |Ψd|2min{g,d} log log n + |Ψd|βd)
time, where βd = minQ∈Ψd

occ(Q, T ).
Unlike Cole’s index which only works when g ≤ d, our index works for patterns

with any number of wildcards. However, when g ≤ d, since |Ψg| = 1 and βd = occ,
searching in our index takes O(m + 2g log log n + occ) time, matching both the
space and time complexity of Cole’s index. If g > d, we will have more candidates
than occ. Let βd = minQ∈Ψd

occ(Q, T ). We observe that βg ≤ βg−1 ≤ . . . ≤ β1 ≤
β, since every string X in Ψd has a longer counterpart in Ψd+1. In other words,
X generates at least the number of candidates Y generates. This means a larger
d will result in fewer candidates, but we need more space for indexing and more
time to search for candidates.
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Abstract. We study the following fault tolerant variant of the interval
group testing model: Given four positive integers n, p, s, e, determine the
minimum number of questions needed to identify a (possibly empty) set
P ⊆ {1, 2, . . . , n} (|P | ≤ p), under the following constraints. Questions
have the form “Is I∩P �= ∅?”, where I can be any interval in {1, 2 . . . , n}.
Questions are to be organized in s batches of non-adaptive questions
(stages), i.e, questions in a given batch can be formulated relying only
on the information gathered with the answers to the questions in the
previous batches. Up to e of the answers can be erroneous or lies.

The study of interval group testing is motivated by several applica-
tions. remarkably, to the problem of identifying splice sites in a genome.
In particular, such application motivates to focus algorithms that are
fault tolerant to some degree and organize the questions in few stages,
i.e., on the cases when s is small, typically not larger than 2. To the best
of our knowledge, we are the first to consider fault tolerant strategies for
interval group testing.

We completely characterize the fully non-adaptive situation and pro-
vide tight bounds for the case of two batch strategies. Our bounds only
differ by a factor of

�
11/10 for the case p = 1 and at most 2 in the

general case.

1 Introduction

Problem Statement. In this paper we consider fault tolerant algorithms for
interval group testing. An instance of the problem is given by four non-negative
integers n, p, s, e and a subset P ⊆ O = {1, 2, . . . , n}, such that |P | ≤ p. The
set O is the search space and P is the set of positive objects that have to be
identified. Queries are binary test asking “Is P ∩{i, i+1, . . . , j} �= ∅?”, for some
1 ≤ i ≤ j ≤ n. The target is to identify P by using the minimum possible
number of queries. We assume that tests are arranged in stages: in each stage
a certain number of tests is performed non-adaptively, while tests of a given
stage can be determined depending on the outcomes of the tests in all previous
stages. Finally, we assume that up to a finite number e of the answers might be
erroneous or lies.

For each value of the parameters n, p, s, e we want to determine N (n, p, s, e),
the worst-case number of tests that are necessary (and sufficient) to successfully
identify all positives in a search space of cardinality n, under the hypothesis that

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 858–868, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the number of positives is at most p, s-stage algorithms are used and up to e
answers are lies.

Motivations and Related Research. Group testing is a basic paradigm in
the theory of combinatorial search and is efficiently used in very diverse areas
such as quality control, multiple access communication, computational molecular
biology, data compression, and data streams algorithms among the others (see
[5,6,9,14,17,3]). Group testing with interval tests also arises in variety of domains,
e.g., detecting holes in a gas pipe [5,4], finding faulty links in an electrical or
communication network, data gathering in sensor networks [10,11,12], just to
mention a few.

Our main motivation for the study of interval group testing comes from its
application to the problem of determining exon-intron boundaries within a gene
[15,18]. In a very simplified model, a gene is a collection of disjoint substrings
within a long string representing the DNA molecule. These substrings, called
exons, are separated by substrings called introns. The boundary point between
an exon and an intron is called a splice site, because introns are spliced out be-
tween transcription and translation. Determining the splice sites is an important
task, e.g., when searching for mutations associated with a gene responsible for a
disease.

In [18], a new experimental protocol is proposed that searches for the ex-
ons boundaries using group testing. This consists of selecting two positions in
the cDNA, a copy of the original genomic DNA from which introns have been
spliced out, and determine whether they are at the same distance as they were
in the original genomic DNA string. If these distances do not coincide then
at least one intron (and hence a splice site) must be present in the genomic
DNA between the two selected positions. The formulation of splice sites iden-
tification as a group testing problem with interval queries is explicitly stated
in [13,15,18]. The advantages of splice site detection by distance measurements
over sequence-based methods using, e.g., Hidden Markov Models are that this
method works without expensive sequencing of genomic DNA and it gives the
results directly from experiments, without relying on inference rules. The work
[18] and the book [15] report about the experimental evaluation, on real data,
of the algorithm ExonPCR, that finds exon-intron boundaries within a gene.
The authors of [18] give also a simple asymptotic analysis of their Θ(log n)-
stage algorithm. The question was whether there exist less obvious but more
efficient query strategies for Interval Group Testing, and more importantly, al-
gorithms able to cope with the technical limitation of the experiments, and
particularly with errors. We remark that non-adaptive strategies are desirable
in this context, in order to avoid long waiting periods necessary to prepare each
experiment. However a totally non-adaptive algorithm (with s = 1) needs unrea-
sonably many queries. Thus, the necessity arises to trade more stages for fewer
queries, but without exceeding with stages. In [1] the first rigorous algorithmic
study of the problem was presented, and for the case s ≤ 2 a precise evaluation of
N (n, p, s, 0) was given. In [2] a sharper asymptotic estimation of N(n, p, s, 0) was
given that is optimal up to the constant of the main term in the case of large s.
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The necessity of dealing with errors in the tests had been already stated in the
seminal papers [15,18] and reaffirmed in the subsequent ones. However, to the
best of our knowledge, ours are the first non trivial results on this interesting
variant of the problem.

Our Results. We focus on strategies that use adaptiveness at most once, i.e.,
strategies with questions organized in one or two batches of non adaptive queries
(s ∈ {1, 2}). In fact, according to [7] ... the technicians who implement the pooling
strategies generally dislike even the 3-stage strategies that are often used [. . .].
The pools are either tested all at once or in a small number of stages (usually at
most 2). We exactly determine N(n, p, 1, e) and provide very tight bounds for
the N(n, p, 2, e) that in the case p = 1 at most differ by a factor of

√
11/10,

and at most by a factor 2 in all the other cases. We remark that these are the
first non trivial results on fault tolerant interval group testing procedures and we
stress the necessity to drive attention onto the fault tolerant variant of interval
group testing.

2 Definitions and Notation

In this section we fix the notation used in the text. The set of objects where
we try to find the positives is the set of the first n non-negative integers [n] =
{1, 2, . . . , n}. By abuse of notation we shall use square brackets to denote inter-
vals of integers in [n]. Then, for each 1 ≤ i ≤ j ≤ n, we shall use [i, j] to denote
the set {i, i + 1, . . . , j}. Given an interval π = [i, j], we shall denote its size by
|π|, i.e., |π| = j − i + 1. By definition each query asks about the intersection of
a given interval with the set of positive elements. Therefore, we shall identify
a query with the interval it specifies. We say that a query Q ≡ [i, j] covers an
element k ∈ [n] if k ∈ [i, j].

A query Q ≡ [i, j] has two boundaries: the left, (i−1, i), and the right, (j, j+1).
For the sake of definiteness, we assume that, for any a, a the query [1, a] has left
boundary (0, 1), and the query [a, n] has right boundary (n, n+1). A multiset of
queries Q defines a set of boundaries B(Q) = {(i1, i1 +1), (i2, i2 +1), . . .}, where
ik < ik+1. Every interval [ik + 1, ik+1] is called a piece. Because every query has
two distinct boundaries, but two queries may share some boundaries, we have
|B(Q)| ≤ 2 |Q|. A boundary B of a piece P is said to be turned to the piece if
there is a query Q such that P ⊂ Q and B is also a boundary of Q. A piece is
called a 2-piece if both its boundaries are turned to it. A piece that has only
one of it boundaries turned to it is called a 1-piece. If none of the boundaries
of a piece are turned to it, the piece is called a 0-piece. Figure 1 illustrate the
definitions given so far.

We shall also use the definition of a YES set. Given a multiset of queries
Q, a YES set (for Q) is a subset of Q such that there exists a set of positives
P (|P | ≤ p) such that answering YES to queries in the YES set and NO to
the other queries, the answers are consistent with P, but for at most e lies. A
YES set is basically a possible (legal) strategy for the adversary, given the set
of questions Q. A YES set is called specific if the intersection of all its queries
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query 2

query 1

0−piece 2−piece1−piece 1−piece 0−piece

left boundaries

right boundaries

Fig. 1. A set of two interval queries, which partition the set of objects into 5 pieces.
The thicker line represents the set of objects.

corresponds to a single piece, and the piece has at most one positive, otherwise
it is called unspecific. More formally, a YES set Y ⊂ Q is specific if and only if
there is a piece π of Q, with |π ∩ P | ≤ 1, such that

⋂
Q∈Y Q = π.

3 Non-adaptative Interval Group Testing with One Error

We start our analysis with the case of 1 stage strategies. In fact, the results
in this section will be the basis for the analysis of the more practical two batch
case. The following two theorems completely characterize 1-stage e-fault tolerant
interval group testing.

Theorem 1. For all n ≥ 1 and e ≥ 0, it holds that N (n, 1, 1, e)=
⌈

(2e+1)(n+1)
2

⌉
.

Proof. The lower bound directly follows from the following claim.
Claim. Every strategy that correctly identifies the (only) positive or reports
P = ∅, uses a set of questions such that there are at least 2e + 1 questions’
boundaries (i, i + 1) for each i = 0, 1, . . . , n.

By contradiction, let us consider a strategy such that for some i ∈ [n] there
are b ≤ 2e questions with a boundary (i, i+1). Let Q be the set of such questions
and Q1 the set of all questions in Q which contain i. Assume, without loss of
generality, that |Q1| ≥ |Q \ Q1|.

Let the adversary answer i) NO to all the questions having empty intersection
with {i, i + 1}, ii) YES to all questions including both i and i + 1, iii) YES to
exactly �|Q2 |� questions in Q1 and NO to the remaining ones in Q1, iv) answers
YES to all the questions in Q \ Q1.

A moment reflection shows that, due to the possibility of having up to e
erroneous answers, the above set of answers is consistent with the both cases
when P = {i} and P = {i + 1}1.Hence, the given strategy cannot correctly
discriminate among the above possibilities. The claim is proved.

Therefore, any strategy that is able to correctly identify P must use in total
at least (2e+1)(n+1) boundaries. Then, the desired results follows by observing
that each question can cover at most 2 boundaries.
1 In particular, for the cases, i = 0 (respectively i = n) the ambiguity is whether P

contains no elements or the element is 1 (resp. n).
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We now turn to the upper bound. Direct inspection shows that for n ≤ 3
there exists an easy strategy with the desired number of questions.

For each k ≥ 2, let A2k+1 = {[1, 2], [2, 4], [4, 6], . . . , [2k − 2, 2k], [2k, 2k + 1]}
and A1

2k = {[2, 2k − 1], [3, 2k − 2], . . . , [k, k + 1]}, A2
2k = {[1, k], [k + 1, 2k]}, and

A3
2k = {[1, k]}.
Then, for n ≥ 4, the following strategy attains the desired bound.
If n is odd, the strategy consists of asking 2e + 1 times the questions in An.

These amount to (2e + 1)�(n + 1)/2� = �(2e + 1)(n + 1)/2�� questions which
clearly cover 2e + 1 times each boundary (i, i + 1), for each i = 0, 1, . . . , n.

If n is even, let k = n/2. Now, the strategy consists of asking 2e+1 times the
questions in A1

n, plus e+1 times the questions in A2
n, plus e times the questions

in A3
n. In total, in this case, the strategy uses (2e + 1)(k − 1) + 2(e + 1) + e =

(2e + 1)k + e + 1 = �(2e + 1)(2k + 1)/2� = �(2e + 1)(n + 1)/2�, as desired.

For the case of more positives we have the following generalization.

Theorem 2. For all integers n ≥ 1, p ≥ 2, e ≥ 0, it holds that N (n, p, 1, e) =
(2e + 1)n

Proof. The upper bound is trivially obtained by a strategy made of (2e + 1)
copies of the singleton questions {1}, {2}, . . . , {n}.

The lower bound is obtained proceeding in a way analogous to the argument
used in the previous theorem. Here, we argue that every strategy that correctly
identifies P must ask, for each i = 1, 2, . . . , n − 1, at least 2e + 1 questions
with boundary (i, i + 1) and including i, and at least 2e + 1 questions with
boundary (i, i + 1) and including i + 1. Moreover, it must ask at least 2e + 1
questions with boundary (0, 1) and 2e + 1 questions with boundary (n, n + 1).
For otherwise, assume that there exists i ∈ {1, 2, . . . , n−1}, such that one of the
above 4e + 2 boundaries (i, i + 1) is missing. Proceeding as in the proof of the
previous theorem, it is possible to define an answering strategy for the adversary
that balances the answers on the two sides of the boundary in so that with the
information provided by the answers and given the possible number of lies, it is
not possible to discriminate between the case P = {i} and the case P = {i, i+1},
or between the case P = {i + 1} and the case P = {i, i + 1}. Alternatively, if
some of the above boundaries (0, 1) (resp. (n, n + 1)) are missing, the adversary
can answer in such a way that it is not possible to discriminate between the case
P = ∅ and P = {1} (resp. P = {n}).

4 Bounds for Two-Stage Strategies with One Positive

The aim of this section is to prove asymptotically tight upper and lower bounds
on the query number of 2-stage interval group testing algorithms when up to
one of the answers is a lie. We shall first analyze the case when P contains at
most one positives.
We start with some notations and facts which will be used for the proof of the
lower bound.
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Let Q be a set of interval questions. For any piece π, cut by Q, we denote by
N(π) the set of query intervals in Q containing π.

Let π1, . . . , π� be the pieces determined by the intervals of Q. Given the Yes

set Y , we define the weight it assigns to the piece πi’s according to the following
scheme:

– A piece gets weight 1/2 if it can contain a positive and there will not be a
lie in the next stage.

– A piece gets weight 3/2 if it can contain a positive and there might be still
a lie in the next stage.

Here, “can” means that this possibility is consistent with the Yes set.
We denote with wY (Q) the weighted sum of the lengths of the pieces cut by

Q weighted according to the weighted associated to Y . In formulas, if wj is the
weight given to the piece πj , we have wY (Q) =

∑�
j=1 |πj |wj .

Assume now that Q is the set of interval questions asked in the first stage of
a two stage group testing algorithm which finds more than one positive. Using
Theorems 1 and 2 it follows that if Y is the set of intervals in Q that answer
Yes, the number of queries to be asked in the second stage in order to find all
the positives is at least wY (Q). Since each piece πj that may have a positive
must be solved as an independent interval group testing problem with universe
of size |πj | at the second stage, and wj associates the correct lower bound factor
given by Theorems 1 and 2 in the case of one error.
In order to prove the promised bound we will show that for each possible set of
interval questions A1 there exists a yes set Y such that wY (A1) ≥ n/|A1|.

The following proposition allows us to limit the analysis for the lower bound
to a subset of all possible first stages.

Proposition 1. [1] Let Q be a set of interval questions producing a partition
of the search space in which there are pieces a and b such that NQ(a) = NQ(b).
Then, there exists a set of interval question Q′ of the same cardinality of Q such
that the following two conditions hold: (i) for each two pieces a′ and b′ in the
partition produced by Q′ it holds NQ′

(a′) �= NQ′
(b′); (ii) for each Yes set Y ′

for Q′ there exists a Yes set for Q such that wY ′
(Q′) = wY (Q).

After these preliminaries we can start the proof of the lower bound. Let Q be
the set of questions asked in the first stage by a two stage interval group testing
algorithm. Let q = |Q| In virtue of Proposition 1 we can assume that for each
two pieces π1 and π2 determined by Q it holds that N(π1) �= N(π2). We also
have that the total number � of pieces is at most 2q, since the number of pieces
covered by query intervals is at most 2q−1 (by induction) and by Proposition 1,
at most one piece πo is outside all query intervals (N(πo) = ∅).

The next technical lemma was proved in [1]. It uses an averaging argument
to prove the existence of an adversary strategy that can force a certain number
of questions in the second stage.

Lemma 1. Consider a multiset of k (not necessarily distinct!) Yes sets, and
for each i = 1, 2, . . . , k and j = 1, 2, . . . , �, let wij be the weight of the jth piece
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in the Yes vector associated to the ith Yes set. If there exist r > 0 such that
for all j = 1, 2, . . . , �, it holds that

∑k
i=1 wij ≥ r, then an adversary can force at

least r
kn queries in the second stage.

We adapt the bounds for the 2-stage strategy for 2 positives, given by Cicalese et
al. [1], to the case where a 2-stage strategy for at most one positive may contain
at most one error.

Lemma 2
N (n, 1, 2, 1) ≥

√
5n − O(1).

Proof. We show that we may achieve r ≥ 2.5 using at most 2t1 + 2 YES set ’s,
where t1 is the number of queries in the first stage. Then, by Lemma 1, the
number o queries we need is at least min

(
t1 + 5n

4t1+4

)
=

√
5n − O(1).

To achieve r ≥ 2.5, we create a specific YES set for each piece defined by the
t1 queries in the first stage. Recall that there are at most 2t1 distinct (according
to question containment) pieces. This already guarantees r ≥ 1.5. Moreover,
each pair of adjacent pieces fall in one of the following cases, depending on how
many queries separate them:

Case 1. Consider the case where two pieces are separated by the boundary of
exactly one query. Let (i, i+1) be such boundary. The YES created for the piece
containing i assigns weight 1/2 to the piece containing i + 1, since there is the
chance that exactly the query having the boundary (i, i + 1) was an error.

Therefore, by symmetry, each piece in a pair of neighbors separated by a single
boundary automatically gets an extra weight 1

2 .

Case 2. When the pieces are separated by the boundary (i, i + 1) of exactly two
queries, the YES set created for one of them indicates precisely that piece as
the one containing a positive. In these cases, we don’t get the extra weight of
1
2 for the neighbor. However, we can use the fact that, since there is no piece
between these two boundaries, the number of pieces is at most 2t1 − 1, and so
is the number of YES sets used so far. Therefore we may create an unspecific
YES set involving both pieces. This is a YES set that answer yes to all queries
including both pieces and answers the two questions with boundaries (i, i + 1)
inconsistently, i.e., one indicating the piece containing i and one indicating the
piece containing i + 1. This gives us the desired extra weight 1

2 to each piece.

Case 3. Using the same argument as in the previous case, if a pair of pieces
is separated by more than 2 boundaries, then the number of pieces is at most
2t1 − 2. We may use two of this extra pieces to create a new specific YES set for
each piece in the pair. At the end, each of the pieces gets an extra weight of 3

2 .
Therefore, we are able to extend the previously suggested multiset of YES

sets in such a way that each piece gets extra weight 1
2 from each of its neighbors.

As a result, all the pieces, but the ones on the extremities, surely have sum of
weights at least 2.5. For pieces on the extremities, creating two extra consistent
YES sets, one for each, gives desired total weight. At the end, we have a multiset
with the desired properties.
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Lemma 3
N (n, 1, 2, 1) ≤

√
5.5n.

Proof. We show a 2-stage query scheme which is able to find a positive in a set
of n elements using at most

√
5.5n. The first stage consist in queries divided in

two groups, as shown in Fig. 2:

Group A: Consists of tA overlapping queries that divide the set of objects in
2tA pieces of the same size.

Group B: Consists of rtA overlapping queries, for 0 < r < 1.

