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Preface

Pedometrics, not in name, but in action, arguably began in the nineteenth century
and grew into the twentieth century where we can see early attempts at quantitative
expression of spatial and temporal soil variation. The information age which began
with the advent of digital computers in the late 1950s saw a second phase of
development largely in relation to numerical soil classification and multi-attribute
description of soil objects. Geostatistics and information systems brought a large
expansion of work in the 1980s and 1990s and also formal recognition and a label –
pedometrics. The new millennium has seen pedometrics grow from strength to
strength expanding the basic science and developing many new areas of application.
This book attempts to cover (almost) all the topics that pedometrics comprises in a
didactic way. We write in the hope that this text will lead to improved understanding
of soil variation and its place in earth system functioning and society.

Sydney, Australia Alex. B. McBratney
March 31, 2017 Budiman Minasny

Uta Stockmann
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Part I
Introduction: What Is Pedometrics?

“As a science grows, its underlying concepts change...”

Hans Jenny
– Factors of Soil Formation:

A System of Quantitative Pedology (1941), McGraw-Hill,
New York. p. 1

« Les méthodes sont ce qui caractérise l’état de la science à
chaque époque et qui détermine le plus ses progrès »

Augustin Pyrame de Candolle (1778–1841)

The first words of Hans Jenny’s classic book and those of de Candolle presage the
need for this text. Soil science advances, and as a consequence we have to develop
and grapple with new concepts and methods. This book is an attempt to present
some of these concepts and to hang them in appropriate places on some kind of
framework to construct a new body of knowledge. The concepts dealt with here
have arisen largely because of a phenomenon that has been going on in the earth
and biological sciences since the invention of digital computers just a few years
after Jenny’s book first appeared, namely that of quantification.

First a short geological excursion to illustrate this. An article entitled Physicists
Invading Geologists’ Turf by James Glanz appeared in the New York Times on
November 23rd 1999. Here are some excerpts:

Dr. William Dietrich has walked, driven and flown over more natural landscapes than he
can remember. As a veteran geomorphologist, he has studied how everything from the plop
of a raindrop to mighty landslides and geologic uplift have shaped the face of the planet.

So when he admits to the growing influence on his field of an insurgent group of
physicists, mathematicians and engineers with all-encompassing mathematical theories but
hardly any field experience, the earth almost begins to rumble.

Geology, a field that has always gloried in descriptive detail but has had less luck
deriving mathematical generalizations, is changing. Invigorated by satellite maps, super-
computers and fresh ideas from physics, researchers are deriving sweeping theories without
ever having put hammer to rock.

The trend is unsettling to some old-school geologists, but even they concede that the
work has prompted new research in traditional academic circles. While the new researchers
have not yet proved that the shape of every hill and dale can be predicted by simple
equations, they have at least raised the question of whether landscapes are sculptured by
something other than a reductionistic accumulation of forces.
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“In some ways, they irritate us,” said Dr. Dietrich, a professor at the University of
California in Berkeley, speaking for university and government geologists.

But Dr. Dietrich added that the new, physics-inspired theories of landscape formation,
which have found success by ignoring the detail-oriented approach of traditional geology
and focusing instead on the earth’s overall patterns, are “a way of discussing some sense of
regularity in what otherwise is a very messy world.”

“I’ve come to appreciate the perspective,” he said.
Inspired by ideas long familiar in physics, and fueled by the recent availability of high-

quality satellite maps of much of the planet’s surface, the new approach turns the earth
sciences on their head, asserting that the most prominent structures on the surface of the
planet are shaped not by just local factors, as had been thought, but by the most general
properties of physics and mathematics.

For all the insights of the new research, geologists are far from abandoning their
worldview. In fact, they too are using satellite data — to perform detailed computer
calculations of how rain and wind erode one particular landscape into another over
time. “But even there”, Dr. Dietrich said, “the physics-oriented researchers have inspired
discoveries of order amid the reductionistic detail.”

“The places where they accomplish that,” Dr. Dietrich said, “will, I think, have a lasting
effect on how we think about the planet”.

This example illustrates the disciplinary and human relationships1 between
traditional and mathematical geologists, which is completely akin to that between
conventional pedologists and pedometricians. Pedologists study pedology, and
pedometricans develop pedometrics. (Each group has its contribution to make.)
Pedology and pedometrics are closely related. Flippantly, pedology is about auger-
ing; pedometrics is about auguring.

Pedology (from the Greek pedon, ‘ground’), a term first coined in Saxony in
1862 (Simonson 1999), is the scientific study of the soil. More specifically it is the
study of soil as part of the natural environment. It is concerned with soil description,
spatial distribution, genesis and sustainable use (inter alia Joffe 1949; Buol et al.
1997). Traditionally, it has had a descriptive and field focus (Basher 1997).

Pedometrics generally addresses the same issues as pedology but focuses on
specific kinds of problems, those that can be formulated quantitatively and can be
solved with quantitative mathematical and statistical techniques. The coining of the
term pedometrics and its first definition is by McBratney (1986):

The use of quantitative methods for the study of soil distribution and genesis and as a
sustainable resource.

Pedometrics is a neologism derived from the Greek roots:

 "•o� PEDON, the ground, earth, soil
�"£¡o� METRON, measurement

Webster (1994) reminds us that pedometrics is used analogously to other words
such as biometrics, psychometrics, econometrics, chemometrics, and the oldest of
all geometrics. Etymologically, the word covers two main ideas. First the ‘pedo’ part
corresponds roughly to that branch of soil science we call pedology and the soil,

1Science is a human construct and as such shows all the glories and imperfections of human nature.
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and the metric part has been restricted to quantitative mathematical and statistical
methods. If we borrow from the wide definition of biometrics, we get:

The development and application of statistical and mathematical methods applicable to data
analysis problems in soil science.

So it is essentially the application of probability and statistics to soil. Webster
(1994), in addition to McBratney’s earlier definition, suggested an alternative
problem-oriented meaning, which he paraphrased as

Soil science under uncertainty.

In this sense, pedometrics deals with uncertainty in soil models that are due
to deterministic or stochastic variation, vagueness and lack of knowledge of soil
properties and processes. Thus, mathematical, statistical and numerical methods
could be applied to resolve the uncertainty and complexity inherent in the soil sys-
tem, including numerical approaches to classification, which deals with supposedly
deterministic variation.

Pedometrics is not new, although it was first formally recognised as a different
branch of soil science to traditional pedology at the end of the 1980s. Mathematical
and statistical methods have been applied to soil studies generally since at least the
1960s with the availability of digital computers and software. The thread stretches
back much further to precomputer days, however. It appears to have its origins in
agronomy and soil survey, rather than strictly pedology, in the early part of the
twentieth century. Harris’ (1915) study of soil spatial variation in experimental fields
and Robinson and Lloyd’s (1915) concern over soil survey error are early examples.
We suggest that Forbes’ (1846) study of the temporal variation of soil temperature
modelled by Fourier series is indeed a pedometric study, and no doubt there are even
earlier ones.

For several decades of the twentieth century, pedometrics (although unrecognised
and undefined) was a tool for designing experiments and surveys and in advisory
work. In the 1960s, pedometricians were concerned with the difficult problem
of soil classification and applied the methods of numerical taxonomy. In the late
1970s, pedometricians began to treat soil properties as spatially correlated random
processes and to utilise geostatistics for analysis and prediction. Indeed, in a recent
collection of the most important papers in soil science historically (Hartemink et al.
2009), this earlier work from pedometrics was recognised in four papers: Youden
and Mehlich (1937) on efficient soil sampling, Rayner (1966) on numerical soil
classification, Beckett and Webster on soil spatial variation and Burgess and Webster
(1980) on soil spatial prediction. More recently, in addition to these earlier themes,
pedometrics has begun to attempt to elucidate pedogenesis by quantifying relations
between individual soil properties and controlling factors (e.g. Minasny et al. 2008).

Some might argue that Jenny (1941) was the seminal text, especially because of
the title of his book Factors of Soil Formation. A System of Quantitative Pedology.
The text of Webster (1977) and revised a decade or so later by Webster and
Oliver (1990) were clearly milestones. Other important texts such as Burrough
(1986), Goovaerts (1997), Webster and Oliver (2001), Nielsen and Wendroth (2004),
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QuantitativeQualitative

Pedometrics
“Traditional”

Pedology

1960

Date

2000

Fig. 1 A timeline of the growth of pedology and pedometrics (After McBratney et al. 2000, Fig. 1)

Grunwald (2005), de Gruijter et al. (2006) and Hengl and Reuter (2009) have a basis
in pedometrics and contribute significantly to its canon. Pedometrics has contributed
to, and gained from, applied statistics, geostatistics, GIS science, environmental
sampling and geomorphometry.

Over time, the use of computers has increased in both pedometrics and in
traditional pedology, and the difference between the two has decreased and in
some cases overlapped (as shown in Fig. 1). Traditional pedology has, of neces-
sity, become more quantitative through the increased use of computerised soil
information systems and field-based measuring devices. Pedometrics has developed
quantitative methods, which attempt to account for conceptual pedological models
of soil variation. Now there is a strong and growing overlap and synthesis between
traditional pedology and pedometrics.

In a bibliometric study of the composition of papers in a leading soil science
journal from its inception in 1967 until 2001, Hartemink et al. (2001) showed that
papers on pedometrics have risen from less than 3% in 1967 to around 18% of all
papers in 2000. It seems, as shown in Fig. 2, that more qualitative soil genesis and
morphological studies decreased to make way for the increase in more quantitative
studies. By 2016, the proportion of papers in Geoderma on pedometrics had risen to
�27%.

From a pedological point of view, Mermut and Eswaran (2001) saw pedometrics
as a research tool with the potential to complement conventional soil surveys and a
crucial technique in precision agriculture. By 2016, Brevik et al. (2016) recognised
the role of pedometrics in soil mapping, classification and pedological modelling. A
great potential has been demonstrated in applications such as digital soil mapping
(Lagacherie et al. 2007; Hartemink et al. 2008; Boettinger et al. 2010) with a
sixfold linear increase in published papers between 2001 and 2015 and proximal
soil sensing (Viscarra Rossel et al. 2010).
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Fig. 2 Trends in pedological subdisciplines and subjects reported in Geoderma between 1967 and
2001. The ordinate is the percentage of papers in Geoderma (After Hartemink et al. 2001, Fig. 16)
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Chapter 1
Scope of Pedometrics

Alex. B. McBratney and R. Murray Lark

“Those are my principles, and if you dont’t like them well, I
have others.”

Groucho Marx

1.1 The Agenda of Pedometrics

Why do we need pedometrics? What is its agenda? Pedometrics addresses certain
key soil-related questions from a quantitative point of view. The need for the
quantitative approach arises from a general demand for quantitative soil information
for improved economic production and environmental management. Pedomet-
rics addresses four main areas which are akin to the problems of conventional
pedology:

1. Understanding the pattern of soil distribution in character space – soil classifica-
tion

2. Understanding soil spatial and temporal variation
3. Evaluating the utility and quality of soil
4. Understanding the genesis of soil
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1.1.1 Unravelling the Structure of the Soil Character Space:
Soil Classification

We all search for organising generalisations in the face of complexity. Many soil
properties need to be observed to characterise a soil. The organisation of this
soil complexity through classification has been problematic, probably because
classification is an innate human faculty. Leeper (1956, p. 59) noted “When
scientists discuss methods of analysing a solution for phosphate, they are practical,
reasonable, and unemotional. When the same men discuss the classification of soils,
these virtues are likely to evaporate”. Pedometrics attempts to resolve some of
the polemic of soil classification by a search for insight into the structure of soil
character space. Multivariate and numerical taxonomic methods (Webster 1977a)
attempt to unravel this structure, with a view to better prediction and understanding.
Chapters 4, 8 and 9 explore these issues in more detail.

1.1.2 Understanding Soil Spatial and Temporal Variation

The soil skins the land, and its attributes vary spatially and temporally in a
sometimes continuous, sometimes discrete and sometimes haphazard fashion. Using
current technologies, we can still only measure most attributes of the soil at a finite
number of places and times on relatively small volumes, and therefore statements
concerning the soil at other places or times involve estimation and prediction and
an inevitable uncertainty. Such prediction and estimation are required for inventory,
assessment and monitoring.

One of the tasks of pedometrics is to quantify this inexactitude in order that it can
be known and managed accordingly (Heuvelink and Webster 2001). Pedometrics
also seeks insight into such spatio-temporal patterns using geostatistical and other
spatial and temporal description and prediction tools. Chapters 10, 11 and 12 explore
these issues in more detail.

1.1.3 Evaluating the Utility and Quality of Soil

The importance of knowledge and awareness of soil resources ranging from
individual fields to the global scale is axiomatic. Over and above the problems of
spatial and temporal variation, we must put objective value judgments on the utility
of soil for specified purposes. This may involve encapsulating practical experience
and developing objective rules for management. Conventionally, this has been called
land evaluation, and quantification has been underway since Storie (1933) or earlier
and has been developed further by inter alia Rossiter (1990).

More recently, the focus has moved to the environmental performance of soil
(Adhikari and Hartemink 2016). The somewhat problematic concept of soil quality
includes assessment of soil properties and processes as they relate to the ability of

http://dx.doi.org/10.1007/978-3-319-63439-5_4
http://dx.doi.org/10.1007/978-3-319-63439-5_8
http://dx.doi.org/10.1007/978-3-319-63439-5_9
http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_11
http://dx.doi.org/10.1007/978-3-319-63439-5_12
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soil to function effectively as a component of a healthy ecosystem (Doran and Parkin
1994). The quality of soil as part of an ecosystem may depend on its pedodiversity
(Ibáñez et al. 1995). Soil can provide a number of valuable ecosystem services
(Dominati et al. 2010) that require to be quantified. This is also reflected in the newly
emerging multidimensional concept of soil security where soil plays an integral part
in the global environmental sustainability challenges (McBratney et al. 2014). In
recent years, pedometrics has contributed more and more to these areas, with the
use of pedometric products for land suitability analysis (e.g. Kidd et al. 2015) and
assessment of the change in the soil resource in space and time (e.g. Stockmann
et al. 2015), for example. These and related issues are explored in Chap. 17.

1.1.4 Understanding the Genesis of Soil

Ultimately, pedometrics would attempt to provide quantitative models of soil
formation. This is achieved by encapsulating knowledge of pedological processes
in mathematical forms as an alternative to purely statistical approaches. The success
of such a modelling approach depends, however, on pedological knowledge and the
non-linearity of processes (Phillips 1998). The advantages of a successful modelling
of soil formation are substantial and manifold. The three previously discussed
agenda items of pedometrics, namely, soil classification, spatial and temporal
variation and soil utility and quality, would be predictable from such a model.
Therefore, attempts at such an approach have emerged in recent years. Hoosbeek
and Bryant (1992) perhaps first outlined the problem. Minasny and McBratney
(1999, 2001), Cohen et al. (2010) and Vanwalleghem et al. (2013) have provided
the first substantive, but still rudimentary models, followed by more sophisticated
models on the soil profile scale and soil landscape scale. This intriguing approach is
discussed further in Chaps. 18 and 19.

1.2 Types of Models and Their Evaluation

Models are abstractions of reality. Harvey (1969) gives an early general discussion
of models and quantification. Dijkerman (1974) discusses the kinds of models
used in soil science generally. Because the soil is a complex and variable system,
we represent it with a simpler or more abstract model. Originally, these models
were descriptive mental models, but over time they have become more quantitative
(Dijkerman 1974). In the context of pedometrics, with its quantitative impulse, a
model generally corresponds to one of Webster”s dictionary definitions, i.e. a system
of postulates, data, and inferences presented as a mathematical description of an
entity or state of affairs. Underlying this general statement, there is a variety of
model types which we shall now consider and then go on to discuss how to judge
when models are performing adequately.

http://dx.doi.org/10.1007/978-3-319-63439-5_17
http://dx.doi.org/10.1007/978-3-319-63439-5_18
http://dx.doi.org/10.1007/978-3-319-63439-5_19
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1.2.1 Types of Models

Models can be described in various ways by dividing them into a number of binary
categories.

Models may be qualitative or quantitative. In traditional pedology models tend
to be qualitative, whereas in pedometrics the tendency is for quantification. The
main advantage of quantitative models seems to be that of reproducibility. Some
would argue that quantitative models are more objective, but this is a difficult
area from a philosophical point of view. So qualitative models may be considered
inferior; however, they do contain knowledge and that knowledge may be captured
in some objective way. Qualitative models can be made quantitative. So a qualitative
model may be a good starting point for subsequent quantitative investigation, e.g.
qualitative models expressing the expert knowledge of a group of experienced
scientists and practitioners may be formally written down and used as hypothesis
for quantitative testing.

Models may be static or dynamic. Pedometrics tends to focus on static models,
whereas the models of soil physics are dynamic. In the future, pedometric models
probably will be increasingly dynamic.

Models may be empirical or mechanistic. By empirical models we simply
describe a phenomenon with as few parameters as possible without necessarily
seeking to describe the mechanism underlying the phenomenon, whereas mecha-
nistic models attempt to describe the mechanism (at some scale). For example, we
could model the changes in moisture content at some location as a function of time
using a purely empirical time series or transfer function model. Alternatively, we
could describe the same observations using Richards’ equation (Pachepsky et al.
2003) and various other soil physical mechanisms. The latter requires knowledge of
basic soil properties, whereas the former does not. Whether one uses a mechanistic
or an empirical model will depend on our level of process knowledge and the
relative predictability of the models. Another way of describing empirical versus
mechanistic models is to term them functional and physical models (Addiscott
and Wagenet 1985). Functional is largely synonymous with empirical. Sometimes
the empirical and mechanistic categorisation is confused with static and dynamic.
Mechanistic models are usually dynamic but as an example given above, empirical
models can be dynamic as well as static.

A very important distinction is to consider deterministic or stochastic models.
Underlying Laplace’s (1749–1827) statement, “All the effects of Nature are only
the mathematical consequences of a small number of immutable laws”, is the
origin of determinism described by Laplace and quoted by Addiscott and Mirza
(1998), “An intellect which at any given moment knew all the forces which animate
nature and the mutual positions of all the beings that comprise it, if this intellect
was vast enough to submit its data to analysis, could condense into a single
formula the movement of the greatest bodies of the universe and that of the
lightest atom: for such an intellect nothing could be uncertain, and the future just
like the past would be present before his eyes”. Stochastic models concern some
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phenomenon that has randomness innate to its structure, whereas deterministic
models have not. Many earth scientists do not readily accept that such randomness
is inherent to nature. This unease recalls Einstein’s famous saying “The Lord does
not play with dice”. No one has suggested that any soil process is constitutionally
random unless we consider them at the quantum level. The ensemble averages are
considered to be deterministic. So, for example, at the so-called Darcy scale, soil
water phenomena can be described by a deterministic equation. However, given
the inevitable lack of understanding and particularly lack of knowledge of soil
processes, then randomness in models is a way of incorporating our ignorance.
So in this sense, stochastic models may be seen as pragmatic. Up until the 1980s,
stochastic models were rarely recognised or used in soil science. Dexter (1976) was
one of the first examples. In hydrology on the other hand, stochastic models are
abound (Yevjevich 1987). Pedometrics will probably make an ever-increasing use
of stochastic models.

More recently, scientists have realised that deterministic models may have
outcomes that look for all intents and purposes like stochastic ones – the outcomes
appear random. These models describe processes which have a sensitive dependence
on initial conditions. These are the so-called non-linear dynamic models, the basis
of chaos theory (Gleick 1987). Such chaotic models blur the distinction between
determinism and stochasticity (Addiscott and Mirza 1998). Phillips (1993, 1998)
has suggested this kind of determinism as the basis for soil variability itself, i.e. soil
formation is a chaotic process. Non-wetting phenomena in soil physics (Persson
et al. 2001) are probably chaotic processes that cause soil variation. Minasny and
McBratney (2001) give an example of a chaotic model and suggest how a chaotic
deterministic model may be distinguished from a random one (Sugihara and May
1990).

As described above, models may be (1) qualitative or quantitative, (2) static or
dynamic, (3) empirical or mechanistic (functional or physical) and (4) deterministic
or stochastic. If we consider these four distinctions, then there are 16 combinations.
Not all of them are sensible ones. In pedometrics, it is certainly worth considering
the quantitative combinations and particularly those relating to stochastic and
deterministic and empirical and mechanistic as shown in Table 1.1. So these four
kinds of models are rather important in soil science. Another category has been

Table 1.1 Examples of quantitative models

Deterministic
Certain Uncertain Stochastic

Empirical Functional leaching model Pedotransfer functions
Fuzzy models

Regionalised variables
geostatistics

Markov chain models
Mechanistic Richards’ equation Non-wetting phenomena

Soil-landscape model
Molecular-scale
diffusion
Soil mechanics
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added to the table, and we distinguish between certain and uncertain deterministic
models. These models lie between purely deterministic and purely stochastic
models. Examples of soil phenomena modelled in the various categories are
given.

Pedometrics deals particularly with uncertain deterministic models and stochas-
tic ones, i.e. models where randomness has to be introduced to deal with uncertainty
(pedotransfer functions, Wösten et al. 2001) and/or randomness is seen as part of
nature itself (soil as a realisation of random field – geostatistics). As such many
pedometric models have a statistical basis. The uncertain deterministic, mechanistic
and the stochastic, mechanistic models (e.g. soil mechanics, Manolis 2002) are not
well developed in soil science or pedometrics.

One class of model that does not readily fit in to this scheme are the fuzzy models.
They can be possibly thought of as uncertain deterministic, empirical models.
They are probably best thought of as another categorisation, that of continuous or
discrete states. Bárdossy et al. (1995) modelled soil water movement using the fuzzy
approach as described in McBratney and Odeh (1997). Dou et al. (1999) modelled
solute movement in a similar way. Pedotransfer functions (Wösten et al. 2001)
which are largely linear or non-linear regression equations are empirical determin-
istic uncertain models, which will be discussed further in Chap. 7 of this book.

1.2.2 Critical Evaluation of Models and Their Parameters

Critical evaluatory procedures for models are needed to maintain the integrity of
modelling and to ensure that the increasingly widespread use of models does not
result in the propagation of misleading information. Generally speaking, models
particularly quantitative pedometric ones, should be good predictors, while at the
same time, they should not have too many parameters. The quality of prediction has
to be tested with independent data sets by comparing predicted and observed values
(Van Kuilenburg et al. 1982) or less satisfactorily with some kind of cross-validation
procedure (Solow 1990).

The Franciscan friar, William of Ockham, was concerned about the number of
parameters; he wrote in 1332, “Pluralitas non est ponenda sine necessitate”, which
roughly translates as “Don’t make things more complicated than you have to”. This
is called Ockham’s razor. The two ideas of quality prediction and minimising the
number of parameters quantitatively are reflected in measures such as the Akaike
information criterion (Webster and McBratney 1989).

Addiscott et al. (1995) pointed out that no model can be validated in the sense
that it has been unequivocally justified. All that can be achieved is to show how
small the probability is that the model has been refuted. Whether this probability is
acceptable remains a subjective decision. In general, the further the data used for
parameterisation are removed from the data to be simulated, the better. Problems
can arise in both parameterisation and validation if the model is non-linear with

http://dx.doi.org/10.1007/978-3-319-63439-5_7
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respect to its parameters, and the latter have appreciable variances. Parameterisation
and validation become more difficult as the complexity of the model or the scale at
which it is used increases.

1.3 Methods � Problems

The gamut of pedometrics can also be thought of as a two-way table. The rows
are the problems that pedometrics can possibly address, and the columns are
the potential mathematical and statistical methods that could be applied to such
problems. Some cells of the table will be richly endowed, whereas others will
require thought and invention to come up with new approaches. This book, which
is essentially a contribution to soil science, and thereby earth, environmental and
ecological sciences, is arranged with a problem focus rather than on the methods
themselves which would be more appropriate to an applied statistics text.

1.3.1 The Problems of Pedometrics

“Sir Walter Blunt, new lighted from his horse.
Stain’d with the variation of each soil

Betwixt that Holmedon and this seat of ours;”

William Shakespeare, Henry IV Part 1 Act 1 Scene 1.

Pedometrics arises principally from this common observation that the soil is
spatially variable. The soil varies laterally and with depth, and this variation has
implications for its use and management. This is not a new insight. The rabbinical
biblical commentators on the book of Genesis discussed the question of how much
water is needed to sustain plant growth:

“How much rain must descend that it may suffice for fructification?
As much as will fill a vessel of three handbreadths. This is Rabbi Meir’s

opinion. Rabbi Judah said: in hard soil, one handbreadth; in average soil,
two; in humid soil three.”

Midrash Genesis Rabbah XIII, 13.

Later in history, Thomas Tusser, in his One Hundred Points of Good Husbandry
published in England in the sixteenth century, noted pithily that each divers soil
hath divers toile. More recently, the development of agronomy, soil management
and engineering has shown that the spatial variation of the soil means that its
suitability for different purposes will vary in space. This is important for the
planning of infrastructure, the government agencies making planning decisions
about land use and, in recent years, the individual farmer trying to improve the
efficiency of cropping systems by managing inputs in response to fluctuations in
crop requirements at within-field scales.
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We can think of other problems where the spatial variation of the soil will be
of practical significance. Throughout the industrialised world, it is recognised that
the soil is at risk of pollution from unregulated inputs and emissions. If we are to
monitor this problem and focus protection and remediation where the problem is
most severe, or the soil most vulnerable, then we must be able to detect changes in
pollutants, which arise from complex processes of deposition and transport, against
a background of complex intrinsic variation of the soil. A similar problem arises
when we set out to monitor changes in the carbon content of the soil to evaluate its
significance as a source and sink for greenhouse gases.

Soil variation is linked to some pressing problems, but it is also pertinent to
other questions. Faced with variation in the soil cover of any terrain, the natural
response is to ask how and why it arose. Many soil scientists would not have
become interested in their subject if the soil was more or less uniform in space.
To understand the variation of the soil at scales from the aggregate to the continent
and the relationship of this variation to that of the vegetation which it supports is
a basic scientific challenge. The better we understand these basic questions, the
better equipped we will be to address the practical ones. Pedometrics is concerned
both with meeting the practical requirements of soil management and also with
generating insight into how and why the soil material varies as it does.

These, in summary, are the problems of pedometrics. In the remainder of this
section, we want to set them in a general framework, with examples, as a prelude to
introducing the methods which are used in their solution.

1.3.1.1 Prediction

The first type of problem is prediction. The basic question requiring a prediction has
the form:

1. What soil conditions pertain at position x?

Vector x may contain two or three Cartesian coordinates which define a location
in space and possibly a further number which defines a time. This very general
question may be refined in different ways:

1.a What is the value of soil variable s at x, s(x), given a set of observations of the variable
at other locations?

The variable s(x) might be the concentration of available potassium in the topsoil
at a location in space fx,yg. Note that some finite volume of the soil is implicitly of
interest. We call this volume the geometric support of s(x).

This problem arises because very few if any soil properties of direct practical
interest will have been measured exhaustively across a region. The soil is a
continuum, and the constraints of costs and time mean that the soil may only be
sampled and measured at a few sites. Information will inevitably be required about
soil which has not been measured directly.

Reflection on this problem makes it clear that the best answer we can obtain to
our question, short of actually sampling the soil at x, will be an estimate of s(x),
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bs .x/, a number with attendant uncertainty. The way in which this uncertainty is
quantified and controlled is a critical issue in pedometrics, to which we will return
repeatedly.

A second refinement of the question is possible:

1.b. What is the value of, y(x), a mathematical function of soil property s at x?

This may seem at first sight like a pedantic variant of question 1.a., but it raises
an important issue, and a practical one. We may be able, for example, to obtain a
reasonable estimate of the clay content of the soil at x, but are really interested in
its available water capacity. A reasonable estimate of this latter quantity might be
obtained as a function of the clay content. If y is a linear function of s, then the
transformation of the estimatebs .x/ to an estimateby .x/ is simple. If the relationship
is not linear, then the uncertainty of the estimatebs .x/ must be accounted for.

Other variants on the simple prediction problem are possible. For example:

1.c. What is the difference between sfx, y, tig and sfx, y, tjg?

where the third term in the vector denotes a time. This question will arise in
environmental monitoring. If sfx, y, tig is the concentration of a pollutant at x at
time ti, then the difference may be a measure of the success of a soil remediation
campaign or the environmental impact of a change in regulations.

This problem will vary in form. A critical question is whether it is possible
in principle to measure both variables – given the support of sfx, y, tig, does the
disturbance of the initial sampling prevent a meaningful measurement from being
made at fx, y, tjg? This problem presents pedometricians with interesting challenges.
Since politicians are increasingly interested in reliable estimates of the change of
organic carbon in the soil, in response to the Kyoto protocol, the problem is also
timely and topical.

So far, we have considered the soil over a small volume about a notional two-
or three-dimensional location. In practice, we may be concerned more often with
predictions about larger parcels or blocks of land, regularly or irregularly shaped.
Such parcels may constitute management units, for example. The general problem,
then, is

1.d. What is the value of s(X) D
R

x � Xs(x)dx?

The integral implies that the new variable is effectively the average of all the
notional point values, s(x), in the region. Thus, we might be asked, ‘what is the
mean concentration of lead in the soil at this former factory site’ or ‘what is the
mean concentration of available phosphorous in the soil of this field’? Since our
prediction will be based on observations which are effectively point samples on
volumes of soil, very small by comparison to the block X, the problem involves
generalisation from one spatial scale to a coarser scale. This is sometimes called
‘upscaling’ or ‘aggregation’.
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The change of scale can cause problems. Consider the following:

1.e. What is the value of y(X) where y is a mathematical function of soil variables w and z
at the scale of point observations s(x) and w(x)?

Again, y might be the available water capacity of the soil and w and s bulk the
density and clay content, respectively. If w and s are measured at all locations, then
we might evaluate y at all these locations then aggregate these to the coarser unit.
If the two variables have been measured independently, then we can combine two
aggregated values, s(X) and w(X), but only if the functional relationship is linear.
Otherwise, it is necessary to make some inference about the joint variation of
variables s and w at the original point scale; this is sometimes called ‘downscaling’
or ‘disaggregation’.

We have raised the issue of uncertainty already in the context of simple
prediction, but uncertainty may sometimes be addressed directly in a pedometric
problem. Consider the following:

1.f. What is the risk that s(x) exceeds at threshold t?

The variable s might be the concentration of a pollutant and t a regulatory
threshold. For example, the limit for concentration of lead in the soil set by the
ANZECC guidelines is 300 mg/kg.

A type 1a question requires a simple prediction,bs .x/, but in the context of the
present problem, this is generally not adequate. If we act on the prediction, there
remains the risk that contaminated soil is left untreated (because bs .x/ < t but
s(x) > t) or that expensive remediation is applied to land unnecessarily (because
bs .x/ > t but s(x) < t). If our predictions are unbiased, i.e. on averagebs .x/ D s .x/,
and the costs of an error in one direction are more or less equal to the costs of an
error in the other direction, then all we can do is try to reduce the uncertainty of our
predictions as far as possible. Often, however, the costs of an error in one direction
are much steeper than the other (e.g. the fines for leaving land unremediated may
be large compared to the costs of remediation). In these circumstances, the best
decision must account for the risk that s(x) > t, given all available knowledge implicit
in the predictionbs .x/.

This latter problem was expressed in terms of a near-point support at x.
Answering the final prediction-type problem:

1.g. What is the risk that the mean of s over region X exceeds threshold t?

raises further problems for the pedometrician. Since management decisions will
generally be made about a parcel of land, practical questions will often be framed
this way.

1.3.1.2 Inventory and Allied Problems

A second category of pedometric problems can be recognised. If the problems in
category 1 are variants of the question ‘what conditions pertain at x’, then class 2
consists of variants on:
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2. Over what subregion does conditions pertain?

At its simplest, the problem may be one of inventory – enumeration of the sites
over which certain conditions are found. Thus, for example:

2.a. Over what region, X0, does the value of soil variable s fall within the range s1 < s < s2?

As with questions of type 1.a., there is uncertainty attendant on any answer to
this question since the soil properties are not measured exhaustively.

This problem might be posed by the land manager who wants to know where
the depth of the soil over the underlying rock is large enough to permit the growth
of a tree crop. It might also be asked by the farmer who wants to know where soil
pH is likely to limit certain crops. In reality, a more complex problem might be
posed:

2.b. Over what region, X0, does some function of soil variablesy D f (s, w) fall within the
range s1 < y < s2?

If we want to identify areas where the likely erosion losses exceed some
threshold, then we may have to compute some non-linear function of soil properties
like the universal soil loss equation (Wischmeir and Smith 1978). This poses similar
problems to the analogous prediction problem 1.b.

Temporal monitoring of the soil may also generate problems with an inventory
flavour such as:

2.c. Over what region, X0, does the change in soil property s from time t1 to time t2 fall
within the range s1 < s < s2?

This problem arises when the policy maker wants to know over what proportion
of a landscape the concentrations of pollutants in the soil are diminishing or where
the organic carbon content is increasing.

1.3.1.3 Decision Support

Prediction and inventory are tools. Managers require that the answers to these basic
questions are integrated in a way which aids decision-making directly. This is the
sphere of decision-support systems, and pedometric problems arise. There are two
general types of problems:

3.a. What is the optimum management strategy over region X0 to achieve goals A subject to
constraints B?

So, for example, what is the optimum nitrogen rate to prescribe for a particular
parcel of a field to maximise the economic return to the producer subject to the
constraints that emissions to the environment through leaching and denitrification do
not exceed some threshold? The problem requires process models of an appropriate
level of sophistication to describe the whole system under different scenarios.
Information on soil properties within the parcel of concern will also be required –
subproblems of type 1.c., for example. The optimisation subject to a constraint
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may be done numerically – i.e. by computing several runs of the system model
in an ordered way to find the scenario which best meets the goals subject to the
constraints.

In practice, decisions have to be made under uncertainty about many critical
conditions, e.g. weather in the case of crop management. We then have a problem;

3.b. What is the optimum management strategy over region X0 to achieve goals A subject to
constraints B and given that the conditions C have a particular statistical distribution?

1.3.1.4 In Pursuit of Insight

The problems so far have had a strongly practical flavour, but pedometric problems
include basic scientific questions where a quantitative account of the spatial
variation of the soil is required. We can identify such a problem:

4.a. Which factors appear to determine the lateral and horizontal spatial variation of soil
property s?

This question implies a spatial scale – are we concerned with variations at the
scale of microbial activity or geomorphic processes or some range between? This
general problem may be addressed using analytical methods, but these always rest
on assumptions which may not be realistic. An approach to the problem can never
be driven purely by data analysis, however. Our investigation will be most fruitful if
it is structured around a hypothesis. The approach may be statistical:

4.b. Is hypothesis H about the causes of soil variation supported by the given observations
of properties s...?

or structured around a mechanistic model:

4.c. Given a process model linking input variables s, w and output y, can this particular set
of observations of the variables be held to validate the model?

1.3.2 The Methods Pedometrics Uses

These questions are addressed by pedometrics. We now offer an overview of the
pedometric methods that are treated in more detail in later chapters.

1.3.2.1 Statistical Prediction and Modelling

Random Variables

Ideally, soil scientists would like to base pedometric methods on quantitative
understanding of soil processes. The ideal way of predicting the value of a soil
property at location x would be to enumerate factors of soil formation which
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pertain at x, i.e. the climate, the organic influences, the relief and parent material
and the development of these factors over the time in which the soil material
has developed. This information would then be combined with knowledge of the
relevant soil processes in order to predict the soil property of interest. This recalls
the determinism of Laplace, who held that if we know the momentum and position
of all particles in the Universe at a given time, then all future changes are predictable.
But modern physics has had to abandon Laplace’s ideals, and neither is it an option
for pedometrics. First, it is clear that our knowledge of the soil-forming factors
operating over time at any location is very incomplete, and some of these factors will
be unpredictable in principle. For example, a grazing Megaloceros in the Pleistocene
disturbing a patch of metastable soil on a periglacial hillslope might influence the
course of local solifluction events and play a large part in determining the clay
content of the topsoil at positions downslope which a pedometrician later wants
to predict. Second, many soil-forming factors have a complex and non-linear effect
on the development of the soil and will interact. As a result small errors in our
information about critical soil-forming factors may render our predictions quite
inaccurate. This sensitivity to initial conditions recalls chaos theory. The solution
to the problem is usually to replace our notional deterministic model of the soil
with a statistical model. This latter model may have a structure which reflects the
knowledge of soil-forming processes contained in the deterministic model, while
representing the relationship between these factors and soil properties statistically.

At its simplest, we regard the value of a soil property s at location x as the
outcome of a random process s. To do this is to treat the soil property as if it were
the outcome of a process such as a toss of a coin or a roll of a die. At first glance,
this is a deeply paradoxical approach for the scientist. By definition, the outcome of
a random process is uncaused, and yet we know that soil properties are caused by
processes which we can list and of which we have, more or less, a sound scientific
understanding.

Treating a soil property as a random variable is an assumption. That is to say,
we know that the soil property is not strictly the outcome of a random process,
but that certain conditions permit us to treat it as such for certain purposes. More
generally, we do not necessarily treat all the variation of the soil as random, but
rather may limit this assumption to a component of the variation which a simplified
mathematical description of the variation as a whole cannot account for.

When statistical models are used to describe the variation of the soil, there are
broadly two conditions which justify the assumption that data on the variables of
interest are outcomes of a random process. In the first instance, we may treat a set of
measurements of a soil property as random variables if the selection of the sample
has been done in a random way. This is the basis of design-based statistical analysis
where data are obtained in accordance with a design which does not specify where
the soil is sampled to collect a specimen for analysis, but which allows us to state in
advance only the probability that a particular location will be sampled. The second
situation is subtly different. Here, the assumption is that a set of measurements of
the soil in space and/or in time may be regarded as a realisation of an assemblage of
random variables which have a structure in space and/or time which has sufficient
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complexity to encapsulate at least some of the features of the spatial variations of
the real variables. In this case, we assume an underlying random process and that all
observed and unobserved values of the soil within the region of interest constitute
a single realisation of this process. This approach allows us to predict the values
of the soil at unobserved locations from the values which have been observed in
a way which is in some sense optimal. This approach is the basis of the so-called
model-based analysis.

We must review some properties of random variables. A random variable is
characterised by an underlying probability density function, (pdf) p(S), such that
the probability that a given value lies in the interval S1 to S2 is given by the integral

Z S2

S1

p.S/dS:

It follows that the integral over the interval �1 to C1 is exactly 1. From the
pdf, we may also define the distribution function for S, f (S):

f .S/ D p ŒS � s� D

Z s

�1

p.S/dS:

If all we know about a particular value of a soil property is that it is a realisation
of a particular random variable, then our best estimate of the value is the statistical
expectation E[S], where

E ŒS� D

Z 1

�1

S p.S/dS:

The expectation of a random variable is also known as its mean or first-order
moment. Higher-order moments may also be defined. For example, the variance �2

�2 D E
h

fS � E ŒS�g2
i

D

Z 1

�1

SfS � E ŒS�g2p.S/dS:

If we assume, as is often done, that our soil property is a realisation of a
normally distributed random variable, then these two moments alone are sufficient
to characterise it and may be estimated from data.

The Linear Model

Simple random variables alone are of relatively little use for pedometric purposes.
Ideally, we incorporate them into a statistical model to account for that variation
which a simplified predictive equation cannot explain. Consider as an example the
soil property organic carbon content. Many factors will determine this variable. One
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such factor may be clay content, since the clay fraction of the soil may protect
some of its organic matter. In addition, heavier soils which retain more moisture
may have a larger input of fresh organic material in litter, roots and detritus from
more vigorous vegetation. These and other considerations may lead us to expect
that larger organic carbon contents of the soil may be associated with larger clay
contents, although other factors will also be important and may mean that a good
deal of observed variation in organic carbon content cannot be explained by a
predictive relationship to clay content.

At its simplest, such a relationship might be a linear one of the form

OC D a C b:Clay C ":

Here b is the slope of the linear relationship and a the intercept. The last term is
the error or residual term, which sums up the other factors which determine organic
carbon content of the soil. In statistical modelling, it is this term which we treat
as a random variable. If the variability of this last term is small relative to the
variability of organic carbon overall, then the model may be useful for predictive
purposes. Under certain circumstances, we may estimate the parameters a and b
from observations of the organic carbon and clay content of the soil by finding the
values which minimise the deviations:

OC � .a C b:Clay/ ;

in effect by minimising the variance of the error term.
The reader may have recognised that we have just described the ordinary least-

squares regression model. This is a special case of the general linear model:

y D Xb C "

where y is a vector of observations of a variable (which we may wish to predict)
and matrix X contains a set of variables on which we assume the variable in y to be
dependent. Vector b contains a set of coefficients, and © contains realisations of a
random variable, the error term.

Each column of matrix X corresponds to a predictor variable. These may be
continuous variables (like clay content) or indicator variables which take the value
0 or 1 indicating whether or not an observation belongs to a particular class.

Consider a case where we wish to model the effect of parent material on soil
properties. If clay content is the variable of interest, then different classes of parent
material may weather to produce material of different textures. If g parent material
classes have been defined, so that any one observation belongs to exactly one of the
g classes, then the solution of the general linear model will be given by a vector
of coefficients equal to the class means. Other variables, continuous or indicator,
may be combined in the model. This general linear model (GLM) (McCullagh and
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Nelder 1989) is equivalent to the familiar analysis of variance on the clay data
testing the differences among the class means. In a similar vein, statisticians have
recognised that nature is often not linear and have developed a class of non-linear
models analogous to the GLM called the general additive models (GAMs) (Hastie
and Tibshirani 1986, 1990).

Random Functions

A random function is an assemblage of random variables and is defined as a function
of the location in space, S(x). This function is assumed to have certain properties
which characterise its behaviour over a set of all possible locations within some
region of interest. A set of observations of a soil property at n locations in this
region, s(x1) , : : : s(xn), is a sample of one realisation of this random function. We
can only make progress by assuming that there are some restrictions on the joint
distribution of S(x1) , : : : S(xn) which allows us to make inferences about it from
the assemblage of observations.

We have introduced the concept of a pdf and a df of a random variable. We may
similarly define the joint df of a random function over a set of locations:

Ffx1;:::;xng .s1; : : : ; sn/ D Prob ŒS .x1/ � s1; : : : ; S .xn/ � sn� :

The simplest assumption which we might make about a random function is that
the joint df for a configuration of sample points depends only on their relative
distribution in space and not on their absolute position. Thus,

Ffx1;:::;xng .s1 C h; : : : ; sn C h/ D Ffx1;:::;xng .s1; : : : ; sn/ ;

where h is a vector defining a spatial separation or lag.
This is the assumption of strict stationarity. In practice, we work with less

restrictive assumptions. One is to assume that only first- and second-order moments
of the joint distribution are invariant with a shift in position. Thus, the mean is
assumed to be constant:

E ŒS .xi/� D � for all xi:

The covariance of any S(xi) and S(xj):

E ŒfZ .xi/ � E ŒZ .xi/�g fZ .xj/ � E ŒZ .xj/�g�

is also assumed to depend only on the interval (xi � xj). If the joint df of the random
function is multivariate normal, then strict stationarity is equivalent to this second-
order stationarity since there are no higher-order moments.
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Even this weaker version of stationarity may be too restrictive. In pedometrics,
we often work with the assumption of intrinsic stationarity. This has a first-order
assumption:

E
�

S .xi/ � S
�

xj
��

D 0 for all xi and xj;

and a second-order assumption that

E
h

˚

S .xi/ � S
�

xj
��2
i

D �
�

xi � xj
�

;

where � is a function of the separation vector xi � xj. This function is the variogram
and is widely used in pedometrics. It may be estimated from data and modelled
with an appropriate parametric function. It is also possible to model the joint spatial
variation of two or more variables in terms of random functions with variograms
and cross-variograms. This is discussed in more detail in Chaps. 10 and 21. Having
obtained a variogram model, this may be used in determining an optimal estimate of
the value of a soil variable at an unsampled site as a weighted average of the values
at neighbouring sites. This is the technique known as kriging.

State-Space Models

Consider a soil property which evolves over time. We may be able to express this
change quantitatively by a model of the form

st D f
�

sft�ig

�

fiD1;:::;ng
C "t:

This states that the observed value is a function of past values, with an error
term – a random variable which describes other factors which the model cannot
account for. This is the so-called state equation. We recognise that our measurement
of s, which we may make on several occasions, is made with error. The measurement
process is described by a linear measurement relation:

ut D gt .st/C "t

where "t is an error term. The technique of Kalman filtering combines these two
equations so that st may be estimated from a series of measurements. The state-space
approach is of particular interest because the state equation can be a process model
which incorporates our best scientific understanding of the processes whereby s
is evolving over time. This state-space model may also be incorporated into a
spatial model. In recent years, this approach is increasingly used by soil scientists
in alliance with computational advances (e.g. Heuvelink et al. 2006; Huang et al.
2017).

http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_21
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Point Processes

There is another kind of process in the soil which we may usefully describe by
or compare with probabilistic models of spatial variation. This is the distribution
in space of discrete events. Consider, for example, the distribution in the soil of
eggs of a nematode such as Heterodera. Soil scientists and agronomists might
ask the pedometrician how quantitative analysis might illuminate the process by
which the eggs are distributed. Does the distribution appear to be controlled by soil
variation? Is it ‘patchy‘? We may make useful progress by comparing the observed
distribution of eggs with what might be expected if they were scattered at random. In
general terms, two departures from simple spatial randomness (SSR) are possible.
The first is a so-called contagious distribution where occurrences of the event are
more ‘clumped’ than SSR. This might occur if the nematodes grow and reproduce
preferentially in areas of the field where certain soil conditions prevail and so tend
to be aggregated here. The second departure from SSR is called overdispersion
where the events are distributed more evenly than is expected of a random process.
This might occur if competition between the adult nematodes is so intense that
they tend to disperse in search of resources. Distinguishing SSR from contagious
or overdispersed spatial patterns is not always simple. It is necessary to allow for
the fact that we might only observe a fraction of the events in a field by sampling.
Furthermore, the spatial distribution of a process might be complex with features
such as patchiness being observed at particular spatial scales. Walter et al. (2005)
used spatial point-process statistics to model lead contamination in urban soil. More
conventional approaches are discussed in Chaps. 10 and 12. Glasbey et al. (1991)
modelled the three-dimensional pore space within soil aggregates with randomly
positioned overlapping spheres. Pore structure modelling is discussed further in
Chap. 6.

Basis Functions and Decompositions

Any ordered set of n measurements on soil can be written down in a n � 1
array or vector. Two instances are considered here. In the first, the vector contains
measurements of one soil variable at n locations; here we consider regularly spaced
locations on a linear transect. Location determines the order in this vector. In the
second, the vector contains measurements of n soil properties from one location. A
standard, though arbitrary, order of the properties is determined in advance.

It is easy to imagine a 3 � 1 vector as a point in the three-dimensional rectilinear
space of our everyday experience, the three values being Cartesian coordinates
relative to some arbitrary origin at f0,0,0g. In fact this is a special case of a general
class of vector spaces. A vector space is a set of vectors with particular properties, so
the set of all possible vectors of measurements of the volumetric water content, pH
and clay content of the soil constitute one vector space with particular properties.
All these soil variables are real numbers and vary continuously. This vector space
is normed, i.e. we can define a distance between two vectors x and y; in this case, a
natural norm is the Euclidean distance [xyT ]1/2.

http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_12
http://dx.doi.org/10.1007/978-3-319-63439-5_6
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Vectors of the first kind, where the soil properties vary continuously and with
finite variance, and of the second kind, where the soil properties are continuously
varying real numbers, occupy a subset of Hilbert space. The reader is referred to
mathematical textbooks for a rigorous account of Hilbert space. For our purposes,
the key fact is that Hilbert spaces can be described in terms of basis vectors. If x is
any vector in such a space X and the basis vectors of X are a1 , a2 , : : : , an, then we
may express x by

x D ˛a1 C ˇa2 : : :

If the basis vectors are orthogonal, i.e. aiaj
T D 0 for any i ¤ j, then n such vectors

provide a complete basis for an n-dimensional space X. As an intuitive example,
note that we can characterise the position of any point in the 3D space of daily
experience in terms of any three coordinates from a system where the axes are
mutually perpendicular.

The reason for this mathematical digression is that pedometricians can often
gain insight into data expressed as one or more vectors by expressing them as
combinations of basis vectors. There are two general approaches. First, we may
find the coefficients which express our data in terms of certain predetermined basis
vectors. The analysis of the resulting coefficients may be informative. Second, we
may determine both the basis vectors and the coefficients in our analysis where the
former are chosen to illuminate how the data are distributed in vector space.

The first of these approaches is exemplified by Fourier analysis and wavelet
analysis. The vectors here are of the first type (i.e. one vector represents one soil
property measured at different locations). In Fourier analysis, we decompose a
continuous variable (or its discrete sampling) into additive combinations of sine
functions of different frequencies (where spatial frequency has units of distance�1).
The Fourier coefficients are complex numbers and so can convey two pieces of
information, in this case, the amplitude of the particular component (the height
of a peak over a trough) and the phase (how the peaks are aligned relative to our
sample points). Analysis of these coefficients can show us how the variation of
the soil property is partitioned between spatial frequencies, that is to say, between
fluctuations over short distances in space and longer-range fluctuations. This may
be informative. However, if our data show changes in the nature of their variability
in space, non-stationarity in the sense of our discussion above, or show marked
singular features or discontinuities, then the decomposition of the data on a basis of
uniformly oscillating sine functions is not natural, and the coefficients will not yield
a simple interpretation. For this reason, Fourier analysis has not been widely used in
pedometrics. Where it has been found useful, the soil variation has been dominated
by a more or less uniform periodic component such as the gilgai pattern analysed
by Webster (1977a, b), McBratney (1998) and Milne et al. (2010).

Wavelet analysis is related to Fourier analysis in that data are decomposed
on a basis of oscillating functions which respond to soil variation at different
spatial frequencies. However, wavelets only oscillate locally and damp rapidly
to zero so a single wavelet coefficient only describes the soil variation in a
particular neighbourhood (the size of which depends on the spatial frequency).
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A complete wavelet basis consists of dilations of a basic (mother) wavelet func-
tion which respond to different spatial frequencies and translations (shifts) of
these which describe different neighbourhoods. The wavelet transform is a new
tool in pedometrics, but a very promising one, and we discuss it further in
Chap. 15.

When we have several data vectors of the second kind, observations on several
soil variables at different locations, then we can define an orthogonal basis for the
vector space in which these are distributed. An orthogonal basis is effectively a
new set of coordinates for the vector space obtained by rotating the coordinate
system of the original space. It is possible to find a basis such that the new
variables which are defined are uncorrelated and so that one is the most variable
such transformation of the original data which is possible, the second is the
next most variable transformation orthogonal with the first and so on. These new
variables are called principal components. If some or all of the original variables are
substantially correlated, then it may be found that much of the original variability
in n-dimensional space may be accounted for by fewer than n of the principal
components. This may help the exploration of the multivariate structure of large
and complex data sets and give insight into the joint variation of many soil variables.
This is explored further in Chap. 4.

Classification and Allocation

Faced with many variable objects, the instinctive human response is to group
them together into a manageable number of classes about which meaningful
generalisations are possible. Soil classes may be formed by interpretation of profile
characteristics in terms either of the evidence which they offer of the processes of
soil genesis or the behaviour of the soil for practical purposes (e.g. drainage classes).
This is principally a qualitative activity in which the expertise of the soil surveyor
or pedologist is brought to bear on the problem. Pedometrics can offer two principal
aids to the process:

1. Clustering. Consider again the vector space defined by several soil variables. If
the space which is occupied by observations is more or less evenly populated,
then it is clear that the recognition of classes defined on these properties will be
difficult and somewhat arbitrary. We could, for examples, divide our observations
into a number of more or less similar subvolumes of the vector space, but there
are probably very many possible subdivisions which are of similar compactness
as measured by the internal variability of the classes. A vector space occupied by
data on soil which consists of a few distinct ‘types’ is likely to contain distinct
‘lumps’ or clusters of observations, since observations which are similar will
be near to each other in the vector space. In the basic conceptual model which
underlies classification, observations resemble typical or central members of the
class to which they belong, although not exactly, and so should be clustered in
the vector space defined on important soil properties.

http://dx.doi.org/10.1007/978-3-319-63439-5_15
http://dx.doi.org/10.1007/978-3-319-63439-5_4
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Finding clusters in a vector space of many dimensions is a task for the computer.
We will discuss the problem in more detail elsewhere. Suffice it to say that the key
to the task is to define a model of within- and between-class variation in terms of
a norm in vector space which is appropriate to the actual multivariate variability of
the data.

2. Allocation. Having formed a classification, we may wish to allocate a new
observation to the appropriate class. This is relatively straightforward where the
classes have been defined (perhaps by clustering) in an n-variate vector space,
and we have a new n-variate vector to allocate. This is often not the case. If we
have measurements of one or more secondary variables which differ between the
classes even though they are not definitive, then it may be possible to allocate an
observation to a class using these. For example, we may have measurements
of the reflectance of the soil surface in several frequency bands obtained by
a remote-sensing device. Using several sites where the reflectances are known
and the soil class, rules may be determined for predicting the soil class at sites
where only the reflectances are known. Discriminant analysis due to Fisher is
one technique for deriving these rules, which are formulated in terms of a norm
in the vector space. In recent years, methods such as neural networks have been
developed to solve the same problem.

Classification and allocation are discussed further in Chaps. 8 and 9.

Modelling

A soil scientist may propose a model of some soil process which describes it
quantitatively. The pedometrician may be interested in using this model to predict
the behaviour of the soil in space and time. This entails four principal tasks:

1. Calibration. A model will often contain parameters – quantities which are
constant in any one instance. Ideally, the values of parameters will be deduced
from first principles, but usually it is necessary to estimate some or all of a set
of parameters, some of which may bear a complex relationship to underlying
soil properties (e.g. the ‘tortuosity’ of pathways for solute movement through
the soil which depends on soil structure at different scales) or are somewhat
artificial, not bearing a simple physical interpretation (e.g. the ‘permeability’
parameter of some functional models of solute leaching (Addiscott and Bailey
1991). Calibration requires that some data are available on the basic soil variables
which are inputs to the model and those which are outputs. The temptation to
estimate parameters by least squares must (generally) be resisted because this
assumes that only the output variable is subject to random error, and this may
often not be the case.

2. Validation. A model which generates quantitative predictions of a soil process
must be measured against reality before it is relied on for practical purposes,
and scientists will be interested in assessing model performance to identify

http://dx.doi.org/10.1007/978-3-319-63439-5_8
http://dx.doi.org/10.1007/978-3-319-63439-5_9
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gaps in their understanding of the underlying processes. Model validation is
often difficult. The outcome of a modelled process may often be difficult if
not impossible to measure in the field, particularly when the model describes
processes at coarse spatial scales. Where the modelled output can be measured
directly, then ideally, we would wish to measure outputs from several locations
or instances where the values of input variables are all the same. This allows us to
estimate the variability of the output variable which is not explained by the model
(since the model output will be the same in all instances) and so to estimate from
the variability of the deviations between the measured and predicted outcomes
how much of this can be attributed to ‘lack of fit’ of the model (Whitmore 1991).

3. Assimilation. Ideally, a model of a soil process, driven by some readily measured
variables, will substitute for direct measurement of the process. In practice, we
may wish to combine a model with limited measurements in order to predict
outcomes or monitor a process. In this way, a purely statistical approach to
estimating values is supplemented with understanding of how the system is likely
to behave. The incorporation of measurements of a process into a model is known
as data assimilation. It is widely used in oceanography and atmospheric science
and has lately become fruitful in soil science. The state-space models described
above are useful to this end; see, for example, Huang et al. (2017).

4. Error propagation. In practice, data with attendant errors are used as input to
models with parameters estimated with error. Often the output of one model
might function as input to another (e.g. modelled production of nitrate by
mineralisation may be part of the input to a leaching model). It is clear that
errors will propagate through such a system. If the models are linear, then the
errors accumulate relatively slowly, and if all the errors have zero mean (i.e. are
unbiased), then so is the final outcome. Neither is true of non-linear models,
which may rapidly magnify the error and where the output may be biased even
if the mean error of the inputs is zero. The error propagation of a set of models
might be investigated by a Taylor series approximation where an analytical form
of the model exists. For example, if an input variable, s, has a mean ofbs and a
variance of �2s , and a model for an output variable y may be described by the non-
linear function y D f (s), then the approximate mean value of the output according
to a second-order Taylor series approximation is

f .bs/C �2s
ı2s

ıs2
f .bs/ :

A similar approximation to the variance of the output may be written.
A more generally applicable approach is to use Monte Carlo simulation. This

requires that we have a reasonable knowledge of the variances and correlations of
the input variables. We may then simulate many sets of inputs and obtain the mean
and variance of the modelled outputs.

Heuvelink et al. (1989) used both approaches to study error propagation in the
widely applied universal soil loss equation which combines several input variables
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in a strongly non-linear way. They showed that the propagation of error was
such that quite small uncertainty in the input variables could make the resulting
predictions of little practical use. This is discussed further in Chap. 14.

1.4 Soil Attributes and Objects

It is worth considering the kind of objects that pedometrics studies. Pedometrics
deals mainly with data on attributes observed on soil objects.

1.4.1 Soil Attributes

The attributes can either be direct or indirect (proximally or remotely sensed,
including humanly sensed) measurements of physical, chemical or biological soil
properties in the field or on specimens taken back to the laboratory or multivariate
soil classes derived from them. The word attribute is used because the properties
are attributed to the soil. Attributes are a function of the soil and the measurement
process. The attributes can be discrete or continuous; see Chaps. 2, 3, 4 and 5.

1.4.2 Soil Objects

1.4.2.1 Geometric Objects

The objects on which attributes are observed can take a variety of forms, but most
usually it is from some more-or-less fixed volume such as a soil core or pattern of
soil cores or an auger boring or profile pit. Some workers have recognised the need
for this volume to be of a minimum size in order that a good estimate of particular
properties can be made. The measurement of water content of a saturated uniformly
packed sand is a simple example of the dependence on scale of soil measurements.
Sampling a very small volume gives a variation in the volumetric water content
between zero and unity. Sampling a larger volume reduces the range of results,
until, when a large enough volume is sampled, each measurement gives effectively
the same result. The smallest volume at which this occurs is the representative
elementary volume (REV). Buchter et al. (1994) effectively demonstrated the
concept for stone content in a Swiss soil (Fig. 1.1). The range in percentage
stones decreases exponentially from 100% for small sample lengths (volumes) to
an asymptote of about 10%, which represents some larger-scale or macroscale
variability. Figure 1.1 suggests that in this soil, the representative elementary volume
is about 0.3 * 0.3 * 0.3 D 0.0027 m3 or about 30 l.

http://dx.doi.org/10.1007/978-3-319-63439-5_14
http://dx.doi.org/10.1007/978-3-319-63439-5_2
http://dx.doi.org/10.1007/978-3-319-63439-5_3
http://dx.doi.org/10.1007/978-3-319-63439-5_4
http://dx.doi.org/10.1007/978-3-319-63439-5_5
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Fig. 1.1 The representative elementary ‘length’ of stone content in a Swiss soil. The range in
percentage stones decreases exponentially from 100% for small sample lengths to an asymptote
of about 10%. The graph suggests the representative elementary volume is about 0.03 m3 (30 l)
(Figure 6 from McBratney 1998)

The REV concept does not seem to have been applied to chemical and biological
attributes or to soil classes for that matter. In a related way, geostatisticians (Isaaks
and Srivastava 1989) recognise the need to define the so-called geometric support of
observations. Geostatistics tells us that observations on larger supports or volumes
within a fixed area will have smaller variances. The stabilisation of this variance is
a way of defining the representative elementary volume. So, the REV concept and
the geostatistical concept of geometric support are closely related.

1.4.2.2 ‘Natural’ Objects?

These statistical concepts are not related to natural soil individuals, however. Soil
science has always been troubled by a lack of clear definitions of individuals. When
we study botany, we can almost always define and recognise an individual plant
but in soil science, the definition of an individual soil is problematic. Pedologists
recognise individuals such as the soil horizon (FitzPatrick 1993), the soil profile and
the pedon (Johnson 1963). The problem with these is the lack of clear boundaries
or of a fixed geometry. Russian pedologists recognise larger individuals such as the
elementary soil area, the tessera and the tachet (Fridland 1976). Once again these
are geometrically problematic.
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1.4.2.3 Operational Objects

Holmgren (1988) sees the definition of soil individuals as a difficult problem and
wrong-minded. He says ‘that such distinct entities do not exist in soil is obvious’.
He therefore suggests we should not seek such natural objects and argues for what
he calls a point representation. He proposes a concept of a pedon that comprises
a set of observational procedures which will lead to a set of attributes, including
measurements of spatial and temporal variation, centred on a point. Holmgren’s
(1988) definition is:

A pedon is the possibility for soil observation in respect to a geographic point location.
It can be realised by a set of observational propositions, each spatially and temporally
specified in relation to that location.

This concept seems to be more related to the practice in soil physics, chemistry
and biology. This representation may be aligned with the geostatistical and REV
concept above. The space-time geometric support of this operationally defined
object is not clear, however. The two concepts could be combined, however. This
is discussed further in Chaps. 8, 9, 10 and 21.

Ultimately, pedometrics is more a study of soil information (about given
locations) than a study of natural or unnatural soil bodies and their attributes.

1.5 Scale Hierarchy

The word ‘scale’ is widely used in contemporary soil science, often confusingly.
Conventionally, cartographers use the word ‘scale’ to refer to the ratio of a distance
on a map to the corresponding distance on the ground. This simple descriptor
denotes the detail which a particular map can convey. Thus, a ‘large-scale’ map
(e.g. 1:5,000) is a relatively detailed representation of a relatively small area; a
‘small-scale’ map (e.g. 1:250,000) generalises over a large area. This notion of
generalisation is important in soil science. It is obvious that we can describe the soil
in terms of processes and phenomena across continents and landscapes or within
horizons and aggregates. Confusingly, the former generalisation (which we would
represent on a small scale map) is generally called large scale, and the generalisation
over smaller intervals in space is referred to as small scale. Note that wavelet
analysis also uses the term ‘scale’ in an opposite sense to the cartographers. We
will use the term ‘coarse scale’ to refer to generalisations over large distances,
represented at small cartographic scales, and ‘fine scale’ to refer to generalisations
over short distances. This section aims to identify some of the key issues in current
discussion of spatial and temporal scales in soil science which are relevant to
pedometricians. It draws on an admirable review of the subject by Wagenet (1998).

In soil science, we may generalise over coarse or fine scales in both space and
time. So, we may consider the soil system in terms of variations over a landscape
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(coarse spatial scale) or variations within a profile (fine spatial scale). Similarly,
we may consider coarse temporal scales (e.g. the decarbonation of a soil on an
old land surface) or fine scales (e.g. hourly fluctuations in the water content of
a cropped soil). Scale in space and time becomes of practical importance to soil
scientists in general, and pedometricians in particular, when we find that some
scales of generalisation are relatively rich in terms of our information about the
soil and our ability to describe soil processes with confidence, but these do not
necessarily coincide with the scales at which a manager might require predictions
of soil behaviour under different scenarios.

The notion of a scale hierarchy is useful here and has been developed by
ecologists who have recognised that ecosystems may be characterised as open
systems with self-organising processes and that the flux of energy and matter
through such a system tends to result in organisation over a hierarchy of spatial
scales. This may be seen in soil systems too, where structure can be recognised in
the organisation of clay particles by flocculation, the organisation of this material
into aggregates, the structure of aggregates and macropores in horizons and so on
up to the broad zonal patterns of soil variation at continental scale. Similarly, soil
variation over time is organised in a hierarchy of scales from hourly fluctuations
driven by rainfall events, the diurnal cycles of temperature, annual weather cycles
and coarser scale variations still, associated with long-term cycles of climate and
long-term processes of geomorphological change.

Bergkamp (1995) has identified concepts of scale hierarchy in the ecological
literature which are relevant to soil scientists. Key to this development is the concept
of a hierarchical structure of a complex system with explicit scales in time and
space. The basic stable element of such a hierarchy is called the holon. A holon is
essentially a distinct subsystem defined principally in terms of processes. It may
therefore be defined in line with the concerns of a particular investigation. The
principle interactions within a system take place within holons over particular scales
of time and space. However, there are interactions within the hierarchical system of
holons (holarchy) whereby processes at one scale of time and/or space constrain
processes at other scales. Thus, for example, the process of aggregation at one
scale both constrains and is constrained by the processes at coarser spatial and
temporal scales which cause the differentiation of horizons. In general, however,
holons at coarse temporal/spatial scales are more susceptible to the effects of events
at comparable scale and may only respond to finer scale processes under conditions
which are otherwise stable. Thus, processes of soil development in the profile –
illuviation, development of clay skins and formation of pans – are likely to be
overridden by coarse (temporal and spatial)-scale effects such as isostasy or climate
change.

What are the implications of this analysis for soil research in general and
pedometrics in particular? Wagenet (1998) identified three particular issues for
research on a particular holon or subset of a holarchy at particular spatial and
temporal scale. First, it is important to ensure that the basic unit of soil which
is measured in such a study corresponds to the representative elementary volume
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(REV) for the scale of interest. That is to say, the basic unit must be large enough
to encompass the holons at finer scale which constitute the holon of interest, but not
so large as to embrace the variability which occurs at this scale. The second point
is that this variability must be adequately characterised. These are important issues
for pedometricians and imply the careful choice of sample support and the selection
of an appropriate sampling design. Since, as Wagenet (1998) recognises, the precise
scale of a study may be constrained as much by technical limitations as the problem
of interest, the pedometrician must be involved at all stages in the planning of the
research activity. The third point made by Wagenet is that the process models which
are used in a study must be appropriate to the scale. Thus, Darcy-type models must
give way to two-domain models at some spatial scale.

We have discussed spatial and temporal scale as independent, but in fact they will
generally be correlated, coarse spatial scale factors (topography) being correlated
with coarse temporal scale factors (isostasy), while fine-scale processes (e.g. at
molecular level) may tend to occur over fine temporal scales (Fig. 1.2). This
assumption is implicit in Hoosbeek and Bryant’s (1992) well-known figure linking
scale (explicitly spatial) to appropriate modelling strategies (Fig. 1.3).

Fig. 1.2 Scales of soil processes (Figure 4 redrawn from Wagenet 1998)
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Fig. 1.3 A hierarchical representation of spatial scales of soil processes. At each scale, there is
a plane of possibilities of research modelling approaches. The front half of each horizontal level
corresponds to Table 1.1 (Redrawn from Hoosbeek and Bryant 1992)

An understanding of this relationship is important, particularly, to return to the
key problem of scale, when we wish to translate knowledge and research findings
between scales. McBratney (1998) discussed some of these issues and Bierkens
et al. (2000) offer a detailed discussion, and we return to this issue in Chap. 15.
For the present, however, it is worth noting that important processes may occur off
the diagonal of Fig. 1.2. For example, non-equilibrium processes of pesticide-soil
interaction occur over short distances (fine spatial scale) but long periods (coarse
temporal scale), and this type of process is poorly modelled (Wagenet 1998).
Similarly, the weathering of rock occurs at fine spatial scales but over long time
periods (McBratney 1998). Rapid (fine temporal scale) processes may also occur

http://dx.doi.org/10.1007/978-3-319-63439-5_15
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over relatively long distances, e.g. preferential flow through macropores (Wagenet’s
1998 example) or global scale but rapid processes such as the Chernobyl incident
(McBratney’s 1998 example).

In short, pedometricians must be aware of the issues of spatial and temporal scale
when collecting and analysing data on soil. A good summary of the key issues is due
to Bergkamp (1995) who noted (1) that spatial patterns differ at different scales,
(2) changes of spatial patterns differ at different temporal scales, (3) processes
controlling changes in spatial pattern differ at different scales and (4) at different
scales, different variables are often needed to describe similar processes. These
considerations all pose mathematical and statistical challenges to the pedometrician.
Some of these are met by the techniques which we describe in this book. Others are
challenges for the future.

1.6 Pedometric Principles and Hypotheses

As a summary of this introductory chapter, we outline a few general and specific
ideas that underlie the pedometric approach.

1.6.1 General Principles

All the ‘metric’ disciplines (e.g. biometrics, chemometrics, envirometrics), attempt-
ing a quantification of the natural environment and phenomena, will recognise at
least three principles:

1. A quantification principle
This suggests that wherever possible, observations should be quantitative rather
than qualitative. The main rationale for this is that the difference between two
observations can be calculated. For example, if we say the texture of a soil
horizon is ‘light’ or ‘heavy’, we might not be able to easily understand how
different ‘light’ is from ‘heavy’. If however we describe one horizon as having a
clay content of 10 dag/kg and another as 70 dag/kg, we know immediately that
the difference is 60 dag/kg. This principle implies that vague descriptors should
be quantified.

2. An uncertainty principle
This principle is not the Heisenberg one, but simply further suggests that
wherever possible, a measure of uncertainty should accompany quantitative
observations. This may be a statistical uncertainty. For example, if we have a field
estimate of horizon texture, then the uncertainty might have a standard deviation
of ˙5 dag/kg, whereas if this was a laboratory measurement, the associated
standard deviation might be ˙1 dag/kg. Further, if the soil attribute is predicted
rather than measured, then the one which is least uncertain is to be preferred.
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3. A modelling parsimony principle (Ockham’s razor)
This old principle described 700 years ago by William of Ockham states that
when comparing models for describing a phenomenon, choose the simplest one.
For example, if we can describe the particle-size distribution of a soil material
equally well with a two- or a three-parameter distribution, then the model with
two parameters is to be preferred.

We could suggest some principles from other disciplines, e.g. economic or
sociological ones, but they do not seem to be in the domain of quantifying the natural
environment. They may apply when various uses are made of soil information.

1.6.2 Specific Principles

In addition to these general principles, there are some principles or hypotheses
specific to the domain of pedometrics. These may be summarised by a single all-
embracing statement:

Soil is a more-or-less continuous, anisotropic, non-stationary, multivariate phenomenon in
various states of equilibrium with its environment.

Attempts to quantify soil should recognise these features. They lead to various
hypotheses that may be tested or to assumptions commonly underlying pedometric
analysis. Therefore, various null hypotheses that could or should be tested by
empirical observation at any location include:

Soil is a spatially discontinuous phenomenon.
Soil variation is constant with direction.
The mean of a soil property is independent of position in space or time.
The soil can be adequately described by a single property, e.g., pH.
Soil is a function of its current environment.

Finally, it is a difficult philosophical point to contend that these principles
and hypotheses lead to a more objective treatment of reality. They are all human
constructions. Commonsensically, it would seem that they probably lead to a
legitimate empirical testing of humanity’s hypotheses about the nature of soil.
Nevertheless, as the famous biologist J.B.S. Haldane once wrote, ‘If you are faced
by a difficulty or a controversy in science, an ounce of algebra is worth a ton of
verbal argument’.
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Part II
Statistical Footings

“A certain elementary training in statistical method is becoming
as necessary for everyone living in this world of today as
reading and writing.”

H.G. Wells

Statistical methods are needed to model the natural variation of soil across space
and time and its multiple attributes. This section gently introduces some basic
and exploratory statistical concepts in the context of soil observation to give an
underpinning to any pedometric analysis.

Chapter 2 reminds us about the various kinds of scale on which soil attributes
are measured, which in turn lead to various statistical analyses. Chapter 3 deals
with the very interesting and under-researched topic of statistical distributions
of nominal and continuously scaled soil attributes. A large variety of statistical
distributions have been observed for soil properties. Chapter 4 gives an introduction
to exploratory methods for looking at multiple soil attributes observed on the same
soil object and at the special case when the sum of the variables is constant.
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Chapter 2
Soil Statistical Description and Measurement
Scales

Thomas F. A. Bishop and Alex. B. McBratney

“Without data, you are just another person with an opinion.”

W. Edwards Deming American Engineer (1900–1993)

2.1 Why Statistical Description?

A soil scientist in most instances can only measure and describe soil at a few points
in a landscape; at each location, he has ways to describe and measure soil features.
These may be based on field observations, e.g. presence of mottling in the subsoil,
or a sample may be collected for subsequent laboratory analysis, e.g. clay content.
Many different measurements of soil properties can be made, and each of these has
what we call a measurement scale which in simplistic terms tells us whether it is
measured as numbers, e.g. clay content, or categories, e.g. texture class.

A dataset could be collected for many purposes; it could be for mapping or
modelling or testing the impact of management practices. Whatever the ultimate
purpose, once measurements have been made, our next step is to describe the
dataset, and the approaches we take are largely determined by the measurement
scale. We describe the dataset initially to summarise its key features, but also it
is useful for looking at outliers which may be errors or unusual values. In many
cases, the unusual values, for example, hotspots of soil contamination, are of most
interest. From this summary of the data, and how we intend to use the data, we can
then decide on which of the wealth of methods presented in this book to use.

Therefore, in this chapter, we focus on:

– The measurement scale
– Summaries of data used to describe a dataset, both numerical and graphical
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2.2 Scales of Measurements

Random variables may be discrete meaning that they have a countable number of
possible values or continuous having an almost infinite number of possible values.
Observation of a soil class, say the soil order in soil taxonomy (Staff 1999), would be
a discrete random variable having 12 possible states, whereas the pH of the topsoil
would be a continuous random variable, although in reality pH as measured in the
field would lie somewhere in between.

Soil properties differ in “how well” they can be measured, i.e. in how much
measurable information their measurement scale can provide. There is obviously
some measurement error involved in every measurement, which determines the
“amount of information” that we can obtain. Another factor that determines the
amount of information that can be provided by a variable is its “type of measurement
scale”. Different soil attributes or soil properties are measured on different scales.
These kinds of scales are widely recognised in the statistical literature, and different
statistical methods pertain to the different types of scale. There are a number
of different scales, and we now present them in order of quantitativeness. There
are typically four levels of measurement that are defined in order of increasing
quantitativeness: nominal, ordinal, interval and ratio. The first two, nominal and
ordinal, correspond to discrete random variables, and interval and ratio correspond
to continuous random variables. Different kinds of statistical procedures pertain to
discrete and continuous random variables. These terms are also synonymous with
categorical and numerical variables.

Let us elaborate the four measurement scales a little further.

2.2.1 Measurement Scales

2.2.1.1 Nominal

Nominal (or sometimes unranked multistate) variables allow for only qualitative
classification. That is, they can be measured only in terms of whether the individual
items belong to some distinctively different categories, but we cannot quantify or
even rank order those categories. For example, all we can say is that two soil samples
are different in terms of variable A (e.g., they have a different pedality), but we
cannot say which one “has more” of the quality represented by the variable. Typical
examples of nominal variables are soil class or type of ped. This is the simplest type
of scale and refers to different classes.

2.2.1.2 Ordinal

Ordinal variables allow us to rank order the items we measure in terms of which has
less and which has more of the quality represented by the variable, but still they do
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not allow us to say “how much more.” A typical example of an ordinal variable is
small, medium or large peds. For example, we know that medium peds are larger
than small ones, but we cannot say that it is, for example, 20% larger. Also this
very distinction between nominal, ordinal and interval scales itself represents a good
example of an ordinal variable. For example, we can say that nominal measurement
provides less information than ordinal measurement, but we cannot say “how much
less” or how this difference compares to the difference between ordinal and interval
scales.

2.2.1.3 Interval

On interval measurement scales, one unit on the scale represents the same magnitude
on the attribute being measured across the whole range of the scale. For example,
temperature in Celsius is measured on an interval scale, and then a difference
between 10 and 11ıC would represent the same difference in temperature as would
a difference between 40 and 41ıC. Interval scales do not have a “true” zero point,
however, and therefore it is not possible to make statements about how many times
higher one score is than another; 40ıC is not four times as hot as 10ıC. Another
example of an interval scale attribute is pH.

2.2.1.4 Ratio

Ratio-scaled variables have a fixed interval between values and also an absolute
zero. For example, a soil temperature of 303 K is 303/273 times a soil temperature
of 273 K (which is not the case if we describe them as 30ıC and 0ıC). Statistically,
in most situations, interval- and ratio-scaled variables are treated much the same
way. Most laboratory-derived attributes and some field ones such as soil depth are
on the ratio scale.

It is important to recognise that there is a hierarchy implied in the level of
measurement scale (Fig. 2.1). At lower levels of measurement, assumptions tend
to be less restrictive, and data analyses tend to be less sensitive. At each level up the
hierarchy, the current level includes all of the qualities of the one below it and adds
something new. In general, it is desirable to have a higher level of measurement (e.g.
interval or ratio) rather than a lower one (nominal or ordinal). A common problem
with conventional soil description systems is that variables are recorded as ordinal-

Ratio Has an absolute zero

Interval Differences between values are meaningful

Ordinal Attributes can be ordered

Nominal Attributes have no order, only names

Fig. 2.1 Staircase of measurement scales
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scaled variables when they could be interval or ratio. For example, the size of peds
is measured and then allocated to a class or category removing some information
from the description.

We should also realise that this scheme is a simplification. Because as we shall
see later – tools such as fuzzy sets or multivariate methods allow us to put apparently
unranked variables onto continuous scales by calculating taxonomic distance.

2.3 Numerical Summaries of Soil Data

Given a dataset of soil measurements, we need statistics to summarise its key
features. The statistics we use depend on the type of the measurement scale of the
data we have.

2.3.1 Summaries of Categorical Data

Categorical data have been measured on the ordinal and nominal measurement
scales. Categorical data is best summarised in terms of the frequency, f, of
observations found within each class. It is usually presented in the form of a table,
a frequency table. The example dataset we will use in this chapter is from the
catchment of Muttama Creek which is located in Southeastern Australia (Fig. 2.2).
Further details about the catchment are given in Orton et al. (2016). One hundred
seventy-four sites were sampled to a depth varying between 1 and 2 m, and various
soil properties were measured at a subset of sites (Fig. 2.2).

In our first analysis, we wish to see how many sites are located within each
geological unit which we have classified based on silica content. Gray et al.
(2016) found that classifying geological classes on the silica content improved
the usefulness of geological maps as predictors. Therefore we wish to make sure
we have adequately sampled each of the silica classes. In Table 2.1 we present
a frequency table for each of the classes; we also present the results in terms of
the percentage of sites that fall within each class. The advantage of scaling the
frequencies to a % is that it makes the results scale independent, or independent
of n, the number of samples, enabling us to compare results to other datasets if
needed. We also include another column, the % of area in the catchment covered by
each class. This is based on the geological map (Warren et al. 1996) on which the
silica classes were extracted. By using the % frequency we can easily see how well
the sampling matches the areal proportions in the geological map. As can be seen by
the results, the sample design does include any sites within the siliceous upper class,
but it only covers 0.1% area so it is not a great concern. The other silica classes have
at least four observations in each class so they have some representation for use in
further modelling. In terms of being proportional to the area of each silica class in
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Fig. 2.2 Map of Australia with solid circle showing the location of the study area (left) and soil
survey locations within Muttama Creek catchment (right)

Table 2.1 Frequency table for soil survey locations within each silica class

Silica class Frequency % frequency samples % area of geology map

Mafic (Mafc) 36 20.7 24.4
Siliceous mid (SlcM) 42 24.1 13.7
Siliceous upper (SlcU 0 0 0.1
Siliceous lower (SlcL 80 46.0 55.6
Intermediate lower (IntL) 4 2.3 1.0
Intermediate upper (IntU) 12 6.9 5.2
Total 174 100.0 100.0

the geology map, we can see that the mafic, intermediate upper and intermediate
lower classes are very close while the other classes are over- or under-sampled.

2.3.2 Summaries of Continuous Variables

Continuous data has been measured on the ratio and interval scales. In the case
of continuous variables, we need to consider three types of statistics. This is best
illustrated with an example. The figure below presents the histograms for electrical
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conductivity (EC) measured using a 1:5 soil/water extract for the 0–30 cm and 60–
90 cm layers for 55 soil sites in Muttama Creek catchment. While 174 sites have
been sampled in Muttama Creek, only 55 had EC measured on them.

We can see that visually the distributions are quite different and we wish to use
some metrics to summarise this. The first is one that describes a typical value for the
dataset; or a measure of centre of the distribution, a simple estimate would be the
value that corresponds to the highest bar in the histograms. This would be �0.05 dS
m�1 for the 0–30 cm layer and �0.03 dS m�1 for the 60–90 cm layer. Of equal
interest is the variation in the dataset or a measure of spread. A simple estimate
would be the difference between largest and smallest values in the histogram. This
would be �0.18 dS m�1 for the 0–30 cm layer and �0.4 dS m�1 for the 60–90 cm
layer. Finally, the shapes of the histograms are quite different, and a statistic that
describes this can be quite useful; key issues to consider are how symmetrical
the distribution is or are there any unusual values. For example, there is one large
observation at �0.4 dS m�1 for the 60–90 cm layer.

In the next section we present summary statistics that relate to these three
features. Another concept to consider when presenting data is to distinguish between
statistics we calculate from samples and those from populations. Continuing with
our example, we may wish to know a statistic that represents the typical value for
EC across the catchment or perhaps for each silica class in the Muttama Creek
catchment. The true value is the population statistic which we would obtain if we
could measure all of the soil in the catchment. In reality, we only have a subset of
samples from which to estimate the statistics; this is our sample statistic. A large part
of statistics is about using our limited samples to make an inference about the true
population statistics. For the purposes of this chapter, we present sample statistics
but make mention of differences in notation and equations that exist for population
statistics.

2.3.2.1 Measures of Centre

The most common measure of centre is the mean which is for the samples we denote
as y and for populations we denote as �. For the sample mean, the equation is:

y D

Pn
iD1 yi

n
; (2.1)

where yi is the ith observation and n is the number of observations.
We now introduce another property in our case study, clay content which was

measured at 77 sites in Muttama Creek catchment. The mean values for EC and
clay in the 0–30 cm and 60–90 cm layers are presented in Table 2.2 below. There
is not much difference in the mean EC between the two layers, but there is a large
increase in the mean clay content with depth as would be expected as many of the
soils in Muttama Creek have duplex profiles (i.e. an abrupt increase of clay content
between the topsoil and subsoil). One issue with the mean is that it is susceptible
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Table 2.2 Measures of
centre

Property EC (dS m�1) Clay (%)

Depth (cm) 0–30 60–90 0–30 60–90
Mean 0.071 0.061 22.66 47.26
Median 0.066 0.039 21.43 48.16

Fig. 2.3 Histogram of EC 1:5 soil/water extract for 0–30 cm layer (left) and 60–90 cm layer (right)

to a small number of outliers; these may be erroneous measurements or actually
real observations that relate to unusual areas, and in case of EC, this could be a
small hotspot where saline groundwater is close to the surface. In these situations
the mean does not give a very good estimate of the typical value in a dataset as it can
be inflated or deflated by a small number of outliers. This will be elaborated further
in the coming sections.

Another option is the median which is the middle value in the dataset and is
calculated by ordering the observations from smallest to largest. The sample median,
Qy, and population median, M, is calculated by ordering the observations and using
the equation below to work out the location of the middle value:

median D
.n C 1/ th

2
ordered value: (2.2)

Unlike the mean, a few large or small values do not affect its value. Examining
the data in Table 2.2 for the clay values, we can see that the mean and medians
are quite similar, meaning that the distribution is symmetrical. The EC 0–30 cm
layer also has a similar mean and median; however, they are quite different for the
30–60 cm layer. The median is much smaller than the mean which makes sense if
we examine the histogram (Fig. 2.3) which shows that there are a few large values
of EC which inflate the mean value, so much so that the mean value is located at a
larger value past the peak in the histogram.
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2.3.2.2 Measures of Variation

Equally important to the mean and median are measures that describe how much
variation there is in a dataset. The most commonly used is the variance as shown by
the formula below:

s2 D

Pn
iD1 .yi � Qy/2

n � 1
: (2.3)

One can see it is calculated simply by the average squared difference of each
observation from the mean. In the formula above we calculate the sample variance,
s2, and for the population variance we use ¢2, and the denominator has N rather than
n-1, where N is population size and n is the sample size. The difference ensures that
the sample variance gives an unbiased estimate of population variance. One issue
with the variance is the units are squared of the variable being measured; in our
EC example, this would be (dS m�1)2. This does make it difficult to interpret; so
by taking the square root of the variance we get the standard deviation which is
presented in Table 2.3. The advantage is that it is on the scale of the measurements.
Based on the standard deviation, we can say that EC is more variable than clay
content in our data, but as shown by the minimum and maximum values, the range
of possible values is much greater for EC than clay (Table 2.3); the means are also
quite different between depths and soil properties.

Due to this, when comparing variables with different magnitudes, a useful
statistic is the coefficient of variation (CV) which is a measure of the variation as
estimated by the standard deviation relative to the sample mean; it is calculated by

CV D
s

y
: (2.4)

Strictly, the coefficient of variation does apply to ratio-scaled variables but not
to interval-scaled ones. For example, if we take five soil temperature observations
measured in Celsius (5, 10, 11, 7, 13), the apparent CV is 0.35, whereas the same
set of observations measured in Kelvin (278, 283, 280, 284, 286) has a CV of 0.011.

Table 2.3 Measures of
variation

Property EC (dS m�1) Clay (%)

Depth (cm) 0–30 60–90 0–30 60–90
s 0.033 0.077 10.76 17.19
Q1 0.046 0.029 16.54 31.42
Q3 0.089 0.060 27.86 59.61
IQR 0.043 0.031 11.32 28.19
CV 0.468 1.268 0.471 0.371
Minimum 0.013 0.016 4.52 10.38
Maximum 0.177 0.447 54.34 78.73
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As shown in Table 2.3, using the coefficient of variation, both EC and clay in
the 0–30 cm layer have the same amount of variability rather than EC being three
times as variable as clay if we use standard deviation to assess variation. The EC
60–90 cm layer is still the most variable but one issue with using the standard
deviation, and also the coefficient of variation is that for asymmetrical distributions
these may not be useful measures. This is because the variation is calculated by the
squared difference from the mean meaning that large values as shown in Fig. 2.3
will inflate the estimate of standard deviation.

This is where measures based on the order are useful; analogous to the median
is the interquartile range (IQR) which describes the difference between the 1st (Q1)
and 3rd quartile (Q3) or the middle 50% of the distribution. This means the values
outside this range (the lower and upper quarter of the distribution) do not impact
on the estimate of the variation. Examining the IQR alone we can see that for EC
the 0–30 cm layer is more variable than the 60–90 cm layer. This is a very different
result than what is obtained by standard deviation and CV.

2.3.3 Other Statistics

Until now we have qualitatively assessed the datasets for symmetry and discussed
the effect of a small number of larger (though could be small values) on measures of
centre and variation. This is an important characteristic as the normal distribution is
symmetric and many of the statistical methods presented in this book are based
on the assumption that the data follows a normal distribution. One estimate of
the asymmetry of the distribution is the skewness. A positive value means the
distribution is skewed or there are a small number of observations at the larger
end of the distribution, creating a pointy or skewed distribution; a negative skew
means the mirror image of this but the pointy end is towards small values. There is
evidence of skewness in the EC 30–60 cm layer both by its histogram (Fig. 2.3) and
the skewness value of 4.04 (Table 2.4). A heuristic rule proposed by Webster and
Oliver (2001) for considering whether to transform a variable is when the skewness
is outside the interval of [�1, 1]. In the case of the soil properties presented in Table
2.4, using this rule we would only consider transforming EC for the 30–60 cm layer.

One issue to consider is the effect of outliers; as noted previously, the mean
and standard deviation are sensitive to outliers. The skewness is no different and
analogous to the median, and IQR is the octile skew which was compared by Brys
et al. (2003) with other measures of skew and as far as we are aware first applied to

Table 2.4 Measures of
symmetry

Property EC (dS cm�1) Clay (%)

Depth (cm) 0–30 30–60 0–30 30–60
Skewness 0.86 4.04 0.77 �0.03
Octile skew 0.20 0.43 0.11 0.07
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Table 2.5 To transform or not to transform

Octile skew

Skewness Interval Inside [�0.2, 0.2] Outside [�0.2, 0.2]
Inside [�1, 1] No transform Possibly transform
Outside [1, 1] Possibly transform Transform

soil data by Lark et al. (2006). It is less sensitive to outliers than the skewness,
and Lark et al. (2006) proposed an equivalent heuristic of rule 0.20 for octile
skew where we should consider transformation if the value is outside the range
[�0.2, 0.2]. The value of the octile skew is evident in situations where a small
number of observations result in a skewness greater than 1.0, but the issue here will
be that the decision to transform the entire distribution is based on a few outliers.
The same dataset may have an octile skew less than 0.2 which would mean the
small number of larger values is insufficient to ruin the symmetry of the overall
distribution so a transformation may not be recommended. In this situation the
decision to transform depends on what part of the distribution is being modelled or
of interest, the overall distribution or a few outliers. A decision matrix on whether
to transform or not is presented in Table 2.5 based on the values of the skewness and
octile skew.

2.4 Graphical Summaries of Soil Data

Like numerical summaries, how we graphically summarise data depends on the
measurement scale. The advantage of graphical summaries is that we can view the
shape of the entire distribution unlike summary statistics which describe one feature
only, i.e. the typical value or the variation in the data.

2.4.1 Categorical Data

The figure below presents the frequency table from Table 2.1 as a bar plot where the
y-axis is the frequency and the x-axis is the different silica classes. We clearly see
the range of classes and their associated frequencies, and identify the most sampled
class, Siliceous Lower (SicL) (Fig. 2.4).
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Fig. 2.4 Bar plot of
frequencies within each silica
class

2.4.2 Numerical Data

The most common type of graphical summaries for numerical data is boxplots and
histograms which have advantages and disadvantages depending on the situation
which will be elaborated on further in the following sections.

2.4.2.1 Histogram

A histogram is essentially a bar plot of frequencies where frequencies are the
number of observations within a range of values, called bins. In the figures below
(Fig. 2.5), we present histograms of clay content where the bin size was 6%.
Considering the histograms in terms of the summary statistics, we can see that the 0–
30 cm layer is positively skewed which is supported by the skewness value of 0.77
(Table 2.4), whereas the distribution for the 60–90 cm layer is quite symmetrical
(skewness D �0.03 from Table 2.4). When comparing the distribution for EC
(Fig. 2.3) and clay for the 0–30 cm layer, it can be seen that the positive skew
for clay is weak compared to the EC which has a skewness of 4.04 (Table 2.4).

An issue with using histograms is the size of the dataset which is best illustrated
by examining histograms for each silica class (Fig. 2.6). The number of observations
within each silica class where clay content was measured ranged between 3 and
29. As shown by the histograms, when the number of observations is small, they
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Fig. 2.5 Histograms of clay content (%) for 0–30 cm layer (left) and 60–90 cm layer (right)

are not particularly useful; this is especially clear for the intermediate lower and
intermediate upper silica classes. Clearly, alternative approaches are needed when
the dataset size is small.

2.4.2.2 Boxplots

Below boxplots are presented for the clay content (Fig. 2.7). They have a number of
key features:

– The width of the box is determined by the 1st (Q1) and 3rd quartiles (Q3).
– The line down the middle is the median.
– The length of the whiskers is determined by the largest or smallest observation

that falls within the bounds determined by [Q1–1.5IQR] and [Q3 C 1.5IQR].
– Observations outside the bounds of [Q1–1.5IQR] and [Q3 C 1.5IQR] are

identified as outliers and plotted individually.

Boxplots do provide less information about the distribution of a variable than
histograms. For example, the boxplot for the 60–90 cm layer does show approxi-
mately equal whisker lengths which indicates a symmetrical distribution but not the
actual shape as shown by the histogram (Fig. 2.5). One useful feature is that boxplots
automatically identify outliers which can be examined more closely. However, since
a boxplot provides less information than a histogram, it is recommended that when
sufficient data is available, a histogram is used. For smaller datasets, a boxplot
should be used which is illustrated by comparing the histograms of clay for each
class (Fig. 2.6) with boxplots of clay for each silica class (Fig. 2.8). Key features
of the distribution such as symmetry are easier to determine for the boxplots as
compared to the histograms.
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Fig. 2.6 Histograms of clay content (%) for 0–30 cm layer for each silica class

Fig. 2.7 Boxplots of clay content (%) for 0–30 cm layer (left) and 60–90 cm layer (right)
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Fig. 2.8 Boxplots of clay content (%) for 0–30 cm layer and (left) 60–90 cm layer (right) for each
silica class

It should be noted that for the intermediate lower and intermediate upper silica
classes the number of observations is three or less, and in these cases, it would
probably be wisest to plot the raw data if a graphical summary was required.

As we have discussed, the wisest choice of graphical summary is largely
determined by the dataset size. While these are only guidelines, some heuristic rules
could be:

– 1–5 observations: Plot raw data.
– 6–20 observations: Use a boxplot.
– 20C observations: Use a histogram.

2.5 Concluding Remarks

We have presented different measurement scales of observations and focused on
statistics and graphical methods to describe such data with a focus on categorical
and continuous data. In the case of categorical data the choices are limited but this
is not the case for continuous data. In this case, the type of numerical summary of the
data depends on how skewed the data is; for symmetrical distributions, the classical
measures, mean and variance, are best, but when the data is skewed, other measures
are more useful such as the median and interquartile range. A decision matrix was
presented based on the skewness and octile skew to determine whether the data
should be transformed to make the distribution symmetrical (Table 2.5). Finally, we
presented two common graphical summaries, the boxplot and histogram, the choice
of which to use is largely determined by the dataset size.



2 Soil Statistical Description and Measurement Scales 57

References

Brys G, Hubert M, Struyf A (2003) A comparison of some new measures of skewness. In: Dutter
R, Filzmoser P, Gather U, Rousseeuw PJ (eds) Developments in robust statistics: international
conference on robust statistics 2001. Physica-Verlag HD, Heidelberg, pp 98–113

Gray JM, Bishop TFA, Wilford JR (2016) Lithology and soil relationships for soil modelling and
mapping. Catena 147:429–440

Lark RM, Bellamy PH, Rawlins BG (2006) Spatio-temporal variability of some metal con-
centrations in the soil of eastern England, and implications for soil monitoring. Geoderma
133(3–4):363–379

Orton TG, Pringle MJ, Bishop TFA (2016) A one-step approach for modelling and mapping soil
properties based on profile data sampled over varying depth intervals. Geoderma 262:174–186

Staff SS (1999) Soil taxonomy: a basic system of soil classification for making and interpreting
soil surveys, 2nd edn. Natural Resources Conservation Service, USDA, Washington, DC

Warren AYF, Gilligan LB, Raphael NM (1996 Cootamundra 1:250 000 Geological Sheet
SI/55–11,. Geological survey of New South Wales, Sydney, Australia

Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, Chicester



Chapter 3
Statistical Distributions of Soil Properties

Alex. B. McBratney, Budiman Minasny, Irina Mikheeva, Melissa Moyce,
and Thomas F. A. Bishop

“The true logic of this world is in the calculus of probabilities.”

James Clerk Maxwell

3.1 Statistical Distributions

A basic idea concerning collections of soil observations is to obtain statistical
parameters from the data distribution. In soil, we recognise two kinds of statistical
distributions relating to discrete or continuous random variables.

3.1.1 Discrete Distributions

To understand distributions of discrete random variables, we consider the Bernoulli
trials process, named after the Swiss mathematician James Bernoulli. It is one of
the simplest yet most important random processes in probability. Essentially, the
process is the mathematical abstraction of coin tossing, but because of its wide
applicability, it is usually stated in terms of a sequence of generic trials that satisfy
the following assumptions:
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1. Each trial has two possible outcomes, generically called success and failure.
2. The trials are independent. Intuitively, the outcome of one trial has no influence

over the outcome of another trial.
3. On each trial, the probability of success is p and the probability of failure is 1 � p.

Mathematically, we can describe the Bernoulli trials process with a sequence of
indicator random variables:

I1; I2; I3; : : :

An indicator variable is a random variable that takes only the values 1 and 0,
which in this setting denote success and failure, respectively. The jth indicator
variable simply records the outcome of trial j. Thus, the indicator variables are
independent and have the same density function:

P
�

Ij D 1
�

D p;P
�

Ij D 0
�

D .1 � p/

Thus, the Bernoulli trials process is characterised by a single parameter p.
The mean and variance of a generic indicator variable I with P(I D 1) D p are

E.I/ D p
var.I/ D p .1 � p/

Putting this now in a soil science context, we are interested in surveying an area
at random to discover the proportion of a certain important soil class, for say wine
production, the Terra Rossa, or the sites of soil contamination, say where total Pb
>300 mg/kg, or some other particular soil feature. We do this by taking points at
random within the region of interest by generating uniformly distributed random co-
ordinates (x,y) in northings and eastings. (Alternatively we could make observations
systematically, if we really believe the soil is distributed randomly.) If we observe
the soil of interest, we can call this a successful soil observation and we record 1;
if not we record 0. In this case the total number of soil observations is equal to the
number of trials.

Recalling that the number of subsets of size k from a set of size n is given by the
binomial coefficient:

C .n; k/ D nŠ= ŒkŠ .n � k/Š�

The discrete random variable Xn, the number of successful soil observations in
the first n observations, has the binomial distribution:

P .Xn D k/ D C .n; k/ pk.1 � p/n�kfor k D 0; 1; : : : ; n:

http://www.math.uah.edu/stat/prob/prob3.html
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with parameters n and p and mean and variance

E.I/ D np
var.I/ D np .1 � p/

The discrete random variable Yk, the number of observations needed for k
successful soil observations, has the negative binomial distribution:

P .Yk D n/ D C .n � 1; k � 1/ pk.1 � p/n�k for n D k; k C 1; k C 2; : : :

with two parameters, the number of successful soil observations k and the success
probability p. Its mean and variance are

E .Yk/ D k=p
var .Yk/ D k .1 � p/ =p2

The binomial and negative binomial sequences are inverse to each other in the
sense that

Xn � k if and only if Yk � n:

The discrete random variable Y1 is the number of observations needed to get the
first success, which has the geometric distribution:

P .Y D n/ D p.1 � p/n�1for n D 1; 2; : : : ;

with parameter p and with mean and variance

E.Y/ D 1=p:
var.Y/ D k .1 � p/ =p2:

So we can see that this is a special case of the negative binomial distribution with
k D 1.

So, for example, if the conditions of a Bernoulli trial are met and if, in reality,
the proportion p of an area being Terra Rossa is 0.1 (10 %) and we make 100 soil
observations, then we can expect that the number of successful of soil observations
will be 10 with a variance of 11.1. The number of observations expected to find the
first successful soil observation is 1/0.1 D 10 with variance of 90. If we need to find
20 successful soil observations, then we can expect to make 200 observations with
a variance of 1,800.

In soil survey we would generally be interested in all the classes observed. Let us
say for any soil observation there are k possible classes, then we have a multinomial
trials process, a sequence of independent, identically distributed random variables:
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U1;U2; : : : ;

each taking k possible values. Thus, the multinomial trials process is a simple
generalisation of the Bernoulli trials process (which corresponds to k D 2). For
simplicity, we will denote the outcomes by the integers 1, 2, ..., k, (N.B. this is a
form of coding only and no metric is associated with these integers). Thus, we will
denote the common density function of the observation variables by

pi D P
�

Uj D i
�

for i D 1; 2; : : : ; k .and for any j/ :

Of course pi > 0 for each i and p1 C p2 C ��� C pk D 1.
As with our discussion of the binomial distribution, we are interested in the

variables that count the number of times each outcome occurred. Thus, let Z1 as
the number of times in which outcome 1 occurs, Z2 as the number of times in which
outcome 2 occurs, etc.

Note that

Z1 C Z2 C � � � C Zk D n;

so if we know the values of k � 1 of the counting variables, we can find the value of
the remaining counting variable. As with any counting variable, we can express Zi

as a sum of indicator variables:

Zi D Ii1 C Ii2 C � � � C Iin where Iij D 1 if Uj D i and Iij D 0 otherwise:

Recalling the definition of the multinomial coefficient

C .nI j1; j2; : : : ; jk/ D nŠ= .j1Šj2Š � � � jkŠ/ for positive integers j1; j2; : : : ; jkwith

j1 C j2 C � � � C jk D n:

For positive integers j1, j2, ..., jk with j1 C j2 C ��� C jk D n

P .Z1 D j1;Z2 D j2; : : : ;Zk D jk/ D C .nI j1; j2; : : : ; jk/ pj2
1 pj2

2 : : : p
jk
k :

The distribution of (Z1, Z2, ..., Zk) is called the multinomial distribution with
parameters n and p1, p2, ..., pk and mean and variance

E .Zi/ D npi

var .Zi/ D npi .1 � pi/

which we can see is a generalisation of the binomial result. Even though the events
are independent, there is a correlation between the number of observed classes
because the sum is constrained to be n, thus the covariance and correlation for
distinct i and j
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cov
�

Zi;Zj
�

D �n pipj:

cor
�

Zi;Zj
�

D �
˚

pipj=
�

.1 � pi/
�

1 � pj
���1=2

:

These kinds of results are not extensively used in the soil science literature,
perhaps because we are more interested in how good our estimates of the various pi

are.
Discrete distributions such as the negative binomial (also known as the Pascal

or Polya distributions) and the Poisson distribution have been used to describe the
spatial pattern of viable weed seeds in soil (Mulugeta and Stoltenberg 1997), root
contact points on horizontal plane sections (Wulfsohn et al. 1996) and the degree
of clumping of calcium phosphate particles (Kirk and Nye 1986). These are really
examples of spatial point processes.

3.1.2 Continuous Distributions

Collections of interval and ratio-scaled variables can be described by various
continuous probability distributions; the most commonly known is the normal
or Gaussian distribution. Whether this is the most common for soil variables is
questionable. Many soil variables show distinctly long-tailed or positively skewed
distributions. These are often modelled by the lognormal distribution, but there is
a range of other possibilities that are rarely investigated. So it is worthwhile here
to elaborate some of the more common continuous distributions, realising that we
cannot be exhaustive because there are hundreds of them. The main ones are given
in Evans et al. (2000), and we only present a small subset of those here.

3.1.2.1 Normal or Gaussian Distribution

The normal distribution was originally developed as an approximation to the
binomial distribution when the number of trials is large and the Bernoulli probability
p is not close to 0 or 1 (Evans et al. 2000). Parameters are estimated either using the
maximum likelihood method or using an unbiased estimator. Just as in the case
of discrete distributions, a nonnegative function can often be scaled to produce a
probability density function (PDF).

The normal PDF is (Fig. 3.1)

�.2	/1=2= exp

 

�.x � �/2

2�2

!

The normal distribution has been used in soil science to describe many soil prop-
erties, including penetrometer resistance and spatial bulk density variability (Utset
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Fig. 3.1 The probability density function of the normal distribution

and Cid 2001). These examples represent the tendency of the spatial variability of
static soil physical properties to follow normal probability distributions. However,
non-normality is also encountered in soil properties. One strategy to make non-
normal data resemble normal data is by using a transformation. There is no dearth
of transformations in statistics; the issue is which one to select for the situation at
hand. Unfortunately, the choice of the ‘best’ transformation is generally not obvious.

This was recognised in 1964 by G.E.P. Box and D.R. Cox, who proposed a useful
family of power transformations. These transformations are defined only for positive
data values. This should not pose any problem because a constant can always be
added if the set of observations contains one or more negative values.

The Box-Cox power transformations are given by

x .
/ D
.x
�1/




 ¤ 0

x .
/ D ln.x/ 
 D 0

Given the vector of data observations x D x1, x2, ...xn, one way to select the power

 is to find the 
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where

x .
/ D
1

n

x
X

iD1

xi .
/

is the arithmetic mean of the transformed data.
Another type of transformation includes the Johnson system, which involves

three main transformations: LN, lognormal; SB, log ratio; and SU, hyperbolic
arcsine (Carsel and Parrish 1988). Examples of properties where a log transform
produced normally distributed data include studies of soil hydraulic properties
(Russo and Bouton 1992), soil nutrient content (Wade et al. 1996) and trace metal
soil concentrations (Markus and McBratney 1996).

3.1.2.2 Logistic Distribution

The logistic distribution is used as a model for growth and can also be used in
a certain type of regression known as logistic regression. This distribution has a
similar shape to the normal distribution but has heavier tails.

The PDF of the standard logistic distribution (Fig. 3.2) is given by

exp
h

.x�a/
b

i

b
�

1C exp
˚

x�a
b

��2
; �1 < x < 1

Parameters of this distribution can be estimated using the maximum likelihood
method.

The logistic distribution can sometimes be used as a substitute for a normal
distribution. The logistic distribution has been used to predict the soil water retention
based on the particle-size distribution of Swedish soil (Rajkai et al. 1996).

3.1.2.3 Uniform (Rectangular) Continuous Distribution

Although the continuous uniform distribution is one of the simplest of all probability
distributions, it is very important because of its role in simulating other probability
distributions. This is the distribution taken by uniform random numbers. Every value
in the range of the distribution is equally likely to occur (Evans et al. 2000). It is
appropriate for representing the distribution of round-off errors in values tabulated
to a particular number of decimal places (Siergist 2001).
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Fig. 3.2 Probability density function of the standard logistic distribution

The PDF for a continuous uniform distribution on the interval [a, b] is

8

<

:

0 for x < a
1

b�a for a � x � b
0 for x > b

Since the density function is constant, the mode is not meaningful.
The uniform distribution has been used in soil science as a basic tool for simu-

lating other probability distributions because the uniform distribution corresponds
to picking a point at random from an interval, for example, selection of random
locations when designing sampling schemes.

3.1.2.4 Lognormal Distribution

The lognormal distribution is applicable to random variables that are constrained by
zero but have a few very large values. The resulting distribution is asymmetrical and
positively skewed.

Parameters are estimated by transformation to the maximum likelihood estima-
tors of the normal distribution. A random variable x has the lognormal distribution
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Fig. 3.3 The probability density function of the lognormal distribution

with the location parameter �2R and scale parameter � > 0. The PDF of the
lognormal distribution (Fig. 3.3) is given by

1

x�.2	/1=2
exp

 

�.log .x=�//2

2�2

!

Soils frequently show a lognormal distribution of particle sizes so that a graph
of a function versus the logarithm of particle diameters appears to be normally
distributed. The lognormal distribution has been used to develop soil water retention
models, which assume a lognormal pore-size distribution (Kosugi 1996).

The lognormal distribution has also been used to describe soil organic carbon
concentrations in topsoil (McGrath and Zhang 2003; Van Meirvenne et al. 1996).

Mikheeva (2001, 2005b) considered the PDFs of several soil properties of
chestnut soils (Russian classification) of Kulunda steppe in Western Siberia. The
lognormal distribution was used to model the humus content of nondeflated
(unaffected by wind erosion), cohesive sand in the Ap horizon of chestnut soils.
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Fig. 3.4 The proability density function of the inverse Gaussian distribution

3.1.2.5 Inverse Gaussian (Wald) Distribution

The inverse Gaussian distribution has applications in the study of diffusion pro-
cesses and as a lifetime distribution model (Evans et al. 2000). This distribution
may be appropriate when one wishes to admit some extreme values to the data.

The inverse Gaussian distribution has a PDF (Fig. 3.4) given by

�
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The inverse Gaussian distribution is used in transfer function modelling of solute
transport (Jury 1982; Jury and Sposito 1985; Jury et al. 1986). Jury (1982) measured
the distribution of solute travel times from the soil surface to a reference depth. Jury
demonstrated that this distribution function can be used to simulate the average
solute concentrations at any depth and time for arbitrary solute inputs or water
application variability and that the model can be used to predict the probability of
extremely long or short travel times for a mobile chemical.
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Fig. 3.5 The probability density function of the gamma distribution

3.1.2.6 Gamma Distribution

Before we can study the gamma distribution, we need to introduce the gamma
function, a special function whose values play the role of the normalising constants
(Siergist 2001). The gamma function is defined as follows:

� .c/ D

Z 1

0

exp .�u/ uc�1du

The function is well defined, that is, the integral converges for any c > 0. On the
other hand, the integral diverges to 1 for c � 0.

The PDF (Fig. 3.5) is given by

.x=b/c�1 Œexp .�x=b/� =b�.c/

where �(c) is the gamma function with argument c.
The gamma distribution includes the chi-squared, Erlang and exponential distri-

butions as special cases, but the shape parameter of the gamma is not confined to
integer values. The gamma distribution starts at the origin and has a flexible shape.
The gamma distribution is commonly used to model continuous variables that are
always positive and have skewed distributions. The parameters are easy to estimate
by matching moments (Evans et al. 2000).
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Russell (1976a, b, c) studied particle-size distribution characterisation and tested
the incomplete gamma function as a descriptor for granite disintegration. He found
that the function was able to describe the size distribution of the disintegration
products from a hot semiarid environment reasonably well. Some consider the
gamma distribution to be the most general mathematically convenient model for
size distributions of particle types (Petty and Huang 2011).

3.1.2.7 Exponential Distribution

The exponential distribution is a distribution of the time to an event when the
probability of the event occurring in the next small time interval does not vary
through time. It is also the distribution of the time between events when the number
of events in any time interval has a Poisson distribution (Forbes et al. 2010). It is a
particular case of the gamma distribution.

The PDF of an exponential distribution (Fig. 3.6) is

.1=b/ exp .�x=b/ D 
 exp .�
x/

Mikheeva (2005b) identified the PDFs of several soil properties of chestnut soils
(Russian classification) of Kulunda steppe in Western Siberia to be exponential. A
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Fig. 3.6 The probability density function of the exponential distribution
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variation of the exponential distribution (double exponential distribution) reflected
the contents of soil organic matter in fine-loamy sandy chestnut soils.

3.1.2.8 Weibull Distribution

The Weibull distribution is commonly used as a lifetime distribution in reliability
applications. It is a versatile distribution and can take on the characteristics of
other statistical distributions. The two-parameter Weibull distribution can represent
decreasing, constant or increasing failure rates. These correspond to the three
sections of the ‘bathtub curve’ of reliability, referred to also as ‘burn-in’, ‘random’
and ‘wearout’ phases of life (Forbes et al. 2010). The bi-Weibull distribution can
represent combinations of two such phases of life (Evans et al. 2000). Parameters
are estimated by the method of maximum likelihood.

For strictly positive values of the shape parameter ˇ and the scale parameter 
,
the PDF (Fig. 3.7) is given by
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Fig. 3.7 The probability density function of the Weibull distribution
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The Weibull distribution can be used to model the distribution of soil moisture
deficit and critical soil moisture deficit (Mukherjee and Kottegoda 1992). The
Weibull distribution has also been used to study the distribution of radioactive
pollutants in soil (Dahm et al. 2002). This is due to its ability to describe a ‘snapshot’
of the distribution to describe and explain the depth profiles in relatively simple
empirical terms. Dahm et al. (2002) used the Weibull distribution to extrapolate the
total amount of a radioactive pollutant and then used this data to describe its vertical
distribution.

The Weibull cumulative distribution function has also been used to describe
soil texture and airborne dust particle-size distributions (Zobeck et al. 1999). The
function has a physical basis and is able to describe fragmentation distributions.
Weibull distribution is appropriate to describe the airborne soil grains because ‘the
breakup of a single particle into finer particles’, is the physical basis of the Weibull,
as described by Brown and Wohletz (1995).

3.1.2.9 Extreme-Value (Gumbel) Distribution

The Gumbel distribution is used to model extreme events. It is also known as
the log-Weibull distribution because its variates correspond to the logarithmic
transformations of Weibull extreme-value variates.

The Gumbel distribution is appropriate for modelling strength. It may also be
appropriate for modelling the life of products that experience very quick wear-out
after reaching a certain age. The distribution of logarithms of times can often be
modelled with the Gumbel distribution (in addition to the more common lognormal
distribution) (Meeker and Escobar 1998).

It has a PDF

.1=b/ exp Œ� .x � a/ =b� x exp f� exp Œ� .x � a/ =b�g

The extreme-value distribution can be used when seeking the extreme values of
a variable that may occur within a given probability or return period. The extreme-
value distribution has been used to model the drainage arising from excess winter
precipitation (Rose 1991). In this study, the distribution was used to describe the
variability of winter leaching, likely because it can be used successfully as an
empirical climatological summary (Rose 1991). It has also been used to estimate
rainfall event recurrence, because of its ability to capture the non-normality of
recurrence frequencies of hydrologic and associated surface erosion phenomena
encountered in semiarid areas (Mannaerts and Gabriels 2000).

In the Mikheeva (2001, 2005a, b) studies, the maximum value distribution was
used to model organic matter content in protected coarse-loamy sand and protected
sandy loam in the Ap horizon of chestnut soils.
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3.1.2.10 Pareto Distribution

The Pareto distribution is often used to model the tails of another distribution
because it provides a good fit to extremes of complicated data. It is a power-law
probability distribution, meaning that it represents a functional relationship between
two quantities where a relative change in one quantity results in a proportional
relative change in the other quantity, independent of the initial size of those
quantities (Clauset et al. 2009). It can occur in an extraordinarily diverse range of
phenomena.

Maximum likelihood estimates of the parameters are

A D min xi

1=C D .1=n/
Pn

iD1 log
�

xi=A
�

The PDF (Fig. 3.8) is given by

cac=xcC1

Because it is a power-law relationship, it is related to much of the work on fractal
soil geometry (Pachepsky et al. 1999). Perfect et al. (1993) fitted the tensile strength
of soil aggregates by a Pareto distribution, the parameters of which determined
the probability of failure of the largest aggregate and the rate of change in scale
dependency.
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The high-value tails of the sizes and size-grade distributions for sets of mineral
deposits often can be modelled as Pareto distributions plotting as straight lines
on log-log paper suggesting a multifractal model for size-grade distributions
(Agterberg 1995). Because of the relationship between soil and underlying rocks,
we might speculate that the distribution of areas of polygons of a particular soil
class on soil maps might also show Pareto distributions.

3.1.2.11 Su-Johnson Distribution

The Su-Johnson distribution represents one of the four types of Johnson distri-
butions. ‘Su’ refers to the unbounded Johnson distribution. It is a four-parameter
family of probability distributions, proposed as a transformation of the normal
distribution.

Overall, the PDF of a Johnson distribution is unimodal with a single ‘peak’
(i.e. a global maximum), though its overall shape (its height, its spread and
its concentration near the y-axis) is completely determined by the values of its
arguments. Additionally, the tails of the PDF are ‘thin’ in the sense that the PDF
decreases exponentially rather than decreasing algebraically for large values of x
(Wolfram 2010).

The PDF (Fig. 3.9) is given by
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Fig. 3.9 The probability density function of the Su-Johnson distribution
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Johnson distributions can be applied to a wide range of possibly non-normal
probability distributions via a series of simple transformations that are all easily
computable. Because of its flexibility, the family of Johnson distributions has been
used to analyse real-world datasets across a number of fields including atmospheric
chemistry, biomedical engineering and material science.

In the Mikheeva (2001, 2005a, b) study, the Su-Johnson distribution was used
to accurately describe the contents of humus (soil organic matter) in a number of
chestnut soil varieties including coarse-loamy sandy, sandy loamy, loamy, coherent
sandy and coarse-loamy sandy.

3.1.2.12 Cauchy Distribution

The Cauchy distribution, also called the Lorentzian distribution or Lorentz distribu-
tion, is a continuous distribution describing resonance behaviour. It also describes
the distribution of horizontal distances at which a line segment tilted at a random
angle cuts the x-axis (Weisstein 1995).

The Cauchy distribution is unimodal and symmetric, with much heavier tails than
the normal. The PDF is symmetric about a, with upper and lower quartiles a ˙ b
(Forbes et al. 2010). Additionally, the tails of the PDF are ‘fat’ in the sense that the
PDF decreases algebraically rather than decreasing exponentially for large values
of x.

The probability density function (Fig. 3.10) is given by
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The Cauchy distribution has a number of applications across a variety of fields
of study. It has been used to model a number of phenomena in areas such as risk
analysis, mechanical and electrical theory and physical anthropology.

3.1.2.13 Nakagami Distribution

The Nakagami distribution represents a continuous statistical distribution supported
on the interval (0, 1) and parameterised by positive real numbers, a ‘shape
parameter’ and a ‘spread parameter’, which together determine the overall behavior
of its PDF. Depending on the values of its two parameters, the PDF of a Nakagami
distribution may have any number of shapes, including unimodal with a single
‘peak’ (i.e. a global maximum) or monotone decreasing with potential singularities
approaching the lower boundary of its domain. In addition, the tails of the PDF
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Fig. 3.10 The probability density function of the Cauchy distribution

Fig. 3.11 The probability density function of the Nakagami distribution

are ‘thin’ in the sense that the PDF decreases exponentially rather than decreasing
algebraically for large values of x (Wolfram 2010).

The PDF (Fig. 3.11) is given by
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The Nakagami distribution was first proposed as a mathematical model for
small-scale fading in long-distance high-frequency radio wave propagation. Many
applications of the distribution have been wave related, and it has been used to model
phenomena related to meteorology, hydrology and seismology (Wolfram 2010).

In the Mikheeva (2001, 2005a, b) studies, the Nakagami distribution was used
to model organic matter content in protected fine-loamy sand in the Ap horizon of
chestnut soils.

3.1.3 Directional Variables

When considering data distributions, one may encounter observations based on
angular displacements and orientations. Their analyses, however, require special
attention since the methods advocated for usual linear data are not only often
misleading but also not applicable to such directional data. Data of this kind are
called directional data (Mardia 1972).

The directions are regarded as points on the circumference of a circle in two
dimensions or on the surface of a sphere in three dimensions. In general, directions
may be visualised as points on the surface of a hypersphere, but observed directions
are obviously angular measurements (Mardia 1972).

Describing and analysing such data statistically present interesting problems. The
problem is that there is no natural ‘starting point’ for measuring directions; any
direction can be chosen, arbitrarily, as the ‘baseline’. It is also completely arbitrary
as to whether to work clockwise or anticlockwise, up or down. However, this can be
overcome by representing the directions as vectors (Fisher 1993).

3.1.3.1 Circular Distributions

The von Mises distribution is a ‘natural’ distribution for circular attributes such
as angles, time of day, day of year, phase of the moon, etc. It has certain
characterisations analogous to those of the linear normal distribution (Evans et al.
2000). The von Mises distribution M(a, b) has a mean direction a and concentration
parameter b. For small b it tends to a uniform distribution, and for large b it tends to
a normal distribution with variance 1/b.

A continuous distribution defined on the range x 2 [0, 2	) with PDF

P.x/ D
eb cos.x�a/

2	I0.b/
; (3.1)

where I0(x) is a modified Bessel function of the first kind of order 0 and distribution
function
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which cannot be done in closed form. Here, a 2 [0, 2	) is the mean direction and
b > 0 is a concentration parameter. The von Mises distribution is the circular
analogue of the normal distribution on a line.

The mean is

� D a (3.3)

and the circular variance is

�2 D 1 �
Ia.b/

I0.b/
: (3.4)

The von Mises distribution (Fig. 3.12) has been described as a natural choice of
model in theory and, at the same time, a difficult model to handle in practice.

The von Mises distribution is most commonly seen in soil science to describe
soil fabric patterns. When analysing any complex, multicomponent fabric pattern,
one must be able to recognise the multicomponent individuals and their geometrical
relationships towards adjacent individuals. Those relationships can then be consid-
ered as directional data. Murphy et al. (1977) studied voids in soil thin sections
and modelled the orientation of components and their discrimination according to
shape. Crack segments, analysed by their length and direction, are an example of
a naturally directional distribution. The von Mises distribution can then be used to
test for isotoropy or uniformity of direction.

Density of vonMises Distribution (mu= π, κ=10)

π 0+

3π
2

π
2

Fig. 3.12 Density of the von Mises distribution
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Directional data which follows a circular distribution can be presented in a rose
diagram, which can be thought of as a ‘circular histogram’. This technique was
used by FitzPatrick (1975) to describe stone orientation patterns in soils of north-
east Scotland. It was concluded that the pattern of the orientation suggested frost
heaving. In this particular study, FitzPatrick considered the data in two dimensions –
the orientation of the stones in relation to slope. However, if the author had
wanted to incorporate the dipping angle, this data could also be considered in three
dimensions. To incorporate the additional dimension, one would have to consider a
spherical distribution.

3.1.3.2 Spherical Distributions

The two most commonly described vector distributions are exact analogues of the
scalar uniform and normal distributions. On the unit sphere, a uniform distribution
can be viewed as a completely random shotgun pattern over the entire sphere
surface. Any single vector direction has an equal likelihood of occurrence. The
spherical analogue of the normal distribution is called Fisher’s distribution (Bing-
ham 1974).

Any vector can be represented by a point P on the surface of a unit sphere of

centre O,
�!
OP being the directed line; any axis can be represented by a pair of points,

Q, P at opposite ends of a diameter QOP of the sphere, or equivalently by a point P
on a unit hemisphere. Two quantities are required to define a point P on the sphere
or hemisphere and hence a spherical measurement, whether vectorial or axial.

If we assume that the distribution is symmetrically distributed about its mean
direction, the direction of the resultant of the sample unit vectors is a natural estimate
of the mean direction, and, provided that the sample size is not too small, we can get
an adequate estimate of the error of the sample mean direction by a simple procedure
(Fisher et al. 1987). On the other hand, if a probability distribution such as the
Fisher distribution can be fitted satisfactorily to the data, we are in effect assuming
additional information and so can get an improved estimate of the error in the sample
mean direction. The principal exploratory tool is to look at the eigenvalues of the
orientation matrix.

Three-dimensional directional data relate particularly to soil mechanical pro-
cesses. For example, Lafeber (1965) described the spatial orientation of planar pore
patterns in soils, explaining that these patterns were an expression of the deposi-
tional and/or stress-strain history of the particular soil. Another example related
to soil mechanical processes was described by Knight (1979) who studied gilgai
mircrorelief in the Australian state of Victoria. Knight studied both two-dimensional
crack patterns on vertical sections and three-dimensional measurements on mono-
liths. The author used these measurements to propose that differences between
lateral and vertical stresses due to swelling pressures and overburden loads are
sufficient to cause small, inclined shear displacements, which cause the gilgai
microrelief.
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There is not extensive formal analysis of such data, but recent work by van
Dusschoten et al. (2016) has analysed the three-dimensional directional data of plant
root growth in soil using magnetic resonance imaging. In order to do this, the authors
developed a data analysis tool that computed root traits from MRI-acquired images.
The study found that the angular projection maps of root mass densities, root length
densities and root tip densities showed similar distribution patterns for those traits
and that the depth distribution of root mass, root length and number of root tips also
matched rather well.

3.2 Displaying Distributions

It needs to be recognised that pedometrics studies two kinds of distribution:

• Distribution of a soil property over an area, e.g. distribution of organic matter
content of a farm

• Distribution of a property within an individual soil sample, e.g. the particle-size
distribution of a soil sample taken from a field

There are various ways of displaying distributions; the most basic is a histogram.
A kernel density plot is a non-parametric estimate of the PDF of a variable. Figure
3.13 shows the soil production rate (Chap. 19) from a global dataset as measured by
two different methods.

Figure 3.14 shows some alternative of displaying the distribution, including the
box plot and violin plot. A violin plot is a box plot with a rotated kernel density plot
on each side.

Fig. 3.13 Global soil production rates determined from chemical weathering studies and from
terrestrial cosmogenic nuclides (TCN), displayed using a histogram and probability density plot.
Note that the values are in logarithmic scale

http://dx.doi.org/10.1007/978-3-319-63439-5_19
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Fig. 3.14 Global soil production rates determined from chemical weathering studies and from
terrestrial cosmogenic nuclides (TCN), displayed using the box plot and violin plot. Note that the
values are in logarithmic scale

3.3 Statistical Distributions of Continuous Soil Properties
for Soil Genesis

In Russian studies of soil geography, statistical distributions have been used as a
tool for modelling temporal change and soil evolution. In this section, we illustrate
the use of statistical distribution as a tool to characterise evolutionary change in soil
properties.

3.3.1 Changes in Spatial Variability of Soil Properties Under
Anthropogenic Impact

Statistical distributions of soil properties under anthropogenic and natural processes
have long been discussed in Russian literature. Vauclin reasoned that the normal
distribution is inherent to static soil properties, while the lognormal distribution
is typical for dynamic properties. Kozlovskii noted that the spatial differentiation
of the soil evolution processes gives rise to the asymmetry of empirical statistical
distributions for dynamic parameters of soil, in particular, causing the normal
distribution to be lognormal. The authors note that the change in the dispersion
parameter with time can serve as a reliable indicator of soil change.

The statistical analysis of a great body of soil data allowed the development
of a model for the variations of the shape of statistical distribution (Fig. 3.15).
Consider soil process Y which is caused by environmental conditions which are
either natural or anthropogenic and results in the quantitative increase of soil
property X, whose initial distribution had a small dispersion (Fig. 3.15a). Over
time, the notable increase in dispersion and right asymmetry for variable X(X1,X2,
...,Xn) in space (Fig. 3.15b) indicate that several values which substantially exceed
the mode correspond to the areas that are susceptible to the given environmental
change. At the same time, most of variable X retain moderate values; hence, the
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Fig. 3.15 Stages of changes
in the statistical distribution
of soil properties; (inf) is the
least possible limit of the
variability of a property in a
specific soil; (sup) is the
highest possible limit of the
variability of a property in a
specific soil; (M) is the mean
value of a property; for (a–e)
explanations in text

corresponding areas are tolerant to the environmental influence. Thus, the right
asymmetry of statistical distribution suggests a weak dispersion or the beginning
stages of process Y on the area. Under constant environmental conditions responsi-
ble for the development of the process Y, the asymmetry of statistical distribution of
X decreases, and the distribution becomes more symmetrical with higher dispersion
(Fig. 3.15c).

A large decrease in the distribution tail can result in the split of the distribution
curve (dotted line, Fig. 3.15c), which indicates heterogenisation. In other cases,
further development of the process Y can result in the left asymmetry of statistical
distribution of parameter X (Fig. 3.15d), which suggests the approaching of the
limiting spatial distribution of the process. Here, the upper boundary of variability
reaches its limit, which is determined by the nature of soil properties, and most
of values are grouped around the mode in the upper part of the variation interval.
Further development of the process results in decreasing scattering of values, and
the shape of distribution becomes more symmetrical (Fig. 3.15e), which suggests
the completion of the process on the area and its homogenisation in relation to a
given property. Considering the process resulting in the quantitative decrease of a
property, one can observe the reverse sequence of changes in statistical distribution
(Fig. 3.15e–3.15a). Certain ratios of conditions, factors and internal properties of
soil systems, the existence of straight lines and feedback create quasi-equilibrium
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Fig. 3.16 Theoretical stages of changes in the statistical distribution of soil properties; inf is the
least possible limit of the variability of a property in a specific soil; sup is the highest possible limit
of the variability of a property in a specific soil; M is the mean value of the property

states which define the real limits of variation of soil properties (min – max) which
do not coincide with their potential limits (inf – sup).

Stages of transformations of soil probability density functions during soil
evolution are shown in Fig. 3.15 in the case where the potential limits of variation of
a soil property are close to their real limits. In the case where the potential limits of
variation are far from the real limits, the stages of change of the shape of statistical
distribution can go on several paths (Fig. 3.16a–i) according to the recurrence of
environmental change.

The actual statistical distributions of soil properties can correspond to any of
the patterns presented in Fig. 3.15 or an intermediate one, depending on the devel-
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opment of the processes responsible for these properties and on the soil-forming
factors governing these processes. The multiplicity of statistical distributions of soil
properties possesses some regular trends, which can be used for the diagnostics of
the development of natural and anthropogenic processes.

The analysis of the shape of statistical distribution of properties is promising
for characterisation and evaluation of soil transformation, because the shape of
distribution reflects the degree of manifestation of processes responsible for these
properties and can serve as an indicator of the stages of their development and spatial
distribution of soil properties in an area.

3.4 Conclusions

Probability distributions should be studied carefully to gain insight:

1. To the correct stastical treatment
2. To sampling and measurement methods
3. To suggest or explain processes
4. To environmental and evolutionary sequences

A suite of possible distributions should be considered. It is an area of pedometrics
that requires more detailed attention.
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Chapter 4
Effective Multivariate Description of Soil
and Its Environment

Alex. B. McBratney, Mario Fajardo, Brendan P. Malone,
Thomas F. A. Bishop, Uta Stockmann, and Inakwu O. A. Odeh

“ : : : nature’s laws are causal; they reveal themselves by
comparison and difference, and they operate at every
multivariate space/time point”.

Edward Tufte

4.1 Introduction

When we wish to characterize soil, it soon becomes very clear that one or two
properties of soil materials, horizons, profiles or pedons will not suffice to give
an adequate description. Soil classification, land capability, soil quality, condition
and health assessments often involve the observation of tens or scores of soil
properties on a single soil entity; e.g. the new soil microbial DNA descriptions
involve hundreds or thousands of attributes. For analysis of such high-dimensional
data, multivariate statistical techniques are most appropriate, particularly ordination
techniques which help to reduce the dimensionality down to a few (typically 2
or 3) which can be graphed simply and the relationships between soil entities, and
between observed soil attributes on those entities, displayed.

Additionally, we are interested in understanding the relationship between the
attributes of soil entities and the environment in which they exist. Univariate
statistical techniques, such as ANOVA, have commonly been used to study the
impact of environmental effects on soil properties (Islam and Weil 2000; Braimoh
2004; Crave and Gascuel-Odoux 1997; McGrath et al. 2001; Latty et al. 2004); they
may not be suitable when a large number of variables is involved. This is because
a separate analysis will be required for different factors. It may therefore be more
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informative and economical to handle the different sets of data all simultaneously
using multivariate ordination techniques (Shaw 2003) to explore the complex
interrelationships among different sets of variables. These multivariate techniques
are powerful tools for investigating and summarizing the underlying trends in
complex data structures (Kenkel et al. 2002) and have been widely, and successfully,
applied in species-environment relationships (Ter Braak 1986, 1987, 1995; Palmer
1993; Graffelman and Tuft 2004; Zhang and Oxley 1994; Dray et al. 2008).
Moreover, these techniques in many cases do not require Gaussian distribution of
data.

There are different ordination techniques, among them are principal compo-
nent analysis (PCA), correspondence analysis (CA), canonical correlation analysis
(COR), canonical correspondence analysis (CCA) and redundancy analysis (RDA).
These techniques are widely used in environmental sciences. While PCA is used for
continuous data, CA is preferred for categorical data. The canonical counterparts of
them (from Greek ›’�¨� pronounced ‘kanon’: rule) are COR and CCA commonly
used when the direct interrelations (the ordination of one set of variables intervenes
in the calculation of the final ordination of the second set) between two sets of
variables are meant to be explored, e.g. environment variables vs soil variables.
RDA can be compared with COR as it differs in the way of relating both sets; RDA
uses linear regressions and COR uses linear correlations (Legendre and Legendre
2012).

In this chapter we will briefly describe each of these methods in terms of the data
they can be used on (e.g. categorical versus continuous) and the information they
can provide. We will illustrate the methods with a soil and environmental dataset
from Australia. Finally, we discuss approaches to analyse compositional data, in
particular particle-size fractions of soil, as when analysing multivariate soil data,
we need to account for its compositional nature.

4.2 Transformations into Multivariate Spaces

4.2.1 Principal Component Analysis

Principal component analysis (PCA) is a procedure for identifying a smaller
number of uncorrelated variables, called ‘principal components’, from a large set
of data. The goal of PCA is to explain the maximum amount of variance with
the fewest number of principal components. Thus, PCA is commonly used in the
earth, ecological and environmental sciences that use large datasets, including soil
science.

PCA has been used as a step to a series of complex analysis that involves
continuous data only. PCA is used to reduce the number of continuous variables
and avoid multicollinearity or when there are too many predictors relative to the
number of observations. Given the wealth of easily accessible data, it is becoming
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more commonly used as preprocessing step for reducing the number of predictors
before performing variable selection in statistical modeling of soil. For example,
Karunaratne et al. (2014) used PCA to reduce the number of potential predictor
variables from 31 to the first 6 principal components in a soil carbon mapping study.
In the case of more complex datasets that could involve a mixture of continuous,
categorical and nominal data, principal coordinate analysis could be used (Rayner
1966). A more detailed description of this type of analysis and similar other
ordination techniques can be found in Sect. 9.3.1.1.

PCA involves some form of linear combinations such that the first component
accounts for as much of the variance as possible and the next component accounts
for as much as of the variance as possible, etc., while the components are
uncorrelated with each other. PCA is a linear method that is appropriate to use when
the data is continuous (Ter Braak and Prentice 1988). As an ordination technique, it
constructs the theoretical variable that minimizes the total residual sum of squares
after fitting straight lines to the sample data (Ter Braak 1995).

PCA relates site data to environmental variables in two steps: (i) a few ordination
axes that summarize the overall variation are extracted, and then (ii) the weighted
sums of the environmental variables that most closely fit each of these ordination
axes are calculated (Ter Braak and Prentice 1988). This two-step approach (ordi-
nation followed by environmental gradient identification) is termed as an indirect
gradient analysis (Ter Braak 1986; Ter Braak and Prentice 1988). A joint analysis
of all environmental variables can be carried out by multiple regression of each
ordination axis on the environmental variables (Eq. 4.1):

xi D c0 C

q
X

jD1

cjzij (4.1)

in which xi is the score of site i on that one ordination axis, zij denotes the value at
site i of the jth out of q actual environmental variables and cj is the corresponding
regression coefficient.

4.2.2 Correspondence Analysis

Correspondence analysis (CA) is a non-linear counterpart to PCA. As unimodal
response models are more general than monotonic, it is usually appropriate to
start analysing the data using CA and its canonical version (CCA) (Ter Braak and
Prentice 1988; Odeh et al. 1991). As PCA, CA is also an indirect gradient analysis.
CA extracts continuous axes of variation from contingency tables (categorical data)
or continuous data (using discretization), typically interpreted with the help of
external knowledge and data on environmental variables (Ter Braak 1986; Ter Braak
and Prentice 1988). CA is a popular ordination technique in environmental sciences
and especially in ecology (Ter Braak 1986; Kenkel 2006); it uses an efficient
reciprocal weighted averaging algorithm as shown in Eq. 4.2:
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uk D

n
X

iD1

ykixi=

n
X

iD1

yki (4.2)

where yki is abundance of category k (e.g. species in ecology terms, soil or soil type
in pedology) at site i, xi is the score of site i and �k is the score of category k.

If the gradient length is reduced to less than about 3 SD (standard deviation),
the approximations involved in weighted averaging become worse, and ultimately
the methods yield poor results because most species or soil types are behaving
monotonically over the observed range. In these situations (variation within a
narrow range), the linear ordination methods – PCA or RDA – may be more
appropriate. However, if the community variation is over a wider range, the non-
linear methods such as CA and CCA are better (Ter Braak and Prentice 1988).

4.2.3 Canonical Correlation Analysis

COR is probably the first statistical methodology (Hotelling 1936) that offered a
way to measure the relations between two sets of multiple variables. In pedology,
Webster (1977) used COR to illustrate the well-known interactions between soil and
environment. Intuitively, the method relies on two steps: (1) a principal component
analysis performed to each of the sets of variables (e.g. soil and environment
variables) and (2) a rotation of the principal axes making sure that their correlation
is maximized. Briefly, let p and q be variables that have been measured on every
observation site; thus X are the n � p observed variables (e.g. soil data) and Y
are the n � q observed co-variables (e.g. environmental data), with both being
centred so that their values are deviations from their means. Then S is the variance
covariance matrix partitioned into S11 (p � p), S22 (q � q), S12 (p � q) and S21 (q � p)
submatrices (with S11 D var-cov(X) and S22 D var-cov(Y) and so on) as follows:




S11 S12
S21 S22

�

(4.3)

As explained in Legendre and Legendre (2012), canonical correlations are then
obtained by solving the characteristic equation:

ˇ

ˇS12S
�1
22 S12 � 
kS11

ˇ

ˇ D 0 (4.4)

and

ˇ

ˇS21S
�1
11 S12 � 
kS22

ˇ

ˇ D 0 (4.5)
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Then, canonical correlations rk are the square roots of the eigenvalues (
K D r2).
Once the eigenvalues are obtained, the eigenvectors can be calculated as follows:

�

S12S
�1
22 S12 � 
kS11

�

uk D 0 (4.6)

and

�

S21S
�1
11 S12 � 
kS22

�

vk D 0 (4.7)

Canonical variates (or the new coordinates) are then obtained by multiplying the
respective eigenvectors with the original coordinates:

ci D Xuk (4.8)

and

di D Yvk (4.9)

Finally, we obtain two matrices (n � p for soil variables and n � q for environ-
mental variables) of canonical ordination scores. A more detailed description of this
method can be found in Legendre and Legendre (2012), Webster (1977) and Kendall
and Stuart (1977).

4.2.4 Canonical Correspondence Analysis

Canonical correspondence analysis (CCA) is designed to detect the patterns of
variation in the categorical (or continuous) data that can be explained ‘best’ by
the observed environmental variables. The resulting ordination diagram expresses
not only a pattern of variation in categories composition (species in ecology or soil
types in soil science) but also the main relations between the species and each of
the environmental variables. CCA thus combines aspects of regular ordination with
aspect of regression (Ter Braak 1986, 1995). The difference between CCA and CA
is analogous to the difference between RDA and PCA. CCA is therefore a ‘restricted
correspondence analyses’ in the sense that the site scores are restricted to be linear
combinations of measured environmental variables and thereby maximizes the
dispersion of the categories scores. By incorporating this restriction in the two-way
weighted averaging algorithm of CA, we obtain an algorithm for CCA. The fitted
values of this regression are by definition a linear combination of environmental
variables (Eq. 4.3) (Ter Braak 1995). The eigenvalues in CCA are usually smaller
than those in CA because of the restrictions imposed on the site scores in CCA:

xi D c0 C c1z1i C c2z2i C : : : : � � � C cjzji (4.10)



92 A.B. McBratney et al.

where zji is the value of an environmental variable j at site i, cj is the weight (not
necessarily positive) belonging to that variable and xi is the value of the resulting
compound environmental variable at site i.

The parameters of the final regression in the iteration process are the best weights,
also called canonical coefficients. The multiple correlations of this regression are
called category-environment correlations (originally species-environment correla-
tions in ecological terms) (Ter Braak 1995).

Each of these correlations is between the site scores that are weighted averages
of the categories scores and the site scores that are a linear combination of the
environmental variables. Thus, the species-environment correlation is a measure of
association between categories and the environment. However, this correlation may
not be the ideal one; an axis with small eigenvalue may have misleadingly high
category-environment correlations. The importance of the association is expressed
well by the eigenvalue, because the eigenvalue measures how much variation in
the categories data is explained by the axis and, hence, by the environmental
variables.

The restriction of CCA becomes less with increasing number of environmental
variables. Ter Braak and Prentice (1988) found CCA to be extremely robust
even when the assumption of unimodal response does not hold. CCA can also
accommodate nominal explanatory variables by defining dummy variables.

In general, the choice between a linear and a non-linear ordination method is
not a matter of personal preferences. Where the gradient is short, there are sound
statistical reasons to use linear methods like PCA and RDA. As the gradient length
increases, linear methods become ineffective; Gaussian methods such as CA and
CCA become more suitable (Ter Braak and Prentice 1988).

4.2.5 Redundancy Analysis

As mentioned previously, RDA is comparable with COR and also can be seen as a
constrained canonical form of PCA because the site scores are linear combinations
of environmental attributes (Ter Braak and Prentice 1988; Odeh et al. 1991; Ter
Braak 1995). In other words, RDA is the technique selecting the linear combinations
of environmental variables that gives the smallest total residual sum of squares.
RDA is thus an intermediate between PCA and separate multiple regression models
for each of the soils, i.e. it is a constrained ordination, but it is also a constrained
form of multiple regression (Ter Braak and Prentice 1988). One of the attractive
features of RDA is that it leads to an ordination diagram that simultaneously displays
(1) the main pattern of soil variation as far as this variation can be explained by
the environmental variables and (2) the main pattern in the correlation coefficients
between the soils and each of the environmental variables.
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4.3 Biplots

4.3.1 Linear Biplots

A useful product of multivariate ordination analysis is the biplot, sometimes referred
to as an ordination diagram. In simple terms, a biplot is characterized by a data
matrix X, a method of ordination or multidimensional scaling or approximation (e.g.
previously mentioned PCA, COR or RDA) and a choice of inter-sample distance
representation (e.g. Euclidean distance and its special case of Pythagorean distance,
Mahalanobis distance, ¦2 distance) (Gower and Hand 1996).

The term biplot was first introduced by Gabriel (1971). He originated the PCA
biplots, canonical biplots, and (together with Bradu) the biadditive model diagnostic
biplots (Gower and Hand 1996).

Let us assume that X is a n � p matrix containing numerical information on p
variables for each of n samples. Then, in a classical biplot, the samples are shown
as n points and the variables are shown as p vectors relative to the same axes and
origin. Underlying the classical biplot is the singular value decomposition (SVD)
which is expressed as follows (Gower and Harding 1988):

X D URV0 (4.11)

where U of size n � n and V of size p � p are orthogonal matrices and R is a matrix
with non-negative entries with Ri , j D � i and if i D j, otherwise Ri,j D 0; further
”1 � � � � � ”r and ”i D 0 when > r. Here, r is the rank of X, so usually r D min (n, p).
As discussed in Gower and Harding (1988), the algebraic result of this expression
has been known from about 1880, but its statistical importance resulted from the
work of Eckart and Young (1936). Eckart and Young (1936) showed that the best
least-squares fit of rank s to X can be obtained by replacing R in (Eq. 4.11) by Rs

in which � i is set to zero for all i > s. Readers are referred to Gower and Harding
(1988) for further details on biplots.

4.3.1.1 Case Study

Let us use the Edgeroi dataset described in McGarry et al. (1989) to illustrate
some of the most common linear biplots. The Edgeroi dataset contains 210 sampled
sites on a systematic, equilateral triangular grid with a spacing of 2.8 km between
sites, plus 131 samples obtained through a different sampling design as shown
in Fig. 4.1. A comprehensive suite of soil properties was obtained for each
of the samples, including exchangeable cations (Ca2C, Mg2C, NaC and KC in
mmol kg�1); pH; soil colour (CIElab); sand, slit and clay content (%); carbon
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Fig. 4.1 210 Sampling points obtained for the Edgeroi dataset, employing two different sampling
designs

content (%); and calcium carbonates (%). In addition, a comprehensive suite of
environmental variables is available, including gamma radiometrics (232Th, 238U
and 40K), a digital elevation model and its derivatives such as MRVBF (multires-
olution valley bottom flatness), slope, curvature and TWI (terrain wetness index)
and products from satellite imagery (e.g. NDVI (normalized difference vegetation
index)).

The most common dimensional reduction approach is the PCA which is a form
of metric scaling that approximates the distance dij between the ith and jth samples
defined by

d2ij D

p
X

kD1

�

xik � xjk
�2

(4.12)

This is known as Pythagorean distance or often, somewhat misleadingly, as
Euclidean distance.

Figure 4.2 shows a common biplot picturing known linear relations between soil
attributes (e.g. carbon content vs colour lightness and clay vs sand content in bold
arrows).

On the other hand, it is possible to ‘constrain’ these relations between one set
of attributes to another dataset as described in Sect. 4.2.2 (canonical correlation
analysis). Figures 4.3 and 4.4 show examples of how these two sets of variables can
be related.

The immediate effect of the ‘conditioning’ of this new multidimensional space
is evident when comparing Fig. 4.3 with Fig. 4.2, as the linear relations presented
previously even though still present are now somehow modified by the constraining
relations of the landscape dataset.



4 Effective Multivariate Description of Soil and Its Environment 95

Fig. 4.2 PCA biplot. Note that the colour scale represents carbon content, where carbon content
is increasing in the direction of the vector carbon. Note: The reader is referred to Sect. 5.2 of this
book for explanations of the colour space used in this example (CIELab)

If a direct comparison is desired, a word of caution needs to be issued first, since
the different canonical axes (from the soil attributes and landscape dataset) represent
a different ordination; hence, the observed samples will have a different projection
in both spaces (Fig. 4.4).

An intuitive way of visualizing this phenomenon can be observed in Fig. 4.5
where both first canonical axes of the soil and landscape ordinations are plotted
together.

It is evident that both axes are conditioned to best fit the linear relations
between the two datasets, by doing so, revealing the known connections between
landscape and soil attributes; however, a compound plot may be misleading if these
relations are meant to be represented in a single figure and their ordinations are not
sufficiently significant (which is not the case for our dataset) (Fig. 4.6).

4.3.1.2 Categorical Data

A different approach is needed when the input information comes in categorical
form; however, the practical meaning is similar to the previous section. A soil
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Fig. 4.3 COR biplot where samples are projected in a matrix ordinated by soil attributes. See Sect.
4.2.2 of this chapter. Note: The reader is referred to Sect. 5.2 of this book for explanations of the
colour space used in this example (CIELab)

science example of constrained forms of categorical ordination (i.e. CCA and
RDA) can be found in the work of Odeh et al. (1991). Odeh et al. (1991)
attempted to elucidate the relations between a set of soil attributes usually presented
as categories or frequencies (e.g. soil structure grade or mottle abundance) and
landscape attributes (e.g. curvature, upslope distance, etc.) that may or may not
explain the soil variation present.

Figure 4.7 shows the CCA analysis performed for their dataset. As observed in
previous sections, similar relations are found by using this analysis, e.g. the known
relations between clay and sand content (as seen in Fig. 4.7, with acla, topsoil clay
content, and asan, topsoil sand content).

The usefulness of this kind of ordination is that it permits, for example, to relate
structure grade (presented as a value ranking between 0 and 5) with continuous
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Fig. 4.4 COR biplot where samples are projected in a matrix ordinated by landscape attributes.
Note the different projection of the sample points

data such as clay content (compositional data; see Sect. 4.4 regarding compositional
data) allowing at the same time to constrain the linear relations to those found in
external environmental information such as rock depth or aspect and visualizing all
of these in only two dimensions.

A different approach (also constrained to environment attributes) is presented in
Fig. 4.8, where an RDA analysis was performed on the same dataset.

Considering that only a few of the measured soil variables had unimodal
relationships among themselves or with the environmental attributes used, the
authors considered it as advantageous to use linear relations (smallest total residual
sum of squares in RDA) when constraining the soil matrix with the environment
matrix instead of using their correlations (CCA), thus recommending RDA over
CCA under the studied conditions.
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Fig. 4.5 COR plot where both the first canonical axes of the soil and landscape ordinations
are plotted together. Colour scale represents easting, showing the same E-W pattern in both
multidimensional vectors, i.e. soil and landscape

4.3.2 Non-linear Biplots

The previous section has interpreted the classical biplot as a component analysis
augmented by information on the variables obtained by projecting notional sample
units with values concentrated in a single variable. In general, there are many other
ways of defining dij in terms of the sample values. Gower and Legendre (1986)
discuss some of the more commonly used definitions.

Gower and Harding (1988) give an example for a classical, non-linear biplot with
dij defined as in Eq. 4.12 (Fig. 4.9). The data used to populate this example were
sourced from a soil survey conducted in Pembrokeshire, Wales (Glamorganshire
soils). The concentration of 12 trace elements in parts per million (variables shown
as integers in Fig. 4.9) was determined at 15 sampling sites (shown as lower-
case letters in Fig. 4.9), and their logs taken to calculate the values xik which are
plotted as deviations from the mean. In the example, we can see that the trajectories
which represent the range of the different variables clearly differ in length which
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Fig. 4.6 COR plot where two sets of variables (soil and landscape attributes) are presented in the
same two dimensional space

reflects their contribution to the ordination Y. Here, the variables 5, 7 and 9 are
best represented, and consequently the other variables have little weight. Sample g
(as well as e and k), for example, is shown as an outlier and lies well beyond the
range of variable 9; other variables therefore contribute to g. Here, g could only be
interpolated by using extreme values of 5 (negative), 7 (negative) and 9 (positive).
On the other hand, even if a sample lies well within the range of a variable, this
does not necessarily mean that the variable is a major contributor. This is the case
for sample d which is close to 5 but also includes large contributions from variables
7 and 9.

A subset of the above described dataset was used to create the non-linear biplot
shown in Fig. 4.10. Here, only 4 of the originally 12 trace elements (variables 5, 7,
9 and 12) were used, i.e. only effective trajectories were chosen, and all trajectories
were scaled from the common point O by a factor of 4, which provides a less diffuse
and more balanced interpretation of the biplot. General trends of the dataset remain,
with sampling site g still being identified as an obvious outlier.
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Fig. 4.7 CCA biplot where both soil attributes and environmental attributes are plotted together.
Note: The nomenclature is described in Table 4.1 (Source: Odeh et al. 1991)

4.4 Compositional Data

4.4.1 Background

Often we describe a volume of soil with a set of properties that are related to
each other that sums to that soil volume or to its mass. Such sets of properties
are called compositional variables or compositions. The most common example
in soil science would be describing the particle size of the mineral fraction of the
soil with the variables sand, silt and clay. The relative proportions of the individual
particle-size fraction (PSF) are what constitute the soil texture. The importance of
soil texture cannot be overemphasized. The soil texture, and indeed the particle-
size distribution, determines, in part, water, heat and nutrient fluxes, water and
nutrient holding capacity and soil structural form and stability. In particular the
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Table 4.1 Soil variables and environmental variables used

Variable Symbol Variable Symbol Env. attribute Symbol

Colour L lc Soil pH ph Solum depth SLDEP

Colour a ac Structure grade grd Bedrock depth RKDEP

Colour b bc Structure
horizontality

hon Slope gradient GRAD

Mottle colour L ml Structure
verticality

ver Profile convexity PROFC

Mottle colour a ma Structure face
flatness

fla Plan convexity PLANC

Mottle colour b mb Structure
accommodation

com Upslope distance UPDIS

Cutan abundance cab Gravel grav Upslope area UPA

Soil strength str Clay cla Square root of a UPSQ

Soil plasticity pla Silt sil Sine aspect in deg (™) SIN(� )

Soil stickiness sti Sand san Cosine aspect in deg (™) COS(� )

Organic carbon om Electric
Conductivity

ec

Prefix
Topsoil a Subsoil b Parent material c

Adapted from Odeh et al. (1991). Note: The reader is also referred to Sect. 5.3 of this book for
further explanations of the variables in relation to soil structure

clay fraction, as the active constituent of the composition, could be incorporated
in pedotransfer functions to predict material fluxes (e.g. Arya et al. 1999) and
other soil properties (Sinowski et al. 1997) (refer to Chap. 7 of this book). Other
types of compositional soil data could include soil cations that contribute to
effective cation exchange capacity, e.g. the relative proportions of calcium Ca2C,
magnesium (Mg2C), potassium (KC), sodium (NaC) and aluminium (Al3C). Soil
class memberships are further examples of what are considered to be forms of
compositional data in that all the memberships will sum to 1 or 100, etc. (McBratney
et al. 1992; de Gruijter et al. 1997).

Compositional data have important and particular properties that preclude the
application of standard statistical techniques on such data in raw form – although
this does this not preclude people from using standard techniques to analyse compo-
sitional data, however. Compositional data are vectors of non-negative components
showing the relative weight or importance of a set of parts in a total, meaning that
the total sum of a compositional vector is considered irrelevant. Another property is
that when analysing compositional data, no individual component can be interpreted
isolated from the other. For compositional data, the sample space (or set of possible
values) is called the simplex, which is the set of vectors of positive (or zero)
components which could be described as a proportion, percentage or any other
closed-form expression such as parts per million (ppm) or similar. Staying with
the soil texture example, mapping the simplex can be illustrated with a ternary plot
as shown in Fig. 4.11.

http://dx.doi.org/10.1007/978-3-319-63439-5_7
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Fig. 4.8 RDA biplot where both soil attributes, environmental attributes and projected site scores,
are plotted together (different to Fig. 4.7, this graphic shows standardized data, resulting in higher
variance explained on each axis) (Source: Odeh et al. 1991)

Fig. 4.9 Non-linear biplot using Pythagorean distance. Lower-case letters refer to samples (15
Glamorganshire soils, Wales); numbers which label linear trajectories refer to variables. The
positive end of each trajectory is indicated (Redrawn after Gower and Harding (1988))
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Fig. 4.10 Non-linear biplot using the square root of Minkowski L1 distance. Lower-case letters
refer to samples (15 Glamorganshire soils, Wales); numbers which label linear trajectories refer to
variables. The centroid G of the ordination and the common point O, unlabelled, of the trajectories
differ (Redrawn after Gower and Hand 1996)

Because of these specific properties, compositional data are not amenable to
analysis by common statistical methods designed for use with unconstrained data
(Chayes 1960; Aitchison 1986). For example, standard techniques are designed
to be used with data that are free to range from �1 to C1. A consequence
of not treating compositional data in an appropriate manner is likely to result in
misleading outcomes. Figure 4.12 shows biplots of soil texture from the Edgeroi
dataset (McGarry et al. 1989). The biplot on the left shows the principal components
of the soil texture data without recognition of its compositional nature. The biplot
on the right is the same data, but they have been transformed using a centre log-
ratio (clr) transform for compositional data (more information about this transform
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Fig. 4.11 Ternary diagram plotted as an equilateral triangle, with X, Y and Z components defining
the compositional system placed at the apices of the triangle. Note that each apex is 100% of that
component and 0% of the other two

Fig. 4.12 Biplots of untransformed (left) and clr-transformed (right) compositional soil texture
data
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is described further on). Despite being the same data, what is clear from these
biplots is that the angles of the variable rays are different between them, implying
different correlation relationships between the variables when it is and is not
transformed. Consequently, analyses performed on untransformed data are likely
to reveal outcomes that could be potentially misleading.

4.4.2 Historical Perspective Behind Compositional Data
Analysis

Historically, the starting point for compositional data analysis is arguably the
paper of Pearson (1897), which first identified the problem of spurious correlation
between ratios of variables. Pearson used the example that if X, Y and Z are
uncorrelated, then X/Z and Y/Z will not be uncorrelated. Pearson then looked at
how to adjust the correlations to take into account the spurious correlation caused
by the scaling. However, this ignores the implicit constraint that scaling only makes
sense if the scaling variable is either strictly positive or strictly negative. In short,
this approach ignores the range of the data and does not assist in understanding the
process by which the data are generated. Tanner (1949) made the essential point
that a log transform of the data may avoid the problem and that checking whether
the original or log-transformed data follow a normal distribution may provide some
guidance as to whether a transform is needed.

Chayes (1960) later made the explicit connection between Pearson’s work and
compositional data and showed that some of the correlations between components
of the composition must be negative because of the unit sum constraint. However,
he was unable to propose a means to model such data in a way that removed the
effect of the constraint.

The difficulty of interpreting compositional data is well illustrated by the
following trivial example: ‘...If one analyses the contents of a jar half-filled with
sand and finds, by a random sample, that it contained (by volume) about 20% quartz,
30% feldspar, 40% rock fragments, and 10% miscellaneous constituents, then, if
the volume of the jar were doubled by addition of grains of pure quartz, a second
random sample would reveal that the jar contains 60% quartz, 15% feldspar, 20%
rock fragments, and 5% miscellaneous. Feldspar, rock fragments, and miscellaneous
constituents appear pair-wise positively correlated and all three appear negatively
correlated with the quartz abundance. Also, all four components have shifted mean
values despite the fact that only the quartz content of the jar changed...’ (Woronow
1990).

Although the interdependency of compositional variables has been recognized
for over a century (Pearson 1897), appropriate statistical methods for analysing
such data have been extremely slow to emerge. Researchers who recognized the
problems associated with statistical analysis of compositions were unable to provide
feasible solutions. Many scientists therefore decided to abandon statistical analysis
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of compositions altogether. Others wished away or ignored the awkward constraints
on compositions to justify the use of standard statistical methods for compositional
data analysis (Aitchison 1986). A naïve solution and one commonly practised in
the analysis of compositional data is to use standard statistical data analysis on D-
1 components (which is of size D) and then evaluate the remaining component by
difference at the end of the analysis.

4.4.3 A Recent Approach: Log Ratios

John Aitchison is probably recognized as the person to have laid the foundations of
a new approach to the statistical analysis of compositional data. The seminal work
that is described in Aitchison (1986) is a culmination of all the efforts on this topic
and obviously an invaluable resource for those wanting to appreciate it more at the
granular level.

It has been found that an appropriate analysis of compositional data is based
on a log-ratio representation of the data – and several are available. For example,
Aitchison (1982) introduced the additive log-ratio (alr) and centred log-ratio (clr)
transformations and Egozcue et al. (2003) the isometric log-ratio (ilr) transfor-
mation. Using these transformations, a composition is represented as real vectors,
which are often referred to as coordinates, or sometimes coefficients (Pawlowsky-
Glahn and Egozcue 2001).

Numerically, coordinates or coefficients are easy to compute. If we consider
a sandy clay soil which we will say has 55% sand, 15% silt and 30% clay,
this represents a three-part (D D 3) composition x D [55,15,30]. The three
representations would be written as a vector with two components for the alr and ilr
coordinates, and with three components for the clr coefficients, as follows (note that
numbers are limited to two decimal places throughout):

Additive log ratio

alr.x/ D alr Œ55; 15; 30� D




ln
55

30
; ln

15

30

�

D Œln.1:83/; ln.0:5/ �DŒ 0:60;�0:69�

The inverse of alr(x) is

x D
Œexp.0:60/I exp .�0:69/ I 1�

exp.0:60/C exp .�0:69/C 1

D




1:82

3:32
;
0:50

3:32
;
1

3:32

�
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D Œ0:55; 0:15; 0:30�

Centred log ratio

clr.x/ D clr Œ55; 15; 30�

D

"

ln
55

.55 � 15 � 30/
1
3

; ln
15

.55 � 15 � 30/
1
3

; ln
30

.55 � 15 � 30/
1
3

#

D

"

ln
55

.24750/
1
3

; ln
15

.24750/
1
3

; ln
30

.24750/
1
3

#

D




ln
55

29:14
; ln

15

29:14
; ln

30

29:14

�

D Œln.1:89/; ln.0:51/; ln.1:03/ �

D Œ0:64;�0:66; 0:03�

The inverse of clr(x) is

x D
Œexp.0:64/I exp .�0:66/ I exp.0:03/�

exp.0:64/C exp .�0:66/C exp.0:03/

D




1:90

3:44
;
0:52

3:44
;
1:03

3:44

�

D Œ0:55; 0:15; 0:30�

Isometric log ratio

ilr.x/ D t .V/ � clr Œ55; 15; 30�

V is a matrix of D rows and D-1 columns such that V � t(V) D ID � 1(identity
matrix of D-1 elements and V � t(V) D ID C a1, where a may be any value and 1 is
a matrix full of ones). From Egozcue et al. (2003), the matrix elements of V are the
basis elements for the canonical basis of the clr-plane needed for the ilr transform:

V Œ55; 15; 30� D

2

4

�0:71 �0:41

0:71 �0:41

0 0:82

3

5
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ilr.x/ D t

2

4

�0:71 �0:41

0:71 �0:41

0 0:82

3

5 � Œ0:64;�0:66; 0:03�

D Œ�0:92; 0:04�

The inverse of ilr(x) is performed by converting ilr to clr and then performing the
inverse as for clr:

ilr.x/ ! clr.x/ D ilr.x/ � t .V/

clr.x/ D Œ�0:92; 0:04� � t

2

4

�0:71 �0:41

0:71 �0:41

0 0:82

3

5

x D
Œexp.0:64/I exp .�0:66/ I exp.0:03/�

exp.0:64/C exp .�0:66/C exp.0:03/

D




1:90

3:44
;
0:52

3:44
;
1:03

3:44

�

D Œ0:55; 0:15; 0:30�

The general equations for alr and clr can be found in Aitchison (1986) and those
for the ilr are in Egozcue et al. (2003). The three representations have different
properties. As described in Pawlowsky-Glahn and Egozcue (2001) from Aitchison
(1986), the alr coordinates are D-1 components which are divided by the remaining
component and logarithms taken. In the above example, the last component is used
as the denominator, but it could be any of the components. The resulting log ratios
are real variables that can be analysed using standard statistical techniques. The clr
coefficients are obtained by dividing the components by the geometric mean of the
parts and then taking logarithms. While clr coefficients are useful in the computation
of biplots, their one major drawback is that they necessarily sum to zero. This
means that clr-transformed observations lie on a plane in D-dimensional real space.
Consequently, care should be taken in ensuing analysis because covariance and
correlation matrices are singular (their determinant is necessarily zero) (Pawlowsky-
Glahn and Egozcue 2001). Expressions for the calculation of ilr coordinates are
more complex, and there are different rules on how to generate those (Egozcue
et al. 2003). Their advantage lies in the fact that they are coordinates in an
orthogonal system, and thus, any classical multivariate statistical technique can be
used straightway to study them. In summary, log-ratio coordinates and coefficients
of random compositions are real random variables, as they are free to range from
�1 to C1, and thus it is possible to undertake multivariate statistical analysis
using them.
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4.4.4 Analysing Compositional Data as Regionalized Variables

Some of the statistical techniques of interest when working with compositional
data involve those related to geospatial prediction, i.e. the creation of digital soil
maps. Detailed discussion on digital soil mapping and geostatistics can be found
in Chaps. 12 and 11, respectively. When working with compositional data, most
mapping studies are those involving the mapping of soil texture components.
Compositional treatment of soil class memberships has also been investigated, e.g.
McBratney et al. (1992). The work by McBratney et al. (1992) considered the
‘symmetric’ or clr transform as a prior step to mapping soil membership classes
using ordinary kriging. Also, interested in soil class memberships, de Gruijter
et al. (1997) proposed a compositional data kriging algorithm which is for all
intents and purposes is an extension of ordinary kriging, but with constraints. The
method of de Gruijter et al. (1997) does not actually use a log-ratio transformation
as a prior step, rather it imposes conditions, in addition to the unbiasedness
conditions upon the ordinary kriging system. The issue with this approach is that
it is computationally laborious as the constrained kriging equations must be solved
numerically.

With regard to soil texture analysis, Odeh et al. (2003), Lark and Bishop
(2007) and Huang et al. (2014) interestingly all used the alr transformation prior
to geostatistical analysis. Ordinary kriging was used in Odeh et al. (2003), co-
kriging in Lark and Bishop (2007), while Huang et al. (2014) used a regression
model, relating the transformed coordinates to a suite of environmental covariates.
As described by Lark and Bishop (2007), the preference to use alr is helped by
the fact that in the case of co-kriging, the mapped estimates are not affected
if the order of the elements in the composition is changed (i.e. changing the
denominator to another element that is not the last). This property is called
permutation invariance (Pawlowsky-Glahn and Olea 2004). Also beneficial for
geostatistical purposes is that the cross-covariance structure of an alr-transformed
variable contains all the information on the spatial dependence of the untransformed
variable. This is also provided by other transforms, and unlike the clr transform,
the covariance matrices of alr-transformed data are not singular. Data transformed
with ilr would also have the same ideal properties as for alr, and this has the added
advantage of not having to determine if the data exhibits permutation invariance
or not.

Considerations about back-transformation of transformed variables are also
necessary. The inverse back-transforms as detailed above may be used, but as
Pawlowsky-Glahn and Olea (2004) show, this back-transform is necessarily biased,
and the unbiased transform is unknown. As Lark and Bishop (2007) point out, this
quality of bias was one of the reasons why de Gruijter et al. (1997) developed
compositional kriging. Pawlowsky-Glahn and Olea (2004) do indicate that a
back-transform can be obtained numerically. Yet Lark and Bishop (2007) were
unable to determine any consistent advantage in doing so when comparing results
obtained via unbiased back-transformation with those that were obtained using

http://dx.doi.org/10.1007/978-3-319-63439-5_12
http://dx.doi.org/10.1007/978-3-319-63439-5_11
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the simple alr back-transform equation listed above. Other studies such as Huang
et al. (2014) did not consider the relative advantages of biased and unbiased
back-transformations.

4.5 Conclusions

In this chapter we have described and discussed multivariate methods that have been
used in soil science. For some properties, i.e. particle-size fractions, we have shown
that we must account for their compositional nature (with a log-ratio transform) as
otherwise we may find spurious relationships in our analysis. Another subtlety for
multivariate analysis is that in many situations, our data has an associated spatial
location, and therefore there may be an implicit spatial autocorrelation between
our observations. The concept of spatial autocorrelation will be discussed in later
chapters, but in terms of multivariate analysis, future work should consider this.
Jombart et al. (2008) in a genetics study modified PCA based on the Moran’s I
spatial correlation measure. There is potential to adapt this to geographic space
encountered in soil science.

Finally, we live in the age of readily accessible data about soil, be it from sensors
measuring parts of the electromagnetic spectrum or from DNA sequencing of soil
biota. Such datasets can be vast for even just one soil sample, and multivariate
methods are crucial for understanding such datasets. Proficiency in there use will
be a necessary skill for all soil scientists.
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Part III
Soil Measurements and Properties

“Is complexity randomness or is randomness complexity?”

David van der Linden

Soil is described by observing its properties at suitably located places in the
landscape. For any hand specimen of soil material, thousands, if not millions, of
biological, chemical and physical soil properties can be observed. This number
increases with the march of technology. Most countries have developed standard
techniques for field description, sampling and laboratory analyses (e.g. in Australia
The National Committee on Soil Terrain 2009; Rayment and Higginson 1992).
Field description tends to be qualitative, whereas laboratory analyses are largely
quantitative. New technology for making observations and the increasing demand
for quantitative soil data are agents of change for soil description.

In this book section, we consider the description and improved quantification of
key soil properties. We then look at how soil properties can be inferred from others.

Recalling a point from the introduction to this book, it can be argued that what
we deal with in pedometrics are called soil attributes. The reason for this being
that we deal with numbers or codes that are attributed to soil, they are not intrinsic
properties of the soil themselves. So description implies attribution. This might be
explained with reference to pH: there are many ways of trying to quantify the pH of
a soil by changing the soil:solute ratio and the nature of the electrolyte – these give
varying values – so the pH 1:5 in water and pH 1:2.5 in KCl are different attributes
of the soil, but they try to measure an intrinsic soil property, its pH. This might be
regarded as too pedantic, so the phrases soil attribute and soil property will be used
synonymously.
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Chapter 5
Pedometric Treatment of Soil Attributes

Uta Stockmann, Edward J. Jones, Inakwu O. A. Odeh,
and Alex. B. McBratney

“The soil itself must be the object of observation and experiment
and the facts obtained must be soil facts before they can be
incorporated into soil science. The science of zoology was
developed through the study of animals, that of botany through
the study of plants, and soil science must be developed through
the study of the soil”.

C. F. Marbut 1920

5.1 Introduction

There are some universally described soil attributes that are worthy of more detailed
pedometric description. Here, we largely concentrate on field properties which have
particular issues associated with them. We are not attempting to be exhaustive.

As outlined in the Introduction of Part III of this book, over the years most
countries have performed field descriptions and laboratory analysis of soil based
on some kind of standard technique. The methods that can be utilized for in-situ
field description were already developed in the 1950s and refined and standardized
by most countries in the 1970s and 1980s. These efforts have resulted in what is
referred to as soil legacy data. The aim of this chapter is to illustrate how these soil
legacy data can be modified for pedometric, quantitative and in general terms more
objective soil analysis. Here, we will also discuss how we can use these quantitative
descriptions to perform a more quantitative analysis of soil attributes, utilizing
mathematical descriptors, or how we can achieve a more quantitative measurement
and assessment of soil attributes utilizing new technology and computational
advances.
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5.2 Soil Colour

Soil colour is perhaps the most commonly observed field attribute. Prior to the
1950s, colour was described in common terms such as red, grey and brown
without reference to any standards. From then onwards, colour designation has
been achieved through standardized colour systems in which an individual colour is
represented by a point in a three-dimensional space (Melville and Atkinson 1985).
This move from a solely subjective to a more objective description of soil colour
was driven by the intention of being able to compare and classify soils.

Colour has been largely described by the three-dimensional Munsell colour
system by comparison with chips in the Munsell soil colour book (Munsell Color
2009). The colour designated can be interpolated between the chips and pages of the
book. It consists of three axes: the hue (H), value (V) and chroma (C) which describe
a cylindrical coordinate system (Fig. 5.1a). The hue characterizes the similarity to
a dominant colour (red, yellow and blue) or a combination of any two, the value
describes the colour intensity or lightness and the chroma refers to the saturation in
colour or relative purity of the dominant wavelength. The Munsell colour chart is the

Fig. 5.1 (a) The Munsell colour model represented by a cylindrical coordinate system. (b) The
RGB model, (c) the CIE xy chromaticity diagram (d) the CIELu*v* and CIELa*b* colour space
model (Sourced from Viscarra Rossel et al. (2006a), used with permission)
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standard reference for pedologists for describing soil colour in the field. However, a
study conducted by Sánchez-Marañón et al. (2005) found that Munsell colour books
are subject to variation in themselves due to manufacture differences or effects of
colour fading due to prolonged use and that variation is also introduced by subjective
colour perception of the individuals describing soil colour in the field. In addition,
such a cylindrical coordinate system, sometimes, causes difficulties when it is used
for statistical analysis as the Munsell colour space is presented as non-contiguous
slices representing each page of the colour book. For quantitative data analysis,
further transformations of the Munsell colour notations are therefore required. For
such quantitative, numerical or predictive analysis, a three-dimensional Cartesian
coordinate system is preferred (Melville and Atkinson 1985; Viscarra Rossel
et al. 2006a). Examples of Cartesian colour coordinate systems are CIELab,
CIELuv and RGB systems (Fig. 5.1b–d). All have slightly different properties but
generally are similar. The Commission Internationale de l’Eclairage (CIE 1931)
standardized colour space systems by specifying the light source, the observer and
the methodology used to derive the values for describing soil colour. The CIE colour
system defines how to map a spectral power distribution to a set of tristimulus
coordinates which describe a XYZ coordinate colour space, with Y representing the
luminance or brightness component and X and Z representing virtual or ‘imaginary’
components of the primary spectra (Wyszecki and Stiles 1982). These XYZ
tristimulus coordinates can then be transformed to xy coordinates of chromaticity:
x D X

.XCYCZ/ and y D Y
.XCYCZ/ where xy values lie between 0 and 1 (Melville and

Atkinson 1985).
Following on, the CIE proposed additional transformation systems to overcome

the perceptual non-linearity of the XYZ system, the CIELuv (L*, u*, v*) and
CIELab (L*, a*, b*) colour spaces (refer to Fig. 5.1), which represent colour on
a continuous numeric colour space that is more suitable for pedometric analysis
(Viscarra Rossel et al. 2006a). In these opponent-type colour spaces, u* and a*
represent opponent red/green scales (with Cu* and Ca* representing reds and –
u* and –a* representing greens), and similarly v* and b* are opponent yellow/blue
scales. The value L* is used in both systems and is representative of the ‘metric
lightness function’ which ranges from 0 (black) to 100 (white) (Melville and
Atkinson 1985). For more details on these colour space systems and the derivation
of their coordinates, please refer to the books by Wyszecki and Stiles (1982) and
Billmeyer and Saltzman (1981).

Another advantage of Cartesian systems is the ability to calculate a colour
contrast, for example, for measuring the difference in colour between the A and
B horizons or the contrast between soil mottles and the background matrix (Gobin
et al. 2000). A colour difference or contrast is simply the Euclidian distance between
the two colours (Melville and Atkinson 1985). If p and q are two points in the
Euclidean n-space, then the distance (d) between them can be calculated using the
Pythagorean formula:
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d D

q

.q1 � p1/
2 C .q2 � p2/

2 C � � � C .qn � pn/
2

D

v

u

u

t

n
X

iD1

.qi � pi/
2

(5.1)

For example, the overall colour difference between two points in the CIELab
colour space (refer to Fig. 5.1) can be calculated using this Euclidean relationship
(Melville and Atkinson 1985):

�E�
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�

�L�
�2

C
�

�a�
�2

C
�

�b�
�2
i 1
2

(5.2)

Viscarra Rossel et al. (2006a) present algorithms (ColoSol) for the conversion
between colour space models. Recently, however, commercial and open-source
coding software has become available that includes packages for transforming
colours between different colour spaces. MATLAB, for example, provides the
‘colour space transformation’ package (Getreuer 2011), whereas the open-source
software R provides the ‘aqp’ package which compiles algorithms for quantitative
pedology (Beaudette and Roudier 2016). The latter includes the ‘colour space’
package which provides colour space manipulations including the mapping between
various colour space models including RGB, HSV, HLS, CIE xy, CIELuv, HCL
(polar CIELuv), CIELab and polar CIELab (Ihaka et al. 2015). In addition, the R
package ‘Munsell’ (Wickham 2016) provides conversion between the RGB colour
space and the Munsell HVC system and also converts a Munsell colour to a hue,
chroma and value triplet. Lately, soil colour can also be determined using a (mobile)
smartphone as these devices have all the requirements now to capture and process
digital images (Gómez-Robledo et al. 2013). Android- or apple-specific application
software has been developed that allows transformations between colour spaces on
the go.

Soil colour has been used to determine types of soil, and a number of soil
properties can also be related to soil colour. In general, dark soil colours, especially
of surface soil, have been associated with high organic carbon content and thus
good soil fertility, whereas light, pale or bleached colours are associated with a loss
of base cations and nutrients and in general poor fertility. Light soil colours are also
related to the presence of carbonates and calcium sulphates (gypsum), whereas the
yellowish and reddish colour of soil can be related to iron oxides such as goethite
and hematite, respectively. Over the years, soil colour has therefore been used to
infer other soil constituents. Some of these studies used soil colour measurements
to first calculate colour indices and then employed those to quantitatively describe
and assess their occurrence (see Table 5.1).

More explicitly, soil colour was successfully used to quantify iron content and
in particular hematite and goethite contents in soils (Madeira et al. 1997). Torrent
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et al. (1983) and later Barron and Torrent (1986) found a strong relationship
between hematite content and colour indices (rating of the degree of redness) that
were calculated employing the Munsell notation or CIE chromatic coordinates.
Torrent et al. (1983), for example, established a quantitative relationship between
soil colour (i.e. redness ratings sourced from visual and spectrophotometric colour
measurements) and hematite content. The authors found that the pigmenting power
of hematite differed between the geographic regions studied and, for predictive
purposes, recommended region-unique calibration models. In addition, soil colour
has also been used to infer soil water content. Bedidi et al. (1992) found that
hue increased with moisture content and colour purity (saturation) decreased with
increasing moisture content. Furthermore, other soil hydrological properties have
also been related to soil colour. He et al. (2003), for example, estimated the
frequency and duration of soil saturation based on soil colour. They determined
the percentage of redoximorphic features at a given soil depth and found that low
chroma colours increased the longer the soil studied was saturated and chemically
reduced. A difference in colour indices was used by Evans and Franzmeier (1988)
to estimate wetness and soil aeration, by Thompson and Bell (1996) to classify
seasonal soil saturation and by Gobin et al. (2000), for example, to infer soil
drainage. Soil colour has also been used to predict soil (organic) carbon content.
Ivey and McBride (1999) related moist soil colour to topsoil organic carbon
contents, with the chromaticity coordinate a* (CIELab colour space notation)
showing good estimates for medium- to fine-textured soils. Gobin et al. (2000)
and Chaplot et al. (2001) used colour indices to quantify differences in soil organic
carbon content. Viscarra Rossel et al. (2006a) predicted soil organic carbon content
using various colour space models and concluded that the CIELuv and CIELCh
models were the most suitable. Following on, Viscarra Rossel et al. (2008) used
the CIE colour system as a proxy to measure soil organic carbon and iron contents.
More recently, Baumann et al. (2016) used soil colour (CIELab system) to rapidly
assess soil organic matter content and found that soil lightness (L* value, refer to
Fig. 5.1) was significantly negatively correlated with soil organic matter content.
The authors also found that soil colour (L* , a* and b* values) was affected by
geographic region and land use, with in general higher L* values for forest soils
when compared to grassland soils. In an earlier publication, Spielvogel et al. (2004)
established a relationship between soil lightness and soil organic carbon content
and the chemical composition of soil organic matter and found that soil lightness
decreased with increasing organic carbon content. More recently, Sánchez-Marañón
et al. (2011) also used colour to assess aggregate stability, including the effects of
fabric on this relationship. An increase in stability was related to increased soil
redness, darkness and chromaticity due to an increase in binding agents such as
clay, organic C and free forms coating the surfaces of the aggregates successfully
used to quantify iron content

Technologies that provide a quantitative measure rather than only a visual
matching of colour are available. Soil colour measurements have been made using
digital cameras where RGB colour values can be directly estimated from the images
made or chromameters, for example (Roudier et al. 2016). Lately, these have also
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benefited immensely from advances in hand-held spectroradiometry devices (spec-
trophotometry technology). The visible spectrum of the electromagnetic spectrum
(refer to Fig. 5.11 in part 5.4) which lies between 380 nm (violet) and 780 nm (red)
can be used to calculate soil colour from reflectance spectra (Fernandez and Schulze
1987). Shields et al. (1966) first investigated the capability of measuring soil colour
via spectroreflectance. However, this approach only received increased popularity
in the 2000s. For example, Barrett (2002) used in-field reflectance spectra from the
soil pit face to measure soil colour and found strong correlations between those
spectroradiometer measurements and visual estimates of Munsell colours. Viscarra
Rossel et al. (2009) estimated soil colour from the visible part of the vis-NIR
spectra and also investigated its use for in-field application. The continuum removal
technique was used to select characteristic absorption features corresponding to
blue (450–520 nm), green (520–600 nm) and red (600–690 nm). The selected RGB
values were multiplied by 255 to arrive at an 8 bit pixel colour encoding value that
was transformed to the Munsell HVC and CIELab colour models. Comparison of
vis-NIR measurements to visual Munsell book estimates was promising, but it was
found that those had the tendency to be darker and more yellow in hue. Figure 5.2
exemplifies the use of vis-NIR spectrometry to predict colour of a Red Chromosol,
Brown Sodosol and Black Vertosol (Australian Soil Classification) using the R
‘Munsell’ package (Wickham 2016) and the technique described in Viscarra Rossel
et al. (2009). Furthermore, Table 5.2 shows an example of converting the B horizon
soil colour values from the RGB to Munsell and CIELab codes using the R colour
space package (Ihaka et al. 2015).

As discussed, proximal soil sensors capable of readily taking quantitative soil
colour measurements in the field (e.g. new ASD configuration, spectral evolution,
in-field vis-NIR profiler) are now available. Such measurements are affected by
soil moisture variation. However, correcting algorithms such as external parameter
orthogonalization (EPO) are available that can be used to eliminate the moisture
effect on scanning soil samples directly in the field as soil moisture generally
increases soil darkness (Minasny et al. 2011). This will be discussed further in Sect.
5.5 of this chapter.

Soil colour estimates have not only been made using proximal soil sensors
but also by employing remote sensing satellite data as there is also a significant
correlation of chromaticity coordinates with reflectance values in the visible bands
of remote sensing data (Escadafal et al. 1989). Over the years this relationship has
been applied to study the spatial variation of the surface soil colour in remote
sensing applications. Different soil types can be mapped based on variations in
surface brightness and colour saturation, and soil processes that affect the surface
soil may also be inferred using colour differences. For example, topsoil removal can
be identified as it results in a colour change because the exposed subsurface soil will
have a different colour than the non-eroded soil (Escadafal 1993).

How to use remote sensing data for the measurement of a range of soil attributes
will be explained in more detail in the applications of pedometrics on vis-NIR-SWIR
remote sensing products as new soil data for digital soil mapping (Chap. 13). Here,
we only provide a few examples that are related to soil colour inference. Escadafal

http://dx.doi.org/10.1007/978-3-319-63439-5_13
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Fig. 5.2 Use of a vis-NIR spectrometer to predict colour of (a) Red Chromosol, (b) Brown
Sodosol and (c) Black Vertosol in situ. Each plot contains a digital photograph of the profile,
vis-NIR-derived colours in 2.5 cm increments to a depth of 1 m and vis-NIR reflectance plot
indicating wavelength bands of red (R D 600–690 nm), green (G D 520–600 nm) and blue
(B D 450–520 nm). Colours were predicted in R using the ‘Munsell’ package (Wickham 2016)
after extracting the mean reflectance within each band and scaling appropriately
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Table 5.2 Conversion of modal B horizon values (Fig. 5.2) from RGB to Munsell and CIELab
through the use of the colour space package (Ihaka et al. 2015)

Red Chromosol Brown Sodosol Black Vertosol

RGB 0.655, 0.402, 0.281 0.934, 0.768, 0.526 0.279, 0.250, 0.229
Munsell 2.5 YR 5/6 10 YR 8/6 N 3/0
CIELab 49.8 22.7 28.2 81.5 7.1 36.6 27.6 2.1 4.4

and Huete (1991) used a redness index from red and green spectral bands to correct
vegetation indices (NDVI and SAVI) for ‘soil noise’ apparent in remote sensing
images of low vegetation cover in arid regions. Later, Leone and Escadafal (2001)
used the visible bands of the multispectral infrared and visible imaging spectrometer
(MIVIS) hyperspectral sensor and the Landsat thematic mapper (TM) to infer soil
surface colour. Madeira et al. (1997) performed soil mapping of lateritic soils
employing visible spectrometric indices of hematite and goethite content (Landsat
TM). Mathieu et al. (1998) studied the relationship between radiometric indices
calculated from the visible bands (blue, green and red) of remote sensing data
and soil colour (Munsell and Helmholtz data). They found that radiometric indices
were good predictors of the soil colour components. Following on, Mathieu et al.
(2007) applied radiometric indices (redness index and brightness index) from SPOT
imagery for soil erosion mapping in a Mediterranean environment.

5.3 Soil Texture and Particle Size

Particle-size distributions are compositions of solid particles, the building blocks of
soils. We commonly describe soils in terms of the mass proportion of sand-, silt-
and clay-sized particles, which can be plotted on simplexes or texture triangles.
Particle-size distribution is usually measured in the laboratory using mechanical
analysis (Gee and Or 2002). In the field, particle size can be estimated using
the ‘hand feel’ method. It is questionable whether texture estimated by hand and
in the laboratory measures the same intrinsic soil property. There is little doubt,
however, that the two can be calibrated with each other. Hodgson et al. (1976), for
example, compared field texture estimates to those derived by the pipette method of
particle-size analysis and found that surveyors were able to confidently estimate the
particle-size distribution of the soils, although there was a tendency throughout for
underestimation of clay content.

Particle-size distribution is useful in pedology to study the development of
soil through examining the changes in clay fractions with soil age (Walker and
Chittleborough 1986). The distribution of sand, silt and clay in a soil profile can
also be used to elucidate soil-forming processes (Legros and Pedro 1985). Particle-
size distribution is also a key predictor in pedotransfer functions, especially for soil
hydraulic properties. It is surprising then that there is no universal agreement on the
size ranges of particle-size distributions. Each country adopted a different system
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Fig. 5.3 Particle-size limits used in the international and USDA/FAO system and used by
Australian and various European countries (Adapted from Minasny and McBratney 2001)

to represent the particle sizes; this resulted in various size ranges used as fraction
boundaries (Fig. 5.3).

In addition to the country-specific particle-size systems, there are two systems
that are used as international standards, the International system proposed by the
Swedish scientist Atterberg (1905) which was endorsed by the IUSS during the
first International Congress of Soil Science held in Washington, D.C., 13–22 June,
1927 (Minasny and McBratney 2001), and the USDA system which was adopted
by the FAO and whose current particle-size limits were established in 1938 (Knight
1938). It is interesting to note here that not many countries adopted the so-called
International system (refer to Fig. 5.3 which shows the international and USDA/FAO
system in comparison to Australia and various European countries).

Differing particle-size classification systems can cause particular problems when
data from different countries are merged into a single database or when texture
estimates are required in continuous pedotransfer functions (refer to Chap. 7),
for example, the soil database for Europe (ESDB – European Soil Database,
European Commission, Joint Research Centre). In such cases empirical equations
are required to relate the fractions in one system to the fractions in another. Lack
of standardization also creates difficulties when comparing textural classes between

http://dx.doi.org/10.1007/978-3-319-63439-5_7
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Fig. 5.4 Texture triangles with density contours (red) displaying 490 samples (grey dots) from
69 Australian soil profiles (Geeves et al. 1995) plotted under the (a) international and (b) USDA
systems. The silt and sand fraction boundary was increased from 20 to 50 �m via a pedotransfer
function (Padarian et al. 2012). Texture triangles were created using the soil texture wizard package
in R (Moeys 2015). Selected points are indicated with coloured shapes

systems. This incongruity can be demonstrated by plotting texture data under both,
the International and USDA systems (Fig. 5.4).

In Fig. 5.4 we can see that increasing the silt-sand fraction boundary from 20 �m
(International system) to 50 �m (USDA system) shifts samples to the right of the
texture triangle along the fixed clay plane. This results in a more uniform dispersion
of points within the texture triangle. However, only 41% of the samples, 202 of
490, remain in their corresponding textural class following conversion to the USDA
system. For many texture classes, differing clay content requirements mean that they
will never be assigned to the corresponding class. The USDA system generally has
a higher clay requirement. For example, the clay loam (ClLo) class requires 27–
40% clay in the USDA system versus 15–25% clay in the international system.
Clearly these requirements are incompatible, and there are dangers in assuming
texture classes in the differing systems correspond to similar soil samples. These
issues highlight the need for unifying techniques to facilitate the sharing of data and
techniques between countries.

Shirazi and Boersma (1984) proposed a bell-shaped texture triangle representing
the mean and variance of an assumed lognormal distribution (Fig. 5.5). The model
was later refined using piecewise lognormal curves for each size fraction (Shirazi
et al. 1988). This approach is useful for unifying textural classification of differing
particle-size systems as it integrates some quantitative statistical information, i.e.
any combination of sand, silt and clay can be represented by a geometric mean
particle diameter and a standard deviation.

Shirazi et al. (1988) also established relationships between various texture
classification schemes adopted by the USDA, the International Union of Soil
Science and the American Society of Civil Engineers, based on geometric mean and
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Fig. 5.5 The USDA texture triangle represented as geometric mean diameter and standard
deviation (Adapted from Shirazi and Boersma 1984)

standard deviation of the clay, silt and sand fraction size ranges (lognormal particle-
size distribution). However, the approach has received criticism for its unrealistic
discontinuities at fraction boundaries (Buchan 1989).

The representation of particle-size distribution by a small number of fractions
is an oversimplification of reality. Continuous measurements may be made using
laser diffraction or Coulter counters, or we may simply isolate a larger number of
fractions. This will undoubtedly give us greater insight. Walker and Chittleborough
(1986) isolated 18 particle sizes from the fine fraction of Alfisols in south-eastern
Australia. The large number of fractions isolated revealed unimodal distributions in
A horizons and bimodal particle-size distributions in B horizons (Fig. 5.6). The level
of detail allowed the authors to conclude that development of Bt horizons progresses
from an initial translocation of the clay followed by intensive weathering and size
reduction of clay particles.

Ideally, soil texture should be described by a large number of particle-size
fractions and statistical distributions fitted to model cumulative particle-size distri-
butions. Such a mathematical representation of particle size is particularly important
for converting between systems. For example, particle-size standardization in
accordance with the USDA/FAO system for the European database of hydrologic
properties of European soils (HYPRES) required the estimation of data at 50 �m
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Fig. 5.6 Particle-size histograms for key soil horizons in an Alfisol profile, showing the distinct
change in particle-size distributions down the soil profile from the A to the B horizons (Redrawn
after Walker and Chittleborough 1986)

from data where soil texture fractions were measured at limits of 60, 63, 200 and
2000 �m above the 20 �m limit (Nemes et al. 1999).

No general statistical distribution has been found to fit all soil particle-size
distributions, as they can be of symmetric or nonsymmetric nature as exemplified
in Chap. 3. It is also clear that in some symmetric cases, double or even triple
lognormal distributions have to be fitted. The amount of model parameters required
to describe a cumulative particle-size distribution depends on its complexity; the
more complex, the greater the number of model parameters needed.

There are a number of (comparative) studies which addressed this particular
subject (Table 5.3). Berezin and Voronin (1981), for example, used probability
distribution functions for describing the particle-size distribution of Russian soils
where the total weight percentage of particles of a certain diameter was taken as
a characteristic of the probability of occurrence of particles of this diameter in the
soil. Barndorff-Nielsen (1977) proposed the log-hyperbolic distribution to describe
textural characteristics, based on findings of Bagnold (1954) who demonstrated
its applicability to describe aeolian sand deposits in his research on sand dune
formation. This probability distribution was used to distinguish between dune sides,
dune crests and interdunal corridor (Wyrwoll and Smyth 1985) and in a later study
to discriminate between coastal sub-environments (Sutherland and Lee 1994).

Buchan et al. (1993) on the other hand compared five lognormal models of
particle-size distributions (i.e. Jaky (1944) one-parameter model, simple lognormal
model, two adjusted lognormal models, offset-renormalized lognormal model,
offset-nonrenormalized lognormal model, bimodal lognormal model) and found that
all models accounted for over 90% of the variance in particle-size distribution of
most of the New Zealand soils studied. In a different comparative study, Rous-
seva (1997) found that model suitability was influenced by texture. Closed-form
exponential functions represented well the cumulative particle-size distributions
of fine-textured soils, whereas closed-form power functions better represented the
cumulative particle-size distributions of coarse-textured soils. Following on, Hwang
et al. (2002) compared symmetric and asymmetric models for estimating soil
particle-size distributions of a range of Korean soils (i.e. five lognormal models,
the Gompertz model, the Fredlund model). They identified an effect of texture on
model performance, with increased performance of some models with increasing
clay content. This dependency of model performance on texture was also found

http://dx.doi.org/10.1007/978-3-319-63439-5_3
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in a later study that compared a total of nine soil particle-size distribution models
(Hwang 2004).

5.4 Soil Structure

Soil structure or pedality is often described in the field, but even with new
technological developments, it is still a difficult property to readily quantify. For
example, in 1941 Nikiforoff (1941) established a morphological ‘standardized’
classification of soil structure. In the field soil structure is often described in
somewhat vague grades of ‘massive’, ‘weak’, ‘moderate’ or ‘strong’ (Terrain 2009).
These structure grades, however, can be converted into an ordinal system, e.g. ‘0’,
‘1’, ‘2’ and ‘3’, so that they can be used in a more quantitative analysis.

Normally, the soil’s structure in relation to the shape of peds present in the soil
is also described with respect to a number of classes, e.g. ‘blocky’, ‘prismatic’,
‘angular’, ‘subangular’, ‘columnar’, etc. which in essence describe the three-
dimensional shape of an individual ped and how the peds relate to each other.

One way of quantifying the pedality of a soil is to consider the individual
descriptors or the ped shape as separate variables. When this is done, four variables
emerge, i.e. horizontality, verticality, roundness and accommodation. The advantage
of describing these four variables as opposed to a single class is that differences
between the structures of volumes of soil can be more subtly detected or measured.
Table 5.4 shows an example of this method. Here, fuzzy coding was used to describe
the structural types of ped shapes. The fuzzy codes show the degree of similarity
with respect to the ped face characteristics and account for uncertainty or a lack of
a clear boundary between descriptors (Odeh et al. 1991).

Another approach is to characterize soil structure via aggregate shape and surface
roughness. Holden (1993), for example, used three indicators (1) circularity or
sphericity, (2) angularity or roundness and (3) surface roughness to quantify soil
ped shape. Cox’s R-statistic was used to quantify circularity or gross shape (R) with

Table 5.4 Fuzzy coding of structural type

Type Horizontality Verticality Flatness Accommodation

Platy 1.0 0.1 1.0 1.0
Lenticular 1.0 0.3 0.3 1.0
Prismatic 0.2 1.0 1.0 1.0
Columnar 0.2 1.0 0.9 0.9
Angular blocky 1.0 1.0 1.0 1.0
Subangular blocky 0.7 0.7 0.5 0.5
Granular 0.2 0.2 0.0 0.1
Massive 0.0 0.0 0.0 1.0
Single grain 0.0 0.0 0.0 0.0

After Odeh et al. (1991)
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Fig. 5.7 A modified version of Pettijohn’s (1957) standard shape chart. Main boxes indicate
surface roughness classes, columns indicate circularity classes, and rows indicate angularity classes
(Redrawn after Holden 1993)

R D
4	A

P2
(5.3)

with A defining the projected area of the particle and P the perimeter of the particle.
This measure gives the ratio of the projected area of the particle to the area of a circle
that has the same perimeter, and therefore R D 1 for a perfect circle and R D 0
for a line. The Steinhaus paradox was employed to quantify surface roughness.
Accordingly, the length of a perimeter, L, is estimated by the number of steps, F, it
takes to measure out the perimeter and their individual length ":

L ."/ � F"1�D (5.4)

where D is the fractal dimension, i.e. the degree to which a one dimension extends
into a two dimension such as a line and its potential to becoming a filled area.
Angularity was described according to two classes, angular (0) or rounded (1).
Image analysis was used to calculate these measures, and results were compared
to six criteria (Clark 1981) that can be used to assess shape measurement (i.e.
uniqueness, parsimony, independence, rotation invariance, scale invariance, reflec-
tion invariance) and calibrated against Pettijohn’s (1957) standard shape chart (Fig.
5.7). This study found that Cox’s R-statistic is a powerful measure of circularity and
gross shape.

The mathematical technique of fractal geometry which was introduced by
Mandelbrot (1989) has also been used to describe soil structure qualitatively, as
fractal geometry has the ability to describe rugged or irregular geometries by
estimating their fractal dimension (McBratney et al. 2002). In addition, fractal soil
models are also capable of relating structure to soil physical processes. Essentially,
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fractal objects have no characteristic scale dimension, as it is assumed that their
morphological appearance stays the same. Mandelbrot (1989) describes a fractal as
‘shapes whose roughness and fragmentation neither tend to vanish, nor fluctuate
up and down, but remain essentially unchanged as one zooms in continually and
examination is refined’.

McBratney et al. (2002) provide an extensive review about the theory behind
fractal geometry and how it can be applied to directly quantify soil structure from
soil images, and we will only provide a short summary here. As outlined in this
review, fractal objects can be described through fractal dimensions in various ways.
One option is to use the mass fractal dimension, Dm, which is less than the Euclidean
dimension that a fractal is part of (the embedding dimension, de), with de equal to 2
in a two-dimensional space (e.g. an image of soil from a thin section) and equal to 3
in a three-dimensional space (e.g. a soil aggregate). The mass, M, of a mass fractal
inside a radius, r, is scaled according to

M / rDm (5.5)

Furthermore, the spectral dimension, d, can be used as a measure of the
connectivity of fractal pathways, with a large value of d equal to a more continuous
less winding pathway. The surface fractal dimension, Ds, is used to describe the
irregularity or ruggedness of a perimeter or surface. For example, in the case of a
perimeter, a straight line is non-fractal and has an Euclidean dimension equal to
1, whereas an irregular line that is subject to fractal scaling has a value of Ds that
reaches 2 depending on its ruggedness (space filling). Similarly, a flat surface has
an Euclidean dimension equal to 2, whereas a fractal surface has a value of Ds that
is approaching a value of 3 depending on how volume filling the surface becomes.
The fragmentation fractal dimension, Df , is also used which is estimated from a
particle-size or aggregate-size distribution and mathematically allows a value range
of 0 < Df > 3 (refer to Anderson and McBratney (1995) for detailed discussions).
This measure of size distribution has been employed, for example, as an indicator of
soil fragmentation caused by different agricultural management practices (Anderson
and McBratney 1995).

Efforts in directly measuring and quantifying structure are focused on image
analysis of two-dimensional images of soil and more recently also on three-
dimensional images owing to technological improvements (e.g. Eck et al. 2013).
Common practice is to convert the (black and white) digitized images into a binary
and to assign each pixel either to the solid soil matrix or the pore space, using,
for example, the box-counting method, where each binary soil image is overlain by
a grid of square boxes (McBratney et al. 2002). Mathematical techniques such as
the discussed fractal geometry are then employed to estimate quantitative measures
relevant for soil structure.

Over the years, a concentrated effort, for example, has been the description of
soil structure utilizing thin sections and the attempt of a quantitative stereological
and topological measurement of the pore phase and solid structure, e.g. Ringrose-
Voase (1987). Another approach is to digitize an intact soil cylinder prepared with
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resin, section by section using a camera. Vogel et al. (2002), for example, used this
multiple-layer approach and were able to reconstruct the soil’s architecture in an
almost 3D nature making use of image segmentation into pores and the solid phase
based on a grey-scale threshold. Models such as this one can subsequently be used
for the quantification of pore geometry and the simulation of gas diffusion. Three-
dimensional imaging analysis using sophisticated tomographic techniques can now
be utilized to study the soil’s physical architecture such as pore-space relations as
well as biotic interactions from intact soil cores (Young et al. 2001; Vogel et al.
2010). A detailed description of these techniques and methods of image analysis is
beyond the scope of this chapter, and the reader is referred to Chap. 6 of this book.

5.5 Improved (Field) Description

In the previous sections, we discussed how soil (legacy) data can be quantified
and applied in pedometric studies. In this section we explore further how field
descriptions of soil properties can be improved towards a more quantitative assess-
ment. Here, two main approaches are discussed. The first one entails improving
conventional description techniques using fuzzy descriptors. The second one is
the technologo-statistico approach using field spectrometry and calibration. Over
the years, with both technology and computational methods beckoning rapid
developments, this area has gained immense popularity and is lately also referred
to as the field of digital soil morphometrics which is defined as the ‘application of
tools and techniques for measuring, mapping and quantifying soil profile attributes
and deriving continuous depth functions’ (Hartemink and Minasny 2014).

5.5.1 Improved Field Description Using Fuzzy Descriptors

In the example of structure given in Sect. 5.4, an attempt was made to improve
the traditional description by firstly defining the variables that are actually being
observed and secondly putting those variables on a continuous scale. This seems to
be a general approach to improving conventional field descriptors. The benefit of
this approach is that we will carry more information about the soil description than
is done conventionally.

5.5.1.1 Fuzzy Sets and Numbers

Fuzzy sets and fuzzy logic (Zadeh 1965; Kosko 1994) are a generalization of hard
sets. The field of fuzzy logic can thus be used to improve soil morphological
descriptions as it was developed to model, classify or categorize something whose
membership may be inherently variable or uncertain. Fuzzy logic also allows for
a quantitative assessment through numerical coding. In conventional classification
systems, an element either has membership (1) or does not have membership to
a class (0). In a fuzzy set, membership is fuzzy and not binary, with a point –

http://dx.doi.org/10.1007/978-3-319-63439-5_6
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Fig. 5.8 Representation of different fuzzy numbers (After Liu and Samal 2002b)

an element, object or property, for example – having membership to a class A
but to a differing degree of belonging (Liu and Samal 2002b). This degree of
belongingness of an object to a class can then be formalized by a membership
characteristic function, �A(x), with the value of �A(x) at x representative of the
degree of membership of x in class A, with x having a value between and including
0 (not belonging) and 1 (completely belonging) (Liu and Samal 2002a).

A formalization of a fuzzy set can be represented as follows (McBratney and
Odeh 1997); if we assume that X D fxg is a finite set of points, a fuzzy subset A of
X is represented by a function �A(x), in the ordered pairs:

A D fx; �A.x/g for each x 2 X

A D x1; �A .x1/C x2; �A .x2/C � � � C xn; �A .xn/ (5.6)

where �A(x) is the membership function that defines the belongingness of a point x
in A and x2X expresses that x is an element of X.

Fuzzy numbers are fuzzy subsets of a set of regular, real numbers that describe
a set of possible values through a possibility distribution, with each value having
its own membership function. A fuzzy number is a convex and normalized fuzzy
set. Fuzzy numbers can be of various types and shapes, for example, the most
common are triangular-shaped, trapezoidal-shaped or Gaussian fuzzy numbers. Liu
and Samal (2002b) give an example of these three types of fuzzy numbers (Fig.
5.8). In this example each number shows a central value of 20, but the variability
around this central value differs. The graphs also show the membership function for
different values in the fuzzy set, i.e. here the number 20 has a membership of 1,
whereas the number 10 has a membership of 0.1 in each case; however, the type
of fuzzy numbers and their parameters are determined by the actual distribution of
observations.

Liu and Samal (2002a) give an example of a Gaussian membership function
which represents the amount of rainfall (Fig. 5.9). Here, it is exemplified that the
occurrence of 30 in. of rain is most likely but that 25 and 35 in. of rainfall are about
half likely.
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Fig. 5.9 A Gaussian
membership function (After
Liu and Samal 2002a)

McBratney and Odeh (1997) review the application of fuzzy sets in soil science
and provide examples of how fuzzy logic could be used for improving field soil
descriptions that are somewhat vague. One of these examples is to put a quantitative
measure behind the classification of soil thickness which is often described as
‘shallow’, ‘deep’ or ‘very deep’. In this example Gaussian membership functions
were fitted to three assumed fuzzy subsets with a total range of soil depths between
0 and 200 cm (Fig. 5.10). Here, the fuzzy subset ‘B’ of ‘deep soil’ is represented
by soil depths of 100 cm. Soils of 100 cm depth therefore fully belong to set B and
have a membership of 1, whereas other depths of 0 � x < 100 cm or 100 cm < x �

200 cm have only partial membership. The fuzzy membership function, �B(x), for
the subset of ‘deep soil’ is then defined as

�B.x/ D e�




.x � c/

1:44�2

�

0 < x � 200 cm (5.7)

where c D 100 cm represents the centroid of fuzzy subset B and ¢ is the lower
crossover point (50 cm), the point at which x has a membership of 0.50. In this case,
the higher crossover point is where x D 150 cm (Fig. 5.10).

5.5.2 Field Electromagnetic Spectra

As already discussed in Sect. 5.2, the whole electromagnetic spectrum intrinsically
holds information about a wide range of biological, chemical and physical soil prop-
erties, for example, it contains information about the mineral organic components
of the soil (Huete and Escadafal 1991). Several portions of the electromagnetic
spectrum are now readily measurable in the field. Conventionally, we use our eyes
to ‘measure’ the visible part of the electromagnetic spectrum, but as discussed in
Sects. 5.2, 5.3 and 5.4, this is associated with a degree of subjectiveness. More
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Fig. 5.10 Gaussian membership functions fitted to fuzzy subsets of ‘shallow soil’ (a) (asym-
metrical), ‘deep soil’ (b) (symmetrical) and ‘very deep soil’ (c) (asymmetrical). The Gaussian
(fuzzy) membership fitted to the subset of ‘deep soil’ (b) is also shown (Redrawn and changed
after McBratney and Odeh (1997))

and more, these measurements have thus been replaced by sensors, for example,
by digital colour CCD cameras which measure the red, green and blue parts of
the spectrum. In the language of remote sensing, this can be called multispectral.
Furthermore, portable field spectrometers are now readily available that can measure
the electromagnetic spectrum (1) in the visible and near-infrared (vis-NIR) range,
i.e. from 400–700 to 2500 nm; (2) in the mid-infrared (MIR) range, i.e. from 2500
to 25,000 nm which is still in its infancy; and (3) in the X-ray range in the 0.02–
45 kEV region of the electromagnetic spectrum (Fig. 5.11). In the language of
remote sensing, this is called hyperspectral.

Table 5.5 shows a range of soil chemical and physical properties that can be
directly measured or inferred from these spectrometers (also refer to McBratney
et al. 2006; Stenberg et al. 2010; Viscarra Rossel et al. 2011; Soriano-Disla et al.
2014; Horta et al. 2015). Good estimates for soil attributes have been achieved from
scanning soils in field condition, and formal methods have also been developed that
can correct for environmental effects (Horta et al. 2015). At the moment, vis-NIR
and pXRF have the most prospect for in-field quantitative soil description, and in the
following we will therefore focus on how these sensors can be used to do so. Vis-
NIR is known to estimate well the soil’s organic component and mineralogy suites
(also refer to Table 5.3, Chap. 13), whereas XRF is known to accurately measure the
soil’s inorganic elemental concentration. The advantage is that these soil properties,
some not previously measurable in the field, can be measured simultaneously from
the relatively quick, cheap and reproducible observation systems. The disadvantage

http://dx.doi.org/10.1007/978-3-319-63439-5_13
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Fig. 5.11 Electromagnetic spectrum showing the regions of interest for field spectroscopy. It is
also illustrated how radiation affects molecules and atoms (Redrawn after Harris D (2007))

is that each individual soil property will be measured less precisely than laboratory
analysis; however, on the other hand, more measurements can be taken which may
compensate for the less accurate in situ predictions (Horta et al. 2015)).

5.5.2.1 Handheld, Portable Sensors

Visible Near-Infrared Spectrometry (vis-NIR)

How are field observations of the visible NIR spectrum that consists of about
2000 different wavelengths (at 2 nm of resolution) used for improved in-field soil
description? There are several possibilities. The first approach that comes to mind
is to compare the spectra at each of the wavelengths; however this entails a huge
amount of data storage. A more feasible approach is to perform a multivariate
analysis and measure the spectra and a suite of soil properties at a number of
sites and to develop calibration models for those soil properties with respect to
the spectra. Principal component regression (PCR) analysis is one method that
can be used here. First, a principal component analysis (PCA) is conducted which
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Table 5.5 Electromagnetic sensors that can be utilized for quantitative soil field description

Proximal soil sensor Sensed data Soil information

Vis-NIR
spectrometera,b

Soil reflectance Soil morphological (colour), chemical
(SOC, SOM, TC, pH, CEC, nutrients) and
physical properties (clay and sand content,
soil mineralogy)

MIR spectrometera Soil reflectance Soil chemical and physical properties
pXRF spectrometera X-ray fluorescence Soil’s elemental concentration (Z > 11)

(used to identify concentrations of soil
contaminants and soil nutrients and to
populate soil profile development indices),
soil chemical (pH, CEC, soil organic
carbon, total carbon) and physical
properties (clay and sand content)

Ground-penetrating
radarb

Radiance energy Soil conductivity, soil layers, soil structure

Gamma radiometera,b Gamma radiation K, Th and U radioisotopes
Electromagnetic
inductiona, b

Apparent conductivity Soil moisture, salinity, clay content

aPortable/handheld
bOn the go

plots the spectra in a low-dimensional space followed by a regression analysis
(Leone and Sommer 2000). As a rule of thumb, the first few principal components
usually explain about 99% of the entire spectral variance. Islam et al. (2003) used
this method of reducing the amount of predictor variables and then employing
stepwise multiple linear regression to estimate a suite of soil chemical and physical
properties.

Another well-established chemometric method that can deal with a large amount
of spectral data is partial least squares regression (PLSR) which combines the
reduction of predictor variables and multiple regression in one single step (Viscarra
Rossel et al. 2006b). Furthermore, PLSR can handle multicollinearity, data noise
and missing values and is more robust than PCR as it explains predictor as well as
response variation (Wold et al. 2001). More recently, data mining techniques have
been used for establishing a calibration model as they also allow for non-linear
relationships between the spectra and soil attributes of interest. One such technique
is Cubist (Quinlan 1993; Kuhn et al. 2013), a rule-based regression tree model which
builds a set of rules with each rule representing a linear model of the predictor. These
rules then relate the independent variables (soil spectra) to a dependent variable (soil
attribute of interest). Minasny and McBratney (2008) tested the accuracy of Cubist
compared to PLSR for predicting a range of soil properties and found that Cubist
gives higher accuracy, is parsimonious and considers the upper and lower boundary
values of the predictant which avoids the prediction of negative values and that the
resulting calibration model is easier to interpret.
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Related to chemometric methods is the rapid assessment of soil properties via
vis-NIR spectrometry in the field, which requires spectral libraries (Shepherd and
Walsh 2002) that are representative of the soils. Studies have shown that the geo-
graphical range of spectral libraries has an impact on the calibration performance;
a reduction of prediction accuracy was observed when spectral libraries are not
representative of the soils of the region studied (Sudduth and Hummel 1996). One
way of dealing with this problem is to ‘spike’ the spectral libraries used with
some regional spectra with known properties (Viscarra Rossel et al. 2009) or to
compile a global vis-NIR spectral library representative of a variety of soil types and
environments (Viscarra Rossel et al. 2016). Here, PCA can be used to assess whether
the obtained spectra are similar to the spectral library used to predict soil attributes.
By fitting a convex hull around the first two principal components which describes
the spectral domain of the library used, it can be assessed where the obtained spectra
lie within the library domain.

In the early 1990s, Sudduth and Hummel (1993) described a prototype of
a portable near-infrared spectrometer for rapid soil analysis, designed for rapid
estimation of soil organic matter. However, using vis-NIR to estimate soil attributes
(in the field) only received increased popularity in the mid-2000s, with a noticeable,
constant increase of published papers on that topic (Bellon-Maurel and McBratney
2011). For example, Ben-Dor et al. (2008) modified an ASD vis-NIR field spectrom-
eter to perform in-field soil profile measurements. They developed an accessory to
fit the spectral head of the instrument that was able to penetrate the subsoil for in
situ measurements after the drilling of a soil core. As discussed in Sect. 5.2 of this
chapter, Viscarra Rossel et al. (2009) reported good estimates of soil colour, mineral
composition and clay content from in situ vis-NIR measurements along the pit face
of ten soil profiles. Furthermore, Kusumo et al. (2010) achieved good calibrations
(RPD D 2.90–5.80) for C and N for scanning intact soil cores.

When scanning the soil in its field condition, we are however dealing with a
range of environmental factors influencing the spectra, e.g. soil moisture, surface
roughness or smearing (Stenberg et al. 2010). There is a selection of studies
that compared predictions from laboratory and field spectra for a variety of soil
properties, and the majority of studies found that in general predictions improved for
the air-dried spectra (e.g. Chang et al. 2005; Mouazen et al. 2006; Waiser et al. 2007;
Fontán et al. 2010). Correcting for the effect of environmental factors, especially
soil moisture, is particularly important for in-field estimation of soil attributes using
vis-NIR because most spectral libraries used for predictions were established under
laboratory conditions, using ground and dried soil.

Several ways have been tested and used to correct for soil moisture as it seems to
affect the behaviour of the spectra the most. Soil moisture effects in general result
in a higher absorbance of the spectra with increased moisture content. Viscarra
Rossel et al. (2009) used the approach of augmenting or ‘spiking’ a large spectral
library containing laboratory-collected spectra with a small proportion of field-
collected spectra to improve the prediction performance by introducing spectral
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variation to the calibration model. This method is similar to the approach of global
moisture modelling (GMM) where variation is also created in the spectral library
by including ‘differently behaving spectra’ (spectra at different soil water content)
(Wijewardane et al. 2016). A so-called selective wavelength modelling approach on
the other hand was trialled by Wu et al. (2009). Essentially, in this case, certain
bands of the spectra that are highly influenced by moisture are not considered
in the calibration models. In addition, formal chemometric techniques have been
introduced to correct for moisture effects. These usually require a set of soils
scanned in field and in standardized air-dried condition from which correction
matrixes can be produced. One of the most common approaches is external
parameter orthogonalization (EPO) which was developed in the food industry to
perform temperature-independent measurement of the sugar content of intact fruits
(Roger et al. 2003). Minasny et al. (2011) successfully applied this technique to
remove the moisture effect on soil spectra. The algorithm separates a vis-NIR
spectrum into two orthogonal components: a useful one that has a direct relationship
with the response variable and an unuseful one that is affected by an external
variable (soil moisture). A transformation matrix P is then utilized to project spectra
into a space less affected by moisture content (Fig. 5.12). Ackerson et al. (2015)
tested the capability of the EPO method on field-moist analysis of intact soil spectra
for the prediction of clay content, employing a dried and ground vis-NIR spectral
library, and found that predicted clay content improved after EPO transformation of
the spectra. Another approach is direct standardization (DS) which has been used to
standardize spectra acquired from multiple spectrometers (Ge et al. 2011) and was
also applied by Ji et al. (2015) to remove the effect of soil moisture from the spectra.
The DS method establishes a relationship between the set of laboratory spectra
and their corresponding field spectra, employing a transfer set which accounts for
in this case the effect of water. Recently, Wijewardane et al. (2016) performed
a comparative study including the methods discussed above and tested their
effectiveness for correcting the effect of soil moisture on spectral data, concluding
that EPO, DS and GMM are all viable approaches for moisture correction of
vis-NIR data.

Portable X-Ray Fluorescence Spectrometry (pXRF)

Different to vis-NIR, handheld pXRF field spectrometers directly and simulta-
neously measure the total concentration of a range of elements in the soil (in
mg kg�1 and %). This approach is based on factory-installed internal calibration
methods. In addition, the EM spectrum resulting from pXRF can also be used in
similar ways as described above for the case of vis-NIR spectra, as the spectrum
itself might also contain some inherent information of soil chemical and physical
properties. O’Rourke et al. (2016) tested this approach and found that using the
XRF spectra was more effective to predict total carbon, soil organic carbon and pH
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Fig. 5.12 Spectral transformation using the external parameter orthogonalization (EPO) method

when compared to the more conventional use of XRF in soil analysis so far which
uses the elemental concentrations directly measured by XRF to predict other soil
properties, generally applying multiple linear regression models. For example, the
latter approach has been applied to infer a suite of soil properties from laboratory-
treated soil data in air-dried and ground condition (soil pH, total C and N, CEC and
gypsum content, clay and sand content) (Weindorf et al. 2013, 2014a; Sharma et al.
2014, 2015; Wang et al. 2015; O’Rourke et al. 2016).
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Similar to vis-NIR, in-field pXRF measurements are influenced by environmental
effects. These are mainly related to soil matrix heterogeneities, i.e. the less homoge-
nous the soil sample, the less representative is the estimate, including soil moisture
(Laiho and Perämäki 2005; Markowicz 2008). Both can cause the attenuation or
increase of the X-ray signal received from the detector through increased absorption
or scatter of the X-rays. Generally, this results in an underestimation or in some
circumstances also overestimation of the elemental data and therefore a shift in the
intensity of the raw spectral response which is related to the quantity of elements
in the soil sample of interest. It has therefore been recommended to not scan soil
samples that have a gravimetric moisture content of more than 20% (Laiho and
Perämäki 2005). Correction for these effects seems to be not as straightforward as
for vis-NIR reflectance spectra because of the above discussed different behaviour
of X-rays in relation to the soil matrix. So far, attempts have been made to correct
between in-field and laboratory-based pXRF measurements but not to correct the
spectral response directly using formal algorithms. Ge et al. (2005) proposed a
method for correcting for the effect of moisture, based on the assumption that the
intensity of scattered X-rays is directly proportional to the gravimetric moisture
content (w log(Io/Iw) where Io represents the X-ray intensity of air-dried samples
and Iw the X-ray intensity of field-moist samples). To apply this method, soil
moisture also needs to be documented in the field using a soil moisture probe, for
example. To correct for soil moisture, Stockmann et al. (2016b) proposed to use
a correction factor stemming from the fit of a linear relationship which was found
between the in-field and laboratory-based measurement of the iron (Fe) content. In
this case, a subset of samples scanned at field-moist and air-dried ground condition
is required that represents the soils studied.

A few studies compared in-field and laboratory-based pXRF performance and
found that elemental values acceptably compare (Weindorf et al. 2014b; Stockmann
et al. 2016a, b). It was noted, however, that this varies element specifically, with
higher variability between field-moist and air-dried ground conditions for lighter
elements with lower atomic numbers such as Al and Si. This is related to the limit of
detection of the pXRF detector which varies between 5 mg kg�1 and 1% depending
on the atomic number of the elements for an Olympus Delta Premium pXRF
device, for example, and therefore also the abundance of these elements naturally
in the soil.

Synergetic Use of Handheld, Portable Sensors for Predictive Power
Improvement

Methods have been introduced to improve the estimation of soil attributes through
the combination of data from multiple sensors which has high potential for in-
field analysis. Wang et al. (2015) used concatenation for fusing the principal
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Fig. 5.13 Comparison of soil
organic carbon levels
measured using conventional
laboratory techniques versus
in situ, diffuse reflectance
vis-NIR spectrometry.
Vertical red lines represent
the observed OC content of
dried and ground bulk
samples for each horizon as
measured using the dry
combustion method. In situ
results are displayed as the
mean (solid black line) and
95% confidence interval
(dotted black lines) based on
predictions of 50 Cubist
models. Measurements were
taken every 2.5 cm to a depth
of 1 m

components of NIR spectral data from PCA with pXRF-measured elemental data
which improved the accuracy of soil texture prediction. Viscarra Rossel et al.
(2006b) used concatenation, i.e. in this case the spectral fusion of the vis-NIR
and MIR region which resulted in a minor improvement of the prediction of soil
texture compared to single sensor predictions. This approach only shows potential
for spectral data that use the same principle, soil reflectance, but seems not sufficient
when fusion of spectral data from sensors with differing measuring principles is
desired. The following approaches seem to be more applicable. O’Rourke et al.
(2016) were able to improve the predictive power of portable vis-NIR and XRF for
the determination of agronomic soil properties through methods of model averaging,
whereas Jones and McBratney (2016a) used an integrated chemometric and mass
balance approach to estimate the soil’s mineral component, from vis-NIR and pXRF
data. Together with the prospects of improving predictions from spectra in field
condition through data assimilation methods, focus is now also directed towards the
quantification of prediction uncertainties (Fig. 5.13).
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5.5.2.2 On Digital Soil Morphometrics (DSMorph)

The availability of portable, handheld devices that measure various parts of the elec-
tromagnetic spectrum and are robust enough to be taken to the field in combination
with advances in mathematical approaches and computational power has warranted
the introduction of digital soil morphometrics or in short DSMorph (Hartemink and
Minasny 2014). The establishment of DSMorph as part of the pedometric family
has potential as it promises to introduce a scientific and technological overhaul of
conventional soil field descriptions by “digitally enriching the toolkit of the field
pedologist” (Jones and McBratney 2016b). DSMorph introduces quantitative data
collection directly in the field and thus also offers the possibility of describing and
measuring soil attributes that are otherwise unattainable such as the in situ analysis
of the soil’s mineralogical composition. Jones and McBratney (2016a) demonstrate
how the conjoint use of vis-NIR and pXRF could achieve this. In conventional
field descriptions, the pedologist can only approximate the presence of certain clay
minerals from experience; a soil that shows evidence of shrink-and-swell behaviour
in the form of pronounced cracks through the profile and the presence of lenticular
peds will most certainly contain the secondary clay mineral smectite, for example.
Furthermore, DSMorph has the potential to increase sampling intervals and thus
to quantify the spatial variation of soil attributes more readily as compared to
conventional methods (Jones and McBratney 2016b) and in this regard offers the
prospect of adaptive sampling and analysis as outlined in Horta et al. (2015).
Jones and McBratney (2016b) argue however that the “marriage of digital data
collection with morphometric approaches is going to be crucial to the success
of DSMorph”.

Examples of applications of DSMorph techniques to revolutionize traditional soil
description, including novel and potential applications, are given in Hartemink and
Minasny (2014) and Hartemink and Minasny (2016). To name an example here,
recently, Fajardo et al. (2016) used fuzzy clustering of vis-NIR spectra to assess soil
properties of soil profiles and to identify zones of similarity, i.e. zones that were
spectrally homogenous, to identify soil morphological horizons (Fig. 5.14). This
approach could enhance and/or change the way we describe soil layers or horizons
in the field.

Stockmann et al. (2016a) calculated geochemical indices from pXRF-derived
elemental data acquired from the soil pit face and used these to investigate parent
material origin and pedological processes (Fig. 5.15). DSMorph can therefore also
help to explore soil-forming processes directly in the field which complements and
advances conventional soil field descriptions.
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Fig. 5.14 Left to right. Photograph of soil core, fuzzy membership classes, digital gradient,
horizons observed using conventional techniques, spectrally derived horizons (Changed after
Fajardo et al. (2016))
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Scaling Characteristics of Soil Structure
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“For a complex natural shape, dimension is relative. It varies
with the observer. The same object can have more than one
dimension, depending on how you measure it and what you
want to do with it. And dimension need not be a whole number;
it can be fractional. Now an ancient concept, dimension,
becomes thoroughly modern”.
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6.1 Introduction

As previously discussed in Chap. 5, soil structure is defined by the spatial
arrangement of soil primary particles and aggregates. There is increasing evidence
that quantitative characterization of the soil structure and of its heterogeneity and
complexity holds the key to a deeper understanding on physical, chemical, and
biological processes that take place within the soil (Vogel 2000; Rockhold et al.
2004; Young et al. 2008; Blair et al. 2007; Pajor et al. 2010; Kravchenko et al. 2010;
Dullien 2012). Therefore, it is very important to obtain an accurate description of
soil structure which best approximates to reality. Although many parameters may
be used to attempt to describe irregular morphology, the spatial arrangement of the
most prominent features is a challenging problem across a wide range of disciplines
(Ripley 1988; Griffith 1988; Baveye and Boast 1988).

In this chapter we will present scaling and multiscaling analysis on soil images
and summarize the work in this area that has been going on for several years
until now.

6.2 Image Acquisition

The first image analysis systems were available in the early 1970s and have since
become increasingly accessible to soil scientists. Currently, low-cost software-based
image analysis systems make automated analysis of soil pore space very easy and
can be done in a two-dimensional (2D) as well as a three-dimensional (3D) way.

6.2.1 Soil Thin Sections

2D images of the soil pore space can be obtained when thin sections are cut
from polished faces of undisturbed soil blocks, previously impregnated with a
resin containing a fluorescent dye (Fig. 6.1). Subsequently, these thin sections are
illuminated with UV light or viewed with a fluorescence microscope (Geyger and
Beckman 1967; Murphy et al. 1977; Ringrose-Voase and Bullock 1984; Bouabid
et al. 1992). Another method is to view the pore space with a scanning electron
microscope (SEM) on finely polished thin sections in backscattered mode (Fies and
Bruand 1990).

Significant contributions to the characterization of soil pores by 2D image
analysis procedures are those by Jongerius et al. (1972), Ismail (1975), Murphy et
al. (1977), Bullock and Murphy (1980), Ringrose-Voase and Bullock(1984), Moran
et al. (1989), McBratney et al. (1992), Terribile and Fitzpatrick (1992), Protz et al.
(1992), and Protz and Van den Bygaart (1998).

The 2D morphological image analysis of undisturbed samples was the most typi-
cal technique for many years. The interpretation of micromorphometric results from
two-dimensional sections is often biased by anisotropy of the investigated structural
elements (Vogel et al. 1993). Stereological methods consist in extracting quantitative

http://dx.doi.org/10.1007/978-3-319-63439-5_5
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Transmitted Circular Polarized Pores

Fig. 6.1 Sample prepared for image analysis following the procedure described by Protz and
Van den Bygaart (1998). Imaging thin sections obtained with a Kodak 460 RGB camera using
transmitted and circularly polarized illumination. Then EASI/PACE software was used to classify
the original transmitted and circularly polarized data and to separate the void bitmap

information about a three-dimensional material from measurements made on two-
dimensional planar sections. These have been applied in soil science, but they
require strong assumptions about the shape of pores and particles (McBratney and
Moran 1990).

6.2.2 Computer Tomography (CT) and Image Processing

X-ray computed tomography (CT scans) is a relatively recent nondestructive
testing method which offers an attractive opportunity for the three-dimensional
insight of the inner structure of objects and materials. Nowadays, due to the great
technological advances and the computational power of modern calculators, CT
systems are massively employed for a wide range of purposes in the scientific
and industrial sectors, e.g., flaw detection, failure analysis, metrology, and reverse
engineering.

The basic components forming a CT system are the X-ray source, characterized
by a micrometric or sub-micrometric focal spot size; the detection system, to collect
the transmitted radiation emerging from the sample; and the sample positioning
stages. The CT scan is done through recording on the detector, which is placed
behind the sample, a set of planar projections while the sample rotates inside the
incident beam over approximately the angular range between 0 and 180/360ı. A
sufficient number of those angular views should be acquired at regular or known
steps, in order to efficiently reconstruct a set of horizontal cross sections (the slices)
of the object by means of a well-established mathematical procedure known as the
filtered altered back-projection (FBP) algorithm (Torre 2014). Figure 6.2 illustrates
the main components needed.
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Fig. 6.2 Main parts of CT scan (From Favretto 2008)

CT scanning has provided an alternative for observing intact soil structure
(Anderson et al. 1988; Warner et al. 1989; Grevers and de Jong 1994; Peyton et al.
1994; Perret et al. 1997, 1998, 1999, 2003; Rasiah and Aylmore 1998a, b; Rogasik
et al. 1999; Gantzer and Anderson 2002; Pierret et al. 2002; Anderson et al. 2003;
Rachmant et al. 2005; Gibson et al. 2006). The principal benefits of CT techniques
are reducing the physical impact of sampling, providing three-dimensional (3D)
information (analysis of images), and allowing rapid scanning to study sample
dynamics in near real time (Rasiah and Aylmore 1998b; Rasband 2006). Elliot
and Heck (2007a) have compared the void set determination from thin section
samples imaged for optical and from CT image acquisition on identical region. They
concluded that CT identified a category of void often overlooked by optical imagery
classification and therefore would make an excellent complementary technique to
soil micromorphology.

In this chapter we will focus on 2D soil images. In general, 2D images from
stacked slices that the CT scan captures are analyzed to reconstruct the 3D
information with the aim to simplify the analysis. Common concepts are highlighted
and explained.
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6.2.3 Image Binarization

Segmentation is one of the most critical steps in processing images prior to analysis.
Segmentation techniques are generally used to define the pore space in soil thin
sections and CT images (Elliot and Heck 2007b). In case we want to distinguish
between two different objects (object and background), we will usually talk about
binarization instead of segmentation. Binarization techniques are mainly based on
thresholding methods (Sezgin and Sankur 2004) in which global or local thresholds
are calculated to separate pore space (object) from solid space (background). Global
thresholding calculates a unique threshold which is applied to the whole image.
By contrast, local thresholding adapts the threshold depending on local image
characteristics, and so, values change over the image.

Thresholding methods follow different strategies to calculate an optimal thresh-
old. Sezgin and Sankur (2004) categorize thresholding in six groups: histogram
shape-based methods, clustering-based methods, entropy-based methods, object
attribute-based methods, spatial methods, and local methods (the first five groups
define global thresholding methods). The most well-known clustering-based meth-
ods are the iterative method (Ridler and Calvard 1978) and Otsu’s method (Otsu
1979). Entropy-based methods are maximum entropy (Kapur et al. 1985), maximum
Renyi’s entropy (Sahoo et al. 1997), and minimum cross entropy (Li and Lee
1993). The most well-known local thresholding method is indicator kriging (Oh
and Lindquist 1999) based on local spatial correlations. Recently, a new version
of indicator kriging called “adaptive-window indicator kriging” (Houston et al.
2013a) has become available that improves significantly the segmentation results.
Some other local strategies followed, e.g., extending Otsu’s method by minimizing
grayscale intra-class variance (Hapca et al. 2013) to obtain better performance when
compared to the original method.

At this time, a lack of general agreement on the most appropriate pore-solid soil
images threshold remains. Figure 6.3 shows an original soil thin section and several
threshold methods results to show their possible differences.

6.3 Mathematical Morphology

The development of computer technologies had a positive effect on image acquisi-
tion and processing, but also a profound effect in the development of mathematical
techniques that are known as mathematical morphology (MM). The central idea of
MM is to examine the geometrical structure of an image by matching it with small
patterns (structuring elements) at various locations in the image. By varying the size
and the shape of the structuring elements, one can extract useful information. The
seminal work of Matheron and Serra in 1964 (Serra 1982) quantified the mineral
characteristics from thin cross sections applying new concepts in integral geometry
and topology. MM was originally developed for binary images and was extended
later to grayscale images.
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Fig. 6.3 2D soil thin sections (a) and the binary image and porosity obtained applying Otsu’s
method (b), maximum entropy (c), and Shanbhag method (d). Thresholding using ImageJ. White
pixels are the pores and black pixels are the void space

The application of MM for the analysis of soil structure in two dimensions has
been presented in several works (2D soil images) that are summarized here. Moran
et al. (1988) evaluated mathematically the macropore structure to evaluate the long-
term effect of several tillage systems. Moran and McBratney (1992a) presented
a method to analyze pore structure with three components: field-impregnated
pore space, laboratory-impregnated pore space, and soil solid. They applied this
method to study the total and connected macroporosity on several trials with
different soil management (Moran and McBratney 1992b). Dullien (1992) studied
the relationship between soil pore structure and fluid flow phenomena using these
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techniques on 2D soil thin sections. Moran (1994) made an interesting review on
the use of digital images to study the form of soil features. Ringrose-Voase (1996)
introduced several measurements to characterize soil pore structure such as area,
perimeter density, and numerical density. He showed examples of how to apply these
measures in 2D images and an adaptation to use in a 1D dimension. Horgan (1998)
reviews the basic MM ideas and then applies it to studies of the size distribution
of soil pores, the lengths and geometric patterns of cracks in drying soil, and the
growth of fungal hyphae. He shows how gray-level images can be handled as binary
images in three dimensions. Stewart et al. (1999) showed how the K function could
be applied to determinate the spatial relation between roots and macropores.

Later on, studies by Mecke and Arns (2005), Lehmann (2005), and Lehmann
et al. (2006), among others, have been applying MM in 3D soil images. All of
them pursue the linkage between geometrical parameters with flow parameters as
an attempt to relate structure and functioning in soil.