1
2

1
2

1
2

1
2

3
2

1
2

III

A

B

Fig. 2. Query scheme used in the first stage of a 2-stage strategy. The thicker line
represents the set of objects, whereas all the other represent the a- and b-queries. In
the figure we may see the two patterns that compete for the worst case. Darker lines
indicate queries that answer YES.

An inspection of the possible YES sets gives two situations as candidates for
the worst case:

I. When a single b-query answers YES correctly, one of the a-queries surely lies.
In any case, since at most one error is allowed, the positive must be in one
of the single-covered pieces. As a consequence, all such pieces covered by the
non overlapping part of the b-query need to be checked in the second stage.
Since the non-ovelapping part of the b-querie has size n

2rtA
, half of this piece

is covered by single a-queries, and an error free strategy may be used in the
second stage, the number of queries needed in the following stage is n

8rtA
.

II. When two overlapping a-queries answer YES, together with the correspond-
ing b-queries, we must look for a positive in the piece corresponding to the
overlapping part as if there was no error. We also need to consider the hy-
pothesis that one of the a-queries gave the wrong answer. Therefore the two
pieces corresponding to the non-overlapping parts must also be investigated.
In the last case, we may take advantage of the fact that they are only pos-
sible in the presence of one error, and use the error-free strategy on the two
pieces of size n

2tA
. This gives us a total of 5n

4tA
questions in the second stage.

The total number of queries used by this strategy is given by
min

(
tA(1 + r) + max

(
5n
4tA

, n
8rtA

))
.
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By choosing r = 0.1, we equalize both worst case candidates and get
min

(
1.1tA + 5n

4tA

)
=

√
5.5n.

4.1 More Positives

The following theorem summarizes our finding on two stage interval group testing
with at most one error in the tests.

Theorem 3
√

6n(p − 1) − O(1) ≤ N(n, p, 2, 1) ≤ 2
√

6n(p − 1).

Proof. We start with the lower bound. Assume that the adversary accepts not
to lie in the first phase. Moreover, she/he agrees to put the positives into the
p − 1 largest pieces defined by the first stage of queries.

Notice that this information, exchanged between the questioner and the ad-
versary, can only make the situation better for the questioner.

Let q be the number of questions in the first phase. These questions divide
the search space into at most 2q + 1 pieces. Hence, the largest p − 1 of these
pieces have total size at least (p − 1)n/(2q + 1).

Since each of these pieces might contain up to 2 positives, by Theorem 2 the
questioner has to ask at least 3 questions per element in each of these pieces.

So we have that the number of questions asked by an algorithm that uses q
queries in the first stage is at least q + 3(p − 1)n/(2q + 1).

Thus, minimizing over all possible values of q we have the desired bound.
In order to prove the upper bound we consider the following strategy, where

q is a parameter to be decide later. In the first stage, we divide the search space
into q non-overlapping intervals of equal size. We call them segments. Then we
ask twice one question coinciding with each segment.

Let A be the set of segments such that the two corresponding questions are
answered YES. Let B the set of segments whose corresponding questions are an-
swered NO. Finally, let C the set of segments such that one of the corresponding
questions is answered YES and one is answered NO.

Since we are assuming at most one error, trivially, no question is necessary in
the second stage in each segment in B.

We also have |C| ≤ 1.
We can now have the following cases.

Case 1. |A| ≤ p − 1, |C| = 0. Then, since each segment π might contain more
than 1 positive, and the adversary might still lie, by Theorem 2, 3|π| questions
have to be asked in π in the second stage. Since all segments are of the same
size, in total we have 2q + 3|A|n/q questions are asked in this case.

Case 2. |A| ≤ p − 1, |C| = 1. Again, each segment π might contain more than 1
positive. However, in this case the adversary has clearly already used a lie. Then,
by Theorem 2, for each segment π ∈ A, |π| questions have to be asked in π in
the second stage. Moreover, for the only segment γ in C, either |γ|/2 or 3|γ|/2
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questions have to be asked, according as A contains p − 1 or less segments.
In fact, in the first case, γ can contain at most one positive, and Theorem 1
applies. Whilst in the second case, γ might contain more than one positive and
then Theorem 1 applies. Since all segments are of the same size, in total we have
2q + 3(p − 1)n/2q + n/2q questions in the first case and 2q + 3(|A| + 1)n/2q in
the second case (|A| ≤ p − 2).

It is not hard to see that the worst situation for the questioner is given by
Case 1 with |A| = p − 1.

Thus, the above strategy uses in total at most 2q + 3(p − 1)n/q questions.
Minimizing with respect to q we have the desired bound.
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Abstract. Finding the similarity between two sequences is a major
problem in computer science. It is motivated by many issues from com-
putational biology as well as from information retrieval and image pro-
cessing. These fields take into account possible corruptions of the data
caused by genome rearrangements, typing mistakes, and more. Therefore,
many applications do not require merely complete resemblance of the se-
quences, but rather an approximated matching. We consider mismatches
and swaps as natural mistakes which are allowed in a meagre number.
The edit distance problem with swap and mismatch operations was dis-
cussed by Amir et. al. [3]. They solved the problem in O(n

√
m log m)

time. From then on the problem of string matching with at most k swaps
and mismatches errors was open.

In this paper we present an algorithm that finds all locations where the
pattern has at most k mismatch and swap errors in time O(n

√
k log m).

1 Introduction

Before describing the motivation of the problem, we share with the reader the
importance of solving the Approximate String Matching with Swap and Mis-
match errors, being an open problem for over three years, worked on by some
researchers groups to no avail. Only recently, a randomized solution was sug-
gested [7].

In the last few decades various scientific and business applications requested
solutions for the Approximate String Matching Problem. In approximate match-
ing, one defines a distance metric between the objects (e.g. strings, matrices)
and seeks all text location where the pattern matches the text by a pre-specified
“small” distance. The necessity mainly derives from information retrieval, image
processing and computational biology. In the latter, for example, we know that
during the course of evolution, speciation results in the divergence of genomes
that initially have the same gene order and content. If there is no selective pres-
sure, successive rearrangements that are common in prokaryotic genomes will

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 869–880, 2007.
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eventually lead to a randomized gene order. Therefore the presence of a region
of conserved gene order is a source of evidence of some non-random signal that
allows, for example, the prediction of groups of functionally associated genes [13].
Nevertheless, as rearrangements do occur, the approximate matching is sought
after, as well as the exact matching. Similarly, detecting that a certain protein
is in proximity to a known one, may yield functional similarity between them,
giving biologists a lead for their research.

Definition 1. Let S and Q be two strings over alphabet Σ and let E be a set
of edit operations. Then the edit distance( S, Q) with respect to E is the min-
imum number d, such that exists a sequence of d edit operations ∈ E for which
ed(ed−1(...e1(Q)...)) = S.

Definition 2. Given a string S = s0...sn−1 over alphabet Σ and σ ∈ Σ, swap
((i)(S)) = s0...si−1si+1sisi+2...sn−1. mis((i, σ)(S)) = s0...si−1σsi+1...sn−1.

The earliest and best known distance functions are Levenshtein’s edit distance [10]
and the Hamming distance, considering merely mismatches. Let n be the text
length and m the pattern length. Lowrance and Wagner [11,12] proposed an
O(nm) dynamic programming algorithm for the extended edit distance problem.
In [9] the first O(kn) algorithm was given for the edit distance with only k allowed
mismatches. Cole and Hariharan [6] presented an O(nk4/m +n+m) algorithm
for this problem. To this day, however, there is no known algorithm that solves
the general case of the extended edit distance problem, where the edit operations
are: insertion, deletion, mismatch, and swap, in time o(nm).

Since the upper bound for the edit distance seems very tough to break, at-
tempts were made to consider the edit operations separately. If only mismatches
are counted for the distance metric, we get the Hamming distance, which de-
fines the string matching with mismatches problem. A great amount of work
was done on finding efficient algorithms for string matching with mismatches
among which are [9,5]. The most efficient deterministic worst-case algorithm
for finding the Hamming distance of the pattern at every text location runs in
time O(n

√
m log m). Isolating the swap edit operation yielded even better results

[2,4], with a worst-case running time of O(n log m log σ).
Amir, Eisenberg and Porat [3] faced the challenge of integration of the above

two results, providing an efficient algorithm for edit distance with mismatch and
swap. Integration can prove to be tricky, the problem of indexing with don’t
cares can serves as an example for that.

In fact, sometimes the integration of two efficiently solvable operations ends
up intractable. For example, Wagner [12] proves that edit distance with the
two operations: insertion and swap in NP-hard, while each one separately can
be solved in polynomial time and the general edit distance – consisting of the
four operations insertion, deletion, mismatch and swap – is also polynomially
solvable.

In this paper we discuss the problem of approximated string matching, with
only swap and mismatch operations allowed, as formally defined in Definition 3.
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Definition 3. The Approximated String Matching with Swaps and Mismatches
problem (ASMSM):
Input: A text T = t0...tn−1 and a pattern P = p0...pm−1, over alphabet Σ,

a constant k and a set of editing operations E = {swap(i), mis(i, σ)}.
Output: All text locations i, for which the edit distance, with respect to E,
between P and the substring ti..ti+m−1 is ≤ k, with the restriction that each

character can participate in no more than one swap.

We present an O(n
√

k log m) time algorithm for a constant alphabet, using
counting techniques, convolutions and other combinatorial methods.

The paper is organized as follows: In the next section we give some related
previous works. In section 3 we describe our algorithm, parted to three cases.
Section 4 describes an efficient method for detecting swaps. Section 5 concludes
the paper.

2 Previous Work

The ASMSM problem integrates challenges of both approximating matching and
that of confronting the swap and mismatch operations. We therefore briefly scan
results regarding both questions.

Landau and Vishkin [9] solved the approximated matching, allowing k mis-
matches, in O(nk) time, for a text of length n. They introduced a method of using
suffix trees and Lowest Common Ancestor queries in order to allow constant-time
jumps over equal substrings in the text and the pattern.

Their solution can be easily adjusted to solve our problem, allowing swaps
as well. Start at each text location, pass over the longest equal substring, till a
mismatch is reached, consuming constant time (using a LCA query). After the
next ‘jump’ check wether the last mismatches are adjacent, and if so, whether
a single swap can replace the two mismatches. In case a swap was found, the
number of corrections activated so far is updated. If a location has more than k
errors, we stop. Thus, verification of every location takes time of O(2k). Hence,
the total time required is O(nk), a bound which we intend to improve in this
paper.

Amir, Lewenstein and Porat [5] solved the problem of approximated pattern
matching, where k mismatches are allowed per location . They introduced a
counting technique reducing the number of text locations needed to be checked
using filtering. Their algorithm requires O(n

√
k log k) time. Their solution does

not allow us direct access to the text locations during its process, hence, it
cannot efficiently solve the ASMSM problem. Nevertheless, we will follow some
ideas from their algorithm, but instead of symbols we will refer them to segments
of the text and the pattern.

Amir et. al. [1] showed that if the swap operation is isolated as the only
edit distance operation allowed, the approximated string matching problem can
be solved in time O(n

√
m logm), where n, m stands for the length of the text,

pattern, correspondingly.
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The first integration of the swap and mismatch as the set of legitimate op-
erations of the edit distance was suggested by Amir Eisenberg and Porat [3].
They considered the case of binary alphabet and developed an algorithm using
novel cases of overlap matching and convolutions, consuming O(n log m) time,
where n, m stands for the length of the text and pattern, correspondingly. For
general alphabet they reduced part of the problem to binary alphabet, yield-
ing a total solution in O(n

√
m log m) time. Obviously their algorithm solves our

problem. Using their application, the time required for solving our problem is
O(n

√
m log m), which we wish to ameliorate.

Lately, Porat et. al. [7] solved the Approximate Swap and Mismatch Edit
Distance using a randomized algorithm.

3 The Algorithm

The algorithm we suggest for the Approximate String Matching with Swaps and
Mismatches problem uses several filtering yielding possible candidates and then
verifying these text locations.

As a first step, we partition the text to pieces of length 2m starting from
the first text symbol. In order to avoid neglecting pattern appearances that are
divided between two adjacent text pieces, we perform yet another partitioning
starting from index m of the text. As a consequence we have the following texts:
[T0, T2m−1], [T2m, T4m−1], ... and [Tm, T3m−1], [T3m, T5m−1], ... . The creation
of the text pieces is done in linear time and space. Throughout the algorithm
we consider these text pieces as texts of size 2m. The results returned by the
algorithm are later normalized by the start index of the text piece, in the input
text of size n, to form the output.

Consider the combination of our edit operations, swap and mismatch. It is
clear that every swap error can be viewed as two mismatch errors, yielding the
following observation.

Observation 1. Every text location with at most k swap and mismatch errors
can not have more than 2k mismatch errors.

As a primary filter we use the algorithm of Amir Lewenstien and Porat [5] for
string matching with a constant number of mismatches. Due to Observation 1
we apply their algorithm with 2k allowed mismatches. This procedure requires
O(m

√
k log k) time. To every text location we attach a flag, which is set, only if

its corresponding location begins an occurrence of the pattern with at most 2k
mismatches. From now on, we process the whole text but consider merely results
associated with possible candidates.

The next step is to perform a sort of relabelling over the text and pattern,
by converting the foundation stones of the sequences from single symbols to
segments.

Definition 4. An alternating segment of a string S over alphabet Σ, is a sub-
string alternating between σ, ρ ∈ Σ. A maximal alternating segment, or a seg-
ment for short, is an alternating segment that cannot be expanded to either side.
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In other words, if S′ is a segment σρσ . . ., then the character to the left of S′,
cannot be ρ and the one to the right of S′ is distinguished from the symbol before
the last symbol of S′. A segment is therefore uniquely defined by its first and
second characters and by its length. To each segment we attach its appearance
index in the sequence. When partitioning a string S into segments, we start a
segment at the last symbol of the preceding one, implying a single character
overlap between two consecutive segments. An example for segmentation is: S =
ababcbbacacbabab, then the segments are: abab[a, b, 4](1), bc[b, c, 3](4), b[b, b, 1](6),
ba[b, a, 2](7), ac[a, c, 4](8), cb[c, b, 2](11), babab[b, a, 5](12).

Avoiding the segments overlap, we can err counting correctly the swaps mis-
takes between pattern segments and text segments. For example, suppose P =
ababacac, its non-overlapping segment are Sp1 = ababa and Sp2 = cac. If the
text contains babacaca, we will count for Sp1 two swaps and a mismatch, and for
Sp2 a single swap and a single mismatch, summing up to 5 mistakes, while the
correct number of mistakes is 4 swaps. The partitioning including border symbols
overlaps prevents such pithalls. Nevertheless we must ensure that overlapping
symbol will not participate in two swap operations.

Claim. For every two consecutive segments s1, s2, either one of the last symbol
of s1 and the first symbol of s2 takes part in a swap correction or neither of
them does.

Proof: Let s1 = ...ab. Since s2 is adjacent to s1, it must begin in b due to the
border symbol overlap. In addition, we know that the consecutive symbol is not
a, otherwise contradicting the maximality of s1, therefore s2 = bc... Suppose
the last ab of s1 are swapped, hence the text segment St compared to s1 is
St = ..baba... If s2 is also compared to St right after s1, it will confront ba
aligned to s2 = bc.., yielding no need for swapping. Nevertheless, if St’s end is
aligned to the end of s1, even though s2 will be aligned to a different segment,
it is the consecutive segment of St, therefore starting in a and continuing in a
symbol distinct from b, here again implying no profit from a swap operation.
When s2 takes part in a swap the proof is symmetric.

After executing these primary procedures of constructing a new text and pattern
ST , and SP by parting them to segments and replacing their symbols by the
appropriate segments, we are ready for efficiently solving the ASMSM problem.
For this purpose we consider three cases of pattern instances, for each we suggest
appropriate methods.

3.1 Pattern with Many Different Segments

In this subsection we deal with patterns having more than 3k distinct segments.
Where a distinct segment refer to a segment different from all other segments, by
at least one of its properties, starting letter, second letter and its length, avoiding
duplicity. For this case we suggest finding all pattern occurrences in the text with
no more than k swaps and mismatches in linear time. This will be done using a
counting filter based on the following observation, and a verification.



874 O. Lipsky et al.

Observation 2. A pattern segment that does not match exactly an identical text
segment produces at least one mismatch error.

Proof : Suppose a text segment t is aligned with segment p of the pattern. By
definition, if the segments do not match in the overlap, there are mismatches.
Suppose they do match in the overlap area, but one of them, say t, ends after
the other, i.e. p ends at location i and t ends at location i + j, for j > 0. As
a consequence, there is a mismatch at the location i + 1, otherwise, the symbol
at location i + 1 of the pattern was the same as that of t and the segment p
could have been continued, contradicting the correctness of the segmentation.
The case where one segment starts before the other is symmetric.

We would like to count, for every text location l, how many pattern segments are
identical to the text segments included in T [l...l + m − 1]. Let {Sp1, , Sp3k} be
the first 3k different pattern segments. We select for each Spj its first occurrence
in the pattern starting at index ij. Now, for every text location l, if l is a start
of a text segment St and there exists a pattern segment Spj that is identical
to St, then mark, increment by one the counter related to text location l − ij .

Consequentially to Observation 1 and to our marking 3k pattern segment
occurrences in text segments, a possible matching must be marked by at least
k pattern segments out of the 3k, allowing at most 2k mismatches due to 2k
pattern segments that did not match. Thus, locations marked by less than k
pattern segments are discarded.

Observation 3. At the conclusion of the marking stage there are at most
O(2m/k) candidate locations.

Proof: The algorithm performs at most one marking per text location, the total
number of marks cannot exceed 2m. Every location that was not discarded has
at least k marks, there could be no more than 2m/k such locations.

For verifying the 2m/k new candidates we use the Landau and Vishkin [9]
method of moving from one mismatch to the next one, till the (k + 1)th mis-
match is reached. As we go over the mismatches we consider consecutive ones
and check, with no additional complexity, whether they can be corrected by a
single swap and if so we increase the number of yet allowed mistakes by one.
This verification requires O(2k) time per candidate location. As a consequence
the time required for verifying all candidates is O(km/k) = O(m).

Lemma 1. The ASMSM problem for patterns with more than 3k distinct seg-
ments is linearly solvable.

3.2 Pattern with Frequent Segments

In this subsection we deal with patterns having fewer distinct segments that
appear in higher frequency than in the previous case. Formally, in this case
there are at least

√
k/ logm different frequent segments each occurring at least

3
√

k log m times in the pattern.
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Note that in order to apply the marking and counting technique, we need to
choose for marking purposes 3k pattern segments, a condition which is fulfilled
by selecting the first 3

√
k log m appearances of each of the different frequent

segments.
For each frequent pattern segment Sp we will construct a list of indices j,

starting locations of the 3
√

k log m first occurrences of Sp in the pattern. We
then go over the text and for each text location l that is a start of a segment
St in the text, identical to a segment Sp, we will mark locations l − j for each j
in the list. Since we choose 3k segments’ occurrences in total, we will need O(k)
additional space for the lists.

After the marking step, we discard every text location that is marked with
less than k marks.

Observation 4. At the conclusion of the marking stage there are at most 3m·√
log m/k candidate locations.

Proof: Similar to the proof of Observation 3, the algorithm can perform
3
√

k log m marking per text location, the total number of marks cannot exceed
3m

√
k log m. Every location that was not discarded has at least k marks, hence,

there could be no more than 3m
√

k log m/k = 3m
√

log m/k such locations.
For verifying the candidates we use, here again, the Landau and Vishkin

[9] method, as was previously described. Since there are at most 3m
√

log m/k
candidate locations, and the verification time for each candidate is O(k), the
total verification time is O(m

√
k log m).