There are several applications of MM tools. However, here we will focus our
attention on Minkowski functionals applied in binary images.

6.3.1 Minkowski Functionals

One suitable approach to describe the distribution of elements within structures is
Minkowski functionals (MFs), a family of topological and geometrical descriptors
belonging to methods of integral geometry (Michielsen and De Raedt 2001).They
are invariant under rigid motions and additive. MFs embody information from every
order of the correlation functions, are numerically robust even for small samples,
and yield global as well as local morphological information (Kerscher et al. 2001).

Within a two-dimensional binary image, three MFs can be defined: covered
area (A), boundary length (B), and Euler characteristic. Of particular interest
is the latter parameter that contains information related to pattern connectivity
as is normally denoted as Euler-Poincarè characteristic (EPC). The MFs can be
calculated following the relations:

A D nb

B D �4nb C 2ne

EPC D nb � ne C nv

(6.1)

where nb is the number of boxes (pixels), ne is the number of edges, and nv is the
number of vertices, with the common edges and vertices of connected pixels counted
only once. Three examples of these MFs are shown in Fig. 6.4.

Mecke (1998) showed that integral geometry provides formulae which make the
calculus convenient for many models of stochastic geometries. He points out an
example using the Boolean grain model and applied morphological measures in the
context of percolation.

In three dimensions, MFs correspond to the enclosed volume (V), surface area
(S), mean breadth (B), and connectivity (EPC). To compute these functionals of
the image of the pore space, it is necessary to count the number of vertices (nv),
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Fig. 6.4 The 2D MFs: area (a), boundary length (b), and Euler-Poincarè characteristic (EPC).
Considering the white pixels as pores and the black pixels void, we have in (a) A D 8, B D 12,
and EPC D 1; (b) A D 8, B D 16, and EPC D 2; and (c) A D 8, B D 16, and EPC D 0 (Adapted
from Larkin et al. 2014)

faces (nf ), and cubes (nc) of all voxels of the pore space object in the 3D image
(Michielsen and De Raedt 2001):

V D nc

S D �6nc C 2nf

2B D 3nc � 2nf C nc

EPC D �nc C nf � nc C nv

(6.2)

Vogel and Kretzschmar (1996) estimated EPC analyzing pairs of parallel images
(dissectors). This was the first time that EPC was applied to characterize the pore
space in soils. Vogel et al. (2005) provided a quantitative description through MFs
to explain the crack patterns at the soil surface and their dynamics. In this work they
also employed MM tools such as dilations and erosions.

6.3.2 Minkowski Fractal Analysis

In the next section, we will talk about soil pore fractal geometry. However, we prefer
to include this concept here to point out how the scaling behavior of soil binary
images has been studied with different subdivision techniques and not only the well-
known box-counting method mentioned in the next section.

Minkowski fractal dimensions (DS) of binary images can be calculated following
the Bouligad-Minkowski protocol (Russ 1995). The method consists of producing
a series of images displaying only the boundaries of the structure. Boundary
images are formed by adding the complementary part of a dilated image (following
the “OR” Boolean logic) to an eroded image of the same picture and gradually
increasing dilatation/erosion degrees. The effective boundary width (EBW) is
defined as the area of the boundary divided by the dilation/erosion degree and the
number of iterative cycles.

To calculate DS, the EBW is calculated for each boundary image and plotted vs
the number of dilation/erosion cycles on a log-log scale. For isotropic dilation, the
circle diameters may be directly used as the scaling parameter (Dathe et al. 2001).
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Minkowski fractal dimensions are calculated from the slope of the curves as DS D

1–slope.
Dathe et al. (2001) found deviation from linearity dividing it in two linear

regressions obtaining two DS values: textural (DS1) and structural (DS2) fractal
dimensions. The crossing point (CP) between both lines was determined minimizing
the combined mean quadratic error of both regressions.

6.4 Pore Soil Fractal Geometry

Fractal geometry has been increasingly applied to quantify soil structure using
fractal parameters due to the complexity of the soil structure, and thanks to the
advances in computer technology (Tarquis et al. 2003 and references therein). The
value of fractal parameters can be derived through indirect methods, such as water
retention curves (Crawford et al. 1995), or direct ones through image analysis.

For many years 2D images of soil thin sections have been used in several works
to describe the spatial structure extracting the mass fractal dimension (D), pore-solid
interface, and lacunarity (Brakensiek et al. 1992; Pachepsky 1996; Giménez et al.
1997, 1998; Oleschko et al. 1998a, b; Bartoli et al. 1999; Dathe et al. 2001; Dathe
and Thulner 2005).

6.4.1 Box-Counting Mass Dimension

We consider a binary image displaying two phases – pore and solid. In executing a
fractal analysis, one of the two phases for analysis needs to be chosen. Without the
loss of generality, we shall here choose the pore phase.

The image is covered by a grid of boxes of size ı. The number of boxes which
cover the pore phase is recorded. This is repeated for different size boxes N(ı). For
a fractal set

N .ı/ / ı�D (6.3)

A log-log plot of N(ı) against ı then yields a line of slope equal to –D. This
is named as fractal dimension or mass dimension in which the box-counting (BC)
algorithm is used. As an illustrative example, in Fig. 6.5, we show the calculated
mass fractal dimension of the binary images presented previously in Fig. 6.3.

Given the relation in Eq. 6.3, it is now instructive to seek bounds on the values the
function N(ı) can take (Bird et al. 2006). In doing so, we look to see what behavior
we can expect from an arbitrary image including or not including any element of
self-similar scaling. We denote the fraction of the image occupied by pore phase
with f (porosity). If f D 1, the number of boxes required to cover the set is

�

L
ı

�2
,

and this is trivially an upper bound for N(ı) when f <1. In order to derive a lower
bound, we consider the situation in which the boxes cover the set, but no part of the
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Fig. 6.5 Mass fractal dimension (slope b from the straight line) calculated on a binary image
obtained applying Otsu (a), maximum entropy (b), and Shanbhag method (c). Bi-log plot and
calculations have been made with the plug-in for ImageJ “Multifractal Soil Analysis” (Torre et al.
2014)
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Fig. 6.6 Boundaries of the N(ı) function in 2D image case at different porosities (f )

complementary set. If this were to occur, then the number of boxes is equal to
�

L
ı

�2
f .

In general, the boxes will cover part of the complementary set, and consequently the
former number of boxes is a lower bound for N(ı). We may now write that N(ı) must
satisfy the inequalities:




L

ı

�2

f � N .ı/ �




L

ı

�2

(6.4)

In terms of the log-log plot used to extract a fractal dimension, these inequalities
result in two parallel lines of slope – 2, between which the measured data must lie.
The vertical spacing between these lines is equal to log(f ). For all images sharing
a common value of f, the box-counting data will lie between these bounding lines.
Figure 6.6 presents a graphical example of how these two parallel lines reduce the
distance as the porosity of an image increases.

We shall consider presenting the data in an alternative way. Namely, we may
transform the data by expressing N(ı) relative to the result obtained for a uniform
distribution of pixels. That is, we compute N0(ı) given by

N0 .ı/ D N .ı/




L

ı

��2

(6.5)

This yields a measure of the area of the boxes used to cover the pore space. This
is bounded by the inequalities:

f � N0 .ı/ � 1 (6.6)

For a fractal pore space, this must still produce a power-law relationship. In terms
of a log-log plot, we now look for a linear trend in the data with slope equal to 2D
constrained to lie between 0 and log(f ). A graphical example of bi-log plots of N(ı)
and N0(ı) is given in Fig. 6.7.

As we can see, this fractal approach can be applied in a binary image to void
or pore sets. The question of fractal nature of the void set and/or the complement
set was discussed by Crawford and Matsui (1996). Recently, Perfect and Donelly
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Fig. 6.7 Bi-log plots of the N(ı) function (a) and the N0(ı) function (b) from three different 2D
soil thin sections presenting different porosity: left, 46.67 %; center, 19.17 %; and right, 5.25 %.
Solid lines correspond to the upper and lower bound of N(ı) function (Figure adapted from Bird
et al. (2006))

(2015) have introduced a new method (“biphase box counting”) for discriminating
between void fractal, pore fractal, and Euclidean scaling in images that display
apparent two-phase fractal behavior when analyzed using the traditional method.
It consists of box counting the selected phase and its complement conjointly.
They present several examples of fitting both datasets conjointly to fractal and/or
Euclidean scaling relations.

A key observation regarding this analysis is that a box is counted regardless of
the pore area contained within as long as there is at least one bit or pixel representing
pore space. But what happens in the case when there is variability in the local
porosity? This question can be addressed using a multifractal analysis (MFA) which
we describe in Sect. 6.5.

6.4.2 Pore-Solid Fractal Model

Once that the concept of fractal dimension has been described, and the restrictive
bounds that it presents, we can summarize the two forms of mass fractal that were
proposed yielding opposing scaling behavior. The solid (void) mass fractal describes
a porous material with a density which decreases and a porosity which increases
with increasing sample size. In particular, mass and density scale as power laws.
This model was used as a descriptor of soil aggregates (Young and Crawford 1991;
Rieu and Sposito 1991; Anderson and McBratney 1995). Conversely, the pore mass
fractal describes a porous material with a density which increases and a porosity
which decreases with increasing sample size. In this case, the porosity scales as
a power law. The solid mass fractal exhibits a power-law pore-size distribution,
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Fig. 6.8 Pore-solid fractal (PSF) model in 2D (After Perrier and Bird 2002): x, solid; y, pore; z,
part that continues subdividing

whereas the pore mass fractal exhibits a power-law particle-size distribution, but
neither can represent both solid and void scaling distributions. The two models need
to account for a lower cutoff of scale since they are seen to fail immediately if this
lower bound is not present, yielding porosities of one and zero, respectively.

The pore-solid fractal (PSF) model (Perrier et al. 1999; Bird et al. 2000) of soil
structure is an extension and generalization of the fractal approach to modeling soil
structure, in which a range of particle sizes and a range of pore sizes are incorporated
in a common geometric model (see Fig. 6.8). Solid and pore mass fractal models
appear as special cases of the PSF model. Besides it, PSF can be used to model
several other scaling properties such as fractal pore-solid interfaces (Perrier et al.
1999) as well as fractal pore-size distributions (Perrier et al. 1996) or observed
distributions of aggregates in a fragmentation process (Perrier and Bird 2002).

Several authors have found that the general expression for the retention curve
derived from the PSF model (Bird et al. 2000) is quite accurate with experimental
data although some parameters should have a previous estimation (Fallico et al.
2010; Behzad et al. 2011; Ghanbarian-Alavijeh et al. 2011).

6.4.3 Lacunarity

Mandelbrot (1983) pointed out that fractal dimensions would not suffice to provide a
satisfactory description of the geometry of lacunar fractals and that at least one other
parameter, which he termed “lacunarity,” is necessary. He introduced the concept of
lacunarity as a measure of the distribution of gap sizes in a given geometric object,
and later on a more precise definition was introduced by Gefen et al. (1983). He
viewed it as a measure of the deviation of a geometric object from translational
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invariance. In a low lacunarity object, where gap sizes are relatively homogeneous,
different regions of the object tend to be similar to each other. In contrast, in a
high lacunarity object, different regions may be very dissimilar and cannot be made
to coincide by simple translation. This characterization is highly scale dependent;
objects that are heterogeneous at small scales can be homogeneous when examined
at larger scales or vice versa (Gefen 1983).

A commonly used method for calculating the lacunarity in binary images was
outlined by Allain and Cloitre (1991) based on “gliding boxes” (GB) of increasing
sizes. A box of side length l is placed in the upper left-hand corner of an image of
side length L (being 1 � L). The calculation algorithm records the number or “mass”
(m) of pixels that are associated with the solid underneath the moving box. The box
is then translated by one pixel to the right, and the underlying mass is again recorded.
When the moving box reaches the right side of the image, it is moved back to its
starting point at the left side of the image and is translated by one pixel downward.
The calculation proceeds in this fashion until the box reaches the lower right-hand
corner of the image, at which point it has explored every one of its possible positions
on the image ((L�1C1)2). Then, the number n(m, l) of times a particular value of
mass (m) has been recorded with the moving box of side length l is computed.
Division of n(m, l) by the total number (L�1C1)2 of possible positions of the
moving box above the image yields the probability distribution function (Q(m, l)):

Q .m; l/ D
n .m; l/

.L � l C 1/2
(6.7)

The statistical moments (ZQ(q,l)) of Q(m,l) are defined as

ZQ .q; l/ D

l2
X

mD0

mqQ .m; l/ (6.8)

Based on the first and second moment (q D1 and 1 D 2, respectively), the
lacunarity (ƒGB(1)) with a box size length l is defined as

ƒGB .l/ D
ZQ .2; l/
�

ZQ .1; l/
�2

(6.9)

For a translationally invariant set, ZQ(2, l) D (ZQ(1, l))2, and then ƒGB D 1 and
is independent of l (Allain and Cloitre 1991). Equation 6.9 can be rewritten in a
more clear and common used expression taking into account that ZQ(1,l) D �Q and
ZQ(2, l) D�Q

2 C �Q
2:

ƒGB .l/ D
�Q

2

�Q
2

C 1 (6.10)
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Equation 6.8 shows that ƒGB(1) is mainly a measure of the width of the
distribution Q(m, l). In Fig. 6.9 we show an example of lacunarity functions of the
binary soil images obtained in Fig. 6.3.

Several authors have pointed out that the joint distribution of lacunarity and
other fractal parameters can better discriminate soil architecture (Chun et al. 2008;
Zamora-Castro et al. 2008; Luo and Lin 2009; Cumbrera et al. 2012).

Lacunarity is not confined to binary configurations, but can also be used with
grayscale data (Plotnick et al. 1996). Voss (1986) proposed a probability approach
to estimate the fractal dimension and lacunarity of image intensity surfaces. Let us
begin to define P(m, l) as the probability that there are m intensity points within
a box size of l centered about an arbitrary point in an image. Intensity points are
referred to as the number of points filled in a cube box. Hence, we have

XN

mD1
P .m; l/ D 1 (6.11)

where N is the number of possible points in the box of l. Suppose that the total
number of points in the image is M. If one overlays the image with boxes of side l,
then the number of boxes with m points inside the box is

�

M
m

�

P .m; l/. Hence,

M.l/ D
XN

mD1
mP .m; l/ (6.12)

and

M2.l/ D
XN

mD1
m2P .m; l/ (6.13)

Lacunarity can be computed from the same probability distribution P(m, l).
Hence, lacunarity (ƒ(1))is defined as

ƒ.l/ D
M2.l/

.M.l//2
C 1 (6.14)

This type of analysis hasn’t been so popular in soil science. However, several
authors have begun to use it and relate it with other fractal dimensions in grayscale
images, focusing on soil grayscale images (Roy and Perfect 2014).

6.4.4 Configuration Entropy and Local Porosity

The first works found in the literature using this parameter are found in planar thin
sections of gold and sandstone to characterize the spatial patterns of binary images
(Andraud et al. 1994, 1997). It was until much later, however, that this concept
of configuration entropy began to be applied to pore-soil images. Tarquis et al.
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A

B

C

Fig. 6.9 Lacunarity function (bi-log plot of Ln(
) vs Ln(")) calculated on binary images obtained
applying Otsu (a), maximum entropy (b) and Shanbhag method (c). Bi-log plot and calculations
have been made with the plug-in for ImageJ “FracLac” (Karperein 2013)
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(2003) illustrated the method showing three images of soil samples representing
contrasting soil void patterns. These gray images were converted to binary images
by visually comparing the derived binary image with the original gray image. The
normalized configuration entropies (H*(l)) were calculated at different l on the
binary images following the methodology outlined in Andraud et al. (1994). The
authors showed that there is a range of l values where H*(l) reaches a maximum
value after which it decreases and tends to stabilize around 0.2 (Tarquis et al. 2003).
The maximum values of the normalized configuration entropy H*(lc) and of the
characteristic length or the entropy length (lc) were different for each image, and
their shapes were similar to the ones that were obtained from an image created by
simulating a Poisson grain distribution model (Andraud et al. 1997).

The basis of this method is to study the effect of scale in porosity. Estimation
of porosity from a binary image implies counting the pixels representing pores and
expressing this count as a percentage of the total number of pixels in the image. If an
image is divided in an arbitrary number of smaller areas (e.g., boxes) and porosity
is estimated in each subarea, a distribution of the measure “porosity” is obtained
for the image. The basic idea of local porosity distributions (local is related to each
box the image was divided to) is to turn a global measure into a distribution of local
measures (Beghdadi et al. 1993).

An image is formed by pixels arranged in a square lattice of side L. A distribution
of local porosity is obtained if this lattice is subdivided in n(l) boxes of size l, from
l D 1 to l D L/4. In every box the number of pixels belonging to the pore class, Nj,
is recorded.

The probability associated with a case of j pore pixels in a box of size l(pj(l)) is
defined as

pj.l/ D
Nj.l/

n.l/
(6.15)

where Nj(l) is the number of boxes with j pore pixels and n(l) is the number of boxes
of size l. In this probability function, the value j D 0 has a meaning and should be
considered. The configuration entropy, H, (Andraud et al. 1994) is defined as

H .l/ D �

ıx@
X

jD0

pj.l/ log
�

pj.l/
�

(6.16)

and measures the uncertainty associated with the porosity that can be attained by a
set of boxes of size l. Andraud et al. (1997) provided a rigorous connection between
the configuration entropy H(l) and the local porosity concept.

Since the underlying probability changes with the number of pixels inside the
box (lxl), H(l) needs to be normalized for comparing entropy values corresponding
to different sizes l. This is done through (Andraud et al. 1994)
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Fig. 6.10 Configuration entropy (left column) from three different binary soil images: ads, buso,
and evh1. The inner table shows the characteristic length (lc) and the maximum configuration
entropy H*(lc) of each soil image

H�.l/ D
H.l/

Hmax.l/
(6.17)

where Hmax(l) D log(l2 C 1).
H*(l) is called the normalized configuration entropy of the two-dimensional

morphology of the binary image. An example of these calculations is shown in
Fig. 6.10. From this plot two parameters can be obtained, the characteristic length
(lc) and the maximum configuration entropy (H*(lc)).

Several authors have applied those as a useful morphology parameter (Tarquis
et al. 2006; Dathe et al. 2006; Chun et al. 2008).

6.5 Pore Multiscale Analysis

In the mass dimension, a box is counted regardless of the pore area contained,
which is a too coarse approach when local porosity shows certain variability. The
approach of presence or absence of pores can therefore not be used, and to overcome
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this, multifractal analysis (MFA) is conducted. This type of analysis has been
increasingly applied to quantify soil structure (Posadas et al. 2003; Bird et al. 2006;
Dathe et al. 2006 among others) and is becoming increasingly popular.

MFA in 2D images involves partitioning the plane into boxes to construct
samples with multiple scales. The box-counting (BC) method combines pixels to
form larger, mutually exclusive boxes each containing a different set of pixels. Given
an L � L-pixel image partitioned to a box size of ı � ı, the number of boxes that
will follow the proportion of line size ı (n(ı)) is

n .ı/ /




L

ı

�2

(6.18)

If ı is overly large, the resulting number of samples may not be sufficient for
statistical analysis.

The gliding box (GB) method was originally used in lacunarity analysis (Allain
and Cloitre 1991) and later modified by Cheng (1997a, b) for application to MFA.
The GB method essentially constructs samples by gliding a box of a certain line
size (ı) over the grid map in all possible directions. An “up-scaling” partitioning
process begins with a minimum line size box (ımin), which is steadily enlarged to
a specific size smaller than L. The proportionality of the number of boxes of linear
size ı (n*(ı)) is

n � .ı/ /




L � ı C ımin

ımin

�2

or n � .ı/ /




L

ımin
�

ı

ımin
C 1

�2

(6.19)

where ımin�ı�L. This relationship is often expressed as

n � .ı/ /




L

ımin
� "C 1

�2

(6.20)

where " is the ratio between the box line size and the minimum size chosen
�

ı
ımin

�

.

One advantage of the GB method is that, generally, the larger the sample size, the
better the statistical results. Because this partitioning overlaps, the measures defined
by these boxes are not statistically independent, and the definition of the measure
in gliding boxes differs, as explained below. This type of analysis has been applied
in binary images in different fields (Grau et al. 2006; Saa et al. 2007; Tarquis et al.
2007).

6.5.1 Box-Counting Algorithm

The generalized dimension calculated using the BC technique essentially reflects the
mass contained in each box. An image is divided into n(ı) boxes, and the fraction
of pore space (�i) in each box is calculated from
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�i D
mi

mT
D

mi
Pn.ı/

iD1 mi

(6.21)

where mi is the number of pore class pixels in box i and mT is the total number of
pore class pixels in an image. In this case, the pore space area is the measure and
the square grid the support. The generating function (�(q, ı)) is then defined as:

� .q; ı/ D

n.ı/
X

iD1

Œ�i .q; ı/� q 2 < (6.22)

where

�i .q; ı/ D �
q
i D

 

mi
Pn.ı/

iD1 mi

!q

(6.23)

�i is a weighted measure that represents the percentage of pore space in box i,
and q is the weight or moment of the measure. When computing the number of
boxes of size ı, the possible values of mi range from 0 to ı � ı. So if Nj(ı) is the
number of boxes containing j pixels of pore space in a given grid, Eqs. 6.5 and 6.6
can then be written as follows (Barnsley et al. 1988):

� .q; ı/ D

n.ı/
X

iD1

.�i/
q D

n.ı/
X

iD1




mi

mT

�q

D

ıxı
X

jD1

Nj .ı/




j

mT

�q

(6.24)

where mT D
Pı�ı

jD1 j Nj .ı/

Using the distribution function, Nj(ı) simplifies calculations and reduces compu-
tational errors (Barnsley et al. 1988).

A log-log plot of a self-similar measure, �(q, ı), vs ı at various values for q gives

� .q; ı/ � ı�.q/ (6.25)

where � (q) is the mass exponent for q (Hentschel and Procaccia 1983; Feder 1989).
� (q) can be written as

�.q/ D limı!0

log .� .q; ı//

log .ı/
(6.26)

The generalized dimension, Dq, can then be introduced through the following
scaling relationship (Hentschel and Procaccia 1983; Feder 1989):

Dq D limı!0

log Œ� .q; ı/�

.q � 1/ log ı
(6.27)
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And, therefore

�.q/ D .q � 1/Dq (6.28)

for q ¤ 1. The case D1 is defined as the limit D1 D limq ! 1Dq. The dimension D1

can then be extracted from a plot of entropy (S(•)) against log(•).

D1 D limı!0

Pn.ı/
iD1 �i .1; ı/ log Œ�i .1; ı/�

log ı
(6.29)

S .ı/ D �

n.ı/
X

iD1

�i .1; ı/ log .�i .1; ı// � D1 log .ı/ (6.30)

The generalized dimensions, Dq, for q D 0, q D 1, and q D 2 are known as
the capacity, information, and correlation dimensions, respectively (Hentschel and
Proccacia 1983). The capacity dimension is the box-counting or fractal dimension.
The information dimension is related to system entropy, whereas the correlation
dimension computes the correlation of the measures contained in boxes of various
sizes (Posadas et al. 2003).

6.5.2 Gliding Algorithm

As in the BC method, a definition of the mass contained in each box (number of
pore pixels) must be given in the gliding box procedure. Let n*(m, ı) be the number
of gliding boxes of size ı and mass m. Dividing by n*(ı) yields the probability
function, ˇ(m, ı), for a gliding box of size ı and mass m.

The statistical moment of this distribution is

� � .q; ı/ D

ı�ı
X

mD1

ˇ .m; ı/mq D
1

n � .ı/

n�.ı/
X

iD1

mq
i .ı/ 	 E fmqg (6.31)

where �*(q, ı) is the moment of order q of ˇ(m, ı) and the sum includes all gliding
boxes with mi>0.

The difference between �*(q, ı) (Eq. 6.29) and �(q, ı)is that

� .q; ı/ 	




L

ı

�2

E fmqg (6.32)

Combining Eqs. 6.13 and 6.14 yields

� .q; ı/ 	




L

ı

�2

� � .q; ı/ (6.33)
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Substituting this relation in Eqs. 6.25 and 6.26 gives

�.q/ D lim
ı!0

log .�� .q; ı//

log .ı/
C lim

ı!0

2 log
�

L
ı

�

log .ı/
(6.34)

The second limit is readily solved, giving a value of �2. It is concluded that
(Cheng 1999a)

�.q/ D lim
ı!0

log .�� .q; ı//

log .ı/
� 2 (6.35)

where 2 is the value of the dimension of the Euclidean plane containing the image.
In the present study, the multiplier method, based on Eq. 6.35 below, was applied

to estimate � (q) (see Cheng 1999a, b for further details):

< �.q/ > C2 D �
log .< M .q; ı/ >/

log ."/
(6.36)

where <> stands for statistical moment and M represents the multiplier measured on
each pixel as

M .q; ı/ D




� .ımin/

� .ı/

�q

(6.37)

The advantage of using Eq. 6.36 compared to Eq. 6.26 is that, since the estimation
is independent of box size ı, successive box sizes may be used to estimate � (q).
The condition to applying the former, however, is that �(ımin) may not be nil, for

otherwise the expression
�

�.ımin/

�.ı/

�

is always 0 or undefined for all values of ı.

The resulting estimate may be applied in Eq. 6.26 to estimate Dq.
As an example to compare both algorithms, the generalized dimension of the 2D

binary soil images shown in Fig. 6.10 is estimated. Therefore, a comparison between
the Dq values obtained with the two methods is given in Fig. 6.11. The two curves
are similar for soil ads. The differences between the two methods for soils buso and
evh1 are wider for negative values of q, although decay is greater for the positive
values.

Finally, an overall comparison of the Dq values point out a much lower standard
error in the GB method. The main differences found in the BC method are in the
negative q range, whereas in the GB procedure, differences were also observed in
the positive q range. For further details, see Grau et al. (2006).
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Fig. 6.11 Generalized dimensions (Dq) from q D �10 to q D C10 for the three soil thin sections
(ads, triangles; buso, squares; and ehv1, circles) based on (a) the box-counting method and (b)
gliding box method. The s.e. of Dq values are represented by line bars (From Grau et al. 2006)
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Table 6.1 Upper and lower bounds of the partition function (�(q, ı)) and entropy (S(ı)) based on
mass exponent (q), size length of the 2D binary image (L), size length of the box (ı), and porosity
percentage (f ) (Summarized from Bird et al. 2006)

Bounds
q <0 0� q <1 q D 1 1< q

�(q, ı) �(q, ı) S(ı) �(q, ı)
Lower �

L
ı

�2.1�q/
f .1�q/

�

L
ı

�2.1�q/
f .1�q/ 2 ln

�

L
ı

�

C ln.f /
�

L
ı

�2.1�q/

Upper
L2(1 � q)f(1 � q)

�

L
ı

�2.1�q/
2 ln

�

L
ı

� �

L
ı

�2.1�q/
f .1�q/

6.5.3 Limitations

Given all these definitions, we will see that the partition function presents restrictive
bounds. In establishing bounds for ¦(q, ı) and S(ı), we must consider five separate
ranges of values of the parameter q. All cases are shown in Table 6.1, summarized
by Bird et al. (2006).

Having defined these bounds, we now seek to examine their significance in terms
of extracting generalized dimensions from image data. For 1<q and for 0�q<1, the
bounding functions when plotted on the log-log plot used to extract the dimension
yield two parallel lines with a vertical separation of (1�q) ln (f ). The higher the
porosity, the lower the separation between these lines, and consequently a very good
straight line fits for the image data.

For q D 1, the bounding functions when included on the plot of entropy against
ln(ı) again yield two parallel lines of slope 2 with separation of ln(f ). Again, fits to
image data lying between these reference lines are obliged to be good. For q <0, our
bounding functions do not yield parallel lines, and there exists scope for the image
data points to deviate from linear behavior within the log-log plot of �(q, ı). For
further details, see Bird et al. (2006).

Several authors have pointed out several more restrictions in this type of analysis
of binary images. Kravchenko et al. (2009) pointed out that, because their Lipschitz-
Hölder exponents are either 0 or 2 at the pixel scale, binary images are not
multifractal in a strict mathematical sense. In the same direction, Zhou et al.
(2011) contend that the interpretation of the generalized dimensions estimated from
binary images should be made very cautiously. These authors indicate that further
exploration of the use of grayscale images for multifractal characterization of soil
structure should be encouraged.

At this point we would like to recall the work of Buczkowski et al. (1988) in
which they comment that the main difficulty in using MFA is that the ideal limit
cannot be reached in practice, in this context the pixel.

Observing bi-log plots of the partition function (�(q, ı)) in several works (Tarquis
et al. 2008, 2009; Perrier et al. 2006), we can observe the existence of a plateau
phase at the smallest scales that can be explained by the nature of the measure we
are studying. At ı values close to 1, the variation in number of black pixels is based
on a few pixels, having the most simplicity when ı D 1 where the measurecan only
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have a value of 0 or 1. Thus, for small boxes of size ı, the proportions among their
values are mainly constant. However, when the box size passes a certain threshold,
a scaling pattern begins.

Several authors have applied the characteristic length (lc), based on the config-
uration entropy concept, to determine the minimum size ı that should be used in
the MFA (Dathe et al. 2006; Tarquis et al. 2006). At ı D lc, the distribution of the
measure (number of black pixels) is the most uniform we can find in the image.
Increasing ı value is when configuration entropy begins to reduce and a scaling
pattern can be detected if it is present.

6.6 CT-Scan Image Multiscale Analysis

Taina et al. (2008) did a cursory examination of recent research, involving the appli-
cation of CT to soil. Their review reveals a considerable diversity of methodology
and a lack of standardization. An immediate consequence is the impediment to the
comparison of results from different studies. One of the methodologies that presents
a lack of general agreement is in the appropriate pore-solid CT threshold (Cortina-
Januchs et al. 2011; Wang et al. 2011; Ojeda-Magaña et al. 2014), which is used to
obtain a black and white image from the original grayscale data, before calculating
any of these scaling parameters. At the same time, the effect of settings of all
these processes in scanning and image reconstructions has been deeply studied by
Houston et al. (2013b). At this point we will clarify that pore space determined by
image analysis is air-filled pore space (hereinafter named pore space). The variety
of thresholding methods has already been briefly discussed in Sect. 6.2.3.

Gibson et al. (2006) compared three fractal analytical methods to quantify the
heterogeneity within soil aggregates. In this work, the frequency distribution of pore
and solid components was clearly dependent on thresholding, which could not be
generalized. Tarquis et al. (2008, 2009) point out that a practical problem in the MFA
of binary images is that the thresholding methods have a pronounced effect on the
porosity and resulting generalized dimensions. It has been suggested to further study
grayscale soil images for multifractal characterization of soil structure, avoiding
any intermediate thresholding step (Zhou et al. 2010, 2011). This MFA applied in
grayscale images is very common in other types of images (Lovejoy et al. 2008;
Tarquis et al. 2014). In the next section, we will show some examples of using MFA
in gray soil images.

6.7 Box-Counting and Gliding Algorithms

As in the case of binary images, gray images can be analyzed with both algorithms.
All the definitions explained in Sect. 6.4 can be applied except that, now our measure
is not the number of black pixels representing pores, it is the gray value of the pixel
(mi), and therefore Eq. 6.22 doesn’t apply.
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Based on the mass exponent function (� (q)), the singularity index or Hölder
exponent (˛) can be determined by Legendre transformation of the � (q) curve as
(Evertsz and Mandelbrot 1992)

˛.q/ D
d�.q/

dq
(6.38)

The number of cells of size ı with the same ˛, N˛(ı), is related to the cell size
as N˛(ı) / ı�f (˛), where f (˛) is a scaling exponent of the cells with common ˛.
Parameter f (˛) can be calculated as

f .˛/ D q˛ .q/ � � .q/ (6.39)

Multifractal spectrum (MFS), a graph of ˛ vs f (˛), quantitatively characterizes
variability of the measure studied with asymmetry to the right and left indicating
domination of small and large values, respectively. The width of the MF spectrum
indicates overall variability (Tarquis et al. 2001). It could be interpreted also as the
relationship between a Hausdorff dimension f and an average singularity strength ˛
as implicit functions of the parameter q.

A direct way to calculate the MFS is to use the method of Chhabra and Jensen
(1989) following the relations:

8

ˆ

<

ˆ

:

f .q/ D lim
ı!0

Pn.ı/
iD1 
i.q;ı/ log.
i.q;ı//

log ı

˛.q/ D lim
ı!0

Pn.ı/
iD1 
i.q;ı/ log.�i.ı//

log ı

9

>

=

>

;

(6.40)

where �i (•)is defined in Eq. 6.19 and 
i is


i .q; ı/ D
.�i .ı//

q

Pn.ı/
iD1 .�i .ı//

q
(6.41)

One can regard multifractal measures as the union of fractal sets, each one
characterized by different scaling exponents ˛ that have been named “singularity
exponents.” This interpretation is important to understand the concept of singularity
maps explained in Sect. 6.6.

From a CT-scan 3D image of a soil aggregate sample, three slices have been
selected perpendicular to the XY plane, as shown in Fig. 6.12. For each of the three
slices, we will compute, using both algorithms (BC and GB), first the mass function
(Fig. 6.13), second the generalized dimension (Fig. 6.14), and third the multifractal
spectrum (Fig. 6.15).

Comparing the box-counting method and the gliding method, the errors in � (q)
(Fig. 6.13) are diminished in the negative q values which is relevant for slice 192.
On the other hand, slices 64 and 128 present similar structures; meanwhile 192 is
significantly different. At the same time, the curvature of � (q) is smoother in the
gliding method. However, the differences are retained.
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Fig. 6.12 Original CT-scan 3D image of a sample of soil aggregate (a) and the selection of three
slices in Z direction (b)
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Fig. 6.13 Mass exponent function �(q) for each of the three slices selected estimated by box-
counting method (left) and gliding method (right) (Adapted from Torre et al. 2016)

D(q), or Dq as named earlier (Fig. 6.14), shows the same results as � (q) as both
are related by Eq. 6.28. For negative q values, the differences are clearer between
slice 128 and slice 64.

The multifractal spectrum (Fig. 6.15) gives us complete information of the hier-
archical soil structure. Slice 64 shows a weak multifractal character in concordance
with previous results. Slice 128 presents a stronger scaling in the low values that
correspond to the right part of the spectrum.
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Fig. 6.14 Generalized dimension (D(q)) for each of the three slices selected estimated by, left,
box-counting method, and, right, gliding method (Adapted from Torre et al. 2016)
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Fig. 6.15 Multifractal spectrum (˛ vs f (˛)) for each of the three slices selected estimated by, left,
box-counting method, and, right, gliding method (Adapted from Torre et al. 2016)

6.8 Multifractal Sierpinski Carpet

A Sierpinski multifractal can be obtained by a multiplicative cascade or “canonical
curdling” process (Perfect et al. 2006) with eight iterations and a multifractal
generator. The chosen generator probabilities are p1 D 0.1875, p2 D 0.2250,
p3 D 0.2875, and p4 D 0.3000. The order of probabilities, pi, was randomized before
being applied in each iteration.

Grayscale soil images and the multifractal Sierpinski carpet are shown in Fig.
6.16, as well as their respective grayscale histograms. Applying MFA to this
synthetic image, we obtain a multifractal spectrum that reminds us of the scaling
properties observed already in a CT-scan image used in this chapter. This implies
that to create synthetic images that resemble a CT-scan image, one should include
scaling properties of the gray values in the methodology.
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Fig. 6.16 Sierpinski multifractal of 246 � 246 pixels (a) and the corresponding gray histogram
(b). In the second line, slice 128 from the aggregate soil sample (c) and the corresponding gray
histogram (d)

6.9 Singularity Maps and Binarization

A “singularity map” is defined as the locus of the points x � support (�) with the
same Hölder exponent ˛(x):

˛ D T.x/ (6.42)

where T(x) is the function that gives us the Hölder exponent of each point x.
To calculate “singularity maps,” we will follow Cheng (2001) and Falconer

(2003). In multifractal measures the values of the local mass, �(B(x, r)), calculated
for various cell sizes r centered at x, follow a power-law relationship with r:

� .B .x; r// � r˛.x/ (6.43)
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where B(x, r) is a ball centered at x with radius r. Locations ˛(x) ¤ E, where
E is the topological dimension of the measure support, are called “singular
locations.” Moreover, we can distinguish positive singularities ˛(x) < E and negative
singularities ˛(x) > E. Hölder exponents ˛(x) can be calculated by the expression:

’.x/ D lim
r!0

ln� .B .x; r//

ln r
(6.44)

Cheng (2001, 2007) applied these concepts to a concentration map of a certain
mineral. He states that concentration or density mass �(x), calculated for various
cell sizes r centered at x, obeys a power-law relationship with r:

¡.x/ D
� .B .x; r//

rE
� r’.x/�E (6.45)

where E D 2 for 2D support and E D 1 for 1D support. This power-law is fulfilled
in a certain range of r, [rmin, rmax].

If the spatial variability of the exponent ˛(x) is a constant, then it means we have
obtained a monofractal distribution; otherwise, if ˛(x) has multiple values, then we
have got a multifractal distribution.

Positive singularities with ˛(x) <2 correspond to high values of concentration
(enriched values) in a geochemical map, while negative singularities with ˛(x) <2
correspond to low concentration values (depleted values). Therefore, calculating
the “singularity map” for an ore concentration map may be used to characterize
concentration patterns (Cheng 2007).

6.9.1 Concentration-Area Method (C-A)

The C-A method (Cheng et al. 1994) establishes power-law relationships between
the concentration of a variable and the area enclosed by this concentration:

A .¡ � C/ / C“ (6.46)

where A(��C) is the area constituted by concentrations (�-values) greater than a
given value C and “ is the fractal dimension of the C-A method.

In the context of fractal/multifractals, concentration is related to singularity
exponents through the expression (6.43), so in this case the C-A method tells us

A .’ � C/ / C“ (6.47)

where A(� � C) is the area constituted by singularity exponents (˛-values) greater
than a given value C and “ is the fractal dimension of the C-A method (Liu et al.
2013).
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When the singularity distribution follows a fractal model, this power-law relation
has only one exponent. Sometimes the C-A method does not meet the simple fractal
model because different power-laws apply to the study area. In this case we can
assume spatial variability is multifractal instead of fractal, and different slope-
change values in the log-log plot can be considered as a separation among different
sets. The implications and interpretations in the field of spatial statistics can be found
in Cheng (1999b).

6.9.2 Image Binarization

The new “singularity C-A” method is mainly based on the existence of self-similar
properties in the concentration or density variable, defined as the average intensity
of an area centered on the point of interest. When we obtain the cumulative
distributions of concentration through the C-A method, these self-similarities are
reflected by linear segments (power-law relationships) in a log-log plot. Different
exponents resulting from the plot reveal that there are different sets with self-similar
properties in the whole set. Values of the exponents are related to geometrical fractal
dimensions and singularity exponents (Cheng et al. 1994), and the slope-change
points offer us the possibility to define thresholds in all subsets which have appeared.
Therefore, the image is segmented according to all the slope-change points. The
initial assumption is not necessarily of multifractality, although, as we will see,
monofractality falls short in the majority of the examples since several slope-change
points are obtained.

The new segmentation method (C-A segmentation) will be applied in the slice
128 as an example. The implementation will follow these steps:

1. The first step is the transformation of the grayscale image to an intensity
concentration map. To do so, singularity maps are calculated, where singularity
exponents reflect the concentration strength of each point of the image. Firstly,
we define a measure � over the image. The easiest definition of a measure for a
square set S(x, r) centered on pixel x and side r is

� .S .x; r// D
X

k2S.x;r/

Ik (6.48)

where Ik is the intensity of pixel k. In the images we are analyzing, the intensity of
each pixel is in the range from 0 to 255.

We will use the window-based method (Cheng 2001) to obtain singularity
exponents of the image. Using a sliding window (e.g., a square window) of variable
sides rmin D r1 < r2 < : : : < rn D rmax, we apply the expression:

˛.x/ D lim
r!rmin

ln� .S .x; r//

ln r
(6.49)
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Fig. 6.17 Singularity map of slice 128 presented in Fig. 6.16 section C. (a) Hölder exponent (˛)
histogram from the singularity map (b) Log-log cumulative distributions obtained by the “C-A
method” (c) Red circles (in c) are slope-change point candidates to be thresholds in the “singularity
C-A” method

The side r of the sliding window is always an odd integer number of pixels, and
the minimum value is rmin D 1 pixel. The values we have used in the analyzed soil
images are rmin D 3 pixels and rmax D 15 pixels. So we have seven values to calculate
the slope ˛(x) by linear regression. The results are shown in Fig. 6.17.

The singularity map gives information about two well-differentiated areas: the
area with pixels with ˛ <2 (pixels with convex neighborhood) that we have defined
as an enriched concentration area and corresponds to solid bodies in the image
and the area with pixels with ˛ >2 (pixels with concave neighborhood) that we
have defined as a depleted concentration area corresponding to pore space in
the image.

2. The second step consists in applying the C-A method. We calculate cumulative
distribution of ˛-values (singularity exponents) as indicated in Fig. 6.17 sec-
tion B. We define the area constituted by ˛-values greater than a given value C
as the number of pixels with singularity exponents greater than C:

A .˛ � C/ D N
0

of pixels .˛ � C/ (6.50)

When we obtain log-log plots, linear segments (power-law relationships) appear
with their respective slope-change points (see Fig. 6.17 section C). At this point we
cannot accurately locate the position of these points. We solve this problem in the
following steps:
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Slice-128 Outlined image Binary image

Fig. 6.18 Left: grayscale image corresponding to slice 128. Middle: overlapping of grayscale and
borders of segmented image. Right: binarized images after applying the “singularity C-A” method

3. The third step consists in locating slope-change points through the WTMM
method; in this case we will use a null second-moment wavelet called the
“Mexican hat.” This kind of wavelet detects points with local maxima curvature.
The WTMM method accurately finds all slope-change points we have obtained
through the C-A method (red points drawn in Fig. 6.17 section C).

4. Finally, we choose as the segmentation threshold the first slope-change point with
value ˛ >2, i.e., the first value located in the depleted area since this value defines
the first set with self-similar properties completely contained in the depleted area,
the potential area to be the pore space. In this specific case, the threshold value
is ˛c D 1.987. The binary image obtained is showed in Fig. 6.18. For further
details, see Martín-Sotoca et al. (2017).
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Chapter 7
Pedotransfer Functions and Soil Inference
Systems

José Padarian, Jason Morris, Budiman Minasny, and Alex. B. McBratney

“You can’t make a silk purse out of a sow’s ear”.

Jonathan Swift
Anglo-Irish essayist (1667–1745)

7.1 Introduction

The term pedotransfer function (PTF) was coined by Bouma (1989) as ‘translating
data we have into what we need’. Pedotransfer functions are regression functions
used to predict soil properties that would be otherwise infeasible to obtain. Typical
reasons for this infeasibility include, but are not limited to, the cost, time, difficulty
or hazard involved in procuring direct measurements. Each PTF is developed around
some insight into a soil’s physical, chemical or biological properties that relates a
set of input parameters (predictor properties) to an output parameter (a predicted
property).

Pedotransfer functions (PTFs) have multiples uses. They are essential, for
example, in soil carbon stock assessment (Chap. 23) based on legacy soil data, where
bulk density is usually not measured. PTFs can also be used to estimate soil organic
carbon pools required in soil carbon evolution models. In digital soil mapping
(Chap. 12), the use of pedotransfer functions is to provide more useful information
in relation to soil attributes or soil functions. Pedotransfer functions can further be
used to estimate the soil’s condition or capability (e.g. available water capacity).
The predicted properties resulting from PTFs can be used as inputs into process-
based simulation models to run scenarios on the effects of different agricultural
management on soil functioning, drainage, evapotranspiration and biomass yields.
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Fig. 7.1 A Venn diagram
showing the relationship
between pedotransfer
functions (PTFs), soil spatial
prediction functions (SSPFs)
and, their intersection, spatial
PTFs

s soil

c climate, 
o organisms, 
r relief, 
p parent material, 
a age, 
n spatial position

PTFs

Spatial PTFs
SSPFs

Some consider prediction of soil attributes from environmental variables (e.g.
climate and topographic indices) in a spatial context as pedotransfer functions,
but we would caution against that. We called this particular case the soil spatial
prediction functions (SSPFs) (see Chap. 12 for more details). Pedotransfer functions
sensu stricto are when we are predicting soil attributes from other soil attributes, or
S D f (s). There is a possible intersection or area of overlap, between PTFs
and SSPFs (e.g. the spatial component), which results in what we call spatial
pedotransfer functions. Figure 7.1 illustrates the differences and possible overlap
between PTFs and SSPFs. Pachepsky et al. (2001) and Romano and Palladino
(2002) illustrate examples of spatial or contextual pedotransfer functions, but they
are examples of S D f (s,r).

7.2 A Brief History of Pedotransfer Functions

Reviews on the development and the use of PTFs can be found in Pachepsky
et al. (1999, 2015) and Wosten et al. (2001). Most of these reviews, however, are
limited to the prediction of soil hydraulic properties, which regulate the retention
and movement of water and chemicals in soils.

The concept of using empirical relations to predict soil properties can be traced
to Briggs and McLane (1907) and Briggs and Shantz (1912) in their work on
determining the wilting coefficient. Furthermore, various ‘rule of thumbs’ were
formulated to estimate various soil properties. Probably because of its particular
difficulty and cost of measurement, the most comprehensive research in developing
PTFs has been for the estimation of water retention. With the introduction of the
concepts of field capacity (FC) and permanent wilting point (PWP) by Veihmeyer
and Hendricksen (1927), research during the period of 1950–1980 attempted to
correlate particle-size distribution, bulk density and organic matter content with
water content at field capacity (FC, ™ at �33 kPa), permanent wilting point (PWP, ™
at �1500 kPa) and available water content (AWC D FC – PWP). Nielsen and Shaw
(1958), for example, presented a parabolic relationship between clay content and
PWP from 730 Iowa soils.

In the 1960s various papers dealt with the estimation of FC, PWP and AWC,
notably in a series of papers by Salter and Williams (1965a, b, 1966, 1967, 1969).

http://dx.doi.org/10.1007/978-3-319-63439-5_12
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These explored relationships between texture classes and available water capacity,
which are now known as class PTFs. Salter and Williams also developed functions
relating the particle-size distribution to AWC, now known as continuous PTFs.

In the 1970s more comprehensive research using large databases was developed.
A particularly good example is the study by Hall et al. (1977) who used soil samples
from England and Wales. Hall et al. (1977) established field capacity, permanent
wilting point, available water content and air capacity as a function of textural class,
as well as deriving continuous functions estimating these soil water properties. In
the USA, Gupta and Larson (1979) developed 12 functions relating particle-size
distribution and organic matter content to water content at water potentials ranging
from �4 to �1500 kPa.

With the flourishing development of hydraulic models (van Genuchten 1980)
and computer modelling of soil water and solute transport (de Wit and van Keulen
1972), the need for hydraulic properties as input to these models became more
and more evident. Clapp and Hornberger (1978) derived average values for the
parameters of a power-function water retention curve, sorptivity and saturated
hydraulic conductivity for different texture classes. In probably the first research
of its kind, Bloemen (1980) derived the relationships between parameters of the
Brooks and Corey hydraulic model and particle-size distribution.

Lamp and Kneib (1981) introduced the term pedofunction, while Bouma and
van Lanen (1986) used the term transfer function. To avoid confusion with the
terminology, transfer function which is used in other disciplines with many different
meanings, Bouma (1989) later termed the pedotransfer function.

From the 1990s to the early 2000s, the development of hydraulic PTFs became
a popular topic of research. Results of such research have been reported widely
from various countries globally, including the UK (Mayr and Jarvis 1999), Australia
(Minasny and McBratney 2000), the Netherlands (Wösten et al. 1995), Germany
(Scheinost et al. 1997b) and Iran (Ghorbani and Homaei 2002).

Since the late 2000s, the popularity of developing hydraulic PTFs continued
(Santra and Das 2008; Twarakavi et al. 2009; Haghverdi et al. 2012). Here, the
development of PTFs for special conditions is worth noting, such as saline and
saline-alkali soils of Iran (Abbasi et al. 2011), permafrost soils of China (Yi et al.
2013) and volcanic ash soils of Japan (Nanko et al. 2014), and the use and
development of PTFs for continental or global extent such as the work presented
by Dai et al. (2013) for China, Hollis et al. (2012) and Tóth et al. (2015) for Europe
and Glendining et al. (2011) for the world.

In addition, some PTFs consider adjustments because of the differences in
criteria and measurements from existing pedotransfer functions. For example, as
outlined in the previous chapter of this book (Fig. 5.3), sand fractions are different
according to the IUSS/Australian classification (particle diameter 20–2000 �m) and
the FAO/USDA criteria (particle diameter 50–2000 �m). Padarian et al. (2012) give
equations for converting between these two classification systems. On the other
hand, Henderson and Bui (2002) established relationships between pH measured
in water and pH measured in CaCl2.

http://dx.doi.org/10.1007/978-3-319-63439-5_5
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Although most PTFs have been developed to predict soil hydraulic properties,
they are not restricted to hydraulic properties only. PTFs for estimating soil
physical, mechanical, chemical and biological properties have also been developed
(Table 7.1). In addition, PTFs were developed to also predict processes such as deep

Table 7.1 Some examples of pedotransfer functions

Predicted soil properties Predictor variables Authors

Physical properties
Infiltration rate after a certain
period

Initial water content,
moisture deficit, total
porosity, non-capillary
porosity, hydraulic
conductivity

Canarache et al. (1968)

Soil thermal conductivity Texture, organic matter
content, water content

De Vries (1966), Hubrechts
and Feyen (1996)

Bulk density Particle-size distribution Rawls (1983)
Hollis et al. (2012)

Infiltration parameters Particle-size distribution,
bulk density, organic C
content, initial water content,
root content

van de Genachte et al. (1996)

Gas diffusivity Air-filled porosity at �10 kPa Moldrup et al. (2000)
Mechanical properties
Soil mechanical resistance Organic carbon content, clay

content, bulk density
Mirreh and Ketcheson
(1972), da Silva and Kay
(1997)

Soil shrinkage curve Clay content Crescimanno and Provenzano
(1999)

Volumetric shrinkage, liquid
limit, plastic limit, plasticity
index

Organic matter content, clay
content, CEC

Mbagwu and Abeh (1998)

Degree of overconsolidation Bulk density, void ratio McBride and Joose (1996)
Rate of structural change Organic matter content, clay

content
Rasiah and Kay (1994)

Soil erodibility factor Geometric mean
particle-size, clay and organic
matter content

Torri et al. (1997)

Chemical properties
Cation exchange capacity
(CEC)

Clay content, organic matter
content, pH

Bell and van Keulen (1995),
Curtin and Rostad (1997)

Critical P level, P buffer
coefficient

Clay content Cox (1994), Chen et al.
(1997)

Soil organic matter Soil colour Fernandez et al. (1988)
P sorption pH in NaF Gilkes and Hughes (1994)
pH buffering capacity Organic matter content, clay

content
Wong et al. (2013)

(continued)
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Table 7.1 (continued)

Predicted soil properties Predictor variables Authors

Al saturation Base saturation, organic
carbon content, pH

Jones (1984)

P saturation Extractable P, Al Kleinman et al. (1999)
K/Ca exchange Clay content, extractable K Scheinost et al. (1997a)
Total nitrogen Organic carbon content, pH,

sand and clay content
Glendining et al. (2011)

As and Cd sorption Clay content, pH, organic
carbon content, dithionite
extractable Fe

Schug et al. (1999)

Phosphorous (P) adsorption Clay content, pH, soil colour Sheinost and Schwertmann
(1995)

Cd sorption coefficient Clay content, organic carbon
content, pH

Springob et al. (1998)

Haematite content Soil colour Torrent et al. (1983)
Biological properties
Microbial phylotype richness
and diversity

pH Fierer and Jackson (2006)

Respiration rate Water content Wildung et al. (1975)
Nitrogen mineralisation
parameters

CEC, total N, organic carbon
content, silt and clay content

Rasiah (1995)

OC pools Total OC, clay Weihermueller et al. 2013

percolation. For example, Selle and Huwe (2005) used a regression tree approach
to simplify process-based models to identify key soil and environmental variables
which govern percolation. Wessolek et al. (2008) called these hydro-pedotransfer
functions, as soil and hydrological variables are used to predict other soil processes.
Wessolek et al. (2008) developed empirical functions that predict deep percolation
and evapotranspiration from soil conditions, vegetation and land uses.

Pachepsky et al. (2015) reviewed more recent developments in PTFs and
identified research gaps that require future work:

• The need for sufficient upscaling of PTFs. PTFs were mainly generated on
point observations, and many applications require simulations on regional or
continental extent. An example is saturated hydraulic conductivity which is
highly dependent on the measurement support.

• The need for more regional or specific PTFs for saline soils, calcareous and
gypsiferous soils, peat soils, paddy soils, soils with well-expressed shrink-swell
behaviour, and soils affected by freeze-thaw cycles.

• The need for parameters governing biogeochemical processes, such as in soil
carbon and nitrogen evolution models, where parameters are related to organic
matter pools (e.g. Weihermueller et al. 2013). For these cases, soil heat transfer
and water availability inputs can be improved.
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• The need to expand work on the spatial and temporal structure of PTFs which is
not well known.

• The use of PTFs in large-scale projects, where soil information is usually not
represented properly. In soil carbon stock assessment studies, bulk density is
usually not measured, so PTFs for bulk density are required, which can be a
main source of uncertainty (Hollis et al. 2012).

7.3 Developing Pedotransfer Functions

The basic steps for developing PTFs are simple – in theory, S D f (s), and
therefore:

1. Collect a sufficient data set of soil properties (S and s) that are suspected to having
empirical relationships to each other.

2. Set aside a certain fraction of the data for developing the PTFs, and use the
remaining data for testing the performance of the PTFs (e.g. an 80:20% split
of the data set).

3. Choose a modelling method f for analysing the data (e.g. linear regression, neural
networks or other machine learning algorithms), and subsequently develop the
empirical equations.

4. Test the empirical equations on the testing data to show their validity.
5. Calculate the output uncertainty.

7.4 Predictors

There are several sources of information that can be used to predict soil properties
and that can be considered as input for pedotransfer functions. Here, we will present
the use of PTFs and their potential predictors which are sourced from the laboratory,
field description (including soil morphology) as well as the soil electromagnetic
spectrum.

7.4.1 Laboratory Data

Laboratory analysis of soil samples is usually conducted to allocate a particular soil
profile to an existing soil class. The high cost of laboratory analysis, however, drove
the development of empirical relationships by relating more easily or routinely
measured soil properties to other attributes that are, for example, more useful for
soil management purposes. One of the well-known examples is the estimation
of available water capacity from particle-size distribution. The development in
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pedotransfer functions is boosted by the availability of large national or regional soil
databases, which allows the use of machine learning tools. The most useful variable
in predicting soil physical properties is perhaps clay content, as it affects moisture
retention, soil strength and many physical and chemical processes. Routine analysis
usually lacks of physical data. Research is still mainly focusing on improving the
prediction of hydraulic properties, such as water retention and saturated hydraulic
conductivity. Some simpler analysis, however, has also been utilised to estimate
more difficult-to-measure properties, such as pH in sodium fluoride which is an
indication of phosphorous sorption capacity (Gilkes and Hughes 1994).

7.4.2 Field Description and Soil Morphology

Most research has been focused on correlating laboratory-determined soil properties
with more difficult-to-measure properties, mainly because of the availability of
comprehensive soil survey databases and the presumption that these properties are
most appropriate for predictive purposes. However, it has also been recognised for
some time that soil morphological description could be used as predictor (O’Neal
1949, 1952; McKeague et al. 1984; McKenzie and McLeod 1989; McKenzie and
Jacquier 1997).

Calhoun et al. (2001) contended that soil morphology and field description have
been underutilised in the development of pedotransfer functions. They presented the
representation of Jenny’s state factors through the variables’ physiography, parent
material, horizon, field texture and structure as collected in soil surveys for predict-
ing bulk density. They demonstrated that morphology and field descriptors account
for more variability in predicting bulk density than laboratory measurement of
particle size and organic carbon. Physiographic description and soil morphological
characterisation (slope gradient, position of the slope and horizon classes) were also
found as useful predictors of water retention (Rawls and Pachepsky 2002).

Several studies have been successful in predicting hydraulic conductivity by
using soil morphological features (e.g. O’Neal 1952; McKeague et al. 1982).
However, the descriptive systems and interpretative guidelines in conventional soil
survey have been largely qualitative and only appropriate for a given range of
soils. McKenzie et al. (1991) found that several published descriptive systems
for inferring hydraulic properties provided poor predictions for a limited range
of soils from South Australia. McKenzie and Jacquier (1997) reasoned that good
predictive relationships should only be expected when the field criteria used have a
logical physical connection with hydraulic properties. They further postulated that
predictive systems that develop direct relationships between hydraulic properties
and field criteria of physical significance should be superior to systems that rely
on classified entities such as horizons or soil series. They devised a simple visual
estimate of areal porosity and found that saturated conductivity can be estimated
from field texture, grade of structure, areal porosity, bulk density, dispersion
index and horizon type. A similar idea was performed by Lin et al. (1999), who
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converted morphological properties to scores which are related to water flow. From
these studies, it was concluded that additional morphological descriptors to those
routinely surveyed may be needed to improve the predictive capacity.

7.4.3 Handheld and On-the-Go Proximal Soil Sensing
and Remote Sensing

7.4.3.1 Handheld, Stationary, Proximal Soil Sensing

As outlined in Chap. 5, in traditional soil surveys, soil scientists used the visible
light spectrum through the Munsell soil colour chart to determine soil colour and
the presence of pedological features like mottles or concretions. Furthermore, it was
discussed in the previous chapter that developments in spectroscopy have resulted
in an increase in the potential for soil analysis, and we will include a short summary
of its capability here (Fig. 7.2). Diffuse reflectance infrared spectroscopy in both
the visible-near (400–700–2500 nm) and mid-infrared ranges (2500–25,000 nm)
allows rapid acquisition of soil information in the field or in the laboratory.
Diffuse reflectance infrared spectroscopy is based on the fact that molecules have
specific frequencies at which they rotate or vibrate corresponding to discrete energy
levels. Absorption spectra of compounds are a unique reflection of their molecular
structure. Spectral signatures of soil materials are characterised by their reflectance
to a particular wavelength in the electromagnetic spectrum. Soil spectra in the vis-
NIR and MIR ranges can be used to estimate a range of soil physical, chemical and
biological properties simultaneously. Good results were reported for measurement
of total C, total N, clay and sand content, CEC and microbial activity (Soriano-Disla
et al. 2014).

Mid-infrared (MIR) spectroscopy usually produces better predictions than vis-
NIR. The use of MIR also enables estimation of various soil organic carbon pools
derived from tedious and time-consuming physical fractionation procedures. These
pools can be used as inputs in soil carbon evolution models. Vis-NIR spectrometers
particularly are used extensively and gained popularity in soil science because they
are also available in a portable format and easy and ready to use in the field and
require minimal or even no sample preparation. Reviews on the use of vis-NIR for
predicting soil properties can be found in Stenberg et al. (2010) and Soriano-Disla
et al. (2014).

Because soil is a complex mixture of materials, it is difficult to assign specific
features of the spectra to specific chemical components. Ultraspectral data obtained
from infrared spectrometers contain thousands of reflectance values as a function
of wavelength. Since there are more predictor variables than the observations and
predicted soil attributes as outlined in the previous chapter, methods that reduce the
dimension of the spectra are required. Principal component regression and partial
least squares (PLS) methods are commonly utilised. Principal component regression
reduces the dimension of the spectra via principal component analysis and then form

http://dx.doi.org/10.1007/978-3-319-63439-5_5
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linear regression between the principal components and soil attributes (Martens and
Naes 1989; Chang et al. 2001). Partial least squares (PLS) (Martens and Naes 1989)
extracts successive linear combinations of the spectra, which optimally address the
combined goals of explaining response variation and explaining predictor variation.
Other machine learning techniques that are capable of variable (wavelength)
selection have also been found useful (e.g. Minasny and McBratney 2008; Sarajith
et al. 2016).

In addition to vis-NIR spectroscopy, the direct measurement of the elemental
concentration of soils in the field also became possible using energy-based portable
X-ray fluorescence (XRF) devices (Weindorf et al. 2012). Bulk density can also
be estimated utilising photogrammetry via a digital single-lens camera or laser
scanning (Bauer et al. 2014; Rossi et al. 2008).

7.4.3.2 On-the-Go Proximal Soil Sensing

While we can collect detailed soil information at limited locations using conven-
tional methods of soil analysis and interpolate resulting values across space and
time using geostatistics, in some instances it would be more beneficial if we could
directly measure soil information at a fine spatial scale (e.g. measurements every
2–20 m). In this instance, proximal soil sensing offers a cost- and time-effective
solution (Viscarra Rossel et al. 2010). Proximal soil sensing acquires information
about soil through the use of field-based sensors that are placed in proximity to the
soil (within 2 m) or within the soil body, which is in contrast to remote sensing
(McBratney et al. 2011a, b). The development and use of on-the-go proximal
soil sensing techniques is motivated by the need for high-resolution spatial and
temporal soil information. Proximal soil sensors operate on a range of frequencies
in the electromagnetic spectrum, from microwaves to gamma rays. These sensing
devices either measure soil properties directly or can be used to make inferences
via PTFs about specific soil properties. Often sensors are also used simultaneously
to overcome the limitations of single-sensor data interpretation (Wong et al. 2010).
For example, electromagnetic induction instruments (EMI) are used to measure the
soil’s electrical conductivity, a highly valuable soil property that is influenced by soil
porosity, moisture content, salinity, temperature and the amount and composition of
soil colloids.

Ground-penetrating radar, electrical resistivity as well as electrical conductivity
sensors are available to monitor the spatial distribution of soil moisture (Adamchuk
et al. 2004). In addition, gamma ray spectrometers have been used to measure
the amount of potassium, uranium and thorium in the upper soil profile which
is most likely directly related to the parent material the surveyed soil originated
from (Dickson and Scott 1997). Local PTFs have been developed to estimate soil
attributes (such as clay and organic carbon content) from the sensed variables (e.g.
bulk electrical conductivity, gamma K).

As outlined in Chap. 5, portable sensors can now be used in the field on profile
and core faces for pedological studies, which is termed digital soil morphometrics

http://dx.doi.org/10.1007/978-3-319-63439-5_5
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(Hartemink and Minasny 2014). Field observation via proximal sensors and PTFs
should be fused in an inference system into a powerful approach for estimating a
range of soil properties for pedological studies, precision farming or contamination
assessment (Horta et al. 2015).

7.4.3.3 Remote Sensing

The value of remote sensing over proximal sensing is that large spatial extents can
be covered quickly with many estimates. The inferred value of remotely sensed
data either airborne or satellite sourced has been shown to be an efficient means
of assessing the condition of natural resources at reasonably broad scales (and
this will be discussed further in Chap. 13). The remotely sensed data can include
spectral, radar, thermal and radiometric signals. These reflect the environmental and
soil condition and are known to be associated with soil properties. Mulder et al.
(2011) reviewed the application of optical and microwave remote sensing for soil
and terrain mapping. Soil properties that have been measured include mineralogy,
texture, soil iron content, soil moisture content, soil organic carbon content, soil
salinity and carbonate content. Its use for soil mapping is, however, hampered by
vegetation cover. Nevertheless, indicators, such as plant functional groups, NDVI
and productivity changes, can be used as indications of soil properties.

The application of remotely sensed infrared data for mapping soil clay content
and mineralogy is demonstrated by Mulder et al. (2013) and Gomez et al. (2015).
Some studies demonstrated that time series data collected from remotely sensed data
can be used to derive soil hydraulic properties. Dimitrov et al. (2014) derived soil
hydraulic parameters, surface roughness and soil moisture of a tilled bare soil plot
using measured brightness temperatures at 1.4 GHz (L-band), rainfall and potential
soil evaporation. This required a radiative transfer model and a soil hydrologic
model combined with an optimisation routine.

7.5 Modelling Approaches

Approaches to develop PTFs can be purely empirical or physico-empirical. Empir-
ical approaches attempt to find relationships between the predictor and predicted
variables using regression analysis or various machine learning models. In a
physico-empirical approach, the soil properties are derived based on some physical
principles. For example, in water retention curve prediction, Arya and Paris (1981)
translated the particle-size distribution into a water retention curve by converting
solid mass fractions to water content and pore-size distribution into hydraulic
potential by means of the capillary equation. Zeiliguer et al. (2000) proposed an
additive model for soil water retention, which assumed that water retention of a soil
can be approximated by the sum of the components of water retention of its textural
composition.

http://dx.doi.org/10.1007/978-3-319-63439-5_13
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Considering the type of data we wish to predict, we can distinguish single point
and parametric PTFs. Single point PTFs predict a soil property, while parametric
PTFs predict parameters of a model.

Most survey agencies have their own ‘rule of thumb’ for predicting soil
properties. One form is a look-up table, which usually relates field texture class
to properties such as clay content, available water capacity, etc. These rules or
tables are usually derived from experience and expert knowledge or from means
of properties for a particular class in a soil database.

For the continuous predicted variables, a range of machine learning models can
be used to derive PTFs, finding relationships between the predictor and predicted
variables. Many of the modern regression techniques are described in Hastie et al.
(2009). The methods range from linear regression, generalised linear models (GLM)
and generalised additive models (GAM) to regression trees, random forests, neural
networks, genetic programming and fuzzy systems. Most of these tools are available
in commercial and open-source projects. R (https://www.r-project.org) and Python
(https://www.python.org/) are commonly used by the scientific community, because
they offer many free-of-use advanced mathematical and machine learning tools.

The predictive power and interpretability vary between models depending on
their complexity. Tables 7.2 and 7.3 provide a guideline for various models. The
more complex the model, the more parameters it will have, so users need to be
aware of the principle of parsimony (which is a general principle that for any model,
which provides an adequate fit for a set of data, the one with the fewest parameters

Table 7.2 Common machine learning algorithms used for developing PTFs

Multiple regression

The general purpose of multiple regression is to analyse the relationship between several
independent or predictor variables and a dependent or predicted variable. Multiple regression
analysis fits a straight line (or plane in an n-dimensional space, where n is the number of
independent variables) to the data
Generalised linear models (GLM)

A class of models that arise for a natural generalisation of ordinary linear models. The
transformed dependent variable values are predicted from (are linked to) a linear combination
of predictor variables; the transformation is referred to as the link function; also different
distributions can be assumed for the dependent variable values
Generalised additive models (GAM)

Models that use smoothing techniques, such as splines to identify and represent possible
nonlinear relationships between the predictor and predicted variables. GAM is a generalisation
of GLM where the linear function of the predictor is replaced by an unspecified
(non-parametric) function, obtained by applying a scatterplot smoother to the scatterplot of
partial residuals (for the transformed dependent variable values)
Partial least squares (PLS)

This is an alternative to multiple linear regression that can deal with data having more
independent variables than observation points. PLS constructs a new set of components as
regressor variables which are a linear combination of the original variables. The components in
partial least squares are determined by both the response variable(s) and the predictor variables

(continued)

https://www.r-project.org
https://www.python.org/
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Table 7.2 (continued)

Artificial neural networks

A flexible mathematical structure modelled after the functioning of the nervous system,
capable of fitting nonlinear relationships. The essential feature is a network of simple
processing elements (neurons) joined together by weights
Regression tree

This is an alternative to multiple regression. Rather than fitting a model to the data, a tree
structure is generated by dividing the sample recursively into a number of groups, each division
being chosen so as to maximise some measurable difference in the predicted variable in the
resulting two groups. The resulting structure provides easy interpretation as variables most
important for prediction can be identified quickly
Random forests

Random forest is an extension of regression trees where many trees are generated, varying the
number of covariates used and using a bootstrap sampling of the training data. Then, an
ensemble model is generated by aggregating the individual trees
Genetic programming

Machine learning method for evolving computer programs, following the concepts of natural
selection and genetics, to solve complex problems
Support vector machine (SVM)

A method that looks for an optimal separating hyperplane between two classes by maximising
the margin between the closest observations of each class. In a regression case, the
observations lie in between the two borders of the margin (supporting vectors), which are
separated from the hyperplane by ˙ " (maximum error)

Based on Hastie et al. (2009)

is to be preferred) (Lark 2001). There is a limit for predictive models; here, users
should choose the simplest model that can adequately account for the variation in
the prediction. Models with high complexity will appear to fit the data very well;
however, these may also cause overfitting or include too many parameters in the
model; thus the model will fit the noise of the data. It is recommended to split the
data into a calibration and validation set, using the calibration data for fitting and
then testing or validating the model with a validation set (see Hastie et al. (2009)
for more detail). Wosten et al. (2001) compared the performance of three models to
predict water content at �33 kPa from basic soil properties using the same data set.
They reported that the accuracy of all three methods was similar and suggested that
the improvement of fit may not be expected from the use of different models, but
from a better set of data.

7.5.1 Ensemble Models

An alternative to selecting a single predictive model is model ensembles. This
consists of creating multiple models and combining them to obtain a single final
model. The advantage of this method is that, most of the time, the combined model
performs better than any of the individual models in terms of lower error and
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unaltered bias. This method has been used for almost 200 years as pointed out
in an interesting review by Clemen (1989). Baker and Ellison (2008a) discussed
various aspects of implementation of ensemble methods for soil studies. In soil
science, examples of its use are Baker and Ellison (2008b) who used ensemble
ANN for PTFs. Kim et al. (2015) combined two microwave satellite soil moisture
products, Malone et al. (2014) combined estimates of soil properties from soil maps
and regression kriging prediction, and Padarian et al. (2014) generated an ensemble
map of soil available water capacity in Australia.

Guber et al. (2009) suggested the use of all available PTFs in a multimodel
prediction technique. They used 19 published PTFs as inputs in Richards’ soil water
flow equation; the output of the 19 simulations was then combined to obtain a more
optimal soil water prediction. The challenge in this type of ensemble method is
how to calibrate and to use appropriate weighting for each of the PTF to obtain an
optimal prediction.

7.6 Characterising PTF’s Performance

As with all numerical methods, there are questions concerning how well any
prediction agrees with real observational data. In the literature, PTFs can be
characterised by their accuracy, reliability, uncertainty and validity, as well as their
ultimate utility. A brief survey of these concepts follows.

7.6.1 Accuracy

Accuracy refers to how well a PTF predicts its target property based on inputs taken
from the training data. It measures the performance of a PTF on its training data
(a PTF has ‘seen’ the data). Usually accuracy is expressed in terms of error, the
difference between observed and predicted values. Weynants et al. (2009) amongst
others used several common statistic measures for evaluating the accuracy of PTFs:
the root-mean-square error (RMSE), mean absolute error (MAE), mean error (ME)
or bias, coefficient of determination (R2) and the model efficiency. Accuracy in
PTFs can also be computed with other statistics, e.g. the concordance correlation
coefficient which measures how close the model predictions fall along a 45-degree
line from the origin with the measured data (or a slope of exactly 1) (Lawrence and
Lin 1989).
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7.6.2 Reliability

Reliability in PTFs refers to a PTF’s performance in making predictions on data
outside its original training data (data a PTF has not ‘seen’) (Pachepsky and Rawls
1999). A reliable PTF should produce accurate predictions for seen data (data used
in the model development process), as well as unseen data (data that had not been
used in the model development process) (Baker and Ellison 2008a). Pachepsky and
Rawls (1999) state that the reliability of PTFs can be estimated by cross validation,
or using an independent data set. In the cross validation method, the training data
set is split into two subsets – a calibration set and a validation set; two-thirds of the
data for calibration and one-third for testing are a common practice. However, the
results from such cross validation can be biassed against the data set used. If a PTF
is intended for prediction over a region, the independent test data set should contain
observations that are unbiased (in statistics, collected based on a random sampling
approach). PTFs that lack independent validation result in potentially optimistic
assumptions about the functions’ predictive performance.

7.6.3 Validity

Validity has to do with how appropriate a particular PTF is in predicting a soil
property from a given soil sample. The greater the similarity of a soil sample to the
soil used to develop a PTF, the greater the assumed validity of that PTF. Validity
can be in terms of the geographical and pedological region over which a PTF’s
original training data were collected. If a PTF is used to predict soil properties
outside its original data boundaries, its validity is doubtful (Wösten et al. 1999).
Not surprisingly, PTFs perform best on soils having similar parent material and
pedogenesis to the soils used to develop them (Bruand et al. 2003). Acutis and
Donatelli (2003) stated that validity in PTFs is strictly related to the data set used
to develop them. They add that when many PTFs are available to predict the same
property, knowing which one to choose is a difficult task.

An important mechanism for establishing validity is stratification or the custom
creation of PTFs strictly on soil-type or classification scheme basis. Stratification
has been conducted according to soil horizons (Hall et al. 1977); soil classes (Batjes
1996); textural classes (Tietje and Hennings 1996); hydraulic-functional horizons
(Wösten et al. 1986); great soil groups, temperature regime and moisture regime
(Pachepsky and Rawls 1999); parent material and horizon morphology (Franzmeier
1991); numerical soil class (Williams et al. 1983); and management units (Droogers
and Bouma 1997).

Validity can also refer to the congruence between some input data set and the
original training set. Despite knowledge that the validity of a given PTF should not
be interpolated or extrapolated beyond the pedological origin or soil type on which it
is developed, there is still a lack of appropriate information that adequately describes
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the calibration data, and, thus, we know very little about where a published PTF
may be applied. There is still a lack of a mechanism that can automatically check
its validity. Tranter et al. (2009) give a method for determining the valid domain
of a PTF based on Mahalanobis distance of the predictor space, cautioning that it
is unwise to extrapolate PTFs beyond these bounds. The uncertainty estimates of a
PTF can also be a measure of its validity.

7.6.4 Uncertainty

Uncertainty refers to the variability in a prediction from its mean value. This
occurs because PTF inputs and outputs are random variables. Therefore, they
have a mean value and a variance. PTF uncertainty is typically reported as the
prediction variance. Uncertainty in PTF prediction can be quantified in terms of
structural uncertainty due to flaws in the PTF model, uncertainty due to sampling
and measurement errors and parameter uncertainty of the PTF.

Vereecken and Herbst (2004) suggest three approaches to handling uncertainty
in PTFs: (1) Compute the RMSE at 90% confidence; (2) Quantify parameter
uncertainty using a covariance in PTFs during the calibration process; and (3) Use
a Monte Carlo analysis to quantify parameter uncertainty associated with sampling
effects in the calibration database, e.g. the bootstrap method (Efron and Tibshirani
1993).

PTF uncertainty can be computed empirically based on the calibration error using
the fuzzy k-means with extragrade (FkME) method given by Tranter et al. (2010). It
does not seek to disseminate sources of error but rather expresses uncertainty in the
form of a prediction interval determined empirically from the calibration data. The
method partitions the predictor space into classes of similar model errors, with each
class represented by a prediction interval determined from the empirical distribution
of the error. In addition, it also identifies those observations that exist outside the
convex hull of the calibration data, thus ascertaining validity of the PTF. Those
observations outside the convex hull are considered outliers of the calibration data
and subsequently have their uncertainty penalised by a simple multiplier.

7.6.5 Utility

Wösten et al. (2001) stated that the utility of PTFs in modelling is defined as the
correspondence between measured and simulated functional soil behaviour. This
can be interpreted to mean that the authors advocate validating the final use (utility)
of the PTFs, not just the PTF predictions. An example would be to develop some
PTFs that predict water retention and conductivity and then to use those predictions
in crop simulations to predict seasonal water storage. Thus, the validation occurs
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at the seasonal water storage level, not at the level of the individual predictions of
water retention and conductivity.

7.7 Spatial Pedotransfer Functions

Most PTFs have been calibrated from point source data and assume spatial indepen-
dence. In digital soil mapping, we are interested in estimating the spatial distribution
of soil properties. Pringle et al. (2007) recommended that an investigator who wishes
to apply a PTF in a spatially distributed manner first has to establish the spatial scales
relevant to their particular study site. Following this, the investigator must ascertain
whether these spatial scales correspond to those that are adequately predicted by
the available PTFs. Pringle et al. (2007) proposed three aspects of performance in
the evaluation of a spatially distributed PTF: (i) the correlation of observed and
predicted quantities across different spatial scales, (ii) the reproduction of observed
variance across different spatial scales and (iii) the spatial pattern of the model
error. For an example of predicting water retention across a 5 km transect, they
showed that the tested PTFs performed quite well in reproducing a general spatial
pattern of soil water retention; however, the magnitude of observed variance was
underestimated. Springer and Cundy (1987) compared the parameters of the Green-
Ampt infiltration equation from field measurements and those calculated from PTFs.
They showed that the mean and variance of the parameters when estimated by PTFs
were not preserved; the variances are always lower. The spatial trends and cross-
correlations amongst the parameters were also reduced. They further used the PTFs
to simulate overland flow and found that the results were significantly different when
using field-measured parameters.

When measured properties are spatially limited, spatial prediction is required to
generate a continuous map. Combination of spatial interpolation methods such as
kriging and PTFs can generate a continuous map, and there are two possibilities
to combine them. The first approach is to first interpolate related soil properties
at unvisited locations using kriging and then to apply PTFs to the interpolated
variables. The second approach applies PTFs to point measurements and then
interpolates the predicted results. Bocneau (1998) compared these approaches to
estimate CEC in West Flanders province, Belgium, and found that the performance
of both methods is almost equal. Sinowski et al. (1997) compared these approaches
in estimating the water retention curve and found that the first approach yields better
prediction.

Heuvelink and Pebesma (1999) discussed the role of support or scale. As most
PTFs were derived from point sources, they are not valid at the block support. This
means that in the situation where the PTF input is available at point support and
where output is required at block support, spatial aggregation should take place
after the functions are calculated. It is essential to separate spatial aggregation from
spatial interpolation. Interpolation should better take place before a function or
model is executed because this enables a more efficient use of the spatial distribution
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characteristics of individual inputs. When a model is executed with interpolated
inputs, it is important to note the uncertainty of the interpolation.

7.8 Soil Inference Systems

While there are many similar pedotransfer functions generated using new or
existing data sets, there seems to be much less effort in gathering and using
the available PTFs. McBratney et al. (2002) proposed a soil inference system
that would match the available input with the most appropriate PTF to predict
properties with the lowest uncertainty. The soil inference system was proposed
as a way of collecting and making better use of pedotransfer functions that have
been abundantly generated. McBratney et al. (2002) demonstrated the first approach
towards building a soil inference system is to create a very rudimentary system in
the form of a specially adapted spreadsheet. Such a rudimentary inference system
has two essentially new features. Firstly, it contains a suite of published pedotransfer
functions, and the output of one PTF can act as the input to other functions (if no
measured data are available). Secondly, the uncertainties in estimates are inputs, and
the uncertainties of subsequent calculations are performed. The input consists of the
essential soil properties.

The inference engine will work in the following manner:

1. Predict all the soil properties using all possible combinations of inputs and PTFs.
2. Select the combination that leads to a prediction with the minimum variance.

There have been some attempts at pattern matching of PTFs using a distance
metric (Tranter et al. 2009) or nearest-neighbour algorithm (Nemes et al. 2006).
However, there have been no research applications that do what soil inference
systems (SINFERS) aim to do, to build a system that would chain the PTF
predictions together while accounting for uncertainty.

Morris et al. (2016) built an expert system software, which uses rules to select
appropriate PTFs and predicts new property values and error estimates. SINFERS
can use the estimated property values as new inputs, which can trigger more
matching patterns and more PTFs to ‘fire’ cyclically until the knowledge base is
exhausted and SINFERS has inferred everything it can about what it was originally
given.

7.9 Soil Spectral Inference Systems

As discussed in Sect. 7.4.3, soil spectroscopy and proximal soil sensing research
have mainly focused on spectral calibration and prediction of a range of soil
properties using multivariate statistics. PTF research, on the other hand, is mainly
focusing on predicting soil model parameters from other soil properties. There is no
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Fig. 7.3 An example of a spectral soil inference system. Soil spectra were used to predict
important soil properties, and these properties were, in turn, used to predict other properties,
applying well established PTFs

real connection between these research areas which have the same aim, to predict
one soil property from other soil properties S D f (s).

It is desired to develop soil spectral calibrations for a complete suite of
soil physical, chemical and biological properties. However, this might not be
possible, mainly for two reasons: (i) Not all soil properties show a spectral
response and (ii) the development of a comprehensive soil spectral library is quite
challenging. McBratney et al. (2006) proposed a spectral soil inference system
(SPEC-SINFERS), where soil diffuse reflectance spectroscopy is linked with PTFs.
SPEC-SINFERS uses soil spectra to estimate various basic soil properties which
are then used to infer other important and functional soil properties via pedotransfer
functions (Fig. 7.3). An important feature to be considered is the propagation of
both input and model uncertainties. Tranter et al. (2008) demonstrated the use of the
SPEC-SINFERS approach in predicting volumetric soil water retention. This is for
sure a research area that requires future investigations.
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Part IV
Soil Materials, Horizons and Profiles

“Nature has endowed the earth with glorious wonders and vast
resources that we may use for our own ends. Regardless of our
tastes or our way of living, there are none that present more
variations to tax our imagination than the soil, and certainly
none so important to our ancestors, to ourselves, and to our
children.”

Charles Kellogg

In this book section, we consider some basic soil entities from a pedometric point of
view. All the entities are notionally three dimensional. We consider soil materials,
the soil within a small volume within the horizon, soil horizons and sequences of
soil horizons or otherwise known as profiles.

We shall deal with the classification of soil objects. The terminology of soil
classification is a little confused. First, we define some words in the way we use
them here.

Classification – the setting up or creation of classes
Taxonomy – the theory of classification
Classification system – the list of classes and their definitions
Allocation, identification – putting new unknowns into pre-existing classes

The word ‘soil’ can be tacked on the front to give the appropriate phrases and
meanings. So, using these definitions, Isbell et al. (1997) classifies, the rest of us
allocate or identify, and hardly anyone bothers with soil taxonomy.

Reference
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Chapter 8
Soil Material Classes

Nathan P. Odgers and Alex. B. McBratney

“When you get close to the raw materials and taste them at the
moment they let go of the soil, you learn to respect them”.

Rene Redzepi

Soil classification is really about answering the question what makes a soil? Or,
perhaps, what makes one soil different from another? To answer questions like these,
soil classifiers create taxonomic rules to separate one kind of soil from another and
categorise and make sense of the diverse pattern of the soil continuum. Traditionally
a great deal of consideration has been given to characterising and classifying the
whole soil profile in a top-down fashion. Pedometric methods allow us to answer
the same questions in a bottom-up trajectory. Thus, the starting point is not the
whole soil profile or even its major constituents, the soil horizons. Rather we start
by classifying the actual, tangible, skeleton of soil itself: the soil material.

8.1 Soil Material Classes

We classify soil because we think the soil varies sufficiently in its properties from
place to place for distinct kinds to be recognised. These various kinds of soil ought
to be identifiable in the physical space (the natural landscape) and, hopefully, in the
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attribute space—the n-dimensional space defined by n measurable soil attributes
(MacVicar 1969). In classifying soils, we aim to use soil information gathered
from the physical space to define soil classes that are as coherent as possible in
the attribute space.

Taxonomists classify objects we may call individuals. An individual is an object
that is “complete in itself” (Cline 1949). Individuals can be allocated to (can
become members of) classes, and a universe is a superclass that contains all
individuals. A particulate universe is one in which discrete objects can readily be
counted. Biological universes are frequently particulate universes: for example, in
the universe of birds, individual birds are readily discernible. On the other hand,
a universe of soils does not seem to fit the description of a particulate universe
since its characteristics frequently change from place to place more gradually than
sharply (Simonson and Gardiner 1960). Discrete, definitive bodies of soil are not
as discernible as individual organisms often are in a biological universe. Soil is, in
other words, a continuum and therefore occupies a continuous universe in which
individuals cannot readily be counted; individuals in a continuous universe must be
created arbitrarily (Knox 1965).

Because soils occupy a continuous universe, the identification of soil individuals
has been the source of some contention (Buol 2003). Yet as a practical matter, some
notion of a soil individual has traditionally been necessary in order to discretise the
soil continuum and simplify its classification.

8.1.1 Point Representation of Soil

The pedon is probably the most well-known soil individual. The pedon and the
polypedon were devised as three-dimensional soil individuals for the purpose of
soil sampling and classification, respectively (Soil Survey Staff 1993) and are
fundamental concepts in the Soil Taxonomy classification system (Soil Survey
Staff 1999). A polypedon is a collection of contiguous pedons of like taxa and is
considered internally homogenous for taxonomic purposes.

Delineation of pedons in the field is complicated by the fact that soil occupies a
continuous universe. For example, there is effectively an infinite number of pedons
since their boundaries in the landscape must be established arbitrarily (Knox 1965).
This means that their dimensions are also arbitrary, although guidelines dictate their
minimum and maximum limits (Soil Survey Staff 1993). Several methods of setting
the dimensions of a pedon have been proposed that are based on, for example, the
volume of soil occupied by plant roots or the minimum volume that can be sampled
by a particular instrument or the examination of lateral soil horizon variability
(Simonson and Gardiner 1960; Soil Survey Staff 1993).

In reality what we tend to examine and classify in the field are two-dimensional
soil profiles rather than three-dimensional soil bodies (Webster 1968). We often
assume, implicitly, that the variation in the third dimension is irrelevant for
taxonomic purposes because it is impractical in most circumstances to excavate and
describe a three-dimensional body of sufficient size and in sufficient detail.
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Since soil is a continuum, it seems appropriate that in our attempts to classify it
we should not ignore the lateral variation when sampling it; however, it appears that
little impetus is traditionally provided to collect such information. Since sampling
and classification are linked, it suggests that a revised philosophy of the soil
individual is necessary.

There is precedent in the literature. According to Holmgren (1986), the concep-
tualisation of a soil individual as an arbitrary volume is unsuitable because a soil
property measurement is actually made on a volume of material originating from a
specific location on Earth. Location is therefore a definitive “point of origin” with
respect to which a soil can be characterised and classified.

It makes sense that the observations themselves should consist of a small volume
representation, which we shall call a soil material. The soil material would logically
fit inside recognised soil horizons and as such is fairly congruent with Holmgren’s
(1988) sampling locule. In geostatistical terminology, we are saying that a soil
sample must have a defined geometric support. A soil material may or may not also
be the same as a representative elementary volume (REV), which Bouma (1985)
considered is the smallest volume that can represent a given soil horizon and lead
to a consistent population of data. In aggregated soils, REVs are peds and in sandy
soils they are individual sand grains.

The substance of Holmgren’s revised pedon seems to be more related to
the practice in soil physics, chemistry and biology. It may be aligned with the
geostatistical and REV concept above although the space-time geometric support
of this operationally defined object is not clear. A set of nine cores of fixed radius
sampled on a grid 20 m apart and centred on some location (x, y) on which a set of
measurements are made and attributes recorded according to some schema could be
considered an observational pedon. The set of data thus obtained could be called a
pedon description.

8.1.2 Soil Material as a Collection of Soil Properties

A large number of soil properties, for example, physical, geochemical and biolog-
ical, can be attributed to or measured on a particular soil material. We shall call a
collection of soil properties describing the soil material a soil material description
(Table 8.1). The infrared spectrum offers another multivariate description (Fidêncio
et al. 2001; Leone and Sommer 2000; Valeriano et al. 1995). The soil material is a
real entity, whereas a soil material description is a virtual one. If different sets of
properties are used to describe a soil material, then the soil material descriptions are
different entities.



226 N.P. Odgers and A.B. McBratney

Table 8.1 Descriptions of soil material from three profiles observed at Pokolbin in the Lower
Hunter Valley, New South Wales, Australia

Australian Soil Classification
suborder Brown Dermosol Red Chromosol Brown Kandosol

Horizon designation A1 horizon B21 horizon B21 horizon
Texture grade Clay loam Light-medium clay Light clay
Moist colour hue 10YR 5YR 7.5YR
Moist colour value 4 3 3
Moist colour chroma 3 4 4
Dry colour hue 10YR 5YR 7.5YR
Dry colour value 5 3 5
Dry colour chroma 4 4 4
Structure Moderately pedal Strongly pedal Apedal massive
pH (1:5 H2O) 5.67 6.74 5.53
pH (1:5 CaCl2) 4.67 5.43 4.25
Electrical conductivity (�S cm�1) 145.6 54.9 87.3

8.2 Creation of Classes

Scientific classifications of soil have been made since at least the late nineteenth
century. These were often induced from supposed genesis. Later, more objective
classification schemes were devised. The most widely known is probably today’s
Soil Taxonomy and its antecedent, the so-called Seventh Approximation. Most
soil classifications in use today are hierarchical systems in which the soil universe
is segregated into progressively more detailed, mutually exclusive classes as one
proceeds down the hierarchy. This is the same model that has traditionally been
applied in biology, but researchers have occasionally questioned its application to
the classification of soils, in part because of the genetic assumptions implicit in the
hierarchical structure (e.g. Leeper 1956).

Hughes and Lindley (1955) were some of the first researchers to classify soils
using a statistical procedure although research into numerical soil classification of
soils really began in earnest in the 1960s (Bidwell and Hole 1964a, b; Campbell
et al. 1970; Grigal and Arneman 1969; Rayner 1966) based on work done in the
biological sciences (Sneath and Sokal 1962; Sokal 1963).

Cluster analysis is the application of numerical methods to the classification
of multivariate data. The goal of cluster analysis is to partition a population of
individuals into classes by finding groups of similar individuals in the multivariate
attribute space. The aim is that individuals allocated to the same class should be
similar to each other and dissimilar to individuals allocated to the other classes
(Fisher and van Ness 1971).

An individual being classified is known as a pattern, x, and is denoted as a vector
of d features or attributes xi:

x D .x1; x2; x3 : : : ; xd/
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The vector x is usually assumed to be a row vector. A pattern set is a set
of individuals, denoted X D fx1, x2, x3, : : : , xng. In our case the attributes xi are
soil attributes. They may be measured on a continuous scale or coded on an
ordinal or nominal scale. In practice, most researchers avoid the inclusion of
attributes measured on ordinal and nominal scales because they can complicate the
computation of pairwise similarities between individuals.

It is important to note that the clustering process is agnostic about the true
partition structure amongst the population. Cluster algorithms generally partition
the population of individuals into a set of classes even if natural classes are not
present (Jain 2010).

8.2.1 Similarity Measures

Numerical classification relies on being able to assess the degree of similarity or
resemblance between a pair of individuals. Measures that can do so are generically
known as coefficients of similarity. Sneath and Sokal (1973) identified four classes
of similarity coefficients: distance coefficients, association coefficients, correla-
tion coefficients and probabilistic similarity coefficients. Association coefficients
typically measure similarity on the basis of agreement in the state of qualita-
tive attributes and include the Jaccard coefficient (Jaccard 1908) and the simple
matching coefficient (Sokal and Michener 1958). Correlation coefficients measure
similarity on the basis of proportionality and independence between a pair of
attribute vectors and include the Pearson product-moment coefficient. Probabilistic
similarity coefficients involve information statistics which measure the homogeneity
of a given partition of individuals; an example can be found in Estabrook (1967).

Distance coefficients measure the distance between individuals in various ways.
According to Sneath and Sokal (1973), they have the greatest intellectual appeal
to taxonomists compared to other kinds of similarity coefficients since they are the
easiest to visualise. They are the similarity coefficients used most frequently by
pedometricians over the last few decades. Strictly speaking distance coefficients
are measures of dissimilarity since their values increase with decreasing similarity
(Clifford and Williams 1976). In the remainder of this section, we briefly describe
several popular distance coefficients.

8.2.1.1 Euclidean Distance

The Euclidean distance is one of the most familiar measures of distance and was
introduced to numerical taxonomy by Sokal (1961). In the two-dimensional case,
it is equivalent to Pythagoras’ theorem but can easily be extended to compute
dissimilarities in higher-dimensional spaces. The Euclidean distance D2

E between
individuals i and j is computed as

D2
E

�

xi; xj
�

D
Xd

pD1

�

xip � xjp
�2

D
�

xi � xj
�T �

xi � xj
�

(8.1)



228 N.P. Odgers and A.B. McBratney

Several pre- or post-treatments can be applied. For example, since D2
E grows

larger as the number of attributes increases, it is a common practice to divide it by d
(Clifford and Williams 1976; Webster and Oliver 1990). In addition, measurements
of soil attributes tend to have different natural numerical ranges, irrespective of units
of measurement. For example, soil particle-size fractions expressed gravimetrically
have a range of 0–100 g kg�1, whereas soil organic carbon measurements in mineral
soils are frequently in the range of 0–5%. This means that attributes with larger
ranges tend to have greater influence in the calculation of the Euclidean distance
(Clifford and Williams 1976; Jain et al. 1999; Kantardzic 2011; Moore and Russell
1967), which may be undesirable. To avoid this we can standardise each attribute by
range prior to computation of the distance (Arkley 1976):

x0 D .x � xmin/ = .xmax � xmin/ (8.2)

or by variance:

x0 D .x � x/ =SDx (8.3)

where x0 is the standardised value and x, xmin and xmax are the mean, minimum and
maximum values of the observed range of x.

Finally, distributions of soil attributes are often skewed. Moore and Russell
(1967) noted that the Euclidean distance appears to be sensitive to the shape of
attribute distributions. Skew may be reduced either by transformation of the values,
typically using a logarithmic or square root transformation, or by truncating extreme
but rarely occurring values (Arkley 1976).

8.2.1.2 Mahalanobis Distance

Unlike the Euclidean distance, the Mahalanobis distance (Mahalanobis 1936)
takes into account the differences in variance between the soil attributes and the
correlations between them. As a result the attributes do not need to be standardised
prior to calculation of the distance. The Mahalanobis distance is calculated as
follows (McBratney and de Gruijter 1992):

D2
M

�

xi; xj
�

D
�

xi � xj
�T

E�1
�

xi � xj
�

(8.4)

where E is the sample covariance matrix of X.

8.2.1.3 Gower Distance

Both the Euclidean distance and Mahalanobis distance require that the attributes
are quantitative continuous variables like clay content or electrical conductivity;
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Table 8.2 Values assign to
sijp and ıijp for dichotomous
nominal variables (Gower
1971)

Values of attribute p

i C C � �

J C � C �

sijp 1 0 0 0
ıijp 1 1 1 0

however, many soil attributes are measured on a qualitative scale. There are several
types of qualitative variables (Williams 1976a). The first kind are called nominal
variables and represent an attribute that may take many states, such as type of
aggregate coatings (clay, manganese, iron, organic, etc.). A given individual can
be in one state only. Although we may encode the states on an integer scale for
convenience, the ordering of the states implies no special meaning. A special case
of nominal variable is what Gower (1971) refers to as a dichotomous variable.
Dichotomous variables record the presence or absence of a feature, such as mottling
or stones. Two individuals have a higher degree of similarity to each other if both
are in possession of the same feature than if it is absent in one individual. Absence
of a feature in both individuals does not infer the same degree of similarity as its
presence in both individuals since it may not be known whether the feature can
occur in the populations to which the individuals belong.

Ordinal variables are similar to nominal variables in that they represent an
attribute that may take many states. In this case the order of the states when encoded
into an integer scale is important although the distance between states may be
unknown (Williams 1976a). An example of an ordinal-valued attribute is stone size
classes (e.g. 2–6 mm, 6–20 mm, 20–50 mm, >50 mm).

Gower (1971) described a general coefficient of similarity that is able to handle
qualitative and nominal quantitative attributes. It is calculated as follows:

Sij D
Xd

pD1
sijpıijp=

Xd

pD1
ıijp (8.5)

where sijp is the similarity score between individuals i and j for attribute p. The
quantity ıijp represents the possibility of making a comparison between individuals
i and j for attribute p; it takes a value of 1 when attribute p can be compared and 0
otherwise. When all d comparisons are possible,

Pd
pD1ıijp D d.

The method of computing the similarity score varies depending on the kind of
attribute. In the case of dichotomous nominal variables, sijp and ıijp are assigned the
appropriate values in Table 8.2.

In the case of multistate nominal variables, sijp D 1 if individuals i and j have the
same state for attribute p and sijp D 0 otherwise.

For quantitative variables, sijp is computed as follows:

sijp D 1 �
ˇ

ˇxi � xj

ˇ

ˇ =Rp (8.6)

where Rp is the numerical range of attribute p either in the population or the sample.
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Despite its flexibility, the Gower distance has not been widely used in pedometric
studies although examples exist in spatial prediction research (e.g. Mallavan et al.
2010; McKenzie and Austin 1993; Zhang et al. 2013) and soil classification research
(e.g. Beaudette et al. 2013; Oliver and Webster 1989; Roudier et al. 2016).

8.2.2 Preprocessing

Before we undertake a cluster analysis, it is frequently necessary to perform some
preprocessing operations on the attributes of the individuals we wish to cluster. We
may wish to do so for a number of reasons, including the following: we would like
to choose an optimal subset of attributes or we may want to modify the influence
that certain attributes have on the cluster analysis. Preprocessing objectives may
be realised by undertaking several common tasks including examination of the
correlations between attributes, standardisation to a common range of values,
transformation to reduce skew and determination of appropriate weights (Arkley
1976). The steps we need to take are frequently determined by the assumptions
underlying a particular clustering algorithm. In this section we briefly describe a
couple of the more common tasks.

8.2.2.1 Optimal Subset of Attributes

We may be presented with a large number of attributes and wish to select an optimal
subset. It is tempting to merely choose the several that we think are the most
important, or the most interpretable or that we have the most experience with, but
such a choice is likely to be suboptimal with respect to the information about the
individuals’ partition structure that a given set of attributes carry (Arkley 1976). In
any dataset of soil material attributes, it is likely that many will be correlated with
each other, and some highly so. For the sake of cluster analysis, an optimal set of
attributes is the set in which the correlations between the attributes are minimised.
On the other hand, for maximum pedological interpretability, they should also be as
correlated as possible with other attributes not used in the cluster analysis (Norris
1971). For quantitative attributes this can be achieved by examining the Pearson
correlation matrix arising from a pairwise comparison of all available attributes and
selecting a subset according to some heuristic. An example of such a matrix for
attributes of some undisturbed soils in Israel is presented in Table 8.3 (after Banin
and Amiel 1970). For example, Sarkar et al. (1966), after assembling a dataset of
61 soil attributes, examined pairs having a correlation greater than or equal to 0.90
and eliminated the attribute that was most highly correlated with other attributes. By
doing so they reduced the number of attributes to 51. Through trial and error, they
were able to make bigger reductions by lowering the pairwise comparison threshold.

A similar but more rigorous outcome can be achieved by subjecting a dataset
containing n soil attributes to the well-known method of principal components
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analysis (Hotelling 1933). In simple terms, PCA involves the rotation of the n
orthogonal axes of the feature space formed by the n attributes in such a way that
the rotated first axis accounts for the most variance in the dataset, the rotated second
axis accounts for the second largest component of variance in the dataset and so on.
The rotated axes are called principal components, and the values of the individuals
on each principal component axis are called scores. The principal component axes
are orthogonal with each other, which guarantees that the scores measured on them
are uncorrelated with each other. The full set of principal component axes are
needed to describe the rotated feature space entirely, but it is probable that most
of the variance is described by the first few components (Norris 1971). Thus, with
respect to reducing the number of attributes required for cluster analysis, the original
attributes can be replaced with the individuals’ scores on the first few principal
component axes with the certainty that the scores on each axis are independent of
each other and that minimal information has been lost compared to that contained
in the original dataset. The disadvantage is that the principal component scores are
more difficult to interpret than the original attribute values and the original attributes
cannot be recovered unless the scores of all the principal components are known.
Kyuma and Kawaguchi (1976) used the approach when classifying Japanese paddy
soils to reduce a set of 12 soil material attributes to the scores on two principal
components prior to classification using a dendrogram.

8.2.2.2 Weighting of Attributes

We may also wish to weight certain attributes prior to the cluster analysis according
to their perceived importance or by some other rule. Whether or not attributes
are weighted often depends on whether the resulting classification is intended to
reflect general-purpose or special-purpose use. If a general-purpose classification is
desired, then it is generally accepted that all attributes should remain unweighted
so that each has equal value and importance (Sneath and Sokal 1962). Arkley
(1976) noted that this is in conflict with traditional general-purpose hierarchical soil
classifications where attributes that are used as partitioning criteria at higher nodes
of the hierarchy have greater effective weight in the classification than attributes
appearing lower in the hierarchy.

Weighting specific attributes means that they can exert greater influence in the
cluster analysis compared to the attributes that remain unweighted, and this can
be reflected in the class definitions (Gibbons 1968). This has application in the
construction of special-purpose classification systems if certain soil uses can be
shown to depend on specific soil attributes.
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8.2.3 Kinds of Clustering Algorithms

The field of cluster analysis is broad, and researchers have devised many clustering
algorithms. Not all of them have been applied to soils, and, of those that have, some
have proved more popular than others. The algorithms themselves can be classified
in various ways. For example, Williams (1976b) made a classification with respect to
application in agricultural science that reflects a time when fuzzy classification was
still in its infancy. Clustering algorithms are often described in terms of (i) whether
or not the classes are known a priori (supervised versus unsupervised algorithms),
(ii) the trajectory of class formation (agglomerative versus partitional classification),
(iii) the structure of the resulting classification (hierarchical versus non-hierarchical
classification) and (iv) the exclusivity of their classes (exclusive versus nonexclusive
classification). Criteria (i)–(iii) relate to the structure of the classification systems,
whereas criterion (iv) relates to the nature of the classes. In this section we briefly
explore these concepts.

8.2.3.1 Supervised Versus Unsupervised Classification

Supervised classification is carried out when the classes are known a priori.
Supervised techniques were some of the first numerical classification techniques
applied to soils. The ordination techniques that appeared in the late 1950s enabled
researchers to group existing soil taxa on the basis of quantifiable similarity (Bidwell
and Hole 1964b). Hole and Hironaka (1960) published one of the first studies to
do so. They applied ordination to the grouping of soils in the Miami taxonomic
family from Ohio and to representative profiles of great soil groups collected from
around the world. Results of ordinations were often summarised using dendrograms
(Bidwell and Hole 1964a, b; Rayner 1966).

Contemporary methods of classification tree analysis and artificial neural net-
works are also supervised classification techniques although they are more fre-
quently used to calibrate environmental and landscape characteristics with soil
observations for the purpose of spatial prediction. A recent exception was the
study by Ribeiro et al. (2014) who used fuzzy classification trees to examine the
relationships between soil properties and classes in the Brazilian soil classification
system.

Unsupervised classification, on the other hand, attempts to discover natural
classes amongst a group of individuals. It does not assume any pre-existing soil
classification. For this reason it is often useful for exploring if natural groups are
present in an unclassified collection of soil material samples. In the soil literature,
popular unsupervised classification algorithms have included the k-means and, later,
fuzzy k-means algorithms and their derivatives, described later in this chapter.
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Fig. 8.1 Dendrogram of some Scottish soils produced via a single-linkage agglomerative hierar-
chical classification procedure (Muir et al. 1970, reproduced with permission)

8.2.3.2 Agglomerative Versus Partitional Classification

Agglomerative clustering works by grouping individuals together into larger and
larger groups on the basis of the similarity between them. Given a population of n
individuals, n initial clusters are formed that each contain one individual. Clusters
are successively joined in n–1 steps until all have been joined together into one
cluster (Fig. 8.1). At any stage, the two clusters that are chosen to be joined are
those that are the closest according to some distance or similarity metric, typically in
the Euclidean space. There are many versions of agglomerative clustering, and they
differ primarily in how the intercluster distance is calculated. They are reviewed in
detail by Anderson (1971) and Webster (1977).

The simplest agglomerative clustering method is known as nearest neighbour
clustering. In this method, the intercluster distance is defined as the smallest of the
distances between the members of each cluster. A more complex method known
as centroid clustering (Gower 1967) defines the intercluster distance as the squared
distance between cluster centroids.

Partitional, or divisive, clustering algorithms divide a population of individuals
into a set of k classes. A key problem with this kind of clustering is choosing the
number of clusters (Dubes 1987; Jain et al. 1999). Patterns corresponding to the
initial class centroids may be chosen at random or by using expert knowledge.
Using a similarity measure, individual patterns are allocated to the cluster whose
centroid is the closest. After all patterns have been allocated, the cluster centroids are
often recalculated and patterns reallocated. Iteration continues in this fashion until
some measure of goodness is acceptable. One of the most well-known partitional
clustering algorithms, k-means clustering, is frequently attributed to Lloyd (1982),
who devised it in the 1950s. Hartigan published a more efficient version in the late
1970s (Hartigan 1975; Hartigan and Wong 1979).
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8.2.3.3 Hierarchical vs. Non-hierarchical Classification

In a taxonomic hierarchy, individuals belong to groups at the lowest or most specific
level of the hierarchy. Figure 8.1 depicts a hierarchical classification of some
Scottish soils, although the lowest level of the hierarchy is at the top of the graph.
These groups belong to more general groups at the next hierarchic level, and so on
until all groups are united in a single, general group (Webster and Oliver 1990). Soil
classes are frequently organised in this way due to their simplicity and relative ease
of use for allocation. Hierarchies may be generated agglomeratively or divisively
(Anderson 1971; Webster 1977).

Many contemporary soil classification systems employ hierarchical structures.
Despite this, there are circumstances in which a hierarchical structure is neither
applicable nor ideal (Dale et al. 1989; Webster and Oliver 1990). For example,
hierarchies were commonly formed divisively by choosing one or a few so-called
diagnostic properties as the subdividing criterion (or criteria) at each hierarchic
level. The subdivision is typically mutually exclusive so, for instance, class A may
have a topsoil organic carbon content of less than 4% and class B greater than or
equal to 4%. The classes at the lowest level of the hierarchy are thus defined by a
unique set of attribute values because their class limits do not overlap with those
of other classes. Such classification has been called monothetic (Sokal and Sneath
1963). However, as Webster (1968) pointed out, soil is polythetic in the sense that a
set of classes may possess many shared attributes that cannot be subdivided mutually
exclusively.

8.2.3.4 Exclusive Versus Nonexclusive Algorithms

Clustering algorithms may also be classified according to the character of the
classes that they produce. Once we allocate an individual to a class, we say that the
individual has a degree of membership, m, in the class. This membership quantifies
the degree to which the individual possesses the characteristics of the central concept
of a class and can be expressed on a numerical scale from 0 to 1 (Burrough et al.
1997).

Exclusive algorithms produce classes with boundaries that are discontinuous, or
hard, or crisp. Crisp classes are exclusive because an individual can belong to, or
have complete membership in, one and only one crisp class. Numerically, in an
exclusive system, an individual can have m D 1 to one and only one class and m D 0
to all others. A hard partition of n individuals into k classes can be represented by an
n � k matrix of memberships M D (mic). The following conditions apply in order
to ensure that the classes are mutually exclusive, jointly exhaustive and non-empty
(McBratney and de Gruijter 1992):

Xk

cD1
mic D 1; i D 1; : : : ; n (8.7)
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Pn
iD1mic > 0; c D 1; : : : ; k (8.8)

mic 2 f0; 1g ; i D 1; : : : ; nI c D 1; : : : ; k (8.9)

The first condition ensures that, for a given individual, the memberships across
all classes sum to unity; the second ensures that, for a given class, the sum
of memberships of all individuals is greater than zero; the third ensures that
membership can only take values of 0 or 1.

Class limits are often defined as a set of discriminating criteria using statements
such as the following:

members of class Alpha possess an A-horizon clay content of 10–20% clay.

In the preceding example, although some within-class variation in A-horizon clay
is permitted, the limits themselves are crisp because an individual with an A-horizon
clay content less than 10% or greater than 20% is excluded from membership
in class Alpha. It is implicitly assumed that all change between classes occurs
at the class boundaries and that the within-class variation is irrelevant at least
for interpretive purposes (Burrough 1989). An advantage of crisp classes is that
allocation is relatively simple and can often be achieved through the construction of
a device such as a dichotomous key.

Crisp classes are not without drawbacks, however. Fundamentally, that their
boundaries are hard means that they disregard the natural continuity in the soil
attribute space (McBratney et al. 1992). As such they are incapable of representing
vague concepts (Metternicht 2003). Furthermore, as variation in the soil attribute
space is continuous, any placement of crisp boundaries is arbitrary. Other concerns
are more practical. For example, although within-class variation in the diagnostic
properties may be ignored in practice, it must be adequately known for the class
limits to be established. A system of crisp classes is prone to misclassification in
certain circumstances. For example, measurement error may lead to misclassifica-
tion of an individual (Webster 1968) and a group of otherwise similar profiles may
be allocated to different classes because they vary with respect to a single diagnostic
property.

Nonexclusive algorithms produce classes with boundaries that are continuous, or
fuzzy, or overlapping. Continuous classes are nonexclusive because an individual
can belong to, or have partial membership in, more than one class simultaneously.
Thus, they allow for vagueness in the class definitions that crisp classes cannot
accommodate. In a nonexclusive system, the membership requirements are relaxed
so that m can vary continuously between 0 and 1. In other words, the third
assumption, above (Eq. 8.9), is replaced with the following:

mic 2 Œ0; 1� ; i D 1; : : : ; nI c D 1; : : : ; k (8.10)

Continuous classes are usually defined by a central concept or centroid which
is essentially a soil material description consisting of the modal values for a suite
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of soil attributes. Memberships are based on the degree of similarity between an
individual and the class centroid. Such a definition is compatible with what Cline
(1949) envisioned.

The vagueness in class allocation that is enabled by partial membership confers
several advantages to continuous classes. For example, the placement of arbitrary
class limits is avoided. Intergrade soils—soils with characteristics intermediate to
those of two or more class definitions—are better accommodated. Finally, some
of the risk of misallocation is avoided since an individual can still have partial
membership in an alternate class.

8.2.4 k-Means Clustering and Its Derivatives

In this section we discuss the k-means clustering algorithm and several of its
derivatives, which are amongst the most popular clustering algorithms used to
classify soil material.

8.2.4.1 k-Means Algorithm

The k-means clustering algorithm is an unsupervised, partitional, non-hierarchical
algorithm that partitions a population of individuals into crisp classes (Hartigan
1975).

The k-means clustering algorithm works as follows:

1. Choose a value of k with the restriction that 1 < k < n.
2. Initialise k cluster centroids. Cluster centroid patterns may be initialised ran-

domly or by using expert knowledge.
3. Compute distance between cluster centroids and patterns of individuals being

classified.
4. Recompute cluster centroids once all individuals have been allocated to a class.
5. Repeat steps 3–4 until some convergence criterion is met (e.g. the allocation has

not changed).

The similarity between individual patterns is typically computed using the
Euclidean distance, although the Mahalanobis distance may also be used (Mao and
Jain 1996). In step 3, an individual is allocated to the class of the cluster to which
it is closest in Euclidean space. In step 4, recomputation of the cluster centroids is
achieved by averaging the values of the attributes of the individuals assigned to it:

cj;p D

P

xi2X xip
ˇ

ˇCj

ˇ

ˇ

; 1 � p � d (8.11)

where jCjj is the cardinality of the cluster Cj.
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The algorithm reaches convergence when some criterion is met, such as when
individuals cease to move from one cluster to another or when the value of an
objective function ceases to decrease significantly from iteration to iteration (Jain
et al. 1999). A common objective function, which computes the total Euclidean
distance of the patterns to their cluster centres, is computed as follows:

J .M;C/ D
Xn

iD1

Xk

cD1
micd2 .xi; cc/ (8.12)

The k-means algorithm is easy to implement, which has made it a popular
choice in cluster analyses in many fields. Despite this, users need to be aware of
several factors. First, the algorithm is sensitive to the choice of the initial cluster
centroids. A random selection of initial cluster centroids is likely to lead to a
partition of individuals that is only locally optimal since an exhaustive search
for the combination of individuals that yields the global minimum value of the
objective function is computationally prohibitive. Indeed it may be impossible to
prove that a given partition is globally optimal (Steinley 2006). Some researchers
(Falkenauer and Marchand 2001; Hartigan 1975; Jain 2010) suggested selecting the
best partition, in terms of the minimal objective value, from a pool of partitions
created by running the k-means algorithm several times, but the best partition in this
case is still unlikely to be the global optimum.

Second, because the Euclidean distance is typically used to quantify similarity
between individuals, the algorithm produces convex, approximately spherical,
clusters in the attribute space (Jain 2010). Since soil classes are rarely this shape
(Odeh et al. 1992), this distance is likely to be inappropriate.

In soil science the k-means algorithm has been applied not only to soil classi-
fication (e.g. Bormann 2010; Minasny and McBratney 2006) but also digital soil
mapping (Bui and Moran 2001) and sampling design (Brus et al. 2006).

8.2.4.2 Fuzzy k-Means

The fuzzy k-means algorithm is an unsupervised, partitional, non-hierarchical clas-
sification algorithm that produces continuous classes. The fuzzy k-means algorithm
extends the notion of fuzzy logic (e.g. Zadeh 1965) to cluster analysis to allow
for classes to overlap in the attribute space. Introduced in the early 1980s (Bezdek
1981), the algorithm began to be used for soil classification in the early 1990s (Odeh
et al. 1990).

The fuzzy k-means algorithm functions in much the same way as the k-means
algorithm except in the computation of membership functions. In the fuzzy k-means
algorithm, the computation of cluster centroids is modified to account for the partial
memberships of all the individuals associated with each cluster.

The degree of fuzziness in the fuzzy clustering can be modified and is controlled
by the parameter ®, the so-called fuzziness exponent. The degree of fuzziness relates
to the degree of overlap of the resulting classes in the attribute space. The minimum
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value of ® is 1.0, which is equivalent to no fuzziness, and yields a hard partition
into non-overlapping classes, much like the k-means algorithm. As ® increases, the
degree of overlap of classes in the attribute space increases.

The membership m to class c of individual i is computed using the following:

mic D
d�2=.'�1/

ic
Pk

j d�2=.'�1/
ij

; i D 1; : : : ; nI c D 1; : : : ; k (8.13)

The cluster centroids are computed using the following:

cc D

Pn
iD1 m'

icxi
Pn

iD1 m'
ic

; c D 1; : : : ; k (8.14)

Optimisation attempts to minimise the following objective function, which is a
weighted sum of the distances between every pattern and every cluster centroid:

JB .M;C/ D
Xn

iD1

Xk

cD1
m'

icd2ic (8.15)

Compared to classes arising from the k-means algorithm, fuzzy classes are more
robust because they have been shown to contain more information (Lagacherie et al.
1997) and be less sensitive to errors in the attribute data (Heuvelink and Burrough
1993).

Users need to be aware of some of the same factors relating to k-means applica-
tions. For example, continuous classes still tend to form spherical or hyperspherical
classes in attribute space (Rousseeuw et al. 1996), which is inappropriate if we do
not expect our classes to take such a shape. Second, the choice of k is still somewhat
subjective although cluster validity measures can help to choose an appropriate
number. Even so, some (e.g. McBratney and Moore 1985; Odeh et al. 1990) have
cautioned that it may not be possible to know how many classes exist in our data
because we frequently do not know how representative our soil observations are.

We may also ponder what is the appropriate value of ®. As ® determines the
fuzziness of the fuzzy classification, a good value should reflect the fuzziness in
the attribute space. This is usually not known in advance (Lagacherie et al. 1997).
Odeh et al. (1992) suggested that the optimal ® should represent a balance between
preserving natural partitional structures in the dataset and continuity of the classes.
They reasoned that k should be established first by examining the partition entropies
associated with the different k, and then ® could be set to reflect the appropriate level
of fuzziness. The final choice remains somewhat arbitrary but should be guided by
solid expert knowledge of the data.

Researchers typically use values of ® in the range of 1.1–1.5 (e.g. Burrough
et al. 2000; Cockx et al. 2007; Dobermann et al. 2003; Triantafilis et al. 2001).
Although researchers often do not describe the manner in which they determine ® in
their fuzzy k-means cluster analyses, some have presented detailed studies in which
they attempted to determine an appropriate ® empirically. For example, McBratney
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and Moore (1985) used the derivative of JB (M, C) with respect to ® to determine
optimal values of ® and k. de Bruin and Stein (1998), in a fuzzy cluster analysis
of landform components across a valley hillslope in the Netherlands, determined
the optimal k and ® in terms of how well the fuzzy memberships could predict
the variation in topsoil clay content across the hillslope. They found that the optimal
fuzzy partition, with k D 4 and ®D 2.1, was able to account for about 70% variation
in the soil property.

We illustrate the use of the fuzzy k-means algorithm by cluster analysis of 81 soil
material samples from profiles observed at Pokolbin in the Lower Hunter Valley in
New South Wales, Australia. The soil material samples were taken from within a
pedogenetic horizon of their respective profile; while specific horizons were not
favoured, B2 horizons were the most frequent sources of the soil material because
profiles were sampled by auger and other horizons were often not thick enough
to contain the volume of material required for laboratory analysis. The samples
were attributed with a range of soil properties including clay content, pH and moist
Lab colour (converted from Munsell colour notation) and effective cation exchange
capacity (eCEC; Table 8.4). We ran the fuzzy k-means algorithm on the soil material
samples several times in order to produce a set of partitions from k D 2 to k D 25
classes. A locally optimal partition was obtained when k D 9 and ® D 1.2 (see
also Fig. 8.6 and associated discussion). The centroids of the resulting classes are
presented in Table 8.4. Relationships between attributes appear to be pedologically
sensible. For example, higher clay content is generally associated with lower sand
content and vice versa, and darker-coloured soils (those with smaller moist L) tend
to be associated with higher total carbon.

A biplot of the first two principal components of the observations’ attributes is
presented in Fig. 8.2. The 95% density ellipses were computed based on individuals
with membership of 0.5 or higher in each class (after Triantafilis et al. 2001). The
first two principal components account for about 74% of the variation in the data; the
first four principal components account for nearly 95% of the variation. While some
pairs of classes, such as E and G, are well separated, others, like A and C, transcend
the distribution of several other classes in the two-dimensional representation.
The loadings of the attributes enable an examination of the contribution of each
attribute to the principal components (Fig. 8.3). Thus, clay content, sand content
and electrical conductivity contribute most to the first principal component, whereas
total carbon and CaCO3 content contribute the most to the second principal
component. Relationships between the soil attributes as expressed by the directions
of their loadings vectors also affirm the relationships that are discernible in Table
8.4.

8.2.4.3 Fuzzy k-Means with Extragrades

Consider the synthetic dataset in Fig. 8.4a in which there are five natural classes
and several outlying individuals. A weakness of the fuzzy k-means algorithm is
that individuals with approximately equal memberships to all cluster centroids may
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Fig. 8.2 Distribution of the soil material samples along the first two principal components of their
attributes

Fig. 8.3 Vectors of the 10 attributes in the space formed by the first two principal components

receive about equal memberships to their classes, whether or not the individuals lie
in the centre or the outlying region of the attribute space (de Gruijter et al. 1997).
This may lead to a distortion of the locations of the centroids in the attribute space
(Fig. 8.4b).
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Fig. 8.4 Classification of a synthetic dataset (a) by several fuzzy variants of the k-means
algorithm: (b) the fuzzy k-means algorithm, (c) fuzzy k-means with extragrades and (d) akromeson,
after Hughes et al. (2014)

Fuzzy k-means with extragrades (de Gruijter and McBratney 1988; McBratney
and de Gruijter 1992) is a modification to the standard fuzzy k-means algorithm that
allows the modelling of an extragrade class of individuals. It attempts to overcome
the weakness of the fuzzy k-means algorithm caused by outlying individuals.
Although all individuals that do not possess a high degree of membership to any soil
class may be termed intergrades, de Gruijter and McBratney (1988) distinguished
intergrades located in the space between classes from those located in the outlying
space. They are termed intragrades and extragrades, respectively. As failure to
distinguish true outliers from mere intragrades may be misleading, de Gruijter and
McBratney (1988) defined an extragrade class in which the memberships mi� were
made directly dependent on the distances to the class centroids. The membership
and centroid-update equations are modified as follows (de Gruijter and McBratney
1988):



244 N.P. Odgers and A.B. McBratney

mic D
d�2=.'�1/

ic

Pk
jD1 d�2=.'�1/

ij C




1 � a

a

Pk
jD1d

�2
ij

��1=.'�1/
; i D 1; : : : ; nI c D 1; : : : ; k

(8.16)

mi� D




1 � a

a

Pk
jD1d

�2
ij

��1=.'�1/

Pk
jD1 d�2=.'�1/

ij C




1 � a

a

Pk
jD1d

�2
ij

��1=.'�1/
; i D 1; : : : ; n (8.17)

cc D

Pn
iD1

	

m'
ic �

1 � a

a
d�4

ic m'
i�

�

xi

Pn
iD1

	

m'
ic �

1 � a

a
d�4

ic m'
i�

� ; c D 1; : : : ; k: (8.18)

The fuzzy objective function is modified accordingly:
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The memberships to the extragrade class, mi*, spread across regions at larger
distances from the class centroids, unlike the memberships of the regular classes
which tend to occupy fuzzy hyperspheres around the class centroids (McBratney
and de Gruijter 1992).

The parameter ˛ determines the mean extragrade membership; however, the
function relating both quantities is generally unknown. Because of this, de Gruijter
and McBratney (1988) estimated ˛ empirically using a Regula-Falsi procedure.
Lagacherie et al. (1997) estimated ˛ by examination of a two-dimensional represen-
tation of the multivariate attribute data in conjunction with their expert knowledge
of their study area.

8.2.4.4 Akromeson

The fuzzy k-means with extragrades algorithm enabled individuals lying in the outer
parts of the attribute space to be recognised and placed into their own extragrade
class. Doing so reduced the leverage the outlying points had on the formation of
regular fuzzy classes in the more densely populated parts of the attribute space.
Notwithstanding these advantages, estimation of the ˛ parameter which determines
the mean extragrade membership is not straightforward, and no clear procedure
for doing so exists. Incorrect estimation of the extragrade class may lead to some
extragrade individuals being treated as if they were individuals in the centre of the
data and vice versa (Fig. 8.4c). In addition extragrades are placed into a single
class regardless of their distribution in the attribute space. In reality there may be
clusters of individuals in the outlying space, but the fuzzy k-means with extragrades
algorithm is unable to resolve them if they exist.
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Hughes et al. (2014) introduced the idea of end points, which are the individuals
lying at the extremes of the attribute space (the points classified extrema in Fig.
8.4a). They can be detected as the vertices of a convex hull around the individuals in
attribute space. Hughes et al. (2014) developed an algorithm they called akromeson
that identifies end points and treats them as fixed centroids in a semi-supervised
fuzzy k-means cluster analysis (Bensaid et al. 1996). A heuristic process is used
to refine the number of end points, ke, that are used as fixed centroids. The aim of
the semi-supervised fuzzy k-means clustering algorithm, then, is to find additional
clusters, kd, in the attribute space so that k D ke C kd. The fuzziness exponent, ®,
can be determined using the usual methods (Odeh et al. 1992).

The end result is a set of k classes that includes ke end point classes (Fig. 8.4d).
In Fig. 8.4d, ke D 4 and kd D 5 so k D 4 C 5 D 9. The end point classes supersede
the single extragrade class completely and as such provide more information about
the distribution of individuals in outlying parts of the attribute space. This extra
information may be related to real environmental differences between akrograde
classes that in turn may be important for managing land.

8.2.4.5 Fuzzy c-Numbers

The fuzzy c-numbers algorithm (Yang and Ko 1996) is an extension of fuzzy k-
means clustering that allows the input attributes to be fuzzy numbers. As with
the fuzzy k-means algorithm, the basic steps are similar to the standard k-means
algorithm; however, unlike these two approaches, which cluster crisp attribute data,
the fuzzy c-numbers algorithm clusters attribute data that are fuzzy.

Fuzzy attribute data are actually somewhat commonplace in soil material descrip-
tions. For example, the pH value of a modal soil material representative might be
described by a modal value and perceived lower and upper limits. Fuzzy attribute
data can be represented using fuzzy numbers, which are fuzzy sets over the set of
real numbers and are specified via membership functions. There are many different
kinds of fuzzy numbers, but three of the most common are triangular, trapezoidal
and Gaussian fuzzy numbers (Liu and Samal 2002a; Yang and Ko 1996), so-called
due to the shape of their membership functions. Triangular fuzzy numbers may be
symmetric or asymmetric, and we may estimate their parameters from a collection
of soil profile measurements (Fig. 8.5). For example, say the distributions of pH (1:5
H2O) in the 40–50 cm depth interval of a collection of Chromosols and Kurosols
from the Lower Hunter Valley in New South Wales, Australia, take the values in
Table 8.5. Kurosols are strongly acidic (pH (1:5 H2O) less than 5.5) in the top
20 cm of the B2 horizon, whereas Chromosols are not. A symmetric triangular
fuzzy number Qxip representing the pH may have a maximum membership at the
mean pH—the so-called apex, xip, and minima of membership above and below this
value at a distance defined by the spread Sip, which we may choose to represent
as two standard deviations from the mean pH value. Thus, a symmetric triangular
fuzzy number Qxip can be represented as (xip, Sip).
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Fig. 8.5 Triangular numbers representing 40–50 cm pH (1:5 H2O) for Chromosols and Kurosols
in the Lower Hunter Valley, New South Wales, Australia

Table 8.5 Descriptive
statistics of the distribution of
pH (1:5 H2O) for Chromosols
and Kurosols observed at
Pokolbin in the Lower Hunter
Valley in New South Wales,
Australia

Chromosol Kurosol

Mean 6.23 5.07
Standard deviation 0.75 0.43
Minimum 4.97 3.85
Maximum 8.18 6.00
n 57 28

On the other hand, the membership minima of an asymmetric triangular fuzzy
number are not the same distance from the apex. We may choose to represent
them as the observed maximum and minimum pH. An asymmetric triangular fuzzy
number Qxip can be represented as (xip, aip, bip) where a and b are the lower and upper
minima of membership, respectively. Figure 8.5 demonstrates that the difference
between symmetric and asymmetric triangular fuzzy numbers is relatively subtle if
they are based on a distribution of values that is roughly normally distributed. For
mathematical simplicity the symmetric fuzzy numbers are used hereforth.

A soil material description is usually represented as a vector of several attributes
rather than a single attribute. A fuzzy vector of symmetric triangular fuzzy
numbers can be defined as Qxi D .xi;Pxi/ where xi is the standard pattern vector
xi D fxi1, xi2, : : : , xidg and Pxi is the panderance matrix that contains the spread
information (Celmiņš 1987):
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Liu and Samal (2002a) computed the distance between two fuzzy vectors Qa D

.a;Pa/ and Qb D .b;Pb/ as
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(8.21)

where tr is the trace of the matrix product of (Pa � Pb)T (Pa � Pb).
The cluster centres are given by fQc1; Qc2; Qc3; : : : ; Qckg where Qcc D .cc;Pc/. The

membership of a fuzzy pattern Qxi in class c is computed as
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Update of the centroid patterns Qcj is a two-step process because both the apex
vector cc and panderance matrix Pcj need to be recomputed for each centroid. The
apex vector is calculated as
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and the panderance matrix is calculated as
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Liu and Samal (2002a, b) used the fuzzy c-numbers algorithm to identify
agroecozones in the state of Nebraska in the United States. Although we could
not find evidence of the application of the fuzzy c-numbers algorithm to soil
material classification, and only very infrequent application of fuzzy numbers in
the soil classification literature more generally (e.g. Bhattacharya and Solomatine
2006), fuzzy numbers have found application in other aspects of soil science and
related fields, including soil sampling (Lark 2000), engineering (Dodagoudar and
Venkatachalam 2000; Saboya Jr. et al. 2006), hydrology (Dou et al. 1999; Schulz
and Huwe 1999; Verma et al. 2009) and forestry (Kaya and Kahraman 2011).
Considering soil attributes are often recorded and presented as uncertain quantities,
it appears that the fuzzy c-numbers algorithm and others capable of handling fuzzy
attributes (e.g. d’Urso and Giordani 2006) could have natural application in soil
classification.
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8.3 Cluster Validation

Cluster validation usually involves the selection of the partition corresponding to the
optimal k from amongst several alternatives. Many cluster validity metrics have been
devised that assist in making this decision. Several authors have performed extensive
comparisons between a range of these metrics (e.g. Arbelaitz et al. 2013; Milligan
and Cooper 1985) although only few have been used in the numerical classification
of soil material.

Cluster validity metrics should ideally be independent of the essential parameters
of the cluster analysis, such as n, k and ® (Roubens 1982). They can be classified
into two categories: membership-based measures and geometry-based measures
(Liu and Samal 2002b). Membership-based validity measures attack the problem of
cluster validity by examining the fuzziness of a partition in the membership space.
On the other hand, geometry-based cluster validity measures attempt to solve the
problem of cluster validity by examining the separation of a partition in the attribute
space. This is achieved by quantifying the shape and distribution of clusters with
respect to their compactness and their separation from each other, which can be
measured via the intra-cluster distance and the intercluster distance, respectively.

8.3.1 Membership-Based Measures

A range of membership-based measures are commonly used. Two of the simplest
are the partition coefficient, F, and the partition entropy, H (Bezdek 1981):
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The partition coefficient measures the fuzziness of the fuzzy classes and ranges
from 0.5, corresponding to the most fuzzy partition, to 1.0, corresponding to the
least fuzzy partition (Bezdek 1981). Thus, F is maximised when the partition is
hard. The partition entropy is inversely proportional to the goodness of the fuzzy
classes, and as such a better partition is indicated when H is minimised (Liu and
Samal 2002b).

Roubens (1982) stated that the search of an optimal value of k is complicated by
the fact that F and H tend to increase and decrease with k, respectively. He proposed
that the optimal k could be found more easily using the fuzziness performance index,
FPI, and the normalised classification entropy, NCE.

The FPI is computed as (Odeh et al. 1992)

FPI D 1 � .kF � 1/ = .k � 1/ (8.27)
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Fig. 8.6 Curves of fuzziness partition index and normalised classification entropy derived from
runs of a fuzzy k-means clustering of soil material from the Lower Hunter Valley in New South
Wales, Australia, using integer values of k from 2 to 25

The FPI varies between 0 and 1. Like the partition coefficient, it describes the
fuzziness of a fuzzy partition. A low value of FPI implies that the continuous classes
are relatively hard and that there is little sharing of membership between any pair
of them. This suggests that there is a distinct natural partition structure amongst the
individuals in the dataset (Odeh et al. 1992). The converse applies when FPI is high.

The normalised classification entropy (NCE) describes the uncertainty of the
fuzzy partitioning of the individuals (Odeh et al. 1992):

NCE D
H

log k
(8.28)

where H is Bezdek’s partition entropy (Bolliger and Mladenoff, 2005). The optimal
value of k is usually found by determining a local minimum of both FPI and NCE
(Odeh et al. 1992; Triantafilis et al. 2001). The set of classes at k D 9 satisfies this
criterion in Fig. 8.6 for fuzzy clustering of soil material in Sect. 8.2.4.2.

Membership-based measures of cluster validity have been criticised on account
of their lack of a direct connection to the geometry of the clusters (Xie and Beni
1991). Nevertheless, they remain relatively popular in pedometric research. While
some soil researchers have used F and/or H (Burrough et al. 2001), most have used
FPI and/or NCE (e.g. Bragato 2004; Cockx et al. 2007; Triantafilis et al. 2001; van
Alphen and Stoorvogel 2000; Verheyen et al. 2001).
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8.3.2 Geometry-Based Measures

Geometry-based measures can be classified as ratio-type and summation-type
measures based on how the intra- and intercluster distances are combined (Kim and
Ramakrishna 2005). Many of the more common geometry-based cluster validity
metrics are of the ratio type, and several are based on the measure that Dunn
originally devised (after Halkidi et al. 2001):
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where d(Ci, Cj) is the dissimilarity function between two clusters Ci and Cj,
calculated as

d
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D minx2Ci;y2Cj .d .x; y// (8.30)

and diam(Cc) is the diameter of cluster c, calculated as

diam .Cc/ D maxx;y2C .d .x; y// (8.31)

Dunn’s index is primarily used to validate crisp classes. The numerator in the
central term of Dunn’s index pertains to the intercluster separation, whereas the
denominator pertains to the intra-cluster dispersion. Large values of Dunn’s index
ought to indicate the presence of compact and well-separated clusters (Halkidi et
al. 2001). The Dunn’s index has only rarely been used in the pedometric literature
(Ließ 2015).

The compactness and separation validity function, S (Xie and Beni 1991), is a
ratio-type measure of cluster validity that has been used to validate fuzzy clusters. It
has been used from time to time in the pedometric and related literature (e.g. Odgers
et al. 2011; Sun et al. 2012; Vrindts et al. 2005). It is calculated as
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where � j is the sum of squares of the fuzzy deviation, mijkxi � cjk
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from centroid j:

�j D
Xn

iD1
mij

�

�xi � cj

�

�

2
(8.33)

The term kxi � cjk is simply the Euclidean distance between individual i and
centroid j. � j is a measure of non-compactness: that is, the higher the value of � j,
the further from the centroid are the members of class j (Liu and Samal 2002b).
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Fig. 8.7 Curve of the compactness and separation validity function, S, derived from runs of a fuzzy
k-means clustering of soil material from the Lower Hunter Valley in New South Wales, Australia,
using integer values of k between 2 and 25

Finally, d2min is the separation of the fuzzy partition and is calculated as

d2min D min
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2
(8.34)

which is effectively the square of the minimum Euclidean distance between cluster
centroids. A larger value of d2min indicates that all the clusters are well separated in
the feature space (Xie and Beni 1991).

As with other cluster validity criteria, local minima in a curve of S across several
values of k may indicate a locally optimal partition. Thus, Fig. 8.7 indicates that an
optimal partition of the Lower Hunter Valley soil material in Sect. 8.2.4.2 may occur
when k D 11.

Xie and Beni (1991) note that S is meaningless when c is very large and close
to n because of its tendency to monotonically decrease in these circumstances. In
practice this is not often a problem because the values of c that we are interested in
are usually much lower than n.

8.4 Allocation to Pre-existing Classes

The placement of new individuals into a class of some classification system is
known as allocation, identification or diagnosis (McBratney 1994) although the
term classification has often been misappropriated to refer to the same process.
The act of allocating an individual to a class implies that a classification system
exists a priori. In soil science, considerably less has been written about allocation
than classification although research has been performed for decades (Norris and
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Fig. 8.8 Two-dimensional example of parallelepiped allocation. Parallelepipeds established using
class limits for surface horizon clay content (%) and organic matter (%) of several soil series
from El Dorado County in California, United States. Data retrieved from SSURGO database (Soil
Survey Staff 2016)

Loveday 1971). Like classification itself, allocation can be crisp or fuzzy. Several
methods are available, including parallelepiped methods, discriminant analysis and
classification trees. Not all have been commonly applied in pedometric research.

8.4.1 Parallelepiped Method

Parallelepiped allocation is one of the most basic methods of allocation. It is some-
times also known as the box decision rule or the level slice procedure (Campbell
1996). For each of the k classes in a classification system, a parallelepiped is set up
in the d-dimensional feature space using the class limits of the d attributes to set
its boundaries. Alternatively the standard deviations of the attributes may also be
used to set their boundaries. We illustrate with a simple two-dimensional example
in Fig. 8.8 using class limits. It should be easy to see that classes are implicitly
hypercubic or hypertrapezoidal in many dimensions. Allocation of an individual to
class j is simply a matter of identifying which parallelepiped the individual is located
inside of. Parallelepiped allocation is therefore crisp. For example, in Fig. 8.8, soil
material A with surface horizon clay content of 30% and surface horizon organic
matter content of 5% is clearly a member of the Sites series.

Mather and Koch (2011) identify difficulties that occur in two extreme cases.
First, an individual may not lie inside any of the k parallelepipeds, making allocation
impossible (B in Fig. 8.8). Second, an individual may lie inside the overlapping
parallelepipeds of more than one class, in which case a protocol must be in place
to determine which class the individual should be allocated to (C in Fig. 8.8). In
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both these cases, more information (i.e. more attributes) is necessary to resolve the
appropriate class, if any.

Parallelepiped classification has been commonly used to classify land cover
from remotely sensed imagery (e.g. Goodenough and Shlien 1974; Jensen 1978;
Robinove 1979) but appears not to have been used in pedometric studies.

8.4.2 Minimum Distance Method

The minimum distance method allocates an individual to the class of the centroid
to which it has the shortest distance (i.e. is most similar to) in the d-dimensional
attribute space. Like the parallelepiped method, allocation is a fairly simple process.
Since the Euclidean or Mahalanobis distances are usually used to relate individuals
to centroids, classes are implicitly hyperspherical or hyperellipsoidal in the attribute
space, respectively. Minimum distance allocation may not be possible if classes do
not have centroids.

8.4.3 Discriminant Analysis

According to the principle of discriminant analysis (Fisher 1936), a linear function
of the attributes of a population of individuals belonging to two classes can be found
that best discriminates between the two classes. Such a function can be represented
as

X D a1x1 C a2x2 C a3x3 C � � � C adxd (8.35)

The coefficients of the linear function are chosen so as to maximise the distance
of separation between the class means (i.e. the class centroids) relative to the within-
class variability (Healy 1965). In matrix terms, they can be found by multiplying the
vector of separation distances x1 � x2 by S�1, the inverse of the variance-covariance
matrix of the attributes of the sample of individuals (Blackith and Reyment 1971):

a D S�1 .x1 � x2/ (8.36)

A linear function so found is known as a discriminant function. The discriminant
function is ideally calibrated on representative individuals chosen randomly from
members of each class (Webster 1977). A larger value of the function, when
evaluated, implies a clearer separation of a pair of classes than does a smaller value.
This brings us to an important point: as Blackith and Reyment (1971) point out,
without including S�1 in the computation of the discriminant coefficients, continued
weighted addition of attributes would cause X to increase indefinitely and thus
give a false impression of the degree of separation between the pair of classes.
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In other words, each attribute would contribute information about the separation
of the classes without respect to the information provided by the other attributes.
The incorporation of the correlations between the attributes in the computation of a
constrains the size of X and ensures that each attribute only contributes the amount
of information that is unique to it.

In discriminant analysis the attribute distributions of each class are assumed
to be multivariate normally distributed and that the standard deviations are equal.
Oftentimes these assumptions are unrealistic in practice, and the technique appears
to be sufficiently robust against mild departures from them (Blackith and Reyment
1971).

Rao (1948) adapted the method for k > 2 classes, in which case there are always
k � 1 discriminant functions. Healy (1965), Blackith and Reyment (1971) and
Webster and Burrough (1974) are amongst those who have described discriminant
analysis in geometric terms. Consider two bivariate classes whose distributions are
plotted as ellipses in the discriminant space defined by their attribute axes. The
classes are best separated by a line that passes through the intersection of the two
ellipses. The axis drawn orthogonal to such a line has been called the discriminant
axis and is the best axis for discriminating between the two classes (Webster and
Burrough 1974). The concept can of course be extended into as many attribute
dimensions d as are necessary, in which case the ellipses become hyperplanes
(Webster and Oliver 1990).

In terms of allocation, distances in the discriminant space are Mahalanobis
distances. Thus, new individuals may be allocated to the class to whose centroid
it is closest in the Mahalanobis sense (Webster and Burrough 1974).

Discriminant analysis was first employed in soil science by Cox and Martin
(1937), who used it to quantify the significance of several soil properties for
predicting the presence of Azotobacter. It has been used subsequently by Hughes
and Lindley (1955), Oertel (1961), Norris and Loveday (1971) and Webster and
Burrough (1974), amongst others, for the purpose of allocation. Triantafilis et al.
(2003) generalised the theory to a fuzzy linear discriminant analysis.

8.4.3.1 Classification Trees

Classification trees are a hierarchical non-parametric example of supervised classifi-
cation as they require the set of classes to be known a priori. Because the classes are
known a priori, they are readily useful for class allocation. Classification trees can
be formulated algorithmically ab initio or by manual extraction of the classification
rules in existing classification systems (see Fig. 8.9 for an example). Classification
trees recursively subdivide a population of individuals into ever more specific
subgroups. Points of subdivision are called nodes, and subdivision is conducted
by performing a logical test on the threshold of some attribute. Attributes may
be continuous or discrete valued. The logical test is formalised in a decision rule
that also determines the subgroup implied by passing or failing the logical test. A
terminal subgroup is called a leaf and contains a single class rather than a pointer
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Fig. 8.9 Classification tree
for orders of the Australian
Soil Classification that
possess a clear or abrupt
textural B horizon

to a subsequent decision rule. Decision rules are analogous to the if-then rules that
are ubiquitous in software programming and may be expressed accordingly. For
example, a decision rule may be as follows:

If clay content �35%: subgroup A
Else subgroup B

When formulated algorithmically, decision rules are usually chosen to optimise
some measure of goodness in the subgroups formed by the split, such as within-
subgroup purity. According to Friedl and Brodley (1997), a range of metrics can be
used to quantify how well this is done; for example, Lagacherie and Holmes (1997)
used the Gini index. Pruning may be conducted in order to reduce the size of the
tree and to avoid overfitting to the calibration data. Pruning involves merging pairs
of leaves and may be accomplished by a cross-validation procedure (Scull et al.
2003).

Classification trees have several advantages over other approaches (Friedl and
Brodley 1997). For example, because they are non-parametric, they are insensitive
to the distributions of attribute values. They can handle nonlinear relationships
between classes and attribute values, and they are able to handle both continuous
and discrete-valued attributes. Finally, the tree structure is readily interpretable.

Lagacherie and Holmes (1997) were one of the first to apply classification trees
in soil survey, and since then they have become a popular supervised classification
tool. It appears, though, that their most frequent use has been in soil survey and
mapping rather than in classification of soil material.
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8.4.4 Fuzzy k-Means

McBratney (1994) demonstrated how individuals can be allocated to soil classes
created using the fuzzy k-means with extragrades algorithm. Allocation is a matter
of calculating the degree of membership of the unknown individual to each of the
fuzzy classes using Eq. 8.16 and to the extragrade class using Eq. 8.17 described
earlier. In order to do this, the parameters k, ® and ˛ must be known, along with
the matrix of class centroids and the variance-covariance matrix of the samples used
to produce the classification. Furthermore, the Mahalanobis distances between the
new individual and the class centroids must also be calculated.

Such an allocation scheme is not exclusively applicable to fuzzy soil classes
produced by a numerical soil classification procedure. For example, Mazaheri et
al. (1995) employed the technique in order to allocate new profiles to the classes of
the Australian Great Soil Groups classification scheme (Stace et al. 1968) Although
the Great Soil Groups classification scheme is not a numerical soil classification
system, the classes are considered by some (Moore et al. 1983) to be fuzzy in the
sense that they are described by a central concept, and, since no taxonomic key has
been devised for the purpose of allocation, the class boundaries are somewhat vague.

Despite the fact that the classification scheme is likely to be obsolete now, as
the universe of soils it caters for is too small for all Australian conditions (Moore
et al. 1983), Mazaheri et al. (1995) reported positive results when they used the
fuzzy allocation scheme to allocate six individuals to a class. They determined that
the numerical allocation system was not only useful for allocating individuals to
classes with partial membership but that it also enables a critical review of the
existing classification system in at least two situations: (i) if profiles are allocated
with more-or-less equal membership to several classes and (ii) if profiles possess a
large extragrade membership.

8.4.5 Soil Horizon Classes

Soil scientists have long recognised soil horizons as the fundamental building blocks
of the soil profile. For example, of the eight criteria Marbut (1920) proposed as
grounds for the differentiation of soil profiles, seven related to various characteris-
tics of soil horizons.

Attempts have been made to classify soil horizons since the late nineteenth
century (FitzPatrick 1967). Dokuchaev was the first to use the A-B-C-horizon
nomenclature in his description of Chernozem soils. By itself, though, the A-B-
C notation does not convey a lot of information about the character of soil material
belonging to a given horizon—or to put it more optimistically, the diversity of soil
horizons is greater than can be readily captured by the A-B-C notation (Nikiforoff
1931). For example, a Vertosol B horizon has a very different character to a Podosol
B horizon. Horizon subscripts were developed to provide more information in
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this respect although the precise meaning of them can vary from jurisdiction to
jurisdiction. Bridges (1990) describes a range of other difficulties with the A-B-C
system.

The USDA devised a system of diagnostic horizons during its development
of the Soil Taxonomy classification system (Soil Survey Staff 1999). Other soil
classifications also use their own versions of these horizons (e.g. FAO 2014;
Hewitt 2010). Diagnostic horizons are classes of horizons that possess specific
soil material characteristics. Their descriptions are often lengthy and complex.
They were developed as aids to soil profile classification because specific soil
profile classes often require the presence of specific diagnostic horizons. Despite
their utility, diagnostic horizons have not been without criticism. For example,
FitzPatrick (1976) points out that uncertainty arises in situations where a soil profile
contains more than one diagnostic horizon: because the profile is possibly eligible
for allocation to more than one soil profile class, a judgement must be made on
which diagnostic horizon is more important (or more diagnostic!).

Researchers have since developed more quantitative systems. The best-known
and most comprehensive is that of FitzPatrick (e.g. 1993, 1988, 1976, 1967), who
devised a system of about 81 classes of soil horizons, which he later called segments.
Each segment was given a name ending in -on and a two-letter code, much like the
chemical elements. The codes for a profile’s horizons could be assembled to produce
a code for the entire profile much like a chemical formula.

Researchers have also used fuzzy numerical classification to create soil layer
classes. For example Powell et al. (1992) used the fuzzy k-means with extragrades
algorithm (de Gruijter and McBratney 1988) to create a set of fuzzy soil layer classes
for their study area in the Lockyer Valley in Queensland, Australia. Triantafilis et al.
(2001) carried out a similar analysis for soils from the Edgeroi district in the Namoi
Valley of New South Wales, Australia. In both cases the researchers found that the
numerical soil layer classes were well able to explain pedological and landscape
features in their respective study areas.

References

Anderson AJB (1971) Numeric examination of multivariate soil samples. Math Geol 3:1–14
Arbelaitz O, Gurrutxaga I, Muguerza J, Pérez JM, Perona I (2013) An extensive comparative study

of cluster validity indices. Pattern Recogn 46:243–256. doi:10.1016/j.patcog.2012.07.021
Arkley RJ (1976) Statistical methods in soil classification research. Adv Agron 28:37–70.

doi:10.1016/S0065-2113(08)60552-0
Banin A, Amiel A (1970) A correlative study of the chemical and physical properties of a group

of natural soils of Israel. Geoderma 3:185–198. doi:10.1016/0016-7061(70)90018-2
Beaudette DE, Roudier P, O’Geen AT (2013) Algorithms for quantitative pedology: a toolkit for

soil scientists. Comput Geosci 52:258–268. doi:10.1016/j.cageo.2012.10.020
Bensaid AM, Hall LO, Bezdek JC, Clarke LP (1996) Partially supervised clustering for image

segmentation. Pattern Recogn 29:859–871. doi:10.1016/0031-3203(95)00120-4
Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms, advanced applica-

tions in pattern recognition. Plenum Press, New York

http://dx.doi.org/10.1016/j.patcog.2012.07.021
http://dx.doi.org/10.1016/S0065-2113(08)60552-0
http://dx.doi.org/10.1016/0016-7061(70)90018-2
http://dx.doi.org/10.1016/j.cageo.2012.10.020
http://dx.doi.org/10.1016/0031-3203(95)00120-4


258 N.P. Odgers and A.B. McBratney

Bhattacharya B, Solomatine DP (2006) Machine learning in soil classification. Neural Netw
19:186–195. doi:10.1016/j.neunet.2006.01.005

Bidwell OW, Hole FD (1964a) Numerical taxonomy and soil classification. Soil Sci 97:58–62
Bidwell OW, Hole FD (1964b) An experiment in the numerical classification of some Kansas soils.

Soil Sci Soc Am Proc 28:263–268
Blackith RE, Reyment RA (1971) Multivariate morphometrics. Academic Press, London
Bolliger J, Mladenoff DJ (2005) Quantifying spatial classification uncertainties of the historical

Wisconsin landscape (USA). Ecography 28:141–156
Bormann H (2010) Towards a hydrologically motivated soil texture classification. Geoderma

157:142–153. doi:10.1016/j.geoderma.2010.04.005
Bouma J (1985) Soil variability and soil survey. In: Nielsen DR, Bouma J (eds) Soil spatial

variability: proceedings of a Workshop of the ISSS and SSSA, Las Vegas, USA, 30 November–
1 December 1984. Pudoc, Wageningen, pp 130–149

Bragato G (2004) Fuzzy continuous classification and spatial interpolation in conven-
tional soil survey for soil mapping of the lower Piave plain. Geoderma 118:1–16.
doi:10.1016/S0016-7061(03)00166-6

Bridges EM (1990) Soil horizon designations (No. Technical Report 19). International Soil
Reference and Information Centre, Wageningen

Brus, D.J., de Gruijter, J.J., van Groenigen, J.W., 2006. Designing spatial coverage samples using
the k-means clustering algorithm, in: Lagacherie, P., McBratney, A.B., Voltz, M. (Eds.), Digital
soil mapping—an introductory perspective, developments in soil science. Elsevier, pp. 183–192

Bui EN, Moran CJ (2001) Disaggregation of polygons of surficial geology and soil maps using
spatial modelling and legacy data. Geoderma 103:79–94. doi:10.1016/S0016-7061(01)00070-2

Buol, S.W., 2003. Philosophies of soil classifications: from is to does, in: Eswaran, H., Rice, T.,
Ahrens, R., Stewart, B.A. (Eds.), Soil classification: a global desk reference. CRC Press LLC,
pp. 3–10

Burrough PA (1989) Fuzzy mathematical methods for soil survey and land evaluation. J Soil Sci
40:477–492. doi:10.1111/j.1365-2389.1989.tb01290.x

Burrough PA, van Gaans PFM, Hootsmans R (1997) Continuous classification in
soil survey: spatial correlation, confusion and boundaries. Geoderma 77:115–135.
doi:10.1016/S0016-7061(97)00018-9

Burrough PA, van Gaans PFM, MacMillan RA (2000) High-resolution landform classification
using fuzzy k-means. Fuzzy Sets Syst 113:37–52. doi:10.1016/S0165-0114(99)00011-1

Burrough PA, Wilson JP, van Gaans PFM, Hansen AJ (2001) Fuzzy k-means classification of topo-
climatic data as an aid to forest mapping in the greater Yellowstone area, USA. Landsc Ecol
16:523–546. doi:10.1023/A:1013167712622

Campbell JB (1996) Introduction to remote sensing, 2nd edn. The Guilford Press, New York
Campbell NA, Mulcahy MJ, McArthur WM (1970) Numerical classification of soil profiles on the

basis of field morphological properties. Aust J Soil Res 8:43–58. doi:10.1071/SR9700043
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Chapter 9
Soil Profile Classes

Nathan P. Odgers, Alex. B. McBratney, and Florence Carré

“ : : : and He shall separate them one from another, as a
shepherd divideth his sheep from the goats: and He shall
set the sheep on His right hand, but the goats on the left”.

Matthew 25:32–33 (KJV)

The previous chapter discussed the possibility of using pedometric techniques to
make numerical classifications of soil material and soil layers. Of course it is not a
step too far to use pedometric techniques to make classifications of entire profiles
also. That is the subject of this chapter.

One of the main differences between classification of soil material and classi-
fication of soil profiles lies in how we abstract and encapsulate soil profiles as
structured data. The simplest view treats whole profiles as individuals complete
in themselves, but more sophisticated approaches consider profiles as composite
objects made up of sequences of soil layer individuals. We will see that the choice
of approach determines how the distances between soil profiles are computed.

Once distances have been computed, there are several ways to identify classes
of soil profiles. Methods of classification may be viewed as either hierarchical or
non-hierarchical.
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9.1 Profiles as a Sequence of Horizons

Like the soil layer, another basic soil entity that is recognised universally is the soil
profile (Simonson 1968). Soil profiles can be described in a number of ways, for
example, as a sequence of horizon classes or as a sequence of depth functions for
various soil properties. One of the problems of describing profiles as sequences of
horizons is that the sequences themselves are quite short, because profiles have at
least one to seldom more than seven horizons.

9.1.1 Homology

When one wants to compare one profile with another one, it is worth considering
which of the horizons are homologous—in other words, which horizons perform the
same function. This is really quite a difficult problem, and no quantitative solution
has yet been found. Homology could be established based on the horizons which
are most similar to each other in different profiles (e.g. Rayner 1966), on the basis
of a common sequence of horizons (e.g. Dale et al. 1970; Little and Ross 1985)
or with respect to the presence or absence of diagnostic horizon classes. To gain
a better understanding of the possible importance of homology, consider a podzol
with the usual horizon sequence developed somewhere in Scotland which is 50 cm
thick and a giant podzol developed in the sand dunes of eastern Australia which is
20 m thick. Both have the same sequence of horizons, so on this basis, these profiles
are completely homologous with each other. On the other hand, if we compare
the soil profiles on a depth-by-depth basis, they would be considered completely
different from each other. Homology on the basis of diagnostic horizons presents its
own problems, discussed briefly in the previous chapter and at length by FitzPatrick
(1976). So for quantitative understanding of soil profiles and their relation with each
other, a quantification of homology is required.

9.1.2 Transition Matrices

One way of describing a soil profile as a sequence of horizons is to construct for
each profile a transition matrix which describes the number of transitions from any
particular horizon class to any other horizon class (e.g. Dale et al. 1970; Moore
et al. 1972; Norris and Dale 1971). By convention, the class that defines the column
succeeds that which defines the row in the sequence. Any two profiles that have
the same sequence would have the same transition matrix. The problem with this
approach is that the matrices are rather sparse—in other words they contain a lot of
zero entries. This means that the information content of the matrices will be low.
By way of illustration, a Red Dermosol (Isbell 1996) under viticulture in the lower
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Table 9.1 Transition matrix
for a Red Dermosol under
viticulture at Pokolbin in the
lower Hunter Valley in New
South Wales, Australia

A B21 B22 B3 C

A 0 1 0 0 0
B21 0 0 1 0 0
B22 0 0 0 1 0
B3 0 0 0 0 1
C 0 0 0 0 0

Hunter Valley in New South Wales, Australia, might have a horizon sequence of A
B21 B22 B3 C. Its transition matrix is depicted in Table 9.1.

The information content of the matrix, I, is computed as (Dale et al. 1970):

I D G ln G �
Xn

iD1

Xm

jD1
fij ln fij (9.1)

where fij is the entry in row i and column j of the transition matrix and G is the sum
of all fij.

The information content of the transition matrix in Table 9.1 is 5.55.

9.2 Profiles as Depth Functions

From a quantitative point of view, it is easier and seems more natural to describe
soil profiles by the depth functions of the individual soil properties although
this approach must exclude some pedological insight that horizons carry. Depth
functions may be used for several purposes. For example, they enable the estimation
of the value of a soil attribute at any depth in the soil profile and even the total
amount of an attribute, such as carbon, over a whole region of a profile (e.g.
Arrouays and Pelissier 1994; Mestdagh et al. 2004).

Depthwise distributions of soil attributes are sometimes represented as step
functions when attribute measurements or predictions are made for each soil layer
(e.g. Jobbagy and Jackson 2000). In practice the measurement made for a layer
is often made on soil material derived from several locations in the layer and
thus represents its average condition. As a result, the variation in the soil attribute
that the step function describes has been dampened by virtue of the sampling
and measurement process (Ponce-Hernandez et al. 1986). In other words the step
function likely does not reflect the true extremes of the soil attribute distribution
within the profile.

In reality, the depthwise distributions of soil attributes are usually continuous
(Colwell 1970). These distributions have been modelled by a wide range of
mathematical functions; some are examined in the remainder of this section.
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Fig. 9.1 Exponential depth
function of organic carbon for
an alluvial soil in New South
Wales, Australia, after
Minasny et al. (2016) (Data
from Walker and Green 1976)

9.2.1 Exponential Functions

The most popular choice of depth function has been the exponential function
(Minasny et al. 2016). They are most useful for modelling the trend in properties
that decay from the surface (Fig. 9.1). Researchers have fit exponential functions to
a range of attributes including clay content (Brewer 1968), root density (Dwyer et al.
1996; Kalisz et al. 1987), radionuclide distribution (He and Walling 1997; Koarashi
et al. 2012) and, notably, organic carbon (Arrouays and Pelissier 1994; Bernoux
et al. 1998; Malone et al. 2009; Mestdagh et al. 2004; Mikhailova and Post 2006;
Mishra et al. 2009; Russell and Moore 1968; Taylor and Minasny 2006).

The general form of the exponential function is:

y D aebd (9.2)

where y is the value of the soil property, d is the depth below the soil surface, a is
a constant relating to the initial value at the surface of the profile and b controls the
rate of decay.



9 Soil Profile Classes 269

9.2.2 Polynomials

Polynomial functions model the trend with depth of attributes that have a maximum
somewhere other than at the surface, such as the clay content of a soil with an argillic
B horizon. Quadratic polynomials require relatively few data to fit but are not the
best solution where a greater degree of flexibility is required. Cubic or higher-order
polynomials are more flexible in shape but require more data to fit adequately.

Although their application has not been universally successful (Campbell et al.
1970), Colwell (1970) found that polynomial functions adequately characterised
the depthwise trend in attributes relating to soil fertility across four great soil groups
in New South Wales, Australia. Other researchers have used them to model the
depthwise trend in attributes such as soil particle size fractions (Wickramagamage
1986), penetration strength (Veronesi et al. 2012), soil moisture (Tabatabaeenejad
et al. 2015) and radionuclide activity (Alewell et al. 2014; Ramzaev et al. 2007).

9.2.3 Wetting Fronts

During an infiltration event, a plot of soil water content against depth in the profile
displays a characteristic shape due to the wetting front. The wetting front is the zone
of interface between the unsaturated soil below, with low soil water content, and the
zone of transmission, above, with high soil water content. Researchers have tried to
model these numerically (Haverkamp et al. 1977; Hills et al. 1989). Functions of
other soil phenomena display a similar shape (Fig. 9.2). For example, weathering
processes may be examined by analyses of solute concentration with depth, whose
functions are the so-called weathering fronts or reaction fronts (Brantley et al. 2008;
Kirkby 1985).

These fronts can in general be modelled using a sigmoid function (Minasny et al.
2016):

C.d/ D
Cmax

1C Cmax�Cmin
Cmin

exp .˛d/
(9.3)

where C(d) is the concentration at depth d and ˛ is an empirical parameter. Cmax is
the maximum concentration, which is at the top of the profile for a depletion trend
and at the bottom of the profile for an addition trend. Likewise Cmin is the minimum
concentration, which is at the bottom of the profile for a depletion trend and at the
top of the profile for an addition trend.
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Fig. 9.2 Concentration of Na
in a granite soil in Georgia in
the United States displays a
wetting front-type depth
function (After Minasny et al.
2016 Data from Brantley
et al. 2008)

9.2.4 Peak Functions

The depthwise distributions of certain soil attributes, such as clay content, often
display a peak at some point in the soil profile. Oftentimes these distributions
display a normal (Wetselaar 1962) or lognormal (Jury 1982) shape, but in other
situations, the distributions are not symmetrical throughout their depth or may
contain more complex features (Fig. 9.3). In other circumstances, such as when
surface mixing and translocation processes are operating, or when there is excessive
bioturbation, the depth function of a soil attribute may display both a minimum and a
maximum in the profile (Minasny et al. 2016). In these situations typical polynomial
parametric functions may be unable to adequately model these shapes because
attribute measurements down the profile are usually sparse and few in number,
among other reasons. Peak functions, being non-linear parametric functions that are
also non-linear in their parameters, are also susceptible to these faults, which have
led some researchers to recommend that attributes be measured at high resolution
using proximal sensors (Myers et al. 2011). Non-parametric methods such as splines
are better able to model complex shapes but are unable to quantitatively describe
features present in them (Myers et al. 2011).

Some peak functions are asymmetric, meaning that the shape of the curve on
either side of the peak can vary. Myers et al. (2011) demonstrated the use of the
Pearson IV and logistic power peak functions to model depth functions of soil
attributes. The Pearson IV function has six parameters, three of which control
peak shape, whereas the logistic power peak function has five parameters, two of
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Fig. 9.3 Clay content often
displays a peak-type depth
function (After Minasny et al.
2016)

which control peak shape. Peak functions are usually fit using non-linear regression
techniques that attempt to optimise these parameters.

Myers et al. (2011) demonstrated that both peak functions fit very well to clay
content, silt content and pH profiles although they preferred the logistic power peak
function because of its parsimony with respect to the fewer parameters. The logistic
power peak function is expressed as follows (Myers et al. 2011):

y D ’C
ˇ

�




1C exp




d C ı ln ."/ � �

ı
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exp
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�
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(9.4)

where d is a vector of depths, y is a vector of soil attribute values, ˛ is the intercept,
ˇ is the amplitude, ˛Cˇ is the magnitude of the peak, � is the peak centre and ı
controls the width of the peak and interacts with " to control the asymmetry of the
peak.

Due to the interactions between parameters, different sets of parameters can
produce curves that are similar in shape (equifinality). Despite this, Myers et al.
(2011) were able to link parameters with soil-landscape processes and parameters.
For example, they were able to demonstrate a relationship between the parameter
in the logistic power peak function that controlled peak width and position along a
hillslope.
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9.2.5 Splines

Some (Webster 1978) have pointed out several difficulties associated with the fitting
of polynomial or exponential functions to soil attribute data. Objections include the
lack of theory from which to determine a suitable model—although it is noted that
some properties, such as organic carbon, often follow an exponentially decreasing
trend through the profile (Minasny et al. 2006; Russell and Moore 1968)—the
difficulty in fitting a polynomial function to more than a few data points and the
fact that because the goodness of fit is sensitive to individual measurements, local
variation or error in a single measurement can affect the fit of the function to the
whole profile.

Splines were introduced as a way of mitigating some of these deficiencies.
Instead of fitting a single function to a whole profile, splines typically fit a series
of polynomial functions piecewise through measurements made down the profile.
Locations where consecutive polynomials join are called knots, and constraints
on curvature are usually applied at the knots to ensure the curve remains smooth
through the transition. Splines may be exact fitting or smoothing. In exact-fitting
splines, the curve passes through the data points exactly, and the knots are located
at the data points. Erh (1972) fits exact-fitting cubic splines to the water retention
curve. Others (e.g. Kastanek and Nielsen 2001; Wesseling et al. 2008) performed
similar analyses, but in general the exact-fitting splines have not been widely applied
in soil science.

We noted at the start of this section that soil attributes are often measured as
average values within soil horizons. For the purpose of fitting the depth functions
described previously in this section, it is normally assumed that these averages
correspond to the depth at the centres of the horizons. Depth functions fit to horizon
averages in this way will almost certainly display less variance in the soil attribute
than the true depth function if it could be known accurately, even if the splines are
exact fitting.

To mitigate this effect, Ponce-Hernandez et al. (1986) proposed an equal-area
smoothing spline method. In smoothing splines, unlike exact-fitting splines, the
curve does not pass exactly through the data points, and the knots are located at
the depth boundaries of the calibration data supports. Equal-area smoothing splines
are still fit through horizon averages, but a constraint is added so that the area to the
left of the spline (the Xi in Fig. 9.4) equals the area to the right of the spline (the
Yi in Fig. 9.4) through each horizon. In this way the average value of the property
through the horizon is preserved, but the equal-area spline should reflect the actual
variation in the soil property more accurately.

Bishop et al. (1999) demonstrated that equal-area quadratic smoothing splines
were better able to predict the true depth functions of a range of soil properties
including pH, clay content and organic carbon content than quadratic polynomials,
exponential functions and linear regressions and simple horizon averages. Their
model required that the depthwise support of the calibration data is contiguous
with depth. This requirement is satisfied when the calibration data are a set of
horizon averages; however, samples are often taken at depth intervals that may
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Fig. 9.4 An equal-area
quadratic spline, after
Ponce-Hernandez et al.
(1986) and Bishop et al.
(1999)

not be contiguous with depth. For example, Crépin and Johnson (1993) recom-
mended several methods of sampling discontiguous depth intervals in mechanically
disturbed profiles where horizonation may not be evident. Therefore Malone et al.
(2009) extended the work of Bishop et al. (1999) in order to relax the contiguity
requirement. The updated spline model remained quadratic across calibration sup-
ports but became linear between them. We refer readers to the relevant publications
for complete mathematical implementations of these techniques.

9.3 Classification of Soil Profiles

If we have a soil profile described by series of properties at fixed depth or as a
collection of depth functions or as a sequence of horizons, one of the fundamental
problems in soil science is to create a classification of such profiles. The possible
procedures are described in Fig. 9.5, and all require the computation of an
association matrix that describes the degree of association between all pairs of soil
profiles being compared. This matrix is usually square and symmetric, and each
element describes the degree of association between a particular pair of profiles. We
saw in Chap. 8 that the most commonly used inter-profile association metrics are
those that are distances in a soil attribute space and strictly compute the degree of
dissimilarity between two individuals because their values increase with decreasing
similarity. In such cases the association matrix may be called a between-profile or
inter-profile distance matrix.

http://dx.doi.org/10.1007/978-3-319-63439-5_8
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Fig. 9.5 Soil profiles may be classified in several ways

9.3.1 Between-Profile Metrics

One of the chief problems in profile classification is calculation of the inter-profile
distance between two soil profiles. It is relatively easy to compute distances between
a pair of individual objects such as soil horizons, but a means by which these
metrics can be used to calculate the distance between two profiles is not immediately
obvious. This is because soil profiles can be viewed not as individual objects
but as sequences of horizon objects where each horizon has its own soil attribute
information. Researchers have devised several methods of computing the inter-
profile distance. We briefly discuss them in this section.

9.3.1.1 Reference Horizons

We may choose to recognise the existence of reference horizons or layer classes
yet for practical reasons still treat a profile as a single object for the purpose of
computing the inter-profile distance. Thus a profile may be represented as a vector
of attributes drawn from various horizons throughout the profile. Calculation of an
inter-profile distance by regular Euclidean, Mahalanobis or other means is therefore
simple.
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Due to its relative simplicity, it is perhaps not surprising that this approach was
the first used in the numerical classification of soil profiles. For example, Hole
and Hironaka (1960) computed the inter-profile similarity on data on 25 attributes
drawn from throughout the profile, including thickness of the A2 horizon, ratio of
the maximum B horizon clay content to minimum A horizon clay content, average
0–36-in. pH and SiO2/R2O3 ratio of the C or D horizon. Bidwell and Hole (1964)
performed similar computations on 30 attributes including A horizon pH, B horizon
hue, C horizon clay content and the proportion of the solum exhibiting colour
mottles. Young and Hammer (2000) used a range of horizon and profile attributes.

Bottner et al. (1975) performed a more complex analysis than the previous
researchers. Like Hole and Hironaka (1960) and Bidwell and Hole (1964), they
assembled data on a range of attributes drawn from various reference horizons
although about half were attributes of the B horizon. In addition they tried to
take account of the presence or absence of relevant horizons in the soil profile by
creating rules to penalise the overall inter-profile distance; one or other of a pair of
profiles being compared did not possess a specific reference profile. This ensured
that profiles with different sequences of horizons had a larger inter-profile distance.

9.3.1.2 Fixed Depths

Notwithstanding the pedological information they contain, we may choose not to
use pedological horizons as the basis for computation of the inter-profile distance.
We may be concerned, for example, about the subjectivity in horizon designation,
the lack of comparative horizons in certain soils or the fact that horizons of like class
have different depth boundaries (Russell and Moore 1968). An alternative approach
is to compare pairs of layers of fixed or varying thickness down the profile instead.

For instance, Russell and Moore (1968) treated soil profiles as sequences of 1-
in.-thick layers whose attributes were derived from those of the soil horizons they
intersected. They calculated the inter-profile distance between a pair of profiles by
computing the average of the Euclidean distances DE between layer pairs. Consider
two profiles X and Y with i D 1,2, : : : ,m layers. It is assumed that both profiles have
the same number of layers, m, and that the layers have equal thickness. The lower
depths of their layers xi and yi are denoted dxi and dyi, respectively, with the surface
at dx0 and dy0. Mathematically the inter-profile distance D(X,Y) is calculated as:

D .X;Y/ D
1

m

Xm

iD1
WiDE .xi; yi/ (9.5)

where Wi is an optional weighting factor. Russell and Moore (1968) experimented
with assigning differential weights to the layers using a negative exponential
function on the basis that the upper layers are more important than those lower in the
profile for some purposes. Using the negative exponential function, layers higher in
the profile would receive greater weight in the inter-profile distance calculation than
those lower in the profile.



276 N.P. Odgers et al.

Other methods search for the layers in Y that are most similar to those in X and
vice versa. There are several variants of this approach. Assume now that the number
of layers in X can be different from the number of layers in Y, so that now their
layers are denoted xi and yj, respectively, where i D 1,2, : : : ,m and j D 1,2, : : : ,n.
The approach that Grigal and Arneman (1969) devised consists of three steps:

1. Compare each layer xi in X with three layers in Y: (i) the layer at a comparable
depth, yj, the layer immediately above this layer, yj � 1, and (iii) the layer
immediately below this layer, yj C 1. The layer in Y that is most similar to the
one in X in the Euclidean sense is considered to be its analogue.

2. Repeat (1) with respect to all layers in Y.
3. Compute the inter-profile distance as the arithmetic mean of the X-to-Y and Y-

to-X analogous layer distances:

D .X;Y/ D
1

m C n

Xm

iD1
minj2j�1<j<jC1DE

�

xi; yj
�

C
1

m C n

Xn

jD1
mini2i�1<i<iC1DE

�

yj; xi
�

(9.6)

A rule must be devised to govern the mapping of the xi to the corresponding yj and
vice versa.

Rayner (1966) devised a similar method except the comparison in step (1) that
involved all the layers in Y at and below the corresponding layer in X.

Yet other methods contain elements of all the above approaches. Carré and Girard
(2002) devised a distance similar to the utilitarian distance described later by Carré
and Jacobson (2009) that uses the distance between pairs of adjacent layers weighted
by the thickness of overlap (Fig. 9.6). Now the depth of the deepest profile is dmax,
and Dmax is the largest interlayer distance. With respect to X, overlap between layers
in X and Y occurs when any of the following conditions are satisfied:

dyj�1 � dxi�1 < dyj&dyj�1 < dxi � dyj (9.7)

dyj�1 � dxi�1 < dyj&dyj�1 < dxi � dyj (9.8)

dxi�1 � dyj�1 < dyj&dyj�1 < dxi � dyj (9.9)

The distance D(X, Y) between the profiles in Fig. 9.6 is thus:

D .X;Y/ D fD .x1; y1/ � .dx1 � dx0/C D .x2; y1/

�
�

dy1 � dx1
�

C D .x2; y2/ �
�

dx2 � dy1
�

C Dmax �
�

dy2 � dx2
��

=dmax

(9.10)
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Fig. 9.6 Elements of the
inter-profile distance
calculation of Carré and
Girard (2002)

More generally we can think of this inter-profile distance calculation in terms
of the number of overlapping layer segments, g D 1,2, : : : ,l. Thus if the upper
and lower depths of a zone of overlap are p and q, respectively, the inter-profile
distance is:

D .X;Y/ D
1

dmax

Xl

gD1

	

D
�

xg; yg
�

�
�

qg � pg
�

; g < l
Dmax �

�

qg � pg
�

; g D l
(9.11)

where D(xg, yg), the interlayer distance between xg and yg, is the Euclidean distance
divided by the number of layer attributes (Carré and Girard 2002). Later, Carré
and Jacobson (2009) further developed this work to implement two additional
inter-profile distances they called pedological and joint. The pedological distance
considers the interlayer distances (Euclidean or Manhattan) of pairs of layers
depthwise, in sequence, though layer thickness is not taken into account. The joint
distance is computed in the same manner as the utilitarian distance, but the layer
boundary depths of both profiles are first scaled so that each profile has a depth
of 1.0.

9.3.1.3 Collection of Depth Functions

Another approach is to calculate the inter-profile distance using the parameters
of the depth functions as attributes. Since the depth functions already account
for continuous variation within and between soil layers, conventional metrics like
the Euclidean or Mahalanobis may be used to quantify the inter-profile distance.
Campbell et al. (1970) did this for coastal soils in Western Australia and Moore
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et al. (1972) for soils from Queensland, Australia. Other examples appear to be
scarce. The success of a classification made using this method appears to be closely
tied to how well the depth functions fit the observed data. For example, Campbell
et al. (1970) found that the classification they made by clustering depth function
parameters was not like those they made by clustering the original profile data,
which they attributed to ill-fitting depth functions. Perhaps a better classification
could have been made if a more appropriate depth function model was used.

9.3.1.4 Sequence of Horizons

Transition Matrices

We saw in Sect. 9.1.2 how the sequence of layer classes in a soil profile can
be represented as a transition matrix. The inter-profile distance between a pair
of profiles can be computed as the element-wise sum of the Euclidean distances
between their transition matrices. Dale et al. (1970) and Norris and Dale (1971)
demonstrated how the similarity between two profiles could also be computed in
terms of the information content of their transition matrices.

The transition matrix approach recognises that individual soil layers are not
independent of each other; furthermore it explicitly takes into account the sequence
of layers down a profile. This is in contrast to most other inter-profile distance metric
schemes. On the other hand, we must consider a couple of factors before applying
this approach. First, since soil attribute data are not formally utilised in the inter-
profile similarity calculations, relationships between attributes are implicit in the
layer class labels used to encode the matrices. The choice of layer classification
system therefore plays an important role because the same layer class label can
have different connotations in different kinds of soil. For example, the pedogenic
B horizon implies a different set of processes in vertisols than it does in spodosols.
It is therefore likely to be better to use a soil layer classification in which the class
labels have a consistent meaning across all kinds of soil. A numerical soil layer
classification system (e.g. Odgers et al. 2011b; Triantafilis et al. 2001) may satisfy
this requirement if the universe of soils it encompasses is large enough. Norris and
Dale (1971) first classified soil layers into eight numerical classes prior to creating
transition matrices for their soil profiles.

The second factor that should be considered since the transition matrices of
soil profiles are often sparse is whether the transition matrices contain enough
information to separate soil profiles adequately. Two characteristics of soil profiles
that work to confound the information content of their transition matrices are (i) the
fact that they often possess only short sequences, since the number of horizons is
typically less than 7, and (ii) the fact that transitions between layer classes (e.g.
A!B, A1!A2) tend to occur only once in a given profile. This leads to the
dominance of 1s and 0s in soil profile transition matrices. Therefore since 1 � ln
1 D 0 and 0 x ln 0 is undefined, the information content according to Dale et al.
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Table 9.2 Horizon sequence
of a brown Dermosol from
the lower Hunter Valley, New
South Wales, Australia

Horizon Depth range (cm)

An 0–8
B21 8–40
B22 40–84
B3 84–103
BC 103–112

Table 9.3 Depth interval
sequence of a brown
Dermosol from the lower
Hunter Valley, New South
Wales, Australia

Horizon Depth interval (cm)

An 0–10
B21 10–20
B21 20–30
B21 30–40
B22 40–50
B22 50–60
B22 60–70
B22 70–80
B3 80–90
B3 90–100
BC 100–110
BC 110–120

(1970) is largely driven by G (Eq. 9.1), which will be relatively small since the
number of transitions between layers is typically relatively small.

We may increase the information content of a transition matrix by increasing the
resolution at which the soil profile is segmented—in other words, by using, say,
10-cm-thick depth intervals rather than pedogenic horizons—as this will increase
the chance of larger transition frequencies if, for example, a thick B horizon is
segmented into three or four depth intervals. This has the additional benefit of
implying some information about the relative thickness of each layer. For example,
consider a Brown Dermosol from the lower Hunter Valley in New South Wales,
Australia, with a pedogenic horizon sequence of An!B21!B22!B3!BC. Its
horizon boundaries are given in Table 9.2 and the horizon designations of its 10-cm-
depth intervals in Table 9.3. Using Eq. 9.1, the information content of the transition
matrix based on Table 9.2 is 5.55 and that based on Table 9.3 is 21.69.

Levenshtein Metric

Profiles can be represented as sequences of horizon or layer designations. Given
a set of layer classes c D 1,2, : : : ,k, a string representing the sequence of layers
according to their layer classes could be the following:

22244335557
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When we remove repeated layer codes, the compressed form (Little and Ross
1985) of the sequence is then:

24357

If all profiles can be represented in this way, we may ponder how the inter-
profile distance can be computed on such a representation. One representation of
this distance is the number of additions, deletions or substitutions of layer classes
it would take to transform the compressed layer class sequence of X into that of Y.
This is the so-called Levenshtein metric, devised by Levenshtein (1966) to describe
the distance between two syntactic patterns and extended by Lu and Fu (1978),
among others. Little and Ross (1985) applied the Levenshtein metric to soil profile
classification.

9.3.2 Agglomerative Clustering of Distance Matrix

Once the inter-profile distance matrix has been computed, it may be subjected
to an agglomerative cluster analysis using the techniques described in Chap. 8.
Agglomerative techniques were initially used to examine numerical relationships
between profiles allocated to the classes of established classification systems (e.g.
Anderson 1971; Rayner 1966). The “ramifying linkage method” was probably the
first agglomerative technique employed in soil science (Bidwell and Hole 1964). It
is equivalent to the average linkage method (Arkley 1976; Webster 1977) and has
its foundations in psychological research (Cattell 1944; Horn 1944) but came to the
attention of soil researchers through its application in the biological domain (Sokal
and Michener 1958).

There is no reason why the profiles being classified must be labelled a priori since
construction of the taxonomic hierarchy involves the computation of the association
between individuals in some form regardless of what class they belong to. Thus
agglomerative clustering could be applied to an unlabelled collection of profiles
to determine the relationships between them, but an appropriate working level
(Wickramagamage and Fisher 1988) of the resulting hierarchy must be determined
at which classes can be identified (Fig. 9.7). This is usually not the lowest level of
the hierarchy; otherwise all profiles would be allocated to their own class.

9.3.3 Non-hierarchical Clustering

9.3.3.1 Preceded by Ordination of the Distance Matrix

Ordination is used to examine the structure of multivariate populations. In general
terms ordination techniques can be thought of as ordering a population of indi-
viduals in attribute space so that similar individuals are closely spaced and vice

http://dx.doi.org/10.1007/978-3-319-63439-5_8
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Fig. 9.7 A taxonomic hierarchy must be cut at a working level before classes based on it can be
formed and centroids computed

versa. Two of the more well-known techniques are principal components analysis
(PCA; Chap. 8) and principal coordinates analysis (PCoA) (Gower 1966). PCA is
an R-type multivariate technique since it examines correlations between variables
(i.e. attributes) across all individuals, whereas PCoA can be considered its Q-
type complement because it examines correlations between individuals across all
variables (Blackith and Reyment 1971).

In PCoA the starting point is the so-called N � N association matrix, A, whose
elements aij are some estimates of resemblance between pairs of N individuals. The
attribute data on which A is calculated are not required. Gower (1966) preferred to
populate A with coefficients of association such as the Jaccard coefficient (Jaccard
1908) or simple matching coefficient, but any kind of similarity measure can be
used as long as the matrix B (see below) has no large negative eigenvalues (Sneath
and Sokal 1973). In PCoA the objective is to find the eigenvalues, 
1 ,
2 , : : : ,
N ,
and eigenvectors, b1, b2 : : : bN , of the matrix A. The eigenvectors form the matrix
B and are normalised so that the sums of squares of their elements are equal to the
corresponding latent roots:

XN

rD1
b2ir D 
r (9.12)

The rows of the normalised matrix give the coordinates of the individuals on their
principal axes in N-dimensional Euclidean space. In fact it is possible to reduce the
dimensionality of this space by examination of the eigenvalues of B. If a 
r is small,
then the bir are relatively small, and the contribution of (bir � bjr)2to the distance
between individuals i and j will also be small. Likewise if a 
r is large but there is

http://dx.doi.org/10.1007/978-3-319-63439-5_8
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Fig. 9.8 Principal coordinates biplot of several soil series from Scotland (Muir et al. 1970,
reproduced with permission)

not much variation in the size of the corresponding bir, then (bir � bjr) will also be
small. On the other hand, if 
r is large and the corresponding bir vary in size, then
(bir � bjr)2 will contribute more to the distance between individuals i and j. Thus it
is possible that the distances between individuals may be adequately expressed by
only two or three principal coordinates (Blackith and Reyment 1971; Gower 1966).

PCoA was initially employed in the numerical classification of soil profiles in
order to visualise the relationships between soils via biplots of the first two principal
coordinates, as Fig. 9.8 demonstrates (e.g. Banfield and Bascomb 1976; Campbell
et al. 1970; Rayner 1966; Webster and Butler 1976). It was seen as a companion to
agglomerative clustering which performed the actual numerical classification.

Once non-hierarchical clustering became available, researchers realised that the
principal coordinates themselves can be used as attributes in a non-hierarchical
classification procedure such as k-means or fuzzy k-means. We will attempt to show
that this is serendipitous for soil taxonomists. Recall that the k-means algorithms
recompute centroids dynamically at the end of every iteration (Chap. 8). It is easy
to perform this calculation if the data structure describing a soil profile is consistent
across all soil profiles being classified. This is the case if soil profiles are represented
as a set of parameters of a depth function or if profiles are represented as a set of
depth slices of consistent thickness (Beaudette et al. 2013) because the centroids
are merely the average of each of the parameters or each of the depth slices of the
profiles within each cluster.

http://dx.doi.org/10.1007/978-3-319-63439-5_8
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On the other hand, the method of computing a centroid is not obvious if the data
structure is inconsistent across all profiles being classified, such as when profiles
are represented as a sequence of horizons, since profiles vary in the number and
thickness of horizons. Should the centroid have the average number of horizons
of all individuals in the class? How should those horizons be attributed? Since
relevant inter-profile distances are available (Carré and Jacobson 2009), it is easier
to compute the principal coordinates of these profiles and use these data in a non-
hierarchical classification procedure.

There are few examples of principal coordinates clustering in the pedometric
literature. Examples are more frequent in ecology (e.g. Anderson and Clements
2000; Lefkovitch 1976; Mora and Iverson 2002; Schmidtlein et al. 2010; Tichý et
al. 2011). In soil science, Oliver and Webster (1989) used the k-means algorithm
to cluster the principal coordinates of a distance matrix that had been modified
to weight the distances according to separation distance in order to reduce spatial
fragmentation of the resulting classes. Frogbrook and Oliver (2007) performed a
similar analysis to identify management zones within agricultural fields. Finally,
Leblanc et al. (2016) clustered the principal coordinates of soil series where potato
fertiliser trials had been conducted in Québec.

9.3.3.2 Without Prior Ordination of the Distance Matrix

A third class of soil profile classification techniques performs non-hierarchical
classification without prior conversion of a distance matrix to a principal coordinate
matrix. The OSACA algorithm (Carré and Girard 2002; Carré and Jacobson 2009)
exemplifies this class of technique. OSACA classifies soil profiles using Diday’s
(1971) implementation of the hard k-means algorithm. The user can choose from
one of three inter-profile distance metrics, described previously in Sect. 9.3.1.2.
The choice of distance metric is largely driven by the intended use of the resulting
classification. The algorithm converges when the allocation does not change
between iterations or when the ratio of the mean distance between individuals and
their respective centroids to the mean inter-centroid distance falls below a threshold.

The method of computing cluster centres varies depending on the type of inter-
profile distance. When the pedological distance is used, the attributes of the cluster
centres are the arithmetic mean of the attributes of the corresponding horizons of
the individuals in the cluster. When the utilitarian or joint distances are used, it is
not possible to average the horizon attributes. Instead, the cluster centres become
the individuals that have the minimum total distance to the other individuals in
the cluster. Since in these cases the cluster centres are real profiles, they are really
exemplars or medoids rather than centroids in the traditional sense (Kaufman and
Rousseeuw 1987).

The earlier version of OSACA (Carré and Girard 2002) incorporated a non-
hierarchical cluster analysis of soil horizons in the algorithm. It was implemented
prior to the classification of the soil profiles so that classes of modal horizons were
found first followed by classes of modal profiles. The aim was to identify modal
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Fig. 9.9 Modal soil profiles of a set of numerical soil classes from the lower Hunter Valley in New
South Wales, Australia, created using the OSACA algorithm (Reproduced with permission from
Odgers et al. 2011a)

profiles that consisted of common sequences of the layer classes, but later work
simplified the algorithm by removing this functionality (Carré and Jacobson 2009).
Odgers et al. (2011a) demonstrated that some of this functionality could be restored
by attributing the horizons of the profiles to be classified with fuzzy memberships
to a set of layer classes created in a separate analysis (Fig. 9.9; Odgers et al. 2011b).

Massawe et al. (2016a, b) used machine learning techniques to spatially predict
soil profile classes generated by OSACA across a valley in Tanzania. Rizzo et al.
(2014) used OSACA to classify some Brazilian soil profiles by using the first four
principal components of visible near-infrared spectra (350–2,500 nm wavelength at
1 nm resolution) as the attributes of each pedogenetic horizon. They compared the
classes that OSACA generated with classes at several levels of the Brazilian soil
classification and found that the OSACA classes were most similar to classes at the
suborder level.
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Part V
Soil Variation in Space and Time

“Sir Walter Blunt, new-lighted from his horse,
Stain ‘d with the variation of each soil
Betwixt that Holmedon and this seat of ours.”

Shakespeare,
King Henry IV (Part I)

A good introductory explanation of geostatistics is given by Webster and Oliver
(2007) and also by Isaaks and Srivastava (1989). A much more advanced treatment
illustrated with soil chemical data is contained in Goovaerts (1997).

One of the most important aspects of pedometrics is the quantitative description
modelling and prediction of the spatial and temporal variation of soil properties.

As was discussed in Chap. 1, soil variation has been known since recorded
history. With an increasing demand for both better economic management and
environmental management of the soil resource, the need for quantitative infor-
mation about soil within agricultural fields within catchments across regions and
continents has grown apace. The approaches we describe in Chaps. 9, 10, 12 and
13 are relevant to these problems and scales. When we move to finer scales, more
geometric approaches required as described in Chap. 14.

We also recognise that soil variation, which many see as problematic, can be
regarded positively as pedodiversity – in the same way as we think of biodiversity.
Chapter 15 deals with the measurement and representation of pedodiversity.
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Chapter 10
Classical Soil Geostatistics

R. Murray Lark and Budiman Minasny

“All the business of war, and indeed all the business of life,
is to endeavour to find out what you don’t know by what
you do”.

Arthur Wellesley
Duke of Wellington

10.1 Introduction

In 1971 Beckett and Webster reviewed the information on soil variability available to
them. Their interest was, to use their term, in lateral variability of the soil. That is to
say in the variation of the soil from place to place across the landscape (Beckett and
Webster 1971). One way to capture this notion is by considering the variability of the
soil as measured by sample variance, standard deviation or coefficient of variation
(CV) within regions of different sizes. If the spatial location of soil observations is
immaterial to their variation, then the variance and other quantities will be the same
within regions of any size. Beckett and Webster (1971) found that, typically, half the
variation of a soil property within an agricultural field, measured from conventional
core samples, may be found within an area of 1 m2. This shows us that the variability
of the soil is spatially very intricate but also that a significant amount of variation
is spatially structured over the intermediate scales. The fact that CV depends on
area tells us something about the variability of soil. However, in the absence of
intensive sensor measurements, the CV/area relationship is a cumbersome tool for
describing spatial variability, requiring, in principle, sets of random samples from
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within randomly selected areas of different size. In a pioneering study Beckett and
Bie (1976) sampled the soil on regular transects. They then grouped the observations
into successive pairs, groups of three samples, groups of four samples, groups of
n samples, etc. and for each n D 2, 3, : : : calculated the mean variances within
the groups of n observations. Variance was then plotted against the length of the
aggregated groups (log scale). It was shown that the form of the graphs related soil
variability at different scales to vegetation and geomorphology in a predictable way.

This approach to analysis of spatial variability was innovative, developed from
statistical literature available at the time (e.g. Yates 1948). However, other older
statistical work had shown how the formalisms of analysis of variance could be
used to describe spatial variation. This is the work of Youden and Mehlich (1937)
who devised a sampling scheme to allow a partition of variance of a soil property
between contrasts over different spatial intervals. This was achieved by a nested
sampling design permitting a nested analysis in which, at each stage, the variance is
partitioned into that observable between and within sampling stations separated by a
particular interval. Webster and Butler (1976) revived the methodology and applied
it to the analysis of soil variation in Australian Capital Territory, in a landscape
where soil surveyors had struggled to represent the variation of soil by conventional
soil maps. Webster and Lark (2013) discuss this sampling scheme and analysis in
more detail.

While soil scientists were developing these innovations, statisticians in the
mining industry, geostatisticians, were developing a formalism for the description
of spatial variation which embraced and unified both the nested sampling of Youden
and Mehlich and the transect analysis of Beckett and Bie. Their objective was to
predict ore grades locally from a limited number of boreholes to support mine
planning. The methods that they developed constitute what we might call classical
geostatistics or mining geostatistics. The textbook of Journel and Huijbregts (1978)
sets out the stall of these methods. Around the time that it was published, soil
scientists became aware of geostatistics and the potential of geostatistical methods to
solve the problems of soil survey: spatial prediction of soil conditions from limited
sets of observations. Webster (2015) tells the story of how the connection between
the armoury of mining geostatistical methods and the requirements of soil survey
were first made.

This chapter discusses the classical methods of geostatistics as applied to soil
science. It provides background to some of the more modern methods described
in Chap. 11, but much of this standard methodology remains serviceable for the
problem of spatial prediction. We first describe the random model of soil variation
that underlies geostatistics and then show how this can be used for spatial prediction
and inference.

10.2 Random Models of Soil Variation

This section presents a summary of the principles of geostatistical method, as set
out by standard texts such as Journel and Huijbregts (1978), Isaaks and Srivastava
(1989), Goovaerts (1997), Chiles and Delfiner (1999) and Webster and Oliver

http://dx.doi.org/10.1007/978-3-319-63439-5_11
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(2007). Classical references on this methodology in the soil science literature are
the papers of Burgess and Webster (1980a, b), McBratney and Webster (1983) and
Webster and Burgess (1980).

10.2.1 Stationary Random Functions

A powerful approach to problems of inference is to treat data as if they are a
realisation of a set of random variables. A simple example of a random variable
is the number given by the throw of an unbiased die which is a random number,
Y, which takes some value from the set f1,2, : : : 6g. In the case of soil, we assume
that a soil property s at location x is a realisation of a random variable. However,
we can only ever observe one realisation, s(x), the actual value of s at x, which is
not sufficient information to characterise a random variable. We can make progress
if we assume there is a realisation not of a single variable but rather of a random
variable S(x) when the argument of the random function is location in space. If we
can assume that certain properties of this function are constant for all x of interest,
then a set of observations at different locations contains some replicated information
from which we may infer properties of the random function.

10.2.1.1 Stationarity

The simplest, and strongest, assumption of stationarity is that the joint distribution
of the random function over a set of locations, fS(x1),S(x2), : : : S(xn)g, is identical to
that for a set fS(x1 C h),S(x2 C h), : : : S(xn C h)g where h is any displacement or lag
vector. This means that all moments of the distribution are constant so the mean�D

E[S(x)], for all x and the covariance E[fS(x)��gfS(x C h)��g], is constant for all
x and h, as are all higher moments. Note that E[.] denotes the statistical expectation
of a random quantity in the square brackets. If we restrict these assumptions to the
first two moments of the joint distribution (mean and covariances), then we have
a weaker stationarity assumption – second-order or weak stationarity. Under the
assumption of stationarity, it is therefore possible to define a covariance function

C .h/ D E ŒfS .x/ � �g fS .x C h/ � �g� : (10.1)

At lag zero the covariance function is equal to the variance of the random
function. If the random variable shows no spatial dependence (it is a ‘white noise’
process in the terms of signal analysis or ‘pure nugget’ in geostatistical terms),
then it is zero for all lag vectors which are non-zero. Spatial dependence is shown
when the covariance declines with increasing lag separation reaching value zero for
lags at which values of the random function are independent. Note that in some
circumstances the covariance may not be strictly decreasing with lag distance, there
may be a periodic component to the variation or quasiperiodic ‘hole effect’.
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It is possible to make a stationarity assumption weaker still (and so a plausible
assumption about a broader class of soil variables). Intrinsic stationarity is, in
effect, a second-order stationarity assumption about the increments S(xi )�S(xi C

h) S(xi) � S(xi C h). So we assume that the mean increment is zero everywhere and
that the variance of the increment is constant everywhere. Hence

E ŒfS .x/ � S .x C h/g� D 0

and

E
h

fS .x/ � S .x C h/g2
i

D 2� .h/ : (10.2)

The function � (h) given above is the semi-variogram. It is related to the
covariance function in the second-order stationary case by

C .h/ D C.0/ � � .h/ : (10.3)

The covariance at lag 0, C(0), is the variance of independently drawn values of
S(x), also known as the a priori variance. We can use the variogram in a wider case
of processes than the second- or higher-order stationary ones that can be described
by the autocorrelation or covariance functions.

10.2.1.2 Variogram

Under the intrinsic hypothesis of stationarity, 1
2
fs .x/ � s .x C h/g2 and

1
2
fs .x0/ � s .x0 C h/g2 are both estimates of � (h). We may, therefore, combine

all observations over lag h into an estimate of � (h). This is illustrated for a transect
in Fig. 10.1. In the top row, the pairs of observations are combined to estimate the
variogram for the lag equal to the basic sample interval. In the second row, the pairs

Fig. 10.1 Pair comparisons between sample points on a linear transect at intervals of (top) one
times the basic spacing and (bottom) two times the basic spacing
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Fig. 10.2 An empirical variogram plot illustrating the concepts of sill variance and range

of observations are separated by twice the sample interval. On a transect the lag is
a scalar and is written h. If h is some integer multiple of the basic sampling interval
on the transect, then � (h) is estimated by taking all the Nh pairs separated by h and
calculating from them half the mean-squared paired difference:

b�.h/ D
1

2

Nh
X

iD1

fs .xi/ � s .xi C h/g2: (10.4)

We call this the empirical, or experimental variogram. Note that we can use the
scalar lag in the analysis of data in two or more dimensions if we assume that the
spatial autocorrelation of our variable depends on distance only and not direction.
This is the assumption of isotropy. We consider isotropic variograms in most of the
following discussion and address how to model directional dependence later in the
chapter.

Consider Fig. 10.2. This empirical variogram increases with lag distance to a
maximum value – the sill variance or a priori variance of the random function.
In this particular figure, this happens at a particular distance – the range. If we
consider Eq. 10.3, we see that at lags larger than the range, the autocovariance is
zero. That is to say two points in space separated by a distance larger than the range
are uncorrelated. At shorter distances, they will tend to be correlated. In this way
the variogram describes the structure of spatial variability.
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Fig. 10.3 (a) Two variograms, �1(h) and �2(h) for two mutually independent random variables
with contrasting ranges of spatial dependence and the variogram of the sum of these two variables,
� s(h). (b) Points from the expected empirical variogram of the sum of the two variables, when
sampled at basic interval 3 units. Note that the spatial structure of �1(h) cannot be resolved, and its
variance contributes an apparent intercept to the empirical variogram, the nugget variance

Imagine two isotropic random fields, statistically independent of each other, but
with variograms �1(h) and �2(h). If we form a new random function by adding these
two, then its variogram, � s(h), is simply the sum, �1(h) C �2(h). We describe the
random function as a nested random function with a nested variogram. See Fig.
10.3. Note that, while nested variogram functions are commonly used in classical
geostatistics and have an intuitive appeal representing combined effects of random
processes at contrasting scale, they have been criticised in the setting of model-based
geostatistics, a treatment of which is given in Chap. 11. See also Stein (1999).

http://dx.doi.org/10.1007/978-3-319-63439-5_11


10 Classical Soil Geostatistics 297

Consider a soil process which can be regarded as the sum of two independent
random functions with different ranges and with variograms �1(h) and �2(h). Its
variogram, � s(h), as seen above and as illustrated in Fig. 10.3a is the sum of the
two variograms. If we sampled at a basic interval between the ranges of the two
variograms, then we may obtain point estimates of the variogram as shown in Fig.
10.3b. The empirical variogram obtained under this sampling scheme resolves the
structure of component 2 but not 1. The effect of random function 1 is that the
experimental variogram appears to have a non-zero intercept, equal to the sill.
This is called the nugget variance. Nugget variance will include elements due to
measurement error, but as illustrated above, it also includes components of spatial
variation which are spatially dependent at scales too fine to be resolved by our
sampling scheme. It is possible to partition the nugget between these sources only
if we have some independent estimate of the measurement error.

10.2.1.3 Variogram Models

Equation 10.4 above generates point estimates of the variogram for particular lags.
In practice we need values of the variogram for any lag. This requires that we can
express the variogram as a function of lag. At first glance this might seem like a sim-
ple problem in curve fitting. In reality there is a complication. The covariance func-
tion allows us to compute the variance of any linear combination of values of a ran-
dom variable. Now the variance of a linear combination of values of a random func-
tion, subject to random variation, must have a variance which is positive and non-
zero. We could write down a function of h that does not guarantee this (and so cannot
actually be the covariance function of any actual random function). Such a covari-
ance function is said to be non-positive definite. We avoid this by using variograms
that are negative semi-definite (negative because the variogram is equal to the a pri-
ori variance minus the covariance function and semi-definite because the covariance
function may not be zero at all lags). Variogram functions which meet this criterion
are said to be authorised. We now describe some commonly used models.

10.2.1.4 Nugget

Imagine a situation where all the spatial dependence for random function is at scales
finer than the basic sampling interval. In signal analysis such variation is called
‘white noise’. The variogram will be flat, pure nugget. In practice such variograms
are rare, but nugget models are almost always included as an additive term in a
nested model to describe the variation which has not been resolved by sampling.
The nugget variogram model may be written as

� .h/ D

	

0 h D 0

c0 otherwise
: (10.5)
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Note that in practice, the nugget term appears as an intercept (i.e. a value at lag
zero), but all variogram models must be zero at lag zero by definition. This is a
practical importance since the variogram at lag zero appears in the kriging equation.

The nugget model is a model of discontinuance variation since the variogram
jumps from zero to a finite value for any finite lag. This discontinuity can affect
predictions of soil properties using a variogram with a significant nugget. When we
invoke a nugget model, however, we are not necessarily claiming that the variation
of a property is discontinuous at the limit, although it might be. The term nugget
effect comes from the case of a nugget of pure gold embedded in rock with a
discontinuous step in grade at its edge. All we can say in practice is that variation
appears discontinuous at the scale of resolution of our data.

10.2.1.5 The Exponential Variogram

Imagine a linear transect on the ground intercepted at random by boundaries
between regions within which the value of the soil property is a uniform value
drawn from a random process of variance c1. If the probability that two points on
the transect separated by lag distance h lie either side of at least one such boundary
is p(h), then it is clear that the variogram of the process will be

�.h/ D c1p.h/: (10.6)

Let us assume that the boundaries occur at random as a Poisson process and that
the mean interval between two boundaries is a. The mean number of boundaries
falling on an interval of the transect of length h is therefore h/a. Under the Poisson
distribution, the probability that no boundary falls on such an interval is

(




h

a

�0

e�h=a

) ,

0Š D e�h=a: (10.7)

The probability at one or more boundaries falls as such an interval is therefore
1 � e�h=a , so our variogram function is

�.h/ D c1
˚

1 � e�h=a
�

: (10.8)

This is the exponential variogram for a process of variance c1 and with distance
parameter a. As the derivation shows, it describes the most basic concept of spatial
randomness. The exponential function is a bounded one, with an upper bound at c1,
but it approaches this asymptotically so we cannot define a finite range at which
� (h) D c1. Since � (h) 	 0.95c1where h D 3a, it is common to define 3a as the
effective range. Note that while we may argue from the Poisson boundary process
to the exponential variogram, it is hazardous to reverse the argument when such a
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variogram is found. Other spatial random processes will give rise to an exponential
variogram – for example, a first-order auto-regressive process:

s .xi/ D ˛ C ˇ s .xi�1/C "i (10.9)

where xi � 1 , xi are successive, equally spaced locations on a transect defines, at the
limit as the interval between successive values approaches zero, a random process
with an exponential variogram. The terms ˛ and ˇ are coefficients and "1 is an
independent random variable of mean zero.

10.2.1.6 Bounded Linear Model

We might divide a transect into intervals of equal length, a, and then allocate to
all sites within any segment a uniform value drawn from a random process with
variance c1. From Eq. 10.2 we may write the variogram of this process as

�.h/ D c1

	

h=a if h � a
1 otherwise

�

: (10.10)

This is a bounded linear variogram of range a. Burrough (1983) discusses this
model and fitted it to data where a more or less regular pattern of geological
boundaries was a dominant source of soil variation. As with the exponential model,
however, this variogram can arise from a contrasting kind of spatial process. Imagine
that we generated a random function on a transect with independent random values.
This would have a nugget variogram. Let us now smooth this process by replacing
each value by the sample average of all the values at locations within ˙a/2. Webster
and Oliver (2007) demonstrate that such a process will have a bounded linear
variogram.

Note that the model can only describe spatial variation in one dimension. It is not
negative semi-definite in two or more dimensions.

10.2.1.7 Circular and Spherical Models

We can extend the bounded linear model of spatial variability to two dimensions by
imagining a field of independent random variables filtered by replacing each value
with the simple average of all values within a distance a. This new field has a circular
variogram function:

�.h/ D c1

	

1 � 2
	

cos�1 fh=ag C 2h
	 a

p

1 � h2=a2 if h � a
1 otherwise

�

: (10.11)
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This is negative semi-definite in one or two dimensions but not in three
dimensions. Like the bounded linear model, it reaches a distinct range at distance a
beyond which it is flat, although its slope decreases as it approaches the range. The
three-dimensional equivalent, of course, is a spherical model:

�.h/ D c1

	

3h
2a � 1

2
fh=ag3 if h � a
1 otherwise

�

: (10.12)

This is negative semi-definite in one, two or three dimensions. Although it is
fundamentally a three-dimensional random process, it is commonly used to describe
variograms of two-dimensional data when these have a distinct range. By extending
into five dimensions, the pentaspherical model is defined.

So far the variogram models described are fairly straightforward in their
behaviour, but they will not always fit observed variograms comfortably. At this
juncture we must consider some niceties of the behaviour of variograms of random
processes. A more detailed account is given by Webster and Oliver (2007).

Consider a random function S(x). Because this function is random, we cannot
compute a derivative d

dx S.x/, it is not differentiable. For this reason the variogram of
a function is not differentiable at the origin, it has an approximate linear approach
to the origin. On the other hand two derivatives of a parabolic function can be
obtained at the origin. A parabolic variogram would describe smooth variation, i.e.
variation that is entirely predictable so not in any sense random. A variogram which
approaches this behaviour may arise because of some short-range deterministic
variation (drift) or perhaps as an artefact arising from a measurement process
which has a strong smoothing effect over short distances (yield monitor data,
remote sensors and electromagnetic inductance measurements of the soil’s electrical
conductivity might have such an effect). Some variogram functions may, therefore,
appear concave upwards near the origin, suggesting possible local drift. As seen
above, parabolic behaviour of the origin is not consistent with random variation. We
may define a power function variogram,

�.h/ D c1h
˛: (10.13)

This is subject to the constraint that 0 < ˛ < 2. If ˛ D 1 then the variogram
is an unbounded linear function (which unlike the bounded linear function is
negative semi-definite in two dimensions). For any authorised power function, the
variability appears to increase without bound so the function cannot describe a
weakly stationary process, only an intrinsically stationary one.

Some variograms are concave upwards near the origin but are bounded. The
Stable model is often used to describe such behaviour:

�.h/ D c1
n

1 � e� h�
a�

o

; (10.14)
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where � < 2 is a constant. The Gaussian model is the Stable model with � D 2.
Although widely used, the behaviour of the Gaussian model at the origin is
inconsistent with random variation; it should not be used for the geostatistical
methods of prediction which are described below because of this behaviour which
can lead to artefacts. A more satisfactory alternative for spatial variation which
shows a certain smoothness is the Matérn function (Matérn 1986). The Matérn
variogram model is

�.h/ D c1

	

1

2�� .�/
.' h/�K� .' h/

�

(10.15)

where �(�) and K�(�) are, respectively, the gamma function and a modified Bessel
function (second kind) of order �. Smoothness of the random process is controlled
by parameter �. If � � 0, then the process is continuous. If � D 0.5, the Matérn
variogram is the exponential. With larger � it is smoother than the exponential, and
as � ! 1, the variogram function approaches the Gaussian. The Matérn function
has been used increasingly in soil science (Minasny and McBratney 2005) but
largely in the setting of model-based geostatistics. It is important that the model
be used only when there are adequate observations at short lag distances.

The experimental variogram may appear to vary in a periodic way when the
soil variation is controlled in part by some regular pattern such as ridge-and-furrow
variation. A sine function is a semi-negative definite model in one dimension. It has
gradient zero at lag zero which is unacceptable, but a sine function in combination
with another semi-negative definite variogram will constitute an acceptable model.
In two dimensions or more, the sine function is not negative semi-definite, but a
damped function in which the fluctuations diminish the distance is negative semi-
definite. A damped sinusoidal variogram is said to show a ‘hole affect’. However,
apparent fluctuations may be artefacts. Webster and Oliver (2007) recommend that
periodic models are not used unless there is strong evidence for periodic behaviour,
perhaps because of our a priori knowledge of the process. Some phenomena in
soils can give rise to periodic fluctuations in the variogram, in particular “patterned
ground” phenomena as formed in the Gilgai landscapes of Australia or in soils
affected at some stage of their development by periglacial conditions.

It follows from our previous discussion of nested processes – additive combina-
tion of independent random functions – that two or more of the models discussed
here may be combined to describe an experimental variogram. In fact most model
variograms are a combination of a nugget variogram and a spatially structured one.
But since any combination of negative semi-definite functions is itself negative
semi-definite, other combinations are possible. Two models with different distance
parameters may be combined to describe a variable with variability with different
scales caused by different processes. A double spherical model is a common
example of the nested structure with two distinct ranges.
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10.2.1.8 Anisotropy

In our examples so far, the lag is a distance in space, i.e. a scalar, and we explained
that a random function for which the variogram depends only on the scalar lag
distance is said to be isotropic. In practice the direction of a comparison may affect
the variance of the difference between two points, so our lags are vectors with both a
distance and direction. This is called anisotropy. There are two kinds of anisotropy.
In geometric or affine anisotropy, the sill variances are independent of direction, but
the variogram does depend on direction at short distances. It therefore approaches
the sill with different slopes at different directions. An affine transformation of
the coordinate system will transform the variogram to isotropy. Under the model
a locus that is the set of all locations xi – X about a fixed point, x0, such that
� (x0 � xi) , xi 2 X is constant (and less than the sill variance) describes an ellipse,
which can be transformed to a circle by the affine transformation of coordinates.

The other kind of anisotropy is zonal anisotropy. In zonal anisotropy the sill
depends on direction. Such variation is not difficult to imagine. The variation
and landscape scale where contrasting rocks outcrop with parallel strike will be
largest perpendicular to strike and smallest parallel to the strike, but anisotropy will
diminish as the lag tends to zero.

10.2.2 Estimating and Modelling the Variogram

10.2.2.1 Variogram Cloud

The variogram cloud is a plot of the individual values, 1
2
fs .xi/ � s .xi C h/g2,

against the scalar lag, h D jhj. Plotting and examining the variogram cloud can
be useful in exploratory spatial analysis of the data. In particular, we may use it to
examine evidence for anisotropy or to identify effects of a few outlying observations
(Ploner 1999).

10.2.2.2 Lag Classes

In the example above, we illustrated the application of Matheron’s (1962) estimator
of the variogram with an idealised example of regularly sampled data in one
dimension. In practice the problem is more complex, particularly in two dimensions
or more when data are irregularly sampled and/or we wish to account for anisotropy.
Matheron’s estimator is now applied to pair comparisons fs(x) � s(x C h)g where
the lag vector is the mean or central vector of a lag class. Ignoring anisotropy the
lag class may be defined by a range of lag distances or lag bin, a central distance
plus a tolerance of ˙w/2 where w is the width of the bin. We may then take the
mean lag distance within each class as the representative lag interval. Defining lag
classes requires care and an element of trial and error. If the classes are defined
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Fig. 10.4 Definition of a lag bin in two dimensions

too narrowly, then each will contain too few pair comparisons, and the resulting
variogram estimates will be too noisy. If the classes are too wide, however, then
they will smooth the spatial structure which is seen at lags within each interval and
may obscure the underlying spatial dependence.

When anisotropy is a concern, lag classes must be defined relative to a compass
bearing as well as to a distance. This is illustrated in Fig. 10.4. Consider the two
points in space shown by a black and a grey disc. These are separated by a lag
vector of scalar value (distance) h along a bearing of ’ from due north. With
irregular sampling it is necessary to define lag bins with some tolerance into which
to combine pair comparisons to form point estimates of the variogram. The tolerance
is defined by a width of the lag distance bin (˙w/2 in the Figure) and an angular
tolerance of ˙� . With the tolerances specified, the lag between the black and the
grey disc is the central lag for a lag bin such that any point within the region between
the two solid arcs and the dotted lines indicating the angular tolerance would be
separated from the black disc by a lag which belongs in the bin. The open circle
illustrates such a point.

10.2.2.3 Estimating Variogram Parameters

The simplest variogram model to fit is an unbounded linear model, which may be
fitted with an ordinary least squares criterion. However, most variogram models
have non-linear parameters which must be estimated by more complex methods.
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Nonetheless, the least squares criterion can be applied; that is to say we find a
vector of variogram parameters, ™, such that the mean-squared difference between
our point estimates of the variogram, b�.h/, and the corresponding model values,
� (hj™), is minimised:

MSE D
1

Nl

Nl
X

iD1

fb� .hi/ � � .hi j™ /g
2
; (10.16)

where hi is the representative lag for the ith lag class of which there are Nl, b�.h/ is
the estimated variogram for this lag class and � (hj™) is the fitted model. We need an
iterative algorithm to minimise this criterion for models with non-linear parameters.

Models can be fitted by eye and there is software available to help this process.
However, fitting by eye is generally best avoided particularly where the variogram
estimates are very variable and where the number of pair comparisons in each lag
class varies so that different lag classes have different uncertainty. Visual inspection
can be useful to guide the choice of a class of model and also to check that a fitted
model seems reasonable.

Most variogram models are fitted by a weighted least squares method using a
standard non-linear fitting algorithm to minimise a generalisation of MSE. If the
experimental variogram for lag class i is supported by ni pair comparisons, then one
weighted MSE is

MSE1 D
1

Nl

Nl
X

iD1

nifb� .hi/ � � .hi j™ /g
2
; (10.17)

so that we give more weight to a point estimate supported by many pair compar-
isons. Cressie (1985) proposed a development of this:

MSE2 D
1

Nl

Nl
X

iD1

ni

�.hi j™ /2
fb� .hi/ � � .hi j™ /g

2
: (10.18)

This gives greater weight to the lags with small semi-variance, which is
reasonable since the reliability of an estimate of variance is inversely related to
its size, and the variogram at short lags is generally more influential when used in
particular applications. Note that, since the model variogram appears in the weight,
and it also depends on the parameters that we are estimating, the process must be
done iteratively. The iterative procedure means that after one run of the algorithm,
we use the fitted model to specify the modelled values. Generally only one iteration
is required before the solution converges to a single set of model parameters.

As we have seen, there are many variogram models which can be fitted to
data. Visual inspection of a set of point estimates and consideration of the factors
causing the variation will generally enable us to narrow the field to a few plausible
models, but we still have to choose between them. One basis for choice is to fit
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all possible models and select that one for which the MSE is smallest. This is a
rational procedure when all models have the same number of parameters (e.g. if
we are comparing an exponential with a spherical model). However, we may have
a choice between a double spherical model (two independent spherical processes)
and an exponential. If we exclude the nugget (common to both), then the double
spherical has four parameters to the exponential’s two. These additional parameters
give the model more flexibility and mean that the MSE for the double spherical will
almost inevitably be smaller. This does not mean that the model is necessarily better,
however. The question is whether the inclusion of more parameters is justified by
the improvement of the fit which they allow. The Akaike information criterion (AIC)
is a basis for making this judgement (Akaike 1973; McBratney and Webster 1986).
For a given set of point estimates for the variogram, AIC will be least for the model
for which

bA D Nl ln.MSE/C 2P (10.19)

is smallest where P is the number of parameters. That model for whichbA is smallest
is judged most parsimonious. This means that an exponential model will be favoured
over a double spherical unless the MSE for the double spherical, MSEDSP, is so much
smaller than that for the exponential, MSEExp, that

ln
MSEDSP

MSEExp
< �4Nl: (10.20)

10.2.3 Departures from the Standard Model

10.2.3.1 Trends

It is worth recapitulating from Chap. 1 the basic model of soil variation with
which we are working. In most general terms S(x) D f (x) C "(x) where f (x) is some
deterministic function of space and "(x) is a random variable, so S(x) too has random
properties. In our discussion so far, we assume that f (x) is a constant, �, and that
"(x) is a spatially dependent random variable that can be regarded as a realisation
of a stationary (strongly, weakly or intrinsically) random variable or as the sum of
two or more independent such variables. The soil variation which we observed in
reality is deterministic, the result of many processes, and may be poorly described
by such a model. First � may have to be replaced by a deterministic function
f (x). This could represent a pronounced trend, for example, a trend in the particle
size distribution along a catena or in water content down a slope. Strong trends
cannot be ignored. If � (h) is the variogram of "(x), then it is clearly not equal to
1
2
E
h

f.f .x/C " .x// � .f .x C h/C " .x C h//g2
i

when f (x) is not a constant.

http://dx.doi.org/10.1007/978-3-319-63439-5_1
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The experimental variogram will be affected by deterministic variation and
becomes concave upwards. We may also find short-range drift or local trend which
disappears at longer ranges. In either case we have to disentangle the variation into
components which may be treated as deterministic and those which are treated as
random. There is no unique way of doing this in any case; it is a matter of finding a
particular model which is suitable given the variation and the uses to which we want
to put it. We discuss how this might be done later, since it forms an important part
of the process of spatial prediction.

10.2.3.2 Non-stationarity in the Random Variation

The term "(x) has constant mean by definition. However, in practice it may not
be plausible to assume (as in the intrinsic hypothesis or any stronger stationarity
assumption) that the variance is uniform. This may originate in many ways.
Consider a landscape in which, as we move upslope from the river channel, the
parent material changes from sorted alluvium to terrace gravels to clay to sandstone
with wet flush zones and then chalk with pockets of overlying clay. It is clear that the
variability of a soil property such as the saturated hydraulic conductivity or the water
potential will change over the sequence. The development of sensors that generate
large data sets, for example, on soil electrical conductivity, will allow us to model
such complexity more effectively.

One approach is to compute local variograms within a moving window (Haas
1990; Corstanje et al. 2008). This allows us to account both for changes in the
magnitude and spatial scale of variation. As the window moves across the landscape
in one part of the landscape, the sill of the variogram might be relatively low (the
magnitude of the variation is small); in another part of the landscape, there may be a
longer range to the variogram than we see on average (the spatial scale is different).
This approach has been incorporated into the Vesper software package discussed
in more detail below (Minasny et al. 2006). However, there is greater scope for
managing non-stationarity of the variance within the model-based geostatistical
framework discussed in Chap. 11.

10.2.3.3 Contaminated Fields

Consider the spatial variation of the concentration of some metal in the soil of
a region. This variation may be complex. It will have its origins in the variable
composition of the parent material from which the soil is derived: solid rock, drift,
loess, gravels and alluvium of varying mineralogical composition. There may also
be different sources of pollution through atmospheric deposition or deposition by
flood water. These factors considered so far are likely to give rise to a more or less
continuous variation of the concentration of the metal in the soil which we might
reasonably regard as a realisation of a random function and describe by a variogram.
However, other sources of variation are possible. In particular we consider quasi-

http://dx.doi.org/10.1007/978-3-319-63439-5_11
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point processes, effects of very intensive contamination which have a very localised
effect. We say a quasi-point process because the actual area of soil affected by such
an event will be of finite dimensions, but at a practical sampling intensity, such a
patch will be represented by a maximum of one sample point. A patch, therefore,
appears in our sample as a random event of probability 
.

Let us assume for the moment, although it is not necessary, that the continuous
background process is a normal random variable S, with mean �b and standard
deviation �b. We may also assume that the contaminant process is normal but
typically of larger mean �b and with standard deviation � c. The overall distribution
function is, therefore, (1 � 
)N(�b, �b) C 
N(�c, � c). Matheron’s (1962) estimator
of the variogram is unduly influenced by extreme values since it is based on squared
differences. Also, one contaminated value may appear in several comparisons in
each of several lag classes. The contaminant process will therefore have a large
effect on the estimate of the variogram in the case of such data. Ideally we should
like to decompose our data into background and contaminant components. One way
of doing this in spatial analysis is to use robust estimators of the variogram which
estimate the variation of the background process.

Estimation of the variogram assumes that our s(x) are realisations of an intrin-
sically stationary random function S(x). Since E[S(xi) � S(xi C h)] D 0, we can
estimate � (h) by 1

2
Var Œs .xi/ � s .xi C h/� where Var[] denotes the variances of

the term in the brackets. Matheron (1962) uses the standard method of moments
estimator, the mean square difference. We may estimate the variogram robustly by
using an alternative variance estimator, of which several are available. Lark (2000)
reviews some of the principal ones, but we consider one in detail for illustration.
The mean-squared error is non-robust because it is an arithmetic average. If just one
number in a set of data becomes very large, so does the average. Medians, however,
are robust. The median value of a set of data is that value such that 50% of the
date are smaller and 50% are larger. If there is an even number of data, 2n, then
the median is the average of the nth and the n C 1th value. The example in the box
below shows how substituting one datum with a very large value can dramatically
affect the mean, while the median is only slightly affected or not affected at all. For
this reason the median absolute deviation has been proposed as a robust measure of
variability as an alternative to the mean square error. The median absolute deviation
(MAD) is a robust estimator of the variance based on the median absolute difference
between each data value considered in turn and the median of the whole data set.
For a set of n values of a variable, si , i D 1 , 2 , : : : , n,

MAD D 2:198 median n
iD1

˚ˇ

ˇsi � median n
iD1fsig

ˇ

ˇ

�2
(10.21)

where madiann
iD1 fg denotes the median value of the n terms in the brackets. The

constant 2.198 requires explanation. It is a consistency correction which, on the
assumption that s is a normal variable of variance ¢2

, ensures that E [MAD] D ¢2.
Dowd (1984) proposed using median absolute deviation to estimate variograms. His
estimate may be written
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2b�D .h/ D 2:198fmedian .jyi .h/j/g
2; (10.22)

where yi(h) D s(xi) � s(xi C h) , i D 1 , 2 , : : : , N(h). Note that, since we are
assuming an intrinsically stationary process which is bivariate normal so that
s(xi) � s(xi C h) Nf0, 2� (h)g, we have the information that the median value
medianiD1

n fs .xi/ � s .xi C h/g is zero, which is implicit in this estimator.
Using this robust estimator entails stronger assumptions than does Matheron’s

estimator, specifically the bivariate normality of [s(xi), s(xi C h)]. The median
absolute deviation is also a less efficient estimator than the mean square error in
the statistical sense. All the data apart from the median value itself (or the nth and
n C 1th in the even case) only influence the median absolute deviation by their
relative values and so their order. The information contained in the actual values,
which the mean square error uses, is not used. This is a penalty of robustness and
is one reason why robust estimators should not be used without specific reason.
A useful tool to examine variogram models is cross-validation. In cross-validation
we use the ordinary kriging method, described below, to compute a prediction
of each observation from all the others. Ordinary kriging returns, along with the
predictionbS .xi/ at location xi, the expected squared error of the kriging prediction,
�2OK .xi/, which depends on the variogram. Since we know the observed value at
each location, we can compute the standardised square prediction error:

SSPE .xi/ D

n

s .xi/ �bS .xi/
o

�2OK .xi/
: (10.23)

The expected value of this statistic over a set of data is one, and, assuming normal
prediction errors, the expected median is 0.455. Lark (2000) suggested that the
median standardised squared prediction error from cross-validation is used to select
between variogram models fitted to the standard method of moment estimates and
alternatives from robust estimators.

10.3 Geostatistical Spatial Prediction

We may sample the soil at discrete locations and analyse the collected material. In
practice many problems that the pedometrician has to tackle can be expressed as
how to use this information on a very small volume of soil from a region to make
predictions about locations or subregions which have not been sampled. In general
this problem emerges in two forms. First we may require an estimated value for
the soil variable at a site or over a block, the latter being any region, regular or
irregular in two or more dimensions such as a field, or a square panel corresponding
to the pixel of a remote sensor image. This predicted value may then be used to
make some management decision, for example, how much fertiliser to add. Second,
we may be more interested in whether the true value of the point or over a block
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exceeds some threshold value. This could be a regulatory threshold, for example. In
such a case simple comparison of the predicted value with a threshold value is not
entirely adequate since the prediction has attendant uncertainty. We need to have
some idea of the risk that the true value exceeds or is less than the threshold so that
we know how strong is the evidence that the soil at a location should be treated
as contaminated (von Steiger et al. 1996) or salt affected (Wood et al. 1990) or
deficient in a nutrient (Lark and Ferguson 2004). In mathematical terms we need
to know the probability the true value exceeds the threshold value conditional on
our observations. Geostatistics has solutions to these problems, and they have been
used by soil scientists since the early 1980s. During this time the variants on the
basic kriging equations have diversified. We outline here the key methods which
soil scientists have found useful.

10.3.1 Kriging Predictions and their Uncertainty

We wish to obtain an estimate of the value of the soil property at an unsampled loca-
tion x0. We call the estimatebS .x0/. Later we extend the problem to the estimation of
the mean value of S over a block. We have observations s(xi) , i D 1 , 2 , : : : n from
which our estimate is to be obtained. We assume that our s(xi) are drawn from a
realisation of a random function S(x). At any location this has mean �(xi).

The kriging estimate is based on familiar regression model. We may write

bS .x0/ � � .x0/ D

n0
X

iD1


i fS .xi/ � � .xi/g ; (10.24)

where 
i is a coefficient or kriging weight. This equation can be rearranged giving

bS .x0/ D

n0
X

iD1


iS .xi/C � .x0/ �

n0
X

iD1


i� .xi/ : (10.25)

How we proceed from here depends on assumptions which we choose to make
about the behaviour of �(xi).

10.3.2 Ordinary Kriging (OK)

Ordinary kriging is the most widely used kriging method. It proceeds on the
assumption that �(xi) is constant at least for all n0 sample sites at xi within the
vicinity of x0 which we use to estimate s(x0). It is also assumed that this mean is
unknown to us.
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On the basis of these assumptions, we may reduce Eq. 10.25 to

bSOK .x0/ D

n0
X

iD1


OK
i S .xi/C � .x0/

 

1 �

n0
X

iD1


OK
i

!

: (10.26)

Now if we specify that
Pn0

iD1 
i
OK D 1, then the unknown mean is filtered from

the ordinary kriging estimator and bSOK .x0/ D
Pn0

iD1 
i
OKS .xi/. This means that

bSOK .x0/ is an unbiased estimate of �(x0), i.e. on averagebSOK .x0/ is equal to the
local mean, under the assumption of a stationary mean within the neighbourhood.

We may also define a quantity �2OK .x0/ D E




n

bSOK .x0/ � s .x0/
o2
�

. This is the

ordinary kriging variance, the mean-squared error of the kriging estimate. We find
the weights 
i by solving a set of linear equations which minimise this value. The
OK estimate is an optimal estimate in the least square sense; that is to say it is a best
linear unbiased estimator, given the assumption of a locally constant (but unknown)
mean.

The kriging equations are essentially obtained by writing expression for the
kriging variance in terms of the covariances of S(x0) and all the S(xi) and the
covariance among all the S(xi). These depend on the covariance function C(h)
defined in Eq. 10.1. We then write partial derivatives of the kriging variance with
respect to the weights 
i, which are zero where the kriging variance is minimised.
See Isaaks and Srivastava (1989) for further details. At first glance the problem
may appear simple. We have obtained n0 unknowns, the weights, 
i and obtained
n0 equations from setting the n0 partial derivatives to zero However, this ignores
an additional equation, namely, the constraint used to filter out the unknown
mean which requires that all the weights sum to one. This n0 C 1th equation
requires that we add an additional unknown the Lagrange parameter,  (x0), which
means that the OK equations actually minimise an auxiliary function �2OK .x0/ �

2 .x0/
n

Pn0
iD1 
i

OK � 1
o

. This generates the ordinary kriging equations:

Pn0
iD1 


OK
i C

�

xi � xj
�

C  .x0/ D C
�

xj � x0
�

8j
and
Pn0

iD1 

OK
i D 1:

: (10.27)

At this point the reader might reasonably wonder why we have discussed
ordinary kriging in terms of covariance functions. Why the previous focus on the
variogram? But remember that � (h) D C(0) � C(h). This allows us to rewrite the
OK equations as

Pn0
iD1 
i

OK ˚C.0/ � �
�

xi � xj
��

C  .x0/ D C.0/ � �
�

xj � x0
�

8j
and
Pn0

iD1 
i
OK D 1:

: (10.28)
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The unbiasedness constraint causes the term C(0) to drop out, so

Pn0
iD1 


OK
i �

�

xi � xj
�

C  .x0/ D �
�

xj � x0
�

8j
and
Pn0

iD1 

OK
i D 1:

: (10.29)

We still seem to depend on the assumption of weak stationarity since it is
assumed that the covariance function can be defined. In fact OK can be conducted
for intrinsically stationary random variables by substituting for C(0) some arbitrary
large value CA which is filtered out. The expression CA -C(h) is called the pseudo-
covariogram. Solving Eq. 10.29 above for the weights allows us to generate the
kriging estimator with kriging variance

�2OK .x0/ D

n0
X

iD1


i
OK� .xi � x0/C  .x0/ : (10.30)

OK can be extended to the estimation of a regional mean, i.e. the average value
of s over some block R. This can be conveniently expressed as an integral

s.R/ D
1

R

Z

x2R

s.x/dx:

The interpretation of s(R) may require some care. It is the population mean that
we would estimate by design-based sampling of R, measuring s at randomly selected
locations in R. For some properties we can think of s(R) as the value we would obtain
if all the soil in R were taken and homogenised and then analysed for properties in
which the arithmetic average values of a set of discrete samples is equivalent to
the aggregate property of the sample. This includes compositional properties such
as the clay content or volumetric water content, but not scale-dependent physical
properties such as the saturated hydraulic conductivity or properties such as the soil
solution concentration of an element which may depend on variable and non-linear
exchange processes.

Our block estimatebS.R/ is found as a linear combination of the data s(xi). The
weights are found by solving a similar set of equations to those for point estimates.

Pn0
iD1 


OK
R;i �

�

xi � xj
�

�  .R/ D �
�

xj � R
�

8j

and
Pn0

iD1 

OK
R;i D 1:

: (10.31)

These equations are solved for the weights. The block kriging variance is

�2OK.R/ D

nR
X

iD1


OK
R;i � .xi;R/C  .R0/ � � .R;R/ : (10.32)
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The two components � .xi;R/ and � .R;R/ require explanation. The former
represents the mean value of the variogram between xi and some point in R. The
latter is the mean value of the variogram between points in R. This latter quantity
is called the dispersion variance or within-block variance. It is equal to the mean-
squared difference form the mean of the values of s drawn at random from within
R. These two values can be calculated for regular blocks using specific functions,
the auxiliary functions (see Journel and Huijbregts 1978). However, with modern
computers they are usually obtained by numerical integration which can also be
done efficiently for regions of any shape or size.

10.3.3 Simple Kriging (SK)

We assume that the mean is everywhere constant and known. The kriging weights
are calculated to minimise the prediction variance subject to an unbiasedness

constraint that E
h

bS .x0/ � s .x0/
i

D 0. From this we obtain n0 equations

n0
X

iD1


i
SKC

�

xi � xj
�

D C
�

xj � x0
�

8j: (10.33)

In SK the value of C(0) is not filtered out in the kriging equation. This means
that the variogram function must be bounded, i.e. the random function is assumed
to be second-order stationary. This constraint, and the condition that the mean is
known, makes SK generally less attractive than OK, and it is much less widely used
in soil science. SK is most commonly used in special circumstances where the mean
is predetermined. We shall touch on some of these shortly.