Lemma 2. The case of patterns with
√

k/ logm frequent segments is solvable
in time O(m

√
k log m).

If there are less than
√

k/ log m frequent segments, we will choose 3
√

k occur-
rences of every frequent segment, and then we will pick unfrequent segments
and their occurrences. If we manage to gather 3k segments’ occurrences alto-
gether, then the necessary condition is satisfied and we obtain O(m

√
k log m)

time algorithm once again using counting arguments.

3.3 Few Segments, Fewer Frequents

The last case considers the case where there are less than
√

k/ logm frequent
pattern segments, and there are no 3k segments appearances in the pattern
required for the counting filtering.

For the current case we suggest to compute the swaps caused by all possible
alignments of the pattern on the text. Recall we have calculated, at the begin-
ning of the algorithm, all text locations matching the pattern with at most 2k
mismatches. If we can detect the number of swaps, subtracting the latter from
the former will give us the number of required swaps and mismatches in match-
ing the pattern to each of the candidate text location. Locations that do not
exceed k errors are reported as output.
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For text T of length 2m, we consider all its first m + 1 substrings, possible
full overlaps with the pattern, and call this substring a text section.

We differ between frequency of segments as follows: A text section segment
is called frequent if it appears at least 5

√
klogm times in the text section. We

determine that a text segment is called frequent if it appears at least 10
√

klogm
times in the text (of length 2m). Recall a pattern segment is called frequent
if it appears at least 3

√
klogm times in the pattern. Note that these rather

high constants were selected for the ease of the reader, in practice they can be
substantially reduced.

For each text section we count the number of its frequent segments. Observe,
that as a substring differs from its proceeding one by omitting its first segment
and by the adding of a single segment at its end, using a sliding window, this
process is done in linear time, for all text sections.

Lemma 3. In case the pattern contains less than
√

k/ logm frequent segments
and a text section consists of at least 2

√
k/ logm frequent segments, this section

cannot be matched to the pattern under the problem restrictions.

Proof: Suppose, in the worst case, all frequent segments of P are contained in the
text frequent segments set, hence, there are at least

√
k/ logm frequent segments

of the text section which do not frequently occur in P . Even if we claim that all
these segments do appear in P almost frequently, up to 3

√
klogm−1 times, these√

k/ logm segments still have additional 2
√

klogm + 1 appearances in the text
segment that have no correspondence in P , due to the frequency definitions.
Hence, we get at least than

√
k/ logm ·2

√
klogm = 2k mismatches, preventing

an approximate matching between this text section and the pattern.

As this subsection considers merely patterns with less than
√

k/ logm frequent
segments, due to Lemma 3, we can rule out text locations by their number of
frequent segments information. We go over our text, first from right to left and
then from left to right and seek the first location possessing less than 2

√
k/ logm

frequent text segments. These text locations, bounds the area in the text of
possible candidates.

Lemma 4. The bounded area contains c
√

k/ logm frequent segments, c a small
constant.

Proof: The bounds of the bounded area are locations that the text sections
starting there have less than 2

√
k/ logm frequent text section segments. Even if

these locations are far enough, where their frequent text section segments are not
overlapping, and the frequent segments are identical, implying their frequency
is multiplied by 2, we get only 2

√
k/ logm frequent text segments.

Moreover, though there may be more frequent text section segments, because
a non frequent text section segment now appears twice the time and can be-
come frequent, nevertheless, it cannot attain the frequency demand in the total
text.

For the frequent segments we use the Amir, Eisenberg, Porat [3] algorithm for
calculating {swap, mismatch} edit distance of sequences with binary alphabets,
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requiring O(n log m) time, where the text is of size n and the pattern of size m.
Their algorithm computes the number of real mismatches due to certain pat-
tern and text segments alignments, yet their output can easily be translated
to swaps, (by executing an additional convolution of the appropriate sequences,
and subtracting the output from it and dividing by two). Due to Lemma 4 and
the current case of few frequent pattern segments, there are merely c

√
k/ logm

frequent segments from the pattern and text, to consider. In order to avoid du-
plicate counting, we operate the algorithm for every frequent pattern segment
with all segments of the text, and for frequent text segments with merely un-
frequent pattern segments. Therefore, the time consumed by calculating their
swaps contribution is O(m

√
k/ logm log m) = O(m

√
k log m).

Lemma 5. Counting the number of swaps induced by frequent segments can be
done in O(m

√
k log m) time.

Having calculated the number of the swaps caused by the frequent segments
from both pattern and text, we are left to count swaps caused by non frequent
pattern segments (appearing at most 3

√
k log m times in the pattern), that come

across a non frequent text segment (appearing at most 10
√

k log m).

In Section 4 we suggest a procedure, that given a pattern and text segments Sp
and St, marks the number of swaps due to comparing the segments in constant
time, enabling to retrieve by two passes over the text the total number of swaps
due to all Sps. First we consider matching of Sp of length i with all text segments
of length greater than or equal to i and then the other way around.

Lemma 6. Marking the swaps caused by alignments of pattern segments and
texts segments of greater or equal size can be done in O(m

√
klogm) time.

Proof: For a text segment St of length |St|, the number of different pattern
segments of length |St| or less is bounded by 2|St|Σ2 due to |St| possible lengths,
Σ2 options for alphabet and two options for the first character. Each of the
pattern segments can appear at most 3

√
k log m times and every appearance

implies a O(1) time for marking the swaps by Lemma 8. We get that a single
text segment St requires 6|St|

√
k log mΣ2 time for the marking. Since we deal

with small sizes alphabets we say the marking per a text segment is done in
O(|St|

√
k log m). The time required for all text segments matched to shorter

pattern segments is
∑

St∈T O(|St|
√

k log m). All text segments compose the text
itself, so we get a time of O(m

√
k log m).

Now we need to compare Sp of length i with all text segments of length less
than i. We apply the marking procedure here again, but count the number of
operations from the pattern segment point of view, implying it can be matched
to shorter text segments, whose number is bounded by 2(|Sp| − 1)Σ2. Recall
that Sp’s appearances in the current case, can not exceed 3

√
k log m in the

pattern. Therefore, The time required for comparing Sp to shorter text segments
is 6Σ2(|Sp| − 1)

√
k log m = O(|Sp|

√
k log m). Considering all pattern segments,

the time is
∑

Sp∈P O(|Sp|
√

k log m) and since all Sps construct P , the overall
time is O(m

√
k log m).
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Lemma 7. The time required for solving the ASMSM problem for the third case
of patterns is O(m

√
k log m).

Proof: Due to Lemmas 5, 6.

Theorem 1. The Approximate String Matching with swaps and mismatches
problem is solvable in O(n

√
k log m) time.

Proof: Due to Lemmas 1, 2, 7 we have the problem solved for 2m sized texts
in O(m

√
k log m). We perform the algorithm for each of the 2n/m text pieces,

yielding the required time.

Suppose k = O(m) then,
√

k = O(
√

m). For small value k there is an additional
algorithm, solving the ASMSM problem in O(m

√
k log k) time, to be published.

4 Detecting Swaps

The problem we solve in this section is, efficiently marking the number of swaps
between two segments St and Sp.

Observation 5. Detecting swaps between two segments, only segments sharing
the same alphabet need to be considered.

Proof: For two segments, there are three possible relations concerning their al-
phabets: They can be distinct, share a single character or they can be identical.
For the first case, no swap can obtain a match between the segments. If the
segments share a single symbol, for example Sp = abab, St = cbcbc then ac-
tivating a swap operations over Sp, will not reduce the edit distance between
the segments, as each pair of symbols will require a swap and a replacement
corrections instead of two replacements, so all mismatches are real. When the
alphabets of the segments St, Sp are identical, swaps do occur. The first symbol
of St and the last of Sp determine the number of swaps required for matching the
segments.

For simplicity, we suppose hereafter that the pattern segment Sp is the first
segment of the pattern, therefore, when aligning P to index l of T , all mismatches
found are due to index l of T . If this is not the situation, and Sp begins at index i
of the pattern, the number of mismatches calculated should be written associated
to location l − i of T .

Consider, for example, St = abababa and Sp = baba some possible alignments
of these segments are depicted in Figure 1. Beneath a text location l we write
the number of swaps between St and Sp due to placing Sp on location l of T .

Marking each text location with the number of swaps can be easily done in lin-
ear time. However, we try to reduce the time complexity, and suggest writing on a
new clear array named change merely changes in the overlap situations. When Sp
start overlapping St on T [j], the overlap contains a single symbol. Hereafter, the
overlap increases until it reaches its pick. We perform change[j] = change[j]+ 1
meaning that from now on the number of swaps increases by one for every al-
ternate offset. Having reached the largest possible overlap, starting at index j′,
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b a b a
b a b a

b a b a
b a b a

text a b a b a b a

swaps 0 1 0 2 0 2 0 1 0 0 0 0

change1 +1 -1 -1 +1

change2

Fig. 1.

the number of swaps remains the same, so we want to stop the incrementing by
change[j′ + 2] = change[j′ + 2] − 1.
The next change occurs when the overlap decreases from index j′′, we need a
further decrementing and update change[j′′] = change[j′′] − 1. Nevertheless, if
the length of the overlap reaches its pick, at index j′ and start decreasing in
the following location, we will then need to decrease 2 from change[j′ + 2], to
counteract the first +1 as well as start decreasing by one.
When the overlap ends at index j′′′, we want to avoid a negative number of mis-
matches formed by the continuation of the -1 usage, by performing change[j′′′] =
change[j′′′]+1 and stabilizing the zero number of swaps due to the current Sp, St.

We save two change arrays, one for odd offsets and the other for the evens.
In the example of Figure 1, supposing the first text location is 0, the odd offsets
are the swapping locations, so we use change1. The arrays are updated for every
relevant Sp, St. After all segments of the same alphabets were compared, we
calculate, via a single pass over the change arrays, the number of swaps per text
location which will be saved in array swap. We also use a counter dif standing
for the difference between the current swap entry and the preceding one. The
computation is done consecutively by the following assignments:

if i is odd dif1 = dif1 + change1[i], swap1[i] = swap1[i − 2] + dif1. (1)

if i is even dif2 = dif2 + change2[i], swap2[i] = swap2[i − 2] + dif2. (2)

Accumulating the number of swaps due to all segments is done by summing
swap1 and swap2.

Note, that there may be several swapped overlaps in a certain offset l of P
on T due to different pattern segments, yet they will be noted when compared,
and the appropriate adding will be done on change[l]. As a consequence, in the
final pass the appropriate values will be added to swap[l], capturing all swaps
altogether (this is the reason for adding values to change instead of assigning it
the value).

In case the last symbol of Sp is not the same as the first of St, we will activate
the same operations on change2 at the appropriate locations. Determining the
text locations in which change should be updated, and the values added there,
can be easily done in constant time. The details will appear in the full version
of the paper.
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Lemma 8. Marking the number of swaps between a pattern segment and a text
segment requires constant time.

5 Conclusions

The main contribution of this paper is presenting a simple yet efficient algo-
rithm for the important problem of approximated matching with swap and mis-
match errors. We have used counting and convolution techniques, adjusting them
to this problem unique requirements, as well as other combinatorial methods.
Other questions of finding the distance or approximated matching between two
sequences with regard to other sets of editing operations are still open.
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Abstract. In this paper we investigate how graph problems that are
NP-hard in general, but polynomially solvable on split graphs, behave
on input graphs that are close to being split. For this purpose we define
split+ke and split+kv graphs to be the graphs that can be made split by
removing at most k edges and at most k vertices, respectively. We show
that problems like treewidth and minimum fill-in are fixed parameter
tractable with parameter k on split+ke graphs. Along with positive re-
sults of fixed parameter tractability of several problems on split+ke and
split+kv graphs, we also show a surprising hardness result. We prove
that computing the minimum fill-in of split+kv graphs is NP-hard even
for k = 1. This implies that also minimum fill-in of chordal+kv graphs is
NP-hard for every k. In contrast, we show that the treewidth of split+1v
graphs can be computed in polynomial time. This gives probably the
first graph class for which the treewidth and the minimum fill-in prob-
lems have different computational complexity.

1 Introduction

Many NP-hard graph problems become polynomially solvable when restricted
to specific graph classes. Let C be such a class. A natural question is whether
a problem that is tractable on C remains tractable when we consider a graph
class that is close to C. For example a class where every graph can be made into
a graph of C altering only few edges or vertices. This is a common situation in
practical applications, where the input can be affected by errors or incomplete
information. For this purpose we define the graph classes C+ke, C−ke or C+kv
to be the class of graphs that can be obtained by, respectively, adding at most
k edges, removing at most k edges or adding at most k vertices to the graphs in
C. Notice that when dealing with hereditary properties, it does not make sense
to remove vertices. We will often refer to these classes of graphs as parametrized
graph classes.

Recently several authors studied the complexity of hard problems on such graph
classes from a parametrized point of view [4,5,29,22,11]. In particular in [11] the
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whole idea is generalized and the parameter k is considered as a measurement of
the “distance from triviality”. In other words k is used to measure how the com-
plexity of a problem changes as we get further from a trivial solution. For a given
problem and a graph class on which it has a polynomial time solution, the main
questions we can ask about the corresponding parametrized classes are: Does the
problem remain polynomial time solvable up to some k and become NP-hard for
k+1 or does it remain polynomial for each fixed k? And in the last case, how does
it behave from a parametrized complexity point of view? Is it FPT or W -hard? A
problem with parameter k is fixed parameter tractable (FPT) or uniformly poly-
nomial, if it can be solved in time O(f(k) · |x|c), where f is an arbitrary function
and |x| is the size of the input. When a problem is W -hard it might still have a
polynomial time algorithm for each fixed k, for example O(|x|k), but it is very
unlikely to be FPT. For a complete reference see [8].

A fundamental question, and an interesting problem on its own, is whether it
is possible to recognize parametrized graph classes in FPT time. Cai [4] showed
that for all classes of graphs characterized by a finite forbidden set of induced
subgraphs, the corresponding parametrized classes (+kv, +ke, −ke) can be
recognized in FPT time. In addition it has been shown that also chordal+kv
[22], chordal−ke [20,21,4], strongly chordal−ke [20], interval−ke [17], proper
interval−ke [20,21] and planar+kv graphs [24] are recognizable in FPT time.
Split graphs are characterized by a finite forbidden set of induced subgraphs,
hence, by the result of [4], split+ke, split−ke and split+kv graphs are recogniz-
able in FPT time. By the same result we can assume that, given our input, we
know which set of k edges or vertices we have to remove/add to get a split graph.
Such a set is called a modulator of the graph. Related to the problem of finding
a modulator efficiently, in [5] Cai asks whether there is a recognition algorithm
that is not only uniformly polynomial, but uniformly linear for parametrized
split graphs. We can answer affirmatively to this question.

At the moment it seems like mostly coloring problems have been investi-
gated on parametrized graph classes. In [5], Cai shows that finding the chro-
matic number of split+ke and split−ke graphs is FPT, while it is W[1]-hard for
split+kv graphs. He also shows that the same problem is solvable in linear time
on bipartite+1v and bipartite+2e graphs, but NP-complete for bipartite+2v and
bipartite+3e graphs. Takenaga and Higashide [29] study the chromatic number
problem for comparability+ke graphs, and prove that it becomes NP-complete
for k ≥ 2. Finally in [23], Marx gives an FPT algorithm for coloring chordal+ke
graphs.

In this paper we consider various other problems that are known to be polyno-
mially solvable on split graphs, and we study their complexity for split+ke and
split+kv graphs. For example we study problems like minimum split comple-
tions and minimum fill-in. In these cases we want to find the minimum number
of edges to be added to a graph to make it split or chordal. Minimum fill-in in
particular is an extremely well studied problem with a number of practical appli-
cations (see for example [13]). Of course these problems are easy on split graphs
since split graphs are chordal. That is why it comes as a great surprise that,
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even though minimum split completion of split+kv graphs is solvable in FPT
time, minimum fill-in becomes NP-complete even for split+1v graphs. This im-
plies that minimum fill-in of chordal+1v graphs is also NP-complete. Motivated
by this result we investigate also the treewidth of split+kv graphs. Threewidth
is another problem related to chordal completions with important algorithmic
applications (see [3] for a survey). In contrast with the previous result, we prove
that treewidth of split+1v graphs can be computed in polynomial time, giving
the first graph class (to our knowledge) on which minimum fill-in and treewidth
have different computational complexity.

It is worth mentioning that there has been some work on similar problems,
but restricted to special cases: minimum split completions of split+1v and +1e
graphs [16] and minimum cograph completions of cograph+1e graphs [25].

In section 3 we give a simple FPT algorithm to list all maximal independent
sets and cliques of a split+kv graphs. This leads to the FPT algorithm for
computing the minimum split completion of split+kv graphs, generalizing the
result of [16]. Let us also point out that all FPT algorithms given for split+kv
graphs, work also for split+ke graphs, but not vice versa.

In section 4 we focus on minimum fill-in and treewidth for split+ke and
split+kv graphs. As far as split+ke graphs are concerned, we are able to give
an FPT algorithm that given a graph in this class, can list all its minimal tri-
angulations. This implies that we can compute both treewidth and minimum
fill-in within the same time bound. For split+kv graphs we prove the results
mentioned above. As last remark, notice that in this paper we parametrize the
minimum fill-in problem by the distance k of the graph class, not by the number
of edges to be added as in [20,21,4]. In the latter case, in fact, the problem is
FPT for general graphs.

We conclude with listing some open problems and possible directions of re-
search. Due to limited space, the proofs of some of our results will be omitted.
These results are marked with an asterisk.

2 Notation and Definitions

All graphs in this paper are simple and undirected. For a graph G = (V, E), we let
n = |V | and m = |E|. The set of neighbors of a vertex v ∈ V is denoted by N(v),
and the degree of a vertex v is denoted by d(v) = |N(v)|. The neighborhood of a
set of vertices S is defined as N(S) = ∪x∈SN(x)\S. Also, N [v] = N(v)∪{v} and
N [S] = ∪x∈SN [x]. We distinguish between subgraphs and induced subgraphs. In
this paper, a subgraph of G = (V, E) is a graph G1 = (V, E1) with E1 ⊆ E, and
a supergraph of G is a graph G2 = (V, E2) with E ⊆ E2. We will denote these
relations informally by the notation G1 ⊆ G ⊆ G2 (proper subgraph relation is
denoted by G1 ⊂ G). An induced subgraph of G = (V, E) over a set of vertices
U ⊆ V , is the graph G[U ] = (U, EU ), where EU = {xv ∈ E|x, v ∈ U}. The
complement of G is denoted by G. Given a vertex x of G, G − x = G[V \ {x}].

A subset K of V is a clique if K induces a complete subgraph of G. A subset
I of V is an independent set if no two vertices of I are adjacent in G. We use
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ω(G) to denote the size of the largest clique in G, and α(G) to denote the size
of a largest independent set in G. If there is no ambiguity, we will use only ω
and α. We call a vertex v simplicial if N(v) induces a clique. A vertex cover is
a set V ′ ⊆ V such that all edges of G are incident to at least a vertex in V ′. A
dominating set, is a set V ′ ⊆ V such that N [V ′] = V .

G is a split graph if there is a partition V = I + K of its vertex set into an
independent set I and a clique K. Such a partition is called a split partition of
G. There is no restriction on the edges between vertices of I and vertices of K
and the partition itself is not necessarily unique.

For the following result, note that a simple cycle on k vertices is denoted by
Ck and that a complete graph on k vertices is denoted by Kk. Thus 2K2 is the
graph that consists of 2 isolated edges. Also, a chordal graph is a graph that
does not contain an induced subgraph isomorphic to Ck for k ≥ 4.