10.3.4 Non-linear Kriging

Ordinary kriging and simple kriging, as discussed above, are linear methods which
return an estimate of a soil variable at an unsampled site or over a block, the estimate
being a linear combination of the data. Information about the soil for a point or block
is often needed to make decisions about its management. This management may
involve an intervention, for example, the addition of a fertiliser or other amendments
to the soil or the removal or remediation of contaminated soil. This intervention
entails a cost, but if it is not undertaken where it is actually needed, then a further
cost may be incurred through loss of yield or environmental damage which may
result in a fine. Regulations or rules are commonly stated in terms of threshold
values st. These lead to rules:

If s(R) > st, then action (A), else (s(R) � st) action (B).
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If we follow the rule, substituting our estimatebS.R/ for s(R) above, then errors
in the estimate will inevitably result in some incorrect decisions. Should the
uncertainty in bS.R/ affect the decision-making rule above? This depends on the
distribution of the estimation errors and the shape of the loss function. By the latter
we mean the additional cost entailed as a result of an error (positive or negative) in
bS.R/ when the rule above is applied, the loss being expressed as a function of the
error. If the loss function is symmetrical (the cost of an overestimate of s by x units
is equal to the cost of an underestimate by the same amount) and the distribution of
the errors is symmetrical (e.g. normal), then the best procedure is to follow the rule
with the estimatebS.R/. The only way to reduce the costs incurred as a result of error
is to reduce the error variance ofbS.R/ (e.g. by sampling more intensively).

In practice, however, loss functions are usually asymmetric. The fine for leaving
a region of land unremediated where remediation was, in fact, the correct decision
may exceed the cost of remediation. The yield loss on under-fertilising a region of
a field would generally exceed the cost of overfertilising. In these conditions the
correct decision in the presence of uncertainty about the true value of s(R) requires
that we can quantify the uncertainty, conditional on the observations of the variable
that we do have.

There are two general groups of kriging techniques that have come to prominence
for tackling this problem, both are non-linear – a conventional linear kriging
estimator is applied to the data after these have been transformed non-linearly.
The first group are indicator methods (Journel 1983) of which the basic tool
is ordinary indicator kriging (IK). Here the non-linear transform is to a binary
indicator variable. These techniques have been widely applied by soil scientists
(e.g. Meirvenne and Goovaerts 2001; Halvorson et al. 1995). The second group of
techniques involve a non-linear transformation of the data to a continuous variable,
usually a normally distributed variable. This method is exemplified by disjunctive
kriging (Matheron 1976), but multi-Gaussian kriging is a similar method. These
techniques have also found widespread use in soil science (e.g. Wood et al. 1990;
von Steiger et al. 1996).

Indicator kriging (IK) As previously soil property s at location x takes value s(x).
An indicator transform of s(x) can be defined by

!t .x/ D
1 if s .x/ � st

0 otherwise;
(10.34)

where st is a threshold value of the property such as one of the management thresh-
olds mentioned above. In indicator geostatistics, ! t(x) is regarded as realisation of
the random function �t(x). It can be seen that

Prob ŒS .x/ � st� D E Œ� fS .x/ ; stg� (10.35)

where Prob[] denotes, respectively, the probability of the event within the square
brackets and GfS(x), stg is the cumulative distribution function of S(x) at the
threshold value st. In indicator kriging we estimate the conditional probability that
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s(x) is smaller than or equal to the threshold value st, conditional on a set of
observations of s at neighbouring sites, by kriging ! t(x) from a set of indicator-
transformed data.

A set of data on s is transformed to the indicator variable !t(x) using Eq.
10.34 above. The variogram of the underlying random function �t(x) is then
estimated and modelled in the usual way. An estimate of the indicator random
function may then be obtained for a location x0 by kriging from the neighbouring
indicator transform data. Ordinary indicator kriging is equivalent to simple kriging
of the indicator variable �t(x) using the mean within the kriging neighbourhood
as the expectation. Goovaerts (1997) and Webster and Oliver (2007) give more
details. The IK estimate �t(x) is an estimate of the conditional probability that
s(x) � st and of the conditional cumulative distribution function (ccdf) G(S(x),
st). This direct estimate b�t .x/ is not generally used as the conditional probability.
Instead it is recommended to obtain estimates b�t .x/for several st that include
the threshold of practical importance. There is no guarantee that the estimates
b�t .x/ will meet the order relation constraint for a cumulative distribution function,
that is, b�t1 .x/ � b�t2 .x/ � b�t2 .x/ for any st1 < st2 < st3. Because of this the
original set of estimates b�t1 .x/ ;b�t2 .x/b�t2 .x/ must be smoothed to give a set
of revised estimates Q�t1 .x/ ; Q�t2 .x/ Q�t2 .x/ such that the order relations hold.
Deutsch and Journel (1998) describe methods for doing this. The estimate of the
conditional probability that s(x) � st is now given by Q�t .x/. It is likely that
Q�t .x/ is a better estimate of the conditional probability for a cut-off than is
b�t .x/ since it incorporates information from adjacent parts of the ccdf. Variants of
ordinary indicator kriging are available. In particular we can cokrige the indicator
variables for the different thresholds (see the later discussion of cokriging) although
Goovaerts (1994) found no substantial benefit from doing so.

Disjunctive kriging (DK) Disjunctive kriging is an alternative to indicator
kriging. It is based on the assumption that our data are a realisation of a process
with a second-order stationary distribution. Further we assume that the underlying
process is a diffusion process (Rivoirard 1994; Webster and Oliver 2007). That is, it
varies continuously so that if the variable takes values s1 and s2 at locations x1 and
x2, respectively, then all intervening values between s1 and s2 must occur at locations
on a straight line between x1 and x2. The commonest model which we use for DK is
the normal diffusion process. Webster and Oliver (2007) explain how the plausibility
of this assumption is tested. Since data may often not resemble a normal random
variable, the first step in DK is to apply a non-linear transform to the data to achieve
normality. This is done using hermite polynomials, a procedure described in more
detail by Rivoirard (1994). A variogram is estimated for the hermite transform data
in the usual way and modelled. The hermite polynomials are then kriged to target
locations of interest. From these may then be estimated the original soil variable
s(x) and the conditional probability for specified thresholds, b�DK

t .x/.
The relative merits of IK and DK may be summarised as follows. IK may

be implemented using widely available kriging software. Since indicators may be
estimated by simple kriging or ordinary kriging, we need not assume that the mean
of the indicator variable is known. The DK on the other hand is restricted to simple
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kriging. The indicator transform of the continuous soil variable discards a good deal
of information, and it is tedious to estimate model indicator variograms for a large
number of threshold values. The fact that IK estimates of the ccdf do not necessarily
conform to the order relations and generally require an arbitrary correction to meet
this constraint is a further disadvantage.

DK requires only one variogram model for the hermite transform data. Indicator
variograms and cross-variograms must also be estimated to test the assumption of
a diffusion process, but these need not be modelled. The hermite transformation
transforms a continuous variable monotonically to another continuous variable, so,
unlike the indicator transform, there is no loss of information. Further DK returns an
estimate of s(x) along with the conditional probabilities. An estimate of s(x) is not
generated by IK without additional effort. On the other hand, DK requires stricter
assumptions of stationarity than does IK. It can only be implemented if the hermite
transform data have a bounded variogram. DK is a complex procedure, and friendly
software is not widely available, although the related procedure of multi-normal
kriging is available in the GSLIB package (Deutsch and Journel 1998).

In practice we make the choice between IK and DK on practical considerations
such as some of those above. In general we might expect that DK or other non-linear
kriging techniques that use a continuous transform of the original data will perform
better than IK since the indicator transform will inevitably lose some information,
while a continuous transform retains all the information in the original data. There
have been few studies to compare IK and DK on real data. Those of which we are
aware (Papritz and Dubois 1999; Lark and Ferguson 2004) suggest that there may
be very little difference between the results obtained with the two methods.

10.3.5 Kriging with a Nonstationary Mean

Again we return to our basic model of soil variations s(x) D f (x) C "(x). So far we
have considered f (x) to be a constant value, the mean. In practice it may be necessary
for f (x) to express sources of variation in the soil which are not constant and cannot
be regarded as any kind of random variable. It is not difficult to think of examples
where the variation of a soil property is systematically linked to location and space.
Consider the familiar figures in pedological textbooks of the depth of weathered
material and how it changes from a crest down a slope to the foot slope and toe
slope. Consider again the systematic variation of soil texture, mineralogy, redox
potential and organic carbon content associated with the familiar catenas of Central
Africa. In all these cases, f (x) must express some deterministic relationship between
location in space and a soil variable.

Generally we recognise a distinction between two kinds of systematic variation
although it is more a distinction of degree and spatial scale than a fundamental
difference. The first kind of systematic variation includes long-range trends where
the component represented by f (x) is a broad variation from large to small values of
a variable between different parts of a landscape. The second kind of systematic
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variation is where short-range differences are dominated by what appear to be
deterministic processes. This results in the parabolic form of the experimental
variogram that we discussed above. It should be noted that variation that we treat as
a trend within field scale might be reasonably attributed to random variation if we
are sampling a catchment. This underlines the fact that our model of variation is in
part a consequence of the scale and intensity of our sampling.

Various approaches have been taken to the problem of kriging in the presence
of a nonstationary mean; these include universal kriging, regression kriging and the
method of intrinsic random functions of order k. In universal kriging (UK) (e.g.
Webster and Burgess 1980), we express f (x) as some function linear in polynomials
of the elements of x (i.e. trend surfaces), and the kriging estimator implicitly
estimates the coefficients of these terms along with a minimum variance estimate
of the random term "(x). This requires that we have a variogram of "(x). Regression
kriging (RK) is formally equivalent to UK, but we start by finding an ordinary
least squares estimate of the coefficients of the trend function and then estimate
the variogram from the residuals (e.g. Odeh et al. 1994). We may then use the
variogram to compute a weighted least squares estimate of the coefficients and
iterate this process to convergence. The RK prediction of s(x0) is then computed
by first calculating the value of the trend at x0 and then estimating the random
component by simple kriging (with a known mean of zero) from the residuals from
the trend surface at the observation sites. RK and UK are formally equivalent, given
the variogram of "(x), but it is this variogram that is the problem for both methods.
We saw above that the experimental variogram of a variable with a trend will be
affected by this trend, and what we need is a variogram of the random component
only. This might be obtained for UK by only estimating the variogram from pair
comparisons that are not strongly affected by the trend (e.g. over lags perpendicular
to the direction of the trend), but this is not always possible, and neither is it efficient.
The variogram obtained from residuals from a trend surface is biased (Cressie 1993),
so the RK solution is not satisfactory either, although it is reasonably robust when
applied to large data sets.

Intrinsic random functions of order k (IRFk) are generalised increments of our
data which filter out the trend. The concept is easily grasped if we consider a
linear trend in one dimension. It is clear that the differences between adjacent and
regularly sampled observations of a variable with a linear trend and an intrinsically
stationary random function will be intrinsically stationary since the trend component
is replaced by its first derivative. If the trend is of higher order, then further
differencing will remove it (and the lower-order components become zero). The
method of IRFk works in this way, and a key stage is the determination of the
order of increments that can be regarded as intrinsically stationary. This is done
by examining generalised covariance functions, in effect variograms of differenced
data. Chiles and Delfiner (1999) provide more detail, and Buttafuoco and Castrig-
nano (2005) give an example of the application of this approach in soil science.

In RK and UK we use an unbiased linear model of the trend for prediction in com-
bination with an unbiased minimum variance estimate of the random component of
variation. UK does this simultaneously and RK separates the two stages. Given a
variogram for the random component, the predictors are the best linear unbiased
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predictor (BLUP) or empirical BLUP (E-BLUP), empirical in that it is conditional
on a variance model derived from data. We noted above that the key problem is
obtaining this variance model, a variogram of "(x). The state-of-the-art approach to
this problem is to use residual maximum likelihood (REML), and it is the REML–
E-BLUP that we advocate for spatial prediction in the presence of a trend. This,
however, is out with the scope of the current chapter and is discussed in Chap. 11.

10.3.6 Sampling for Estimation by Kriging

McBratney et al. (1981) and Burgess et al. (1981) showed how a geostatistical
survey can be designed to ensure that the variable may be estimated with a pre-
specified precision. They considered regular grids and assumed that the maximum
kriging variance occurred at the centre of each regular grid cell. Thus, they ignored
the increased kriging variances close to the boundaries of the region. They sought
the maximum interval between observations on the regular grid such that the
kriging variance was less than the prespecified tolerance, ¢2

T. Thus, for variogram
parameter vector ™, they calculated the optimal interval, I(™), such that

I .™/ D max
�

i; such that max
˚

�2K
�

™I xg.i/
��

< �2T
�

; (10.36)

where �2
K j™ , xg(i) denotes the kriging variance at the centre of a cell within a

square grid of interval i. The same approach can be followed when using cokriging
(McBratney and Webster 1983) and when planning composite sampling (Webster
and Burgess 1984).

It is possible (Marchant and Lark 2007) to write an expression for the OK
prediction error variance that accounts both for the distance to neighbouring
observations and the error in the estimated variogram parameters. It is possible
to minimise the average value of this statistic across a proposed sample region by
modifying the location of sample points. Brus and Heuvelink (2007) show how the
approach can be extended to universal kriging.

The problem here is that in most cases, the variogram is unknown when sampling
is designed. We may use approximate variograms, as discussed in Chap. 10. An
alternative is the adaptive approach proposed by Marchant and Lark (2006). This
is appropriate for circumstances where the sampling can be done in phases (ideally
when the data can be collected in real time with a sensor). For example, in their
Bayesian adaptive approach, spatial simulated annealing is used to minimise an
objective function which is the mean square error of the kriging variance at the
centre of a notional grid cell. This objective function is obtained as a Bayesian
integration over the space of possible variogram parameters with a probability
density function for these parameters. The sampling proceeds in phases, and the
pdf of the variogram parameters is updated as new data are collected. At the end
of each sampling phase, we consider the cumulative distribution function of grid
spacings which are sufficient to ensure some maximum kriging variance. When
the uncertainty on this interval is sufficiently small, the sampling is completed

http://dx.doi.org/10.1007/978-3-319-63439-5_11
http://dx.doi.org/10.1007/978-3-319-63439-5_10
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by finding those locations needed to complete a sample grid of adequate intensity
across the study region.

10.3.7 Kriging for Large Data Sets

Sensors such as gamma-ray spectrometer and electromagnetic induction instruments
attached to a vehicle with a GPS have been used to collect intensive soil data for
high-resolution mapping. These on-the-go proximal soil sensors can collect a large
volume of data over an area (approximately 5,000–100,000 data points per km2).
Data collected from these sensors need to be interpolated to a regular grid.

Kriging of such data poses several shortcomings: the time taken to calculate an
empirical variogram can be excessive; in addition, solving the kriging equations for
a data set of size n involves inversion of an (n � n) covariance matrix, which requires
O(n3) operation. A way to circumvent this is to use the spherical model (a finite
range variogram), where a sparse matrix can be approximated for the variance–
covariance matrix (Barry and Kelley Pace 1997). Others called for covariance matrix
tapering, where covariances at large distances are set to zero (Kaufman et al. 2008).
Kriging using a single variogram model for the whole area usually resulted in a
smooth map, where local variation captured by data can be lost.

Another solution is kriging that takes into account the local spatial structure
(Haas 1990). This is implemented as kriging with local variograms, also known as
kriging and automated variogram modelling within a moving window. It involves
searching for the closest neighbourhood for each prediction site, estimating the
empirical variogram from the neighbourhood, fitting a variogram model to the
data automatically by a non-linear least squares approach, kriging with local
neighbourhood and variogram parameters and calculating the uncertainty of kriging
prediction. All these steps need to be done automatically, and thus the program
adapts itself spatially in the presence of distinct differences in local structure over
the whole field. Local variogram estimation and kriging can preserve the local
spatial variation in the predictions. In most cases, local variograms could circumvent
the problems of anisotropy and the need for trend analysis.

Minasny et al. (2006) developed a program called Vesper (Variogram Estimation
and Spatial Prediction plus Error), a PC-Windows software program that can
calculate and model global local variograms and do global and local kriging in either
punctual or block form. Sun et al. (2012) extended this approach to local regression
kriging to take into account both the local relationship between the covariates and
soil observations and the spatial variance of the residuals.

Cressie and Kang (2010) regarded this local kriging method as an ad hoc solution
and suggested the fixed ranked kriging (FRK) approach. FRK uses covariance
functions that are flexible through a set of r basis functions, where the (n � n)
variance–covariance matrix can be approximated by (r � r) positive-definite
matrices (Cressie and Johannesson 2008). Cressie and Kang (2010) demonstrated
the application of FRK on proximally-sensed gamma counts (n D 34,266) in a field
of 2.66 km2. They used a flexible, nonstationary spatial covariances represented as
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77 basis functions, for which exact kriging can be carried out. Nevertheless, the FRK
approach still needs tuning with respect to the type of basis functions and estimation
of the parameters of those functions.

10.4 A Case Study

We now illustrate some of the key concepts introduced in previous sections with
a case study. This uses data on the concentration of copper in the topsoil of part
of the east of Scotland. The data were first described by McBratney et al. (1982).
Figure 10.5 shows histograms of the raw data and of the data transformed to natural
logarithms, and Table 10.1 presents summary statistics of these two variables.
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Fig. 10.5 Histograms of topsoil copper content in soils from the east of Scotland on (top) original
and (bottom) natural log scales
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Table 10.1 Summary statistics of data on topsoil copper content from the east of Scotland

Variable Mean Median Standard deviation Minimum Maximum Skewness

Copper/mg kg�1 2.48 2.10 1.68 0.3 18 2.66
Copper/loge mg kg�1 0.73 0.74 0.59 �1.2 2.89 0.09
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Fig. 10.6 Quintiles of soil copper content (legend is on log scale) shown on a post-plot of the
copper data. Coordinates are kilometres relative to the origin of the British National Grid

The histograms and the summary statistics show that the data appear symmet-
rically distributed on a log scale, so this is used for further analysis. Figure 10.6
shows the distribution of the observations.

Figure 10.7 shows the empirical variogram of the log-transformed data, estimated
for four different directions. There is no evidence of systematic anisotropy, so
isotropic variograms were estimated and modelled. Matheron’s estimator (Eq. 10.4)
and the robust estimator of Dowd, described in Eq. 10.22, were both used, and
the resulting empirical variograms were fitted with double spherical variogram
models, which were preferred to simpler ones on the grounds of Akaike information
criterion. Both models were cross-validated, and the standardised squared prediction
error, Eq. 10.23, was computed. The estimates, models and values of SSPE (see Eq.
10.23) are shown in Fig. 10.8. On the basis of the cross-validation, the model fitted
to estimates from Dowd’s estimator was chosen. Figure 10.9 shows the ordinary
kriging estimates of soil copper content (log scale) across the study area and the
kriging variance. As expected the variance is largest where the data are most sparse.



10 Classical Soil Geostatistics 321

0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

Distance /m

V
ar

ia
nc

e

Direction

0
45
90
135

Fig. 10.7 Directional empirical variograms of log copper content

Figure 10.10 shows the ordinary kriging variance for (log) soil copper content,
computed at the centre of a cell of a notional square sampling grid with spacing
ranging from 500 m to 5 km. This graph, following McBratney et al. (1981), allows
one to identify the grid spacing which would be required in a survey in comparable
conditions if one wanted to achieve a kriging variance no larger than 0.2. The graph
shows that a grid spacing of no more than 1.5 km is required to achieve this target.

10.5 Spatial Covariation and Coprediction

The methods we have discussed so far are all univariate. They consider just one
variable and its variation in space. The geostatistical model of spatial variation can
be readily extended to two or more variables. Why should we wish to do this? First,
because there are cases where we are interested both in estimates of variables and
in estimates of some linear function of the variables. An example from soil science
quoted by Webster and Oliver (2007) is where one variable, s1(x), is the depth to the
top of a particular soil horizon and the second, s2(x), is the depth to the bottom of
the horizon. A linear combination of these variables is their difference, the thickness
of the horizon. If bS1 .x/ and bS2 .x/ are estimates of the two variables at x, then
one estimate of the horizon thickness at x is bS1 .x/ �bS2 .x/. However, we could
also krige the difference variables fs1(x) � s2(x)g directly from the differences at
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Fig. 10.8 Estimated isotropic variograms of soil copper content with fitted double spherical
models and median standardised squared prediction error using Matheron’s or Dowd’s variogram
estimators

our observation sites. There is no guarantee that the two approaches will yield the
same estimate if we use the univariate kriging equations described above. That is to
say, the kriging estimate of s1(x) and s2(x) is not guaranteed to be equivalent to the
kriging estimate of any linear combination of s1(x) and s2(x). The kriging estimates
are not coherent. For some applications this may be important.
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Fig. 10.10 Ordinary kriging variance at the centre of a cell of square grids of different spacing,
based on the variogram for topsoil copper content in the east of Scotland

The second reason for considering multivariate statistical methods is probably
the commonest. In many circumstances it may be possible to supplement a set of
relatively costly direct measurements of a soil variable with a denser but cheaper
set of measurements of a second correlated variable. For example, remote sensor
measurements of the earth’s surface may be correlated with a soil variable of
interest. If this can be exploited through a geostatistical method, then we may be
able to obtain better predictions of the soil variable by incorporating the cheapest
second variable, without added costly measures.

10.5.1 Spatial Co-regionalisation

Let s1(x) and s2(x) denote measurements of two soil variables at location x. We
assume that these are realisations of, respectively, random functions s1(x) and s2(x).
It is assumed that these are both intrinsically stationary, and there exists a cross-
variogram �2,1(h) dependent only on h where

�2;1 .h/ D E ŒfS1 .xi/ � S1 .xi C h/g fS2 .xi/ � S2 .xi C h/g� : (10.37)
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The cross-variogram can take negative values unlike the auto-variograms �1,1(h)
and �2,2(h) which are positive by definition. In fact the ratio

�2;1 .h/
p

�1;1 .h/ �2;2 .h/
(10.38)

is known as the co-dispersion coefficient and measures the correlation of variables
S1(x) and S2(x) at lag h which may be positive (large values of S1(x) are associated
with large values of S2(x)) or negative (small values of S1(x) are associated with
large values of S2(x)).

The cross-variogram may be estimated in much the same way as the ordinary
variogram for a single variogram, sometimes called the auto-variogram. If we define
a lag class centred at scalar lag h with Nh pair differences, then an estimate of the
cross-variogram for the lag class is

b�2;1.h/ D
1

2

Nh
X

iD1

fs2 .xi/ � s2 .xi C h/g fs1 .xi/ � s1 .xi C h/g : (10.39)

This estimator is non-robust, like the comparable auto-variogram estimator we
have already discussed (of which it is a generalisation). Lark (2003) has proposed
and demonstrated robust estimators of the cross-variogram which should be used
with either s1 or s2 or both s1 and s2 containing outlying values.

It is notable that the cross-variogram estimator requires that we have paired
comparisons of both variables made at the same location. There are circumstances in
which few or none of our measurements on different variables are made at the same
location. For example, Papritz and Webster (1995) point out that when monitoring
change of soil properties over time (with s1 equal to the variable at time 1 and s2 the
variable at time 2), there can be such problems since at the limit, we cannot measure
the same soil twice by destructive sampling and analysis. In these circumstances we
may estimate the pseudo-cross-variogram introduced by Clark et al. (1989) defined
by Myers (1991) as

b�P
2;1.h/ D Var Œs2 .xi/ � s1 .xi C h/� ; (10.40)

where Var[] denotes the variance of the term in brackets. While the pseudo-cross-
variogram allows us to extract information on spatial covariation where variables
are not measured at the same locations, it does require more restrictive assumptions,
and in practice these amount to the assumption of weak rather than only intrinsic
stationarity.

In order to use the cross-variogram, we must model it along with the correspond-
ing auto-variograms. In the multivariate case, it is necessary but not sufficient to
use authorised variogram functions; since a model co-regionalisation comprising
authorised functions fitted separately to the cross, the auto-variograms is not
necessarily positive definite. The most widely recommended strategy to ensure
a positive-definite model of co-regionalisation is to use a linear model of co-
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regionalisation (LMCR). In the LMCR it is assumed that all the constituent random
functions are linear combinations of a common set of independent random functions
of mean zero and unit variance, Yl

k .x/ (l is an index not a power). Thus

Su .x/ D �u C

L
X

lD0

nl
X

kD1

al
u;kYl

k .x/ ; (10.41)

where �u is the mean of the random function. The coefficients al
u;k are specific to

the random functions Su(x) and Yl
k .x/. As stated above the random functions Yl

k .x/
are mutually independent, but if two such functions have a common index l, then
they have the same spatial correlation structure. There are nl such structures with
variogram functions gl(h). It can be shown that the cross-variograms of any two of
the correlated random variables Su and Sv can be expressed as a linear combination
of the L C 1 basic variogram functions:

�uv .h/ D

L
X

lD0

bl
u;vgl .h/ ; (10.42)

where

bl
u;v D

nl
X

kD1

al
u;kal

v;k:

Thus the cross-variogram matrix for Nw variables,

G .h/ 


2

6

6

6

6

6

4

�1;1 .h/ �1;2 .h/ : : : �1;Nw .h/
�2;1 .h/ : : : : �2;Nw .h/

: : : : :
:

:

�Nw;1 .h/ �Nw;2 .h/ : : : �Nw;Nw .h/

3

7

7

7

7

7

5

;

can be written as

G .h/ D

L
X

lD0

gl .h/ Sl; (10.43)

where

Sl 


2

6

6

6

6

6

4

bl
1;1 bl

1;2 : : : bl
1;Nw

bl
2;1 : : : : bl

2;Nw

: : : : :
:

:

bl
Nw;1 bl

Nw;2 : : : bl
Nw;Nw

3

7

7

7

7

7

5

:
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If the L C 1 matrices Sl, co-regionalisation matrices, are all positive semi-definite
and the L C 1 basic variogram functions are all authorised, then the LMCR has a
positive-definite covariance structure.

To fit an LMCR, we must find a set of variogram functions in the corresponding
co-regionalisation matrices that optimise a measure of the fit of G(h) to the point
estimates of the variograms, subject to the constraints on the co-regionalisation
matrices which we describe above. This is not trivial, particularly if the number
of variables is increased. Goovaerts (1997) describes how an LMCR may be fitted
by visual assessment and trial and error. A semiautomated procedure was devised
by Goulard and Voltz (1992). If the distance parameters of the basic variogram
functions are given, then this algorithm will find estimates of the corresponding co-
regionalisation matrices optimising the measure of the goodness of fit and meeting
the constraints on the co-regionalisation matrices. Kunsch et al.(1997) describe a
way of fitting the LMCR using a non-linear regression method to fit the distance
parameter and Goulard and Voltz’s (1992) algorithm to fit the co-regionalisation
matrices. Lark and Papritz (2003) show how the model can be fitted subject to
these constraints using simulated annealing. Fitting the LMCR with estimates of the
pseudo-cross-variogram is more complex but can be done under certain assumptions
discussed by Papritz et al. (1993) and by Lark (2002).

10.5.2 Cokriging

When we have an LMCR for two variables, then we can proceed to spatial prediction
by cokriging. The cokriging estimator is a linear predictor, like the kriging estimator
we have already discussed. If soil variable s1 is to be estimated at location x0 from
observations of s1, s2, : : : , sm at neighbouring locations, then the general linear
predictor is

bs1 .x0/ � �1 .x0/ D

nx0;1
X

iD1


i;1 fs1 .xi/ � �1 .xi/g C

m
X

jD2

nx0;j
X

iD1


i;j
˚

sj .xi/ � �j .xi/
�

;

(10.44)

where �j(xi) is the expected value of sj at xi. The cokriging estimator is the best
linear unbiased estimator best in the sense that the cokriging variance

�2C .x0/ D E
h

fbs1 .x0/ � S1 .x0/g
2
i

(10.45)

is minimised and unbiased in that E Œbs1 .x0/ � S1 .x0/� D 0. As with univariate
kriging, there are two alternative treatments of the local mean. The first is to
regard it either as a known constant value for all locations (simple cokriging) or
as an unknown value fixed within the neighbourhood about x0 from which kriged
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estimates are derived (the ordinary cokriging). The second approach is to model it as
a combination of known functions of location (simple cokriging with a trend). Here
we consider the first option under ordinary kriging version. Let variable 1 be su the
variable to be predicted from observations su(xi) and observations of a secondary
variable sv(xi) although this can be extended to a number of secondary variables.
With a similar rearrangement of Eq. 10.44) to that done above for univariate ordinary
kriging, it is clear that constraining the weights so that

nx0;u
X

iD1


i;u D 1

and

nx0;v
X

iD1


i;v D 0

will filter the (unknown) means from the estimator, while the resulting estimator
is unbiased. These are two independent constraints, so the kriging equations need
two Lagrange parameters. By a similar derivation to univariate ordinary kriging, we
obtain our cokriging equations which may be solved for the weights to be substituted
into the cokriging estimator

bsu .x0/ D

nx0;u
X

iD1


i;usu .xi/C

nx0;v
X

iD1


i;vsv .xi/ : (10.46)

There are three general instances in which we use cokriging. The classical case
is where the secondary variable is more densely sampled than the target variable,
and so the cross-covariance information allows us to obtain better predictions of the
target variable than we could using the data on that variable alone. An interesting
example of this approach is given by Leenaers et al. (1990). In general counting
for the cross-covariance structure will give improved predictions when the cross-
covariance structure includes information on scale-dependent relationships between
the variables, i.e. the co-dispersion coefficient changes with lag. If the co-dispersion
coefficient is constant, then the cross-covariance model adds no information.

When the primary and secondary variables are equally sampled, then there
is generally little advantage from cokriging in terms of improved precision of
estimates, but we do achieve coherence as discussed above. Cokriging linear
combinations of variables directly (such as the change variable where su and sv

are measurements of the same variable at time u and time v) is described in more
detail by Papritz and Fluhler (1994), and an example of this approach applied to soil
monitoring is given by Lark et al. (2006). One special case in which these properties
of cokriging are useful is when we work with compositional data, that is to say,
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variables which sum to a fixed value (typically 1, or 100%). In soil science we
are often interested in the sand, silt and clay content of soils. These are exhaustive
particle size classes, and the values sum to one. It is inappropriate to analyse the
proportions or percentages separately since separate OK predictions of sand, silt
and clay percentage are not guaranteed to sum to 100. An alternative is to apply
cokriging to the additive log-ratio of the particle size fractions. This methodology is
set out in detail by Pawlowsky-Glahn and Olea (2004), and Lark and Bishop (2007)
illustrate the method applied to data on soil particle size fractions.

A third instance is where we require information to support a decision which
depends on two or more variables and when we are interested in the uncertainty in
the information. In this case the joint prediction error, characterised by a covariance
matrix for kriging estimates, can be obtained as output from cokriging. Lark et al.
(2014) give an example in a study in the northern counties of the Irish Republic,
and we present this as an example of the application of cokriging.

Advice to farmers in Ireland on the risk of cobalt deficiency for grazing livestock
is based on the total concentration of cobalt and manganese in the soil. This
is because manganese oxides can bind cobalt, reducing its availability. Lark et
al. (2014) used data from a large regional survey of the soil. They conducted
two separate geostatistical analyses in two geological domains with contrasting
behaviour. Figure 10.11 shows the auto-variograms for Co and Mn and the cross-
variograms for both domains, using both the standard estimator in Eq. 10.39 and
a robust estimator from Lark (2003). The cokriged maps for Co and manganese
are shown in Fig. 10.12. From the cokriging estimates and covariance matrix of
cokriging errors, it was then possible, assuming jointly normal errors, to estimate the
probability that the soil concentrations at any location fell within a range of values
where a Co deficiency would be expected. This probability is mapped in Fig. 10.13.

We are most usually interested in multivariate methods of spatial prediction when
the soil variable of primary interest is costly or difficult to measure and so is sampled
relatively sparsely. However, one or more secondary variables are available which
are easy and/or cheap to measure and so can be sampled densely and are also thought
to contain information about the primary variable. Such variables may be remotely
sensed measurements of the earth’s surface, digital elevation models of terrain or
data from geophysical surveys. When it is plausible to treat our variables primary
and secondary as intrinsic random functions which conform to an LMCR, then the
cokriging described above provides the best linear unbiased estimator of the primary
variable given the secondary variable. There are other approaches that should be
considered, however. In particular, we can use the secondary variable as a fixed
effect in the REML–E-BLUP discussed above. This approach is known as kriging
with an external drift, and examples of this approach are given by Bourennane et al.
(1996).
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Fig. 10.11 Auto-variograms and cross-variograms for topsoil Co and Mn in two geological
domains (a, b) of the northern counties of Ireland using (solid symbol) the standard estimators
and (open symbol) a robust estimator, with fitted linear models of co-regionalisation (From Lark
et al. (2014), under CC-BY licence. https://creativecommons.org/licenses/by/3.0/)

https://creativecommons.org/licenses/by/3.0/


10 Classical Soil Geostatistics 331

F
ig

.1
0.

12
O

rd
in

ar
y

co
kr

ig
in

g
pr

ed
ic

tio
ns

of
(a

)
to

ps
oi

l
C

o
an

d
(b

)
to

ps
oi

l
M

n
co

nt
en

t
ac

ro
ss

th
e

no
rt

he
rn

co
un

tie
s

of
Ir

el
an

d.
C

oo
rd

in
at

es
ar

e
th

e
Ir

is
h

N
at

io
na

lG
ri

d
(F

ro
m

L
ar

k
et

al
.(

20
14

),
un

de
r

C
C

-B
Y

lic
en

ce
.h

ttp
s:

//c
re

at
iv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

/3
.0

/)

https://creativecommons.org/licenses/by/3.0/


332 R.M. Lark and B. Minasny

Fig. 10.13 Probability that the local Co and Mn content of soil indicates a risk of Co deficiency to
livestock computed from the cokriging predictions and their error covariance matrices (From Lark
et al. (2014), under CC-BY licence. https://creativecommons.org/licenses/by/3.0/)

10.6 Spatial Simulation

10.6.1 Simulation vs Prediction

We have discussed at length the problem of estimating a variable at a location from
a set of observations on the assumption that our data are a realisation of a random
function. Spatial simulation is a different problem. In simulation we draw several
different realisations of the random function that we assume to be realised in our
data. There are two general types of simulation. In unconditional simulation each
set of simulated values represents a realisation of a random function with specified
statistics (variogram, mean, histogram). In conditional simulation the realisation of
the random function from which our values are drawn has specified statistics as
in unconditional simulation, but is also required to reproduce the observed values
at locations where we have sampled. We can think of unconditional simulation as
drawing at random a set of values from a set of all possible realisations of a random
function with specified statistics, and conditional simulation is drawn at random
from a smaller subset of those sets of values which have the observed values at the
sample sites.

Why might we want to do simulation? A good deal of simulation is done for
pedometrical research or research in allied disciplines for a data with a realistic
pattern of spatial variation in order to test the behaviour of pedometrical methods
for estimation (e.g. Webster and Oliver 1992; Papritz and Webster 1995). But

https://creativecommons.org/licenses/by/3.0/
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simulation is a pedometrical tool in its own right, not simply a tool for research.
It is seen in Chap. 13 how simulation can be used to examine the propagation of
error in sources of information through models. If we generate multiple realisations
of a random function conditional on observations and then look at distribution of
simulated values at a particular location, these provide us with an estimate of the
conditional cumulative distribution function (ccdf) of the variable at the location
(Journel 1994a, b).

Conditional simulation is also used when we need to tackle problems where the
variable of interest is obtained by some complex non-linear process model and
our data are key model inputs. Consider for example the problem of predicting
concentration of pollutant in water from a borehole when a plume of the pollutant
has been released at the soil surface some distance away. The movement of
the pollutant can be modelled if we know among other things the unsaturated
conductivity functions of the soil at intervening points. This can only be measured at
a few sites. You might interpolate the conductivities at intervening sites by kriging.
However, since the model is non-linear, the fact that the kriged estimates of the
conductivity are necessarily much less variable than the true values (although each
estimate is unbiased) means that the simulated behaviour of the pollutant is a
biased estimate of the true behaviour. An alternative is to generate a conditional
simulation of the field of conductivities and to apply the model to these values.
Multiples of such realisations can be generated, and from these we may generate a
ccdf for an important model output such as the peak concentration of the pollutant
in the well water. Other examples could be given where we wish to explore the
aggregate impact on some region of some non-linear function of the spatially
variable soil property, e.g. Viscarra Rossel et al. (2001) use simulation to estimate
the cost function of different strategies for spatially variable application of lime to
agricultural fields.

10.6.2 Methods for Simulation

LU Decomposition The most straightforward method for spatial simulation is known
as LU decomposition. This is long established as a method to simulate correlated
variables; an account of its use in geostatistics is given by Davis (1987). The
name is somewhat misleading since it more properly describes the central algebraic
step of the process where we perform a factorisation of a matrix into lower (L)
and upper (U) triangular matrices. LU decomposition generates realisations of a
multivariate normal process. This means that, unless we can assume that our data
are from a multivariate normal process, we must transform them to normality.
This is done typically by a standard normal score transform where we order our
data values and replace each with a corresponding centile of a standard normal
variable. The transformed data are stored in a row vector s. We then test the
plausibility of bivariate normality for pairs of data (see Goovaerts 1997 for details)
and then estimate and model a variogram for the normal score transformation

http://dx.doi.org/10.1007/978-3-319-63439-5_13
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of the data. From this, via Eq. 10.3, we can then compute a covariance matrix
for the nodes at which we wish to simulate and the nodes at which we have
data on which the simulation is to be conditioned. Element [i,j] of covariance
matrix C therefore contains the covariance between node i and node j which,
under the stationarity assumption, depends only on the distance in space between
the nodes. We order the nodes so that our covariance matrix can be thought of
as four component matrices CD,D (covariance among conditioning data points),
CN,N (covariance among simulation nodes) and CN,D D CT

D,N (covariance between
conditioning data and simulation nodes), so

C D




CD;D CD;N

CN;D CN;N

�

: (10.47)

The Cholesky decomposition is a factorisation so that

C D LU D




LD;D 0D;N

LN;D LN;N

� 


UD;D UD;N

0N;D UN;N

�

; (10.48)

where 0D,N (D0T
N,D) is a D � N matrix of zeros. Now, if N standard independent

normal random variables are generated in column vector y, then a realisation of our
random variable is given in row vector

^
s by

^
s D LN;DLD;Ds C LN;Ny: (10.49)

The standard normal variable is then back transformed with the empirical normal
score transform originally used on the raw data.

In many ways this is the most theoretically satisfactory method for simulation.
Its major drawback in theoretical terms is the assumption of multivariate normality.
This assumption can never be disproved or proved for real data; the normal score
transform can ensure reasonable representation of the desired histogram only, which
is a necessary but not a sufficient condition for the multivariate assumption to be
plausible. The multivariate normal assumption can cause problems in applications
of simulation to the kinds of problem described above where we wish to use
the simulated field in a model. Because the multivariate normal distribution of a
set of data has maximum entropy, the extreme values of the distribution tend to
be disconnected spatially. Thus in our example of pollutant movement, we find
that regions with very large conductivity, which may occur in nature and have a
disproportionately large effect on transport through the soil, will not be adequately
reproduced by simulation. Another limitation of LU composition is computational.
The Cholesky factorisation step is computationally expensive, and commonly it is
impractical to simulate more than a few thousand data points. This is not a very
large two-dimensional array. Once the decomposition has been done, however, as
many realisations as required can be very rapidly computed.
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Pebesma and Heuvelink proposed the use of Latin hypercube sampling (LHS)
rather than complete random samples (Eq. 10.9) to more efficiently generate the
random field. In their simulation study, they found that LHS of size 20 can perform
equally as well as a simple random sample using 2,000 realisations.

Sequential methods Sequential simulation has been developed in response to the
limitations that the computational load of the Cholesky composition imposes on the
size of the fields that may be simulated using LU methods (Journel 1994b). A good
account is given by Goovaerts (1997). Consider the simple problem of simulating
a realisation of a random function at two locations x1 and x2, conditional on n data
in the set ”n. We may characterise the joint distribution of S(x1) and S(x2) by the
bivariate conditional cumulative frequency distribution

F .x1; x2I z1; z2 j�n / 
 Pr fs .x1/ � s1; s .x2/ � s2 j�n g : (10.50)

Following Bayes’ rule, we can write

F .x1; x2I s1; s2 j�n / D F .x2I s2 j�n; s .x1/ /F .x1I s1 j�n / (10.51)

where the condition of the first ccdf on the right-hand side refers to the n condi-
tioning data and one realisation generated at x1. This is why the simulated method
is sequential because the data of simulated modes are generated as realisations
of processes with conditional distribution functions conditioned on a sequence of
modes and, ultimately, the conditioning data.

The data are transformed to normality and the plausibility of the bivariate normal
assumption is tested. The conditional cumulative distribution function (ccdf) at the
first node to be simulated is specified as N (m,v) where m is a kriged estimate at
the node and v is the simple kriging variance. Note that simple kriging, ordinary
kriging or universal kriging can be used to generate m, but the simple kriging
variance must always be specified. Similarly an indicator transform can be used
if we wish to simulate indicator variables, but the simple indicator kriging must be
used to generate v. The simulation precedes sequentially from one simulation node
to another accumulating the simulated values as conditioning ones.

The sequential simulation procedure is efficient. It can be made more so. In
kriging there is a “screening effect” whereby the influence of a datum on a krige
estimate is masked by an intervening observation. Thus there is little loss of
information but a gain in speed if local ccdfs are calculated from all the conditioning
data but only the nearest neighbouring simulation modes. In fact the screening
effect can cause problems for reproducing long-range correlation structures. For
this reason it is sometimes preferred to simulate on a coarse sub-grid of modes and
then to “fill in” in intervening locations. Such multiple grids should be visited in a
sequence that is randomised between realisations.

In Fig. 10.14 we show five independent conditional simulations of soil copper
across our study area in the east of Scotland. These were obtained at the same
prediction sites as the kriging predictions in Fig. 10.9 by sequential Gaussian
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Fig. 10.15 Empirical conditional cumulative distribution function for topsoil lead content at a
site (coordinates 340,642) in the east of Scotland, obtained from 5,000 mutually independent
conditional simulations by sequential Gaussian simulation

simulation of the log-transformed variable. Each simulated value was then back
transformed to the original scale of measurement. In Fig. 10.15 we consider a single
location (coordinates 340,642). Here we simulated 5,000 independent realisations,
conditional on the data. The figure shows the empirical cumulative distribution
function (CDF) of these values, which is the conditional CDF of the variable at
that site (conditional on the geostatistical model and the data). We may read off the
value of the empirical CDF for some concentration of copper (here 5 mg kg�1) from
this graph. The value is 0.92, which allows us to estimate the conditional probability
that soil copper content at that location exceeds 5 mg kg�1 as 0.08 or 8%.

The usual sequential Gaussian simulation is necessarily tied to assumptions of
multivariate normality. These may be questionable and, as we discuss above in LU
context, inappropriate assumptions of multivariate normality can cause problems
for the simulation of conductivity fields or other variables where the connectedness
of large values can have a substantial effect on aggregate behaviour. This is the
motivation for recent studies of multiple-point geostatistics in soil science (e.g.
Meerschman et al. 2013).
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Chapter 11
Model-Based Soil Geostatistics

Ben P. Marchant

“A model’s just an imitation of the real thing”.

Mae West

11.1 Introduction

In Chap. 10, we described how classical geostatistical methods can be used to
interpolate measurements of soil properties at locations where they have not been
observed and to calculate the uncertainty associated with these predictions. The idea
that soil properties can be treated as realizations of regionalized random functions
in this manner has perhaps been the most significant ever in pedometrics (Webster
1994). The approach has been applied in thousands of studies for every imaginable
soil property at scales varying from the microscopic to the global and has greatly
enhanced our understanding of the spatial variability of soil properties.

However, despite its popularity amongst pedometricians, the classical geostatis-
tical methodology has met with some criticism (e.g. Stein 1999). This has primarily
been because of the subjective decisions that are required when calculating the
empirical semivariogram and then fitting the variogram model. When calculating
the empirical semivariogram, the practitioner must decide on the directions of the
lag vectors that will be considered, the lag distances at which the point estimates
are to be calculated and the tolerance that is permitted for each lag distance bin
(see Sect. 10.2). Furthermore, when fitting a model to the empirical variogram,
the practitioner must decide which of the many authorized models should be used,
what criterion should be applied to select the best fitting parameter values and the
weights that should be applied when calculating this criterion for the different point
estimates. Researchers have given some thought to how these selections should be
made. For example, the Akaike information criterion (Akaike 1973) is often used
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to select the authorized model that best fits the data. However, the formula used
to calculate the AIC when using the method of moments variogram estimator is
only an approximation and is very much dependent on how the fitting criterion is
weighted for different lag distances (McBratney and Webster 1986). The selection of
these weighting functions is a particular challenge since the uncertainty of the point
estimates and hence the most appropriate choice of weights depend on the actual
variogram which the user is trying to estimate. Further complications arise because
the same observations feature in multiple point estimates of the experimental
variogram, and some observations can feature more often than others. Therefore,
these point estimates are not independent (Stein 1999). Strictly this correlation
between the point estimates should be accounted for when fitting the model
parameters. The correlation can result in artefacts or spikes in the experimental
variogram that might be mistaken for additional variance structures (Marchant et al.
2013b).

In all of the choices listed above, different subjective decisions (or indeed
carefully manipulated choices) can lead to quite different estimated variograms and
in turn to quite different conclusions about the spatial variation of the soil property.
Therefore, there is a need for a single objective function that quantifies how appro-
priately a proposed variogram model represents the spatial correlation observed in
a dataset without requiring the user to make subjective decisions. Model-based
geostatistics (Stein 1999; Diggle and Ribeiro 2007) uses the likelihood that the
observations would arise from the proposed random function as such an objective
criterion. The likelihood function is calculated using the observed data without
the need for an empirical semivariogram. The variogram parameter values that
maximize the likelihood function for a particular set of observations correspond to
the best fitting variogram model. These parameters are referred to as the maximum
likelihood estimate. Once a model has been estimated, it can be substituted into the
best linear unbiased predictor (BLUP; Lark et al. 2006; Minasny and McBratney
2007) to predict the expected value of the soil property at unobserved locations
and to determine the uncertainty of these predictions. The relative suitability of
two proposed variograms can be assessed by the ratio of their likelihoods or the
exact AIC. Hence, it is possible to compare objectively fitted models which use
different authorized variogram functions. Rather than selecting a single best fitting
variogram, it is also possible to identify a set of plausible variograms according to
the closeness of their likelihoods to the maximized likelihood. Thus, the uncertainty
in the estimate of the variogram can be accounted for by averaging predictions
across this set of plausible variograms (Minasny et al. 2011).

The linear mixed model (LMM) is often used in model-based geostatistical
studies. The LMM divides the variation of the observations into fixed and random
effects. The fixed effects are a linear function of environmental covariates that
describe the variation of the expectation of the random function across the study
region. The covariates can be any property that is known exhaustively, such as
the eastings or northings, the elevation and derived properties such as slope or a
remotely sensed property. The random effects have zero mean everywhere, and
they describe the spatially correlated fluctuations in the soil property that cannot
be explained by the fixed effects.
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The model-based approach does have its disadvantages. The formula for the
likelihood function for n observations includes the inverse of an n � n square matrix.
This takes considerably longer to compute than the weighted difference between an
empirical semivariogram and a proposed variogram function. Mardia and Marshall
(1984) suggested that maximum likelihood estimation was impractical for n > 150.
Modern computers can calculate the likelihood for thousands of observations (e.g.
Marchant et al. 2011), but it is still impractical to calculate a standard likelihood
function for the tens of thousands of observations that might be produced by
some sensors. The use of the likelihood function also requires strong assumptions
about the random function. The most common assumption being that the random
effects are realized from a second-order stationary multivariate Gaussian random
function. Such a restrictive set of assumptions is rarely completely appropriate for
an environmental property and therefore the reliability of the resultant predictions
is questionable. One active area of research is the development of model-based
methodologies where these assumptions are relaxed.

The software required to perform model-based geostatistics has been made
available through several R packages such as geoR (Ribeiro and Diggle 2001)
and gstat (Pebesma 2004). The software used in this chapter has been coded in
MATLAB. It forms the basis of the Geostatistical Toolbox for Earth Sciences
(GaTES) that before the end of 2017 will be available at http://www.bgs.ac.uk/
StatisticalSoftware. The Bayesian analyses require the DREAM package (Vrugt
2016).

11.2 The Scottish Borders Dataset

We illustrate some of the model-based geostatistics approaches that have been
adopted by pedometricians by applying them to a set of measurements of the
concentrations of copper and cobalt in soils from the south east of Scotland
(Fig. 11.1). This dataset was analysed using classical geostatistical methods in
Chap. 10. The measurements were made between 1964 and 1982. At that time,
there were concerns that livestock grazing in the area were deficient in copper and/or
cobalt. Therefore, staff from the East of Scotland College of Agriculture measured
the field-mean extractable concentrations of these elements in more than 3500
fields. Full details of the sampling protocol and laboratory methods are provided by
McBratney et al. (1982). The dataset has been extensively studied using a selection
of geostatistical techniques (McBratney et al. 1982; Goovaerts and Webster 1994;
Webster and Oliver 2007). These authors have mapped the probabilities that the
concentrations of copper and cobalt are less than acceptable thresholds (1.0 and
0.25 mg kg�1, respectively) and related their results to the previously mapped soil
associations.

We consider a subset of the data. We randomly select 400 copper measurements
and 500 cobalt measurements from this dataset. The remaining copper observations
are kept for model validation (Fig. 11.2). We use soil information from the

http://www.bgs.ac.uk/StatisticalSoftware
http://www.bgs.ac.uk/StatisticalSoftware
http://dx.doi.org/10.1007/978-3-319-63439-5_10
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Fig. 11.1 Location of the
Scottish Borders study region
(shaded region) within Great
Britain

Fig. 11.2 Locations of (a) 400 copper observations used for calibration, (b) 500 cobalt observa-
tions used for LMCR calibration and (c) 2481 copper observations used for model validation. The
locations coloured red in (a) are the 50-point subset of these data, and the green crosses are the
locations of the predictions shown in Figs. 11.8 and 11.9. Coordinates are km from the origin of
the British National Grid

1:250,000 National Soil Map of Scotland (Soil Survey of Scotland Staff 1984).
These data are available under licence from http://www.soils-scotland.gov.uk/data/
soils. The study area contains eight soil types. We only consider four of these,
namely, mineral gleys, peaty podzols, brown earths and alluvial soils (Fig. 11.3),
within which more than 95% of the soil measurements were made. Our primary

http://www.soils-scotland.gov.uk/data/soils
http://www.soils-scotland.gov.uk/data/soils
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Fig. 11.3 Map of the soil types within the study region according to the 1:250,000 National Soil
Map of Scotland (Used with permission from the James Hutton Institute, © Crown copyright).
Coordinates are km from the origin of the British National Grid

objective is to use these data to map the concentration of copper and the probability
that it is less than 1.0 mg kg�1. We explore the extent to which the soil type
information and the observed cobalt concentrations can explain the variation of
copper concentrations and hence improve the accuracy of our maps. We validate our
maps using the remaining 2481 observations of copper. We explore the implications
of using fewer observations by repeating our analyses on a 50 sample subset of the
400 copper measurements (Fig. 11.2a). At the two sites marked by green crosses in
Fig. 11.2a, we describe the prediction of the copper concentration in more detail.
Site ‘A’ is 0.6 km from the nearest observation, whereas site ‘B’ is 1.3 km from an
observation.
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11.3 Maximum Likelihood Estimation

11.3.1 The Linear Mixed Model

We denote an observation of the soil property, in our case the concentration of cop-
per, at location xi by si D s(xi) and the set of observations by s D fs1, s2, : : : , sngT

where T denotes the transpose of the vector. We assume that s is a realization of an
LMM:

s D M“ C ©: (11.1)

Here, the M“ are the fixed effects and the © are the random effects. The design
matrix M is of size n � q where q is the number of covariates that are included in the
random effects model. The vector “ D (ˇ1,ˇ2, : : : ,ˇq)T contains the fixed effects
parameters or regression coefficients. Each column of M contains the value of a
covariate at the n observed sites. If the random effects include a constant term, then
each entry of the corresponding column of M is equal to one. A column of M could
consist of the values of a continuous covariate such as elevation or the output from
a remote sensor (e.g. Rawlins et al. 2009). Thus, the fixed effects include a term that
is proportional to the covariate. If the fixed effects differ according to a categorical
covariate such as soil type, then the columns of M include c binary covariates which
indicate the presence or absence of each of the c classes at each site. Note that if the
c classes account for all of the observations, then a constant term in the fixed effects
would be redundant.

The vector © contains the values of the random effects at each of the n sites.
The elements of © are realized from a zero-mean random function with a specified
distribution function. The n � n covariance matrix of the random effects is denoted
C(’) where ’ is a vector of covariance function parameters. The elements of
this matrix can be determined from any of the authorized and bounded variogram
functions described in Chap. 10 since

C.h/ D � .1/ � �.h/; (11.2)

where C(h) is a covariance function for lag h, � (h) is a bounded and second-order
stationary variogram and � (1) is the upper bound or total sill of the variogram. We
will focus on the nested nugget and Matérn variogram (Minasny and McBratney
2005) so that

C.h/ D

	

c0 C c1 if h D 0

c1G.h/ for h > 00 (11.3)

where

G.h/ D
1

2��1� .�/
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�h
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��
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p
�h

a

�

: (11.4)
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Here, � is the gamma function and Kv is a modified Bessel function of the second
kind of order v. The random effects model parameters are c0 the nugget, c1 the partial
sill, a the distance parameter and v the smoothness parameter. Jointly, there are four
random effect parameters, i.e. ’ D (c0, c1, a, �)T.

11.3.2 Coregionalized Soil Properties

In Sect. 10.4, we saw that it was possible to extend the classical geostatistical model
of a single soil property to consider the spatial correlation between observations
of two or more properties by using a linear model of coregionalization (LMCR).
Marchant and Lark (2007a) demonstrated how the LMM could also be extended
to include coregionalized variables. The LMCR consists of a variogram for each
soil property and a series of cross-variograms describing the spatial correlation
between each pair of properties. Each variogram or cross-variogram must have
the same variogram structure. This means they are based on the same authorized
models, and they have common spatial and, in the case of the Matérn model,
smoothness parameters. The nugget and sill parameters can differ for the different
soil properties. We denote these parameters by cd;e

0 and cd;e
1 , respectively, where the

d and e refer to the different soil properties. So, if d D e, these are parameters of a
variogram, whereas if d ¤ e, they are parameters of a cross-variogram. There are
further constraints to ensure that the LMCR leads to positive definite covariance
matrices. If we define matrices B0 and B1 by

B0 D

2

6

4

c1;10 � � � c1;v0
:::
: : :

:::

cv;10 � � � cv;v0

3

7

5 and B1 D

2

6

4

c1;11 � � � c1;v1
:::
: : :

:::

cv;11 � � � cv;v1

3

7

5 (11.5)

where v is the number of soil properties; then, both of these matrices must have a
positive determinant.

The LMCR can be incorporated into the LMM (Eq. 11.1) by altering the random
effects covariance matrix to accommodate the different variograms and cross-
variograms. In this circumstance, the observation vector s will include observations
of each of the v soil properties. It is likely that the random effects matrix M will
require sufficient columns to accommodate different fixed effects for each soil
property. If each variogram and cross-variogram consists of a nested nugget and
Matérn model, then element i, j of the random effects covariance matrix would be:

Ci;j D

(

c
vi;vj

0 C c
vi;vj

1 if hi;j D 0

c
vi;vj

1 G
�

hi;j
�

if hi;j > 0
; (11.6)

where the ith element of s is an observation of property vi, the jth element of s is
an observation of property vj and hi, j is the lag separating the two observations.

http://dx.doi.org/10.1007/978-3-319-63439-5_10\#Sec28


348 B.P. Marchant

In common with the LMCR from classical geostatistics, the cross-variogram
nuggets and sills must be constrained to ensure that the determinants of B0 and B1

are positive. For vi ¤ vj, the c
vi;vj

0 parameter only influences the covariance function
if there are some locations where both vi and vj are observed. If this is not the case,
then the parameter cannot be fitted. If v D 2, and both properties are observed at

some sites, then ’ D
�

c1;10 ; c
1;2
0 ; c

2;2
0 ; c

1;1
1 ; c

1;2
1 ; c

2;2
1 ; a; �

�T
.

11.3.3 The Likelihood Function

If the distribution function of the random effects is assumed to be multivariate
Gaussian, then the log of the likelihood function is equal to

ln l .sj’;“/DL .sj’;“/DConstant�
1

2
ln jC .’/ j�

1

2
.s�M“/TC.’/�1 .s�M“/ ;

(11.7)

where j j denotes the determinant of a matrix. The log-likelihood is the objective
function which we use to test the suitability of an LMM to represent the spatial
variation of a soil property.

The assumption of Gaussian random effects is restrictive and often implausible
for soil properties. For example, the histograms of observed copper and cobalt
concentrations in the Scottish Borders region are highly skewed (Fig. 11.4a, b).
A transformation s� D H(s) can be applied to the data so they more closely
approximate a Gaussian distribution. Figure 11.4c, d show the more symmetric
histograms that result when the natural log-transform, s� D ln(s), is applied to the
copper and cobalt concentrations. The Box-Cox transform might also be applied to
skewed data. It generalizes the natural log-transform via a parameter 
:

H.s/ D

(

ln.s/ if 
 D 0;
s
�1



otherwise:
(11.8)

If we assume that the observed data are multivariate Gaussian after the applica-
tion of a transformation, then the formula for the log-likelihood becomes

L .s j’;“ / D Constant�
1

2
ln jC .’/j �

1

2

�

s��M“
�T

C.’/�1
�

s��M“
�

C
Xn

iD1
ln .J fsig/

(11.9)

where J fsig D dH
ds is the derivative of the transformation function evaluated at s D si.

For the Box-Cox transform,
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Fig. 11.4 Histograms of the observations of (a) 400 soil copper concentrations, (b) 500 soil cobalt
concentrations, (c) the natural logarithm of the copper concentrations and (d) the natural logarithm
of the cobalt concentrations

ln .J fsig/ D .
 � 1/ ln .si/ ; (11.10)

and the corresponding function for the natural log-transform is found by setting

 D 0.

Once a fixed-effect design matrix, a covariance function and any transformation
have been proposed, the problem of maximum likelihood estimation is reduced
to finding the elements of b’ and b“ vectors which lead to the largest value of the
log-likelihood and hence of the likelihood. This can be achieved using a numerical
optimization algorithm to search the parameter space for these parameter values. In
the examples presented in this chapter, we use the standard MATLAB optimization
algorithm which is the Nelder-Mead method (Nelder and Mead 1965). This is a
deterministic optimizer in the sense that if it is run twice from the same starting
point, the same solution will result each time. It is prone to identifying local rather
than global maxima. Therefore, Lark et al. (2006) recommends the use of stochastic
optimizers such as simulated annealing which permit the solution to jump away
from a local maximum. In our implementation of the Nelder-Mead method, we run
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the algorithm from ten different starting points in an attempt to avoid the selection of
local maxima. The parameter space is constrained to ensure that negative variance
parameters or negative definite covariance matrices cannot result.

The optimization problem can be simplified by noting that the log-likelihood
function is maximized when

“ D
�

MTC.˛/�1M
��1

MTC.˛/�1s: (11.11)

Hence, there is only a need to search the ˛ parameter space, and the corre-
sponding optimal value of “ can be found by using the above formula. However,
it is still a computational challenge to find an optimal ˛ vector within a four- or
higher-dimensional parameter space. Diggle and Ribeiro (2007) suggest reducing
the problem further to a series of optimizations in a lower-dimensional parameter
space. They search for the optimal values of c0, c1 and a for a series of fixed v values.
Then they plot the maximum log-likelihood achieved (or equivalently the minimum
negative log-likelihood) against the fixed v and extract best of these estimates. This
plot is referred to as a profile-likelihood plot.

It is possible to fit LMMs of varying degrees of complexity by adding more
terms to the fixed and random effects. If we add an extra term to a model (e.g. an
extra column to the M matrix), then the maximized likelihood of the more complex
model will be at least as large as the likelihood of the simpler model. We need a
test to decide whether the improvement that is achieved by adding extra terms is
worthwhile. If an LMM is too complex, there is a danger of overfitting. This means
that the model is too well suited to the intricacies of the calibration data, but it
performs poorly on validation data that were not used in the fitting process.

If two LMMs are nested their suitability to represent the observed data can
be compared by using a likelihood ratio test (Lark 2009). By nested, we mean
that by placing constraints on its parameters it is possible to transform the more
complex model to the simpler model. For example, if one LMM included a Box-Cox
transform of the data and another model was identical except that the natural log-
transform was applied, then these two models would be nested. The more complex
model could be transformed to the simpler model by setting 
 D 0. We denote
the parameters of the complex model by ’1, “1 and the parameters of the simpler
model by ’0, “0. Under the null hypothesis that the additional parameters in the
more complex model do not improve the fit, the test statistic:

D D 2L .sj’1;“1/ � 2L .sj’0;“0/ (11.12)

will be asymptotically distributed as a chi-squared distribution with r degrees of
freedom. Here, r is the number of additional parameters in the more complex
model. Therefore, it is possible to conduct a formal statistical test to decide whether
the more complex model has a sufficiently larger likelihood than the simpler one.
However, the likelihood ratio test does not always meet our needs. An LMM with a
nugget and exponential variogram and an identical model except that the variogram
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is pure nugget would not be properly nested. This is because the more complex
model has two additional parameters, c1 and a, but only the first of these needs to
be constrained to c1 D 0 to yield the simpler model. Therefore, it is unclear what
the degrees of freedom should be in the formal test. Lark (2009) used simulation
approaches to explore this issue.

In this chapter, we calculate the AIC (Akaike 1973) for each estimated model:

AIC D 2k � 2L; (11.13)

where k is the number of parameters in the model. The preferred model is the one
with the smallest AIC value. This model is thought to be the best compromise
between quality of fit (i.e. the likelihood) and complexity (the number of param-
eters). The AIC does not require the different models to be nested.

11.3.4 The Residual Maximum Likelihood Estimator

Patterson and Thompson (1971) observed that there was a bias in variance param-
eters estimated by maximum likelihood. This bias occurs because the “ parameters
are estimated from the data and are therefore uncertain, whereas in the log-
likelihood formula, they are treated as if they are known exactly. This problem
is well known when considering the variance of independent observations. The
standard formula to estimate the variance of a population with unknown mean that
has been sampled at random is:

Var .S/ D
1

n � 1

Xn

iD1
.si � s/2 (11.14)

where n is the size of the sample and s is the sample mean. Since the variance
is defined as E[fS � E(S)g2], one might initially be surprised that the denominator
of Eq. 11.14 is n � 1 rather than n. However, it can be easily shown that if the
denominator is replaced by n because the mean of the population is estimated, the
expectation of the expression would be a factor of n/(n � 1) times the population
variance.

Patterson and Thompson (1971) devised a method for correcting the analogous
bias in the maximum likelihood estimates of random effects parameters. They
transformed the data into stationary increments prior to calculating the likelihood.
The likelihood of these increments was independent of the fixed effects and hence
the bias did not occur. The expression for the residual log-likelihood that resulted is:

LR .sj’/ D Constant C
1

2
ln jWj C

1

2
ln jC .’/j C

1

2
sTC.’/�1Qs; (11.15)

where W D MTC(’)�1M and Q D I � MW�1MTC(’)�1.
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11.3.5 Estimating Linear Mixed Models for the Scottish
Borders Data

We illustrate maximum likelihood estimation of an LMM using the 400 copper
concentration measurements from the Scottish Borders. We initially assume that
the fixed effects are constant and that a log-transform is sufficient to normalize
the data. Thus, we assume that the Box-Cox parameter œ is zero. In fact, when
the Box-Cox parameter was unconstrained, the increase to the log-likelihood was
negligible and did not improve the AIC. We estimated the c0, c1 and a parameters
for fixed v equal to 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75,
2.0 and 2.5. The profile-likelihood plot of the minimized negative log-likelihoods
that resulted is shown in Fig. 11.5a. The smallest negative log-likelihood occurred
for v D 0.1. When � was unfixed, a smaller negative log-likelihood resulted with
v D 0.12. The best fitting variogram is plotted in Fig. 11.5b. It sharply increases
as the lag is increased from zero, reflecting the small value of the smoothness
parameter. This maximum likelihood estimate of the variogram is reasonably
consistent with the empirical variogram (see Fig. 11.5b).

Figure 11.6 shows the maximum likelihood estimates of the variograms and
cross-variograms when the s vector contained the 400 observations of copper and
the 500 observations of cobalt. The natural log-transform was applied to each soil
property, and the fixed effects consisted of a different constant for each property.
Again, there is reasonable agreement between the maximum likelihood estimate
and the empirical variograms. However, some small discrepancies are evident.
The maximum likelihood estimate for cobalt has a longer range than might be

Fig. 11.5 (a) Plot of minimized negative log-likelihood of 400 ln copper concentrations for
different fixed values of v. The black cross denotes the minimized negative log-likelihood when
v is unfixed, (b) maximum likelihood estimate of the variogram (continuous line) of ln copper
concentrations and the corresponding method of moments point estimates (black crosses)
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Fig. 11.6 Maximum likelihood estimate of (a) the LMCR ln copper auto-variogram, (b) the
LMCR ln copper and ln cobalt cross-variogram and (c) the LMCR ln cobalt auto-variogram. The
black crosses are the corresponding method of moments point estimates

fitted to the empirical variogram, and the maximum likelihood estimate of the
cross-variogram appears to be consistently less than the corresponding empirical
variogram. This was probably caused by the constraints placed on the parameters,
such as the requirement that all the variograms had the same range.

In Table 11.1, we show the negative log-likelihood and AIC values that result
when different LMMs are estimated for the Scottish Borders data. The simplest
models only consider copper observations and assume constant fixed effects and a
pure nugget variogram. Then, the pure nugget variogram is replaced by a nugget
and Matérn model. The third model also replaces the constant fixed effects by ones
that vary according to the soil types displayed in Fig. 11.3. The final model considers
observations of both copper and cobalt and assumes that each of these properties has
constant fixed effects. The models are estimated for both the 50 and 400 observation
samples of copper. Both coregionalized models include 500 cobalt observations.

For both sample sizes, the negative log-likelihood decreases upon inclusion of
the Matérn variogram function and the nonconstant fixed effects. In the case of the
400 observation samples, the AIC also decreases in the same manner. However, for
the 50-point sample, the addition of these extra terms to the model causes the AIC
to increase. This indicates that there is insufficient evidence in the 50-point sample
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Table 11.1 Number of parameters (p), minimized negative log-likelihood (�L) and AIC value for
models with different fixed effects (M), variogram models, number of copper observations (nCu)
and number of cobalt observations (nCo)

nCu D 50 nCu D 400
M Variogram nCo p �L AIC �L AIC

Constant Nugget 0 2 �82.25 168.50 �640.26 1284.53
Constant Matérn 0 5 �81.36 172.72 �594.52 1199.04
Soil type Matérn 0 8 �78.20 172.39 �590.68 1197.37
Constant Matérn 500 9 �34.38 86.76 �225.26 468.52

to indicate that copper is spatially correlated or that it varies according to soil type.
For both sample sizes, the lowest AIC occurs when the 500 cobalt observations
are included in the model. Note that the models of coregionalized variables were
estimated by minimizing the negative log-likelihood function which included both
properties. However, the negative log-likelihood that is quoted in Table 11.1 is the
likelihood of the copper observations given both the estimated parameters and the
cobalt observations. This means that the corresponding AIC value is comparable to
those from the other three models.

11.4 Bayesian Methods and Variogram Parameter
Uncertainty

The model-based methods described in this chapter are compatible with Bayesian
methodologies which can be used to quantify the uncertainty of the random effects
parameters (Handcock and Stein 1993). Classical statistical methodologies assume
that model parameters are fixed. Generally, when applying classical or model-based
geostatistics, we look for a single best fitting variogram model and take no account
of variogram uncertainty. In Bayesian analyses, model parameters are treated as
probabilistic variables. Our knowledge of the parameter values prior to collecting
any data is expressed as a prior distribution. Then the observations of the soil
property are used to update these priors and to form a posterior distribution which
combines our prior knowledge with the information that could be inferred from the
observations.

Minasny et al. (2011) demonstrated how Bayesian approaches could be applied
to the spatial prediction of soil properties. They placed uniform priors on all
of the random effects parameters and then used a Markov chain Monte Carlo
(MCMC) simulation approach to sample the multivariate posterior distribution of
these parameters. Rather than a single best fitting estimate, this approach led to a
series of parameter vectors that were consistent with both the prior distributions and
the observed data. The MCMC approach generates a chain of parameter vectors
which follow a random walk through the parameter space. The chain starts at some
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value of parameters, and the log-likelihood is calculated. Then the parameters are
perturbed and the log-likelihood is recalculated. The new parameter values are
accepted or rejected based on the difference between the likelihoods before and
after the perturbation according to Metropolis-Hastings algorithm (Hastings 1970).
If the log-likelihood increases, then the new parameter vector is always accepted.
If the likelihood decreases, then the proposal might be accepted. The probability of
acceptance decreases as the difference in likelihood increases.

Under some regularity conditions, the set of parameter vectors that result
from the Metropolis-Hastings algorithm are known to converge to the posterior
distribution of the parameters. However, the algorithm requires careful tuning of
some internal settings within the algorithm. These settings particularly relate to the
distribution from which a proposed parameter vector is sampled. If this distribution
is too wide, then too many of the proposed parameter vectors will be rejected and the
chain will remain at its starting point. If the proposal distribution is too narrow, then
nearly all of the parameter vectors will be accepted, but the perturbations will be
small, and it will take a considerable amount of time to consider the entire parameter
space. Therefore Vrugt et al. (2009) developed a DiffeRential Evolution Adaptive
Metropolis (DREAM) algorithm to automate the selection of these internal settings
and to produce Markov chains that converge efficiently. The DREAM algorithm
simultaneously generates multiple Markov chains. The information inferred from
acceptances and rejections within each chain is pooled to select efficient proposal
distributions. MATLAB and R implementations of the DREAM algorithm are freely
available (Vrugt 2016; Guillaume and Andrews 2012).

We used the DREAM algorithm to sample parameters of the nested nugget and
Matérn model for both the 50 and 400 observations of ln copper. In each case, we
used four chains and sampled a total of 101,000 parameter vectors. The bounds on
the uniform prior distributions were zero and one fln(mg kg�1)g2 for c0 and c1, zero
and 40 km for a and 0.01 and 2.5 for v. For comparison, the variance of the ln copper
observations was 0.35. The first 1000 of the sampled vectors were discarded since
the MCMC was converging to the portion of parameter space that was consistent
with the observed data. This is referred to as the burn-in period. We used the R
statistic (see Vrugt et al. 2009) to confirm that the chain had converged. Successive
entries of the series of parameter vectors that remained were correlated because the
parameter vector was either unchanged or only perturbed a short distance. Therefore
every 100th entry of this series was retained. The final series contained 1000
vectors which were treated as independent samples from the posterior distribution
of the parameter vector. Figure 11.7 shows the 90% confidence intervals for the
variogram of each dataset. These confidence intervals stretch between the 5th and
95th percentiles of the semi-variances for each lag. It is evident that the variogram
from the 50 observation sample is uncertain across all lag distances. The uncertainty
is greatly reduced for the 400 observation sample.
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Fig. 11.7 Maximum likelihood estimates of the variogram for (a) 50 ln copper concentrations
and (b) 400 ln Cu concentrations. The grey shading indicates the 90% confidence interval for the
variogram function according to the MCMC sample of variogram parameters

11.5 Spatial Prediction and Validation of Linear Mixed
Models

11.5.1 The Best Linear Unbiased Predictor

Having estimated the fixed and random effects parameters b’ and b“, we can use
the LMM and the observations of the soil property to predict the expected value
and uncertainty of the possibly transformed soil property at a set of locations xp

where it has not been observed. We denote the fixed effects design matrix at these
locations by Mp, the matrix of covariances between the random effects of the soil
property at the observation and prediction locations by Cpo and the random effects
covariance matrix at the prediction locations by Cpp. These matrices are calculated
using the estimated b’ parameters. The best linear unbiased predictor (BLUP; Lark
et al. 2006; Minasny and McBratney 2007) of the expected value of the possibly
transformed soil property at the unobserved locations is:

bS�
p D E

�

s�
�

xp
��

D Mpb“ C CpoC�1
�

s� � Mb“
�

; (11.16)

and the corresponding prediction covariance matrix is:

V D
�

Mp � CpoC�1M
� �

MTC�1M
��1�

Mp � CpoC�1M
�T

C
�

Cpp � CpoC�1CT
po

�

:

(11.17)
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The first term in Eq. 11.17 accounts for the uncertainty in predicting the fixed
effects, whereas the second term accounts for the uncertainty in predicting the
random effects. The elements of the main diagonal of V, which we denote Vii,
are the total prediction variances for each site. Since we have assumed that s* is
Gaussian, we have sufficient information (i.e. the mean and the variance) to calculate
the probability density function (pdf) or cumulative density function (cdf) for s* at
each of the sites. Density functions are discussed in more detail in Sect. 14.2.2. We
might calculate the pdf for N equally spaced values of the variable with spacing �y
(i.e. yj D j�y for j D 1, : : : ,N). The formula for the Gaussian pdf is:

fj 
 f
�

yjjbS
�
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!2
9

=

;

(11.18)

If the density is zero (to numerical precision) for yi < yi and yi > yN , then the
area under the curve f will be one and the fj will sum to 1/�y. The cdf can then be
deduced from the fj:

Fj 
 Prob
�

si < yj
�

D �y
Xj

kD1
fk; (11.19)

In Fig. 11.8, we show these pdf and cdf for ln copper concentration at site
‘A’ based on the maximum likelihood estimate of the LMM for 400 copper
observations. The area of the grey-shaded region is equal to the probability that
ln copper concentration is negative (i.e. that the concentration of copper is less than
1 mg kg�1). This probability can be more easily extracted from the value of the cdf
when ln copper is equal to zero (Fig. 11.8b).

Fig. 11.8 Predicted (a) pdf and (b) cdf for ln copper at location ‘A’

http://dx.doi.org/10.1007/978-3-319-63439-5_14\#Sec4
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If we have a MCMC sample of variogram parameter vectors rather than a single
estimate, then we might calculate the pdf for each of these variograms. Then we
could calculate a pdf that accounted for variogram uncertainty by averaging these
individual pdfs and calculate the cdf using Eq. 11.19. This is an example of the
Monte Carlo error propagation method described in Sect. 14.4.2. In Fig. 11.9b, we
show the cdf of ln copper at site ‘A’ based on the 400 observation sample. The
grey-shaded region is the 90% confidence interval for this cdf using the MCMC
sample of variogram parameters to account for variogram uncertainty. It is apparent
that variogram uncertainty does not have a large effect on the cdf. However, when
the pdfs are based on the MCMC for 50 observations, a larger effect of variogram
uncertainty is evident (Fig. 11.9a). Recall that site ‘A’ is only 0.6 km from the
nearest observation. We will see in Sect. 11.6 of this chapter that such a prediction
is sensitive to uncertainty in the variogram parameters. When we repeat the exercise
at site ‘B’ which is 1.3 km from an observation, the effects of variogram uncertainty
are small using the MCMC samples based on both 50 and 400 observations.

The BLUP encompasses many of the kriging algorithms described in Chap. 10.
For example, when the fixed effects are constant, it performs the role of the ordinary
kriging estimator; when covariates are included in the fixed effects, it performs
the role of the regression or universal kriging predictor; and when multiple soil
properties are included in the observation vector, it performs the role of the co-
kriging estimator. Equations 11.16 and 11.17 lead to predictions on the same support
as each observation. If we wish to predict the soil property across a block that has
a larger support than each observation, then Cpo and Cpp should be replaced by
Cpo, the covariances between the observations and the block averages, and Cpp the
covariances between the block averages.

We previously noted that when multiple properties are included in the obser-
vation vector of an LMM, the nugget parameters for the cross-variograms can
only be estimated if there are co-located observations of the two properties. This
parameter will be required in the BLUP if we wish to predict one soil property
at the exact location where another one was observed or if we wish to know the
covariance between the predictions of the two properties at the same site. However,
this parameter is not required to produce maps of each soil property on a regular grid
that does intersect the observation locations or to calculate the prediction variances
for each property.

If a transformation has been applied to the observations then it will be necessary
to back-transform the predictions before they can be interpreted. If we simply
calculate the inverse of the transformation for bS�

p.i/, the prediction of the mean of
the transformed property at the ith prediction location, the result is the prediction
of the median of the untransformed property. The 0.5 quantile of the transformed
property has been converted to the 0.5 quantile of the untransformed property.
It is possible to back-transform every quantile of the cdf in this manner. It is
generally more difficult to determine the mean of a back-transformed prediction.
Instead, the back-transformed mean can be approximated through simulation of the
transformed variable. If the mean and variance of the transformed prediction for a

http://dx.doi.org/10.1007/978-3-319-63439-5_14\#Sec13
http://dx.doi.org/10.1007/978-3-319-63439-5_10


11 Model-Based Soil Geostatistics 359

Fig. 11.9 Predicted cdf (red line) and 90% confidence interval accounting for variogram uncer-
tainty (shaded area) of ln copper concentration at (a) site ‘A’ conditional on the 400 observation
samples and the MCMC sample of variogram parameters calibrated on the 50 observation
subsamples, (b) site ‘A’ conditional on the 400 observation sample and the MCMC sample of
variogram parameters calibrated on the same 400 observations, (c) site ‘B’ conditional on the
400 observation sample and the MCMC sample of variogram parameters calibrated on the 50
observation subsample and (d) site ‘A’ conditional on the 400 observation sample and the MCMC
sample of variogram parameters calibrated on the same 400 observations

site arebS�
p.i/ and V�

p.i/, respectively, then one might simulate 1000 realizations of the
Gaussian random variable with this mean and variance, apply the inverse transform
to each realization and then calculate the mean (or other statistics) of these back-
transformed predictions.

11.5.2 Validation of the LMM

It is important to validate an LMM to confirm that the predictions are as accurate
as we believe them to be. Close inspection of validation results might also reveal
patterns in the model errors that indicate that an additional covariate is required in
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the fixed effects or a further generalization is required in the random effects. Ideally,
validation should be conducted using a set of data that were not used to calibrate the
LMM. However, in some instances, data are sparse, and then there is little choice but
to carry out cross-validation. In leave-one-out cross-validation, the model is fitted to
all of the measurements, and then one datum, si say, is removed, and the remaining
data and the BLUP are used to predict the removed observation. The process is
repeated for all n observations.

When conducting either cross-validation or validation, we wish to look at both
the accuracy of the predictions and the appropriateness of the prediction variances.
We can assess the accuracy of predictions by looking at quantities such as the mean
error (ME),

ME D
1

n

Xn

iD1

n

si �bSi

o

; (11.20)

and the root mean squared error (RMSE),

RMSE D
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� 1
2

: (11.21)

The appropriateness of the prediction variances are often explored by calculating
the standardized squared prediction errors at each site:

�i D

n

si �bSi

o2

Vi
; (11.22)

where Vi is the prediction variance for bSi. If, as we expect, the errors follow a
Gaussian distribution, then the � i will be realized from a chi-squared distribution
with one degree of freedom. Pedometricians often calculate the mean ™ and median
Q™ of the � i and compare them to their expected values of 1.0 and 0.45 (e.g. Minasny
and McBratney 2007; Marchant et al. 2009). If they are properly applied, the ML
and REML estimators tend to ensure that ™ is close to 1.0. However, although the
average standardized error is close to its expected values, the set of � i values might
not be consistent with the chi-squared distribution. Deviations from this distribution
are often indicated by values of Q™ that are far from 0.45. If Q™ is considerably less
than 0.45, this might indicate that the LMM should have a more highly skewed
distribution function.

It can also be useful to consider the entire cdf of the standardized errors. If the
errors are Gaussian, then the

pi D ˆ�1
0;1

 

si �bSi
p

Vi

!

; (11.23)
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should be uniformly distributed between zero and one where ˆ�1
0;1 is the inverse cdf

for a Gaussian distribution of zero mean and unit variance. We want to confirm
that the pi is consistent with such a uniform distribution. This can be achieved
through the inspection of predictive QQ plots (Thyer et al. 2009). These are plots
of the n theoretical quantiles of a uniform distribution against the sorted pi values.
If the standardized errors are distributed as we expect, then the QQ plot should be a
straight line between the origin and (1,1). If all the points lie above (or, alternatively,
below) the 1:1 line, then the soil property is consistently under-/over-predicted. If
the points lie below (above) the 1:1 line for small theoretical values of p and above
(below) the 1:1 line for large theoretical values of p, then the predictive uncertainty
of the MM is under-/overestimated. Alternatively, Goovaerts (2001) uses accuracy
plots rather than QQ plots. In these plots, the [0,1] interval is divided into a series of
bins bounded by the (1 � p)/2 and (1 C p)/2 quantiles for p between 0 and 1. The two
plots differ in that each bin of the accuracy plot is symmetric about 0.5. Therefore
it is not possible to consider the upper and lower tail of the distribution separately.
In contrast, with QQ plots, we can see how well the left-hand tail of the distribution
is approximated by looking close to the origin of the plot, and we can examine how
the right-hand tail is approximated by looking close to (1,1).

11.5.3 Predicting Copper Concentrations in the Scottish
Borders

Figure 11.10 shows maps of the expectation of ln copper across the study region for
models listed in Table 11.1. The model with a pure nugget variogram is not included
since the predictions are constant. The map based on 50 copper observations and
with constant fixed effects is much less variable than the other predictions. More
features of the copper variation are evident when the soil type is added to the fixed
effects. However, there are obvious and possibly unrealistic discontinuities in the
predictions at the boundaries between different soil types. The model including
cobalt observations retains the detail of the variable fixed-effect model, but there
are no discontinuities. Further detail is added to all of the maps when 400 rather
than 50 copper observations are used. The hotspots of copper that are evident occur
close to urban centres.

The most striking feature in the validation results (Tables 11.2 and 11.3) is
the difference in performance for the models based on 50 observations of copper
and those based on 400 observations. When 400 observations are used, the cross-
validation and validation RMSEs are very similar and smaller than those for the
50-point sample. For the 50-observation sample, there is also a greater difference
between the cross-validation and validation results indicating that these models
might well have been overfitted. For both sample sizes, the largest RMSEs occur
for the pure nugget model, but there is little difference in the RMSEs for the other
three LMMs. The prediction variances for the LMMs calibrated on 400 observations
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Fig. 11.10 Median prediction of copper concentration (mg/kg) across the study region from (a)
BLUP using 50 Cu calibration data with constant fixed effects, (b) BLUP using 50 Cu calibration
data with fixed effects varying according to soil type, (c) BLUP using 50 Cu calibration data and
500 Co calibration data represented by an LMCR with constant fixed effects, (d) BLUP using
400 Cu calibration data with constant fixed effects, (e) BLUP using 400 Cu calibration data with
fixed effects varying according to soil type and (f) BLUP using 400 Cu observations and 500 Co
observations represented by an LMCR with constant fixed effects

also appear to be more accurate than those based on the 50 observation sample.
The mean standardized prediction errors upon cross-validation and validation for
all models calibrated on 400 copper observations are between 0.98 and 1.00, and
the median standardized prediction errors range between 0.38 and 0.47. Hence
both quantities are close to their expected values of 1.0 and 0.45. In the case
of the 50 observation samples, the ranges of these statistics are wider, stretching
between 0.78 and 1.34 for the mean and 0.32 and 0.67 for the median. The cross-
validation standardized prediction errors are closer to their expected values than the
corresponding validation values. Again, this is an indication of overfitting when only
using 50 observations. There is also evidence of overfitting in the QQ plot for the
LMM with constant fixed effects and calibrated on 50 observations (Fig. 11.11a).
The validation plot deviates a large distance from the 1:1 line. All of the other QQ
plots more closely follow the 1:1 line although some improvement in using the larger
sample size is evident.
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Table 11.2 Mean error (ME) and root mean squared error (RMSE) upon leave-one-out cross-
validation and validation of models for ln copper with different fixed effects (M), variogram
models, number of copper observations (nCu) and number of cobalt observations (nCo)

Calibration Validation
M Variogram nCu nCo ME RMSE ME RMSE

Constant Nugget 50 0 0.000 0.68 0.092 0.60
Constant Matérn 50 0 0.009 0.66 0.045 0.74
Soil type Matérn 50 0 0.011 0.64 0.023 0.58
Constant Matérn 50 500 �0.001 0.65 0.048 0.54
Constant Nugget 400 0 0.000 0.60 0.028 0.59
Constant Matérn 400 0 0.002 0.50 0.063 0.51
Soil type Matérn 400 0 0.002 0.50 0.011 0.50
Constant Matérn 400 500 0.002 0.50 0.013 0.50

Table 11.3 Mean standardized prediction errors
�

™
�

, median standardized prediction errors
�

Q™
�

and mean error in QQ plot
�

Qe

�

upon leave-one-out cross-validation and validation of models for
ln copper with different fixed effects (M), variogram models, number of copper observations (nCu)
and number of cobalt observations (nCo)

Calibration Validation
M Variogram nCu nCo

�

™
� �

Q™
�

Qe

�

™
� �

Q™
�

Qe

Constant Nugget 50 0 1.02 0.61 0.000 0.80 0.38 0.040
Constant Matérn 50 0 1.03 0.49 �0.007 1.34 0.67 0.197
Soil type Matérn 50 0 1.08 0.62 �0.022 0.90 0.38 0.012
Constant Matérn 50 500 1.03 0.33 �0.003 0.78 0.32 0.019
Constant Nugget 400 0 1.00 0.47 �0.002 0.99 0.45 0.012
Constant Matérn 400 0 1.00 0.42 0.003 0.99 0.39 0.028
Soil type Matérn 400 0 1.00 0.41 0.002 1.00 0.38 �0.001
Constant Matérn 400 500 1.00 0.44 0.003 0.98 0.39 0.000

11.6 Optimal Sample Design

It is often costly to obtain soil samples from a study area and then analyse them
in the laboratory to determine the properties of interest such as the concentrations
of cobalt and copper in the Scottish Borders survey. Therefore, it can be important
to optimize the locations where the samples are extracted from so that an adequate
spatial model or map can be produced for the minimum cost. Many spatial surveys
have been conducted using a regular grid design (see examples in Webster and
Oliver 2007) since this ensures that the observations are fairly evenly distributed
across the study region and that the kriging variances are not unnecessarily large at
any particular locations. Also, it is relatively easy to apply the method of moments
variogram estimator to a grid-based sample since the variogram lag bins can be
selected according to the grid spacing. Some authors (e.g. Cattle et al. 2002) have
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Fig. 11.11 QQ plots resulting from leave-one-out cross-validation of the calibration copper data
(black line) and validation of the validation copper data (red line). The predictors and observations
for plots (a–f) are identical to those in Fig. 11.10

included close pairs of observations in their survey designs since these ensure
that the variogram can be reliably estimated for short lag distances. However,
the decision as to how much of the sampling effort should be allocated to even
coverage of the study region and how much to estimating the spatial model over
short distances is often made in a subjective manner.

The kriging or prediction variance (Eq. 11.17) can form the basis of a more
objective criterion for the efficient design of spatial surveys. If the random effects are
second-order stationary and Gaussian, then the prediction variance does not depend
on the observed data. If the variogram model is assumed to be known, then prior to
making any measurements, it is possible to use Eq. 11.17 to assess how effective a
survey with a specified design will be. Alternatively, we can select the configuration
of a specified number of sampling locations that lead to the smallest prediction
variance.

Van Groenigen et al. (1999) suggested an optimization algorithm known as
spatial simulated annealing (SSA) to perform this task. The n samples are initially
positioned randomly across the study region and the corresponding kriging variance
(or any other suitable objective function) is calculated. Then the position of one of
these samples is perturbed a random distance in a random direction. The kriging
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variance is recalculated. If it has decreased, then the perturbation is accepted. If the
kriging variance has increased, then the perturbation might be accepted. In common
with the DREAM algorithm, described in Sect. 11.4 of this chapter, the probability
of acceptance decreases with the magnitude of the increase in the objective function
according to the Metropolis-Hastings algorithm (Hastings 1970). However, in
contrast to the DREAM algorithm, the probability of acceptances also decreases
as the optimization algorithm proceeds. The potential to accept perturbations that
increase the kriging variance is included to ensure that the optimizer does not
converge to a local rather than global minimum. The gradual decrease in the
probability of such an increase ensures that a minimum is eventually reached. If
a perturbation is rejected, then the sample is returned to its previous location. The
SSA algorithm continues, perturbing each point in turn until the objective function
settles to a minimum.

We illustrate the application of the SSA algorithm by optimizing 50 location
sample schemes for the Scottish Borders study area in Fig. 11.12. In all of the plots
within this figure, we consider a soil property where the random effects are realized
from a Gaussian random function with a nested nugget and Matérn covariance
function with c0 D 0.5, c1 D 0.5, a D 10 km and v D 0.5. The kriging variance
is the objective function for the designs shown in Fig. 11.12a, b. In plot (a), the
fixed effects are assumed to be constant. The optimized sample locations are spread
evenly across the region. The locations are randomly allocated to the four different
soil types (Fig. 11.12d) with the majority of samples being situated in the most
prevalent brown earth class. When the fixed effects are assumed to vary according
to soil type, the optimized samples are still fairly evenly distributed across the
region. However, the number of locations that are situated in the less prevalent soil
classes increases (Fig 11.12e). This ensures that a reasonably accurate estimate of
the fixed effects can be calculated for each soil type. When Brus and Heuvelink
(2007) optimized sample schemes for universal kriging of a soil property with an
underlying trend that was proportional to a continuous covariate, they found that
the soil was more likely to be sampled at sites where this covariate was particularly
large or particularly small. This ensured that the gradient of the trend function could
be reasonably accurately estimated.

In addition to spatial prediction, the set of observed samples should also be
suitable for estimating the spatial model. Therefore, Marchant and Lark (2007b)
and Zhu and Stein (2006) expanded the objective function to account for uncertainty
in estimating the spatial model or variogram. These authors noted that for a linear
predictor such as the BLUP,

bSp.k/ D œTs; (11.24)

wherebSp.k/ is the prediction of the expectation of S at the ith prediction site, œ is
a length n vector of weights and s is a length n vector of observations; the extra
contribution to the prediction variance resulting from variogram uncertainty could
be approximated by a Taylor series:
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Fig. 11.12 Optimized sampling locations where the objective function is (a) the kriging variance
with no fixed effects, (b) the kriging variance with fixed effects varying according to soil type and
(c) the kriging variance plus the prediction variance due to variogram uncertainty with fixed effects
varying according to soil type. Plots (d–f) show the distribution of sampling locations amongst soil
types for the design above. The soil types are (1) alluvial soils, (2) brown earths, (3) peaty podzols
and (4) mineral gleys
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where �2 is the expected squared difference between the prediction at the ith site
using the actual variogram parameters ’, and the prediction at this site using the
estimated parameters, b’; r is the number of variogram parameters and @œ

@˛i
is the

length n vector containing partial derivatives of the œ weights matrix with respect to
the ith variogram parameter. The covariances between the variogram parameters can
be approximated using the Fisher information matrix F (Marchant and Lark 2004):
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Here, Œ�ij denotes element i, j of the matrix inside the brackets, @C
@˛i

is the n � n
matrix of partial derivatives of the covariance matrix C with respect to ’i and Tr
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denotes the trace or sum of elements on the main diagonal of the matrix that follows.
The @œ

@˛i
can be calculated using a numerical approximation (e.g. Zhu and Stein 2006)

although Marchant and Lark (2007b) noted the standard linear algebra relationship
that if

L D A�1b; (11.27)

then
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Thus, this equation can be used to exactly calculate the @œ
@˛i

matrices for the
universal kriging predictor formulation of the BLUP which is written in the form
of Eq. 11.27 with:
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where ® is the length q vector of Lagrange multipliers, 0q,q is a q � q matrix of zeros
and Cp(i)o is the ith row of matrix Cpo. For most authorized covariance functions,
the elements of the @C

@˛i
that are required to calculate Eq. 11.26 and Eq. 11.28 can

be determined exactly. However, in the case of the Matérn function, numerical
differentiation remains the most practical method to calculate @C

@�
.

Figure 11.12c shows an optimized 50-location design that results when the
objective function is the prediction variance (assuming that the fixed effects vary
according to soil type) plus the �2. In this case, the sampling locations are less
evenly spread across the study region. Short transects of close locations are evident
which are suitable for estimating the spatial covariance function over small lags. The
prediction variance and £2 for this design are mapped in Fig. 11.13a, b, respectively.
The prediction variance is smallest close to sampling locations and increases for
locations where there are no nearby samples and that are at the boundary of the
region. The additional component of uncertainty because of the estimation of the
spatial model is largest close to sample locations and decreases at locations where
there are no nearby samples.

As previously discussed in Sect. 10.2, there is one obvious flaw in this strategy to
optimize sample designs. In reality, the spatial model is not known prior to sampling,
and therefore, it is not possible to calculate the prediction variance. A spatial model
must be assumed, perhaps using the results of previous surveys of the soil property
at similar locations or based on a reconnaissance survey (e.g. Marchant and Lark
2006). Alternatively, a prior distribution might be assumed for each covariance
function parameter and the objective function averaged across these distributions
(Diggle and Lophaven 2006). Also, the prediction variance cannot be calculated

http://dx.doi.org/10.1007/978-3-319-63439-5_10\#Sec2
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Fig. 11.13 (a) The kriging variance with fixed effects varying according to soil type for the
optimized sample design in Fig. 11.12c. (b) The contribution to the prediction variance due to
variogram uncertainty for the same sample design

prior to sampling if the property of interest has a skewed distribution, since the
prediction variances vary according to the observed data. Marchant et al. (2013a)
demonstrated how simulation could be used to optimise a multi-phase survey in
these circumstances.

11.7 Conclusions

The use of model-based rather than classical geostatistical methods removes many
of the subjective decisions that are required when performing geostatistical analyses.
The LMM is flexible enough to incorporate linear relationships between the soil
property of interest and available covariates and to simultaneously represent the
spatial variation of multiple coregionalized soil properties. The log-likelihood is
an objective function that can be used to compare proposed model structures and
parameters. Since a multivariate distribution function is specified in the model, it
is possible to predict the complete pdf or cdf of the soil property at an unsampled
location. From these predicted functions, one can easily determine the probability
that the soil property exceeds a critical threshold (e.g. Li et al. 2016).

The primary disadvantages of the model-based methods are the time required
to compute the log-likelihood and the requirement to specify the multivariate
distribution function from which the soil observations were realized. Maximum
likelihood estimation of an LMM for more than 1000 observations is likely to take
several hours rather than the seconds or minutes required to estimate a variogram
by the method of moments. However, we have seen that the uncertainty in LMM
parameters estimated from a 400 observation sample have little effect on the
uncertainty of the final predictions. Therefore, when estimating an LMM for a large
number of observations, it is reasonable to subsample the data. The complete dataset
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should be used when using the BLUP. Stein et al. (2004) suggested an approximate
maximum likelihood estimator. This uses all of the data but is faster to compute
because it ignores some of the covariances between observations. We have described
how the standard assumptions that the random effects of an LMM are realized from
a multivariate Gaussian random function can be relaxed. A Box-Cox or natural
log-transform can be applied to skewed observations so that their histogram more
closely approximates that of a Gaussian distribution. Alternatively, it is possible
to write the log-likelihood function in a different form that is compatible with
any marginal distribution function (Marchant et al. 2011). The assumption that the
expected value of the random variable is constant can be relaxed via the fixed effects
of the LMM. Some authors have also explored strategies to permit the variability of
the random variable to be related to a covariate (e.g. Lark 2009; Marchant et al.
2009; Haskard et al. 2010).

The model-based methods described in this chapter are also compatible with the
modelling of space-time variation (e.g. Heuvelink and van Egmond 2010). However,
space-time models do require more flexible models for the covariance function
because the pattern of temporal variation is likely to be quite distinct from the
temporal variation. De Cesare et al. (2001) review the covariance functions that are
commonly used for this purpose. Such models might also be used to represent the
spatial variation of soil properties in three dimensions when the vertical variation
is quite different to the horizontal variation (e.g. Li et al. 2016). The same models
could be estimated by classical methods. However, these models contain multiple
variogram structures, and it is challenging to appropriately select the different lag
bins and fitting weights required for each of these.
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Chapter 12
Digital Mapping of Soil Classes and Continuous
Soil Properties

Brendan P. Malone, Nathan P. Odgers, Uta Stockmann, Budiman Minasny,
and Alex. B. McBratney

“Soils have shape and area, breadth and width, as well as
depth”.

Charles E. Kellog, 1949

12.1 General Soil Mapping Concepts

12.1.1 Conventional Soil Mapping

Soil is often described as mantling the land more or less continuously with the
exception being where there is bare rock and ice (Webster and Oliver 2006). Our
understanding of soil variation in any region is usually based on only a small number
of observations made in the field. Across the spatial domain of the region of interest,
predictions of the spatial distribution of soil properties are made at unobserved
locations based on the properties of the small number of soil observations. There
are two principal approaches for making predictions of soil at unobserved locations.
The first approach subdivides the soil coverage into discrete spatial units within
which the soils conform to the characteristics of a class in some soil classification
(Heuvelink and Webster 2001). The second approach treats soils as a suite of
continuous variables and attempts to describe the way these variables vary across
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the landscape (Heuvelink and Webster 2001). The second approach is necessarily
quantitative, as it requires numerical methods for interpolation between the locations
of actual soil observations.

Because of its roots in geological survey and biological taxonomy, virtually
all of the national soil survey programmes carried out across the world during
the twentieth century mapped the distribution of soils using the first approach.
Researchers including Simonson (1989), Arnold (2006) and Hewitt et al. (2008)
have written exhaustively about the techniques and procedures required to make
a soil map with this approach. In the first step, a soil surveyor makes a detailed
observation of the physical landscape in order to relate characteristics of the
soil with landscape features. Often ancillary information, including aerial photos,
geology, vegetation and topographic maps, are useful aids in this process. In so
doing the surveyor develops a detailed conceptual model that can be used to infer
soil characteristics at a given site in the landscape. This conceptual model relies
heavily on the tacit knowledge of the soil surveyor since the depth of his soil-
landscape knowledge is dependent on the degree of his skill and prior experience
(Hudson 1992). The third step involves applying this conceptual model across
the survey area to predict at unobserved locations. Generally less than 0.001%
of the survey region is actually observed (Burrough et al. 1971). The conceptual
model is transferred to a cartographic model—usually on an aerial photo base—by
delineating areas of the landscape that have the same soil-landscape relationships.
These areas belong to map units, which are comprised of assemblages of soil classes
belonging to some classification system.

The maps that result from this process are commonly known as choropleth or
area-class maps because each delineation, or polygon, in the map belongs to one
and only one category (Wright 1944). The category is usually a soil map unit.
The mapping assumes, albeit implicitly, that soil variation within delineations is
unimportant and that abrupt changes occur at the polygon boundaries (Burrough
1989; Heuvelink and Huisman 2000). Burrough et al. (1997) labelled this kind
of mapping double crisp because the identified soil groups are supposed to be
crisply delineated in both taxonomic space (the space defined by the soil properties)
and geographic space. Unfortunately, this soil mapping concept is at odds with
the continuous nature of soil variability and has been questioned by numerous
researchers (e.g. Webster and Cuanalo de la Cerda 1975; Nortcliff 1978; Nettleton
et al. 1991). The creation of conventional soil maps draws upon the experience and
skills of the soil surveyor and the tacit knowledge that is acquired and nuanced over
a number of years. A criticism levelled at this heuristic approach to soil mapping
is that the learned concepts are generally unfalsifiable and therefore unverifiable in
any objective sense (Hewitt 1993; Lagacherie et al. 1995).

Because of the limitations inherent in soil maps made using traditional
approaches, their application to the resolution of sophisticated and quantitative
problems is limited. For example, much legacy soil information is qualitative in
nature. The cartographic scale often limits the application of legacy mapping to
resolve particular questions (Hartemink et al. 2008). The cost and time required to
compile a soil map using traditional methods is expensive, so it is usually prohibitive
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to compile specific maps to suit specific purposes. Finally, while polygon mapping
can be rasterised in order to be integrated into modern raster-based analytical
procedures, the inherent scale mismatch between the relatively coarse-detailed soil
polygons and the relatively fine-detailed terrain or remotely sensed rasters means
that the fidelity of information that traditional soil mapping brings to quantitative
analyses is often relatively low.

12.1.2 Quantitative Representation of Soil Variability

Electronic computers were introduced to soil science in the early 1960s, and this
made the application of intensive mathematical operations on soil data a practical
proposition for the first time (Heuvelink and Webster 2001).

12.1.2.1 Fuzzy Sets

A major advance was the introduction of a logic that enabled a relaxation of the
traditional double-crisp model of soil variation (Burrough et al. 1997). This logic,
called fuzzy logic, was first introduced by Zadeh (1965) as part of his fuzzy set
theory. Fuzzy logic is a generalisation of traditional Boolean logic and enables the
expression of truth on a continuous scale (e.g. ‘degree of truth’) rather than a binary
scale (‘true’ or ‘false’). In the same way, fuzzy sets are generalisations of crisp sets.
In both cases an individual, x, has a membership, �, in a set or class c D 1,2, : : : k.
In a crisp set, membership is binary, and � is a discrete variable. Hence x is a
member of class c if its membership, �, is 1 only; i.e. �c(x) D 1. Conversely it is not
a member of class c if �c(x) D 0. Since the sum of memberships across all classes
is 1, i.e.

Pk
cD1�c.x/ D 1, it implies that in a crisp system an individual can only be

a member of one and only one class at once.
On the other hand, fuzzy logic allows for a partial degree membership in

any class; � is a continuous variable. In this case �c(x) D [0, 1], and since the
memberships sum to 1, it implies that x can have partial membership in several
classes simultaneously.

McBratney et al. (1992), McBratney and de Gruijter (1992), Odeh et al. (1992),
Lagacherie et al. (1997) and Grunwald et al. (2001) provide comprehensive discus-
sions of the application of fuzzy sets in soil science. Fuzzy sets have found particular
application in soil classification (see Chap. 8) but have also been applied in land
evaluation, modelling and simulation of soil processes, fuzzy soil geostatistics, soil
quality indices and fuzzy measurement of imprecisely defined soil phenomena.
Though useful, fuzzy set theory has not been widely adopted for soil mapping
(Grunwald and Lamsal 2006). One reason is possibly the difficulty in interpreting
the outputs. For example, instead of one map of a given soil attribute, there are
potentially many for a single region of interest.

http://dx.doi.org/10.1007/978-3-319-63439-5_8
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12.1.2.2 Spatial Modelling

Soil classification systems and the practice of mapping soils have developed side
by side since soil survey programmes began in the early and mid-twentieth century
across the world (Brown 2006). The language instilled in soil classifications and
descriptions thereof has been suitable for communicating soil information among
people with knowledge of soils. Communicating soil information to non-soil
science-minded people (but who have an interest and need for soil information)
has proven difficult because (1) of abstract technical jargon and (2) they have
a preference for soil information that describes the variability of soil properties
across a survey region (Sanchez et al. 2009). Mapping the spatial variability of soil
properties requires the use of geospatial prediction models as well as incorporating
gridded or raster-based data models to make predictions onto and display maps (thus
a trend away from the polygon data model).

The basic premise behind all digital soil mapping is that given a set of samples of
the soil (classes or attributes) and a suitable model we can make predictions of the
soil at unsampled locations. When we refer to soil classes we often mean those that
are part of an established soil classification system, although we can make spatial
predictions of bespoke classes too (e.g. Odgers et al. 2011; Triantafilis et al. 2001).
When we refer to soil attributes we usually mean measurable properties like its pH,
electrical conductivity or particle size fractions among many others. It is possible
to distinguish between purely spatial models and environmental correlation models
that relate observations to other characteristics of the landscape (McBratney et al.
2003). Purely spatial approaches appeared first because rasters of environmental
characteristics did not become widely and readily available until the late 1970s.

12.1.2.3 Purely Spatial Approaches

The first purely spatial modelling approaches applied to soil attribute prediction
were based on trend surface analysis. In simple terms, trend surfaces are low-order
polynomials of spatial coordinates. In other words, they predict soil attributes solely
as a function of the components of spatial position. Davies and Gamm (1970) were
some of the first researchers to apply this technique in soil science. They made
predictions of soil pH in Kent in England.

Some other purely spatial approaches focused on modelling local variation in
soil attributes. Examples include nearest-neighbour interpolation, inverse-distance-
weighted interpolation and smoothing splines. These approaches have been dis-
cussed by Laslett et al. (1987) and Burrough and McDonnell (1998).

By far the most well-known and widely applied purely spatial modelling
approaches are based on geostatistics—the so-called regionalised variable theory
developed in the 1960s and 1970s by French mathematician and geologist Georges
Matheron. By treating soil attributes as regionalised variables, kriging interpolation
could be used to model more complex spatial patterns than was previously possible
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(McBratney et al. 2003). Kriging was introduced to soil science in the 1980s
(Burgess and Webster 1980a, 1980b; Webster and Burgess 1980). Chapters 10 and
11 describe geostatistics in greater detail.

12.1.2.4 Environmental Correlation

Researchers have used statistics to quantify relationships between soil and landscape
parameters for several decades. Initial work focussed on understanding the variabil-
ity in soil attributes within and between soil map units (e.g. Wilding et al. 1965;
Protz et al. 1968). Other work focussed on establishing numerical relationships
between soil attributes and position along a hillslope (e.g. Ruhe and Walker 1968).
Later work sought to understand soil distribution in a more multivariate way by
including information on vegetation, geology and topography (e.g. Shovic and
Montagne 1985), but such models were not put into a framework for spatial
prediction until the early 1990s once computing power and raster technology were
sufficiently developed. Bell et al. (1994) were one of the first to do so. They created
maps of soil drainage class across a study area in Pennsylvania in the United States
using a soil-landscape model they had developed in previous work (Bell et al. 1992).

Bell et al.’s work, and others like it (e.g. Moore et al. 1993), represented an
alternative strategy for making spatial predictions of soil attributes and could be
seen as a demonstration of how Jenny’s fundamental concepts could be quantified
in a multivariate way. About the same time, other researchers anticipated that such
work would lead to better understanding of soil formation (McSweeney et al. 1994).
Efforts by other researchers soon followed. McKenzie and Austin (1993) realised
that multivariate soil-landscape models could lead to a new type of soil survey and
coined the term environmental correlation to describe the process. Skidmore et al.
(1991), Odeh et al. (1994), Lagacherie and Holmes (1997) and McKenzie and Ryan
(1999) are other early examples.

The fundamental idea is that in order to make a map describing the distribution
of a soil attribute across a given spatial domain, soil observations at points are
intersected with layers of environmental data, and a model of some structure
(frequently a regression model) is fitted to describe the relationship between the soil
observations and the environmental data. The model is then used to make predictions
of the soil attribute at unvisited sites, which are frequently the nodes of a raster grid
across the area of interest. This approach is necessarily quantitative and relies on the
assumption that the soil observations are correlated with the environmental data to
some degree.

During the mid-1990s researchers realised that the classical geostatistical
approach to soil spatial prediction could be merged with the environmental
correlation approach. The combined approach became known as regression-kriging
(Odeh et al. 1995). Regression-kriging can be summarised in three steps:

1. Calibrate an appropriate environmental correlation model using soil-landscape
data from observed sites, and make predictions of the target soil attribute at
unvisited sites.

http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_11
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2. Compute the statistical residuals of the environmental correlation model at the
calibration sites, and interpolate the residuals at the unvisited sites,

3. If there is evidence of a spatial trend in the residuals, sum the residuals and the
environmental correlation prediction to arrive at a final prediction of the target
soil attribute at the unvisited sites.

Regression-kriging, when the regression component is a multiple linear regres-
sion model, is equivalent to universal kriging (Stein and Corsten 1991), or kriging
with external drift (Wackernagel 1998) or even kriging after de-trending (Goovaerts
1999). In such cases the soil attribute is some linear function of the predictors.
Regression-kriging differs from universal kriging when more complex models like
regression trees are used in practice.

12.2 Digital Soil Mapping

These various threads in soil spatial prediction research began to converge in the
early 2000s. Two seminal papers were published in 2003 that summarised historical
developments, albeit from different perspectives. Scull et al. (2003) wrote about
past research in soil spatial prediction from a physical geographic perspective and
coined the term predictive soil mapping to describe the general approach. About
the same time, McBratney et al. (2003) generalised the diversity of quantitative
mapping approaches into a framework they called scorpan, which uses a clorpt-like
framework not for mere explanation but rather empirical quantitative description of
soil-landscape relationships for the purpose of spatial prediction. They called these
activities digital soil mapping (DSM).

The scorpan framework is more formally known as scorpan-SSPFe,
which includes soil spatial prediction functions (SSPF) and autocorrelated errors
(e; McBratney et al. 2003). The scorpan factors are:

s: Soil, its classes or properties
c: Climate, including precipitation and temperature
o: Organisms, including vegetation, fauna and other factors of the biotic environ-

ment
r: Relief, or topography
p: Parent material, including lithology
a: Age
n: Space, or spatial position

The scorpan model is written as

Sc D f .s; c; o; r; p; a; n/ or Sp D f .s; c; o; r; p; a; n/
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Table 12.1 Possible sources of information to represent the scorpan factors

scorpan factor Possible representatives

s Legacy soil maps, point observations, expert knowledge
c Temperature and precipitation records
o Vegetation maps, species abundance maps, yield maps, land use maps
r Digital elevation model, terrain attributes
p Legacy geology maps, gamma radiometric information
a Weathering indices, geology maps
n Latitude and longitude or easting and northing, distance from landscape

features, distance from roads, distance from point sources of pollution

where Sc is soil classes and Sp is soil properties or attributes. Considering soils are
sampled at spatial coordinates x, y at an approximate point in time, t, the model can
be expressed explicitly as

S[x, y, t] D f (s[x, y, t], c[x, y, t], o[x, y, t], r[x, y, t], p[x, y, t], a[x, y, t], n[x, y, t],)
Soil (s) is included as a factor because soil can be predicted from its properties,
soil properties from its class or other properties (McBratney et al. 2003), as
earlier research has shown (e.g. McBratney and Webster 1983). This additional
soil information could be gathered from a prior soil map or from either remote or
proximal soil sensing or even expert knowledge. The n factor means that soil can be
predicted as a function of spatial position alone, as in the case of kriging, but it may
also be predicted as a function of the distance from some landscape feature such
as streams, hilltops, roads or point sources of pollution, etc. Information that may
represent the other scorpan factors is described in Table 12.1.

In the last 15 years, there has been a proliferation of high-resolution environmen-
tal spatial data, and many of these can be used to represent various scorpan factors.
Digital elevation models (DEMs; Minasny et al. 2008) and remotely and proximally
sensed data are two prominent examples (Mulder et al. 2011). Subsequently,
DSM techniques have been employed to build or populate spatial soil information
systems from relatively sparse datasets from the ground up (Lagacherie 2008). DSM
techniques have also been used to update or renew existing soil mapping (e.g.
Kempen et al. 2009, 2015; Nauman and Thompson 2014; Odgers et al. 2014).
Generally speaking, DSM is seen as a practicable framework for fulfilling the
current and future demand for relevant soil information (Sanchez et al. 2009). We
discuss the growth and operationalisation of digital soil mapping later in this chapter.

In practice, the creation of soil maps using the DSM approach was discussed
previously in the description of the environmental correlation and regression-kriging
approaches. Within some mapping domain, a set of new or existing soil observations
m are taken from explicit locations [x, y]. This is followed by fitting some
kind of mathematical or statistical function to a set of pedologically meaningful
environmental layers which are generally gridded raster layers of a given spatial
resolution. Once the model is fitted at the m observation points, the model is
extended to all grid cell nodes of the raster layers, giving a digital soil map. This



380 B.P. Malone et al.

three-component process is the hallmark of DSM (Minasny and McBratney 2016),
which entails (1) the input, (2) the modelling process and (3) the output.

This DSM approach is quite distinct from earlier notions of digital soil mapping
that simply involved the digitisation of conventional soil mapping via electronic
scanning. A more appropriate term for this would be digitised soil mapping.

12.2.1 Soil Spatial Prediction Functions

The modelling step is a crucial step in the digital soil mapping process and
fundamentally distinguishes it from digitised soil mapping. The form of the spatial
soil prediction function f () is usually determined at the outset of a digital soil
mapping project. When deciding which mathematical model is the most appropriate
for a given application, several factors are usually taken into account, including:

1. The operator’s familiarity with the model
2. The model’s ease of application in the context of the project, the availability of

covariates and the idiosyncrasies of the available soil information
3. The model’s complexity and its power to capture potentially complex soil-

landscape relationships within the target mapping domain

Many mathematical models are available to represent f (), and their development
continues with advances in statistical theory; McBratney et al. (2000, 2003) discuss
some important factors, and Hastie et al. (2009) review them in more detail.
Generally, some models, such as multiple linear regression or regression trees, are
suited to modelling continuous variables, whereas others, such as logistic regression
or classification trees, are suited to modelling ordinal or nominal categorical data.

Some of the simplest models are simple linear models with either ordinary or
generalised least-squares fitting. More complex models include generalised linear
and additive models (Hastie and Tibshirani 1990). Logistic regression models are a
type of generalised linear model suited to modelling categorical variables (Kempen
et al. 2009). Recursive partition models such as classification and regression
tree models are particularly favourable because of their non-parametric structure
and their capacity to deal with non-linear relationships between soil data and
environmental covariates (Breiman et al. 1984). For similar reasons neural networks
(Hastie et al. 2009) are often considered, as are advanced data mining or machine
learning algorithms such as Cubist models (Quinlan 1993b; http://www.rulequest.
com/), random forests (Breiman 2001), quantile regression forests (Meinshausen
2006) and support vector machines (Smola and Scholkopf 2004).

In terms of handling any spatial autocorrelation in the residual (e) that is likely
to result from fitting a scorpan model, a regression-kriging (alternatively scorpan
kriging; McBratney et al. 2003) or universal kriging methodology could be used.
Coupling a machine learning model with geostatistical modelling of the residuals
is also a generalised regression-kriging approach that is often used in digital soil
mapping studies (e.g. Malone et al. 2009).

http://www.rulequest.com/
http://www.rulequest.com/
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Lark et al. (2006) described a residual maximum likelihood-empirical best linear
unbiased predictor (REML-EBLUP) model. REML-EBLUP is intrinsically similar
to regression-kriging in that both are mixed models where the observed data are
modelled as the additive combination of fixed effects (the secondary environmental
data), random effects (the spatially correlated residuals e) and independent random
error. The difference is that REML estimates the parameters of the trend and
covariance functions without bias. These parameters are then used in the EBLUP, i.e.
a general linear mixed model. The statistical theory of REML-EBLUP is discussed
in Lark et al. (2006) and arose out of a need to rectify issues associated with normal
regression-kriging (the method proposed by Odeh et al. 1995) where estimation of
the variogram of residuals is theoretically biased (Cressie 1993). While regression-
kriging is an ad hoc method and may be theoretically suboptimal, the improvement
in prediction accuracy from REML-EBLUP has been demonstrated to be only small
when comparative analyses have been performed (e.g. Minasny and McBratney
2007).

The application of formal geostatistical modelling approaches to categorical
variables, such as soil classes, is relatively limited. Kempen et al. (2012) reminded
us that the popular methods for categorical prediction of soil types for the ultimate
creation of a digital soil type map—multinomial logistic regression, classification
tress, etc.—are actually nonspatial models, i.e. we do not consider spatial properties
of the target variable as we would do for continuous variables. Subsequently, they
explored a generalised linear geostatistical model framework that addressed this
issue. While the method they explored was geostatistically appealing, it was also
computationally cumbersome and ultimately did not yield significant accuracy gains
when compared to a nonspatial multinomial logistic regression model.

Overall, it is clear there are many potential models available to use for DSM,
and they can range from the very simple to the highly complex. Importantly,
most models are now freely accessible through open source software packages.
An example is the R computing software (R Core Team 2015) and the associated
caret package (Kuhn et al. 2016) where, as of March 2017, there are 448 types of
modelling algorithms available for both continuous and categorical target variables.
Although many of these will not be suited for DSM, a large number will be, and
algorithms will continue to be added to the caret package into the future.

12.2.1.1 Comparative Studies

A number of researchers have compared and contrasted suites of models for the
spatial prediction of soil classes and attributes with a view to identifying the
‘optimal’ model for a particular situation. For example, Taghizadeh-Mehrjardi et al.
(2016) evaluated the ability of six different models for mapping soil organic carbon
across a region in Iran. Brungard et al. (2015) performed a similar analysis for
mapping categorical variables in the south west of the United States, and Heung
et al. (2016) compared a number of machine learning algorithms for prediction of
soil classes in British Columbia in Canada. Generally speaking, the more complex
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models performed better than the simpler models. Reasons for this include that soil
data are often ill-suited for linear regression modelling because of non-normal or
unbalanced distributions, whereas this does not appear to be an issue for recursive
partitioning or machine learning-type algorithms. Secondly, the more complex
models are better at discovering patterns and non-linearity in the data that cannot
be easily discovered by simple linear modelling.

Despite this, there is a downside to this gain in predictive precision. First, the
more complex models require more parameters compared to the simpler models. In
turn, these parameters need to be optimised appropriately. Even for non-parametric
models such as regression trees and the related boosted regression algorithms,
the size and complexity of the fitted models can make them ultimately difficult
to interpret and cumbersome to apply spatially. Such complex models are often
referred to as black boxes, such that the practitioner is often not fully aware of their
inner workings. In situations like these, the model just becomes a processing object
where data is fed into it, processes it, and then outputs a computed result. The job of
the operator then is to interpret the computed result and describe the predicted target
variable spatial distribution in terms of the environmental variables that were used
as model predictors. Often such complex models will provide output that gives the
operator some idea of the importance of the predictor variables in the same way that
significance tests are used in linear models to distinguish good predictor variables
from poor ones. This information helps the operator to understand the strengths and
weaknesses of digital soil maps produced using the model.

12.2.1.2 Knowledge-Based Inference

An alternative to purely empirical modelling is knowledge-based inference (Zhu
and Band 1994). Knowledge-based inference enables the digital soil mapper to
integrate expert knowledge into the mapping process. One of the most well-known
knowledge-based tools is the soil-land inference model or SoLIM (e.g. Zhu et al.
1996, 1997, 2001). SoLIM allows an expert to manually build membership functions
that describe the presumed relationship between specific soil types and a range
of environmental and topographic variables. With these membership functions, the
expert is able to make predictions of soil type or properties at unobserved locations
via a weighted estimate that is based on an environmental similarity score to each
soil member. Subsequently, the appealing concept of fuzziness between soil objects
is maintained, as well as some quantitative means for assessing the uncertainty of
mapped predictions.

In similar work, Bui (2004) pointed out that the soil map legend, which is a
representation of the distilled knowledge of the soil surveyors’ mental model of
soil variation across a mapping domain, contains valuable and important structured
language that can be used for automating soil mapping if spatial coverage of
environmental predictors are available. Probably the closest empirical relative to this
approach is the decision tree type models, where data are recursively partitioned to
minimise some predictive variance.
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The idea of utilising existing soil mapping in new, quantitative, ways has
also found application in the spatial disaggregation of soil map units, where the
information contained in these map units can be downscaled in order to make spatial
predictions of the map units’ constituent soil types (e.g. Nauman and Thompson
2014; Odgers et al. 2014). Bayesian networks, described by Taalab et al. (2015),
also enable the operator to explicitly include expert knowledge. They are also able
to be tuned empirically. The methodology requires the need to first express prior
knowledge, in the form of probabilities, about the interaction between a target
variable and a set of environmental covariates. Using these prior probabilities
together with Bayesian inference, one is able to estimate either continuous or
categorical variables and then use the derived posterior probabilities as a quantitative
measure of uncertainty.

12.2.1.3 Uncertainty

It is relatively easy to quantify the accuracy of a digital soil map using a set of
soil observations held aside from the spatial modelling process for this purpose.
A range of statistical tests are available, and some of these are explored further in
Chap. 14. These statistics provide a global appraisal of model performance: that is,
they typically cannot tell us anything about the performance of a model at a specific
location in the prediction area.

On the other hand, the local appraisal of a model’s performance can be done
through examination of uncertainties, if they are available. Such uncertainties can
be quantified at each grid cell across the prediction area and are often expressed in
the form of a prediction variance or prediction interval for soil attributes (Malone
et al. 2011) or even probability estimate for soil classes (e.g. Odgers et al. 2014) or
exceedance thresholds (e.g. Brus et al. 2002; von Steiger et al. 1996).

Uncertainties may be computed using a range of methods. For example, it
is relatively straightforward to compute the kriging variance using geostatistics.
Minasny et al. (2011) demonstrated a model-based Bayesian approach. Bayesian
networks (Taalab et al. 2015) may offer a more expert-driven approach.

Machine-learning methods, and particularly those based on iterative resampling
and boosted model fitting, can provide empirical estimates of uncertainty. An
example here is the quantile regression forest algorithm that was used in France
by Vaysse and Lagacherie (2017).

Methods based on model perturbation through data resampling or bootstrapping
have been shown to be effective for quantifying uncertainties, particularly where the
number of model parameters is high, or for very large mapping extents the use of
model-based geostatistical approaches is computationally prohibitive. For example,
Viscarra Rossel et al. (2015) fitted complex Cubist models coupled with residual
kriging for spatial modelling of a number of soil properties across continental
Australia. Such an approach necessitated the use of bootstrapping to compute 90%
prediction intervals about the mapped predictions.

http://dx.doi.org/10.1007/978-3-319-63439-5_14
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Malone et al. (2011) demonstrated another empirical approach which is based
on data resampling and fuzzy k-means with extragrades. In their approach, the
environmental data space is partitioned into clusters which share similar model
errors. A prediction interval (PI) is constructed for each cluster on the basis of the
empirical distribution of residual observations that belong to each cluster. A PI is
then computed for each prediction grid cell according to the grade of its membership
to each cluster in the environmental data space. The approach is flexible because
the user is able to incorporate a complex model, such as a data mining model
with associated residual kriging, into the framework and also efficiently compute
prediction uncertainties across large spatial extents.

In quantifying prediction uncertainties, we explicitly acknowledge that a digital
soil map is not free from error. A major source of error is the sparseness of soil data,
both in the landscape space and the attribute space. Often the uncertainty created
by this error is of a magnitude that would preclude the use of a digital soil map
in many situations where fine precision is a requirement. Consequently, decisions
or policies developed on the basis of the mapping need to be made with a certain
amount of risk, although this risk can often be quantified. In order to reduce this
risk, the uncertainties may be used to prioritise data collection resources or direct
the application of alternative modelling approaches to improve the digital soil map
and reduce its uncertainty.

12.2.1.4 Case Study: Digital Soil Property Mapping

In this section we provide an example that demonstrates a typical digital soil
mapping workflow. We illustrate this workflow by fitting several different spatial
prediction functions that exemplify just a few of the models that may be considered
for DSM. The target variable in these examples is subsoil pH. The soil dataset
comprises of 506 observations collected from a small part of the lower Hunter Valley
region of New South Wales, Australia. For simplicity, the mapping is performed
across a small part (approximately 220 km2) of the area from which the samples
were collected. The spatial prediction functions we use in this example are (i)
multiple linear regression, (ii) Cubist models, (iii) Cubist models with kriging of
model residuals and (iv) random forest models.

A number of spatial datasets were assembled for this region; all were co-
registered from their original resolutions to a 25 m grid cell spacing; and all
were used as predictors or environmental covariates. In this example, these data
principally represent the r and o factors of the scorpan framework. The variables
representing r were derived from a digital elevation model, while those representing
o were derived from remotely sensed imagery captured by the Landsat 7 ETMC

satellite platform. These data are summarised in Table 12.2.
Some initial checks of the observed data are always performed to evaluate

their statistical properties and check their distribution (see Chaps. 2 and 3). Data
may need to be transformed so that their distribution becomes approximately

http://dx.doi.org/10.1007/978-3-319-63439-5_2
http://dx.doi.org/10.1007/978-3-319-63439-5_3
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Table 12.2 Environmental covariates used for digital soil mapping example. Covariates are all
co-registered to the same spatial resolution

scorpan factor Source data Variable

r Digital elevation model Elevation, mid-slope position, multi-resolution
valley bottom flatness, terrain wetness index,
slope gradient, estimated incoming solar
radiation

o Landsat 7 ETMC satellite
data (retrieved Jan 2012)

Landsat bands 1–5 and 7, normalised
difference vegetation index (band 4 – band
3)/(band 4 C band 3))

normal. It is often necessary to remove outliers or obviously erroneous data. When
the covariate dataset is acceptable, a spatial intersection between it and the soil
observations is performed that retrieves the values of the covariate layers where
the soil observations are positioned.

Quantitative assessment of the performance of spatial prediction functions is a
distinguishing characteristic of DSM. According to Hastie et al. (2009), popular
model goodness-of-fit statistics include root mean square error (RMSE), mean
error (model bias), coefficient of determination (R2) and concordance correlation
coefficient (CCC; Lin 1989). Importantly, it is necessary to compute these statistics
using an independent test dataset in order to ensure that they are unbiased, to assess
the generalisation performance of a model and to provide guidance in regard to
selection of the optimal model. In a data-rich situation as recommended in Hastie et
al. (2009), it is required to divide a dataset into three parts: a training set, a validation
set and a test set. A typical split might be 50%, 25% and 25%, respectively, for each
of the datasets. The training set is used for model fitting, while validation and test
sets are used to evaluate to prediction and generalisation error, respectively. The test
set is ideally only used right at the end of an analysis once the ideal model has been
selected. In situations of data limitation, it is often recommended to implement data
reuse procedures for the validation set, where cross-validation and bootstrapping are
common examples of these (Hastie et al. 2009). In the proceeding examples, we split
the data 75% and 25% for training and validation sets, respectively. We evaluate the
goodness-of-fit functions of RMSE and CCC for the validation data for each of the
considered soil spatial prediction functions.

With respect to the considered models, the simplest, multiple linear regression
attempts to model the relationship between two or more explanatory variables and a
response variable by fitting a linear equation to observed data. A stepwise regression
is often implemented to filter out variables that don’t add to the performance of the
model. The Cubist model is a data mining algorithm which allows one to explore
non-linear relationships in observed data. It is similar to a typical regression tree
model in terms of it being a data partitioning algorithm. The Cubist model is based
on the M5 algorithm of Quinlan (1993b). The Cubist model recursively partitions
the data into subsets which are more internally homogeneous with respect to the
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target variable and covariates than the dataset as a whole. A series of rules defines
the partitions, and these rules are arranged in a hierarchy. Each rule takes the form:

if [condition is true]
then [regress]
else [apply next rule]

Each condition is based on a threshold for one or more covariates. For example,
the Cubist model of subsoil pH used regression on the covariates within that
partition. If the condition returns false, then the rule identifies the next node in the
tree to move to, and the sequence of if, then-else is repeated. The result is that a
separate regression equation is fit within each a threshold of <D 0.005 for MRVBF
for one of the rules in partitioning the input dataset. If the condition returns true
for this threshold, then the next step is the prediction of the target variable by OLS
partition, and the errors are smaller than they would be if a single regression was
fit to the entire dataset (Quinlan 1993b). Cubist models with residual kriging are
an enhancement to using just Cubist modelling alone. Here, after the Cubist model
has been trained, the model residuals (difference between observations and model
predictions) are retained in order to assess whether they display a spatial pattern
of their own (autocorrelation). This is assessed via variogram fitting to the residual
data, and then once a candidate model is selected, kriging ensues. Variogram fitting
could be performed locally for small neighbourhoods of data, or globally to all
available data, which is generally dependent on the amount of available data (see
Chap. 10). Ultimately, the regression model output and the kriged residuals are
then added together to result in a final prediction. Lastly, random forests are a
boosted decision tree model. Boosting is brought about via an ensemble learning
method for that operates by constructing a multitude of decision trees which are
later aggregated to give one single prediction for each observation in a dataset. One
is able to establish a reasonable idea of goodness of fit of the training model via what
is called ‘out-of-bag’ samples, which are data that are internally withheld during tree
building. Further information on the popular model can be found in Breiman (2001)
and Grimm et al. (2008) as an example of its application in DSM studies.

The relationship between target variable and spatial data is learned through the
model fitting stage. Once this has been realised, the parameters are then used to
predict the target variable across the mapping extent. Figure 12.1 shows the digital
maps that resulted from applying each of the models across the mapping extent.

From Fig. 12.1, subtle differences between the maps can be observed, but all
more or less show the same general spatial pattern. This may not always be the
case however for other DSM exercises. The information contained in Table 12.3
summarises the RMSE and CCC goodness-of-fit statistics for each of the models
both in terms of the training and validation datasets. It is generally the case that
goodness of fit to appear better for the training relative to validation. For the
MLR and Cubist model, this difference is minimal, indicating these models are
not overfitting, or, in other words, they appear to be generally applicable. Cubist
models with residual kriging results in the best predictions in terms of the validation.
The poorest model was the random forest, yet this model was the best in terms of

http://dx.doi.org/10.1007/978-3-319-63439-5_10
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Fig. 12.1 Subsoil pH mapping as a result of (a) multiple linear regression, (b) Cubist modelling,
(c) Cubist modelling with residual kriging and (d) random forest modelling

Table 12.3 Goodness of fit statistics for subsoil pH spatial models based on training and validation
datasets. (CCC) concordance correlation coefficient (RMSE) root mean square error

Training Validation
CCC RMSE CCC RMSE

Multiple linear regression 0.40 1.17 0.40 1.19
Cubist model 0.47 1.13 0.41 1.19
Cubist model with residual kriging 0.85 0.66 0.60 1.05
Random forest model 0.89 0.53 0.32 1.22

the training data. From this example, it is clear of the importance to assess model
goodness of fit via validation and not on the training data alone. The random forest
model gives the impression of being very accurate but is actually quite susceptible
to overfitting in this case.

12.2.1.5 Case Study: Digital Soil Class Mapping

The following example is used to demonstrate how soil classes may also be mapped
using digital soil mapping techniques. We illustrate two approaches using profile
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observations from across the Hunter Wine Country Private Irrigation District in
Pokolbin in the lower Hunter Valley, New South Wales, Australia (hereafter the
PID dataset), where the previous example was located. As in the previous example,
environmental conditions in the study area were represented by a range of terrain
attributes derived from a digital elevation model with a cell size of 25 � 25 m and by
spectral reflectance values derived from several bands of a Landsat 5 image captured
in October 2004, around the time the profiles were collected.

The PID dataset consists of 243 profiles allocated to the suborder level of the
Australian Soil Classification (ASC; Isbell 1996) although the predictions presented
here are made to order level. The dataset is unbalanced with respect to profile
class since soils belonging to the Dermosol order (55% of observations) dominate
the study area, whereas soils such as Calcarosols (1 observation) occur much
more sparsely. The data were randomly split into a calibration dataset (75% of
observations) and a validation dataset (25% of observations). We illustrate both
approaches here using the same calibration and validation datasets.

Classification trees may be used to calibrate a set of observations of soil profile
class to a set of environmental covariates. The C5.0 (or See5) algorithm (based
on Quinlan 1993a) is one of the more popular classification tree algorithms and
operates in a similar manner to the Cubist algorithm, a major difference being
the leaves of classification trees are predictions of a single class, not a regression
equation. Application of a C5.0 classification tree to the PID dataset yielded the
predictions of ASC order in Fig. 12.2a.

Multinomial logistic regression (MNLR) is used to model relationships between
a categorical variable and a set of numerical predictors. More specifically, the
log odds of the outcomes (classes) are modelled as a linear combination of the
predictors. The end result is not only a prediction of the most probable class but also
the underlying probabilities of occurrence of all the classes being modelled. Figure
12.2b contains the most probable ASC orders, and Fig. 12.3 contains predictions of
the probabilities of occurrence of several ASC orders.

The maps in Fig. 12.3 are generally similar to each other. Three features are
readily apparent: (i) Dermosols and, to a much lesser extent, Chromosols dominate
the slopes under viticultural and grazing use throughout the central part of the
private irrigation district; (ii) Kurosols are predicted under native woodland on the
periphery of the district; and (iii) less structured and less developed soils such
as Kandosols, Rudosols and Tenosols are predominant along drainage lines and
rugged slopes particularly in the southwest of the private irrigation district. In broad
terms the spatial distribution of soil orders as represented by these predictions
fits well with what we have experienced in the field although neither map is a
perfect depiction of reality. Dermosols are probably overpredicted in both maps,
and the diversity of patterns along the southwestern escarpment between both maps
warrants further investigation. In addition each map has its own pros and cons: for
example, while the multinomial logistic regression predictions better captured the
soil variability along drainage lines, Chromosols were possibly better predicted in
the classification tree map. Furthermore, it is known that soils like Sodosols and
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Fig. 12.2 Soil class predictions for the Hunter Wine Country Private Irrigation District using
(a) a classification tree and (b) a multinomial logistic regression model

Hydrosols occur in relatively minor extent in some marginal lands in low-lying parts
of the private irrigation district. These soils were not sampled in the PID dataset and
so were unable to be predicted by either model.

The predictions in Fig. 12.2 were validated using the validation dataset of 25%
of the PID profiles. It is convenient to summarise the results of a validation in a
confusion matrix. The confusion matrix for the validation of the classification tree
predictions is presented in Table 12.4 and that for the multinomial logistic regression
is presented in Table 12.5. The overall accuracy—that is, the proportion of validation
profiles whose ASC order was predicted correctly—is computed as the sum of the
elements on the major diagonal divided by the total number of validation profiles.
Thus the overall accuracy, Ao, of the classification tree predictions is
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The overall accuracy of the multinomial logistic regression predictions is 50.1%.
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Fig. 12.3 Probabilities of occurrence from a multinomial logistic regression model for (a)
Dermosols, (b) Kandosols and (c) Kurosols

Table 12.4 Confusion matrix for external validation of classification tree predictions of ASC
order

Observed ASC order Row sum
AN CA CH DE KA KU RU TE

Predicted ASC order AN 0 0 0 0 0 0 0 0 0
CA 0 0 0 0 0 0 0 0 0
CH 0 0 1 2 0 0 1 0 4
DE 0 0 12 26 3 4 1 0 46
KA 0 0 0 0 0 0 0 0 0
KU 0 0 3 6 0 2 0 0 11
RU 0 0 0 0 0 0 0 0 0
TE 0 0 0 0 0 0 0 0 0

Column sum 0 0 16 34 3 6 2 0 61

AN Anthroposol, CA Calcarosol, CH Chromosol, DE Dermosol, KA Kandosol, KU Kurosol, RU
Rudosol, TE Tenosol

The overall accuracy does not indicate how the accuracy is distributed across the
individual soil orders. There are two ways to look at this: (i) from the perspective
of what we would expect the map to tell us based on what we observe in the field
and (ii) from the perspective of what we would expect to see at a site in reality
based on examination of the map. A measure that quantifies accuracy in the former
case is frequently known as the producer’s accuracy and in the latter case the user’s
accuracy (Story and Congalton 1986; Congalton 1991). For a given soil order, the
producer’s accuracy is computed by dividing its value on the major diagonal of
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Table 12.5 Confusion matrix for external validation of multinomial logistic regression predic-
tions of ASC order

Observed ASC order Row sum
AN CA CH DE KA KU RU TE

Predicted ASC order AN 0 0 0 0 0 0 0 0 0
CA 0 0 0 0 0 0 0 0 0
CH 0 0 1 1 0 0 0 0 2
DE 0 0 13 28 2 5 1 0 49
KA 0 0 1 0 1 0 0 0 2
KU 0 0 0 2 0 1 1 0 4
RU 0 0 0 2 0 0 0 0 2
TE 0 0 1 1 0 0 0 0 2

Column sum 0 0 16 34 3 6 2 0 61

AN Anthroposol, CA Calcarosol, CH Chromosol, DE Dermosol, KA Kandosol, KU Kurosol, RU
Rudosol, TE Tenosol

Table 12.6 User and producer’s accuracies for predictions of Australian Soil Classification order

AN CA CH DE KA KU RU TE

User’s accuracy (%) C5.0 NA NA 25.0 56.5 NA 18.2 NA NA

MNLR NA NA 50 57.1 50.0 25.0 0.0 0.0
Producer’s accuracy (%) C5.0 NA NA 6.3 76.5 0.0 33.3 0.0 NA

MNLR NA NA 6.3 82.4 33.3 16.7 0.0 NA

AN Anthroposol, CA Calcarosol, CH Chromosol, DE Dermosol, KA Kandosol, KU Kurosol, RU
Rudosol, TE Tenosol

the confusion matrix by the corresponding column sum and multiplying by 100.
Likewise, its user’s accuracy is computed by dividing its major diagonal value by
the corresponding row sum and multiplying by 100.

Values of the user’s and producer’s accuracies are presented in Table 12.6. They
may be interpreted as follows (after Congalton 1991): 33.3% of the time, a site
observed to be a Kurosol was predicted as such by the classification tree map;
on the other hand, 18.2% Kurosol classification tree map predictions turn out to
be Kurosols in reality. According to Table 12.6, the map of multinomial logistic
regression predictions is generally more accurate than the map of classification
tree predictions. Several features of Table 12.6 are notable. Some user’s accuracies
are reported as NA because the relevant ASC orders were not predicted in the
given map. The number of user’s accuracy NAs varies between the C5.0 and
MNLR validations because the models do not make identical predictions. Some
producer’s accuracies are reported as NA because the relevant ASC orders were
present in the calibration dataset but not in the validation dataset. The number of
producer’s accuracy NA values is the same for both maps because they share the
same calibration dataset.
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12.2.2 Soil Depth Functions and Digital Soil Mapping

Soil survey, soil classification and conventional mapping of soils consider soil as a
three-dimensional (3D) entity or body (Hole 1953). In the words (or to that effect) of
American pioneering soil scientist Charles E. Kellogg: ‘soils have shape and area,
breadth and width, as well as depth’ (Kellogg 1949). Most initial DSM research
tended to focus only on the 2D sense of this general concept where predictions
of soil property variation were made for single depth intervals or horizons (and
predominantly only from the top soil) (Grunwald 2009). In fact, Grunwald (2009),
who reviewed 90 journal articles from high impact soil science journals, found that
28% of reviewed studies performed scorpan modelling for multiple soil layers or
horizons. Since the review by Grunwald (2009), however, an active area of research
in DSM has been the exploration of approaches for mapping of soil depth functions
of continuous variables which is discussed in more detail further on. As an aside,
the DSM of soil classes is an exception for 3D soil mapping and has much utility
because a number of soil properties can be inferred from one classification which
are usually derived from the modal profile of each class. However, the problem with
mapping soil classes is that the soil properties vary discretely in the taxonomical
space which may be problematic as soil variability across a mapping domain will
appear as a stepped function rather than a fully continuous function (Webster and
Oliver 2006).

It is quite a sensible undertaking to attempt to map the variation of soil properties
in both the lateral and vertical dimensions. Understanding the carbon sequestration
potential of soil and for carbon accounting (Bajtes 1996; Lal 2004), determining
the amount of water soils can hold across a field or even a watershed, determining
the depth to an impeding layer for crop growth across a farm and investigating soil
acidity (just to detail a few examples) will most likely require some understanding
of how soil properties vary with depth. Ponce-Hernandez et al. (1986) describe
that soil properties vary more or less continuously with depth. The variation is
often anisotropic for certain properties such as carbon (Hiederer 2009) and soil
texture (Myers et al. 2011), which may be the result of land use activity or the
gravitational vector of profile weathering and development or both (Hole 1961).
Exceptions to continuous soil property variation with depth is where there is
strong anthropogenic (cultivation, removal and replacement of soils), geologic
(contrasting parent materials) and pedological (the development of clear and abrupt
soil horizons) forcing for which sharp discontinuities in the depth distribution of
soil properties will occur.

Empirical functions describing the depth distribution of soil properties include
linear and polynomial functions (Colwell 1970; Moore et al. 1972) and exponential
and logarithmic functions (Russell and Moore 1968). Myers et al. (2011) introduced
an asymmetric peak function for modelling complex and anisotropic soil property
depth profiles with horizons of weathered loess. Smoothing splines for soil property
variation were introduced by Erh (1972) which was followed by work from Ponce-
Hernandez et al. (1986) and mathematical derivation by Bishop et al. (1999) of
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pycnophylactic (mass preserving) smoothing splines. The mass-preserving splines
model the continuous variation of soil properties with depth while maintaining the
average of the observed property through the observed horizons or layers. Bishop et
al. (1999) demonstrated successfully the application of the mass-preserving spline
for a number of soil properties with much success. The proviso for a ‘good fit’ is
that a sufficient number of observations at regular depths are required. Many of these
depth functions are described in Chap. 9.

The coupling of soil depth functions with DSM seems an intuitive advance
towards understanding soil variation in all its spatial dimensions. A study by
Minasny et al. (2006) used the negative exponential depth function to describe
soil carbon concentration variation with depth in the Edgeroi area, Australia. The
authors modelled the parameters of the exponential function using a modified
neural network approach, then predicted parameters of the exponential function over
the whole area, which enabled them to calculate the carbon distribution over the
profile and also the storage of carbon at any depth. Mishra et al. (2009) fitted an
exponential function to soil profile data from Indiana, USA, and then interpolated
the parameters independently using ordinary kriging. Meersmans et al. (2009)
performed something similar and developed empirical functions which predicted the
parameters of the exponential depth function for the area of Flanders in Belgium.
The functions were stratified based on land use, and the parameters were related
to particle size distribution and height of groundwater. Veronesi et al. (2012) used
a polynomial soil depth function for predicting soil penetration resistance. The
coefficients of the depth function were modelled spatially via a REML-EBLUP
geostatistical model.

Malone et al. (2009) described a regression-kriging approach using neural
networks coupled with the Bishop et al. (1999) mass-preserving spline for mapping
available water capacity and soil carbon stocks in Australia. The approach is
performed in two steps with the first being the standardisation of depth intervals
given a collection of soil profile data with the spline. Integrating the spline for the
specified depth intervals, for example, 0–5 cm, 5–15 cm, 30–60 etc., an average
value was defined for each depth for each soil profile. Not only are these values the
predicted means for a specified depth interval but are also parameters of the spline
function that can be used for subsequent refitting and soil information interrogation.
After the splines are fitted, for each specified depth interval, a spatial model is fitted
which is then ultimately used for mapping. With such a coupling of depth function
and DSM, Malone et al. (2009) were able to generate scenarios such as the depth
at which the cumulative total of soil carbon was equal to 5 kg m�2. The mass-
preserving spline in concert with DSM is widely used throughout the world with
salient examples being Adhikari et al. (2013) for national scale mapping in Denmark
and both Kidd et al. (2015b) and Viscarra Rossel et al. (2015) where spatial extents
were the state of Tasmania, Australia and continental Australia, respectively.

Poggio and Gimona (2014) describe a one-step approach to 3D digital soil
mapping using a hybrid GAM geostatistical model for carbon stocks in Scotland.
One-step approaches are naturally appealing as it reduces the complexity of
workflow. With the Poggio and Gimona (2014) approach, they are able to refrain

http://dx.doi.org/10.1007/978-3-319-63439-5_9
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from standardising soil prediction depth intervals, i.e. use the actual observed
values, and then model the 3D soil variability trend with a GAM and an associated
3D smoother with related covariates. The one-step approach was also appealing
to Orton et al. (2016), who introduced an area-to-point kriging methodology. This
model was able to include all the data in one statistical analysis and importantly
maintained the integrity of the soil profile data support as well as providing an
explicit methodology for quantifying the uncertainty of the fitted soil depth function.
Hengl et al. (2014) described a similar 3D geostatistical model except information
regarding the support of the soil profile observation was not considered. In their
global study, they assumed a point support soil depth function by fitting splines to
the values at mid-depths of observed soil horizons or depth intervals.

Kempen et al. (2011) developed a depth function that combines general pedo-
logical knowledge with geostatistical modelling. They modelled the distribution of
soil organic matter content based on typical horizons from ten soil types. Five depth
function building blocks were defined, and for each soil type, the depth function
structure was obtained by stacking a subset of modelled horizons. The parameters
of the depth function for each of the horizons were interpolated using a geostatistical
procedure combining environmental information.

One of the limitations for 3D DSM, particularly of using equivalents of the
negative exponential depth function, is that the function is only useful for certain soil
properties, such as soil organic carbon, that naturally have that type of anisotropic
variation down the soil profile. Polynomial soil depth functions also need to be
considered carefully because the value at one depth will affect the fit of the curve
at other depths too. Additionally, while pedologically the most appealing approach,
the horizon depth function method from Kempen et al. (2011) could be limiting
because its application is limited to the spatial extent in which it was developed or
otherwise in similar landscape contexts or soil types.

A general method, i.e. one that can be extended to a variety of soil properties and
can cope to some extent with discontinuous variation in soil properties, is the mass-
preserving spline method described in Bishop et al. (1999). The mass-preserving
features of this function are also appealing, particularly in instances where auditing
of soil variables (e.g. carbon stocks) is required. In contrast, specifying a depth
function based on midpoints observations as Hengl et al. (2014) proposed in their
one-step 3D geostatistical modelling approach would be of limited use where the
context for spatial soil mapping is for auditing purposes.

12.2.3 The Many Faces of Digital Soil Mapping

While most application of DSM is based in the using of observed soil point data
coupled with environmental covariates and a spatial predictive model function,
it is certainly not restricted to this nature of available data. For example, some
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Fig. 12.4 Decision tree of digital soil mapping approaches (Adapted from Minasny and McBrat-
ney 2010)

previous discussion of soil map disaggregation has been made where mapping units
are disaggregated into their constituent classes or series whose spatial pattern is
determined by a spatial prediction function.

Before exploring that concept in further detail, it is worth pointing out the various
possible scenarios that could be encountered for DSM. These scenarios are framed
nicely by Minasny and McBratney (2010), who presented a decision tree for DSM
methodology on the basis of the nature of available legacy soil data (Fig. 12.4).
This tree was proposed as a general framework to aid in the delivery of a digital
global soil map product. It can be viewed though as guidance to practitioners in
‘what do I do?’ situations. Once the practitioner has defined an area of interest,
and assembled a suite of environmental covariates for that area, depending on
what available data there is to use, there are suggested approaches that could be
implemented for delivering digital soil maps. The most common approach obviously
is scorpan kriging and is performed exclusively when there is only point data but
can be used also when there is both point and map data available. The idea here is
that a fusion between scorpan kriging and soil map disaggregation is made via a
combinatorial approach such as model averaging. Malone et al. (2014) exemplified
such a procedure in an area of Queensland, Australia. The options are quite different
when there is only soil map information available. Bear in mind that the quality
of the soil maps depends on the scale and subsequently variation of soil cover,
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such that smaller-scaled maps, e.g. 1:100,000, would be considered better and more
detailed than large-scaled maps, e.g. 1:500,000. The elemental basis for extracting
soil properties from legacy soil maps comes from the central and distributional
concepts of soil mapping units. For example, modal soil profile data of soil classes
can be used to quickly build soil property maps. An early example of this is the
multilayer soil characteristics dataset for the conterminous United States (CONUS-
SOIL), which has been and continues to be used in many climate, hydrology and
land surface models (Miller and White 1998). Where mapping units consist of
more than one component, we can use a spatially weighted means type method,
i.e. estimation of the soil properties is based on the modal profile of the components
and the proportional area of the mapping unit each component covers, e.g. Odgers
et al. (2012). As a pre-processing step prior to creating soil attribute maps, it may
be necessary to harmonise soil mapping units (in the case of adjacent soil maps)
and/or perform some type of disaggregation technique in order to retrieve the map
unit component information. Some approaches for doing so have been described in
Bui and Moran (2003).

More recently, research into the spatial disaggregation of soil map units has
emerged as a means of downscaling choropleth soil mapping. Many studies have
been published in the last several years (e.g. Häring et al. 2012; Kerry et al.
2012; Odgers et al. 2014; Subburayalu et al. 2014; Thompson et al. 2011). For
example, the DSMART algorithm (Odgers et al. 2014) spatially disaggregates a
choropleth map by iteratively resampling it to build a series of classification trees
that create realisations of the potential soil class distribution. The realisations of
the soil class distribution are merged to estimate the probabilities of occurrence
for all the soil classes in the choropleth map area. The DSMART algorithm has
been used to spatially disaggregate the legacy soil mapping coverage of large river
catchments (Odgers et al. 2014), the French region of Brittany (Vincent et al. 2016),
the Australian state of Western Australia (Holmes et al. 2015) and the contiguous
United States (Chaney et al. 2016). The spatially disaggregated soil mapping can
then be used to map soil properties. For example, Odgers et al. (2015b) introduced
the PROPR algorithm which takes probability outputs from DSMART together with
modal soil profile data of given soil classes, to estimate soil attributes and associated
uncertainties.

How do we do digital soil mapping in an area that doesn’t have any soil data? In
such areas (‘recipient’ areas), it may be possible to extrapolate using a model that
was constructed in an area with plentiful soil data (a ‘donor’ area). The rationale,
called homosoil (Mallavan et al. 2010; Minasny and McBratney 2010), is that if
the recipient area is sufficiently homologous to the donor area with respect to the
strength and expression of soil-forming factors, then perhaps extrapolation can be
made without an unacceptable degree of uncertainty. Identification of potential
donor areas is based on the computation of the similarity to the recipient area in
terms of the relevant soil-forming factors. Malone et al. (2016) provided a real-
world application which compared different extrapolation functions.



12 Digital Mapping of Soil Classes and Continuous Soil Properties 397

12.2.4 Operationalisation of Digital Soil Mapping

Although numerical methods have been available for several decades now, the
operationalisation of digital soil mapping has really only been talked about for
about the last 10 years (e.g. Grunwald et al. 2011; Lagacherie and McBratney 2007,
Sanchez et al. 2009). Nevertheless it is becoming an important tool in mainstream
soil survey work, and several important projects have been completed in the last
few years, including the Soil and Landscape Grid of Australia (Grundy et al. 2015)
and the enterprise suitability mapping programme in Tasmania (Kidd et al. 2014,
2015a). Not all operational work has focussed on the development of digital soil
maps ab initio. For example, government-sponsored work has led to the updating of
legacy maps using digital techniques (e.g. Kempen et al. 2009). Agencies in other
jurisdictions are working to integrate digital soil mapping methods with existing
survey procedures (e.g. Hewitt et al. 2010; Moore et al. 2010).

12.3 GlobalSoilMap

12.3.1 Origins: From Pedometric Practice to Global Product

Soil mapping at the global extent is not a recent or new endeavour. The FAO-
UNESCO soil map of the world (FAO-UNESCO 1988) was the first published
(1981) world soil map and used a single map legend that accounted for the global
diversity of soils. During the 2nd Global Workshop on Digital Soil Mapping in Rio
de Janeiro in 2006, a proposal for a new global grid of the most important soil
functional properties was made. Later that year, the GlobalSoilMap.net consortium
was formed with the aim of making a new, high-resolution digital soil map of
the world using state-of-the-art and emerging technologies. The consortium was
inspired in part because of ‘policy-maker’s frustrations’ about not being able to
get quantitative answers to questions such as how much carbon is sequestered or
emitted by soils in a particular region? or what is its impact on biomass production
and human health? or how do such estimates change over time? (Sanchez et al.
2009).

12.3.2 Technical Specifications of GlobalSoilMap

The technical specifications of GlobalSoilMap are laid out in the specifications
document (Arrouays et al. 2014b). That publication articulates not how digital soil
maps should be created but the standard to which they should conform to in order to
permit collation for the assemblage of a global product. This specification promotes

http://globalsoilmap.net
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innovation in digital soil mapping practice and recognises that practitioners may
prefer certain methods and that different methods may perform better in different
environments.

Key aspects of the specifications include the spatial entity such as the data
support and resolution at which mapping should be created, the soil properties
to be predicted, the date associated with their prediction as well as an explicit
communication of the prediction uncertainty and accuracy. Other aspects include
documentation standards and reproducibility and the data release policy. The
following paragraphs will discuss these technicalities in more detail which is
sourced from Arrouays et al. (2014b) and Arrouays et al. (2014a).

12.3.2.1 Raster Specifications

GlobalSoilMap products will be delivered as raster grids with cell dimensions of
3 arcseconds � 3 arcseconds. The resolution was chosen in order to match the 3-
arcsecond Shuttle Radar Topography Mission (SRTM) DEM since elevation is a
fundamental environmental covariate and the DEM extent accounts for most of the
habitable surface of the Earth.

The horizontal datum of GlobalSoilMap products will be WGS84 (geographic),
and the vertical datum will be EGM 96.

12.3.2.2 Tiered Products

The GlobalSoilMap specifications identify four tiers of product. Tier 1 products
could be thought of as ‘entry-level’ products not with respect to quality but with
respect to the complexity of the methods involved in producing them. The higher
tiers are hierarchical in the sense that they build on products produced to a lower-
tier specification, particularly with respect to validation and uncertainty analysis.

It is expected that mapping products meeting Tier 1 or Tier 2 specifications can
be derived entirely from legacy soil information. It is possible that collection of
additional soil data will be required in order to successfully complete a Tier 3 or
Tier 4 product.

12.3.2.3 Soil Attributes

Soil attribute predictions will be made at six depth intervals in the soil profile: 0–
5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and 100–200 cm. The values
of 12 attributes will be predicted at each prediction location; they are described in
Table 12.7.
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Table 12.7 GlobalSoilMap soil attributes (Arrouays et al. 2014a)

Soil attribute Units Description

Soil depth
Depth to rock cm Depth to lithic or paralithic contact (Soil Survey Staff

(1993))
Plant-exploitable
depth

cm Effective depth as defined in Soil Survey Staff (1993)

Primary soil
properties
Organic carbon g kg�1 Mass fraction of carbon by weight in <2 mm fraction as

determined by dry combustion at 900 ıC
pH pH of 1:5 soil-water suspension
Clay content g kg�1 <2 �m fraction of <2 mm soil material determined

using pipette method
Silt content g kg�1 20–50 �m fraction of <2 mm soil material determined

using pipette method
Sand content g kg�1 50 �m–2 mm fraction of <2 mm soil material

determined using pipette method
Coarse fragments m3 m�3 Mass fraction of soil material >2 mm
Effective cation
exchange capacity

mmolc kg�1 Cations extracted using BaCl2 plus exchangeable Al
and H

Derived soil
properties
Bulk density Mg m�3 Bulk density of whole soil, including coarse fragments,

equivalent to the core method but determined using
pedotransfer function

Bulk density Mg m�3 Bulk density of <2 mm fraction, equivalent to the core
method but determined using pedotransfer function

Available water
capacity

mm Determined by pedotransfer function using previous
predictions of organic carbon, sand, silt, clay and bulk
density

It is left to individual jurisdictions to determine whether additional soil attributes
are worth predicting. For example, the Soil and Landscape Grid of Australia, which
is Australia’s initial contribution to GlobalSoilMap, includes total N and total P in
addition to the attributes identified in Table 12.7 (Grundy et al. 2015).

Definitions and methods of soil analysis for most soil properties are in accor-
dance with Annex 1—Methods for Soil Analysis (ISO standards) of the FAO report
outlining the World Reference Base for Soil Resources (IUSS Working Group WRB
2007). Particle size limits conform to the USDA system. Soil properties that are not
routinely measured will be predicted with region-specific pedotransfer functions.
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12.3.2.4 Uncertainty

It is intended that soil attribute predictions will be accompanied by an estimate of
their uncertainty at each prediction location. Although the benefit of uncertainty
information is clear, and research into the uncertainty of soil maps is not new,
its incorporation in the specifications of a soil mapping project of this extent is
unprecedented. It has directly inspired further research (e.g. Helmick et al. 2014;
Malone et al. 2014).

Tier 1 and Tier 2 specifications require uncertainty to be expressed as the upper
and lower limits of a 90% prediction interval about the soil attribute predictions, and
a range of studies have shown how this may be accomplished (e.g. Helmick et al.
2014; Malone et al. 2011; Odgers et al. 2015a; Padarian et al. 2017).

12.3.3 Examples of the GlobalSoilMap Product: What Has
Been Achieved So Far?

The GlobalSoilMap project has stimulated a large amount of research since its
inception. Some of the first efforts are described in Boettinger et al. (2010) and
Minasny et al. (2012). The first GlobalSoilMap conference was held in Orléans,
France, in 2013 with the aim of showcasing GlobalSoilMap-inspired research.
The proceedings of this meeting are published in Arrouays et al. (2014c). In the
following sections, we will describe a few GlobalSoilMap products in more detail.

GlobalSoilMap products have been produced for many regions, including Aus-
tralia (e.g. Soil Research 53(8), 2015), Chile (Padarian et al. 2017), Denmark
(Adhikari et al. 2013, 2014), Europe (de Brogniez et al. 2015; Ballabio et al. 2016),
France (Lacoste et al. 2016; Mulder et al. 2016), South Korea (Hong et al. 2012)
and the United States (Bliss et al. 2014; Hempel et al. 2014; Odgers et al. 2011);
Fig. 12.5 shows maps of 0–20 cm soil texture fractions.

Australia is currently one of the countries that is leading the GlobalSoilMap
effort in producing nationwide soil attribute maps, using soil legacy data and new
soil property estimates derived from vis-NIR soil spectra (Viscarra Rossel et al.
2015). Australia’s contribution is produced under the Soil and Landscape Grid of
Australia (SLGA) and is publically available online via the following web service
architecture: www.csiro.au/soil-and-landscape-grid. Figure 12.6 shows an example
of how the new product compares to existing Australia wide soil attribute maps. It
becomes clear that the new Soil Grid of Australia is more accurate and contains less
artefacts and generally represents the variability of soils across the country better.

Spatial disaggregation of soil class maps employing the DSMART algorithm has
been applied on the national scale (e.g. POLARIS, United States; Chaney et al.
2016), state level (e.g. Western Australia; Holmes et al. 2015) and regional scale
(e.g. Dalrymple Shire central Queensland, Australia; Odgers et al. 2014). Figure
12.7 shows an example on the regional scale. Here, DSMART was used to sample

http://www.csiro.au/soil-and-landscape-grid
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Fig. 12.6 Comparing maps of clay content for the 0–30 cm layer derived by attribution of clay
content to polygons from the atlas of Australian soil (AAS); area-weighted means where the level
of detail depends on the survey coverage in each region (ASRIS); and depth-weighted average to
30 cm from the fine spatial resolution multi-scale maps of the Soil and Landscape Grid of Australia
(SLGA). Blue areas on the maps represent lakes and other inland water bodies (Reproduced from
Viscarra Rossel et al. (2015), with permission from CSIRO Publishing)
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Fig. 12.7 (a) Probability surfaces for three of the 72 Dalrymple Shire soil classes, created by
running DSMART on the 3058 soil polygons for n D 100 iterations at m D 15 sampling points per
polygon. (b) Zoomed-in view (Changed after Odgers et al. 2014)

soil class polygons of a legacy soil map and subsequently derives potential soil class
distributions via a classification tree. This was done through a number of realisations
to estimate the probability of occurrence of an individual soil class (Fig. 12.7a).

Estimates were conducted on a raster grid to overcome some of the limitations of
the discrete polygon boundaries of the original soil legacy map (see Fig. 12.8 which
shows the most probable soil class).
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Spatial disaggregation of soil classes employing the PROPR algorithm has also
been applied on the state level (e.g. Western Australia; Odgers et al. 2015a) and
regional scale (e.g. Dalrymple Shire central Queensland, Australia; Odgers et al.
2015b). This approach is useful when sufficient soil profile point observations are
limiting but where soil legacy polygon maps are available.

12.3.4 Uses of GlobalSoilMap Products

As outlined earlier the intention behind the GlobalSoilMap effort is to provide high-
resolution soil attribute maps that can ultimately be used in a variety of applications.
Sanchez et al. (2009) emphasised that ‘maps can provide soil inputs (e.g. texture,
organic carbon and soil-depth parameters) to models predicting land-cover changes
in response to global climatic and human disturbances’. Here, we will discuss a few
examples.

Maps of more readily available soil properties can be used to estimate other
more costly or difficult to measure soil attributes. For example, Ballabio et al.
(2016) used soil texture maps (%clay, %silt and %sand) created using topsoil
data from the European land use and cover area frame statistical survey (LUCAS)
(refer to Fig. 12.5) to derive bulk density, USDA soil texture classes and AWC.
These soil attributes may then be employed to assess the C sequestration potential
of topsoils (bulk density), assess the soil-water holding potential of agricultural
soils for informed soil management or estimate soil compaction hazards (texture
classes). High-resolution soil attribute maps can also be employed for monitoring
and forecasting of biophysical properties. More explicitly, these soil attribute maps
may be used as input soil information to drive physical system simulation models
(e.g. crop simulation models such as APSIM) or for land suitability assessment.

A nice example of the use of fine-resolution 3D soil attribute maps in land
suitability assessment that contributed to the GlobalSoilMap effort in Australia
(Kidd et al. 2015b) comes from Tasmania, Australia, and is outlined in Kidd et
al. (2015a). Here, digital soil assessment was used to inform on the agricultural
land suitability of 20 different crops (perennial horticultural, cereal and vegetable
crops) in a new irrigation scheme ‘Water for Profit Program’ commissioned by the
Tasmanian state government. Together with 3D soil attribute maps (80 � 80 m),
climate grids (e.g. growing degree days and frost risk) were applied to a range
of defined enterprise suitability rulesets to produce enterprise suitability maps.
All maps created are stored on a publically available spatial Internet portal
(Land Information Services Tasmania, LISTmap https://www.thelist.tas.gov.au/app/
content/data#) and can be used interactively to perform a range of land management-
based assessments, such as identifying limiting soil and climate conditions. Outputs
also include an enterprise versatility index; and the highest-valued agricultural land
for the highest earning potential for individual commodities can also be identified
with the product.

https://www.thelist.tas.gov.au/app/content/data
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Chapter 13
Vis-NIR-SWIR Remote Sensing Products
as New Soil Data for Digital Soil Mapping

Philippe Lagacherie and Cécile Gomez

“If you were born without wings, do nothing to prevent them
from growing”.

Coco Chanel

13.1 Introduction

Since the early ages of soil surveys, air photographs have been intensively used by
soil surveyors for depicting the soil variations across landscapes. The variations of
soil surfaces, specifically color and ratio of vegetation cover, that were revealed
by this early remote sensing product were a great help for interpolating the
scarce soil observations and for delineating the soil class boundaries. This was
further transposed in digital soil mapping (McBratney et al. 2003), thanks to the
large availability of remote sensing images provided by the emerging spatial data
infrastructures. Up to now, digital soil mappers have mainly used remote sensing
images as spatial data inputs for representing the landscape variables that are related
with soil, such as vegetation and parent material (the soil covariates). Boettinger
et al. (2008) reviewed the main indicators that could be retrieved for estimating
these soil covariates, using multispectral data acquired in the visible near-infrared
and short-wave infrared (VIS, 400–700 nm; NIR, 700–1100 nm; SWIR, 1100–
2500 nm) spectral domain. After a spatial overlay with the sparse sets of observed
and measured sites collected in a given area, the indicators derived from remote
sensing have been used as independent variables in regression-like models or as
external drift in geostatistic models (McBratney et al. 2003, Chap. 12 of this book).
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The modern airborne hyperspectral sensors (such as the HyMap sensor and the
AISA-Dual sensor) reach spectral resolutions (5–10 nm) that become closer and
closer to the laboratory spectrometers (1 nm). Moreover the near future launching
of hyperspectral satellites (such as the German EnMAP sensor (Guanter et al. 2015)
and the French HYPXIM sensor (Briottet et al. 2013)) would provide additional
hyperspectral data sources. Based on the large successful attempts of soil property
estimations using Vis-NIR-SWIR laboratory data (Viscarra Rossel et al. 2006),
and the more modest successful attempts of mapping soil properties on bare soil
surfaces using Vis-NIR-SWIR hyperspectral images (Ben-Dor et al. 2008), the latter
can now be envisaged as a potential cost-efficient way for acquiring soil property
measurements. Thus, it is expected that Vis-NIR-SWIR hyperspectral data can
partially overcome the lack of soil data that has been acknowledged as the main
limitation of digital soil mapping performances (Lagacherie et al. 2008). Some
recent promising results have been obtained that describe complex spatial patterns
of soil properties (Fig. 13.1, Ben-Dor et al. 2006; Schwanghart and Jarmer 2011;
Gomez et al. 2012a).

This technological evolution leads to a full revision on how the (digital) soil
mapper can use remote sensing products in their activities. This chapter describes
the pedometric tools, their applications, and their limitations for producing estima-
tions of soil properties from Vis-NIR-SWIR imagery, denoted further “VNS-I soil
products” (Sect. 13.2). It then details how these VNS-I soil products constitute new
sources of soil data and can be used to improve the mapping of soil properties across
landscapes (Sect. 13.3).

13.2 Soil Property Estimated from Vis-NIR-SWIR Imagery

Some introductive notions about soil spectral signatures are presented in Sect. 13.2.1
(see also Chaps. 5 and 7 of this book). Then the developed approaches for soil
property estimation are summarized in Sect. 13.2.2, and their performances are
presented in Sect. 13.2.3, both from laboratory to imaging spectrometry.

13.2.1 Introductive Notions

The spectral signature of a material in the Vis-NIR-SWIR (VIS, 400–700 nm;
NIR, 700–1100 nm; SWIR, 1100–2500 nm) spectral domain is characterized by
(1) its general shape; (2) its reflectance intensity, also called albedo; and (3) its
specific absorption bands. The absorption phenomenon results from electronic and
vibrational transitions due to the absorption of specific photon energy within ionic
and molecular components of the observed material. Spectral characteristics of soils
have been largely studied in laboratory VIS-NIR-SWIR spectroscopy for decades

http://dx.doi.org/10.1007/978-3-319-63439-5_5
http://dx.doi.org/10.1007/978-3-319-63439-5_7
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and described, among others, by, e.g., Ben-Dor et al. (1998). The following section
presents a summary of these spectral characteristics.

The general shape of the reflectance spectrum through a change of spectral
intensity and absorption bands depth may be influenced by the soil structure linked
to its particle size, the sample geometry, the view angle, and the geometry of the
light source (incident angle and azimuth angle) (Baumgardner et al. 1985; Ben-Dor
and Banin 1995). In particular, the more the soil grain size increases, the more the
surface of spectral distribution decreases, and so the more the reflectance spectrum
intensity decreases (Baumgardner et al. 1985). Thus, a spectrum of clay soil will
tend to have more albedo than a spectrum of sandy soil. Finally, the soil structure
usually doesn’t affect the absorption band’s position (Ben-Dor and Banin 1995).

Three major chemical components affect the soil spectrum, through specific
absorption bands: minerals (clay, ferric, and carbonate), organic matter (OM), and
water (Stoner and Baumgardner 1981). Calcium carbonate (CaCO3) in soil causes
an absorption band around 2340 nm, due to vibrations at the molecular level
associated with the C-O bond (Gaffey 1987). Clay minerals such as kaolinite,
montmorillonite, and illite in the soil induce an absorption band around 2200 nm
due to the combination of vibrations associated with the OH bond and the OH-
Al-OH bonds (e.g., Hunt et al. 1971; Chabrillat et al. 2002). Other clay minerals
have specific spectral responses in the SWIR spectral domain, relative to vibrations
associated with Mg and Fe-OH bonds. Iron in its trivalent state produces three
absorption bands between 400 and 1000 nm due to electronic processes. The
hematite is characterized by absorption bands centered at 550, 630, and 860 nm,
and goethite is characterized by absorption bands centered at 480, 650, and 920 nm
(Hunt et al. 1971; Morris et al. 1985). The absorption bands around 500 nm and
900 nm dominate the reflectance in the visible spectrum, while the absorption band
around 640 nm is seldom marked.

Organic matter (OM) is an important soil component and has a strong influence
on soil reflectance characteristics throughout the entire Vis-NIR-SWIR domain (i.e.,
Tables 13.2 and 13.3 in Ben-Dor et al. 1997). The vibrations of O-H and C-H bonds
cause absorptions, particularly due to lignin and cellulose (i.e., Tables 13.2 and 13.3
in Ben-Dor et al. 1997). The physicochemical complexity of the soil organic matter
(fresh or dry) explains the difficulty in precisely identifying specific absorption
bands. Nevertheless, OM has a low effect on the spectrum when its content is below
2% (Baumgardner et al. 1970).

Water content in soil induces three phenomena: (i) a general reduction in
reflectance along the spectrum due to light absorption by water, (ii) a reduction or
increase of absorption bands associated to minerals (e.g., carbonate around 2340 nm
and for clay around 2200 nm, respectively), and (iii) the appearance of absorption
bands at 1400 and 1900 nm due to the presence of liquid water (H2O) or associated
with the OH bond in soil (Bowers and Hanks 1965).

Some primary soil properties, such as pH and cation-exchange capacity (CEC),
have no particular spectral characteristics and therefore cannot be determined by
direct spectral analysis.
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13.2.2 Soil Property Estimation Approaches

Quantitative estimation of soil properties can be achieved by developing estima-
tion models called spectrotransfer functions (STFs). These STFs link a set of
Y-dependent variables (soil property) and a set of X predictor variables (Vis-NIR-
SWIR spectrometric measurements). In this section, we present two approaches
allowing STF development (Sects. 13.2.2.1 and 13.2.2.2) and the principle of
calibration and validation of the STFs (Sect. 13.2.2.3).

13.2.2.1 Spectral Indices

Spectrotransfer functions for estimating some primary soil properties can be devel-
oped by analyzing absorption bands and spectrum geometry. The general principle
is based on relationships between a spectral index and a soil property. Spectral
indices are based on ratio of (at least) two reflectance values focusing on absorption
band area, depth, and asymmetry or also slope between two reflectance values (Van
Der Meer 2004). Some of these indices are calculated from the continuum removed
reflectance. The continuum removed function is usually defined as a convex hull, but
can also be defined as a straight line (often named baseline) if a single absorption
feature is investigated (Kokaly and Clark 1999). Removing the convex hull allows
to highlight absorption bands related to physicochemical properties, by removing
the baseline (“continuum”) that contains target measurement parameters (humidity
differences between targets, illumination between shots, etc.). Table 13.1 presents
some spectral indices related to primary soil properties. Initially dedicated to
multispectral sensors such as the LANDSAT satellite sensor, some spectral indices,
such as the brightness, color, and redness index (Table 13.1), can be used from
all spectroscopic sensors (hyperspectral, superspectral, and multispectral, on field,
laboratory, or by imaging). Conversely, some spectral indices, such as the SWIR_FI,
CRclay, CRCaCO3 and SOC, can be computed from hyperspectral sensor outputs only
because they require fine spectral resolution.

As spectral indices are based on absorption bands and spectrum geometry, some
soil properties such as pH and CEC that have not any specific spectral features may
not be studied using spectral indices, which constitutes the major drawback of this
STF approach. In the same time, spectral indices are independent from the study
area, soil property distribution, and range, which constitute the main advantage of
this STF approach.

Finally, spectral indices’ development without calibration provides relative
predictive values (e.g., Gomez et al. 2016). To obtain absolute values, a calibration
process of these spectral indices is needed and is described in Sect. 13.2.2.3.
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13.2.2.2 Regression Models

Multivariate regression methods based on building statistical models to estimate
the soil property, using a calibration base, are largely used in Vis-NIR-SWIR
spectroscopy, from laboratory to field (Chap. 5, Sect. 5.5.2.1 of this book) and
remote sensing. Two multivariate regression methods are commonly used:

– Multiple linear regression (MLR) is used for both multispectral (e.g., by Nanni
and Demattê 2006) and hyperspectral (e.g., by Ben-Dor et al. 2002) data from
remote sensing. This method is useful when the Vis-NIR-SWIR reflectance
spectra are acquired in a small number of wavelengths (multispectral data
case) and when there is little collinearity between reflectance values at each
wavelength. The MLR regression model used to estimate a by soil property is
written as

by D †N
iD1bixi C a

where N is the number of wavelength, bi is the regression coefficient associated
with the wavelength i, xi is the reflectance value at the wavelength i, and a is the
residue.

– Partial least squares regression (PLSR) is widely used in Vis-NIR-SWIR hyper-
spectral remote sensing (e.g., by Stevens et al. 2008). This method allows
the management of (1) colinearity between the reflectance values at different
wavelengths and (2) a number of predictors (wavelengths) that are larger than
the number of samples composing the database [X, Y]. PLS regression is used
to minimize the covariance between X (descriptive variables: wavelengths) and
the dependent variable Y (soil property). The PLSR projects the variables X and
Y in an area of reduced size (set of orthogonal vectors, called latent variables,
maximizing the covariance between X and Y). A detailed description of the
PLSR is given in Wold et al. (2001).

13.2.2.3 Cal/Val Models

The implementation of STFs often requires the establishment of a database [X, Y]
consisting of Vis-NIR-SWIR reflectance spectra acquired by the sensor on bare soil
surfaces (descriptive variable X) associated with the soil property measured on a
laboratory soil sample collected on the same bare soil surfaces (dependent variable
Y). There are no precise figures on the minimum number of samples needed to
build a database for soil property estimation. Nevertheless, it is accepted that a data
number [X, Y] inferior to 50 does not allow developing robust estimation model,
whatever the size of the study area.

The use of a calibration [Xcal,Ycal] and validation [Xval,Yval] database (sub-
databases of [X, Y]) allows the calibration of STFs presented above and their
validations, respectively. The data allocation in the calibration [Xcal,Ycal] and

http://dx.doi.org/10.1007/978-3-319-63439-5_5
http://dx.doi.org/10.1007/978-3-319-63439-5_5\#Sec9
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validation [Xval,Yval] database is an important and complex step. If the two sets
([Xcal,Ycal] and [Xval,Yval]) are too similar, the model may be too optimistic (underes-
timation of the prediction error). Inversely, if the two sets ([Xcal,Ycal] and [Xval,Yval])
are too different, the model may seem excessively inaccurate (overestimation of the
prediction error).

To ensure model robustness, it is necessary to build a calibration database
representative of the study area in terms of either soil properties or of spectral
signatures. It is also necessary that when a validation database is available, it
is homogeneous regarding the calibration database, again either in terms of soil
properties or of spectral signatures. In theory, calibration [Xcal,Ycal] and validation
[Xval,Yval] databases would have to fulfill the following criteria: (1) similar dis-
tribution of Ycal and Yval variables and (2) maximum spectral variability within
Xcal, while the spectra remain in a realistic domain (avoiding outliers). These two
criteria are difficult to meet at the same time. Different calibration [Xcal,Ycal] and
validation [Xval,Yval] database construction methods exist, relying on either of the
above criteria. Similar distribution of Ycal and Yval variables is frequently used. The
Y variables need to be sorted in ascending order. Then, both samples having the
lowest Y soil properties are assigned to the calibration database. Then, the next
sample is placed in the validation set, and the procedure is continued by alternately
placing both following samples in the calibration set and the next sample in the
validation set. The assignment of samples in each of the bases follows this process
until the last sample, thereby constructing two uniform sets containing two thirds
and one third of the samples, respectively. To ensure a significant spectral variability,
methods such as Kennard-Stone (Kennard and Stone 1969) or DUPLEX (Snee
1977) can also be used.

13.2.3 Prediction Performances and Limitations,
Using VIS-NIR-SWIR Imagery

13.2.3.1 Rules to Predict Soil Properties

The soil property estimation approaches presented above have been largely applied
in laboratory spectrometry and can also be applied from reflectance spectra provided
by VIS-NIR-SWIR imagery. It was highlighted that to be predicted, the soil property
has to respect the following rules (Ben-Dor et al. 2002):

– The soil property has a specific spectral signature due to a chemical or physical
structure or is correlated to a soil property having a specific spectral signature
due to an associated chemical or physical structure.

– And the soil property has a wide range of values. Thus, the predictability of a
primary soil property depends, among other things, on the soil diversity of the
study site.
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Fig. 13.2 Spatial distribution of predicted (a) organic carbon content and (b) total nitrogen content
across a reference field, using the MLR method (Extracted from Selige et al. 2006)

The case of an accurate prediction (using STF and remote sensing data) of soil
properties having specific spectral signatures can be illustrated by the successful
mapping of predicted organic carbon in Selige et al. (2006) (Fig. 13.2a). An
accurate prediction (using STF and remote sensing data) of soil properties without
specific spectral signature but correlated to a soil property having a specific spectral
signature due to an associated chemical or physical structure can be illustrated
by the successful mapping of predicted total nitrogen (Nt) in Selige et al. (2006)
(Fig. 13.2b). Indeed, total nitrogen (Nt) beneficiates from a high correlation (R2 not
communicated) between organic carbon and Nt over the study area (Selige et al.
2006). Finally, an inaccurate prediction (using STF and remote sensing data) of soil
properties having specific spectral signatures can be illustrated by the result obtained
by Gomez et al. (2012a) for SOC prediction over a Mediterranean context, due to
poor values and variation of SOC (mean and standard deviation of 0.9% and 0.4%,
respectively).
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13.2.3.2 Performances from Lab to Imagery

In laboratory condition, air-dried and sieved soil samples in small cups are measured
with laboratory spectrometers (e.g., ASD FieldSpec Pro FR, ASD AgriSpec, FOSS
NIRSystem 6500 sensors) under controlled illumination conditions (e.g., using
a contact probe or external halogen lamps) and using a Spectralon as a white
reference. Drying and sieving the soil samples induce no surface roughness and
no humidity perturbation during the spectral measurements (Table 13.2). Thus, all
the soil samples belonging to a dataset receive the same pretreatments and have
the same surface structure in the cups. Moreover, the same light incident angle and
intensity affect spectral measurements of soil samples belonging to a dataset (Table
13.2). And the soil samples are composed of pure soil, so no vegetation residues
affect spectral measurements (Table 13.2). Finally, laboratory spectrometers have
a high spectral resolution (�1–3 nm at Vis and �3–10 at NIR-SWIR) and high
signal-to-noise ratio (700:1 < < 2100:1).

In remote sensing conditions, raw soil surfaces are measured with imaging
spectrometers (e.g., HyMap, AISA-Dual, CASI sensors) and at solar noon ˙2 h (to
have maximum solar intensity associated to the minimum incident angle). Imaging
raw soil surfaces induces the presence of surface elements (green vegetation, dry
residues, coarse elements, etc.), soil roughness variability (which may be due to
different tillage methods in cultivated areas), and surface moisture level variability
among the targets of the same acquisition (Table 13.2). Acquisition duration, even
limited at solar noon ˙2 h, induces illumination and incident angle variability within
a remote sensing flight. The flight altitude induces atmosphere components in the
recorded signals and thus induces spectral perturbations due to different gases (O3,
CO, CO2, H2O, CH4, N2O), which have to be corrected for (Table 13.2). Finally,
imaging sensors have spectral resolutions from 4 nm (e.g., AISA-Dual sensor) to
30 nm (e.g., AHS-160 sensor) and signal-to-noise ratios from 200:1 (e.g., HySpex
sensor at Vis-NIR domain) to 850:1 (e.g., AISA-Dual sensor at SWIR domain).

A decrease of performances from laboratory to remote sensing data has been
demonstrated by several authors (see examples in Table 13.3). These performance
decreases have been assigned to three main factors affecting the soil spectral
measurement and so the STF accuracy (e.g., Stevens et al. 2008; Ben-Dor et al.
2009; Lagacherie et al. 2008): (i) the atmosphere, (iii) the disruptive factors affecting
the soil areas, and (iii) a low signal-to-noise ratio of the imaging sensor.

Whatever the predicted soil property, an obvious limitation of these predictions is
their low depth representativeness, as the depth of Vis-NIR-SWIR measurement is
around the order of the wavelength, so around 1–2 �m. However, in cultivated areas
where the superficial soil horizons are mixed and homogenized by tillage, the soil
surface measured by Vis-NIR-SWIR imagery can be considered as representative of
the whole cultivated horizon.
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Table 13.2 Spectral measurement conditions for laboratory and imaging spectrometry

Laboratory Spectrometry Imaging Spectrometry

Measurement 
object

Soil Horizon samples Pixels of soil surfaces

Air-dried Sieved Pure soil Raw 

Consequences
No humidity 
perturbation

No surface 
roughness

No 
vegetation 

residues

Limited to topsoil properties
Sensitive to within pixel surface 

variations (soil, land-use,…)
Heterogeneity of vegetation 

residues, roughness and 
humidity

Illumina�on 
condi�ons

Controlled Those of solar noon +-2h.

Consequences
No variation of incident light during 

spectral measurements

Variation of incident light 
during spectral imaging 

acquisition

Spectrometer
specifica�ons

• spectral resolution from ~1nm to 10 
nm

• high Signal to Noise ratio

• spectral resolution from 6 to 
10 nm

• modest Signal to Noise ratio

Consequences
Very fine description of spectral 

features
Fine description of spectral 

features

Atmosphere None
Yes, and depending on the 

altitude of the aircraft, location 
and climate.

Consequences No atmosphere perturbation
Atmosphere corrections 

needed (using, e.g., empirical 
line method , FLAASH model)

13.3 Using Vis-NIR-SWIR Imagery Soil Products in Digital
Soil Mapping

Vis-NIR-SWIR imagery (VNS-I) soil products are a new source of quantitative
characterization of soil that could contribute to overcome the lack of soil input that
is recognized as the major limitation of Digital Soil mapping. In the following, dif-
ferent possible uses of such data in DSM are presented according to whether VNS-I
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Table 13.3 Table of performances obtained from laboratory and imaging sensors, extracted from
the literature

Properties References Method

Performance obtained
from laboratory sensor
(sensor name)

Performance obtained
from imaging sensor
(sensor name)

Iron Bartholomeus
et al. (2007)

Spectral index
(redness index)

R2 D 0.48 R2 D 0.22
(ASD FieldSpec) (ROSIS)

SOC Gomez et al.
(2008a)

PLSR R2cv D 0.66 R2cv D 0.55

RMSECV D 6.1 g/kg RMSECV D 7.3 g/kg

(ASD AgriSpec) (Hyperion)

SOC Stevens et al.
(2008)

PLSR R2cv not communicated R2cv not communicated

RMSECV D 1.7 g/kg RMSECV D 1.2 g/kg

(ASD FieldSpec) (AHS-160)

Clay Gomez et al.
(2008b)

PLSR R2cv D 0.85 R2cv D 0.64

RMSECV D 31.2 g/kg RMSECV D 49.6 g/kg

(ASD FieldSpec) (HyMap)

Clay Gomez et al.
(2008b)

Spectral index
(CR)

R2cv D 0.73 R2cv D 0.58

RMSECV D 44 g/kg RMSECV D 82 g/kg

(ASD FieldSpec) (HyMap)

CaCO3 Gomez et al.
(2008b)

PLSR R2cv D 0.94 R2cv D 0.77

RMSECV D 38.3 g/kg RMSECV D 76.6 g/kg

(ASD FieldSpec) (HyMap)

CaCO3 Gomez et al.
(2008b)

Spectral index R2cv D 0.92 R2cv D 0.47

(CRCaCO3) RMSECV D 52 g/kg RMSECV D 132 g/kg

(ASD FieldSpec) (HyMap)

products are used in DSM models as substitutes of soil property measurements, as
complements of soil property measurements, or as soil covariates.

13.3.1 Using VIS-NIR-SWIR Imagery Soil Products
as Substitutes of Site Measurements

In this situation, the estimations of soil properties at each pixel of a hyperspectral
image (see Sect. 13.2.3) is assumed to be precise enough to be considered as a
measurement of a soil property and to be used as such for feeding DSM models.
This potentially provides spatial sampling with densities largely greater than usually
handled by DSM models, which has the advantage of better capturing soil variations,
especially short-scale ones. However, these estimations convey uncertainties that
may impact the model results.
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Table 13.4 Statistic and variogram parameters estimated from different soil inputs in the Peyne
Valley (Southern France, Hérault) after Gomez et al. (2012b)

Input
Mean
(g/kg)

Standard
deviation (g/kg) Nugget (g2/kg2) Sill (g2/kg2) Range (m)

95 measured 233 74 2702 2315 1901
95 estimated 233 65 1422 2232 1928
37,320 estimated 248 74 0 2895 184

2393 2297

In the following, we analyzed this trade-off by considering two basic operations
of DSM: estimating means and variances of a soil property within a study area
and building experimental variograms of a soil property. These two operations
were performed for the Peyne watershed case study (Gomez et al. 2012b). Three
different soil inputs were considered (i) a set of 95 sites with real measurements
(wet laboratory analysis), (ii) the same set of 95 sites with estimates from VNS-
I estimates, and (iii) the 37,320 sites with HI estimates at the bare soil pixels
of the image. The results obtained for the two above-cited basic operations are
presented in Table 13.4 for one example of soil property, namely, clay content,
which has been estimated with fairly good precision (R2 D 0.67) from Vis-NIR-
SWIR hyperspectral imagery. More results can be found for other soil properties in
Gomez et al. (2012b).

In the example provided, the substitution of real measurements of clay content
by their estimations from Vis-NIR-SWIR hyperspectral data over 95 sites has a
moderate impact on calculated statistics and variogram parameters (first two lines
of Table 13.4). The same mean values are registered, whereas standard deviation
moderately decreases because of a loss of precision caused by the spectrotransfer
function. This also induces differences in nugget values of the variograms, whereas
these variograms are very similar with regard to range and sill.

Conversely, increasing the number of considered sites has a significant impact
on calculated statistics and variogram parameters (last two lines of Table 13.4).
A better coverage of the spatial sampling makes the estimated mean and standard
deviation increase. Besides, the greater density of sites allows to reveal a more
complex spatial structure, combining a short-range variation of clay content due
to erosion-redeposition along slopes (range of 184 m) and a larger one (range of
2297) due to lithological variations across the study area. This result demonstrates
a posteriori that the important nugget values obtained with 95 sites (first two lines
of Table 13.4) are probably caused more by the inability to capture the real clay
variations from a small number of sites than by any measurement uncertainties.

This example tends to demonstrate that substituting expensive wet laboratory
analysis by VNS-I estimates could be a valuable solution in regions where dense
spatial sampling is required for capturing short-range variations. This could be a
step forward for the use of laboratory soil spectroscopy as soil data input of DSM
models that has been observed in 16.7% of the DSM studies published in Geoderma
and SSSAJ in 2007–2008 (Grunwald 2009).
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13.3.2 Using VIS-NIR-SWIR Imagery Soil Products
as Complements of Site Measurements

In some situations, the soil input for digital soil mapping includes both a VNS-
I product that provides estimates of a given soil property at many locations (as
the “VNS-I estimates” evoked in the previous section) and a sparser set of sites
with the measurements of the same soil property. The latter data is often the
calibration dataset of the spectrotransfer function used to produce the former. In
these situations, the VNS-I estimates are used as auxiliary data that help with
interpolating the measurements available for the sparse sites.

The suitable model for dealing with this input data is bivariate cokriging
(Wackernagel 1995). In bivariate cokriging, the variable of interest (here a soil
property) and its auxiliary variable (here the VNS-I product) are modeled by the
random functions Z(x) and Y(x), respectively, where x denotes the location index.
Let’s suppose that Z(x) is sampled at ni sites xi and Y(x) is sampled at nj sites xj

(j � i), the values at these locations being denoted further Zi and Yj. Let us then
consider the covariance function of Z for a pair of points CZZ(xi – xi

0

)(noted further
C.ZZ/

i;i0 ) and the cross covariance between Z and Y CZY(xi–xj) (denoted further C.ZY/
i;j ).

Covariances and cross covariances are directly derived from fitted variograms and
co-variograms. The cokriging predictor is the following:

Z� .x0/ D

ni
X

iD1


i Zi C

nj
X

jD1


0
j Yj (13.1)

where the 
i and the 
j solve the following cokriging system with ni C nj C 1
equations to ensure unbiasedness and minimization of the MSE:

Pni
i0D1 
i0C

.ZZ/
i0 C

Pnj

jD1 

0
jC
.ZY/
i;j � �1 .xi/ D C.ZZ/

i;0
Pnj

j0D1 

0
i0 C.YY/

j;j0 C
Pnj

jD1 
iC
.ZY/
i;j � �2 .xi/ D C.ZY/

j;0
Pni

iD1 
i C
Pnj

jD1 

0
j D 1

(13.2)

Compared to the ordinary bivariate cokriging system, the constraints on 
i and

j are summed up considering Z and Y have the same theoretical mean.

This approach was applied both in southern France (Lagacherie et al. 2012) and
in northern Tunisia (Ciampalini et al. 2012). As an example, the latter application is
summarized hereafter (Fig. 13.3). Cokriging was applied across a 339 km2 area
located in the Cap Bon region (northern Tunisia) with 262 sites with measured
topsoil properties (clay, sand, iron contents, and cation-exchange capacity). The
auxiliary variables were the estimated values of the same topsoil properties that
were derived from an Vis-NIR-SWIR AISA-Dual hyperspectral image by means
of a partial least square regression (PLSR) function calibrated from a subset of
129 sites (Gomez et al. 2012a). The hyperspectral image covered 42% of the
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Fig. 13.3 Combining spatial sampling of measured sites with hyperspectral imagery estimates for
mapping clay content in the Cap Bon region (After Ciampalini et al. 2012). (a) input data (VNS-I
product), (b) final estimated clay map obtained by cokriging

study area, which allowed to get 156,693 estimated values of topsoil properties
at 30 � 30 m pixels after averaging initial estimated values at 5 � 5 meter pixels
for the sake of computing time. The cokriged map (Fig. 13.3, right) allowed to
capture a soil pattern in the locations not covered by the hyperspectral image that
was in good continuity with the one revealed by the hyperspectral image (Fig.
13.3, left). However, quantitative assessments of performances (by cross validation)
showed that it remained a substantial uncertainty (R2 between 0.31 and 0.34) in
such locations, which can be jointly explained by (i) the initial uncertainty of the
PLSR function (R2 between 0.7 and 0.8), (ii) the short-scale soil variations of this
lithology-driven Mediterranean study area, and (iii) the non-stationarities of soil
properties’ variations across the study area that were not taken into account by the
co-regionalization model used by the cokriging.

13.3.3 Using VIS-NIR-SWIR Imagery Soil Products as Soil
Covariates

The two previous subsections dealt only with soil properties that were directly
predictable from Vis-NIR-SWIR images. A step further is to extent the use of such
images to the larger set of soil properties that are assumed to be correlated with the
latter. As a straightforward example, it can be considered that a VNS-I estimate of
a given topsoil property can improve the predictions of the same soil properties but
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considered at a greater depth. In that case, The VNS-I estimate is used as one of
the covariates (“s” following the “scorpan” model of McBratney et al. (2003)) of a
“surface-subsurface” soil model. This model will infer the value of a soil property S
at the ith interval of depth (Si) through the expression:

Si D S1 C�i Œ1�

with �i D Si � S1 D f .fS1;Lg/C "i
(13.3)

where S1 is the estimate of the topsoil surface property S obtained from a VNS-
I product and fLg is a set of easily available landscape covariates. The surface-
subsurface soil model f is a statistical function that estimates the differences in the
soil property values between the surface and the ith interval of depth (�i) with a
random error "š. The model requires a prior calibration from a dataset of existing
measured soil profiles retrieved from a soil database.

Such a model was applied for a 339 km2 study area located in the Cap Bon region,
Northern Tunisia (Lagacherie et al. 2013). A set of 152 legacy-measured soil profiles
collected in this region was used for calibrating the above-presented model for
three soil properties (clay content, sand content, and cation-exchange capacity). The
calibration data were the values of these three soil properties at four fixed interval
depths (0–15, 15–30, 30–60, and 60–100 cm) that were derived by means of an
equal-area spline function (Bishop et al. 1999) from the measurements made at each
horizons of the profiles. A set of geomorphometric indicators (elevation, slope, total
curvature, profile curvature, multi-resolution valley bottom flatness index, multi-
resolution ridge top flatness index, flow accumulation, and wetness index) were
calculated from a 30 m ASTER digital elevation model for serving as input of the
model (the fLg set), in addition of the VNS-I estimates.

The validation results on the Cap Bon study area are presented in Table 13.5.
When real measurements were used as inputs, the surface-subsurface models
provided fairly satisfactory predictions at 15–30 cm and 30–60 cm but were less
accurate at 60–100 cm (third column of Table 13.5). As expected, a moderate
decrease of performances was observed when real measurements are replaced by
Vis-NIR-SWIR imagery estimates of topsoil properties (fourth column of Table
13.5). Finally, it was observed that combining legacy data and VNS-I products
allowed to capture between one third and two thirds of the total variance of the
subsurface soil properties with a significantly decreasing performance with depth.
This result, although modest, clearly outperformed prior attempts for mapping this
property in this region.

This result suggests that legacy data and hyperspectral imagery products could
be combined for improving precision of DSM outputs, even for subsurface soil
properties.



13 Vis-NIR-SWIR Remote Sensing Products as New Soil Data for Digital. . . 431

Table 13.5 Performances of the surface-subsurface model in the Cap Bon region (After
Lagacherie et al. 2013)

Validation with different input (R2)

Soil property Depth interval (cm) Measured topsoil property
Vis-NIR-SWIR-estimated
top soil property

Clay 15–30 0.81 0.51
30–60 0.62 0.38
60–100 0.38 0.33

Sand 15–30 0.83 0.67
30–60 0.61 0.49
60–100 0.56 0.46

CEC 15–30 0.71 0.69
30–60 0.55 0.44
60–100 0.53 0.35

13.4 Toward Further Improvements (These Are Still
Research Questions)

Extending the Use of Vis-NIR-SWIR Imagery to Partly Vegetated Conditions
Spectrotransfer functions are build linking a set of soil surface properties (response
Y variables) to a set of imaging reflectance spectra over bare soil pixels (predictor X
variables) and, then, are applied to bare soil pixels to map the soil surface properties
(Sect. 13.2.3). The applicability of these spectrotransfer functions is therefore
inaccurate over surfaces which are partially covered by vegetation. Bartholomeus
et al. (2011) estimated that for 5% of vegetation in a mixed pixel, soil organic
carbon prediction is inaccurate. In addition, Ouerghemmi et al. (2011) estimated that
from 10% of vegetation in a mixed pixel, clay content prediction is inaccurate. Few
studies have addressed the estimation of soil properties over mixed pixels, including
semi-vegetated pixels, by overcoming the problem of mixed spectra. Bartholomeus
et al. (2011) and Ouerghemmi et al. (2011, 2016) proposed a “double-extraction”
approach of soil property estimation from mixed spectra. This “double-extraction”
approach consists of (1) a first extraction of an estimated soil spectrum,bssoil, from
mixed Vis-NIR-SWIR spectra X and (2) a second extraction of soil property content
from the estimated soil spectrumbssoil. Ouerghemmi et al. 2016 obtained acceptable
predictions using the “double-extraction” approach for a significant part of their
study area (63%) that was moderately covered by vegetation (NDVI <0.55). Finally,
the performances of these studies were encouraging, and these approaches should be
improved to be applied to pixels highly covered by vegetation and should be tested
on higher diversity case studies.
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Improving Soil Property Prediction from Soil Moisture
Using soil spectra measured with hyperspectral imaging spectrometers remains
challenging due to uncontrolled variations in surface soil conditions (see Sect.
13.2.3.2), such as the soil moisture. The decrease of Vis-NIR-SWIR model per-
formance, when dealing with field-moist soil samples, has been documented in the
literature (Bricklemyer and Brown 2010; Minasny et al. 2009).

Several authors show the performance of the external parameter orthogonaliza-
tion (EPO) algorithm (Roger et al. 2003), to correct for the effects of soil moisture in
Vis-NIR-SWIR spectra and so improve the prediction of soil properties. Minasny et
al. (2011) showed that EPO could remove the effect of water content from Vis-NIR-
SWIR spectra allowing for successful predictions of soil organic carbon using PLSR
models calibrated with air-dried spectra (Chap. 5, Sect. 5.4.2.1. of this book). The
EPO-PLS method was also used for predicting clay content and soil organic carbon
of intact and field-moist soil cores (Ge et al. 2014). And Ackerson et al. (2015) show
that EPO-PLS is an effective tool for Vis-NIR-SWIR spectroscopy of tropical soils
with mineralogy consisting of a mixture of kaolinite and iron-aluminum oxides.

In another way, Nocita et al. (2013) proposed an approach to improve SOC
predictions from moist samples with unknown moisture content. The approach
consist of (1) a calculation of the normalized soil moisture index (NSMI) (Haubrock
et al. 2008) to estimate the soil moisture content for each moist soil sample which
is used to spectrally classify the samples according to their moisture content and (2)
a SOC content prediction using PLSR models developed on groups of samples with
similar NSMI values.

Reducing Ground Measurements Using Legacy Data
Vis-NIR-SWIR hyperspectral imaging has been demonstrated to be a potential tool
for topsoil property mapping (such as free iron, clay, and organic matter) over bare
soils of large areas. Nevertheless, one of the limiting factors of hyperspectral data
use for soil property mapping is the need for an “ad hoc” database for the study
site to calibrate predictive models of the soil properties. These “ad hoc” databases
are composed of soil spectra extracted from bare soil pixels of the Vis-NIR-SWIR
imaging data and the corresponding soil property values measured over soil samples
collected over the bare soil pixels for which soil spectra are extracted.

An alternative calibration approach should be to replace the expensive “ad hoc”
field sampling datasets by legacy soil datasets which are much less expensive
to collect. In this way, Gomez et al. (2016) proposed to use a spectral index
to predict clay contents, which were standardized with soil legacy data for soil
properties mapping. The main performance limitations were due to the bias of clay
measurements, which affected the legacy soil databases. As explained by Ciampalini
et al. (2013), the bias of the legacy databases results from two main causes: (1)
differences in laboratory soil analysis protocols which cause converges toward a
general problem of digital soil mapping and should receive more attention in future
studies (Ciampalini et al. 2013, Baume et al. 2011) and (2) sampling locations, as
the sites of legacy data are not always located inside the study area. Finally, the

http://dx.doi.org/10.1007/978-3-319-63439-5_5
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combination use of legacy and “ad hoc” soil sampling for the calibration of Vis-
NIR-SWIR hyperspectral imaging models would open up new ways to deal with
acceptable costs of sampling and acceptable prediction performances.

Using DSM Models Adapted to Peculiarities of Vis-NIR-SWIR Products
Up to now, the use of Vis-NIR-SWIR products in DSM has involved classical
DSM models that were tailored for using as soil input a set of sites with exact
values of soil property, usually sparsely sampled in the study area. Advances
are expected by taking into account some peculiarities of this new soil input.
First, the high densities of observed sites allow to envisage models that would
better account for the complexity of the soil-landscape relationships that are
often observed in the field. For example, anisotropic spatial interpolation driven
by topography (Schwanghart and Jarmer 2011) can be suitable in pedological
contexts characterized by toposequences. Another example is to account for non-
stationarities that may affect the soil-landscape relationships across a study area
by applying, e.g., local regression kriging (Sun et al. 2012). Another peculiarity
of Vis-NIR-SWIR hyperspectral imagery products is that they provide estimated
values of soil properties that convey non-negligible uncertainties. There exists, in
the geostatistical toolbox, models that are able to handle such uncertain inputs, e.g.,
soft kriging approach (Journel 1986). However, they have not been involved yet
in DSM applications. A prerequisite for using such models would be to progress
in estimating the local uncertainty associated with Vis-NIR-SWIR hyperspectral
imagery products (Gomez et al. 2015).

13.5 Conclusions

• Soils have specific spectral signatures related with chemical and physical com-
ponents, themselves related with some soil properties.

• These soil properties can be estimated from reflectance spectra by spectrotransfer
functions calibrated from a limited set of soil property measurements (soil
spectroscopy combined with soil properties).

• Satisfactory results are obtained for soil properties (i) related with chemical
species impacting soil reflectance or (ii) correlated with the latter and (iii)
variable enough over the study area.

• Vis-NIR-SWIR remote sensing is limited to topsoil characterization and can only
be applied on dry and bare soil surfaces.

• By increasing dramatically the number of measured sites, Vis-NIR-SWIR hyper-
spectral imaging can be a valuable input for digital soil mapping in the near
future.
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Chapter 14
Uncertainty and Uncertainty Propagation in Soil
Mapping and Modelling

Gerard B. M. Heuvelink

“We demand rigidly defined areas of doubt and uncertainty”!

Douglas Adams
The Hitchhiker’s Guide to the Galaxy

In previous chapters, the use of geostatistical modelling for soil mapping was
addressed. We learnt that one of the advantages of kriging is that it not only produces
a map of predictions but that it also quantifies the uncertainty about the predictions,
through the kriging standard deviation. In this chapter we will look into this in more
detail. We will also examine another way to assess the accuracy of soil prediction
maps, namely, through independent validation. This approach has the advantage that
it is model-free and hence makes no assumptions about the structure of the spatial
variation and relationships between the target soil property and covariates. Finally,
we will examine how uncertainties in soil maps propagate through environmental
models and spatial analyses. Throughout this chapter we will use the Allier data
set and case study, Limagne rift valley, central France, to illustrate concepts and
methods. We will only consider soil properties that are measured on a continuous-
numerical scale. Many of the concepts presented can also be extended to categorical
soil variables, but this is more complicated and beyond the scope of this chapter.

14.1 What Is Uncertainty?

Suppose that the bulk density of the topsoil at some location in some study area
equals 1.33 g/cm3. Suppose further that this value is unknown to us because we did
not measure the bulk density at the location. All that we have is a soil property map
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that contains predictions of the bulk density for all locations in the study area, also
at the location where the true bulk density is 1.33 g/cm3. Let the bulk density at that
location according to the map be 1.45 g/cm3. This shows that the soil map is in error.
The error equals 1.33–1.45 D �0.12 g/cm3. Here, error is defined as the difference
between the true and predicted value of the soil property.

In practice, we usually do not know the error, because we would need the true
value to calculate it and we do not have the resources to perfectly measure the soil
everywhere. In other words, we are uncertain about the error (and the true value).
Here, uncertainty refers to a state of mind of a person or people that expresses a lack
of confidence about reality (Heuvelink 2014). Note that uncertainty is a property of
people. It is not the soil bulk density that is uncertain; it is we that are uncertain
about the soil bulk density. We are uncertain because we have limited and imperfect
information (i.e. only a soil map) and are aware that the information we have may
be in error.

Although we are uncertain, this does not mean that we are completely ignorant.
For instance, we may know that the chances are equal that the error in the bulk
density prediction is positive or negative (because we used an unbiased mapping
method), we may know that it is unlikely that the absolute value of the error is
greater than 0.50 g/cm3, etc. Thus, it is not unreasonable to assume that we can
come up with a large number of possible error values and attach a probability to
each of these. Since the true value is the sum of the (known) prediction and the
error, we can also list all possible values of the soil property and attach a probability
to each. If we can do this, then we have characterised (our uncertainty about) the
soil property by a probability distribution.

Now that we have characterised the soil property by a probability distribution, it
has effectively become a random variable. After all, a random variable is nothing
else than a variable that can take on many values, where each value has a certain
probability of occurrence. Since we deal with spatially distributed variables, we
must extend this concept to that of a random field. A random field is a collection of
indexed random variables, where in our case the index is geographic location. We
can characterise the variable at each location by a (univariate, marginal) probability
distribution, but we must also characterise the (spatial) correlation between the
variables at multiple locations. Geostatistics provides the methods and tools to do
this (i.e. variogram estimation and kriging), and this has been explained in detail in
Chaps. 9 and 10 (but see also Goovaerts 2001). However, while in previous chapters
the focus was on the predictions made by kriging, in this chapter we will concentrate
on the uncertainty associated with these predictions. In the next section, we will
explain how geostatistics can be used to model uncertainty in mapped soil properties
by means of a cokriging example.

http://dx.doi.org/10.1007/978-3-319-63439-5_9
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14.2 Geostatistical Modelling of Uncertainty

14.2.1 Mapping Soil Properties for the Allier Study Area

As part of a research study in quantitative land evaluation, a crop simulation model
was used to calculate potential crop yields for floodplain soils of the Allier River in
the Limagne rift valley, central France. The moisture content at wilting point (‚wp,
cm3/cm3) is an important input attribute for the crop simulation model. Because
‚wp varies considerably over the area in a way that is not linked directly with soil
type, it was necessary to map its variation separately to see how moisture limitations
affect the calculated crop yield.

Unfortunately, because ‚wp must be measured on samples in the laboratory, it is
expensive and time-consuming to determine it for a sufficiently large number of data
points for creating the prediction map by kriging. An alternative and cheaper way is
to calculate ‚wp from other soil properties which are cheaper to measure or using
pedotransfer functions (see Chap. 7). Because moisture content at wilting point is
often strongly correlated with moisture content at field capacity (‚fc, cm3/cm3) and
soil porosity (ˆ, cm3/cm3), both of which can be measured more easily and cheaply,
it was decided to map these first and next derive a map of ‚wp from these using
multiple linear regression. We will come back to this in Sect. 14.4 and concentrate
first on the kriging of ‚fc and ˆ.

Sixty-two measurements of‚fc andˆwere made in the field at the sites indicated
in Fig. 14.1. From these data experimental variograms and an experimental cross-

Fig. 14.1 The Allier study area showing sampling points of moisture content at field capacity and
porosity. Circled sites are those where in addition moisture content at wilting point was measured

http://dx.doi.org/10.1007/978-3-319-63439-5_7
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Fig. 14.2 Experimental variograms (open circles) and fitted variogram models (solid lines) for
‚fc (top left), ˆ (bottom right) and the experimental and modelled cross-variogram (bottom left)

variogram were computed (see Sect. 10.5). These were then fitted using the linear
model of coregionalisation (Fig. 14.2). Next both soil properties were mapped to
a regular 50 � 50 m grid using ordinary cokriging. The cokriging yielded raster
maps of means and standard deviations for both ‚fc and ˆ, as well as a map of
the correlation of the cokriging prediction errors. Figure 14.3 displays these maps.

14.2.2 Interpreting the Kriging Standard Deviation Maps

The kriging standard deviation maps shown in Fig. 14.3 are summary measures
of the uncertainty about ‚fc and ˆ in the study area. These uncertainties are the
result of interpolation errors: while we know the true values of ‚fc and ˆ at the
62 observation locations (assuming that measurement errors are negligibly small),
we are uncertain about their true value at non-observation locations. As explained
in Sect. 14.1, we are uncertain because the true value is unknown to us, and so we
cannot identify a single true reality. At best we can list all possible values of the
soil property and attach a probability to each of them. This is exactly what we do in
kriging, because under the assumptions made (i.e. normality, stationarity, isotropy),
we derived a (conditional) probability distribution of ‚fc and ˆ for each grid
cell. In this case, the uncertainty at each grid cell is characterised by a zero-mean

http://dx.doi.org/10.1007/978-3-319-63439-5_10
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Fig. 14.3 Cokriging results for the Allier study area (50 � 50 m grid): conditional mean and
standard deviation of ‚fc (cm3/cm3), conditional mean and standard deviation of ˆ (cm3/cm3)
and correlation of cokriging prediction errors of ‚fc and ˆ

normal distribution with a standard deviation as given in Fig. 14.3. The magnitude
of uncertainty is captured by the width of the probability distribution, although
the shape of the distribution is important as well (see Fig. 14.4). Because of the
assumption of normality, the uncertainties of the kriged ‚fc and ˆ all have a shape
such as shown in the left-hand panels of Fig. 14.4. The width of the distribution
varies in space, as is clear from Fig. 14.3.
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Fig. 14.4 Examples of probability distributions to characterise uncertainty. Probability distribu-
tions can be narrow (small uncertainty, top) or wide (large uncertainty, bottom). They can also be
symmetric around zero (left) or asymmetric and biased (right)

The probability distributions shown in Fig. 14.4 refer to the value of a single
variable. In our case study, we considered two variables, ‚fc and ˆ, and so each
of these will have their own marginal probability distribution at any one location
in the study area. But the uncertainties associated with these two variables are also
correlated, because of the cross-correlation between ‚fc and ˆ, as characterised
by the cross-variogram. It is difficult to predict how large the correlation between
the prediction errors at any given location is, because the correlation between the
cokriging prediction errors is not the same as that between the variables themselves.

In other words, in general we have corr
�

b‚fc �‚fc;bˆ �ˆ
�

¤ corr .‚fc; ˆ/.

Fortunately, cokriging provides the correlations between the cokriging errors at each
location, as shown in the bottom map in Fig. 14.3. Note that there are clear spatial
variations in the correlation between the cokriging errors and that these may be
positive as well as negative, depending on location. A graphical illustration of the
joint (bivariate) probability distribution of two uncertain variables is shown in Fig.
14.5. If the correlation between the uncertain variables were zero, then the major
and minor axes of the ellipses would be along the axes of variables S1 and S2, i.e.
they would not be rotated. The example in the right panel of Fig. 14.5 shows a case
in which there is a non-zero correlation. In this example the correlation is positive
because the major axis has a positive angle. The contour lines would be circular if
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Fig. 14.5 Examples of a bivariate probability distribution of two uncertain variables S1 and S2. The
rotated ellipses of equal probability density shown in the right panel indicate positive correlation

the two variables would be uncorrelated and have equal standard deviation. Figure
14.5 refers to two uncertain variables S1 and S2, which could be S1 D b‚fc � ‚fc

and S2 D bˆ � ˆ, but note that it might as well refer to S1 D b‚fc.x/ � ‚fc.x/ and
S2 D b‚fc .x0/ �‚fc .x0/ for two arbitrary locations x and x0 in the study area.

The kriging standard deviations shown in Fig. 14.3 vary spatially and tend to
be small in the neighbourhood of observation locations and are large further away
from these, particularly at the boundary of the study area. This is as one would
expect intuitively, because the magnitude of the interpolation error depends on the
closeness of observations and their local density and because (spatial) extrapolation
is more error prone than interpolation. It can also be inferred from the kriging
variance equation (see Sect. 10.3):

�K
2 .x0/ D E




�

bS .x0/ � S .x0/
�2
�

D

n
X

iD1


i � � .jxi � x0j/C ' (14.1)

where n is the number of observations used in kriging, the 
i are kriging weights,
the xi are observation locations and x0 is the prediction location, � is the variogram
model and ® is a Lagrange parameter. In most practical cases, the latter is relatively
small so that we can concentrate on the summation part. Inspection shows that
this part will be small when the distances between the xi and x0 are small, hence
when observation locations are close to the prediction location. Of course the exact
result also depends on the shape of the variogram model. For instance, in case
of a pure nugget variogram, the kriging variance (and hence its square root, the
kriging standard deviation) will be constant: if there is no spatial correlation, then
interpolation cannot benefit from nearby observations, and the interpolation error
(variance) will be equal everywhere. Note that the kriging variance can never be
smaller than the nugget variance, except when we interpolate to an observation
location. For ˆ, which has a nugget variance of 0.0008 (see Fig. 14.2), this means

http://dx.doi.org/10.1007/978-3-319-63439-5_10
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Fig. 14.6 Relative error (top) and lower and upper limits of the central 90% prediction interval of
the topsoil porosity for the Allier study area

that the uncertainty about the predicted ˆ at any non-observation location in the
Allier study area will be at least 0.028 cm3/cm3 (as confirmed by Fig. 14.3). Note
also that in the Allier example, the kriging variance will be calculated in a slightly
different way than using Eq. 14.1, because in that case predictions were made using
cokriging instead of kriging (Wackernagel 2003).

For users with little background in (geo)statistics, it may not be that easy to
interpret a standard deviation map. More appealing for uncertainty communication
are maps of the relative error (computed as the ratio of the kriging standard
deviation and kriging prediction maps, multiplied with 100%) and maps of the
lower and upper limits of a central 90% prediction interval, which are derived by
subtracting and adding 1.64 times the kriging standard deviation map from the
kriging prediction map, respectively. Note that here we assumed that the kriging
error is normally distributed. These maps are shown for the soil porosity in the
Allier study area in Fig. 14.6. The relative error is nowhere greater than 15%,
indicating that the uncertainty about soil porosity is small compared to its predicted
value. Nonetheless, the differences between the lower and upper limits of the 90%
prediction interval maps are large, indicating that the kriging interpolation error is
far from negligible.
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14.2.3 Spatial Stochastic Simulation

Kriging makes predictions, such that the expected squared prediction error is
minimised. This is attractive because it means that the predicted value is on average
closest to the true (unknown) value. As explained in Chap. 9, spatial stochastic
simulation has an entirely different objective. Here, the goal is to generate ‘possible
realities’ from the probability distribution of the uncertain variable. This is done
by sampling from the probability distribution using a pseudo-random number
generator. The result of a spatial stochastic simulation exercise is not unique,
because there are an infinite number of possible realities, from which just one
or several are taken. To illustrate the difference between optimal prediction and
stochastic simulation, take the example of the outcome of a throw of a fair die.
Optimal prediction would produce the value of 3.5, because on average this is
the number closest to any of the outcomes 1–6. However, stochastic simulation
would randomly take one of the numbers 1–6, where each of the six values would
have equal chance of being selected. Figure 14.7 shows four realisations (‘possible
realities’) from the kriging probability distribution of topsoil porosity in the Allier
study area. These were created using conditional simulation, meaning that the

Fig. 14.7 Four possible realities of the topsoil porosity for the Allier study area generated with
conditional spatial stochastic simulation

http://dx.doi.org/10.1007/978-3-319-63439-5_9
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62 observations of soil porosity were used as conditioning data. The differences
between the simulated maps convey the uncertainty about the true porosity, and
when shown in animation mode, they are an attractive means to communicate
the uncertainty of an interpolated map to non-experts. We will also make use
of simulated maps in Sect. 14.4, when we explain the Monte Carlo method for
analysing uncertainty propagation through environmental models.

If we would generate many more than four realisations of topsoil porosity, then
their average would equal the kriging prediction map shown in Fig. 14.3, while
their standard deviation would equal the kriging standard deviation map, also shown
in Fig. 14.3. Thus, although perhaps not easily noticeable from Fig. 14.7, the
differences between the realisations are greater far from observation locations than
close to observation locations.

14.2.4 Change of Support

Often users do not want to predict soil properties at points but instead are interested
in the average value over a larger piece of land. For instance, perhaps for a farmer
it is not that relevant to know ‚fc and ˆ at point locations within the Allier study
area, but instead the real interest is in parcel averages. Such averages over spatial
units or ‘blocks’ can be predicted using block kriging, as explained in Sect. 10.3.
The blocks need not be rectangular or square but may take irregular shapes as well.
They may even be as large as the entire study area. When the blocks are relatively
small, then block kriging produces similar predictions as point kriging, but the
associated kriging standard deviation is usually much smaller, especially when the
nugget variance is large. Figure 14.8 shows the cokriging standard deviation maps
of ‚fc and ˆ for the case where the blocks are equal to the grid cells. Note that
the standard deviations are substantially smaller compared to those of point kriging
shown in Fig. 14.3. The explanation is that within-block spatial variation averages

Fig. 14.8 Block cokriging standard deviation maps of ‚fc and ˆ using blocks of 50 � 50 m

http://dx.doi.org/10.1007/978-3-319-63439-5_10
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out when the block mean is predicted. In other words, in case of large short-distance
spatial variation (i.e. high nugget), predictions of block averages are much more
accurate than point predictions. This tells us that it is crucially important to choose
the right support when addressing uncertainty in interpolated soil maps.

Block kriging is used when spatial aggregation is the objective, in other words it
is used in a case where the observations have a smaller support than the predictions.
The opposite, i.e. making predictions at a smaller support than the observations, is
known as area-to-point kriging. It will be no surprise that in this case uncertainty
increases instead of decreases. There are not many examples of area-to-point kriging
in soil science, because usually the starting point is observations at point support,
but an exception is vertical spatial interpolation. In this case observations are often
averages over soil horizons or layers, while predictions may be required for smaller
or different depth intervals (Orton et al. 2016).

14.2.5 Extension to Kriging with External Drift

So far we discussed the uncertainty resulting from ordinary (co)kriging. But in
recent years ordinary kriging is used less frequently and often replaced with kriging
with external drift (KED), also termed universal kriging and regression kriging
(Odeh et al. 1995; Hengl et al. 2004). Chapter 9 provides the details. This is
because we rarely have only soil point observations as a source of information,
but in addition we may have a large suit of covariate maps that provide valuable
information about the soil property of interest. The additional information may
then be used to improve the mapping and reduce uncertainty. The mathematical
expression for the KED variance, which quantifies the uncertainty in the resulting
map, is more complicated than that of the ordinary kriging variance given in Eq.
14.1. It is the sum of the trend estimation variance and the kriging variance. Even
though the trend estimation variance is added, in practice the KED variance will
usually be smaller than the ordinary kriging variance. This is because the KED
variance is based on the variogram of the residual (defined as the difference between
the soil property and the trend), which typically is much smaller than the variogram
of the soil property itself, and hence the kriging component of the KED variance
will decrease. See Sect. 10.3 for a more detailed discussion of KED and comparison
with ordinary kriging.

Recall from Sect. 14.2.2 that the kriging standard deviation tends to be small
near observation locations and large further away from them. As noted, this can be
explained from a closer look at Eq. 14.1, which shows that the kriging variance will
be larger if the distance between observation and prediction locations is large. Note
also from Eq. 14.1 that the kriging variance does not depend on the observations
themselves but only on the variogram and configuration of the observation locations.
This allows optimisation of spatial sampling designs that minimise the spatially
averaged kriging variance, as explained in Sect. 11.6. Sampling design optimisation
under the ordinary kriging model typically leads to a fairly uniform distribution of

http://dx.doi.org/10.1007/978-3-319-63439-5_9
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the sampling locations, with a slightly higher concentration of sampling locations
near the study area boundary. In case of KED another aspect is also included in
the sampling design optimisation. In that case the trend estimation error variance
needs also to be minimised, which calls for a joint optimisation in geographic and
‘feature’ space. In other words, we must make sure that the observations also cover
the covariate space well (Minasny and McBratney 2006; Brus and Heuvelink 2007).

14.2.6 Uncertainty Quantification of a Given Soil Map

The geostatistical uncertainty quantification approach works well in situations
where one starts from scratch and where it is feasible to build a geostatistical
model of reality. However, what to do in situations in which a soil property map
has already been derived, without using geostatistical models? These could be maps
made using deterministic algorithms, such as inverse distance or nearest neighbour
interpolation. Alternatively, soil property maps may have been derived from an
existing soil class map, by assuming that soil properties within each soil class are
constant and assign these map-unit mean values using expert judgement or data from
‘representative’ profiles. It may also be that a soil property map is provided without
additional information about how the map was made and without quantification of
the uncertainty.

In such situations the map uncertainty may still be modelled geostatistically if
there are sufficient independent observations of the soil property. This boils down
to building a geostatistical model of the differences between the soil property map
and the independent observations and kriging these errors (Heuvelink 2014). Here,
it is essential that the observations are truly independent, i.e. have not been used for
map making, because otherwise it might result in a severe underestimation of the
map uncertainty. In practice, truly independent data are rarely available unless a new
sampling campaign is initiated after the map was made. If uncertainty quantification
is important, it is worthwhile to spend extra budget on collecting new data and
quantifying the map uncertainty as described above. Note that this will not only
quantify the map uncertainty but will also improve the map accuracy, because the
existing map could be adjusted by adding the interpolated error to it. In a way, this
approach comes close to the KED approach described in Sect. 14.2.5, but now using
a single external covariate that is an existing map of the target soil property.

When soil property maps are derived without an underlying geostatistical model
and there are no independent observations to build a geostatistical model of the
map error, then the only resort is to base the uncertainty model of the map
on expert judgement (Truong and Heuvelink 2013). This introduces subjectivity
because different experts tend to have different opinions. Also, it will prove to
be practically impossible to extract from experts a full probabilistic uncertainty
model that also includes spatial and cross-correlations. Expert elicitation procedures
are cumbersome and often limited to estimation of quantiles of the (marginal)
distribution (O’Hagan et al. 2006).
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14.3 Uncertainty Assessment Through Statistical Validation

Uncertainty quantification as described in Sect. 14.2 takes a model-based approach,
by defining a geostatistical model of the soil property of interest and deriving an
interpolated map and the associated uncertainty from that or by constructing a
geostatistical model of the error in an existing map. The approach yields a complete
probabilistic characterisation of the map uncertainty, but such characterisation is
only valid under the assumptions made. Perhaps the stationarity assumption of
ordinary kriging can be relaxed by using a more elaborate geostatistical model, such
as that underlying kriging with external drift, but such a model typically needs more
data, and in the end no modelling approach is free of assumptions. Therefore it is
worthwhile to discuss an alternative, model-free approach to assess the accuracy of
soil property maps. This is achieved through (statistical) validation.

Validation is defined here as an activity in which the soil map predictions are
compared with independent observations. Unlike in Sect. 14.2.6, the outcomes are
not used to build a geostatistical model of the map error, but instead summary
measures of the observed errors are computed and reported. Common summary
measures are the mean error and the root mean squared error. As before, it is
essential that the validation observations are independent and have not been used
in map making. The safest way to ensure this is to collect validation data after the
map was made.

In practice, often we are not that much interested in how well the map predicts
the soil property at the limited set of validation locations, but instead we want to
know how well the map performs for the entire study area. Summary measures of
the entire area cannot be computed but only estimated, because we cannot afford to
collect validation observations everywhere. It is then strongly advised to select the
validation locations using probability sampling (Brus et al. 2011). The important
advantages are that in such case unbiased estimation of summary measures can be
ensured and that confidence intervals around the estimated summary measures can
be calculated, which is also a prerequisite for significance testing (e.g. to compare
whether map A is more accurate than map B). The simplest probability sampling
design is simple random sampling, but efficiency can be improved by using more
elaborate designs. In practice, stratified simple random sampling is often used.
Model-free estimation of map accuracy has the important advantage that it makes
no assumptions, but the disadvantages are that a probability sample is required and
that the method can only produce summary measures of the map accuracy.

Validation is based on a comparison of map predictions with independent obser-
vations. Typically the observed differences are attributed to map errors. However, it
is important to recognise that part of the differences may also be caused by errors
in the observations. It is not difficult to incorporate this if the observation error is
known in statistical terms (i.e. bias and variance). If observation error is negligibly
small compared to map error, as may be the case when a poor map is validated with
observations analysed in a high-quality lab, then the influence of observation error
on validation statistics may be ignored.
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Although it is advised to collect an independent validation data set using
probability sampling, this does not mean that summary measures of map accuracy
cannot be calculated in case of a non-probability sample, such as a convenience or
purposive sample. But in such case, it is important to be aware that there is a risk that
the measures may not represent the overall map accuracy very well, such as when
the validation data are from specific parts of the study area that have a different map
accuracy as other parts.

14.3.1 Cross-Validation

Summary accuracy measures may also be derived using cross-validation (see Sect.
11.5.2). In the case of leave-one-out cross-validation, all observations are put aside
one by one and the remaining data are used to calibrate the soil mapping model and
predict at the location that was put aside. Validation measures are then computed
by comparing the predictions with the put-aside observations for all observation
locations.

Table 14.1 shows the accuracy measures for ‚fc and ˆ as obtained using leave-
one-out cross-validation. The mean error is close to zero for both properties,
indicating that cokriging is unbiased. The root mean squared error is 0.050 cm3/cm3

for‚fc and 0.044 cm3/cm3 forˆ. These values are not much smaller than the spatial
variation of these properties, which can be gleaned from comparison with the square
root of the variogram sills shown in Fig. 14.2 (because the sill of the variogram is
approximately equal to the variance of the variable of interest). Poor prediction
performance is also evidenced by the low values for the amount of variance
explained, which is defined as one minus the ratio of the mean squared error and
the variance. Apparently the sampling density is insufficient to capture a large part
of the spatial variation. In fact this is already foretold by the variograms in Fig.
14.2, which have fairly high nugget variances and small ranges. The poor prediction
accuracy is also confirmed by the scatter plots of cross-validation predictions against
observations (Fig. 14.9). Note also that the cross-validation accuracy measures
might still be somewhat too optimistic about the overall map accuracy, since all
observations are on transects, and hence any cross-validation location always has
at least a few nearby observations. The last column of Table 14.1 shows the

Table 14.1 Accuracy measures of cokriging predictions of‚fc andˆ as obtained with leave-one-
out cross-validation

Mean error
(cm3/cm3)

Root mean
squared error
(cm3/cm3)

Amount of
variance
explained (�)

Standardised root
mean squared
error (�)

Water content at field
capacity (‚fc)

�0.002 0.050 0.30 1.05

Porosity (ˆ) �0.001 0.044 0.37 1.05

http://dx.doi.org/10.1007/978-3-319-63439-5_11
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Fig. 14.9 Scatter plots of predicted against observed ‚fc (left) and ˆ (right) as obtained using
leave-one-out cross-validation

Fig. 14.10 Spatial plot of leave-one-out cross-validation errors for ‚fc (left) and ˆ (right)

standardised root mean squared error (SRMSE), which is obtained by taking the
square root of the average squared zscore, where zscore is defined as the difference
between the observed and predicted soil property, divided by the cokriging standard
deviation. If the cokriging standard deviation is a proper measure of the map
prediction error, then SRMSE should be close to one. The obtained values are
fairly close to one and do not indicate a significant over- or underestimation of
the uncertainty. Figure 14.10 shows bubble plots of the spatial distribution of the
cross-validation errors.
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14.4 Uncertainty Propagation

Previous sections of this chapter explained that uncertainty about soil properties can
be conveniently represented using probability distributions. Specific attention was
paid to quantification of spatial interpolation errors using geostatistics. The methods
were illustrated using a case study on mapping water content at field capacity (‚fc)
and soil porosity (ˆ) in the Allier study area, France. This chapter takes the analysis
a step further by analysing how uncertainties in soil properties propagate through
an environmental model that uses these soil properties as input (Heuvelink 1998).
More specifically, we will analyse how uncertainties in‚fc andˆ propagate through
a multiple linear regression model that predicts the soil water content at wilting point
(‚wp) from ‚fc and ˆ. Before we do this, we first present the statistical uncertainty
propagation methodology.

The uncertainty propagation analysis can be formulated mathematically as
follows. Let U be the output of an environmental model g on m input variables Si:

U D g .S1; S2; : : : ; Sm/ (14.2)

The model g may be of various types, ranging from a simple pedotransfer
function to a complex soil erosion or crop yield model. The objective of the
uncertainty propagation analysis is to determine the uncertainty in the output U,
given the operation g and the inputs Si and their associated uncertainties. Let us
denote the means and variances of the Si by �i and �2i , respectively. Since the inputs
are random variables or random fields, the output will be a random variable or
random field as well. Important parameters of U are its mean � and variance �2.
From an uncertainty propagation perspective, the main interest is in the uncertainty
of U, as contained in its variance �2.

It must first be observed that the uncertainty propagation problem is relatively
easy when g is a linear function of its inputs Si. In that case the mean and variance of
U can be directly and analytically derived. In case of non-linear models, analytically
driven methods exist only in a few cases, and one must nearly always rely on
approximation methods for a complete evaluation. Two of these methods will now
be discussed.

14.4.1 Taylor Series Method

The idea of the Taylor series method is to approximate g by a truncated Taylor series
centred at the means �i. In case of the first-order Taylor method, g is linearised by
taking the tangent of g in �i. Fig. 14.11 illustrates this for the one-dimensional case
(m D 1). The linearisation greatly simplifies the uncertainty analysis, but only at the
expense of introducing an approximation error.



14 Uncertainty and Uncertainty Propagation in Soil Mapping and Modelling 455

Fig. 14.11 Graphical illustration of the first-order Taylor method for the case where the model
has a single input. The model (red line) is approximated by a linear function (green line) that has
a small approximation error near the centre of the input probability distribution. Two cases are
depicted: model is sensitive to changes in input (blue), and model is insensitive to changes in input
(purple)

Using the first-order Taylor series method, the variance �2 of the output U is
given by (Heuvelink 1998):
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where �ij is the correlation coefficient between the uncertainties in Si and Sj and
g0

i is the first derivative of g with respect to Si, which is evaluated in the means
�i , i D 1 , : : : , m. Equation 14.3 shows that the variance of U is the sum of various
terms, which contain the correlations and standard deviations of the Si and the first
derivatives of g. These derivatives reflect the sensitivity of U to changes in the inputs
(see Fig. 14.11 for a graphical illustration). From Eq. 14.3 it also appears that the
correlations of the input uncertainties can have a marked effect on the variance of U.

To decrease the approximation error invoked by the first-order Taylor method,
one option is to extend the Taylor series of g to include a second-order term as well.
This is particularly useful when g is a quadratic function, in which case the second-
order Taylor method is free of approximations and the first-order Taylor method is
not. The application to the Allier case study discussed later in this section gives an
example. However, it should be noted that in other cases including a second-order
term might worsen the results. For instance, this might happen if the variance of the
input is large and the approximation by a quadratic function, which is more accurate
locally, is less accurate than the linear approximation at a greater distance from the
approximation point.
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14.4.2 Monte Carlo Method

The Monte Carlo method uses an entirely different approach to analyse the
propagation of uncertainty. The idea of the method is to compute the result of the
model repeatedly, with input values si that are randomly sampled from their joint
distribution. The model results form a random sample from the distribution of U,
so that parameters of the distribution, such as the mean � and variance �2, can be
estimated from the sample.

The method thus consists of the following steps:

1. Repeat N times:

(a) Generate a set of realisations si , i D 1 , : : : , m.
(b) For this set of realisations si, compute and store the output u D g(s1, : : : , sm).