Theorem 1. (Földes and Hammer [9]) Let G be an undirected graph. The fol-
lowing conditions are equivalent:

(i) G is a split graph.
(ii) G and G are chordal graphs.
(iii) G contains no induced subgraph isomorphic to 2K2, C4 or C5.

Remark 1. Every induced subgraph of a split graph is also a split graph.

A graph G = (V, E) is called: A split+ke graph if there is a set Ek with Ek ⊂ E
and |Ek| ≤ k such that G′ = (V, E \ Ek) is a split graph; A split−ke graph if
there is a set Ek with Ek ∩ E = ∅ and |Ek| ≤ k such that G′ = (V, E ∪ Ek) is a
split graph; and split+kv graph if there is a set Vk ⊂ V with |Vk| ≤ k such that
G[V \ Vk] is a split graph. The set Ek or Vk is referred to as a modulator of the
graph.

For a given arbitrary graph G = (V, E), a split graph H = (V, E ∪ F ), with
E ∩ F = ∅, is called a split completion of G. The edges in F are called fill edges.
H is a minimum split completion of G if |F | is as small as possible, while H is
a minimal split completion of G if (V, E ∪ F ′) fails to be a split graph for every
proper subset F ′ of F .

Minimal and minimum chordal completions are defined analogously to mini-
mal and minimum split completions and they are also called triangulations. In
particular the problem of making a graph chordal adding the minimum number
possible of fill edges is referred to as the minimum fill-in problem. Both mini-
mum fill-in and the minimum split completion problem are NP-hard [30,1]. For
a split or chordal graph G, α(G) and ω(G) can be computed in linear time [10],
whereas these are NP-hard problems for general graphs.

Treewidth is a parameter that measures how tree-like a graph is, and com-
puting it is NP-hard for general graphs [28]. The formal definition involves the
concept of tree decomposition.

Definition 1. A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈
I}, T = (I, M)) where {Xi | i ∈ I} is a collection of subsets of V (also called
bags), and T is a tree such that:
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-
⋃

i∈I Xi = V
- (u, v) ∈ E =⇒ ∃i ∈ I with u, v ∈ Xi

- For all vertices v ∈ V , {i ∈ I | v ∈ Xi} induces a connected subtree of T .

The width of a decomposition ({Xi | i ∈ I}, T = (I, M)) is maxi∈I |Xi| − 1. The
treewidth of a graph G, tw(G), is the minimum width over all tree decompositions
of G. The treewidth of a graph can also be defined from the point of view of
minimal triangulations. In particular, the treewidth of a graph G is minH ω(H)−
1, where H is a minimal triangulation of G. So finding the treewidth of G is
equivalent to finding a minimal triangulation H of G with the smallest maximum
clique. Chordal graphs have a tree decomposition with minimum width called
clique tree, where each bag corresponds to a maximal clique and each leaf-bag
contains at least a simplicial vertex [2]. Also, for a chordal graph G, we have
tw(G) = ω(G) − 1. Finally, as mentioned in the introduction, if a problem is
FPT for split+kv graphs, then it is FPT also for split+ke graphs. In fact every
split+ke graph is also a split+kv graph. To see this: we can always select at
most k vertices that cover all the k edges. Removing these vertices clearly gives
a split graph by Remark 1. Furthermore, the complement of a split+ke graph, is
a split−ke graph since split graphs are self complementary, which follows from
Theorem 1. Hence, if we can solve a problem for split+ke graph, we can solve its
complement on split−ke graph. For example if we can solve the minimum split
completion problem for split+ke graphs, then we can solve the minimum split
deletion problem for split−ke graphs.

3 Listing Maximal Independent Sets in FPT Time

It is already known that for every hereditary family C for which maximum clique,
maximum independent set and minimum vertex cover are polynomial time solv-
able, then the same problem can be solved in FPT time on the corresponding
parametrized classes [5]. However in this case we are interested in listing all max-
imal independent sets and cliques in FPT time, not only finding the maximum.
Notice that if it is possible to list all maximal independent sets or cliques in
FPT time, then it is possible possible to find the corresponding maximum as
well, but not vice versa. In particular it is easy to show that for every hereditary
family C with a polynomial number of maximal independent sets (or cliques), it
is possible to list in FPT time all the maximal independent sets (or cliques) of
C+kv. In this section we will prove formally such result, and apply it to split+kv
graphs. This will lead to a simple FPT algorithm to solve the minimum split
completion problem for this graph class.

Before to start, we would like to settle also a question left open by Cai in
[5] about the existence of a uniformly linear algorithm to find a modulator for
parametrized split graphs. The answer is affirmative, and follows from [16,14]
where two linear time certification algorithms for split graphs are given. These
algorithms, in fact, can not only recognize if a graph is split, but also return
a forbidden subgraph if it is not. Once we can find a forbidden subgraph in
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linear time, we can try and remove each of its vertices, and run the recognition
algorithm again for at most k times in each case. Since the largest forbidden
subgraph of a split graph has 5 vertices, this procedure would yield a search tree
with at most O(5k) nodes and therefore a total running time of order O(5k · (n+
m)). The same idea holds for any graph class C with a finite set of forbidden
induced subgraphs. A modulator of the corresponding parametrized family can
be found in linear time for each fixed k if, given a graph not in C, a forbidden
subgraph can be found in linear time.

The following is implicit from the results of [19].

Lemma 1. [19] If a graph has a polynomial number of maximal independent
sets, then they can be listed in polynomial time.

Lemma 2. * Let C be a hereditary family of graphs with a polynomial number
of maximal independent sets. Then, given a graph G = (V, E) in C + kv and a
modulator Vk, it is possible to list all its maximal independent sets in FPT time.

At this point it is enough to show that split graphs have a polynomial number
of maximal independent sets to get the result we need.

Lemma 3. * In a split graph there are at most ω +1 maximal independent sets
and α + 1 maximal cliques.

Theorem 2. * Let G = (V, E) be a split+kv graph, and let Vk be a modulator of
G. Then the maximal independent sets of G can be listed in time O(2k ·k2 ·nm).

Since all previous results on maximal independent sets hold also for maximal
cliques (just consider the complement of the graph instead), we can give the
following theorem.

Theorem 3. Let G = (V, E) be a split+kv graph. Then a maximum independent
set, maximum clique, minimum vertex cover or minimum independent dominat-
ing set of G can be found in time O(2k · k2 · nm).

In the rest of the section we give an FPT algorithm to compute a minimum split
completion of split+kv graphs, based on the following lemma.

Lemma 4. Let H = (V, E ∪ F ) be a minimal split completion of a graph G =
(V, E). Then there exists a maximal independent set I ⊆ V in G such that H
can be obtained making G[V \ I] into a clique.

Proof. Let V = K + I be a split partition of H . We will prove that there exists
a maximal independent set I ′ ⊇ I of G such that all fill edges of H must be in
K \ I ′, hence proving the statement. First of all notice that in H no fill edges
can be incident to vertices of I, otherwise they could be removed to produce
a split completion H ′ = (V, E ∪ F ′) of G with F ′ ⊂ F , contradicting that H
is minimal. Now assume for the sake of contradiction that for every possible
maximal independent set I ′ of G, there are some fill edges incident to vertices
of I ′ in H . If we remove all such fill edges, we get a graph H ′ = (V, E ∪ F ′)
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with a valid split partition V = K \ I ′ + I ′. However this is a contradiction,
because it implies that there exists a subgraph of H that is a split completion of
G, contradicting the minimality of H . We can conclude that there must exist a
maximal independent set I ′ of G, such that H can be obtained adding fill edges
only in G[V \ I ′].

Notice that it is not true, however, that a minimum split completion of a graph
G = (V, E) can be obtained taking some maximum independent set I of G and
making G[V \ I] into a clique. Actually we cannot even guarantee that taking a
maximum independent set we can produce a minimal split completion (consider
a path on 4 vertices). That is why we need to list all maximal independent sets
of a graph to find a minimum split completion of it.

Theorem 4. * Let G = (V, E) be a split+kv graph. Then a minimum split
completion of G can be computed in time O(2k · k2 · nm).

4 Minimum Fill-In and Treewidth

In this section we give an FPT algorithm for minimum fill-in and treewith of
split+ke graphs, and show that the same problem is harder for split+kv graphs.
In particular we prove that there exists a graph class for which minimum fill-in
is NP-complete while treewidth is polynomial, namely split+1v graphs.

4.1 Split+ke Graphs

In this section we will use the connection between the Elimination Game and
chordal graphs [27]. Running the Elimination Game on a graph G = (V, E) and
an ordering β of its vertices, means to remove the vertices from G in the order
given by β so that, after removing a vertex, we make its neighborhood in the
current graph into a clique. It is well known that this produces a triangulation
of G. In particular for each minimal triangulation H of a graph G, there exists
an ordering β that can produce it [26]. An ordering is called perfect elimination
ordering if every vertex is simplicial when it is deleted during the Elimination
Game. Chordal graphs are exactly the graphs that admit a perfect elimination
ordering.

We will show that for split+ke graphs, we can produce in FPT time all elim-
ination orderings that produce a minimal triangulation.

The results in Observation 1 and 2 follow from previous results on chordal
graphs and minimal triangulations, for further references see [13].

Observation 1. Given a graph G = (V, E), let K ⊆ V be a set of vertices such
that G[K] is a clique. Then every minimal triangulation H of G can be obtained
by running the Elimination Game on G and an elimination ordering where the
vertices of K are eliminated at the end, in any order.

Observation 2. Let H be a minimal chordal completion of an arbitrary graph
G. No simplicial vertex of G is incident to any fill edge in H.
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Using the previous two Lemmas, we will show that all minimal chordal comple-
tion of a split+ke graph, can be obtained considering all the permutations of at
most 2k vertices.

Theorem 5. Let G = (V, E) be a split+ke graph, and let the set Ek ⊂ E be a
modulator for G. Then all minimal chordal completions of G can be computed
in O((2k)! · nm) time.

Proof. Let I be a maximum independent set of the split graph G′ = (V, E \Ek).
Notice that all vertices in I are simplicial in G′. Let K be the clique G′[V \ I].
In G, all vertices of I that are not incident to an edge of Ek are still simplicial.
Hence, since |Ek| ≤ k, there can be at most 2k non simplicial vertices in G
that belong to I. Let us call this set S. By Observation 2, we can remove all
vertices in I \ S and consider only GS = G[S ∪ K]. GS [K] is a clique, so by
Observation 1 all elimination orderings of GS can be produced by considering
only the orderings of the vertices in S. This means that there are at most (2k)!
meaningful orderings, and for each of them it takes O(nm) time to both compute
the corresponding triangulation and check whether it is minimal [6].

Corollary 1. Minimum fill-in and treewidth of split+ke graphs can be computed
in time O((2k)! · nm).

4.2 Split+kv Graphs

Minimum Fill-in. Here we show that adding the minimum number of edges
to make a graph that is split+kv into chordal, is NP-complete even for k = 1.
In order to prove this result, we give a reduction from the minimum fill-in for
co-bipartite graphs, that was shown NP-complete by Yannakakis in [30].

Let G = (P, Q, E) be a co-bipartite graph, where P and Q are cliques. From
G we build a new graph GS = (P ∪ Q ∪ C ∪ {x}, ES) in the following way.
Take a copy of G. Remove all edges between vertices in P . Create a clique C
of size |P |(|P | − 1)/2 + |P | · |Q| + 1 and add all edges between the vertices in
C and P ∪ Q. Finally add a vertex x and make it universal to P . Since we can
partition GS into a clique C ∪ Q, an independent set P and a vertex x, we have
the following observation.

Observation 3. The graph GS is split+1v.

Lemma 5. In every minimum triangulation HS of GS = (P ∪Q∪C ∪{x}, ES),
HS [P ] is a clique.

Proof. First of all notice that there is a trivial upper bound for the size of a
minimum triangulation of GS , namely |P |(|P | − 1)/2 + |P | · |Q|. That is, make
GS [P ∪ Q] into a clique. Furthermore, for every pair of vertices p1, p2 ∈ P and
every vertex c ∈ C, GS [{x, p1, c, p2}] is a C4, and there are only two ways to kill
such a cycle: either add the edge p1p2, or make x universal for C. We will prove
the statement by contradiction. Assume there exists a minimum triangulation
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H ′
S of GS where H ′

S [P ] is not a clique. Then x must be universal to C or, by
the previous discussion, for any two non adjacent vertices in P and a vertex of
C not incident to x, we would have a C4 in H ′

S . Notice that making x universal
to C requires the addition of |C| fill edges. However, by the construction of GS ,
|C| = |P |(|P | − 1)/2 + |P | · |Q| + 1 > |P |(|P | − 1)/2 + |P | · |Q|. This shows that
H ′

S cannot be a minimum triangulation of GS , since it exceeds the upper bound
we gave previously.

Lemma 6. A minimum triangulation of a co-bipartite graph G = (P, Q, E)
can be obtained adding a set F of fill edges to G if and only if a minimum
triangulation of GS = (P ∪ Q ∪ C ∪ {x}, ES) can be obtained adding the set of
fill edges F to GS and making GS [P ] into a clique.

Proof. From Lemma 5 we know that in every minimum triangulation of GS , the
subgraph induced by P is a clique. Let us then consider the graph G′

S , namely
the graph GS where GS [P ] has been made into a clique. In G′

S the vertex x is
simplicial, hence by Observation 2 there will be no fill edge incident to it. This
also implies that no fill edges can be incident to any vertex of C, because they
are universal for everything but x. We can conclude that finding a minimum
triangulation of GS is equivalent to finding a triangulation of G′

S [P ∪ Q]. The
fact that G′

S [P ∪ Q] = G concludes the proof.

Given the previous Lemma and the fact that GS can be built in polynomial
time, we can state the main theorem of this section.

Theorem 6. The minimum fill-in problem for split+kv is NP-complete for k ≥ 1.

Corollary 2. The minimum fill-in problem for chordal+kv is NP-complete for
k ≥ 1.

Treewidth. In contrast to the minimum fill-in problem, we show that the
treewidth of split+kv can be found in polynomial time when k = 1. We have
strong evidences that this still holds for k = 2, but for larger values of k we only
conjecture the existence of a polynomial algorithm, probably not FPT.

Let G = (V, E) be a split+kv graph with modulator Vk and let us define
ω = ω(G[V \ Vk]). Since split graphs are chordal, we know that tw(G[V \ Vk]) =
ω − 1. Besides, adding k vertices to a graph cannot increase the treewidth by
more than k, therefore we have that ω − 1 ≤ tw(G) ≤ ω + k − 1. Let us now
consider G = (V, E) to be a split+1v graph, Vk = {x} its modulator and again
ω = ω(G − x). Then we have the following observation.

Observation 4. The treewidth of split+1v graph is either ω − 1 or ω.

For the rest of the section we assume G not to be chordal and ω = ω(G − x) =
ω(G). Also, we define G′ to be the graph obtained from G removing recursively
all simplicial vertices not in NG[x]. We will prove that computing the threewidth
of G is equivalent to computing the size of the maximum clique of G′ − x.
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Observation 5. All simplicial vertices removed to obtain G′ have degree at most
ω − 1.

Lemma 7. tw(G′) < ω if and only if tw(G) < ω.

Proof. If tw(G) < ω, it is straightforward to see that tw(G′) < ω, since G′ is an
induced subgraph of G. For the other direction, let H ′ be a minimal triangulation
of G′ with treewidth < ω. Let us add back to H ′ the simplicial vertices removed
to obtained G′ and call the resulting graph H . Notice that H is still chordal,
namely a chordal completion of G, and it does not contain cliques of size greater
than ω. In fact ω(H ′) ≤ ω and the vertices we put back in order to get H do
not have degree greater than ω − 1 by Observation 5, so they cannot create a
clique of size greater than ω. This means that there exists a chordal completion
of G with maximum clique size not greater than ω. Hence tw(G) < ω.

Lemma 8. Let ω′ = ω(G′ − x). Then tw(G′) = ω′.

Proof. If ω(G′) = ω′ + 1 the result follows directly by Observation 4 since G′

is still a split+1v graph, otherwise take a split partition K + I of G′ − x, such
that K is a clique of size ω′. Notice that x is adjacent to all I, or there would be
simplicial vertices not adjacent to x. Let us assume for the sake of contradiction
that the treewidth of G′ is not ω′. Then it must be ω′ − 1 by Observation 4.
Take a minimal triangulation H of G′ with treewidth ω′ − 1, and a clique tree
TH of H . In H there cannot be cliques of size greater than ω′. This means that
there must be a bag of TH containing the whole clique K, and nothing else, since
every clique must be completely contained in some bag of the tree decomposition.
Assume such bag is an internal bag. Since H cannot be a complete graph, every
internal bag of its tree decomposition is a separator in the graph [18]. However
K cannot separate any two vertices in the graph, since H [V \ K] = H [x ∪ I] is
a connected graph, as G′[x ∪ I] was. Hence the bag containing K must be a leaf
of TH . This implies that there exists a simplicial vertex v ∈ H [K]. Since G′ has
no simplicial vertices that are not neighbors of x, every vertex in K must have
at least a neighbor in I ∪ {x}. Hence NH [v] ⊃ H [K], meaning that there is a
clique of size greater than ω′ in H , giving a contradiction.

We are now ready to give the main Theorem.

Theorem 7. Treewidth is polynomial for split+1v graphs.

Proof. Given a split+1v graph G with modulator {x}, we can check whether it
is chordal in linear time [13] and, if so, output tw(G) = ω(G) − 1. Otherwise,
if ω(G − x) + 1 = ω(G) we output tw(G) = ω(G − x) by Observation 4. Notice
that we can find ω(G) in polynomial time by Lemma 3. If none of the previ-
ous holds, we can apply Lemma 7 and 8. That is, we need to find ω(G′ − x)
and output tw(G) = ω(G) − 1 if ω(G′ − x) < ω(G), or tw(G) = ω(G) other-
wise. Since G′ and ω(G′−x) can be found in polynomial time, the result follows.
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5 Conclusions

In this paper we studied how some problems that are easy on split graphs behave
when the input graph is slightly modify by the addition of some edges or vertices.
The results were in part counter-intuitive and surprising, and this gives strong
motivation to continue studying these parametrized graph classes. The next
natural step would be to take in consideration parametrized chordal graphs, as
they are a very important superclass of split graphs. For example it would be
very interesting to know whether there is an FPT algorithm for minimum fill-in
and treewidth for chordal+ke like for split graphs. For chordal+kv, instead, we
proved that minimum fill-in is NP-complete, but we do not know much about
treewidth, even though it seems polynomial for k = 1. However it would be
maybe easier to try and settle the problem for split+kv when k ≥ 2, since any
hardness result would still hold for chordal+kv.

Acknowledgments. I would like to thank Yngve Villanger and Daniel Loksh-
tanov for the discussion of the problem and the many useful suggestions, and
my supervisor Pinar Heggernes for helping with the revision of the paper.
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Abstract. From the analysis of algorithms for probabilistic networks, it is known
that a tree decomposition of the minimum treewidth may not be optimal for these
algorithms. Instead of treewidth, we consider therefore the weighted treewidth of
a weighted graph. In this paper, we present a number of heuristics for determin-
ing upper and lower bounds on the weighted treewidth, and a branch and bound
algorithm for finding the exact weighted treewidth for weighted graphs.

1 Introduction

In many graphical models and networks, each vertex is associated with a weight. The
weights of the vertices in the graph or network play a significant role for finding an
optimal solution for the problem. Triangulation of Bayesian Networks of probabilistic
networks and logical partitioning approaches are examples of such problems.