2. Compute and store sample statistics from the N outputs u.

A random sample from the m inputs Si can be obtained using an appropriate
pseudorandom number generator (Lewis and Orav 1989; Ross 1990). Note that a
conditioning step will have to be included when the Si are correlated. In case of
spatial inputs, these may be sampled using spatial stochastic simulation as explained
in Sect. 14.2.3.

The accuracy of the Monte Carlo method is inversely related to the square root
of the number of runs N. This means that to double the accuracy, four times as many
runs are needed. The accuracy thus slowly progresses as N increases.

14.4.3 Evaluation and Comparison of Uncertainty
Propagation Techniques

The main problems of the Taylor method are that it only works with models that
are continuously differentiable with respect to their uncertain inputs, that it only
provides estimates of the mean and variance of the model output and that the
results are approximate only. It will not always be easy to determine whether
the approximations involved using this method are acceptable. The Monte Carlo
method also involves approximation errors, but these can be made arbitrarily small
by increasing the number of Monte Carlo runs.

The Monte Carlo method brings along other problems, though. High accuracies
are reached only when the number of runs is sufficiently large, which may cause
the method to become extremely time-consuming. This will remain a problem
even when variance reduction techniques such as Latin hypercube sampling are
employed. Another disadvantage of the Monte Carlo method is that the results do
not come in an analytical form.

As a general rule, it seems that the Taylor method may be used to obtain crude
preliminary answers for simple models. These should provide sufficient detail to be
able to obtain an indication of the quality of the model output. When exact values or
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quantiles and/or percentiles are needed, the Monte Carlo method may be used. The
Monte Carlo method will probably also be preferred when uncertainty propagation
with complex models is studied, because the method is easily implemented and
generally applicable. It is no more than an extra loop around an existing model.
This, and the fact that computer power is ever increasing, means that nowadays the
majority of uncertainty propagation studies uses the Monte Carlo method. Some
examples from soil science are Brown and Heuvelink (2005), Bishop et al. (2006),
Hastings et al. (2010), Kros et al. (2012), Van Den Berg et al. (2012), Brodsky et al.
(2013), Poggio and Gimona (2014), Malone et al. (2015) and Xiong et al. (2015).

14.4.4 Sources of Uncertainty Contributions: The Balance
of Errors

When the uncertainty propagation analysis reveals that the output of g contains too
large an error, then measures will have to be taken to improve accuracy. When there
is a single input to g, then there is no doubt where the improvement must be sought,
but what if there are multiple inputs? Also, how much should the uncertainty of
a particular input be reduced in order to reduce the output uncertainty by a given
factor? It is useful to explore these questions briefly.

To obtain answers to the questions above, consider Eq. 14.3 again, which gives
the variance of the output U using the first-order Taylor method. When the inputs
are uncorrelated, this reduces to:

�2 Š
Xm

iD1
�2i g02

i (14.4)

This shows that the variance of U is a sum of parts, each to be attributed to
one of the inputs Si. This partitioning property allows one to analyse how much
each input contributes to the output variance. Thus from Eq. 14.4, it can directly
be seen how much �2 will reduce from a reduction of �2i . Clearly the output will
mainly improve from a reduction in the variance of the input that has the largest
contribution to �2. Note that this need not necessarily be the input with the largest
error variance, because the sensitivity of the model g to changes in the input is
also important. Figure 14.11 shows an example where in the purple case the input
uncertainty is greater than in the blue case, but where the output uncertainty still
is the greatest in the blue case. This is because in the blue case, the model is more
sensitive to changes in the input. Note also that Eq. 14.4 is derived under rather
strong assumptions. When these assumptions are not realistic, it may be advisable to
derive the uncertainty source contributions using a modified Monte Carlo approach.
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14.4.5 Application of Uncertainty Propagation to the Allier
Case Study

Recall from Sect. 14.2.1 that our aim is to map the soil moisture content at
wilting point ‚wp from maps of the moisture content at field capacity ‚fc and soil
porosity ˆ. We obtained maps of both input soil properties and their associated
uncertainties using cokriging in Sect. 14.2. We now need to discuss how these can
be used to derive a map of ‚wp and its associated uncertainty. Recall that we use a
multiple linear regression model to predict ‚wp from ‚fc and ˆ. The model is very
simple, and hence we can use the Taylor series method to analyse the uncertainty
propagation.

Figure 14.1 shows 12 circled sites where all three properties ‚wp, ‚fc and ˆ
were determined in the laboratory. These measurements were used to set up a
pedotransfer function, relating ‚wp, ‚fc and ˆ, which took the form of a multiple
linear regression:

‚wp D ˇ0 C ˇ1‚fc C ˇ2ˆC " (14.5)

The coefficients ˇ0, ˇ1 and ˇ2 were estimated using standard ordinary least
squares regression. The estimated values for the regression coefficients and their
respective standard deviations were ˇ0 D � 0.263 ˙ 0.031, ˇ1 D 0.408 ˙ 0.096
and ˇ2 D 0.491 ˙ 0.078. The standard deviation of the stochastic residual " was
estimated as 0.0114. The correlation coefficients of the estimation errors of the
regression coefficients were �01 D � 0.221, �02 D � 0.587 and �12 D � 0.655. The
regression model explains 94.8% of the variance of the observed ‚wp, indicating
that the model is satisfactory. Note that presence of spatial correlations between the
observations at the 12 locations was ignored in the regression analysis.

The maps of ‚fc and ˆ as derived in Sect. 14.2.1 were substituted in the
regression (Eq. 14.5) yielding a map of ‚wp. The associated uncertainty was
computed using the Taylor series method. Note that Eq. 14.5 is a quadratic function
of six uncertain inputs. To avoid approximation errors, it was therefore decided to
use the second-order Taylor method, which is a logical extension of the first-order
Taylor method. Because the model coefficients and the field measurements were
determined independently, the correlation between the ˇi and cokriging prediction
errors was taken to be zero. Also, the stochastic residual " is uncorrelated with all
other uncertain inputs.

The results of the uncertainty propagation are given in Fig. 14.12. The accuracy
of the map of ‚wp is reasonable: the standard deviation of ‚wp rarely exceeds 50%
of the predicted value. The uncertainty is much larger in those parts of the study area
where there are no observations. This suggests that uncertainty in the maps of ‚fc

andˆ are the main source of uncertainty because these uncertainty maps had similar
spatial patterns. Indeed Fig. 14.13 shows that the contribution of the regression
model uncertainty is small. Improvement of the ‚wp map can thus best be done by
improving the maps of ‚fc and ˆ, for instance, by taking more measurements over
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Fig. 14.12 Prediction map (top) of soil moisture at wilting point computed from cokriging maps
of soil moisture at field capacity and porosity using a pedotransfer function, associated prediction
error standard deviation map (bottom left) derived using the second-order Taylor method and
relative error (bottom right)

Fig. 14.13 Contributions in percentages to the overall error variance of the soil moisture at wilting
point predictions as caused by cokriging errors in soil input maps (left) and by uncertainty in the
multiple linear regression model (right)
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the study area. The variograms and cross-variogram of ‚fc and ˆ could be used to
assist in optimising sampling. This technique would allow judging in advance how
much improvement is to be expected from the extra sampling effort.

14.5 Conclusions

No soil map is perfect. It is important to quantify the errors and uncertainties
associated with soil maps because this determines whether a map is usable for
an intended purpose. Any end user of soil maps should therefore require that the
maps are accompanied by accuracy measures. Such measures can be computed from
comparison of map predictions with independent validation data, but for spatially
explicit uncertainty measures, a geostatistical approach that quantifies the map
accuracy through the kriging standard deviation is recommended. Geostatistics also
provides the tools to generate ‘possible realities’ by sampling from the conditional
spatial probability distribution of the uncertain soil property. These possible realities
may be used to communicate uncertainty and are also useful in Monte Carlo
uncertainty propagation analyses.

Uncertainty propagation analysis is used to analyse how uncertainty in input
(soil) maps propagates through spatial analyses and environmental models. This
not only quantifies the uncertainty in the model output but can also tell us which are
the main sources of uncertainty, which is essential information for taking informed
decisions about how to improve the quality of maps and model results.

This chapter was limited to uncertainty quantification and uncertainty propa-
gation of continuous-numerical soil properties and variables, but generalisation to
categorical variables can be made, although it is more complicated.

This chapter concentrated on errors and uncertainties that arise from spatial
interpolation and from fitting and applying linear regression models. There are many
more sources of uncertainty, such as field and lab measurement error, positional
error, classification error and model parameter and structural errors. These can be
handled in similar ways, but the main challenge often is to characterise the error
sources with realistic probability distributions. Once this is done, the uncertainty
propagation analysis itself is not difficult, although it might be computationally
demanding.
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Chapter 15
Complex Soil Variation over Multiple Scales

R. Murray Lark and Alice E. Milne

“So, naturalists observe, a flea
Has smaller fleas that on him prey;
And these have smaller still to bite ’em,
And so proceed ad infinitum”.

Jonathan Swift

15.1 Introduction

15.1.1 Spatial Frequency and the Fourier Transform

Like Swift’s fleas, the soil is organized at multiple spatial scales from the clay
particle, interacting with its neighbours and the soil solution according to the
laws of electrochemistry, to the continent, at which the properties of the soil are
organized according to general climate trends and the contingencies of geological
history. Pedometrics can help the soil scientist to understand these processes in
so far as it is possible to analyse soil properties into scale-dependent components
which can be modelled and visualized. This is done, for example, by the spatially
nested sampling introduced by Youden and Mehlich (1937). Geostatistical methods
achieve it to some extent, with the use of nested models of regionalization and
coregionalization, and methods of analysis to visualize components of different
spatial scales (factorial kriging, reference) and scale-dependent correlation between
variables (e.g. Goovaerts and Webster 1994). However, geostatistical analysis is
primarily undertaken to support spatial prediction; the variogram, while reflecting
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Fig. 15.1 Measurements of (top) soil organic carbon content and (bottom) rate of carbon dioxide
emission from soil cores collected at intervals of 30 m on a transect in eastern England

the influence of processes at multiple spatial scales, is not particularly suited to the
interpretation of such processes. For this we must look elsewhere.

Consider a soil property measured from sample sites at equal intervals on a linear
transect. Figure 15.1 shows two variables from such a data set, the rate of carbon
dioxide emission from incubated soil cores (transformed to natural logarithms)
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collected at approximately 30 m intervals on a transect of just over 7 km long across
part of Bedfordshire in eastern England. Haskard et al. (2010) and Milne et al.
(2011) describe the data and their collection. The variations of this soil property
depend on a range of factors from differences in the underlying parent material,
land use, microtopography, etc. The great insight of the French mathematician
and physicist Joseph Fourier (1768–1830) was to show that such a sequence of
measurements, subject to certain assumptions, can be decomposed into a sum of
components as follows:

z.x/ D a0 C

bT=2c
X

mD1

.am cos 2	 fmx C bm sin 2	 fmx/ ; (15.1)

where z.x/ denotes the value of the soil property at location x on the transect, T is
the length of the transect (units are the sampling interval), b�c is the integer part of
the enclosed term and fm D m

T ; m D 1; 2; : : : bT=2c. In this setting, fm is a spatial
frequency, the analog in spatial terms of the frequency more familiarly encountered
in the analysis of time series. The largest spatial frequency in this sequence is 1

2
or

1
2x0

where x0 denotes the basic sampling interval. This maximum frequency, called
the Nyquist frequency, represents the most detailed (fine-scale) component of soil
variation that can be resolved by the analysis of transect data. The constant, a0, is the
mean of the variable (i.e. the component of zero frequency or infinite wavelength).

The component .am cos 2	 fmx C bm sin 2	 fmx/ is a sinusoidal function of wave-
length T=m and amplitude

p

a2m C b2m, so the Fourier representation is a decompo-
sition of the original signal into sinusoidal components of different frequency. The
sinusoid comprises sine and cosine functions of the specified frequency, which are
called basis functions of the transformation. The amplitude of the component of
frequency fm is

p

a2m C b2m. Let us call this cm. It can be shown that the variance of
the component of frequency fm is

c2m
2
; m < T=2I c2m; m D T=2

A plot of variance (power) against frequency is called the spectrum of the time
series. Such a spectrum is shown in Fig. 15.2 for the (transformed) emission rates.
In this case, the frequency is standardized so that the Nyquist frequency is 0.5. The
horizontal dashed line shows the threshold at for evidence for a significant peak
in the spectrum. In addition to the large power at the lowest frequency, there is a
peak at a relatively low frequency (corresponding to a wavelength of about 1300 m).
This may all seem very promising (at least for the analysis of soil data measured
on transects). We have a method to represent such data as a sum of components
of different spatial frequency and to represent the partition of the variance of the
property, a familiar statistic, between these frequencies. Such an analysis has been
used to examine soil properties (Webster 1977; Milne et al. 2010). In both these
studies, the underlying process of interest was the periodic variation arising from
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Fig. 15.2 Power spectrum for the data on (transformed) emission rate

the gilgai landscapes of Australia. The Fourier analysis is particularly useful in such
a context because the periodic component of the signal is particularly apparent as
a peak in the spectrum. However, in other settings where strictly periodic variation
is absent or relatively insignificant, the power spectrum does not offer particular
insight. In fact, the power spectrum is directly related, via the Fourier transform,
to the covariance function of a variable and so, under weak stationarity, to its
variogram, so, in general, the spectrum will not provide us with any information
that the variogram does not.

At this point, the reader could be forgiven some impatience with us. We have led
you through some tedious notation but taken you no further than earlier chapters on
geostatistics. The reason for this is that the Fourier transform provides a gateway to
some more powerful methods for analysis in terms of spatial frequencies which are
valuable in themselves but also help to exhibit some of the limitations imposed by
stationarity assumptions in geostatistics.

Consider Eq. (15.1) again. Two coefficients represent the contribution of sinu-
soidal variation at some spatial frequency to the variation of a soil property. These
coefficients determine the amplitude of that variation (and so the variance) and
the phase (i.e. where the peaks and troughs of the sinusoid occur relative to the
origin of the transect). With those two coefficients fixed, the variability of the soil
property at the frequency of interest is fixed everywhere on the transect. This is
directly equivalent to the stationarity assumptions made in geostatistics, including
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the weakest assumption of intrinsic stationarity under which the expected square
difference between two observations made some fixed lag apart depends only on
that lag and not on absolute position.

Consider a real transect across a soil landscape. This might start near a drainage
channel, traversing a floodplain with contemporary alluvium including braided
deposits, before traversing a series of terrace gravels deposited by the outwash of
previous glaciations and then eroded by subsequent drainage. Above the oldest
terrace, we move to a Jurassic clay, partly covered by solifluction deposits from
overlying sandstone strata which themselves are capped by a coarse limestone
with some eroded residuals of an overlying clay and later aeolian deposits. This
is the first author’s default soil landscape in which he worked as a student. The
reader may have others. All are likely to exhibit similar complexity, and the
assumption that a soil property (e.g. clay content) can be meaningfully represented
by components at spatial frequencies which oscillate with uniform amplitude and
phase from one part of this notional transect to another is unconvincing. The algebra
of Fourier’s transform will still work; the question is whether the representation of
variation in terms of different spatial frequencies can be given a realistic pedological
interpretation.

Alternative methods for analysis, primarily the wavelet transformation, are
presented in this chapter. The wavelet transforms are analyses in terms of spatial
frequency, but their basis functions are not sines and cosines with uniform amplitude
and phase over the whole transect but rather are local functions which oscillate
over a short window or support and go to zero elsewhere. With an appropriate
set of wavelet basis functions, we can achieve an analysis of a data set which
shows scale dependency of its variation but also allows us to examine how this
variation may change from place to place in a way which, while unsurprising
in a pedological context, is not consistent with assumptions of stationarity. The
following sections of this chapter introduce and illustrate the wavelet transform. We
then complete the chapter with an examination of an alternative analysis in terms of
spatial frequencies, the empirical mode decomposition, and compare it with wavelet
analysis.

15.2 Wavelets and the Discrete Wavelet Transform

15.2.1 Wavelet Functions and Their Properties

As noted in the introduction, wavelet transformation uses basis functions which
differ from the sines and cosines of Fourier analysis. Wavelet functions allow us
to examine variation at distinct spatial frequencies but do not require, for their
interpretation, the assumption that the variation at this frequency is uniform in space.
This is achieved by using basis functions that are dilations (changes in frequency)
and translations (changes in position) of a mother wavelet function. There are
various such functions. The mother wavelet is not an arbitrary function but must
satisfy three criteria.
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1. Its mean is zero, i.e.

Z 1

�1

 .x/dx D 0 (15.2)

from which we can infer that a wavelet function oscillates.
2. Its squared norm is 1, i.e.

Z 1

�1

j .x/j2dx D 1 : (15.3)

3. It has a compact support, by which we mean that the mother wavelet damps
rapidly to zero and so operates very locally.

The support of a wavelet depends on M, its number of vanishing moments where

Z 1

�1

xc .x/dx D 0 (15.4)

for c D 0; 1; 2; : : : ;M�1. From Eq. (15.2), it follows that any wavelet function must
have at least one vanishing moment. There are several families of wavelet functions
which meet the requirements detailed above and which differ with respect to the
number of vanishing moments. Within a family of wavelet functions, increasing M
makes the wavelet smoother and increases the support.

Recall that the Fourier transform involves finding the sets of coefficients that
can be used to represent a series of observations by summing sines and cosines
of different frequency. In effect these basis functions are mathematical building
blocks from which the data are rebuilt, and the coefficients tell us something about
the variation of the data at different spatial frequencies (subject to stationarity
assumptions). The same is true of wavelet functions. It is clear that a single wavelet
function can only function as a basis over some limited range of spatial frequencies
(depending on how it oscillates) and over the support of the wavelet (where it takes
non-zero values). To build up a complete wavelet basis for the analysis of some
variable, we use dilations of the mother wavelet function (i.e. rescalings to cover
different spatial frequencies) and translations of these (i.e. shifts of the dilated
wavelet to provide a support in the basis at all locations of interest).

The set of dilated and translated versions of a mother wavelet  .x/ is denoted by
 
;u.x/, where

 
;u.x/ D
1

p


 
�x � u




�

; 
 > 0; u 2 R ; (15.5)

where R is the set of real numbers. Here 
 defines the dilation of the wavelet. If the
mother wavelet takes non-zero values over a support of unit length, then changing
its argument to

�

x�u



�

changes the support to length 
. This process also changes the
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range of spatial frequencies to which the wavelet responds. Similarly, changing the
value u changes the location at which the support of the wavelet is found.

The wavelet transform of g.x/, Wf .xj
; u/, is obtained by integrating g.x/ with
the wavelet; thus

Wg.xj
; u/ D

Z 1

�1

g.x/ 
;u.x/dx

D

Z 1

�1

g.x/
1

p


 
�x � u




�

: (15.6)

If g.x/ is some continuous function, then it can be analysed with continuous
variation of the dilation parameter 
 > 0 and translation parameter, u. For the
analysis of real data, a discrete version of the transformation is required. Some
wavelet analyses, called continuous wavelet transforms, use as close to a continuous
translation and dilation of the wavelet as possible. These methods have proved
useful for many purposes and have been applied in soil science (e.g. Si 2003; Si and
Farrell 2004). However, most methods for statistical inference from wavelets have
used a particular approach to discretization commonly referred to as the discrete
wavelet transform (DWT), and we consider this approach, and methods derived
from it, in the remainder of this chapter.

15.2.2 The Discrete Wavelet Transform and Multiresolution
Analysis

In the discrete wavelet transform (DWT), we consider a discrete set of dilations of
the mother wavelet function  .x/ and an associated set of translations. The general
DWT basis function is

 m;n.x/ D
1

p
2m
 




x � n2m

2m

�

; (15.7)

which is the basis function for the mth dilation of the wavelet and its nth translation.
Under this scheme, the dilations of the discrete wavelet transform are in the dyadic
sequence 21; 22; 23; : : :. The wavelet coefficients from all wavelets in the mth
dilation are said to represent variation at scale 2mx0 where x0 is the basic sample
interval. We refer to scales with large m as ‘coarse’ scales, contrasted with ‘fine’
scales. A scale corresponds to a nominal frequency interval; increasing m reduces
the frequency. Translation of the wavelet takes place in steps of 2m, i.e. larger steps
at coarser scales. The nominal frequency interval for the mth dilation of the wavelet

is
h

1
2mx0

; 1

2mC1x0

i

. The finest scale therefore has a lower bound of 1
2x0

, the Nyquist

frequency, given the sample spacing.
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Note that, as with any real partition of spatial frequencies in an analysis, there
is some ‘leakage’ between these intervals, i.e. DWT bases in the mth dilation will
respond to some extent to variation at frequencies outside the nominal range. The
cutoff of the response is sharpest for wavelets in a family with a larger number of
vanishing moments.

The DWT, with dilations on the dyadic sequence, has some desirable properties
when applied to suitable mother wavelet functions. In particular, the dilations and
translations of such a wavelet are orthogonal to each other, that is to say, their cross
products sum to zero. This provides the basis for the partition of the variance of a
variable into components associated with the wavelet basis functions, as we shall
see.

A DWT wavelet coefficient is the inner product of a discrete series of data values,
f .x/, with the particular dilation and translation of the wavelet:

Dm;n D hf .x/;  m;ni: (15.8)

The dilations and translations of a wavelet are basis functions for the wavelet
analysis, and the DWT coefficients provide the basis for representing a data set
in terms of these basis functions. The original data sequence can be analysed into
components as follows:

f .x/ D

1
X

mD�1

1
X

nD�1

Dm;n m;n.x/ : (15.9)

The attentive reader might be concerned by the two summations over �1;1

in this expression, when applied to finite data sampled at a finite interval. The
summation over infinite translations is reflected in the practical difficulty of applying
Eq. (15.7) to data near the beginning and end of the transect where components in
the dilated wavelet function overlap the ends of the data. A standard procedure is to
pad the ends of the data. The most satisfactory way to do this for data analysis is to
pad by reflection at each end of the sequence so that, when padding a transect length
n by adding values at locations n C 1; n C 2; : : : and at n � 1; n � 2; : : : one pads
at n C j with the value at location n � j C1 on the transect, and similarly, one pads at
n � j with the observed value at location n C j � 1 (see Percival and Walden 2000).
Because the DWT basis functions are of finite length, one can therefore evaluate
Eq. (15.9) just for those locations in our finite transect by adding sufficient padding
observations.

Dealing with the summation over infinite dilations is a little more complex.
We note that, for finite data, the smallest value of the dilation parameter that we can
consider is m D 1. If we modify Eq. (15.9) to include only the wavelet coefficients
for the jth dilation m D j, we obtain

Qj.x/ D

1
X

nD�1

Dj;n j;n.x/ : (15.10)
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The infinite translations no longer concern us in practice because we require
only those for which the finite support of the wavelet overlaps our transect. The
term Qj is an additive component of the data with variations at scale 2jx0. This is
called a ‘detail’ component of the signal. If we computed the detail components for
m D 1; 2; : : : ; j and subtracted these from f .x/, the residual would be what is called
a ‘smooth’ component of f .x/, Pk, equivalent to

Pk.x/ D

1
X

mDkC1

1
X

nD�1

Dm;n m;n.x/ : (15.11)

As discussed by Lark and Webster (1999), one can obtain the smooth component
directly using a single dilation of a scaling function, which is a unique partner to the
particular wavelet function. The set of detail components for some set of dilations
of the wavelet and the residual smooth component are known as a multiresolution
analysis of the finite data set into a finite set of scale-specific components (Mallat
1989).

Figure 15.3 shows the wavelet functions and scaling functions for Daubechies’s
(1988) extremal phase wavelet filter with increasing numbers of vanishing moments.
Note how increasing the number of vanishing moments increases the number of
coefficients in the filter and also the smoothness of the filter function.

To summarize, we have shown that a mother wavelet function can be dilated
and translated in finite steps to provide a basis function for a real data set and
that the analysis can be presented as a multiresolution analysis. In subsequent
sections, we shall examine statistical analyses of these data based on related basis
functions. However, to illustrate what has been done so far, we now consider a DWT
analysis and multiresolution representation of our data on soil carbon content (after
transformation to logarithms).

First it is necessary to select the mother wavelet function. Here we consider
Daubechies’s extremal phase family of wavelet functions. Within a family, the key
choice is the number of vanishing moments, M, to specify. As M is increased,
the wavelet basis function becomes smoother, which may be advantageous for
representing smoothly varying properties. The amount of leakage between adjacent
scales, i.e. the extent to which a particular dilation of the wavelet responds to spatial
frequencies outside the nominal scale range, is also reduced. The disadvantage of
increasing M is that the support of the wavelet is increased, and so the degree of
localization of any wavelet coefficient is reduced. A wavelet with M vanishing
moments has 2M coefficients in the dilated wavelet function  m;n. In this example,
we chose M D 3 as a compromise between a more compact basis (with smaller M)
and reduced leakage between scales (with larger M). Figure 15.4 shows the
multiresolution analysis of the data on emission rates using this wavelet basis.
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Fig. 15.3 Wavelet and scaling functions for Daubechies’s extremal phase wavelet with two, three
and four vanishing moments
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Fig. 15.4 Multiresolution
analysis of the data on
(transformed) emission rate
using six successive dilations
of Daubechies’s extremal
phase wavelet with three
vanishing moments. The six
detail components are
labelled D1–D6; the smooth
component is labelled S6. The
components of the analysis
are stacked above each other;
the vertical bar corresponds
to 1 unit on the scale
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15.3 Wavelets for Inference, the Maximal Overlap Discrete
Wavelet Transform

15.3.1 Wavelet Variance

In the introduction, we noted that the Fourier coefficients for a particular frequency
can be used to compute the power of a particular data set at that frequency, which
is a component of the variance of the data. It is possible to compute a similar
component of variance from the DWT coefficients. From the unit square norm of
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the mother wavelet, Eq. (15.3), and certain other conditions (Daubechies 1992),
the DWT partitions the variance of set of data over all scales. The sample wavelet
variance (Percival 1995) for scale 2jx0 can be computed as

b�2j D
1

2jnj

nj
X

nD1

D2
j;n; (15.12)

where nj is the number of DWT coefficients at the jth scale.
The wavelet coefficients Dj;n for the jth scale are obtained by translations of the

dilated wavelet in steps of 2j sample intervals, which is equivalent to subsampling,
at interval 2j, the convolution of the data sequence with the dilated mother wavelet.
A consequence of the subsampling is that all wavelets in the basis are orthogonal to
all others, so the sample wavelet variance given above has nj degrees of freedom.
However, Percival and Guttorp (1994) showed that the wavelet variance could be
more efficiently estimated by retaining all output from the filtering of the signal with
the dilated wavelet. This is called the maximal overlap discrete wavelet transform
(MODWT). The MODWT is equivalent to the DWT but with wavelet functions
for the jth scale translated in unit steps rather than steps of 2j. The kth MODWT
coefficient out of Mnj for the jth scale is denoted dj;k, and the MODWT wavelet
variance is computed as

M�2j D
1

2j Mnj

Mnj
X

kD1

d2j;k: (15.13)

These coefficients are not orthogonal, so do not provide Mnj independent pieces of
information about the variance at this scale. Percival and Walden (2000) propose
some methods to compute effective degrees of freedom for M�2j . The simplest, and
most conservative, is to use nj.

Figure 15.5 shows estimated wavelet variances for the six dilations of
Daubechies’s extremal phase wavelet (three vanishing moments) applied to the
data on emission rates in the MODWT. Also shown are the 95% confidence
intervals for these estimates, treating nj as the effective degrees of freedom.

The wavelet variance, like power, is a global property of a variable. Its inter-
pretation therefore depends on stationarity assumptions, i.e. that the contribution
to variance in the interval of a particular DWT scale is homogeneous across the
transect. However, the particular value of wavelet transforms is that their basis
functions have a local support. One can use the wavelet coefficients for some scale
to examine the evidence that variance at this scale is not spatially homogeneous.
This was developed by Whitcher et al. (2000) and has been used to examine spatial
variation of soils (Lark and Webster 2001; Milne et al. 2011).

Define the normalized cumulative sum of squared MODWT coefficients for scale
j at the kth coefficient by

Sk D

Pk
mD1 dj;m

PMnj

mD1 dj;m

; k D 1; 2; : : : ; nj � 1: (15.14)
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Fig. 15.5 Wavelet variances of (transformed) emission rate using six successive dilations of
Daubechies’s extremal phase wavelet with three vanishing moments and the MODWT. The crosses
show the 95% confidence interval for each estimate

Under null hypothesis of homogeneity of the variance at the jth scale, we expect Sk

to increase linearly with k. Consider an alternative where the variance changes at
location k0. Now we expect the graph of Sk against k be approximately a bilinear
piecewise function with the breakpoint at k0. The null hypothesis at some scale is
tested by finding a candidate change point at which the graph of Sk departs from the
expected linear function under the null hypothesis. The magnitude of this difference
is measured by a statistic B. Define BC and B� as

BC 

max

1 � k � Mnj � 1




k

Mnj � 1
� Sk

�

(15.15)

and

B� 

max

1 � k � Mnj � 1




Sk �
k � 1

Mnj � 1

�

I (15.16)

then

B 
 max
�

BC;B�
�

: (15.17)

The evidence against a null hypothesis of homogeneity of variance is measured
by B. Percival and Walden (2000) propose that the null hypothesis for some j and
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Mnj is tested by Monte Carlo simulation when Mnj < 128 and otherwise by applying a
large sample result from Inclán and Tiao (1994) to compute the P-value. Whitcher
et al. (2000) propose that one tests the first candidate change point on a transect.
If the null hypothesis is rejected, then the change point is accepted, and the same
procedure is then used to test the homogeneity of variance of the two segments of
the original sequence, divided at the accepted change point.

Figure 15.6 shows an example of change detection in the case of the wavelet
variance of the transformed data on emission rates. In this case, we consider
the second dilation of Daubechies’s extremal phase wavelet with three vanishing
moments. This dilation therefore corresponds to a nominal scale interval from 120
to 240 m on the ground. The plot of Sk against k is seen in the top left of the figure,
with the 1:1 line superimposed. The biggest deviation, the candidate change point,
is at the location where the solid symbol appears on the 1:1 line (position 71 on the
transect), and the distance between the two graphs, shown by the vertical line, is
the B statistic (0.196 in this case). The graph on the top right shows the distribution
of the B statistic for this case obtained for the stationary null hypothesis by Monte
Carlo sampling. The empirical p-value is 0.012, which provides a basis to reject
the null hypothesis. The wavelet variance appears to decrease at this change point,
which, in fact, coincides exactly with the location at which mixed drift over the
Lower Greensand, a Cretaceous sandstone, gives way to, predominantly, heavier
drift over the Gault clay (see Milne et al. 2011). The figure in the lower part of the
plot shows the corresponding detail component in the multiresolution analysis based
on the MODWT, with the change point shown by a solid symbol.

15.3.2 Wavelet Covariance and Correlation

Just as the variance of some variable, u D f .x/, can be partitioned into components
associated with each scale of the DWT, one may compute the contribution to the
covariance of variables u D f .x/ and v D f2.x/ from variation at some scale j. This
is called the wavelet covariance and can be computed from the MODWT coefficients
du

j;n and du
j;n for n D 1; 2; : : : Mnj by

QCu;v;j D
1

2j Qnj

Qnj
X

nD1

du
j;ndvj;n; (15.18)

where du
j;n and dvj;n are the MODWT coefficients for scale 2j and location n for

variables u and v, respectively.
Just as the covariance of two variables can be most easily interpreted by scaling

it to the interval Œ�1; 1�, also called the correlation, Whitcher et al. (2000) defined
the wavelet correlation by rescaling the wavelet covariance by the corresponding
wavelet variances at some scale 2j. The wavelet correlation of u and v at scale 2j is
estimated by



15 Complex Soil Variation over Multiple Scales 477

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Location, k

S
k

Null distribution of B

B

Fr
eq

ue
nc

y
0.05 0.10 0.15 0.20 0.25

0
20

0
40

0
60

0
80

0
10

00

0 50 100 150 200 250

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Location

D
et

ai
l c

om
po

ne
nt

Fig. 15.6 Change detection for the variance of (transformed) emission rate on the second dilations
of Daubechies’s extremal phase wavelet with three vanishing moments. The three plots are
explained in detail in the text

Q�j D
QCu;v;j

Q�u;j Q�v;j
: (15.19)

The wavelet correlation can be useful for identifying scale-specific relationships
between variables. Variables may be correlated differently at different scales, and
the standard correlation between variables, in which the spatial scales are not
distinguished, may obscure such a relationship. For example, Lark et al. (2004)
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Fig. 15.7 Wavelet correlations of (transformed) emission rate and SOC using six successive
dilations of Daubechies’s extremal phase wavelet with three vanishing moments and the MODWT.
The crosses show the 95% confidence interval for each estimate

found strong negative correlations between the rate of nitrous oxide emission from
soil cores and soil pH at the coarsest scales on a transect across several fields on a
farm. In contrast, soil organic carbon was only correlated with emission rates at the
finest scales and soil mineral nitrogen at intermediate scales.

Figure 15.7 shows the wavelet correlation between (transformed) emission
rates and SOC content of soil cores on the transect, with the corresponding 95%
confidence intervals, on the same MODWT basis as the wavelet variances in
Fig. 15.5. Note that the correlations at finer scales are small. The 95% confidence
interval excludes zero only for the fourth dilation (nominal scale range of 240–
480 m) at which the wavelet correlation is 0.5. The correlation is larger at the fifth
dilation, but the confidence interval is wider and includes zero. This indicates that
the variation of these two variables at finer scales does not appear to be correlated
(at least overall), but that coarser-scale spatial variations of the variables are indeed
correlated.

As with the wavelet variance, it is possible to examine the MODWT coeffi-
cients for two variables to examine evidence that their covariance is not spatially
homogeneous. One computes the cumulative sum of cross products of the MODWT
coefficients for some scale of interest:

Su;v
k D

Pk
mD1 du

j;mdvj;m
PMnj

mD1 du
j;mdvj;m

; k D 1; 2; : : : ; Mnj � 1: (15.20)
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The same B statistic can then be computed to find a candidate change point. Lark
et al. (2004) and subsequent studies (Milne et al. 2011) use a Monte Carlo method
to identify change points at which the difference in wavelet correlation between
the two segments of the transect is large enough to reject the null hypothesis of
a homogeneous wavelet correlation. In the particular example examined in this
chapter, there is no evidence that the correlation between emission and SOC is
not homogeneous at any scale of the wavelet transform.

15.4 The Hilbert-Huang Transform

Classical methods of analysing series of data, such as spectral analysis, are based on
the assumptions that the series comes from a system which is (i) stationary in both
the mean and the variance (i.e. the expectation of these statistics is constant over the
series) and (ii) linear (i.e. if the inputs x1.t/ and x2.t/ to a system result in outputs
y1.t/ and y2.t/, then if the system is linear, the input x D x1.t/ C x2.t/ will result
in the output y D y1.t/ C y2.t/). The wavelet transform allows information on the
location of events to be retained, and so any assumptions of stationarity in the mean
and variance are not necessary. Wavelet analysis, however, does assume that the
series is linear. Wavelet transforms (similar to Fourier transforms) decompose the
series of data onto a predefined set of orthonormal basis functions, which relate to
specified intervals of frequency. Any sequence u.x/, where x D 1; 2; : : : ; n, may be
decomposed onto a set of basis functions. When we decompose our data using these
basis functions, however, we assume that the underlying system (of which our data
is a realization) is linear and so can be interpreted as a sum of additive components.
Natural systems are rarely stationary or linear, although often these assumptions
can be made. Huang et al. (1998) state that the hallmark of a non-linear system
is ‘intra-frequency frequency variation’, i.e. the frequency content of one or more
of the constituent functions varies as a function of location. Huang et al. (1996,
1998) sort to derive a method for analysing series of data that was not restricted
by either assumptions of linearity or stationarity; to that end, they developed the
Hilbert-Huang transform (HHT).

To represent a non-linear and nonstationary data series using a set of basis
functions, it is necessary for the basis to be adaptive. This means that the basis
depends on the data and so cannot be defined a priori (Huang and Shen 2005),
unlike spectral and wavelet methods which use well-defined functions. The HHT
comprises (i) an empirical mode decomposition (EMD) and (ii) a Hilbert spectral
analysis. The EMD is used to partition the series of data into a number of
components, which are known as intrinsic mode functions (IMFs). Similar to the
wavelet MRA, these functions sum together to give the original data series. An
IMFs’ amplitude and frequency can vary over the series. The Hilbert spectral
analysis is used to evaluate the ‘instantaneous frequency’ of the IMFs; in other
words, we can calculate a local measure of frequency for each mode function.
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The HHT is, in some ways, more intuitive than other methods of analysis that
rely on basis functions that are derived a priori and do not obviously related to the
data they aim to describe. The HHT has only been tested empirically, however, and
mathematical validation still remains an open problem (see chapter 1 of Huang and
Shen 2005). Since its development, the HHT has been used in many application
areas (see Huang and Shen 2005, and references therein). Most notably Biswas
and Si (2011) introduced this method of analysis to soil science. In what follows,
we describe some of the developments made on the HHT and apply them to our
case study. All the analysis was done using programs based on the MATLAB code
provided by Dr Wu at http://rcada.ncu.edu.tw/research1_clip_program.htm.

15.4.1 Empirical Mode Decomposition

Empirical mode decomposition is used to derive the basis functions for a given
series of data. As we discussed above, these basis functions (known as IMFs) are
calculated from the data. The derivation of the IMFs is based on the assumptions
that (i) each IMF oscillates about zero and the number of extrema (nE) may differ
from the number of times it crosses zero (nZ) by one at most, i.e.

jnZ � nEj � 1 (15.21)

and (ii) the IMFs’ oscillations are symmetric about zero.
The steps taken to derive the IMFs for a series of data are as follows. First we

must identify all of the local minima and maxima in the series. An upper envelope,
Eu.x/, is derived by using a cubic spline to join all of the local maxima. Similarly
a lower envelope, El.x/, is derived from the local minima (see Fig. 15.8). The
local mean of the two envelopes is calculated by m.x/ D .El.x/C Eu.x// =2 and
is subtracted from the data series, u.x/, to give the first candidate IMF h1.x/ D

u.x/�m1.x/. This process is known as sifting and it both eliminates riding waves and
makes the wave profile more symmetric (Huang and Shen 2005). If this candidate
IMF, h1.x/, satisfies the stoppage criteria (defined below), then it becomes the first
IMF I1.x/. If not, then the processes start again, but this time, h1.x/ is treated as
the data and the candidate IMF is given by h2.x/ D h1.x/ � m2.x/, where m2.x/
is the mean of the upper and lower envelope of h1.x/. The process is repeated
until the candidate IMF, hk.x/, satisfies the stoppage criteria. Then the first IMF,
I1.x/ is set equal to hk.x/.

Locally, the first IMF, I1.x/, contains the highest frequency information. The
second IMF, I2.x/, is calculated in the same way as the first, but this time, the
residual r1.x/ D u.x/� I1.x/ is used in place of the original data series. The process
continues until the Jth level residual, defined

rj.x/ D u.x/ �

J
X

iDj

Ij.x/; (15.22)

http://rcada.ncu.edu.tw/research1_clip_program.htm
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Fig. 15.8 An illustration of the calculation of the mean envelope of a series, which is part of the
sifting process. The series, u.x/, is shown by the black line. The upper envelope Eu.x/ is defined by
using a cubic spline to join the local maxima; similarly the lower envelope El.x/ is defined using
the local minima. The envelop is shown in red. The mean envelop m.x/ D .El.x/C Eu.x// =2 is
calculated (shown in green). Later the mean envelope is subtracted from the data series (u.x/) to
give the first candidate IMF h1.x/ D u.x/� m1.x/

is either a monotonic function or a function with only one extremum. The final
residual is comparable to the smooth component of the wavelet MRA, which
captures the trend in the data. Similar to the MRA, the data series u.x/ is equal
to the sum of the IMFs plus the final residual,

u.x/ D

J
X

jD1

Ij.x/C rJ.x/: (15.23)

At least two different stoppage criteria have been suggested (Huang and Shen
2005). The first, suggested by Huang et al. (1998), uses a Cauchy-type convergence
test. It requires that

Pn
xD1 jhk�1.x/ � hk.x/j

2

Pn
xD1 fhk�1.x/g

2
< "; (15.24)

where n is the number of points in the series and " is a predetermined value. This
criterion has two shortfalls: firstly it does not guarantee that Eq. (15.21) is satisfied,
and secondly, the value of " must be defined. The description of the method given
by Biswas and Si (2011) overcomes the former problem by making the condition
jnE � nZj � 1 an additional stopping criterion, and they also suggest that " lay
between 0:2 and 0:3.
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Huang et al. (1999, 2003) offer an alternative criterion, that is, that jnE � nZ j � 1

and that the values of nE and nZ have stayed the same S consecutive times. The
choice of S is still arbitrary, although Huang et al. (2003) do give some guidance
and established that for optimal sifting, S should be set between 4 and 8.

Both of the stoppage criteria described above require a parameter to be arbitrarily
set. In the first method, we described the value of " had to be set and in the second
the value of S. The choice of the value for this stoppage parameter can affect the
decomposition (i.e. different sets of IMFs might be produced by varying the value
of the stoppage parameter). It is therefore important to gauge the sensitivity of our
IMFs to the choice of stoppage parameter.

Huang et al. (2003) proposed a method for calculating confidence intervals for
the IMFs based on exploring the sensitivity of the IMFs to changes in the stoppage
parameter. Decompositions are calculated for a range of values of the stoppage
parameter. Each decomposition produces a set of IMFs, Ik;j.x/ where j D 1; 2; : : : ; J
and k denotes that the decomposition was done with stoppage parameter S.k/ (or
".k/). From these, the mean IMF can be calculated

I O�;j.x/ D
1

K

K
X

kD1

Ik;j.x/; (15.25)

and standard deviation

I O�;j.x/ D

v

u

u

t

1

K � 1

K
X

kD1

˚

Ik;j.x/ � I O�;j.x/
�2
; (15.26)

from which confidence intervals can be deduced using standard statistical formulae.
Figure 15.9 shows the mean IMFs with their 95% confidence intervals for the log

CO2 data using EMD. The EMD method we used had a stoppage criterion defined
by Eq. (15.24) and the additional condition given by Eq. (15.21). We allowed � to
take values between 0.01 and 1. There is a strong similarity between the residual
component and the smooth component of the MRA. This is also true of the three
coarser-scale MRA components and IMF 35. In IMF 2, we can see inter-frequency
modulation most clearly. For example, around position 200, component oscillates
with lower frequency than it does from around position 220 to the end of the series.

15.4.2 Analysis of Instantaneous Frequencies

15.4.2.1 Hilbert Spectral Analysis

Theoretically, the instantaneous frequency !.x/ of each IMF can be calculated using
Hilbert spectral analysis. Firstly the complex conjugate QIj.x/ of the IMF Ij.x/ is
calculated by
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Fig. 15.9 The IMFs for log CO2. The IMFs were calculated using EMD with a stoppage criterion
defined by Eq. (15.24) and the additional condition given by Eq. (15.21). The IMFs were calculated
100 times with the value of � set to 0:01; 0:02; : : : ; 1:0. The mean and variance for each IMF were
estimated. The mean is shown in black and the 95% confidence interval, which was calculated
using the variance, is shown in red
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QIj.x/ D
1

	
P
Z C1

�1

Ij.�/

x � �
d�; (15.27)

where P is the principal value of the singular integral (also known as the Cauchy
principal value). The analytical series is then defined:

zj.x/ D Ij.x/C iQIj.x/; (15.28)

which can be written in polar coordinates as

zj.x/ D aj.x/ expfi�j.x/g; (15.29)

where i D
p

�1, aj.x/ D

q

fIj.x/g2 C fQIj.x/g2 is the instantaneous amplitude and

�j D arctan
�

QIj.x/=Ij.x/
�

. The instantaneous frequency !j.x/ is given by

!j.x/ D
d�j.x/

dx
: (15.30)

The original series can be expressed in terms of the polar coordinates by

u.x/ D Re

2

4

J
X

jD1

aj.x/exp

	

i
Z

!j.x/

�

3

5C rJ.x/; (15.31)

and the similarity to the Fourier expansion of this data is clear:

u.x/ D Re

2

4

J
X

jD1

ajexpfi!jg

3

5C a0: (15.32)

The IMF representation is in fact a generalization of the Fourier expansion with
amplitude and frequency given as functions of location.

15.4.2.2 The Normalized Hilbert Transform

The Hilbert transform, given above, exists for Lp function space (Bourbaki 1987);
however, the phase function �j.x/ does not always give a physically meaningful
instantaneous frequency (see Huang and Shen 2005). For this to happen, the IMF
function Ij.x/ D aj.x/ cosf�j.x/g must satisfy

H
�

aj.x/ cosf�j.x/g
�

D aj.x/H
�

cosf�j.x/g
�

; (15.33)
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and for this to hold, the Bedrosian theorem states that the Fourier spectra of aj.x/
and cosf�j.x/g must be totally disjoint in the frequency space and that the frequency
range of cosf�j.x/g must be higher than aj.x/. To avoid this problem, the frequency
modulation and amplitude modulation parts of the IMF can be separated by a
process of normalization (Huang and Wu 2008). The Hilbert transform is then
applied to the frequency modulation part, and the problem stated in the Bedrosian
theorem no longer applies. This is known as the normalized Hilbert transform.

The normalization of an IMF, Ij.x/, is done empirically. Firstly the absolute
values of the IMF are calculated and then the local maxima are identified. A spline
e1.x/ is fitted through the values, which is unique for a given order of spline. The first
approximation to normalization is given by  1.x/ D Ij.x/=e1.x/. If e1.x/ is identical
to aj.x/, then  1.x/ should equal cosf�j.x/g and so j 1.x/j � 1. This is often not the
case and so the process of normalization is done again, this time on  1.x/ instead
of Ij.x/. This iterative processes stops at the mth iteration when j m.x/j � 1. The
frequency modulation part of the IMF and the amplitude modulation part of the IMF
are thus empirically defined by  m.x/ and Ij.x/= m.x/, respectively.

The instantaneous frequencies for IMFs 1 to 5 of the log CO2 data are shown
in Fig. 15.10. At the start of the transect, the variation is greatest at wavelengths of
1500 m and more. Another notable feature is that at wavelengths less than 750 m
there is an increase in variation around position number 50. This coincides with the
significant changes in variation quantified by the wavelet analysis.

15.4.3 The Direct Quadrature Method

The estimates of instantaneous frequency made using the normalized IMFs improve
greatly on those calculated using IMFs that have not been normalized. However,
the true frequency of fluctuations might still be underestimated. More recently,
Huang et al. (2009) have proposed abandoning the Hilbert transform and instead
proposed using their direct quadrature method. This method simply computes the
phase function by using the arc cosine of the frequency modulation part of the IMF
(Huang et al. 2009).

15.4.4 Intrinsic Mode Function Variance

The spectral density function, used in Fourier analysis, decomposes the variance
of a series across frequencies, and similarly Percival and Walden (2000) show
us that the wavelet variance decomposes the variance of a series with respect to
scale. No similar quantitative breakdown of variance exists for the HHT. The EMD
decomposes the series into a sequence of IMFs, but the sum of the variance of these
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Fig. 15.10 The magnitude of the variations plotted against position number and instantaneous
frequency for the IMFs of log CO2. The IMFs were calculated using empirical mode decomposition

Table 15.1 The percentage
of the sum of the variances of
each IMF

Component Percentage of total variance

IMF 1 35.83

IMF 2 17.07

IMF 3 9.56

IMF 4 29.55

IMF 5 0.08

individual components does not in general equal the variance of the original signal.
Biswas and Si (2011) investigated the partition of the variance between the IMFs
by calculating the variance of each IMF and reporting these as a proportion of the
sum of the IMF variances. Table 15.1 shows the contribution to the variance of each
of the IMFs for log CO2. The partition of variation is broadly similar to that seen
in the wavelet results. The largest contribution is related to the highest frequency
component (IMF 1) and the smallest at the lowest (IMF 5).
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15.4.5 Intrinsic Mode Function Correlations and Ensemble
Empirical Mode Decomposition

Biswas and Si (2011) considered the correlation between individual IMFs of soil
water storage and several variables that were thought to influence soil water storage.
The driving variables were not decomposed into IMFs themselves. Therefore, they
estimated correlations between a component associated with a given scale interval
of one variable and a second variable which contained information on a much larger
interval of scale. In their example, they found that there was a strong negative
correlation between the IMF associated with wavelengths of 80 to 100 m and
elevation. The correlation between the raw data had been weak.

Huang and Wu (2008) considered data on the Southern Oscillation Index (SOI)
and the cold tongue index (CTI). They decomposed both sets of data into nine IMFs
and a residual and estimated the correlations between the respective pairs of IMFs.
They found that the correlations between the pairs were smaller than the overall
correlation between the two data sets and attributed this to ‘mode mixing’. Mode
mixing occurs when either a single IMF comprises signals of widely disparate scales
or a signal of similar scale resides in two or more IMFs. Ensemble EMD (EEMD)
was developed to overcome the scale separation problem. In this method, white
noise with finite amplitude is added to the original data and the IMFs are computed.
The processes are repeated many times. The average over the sets of IMFs defines
the IMFs of the EEMD. The concept is that only the true signal persists and that the
white noise is removed in the averaging processes. Huang and Wu (2008) found that
using the EEMD to produce the IMFs for the SOI and CTI data greatly improved
their results.

The EEMD requires that the number of IMFs that the data is decomposed into
must be set a priori; otherwise different numbers of IMF may be generated at each
iteration resulting in a set that cannot be averaged. The total number of IMFs should
be set to log2N or fewer, where N is the number of data in the series.

We used the EEMD to produce IMFs for log CO2 and log OC and then estimated
the correlation between the pairs for each level. We set the standard deviation of the
white noise to be equal to 0.1 of the standard deviation of the measurements of each
variable, and we set the number of IMFs to six (as calculated in the EMD above).
Figure 15.11 shows the IMFs produced. The black line shows the IMFs for the log
CO2 data and the black for the log OC data. The correlations between the IMF pairs
and the raw data are shown in Fig. 15.12. The correlation between the raw data is
shown as IMF 0. Similar to the wavelet results, the IMF pairs associated with shorter
wavelengths (IMFs 1 and 2) are weakly correlated to one another, whereas the IMF
associated with the longest wavelengths (IMF 5) was more strongly correlated than
the raw data sets were.
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Fig. 15.11 The IMFs of log CO2 (black) and log OC (red) calculated using ensemble empirical
mode decomposition (EEMD). The number of IMFs was fixed to 5

15.4.6 Comparison of Methods

Both the Hilbert-Huang transform and the wavelet transform offer power methods
for analysing data. The wavelet transform has an underlying mathematical theory,
whereas the Hilbert-Huang transform is empirical and lacks any underpinning
mathematical basis. The advantage of the Hilbert-Huang transform over wavelets
is that it is better suited to data series from non-linear processes. Huang and Wu
(2008) illustrate this using Duffing’s equation
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Fig. 15.12 The correlations between IMFs for log CO2 and log OC. The correlation between the
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dx

dt2
C x C �x3 D �cos ˛t (15.34)

where �, � and ˛ are model parameters. The cubic term causes the non-linearity
and so the frequency of x changes within a period. This is clearly represented in the
Hilbert spectrum that results from a Hilbert-Huang analysis, whereas other methods
that assume the system is linear capture this feature less clearly in the harmonics
(Huang et al. 1998).

The examples presented in this chapter, however, show similar results from both
sets of methods. The patterns in the IMFs are similar to the MRA, the partitioning of
the variance of the IMFs is similar to that from the wavelet variance, and the wavelet
correlations are broadly similar to the correlations calculated with the EEMDs.
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Chapter 16
Pedodiversity

Mario Fajardo and Alex. B. McBratney

“Como la tierra
eres
necesaria.”

“As the earth
You are
necessary.”

Pablo Neruda
Oda a la Alegría

16.1 Introduction

Pedodiversity deals with the analysis of the number and complexity of pre-classified
soil entities and/or their properties in the landscape (Fridland 1974; Jacuchno 1976;
Linkeš et al. 1983; Ibañez et al. 1987, 1995; McBratney 1992; McBratney and
Minasny 2007; Ibáñez and Bockheim 2013). If we consider that soil directly and/or
indirectly affects every single biotic structure, it is easy to see that the study of
its distribution needs to be a priority when trying to preserve the biodiversity of
our planet. Whereas the pedologist might regard pedodiversity a great boon, an
agronomist might regard the exact same situation a nuisance.

A generally accepted definition of pedodiversity can be inherited from the con-
cepts behind biological and ecological diversity (Magurran 1988, 2013) involving
the quantification of (a) the richness of individuals in a determined geographical
area and/or timeframe, e.g. how many different soil types exist in a region, (b) the
abundance or the sum of soil entities of each type and (c) the relative distribution
or the evenness of those soil individuals, i.e. how separate sites are similar in their
abundances.
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Pedodiversity inherits most of the notions and procedures of its counterparts,
e.g. biodiversity. It is therefore possible to also successfully apply most of the
established methods to studies of pedodiversity. However, and due to the dissimilar
nature of the object of study (soil [taxonomic] object vs species), it is necessary to
outline some ideas that may appear conflicting at first.

16.1.1 Continuous and Discrete Classes

The main difference between conventional biological diversity, which relies on
the concept of species, and pedodiversity is that the soil can be considered as a
continuous body, most of the time. Historically, this duality has caused somehow
different schools of pedodiversity, similar to the different working groups in
pedology and pedometrics.

Accepting the fact that the soil can behave as continuous, we understand that
it also can be discretised by a rather taxonomical approach (USDA Soil and
Conservation Service 1999; Isbell 2002; Jahn et al. 2006) and/or different numerical
techniques (Campbell et al. 1970; Triantafilis et al. 2001; Hughes et al. 2014).
As other authors have already noticed (McBratney and Minasny 2007; Feoli et al.
2013), it is possible to apply the notions of distance dissimilarity between classes,
dealing with the apparent dichotomy of continuous and discrete classes (refer to
Chaps. 8 and 9).

In a crisp or clear partition equivalent to a conventional taxonomic classification
where the distance between soil classes is not numerically assigned, the dissimilarity
within a class will be assumed 0 and between classes will be equal to 1. On the other
hand, in the case of a numerical classification or taxonomic classes with an assigned
distance, e.g. as shown in McBratney and Minasny (2007), the average dissimilarity
within and between classes can range between 0 and 1 (Feoli et al. 2013). In this
chapter we will not prefer a particular approach, since both have their own benefits
and drawbacks.

16.1.2 The Object of Study

We have seen that the soil continuum can be systematically stratified and classified
by its attributes. In the same way, if this stratification (crisp or fuzzy) is spatially
performed, we obtain a delimited soil body which is homogeneous enough to be
considered as a physical separate entity or soil object. As outlined in Chap. 8, a gen-
erally accepted notion of this elementary soil unit is the “point representation”, i.e. a
more flexible view of the concept of pedon (also see NRCS 1993; Holmgren 1988).

The characterization of a point representation is based on the information
obtained from soil profiles or, in their absence, soil cores in a determined geo-
graphical location. Each point representation will be classified based on a (most
of the time) vertical sequence of soil horizons and/or soil layers and its observed
and/or measured attributes. However, in order to fully (taxonomically) classify a

http://dx.doi.org/10.1007/978-3-319-63439-5_8
http://dx.doi.org/10.1007/978-3-319-63439-5_9
http://dx.doi.org/10.1007/978-3-319-63439-5_8
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physical pedological unit, greater detail needs to be considered, i.e. lateral variation
of horizons, shape of boundaries, etc.

As noticed by Campbell and Edmonds (1984), as soon as we apply taxonomic
criteria into a geographic representation, we will not necessarily obtain a homoge-
neous or well-defined landscape unit, but most probably a highly discontinuous sum
of patches. Butler (1981) called this the taxonomic chop. Many attempts have been
made in the past to define this basic structure of soil which has both a clear spatial
and taxonomical representation. Some of them are, for example, the elementary
soil areal (ESA) defined in Fridland (1965), which is a homogeneous body of soil
bordered on all sides by other ESAs. The same author revised some other structures
or heterogeneous ESAs, e.g. sporadically spotted and regular-cyclic areal (Fridland
1974; Saldaña 2013). By their definition, homogeneous ESAs greatly resemble the
concept of the polypedon (Johnson 1963; United States Department of Agriculture
Soil and Conservation Service 1975), which is currently the most widely accepted
definition of the soil individual.

Assuming that ESAs or polypedons correspond to the basic soil units, then it
is possible to establish some analogies with biology. For example, Johnson (1963)
compared the polypedon to individual pine trees, individual fish or men. The concept
of soil series can then be regarded as a population of soil profiles with more or less
fixed properties, which somehow corresponds to the concept of species in biology
(Krasil’nikov 2009). However, here, we need to keep in mind that this comparison
only refers to the status of soil as an elementary classification unit.

From here, higher taxonomical-geographical units can be identified. Conven-
tional biodiversity studies recognize higher geographical units such as assemblages,
guilds or communities of species for describing the diversity of biological ecosys-
tems; however, they cannot be “translated” straightforwardly, and some distinctions
have to be considered. Undoubtedly, the spatial (and temporal) subject of a
pedodiversity study will depend on the purpose of each investigation; however, it
is important – at least in the context of this chapter – to briefly mention some of the
commonly used soil geographical units of pedodiversity studies.

As previously mentioned, conventional diversity studies consider different units
of species aggregation (or ecological sets) defined after shared resources, geography
and phylogeny (Magurran 1988, 2013). In the case of pedodiversity, these units will
have a close relation with Jenny’s well-known soil-forming factors (Chap. 18). The
subdiscipline of ecology which studies some of these soil homogeneous zones is
that of landscape ecology, defined as a “sub-discipline of ecology that emphasizes
the interaction between spatial patterns and ecological processes, that is, the causes
and consequences of spatial heterogeneity across a range of scales” (Turner 1989;
Saldaña 2013).

Some of the first approaches to define aggregation units are, for example,
those detailed in Fridland (1974) as soil combinations, namely, complexes, catenas,
mosaics, spottinesses, variations and tachets. Newer approaches of these units
are, for example, the so-called map units defined by the NRCS (1993), namely,
consociations, associations, complexes or undifferentiated groups.

In the same way, regular or arbitrary units can be considered, e.g. regular areas.
The pedodiversity of those will be calculated based on the richness or abundance

http://dx.doi.org/10.1007/978-3-319-63439-5_18
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of the amount of soil units contained within them (of different hierarchical levels)
(Saldaña and Ibáñez 2004).

16.1.3 Digital Soil Mapping and Pedodiversity

With the development of digital soil mapping (DSM) (Chap. 12), the representation
of soil types in a map acquires a different perspective. The elemental soil unit can
be represented by a grid of points, pixels (2d) or voxels (3d), which have a spatial
and a taxonomic value. Higher hierarchical units (e.g. analogue to associations) are
then known as polygons with conventional soil units, i.e. clustered or simply regular
areas such as an arbitrary 10 ha area.

An interesting feature of DSM products is the associated membership value
for each pixel, for example, in maps where each pixel has a probable soil order
denomination (e.g. fuzzy classes). No research has explored yet the use of the pixel
value of classification memberships in pedodiversity calculations. In this sense, it
should be relatively easy to plug the membership values into the pedodiversity
calculations – an extension of methodology using taxonomic distance (see Sect.
16.2.3 on distance-dependant indices).

16.1.4 Parametric and Non-parametric Estimators

A commonly used qualifier in diversity indices is the term parametric or non-
parametric. If we assume that the distribution of a group of observations – such as
the abundance of soil suborders in a specific geographical area – follows a particular
function which can be fitted to the observed data, then we can use parameters to
describe the diversity of that group of observations. Some of the most popular are
inter alia Fisher’s alpha and Preston’s lambda, which will be reviewed in the next
sections. On the other hand, non-parametric methods do not necessarily assume any
predefined abundance distribution. It is not unusual, however, to sometimes find
indices that are classified as both by different authors, such as Shannon’s index
of diversity which has been classified as parametric (Feoli et al. 2013) and non-
parametric (Magurran 2013).

16.1.5 Goals

Having first clarified some key aspects of pedodiversity studies and how they
compare with conventional methods of ecology, the goal of this chapter is to
present some of the state-of-the-art research related to the characterization of the
diversity of soils in space. Consequently, our goal here is to present the most popular
methodologies in the area using concrete examples and emphasizing quantitative
over qualitative procedures, as quantitative ones have a closer connection to the
framework of this book, i.e. pedometrics.

http://dx.doi.org/10.1007/978-3-319-63439-5_12
http://dx.doi.org/10.1007/978-3-319-63439-5_16
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16.2 Taxonomical Pedodiversity

Conventional diversity studies make a clear distinction of at least three types of
diversity; these are alpha, beta and gamma diversity (Whittaker 1972). Simply,
alpha diversity characterizes the local diversity, e.g. different species present at a
site; beta diversity characterizes how different sites relate to each other in terms of
their species composition or relative abundances, and gamma diversity characterizes
the diversity of a complete region, e.g. an island or a continent.

As mentioned in the introductory section, soil has both a discrete and a
continuous nature; hence the concept of beta diversity will always be present to
some degree (after the creation of rather taxonomical or fuzzy classes). In order to
avoid unnecessary confusion, the following sections will not include the concepts of
alpha-beta diversity, and it will be explicitly mentioned when the distance between
soil units is considered and when it is not.

16.2.1 Abundance

Having defined the concept of the individual soil entity, we can now characterize it
based on its abundance in the landscape, i.e. if a particular type of soil is common or
rare. Let us look at our first example. Figure 16.1 shows the predicted soil suborders
of the Hunter Valley Wine Country Private Irrigation District (HWCPID) in NSW,

Fig. 16.1 DEAB, Brown Dermosol; CHAB, Brown Chromosol; DEAA, Red Dermosol; KAAB,
Brown Kurosol; DEAD, Grey Dremosol; TEDS, Orthic Tenosol; KUAB, Brown Kurosol; DEAE,
Black Dermosol; CHAA, Red Chromosol; CHAC, Yellow Chromosol; CHAE, Black Chromosol;
KAAA, Red Kandosol; CACQ, Hypercalcic Chromosol; CHAD, Grey Chromosol. These results
are a reflection of the underlying soil formation factors. Brown Dermosols are probably the most
ubiquitous soil types along the NSW coastline, covering a wide spectrum of soils with a lack of a
clear or abrupt textural contrast between the surface and subsurface horizon
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Australia, based on the Australian soil classification scheme (Isbell 2002). Here, the
most common soil types (pixels) are DEAB (Brown Dermosols), followed by CHAB
(Brown Chromosols), with CHAD (Grey Chromosols) and CACQ (Hypercalcic
Calcarosols) the rarest soil types in the region.

It is common that the relative distribution of different soil types in an area will
generally follow a power law where the most abundant taxa are exponentially higher
than the rarer ones. The first approach that explained this behaviour in mathematical
terms was by Fisher et al. (1943). Fisher et al. (1943) described the much used
Fisher’s logarithmic series or Fisher’s log-series in their 1943 paper which is still
considered one of the key papers of modern ecology.

More specifically, Fisher et al. (1943) observed that in a totally randomized
collection of individuals, the number of representatives of each class (soil types in
our case), when ordered from the least to the most frequent, will form a frequency
series with the form

n1;
n1x

2
;

n1x2

3
;

n1x3

4
; (16.1)

where n1 is the number of classes with only one individual and x is a number less
than 1. Let us apply this concept to the example shown in Fig. 16.1. If we collect
a totally random 30,000 pixel sample (without replacement), the number of classes
with only 1 individual (n1) will be 14, and as observed by Fisher, the number of
representatives of each class when sorted from the least to the most frequent will
decrease exponentially (Fig. 16.2).

Following up on the Fisher’s log-series publication, Frank Preston noticed that
one of the datasets used did not fulfil the requirements of a random sample (Preston
1948). He, then, proposed a new way of representing abundance data, i.e. as octaves
or intervals of abundance in an exponential scale (base 2).

Fig. 16.2 Random sample of 30,000 pixel hollow curve
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Fig. 16.3 Preston’s graph of three random samples of 1000 (red), 3000 (blue) and 15,000 (black)
pixels. Lines represent fitted values following Preston’s approach

Shown in the next example, if we select a random sample of pixels, those soil
suborders that have 1–2 pixels will fall in the first octave, those that have between 8
and 16 pixels will fall in the fourth octave (23 D 8–24 D 16) and so on (Fig. 16.3).
This way of representing abundance data was then named the log-normal approach
(after modelling the abundance data with a Gaussian curve on a geometric base).

Having observed that most of the communities followed this behaviour, and
based on the fact that some very rare species will not be represented in a small
sample, Preston proposed the concept of the veil line, i.e. the line which divides the
unsampled universe with the observed samples.

In this way, and as observed by Preston, the shape of the sample distribution will
be a good approximation of the universe, and the veil line will be uncovered as a
more representative sample of the universe.

16.2.1.1 Abundance Models

One of the goals of representing the abundance of a population (e.g. different soil
types within a geographical area) is to compare it with another one, as exemplified
in Fig. 16.4.
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Fig. 16.4 Example of different relative abundance distributions of soil types in the Hunter Valley.
The red, green and blue lines represent abundance distributions of soil suborder types that
correspond to the areas mapped out in the areal map of the Hunter Valley (red, green and blue
edged polygons). Note that the ordinate is presented on a log scale
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A revision of the existing models of abundance distribution (or how an ordered
group of classes is organized) tells us that there are at least 20 ways (after Magurran
2013) of representing abundance. Some of the most popular are among others
the negative binomial series (Bliss and Fisher 1953), the particulate niche series
(MacArthur 1957), the Zipf-Mandelbrot series (Zipf 1949) and the dominance pre-
emption model (Tokeshi 1990).

The main reasons for the continuous update of the existing abundance distri-
bution models are the disputed practical implications of the different statistical
approaches (namely, Fisher’s log-series and Preston’s log-normal) and the so-called
niche-oriented models (geometric and broken stick).

With respect to the previous, the literature dealing with pedodiversity does not
have an apparent conflict with the existing models. In fact, the most popular models
used in pedodiversity studies are the oldest ones, namely, the logarithmic (Fisher et
al. 1943), log-normal (Preston 1948), geometric (Motomura 1932) and the broken
stick models (MacArthur 1957) (Fig. 16.5).

The geometric model (Motomura 1932) is inspired by the idea that a particular
species will pre-empt a proportion of the available resources and a second one
will pre-empt the same proportion of the remainder and so on. If this behaviour
is repeated, then the ordered abundance distribution will follow a geometric series
of the following form:

ni D NCkk.1 � k/i�1 (16.2)

Fig. 16.5 World relative abundance occupied by the major soil groups in accordance with FAO
(1988). Perc of total: relative area occupied by the major soil groups, data obtained from Table 1
in Ibañez et al. (1998). Perc of total PRED: MacArthur’s broken stick model adjusted using the
R-package “sads” (Prado et al. 2016). Note that the ordinate is presented on a log scale
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with ni is the total number of individuals in ith species (class), N the total number of
individuals and k the proportion of the remaining space occupied by each successive
species (class).

A similar approach underlies the so-called broken stick model (McArthur 1957).
The idea behind this model is that a specific area can be considered as a stick that
once broken is simultaneously distributed into S parts (or classes). Figure 16.5 shows
the broken stick model fitted to the data presented in Ibáñez et al. (1998). Ibáñez et
al. (1998) showed that the relative abundance of the major soil groups of the world
follows this behaviour.

It could be argued that not one single model can be used to describe a community;
in fact many models can be adjusted to the same dataset. In this regard, Ibàñez
and García-Alvarez (2002) showed that observed data can be successfully fitted to
different distributions depending on the software employed, the goodness of fit tests
and how the data are grouped. Other authors have highlighted the same (Tokeshi
1990; Magurran 2013).

16.2.2 Richness

The richness of a specific area can be simply defined as the total number of classes
of a particular hierarchical level contained in it. As an example, let us use the map of
soil types of Denmark, produced by Jacobsen (1984). This map contains a total of
14 different soil types classified following the FAO-Unesco system (global soil map
of the world); hence its richness in terms of different soil units is simply 14 (Fig.
16.6). So clearly taxonomic level is an important consideration when calculating
richness (especially of small areas).

At first sight, the simplicity of the richness of an area can be considered as an
unnecessary indicator, even more so, considering that its value is directly related to
a classification scheme (a global or local taxonomical system). As Magurran (2013)
clearly explains, the purpose of describing (and attempting to model) the richness
of a place is to be able to predict the increase in species richness after additional
sampling efforts or the increase of the area sampled, rather than just to estimate the
total number of classes.

The study of the richness of a community has been recognized and used by
botanists for almost 100 years. In 1921, Olof Arrhenius wrote his classic paper
named Species and Area (Arrhenius 1921), developing the idea of a previous study
(Arrhenius 1920). In his 1921 paper, he states that there is a clear relation between
the number of different species and the area sampled:

y

y1
D




x

x1

�n

(16.3)

where x is the number of different species found in area y, x1 those found in y1, and n
a constant varying between 2 and 12.5 (in the Arrhenius dataset), with n depending
on the sampled community. From here, Arrhenius (1921) found that when summing
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Fig. 16.6 Soil map of Denmark as published in Jacobsen (1984) (Data kindly provided by Anders
Moller, Aarhus University)

up all the individual (species) probabilities of occurrence in an area, the probable
number of species in an area could be expressed as a geometric series as seen in Eq.
16.4 (this equation was not explicitly written in the original paper but mentioned in
words):

S D cAz (16.4)

with S the total number of species, A the area sampled and c and z constants.
Two years later, Henry Gleason (1922), disapproving of Arrhenius’ first formula,

proposed the function that together with the exponential approach (Eq. 16.4)
represents one of the most widely accepted approximations of the total number of
species in an area:

S D d C k log A (16.5)

with k and d positive constants.
Even though it is possible to successfully fit any of these functions to a

pedodiversity dataset (in fact there are several studies that have successfully fitted
power-law series to soil richness as reviewed by Ibáñez and Bockheim 2013), it
is interesting to notice that every taxonomical system has a predefined maximum
of different classes; hence in a hypothetical maximum area, the richness will
necessarily lead to an asymptote.
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16.2.2.1 Parametric Models

As revised by Colwell and Coddington (1994), the main difference between
parametric and non-parametric methods for estimating richness is the type of
information required. In the case of parametric methods, a previous fitting to a
known abundance distribution is required, e.g. log-series, log-normal, broken stick,
etc. Hence, abundance data are required.

In the case of non-parametric estimators, only absence-presence data are required
(yet abundance data as input are not excluded in non-parametric models, as, for
example, in the case of Chao1 and ACE which will be explained in the following
sections).

Two of the previously mentioned abundance models (Fisher’s log-series and
Preston’s log-normal) can be directly used as parametric methods for estimating
richness from abundance data, where, for example, Fisher’s total number of species
(S) can be estimated through

S D ˛ ln




1C
N

˛

�

(16.6)

with N the total number of individuals and ˛ fitted using a representative sample
with observed S and N.

In the case of Preston’s log-normal approach, the calculation of S is straight-
forward. S basically equals the summation of the value of each octave (once the
distribution is unveiled) or, in a continuous way, the integration of the fitted log-
normal distribution (see Colwell and Coddington 1994 and Fig. 16.3).

16.2.2.2 Non-parametric Models

Out of the multiple non-parametric approaches of estimating richness, the most
cited in the literature are the Michaelis-Menten index (usually not classified as
non-parametric nor parametric (Michaelis and Menten 1913)), Chao1 and Chao2
(Chao 1984, 2005), bootstrap (Smith and van Belle 1984), jackknife (Heltshe and
Forrester 1983), the abundance-based coverage estimate (ACE) and the incidence-
based coverage estimate (ICE) (Chao and Mark 1993; Chao et al. 2004).

The Michaelis-Menten model is one of the best known asymptotic approaches
and was used initially for enzymatic reactions. This model was applied in several
biodiversity studies (e.g. Colwell and Coddington 1994; Chazdon et al. 1998; Toti
et al. 2000) and requires abundance data (e.g. counts of different soil types). This
model can be written as

S.n/ D
Smaxn

B C n
(16.7)
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where S(n) is the number of classes (soil orders, suborders, etc.) observed in n
samples, Smax is the total number of classes in the assemblage and B is the sampling
effort required to detect 50% of Smax.

The Chao1 index is an asymptotic model, which similar to the Michaelis-Menten
model uses abundance data. This index has been widely adopted by ecologists and
also by pedologists in pedodiversity studies (Colwell and Coddington 1994; Ibáñez
et al. 2003). This index is based on the proportion of singletons and doubletons
(classes which are represented by one and two individuals, respectively) in a
geographical area, and it can be easily calculated by

SChao1 D Sobs C
F21
F2

(16.8)

with SChao1 the number of species in a sample, F1 the number of singletons and F2

the number of doubletons.
Anne Chao and collaborators (Chao and Lee 1992; Chao and Mark 1993)

devised a set of more sophisticated estimators, as detailed in Magurran (2013).
The abundance-based coverage estimate (ACE), and the incidence-based coverage
estimate (ICE). The ACE is written as follows:

SACE D Sabund C
Srare

Cace
C

F1
Cace

�2ACE (16.9)

where Srare are the number of rare classes (�10 individuals) and Sabund are the
number of abundant classes (>10 individuals). F1 is the number of singletons; CACE

is the relation between singletons and the number of rare classes:

CACE D 1 �
F1

Nrare
(16.10)

with Nrare the number of individuals in rare classes and �2ACE the coefficient of
variation of Fi’s, expressed as

�2ACE D max

(

Srare

Cace

P10
iD1 i .1 � 1/Fi

.Nrare/ .Nrare � 1/
� 1; 0

)

(16.11)

with Fi the number of classes with i individuals.
The bootstrap method was first used as a richness estimator by Smith and van

Belle (1984) and uses absence/presence data as follows:

Sboot D Sobs C

Sobs
X

kD1

.1 � pk/
n (16.12)

with pk the number of quadrats where k class is present and n is the number of
samples.
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Chao2 uses the same principles of its predecessor; however, unlike Chao1 and
similar to the bootstrap method, it uses absence/presence data. The index uses the
proportion of the number of classes (or soil types) that occur in one location only
(Q1) (unique classes), to the number of classes that occur in two locations (Q2), and
can be written as

SChao2 D Sobs C
Q2
1

2Q2

(16.13)

The last index (among many others not presented here) is the jackknife index,
which has two versions. The first one (SJack1) uses only the number of classes found
in a single sample, while the second one (SJack2) uses both, the classes found in one
location (Q1) and in exactly two locations (Q2):

SJack1 D Sobs C Q1




n � 1

n

�

(16.14)

SJack2 D Sobs C

"

Q1




2n � 3

n

�

C Q2

.n � 2/2

n .n � 1/

#

(16.15)

Figure 16.7 shows the performance of six of the previously described indices
using the information from Fig. 16.6. On the left-hand side of Fig. 16.7 those indices
are shown that were designed for abundance data and on the right-hand side indices
that were designed to use absence/presence information.

Even though all of these indices have been extensively used in ecology and
biological sciences, their use in soil science is limited, and except for a few studies,
they are hardly reported in the literature. Undoubtedly, once a soil map is finished
(both conventional and digital), the total number of classes is known a priori;
however, the study of the relation between sampling efforts or area sampled and
richness becomes valuable information when used in a conservationist approach
(Ibáñez and Bockheim 2013).

The previous examples are known as species accumulation curves, in our case
classes accumulation curves. Even though classes can be represented using richness
information versus samples as shown in Fig. 16.7, the area-richness approach seems
to be more useful for soil sciences.

Figure 16.8 shows four maps made by using the soil types presented in Fig. 16.6.
Each map is presented with four different pixel resolutions (area), i.e. 4, 25, 225
and 2500 km2, respectively. The scale of each map indicates the amount of different
soil types contained on each pixel; in this way as the area of the pixel increases, the
total amount of different soil types belonging to that particular pixel will increase
accordingly.

As a rough exercise, if we decide to preserve the largest number of soil types
(at the order taxonomical level) in a specific area, we can plot the richness per area
increase as presented in Fig. 16.9. As other authors have observed, the area-richness
relation follows the same pattern that was explored in previous sections (Phillips and
Marion 2005; Toomanian et al. 2006; Ibáñez and Bockheim 2013).
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Fig. 16.7 Six different approaches of sampling effort/richness modelling. On the left-hand side,
indices are shown that were designed for abundance data, and on the right-hand side, indices are
shown that were designed to use absence/presence information

16.2.3 Diversity Indices

The most challenging way of describing the diversity of a community (or any
environmental system) is to be able to represent diversity in a numerical manner.
Hence, all aspects of diversity need to be represented, i.e. the abundance and
richness of species in a community, the arrangement of its components (evenness)
and the distance between individuals.

Since there is a myriad of diversity indices, a word of caution needs to be made
here: as the reader may guess, every index will have a particular sensitivity to a
particular aspect of diversity. Some of the indices will put more emphasis or weight
on the different aspects of a community, i.e. richness, even or uneven communities,
rare or common classes within a community, similarity between classes, etc.

For example, there are indices that are especially designed to reflect the richness
of a system, e.g. Margalef’s index (Eq. 16.16):

DMg D




S � 1

ln N

�

(16.16)
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Fig. 16.9 Dashed line shows Arrhenius/Gleason curve showing the increase of richness versus
area observed. Numbers represent the amount of different classes contained in a single pixel of
size x (area km2). The continuous line represents the total amount of soil types present in Denmark
as detailed in Jacobsen (1984)

and Menhinick’s index (Eq. 16.17):

DMh D
S
2

p
N

(16.17)

which calculate a relation between the number of classes S and the number of
individuals in each class N. They need little information to be calculated; however,
these indices do not take the relative abundance within the classes into consideration.

One of the first indices that considered both richness and relative abundance in
a single value is the alpha (˛) parameter of Fisher’s logarithmic series that we
explained in Sect. 16.2.1 (Fisher et al. 1943), where the number of species is a
function of the number of individuals (Eq. 16.6).

In a similar manner, Preston’s log-normal series’ standard deviation (see Sect.
16.2.1) can be used as an index of diversity. The benefits of using these are that they
consider both the richness and the distribution of the abundance of the classes of a
community (with more weight given to richness as specified in Ibáñez et al. 1995).

Even though these indices have been repeatedly applied in biodiversity, as stated
in Magurran (2013), their use has not been reported in pedodiversity studies except
for some rare cases (Ibáñez et al. 1998).

By far, the two most popular indices in pedodiversity studies are Shannon’s index
or Shannon’s entropy (Shannon 1948) and the Simpson’s index (Simpson 1949).

Shannon’s index was first published in A Mathematical Theory of Communica-
tion by Claude Shannon (1948) and a year after materialized in the book written by
the same author and Warren Weaver: The Mathematical Theory of Communication
(Shannon and Weaver 1949). It is therefore also sometimes called the Shannon-
Weaver index. It was originally used in information theory and applied later on to

http://dx.doi.org/10.1007/978-3-319-63439-5_15
http://dx.doi.org/10.1007/978-3-319-63439-5_15
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several areas of environmental sciences (Lowitz 1984; Ibáñez et al. 1995; Mendicino
and Sole 1997; Bishop et al. 2001; Minasny et al. 2010; Tamames et al. 2010;
Legendre and Legendre 2012). The index takes the following form:

Hc D �

k
X

cD1

pic ln pic (16.18)

where pic is the proportional abundance of individuals of class c at site i relative to
the total amount of individuals. Even though this index is frequently presented by
the natural logarithm, the original version was expressed in logarithm with base 2
because it was based on the idea of bits of information.

The Simpson index can be written as (Simpson 1949)

Ec D

k
X

cD1

pic
2 (16.19)

This index was first derived by Gini in a slightly different form (after Ceriani and
Verme 2012):

Dc D 1 �

k
X

cD1

pic
2 (16.20)

The Gini index is therefore also now known as the Gini-Simpson index or
Simpson’s index of diversity. In Eqs. 16.19 and 16.20, pic is the proportional
abundance of individuals of class c at site i, relative to the total amount of individuals
found. The Gini-Simpson’s index is regarded to be more intuitive as its values range
from 0 to 1, with values closer to 1 equal to being more diverse. Interestingly, in
cases with a high level of partitioning (e.g. many classes are present), the Gini-
Simpson index will generate values closer to unity (1), and any change in class
abundance (e.g. in soil sciences a permanent land-use modification which could
lead to a reclassification) will have no significant impact on the actual index value.

In order to create a mathematical generalization, Alfréd Rényi wrote his own
formula, now known as Rényi’s entropy (originally described by a logarithm of base
2 in Rényi 1961):

H˛ D
ln
P

ip
˛
i

1 � ˛
(16.21)

where ’ is a sensitivity parameter (after Feoli et al. 2013; Leinster and Cobbold
2012). Note that if ’ ! 0, the natural logarithm of the richness is obtained (lnS),
and if ’ ! 1, we obtain Shannon’s index (Eq. 16.18). On the other hand, if ’ ! 2,
then –ln of Simpson’s index is obtained (Eq. 16.19).
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As Guiasu and Guiasu (2012) noticed, Hill (1973) claimed that by modifying
Rényi’s entropy, a new biodiversity index (often called the Hill numbers) could be
expressed:

Na D

 

X

i

pa
i

! 1
1�a

(16.22)

when a ! 0, we obtain S (richness), when a ! 1, we obtain the exponential of
Shannon’s index:

Na!1 D e�
P

i pi ln pi (16.23)

and when a ! 2, we obtain the reciprocal of Simpson’s index or 1/Simpson’s index.
According to some authors (Jost 2006; Feoli et al. 2013), the fact that this index
reaches the maximum number of species S is considered as advantageous.

Later on, Patil and Taillie (1976) proposed their own equation:

H“ D

�

1 �
P

ip
ˇC1
i

�

ˇ
(16.24)

when ˇ ! �1, the richness minus one is obtained (S�1), for ˇ ! 0 Shannon’s
index (Eq. 16.18), and Gini’s index is obtained for “ ! 1 (Eq. 16.20).

It becomes evident now why some indices (e.g. Shannon’s and Simpson’s index)
are persistently appearing in almost every pedodiversity study (Ibáñez et al. 1995,
1990; Ibàñez and García-Alvarez 2002; Guo et al. 2003; Phillips and Marion 2005;
Toomanian and Esfandiarpoor 2010; Ibáñez and Bockheim 2013).

In this regard, Feoli et al. (2013) used the approach of Leinster and Cobbold
(2012) and showed that indices can complement themselves and in this way create
a complete picture of the diversity of an area. They showed that while some
communities differ greatly based on one index, they can have similarities when
using another. Feoli et al. (2013) therefore proposed to use diversity profiles where,
for example, as shown in Eq. 16.21, the values of the sensitivity parameter ’,
the diversity of a profile can be created, evaluating the sensitivity parameter with
different values, i.e. ’ ! 0 (lnS), ’ ! 1 (Shannon) and ’ ! 2 (�ln of Simpson).

Thus, so far a basic aspect in the calculation of the abundance, richness and the
diversity of classes is the lack of consideration of how different the classes are. In
fact, as Peet (1974) clearly states, one of the assumptions of any diversity study is:

All species or classes are assumed to be equally different.

However, as nicely summarized by Leinster and Cobbold (2012):

Nonspecialists are amazed to learn that a community of six dramatically different species
is said to be no more diverse than a community of six species of barnacle.
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These simple statements roughly summarize the motivation for an extensive
area of diversity research, which is taking into consideration the similarity (or
dissimilarity) of classes when considering the diversity of a community. One of the
first that attempted to create a link between diversity of classes and distance between
them was C. R. Rao (1982, 2010) who created the well-known Rao’s quadratic
entropy:

Q D
X

i

X

j

pidijpj (16.25)

where pi is the proportional abundance of individuals in class i and j relative to the
total amount of individuals and dij is the distance matrix between all pairs of pi and
pj (matrix of dissimilarities). In a hypothetical case where all classes are equally
different (i.e. if dij D 1 for all i ¤ j and dii D 0), then Rao’s entropy is simply Gini’s
index (Eq. 16.20), and if a matrix of similarity is used instead of dissimilarity (i.e.
dij D 0 and dii D 1 instead of dij D 1 and dii D 0), then Simpson’s index is obtained
(Eq. 16.19).

As explained by Feoli et al. (2013), it is possible to transfer Gini’s to Rényi’s
formulae by applying a dissimilarity matrix, and the same can be applied to
Shannon’s index by introducing a dissimilarity matrix using the equation proposed
by Ricotta and Szeidl (2006):

H D �
X

i

pi ln

0

@1 �
X

i¤j

dijpij

1

A (16.26)

McBratney and Minasny (2007) found that, as shown in a previous paper by
Guo et al. (2003), when using Shannon’s index and the observed richness S in the
calculations of the pedodiversity at different taxonomical levels (order, suborder,
great group, sub-group family and series), the diversity increased as the taxonomical
levels increased (from orders to series). This phenomenon was demonstrated for the
soils of the United States of America. The authors then hypothesized that, since
the same land cover was used in the calculations, the level of taxonomy should
not significantly affect the diversity. In order to test this hypothesis, McBratney
and Minasny (2007) used Ricotta and Szeidl’s approach (Eq. 16.26) along with
Rao’s quadratic entropy approach (Eq. 16.25) and concluded that while Shannon’s
diversity is greatly affected by the number of classes (see Eq. 16.18), distance-based
metrics do not increase linearly according to the number of different classes.

Following on, Minasny et al. (2010) used these concepts to calculate pedodi-
versity at a global level. They showed that while Shannon’s diversity was linearly
related to the area sampled, this relation was not as evident with distance-based
metrics (in this example Rao’s index (Eq. 16.25) was used). Still, as observed
by other authors, there was a consistent relation between these distance and non-
distance-based metrics indices. A recent example of this relationship is shown
in Figs. 16.10 and 16.11, where Shannon’s and Ricotta-Szeidl’s metrics were
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calculated on the global extent. The input information, a global soil class map
based on the World Reference Base soil classification scheme, was sourced from
Hengl et al. (2014). The Shannon and Ricotta-Szeidl indices were calculated for an
approximately 10 km by 10 km moving window. Equation 16.26 was then used to
calculate the distance matrix which is the same measure that was used by Minasny
et al. (2010) (refer to Table 1 in Minasny et al. 2010).

Furthermore, Minasny et al. (2010) found that while diversity maps show good
reliability, they are highly sensitive to coverage and density of the soil information
used. An example of this behaviour can be seen in Fig. 16.12.

If we consider the input data used to predict the WRB soil classes by Hengl
et al. (2014), e.g. MODIS satellite images, a digital elevation model (DEM) and
its derivatives among others, it is relatively sensible to expect high pedodiversity
associated with highly complex landscapes such as the Andes mountain range in
South America, as seen in Fig. 16.12. However, some artefacts related to the creation
of discrete classes are also evident in the map created. Large areas that correspond to
values of 0 pedodiversity shown in white are examples of this, especially those that
fall within the Amazon region which is considered one of the world regions with a
high biodiversity. This phenomenon then raises the question of “Do we need more
classes in our soil classification systems?” It is known, for example, that as we go
to the lower levels of hierarchical (soil) classification systems, the richness (i.e. the
number of classes at that level) will increase. This does of course have an impact
on both the Shannon index and to some degree also on the Ricotta-Szeidl index,
which was explained in previous sections. Furthermore, considering the fact that
maps are just a two-dimensional representation of multiple factors of soil formation,
another question arises of “Can we use various soil properties as input information
to calculate pedodiversity?” which will be discussed in the following section.

16.3 Soil Property Variation and Pedodiversity

The relation between soil property variation and pedodiversity has had a central
place in how pedodiversity is perceived and hence has been calculated for the last
two decades. The earliest attempts to link the concepts of soil property variation
and pedodiversity were made by McBratney (1992). McBratney (1992) argued
that because soil properties fluctuate in space (and time), the soil’s diversity is a
representation of this variation. On the contrary, Saldaña et al. (1998) and Saldaña
and Ibáñez (2007) observed that independent soil properties do not necessarily
follow the same evolutionary path. They found, for example, that along a soil
chronosequence (i.e. a sequence of different evolutionary stages of soils sharing the
same parent material), soil evolution can simultaneously lead to a homogenization
of soil properties and on the other hand to processes of horizonation, which
translates to an increase of pedodiversity. Toomanian and Esfandiarpoor (2010)
revisited this subject and emphasized it as a major challenge of pedodiversity
(refer to Sect. 1 “Soil Spatial Variability Versus Pedodiversity” in Toomanian and
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Fig. 16.12 Pedodiversity in South America calculated using the Ricotta-Szeidl index. White areas
represent an index value of 0

Esfandiarpoor (2010)). The authors proposed that if a relation between soil property
variation and pedodiversity is to be made, then a multidimensional analysis should
be employed (i.e. to consider the joint variation of several soil properties at the
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same time). Following on, Petersen et al. (2010) presented two new approaches
for the calculation of pedodiversity considering the variation of soil properties as
an indicator of pedodiversity (namely, pH, EC, C and S, TOC and the magnitude
of rooting space). The authors used this analysis to establish relationships with
biodiversity of higher plants in South Africa. They observed that the highest
correlation between pedo- and biodiversity was found using what they termed
the variable space (VS) pedodiversity. This method uses the area (or volume)
of a convex hull formed by the extreme values of observations projected in a n-
dimensional space and created with a set of (normalized) selected variables. The
same procedure was used in an earlier study by Islam et al. (2005) in order to
estimate soil variability using the soil’s spectroscopic information as the selected
variables (for more details about the method, refer to Petersen et al. 2010 and Islam
et al. 2005).

Petersen et al. (2010) concluded that the VS method was highly advantageous
when compared to taxonomic classification systems, as it avoids the definition of
classes and thus does not lose information about quantitative soil properties. But
they also showed that taxonomic classification of pedodiversity is still a valuable
tool as it is sensitive enough to represent the pedodiversity of a site even at a 1 km2

extent.
Following on, Fajardo et al. (2017) used a similar VS approach (Islam et al.

2005; Petersen et al. 2010) finding the resemblance of these methods with what is
known as functional diversity, previously defined by Tilman (2001): “A branch or
a subset of biological diversity, that deals with the components that influence how
an ecosystem operates and functions, and that can be measured by the values (and
ranges in the values), of the organismal ‘traits’ that influence one or more aspects
of the functioning of an ecosystem”. Fajardo et al. (2017) concluded that by using
a large set of variables (in their case spectroscopic information), the pedodiversity
and the multidimensional variation of soil properties forms a linear relationship, as
proposed by Toomanian and Esfandiarpoor (2010).

16.4 Final Remarks

From the concepts discussed in this chapter, we can conclude that the character-
ization of pedodiversity involves a variety of different facets and also requires
the understanding of elementary concepts of biodiversity. As discussed in the
introductory section, this chapter only covered a fraction of the advances made
in pedodiversity. Our intention was to create a simplified view of the underlying
concepts. In this regard, we have focused on the basic ideas rather than on their
applications.

Even though it may appear that pedodiversity studies are behind its ecological
cousins, the nature of soil, e.g. its geographical and taxonomical continuity, resulted
in a deeper understanding of the ways of describing its variation. The study of
the soil’s diversity is increasingly recognized by the scientific community and in
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fact plays an essential role in the studies of ecosystems. Several recent studies are
recognizing the close relationship between the soil’s distribution and functions and
the presence and diversity of micro- and macro-biological communities (e.g. Ibañez
et al. 2012; Vries et al. 2013).

Moreover, the ever-increasing computing power capabilities can through big
data analysis unveil ecological patterns that once were hardly understood. Many
questions are still to be answered. Acquiring a deeper understanding of how the
soil resource is distributed and impacts on the environment is therefore yet to be
discovered.
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Chapter 17
Pedometric Valuation of the Soil Resource

David G. Rossiter, Allan E. Hewitt, and Estelle J. Dominati

“[W]hen you can measure what you are speaking about, and
express it in numbers, you know something about it; but when
you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory kind”.

William Thompson (Lord Kelvin)
– Lecture to the Institution of Civil Engineers, 3 May 1883

Soil forms the thin skin of the Earth and is the site of many ecological processes,
transformations, and fluxes. It forms the substrate for most of the activities that
take place at the Earth’s surface, including almost all food production and human
occupation, and underpins both natural and managed ecosystems. Soils differ
in their structure, composition, and ability to function under a use. Soil is a
multifunctional resource that affects human well-being both directly (e.g., food
provision) and indirectly (e.g., surface and groundwater supplies) and that affects
all near-land surface ecological processes. Clearly, soil is “valuable” as that term is
understood in common language. The pedometric program as outlined in this book,
i.e., the development of “quantitative methods for the study of soil distribution : : :
as a sustainable resource,” should therefore include an attempt to quantify this value.
Chapter 1 of the present book lists as the third of four items on the pedometric
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agenda “evaluating the utility and quality of soil,” and it is in this sense that we
attempt in this chapter to define and quantify the value of the soil resource. This
process is referred to as “valuation.”

As the review of Robinson et al. (2014) on the value of the soil resource states,
“Common to all valuation is the initial and fundamental question, what is the
valuation for? There must be a clearly defined policy objective or management
purpose for valuation.” In this chapter we consider that the fundamental reason to
value the soil resource is to include a fair representation of the multifunctionality
of the soil resource in any discussion about the use of natural resources and value-
driven trade-offs in resource management discussions. Examples of synchronic and
short-term resource management issues are taxation of agricultural lands and fair
value in land swaps, e.g., in land consolidation programs. A diachronic longer-
term example is the capability of soils to perform under different land uses and
different management intensities, compared to one-off uses such as foundation for
construction (urbanization) or as a mineable resource.

We proceed as follows. First, we define the concept of value and in what terms it
can be measured. Second, we describe pedometric approaches to internal valuation,
i.e., comparing soils to each other, such as land indices. Third, we link the concept
of external value, i.e., comparing the value of the soil resource to other goods in
monetary terms, to FAO-style land evaluation. We then expand the discussion of
value by describing the multiple contributions of the soil resource to human well-
being via the concepts of natural capital and ecosystem services. Finally, we propose
an approach to measuring the value of the soil using these concepts.

17.1 Concepts of Value

The noun “value” has a number of meanings in both common and technical English.
The simplest definition is “quality of an object that permits measurability and
therefore comparability” (Robertson 2012). In this sense soils can be described by
any number of measureable attributes such as effective rooting depth or available
water capacity, and pedometrics provides tools for quantifying these. However, in
this chapter we consider “value” in the broader sense of the word, namely, value as
a suitably defined utility.

The Concise Oxford Dictionary gives the fundamental definition of the term
“value” as “worth, desirability, utility, [and] qualities on which these depend,” which
begs the question “worth, etc. to whom?” If to humans viewed as economic actors,
this is economic value, in the sense of the neoclassical economic theory of value.
If to humans viewed as social animals, this is sociocultural value. If to ecological
systems through interactions between its components, this is ecological value, in
the sense of the ecological theory of interactions. If to humans viewed as economic
actors through the contribution of natural ecosystems to the value of final economic
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goods and services, this is contributory value (Ulanowicz 1991), in the sense of the
ecological economic theory of value as explained below. The same object will have
different values depending on which framework is chosen.

All of these concepts of value are explicitly anthropocentric, which only says
that humans are the ones to assign value, including value to other organisms, the
ecosystem, or even the planet as a whole. We humans are the only ones in this
conversation, and we can choose to include or exclude what we perceive to be value
to other actors.

There is also a verb “to value,” which has several meanings, including “to
appreciate, prize,” but in the sense of the noun “value” as used here, it means “to
assign a value [the noun] to something.”

There are two types of measures of value: internal and external with respect to
the resource being assessed. Internal values use a ratio scale, i.e., with a natural zero
representing no value, and with units of equal value, to compare two or more objects
of the same type, in our case equal areas of soil. The scale is defined so that a given
change in a measure attribute of the object represents a specific change in utility.
This relation is not necessarily linear. By contrast, external values use a ratio scale
to compare a unit area of soil to any other goods. External measures must use a scale
that is commensurate with other “valuable” things. The obvious external measure of
value is money. McBratney et al. (2014) state that only by placing a monetary value
on something is it possible to include that object in an accounting procedure. Hewitt
et al. (2015) respond that the importance of soil can be quantified in other terms,
e.g., as contributors to ecosystem services provision, for use in policy discussions,
without assigning a monetary value. We return later to this discussion.

In the second half of the twentieth century, some economists began to analyze
environmental problems in economic terms in order to point out the dependence
of human societies on natural ecosystems (de Groot 1992). They stressed that the
undervaluation of the contributions of ecosystems to public welfare and economic
growth was due in part to the fact that many of the critical nonmarketed contributions
of ecosystems underpinning human economies were not adequately quantified
in terms that could be compared to economic indicators (Braat and de Groot
2012; Costanza 1997). The resulting discipline of ecological economics (Costanza
and Waigner 1991) sees global economies as a subsystem of the larger finite
global ecosystem. Ecological economists question the sustainability of the current
economy that does not internalize environmental impacts and does not see raw
material and energy as finite resources. Ecological economics uses concepts from
conventional neoclassical or welfare economics and expands them to include envi-
ronmental impacts, ecological limits, finite natural resources, and issues of equity
and scale as necessary requirements for increasing the sustainability of human
activities (Martinez-Alier 2002). These economists have extensively discussed
valuation (e.g., Farber et al. 2002; de Groot 2002; Gómez-Baggethun and Ruiz-
Pérez 2011). Ecological economics emphasizes the interdependence of economic
and social systems. Foundational concepts include natural capital and ecosystem
services. These concepts will be extensively used in the following discussion and so
are introduced next.
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17.2 Ecosystem Approach to Value as Contributions
to Well-Being

17.2.1 Natural Capital and Soil Stocks

Traditional methods to value soil, including land indices and FAO-style land
evaluation (see below), are restricted to the value of soil as a medium of production,
usually for agricultural production within locally important land use systems. The
concepts of ecological economics are much broader and correspondingly more
complex to apply in practice. In this section we define natural capital, in the
following ecosystem services, and then we discuss how to use these concepts to
value the soil resource.

Ecological economists define the concept of natural capital as “stocks of natural
assets : : : that yield a flow of valuable ecosystem goods or services into the
future” (Costanza and Daly 1992). Another definition is “the living and nonliving
components of ecosystems – other than people and what they manufacture – that
contribute to the generation of goods and services of value for people” (Guerry et
al. 2015). The concept of natural capital comes from trying to frame the contribution
to the economy of natural resources alongside manufactured capital (factories,
buildings, tools), human capital (labor, skills), and social capital (education, cul-
ture, knowledge). This is explicitly an anthropocentric viewpoint to illustrate the
dependence of human societies on natural ecosystems.

Natural capital can be separated into renewable natural capital (RNC) and
nonrenewable natural capital (NNC). Ecological economists hold that sustainable
economic activity is based on sustainable income coming from all capital types; this
is termed sustainable ecosystem services provision, which requires constant natural
capital (Costanza and Daly 1992). In agricultural systems as land use intensity
increases, NNC is often reduced (e.g., topsoil is lost; K reserves are depleted),
so that ecosystem services flows, and therefore incomes, decrease in the absence
of investment in RNC. To keep income constant, total natural capital needs to be
maintained, which requires that some of the income coming from nonrenewable
resources be reinvested into renewable natural capital, for example, adding mineral
nutrients from external fertilizer sources to replace those removed.

Natural capital stocks can be increased or decreased by management. For
example, the fertilization strategies in the Brazilian Cerrado (Goedert 1983) use
large doses of lime to neutralize the pH-dependent charge of these highly weathered
soils dominated by Al; this also reduces P-fixation capacity so that P fertilizers are
effective. These effects last for several years, and at large enough doses, the subsoil
becomes semipermanently changed. Thus, the natural capital for crop production
is enhanced. On the other hand, Noble et al. (2000) present a sobering example of
permanent land degradation after 37 years of continuous cropping on an acrisol in
northeast Thailand: organic matter decreased dramatically; the exchange complex
became almost saturated with Al, which was backed by a large Al reserve from soil
minerals. The cation exchange capacity was so reduced that cations released during
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mineralization of organic matter could not compete with Al and thus were leached
out of the reach of plant roots. The natural capital for crop production was severely
depleted.

The concept of changing natural capital by management is close to the concepts
of McBratney et al. (2014) of soil condition relative to a reference state they call the
capability: “an optimal capacity of the soil to which the current condition of the soil
can be compared.” Capability can be permanently reduced by erosion, soil sealing,
or mining for raw materials. Less permanent changes in natural capital are changes
in condition only, which may be reversed.

Soil natural capital stocks include inherent stocks that vary over long timescales
(e.g., clay content) and manageable dynamic stocks that vary over short timescales
(e.g., soil water content) (Dominati et al. 2010). Soil carbon stocks are familiar
for their use in carbon inventory and as proxies for overall soil condition. Soil
stocks also include nonmaterial soil properties such as energy (e.g., stored heat)
and soil fabric (e.g., total porosity). These directly relate to the mass, energy,
and organizational components of soil natural capital identified by Robinson et al.
(2009). Topsoil stocks are generally more dynamic than subsoil stocks, since they
respond more rapidly to management.

17.2.2 Ecosystem Services

An ecosystem service is defined as “the direct and indirect contributions of
ecosystems to human wellbeing” (TEEB 2008). This concept is an explicitly
anthropocentric viewpoint and focuses on what is important to humans. This is not
as restrictive as it might first appear, because there is ample evidence that a healthy
ecosystem benefits humans. The interconnectedness of the ecosystem means that
some aspects that might at first seem to be unimportant for the provision of benefits
fulfilling human needs, e.g., crop production, are in fact necessary components of
the provisioning mechanisms. For example, soil organisms form a complex food
web; the direct service of, e.g., waste recycling or pest population regulation cannot
be isolated from this web, so that the health and biodiversity of the web have
value. The concept of ecosystem services has led to a large literature, including
an eponymous journal, to examine and extend it.

Ecosystem services can be grouped into three types: provisioning, regulating,
and cultural (TEEB 2008; Dominati et al. 2010). These groups contain specific
services that can be quantified for a specific land use. Provisioning services
include provision of physical support; of food, wood, fiber, and other plant and
animal products; and of raw materials. Regulating services include flood mitigation,
regulation of greenhouse gases, and control of pest populations. Cultural services
include landscape preservation. Figure 17.1 is taken from Dominati et al. (2010)
and illustrates the relation between natural capital, ecosystem services, and human
needs.
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Earlier literature such as MEA (2005) and Haygarth and Ritz (2009) also refers
to another category: supporting services. These are the ecosystem processes which
support the provision of other services. These include primary production, soil
formation, and nutrient cycling. These processes, not being directly of use to
humans, are not referred to as services any longer to avoid double counting (Boyd
and Banzhaf 2007).

The provision of ecosystem services, from a combination of land type and land
use, can be quantified using information coming from a range of disciplines from
ecology, to soil science, agronomy, or social science, as long as appropriate metrics
have been defined for each service. These quantifications can then be used to put
economic values on ecosystem services.

Economic valuation in monetary terms of environmental goods and services
provides quantified information that can be used in a benefit-cost analysis (BCA).
It has been extensively used for resource management and decision-making. The
aim is to promote sustainable development by ensuring that policies fully account
for the costs and benefits of development proposals on the natural environment.
For policy-making in the context of agroecosystems and resource management,
the more relevant application of economic valuation is to compare management
options or assess an investment in either built (e.g., irrigation) or ecological (e.g.,
soil conservation) infrastructure that increase natural capital.

BCA is usually based on existing information, e.g., prices, as well as assumptions
about future prices, regulations, and discount rates, and thus is not as objective
as one would hope. However, failure to include ecosystem services in benefit-cost
calculations implicitly assigns them a value of zero. To date this has been the norm,
and this lack of accounting is accused of contributing to the depletion of natural
capital stocks and increasing environmental problems (MEA 2005).

Traditionally the only soil contributions to ecosystem services that have been
valued are those related to food provision, since that can be approximated by a
farm budget. The other soil contributions to services provision are either unknown
or considered too difficult to value. We propose to include all services in the
valuation approach proposed here, as recommended by Dominati et al. (2016). This
is intended to provide a holistic representation of the sustainability of land uses and
the pivotal role the pedosphere plays in human well-being.

17.3 Soil vs. Land

Our aim is to value the soil resource. However, the soil is only one aspect of land
as defined by the FAO (1976): “an area of the earth’s surface, the characteristics
of which embrace all reasonably stable, or predictably cyclic, attributes of the
biosphere vertically above and below this area including those of the atmosphere,
the soil and underlying geology, the hydrology, the plant and animal populations,
and the results of past and present human activity, to the extent that these attributes
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exert a significant influence on present and future uses of the land by [humans].”
Further, each land area has a definite location, which greatly influences its use and
therefore value.

Soils occur at definite landscape positions with combinations of soil-forming
factors, notably climate and relief, not independently of these land factors. There-
fore, we propose to use the term “soil” to refer to the land resource including
those soil-forming factors that are intimately bound to pedogenesis as discussed
in Part VI of this book. Further, we accept the concept of USDA soil taxonomy
(Soil Survey Staff 1999), which considers soil moisture and temperature regimes
as soil characteristics. We exclude certain aspects of land, notably location, legal
status, and water resources other than water that naturally affects the soil profile,
and details of atmospheric climate that are not reflected in the more general concept
of moisture and temperature regimes. For example, access to irrigation water affects
land value, but the soil value for irrigated land uses only includes properties such as
infiltration rate, water holding capacity, effective rooting depth, and soluble salts.

One method to disaggregate the effect of location from other land characteristics,
including soil properties, is hedonic valuation within a single economic and market
context (Rosen 1974). The hedonic hypothesis is that the value of an object (e.g.,
an area of soil) is equivalent to the utility received from its use, as revealed by
differential prices associated with different levels of the attributes (e.g., rooting
volume, available water capacity) that influence utility. Hedonic valuation estimates
differences in value based on a set of attributes, typically in a spatial auto-regressive
regression (SAR) formulation (Anselin and Bera 1998). The coefficients of the fitted
model are interpreted as the elasticity of value due to changes in that attribute.
Samarasinghe and Greenhalgh (2013) used this method to compare land values
among 4477 farms in a 	 6000 ha catchment in New Zealand. The type of current
land use, distance to towns and roads, administrative unit, and their interactions all
affected land value, as was expected. Soil characteristics including profile available
water, rooting depth, gravel class, and drainage class also affected land value. Their
model is a typical SAR model (Eq. 17.1):

ln Vi D ˇ0 C ˇSSi C ˇAAi C ˇCCi C ˇTTi C ˇGGi C ˇLLi C 
Wiui C "i (17.1)

where V is the value (as measured) at site i, other capital letters represent factors
that influence land price (Soil, surface Area, Climate, Topography, Geography,
Location), “ are the weights to be estimated, W is a spatial weights matrix which
accounts for spatial autocorrelation in the model residuals, œ is the strength of the
autocorrelation, and " is the random error (“noise”). The partial derivative for S gives
the hedonic value of the chosen soil property. This is most easily estimated when the
other factors are constant, but the equation can be solved even if every observation
has different combinations of factors. Since we consider soil climate and landscape
position to be part of the definition of “soil,” we would remove T and C and include
them under S in this equation.

http://dx.doi.org/10.1007/978-3-319-63439-5_Part6
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17.4 Pedometric Approaches to Internal Valuation

In internal valuation the aim is to establish a ratio scale by which soils used for
a given purpose may be compared, rather than to establish a scale by which soils
may be compared with other goods. This has historically been motivated by the
need for equitable taxation, compensation for taking, and land swaps for agricultural
land, not considering location or water resources, but usually considering permanent
land improvements such as drainage or irrigation works. These valuations have used
some kind of quantitative land index on a ratio scale (typically 0–100), which can
then be used for direct comparison in land swaps or converted to valuation for
taxation by their proportion of the total tax base. These approaches are pedometric in
that they use measured soil properties, either on a continuous or classified scale, and
relate these on a linear scale, so that a given change in each property has implicitly
the same effect on the soil’s value to the user at any position in the measurement
scale, and in addition are comparable across properties. A land index could include
non-soil land characteristics, e.g., climate and water resources, but the ones we
examine in this section do not.

A well-known internal valuation is the Storie index from California (Storie
1933, 1978). This assigns points to attributes of the physical profile (factor A),
the surface texture (B), the slope (C), and other factors (X) including drainage,
acidity, alkalinity, nutrients, actual erosion, and microrelief. These are multiplied to
reach a final rating. The Storie index and its derivatives are additive, multiplicative,
or maximum-limitation indices, or some combination, as summarized by Riquier
(1974). A number of soil properties that are known to influence agricultural
production, e.g., rooting depth, stoniness, and presence of salts, are rated on a
ratio scale, e.g., 0–100, and these ratings are combined by arithmetic or geometric
averaging. This approach is also used in the former USSR, for example, the Ukraine
(Starodubtsev et al. 2011), where it is called soil bonitas, from the Latin for
“goodness”; this was likely derived from the German Bonitierung from the same
Latin root. These indices have the following forms, depending on whether the
combination is (possibly weighted by weights wi) additive (see formula 17.2a),
multiplicative (17.2b), or geometric (17.2c); in all cases the LCi are the quantitative
land characteristics normalized to a 0.1 range, from “worst” to “best.” A Storie-like
index S is then computed as

S D
Xq

iD1
LCi � wi where

Xq

iD1
wi D 1 (17.2a)
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In Germany, agricultural and grazing land is compared by the Land-
wirtschaftliche Vergleichszahl (LVZ), i.e., agricultural comparison number, based
partly on the Bodenschätzung, i.e., soil valuation, based on a law of October 1934
(Rothkegel 1950). This attempts to separate the intrinsic productivity of the soil
from other factors that influence agricultural land value, such as field size and
location with respect to main farm buildings and markets.

A problem with land indices is how to assign points to attributes singly and
collectively. One approach has been to compare agricultural productivity on each
soil, compared to some standard assumed to be without limitation. This implicitly
assumes a reference land use system that could in principle be applied on all land
areas. For example, in the German system all agricultural soils are compared to the
most productive soils in Germany, a Chernozem at a reference location (Eickendorf
in the Magdeburger Börde, Saxony-Anhalt), which is assigned full marks (100).
Lower marks are estimates of the proportional productivity of common field crops
under common management practices. Proportional yields are established by the
long-term yields of reference crops at experimental plots (Musterstücke) spread
throughout the country. Not all soils can be tested this way, so the characteristics
of these sites are used to construct a point system that can be applied to any soil,
based on its measured characteristics. For agriculture, the “agriculture number”
(Ackerzahl, abbreviation AZ) is based on general soil texture (Bodenart), general
type of parent material (Entstehungsart), and topsoil thickness (Zustandsstufe).
For grassland, the “pasture number” (Grünlandzahl, abbreviation GZ) is based on
general soil texture, topsoil thickness, mean annual air temperature, and drainage
conditions (Wasserverhältnisse). In both cases, the number is supposed to be a
proportional yield and thus is considered a fair basis for taxation or land exchange.
If all parties accept the point system as fair, it is de facto the correct valuation for its
purpose.

Another way to establish a point system is by regression analysis. For example,
Olson and Olson (1986) used multiple regression analysis to estimate average
maize yields in New York State (USA) using soil and climatic data, maize being
a key indicator crop in that state; this work was later extended to Illinois (Olson
et al. 2001). Their rationale was that “states [in the USA] need reasonable yield
estimates to determine land value using an income capitalization approach to value
for land appraisal and taxation : : : our method is an improvement over the existing
procedures based primarily on the collective judgment of experts.” In New York
the yield prediction was based on storage of available water (to counteract short
droughts at key periods such as silking) and drainage (to avoid damage from surface
ponding); the proportional predicted yields based on these were converted to a
relative point system via the multiple regression equation. In this case atmospheric
climate did not vary much within the study area (adjusted R2 D 0.13 using only in-
season rainfall), so most of the successful model fit (adjusted R2 D 0.80) is attributed
to the soil.
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For geographically distributed observations, e.g., the reference crop yields and
soil properties of the previous example, we cannot assume independence of the
linear model residuals. Instead, the model formulation is

y D Xˇ C 
; 
 � N .0;V/ (17.3)

where y is the response vector, X is the model design matrix, and V is a
positive-definite variance-covariance matrix of the model residuals, estimated by
a covariance function of the separation between observations (see Sect. 3.2). This
mixed model (fixed effects, i.e., regression parameters ˇ, and random effects 
, i.e.,
covariance of residuals) can be solved by restricted maximum likelihood (REML)
(Lark and Cullis 2004).

Land indices are related to so-called soil quality indices, developed over the past
25 years (Karlen et al. 2003; de Paul Obade and Lal 2016) and the more recent
concept of soil health (Moebius-Clune et al. 2016), which select soil properties
though to be related to sustainable agricultural production and create indices based
on their values, especially to highlight the effect of changes in management.
However, these indices are not intended as measures of value, rather as measures
of soil condition.

A modification of these approaches is to use fuzzy variables, rather than single
values, to represent soil properties at a location and fuzzy logic using semantic
import functions, rather than Boolean combinations, to combine them (Burrough
1989). This procedure results in a possibility of each rating, i.e., the combination
does not give a single value, but rather a fuzzy variable. This avoids the problem
of crisp thresholds. Several land evaluations since Burrough’s paper have used this
approach; a typical example is by Bagherzadeh and Gholizadeh (2016). Burrough
gave an example of an FAO-style land evaluation for maize in Kenya, using six land
qualities, each with asymmetric membership functions:

�A.x/ D 1I x � c

�A.x/ D
�

1C a.x � c/2
��1

I x < c
(17.4)

where �A(x) is the membership for an area or site A on 0.1 for the value x of the
land quality (here, an ordered class number); a controls the shape of the function,
in particular the crossover value where the membership is 0.5 (equally possible and
not possible); and c is the land quality value at the central concept, i.e., maximum
suitability. The individual memberships were combined with a convex combination
(weighted sum) operator to obtain an overall suitability rating �A:

�A D
X

j

wj � �Aj I
X

j

wj D 1I wj > 0 (17.5)

See Sect. 5.5.1.1 for more details of fuzzy sets and fuzzy logic.

http://dx.doi.org/10.1007/978-3-319-63439-5_3
http://dx.doi.org/10.1007/978-3-319-63439-5_5
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The first difficulty with any land index is the calibration of the scoring method.
In many cases this is based only on expert opinion, due to the lack of sufficient
experiments or observations. More fundamentally, these approaches do not consider
the land use or management system, except in the most general terms. In the New
York example, the indicator crop (maize) is typically produced by best practices on
each soil (in particular, fertilization is based on soil testing), so that the land use and
management system is implicit. The crop is widely grown and accepted by growers
as an indication of agricultural land value, even for fields where it is not currently
grown. However, even in New York there is a diversity of management (conventional
tillage, no-till, residue management, organic amendments) that is not considered in
this relation. This is clearly not appropriate in a more diversified environment and
in addition only considers one ecosystem service.