Many decision support systems have probabilistic networks as underlying technol-
ogy [11]. In these networks, we model dependencies and independencies between sta-
tistical variables using a directed acyclic graph. Each statistical variable is represented
by a a vertex in the network. An important problem on these networks is probabilistic
inference: we want to find the probability distribution for a variable, given a value as-
signment to some other variables. An efficient algorithm for inference is based on a tree
decomposition of the moralized graph of the network, since this graph appears to have
small treewidth for many probabilistic networks that model real-life situation. See for
details [8,9,10].

In order to find a tree decomposition on which the algorithm from [9,10] for infer-
ence takes little time, we search of a tree decomposition of small weighted width. The
time this algorithm needs to process one bag of the tree decomposition is proportional
to the product over the variables, represented by the vertices in the bag, of the number
of different values that the variable can assume. If all values in the probabilistic network
can assume the same number c of different values (e.g., all are binary and c = 2), then
the time of the Lauritzen-Spiegelhalter algorithm is bounded by O(ck · n). However, in
practice, the statistical variables in a probabilistic networks may have different numbers
of possible values, and thus the tree decomposition of minimum width may not be opti-
mal for this algorithm. Thus, we look for a tree decomposition with minimum weighted
width instead of one of minimum width.
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The problem of finding the exact weighted treewidth of a weighted graph is an NP
hard problem, even if all weights are equal [1]. Therefore, we introduce, in this paper,
besides a weighted variant of the branch and bound algorithm for treewidth from [3],
some heuristics for finding lower and upper bounds on weighted treewidth.

Several proofs are skipped in this extended abstract due to space constraints. For
more details see the techniqual report in http://www.cs.uu.nl/staff/bachoore, [4].

2 Preliminaries

We denote an undirected weighted graph by G = (V, E, w), where
w : V → N+ is a weight function. We refer to the weight of a vertex v in a weighted

graph G as wG(v), or in short w(v). We denote the set of neighbors of vertex v by
N(v), and the set of neighbors of v plus v itself by N [v]. A vertex v in G is called
simplicial, if its set of neighbors N(v) forms a clique in G. A vertex v in G is called
almost simplicial, if its neighbors except one form a clique in G, i.e., if v has a neighbor
w such that N(v) − {w} is a clique. A set of vertices W for which there is an x ∈ W
with W − {x} a clique is called an almost clique, x is called the excluding vertex.
A graph G is called triangulated (or: chordal) if every cycle of length four of more
possesses a chord. A chord is an edge between two non consecutive vertices of the
cycle. A graph G = (V, E) is a subgraph of graph H = (W, F ) if V ⊆ W and
E ⊆ F . A graph H = (V, F ) is a triangulation of graph G = (V, E), if G is a
subgraph of H and H is a triangulated graph. A linear ordering of a graph G = (V, E)
is a bijection f : V → {1, 2, · · · , |V |}. A linear ordering of the vertices of a graph
G, σ = [v1, · · · , vn] is called a perfect elimination order (p.e.o.) of G, if for every
1 ≤ i ≤ n, vi is a simplicial vertex in G[vi+1, · · · , vn], i.e., the higher numbered
neighbors of vi form a clique. It has been shown in [8] that a graph G is triangulated,
if and only if G has a p.e.o. The weight of a set of vertices of a graph G, S ⊆ V is
w(S) =

∏
v∈S w(v). The total weight of a graph G equals the weight of the set of its

vertices, w(V ) =
∏

v∈V w(v). The neighborhood weight of a vertex v in a graph G,
nwG(v) =

∏
v∈N [v] w(v), or in short nw(v).

The definition of a tree decomposition of a weighted graph G = (V, E, w) is exactly
the same as for unweighted graphs. A tree decomposition of G = (V, E, w) is a pair
({Xi | i ∈ I}, T = (I, F )) with {Xi | i ∈ I} a collection of subsets of V and T a tree,
such that

⋃
i∈I Xi = V , for all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi, and for

each v, {i ∈ I | v ∈ Xi} forms a connected subtree of T . The weighted width of a tree
decomposition equals maxi∈I w(Xi)

and the weighted treewidth of a graph G, wtw(G), is the minimum weighted width
over all tree decompositions of G.

A minor graph G′ = (W, F, w′) of a weighted graph G = (V, E, w) is a weighted
graph obtained from G by a sequence of zero or more vertex removals, edge removals,
and / or edge contractions, where an edge contraction for weighted graphs is the op-
eration, that given an edge {x, y} ∈ E, removes x and y and their incident edges
from G and adds a new vertex z, adjacent to the vertices that were adjacent to x
or y, with the weight of z equal to min(w(x), w(y)). The fill-in of a vertex x in
a weighted graph G, fill-inG(x), or in short, fill-in(x), is the number of edges that
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must be added between the neighbors of x to make it simplicial, i.e., fill-in(x) =
|{{v, w}|v, w ∈ neighbors(x), {v, w} �∈ E}|. The fill-in excluding one neighbor of
a vertex x in a weighted graph G, fill-in-excl-oneG(x), or in short, fill-in-excl-one(x),
is the minimum number of edges that must be added between the neighbors of x to
make it almost simplicial, i.e., fill-in-excl-one(x) = minz∈neighbors(x) |{{v, w}|v, w ∈
neighbors(x) − {z}, {v, w} �∈ E}|.

Lemma 1. (See [7,8]). The weighted treewidth of a graph G is the minimum k ≥ 0
such that G is a subgraph of a triangulated graph with all cliques of weight at most k.

Lemma 2. (See [8]). Let G and G′ be two weighted graphs. If G′ be a minor of G,
then the weighted treewidth of G′, wtw(G′), is at most the weighted treewidth of G,
wtw(G).

Lemma 3. (See e.g., [5].)

1. For every triangulated graph G = (V, E), there exists a tree decomposition (X =
{Xi|i ∈ I}, T = (I, F )) of G, such that every set Xi forms a clique in G, and for
every maximal clique W ⊆ V , there exists an i ∈ I with W = Xi.

2. Let (X = {Xi|i ∈ I}, T = (I, F )) be a tree decomposition of G of width at most
k. The graph H = (V, E ∪ E′), with E′ = {{v, w}| ∃i ∈ I : v, w ∈ Xi}, obtained
by making every set Xi a clique, is triangulated, and has maximum clique size at
most k + 1.

3. Let (X = {Xi|i ∈ I}, T = (I, F )) be a tree decomposition of G, and let W ⊆ V
form a clique in G. Then there exist an i ∈ I with W ⊆ Xi.

3 Algorithms for Finding Weighted Treewidth

In this section, we first introduce two heuristics for obtaining a lower bound on the
weighted treewidth. Then we introduce a number of heuristics for obtaining an upper
bound on weighted treewidth. Finally, we present the weighted variant of the branch
and bound algorithm for treewidth from [3].

3.1 Lower Bound Heuristics for Weighted Treewidth

In the following two lemmas, we give two simple lower bounds on the weighted
treewidth of a graph. Later, we generalize two known heuristics for a lower bound
on the treewidth, namely, Maximum Minimum Degree and the weighted variant of the
Ramachandramurthi graph parameter.

Lemma 4. Let G be a weighted graph, wtw(G) ≥ maxv∈V (w(v)).

Lemma 5. (Eijkhof et al. [8]). Let G be a weighted graph. wtw(G)≥minv∈V (nw(v)).
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The Maximum Minimum Neighborhood Weight Heuristic, Variant Lower Bound
(MMNW lb). This heuristic builds upon Lemma 5. Given a weighted graph G =
(V, E, w). The algorithm works as follows: In the first step, the lower bound on the
weighted treewidth is initialized with zero, lb = 0. Then we repeat the following
operations until the graph becomes empty: Let v ∈ V be the vertex of the mini-
mum neighborhood weight in G; set the lower bound on the weighted treewidth to
the maximum of its current value and the minimum neighborhood weight in the graph,
lb ← max(lb, nw(v)), and remove v and its incident edges from G.

Lemma 6. The weighted treewidth of a weighted graph G is at least the lower bound
obtained from the MMNW lb heuristic, applied to G.

The Weighted γw(G) Parameter Heuristic. Ramachandramurthi [12] introduced the
graph parameter γ(G). Let G be an unweighted graph, γ(G) = min(n − 1,
minv,w∈V,{v,w}�∈E(max(degree(v), degree(w))), i.e., γ(G) = n − 1, if G is a clique.

Lemma 7. (See Ramachandramurthi [12]).
For every graph G, tw(G) ≥ γ(G).

The weighted variant of γ, γw is defined as follows.

Definition 1. For each weighted graph G,

γw(G) = min(
∏

v∈V

(w(v)), min
v,w∈V,{v,w}�∈E

max(nw(v), nw(w)))

Note that γw(G) =
∏

v∈V (w(v)), if G is a clique.

Lemma 8. For every weighted graph G, wtw(G) ≥ γw(G).

The Weighted γw(G) Heuristic consists of two main steps. In the first step, we also
initialize the lower bound on the weighted treewidth with zero, i.e., lb = 0. In the
second step, if the graph is a clique, then we set lb to the maximum of its current value
and the weight of the graph. Otherwise, we compute the minimum over all edges of the
maximum weight of an endpoint of the edge. We set lb to the maximum of its current
value and this minimum, and repeat on the graph G′, obtained by removing the vertex
that yielded this minimum value and its incident edges. As we compute at each step
γw(G′) for a subgraph of G, we obtain a lower bound on the weighted treewidth of G.

3.2 Upper Bound Heuristics for Weighted Treewidth

The following lemma gives a very primitive upper bound on the weighted treewidth.

Lemma 9. The weighted treewidth of a weighted graph G is at most
∏

v∈V w(v).

In the following, we present a number of heuristics for the upper bound on the weighted
treewidth. All these heuristics depend basically on building a triangulation for a given
graph. The following lemma is a weighted variant of a well known result for treewidth,
and can be proved in the same way as the unweighted case, see e.g., [5].



Weighted Treewidth Algorithmic Techniques and Results 897

Lemma 10. Let G be a triangulated graph. The weighted treewidth of H equals the
maximum weight over all maximal cliques Q = (W, F ) in G of

∏
w∈W w(v).

For building a triangulation Hσ = (V, F, w) for a weighted graph G = (V, E, w), one
can use a linear ordering σ of the vertices of G such that σ is a perfect elimination
ordering (p.e.o.) of Hσ , in the following way. For i = σ[1], · · · , σ[|V |], in that order,
we add an edge between every pair of non-adjacent neighbors of vi that are after vi in
the ordering, vi is the i′th vertex in σ. Thus, σ is a p.e.o. of the resulting graph Hσ .
As Hσ is triangulated, its weighted treewidth equals the maximum weight of the set of
vertices S ⊆ V , whose vertices form a maximal clique in Hσ. See Lemma 10. Hence,
the weighted treewidth of Hσ , wtwHσ =

∏
v∈S w(v). The following result can also be

derived in the same way as the unweighted case.

Lemma 11. There is at least one linear ordering σ for a weighted graph G = (V, E, w)
where we obtain the exact weighted treewidth of G.

This suggests the general scheme in Figure 1 for the upper bound heuristics on the
weighted treewidth.

set G′ ← G; i ← 1; σ ← (); ub ← 0;

while G′ is not the empty graph

select according to some condition a vertex v from G′;

set ub ← max(ub, nw(vG′ ));

eliminate v; /* remove v and turn its neighbors into a clique */

add v to position i in the ordering σ;

set i ← i + 1;

{Now ub is an upper bound on the weighted treewidth of G.}

Fig. 1. A general scheme for the upper bound heuristics on the treewidth

We call a graph G′ encountered during the algorithm a temporary graph. Thus, the
main differences between the following heuristics are in their conditions for selecting
a vertex v from G′, at each step where we have to eliminate a vertex from the graph.
Therefore, we will limit our discussion over these heuristics by giving the selection con-
ditions of each heuristic. The following two lemmas are the common factors between
the selection conditions of these heuristics.

Lemma 12. (See [8]). Let v be a simplicial vertex in a weighted graph G = (V, E, w).
Then the weighted treewidth of G is at least the neighborhood weight of v, nw(v).

Definition 2. We call to a vertex v in a weighted graph G a strongly almost simplicial
if and only if t is almost simplicial with N(v) − {x} a clique, the neighborhood weight
of v is at most the weighted treewidth of G, nw(v) ≤ wtw(G), and the weight of x is
at most the weight of v, w(x) ≤ w(v).
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Lemma 13. (See [8]). Let v be a weighted strongly almost simplicial vertex in
a weighted graph G = (V, E, w). Then the weighted treewidth of G is at least the
neighborhood weight of v, nw(v).

In [6], the notion of safe reduction rule was introduced. A safe reduction rule rewrites
a graph G to a smaller one, G′, and maintains a lower bound variable low, such that the
maximum of low and the treewidth of the graph at hand stays invariant, i.e., rule R is
safe, if for all graphs G, G′, and all integers low, low′, we have max(low, wtw(G)) =
max(low′, wtw(G′)). The Simplicial and Strongly Almost Simplicial Rules are exam-
ples of safe rules that we have used in the selection conditions of our heuristics.

The Maximum Minimum Neighborhood Weight Heuristic, Upper Bound Variant
(MMNW ub). The main steps of this heuristic are the same as in MMNW lb with
one step more. Namely, before we remove a vertex from the graph, we add an edge
between every two non adjacent neighbors of that vertex. In other words, we make a
clique from the neighborhood of that vertex. Hence, the selection conditions we used
in this heuristic are based upon selecting at each step when eliminate a vertex from a
temporary graph, the vertex with the minimum neighborhood weight in this graph.

Lemma 14. The weighted treewidth of a graph G = (V, E, w) is at most the output of
the MMNW heuristic, applied to G.

The Minimum Fill-in Heuristic, Variant Weighted (MF W). In this variant of the
Minimum Fill-in Heuristic, we compute an upper bound on the weighted treewidth in
the same manner as in the MMNW ub heuristic, with one exception: in the selection
conditions of this heuristic, we select the vertex with minimum fill-in in the temporary
graph instead of the vertex with the minimum neighborhood weight as in MMNW ub.

Lemma 15. The weighted treewidth of a graph G = (V, E, w) is at most the output of
the MF W heuristic, applied to G.

The Minimum Fill-in Excluding One Heuristic, Variant Weighted (WMFEO). We
have developed three versions of this heuristic. The differences between these are in
the sequences of the conditions we use for selecting the vertex we have to eliminate
from the temporary graph. In all three versions of this heuristic, and at any step when
we have to eliminate a vertex from the temporary graph, we check if this graph con-
tains any simplicial or strongly almost simplicial vertices. We eliminate these vertices
from the graph, if they exist, and set the upper bound on the weighted treewidth to the
maximum of its current value and the maximum neighborhood weight of these vertices.
Otherwise, depending on the version, we select a vertex as follows. In the first version,
WMFEO1, we perform this check: Let p be a vertex with minimum fillin in a temporary
graph G′ = (W, F ) of a given graph G. We select a vertex q ∈ W such that, q �= p,
fill-in-excl-one(q) ≤ fill-in(p), nw(q) ≤ low, and w(x) ≤ w(q), where x is the ex-
cluded neighbor of q and low is a lower bound on the weighted treewidth of G. If more
than one vertex q satisfies to these conditions, then we select the vertex of the minimum
fill-in among them, but if still there is more than one vertex with these specifications,
then we select the first vertex of the minimum fill-in-excl-one among these.
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In version 2 of the algorithm, WMFEO2, the ties are broken using the fill-in and
fill-in-excl-one in the reverse order. If more than one vertex q satisfies to the following
conditions, namely, fill-in-excl-one(q) < fill-in(p), nw(q) < low and w(x) ≤ w(q),
then the vertex with minimum fill-in-excl-one amongst these is eliminated first. But, if
there still is more than one vertex that satisfies the last condition, then the vertex with
the minimum fill-in amongst these should be processed first.

In version 3 of the algorithm, WMFEO3, the ties are broken using the neighborhood
weight besides the fill-in and fill-in-excl-one. If more than one vertex q satisfies to the
two conditions, fill-in-excl-one(q) < fill-in(p), nw(q) < low and w(x) ≤ w(q), then
the vertex with minimum neighborhood weight amongst these is eliminated first.

Lemma 16. Let ub be the upper bound on the weighted treewidth obtained from apply-
ing WMFEO1, WMFEO2, or WMFEO3 to a graph G. Then wtw(G) ≤ ub.

The Ratio Heuristic, Weighted Variant (WRATIO). We have adapted the two ver-
sions of the Ratio heuristic from [2] for weighted treewidth. The rules we use for se-
lecting a vertex that we should eliminate are as follows: Again, as long as there are safe
vertices in the temporary graph, namely, simplicial and/or strongly almost simplicial
vertices, we eliminate these first, and set the upper bound to the maximum of its current
value and the maximum neighborhood weight of these vertices. After that, each version
of the heuristic proceeds in a different way. In version 1, we proceed as follows: Let p
be a vertex with the minimum fill-in in the temporary graph G′ of a graph G. A vertex
w �= p in the temporary graph is selected if the fill-in-excl-one of w is less than or equal
to the fill-in of p, its neighborhood weight is at most a lower bound on the weighted
treewidth of G, nw(v) ≤ wtw(G), the w(v) ≤ w(x), where x is the excluded neighbor
of w, and it satisfies the following condition. Let r1(w) = fill-in-excl-one(w) / fill-in(p),
and r2(w) = nw(w)/nw(p). We now require that r1(w) < r2(w) to be a candidate for
selection at this point. If we have more than one such candidate, we select from these a
vertex with the minimum difference between r1 and r2, (r1 − r2).

In version 2 of this heuristic, we proceed as follows: For all w ∈ W (G′), we select
the vertex of the minimum ratio r(w) = fill-in(w) / nw(w), (nw(w) > 1) amongst all
vertices of G′.

Lemma 17. Let ub be the upper bound on the weighted treewidth obtained from apply-
ing WRATIO (version 1 or version 2) to a graph G = (V, E, w). Then wtw(G) ≤ ub.

We end this subsection with some general observations.

Lemma 18. Let G be a complete weighted graph, wtw(G) =
∏

v∈V (w(v)).

Lemma 19. The weighted treewidth of a weighted triangulated graph G equals the
upper bound obtained from the upper bound obtained from the MMNW ub heuristic.

Lemma 20. The weighted treewidth of a weighted triangulated graph G equals the up-
per bound obtained from the following upper bound heuristics: MF W heuristic, WM-
FEO heuristic, WRATIO heuristic.
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3.3 Improving Upper and Lower Bound Heuristics

In order to obtain better lower and upper bounds on the weighted treewidth from the
above heuristics, it is wisely to incorporate some safe rules in the selection conditions
of these heuristics. One can do that as follows. At each step when we have to select and
eliminate a vertex for the graph using some specific selection conditions, we choose
the vertices that do not cause a worse upper or lower bound than that we will obtain
when we select other vertices. An example for such safe rules is the rule of selecting
simplicial and strongly almost simplicial vertices whenever they exist. The question
that could be arise now is the following. Is it worthwhile to spent some time to test, at
each state, whether or not there are simplicial or strongly almost simplicial vertices in
the graph? Theoretically, it has been proved that selecting of these vertices is safe (see
Lemma’s 12 and 13). Practically, the results of our experiments reported in Section 4
and the results reported in [8] support this.

3.4 A Branch and Bound Algorithm for Weighted Treewidth

After we have introduced a number of heuristics for determining lower and upper
bounds on weighted treewidth in the previous sections, we introduce in this section
a weighted variant of branch and bound algorithm, BB-tw that we have introduced in
[3], for computing the exact weighted treewidth of weighted graphs. The goals for de-
veloping this algorithm were: First, to determine the exact weighted treewidth of some
graphs, in particular for graphs with at most 50 vertices. Second, to be able to more pre-
cisely establish the quality of the given upper and lower bound, as an exact algorithm
allows us to compare the outcome of these heuristics with the exact values.

Third, we can use branch and bound algorithm for improving the upper and lower
bounds on the weighted treewidth, obtained from the above heuristics, as we have de-
scribed in [3], if determining the exact weighted treewidth is not possible within a rea-
sonable time.

In the weighted variant of branch and bound algorithm, W-BB-tw, we have the same
space of all feasible solutions as that we have described for unweighted variant. Briefly,
this space consists of all possible elimination orderings of the vertices of the given
graph. The input to the algorithm are a weighted graph G = (V, E, w), the best known
upper and lower bounds, obtained from the heuristics for the weighted treewidth of
G described in this paper, and a perfect elimination ordering that gave the best upper
bound that is known. The algorithm works as follows: At the beginning, we check
whether the best upper bound, ub, equals the best lower bound, lb, obtained from the
upper and lower bound heuristics. If so, then the algorithm return this value as the
exact weighted treewidth of G. Otherwise, we test every (apart from pruning) possible
elimination orderings, in the space of all feasible solutions, whether the elimination of
the vertices of the graph due to this order produces an exact weighted treewidth or a
better upper bound than reported so far. Moreover, we prune any solution in that space,
which delivers an upper bound that is greater than or equal to the reported one so far.
The steps for eliminating the vertices of the graph and producing a triangulation of G
for each elimination ordering are as it is described in Figure 1.

The pruning rules that we have incorporated in this variant of the algorithm are sim-
ilar to those we used for unweighted variant in [3]. We have adapted all the pruning
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rules we have described for unweighted variant to be used for the weighted variant. The
following two Lemmas show the differences in the methods of computing the treewidth
of a graph and the weighted treewidth of a weighted graph.

Lemma 21. Let H1, · · · , Hr, r ≥ 1, be all possible triangulated graphs of a graph G.
Let Q1, . . . , Qr be the cliques of maximum size in H1, · · · , Hr. Then, the treewidth of
G equals the minimum size of Q1, · · · , Qr.

Lemma 22. Let H1, · · · , Hr, r ≥ 1, be all possible triangulated graphs of a weighted
graph G. Let Q1, . . . , Qr be the cliques of maximum weight in H1, · · · , Hr. Then, the
weighted treewidth of G equals the minimum weight of Q1, · · · , Qr.

The differences in the manners in which the pruning rules can be used in both variants
of the problem follow from the differences in these two characterizations of treewidth
and weighted treewidth. Consider the pruning rules given in Section 3.2 of [3]. Some of
these pruning rules have to be modified when we consider the weighted variant, while
the others remain as in the unweighted variant. Below, we discuss the rules that are
modified for the weighted case. The rules that are not changed can be found in [3].

Pruning Rule 2: The Weight of the Temporary Graph. Let G′ be the temporary
graph obtained from eliminating a set of vertices X from a given weighted graph G.
Let max be the maximum neighborhood weight of all vertices x ∈ X , at the step when
they were eliminated from G and added to X . If the total weight of the vertices in G′ is
less than or equal to the value of max, then we replace the upper bound value reported
so far with the value of max, and prune the subtree rooted at the last vertex, x ∈ X ,
that has been eliminated from G and added to the set X , from the space of all feasible
solutions.

Lemma 23. Let G′ = (W, F ) be the graph obtained from eliminating a vertex y from
a weighted graph G = (V, E), let r = nw(y) at the step when y is eliminated from G.
If

∏
w∈W w(w) < r, then the treewidth of G is at most r.

Pruning Rule 3: The Weight of the Eliminated Vertex. We check in this rule whether
the neighborhood weight of the vertex that we have to eliminate, nw(v), is greater than
or equal to the best upper bound on the weighted treewidth reported so far. If such
a case holds, then the current elimination ordering will not generate a better upper
bound on the weighted treewidth than the one we have reported right now. Therefore,
we prune this elimination ordering from the space of all feasible solutions and continue
the search operation for the exact weighted treewidth or a better upper bound in the next
elimination ordering.

Lemma 24. Let H = (W, F, w) be a triangulation of a weighted graph G = (V, E, w)
and ub be an upper bound on the weighted treewidth of G. If ∃w ∈ W , nw(w) > ub
and w is simplicial, then wtw(G) < wtw(H).

Pruning Rule 5: Simplicial and Strongly Almost Simplicial Vertices. In the Pruning
Rule 5 of the branch and bound algorithm BB-tw for unweighted graphs introduced in
[3], if the graph contains any simplicial or a strongly almost simplicial with a degree at
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most the best upper bound reported so far, then we eliminate this vertex or these vertices
from the graph and prune all the elimination orderings from the space of all feasible so-
lutions which, the values of their elements equal the values of their correspond elements
of the current elimination ordering up to this position. In the weighted variant of the al-
gorithm, this rule is a rather straightforward generalization of the unweighted variant
in the case of simplicial vertices. But, in the case of almost simplicial vertices, a vertex
should fulfills to the following conditions to be strongly almost simplicial: The vertices
in its neighborhood form an almost clique, its neighborhood weight is at most the best
upper bound reported right now, and its weight is at most the weight of the excluding
vertex from its neighbor.

4 Computational Experiments

We now briefly report on computational experiments on our upper and lower bound
heuristics and the exact algorithm. The algorithms were tested on graphs from real
world applications. The heuristics appear to be very fast. The MFEOF heuristic appears
to usually very well. The Ratio-2 heuristic is always outperformed by the other heuris-
tics. Preprocessing appears to be very useful tool, which is illustrated by the fact that
MMNW lb with preprocessing gives better bounds than γw without. In several cases,
lower and upper bounds match, and we have the exact weighted treewidth. In other
cases, there is a big gap. The branch and bound algorithm works well for exactly com-
puting the weighted treewidth for graphs with up to fifty vertices. For more details,
see [4].

Acknowledgments. We would like to thank Arie Koster for valuable suggestions and
helpful comments.
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Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 176–185. Springer, Heidelberg (2002)

http://www.cs.uu.nl/people/bachoore


Weighted Treewidth Algorithmic Techniques and Results 903

8. van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted
treewidth. Algorithmica (to appear)

9. Jensen, F.V.: Bayesian Networks and Decision Graphs. Statistics for Engineering and Infor-
mation Science. Springer, New York (2001)

10. Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with probabilities on graphical struc-
tures and their application to expert systems. The Journal of the Royal Statistical Society.
Series B (Methodological) 50, 157–224 (1988)

11. Pearl, J.: Probablistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, Palo Alto (1988)

12. Ramachandramurthi, S.: The structure and number of obstructions to treewidth. SIAM J.
Disc. Math. 10, 146–157 (1997)



Spanning Trees with Many Leaves in Regular

Bipartite Graphs

Emanuele G. Fusco and Angelo Monti

Dipartimento di Informatica
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Abstract. Given a d-regular bipartite graph Gd, whose nodes are di-
vided in black nodes and white nodes according to the partition, we
consider the problem of computing the spanning tree of Gd with the
maximum number of black leaves. We prove that the problem is NP hard
for any fixed d ≥ 4 and we present a simple greedy algorithm that gives
a constant approximation ratio for the problem. More precisely our al-
gorithm can be used to get in linear time an approximation ratio of
2 − 2/(d − 1)2 for d ≥ 4. When applied to cubic bipartite graphs the
algorithm only achieves a 2-approximation ratio. Hence we introduce a
local optimization step that allows us to improve the approximation ratio
for cubic bipartite graphs to 1.5.

Focusing on structural properties, the analysis of our algorithm proves
a lower bound on lB(n, d), i.e., the minimum m such that every Gd

with n black nodes has a spanning tree with at least m black leaves. In
particular, for d = 3 we prove that lB(n, 3) is exactly

�
n
3

�
+ 1.

1 Introduction

The problem of finding spanning trees with many leaves has been thoroughly
investigated [1,2,4,5,6,8,9,10,11,13,14,15,17]. It is known to be NP hard [4]. Lu
and Ravi [14,15] provided 3-approximation algorithms and a 2-approximation
algorithm was presented by Solis-Oba [17]. It is known that the problem remains
NP hard even if the input is restricted to d-regular graphs for any fixed d ≥ 3 [11].
A 7/4 approximation algorithm for cubic graphs is presented in [13]. Finding
approximation algorithms with ratio less than 2 for d-regular graphs remains an
open problem for d ≥ 4.

The NP hardness of the optimization problem leads to seek constructive proofs
for related extremal problems. A constructive proof that all graphs in a particular
class have spanning trees with at least m leaves becomes an algorithm to produce
such a tree for graphs in this class. Let l(n, d) be the maximum integer m such
that every connected n-vertex graph with minimum vertex degree at least d has
a spanning tree with at least m leaves. The value l(n, d) is known for d ≤ 5.
Trivially l(n, 2) = 2. Storer [18] proved that l(n, 3) = �n/4 + 2�. Griggs and
Wu [9] and Kleitman and West [10] proved l(n, 4) =

⌈
2
5n + 8

5

⌉
. In [9] it is also

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 904–914, 2007.
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proved that l(n, 5) =
⌈

3
6n + 2

⌉
. For d ≥ 6 the exact value of l(n, d) remains

unknown. For more information about this topic see [3].
In [16] a variation of the maximum leaf spanning tree problem has been intro-

duced. This variation restricts the problem to bipartite graphs and asks to find
a spanning tree having the maximum number of leaves in one of the partited set.
We call nodes in this set black nodes, and white nodes those in the other. In [12]
it is proved that this variation of the problem is NP hard for planar bipartite
graphs. In this paper we study the variation of the problem proposed in [16]
restricted to the class of regular bipartite graphs. We prove that the problem
is NP hard for d-regular bipartite graphs for any fixed d ≥ 4. We remark that
our proof of NP hardness relies on a construction involving non planar regular
bipartite graphs. It remains an open question to determine if the problem is
NP hard for regular planar bipartite graphs.

We present greedy algorithms working in linear time that find, for any d-
regular graph, a spanning tree having a constant fraction of the maximum num-
ber of black leaves. Our algorithm for d-regular bipartite graphs provides an
approximation ratio of 2 − 2/(d − 1)2. The analysis of the performance ratio is
based on the assumption that d ≥ 4: in order to reach approximation ratio 1.5
on cubic bipartite graphs we present a refinement on our base algorithm based
on local optimization.

Define lB(n, d) as the maximum m such that every d-regular bipartite graph
with n black nodes has a spanning tree with at least m black leaves. Trivially
lB(n, 2) = 1. We prove that lB(n, 3) = �n/3� + 1. For d ≥ 4 the exact value of
lB(n, d) remains unknown, however we provide upper and lower bounds. More
precisely we prove:

⌈
d−1
2d n + (d−1)2

2d

⌉
≤ lB(n, d) ≤

⌈
d−2

d n
⌉

+ 1.

2 Preliminaries

In this section we introduce some terminology and notation. Let G be a graph;
we use V (G) to denote the set of nodes in G and E(G) to denote the set of
edges in G. For a node v in V (G), ΓG(v) denotes the set of neighbours of v in
G. We denote by Gd a d-regular bipartite graph. We use colors black and white
to identify the two sets of the partition. As in any regular bipartite graph the
number of black nodes is equal to the number of white nodes, we use the letter
n to denote the number of black nodes in Gd (clearly, the total number of nodes
in Gd is equal to 2n).

Given a spanning tree T of Gd, λi(T ), 1 ≤ i ≤ d, denotes the number of black
nodes of degree i in T . We omit T when it is clear form the context.

Lemma 1. Let T be a spanning tree of Gd, it holds

λ1(T ) = 1 +
d∑

i=3

(i − 2)λi(T ) (1)

Proof. As T spans all the nodes in Gd, it holds that
∑d

i=1 λi = n. Any edge in
T has endpoints in one black node and one white node, so the total number of
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edges is given by the sum of the degree of the black (or white) nodes, giving that
∑d

i=1 iλi = 2n − 1. From these two equations we obtain Equation 1. ��

3 Regular Bipartite Graphs

We start our analysis from the general case of regular bipartite graphs, while on
Sec. 4 we focus on cubic graphs to refine our results in this restricted case.

Lemma 2. Let T be a spanning tree of Gd, then λ1(T ) ≤
⌊

(d−2)n+1
d−1

⌋
.

Proof. From Equation 1, as
∑d

i=1 λi = n, we have that λ1 is maximized when
λ1 + λd = n and λ2, λ3, . . . , λd−1 are all 0. As we search for integer solutions,
λ1 ≤ (d−2)n+1

d−1 and the thesis follows. ��

We now describe the algorithm span that, given a graph Gd, produces a spanning
tree TA for Gd. The algorithm first builds a forest F , then it connects the trees in
F and the isolated nodes to form TA. Every tree Ti in F is built by first choosing
a black node v such that ΓGd

(v) ∩ V (F) = ∅. Each tree Ti is augmented as long
as a new black node w with at most d − 2 neighbours in Ti can be found. When
a tree Ti cannot be augmented, the algorithm starts building a new tree Ti+1.

In Algorithm 1 we formalize the algorithm span by providing its pseudo code.

Algorithm 1. span(Gd)
1: F ← ∅
2: i ← 1
3: while ∃ a black node v ∈ Gd \ V (F) such that ΓGd

(v) ∩ V (F) = ∅ do
4: E(Ti) ← {(v, x) such that x ∈ ΓGd

(v)}
5: V (Ti) ← {v} ∪ ΓGd

(v)
6: while ∃ a black node w ∈ Gd \ (V (F) ∪ V (Ti)) and a white node y ∈

V (Ti) such that |ΓGd
(w) ∩ (V (F) ∪ V (Ti)) | ≤ d − 2 and (w, y) ∈ E(Gd)

do
7: E(Ti) ← E(Ti) ∪ {(w, y)} ∪ {(w, z) such that z ∈ ΓGd

(w) \ ΓTi(w)}
8: V (Ti) ← V (Ti) ∪ {w} ∪ ΓGd

(w)
9: F ← F ∪ Ti

10: i ← i + 1
11: build TA by connecting F and all the nodes in V (Gd) − V (F) in a tree
12: return TA

Lemma 3. For any Gd with d ≥ 4 there exists a spanning tree TA such that

λ1(TA) ≥
⌈

d − 1
2d

n +
(d − 1)2

2d

⌉



Spanning Trees with Many Leaves in Regular Bipartite Graphs 907

Proof. The proof of this lemma consists in the performance evaluation of Algo-
rithm 1.

Let T1, T2, . . . , Tk be the trees built by the algorithm with input Gd. Any
black node in a tree Ti has degree at least 3 and all the black nodes that do not
belong to any tree have at least d − 1 neighbours belonging to one tree Th for
some value 1 ≤ h ≤ k. Let bi be the number of black nodes in V (Gd) \ V (F)
having at least d − 1 neighbours in Ti. Obviously,

n =
k∑

i=1

⎛

⎝bi +
d∑

j=3

λj(Ti)

⎞

⎠ (2)

Now we bound the number bi with
⌊

d(1+�d
j=3(j−2)λj(Ti))

d−1

⌋

by considering that Ti

contains 1+
∑d

j=3(j −1)λj(Ti) white nodes and hence there are d(1+
∑d

j=3(j −
2)λj(Ti)) edges from nodes in V (Ti) to nodes in V (Gd) \ V (Ti).

From Equation 2 we have n ≤ dk+
�d

j=3(dj−d−1)λj(TA)

d−1 and as in the forest each
tree Ti has at least one node of degree d (i.e. the root) we have that

n ≤
dλd(TA) +

∑d
j=3(dj − d − 1)λj(TA)

d − 1
(3)

If d ≥ 4, d2−4d+1 > 0, and as λd(TA) ≥ 1 the following chain of disequations
holds:

dλd(TA) +
d∑

j=3

(dj − d − 1)λj(TA) =

dλd(TA) +
d∑

j=3

2d (j − 2)λj(TA) −
d∑

j=3

((j − 3)d + 1)λj(TA) ≤

dλd(TA) + 2d (λ1(TA) − 1) − ((d − 3)d + 1)λd(TA) =
2dλ1(TA) − 2d − λd(TA)(d2 − 4d + 1) ≤

2dλ1(TA) − 2d − (d2 − 4d + 1) =

2dλ1(TA) − (d − 1)2

Hence from Equation 3 we have

n ≤ 2dλ1(TA) − (d − 1)2

d − 1

and the thesis follows. ��

Combining Lemma 3 and Lemma 2 we can state the following theorem:

Theorem 1. The problem of finding a Spanning Tree with the maximum number
of black leaves for a d-regular bipartite graph Gd, d ≥ 4, can be approximated by
an algorithm running in linear time with approximation ratio ≤ 2 − 2/(d − 1)2.
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Proof. Let T ∗ be a spanning tree of Gd with the maximum number of black leaves
and let TA be the spanning tree of Gd produced by Algorithm 1. From Lemma 2
we have that λ1(T ∗) ≤

⌊
(d−2)n+1

d−1

⌋
and from Lemma 3 we have λ1(TA) ≥ d−1

2d n+
(d−1)2

2d . It follows that λ1(T ∗)
λ1(TA) ≤ 2

(
d(d−2)n+d

(d−1)2n+(d−1)3

)
< 2 d(d−2)

(d−1)2 = 2 − 2
(d−1)2 . ��

4 Cubic Bipartite Graphs

Algorithm 1 can obviously be applied to a graph G3. An analysis for the case
d = 3 gives λ1(TA) ≥ n/4 and combining this with Lemma 2 we obtain an
approximation ratio of 2.

Now consider the example in Figure 1: the graph in the example is a necklace
composed by l repetitions of the same block. A run of Algorithm 1 can produce
a forest where every tree Ti contains a black node only (thick edges in figure
represent the edges in the forest). In such a case, λ3 = l and so λ1 = l + 1, while
the optimum solution can assign degree 3 to all but one the black nodes on the
bottom, thus achieving 2l black leaves.

Fig. 1. Worst case example for Algorithm 1 on cubic graphs

As suggested by the example above, in order to improve the approximation
ratio, we modify Algorithm 1 by adding a procedure that tries to reduce the
number of trees with only one black node in F . We call span3 the modified
version of Algorithm 1. If a tree Ti has only one black node at the end of the
while loop of line 6 of Algorithm 1, span3 searches in Gd \ F for the pattern
depicted in figure 2.a. If such a pattern is present, Ti is destroyed and rebuilt
starting from node x. Then, the augmenting process of lines 6 to 8 of the original
algorithm is applied, resulting in a tree with at least 2 black nodes.

Lemma 4. For any G3 there exists a spanning tree TA such that λ1(TA) ≥⌈
n
3

⌉
+ 1.

Proof. The proof of this lemma consists in the performance evaluation of Algo-
rithm span3. In the following we assume G3 has at least 5 black nodes (if n = 3
or n = 4, the lemma trivially holds as any spanning tree having one black node
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Fig. 2. a) Pattern for local optimization in Algorithm span3. b) Performance analysis
case.

of degree 3 and 2 black leaves is optimal). Let T1, T2, . . . , Tk be the trees built
by Algorithm span3 with input G3. All black nodes in V (F) have degree 3 while
black nodes in V (G3) \ V (F) have 2 neighbors in some tree Ti ∈ F . Let bi be
the number of black nodes outside F that have at least 2 neighbors in the tree
Ti ∈ F . It holds that

n =
k∑

i=1

(
bi + λ3(Ti)

)

Now we prove that bi ≤ 2λ3(Ti) for all 1 ≤ i ≤ k: notice that this is enough
to prove the lemma since it implies that n ≤ 3λ3(TA) = 3λ1(TA) − 3.

With the same reasoning applied in Lemma 3, we can bound bi with
⌊

3λ3(Ti)+3
2

⌋
.

If λ3(Ti) ≥ 2 it holds bi ≤ 2λ3(Ti) so the only case we need to analyze is when
λ3(Ti) = 1.

Assume by contradiction that b1 = 3: there must be 3 black nodes, say
x, y, and z, such that each of them has two white neighbors in Ti. Now consider
the set W of white neighbors of x, y, and z outside Ti. It cannot be |W | ≥ 2 as
otherwise the pattern of figure 2.a would have been detected by span 3 and Ti

would have been a tree with at least 2 black nodes. On the other hand, it cannot
be |W | = 1 as the only G3 where this happens is the one depicted in figure 2.b:
this graph has 4 black nodes only while we assumed n ≥ 5. It follows that bi ≤ 2
thus completing the proof. ��

Remark 1. The lower bound given in Lemma 4 is tight. For a given value n we
can build a graph composed by l = �n/3� subgraphs closed on a necklace. The
fist l − 1 subgraphs are repetitions of k3,3 − e while the last one can have 3, 4 or
5 black and white nodes depending on the value of n mod 3 (see figure 3 for an
example where n mod 3 = 0).

Any spanning tree has to assign degree greater than 1 to at least 2 black nodes
in any subgraph but one. It follows that λ1 ≤ n − 2 �n/3� + 1 = �n/3� + 1.

Theorem 2 below immediately follows from Lemma 2 and Lemma 4.
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Fig. 3. Gε
3

Theorem 2. The problem of finding a Spanning Tree with the maximum number
of black leaves for a cubic bipartite graph G3 can be approximated by an algorithm
running in linear time with approximation ratio ≤ 3/2.

Remark 2. The analysis of Algorithm span3 is tight. Consider the example in
figure 4: the graph in the example is a necklace composed by l repetitions of the
same block. A run of algorithm span3 can produce a forest where every tree Ti

contains two black nodes only (thick edges in figure represent the edges in the
forest). In such a case, λ3 = 2l and so λ1 = 2l + 1, while the optimum solution
can assign degree 3 to all but one the black nodes on the bottom, thus achieving
3l black leaves.

Fig. 4. Worst case example for Algorithm span3

5 NP Hardness

In this section we prove that the problem of finding a spanning tree with the
maximum number of black leaves in a 4-regular bipartite graph is NP-hard.
Details of the extension of the proof for any fixed d ≥ 4 are omitted. Our
proof relies in a reduction to a restricted version of the well known NP-complete
problem 3-exact cover. 3-exact cover (in short 3EC) requires, given a universe U
and a collection S of 3-subsets of U , to determine if there exists a subcollection
S ′

of pairwise disjoint sets in S that forms a partition of U .
We consider instances of 3EC where each element of U occurs in exactly three

subsets of S and |U| = 4 · 3i, i ≥ 1. We denote 3EC∗ this restricted version of



Spanning Trees with Many Leaves in Regular Bipartite Graphs 911

3EC. It is known that 3EC remains NP-complete when each element of U occurs
in at most 3 subsets of S (see, e.g., [7] pag. 222). From this fact it is a simple
exercise to prove that 3EC is polynomially reducible to 3EC∗. Hence we have:

Lemma 5. 3EC∗ is NP complete.

Theorem 3. The problem of determining, given G4, if there exists a spanning
tree T of G4 such that λ2(T ) = λ3(T ) = 0 is NP complete.

Proof. Starting from any instance I of 3EC∗, we construct in polynomial time
a graph G4, and the thesis follows from the fact that G4 admits a spanning tree
T with λ2(T ) = λ3(T ) = 0 if and only if I admits a solution.

To build G4, we create a black node for each set in S. We add new nodes
to form a tree whose leaves are the 4 · 3i black nodes representing sets in S.
The tree is made by white nodes of degree 4 and internal black nodes of degree
2. More precisely the tree is rooted in a white node; even levels contain white
nodes while odd levels contain black nodes. By construction, the tree will have
2i + 1 levels and at level 2j + 1, j ≥ 0 there will be 4 · 3j black nodes (i.e., the
levels with black nodes have an even number of nodes). Then we create a white
node for each element of the universe U and we put an edge between the white
node representing element ui ∈ U and the black leaf representing set Sj ∈ S if
ui ∈ Sj.

a b

Fig. 5. a) Gadget Ga1. b) Gadget Ga2.

To complete the construction, we connect each of the white nodes representing
elements in U to the outgoing edges of a gadget Ga1 (see figure 5.a) and we
connect each of the black nodes with degree 2 with a gadget Ga2 twice (see
figure 5.b): this operation can always be done as the number of internal black
nodes in the tree is even. The resulting graph is outlined in figure 6.

Given a solution for I, it is easy to derive a spanning tree for G4, having
black nodes of degree 4 and 1 only, by assigning degree 4 to all the black nodes
connected to gadgets Ga2 and to the black nodes representing sets forming the
solution for I. On the other hand, if a spanning tree T ∗ of G4 exists having black
nodes of degree 4 and 1 only, a solution for I can always be found. First notice
that in any such T ∗, all the black nodes connected to gadgets Ga2 must have
degree 4, as nodes inside the gadgets must be connected to the tree and black
nodes inside the gadgets cannot be assigned degree 4 without resulting in some
black node of degree 2 or 3. As a result, all the black nodes representing sets of
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Ga2

Ga1 Ga1Ga1

S

U

Ga1 Ga1 Ga1

Ga2

Ga2

Ga2

Ga2 Ga2 Ga2 Ga2

Fig. 6. Construction of graph for the reduction. Edges between black nodes represent-
ing sets in S and white nodes representing elements of U are missing.

S in G4 that have degree 4 in T ∗ are connected from above, thus they cannot
be adjacent in T ∗ to the same white node representing an element of U without
creating a loop (i.e., if we consider the sets represented by black nodes of degree
4 in T ∗, they are pairwise disjoints). Finally, all the white nodes representing
elements in U need to be connected from above in T ∗, as connecting a white
node from below means passing trough a gadget Ga1, thus producing at least
a black node of degree 2 or two of degree 3. It follows that starting from T ∗, a
solution for I can be found by taking all sets of S corresponding to black nodes
of degree 4 in T ∗. ��

Corollary 1. The problem of finding a spanning tree with the maximum number
of black leaves is NP hard for 4-regular bipartite graphs.

Proof. Define the BLST problem as follows: given Gd and an integer k, determine
if it exists a spanning tree T of Gd such that λ1(T ) ≥ k. It is easy to show that
BLST on 4-regular bipartite graphs is NP complete. Indeed, from Theorem 3,
we know that it is NP complete to determine if a given G4 has a spanning tree T
such that λ2(T ) = λ3(T ) = 0. It follows that the BLST problem is NP complete
when k = (d−2)n+1

d−1 . Having an algorithm that resolves in polynomial time the
problem of finding a spanning tree of a given G4 with the maximum number of
black leaves, would allow us to solve BLST in polynomial time, thus proving the
problem to be NP hard. ��

All the proofs in this section can be extended to any value d ≥ 5. We omit the
details.

Theorem 4. The problem of finding a spanning tree with the maximum number
of black leaves is NP hard for d-regular bipartite graphs for any fixed d ≥ 4.
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6 Conclusions and Open Questions

Spanning trees of connected graphs are a major topic of research in the area of
graph algorithms. In this paper we studied the problem of finding a spanning
tree with the maximum number of black leaves in regular bipartite graphs.

We proved that the problem is NP hard for any fixed d ≥ 4 and we presented
a linear time algorithm that achieve approximation ratio 2 − 2/ (d − 1)2.

It is an interesting question whether this problem is NP hard or polynomial
time solvable in the case of cubic bipartite graphs. Our contribution for this class
of graphs is a linear time algorithm with approximation ratio 1.5.

Our proof of NP hardness relies on a construction involving regular bipartite
graphs that are non planar. It remains an open question to determine if the
problem remains NP hard for regular planar graphs also. In [12] it is shown that
the problem is NP hard for planar non regular bipartite graphs.

Finally, define lB(n, d) to be the maximum m such that every Gd with n black
nodes has a spanning tree with at least m black leaves. Obviously lB(n, 2) = 1.
From Lemma 4 and Remark 1 we have l(n, 3) = �n

3 �+1. It would be interesting
to determine precisely the value lB(n, d) for any d ≥ 4. We know that

⌈
d − 1
2d

n +
(d − 1)2

2d

⌉

≤ lB(n, d) ≤
⌈

d − 2
d

n

⌉

+ 1

where the lower bound follows from Lemma 4 and the upper bound can be
obtained by generalizing Remark 1, using as a building block for the necklace
the graph kd,d − e.
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Abstract. In an edge deletion problem one is asked to delete at most k
edges from a given graph such that the resulting graph satisfies a certain
property. In this work, we study four NP-complete edge deletion prob-
lems where the goal graph has to be a chain, a split, a threshold, or a
co-trivially perfect graph, respectively. All these four graph classes are
characterized by a common forbidden induced subgraph 2K2, that is, an
independent pair of edges. We present the seemingly first non-trivial al-
gorithmic results for these four problems, namely, four polynomial-time
data reduction algorithms that achieve problem kernels containing O(k2),
O(k4), O(k3), and O(k3) vertices, respectively.

1 Introduction

Given a graph G, a graph property Π (for instance, to belong to a certain graph
class), and an integer k ≥ 0, the Π edge deletion (for short, Π deletion) prob-
lem asks for a set of at most k edges whose deletion transforms G into a graph
satisfying Π . The solution set is called Π deletion set. Edge deletion problems
have applications in several areas, such as molecular biology and numerical al-
gebra (see, for example, [2,14,18]), and their computational complexity has been
widely studied in the literature. Yannakakis [20] gave the first systematic study
of the complexity of edge deletion problems. We refer to [2,14,18] for excellent
overviews.

In contrast to the extensive study on the complexity of Π deletion prob-
lems, relatively few algorithmic results are known for these problems. A general,
constant-factor approximation algorithm was given by Natazon et al. [14] for Π
deletion problems on bounded-degree graphs with respect to properties Π that
can be characterized by finite sets of forbidden induced subgraphs. A forbidden
induced subgraph characterization of a graph property Π means that a graph
satisfies Π iff it contains none of a given set H of graphs as induced subgraphs.
Herein, the graphs satisfying Π are also called H-free graphs. Concerning param-
eterized complexity, Cai [3] showed that, for a graph property Π characterized
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T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 915–926, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



916 J. Guo

by a finite set H of forbidden induced subgraphs, the corresponding Π deletion
problem is fixed-parameter tractable. More precisely, there exists a search tree
based algorithm solving the problem in O(dk ·p(|G|)) time with d being the max-
imum size of the edge sets of the forbidden subgraphs in H and p a polynomial
function of the size of the input graph G.

Problem kernelization has been recognized as one of the most important con-
tributions of fixed-parameter algorithmics to practical computing [5,11,15]. A
kernelization is a polynomial-time algorithm that transforms a given instance I
with parameter k of a problem P into a new instance I ′ with parameter k′ ≤ k
of P such that the original instance I is a yes-instance with parameter k iff
the new instance I ′ is a yes-instance with parameter k′ and |I ′| ≤ g(k) for a
function g. The instance I ′ is called the problem kernel. Recently, kernelizations
of Π deletion problems attracted attention of more and more researchers; for
example, there is a series of papers improving the problem kernel for Cluster

Editing, where the goal graph is required to be a set of disjoint cliques, from
quadratic size to linear size [9,17,6,10].

In this work, we will provide kernelization results for several Π deletion prob-
lems whose corresponding properties have 2K2 as one of their forbidden induced
subgraphs. A 2K2-graph is an independent pair of edges, that is, a graph with
four vertices and two non-adjacent edges. The class of 2K2-free graphs contains
many important graph classes such as chain graphs, split graphs, threshold graphs,
and co-trivially perfect graphs [1]. Here, we will study the corresponding Π dele-
tion problems for Π being these four graph classes, denoted as Chain Dele-

tion, Split Deletion, Threshold Deletion, and Co-Trivially Perfect

Deletion. The main results are four polynomial-time kernelization algorithms
which achieve problem kernels with O(k2), O(k4), O(k3), and O(k3) vertices
for the four problems, respectively. This seem to be the first non-trivial algo-
rithmic results for these problems. Based on the general result by Cai [3] and
the interleaving technique from [16], our kernelization results imply faster fixed-
parameter algorithms for these problems with running times of O(2k + mnk),
O(5k + m4n), O(4k + kn4), and O(4k + kn4), respectively, where n denotes the
number of vertices and m denotes the number of edges of a given graph.

2 Preliminaries

Parameterized complexity is a two-dimensional framework for studying the com-
putational complexity of problems [5,7,15]. One dimension is the input size n
(as in classical complexity theory) and the other one the parameter k (usually a
positive integer). A problem is called fixed-parameter tractable (fpt) if it can be
solved in f(k)·nO(1) time, where f is a computable function only depending on k.
A core tool in the development of fixed-parameter algorithms is polynomial-time
preprocessing by data reduction rules, often yielding a kernelization. Herein, the
goal is, given any problem instance I with parameter k, to transform it in poly-
nomial time into a new instance I ′ with parameter k′ such that the size of I ′ is
bounded from above by some function only depending on k, k′ ≤ k, and (I, k)
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2K2 C4 C5P4

Fig. 1. The forbidden induced subgraphs 2K2, C4, P4, and C5

is a yes-instance iff (I ′, k′) is a yes-instance. A data reduction rule is correct if
the new instance after an application of this rule is a yes-instance iff the original
instance is a yes-instance. Throughout this paper, we call a problem instance
reduced if the corresponding data reduction rules cannot be applied anymore.

We only consider undirected graphs G = (V, E), where V is the set of vertices
and E is the set of edges. The complement graph of G is denoted by Ḡ = (V, Ē)
where an edge {u, v} ∈ Ē iff {u, v} /∈ E. The bipartite complement graph B̄ of a
bipartite graph B = (X, Y, E) contains an edge between two vertices x ∈ X, y ∈
Y iff {x, y} /∈ E. The (open) neighborhood NG(v) of a vertex v ∈ V in graph G is
the set of vertices that are adjacent to v in G. The degree of a vertex v, denoted
by deg(v), is the size of NG(v). We use NG[v] to denote the closed neighborhood
of v in G, that is, NG[v] := NG(v) ∪ {v}. For a set of vertices V ′ ⊆ V , the
induced subgraph G[V ′] is the subgraph of G over the vertex set V ′ with the
edge set {{v, w} ∈ E | v, w ∈ V ′}. A subset I of vertices is called an independent
set if G[I] has no edge, whereas a subset K of vertices is called a clique if G[K]
has all possible edges. For an edge e and an edge set E′, we use G−e and G−E′

to denote the subgraph of G without e and the edges in E′, respectively. For a
vertex v and a vertex set V ′, the notions G−v and G−V ′ denote the subgraphs
of G induced by V \ {v} and V \ V ′, respectively.

In the following, we will study several graph classes with forbidden induced
subgraph characterization. We say that a vertex v occurs in a forbidden induced
subgraph if v is contained in such an induced subgraph in G. See Fig. 1 for the
forbidden induced subgraphs occurring in this work. We call the edge in a P4

whose both endpoints have degree two the middle edge, and call the other two
edges the side edges.

Compared to the Π vertex deletion problems where one deletes vertices instead
of edges, the most difficult point in reducing a given instance of a Π edge dele-
tion problem is how to deal with the vertices that do not occur in any forbidden
subgraph. In the vertex version, we can simply remove these vertices, since such
vertices can never be included in any optimal solution. However, since deleting an
edge could create a new occurrence of a forbidden induced subgraph, it is possible
that all optimal solutions of an edge deletion problem have to include an edge not
involved in any forbidden subgraph in the original graph. Thus, in this case, we
cannot simply remove the vertices that do not occur in any forbidden subgraph.
In the following, as one of our main technical contributions, we show that, for the
2K2-free graph classes, chain, split, threshold, and co-trivially perfect, such ver-
tices can be removed without affecting the solvability of the corresponding edge
deletion problems. We begin with the most simple case, Chain Deletion.
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3 Chain Deletion

A bipartite graph B = (X, Y, E) with X and Y being two disjoint vertex subsets
is called a chain graph if the neighborhoods of the vertices in X form a chain,
that is, if there is an ordering of the vertices in X , say x1, x2, . . . , x|X|, such
that NB(x1) ⊆ NB(x2) ⊆ . . . ⊆ NB(x|X|). It is easy to see that the neighbor-
hoods of the vertices in Y also form a chain. Yannakakis [19] introduced this
graph class and proved that the Chain Completion problem, where one is
asked whether there is a set of at most k edges whose addition transforms a
given bipartite graph into a chain graph, is NP-complete. Since the bipartite
complement graph of a chain graph is a chain graph as well, Chain Deletion

is NP-complete as well.
The main result of this section consists of two data reduction rules for Chain

Deletion that lead to a quadratic-size problem kernel. To this end, we need
the following forbidden subgraph characterization of chain graphs given by Yan-
nakakis [19]: A bipartite graph is a chain graph if and only if it does not contain
a 2K2 as an induced subgraph. Without loss of generality, we assume that the
input graph is connected: For a disconnected graph, only some edges of exactly
one connected component can be kept. This means that we have to consider each
single component individually. We apply the following two data reduction rules
to a given bipartite graph B = (X, Y, E):

Rule 1: If there is an edge e involved in more than k 2K2’s, then delete e
from B, add e to the chain deletion set, and decrease the parameter k by
one. If k < 0, then report “No”.

Rule 2: Delete the vertices from B that do not occur in any 2K2.

The correctness of the first rule is easy to verify.

Lemma 1. Rule 2 is correct.

Proof. To show the lemma, it suffices to show that, for a vertex v not in any 2K2,
graph B = (X, Y, E) has a chain deletion set E′ with |E′| ≤ k if and only if
graph B′ := B − v has a chain deletion set E′′ with |E′′| ≤ k.

“⇒”: Since every induced subgraph of a chain graph is a chain graph, this
direction is correct.

“⇐”: Suppose that E′′ is a chain deletion set for B′. Let B′′ denote the chain
graph resulting by removing the edges in E′′ from B′. Then, add v to B′′ and
connect v to the vertices in NB(v). By contradiction we show that the resulting
graph H is a chain graph and, thus, E′′ is a chain deletion set for B. Suppose
that H is not a chain graph; this means that v occurs in a 2K2 in H .

We associate with the edges in E′′ an ordering as follows: Based on the for-
bidden subgraph 2K2, one can easily enumerate all size-at-most-k chain deletion
sets for B′ by a search tree of height k: At each node α of the search tree, find
an induced 2K2 and branch into two cases, deleting one edge or the other. Then,
recursively treat the two cases. Each of the two search tree edges between node α
and its two children is labeled by the graph edge deleted in the corresponding
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x y

a b

X Y

Fig. 2. Illustration of the proof of Lemma 1. The dashed line represents a deleted edge.

case. All solutions with size at most k are stored at the leaves of the search tree.
Solution E′′ corresponds to a path from the root to a leaf in the search tree.
Assume that the edges in E′′ are numbered according to their occurrences on
this path, e1, e2, . . . , el with l ≤ k, from the root to the leaf. Moreover, let ei, e

′
i

with 1 ≤ i ≤ l be the edge pair of the induced 2K2 for which ei has been deleted
from B′ and added to E′′. Let B0 := B′ and Bi := Bi−1 − ei for 1 ≤ i ≤ l.
Obviously, Bl = B′′. Moreover, let B′

i for 0 ≤ i ≤ l be the graph resulting by
adding v to Bi and connecting v to NB(v). Clearly, B′

0 = B and B′
l = H .

Since v is not in any 2K2 in B but in one in H there is a 2K2 containing v,
we can assume that B′

j is the graph with the minimum index among B′
1, . . . , B

′
l

where v occurs in a 2K2 induced by edges {u, v} and {a, b} with a, u ∈ X
and b, v ∈ Y . Since v is not in any 2K2 in B′

j−1 and E′′ contains no edges
incident to v, we have {a, v} /∈ E and ej = {b, u}. According to the branching
strategy stated above, {b, u} has to form a 2K2 with an edge {x, y} in B′

j−1

with x, y /∈ {a, v}. Assume that x ∈ X and y ∈ Y . See Fig. 2 for an illustration
of the subgraph of B′

i containing vertices u, v, x, y, a, b. Since v does not occur in
any 2K2 in B, at least one of the edges {u, y} and {v, x} exists in B. If {v, x} ∈ E,
then {b, x} ∈ E, since, otherwise, {v, x} and {a, b} would form a 2K2 containing v
in B. Since v is not in any 2K2 in B′

j−1, the edge {b, x} would exist in B′
j−1.

This is a contradiction to the fact that {b, u} and {x, y} form a 2K2 in Bj−1.
Thus, {v, x} /∈ E. This implies that {u, y} ∈ E and {u, y} exists in B′

j−1. Again,
we have a contradiction to the fact that {b, u} and {x, y} form a 2K2 in Bj−1.
Therefore, H is a chain graph and E′′ is a chain deletion set of B. 	


Based on these two rules, we prove the size bound of the reduced graphs.

Theorem 1. If a reduced instance (B, k) of Chain Deletion is a yes-instance,
then B has at most 2k2 vertices. The kernelization runs in O(mnk) time.

Proof. Let B = (X, Y, E) be a Chain Deletion instance that is reduced with
respect to Rules 1 and 2 and has a chain deletion set E′ with |E′| ≤ k. We
analyze in the following the size of X ; the size bound of Y follows analogously.
Since B is reduced with respect to Rule 2, every vertex from X is involved in at
least one 2K2 in B. Moreover, due to Rule 1, there can be at most k2 many 2K2’s
in B with |E′| ≤ k. Therefore, |X | ≤ k2.

We prove the running time by showing that Rules 1 and 2 can be exhaustively
executed in O(mnk) time: We first apply Rule 1 exhaustively and then apply
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once Rule 2. For one application of Rule 1, iterate over all edges and, for each
edge e, remove all neighbors of its endpoints. If there remain more than k edges,
then e occurs in more than k 2K2’s and Rule 1 is applicable. Obviously, Rule 1
can be applied at most k times and needs O(mnk) time.

To apply Rule 2, we compute all 2K2’s in the graph after exhaustive appli-
cation of Rule 1. If a vertex v does not occur in 2K2, then apply Rule 2 to v.
Thus, Rule 2 needs O(mn) time. 	


4 Split Deletion

A graph G = (V, E) is called a split graph if there exists a partition (K, I) of V
such that K is a clique and I is an independent set. Földes and Hammer [8]
introduced this graph class in 1977 and gave the following forbidden subgraph
characterization:

Lemma 2 ([8]). A graph is a split graph if and only if it contains no in-
duced 2K2, C4, and C5.

Split Deletion is NP-complete [14]. We prove that Split Deletion admits
a problem kernel with O(k4) vertices. Because split graphs are closed under the
complement operation, the result holds for Split Completion as well.

We follow almost the same approach as in Sect. 3, namely, first get rid of the
vertices that do not occur in any forbidden induced subgraph and then delete
the edges which have to be in any size-≤ k split deletion set. However, since
split graphs have, besides 2K2, also C4 and C5 as forbidden subgraphs, we need
additional data reduction rules and their correctness proofs are more complicated
than in the case of Chain Deletion. In particular, how to deal with two edges
that occur together in more than k forbidden subgraphs that, with the exception
of these two edges, are pairwisely edge-disjoint, is a new task here. In general,
given such two edges, we only know that at least one of them has to be deleted,
but we cannot decide in polynomial time which one of them has to be deleted.
Here, for 2K2-free graphs, we solve this problem by showing that such two edges
can be replaced by a 2K2-similar gadget (see Rules 2 and 3).

We apply seven data reduction rules to a Split Deletion instance (G, k)
and prove their correctness and running times, respectively. During the reduction
process, whenever k < 0, we know that the given instance has no solution and
report “No”.

Rule 1. Delete the vertices from G that are not in any 2K2, C4, and C5.

Lemma 3. Rule 1 is correct and one application of Rule 1 needs O(mn3) time.

Proof. We prove this lemma by showing that the input graph G = (V, E) has
a size-≤ k split deletion set iff the graph G′ = (V ′, E′) after one application of
Rule 1 has a size-≤ k split deletion set.

“⇒”: This direction is clearly correct since every induced subgraph of a split
graph is a split graph.
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Fig. 3. Illustration of the proof of Lemma 3

“⇐”: Suppose that G′ has a split deletion set S with |S| ≤ k and let G′′ =
(V ′′, E′′) denote the graph after deleting the edges in S from G′, where K and I
are the clique and the independent set of G′′. If the graph resulting by adding v
to G′′ and connecting v to NG(v) remains a split graph, then we are done;
otherwise, there exist some vertex x ∈ K with {x, v} /∈ E and some vertex a ∈ I
with {a, v} ∈ E. See Fig. 3 for an illustration. W.l.o.g., we can assume that,
in G′′, the set K ∩NG(v) is maximal in the sense that, for each vertex u from I ∩
NG(v), there is a vertex in K that is not adjacent to u. Moreover, we can also
assume that every vertex in K has a neighbor in I ∪{v} and let y be a neighbor
of x in I. Next, we prove the following claim.

Claim 1. The set NG(v) is a clique in G.

Proof of Claim 1: We prove the claim by contradiction. Suppose that a1, a2 ∈
NG(v) with {a1, a2} /∈ E. Observe that |K\NG(v)| ≤ 1. To see this, suppose that
there exists, besides x, another vertex x′ in K \ NG(v). Since v does not occur
in any 2K2 in G, at least two of the edges {a1, x}, {a1, x

′}, {a2, x}, and {a2, x
′}

have to exist in G. These edges and the edges {x, x′}, {a1, v}, and {a2, v} induce
at least one C4 or C5 containing v, a contradiction to the fact that v does not
occur in any C4 and C5 in G. Thus, |K \ NG(v)| ≤ 1.

Next, we show that y /∈ NG(v). Suppose that y ∈ NG(v). Then there exists
a vertex z ∈ K with {y, z} /∈ E; otherwise, K ∩ NG(v) would not be maximal.
However, due to the fact |K \ NG(v)| ≤ 1, we have z ∈ NG(v) and, thus, a C4

with v, z, x, y in G, a contradiction to the fact that v does not occur in any C4.
Since x, y /∈ NG(v) and v is not contained in any 2K2 in G, at least two of the
edges {x, a1}, {x, a2}, {y, a1}, and {y, a2} have to exist in E and, thus, we have
a C4 or C5 containing v in G, a contradiction to the fact that v does not occur
in any C4 and C5. This concludes the proof of Claim 1.

Now we show that, in the case that NG(v) is a clique, we can construct a split
deletion set S′ from S for G with |S′| ≤ |S| ≤ k. Consider the split graph H =
(VH , EH) where the clique K ′ of H consists of the vertices in NG(v) ∪ X
with X := {v ∈ K | v ∈ (

⋂
u∈NG(v) NG(u))} and the independent set I ′ of H

consists of the vertices in {v} ∪ (I \ NG(v)) ∪ (K \ X). The set EH contains all
possible edges between the vertices in K ′ and all edges in E between K ′ and I ′.
Since NG(v) is a clique, there exists a split deletion set S′ transforming G into H .
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To show |S′| ≤ |S|, it suffices to show |E1| + |E2| ≥ |E3| + |E4|, where E1 is
the set of the edges in E between the vertices in N ′(v) := NG(v) ∩ I, E2 the set
of the edges in E between N ′(v) and I \ NG(v), E3 the set of the edges in E
between K \(X∪NG(v)) and I \N ′(v), and E4 the set of the edges in E between
the vertices in K \ (X ∪ NG(v)).

First we claim that |N ′(v)| ≥ |K \ (X ∪ NG(v))|. Since both sets are cliques
in G, this claim implies |E1| ≥ |E4|. Suppose that the claim is not true. Then,
by the pigeonhole principle, there exist at least two distinct vertices x, y ∈ (K \
(X ∪ NG(v))) with {x, a} /∈ E and {y, a} /∈ E for a vertex a ∈ N ′(v). This
implies that we have a 2K2 with edges {x, y} and {a, v} in G, a contradiction
to the fact that v does not occur in a 2K2 in G.

Next we show that |E2| ≥ |E3|. Consider a vertex x ∈ (K \ (X ∪NG(v))) with
a neighbor y in I. From the definition of X , we have N ′(v) \ NG(x) �= ∅ and
let a ∈ (N ′(v) \ NG(x)). We have {a, y} ∈ E, since, otherwise, {x, y} and {a, v}
would induce a 2K2 in G. Thus, for each edge from E3 that is incident to x,
there exists at least one edge from E2 incident to a′ for every vertex a′ ∈ (N ′(v)\
NG(x)). Moreover, for each two distinct vertices w, w′ ∈ (K \ (X ∪ NG(v))), the
sets N ′(v)\NG(w) and N ′(v)\NG(w′) are disjoint, since, otherwise, there would
be a 2K2 involving v, w, w′ in G. Therefore, we can conclude that |E2| ≥ |E3|
and |S′| ≤ |S|.

The running time of Rule 1 follows from the observation that all 2K2’s, C4’s,
and C5’s of G can be enumerated in O(mn3) time. 	


Rule 2. If two edges {u, v} and {u, w} occur together in more than k
C4’s, then delete {u, v} and {u, w} from G and add two edges {a, v}
and {b, w} to G with a, b being two new degree-one vertices.

Lemma 4. Rule 2 is correct and one application of Rule 2 needs O(m2n) time.

Proof. Let {u, v} and {u, w} be the two edges to which Rule 2 has been applied.
We use X := {x1, x2, . . . , xk+1} to denote the set of the fourth vertices of k + 1
arbitrarily chosen C4’s containing both {u, v} and {u, w}. Let G′ = (V ′, E′)
denote the resulting graph after applying Rule 2 to {u, v} and {u, w}. We prove
the correctness of Rule 2 by showing that we can transform a split deletion set S
of the original graph G into a split deletion set S′ of G′ with |S′| = |S| ≤ k and
vice versa. We show here only the direction from S to S′; the reverse direction
can be proven in a similar way.

We use K and I to denote the clique and the independent set of the resulting
split graph after deleting S from G. Clearly, at least one of v and w has to be in I.
Then, at least one of x1, . . . , xk+1 has to be in K and u ∈ I. If v ∈ I and w ∈ K,
then S′ := S \ {{u, v}} ∪ {{a, v}} is a split deletion set for G′. To see this,
observe that, due to the existence of x1, . . . , xk+1, both a and b have to be in the
independent set of any split graph resulting by deleting at most k edges from G′.
This argument works also for the case v, w ∈ I with the only difference lying in
the construction of S′, namely, S′ := S \ {{u, v}, {u, w}} ∪ {{a, v}, {b, w}}.

To apply Rule 2, we iterate over all two adjacent edges {u, v} and {u, w}
with {v, w} /∈ E. For each such edge pair, delete the vertices in NG[u] \ {v, w}
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and count the common neighbors of v and w in the resulting graph. If the number
of common neighbors exceeds k, then Rule 2 is applicable to these two edges. 	


Rule 3. If two adjacent edges e and e′ occur together in more than k
C5’s that, with the exception of e and e′, are pairwisely edge-disjoint,
then delete e and e′, add e and e′ to the split deletion set, and decrease
the parameter k by two.

Lemma 5. Rule 3 is correct and one application Of Rule 3 needs O(m3
√

n)
time.

Proof. Suppose that edges e = {u, v} and e′ = {u, w} are two edges that sat-
isfy the precondition of Rule 3. Let {x1, y1}, {x2, y2}, . . . , {xk+1, yk+1} be the
edges which are from k + 1 arbitrary C5’s containing e and e′ and whose end-
points are not from {v, w}. Clearly, at least one of x1, . . . , xk+1 and at least one
of y1, . . . , yk+1 have to be in the clique of any split graph resulting by deleting
at most k edges from G. Then, both v, w have to be in the independent set that
contains u as well. Hence, we have to delete e and e′.

To apply this rule, we iterate over all two adjacent edges whose endpoints do
not induce a triangle. For each pair e = {u, v} and e′ = {u, w}, we construct
a subgraph of G having only the vertices in N(v) \ (N [u] ∪ N(w)) and N(w) \
(N [u] ∪ N(v)) and the edges between these two sets. If this bipartite subgraph
has a matching of size more than k, then this rule is applicable to e and e′. The
running time follows from the running time O(m

√
n) for computing maximum

bipartite matchings [4]. 	


Rule 4. If an edge e occurs in more than k 2K2’s, then delete e from G,
add e to the split deletion set, and decrease the parameter k by one.
Rule 5. If an edge e occurs in more than k C4’s that, with the only
exception of e, are pairwisely edge-disjoint, then delete e from G, add e
to the split deletion set, and decrease the parameter k by one.
Rule 6. If an edge e occurs in more than k C5’s that, with the only
exception of e, are pairwisely edge-disjoint, then delete e from G, add e
to the split deletion set, and decrease the parameter k by one.

Lemma 6. Rules 4, 5, and 6 are correct and one application of these rules
needs O(mn), O(m2

√
n), and O(mn3) time, respectively.

Proof. Clearly, these rules are correct. We give here only a proof of the running
time O(m2√n) of Rule 5. To apply Rule 5, we iterate over all graph edges and, for
each edge e = {u, v}, keep only the vertices in N(u)\N [v] and N(v)\N [u] and the
edges between these two sets. Finally, we compute a maximum matching of the
remaining bipartite graph. If the matching has a size more than k, then Rule 5
can be applied to e. The running time follows from the running time O(m

√
n)

for computing maximum bipartite matchings [4]. 	


Rule 7. If three edges {u, v}, {v, w}, and {w, x} occur together in more
than k C5’s, then delete {v, w} from G, add {v, w} to the split deletion
set, and decrease the parameter k by one.



924 J. Guo

The following lemma can be shown with the same arguments as used in the
proofs of Lemmas 4 and 6.

Lemma 7. Rule 7 is correct and one application of Rule 7 needs O(m3n) time.

Now, we arrive at the central result of this section.

Theorem 2. If a reduced instance (G = (V, E), k) of Split Deletion is a
yes-instance, then |V | = O(k4). The kernelization runs in O(m4

√
n) time.

Proof. Suppose that a reduced graph G has a split deletion set S with |S| ≤ k.
Due to Rule 1, every vertex v in G has to be in a 2K2, C4, or C5. In the following
we give an upper bound on the number of the vertices which are contained
in C5’s. Clearly, every C5 in G has to contain at least one edge from S. Due to
Rule 6 every edge e of S can be in at most k C5’s that have only e in common.
Let A denote the set of these C5’s. There are at most 4k + 1 edges in the C5’s
from A. Since G is reduced with respect to Rule 3, each edge e′ from the C5’s in A
with e′ �= e can form together with e at most k C5’s that, with the exception
of e and e′, are pairwisely edge-disjoint. Add these C5’s with both e and e′

to A. Now A contains at most 4k2 many C5’s. These C5’s contain at most 12k2

many induced length-two paths that contain e. Due to Rule 7, each of these P3’s
can be contained in at most k C5’s. Therefore, edge e can be contained in at
most 12k3 many C5’s. For |S| ≤ k, we have at most 12k4 many C5’s in G which
gives an upper bound of 36k4 + 2k on the number of the vertices contained
in C5’s: |V \V (S)| ≤ 36k4 and |V (S)| ≤ 2k with V (S) being the vertex set of S.
With similar arguments, the number of the vertices in C4’s and 2K2’s can also
be upper-bounded by O(k3) and O(k2), respectively. This gives the size bound
claimed in the theorem. The running time follows from Lemmas 3 to 7 and the
fact that the seven rules can altogether be executed at most m times. 	


5 Threshold Deletion and Co-trivially Perfect Deletion

A graph G is a threshold graph iff G contains no induced 2K2, C4, and P4,
while a co-trivially perfect graph contains no induced 2K2 and P4 [1]. Threshold
graphs have been extensively studied in literature [1]. See the monograph of Ma-
hadev and Peled [12] for more results on threshold graphs. Margot [13] showed
that Threshold Deletion is NP-complete. Yannakakis [19] showed that Co-

Trivially Perfect Deletion is NP-complete. Clearly, threshold graphs form
a subclass of both split graphs and co-trivially perfect graphs. We prove that
both problems admit polynomial-time kernelizations with O(k3)-vertex prob-
lem kernels. These results hold for Threshold Completion and Trivially

Perfect Completion as well, since threshold graphs are closed under comple-
mentation and the complement graph of a co-trivially perfect graph is a trivially
perfect graph.

The basic idea behind the kernelizations is almost the same as for Split

Deletion. Therefore we present only the data reduction rules for Thresh-

old Deletion. The explicit description of the data reduction rules for Co-

Trivially Perfect Deletion is deferred to the full version of this paper.
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Rule 1. Delete the vertices from G that are not in any 2K2, C4, and P4.
Rule 2. If an edge e occurs in more than k 2K2’s, then delete e from G, add it
the threshold deletion set, and decrease the parameter k by one.
Rule 3. If an edge e occurs in more than k C4’s that, with the only exception
of e, are pairwisely edge-disjoint, then the given instance has no solution and
report “No”.
Rule 4.If two edges e and e′ occur together in more than kC4’s, then delete e and e′

fromG, addboth to the thresholddeletion set, anddecrease theparameterkby two.
Rule 5. If an edge e is the middle edge of more than k P4’s that, with the
only exception of e, are pairwisely edge-disjoint, then the given instance has no
solution and report “No”.
Rule 6. If an edge e occurs in more than k P4’s as a side edge, then delete e,
add e to the threshold deletion set, and decrease the parameter k by one.
Rule 7. If two edges e and e′ occur together in more than k P4’s where e′ is
the middle edge, then remove e from G, add e to the threshold deletion set, and
decrease the parameter k by one.

Theorem 3. If a reduced instance (G = (V, E), k) of Threshold Deletion

is a yes-instance, then |V | = O(k3). The kernelization runs in O(kn4) time.

Based on five data reduction rules that are very similar to Rules 1, 2, 5, 6,
and 7 described above, we can also achieve a kernelization for Co-Trivially

Perfect Deletion.

Theorem 4. If a reduced instance (G = (V, E), k) of Co-Trivially Perfect

Deletion is a yes-instance, then |V | = O(k3). The kernelization runs in O(kn4)
time.

6 Outlook

In this work, we studied several edge deletion problems for generating 2K2-
free graphs and obtained polynomial-time kernelization algorithms for them. An
interesting open problem is whether the approach adopted here, namely, first to
get rid of the vertices that are not in any forbidden subgraph and then to delete
the edges which are contained in too many forbidden subgraphs, also applies
to edge deletion problems for generating 2K2-free graphs, even when the set of
forbidden subgraphs is infinite. Moreover, another challenging task would be to
improve the kernel sizes achieved here to linear size (if possible) and the running
times of the kernelizations, as done for Cluster Editing [6,10,17].
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