These methods are also purely empirical, i.e., from calibration observations
of system productivity to either expert judgment or parametric combinations.
Beginning in the 1980s, many semi-physical models of the soil-plant-atmosphere
system were built, including the Wageningen models WOFOST and its descendants
(van Ittersum et al. 2003), CropSyst (Stockle et al. 2003), and the DSSAT suite
(Jones et al. 2003). The supposed advantage is that these models can simulate
the effects of changing conditions, including management interventions, based on
physical principles. In practice they require extensive parameterization for each
location and a very large minimum data set and in addition contain many empirical
factors within each “physical” process. They are well suited for understanding
the soil-plant-atmosphere-management system, e.g., the response of a system to
changing conditions, but much less so for prediction to an accuracy that could be
used as a measure of value.

17.5 Simple Pedometric Approaches to External Valuation

External valuation attempts to value the soil in relation to other goods. In this
section we examine some cases where this can be fairly easily accomplished, if the
soil is only considered a mineable or productive resource, i.e., a marketable good.
In the following section, we expand the view of external valuation to ecological
economics.

17.5.1 External Valuation of the Soil as a Mineable Resource

Soil can be used as a directly marketable raw material, i.e., a resource to be mined
for its bulk properties or constituents. Portions of the profile can be removed for
potting mix or for landscaping. In addition, constituents can be separated out from
the whole soil, for example, gravel for roads, clay for bricks, or bauxite ore for
aluminum. Such uses inevitably destroy some or all of the original resource, in favor
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of some immediate economic benefit. As such, external valuation is straightforward:
the market value of the mined resource net of direct costs including transportation
and any land reclamation. This is the minimum market value of the soil. The value
of leaving the soil in place is much greater because of the soil’s contribution to the
provision of ecosystem services within an ecosystem for a range of potential uses.

Unless the soil is completely removed to bedrock, the degraded soil, i.e., what
is left after mining, still contributes to the provision of ecosystem services but to a
lesser extent. Dominati et al. (2014a) quantified and valued the services provided
by a soil under pastoral agriculture, before and after erosion. The same could be
realized for a soil before and after partial extraction of material: the difference in
value of services associated with the removed soil material is an expression of the
value of that material, in place, under a use.

If soil materials are relocated, e.g., for landscaping, the relocation process affects
the services provided both where the soil is removed (loss of natural capital) and
where the material is added (gain of natural capital). If substantial portions of the
soil profiles are relocated, they are usually mixed during excavation, transport, and
relocation. Soil functions rely on the character of the soil horizon sequence and may
be changed when soil is disturbed. For example, the morphology that controls soil
water dynamics may be radically changed by mixing, bulking, compaction, and by
the effects on soil biological and soil organic matter processes. Relocation changes
also include the incorporation of foreign materials, as in bricks and mortar, weeds
and pests, and the litter of the Anthropocene. It is possible to compare total soil
functional status before and after relocation as was done by Dominati et al. (2014b)
in the case of erosion. The net market price should account for the extra functionality
from the point of view of the landowner where the relocated soil is placed.

17.5.2 External Valuation by FAO-Style Land Evaluation

Land evaluation is the process of predicting the use potential of land on the basis of
its attributes (Rossiter 1996). The FAO land evaluation framework (FAO 1976) and
subsequent guidelines (e.g., FAO 1985) were important advances over land indices.
One of the most important innovations was to make the land use system central to
the evaluation. Thus, there is no single index of value, rather a rating for each actual
or projected land use system. These may be combined in various ways to produce a
single index.

In the FAO method, the evaluator specifies a set of land use systems (“land
utilization types,” abbreviation LUTs) that may be imposed on a land area and
evaluates the suitability of each area for each use. This can be done in terms
of limitations (so-called physical evaluations) or in financial terms, by linking
limitations to reduced outputs, increased inputs to compensate, or longer term to
production (Rossiter 1995). The soil is valued as part of the land, but not considering
location; thus outputs and inputs are costed at the farm gate.
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The external valuation procedure is conceptually simple but complicated in
practice (Rossiter 1995):

1. Select representative LUTs that are feasible in a given socioeconomic-political
context.

2. Describe these by their land use requirements (LUR), together with the financial
effects of less-than-optimum LUR (lower yields, higher production costs, or
longer time to product).

3. Build a model to evaluate the level of output(s) from each LUT, based on levels
of the LUR.

4. Build models to evaluate each LUR from measurable land characteristics (LC).
5. Describe the LC of each land area to be evaluated, the land mapping unit (LMU).
6. For each LUT, apply its LUR models to each LMU.
7. For each LUT, combine the results of the LUR models in the LUT model.
8. Compute the financial balance for each LMU and LUT.
9. Compute financial indicators for each LMU, combining all the LUT results.

These combinations express the external value in whatever financial terms are
considered most relevant. This could be the maximum return from any LUT
(“highest use”), the average of all relevant LUTs (“versatility”) or their standard
deviation (“security”), or some weighted combination. Already by 1990 the ALES
computer program implemented a sophisticated set of methods for these computa-
tions (Rossiter 1990), in which yields, time to production, and input amounts can be
tied to severity levels of land qualities within a set of contrasting LUT.

This procedure can be applied to LUT where the return is from annual crops,
in which case gross margin is the financial measure. It can also be applied to
multiyear LUT, in which case the present value of a discounted cash flow is the
financial measure; here a discount rate must be selected. These evaluation results
can then be used in further planning procedures such as linear programming to
reach a constrained optimum in a planning area (FAO 1993). They can also be
combined to give a final value to each LMU. This can simply be the value of the
maximally valuable LUT (“best use”) or some statistic of the returns for the selected
LUT, e.g., average (expected value over time) or standard deviation (as a measure of
risk). These are suitable for external valuation in the current context, e.g., for land
taxation, land taking, or land reallocation.

This approach is useful for comparing land areas in the short to medium term,
and with only one ecosystem service in mind, e.g., food and fiber provision, along
with any immediate devaluation of ecosystem services resulting from this primary
goal, e.g., monetized externalities. It has several problems that must be addressed
before it can be used to value the soil resource.

A first problem is that economic land evaluation is for the short to medium term,
but land evaluation for multiple outcomes that preserve the soil resource needs to be
long term. A net present value approach rapidly discounts the future.

A second problem is the selection of LUTs. In the short term, this can be
based on project objectives or current options within the constraints under which
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the producer operates (Bouma 2001). However, when considering the value of the
soil resource over the long term, it is not possible to anticipate all uses in the
face of changing environments, both natural and especially socioeconomic-political;
these are known as “option values.” For example, an area currently used for crop
production, and thus valued for a certain set of LUTs, may later be reassigned for
groundwater supply or biodiversity conservation, with completely different LUTs.
In addition, new technologies that cannot be anticipated may radically change land
use requirements. Examples from the past are LUT based on conservation tillage
(minimum disturbance of the soil) or even, if we go back far enough, LUT based
on large quantities of manufactured fertilizers. Since the development of the Haber-
Bosch process, large extents of sandy soils in northern Europe are now feasible for
intensive crop production (which has also led to nitrate pollution of groundwater and
streams), which would have been impossible with only organic inputs; this could not
have been foreseen prior to 1913.

17.6 Ecological Economic Approaches to External Valuation

This section discusses how to use the concepts of ecosystem services, as provided
by natural capital including soil, as the basis for external valuation as an extension
of FAO-style land evaluation, as well as fundamental difficulties with this approach.

17.6.1 FAO-Style Land Evaluation and the Ecosystem Service
Approach

The value reported by economic land evaluation may be purely financial, e.g.,
the cash flow to the land user from producing and selling agricultural products.
However, it may be economic, including outputs with fictional (nominal) values, for
example, the value of preserving an agricultural landscape, estimated by hedonic
pricing, and outputs with negative value (externalities), for example, sediment or
pollutants delivered off-site. In an economic analysis, shadow prices, representing
the opportunity cost to society, may also be used (Huhtala and Marklund 2008).

Two trends emerging from reevaluation of the FAO land evaluation frameworks
(FAO 2007) are the recognition of the wider functions and services provided by
landscapes and the need for greater stakeholder participation in exploring the
balance between economic, environmental, social, and cultural outcomes. Adding
an ecosystem services approach to land evaluation would enable the supply of
ecosystem services to be directly linked to the performance of a combination of
land, land use, and management to deliver outcomes identified by stakeholders.
This would provide a more complete picture of the efficiency of use of the natural
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resources, assist in defining natural ecosystem boundaries, and give quantitative
information on the progress toward economic, environmental, social, and cultural
outcomes desired by community (Dominati et al. 2016).

Ecosystem services provision cannot be defined abstractly – this is where a key
insight of the FAO Framework comes in. It arises from the combination of land
type and land use. As a simple example, consider a reserved area for groundwater
recharge to an aquifer used for municipal water supply; this is a common practice in
the central Netherlands. The main contribution of soil to ecosystem service here is
the quantity and quality of precipitation reaching the groundwater table. However,
if the same area is reserved for a production forest, the main contribution of soil
to ecosystem services is the supply of water and nutrients to growing trees, as
well as physical support. A deep sandy low-humus soil might be ideal for the first
use: precipitation filters through a well-aerated sand column with no addition of
impurities and with little loss due to evapotranspiration. The same soil is unsuited
for the second purpose: the water quickly flows through the root zone leading to
drought, and there are few nutrients and little nutrient retention.

17.6.2 Conceptual Framework for Valuation by Ecosystem
Services

Dominati et al. (2010) proposed a conceptual framework that places soils into
the context of wider ecosystems and human well-being, by showing how soils as
natural capital are contributing to the provision of ecosystem services under a use.
They proposed an approach to fairly represent soils when quantifying and valuing
ecosystem services provision under any land use, in particular from agroecosystems.
Their framework considers soil as a form of natural capital, i.e., semipermanent
stocks, which provide ecosystem services under a use.

The framework consists of five interconnected components: (1) soil as a form of
natural capital stocks; (2) the processes of formation, maintenance, and degradation
of this natural capital; (3) the external drivers affecting these processes and thereby
natural capital; (4) the provisioning, regulating, and cultural ecosystem services
flowing from natural capital stocks under a use; and (5) the human needs fulfilled by
these ecosystem services. Depending on which land use the soil resource is under,
the services and their level of supply will vary.

This framework requires the analyst to specify one or more land use systems
and some way to value each ecosystem service if economic valuation is desired.
Samarasinghe et al. (2013) review several approaches to this.

Many ecosystem services benefit the land user (on-site services), but some have
their primary benefit from off-site services. For example, the ecosystem service
of food production, from the natural capital stock of soil nutrients and water,
mainly benefits the farmer first. The ecosystem service of regulating stream and
groundwater, from the natural capital stock of soil as a filter and buffer, benefits all
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users of the water, as well as stream ecology. These externalities (from the point of
view of the land user) are rarely attributed to the landowner, e.g., by a pollution tax,
although they are sometimes controlled by regulations, which limit the profitability
of a land use (Huhtala and Marklund 2008).

17.6.3 Problems with Economic Valuation of Soil
Contributions to Ecosystem Services

There are two aspects to economic valuation of ecosystem services that present
difficulties. The first is assigning a value to a level of service, and the second is
transforming this into money within the economy. Baveye (2015), using the term
“soil services” for what we call the soil contribution to each ecosystem service,
outlines these problems succinctly in regard to soils:

Whereas the ecosystem services idea has been espoused enthusiastically by soil scientists,
etc., very little progress has been made to date on the monetization of soil services. This
may be due to the fact that it is not straightforward to assign a price to features or processes
one does not understand satisfactorily, or the slow progress might be related more to
uncertainty and lack of trust about what financiers might do with prices associated to
soil services. Nevertheless, significant pressure is currently exerted on soil scientists by
national governments and international agencies to engage actively with the ecosystem
services framework. The challenge for soil scientists is either to find ways to monetize
soil services meaningfully or to demonstrate convincingly (and relatively rapidly) that there
are alternative paths that can be followed to preserve soils without necessarily putting price
tags on their services.

A first difficulty is that valuation in terms of money is by nature short term.
Methods to account for the time value of money, such as net present value, rapidly
discount the future. The soil resource, with the exception of its value as a mineable
resource, is meant to last “forever” in human terms. In this sense ecological
economists argue that there should be no discounting at all, thereby giving equal
value to current and future generations. This is well explained by Robinson et al.
(2014) as the distinction between value and price, perhaps taking their cue from
Oscar Wilde (“Nowadays people know the price of everything and the value of
nothing”). Although both may be measured in money, “[e]conomic value seeks to
identify all the final use and non-use, market and nonmarket values, and will often
be unrelated to the price that soil commands as a commodity. This is because price
only reflects purchase for a single or limited number of uses, whereas economic
value tries to identify a combined value for all uses,” i.e., the price plus consumer
surplus.

In this respect Robinson et al. (2014) attempted to use prices to estimate the
value of the topsoil, by calculating its quasi-replacement price: what it would cost
the landowner to replace the topsoil, were it to be lost to, for example, erosion. We
use the qualifier “quasi” because this price does not account for rebuilding topsoil
structure after the (hypothetical) event of purchasing and spreading topsoil. This
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sets a floor for the value of the soil in place. In their calculation, to replace 30 cm of
English topsoil would cost about $110 k ha�1. This is not a pedometric calculation,
because it is just based on market prices for soil constituents. It does not consider
how this is used and performance under that use.

But this is not the most serious problem. Fundamental to all attempts to value
ecosystem services is the inescapable fact that markets, including virtual markets
revealed by hedonic pricing, contingent valuation, or other indirect neoclassical
methods, by definition are set by the present-day population. In so far as they value
the future, this can be included, with a suitable discount rate, but humans can only
understand relatively short-term outcomes, which is why net present value methods
(time value of money) work well for short-term planning and (modestly) delayed
gratification. But this does not extend to the services to future generations.

Lastly, Baveye (2015) points out that soil functioning is complex and therefore
so are soil contributions to ecosystem services, making it impossible to disaggregate
the economic values of ecosystem services to be attributed to specific soil properties.
Changes in soil condition (McBratney et al. 2014) can be related to changes
in ecosystem services provision and their value under a specific use, as shown
by Dominati et al. (2014b). However, those relationships would be different for
different land uses, so that any values obtained thus could not be generalized.

Thus, we conclude that a full monetary valuation of the soil resource in terms
of its ecosystem services is impossible, in the sense that the future is inherently
unknowable. However, it is possible to provide a monetary valuation to decision-
makers operating in project (short-term) mode, i.e., a short time frame within which
planning occurs. The study of Dominati et al. (2016) does just this for two soils
under high-intensity dairy LUT. See Baveye et al. (2013) for an extended discussion
of the selection of the time frame for valuation.

Therefore we propose to value the soil resource in terms of its contributions to
all ecosystem services which can be envisioned at the site and defer the question
as to how these can be expressed in monetary terms, and eventually monetized, to
ecological economists. In any case we believe that any such monetization cannot
represent the full value of soil over the long term.

17.7 Toward a Pedometric Valuation of the Soil Resource
Based on Ecosystem Services

Dominati et al. (2016) argue that land evaluation, thus implicitly soil valuation,
needs to be able to inform capability for multiple functions in order to recognize
the whole range of ecosystem services provided by landscapes. In this sense, and
summarizing the above discussion, we here present the outline of a method to
value the soil in terms of its multiple contributions to ecosystem services provision,
building on both the stock adequacy approach of Hewitt et al. (2015) and the
indicator approach of Calzolari et al. (2016).
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A pedometric valuation of the soil resource based on an ecosystem approach must
first specify the geographic, political, and socioeconomic context within which it is
carried out. This shows explicitly that any conclusions would have to be revisited
if the context substantially changes. The first step, selection of LUT, depends
completely on context, but so do subsequent steps. For example, if a new dam is
to be built, soils upstream must now provide ecosystem services related to water
quality and quantity for the reservoir (e.g., prevention of siltation to extend reservoir
life or postpone dredging), whereas before this quality was for streams only. The
soils now have no role in floodwater regulation downstream of the dam.

In addition, the valuation must be within a defined geographic area with a limited
set of soil types. This is because the capability and condition (see below) are
normalized to a 0–100 scale and thus require maximum and minimum values of
soil properties, which only make sense within a defined area.

The method has the following steps, applied to each soil type to be valued:

1. Select a set of representative actual and potential land utilization types (LUTs),
including management, which could be realized on this soil type. This list
controls the list of ecosystem services (next step) and so should include enough
uses to represent all feasible uses and their services. Note that this is not restricted
to uses that are currently feasible, but also those that, should the socio-political-
economic-technological context change, become feasible.

The description of the LUT must be specific as it influences the choice of
levels of soil properties required for ecosystem services provision and sustainable
management. As in the FAO Framework, land management practices must be
included in the definition of LUT.

For example, high-intensity heavy-animal grazing requires specification of the
soil’s resistance to treading damage, as this is required for animal health, the
health of the soil, and the quality of pasture production, whereas low-intensity
grazing has minimal problems with such damage.

As another example, low- or no-tillage annual field crop systems have less
risk of erosion compared to clean-tillage systems. Thus, selection of levels of
soil properties for ecosystem services related to surface water quality affected by
agricultural runoff will be quite different between these LUTs.

2. For each LUT:

(a) List the soil-mediated ecosystem services (provisioning, regulating, or cul-
tural) to consider.

(b) List the critical soil properties, that is, soil natural capital, influencing
services provision. These are the soil stocks. These may be soil properties
measured directly in the field, indirectly by proximal sensing, from labora-
tory analysis, or derived properties calculated using pedotransfer functions
(see Sect. 6). Because of the difficulty of quantifying soil stocks, simpler
methods using easily measured indicators may be used to get a first idea of
the value of soil stocks (Robinson et al. 2012).
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Each service is influenced by one or more soil properties. For example,
filtering for groundwater provision is mediated by soil thickness, horizona-
tion, and hydraulic conductivity; these all affect residence time of water in
the soil column (Keesstra et al. 2012). It is also affected by the type and
quantity of soil organisms.

(c) Determine soil capability functions for each service, that is, soil functions
delivering levels of that service, in the context of the study area.

(i) Specify an empirical relation between the identified critical soil proper-
ties and the service with pedotransfer functions or process models.

(ii) For each critical property used in the empirical relation, standardize its
range of values to a 0–1 scale relative to its contribution to the service.
For example, a soil with rapid saturated hydraulic conductivity will be
good (value approaching 1) for flood mitigation, but not good (value
approaching 0) for contaminants filtration for groundwater supply. This
can be a monotonic, optimal value range or even multimodal curve.

(iii) Standardize the results of the empirical functions to a continuous 0–1
scale.

(d) For each service, determine the adequacy of the values taken by the soil
capability function to the requirements of that land use and management,
standardized to a continuous 0–1 scale. This can be done by using agronomic
principles or by quantifying with models the provision of each ecosystem
service at the extremes of the range of step (4), as well as some intermediate
values, and then standardizing these values.

(e) Develop a suitability function, not necessarily linear, to combine the results
of the individual services provisions into a single value for ecosystem
services provision. This can be evaluated at all values of the soil capability
functions.

3. Present suitability ratings for the selected LUTs, both for the individual (step (d))
and overall services (step (e)).

The result is a pedometric suitability rating for the services provision under each
LUT carried out on each soil type for which it has been selected. The individual
services ratings can then be used directly in multi-criteria evaluations or combined
in optimization frameworks; this is beyond our pedometric scope.

Figure 17.2, from Dominati et al. (2016), shows the results of this method for
a single LUT (a dairy-based agroecosystem) on two contrasting soil types. This
spider diagram shows complete fulfillment of a service at the outer edge (1) and
no fulfillment at the center (0). In this diagram there is no attempt to combine
the separate services as in step 2(e) of our method; a multi-criteria weighting
could be used for this. We clearly see that one soil, Horotiu, has much superior
performance for P filtering but much worse than the other soil, Te Kowhai, for net
C accumulation; how these are weighted is a social issue.
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Fig. 17.2 Performance of ecosystem services delivery for two agroecosystems, based on biophys-
ical measures (From Dominati et al. 2016, Figure 2)

17.8 Spatialization

The basic areal unit to be valued is the soil profile (Sect. 8), often called a pedon,
in practice some small representative volume, e.g., 1 m2 surface area to some depth
(Hewitt et al. 2015) considered as the point support. The profile comprises a bundle
of soil stocks that are the soil properties needed to drive the soil processes that result
in soil functions that contribute to the provision of ecosystem services under a use.
The profile is considered to represent a grid cell of some desired resolution or a
sufficiently homogeneous map unit such as a consociation of a single soil series.
The per-profile value can then be multiplied by the number of point support units
in a map unit or parcel to give the value of the soil over that area. Conversely,
quantities measured over larger land areas, e.g., crop production per hectare, can be
normalized to the point support.

However, this concept of the areal unit to be valued assumes that (1) the area
of soil to be valued is isolated and (2) ecosystem services are provided vertically
(from atmosphere through soil to hydrosphere), so that mapping soil value would
be a simple case of valuing at each small area. Of course the soil cover is more
or less continuous, so grid cells at any resolution are connected to their neighbors,
and many processes operate also horizontally, e.g., throughflow on hillsides and
accumulation of materials at seeps and footslopes.

Soil functions may also depend on some minimum contiguous surface area of
soils with similar function: a small patch of alluvial soil will hardly provide any
floodwater regulation ecosystem service, whereas a floodplain commensurate with
maximum overflows will provide this service.

Functions may also depend on some spatial pattern of contrasting soils with
different processes. A well-known example is the production function for traditional
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grazing of upland soils in the wet season and lowland meadows in the dry season.
These two must be combined for successful year-round grazing.

This implies that for some ecosystem functions, we cannot evaluate its capability
function for a grid cell or map unit in isolation; the adequacy of a functional
unit (e.g., toposequence for stream recharge) must be evaluated as a unit and then
allocated across the components of the functional unit.

17.9 Communicating Value

The valuation proposed in this chapter goes far beyond what the public naïvely
consider to be the value of soil. If they consider it at all, they would most likely
consider the relative value for agricultural production of typical adapted crops under
typical current management. Many services are not appreciated, e.g., the regulating
services for ground and surface water quality, and in addition these are rarely
directly valued back to the soil that contributes to them. In a few high-profile cases
such as the New York City water supply (Pires 2004), there may be some public
awareness that the natural capital providing the services sustainably (e.g., water
purification) is an alternate to high-cost built capital providing the same services.
Simply reporting that “scientists” or “experts” have used a complicated method (no
need to worry about the details) and have valued a soil at so many dollars per hectare
is unlikely to satisfy the general public, let alone policy makers. The ecosystem
services that were valued must be listed and their importance explained. Jobstvogt et
al. (2014) faced a similar problem in communicating the value of another “hidden”
resource, the deep sea. They chose the Ecosystem Principles Approach (Townsend
et al. 2011), which presents the valuation in terms of general ecosystem principles
that (it is hoped) are easily understandable, e.g., “[f]lora and fauna that filter food
or nutrients from the water column and maintain a sedimentary lifestyle have a
stabilizing effect on the sediment.” For soils this would be something like “deep,
well-aerated soils with good structure let rainwater infiltrate and pass at moderate
speed through to groundwater.”

17.10 Conclusions

Our proposed ecosystem services method has certain drawbacks. It is certainly
laborious. A large number of LUT must typically be selected, because management
options often have a major influence on ecosystem services types and levels of soil
properties that affect them. Then, ecosystem services must be listed and their link to
soil properties described. This may reveal a lack of understanding of soil processes
or lack of computational models to quantify them. Even if this is successful, there
may not be sufficient data on these properties in standard soil survey databases.
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However, these deficiencies clearly motivate research into actual and potential
LUT, ecosystem services provisions, and models. They also show gaps in soil
properties in current databases and thus motivate new survey methods and soil
resource inventory.

In the ecosystem services approach, we abandoned any attempt to place an
external monetary value on the soil resource over the long term, let alone how
to monetize soil services. If an external monetary value is needed, a FAO-style
economic land evaluation or the approach of Dominati et al. (2016) can be used
to compute a minimum value, under current conditions and for the short term; as
we argued above, this cannot represent the long-term value of the soil resource.
However, it is hoped that our proposed method can be used in each policy-making
situation to provide a relative valuation that is commensurate with valuations of
other resources, which can be used for decision-making. In any case, simply
pointing out that soil has value and quantifying the many services it provides should
raise public awareness of this resource, which is “hidden in plain sight.”
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Part VI
Soil Genesis

“There is nothing in the whole of nature which is more
important than or deserves as much attention as the soil.
Truly it is the soil which makes the world a friendly
environment for mankind. It is the soil which nourishes
and provides for the whole of nature; the whole of creation
depends on the soil which is the ultimate foundation of our
existence.”

Friedrich Albert Fallou, 1862

In previous chapters it was shown that soil variability is a function of several soil-
forming factors. The pedometric methods explained to describe the soil (spatially),
however, can only be used to infer about the present state of the soil resource. This
chapter will focus on the concepts and models of soil formation that pedometricians
have formalized over the years. Formalizing these has been driven by the need
for understanding the complexity and dynamics of soil systems as soil plays a
fundamental role in the functioning of ecosystems. Additionally, these efforts have
also received increased attention by the need to model soil change through time; for
being able to trace the history of soil systems and to predict their future state under
differing environmental and climatic conditions.

The importance of soil systems and their evolution over time is reflected in the
US National Research Council publication ‘Landscapes on the Edge: New Horizons
for Research on Earth’s Surface’ (NRC 2010) that addresses the challenges and
opportunities in research on Earth surface processes: “Soil formation is not,
however, only of academic interest. Our food comes from plants grown in soil. The
rapid rate of soil erosion due to land use relative to the slow rate of transformation
of rock into soil endangers soil resources worldwide. The fate of soils, the base of
agriculture, is of great concern.”

Soil is also recognized as one of the central components of the ‘critical zone’, a
concept that stems from the earth sciences. The critical zone defines “the external
terrestrial layer extending from the outer limits of vegetation down to and including
the zone of groundwater” and most importantly “sustains most terrestrial life on
the planet” (Brantley et al. 2006). Soil is produced through the transformation
of bedrock and biomass and acts as an open system which is subject to element
gains and losses. Understanding the forces responsible for the formation of this
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key component of the critical zone is therefore crucial for being able to understand
how physical, chemical and biological processes are working together at the Earth’s
surface (Anderson et al. 2007).

As discussed in Chap. 1, different types of models have been used in pedometrics
to describe the soil resource. In the following, we will present pedogenetic models,
starting with models of pedogenesis that describe soil formation qualitatively
based on a description of soil evolution in the landscape or based on empirical
observations, followed by quantitative, mechanistic models based on empirical
equations or detailed differential equations derived from fundamental physics that
require a profound understanding of pedogenic processes. These models operate
on different spatial and temporal scales. It will also be discussed how processes of
pedogenesis can be quantified with field data, to calibrate and validate models of soil
genesis. We do not attempt to be exhaustive here; and refer the reader to extensive
reviews written on this topic by Hoosbeek and Bryant (1992), Minasny et al. (2008),
Stockmann et al. (2011) and Minasny et al. (2015).
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Chapter 18
Clorpt Functions

Uta Stockmann, Budiman Minasny, and Alex. B. McBratney

“Essentially, all life depends upon the soil : : : There can
be no life without soil and no soil without life; they have
evolved together”.

Charles E. Kellogg

The extent of soil formation is dependent on local site characteristics. To model
the evolution of soil in the landscape, we therefore need to know which factors and
processes are important for describing pedogenesis quantitatively. There are several
ways to go about it, and in the following the main approaches of how to formalize
soil formation are therefore outlined.

18.1 Factorial

The Russian soil scientist Dokuchaev (1899) is known as one of the first who
formalized an equation that linked soil (P) formation to local site characteristics
including climate (K), organisms (O), ground or parent rock (G) and time (B):

P D f .K;O;G/B (18.1)

Following on, the American soil scientist Shaw (1930) presented a factorial
model that included major soil-forming factors which change with local conditions.
However, Shaw did not develop his conceptual model any further before he died
suddenly in 1930:
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S D M.C C V/T C D (18.2)

Arguably, the most well-known model of soil formation, however, is the state-
factor model by the Swiss/American soil scientist Jenny (1941). In Jenny’s model
the state factors are independent from the soil system and vary in space and time:

S D f .cl; o; r; p; t; : : : / (18.3)

where cl is the climate, o are the organisms, r is the topography, p is the parent
material and t is the time.

In its original form, the state-factor model is unsolvable. To be solved the
indeterminate function f needs to be replaced by certain quantitative relationships.
Hence, the clorpt equation has been formalized in quantitative ways based on
empirical field observations, where a single factor is defined by keeping the
other factors constant (Minasny et al. 2008). Empirical models were developed to
describe soil formation in the form of quantitative climofunctions, biofunctions,
topofunctions, lithofunctions and chronofunctions (refer to Sect. 19.1.1), mostly
based on numerically intensive statistical methods (Yaalon 1975; McBratney et al.
2003). Based on the ‘clorpt’ model of soil formation, McBratney et al. (2003)
formulated the scorpan model, which indeed applies empirical quantitative rela-
tionships to predict soil properties from landscape attributes at specific locations in
the landscape. The scorpan model is written as:

Sc=Sa D f .s; c; o; r; p; a; n/ (18.4)

where Sc are the soil classes and Sa are the soil attributes, s is the soil, c is the
climate, o are the organisms, r is the topography, p is the parent material, a is age
and n is space or the spatial position. The model is used quite extensively in the field
of digital soil mapping to predict the recent state of the soil (soil type as well as soil
properties), but is not intended, and cannot be applied, for long-term soil formation
predictions (refer to Chap. 12 of this book).

18.2 Processes

Simonson (1959) is known as one of the first soil scientists who conceptualized
soil-forming processes by describing the formation of soil as a function of additions
(e.g. organic matter), removals (e.g. soluble salts), translocations (e.g. soil organic
carbon/sesquioxides) and transformations (e.g. transformation of primary minerals
into secondary minerals):

s D f .addition; removal; translocation; transformation/ (18.5)

http://dx.doi.org/10.1007/978-3-319-63439-5_12
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Fig. 18.1 Soil profile evolution as a function of additions, removals, translocations and transfor-
mations

Although Simonson’s original work is still a qualitative description, his model
can be seen as one of the first conceptual frameworks for mechanistic models of
pedogenesis (Fig. 18.1).

18.3 Energy

There have been efforts to describe soil formation mechanistically based on the
principles of energy or concepts of thermodynamics. The most well-known soil
scientist who formulated a soil formation model based on energy is Runge (1973):

S D f .o;w; t/ (18.6)

where S is the soil, o is the organic matter production (renewing factor), w is the
amount of water available for leaching (developing vector) and t is time. The soil-
forming factors of climate and relief are expressed within the vector w. The energy
model of Runge (1973) is only useful, however, in a qualitative way as it does
not include actual quantitative thermodynamical equations (Hoosbeek and Bryant
1992).

Furthermore, Volubuyev published a variety of papers that linked pedogenic
processes with energy laws. In one of his papers, he described the energy spent
during soil formation through (Volobuyev 1974):
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Q D Ra D Re�1=mK (18.7)

where Q is the expenditure of energy on soil formation, R is the energy of solar
radiation, a are the available energy sources, K is the relative wetness and m is
a factor expressing the participation of biota in energy exchange. Volobuyev and
Ponomarev (1977) explored thermodynamic aspects of soil-forming processes by
calculating Gibbs’ free energy and entropy values of soil minerals. They were able
to show that the thermodynamic characteristics of soil minerals do vary significantly
for the soil types studied. Volobuyev (1984) also formulated an energy model to
apply Dokuchaev’s equation quantitatively (Eq. 18.1):

Q D R .˙r/ exp




�
PcwR0:67

mP .˙p/

�

(18.8)

where Q is the (annual) expense of energy on soil-forming processes, R is the radiant
solar energy, P is the relative wetness, m is the biological activity, r is the radiation
balance, p is the atmospheric precipitation, w (chemically bound water of mineral
soil components) is the rate of mineral transformations in soils and Pc is water,
such as water that is fixed in the mineral, faunal and floral component of soils.
Dokuchaev’s soil-forming factors, as demonstrated in Eq. 18.1, are represented by
R and P and by p and r (climate, K), by m (organisms, O), by Pc and w (parent
rock, G).

In Box 18.1 it is discussed if soil exhibits chaotic behaviour.

Box 18.1 Does Soil Exhibit Chaotic Behaviour?
Phillips (1993) argued that soil evolution can be deterministic chaos, where
unpredictable behaviours can be obtained from a nonlinear model. He demon-
strated that using simple ordinary differential equations, chaotic behaviour
can be observed. If we consider soil (S) as a function of progressive (P) and
regressive (R) processes with S D f (P,R) (Johnson and Watson-Stegner 1987),
then the mathematical form for the state of soil (S) at time t is

dS=dt D dP=dt–dR=dt (18.B.1)
The form of P and R can be exponential following first-order kinetics:

dP=dt D c1 exp .�k1S/
dR=dt D c2 exp .�k1S/

(18.B.2)

where c refers to some potential soil properties and k is the rate constant with
conditions that c1 should be greater than c2 for soil and k1 > k2.

Using finite difference, the form of (18.B.1) and (18.B.2) becomes

St D St�1 C�P–�R (18.B.3)

(continued)
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It can be easily shown that this equation can produce chaotic behaviour,
e.g. for c1 D 1 and c2 D 0.9, with k1 D 3, and k2 D 0.1.
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Plotting S (after 100 iterations) as a function of k1, where the other
parameters are held constant, shows the famous bifurcation pattern indicating
the instability of the solution. The plot shows that when parameter k1 is greater
than 3.5, the solution starts to show bifurcating results.

(continued)
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A more complex model for soil organic matter dynamics and the possible
chaotic behaviour can be found in Ryzhova (1996). Furthermore, Minasny
and McBratney (2001) demonstrated the chaotic behaviour of a simple soil-
landscape model.

The chaotic behaviour is of course dependent on the numerical stability of
the differential equation. And in fact, chaotic solutions themselves can only
be obtained by numerical solutions (Pachepsky 1998). We may need to ask
whether the apparent chaotic behaviour is due to the dynamic laws of nature
or is solely the result of an extreme sensitivity to numerical procedures.
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Chapter 19
One-, Two- and Three-Dimensional
Pedogenetic Models

Uta Stockmann, Sebastien Salvador-Blanes, Tom Vanwalleghem,
Budiman Minasny, and Alex. B. McBratney

“We know more about the movement of celestial bodies than
about the soil underfoot”.

Leonardo da Vinci, circa 1500s

19.1 Modelling and Quantifying Pedological Processes

Various methods have been used to measure or estimate pedogenic processes that
are responsible for the differentiation of a soil profile. The most important pedogenic
processes can be seen in Fig. 19.1, in a simplified form.

In the following, the modelling and quantification of these processes will be
reviewed and discussed, in particular transformation processes (soil physical and
chemical weathering) and translocation processes (eluviation and illuviation and
soil mixing).
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Fig. 19.1 Important pedogenic processes that are responsible for the differentiation of a soil
profile (After Stockmann 2010)

19.1.1 Chronofunctions

Jenny’s (1941) clorpt model introduced in the previous chapter describes the
relationship between soil properties and time. The term chronofunction is equated
with the mathematical expression of chronosequence data representing a solution to
Jenny’s state-factor equation (Yaalon 1975; Schaetzel et al. 1994). Jenny (in Stevens
and Walker 1970) stated that if we know the ages and properties quantitatively,
we have a chronofunction and can fit rate equations to the data; if the ages are
relative, we have a chronosequence, from which we can learn a lot about processes
and mechanisms, but not necessarily rates. Chronofunctions can perhaps be seen as
nonstationary and to represent soil evolution from some non-equilibrium state to an
equilibrium state.

Chronosequences are used to investigate and understand the formation of soil
profiles, i.e. placing soil profiles developed from surfaces of known or dated age
in a chronological order (Huggett 1998; Sauer et al. 2007). They can be used to
formalize chronofunctions where soil and landscape properties are plotted against
the independent variable time:

S .Soil/ D ft .time/ cl; o; r; p : : : (19.1)

If we believe soil formation is a result of predominantly chemical processes,
we may expect the form of the chronofunctions to obey chemical models such
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as zero-, first- or second-order kinetics (Sparks 1995). First-order kinetic models
show an exponential evolution with time to some asymptotic value. One of the main
parameters of this model is a rate constant which can give us estimates of the natural
rate of soil formation.

Obtaining data for a chronosequence is not easy; following Jenny’s factorial
model, it may be impossible to achieve, i.e. finding a site with the same parent
material, under ineffectively varying climatic conditions and influence of organisms,
and constant relief. However, approximate chronofunctions with various assump-
tions can be obtained. In several parts of the world, volcanic activity, mudflows
or glaciation has created surface materials or soil where the relative age can be
determined. An example can be found on the Hawaiian Islands, with a sequence
of volcanic surfaces that ranges in substrate age, from a currently active volcano
(0 years) to the 4 million-year-old island of Kauai (Kitayama et al. 1997a, b).
Kitayama et al. (1997a, b) chose an array of sites formed from basaltic lava
parent material, with similar elevation about 1200 m above sea level with minimal
topographic relief and a mean annual rainfall of 4000 mm. The island also has a
uniform vegetation coverage with rain forests dominated by a single tree species.

Such chronosequences can be utilized in the calculation of the surface age-
profile thickness (SAST) which represents the long-term average of soil formation
(Egli et al. 2014). In a stable environment with minimal processes of erosion
and deposition, soil formation rates are calculated from the thickness of the soil
divided by the age of the surface soil (in mm/year or if density is considered in
Mg/km2/year).

There are different types of mathematical functions that have been commonly
used in chronofunctions, to express soil evolution with time, as exemplified in
Fig. 19.2, with simple linear and logarithmic functions perhaps being the most
frequently used. Jenny (1941) postulated that soil property change over time could
be of sigmoidal shape with an initial exponential rate and that the changes gradually
become small as they are reaching a steady-state condition (Yaalon 1975). Barrett
and Schaetzl (1992) used a single logarithmic model to exemplify the change of the
quantity of iron over time during podsolization for a sandy soil near Lake Michigan.
Hay (1960) on the other hand found an exponential relationship between clay
formation and time from volcanic ash on the island of St. Vincent in the Caribbean
as would be expected from first-order kinetics.

19.1.2 Soil Weathering Models and Rates

The importance of soil and its genesis and therefore the quantification of processes
of soil weathering are part of at least two of the nine Grand Challenges in Earth
Surface Processes that has been put forward by the NRC (2010) publication. It
specifically states that “The breakdown of bedrock – a major factor in Earth surface
processes – is among the least understood of the important geological processes”.
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Fig. 19.2 Types of mathematical functions commonly used in chronofunctions. S-shaped or
sigmoidal curve, general form of equation, Y D 1/(a C bexp(�t)); power functions, general form
of equation, Y D atb; logarithmic functions, general form of equation, Y D a C b(logt); exponential
functions, general form of equation, Y D aexp(bt); simple linear functions, general form of
equation, Y D a C bt (Stockmann 2010)

Over the years, geomorphologists and pedologists have attempted to formalize
rates of soil production from parent materials which led to two assumed main
concepts or models of soil weathering with time, the (1) exponential soil production
model and the (2) humped soil production model (visualized in Fig. 19.3). The first
states that soil production decreases exponentially with increasing thickness of the
overlying soil mantle (Ahnert 1977; Heimsath et al. 1997), whereas the second
model explains the conversion of rock into soil using a humped function where soil
production is greatest below an incipient soil depth and slower for exposed bedrock
or an already thick soil mantle (Gilbert 1877; Humphreys and Wilkinson 2007).

The first concept, the exponential decline of the soil production rate (SPR) with
increasing soil depth, can be described as (Dietrich et al. 1995; Heimsath et al.
1997):

SPR D P0 exp .�bh/ (19.2)

where P0 ([L T�1], mm kyr�1) is the rate of weathering of bedrock at zero soil
thickness (h ([L], cm)) and b ([L�1], cm�1) is a rate constant, a length scale that
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Fig. 19.3 The rate of soil production versus soil thickness (based on Minasny and McBratney
2006; Furbish and Fagherazzi 2001). Here, both the exponential and the humped soil production
models are presented. Both axes are dimensionless. Soil production is presented graphically
depending on different values of the parameter k1 and k2 (also refer to Eqs. 19.3 and 19.4). If
k2 D 0, the soil production equals a depth-dependent exponentially decreasing soil production
function. If k2/k1 �0, soil production shows a humped function (changed after Stockmann et al.
2011)

characterizes the decline in soil production with increasing soil thickness. This
model of soil production was first verified with field data from the Tennessee Valley
in California, USA, by Heimsath et al. (1999), employing terrestrial cosmogenic
nuclides (TCN).

The second concept, the humped model of soil production, can for example be
formalized as a continuous double exponential function (Minasny and McBratney
2006):

@e

@t
D � .P0 Œexp .�k1h/ � exp .�k2h/�C Pa/ (19.3)

where P0 ([L T�1], mm kyr�1) represents the rate of weathering of bedrock, h ([L],
cm) the soil thickness, k1 the rate of mechanical breakdown of the rock materials
and k2 the rate of chemical weathering and Pa the weathering rate at steady-state
condition ([L T�1], mm kyr�1) with condition k1 < k2. When k2 equals 0, the humped
function is reduced to the depth-dependent exponential soil production function
(Eq. 19.2). The critical thickness, hc, where weathering is at maximum is written as:
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hc D
ln .k2=k1/

k2 � k1
(19.4)

An empirical parameterization of the humped soil production model is still to
be achieved, but this model was used to explain soil formation conceptually in
some landscapes. Heimsath et al. (2009), for example, postulated that humped
soil production occurred at their study site, Arnhem Land in northern Australia,
an outcrop-dominated soil landscape where soil depths of less than the peak in
soil production (35 cm) could not be observed. In a soil landscape dominated by
humped soil production, it is assumed that soil depths less than the maximum in soil
production are unstable and continuously eroded to expose the parent rock material
(Dietrich et al. 1995).

19.1.2.1 Physical Weathering

Models of Physical Weathering

Physical weathering processes can be represented using different rock fragmen-
tation models such as symmetric, asymmetric and Whitworth fragmentation and
granular disintegration. Parent particles are weathered into daughter particles whilst
preserving their mass based on these four different fragmentations which are shown
graphically in Fig. 19.4 (Sharmeen and Willgoose 2006). Symmetric fragmentation
weathers a parent particle into two daughter particles of equal volume; asymmetric
fragmentation on the other hand results in two daughter particles of unequal
volumes; Whitworth fragmentation results in a distribution of daughter particles
proposed by W.A. Whitworth. Granular surface disintegration is a process used to
model the particle breakdown of a thin surface layer which results in several equally
sized spherical daughter particles that are of the same diameter as the thickness of
the surface layer and one large daughter particle of equal diameter as the parent
particle less twice the layer thickness (Wells et al. 2008).

Wells et al. (2008) modelled physical weathering based on these fragmentation
models, including the probability of fragmentation to occur in a given time period.
They found that the physical weathering rate increased linearly with time, based
on the probability of fracture to occur. The Wells’ fragmentation model was
implemented by Welivitiya et al. (2016) for their soil-landscape model.

Quantifying the Rate of Physical Weathering

Several approaches have been utilized to parameterize weathering rates of parent
material to soil from field data. Terrestrial cosmogenic nuclides, predominantly
10Be, have been employed to derive soil production rates of soil (Stockmann et al.
2014). In this method, soil production is interpreted as the physical conversion of
bedrock into soil, which is usually expressed in mm of bedrock weathered over time



19 One-, Two- and Three-Dimensional Pedogenetic Models 561

Fig. 19.4 Fragmentation geometries used in the modelling of physical weathering; with V being
the volume of a parent particle that fractures into N daughter particles (V1, V2, etc.), d the diameter
of the parent particle, dr the surface layer thickness of the parent particle and a the ratio of daughter
particle volumes (Redrawn after Wells et al. 2008)
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(mm kyr�1). For rate calculations, the rate P of 10Be production in atoms g-quartz�1

year�1 at depth h and slope � (Stone 2000), the half-life of 10Be in years (Chmeleff
et al. 2009) and the concentration N of 10Be in atoms g-quartz�1 in the sample
of interest (parent material) are required. Calculations are then based on a model by
Nishiizumi et al. (1991) that allows for calculations of the steady-state concentration
of 10Be in the sample of interest. This model assumes that 10Be concentrations are
controlled by the increase of concentrations with exposure time and the erosion rate
of the parent material itself (" or SPR in cm year�1). Soil production rates in cm
year�1 or mm kyr�1 can then be calculated by solving this model for SPR (") (Lal
1991; Heimsath et al. 1997):

SPR D
ƒ

�parent




P .h; �/

N
� 


�

(19.5)

where �parent is the mean density of the parent material in g cm�3, œ is the decay
constant of 10Be (
 D ln2/10Be half-life) and ƒ is the mean attenuation of cosmic
rays (g cm�2). Annual production rates of 10Be (P) need to be normalized to the
geographical position of the site studied (elevation, latitude and longitude) (Stone
2000); for soil-mantled landscapes, rates also need to be corrected for the soil
overburden and shielding by slope (Dunne et al. 1999; Granger and Muzikar 2001).
Soil production rates are calculated with the assumption of steady-state conditions
where soil erosion and soil production rates are balanced throughout the production
of TCN.

This technique was used in field studies situated in soil-mantled landscapes of
Australia, North America and South America. Stockmann et al. (2014) compiled
these measured rates of soil production which were as low as 0.0001 mm year�1

and as high as 0.6 mm year�1, for soils of up to 108 cm of depth. These TCN field
data were then used to derive for the first time a quantitative estimate of ‘global
soil production’ with a rate of about 0.2 mm year�1 (286 Mg km�2 year�1). This
rate reflects the potential weathering rate, P0, for soil-mantled landscapes at zero
soil depth (refer to Eq. 19.2). Such estimates are important for modelling global
landscape dynamics, as we need to know the rate of soil replenishment from bedrock
compared to its loss through erosion. This will be discussed a bit further in the
concluding section of this chapter.

Uranium-series isotopes have also been used to estimate soil weathering or
production rates (Dosseto et al. 2008). This technique assesses soil weathering
throughout a soil profile based on the abundance of the U-series which is considered
to be a function of chemical weathering and time and its distribution between
primary and secondary minerals. In situ weathering can be identified (increase
in weathering from the bottom to the top of a soil profile) through the decrease
in the 234U/238U ratios with decreasing soil depth. Soil residence times are then
calculated by modelling the U-series activity ratios in a soil profile (Suresh et al.
2013). Research has shown that soil production rates derived with U-series isotopes
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Fig. 19.5 Graphical representation of one-dimensional mass balance for vertical supergene metal
transport and secondary enrichment. The mass of element j leached is equal to the mass of j
fixed in the underlying zone of secondary enrichment in this closed system model (with no lateral
fluxes of loss of the element j through basal discharge) in which a protolith (p) volume becomes
differentiated into two related parts. The uppermost subsystem is leached in element j, and the
lower subsystem positioned further along a ground water flow line becomes enriched in j. Two
strain terms are necessary. In the leached (l) zone, �j , l D (LTj , l � LTj , p)/LTj , p, and in the enriched
(e) zone, �j , e D (Bj , e � Bj , p)/Bj , p, with L describing the thickness of the near-surface zone, B the
thickness of the lower subset zone, � the density and C the concentration terms (Redrawn after
Brimhall and Dietrich 1987)

are comparable to those derived from TCN (Dosseto et al. 2008; Suresh et al. 2013).
Both methods therefore are quite robust to estimate soil production rates for soil-
mantled hillslopes.

19.1.2.2 Chemical Weathering

Models of Chemical Weathering

Brimhall and Dietrich (1987) proposed a mass balance model that formally links
chemical composition (of bedrock and soil) to bulk density, mineral density,
volumetric properties, porosity and amount of deformation (strain). Figure 19.5
shows a graphical representation of such a chemical modelling approach.
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Fig. 19.6 Mass fluxes on hillslope soils: (a) mass fluxes of soluble soil components in and out of
a modelled soil box, (b) mass fluxes of an insoluble soil component in and out of a modelled soil
box (Redrawn after Yoo et al. 2007)

Furthermore, Yoo et al. (2007) presented a process-oriented hillslope soil mass
balance model that links processes of soil chemical weathering with topographic
position (Fig. 19.6). The proposed model explicitly considers the influence of lateral
soil transport and soil production from underlying bedrock (physical weathering) on
soil chemical weathering processes.

Quantifying the Rate of Chemical Weathering

The intensity of chemical weathering has been estimated from field-based studies
through applying a variety of investigative methods. Chemical weathering rates
have been estimated based on a mass balance approach, using elemental fluxes
(loss and gain) in watersheds and the chemical composition of the parent materials
and weathering products studied. Based on a compilation of studies reviewed in
Stockmann et al. (2011), chemical weathering rates estimated from catchment-based
mass loss of elements range between 0.01 and 0.1 mm year�1 and are in general
lower than rates of physical weathering (also refer to Fig. 19.7).

For a catchment, chemical fluxes can be estimated using a mass balance
approach, by determining the solute discharge flux Qi,dis for a chemical species i:

Qi;dis D Ci;dis
V

At
(19.6)

where Ci,dis is the chemical concentration of a chemical species i, V is the fluid mass,
A is the geographic area of the watershed and t is time (White and Blum 1995).

The chemical soil weathering rate (W) can also be calculated in situ from the
ratio of a resistant or immobile element (e.g. Zr) in the parent rock ([Zr]rock) as
compared to its amount in the weathered rock (saprolite) or soil ([Zr]soil) (Riebe et
al. 2004a, b):
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Fig. 19.7 Probability density of soil formation rates in Mg km�2 year�1 as reported by different
methods. Note axes are in logarithmic scale, refer to Table 19.1 for data sources (Source: Minasny
et al. 2015)

W

D
D 1 �

ŒZr�rock

ŒZr�soil
D CDF (19.7)

where CDF is the chemical depletion fraction which equals the ratio of the chemical
weathering rate (W) to the total denudation rate (D). Soil weathering rates are
often defined with different underlying assumptions. In a range of studies that used
weathering ratios, total rates of denudation or weathering (D) were substituted with
rates of soil production derived from TCN (Riebe et al. 2003, 2004a, b; Green et al.
2006; Burke et al. 2007, 2009; Yoo et al. 2007). Some studies, however, considered
soil production rates determined by TCN as rates of physical weathering only and
subsequently added those to chemical weathering rates to calculate total denudation
rates (D) (Dixon et al. 2009).

The conservation of mass equation for the chemical weathering rate (Mg km�2

year�1 or mm year�1) can be written as a fraction of the total denudation rate:

W D D




1 �
ŒZr�rock

ŒZr�soil

�

(19.8)
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The amount of chemical weathering can also be expressed for the loss of a
specific element X (e.g. main base cations found in the soil such as Ca, Mg, K
and Na) (Riebe et al. 2004a):

Wx D




ŒX�rock �
ŒZr�rock

ŒZr�soil

�

� ŒX�soil (19.9)

Stockmann et al. (2011) also compiled rates of chemical weathering derived from
weathering indices and found that rates vary between 0 and 0.144 mm year�1. Rates
derived with this method were relatively similar to rates derived from catchment-
based mass balance studies, although overall rates derived from weathering indices
were comparatively lower.

19.1.2.3 Conclusions: How Fast Does Soil Form?

As discussed in the previous sections, various field estimates are now available that
can provide a quantitative measure of how fast soils form in the landscape. Minasny
et al. (2015) compiled such rates in their recent publication that discusses how our
world soils shape the landscape (Fig. 19.7). Soil weathering rates from different
data sources are compared using the median of the distributions (see Table 19.1
for more details). This statistical measure was used as it is more representative of
the distributions which tended to be skewed. Here, weathering rates were reported
in units of mass of material over an area over time (Mg km�2 year�1). Common
bulk densities for rock (2600 kg m�3) and soil (1200 kg m�3) were used to convert
volume (mm year�1) to mass for those studies where these were unknown. In the
following, the amount of soil produced during weathering is discussed.

Figure 19.7 shows soil weathering rates derived from stable rock outcrops using
the TCN technique (global median of 12 Mg km�2 year�1 or 10 mm kyr�1), and
it becomes apparent that those are half to almost one order of magnitude smaller
than soil production rates derived with TCN for soil-mantled landscapes (global
median of 73 Mg km�2 year�1 or 60 mm kyr�1). This confirms general assumptions
that terrain and environmental factors make a big difference for the intensity of
weathering processes. For example, in general the presence of regolith (or partially
weathered rock) is a precondition for intense weathering. Regolith or shallow
soil mantles form a habitat for fauna and flora, and their presence also enhances
the physical and chemical weathering rate. Figure 19.7 also shows that chemical
weathering rates based on weathering ratios (global median of 24 Mg km�2 year�1

or 20 mm kyr�1) and chemical weathering rates based on river geochemistry (global
median of 34 Mg km�2 year�1 or 28 mm kyr�1) are of similar value. Both are about
a third of soil production rates derived from TCN.

However, we do not only need to know how fast our soils can form but also how
much soil comparatively is lost through processes of erosion. In Fig. 19.8 average
soil production rates for soil-mantled landscapes estimated from TCN field data are
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Table 19.1 Statistical distribution of soil production and weathering rates (Mg km�2 year�1)
from datasets derived using different measurement techniques

Percentile SASTa

Terrestrial
cosmogenic
nuclide
SPRb(0–
100 cm)

Terrestrial
cosmogenic
nuclide on rock
outcropc

Chemical
weathering
based on
river geo-
chemistryd

Chemical
weather-
ing based
on CDFe

100% Maximum 4021 934 349 570 263
95% 1606 457 130 197 159
75% Quartile 338 150 33 72 53
50% Median 55 73 12 34 24
25% Quartile 22 35 4 16 15
5% 4 4 1 6 5
0% Minimum 1 0.3 0 1 0

n 179 291 530 127 155

Source: Minasny et al. (2015)
aSAST Surface age-profile thickness (Data from Egli et al. 2014)
bSPR Soil production rate (Data from Stockmann et al. 2014 combined with Riebe et al. 2004a)
cData from Portenga and Bierman (2011)
dCompiled data from Stockmann et al. (2014)
eData from Riebe et al. (2004a) and compilation of Larsen et al. (2014), CDF chemical depletion
fraction

therefore compared with erosion rates from different sources and scales. It becomes
clear that rates and spatial patterns of erosion and deposition depend strongly on the
type of erosion processes. For example, in natural environments that exhibit a dense
vegetation cover, soil redistribution is mainly driven by mass wasting processes. In
this regard, Fig. 19.8 illustrates that soil erosion rates under native vegetation (B) are
comparatively low (global median of 0.01 mm year�1 equivalent to 0.1 t ha�1) and
are in fact in a steady state with soil production rates (A) (global median of 0.06 mm
year�1 equivalent to 0.7 t ha�1). Soil erosion, however, has been highly accelerated
by human impact as anthropogenic land use changes and subsequently agricultural
management practices have upset the natural balance between soil production and
erosion. With a global median of 2 mm year�1 (equivalent to 24 t ha�1), soil
erosion rates from conventionally managed agricultural soils (D) are almost two
orders of magnitude higher than soil production rates (A). This shows that under
humanly managed systems, soil does not seem to be a renewable resource and
needs to be managed carefully. Changes in management practices towards more
sustainable agricultural systems, where appropriate, however, can narrow the gap
between soil production and humanly induced erosion rates. As seen in Fig. 19.8,
erosion rates under conservation agricultural practices (C) are significantly reduced
(global median of 0.1 mm year�1 equivalent to 1.2 t ha�1) and are close to a natural
balance.

However, not all eroded soil material is actually lost in the streams as lateral
transport through soil erosion is also an important mechanism for reshaping the
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Fig. 19.8 Statistical distribution of average soil production and erosion rates in Mg km�2 year�1

from different sources and scales. (a) Soil production rates determined with TCN, (b) Erosion
rate of native vegetation, (c) Erosion rate of conservation agriculture and (d) Erosion rate of
conventional agriculture. TCN Soil production rate data are from Stockmann et al. (2014) and
Riebe et al. (2004a). Erosion rates from conventional or conservation agriculture and native
vegetation are from Montgomery (2007) (Source: Minasny et al. (2015))

Earth’s surface through the redistribution of soil material and sediment in the
landscape. Estimates of sediment delivery rates to streams, i.e. rates of actual loss
of soil to the rivers and oceans, are therefore also needed to assess soil formation
and soil transport in the landscape which is still a field that requires more work.
Only a few estimates exist in the current literature. The rate of redistribution of soil
and sediment to the land surface was estimated, for example, to be of a value of
approximately 1.11 mm year�1 (Ludwig and Probst 1998). However, much lower
estimates of about 0.028 mm year�1 (Syvitski et al. 2005) or much higher estimates
of about 12.6 mm year�1 (Wilkinson and McElroy 2007) have also been reported in
the literature on this topic.
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19.1.3 Models of Soil Mixing

19.1.3.1 Lessivage

Models of Clay Migration

The works of Van Wambeke in the 1970s are a first attempt to quantify lessivage, the
translocation of clay particles during soil profile development (e.g. Van Wambeke
1972, 1976). In his 1976 paper, Van Wambeke (1976) proposed a mathematical
model for the differential movement of clay particles which provides a quantitative
expression of the pedological process of clay eluviation and illuviation. The
quantification of clay migration through a soil profile is based on the assumption
that the moving clay fraction which accumulates in the B horizon is associated with
fine clay particles and that larger crystals (>0.2 �m) are translocated more slowly
through the profile or not at all. These translocation processes alter the ratio of fine
clay (0–0.2 �m) to total clay content (0–2 �m) in the A and B horizons which can
then be used as quantitative measure for the intensity of clay migration through the
soil profile. These assumptions are only true however in a closed system without
the removal, destruction, weathering, formation or addition of soil minerals, with
constant horizon thicknesses and where no processes of erosion occur.

Quantifying Clay Migration

Radionuclides that are strongly adsorbed to the clay fraction and organic matter
can be used to track their movement down the soil profile (He and Walling
1996; Zapata 2003). 210Pb and 137Cs that exhibit a half-life of 22.3 years and
30.2 years, respectively, can be used to investigate short-term vertical processes
of soil translocation. These are moving passively down the soil profile using soil
particles as carrier substances.

210Pbex is a product of the 238U decay series originating from the decay of gaseous
222Rn, a daughter radionuclide of 226Ra. 226Ra is found naturally in the soil and
generates 210Pb which is usually in equilibrium with its parent 226Ra. Diffusion of
small amounts of 222Rn introduces 210Pb into the atmosphere, and the fallout of
this quantity of 210Pb on the soil surface is termed the excess 210Pb (hence 210Pbex)
that can be used to investigate its passive distribution through the soil profile. Dörr
(1995) used 210Pbex to quantify the movement of organic matter and clay particles
in forest soils, whereas Jagercikova et al. (2014) used 210Pbex to quantify clay
migration under different farming practices.

Different to 210Pb which is a naturally occurring radionuclide, 137Cs stems from
fallout of nuclear weapon tests (1950s to the 1970s) and accidents (e.g. Chernobyl,
Ukraine, in 1986), and its accumulation in the surface soil can therefore be
dated quite accurately, but its concentration in the world soils is also diminishing
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following these fallout events. Because of its radioactive decay, 137Cs will not be
available in the near future to be used in particle migration studies (Mabit et al.
2008).

19.1.3.2 Bioturbation

Models of Bioturbation

Gabet et al. (2003) reviewed quantitative models of bioturbation and sediment trans-
port. They proposed a general slope-dependent model to calculate the horizontal
volumetric flux of sediment (qsx) caused by root growth and decay:

qsx D
.xr£/

.�r/
(19.10)

where x (m) is the net horizontal displacement of soil, r (kg m�2) is the root
mass per unit area, � (year�1) is the root turnover rate which is a measure of the
annual belowground production to the maximum belowground standing biomass
and �r (kg m�3) is the density of the root material. This model was used to derive
estimates of sediment flux by root growth and decay for temperate grasslands
(2.1 � 10�4 m�2 year�1), sclerophyll shrubs (6.8 � 10�4 m�2 year�1) and temperate
forests (8.8 � 10�4 m�2 year�1). Gabet et al. (2003) also formalized the horizontal
alteration of soil along a hillslope caused by tree throw based on uphill and downhill
mound building:

xn D xd � xu D
2

	
.W C D/ sin � (19.11)

where xn is the long-term net horizontal transport distance (Eq. 19.11), xd the
horizontal distance of displacement of the root plate centroid caused by trees that
were falling directly upslope (Eq. 19.13), xu the horizontal distance of displacement
of the root plate centroid caused by trees that were falling directly uphill (Eq. 19.12),
W the width of the root plate and D the depth of the excavated pit.

xu D
W

2
.cos � � sin �/ �

D

2
.cos � C sin �/ (19.12)

xd D
W

2
.cos � C sin �/C

D

2
.cos � � sin �/ (19.13)

Following on, Gabet and Mudd (2010) proposed a numerical model on bedrock
erosion by root fracture and tree throw. Tree throw and associated processes of pit
excavation and mound building that are responsible for the large-scale topography
at the soil surface are modelled implementing concepts from the 2003 paper
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(e.g. Eq. 19.11Dxn). Other processes, such as the fill in of the soil pits and flattening
of the mounds that occur on smaller scales, are represented through slope-dependent
processes of soil creep which is modelled through simple linear diffusion:

qsc D DS (19.14)

where qsc (m2 year�1) is the sediment flux, D (m2 year�1) is the diffusivity and S
(m m�1) is the local slope.

This coupled biogeomorphic model is driven by field data from the Pacific
Northwest (USA) on conifer population dynamics, rootwad volumes, tree throw fre-
quency and soil creep. Model outcomes show a humped soil production relationship
between bedrock erosion through biota and developing soil thickness. This relates to
the principle that as the soil thickens, it becomes less likely for tree roots to disrupt
the bedrock through weathering and that the growing soil medium provides a more
favourable habitat for trees.

In this regard, recently, Shouse and Phillips (2016) investigated the effects
of parent material on the biomechanical process of deepening of soils by trees.
Especially the deepening of shallow soils is affected by this process of root
penetration of parent material rocks. Two kinds of tree habitable bedrock were
assessed in this study in comparison to adjacent non-tree sites, dipped and contorted
rock with plenty of joints and bedding planes accessible for tree roots and flat level-
bedded sedimentary rock. This study found that soils beneath tree stumps were
significantly deeper, and the authors concluded that soil deepening effects through
trees are an important mechanism under both easy and not so easily root accessible
lithologies.

Quantifying the Rate of Bioturbation

Radionuclides and also the technique of optically stimulated luminescence (OSL)
have been used for ‘particle tracking’ within the soil profile and thus for generating
rates of soil mixing. OSL is a dating technique that measures the time since soil
particles (usually sand-sized grains) have been last exposed to sunlight before burial
in the soil (Aitken 1998). A burial age in years for individual grains can be calculated
using the dose (De in Gy, 1 Gy D 1 J kg�1) the grains accumulated since burial,
together with the annual dose rate (Dr in Gy year�1) the site studied receives:

Burial age D
De

Dr
(19.15)

For example, Wilkinson and Humphreys (2005) and Stockmann et al. (2013)
used OSL to investigate rates of soil mixing of forest soils, whereas Kaste
et al. (2007) employed the short-lived radionuclides 7Be originating from cosmic
radiation and the fallout radionuclide 210Pbex to explore rates of soil bioturbation.
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19.2 Soil Profile Models

Pedologists have long been studying soils in many different environments to
understand their distribution in the landscape (Dijkerman 1974). The basis for
these studies is an approach at the pedon scale. These studies have allowed a
good understanding of soil genesis processes, conducting to conceptual models
of soil formation. These conceptual models that were discussed in Chap. 18 have
in particular been of great use for soil mapping. But the major challenge for
pedologists is to develop quantitative techniques, to be able to communicate their
qualitative understanding of soil evolution to other disciplines (Hoosbeek 1994).
Indeed, whereas other compartments of the ecosystem are quite well addressed,
the soil seen as a whole entity was and still is often seen as a black box by non-
pedologists (Wagenet et al. 1994).

On the other hand, many studies in the last decades have allowed a reason-
ably good understanding of individual soil processes, whether physical (e.g. heat
transport, water movement, physical breakdown), chemical (e.g. ion exchange) or
mineralogical (e.g. mineral dissolution). These studies are of great importance to
understand the fate of solid and dissolved matter in the soils in specific situations,
but do not directly address our approach. The PROFILE biogeochemical model
(Sverdrup and Warfvinge 1993) is one of the attempts to integrate sub-models into
a single operational model. The focus has been put exclusively on biogeochemical
changes and transfer of dissolved matter at the profile scale, generally for short
timescales. This model is of major importance to quantify the evolution of soils in
particular in response to present human activities (e.g. critical loads), but reflects
only partially the evolution of soils, as it does not take into account, for example,
the evolution of particle size.

There is therefore a great need to develop an interdisciplinary approach (Brantley
et al. 2011) to allow a connection between these processes to integrate them in
a single global model, with a pedologic perspective (Levine and Knox 1994).
This modelling at the profile scale would moreover be a possibility to test our
understanding of soil formation from the incipient stages (Oreskes et al. 1994;
Heuvelink and Webster 2001).

The mechanistic modelling of soil formation encounters several difficulties:

– The variation of the factors of soil formation over the timescale of soil formation,
affecting the rate of the processes, but as well the processes themselves of soil
formation:

• Variation of climate conditions in the past and the difficulty to reconstruct
those

• Changes in soil genesis processes occurring over time, e.g. changes in land
use at the Holocene, recent mechanization (Sommer et al. 2008), changes in
vegetation due to climate changes or changes in soil properties, etc.

http://dx.doi.org/10.1007/978-3-319-63439-5_18
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• The integration of processes into a single model when the level of temporal
resolution is not the same (e.g. organic matter input and decay vs. particle size
evolution)

– A good knowledge of the modelling of some processes (in particular biogeo-
chemical processes), but a limited knowledge for others (e.g. bioturbation, clay
migration, physical fractionation).

– A difficulty to validate these models due to the large temporal scales involved.
One of the solutions proposed is to work specifically on chronosequences which
we discussed in the previous chapter.

Only a few studies have emerged to address this purpose since the founding
theoretical work developed by Kirkby (1977). Two approaches can be envisaged:
using existing sub-models and merging them in a single soil profile model or
modelling soil profile evolution using simple equations that limit the number
of input parameters with the aim to remain sufficiently generic and simple. An
illustration of the first approach is the work performed by Finke and Hutson
(2008) and Finke (2012). They model the evolution of soils from loose parent
material by integrating two existing sub-models (focusing on carbon dynamics
and biogeochemistry, respectively) and adding new soil formation processes. The
second approach can be illustrated by the work performed by Salvador-Blanes et al.
(2007), where soils developed from hard bedrock and are modelled using as a basis
the work performed by Minasny and McBratney (1999, 2001).

19.2.1 The Founding Work of M. J. Kirkby

Kirkby (1977, 1985) developed the first comprehensive mathematical model of soil
profile evolution. The basis for the soil profile modelling is here to consider the
‘proportion p of substance remaining’ at any depth, the value of p approaching 1
asymptotically at depth. In this model, there is no assumption about the exact limit
between soil and unweathered parent material. Processes such as change in the bulk
density of the soil, physical translocation of clays and particle size evolution are
discarded.

Three sub-models with different timescales are considered: organic matter,
nutrient cycling and the weathering profile. In situ processes linked with these sub-
models comprise nutrient uptake, organic matter input and decay through leaf-fall,
nutrient cycling, mixing of the topsoil, solute transfer through leaching and ionic
diffusion. A mechanical denudation rate, introducing geomorphic processes, is as
well considered. The soil chemistry is simplified to integrate all processes at once
and in a geomorphic perspective.
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19.2.1.1 Percolation

The percolation process is modelled as an annual flow proportional to the pore-
space available, the latter being considered as equal to the accumulated deficit of
weathered material. Annual evapotranspiration and total rainfall are specified as
input parameters. Evapotranspiration is a function of the distribution of roots that
follows an exponential decay with soil depth. This distribution is considered as
constant in the model. The amount of water percolating at any depth is a function of
rainfall less evapotranspiration.

19.2.1.2 Solubility

A key issue for modelling the solubility of the mineral constituents is that thermo-
dynamic equilibrium between solutes and soil composition is assumed: the water
residence times are considered long enough to approach equilibrium. The mineral
constituents of soils are simplified and considered as a mixture of their constituent
oxides. These dissolve independently to create ions, using Gibbs free energy values
that are empirically adjusted by comparing the values for the minerals and the sum
of those values considering their constituent oxides. Weathering at a given soil depth
is a function of the quantity of water passing through, combined with values of
partial pressure of CO2 linked with the vegetation cover. Simulations show that soils
formed from various parent materials are all eventually enriched in sesquioxides
after a variable duration. Both the vegetation and the climate component are strongly
affecting the degree of weathering through the partial pressure of CO2 and the
accumulated flow, respectively.

19.2.1.3 Leaching

The leaching process is only considered for the inorganic profile. As for the
organic profile, nutrients are only released through decomposition. The total solute
concentration in the inorganic profile for a given proportion of substance remaining
is considered as equivalent to the product of the difference in concentration of
inorganic materials relative to the weathering profile and their solubility.

19.2.1.4 Ionic Diffusion and Organic Mixing

Ionic diffusion allows a redistribution of solutes in the soil profile, proportionally
to the concentration gradient. It is a key process in areas where the flow of water
is very low to allow weathering, especially close to the unweathered bedrock. The
ionic diffusion coefficient is here defined as a function of the porosity of the soil.
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The organic mixing process is modelled as a diffusion process of soil material
through the burrowing activity of the soil fauna. It decreases exponentially with
depth. Therefore, while organic mixing is a dominant process close to the surface,
ionic diffusion is dominant at depth.

19.2.1.5 Nutrient Uptake, Leaf-Fall and Organic Matter Decomposition

Inorganic nutrients are supplied to plants through evapotranspiration, without
considering seasonal variations. The total uptake of a nutrient is approached as the
product of the ion concentration and of evapotranspiration rate. These nutrients
are considered to be taken only from the inorganic part of the soil. The model
considers that there is a constant proportion of plant biomass that falls annually.
Only aboveground biomass input is considered. An equilibrium rate balancing
uptake is reached over 25 years in the model. Organic matter decomposition rates are
considered as constant for a given climate, whatever the organic matter composition.
This rate is set at 0.2 a�1 for a climate with a mean annual temperature of 10 ıC.

The equations of these processes are combined whenever relevant in the three
sub-models: organic matter, nutrient cycling and the weathering profile. The
simulations performed allow producing more or less thick soils, organic-enriched
topsoil, base-depleted topsoils in aridic conditions and more or less base-depleted
intermediate horizons (root uptake activity) with a base-rich topsoil in humid
conditions.

This pioneering work is the first attempt for the development of a comprehensive
model of soil profile evolution. However, no further work derived from this initial
attempt.

19.2.2 The Pedogen Model

Salvador-Blanes et al. (2007, 2011) designed the Pedogen model of soil formation
at the profile scale. The aim here was an attempt to translate the pedologist’s
approach – corresponding to a general phenomenological model – to a quantitative
model of the key soil genesis processes. The idea is here to quantitatively model the
transformation of a hard rock into soil material at the profile scale through various
pedological processes that result in mineralogical transformations, organic matter
input and decay and the translocation of solid or dissolved matter. In that respect, the
model focuses on physical and chemical weathering, bioturbation, organic matter
input and decay (Figs. 19.9 and 19.10) and on the retroactions between these
processes with time steps of several decades to centuries that require simplifications
in the processes modelled.
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Fig. 19.10 Example of the Pedogen model outputs: bulk density, coarse fraction, particle size and
mineralogy in the soil profile after 10,000, 20,000, 30,000, 40,000 and 80,000 years (T topsoil, I
intermediate, S subsoil horizon) (After Salvador-Blanes et al. 2007, used with permission)
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19.2.2.1 Release of Regolith

The model is based on lowering rate of the bedrock surface that follows a negative
exponential decline with increasing soil thickness (Minasny and McBratney 1999).
Therefore, at each time step, a given quantity of regolith is released by the bedrock
and constitutes a so-called layer with a given thickness. This layer is submitted at
each subsequent time step to weathering, bioturbation and organic matter input and
decay. The aim is here to follow the evolution of each layer; the sum of these layers
constitutes the soil profile.

19.2.2.2 Physical Weathering of Coarse Fragments

The regolith released by the bedrock is considered to be made of spherical coarse
fragments of a given size fraction. These rock grains, which are an assemblage of
minerals, are considered to be submitted to physical weathering only, as the surface
in contact with weathering agents is supposed to be negligible. The probability that
fragments will break decreases with decreasing size, due to the fact that smaller
particles contain fewer defects (Sharmeen and Willgoose 2006). Therefore, they
break down to smaller fragments of various sizes according to first-order kinetic
reactions. Once these fragments reach the size of 2 mm, they pertain to the fine
fraction of the soil and are submitted to both physical and chemical weathering.

19.2.2.3 Physical and Chemical Weathering of the Fine Fraction

The intensity of physical and chemical weathering of the fine fraction is a function
of the mineral type. For each of the defined layers, the fine fraction is divided into
1000 classes from 1000 to 1 �m that correspond to the radius of the particles as they
are considered spherical. This approach is similar to the one developed by Legros
and Pedro (1985). All the individual mineral particles resulting from the physical
fractionation of the coarse fraction are first considered to have an initial 1000 �m
radius.

The physical weathering of the fine fraction consists of the potential microdi-
vision of a mineral into smaller particles. This microdivision is programmed as a
conditional test based on the resistance of minerals to fractionation with a stochastic
component. This resistance varies as well according to the size of the particle and
its depth in the soil profile. The chemical weathering is assumed to consist in a
congruent dissolution: the number of moles of a given mineral that are weathered
is the product of its weathering rate constant and its surface area (White et al.
1996). The total surface area of the minerals corresponds here to the sum of the
surface area of the spheres of a given mineral that compose a soil layer. Roughness
and an internal porosity factor can be implemented to account for the nonspherical
shape of the minerals, resulting in an underestimation of their surface area (White
et al. 1996). To summarize, the quantity of the primary mineral that is weathered,
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if relevant, the quantity of secondary minerals formed and finally the new radius of
the weathered primary mineral and its redistribution in the relevant size class are
calculated for each class, of each layer and at each time step.

19.2.2.4 Bioturbation

The horizonation of in situ soil profiles results from translocation processes of
soil material within the profile. Bioturbation is one of the processes that allows
translocation of soil particles between horizons due to animals and plants (Hole
1981) and is addressed in this model. This process can be summarized as the
homogenization of the topsoil and material transport between the subsoil and
the topsoil (Müller-Lemans and van Dorp 1996). The amount of soil material
translocated within the soil varies greatly according to several parameters. The
model accounts for the maximum mass of soil translocated up and downwards,
using data on surface casting (e.g. 1–5 kg m�2 year�1, Paton et al. 1995), the coarse
fragment content as a limiting factor to bioturbation and the position of the layer in
the soil profile, as bioturbation rates decrease exponentially with depth in the soil.

19.2.2.5 Organic Matter Dynamics

Further developments of the initial model have been made considering the organic
matter dynamics (Salvador-Blanes et al. 2011). Organic matter dynamics are
implemented through the application of a simple one-compartment model (Hénin
and Dupuis 1945). Although simple, the model has, for example, been used for
modelling the evolution of organic carbon contents at the landscape scale (Walter
et al. 2003). This one-compartment model is moreover simple to use for time steps
of the order of several decades to centuries. The input parameters to be addressed
relate to input of fresh organic carbon to soil, organic carbon incorporation to the
soil profile and mineralisation dynamics.

Fresh organic carbon input to soils depends on plant production that itself
depends on climate and edaphic parameters. The annual input can therefore be
approached by considering it equivalent to net primary productivity (NPP), for
which many data exist in the literature. While vegetation is a buffer to the transfer
of carbon from the atmosphere to the soil compartment, the model, with time steps
of several decades to a century, allows to discard this issue. The simple global
Miami model (Leith 1975) that links NPP to mean yearly temperature and rainfall
has been used in Pedogen. Organic carbon production being strongly linked to soil
moisture and nutrient availability, NPP values have been limited using soil available
water content (AWC) as a proxy when rainfall is a limiting factor (annual potential
evapotranspiration > rainfall), with threshold values equivalent to the approach in
the TRIFFID model (Cox 2001). The soil AWC is calculated at each time step using
a PTF linking field capacity and permanent wilting point to several soil properties.
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The organic carbon incorporation to soil accounts for the root/shoot ratio (r/s) and
the input depth distribution in the soil profile. Constant averaged r/s values for given
biomes are used (Jackson et al. 1996), according to the location of the modelled
profile on the earth. The input depth distribution of organic carbon in the soil profile
is correlated to the root depth distribution. This distribution varies according to the
vegetation communities; it is modelled as a negative exponential decline with depth
in the soil (Gale and Grigal 1987), according to the biome where the soil profile is
located. Such an approach to constrain the input of OC according to soil depth in a
numerical simulation of organic carbon dynamics has already been used by Elzein
and Balesdent (1995). The mineralization dynamics is determined by using values
of isohumic coefficients and mineralization rates given in the literature (Bayer et al.
2006).

19.2.2.6 Strain

Several processes occur in the soil that lead to strain, e.g. a collapse or a dilation of
the soil (increased weathering, bioturbation, arrangement of soil particles into peds,
incorporation of organic matter). This has in turn a consequence of the intensity of
the processes modelled. To account for these changes, the bulk density of the layers
in the soil profile is calculated at each time step according to one of the numerous
bulk density PTFs available, which links bulk density to particle size properties,
depth in the soil (Tranter et al. 2007).

Pedogen is a simple and ‘open’ model (additional processes can be incor-
porated), integrative of many complex pedogenetic processes, that requires few
input parameters and can be adapted and implemented in a 2D/3D model as
shown in the latter section of this chapter. Recent developments of this model,
which incorporate the organic matter dynamics, allow an integration and interaction
between processes with very different dynamics (physical and chemical weathering
vs. bioturbation/organic matter), allowing to make a link with ecosystem modelling.

19.2.3 The SoilGen Model

Finke and Hutson (2008) followed by Finke (2012) devised a soil profile model
called SoilGen. This model can be assimilated to a solute transport model that
aims at simulating soil profile development over unconsolidated parent materials,
accounting for factors of soil formation (Finke 2012). It is one of the few complete
soil evolution models that simulates the changes in soil properties over millennium
timescales, taking into account a wide range of processes (Opolot et al. 2015). As
the processes occurring in the soil operate at very different timescales, they are
modelled in SoilGen according to differing time steps (Finke and Hutson 2008;
Finke 2012): milliseconds to hourly time steps (chemical and transport processes),
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hourly time steps (heat flow and physical weathering), daily time steps (mineral
weathering and organic matter dynamics) and yearly time steps (bioturbation,
erosion/sedimentation and fertilization).

The description below is largely based on Opolot et al. (2015) that provides
a complete summary of the SoilGen model, which was originally thoroughly
described in Finke and Hutson (2008) and Finke (2012).

19.2.3.1 Water, Solute and Heat Transfer

Water, solute and heat transfers are based on the concepts of the LEACH-C code
(Hutson 2003). The model solves the Richardson equation for the unsaturated
vertical water flow, the convection/dispersion equation of the transfer of solutes
and the heat flow equation for temperature distribution. Input parameters such as
precipitation and evapotranspiration are corrected according to the local slope and
exposition of the modelled profile.

19.2.3.2 Soil Chemical System and Chemical Equilibria

The model chemical system is divided into five phases: solution, precipitated,
exchange, organic and unweathered phases. The input of ions to the solution is
due to the dissolution of primary minerals, the decomposition of organic matter
and external inputs through atmospheric deposition and fertilization. The removal
of ions from the soil solution is due to plant uptake, leaching and precipitation. The
equilibrium of the soil solution with precipitated and exchange phases is ensured
by the application of several solubility laws and rate constants, with calculations
at short time steps (Finke and Hutson 2008). The cations are adsorbed onto the
solid phase by a Gapon exchange mechanism, and the exchange capacity is defined
according to a regression equation combining organic carbon and clay contents,
according to Foth and Ellis (1996), modified by a factor matching the initial CEC in
the simulated pedon. However, the effect of pH on the CEC is not yet implemented.

19.2.3.3 Weathering Processes

Both physical and chemical weathering processes are described. Physical weather-
ing processes are due to the strain caused by temperature gradients. The reduction
in grain size is expressed by the probabilistic break-up of particles, as in Salvador-
Blanes et al. (2007). Here, 12 size classes in the fine fraction (<2 mm) are
considered. The probabilistic process is implemented as the splitting probability
of a particle following a Bernoulli process according to the temperature gradient
over a given time interval. However, this splitting process is restricted to fine,
unconsolidated material. Chemical weathering is the major source of cations in
nonagricultural soils. Here anorthite, chlorite, microcline and albite are considered
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as major pools of Ca2C, Mg2C, KC and NaC, respectively. The weathering flux
of each of these cations is defined as in Kros (2002) as a function of soil bulk
density, the soil layer thickness, the volumic hydrogen concentration, a constant
representing the effect of pH on the weathering rate and finally the content of the
considered element in the primary mineral. The weathering flux of Al is determined
considering a congruent weathering of the aforementioned minerals.

19.2.3.4 Vegetation, Carbon Cycling and Plant Uptake Processes

SoilGen allows the interaction between the soil and the vegetation through annual
litter input, carbon cycling and ion uptake, according to four vegetation types
(grass/scrub, agriculture, conifers, deciduous wood) (Finke and Hutson 2008). The
carbon cycling is simulated according to the RothC-26.3 model (Jenkinson and
Coleman 1994).

19.2.3.5 Soil Phase Redistribution Processes

Solid phase redistribution processes are considered through several aspects. The
clay migration process is extensively described in the model, combining detach-
ment, dispersion, transportation and deposition processes. The detachment process
occurs at the soil surface through the impact of raindrops and is modelled according
to Jarvis et al. (1999) modified by Finke (2012). The dispersion process is described
both at the surface and within the soil profile, when the solute concentration
decreases below a threshold value. Finally, the filtering process, defined as the
entrapment of clay particles in small pores, is based on calculated pore water
velocities. The bioturbation process is described as an incomplete mixing process,
whereas tillage is considered as an extreme bioturbation process within the surface
of the soil profile (Finke and Hutson 2008). Other processes, such as erosion
or sedimentation, which result in the addition or removal of soil material at the
surface of the soil profile and dissolution and precipitation of calcite and gypsum
are described as well. However, the collapse and/or dilation through these various
processes are not accounted for in the model.

19.2.3.6 Applications of the SoilGen Model

Successful applications of the SoilGen model have been performed, both
at the profile and at the landscape scale. At the profile scale, the model
was initially implemented to demonstrate its ability to simulate the effect of
climate/vegetation/organisms on the soil formation on calcareous loess in Belgium
and Hungary (Finke and Hutson 2008). Further developments of the model allowed
to test its sensitivity to historic climatic fluctuations in different topographic
conditions over a similar parent material (Finke 2012). A quality test of the
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model was performed on soil chronosequences developed in marine sediments
in Norway (Sauer et al. 2012), which showed that the model fitted well for
some soil properties such as particle size distribution, but underestimated some
other properties. Discrepancies were analysed, and possible improvements of the
model were suggested, such as the description of soil structure formation. At the
landscape scale, the model was applied over 96 soil profiles disseminated over
584 km2 in Northern Belgium (Zwertvaegher et al. (2013). This application allowed
to reconstruct soil characteristics (texture, bulk density, organic carbon, calcite
content, pH) that fitted well with the current properties and allowed to reconstruct
soil characteristic maps at specific points in the past. Finally, the model was applied
over 108 soil profiles to test the possible effect of tree uprooting on some soil
properties (Finke et al. 2014). The simulations, coupled with regression kriging,
allowed to prove that tree uprooting is an important process determining horizon
thicknesses.

The SoilGen model is probably the most complete integrated soil profile model
to date. It has been tested both at the pedon and landscape scales and confronted
to actual soil properties, with good matches for some soil properties and some
discrepancies for others. Further developments include the extension to additional
primary minerals and elements, to the formation of secondary minerals and to the
further development of the interactions between soil and vegetation (Opolot et al.
2015).

19.3 Soil-Landscape Models

19.3.1 Soil-Landscape Models

Recent developments in process modelling focus on mechanistic simulations of
soil formation in the landscape based on the principals of mass balance. Huggett’s
(1975) homomorphic modelling approach can perhaps be regarded as the first
representation of soil-landscape evolution modelling. Huggett (1975) proposed to
model the evolution of a soil system in a three-dimensional way on the catena scale
over millennial timescales, considering also the formation of soil horizons over time.
He explained further that concaving contours in a downslope direction should lead
to convergent flow lines whereas convex contours should lead to divergent flow
lines and that all flow lines should converge in hollows and diverge over spurs. All
‘flowlines’ should then join in one complex network, based on first- and second-
order streamlines.

The simplest model of soil-landscape evolution that has been formulated imple-
ments the change in elevation as a function of material transport (Stockmann et al.
2011):

@z

@t
D �rqs (19.16)
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Fig. 19.11 Schematic representation of a simple soil-landscape model

where z is the elevation, t is time, qs is the material flux and r is a partial derivative
vector. Dietrich et al. (1995) and later Heimsath et al. (1997) introduced soil into the
continuity equation of mass transport along a hillslope (Eq. 19.16):

�s
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D ��r
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where h is soil thickness, �s and �r are the bulk densities of soil and rocks, e is the
elevation of the bedrock-soil interface, t is time and qs is the material flux in the
horizontal direction (Fig. 19.11).

Minasny and McBratney (1999) and following on Minasny and McBratney
(2001) used some of the basic concepts described in Huggett (1975) and Heimsath
et al. (1997) to introduce a two-dimensional rudimentary mechanistic pedogenetic
model. Based on a digital elevation model (DEM), pedogenesis is simulated by a
combination of several sub-models: (1) physical weathering starting from bedrock
employing the rate of exponential decline of soil production with increasing soil
thickness, (2) chemical weathering represented as a negative exponential function
of both soil thickness and time and (3) movement of soil material as characterized
by a diffusion transport model. The upscaling result of such an analysis is illustrated
in Fig. 19.12, whereby, after 10,000 years, soil accumulation is predominant in the
gullies compared with the ridges, where soil erodes.
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Fig. 19.12 Simulated soil formation in a landscape after 10,000 years, shading represents soil
thickness (m) (After Minasny and McBratney 2001)

19.3.2 Linking Landscape-Scale Models and Soil Profile-Scale
Models

While current soil models allow a detailed simulation at the profile level as
discussed in Sect. 19.2, they lack horizontal integration, with models from the
geomorphology community, where the most advanced LEMs include a wide array
of erosion processes and accurate description of erosion-deposition processes, but
lack attention to vertical soil formation processes.

One of the first attempts to such an integrated model was the model for integrated
soil development (MILESD) by Vanwalleghem et al. (2013). MILESD is a four-
layer model with five texture classes. It includes the main soil-forming processes:
physical weathering, chemical weathering, clay migration and neoformation, bio-
turbation and carbon cycling. Landscape evolution is represented by concentrated
flow erosion and creep, allowing for selective transport and deposition and with
negative feedbacks from stoniness and vegetation on the erosion rates. The model
was developed so that soil formation and evolution could be modelled with enough
detail while at the same time reducing runtime to allow landscape-scale simulations.
Potential drawbacks of this simplified approach include the fact that the soil solution
and soil chemistry are not included explicitly. Therefore, all soil-forming processes
need to be calibrated on a site-specific basis.

Vanwalleghem et al. (2013) applied MILESD to a 6.25 km2 study area in
Werrikimbe National Park (NSW, Australia) where it was validated against field
profile data (Fig. 19.13). The results showed that trends in soil thickness were
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Fig. 19.13 Evolution of soil horizons in four different landscape positions, from erosive over
stable (steady-state) to depositional for a constant erosion rate during the first 50,000 years
followed by higher erosion period during the last 10,000 years

predicted well along a catena. Soil texture and bulk density could be predicted
reasonably well, with errors in the order of 10%. Figure 19.13 clearly shows
the potential of these types of integrated models. The evolution of soil horizons
over time is shown for different positions in the landscape, ranging from erosive
over stable to depositional. The results show a model run to 60,000 years where
a constant erosion rate was followed by a higher erosion rate during the last
10,000 years. It can be seen how important differences along the catena emerge
with a stable soil profile on the plateau (a), an erosive hillslope where the top two
horizons disappear altogether (b), a hillslope deposition site that eventually erodes
when erosion rates increase at the end of the simulation (c) and a deep depositional
soil in the valley bottom (d).

Figure 19.14 shows the result of soil formation-erosion interactions on the orga-
nization and evolution of soil properties in the entire catchment. Increasing erosion
rate and increasing age of the landscape both lead to an increase in semivariance,
which implies a higher spatial variability over time. In this particular context, it
seems that erosion and deposition are key drivers of soilscape heterogeneity as the
semivariogram responds strongly to increasing erosion rates.

Temme and Vanwalleghem (2016) presented a new soil-landscape model, called
LORICA, that integrated MILESD with the existing landscape evolution model
LAPSUS. The coupling with a more advanced landscape evolution model allows
taking into account different erosion processes, e.g. landsliding, which improves the
applicability of the soilscape model to a wider range of environments. With respect
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Fig. 19.14 Evolution of the spatial variability of clay content in topsoil (0–0.2 m) as a function of
time and erosion rate. Erosion rate increases from left to right

to the representation of soil genesis, the main novelty is the elimination of the fixed
layer limitation. LORICA uses an advanced multilayer approach, where new layers
are generated or existing layers are joined on a need-be basis. van der Meij et al.
(2015) applied LORICA to simulate the development of Arctic soils, which allowed
to single out the importance of aeolian deposition.

Another suite of advanced, fully three-dimensional soilscape models was devel-
oped by Cohen et al. (2010, 2015) and Welivitiya et al. (2016). Both mARM3D
(Cohen et al. 2010) and its extension, mARM5D (Cohen et al. 2015), simulate
the evolution of soil particle size distribution via physical weathering, profile
depth as a function of weathering, aeolian deposition and diffusive and fluvial
sediment transport. With the model SSSPAM, the latest version in this model family,
Welivitiya et al. (2016) performed an extensive sensitivity analysis, generalizing the
physical dependence of the relationship between contributing area, local slope, and
the surface soil particle size distribution.

It is clear from the previous discussion that the existing soilscape models will
need to be developed and tested further. The issue of the ideal number of soil
horizons to consider is not trivial. Although, ideally, an infinite number of horizons
assure a full representation of the profile’s complexity, increasing the number
of horizons in any model will imply increasing computation time significantly.
Moreover, soil scientists often record field data with a number of limited soil
horizons. This implies that in a validation exercise, the results of a model with
many horizons have to be ‘converted back’ into a profile with less horizons. To
that extent, the four-layer approach of the simple MILESD model corresponds to
the way soil profiles are described in the field. Several processes are currently
represented poorly or not at all in soilscape models. Soil chemical weathering
is probably the most critical process that is currently represented in an overly
simplified manner. Several studies, both in the laboratory (e.g. Maher 2010) and
in field conditions (e.g. Schoonejans et al. 2016), have shown the dependency of
chemical weathering on soil hydrological fluxes. Pore water dynamics are currently
not explicitly represented in soilscape models. This limitation could be solved by
coupling more detailed point-based models, such as SoilGen, to landscape evolution
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models, as proposed by Opolot et al. (2015). This would be increasingly beneficial in
terms of computational resources in landscapes where landscape evolution is several
orders of magnitude faster compared to soil formation processes or vice versa, and
the exchange of input-output data between models is not necessary during every
model time step.

So clearly, much work is required to better model the effect of climate and
organisms on the soil’s chemistry, mineralogy, physics and biology (Chadwick et
al. 2003). It is also essential to integrate soil processes, which are usually only
represented at a profile scale, with landscape processes (Viaud et al. 2010).

References

Ahnert F (1977) Some comments on the quantitative formulation of geomorphological processes
in a theoretical model. Earth Surface Processes 2:191–201

Aitken MJ (1998) An introduction to optical dating. The dating of quaternary sediments by the use
of photon-stimulated luminescence. Oxford University Press, Oxford

Barrett LR, Schaetzl RJ (1992) An examination of podzolization near Lake Michigan using
chronofunctions. Can J Soil Sci 72:527–541

Bayer C, Lovato T, Dieckow J, Zanatta JA, Mielniczuk J (2006) A method for estimating
coefficients of soil organic matter dynamics based on long-term experiments. Soil Tillage Res
91:217–226

Brantley SL, Megonigal JP, Scatena FN, Balogh-Brunstad Z, Barnes RT, Bruns MA, Van Cappellen
P, Dontsova K, Hartnett HE, Hartshorn AS, Heimsath A, Herndon E, Jin L, Keller CK, Leake
JR, Mcdowell WH, Meinzer FC, Mozdzer TJ, Petsch S, Pett-Ridge J, Pregitzer KS, Raymond
PA, Riebe C, Shumaker S, Sutton-Grier A, Walter R, Yoo K (2011) Twelve testable hypotheses
on the geobiology of weathering. Geobiology 9:140–165

Brimhall GH, Dietrich WE (1987) Constitutive mass balance relations between chemical compo-
sition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on
weathering and pedogenesis. Geochim Cosmochim Acta 51:567–587

Burke BC, Heimsath AM, White AF (2007) Coupling chemical weathering with soil production
across soil-mantled landscapes. Earth Surf Process Landf 32:853–873

Burke BC, Heimsath AM, Dixon JL, Chappell J, Yoo K (2009) Weathering the escarpment:
chemical and physical rates and processes, south-eastern Australia. Earth Surf Process Landf
34:768–785

Chadwick OA, Gavenda RT, Kelly EF, Ziegler K, Olson CG, Elliott WC, Hendricks DM (2003)
The impact of climate on the biogeochemical functioning of volcanic soils. Chem Geol
202:195–223

Chmeleff J, von Blanckenburg F, Kossert K, Jakob D (2009) Determination of the 10Be half-life by
multi collector ICP-mass spectrometry and liquid scintillation counting. Goldschmidt abstracts
2009 – C. Geochim Cosmochim Acta 73:A221–A221

Cohen S, Willgoose G, Hancock G (2010) The mARM3D spatially distributed soil evolution
model: three-dimensional model framework and analysis of hillslope and landform responses.
J Geophys Res Earth 115:F04013

Cohen S, Willgoose G, Svoray T, Hancock G, Sela S (2015) The effects of sediment transport,
weathering, and aeolian mechanisms on soil evolution. J Geophys Res Earth 120:260–274

Cox P (2001) Description of the “TRIFFID” dynamic global vegetation model. Technical note 24.
Hadley Centre, Met Office, London

Dietrich WE, Reiss R, Hsu M-L, Montgomery DR (1995) A process-based model for colluvial soil
depth and shallow landsliding using digital elevation data. Hydrol Process 9:383–400



19 One-, Two- and Three-Dimensional Pedogenetic Models 589

Dijkerman JC (1974) Pedology as a science: the role of data, models and theories in the study of
natural soil systems. Geoderma 11:73–93

Dixon JL, Heimsath AM, Amundson R (2009) The critical role of climate and saprolite weathering
in landscape evolution. Earth Surf Process Landf 34:1507–1521

Dörr H (1995) Application of 210Pb in soils. J Paleolimnol 13:157–168
Dosseto A, Turner SP, Chappell J (2008) The evolution of weathering profiles through time: new

insights from uranium-series isotopes. Earth Planet Sci Lett 274:359–371
Dunne J, Elmore D, Muzikar P (1999) Scaling factors for the rates of production of cosmogenic

nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology
27:3–11

Egli M, Dahms D, Norton K (2014) Soil formation rates on silicate parent material in alpine
environments: different approaches-different results? Geoderma 213:320–333

Elzein A, Balesdent J (1995) Mechanistic simulation of vertical distribution of carbon concentra-
tions and residence times in soils. Soil Sci Soc Am J 59:1328–1335

Finke PA (2012) Modeling the genesis of Luvisols as a function of topographic position in loess
parent material. Quat Int 265:3–17

Finke PA, Hutson JL (2008) Modelling soil genesis in calcareous loess. Geoderma 145:462–479
Finke PA, Vanwalleghem T, Opolot E, Poesen J, Deckers J (2014) Estimating the effect of

tree uprooting on variation of soil horizon depth by confronting pedogenetic simulations to
measurements in a Belgian loess area. J Geophys Res-Earth Surf 118:1–16

Foth HD, Ellis BG (1996) Soil fertility, 2nd edn. CRC Press, Lewis
Furbish DJ, Fagherazzi S (2001) Stability of creeping soil and implications for hillslope evolution.

Water Resour Res 37:2607–2618
Gabet EJ, Mudd SM (2010) Bedrock erosion by root fracture and tree throw: a coupled

biogeomorphic model to explore the humped soil production function and the persistence of
hillslope soils. J Geophys Res Earth 115:F04005

Gabet EJ, Reichman OJ, Seabloom EW (2003) The effects of bioturbation on soil processes and
sediment transport. Annu Rev Earth Planet Sci 31:249–274

Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to
successional status. Can J For Res 17:829–834

Gilbert GK (1877) Report on the geology of the Henry Mountains (Utah). United States Geological
Survey, Washington, DC

Granger DE, Muzikar PF (2001) Dating sediment burial with in situ-produced cosmogenic
nuclides: theory, techniques, and limitations. Earth Planet Sci Lett 188:269–281

Green EG, Dietrich WE, Banfield JF (2006) Quantification of chemical weathering rates across an
actively eroding hillslope. Earth Planet Sci Lett 242:155–169

Hay RL (1960) Rate of clay formation and mineral alteration in a 4000-year-old volcanic ash soil
on St. Vincent, B.W.I. Am J Sci 258:354–368

He Q, Walling DE (1996) Interpreting particle size effects in the adsorption of 137Cs and
unsupported 210Pb by mineral soils and sediments. J Environ Radioact 30:117–137

Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC (1997) The soil production function and
landscape equilibrium. Nature 388:358–361

Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC (1999) Cosmogenic nuclides, topography,
and the spatial variation of soil depth. Geomorphology 27:151–172

Heimsath AM, Fink D, Hancock GR (2009) The ‘humped’ soil production function: eroding
Arnhem Land, Australia. Earth Surf Process Landf 34:1674–1684

Hénin S, Dupuis M (1945) Essai de bilan de la matière organique du sol. Ann Agronomiques
11:17–29

Heuvelink GBM, Webster R (2001) Modelling soil variation: past, present and future. Geoderma
100:269–301

Hole FD (1981) Effects of animals on soil. Geoderma 25:75–112
Hoosbeek MR (1994) Towards the quantitative modeling of pedogenesis: a review – reply –

pedology beyond the soil-landscape paradigm: pedodynamics and the connection to other
sciences. Geoderma 63:303–307



590 U. Stockmann et al.

Huggett RJ (1975) Soil landscape systems: a model of soil genesis. Geoderma 13:1–22
Huggett RJ (1998) Soil chronosequences, soil development, and soil evolution: a critical review.

Catena 32:155–172
Humphreys GS, Wilkinson MT (2007) The soil production function: a brief history and its

rediscovery. Geoderma 139:73–78
Hutson JL (2003) LEACHM e a process-based model of water and solute movement, transforma-

tions, plant uptake and chemical reactions in the unsaturated zone. Version 4. Research series no
R03-1 (Dept. of Crop and Soil Sciences, Cornell University, Ithaca, NY). J Soil Sci 36:97–121

Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global
analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

Jagercikova M, Evrard O, Balesdent J, Lefèvre I, Cornu S (2014) Modeling the migration of fallout
radionuclides to quantify the contemporary transfer of fine particles in Luvisol profiles under
different land uses and farming practices. Soil Tillage Res 140:82–97

Jarvis NJ, Villholth KG, Ulén B (1999) Modelling particle mobilization and leaching in macrop-
orous soil. Eur J Soil Sci 50:621–632

Jenkinson DS, Coleman K (1994) Calculating the annual input of organic matter to soil from
measurements of total organic carbon and radiocarbon. Eur J Soil Sci 45:167–174

Jenny H (1941) Factors of soil formation. A system of quantitative pedology. McGraw-Hill Book
Company, New York

Kaste JM, Heimsath AM, Bostick BC (2007) Short-term soil mixing quantified with fallout
radionuclides. Geology 35:243–246

Kirkby MJ (1977) Soil development models as a component of slope models. Earth Surface Process
2:203–230

Kirkby MJ (1985) A basis for soil profile modelling in a geomorphic context. J Soil Sci 36:97–121
Kitayama K, Edward AGS, Drake DR, Mueller-Dombois D (1997a) Fate of a wet montane forest

during soil ageing in Hawaii. J Ecol 85:669–679
Kitayama K, Schuur EAG, Drake DR, Mueller-Dombois D (1997b) Fate of a wet montane forest

during soil ageing in Hawaii. J Ecol 85:669–679
Kros J (2002) Evaluation of biogeochemical models at local and regional scale. PhD thesis.

Wageningen University, Wageningen, The Netherlands
Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion

models. Earth Planet Sci Lett 104:424–439
Larsen IJ, Almond PC, Eger A, Stone JO, Montgomery DR, Malcolm B (2014) Rapid soil

production and weathering in the southern alps, New Zealand. Science 343:637–640
Legros JP, Pedro G (1985) The causes of particle-size distribution in soil profiles derived from

crystalline rocks, France. Geoderma 36:15–25
Leith H (1975) Modelling the primary productivity of the world. In: Leith H, Whittaker RH (eds)

Primary productivity of the biosphere. Springer-Verlag, Berlin
Levine ER, Knox RG (1994) A comprehensive framework for modeling soil genesis. In: Bryant

RB, Arnold RW (eds) Quantitative modeling of soil forming processes. Soil Science Society of
America, Madison, pp 77–89. SSSA Special Publication No 39

Ludwig W, Probst JL (1998) River sediment discharge to the oceans: present-day controls and
global budget. Am J Sci 298:265–295

Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout
radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J Environ
Radioact 99:1799–1807

Maher K (2010) The dependence of chemical weathering rates on fluid residence time. Earth Planet
Sci Lett 294:101–110

Minasny B, McBratney AB (1999) A rudimentary mechanistic model for soil production and
landscape development. Geoderma 90:3–21

Minasny B, McBratney AB (2001) A rudimentary mechanistic model for soil production and
landscape development II. A two-dimensional model incorporating chemical weathering.
Geoderma 103:161–179



19 One-, Two- and Three-Dimensional Pedogenetic Models 591

Minasny B, McBratney AB (2006) Mechanistic soil-landscape modelling as an approach to
developing pedogenetic classifications. Geoderma 133:138–149

Minasny B, Finke P, Stockmann U, Vanwalleghem T, McBratney AB (2015) Resolving the integral
connection between pedogenesis and landscape evolution. Earth Sci Rev 150:102–120

Montgomery DR (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci
104:13268–13272

Müller-Lemans H, van Dorp F (1996) Bioturbation as a mechanism for radionuclide transport in
soil: relevance of earthworms. J Environ Radioact 31:7–20

Nishiizumi K, Kohl CP, Arnold JR, Klein J, Fink D, Middleton R (1991) Cosmic ray produced 10Be
and 26Al in Antarctic rocks: exposure and erosion history. Earth Planet Sci Lett 104:440–454

NRC (2010) Landscapes on the edge. New horizons for research on Earth’s surface. The National
Academy Press, Washington, DC

Opolot E, Yu YY, Finke PA (2015) Modeling soil genesis at pedon and landscape scales:
achievements and problems. Quat Int 376:34–46

Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation and confirmation of
numerical models in the earth sciences. Science 263:641–646

Paton TR, Humphreys GS, Mitchell PB (1995) Soils: a new global view. University College
London Press, London

Portenga EW, Bierman PR (2011) Understanding Earth’s eroding surface with 10Be. GSA Today
21:4–10

Riebe CS, Kirchner JW, Finkel RC (2003) Long-term rates of chemical weathering and physical
erosion from cosmogenic nuclides and geochemical mass balance. Geochim Cosmochim Acta
67:4411–4427

Riebe CS, Kirchner JW, Finkel RC (2004a) Erosional and climatic effects on long-term chemical
weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett
224:547–562

Riebe CS, Kirchner JW, Finkel RC (2004b) Sharp decrease in long-term chemical weathering rates
along an altitudinal transect. Earth Planet Sci Lett 218:421–434

Salvador-Blanes S, Minasny B, McBratney AB (2007) Modelling long term in-situ soil profile
evolution – application to the genesis of soil profiles containing stone layers. Eur J Soil Sci
58:1535–1548

Salvador-Blanes S, Minasny B, McBratney AB (2011) Modelling soil formation at the profile scale.
European Geosciences Union General Assembly 2011. Geophys Res Abstr 13:EGU2011–
EG13012

Sauer D, Schellmann G, Stahr K (2007) A soil chronosequence in the semi-arid environment of
Patagonia (Argentina). Catena 71:382–393

Sauer D, Finke PA, Schülli-Maurer I, Sperstad R, Sørensen R, Høeg HI, Stahr K (2012) Testing a
soil development model against southern Norway soil chronosequences. Quat Int 265:18–31

Schaetzel RJ, Barrett LR, Winkler JA (1994) Choosing models for soil chronofunctions and fitting
them to data. Eur J Soil Sci 45:219–232

Schoonejans J, Vanacker V, Opfergelt S, Ameijeiras-Mariño Y, Christl M (2016) Kinetically
limited weathering at low denudation rates in semiarid climatic conditions. J Geophys Res
Earth 121:336–350

Sharmeen S, Willgoose GR (2006) The interaction between armouring and particle weathering for
eroding landscapes. Earth Surf Process Landf 31:1195–1210

Shouse M, Phillips J (2016) Soil deepening by trees and the effects of parent material. Geomor-
phology 269:1–7

Sommer M, Gerke HH, Deumlich D (2008) Modelling soil landscape genesis: a “time split”
approach for hummocky agricultural landscapes. Geoderma 145:480–493

Sparks DL (1995) 7 – Kinetics of soil chemical processes. Environmental soil chemistry.
Academic, Boston, pp 159–185

Stevens PR, Walker TW (1970) The chronosequence concept and soil formation. Q Rev Biol
45:333–350



592 U. Stockmann et al.

Stockmann U (2010) Quantifying processes of pedogenesis. A field study situated in the Wer-
rikimbe National Park in south-eastern Australia. Faculty of Agriculture, Food and Natural
Resources. The University of Sydney, p 234

Stockmann U, Minasny B, McBratney A (2011) Quantifying processes of pedogenesis. Adv Agron
113:1–74

Stockmann U, Minasny B, Pietsch TJ, McBratney AB (2013) Quantifying processes of pedogene-
sis using optically stimulated luminescence. Eur J Soil Sci 64:145–160

Stockmann U, Minasny B, McBratney AB (2014) How fast does soil grow? Geoderma 216:48–61
Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105:23,753–

723,759
Suresh PO, Dosseto A, Hesse PP, Handley HK (2013) Soil formation rates determined from

uranium-series isotope disequilibria in soil profiles from the southeastern Australian highlands.
Earth Planet Sci Lett 379:26–37

Sverdrup H, Warfvinge P (1993) Calculating field weathering rates using a mechanistic geochem-
ical model – profile. Appl Geochem 8:273–283

Syvitski JPM, Vorosmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of
terrestrial sediment to the global coastal ocean. Science 308:376–380

Temme AJAM, Vanwalleghem T (2016) LORICA – a new model for linking landscape and soil
profile evolution: development and sensitivity analysis. Comput Geosci 90(Part B):131–143

Tranter G, Minasny B, McBratney AB, Murphy B, McKenzie NJ, Grundy M (2007) Building
and testing conceptual and empirical models for predicting soil bulk density. Soil Use Manag
23:437–443

van der Meij WM, Temme AJAM, de Kleijn CMFJJ, Reimann T, Heuvelink GBM, Zwoliński
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Part VII
Applications of Pedometrics

“Consider what each soil will bear, and what each refuses.”

Virgil

Pedometrics has been considered a rather theoretical and methodological approach
to soil science. This final section presents a subsample of applications beyond
research. We recognise how the pedometric approach can be applied to agricultural,
environmental and wider problems.

Among the agricultural issues considered is precision agriculture, where infor-
mation on soil variation can be put directly to work on optimising management,
particularly inputs. From an environmental point of view, we are interested in
soil carbon, and soil change more generally, so we develop methods for improved
mapping, auditing and monitoring.

A key application of pedometrics is any endeavour that requires sampling in
space or time or both. Several chapters reflect on sampling particularly in relation
to soil evaluation and change.



Chapter 20
Site-Specific Crop Management

Brett Whelan

“naturam expelles furca, tamen usque recurret. ‘You may drive
out nature with a pitchfork, but she will always return’”.

Horace, Epistles i. x. 24, 65BC – 8BC

20.1 Introduction

This chapter takes a look at the impetus and main approaches for a crop management
system that utilises high-resolution spatial and temporal data derived mainly
from proximal and remote sensors. With the development of pedometrics and
the associated tools (e.g. kriging, multivariate techniques) providing the ability to
describe and understand soil variability in space and time (well explored in Chaps.
10, 11, 12, 13, 14 and 15), the concept of Precision Agriculture was born in the early
1990s (Robert 1993) as a practical crop management response to the impact of the
described soil variation on crop production.

The Precision Agriculture (PA) concept has developed into a philosophy of
managing variability within agricultural industries to improve profitability and/or
environmental impact in the short and long term, while minimising risk (Whelan and
McBratney 2000). The philosophy is now relevant to plant and animal agricultural
enterprises. Site-specific crop management (SSCM) is a form of PA that relates
to crop production, whereby decisions on resource application and agronomic
practices are improved to better match soil and crop requirements as they vary
in the field. In practice, it creates the opportunity to increase the number of
(correct) decisions per hectare/per season made in the business of crop management
(McBratney et al. 2005). SSCM is a logical step in the evolution of agricultural
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management systems towards increased efficiency of input use relative to production
quantity, minimised waste and improved product quality, with potential flow-on
benefits for improving marketability through digital records of management.

In a business sense these management decisions could be made at the scale
of the farm, field, within-field or even individual plants. Ultimately, the heart of
SSCM is the use of (and need for) fine-scale information on spatial (in the range of
metres to low tens of metres) and temporal variation in the production output/quality
and critical resource/terrain/environmental attributes of a cropping system. Initial
observations at a fine scale can be aggregated at various scales to inform decisions
at the various scales in the farm business.

Differentially corrected Global Navigation Satellite System (GNSS) receivers
and harvester-mounted crop yield and quality monitoring systems can provide the
data at the required spatial scale on actual production and terrain variability. Optical
and thermal remote and proximal sensing can provide data on crop production
surrogates. A number of proximal soil sensing systems are commercially available
that can match the survey scale of the production information (e.g. electromagnetic
induction, electrical resistivity and gamma radiometrics). These sensors provide
information on secondary soil properties (apparent electrical conductivity (ECa),
or gamma emissions) that have proven useful in combining with the productivity
and terrain data to direct physical site sampling for primary causes and explanations
of the variability in production (Taylor et al. 2007). Examples of the data obtainable
from the application of these systems are shown in Fig. 20.1.

20.2 Goals and General Strategy for Implementing SSCM

SSCM aims to use knowledge of the importance of changes in soil properties and
other factors on crop production and yield potential to better identify and understand
the reasons for observed changes in growth/yield within a field. The goal is then to
improve decision-making about the use of inputs such as fertilisers, agrochemicals,
soil ameliorants, water and energy to better match any spatial and temporal changes
in the requirements of the soil and crop. A better match should mean that inputs are
used efficiently, business profits are maximised and production risk and waste are
minimised.

The way that the important soil properties (soil texture, structure, depth, pH,
water, nutrients, organic matter), weed, pest and disease loads, terrain and past
management interact and vary across each field on each farm is unique. The spatial
and temporal scales at which data on these properties is gathered will impact on the
scale at which decisions can be made. These decisions may be at the farm level (i.e.
what fields are variable enough to warrant further investigation), the field level (what
is the actual optimal field average application) and the within-field level (should
different rates be applied within the one field).
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20.2.1 Variable-Rate Application (VRA) of Inputs

The variable-rate application (VRA) of inputs as a practical response to variation
in production potential requires that input rates be adjusted to match the identified
changing local requirements. VRA can be aimed at any rate-based operations that
influence crop yield and can be done with the help of variable-rate technology (VRT)
or by using manual switching or multi-pass applications. Using VRT makes the job
less stressful and allows more sophisticated positioning and rate adjustments. The
main target operations for VRA in grain cropping are:

• Fertiliser
• Soil ameliorants (lime, gypsum)
• Agrochemicals (herbicide, insecticide, fungicide)
• Sowing
• Tillage
• Irrigation

Ideally, the use of VRA should optimise both the economic and environmental
outcomes from a cropped field. In Australia, the economic considerations dominate
as there is little regulatory auditing on the levels of approved chemicals in the agri-
cultural environment. In many other countries, regulations make the environmental
outcome crucial (Van Grinsven et al. 2016). However, most crop producers are well
aware that maintaining a healthy environment is important for sustainability and
economic success.

The potential benefits of VRA are generally higher when:

• The amount of spatial variation is larger.
• The pattern of spatial variability tends more towards coherent patches. This

usually means fewer rate changes are required.
• The pattern of variability is driven by spatial rather than temporal factors, so it is

likely to be relatively stable from season to season and easier to formulate VRA
plans.

• The unit cost of input is high relative to the price paid for the crop.

Because of the site-specific nature of this variation, the best information for
determining SSCM options for each farm/field will undoubtedly come from within
its own boundaries. However, with the advent of improvements in data capture,
storage and distribution, research is exploring the possibilities of widening the data
usage to include local farm/farms and regional and national off-farm data. This
potential advance will be discussed in Sect. 20.4.
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20.2.2 A Generic Approach to SSCM

It is important to sort out what the best ‘average’ (or single treatment) management
options are for fields and crops before considering the need/requirements for
variably applying inputs. If the current single-rate treatments for fields on a farm
over- or underestimate requirements to get the best output at the whole-field or farm
scale, then substantial improvements in efficiencies, profit and risk management
will be gained by rectifying management at this scale. This can be achieved by the
following:

• Identifying any large-scale soil pH and sodicity/salinity issues. Soil samples,
taken from across the farm, should be analysed to correctly identify any required
treatment.

• Examining and improving, if required, the effectiveness of weed control strate-
gies.

• Elevation mapping using GNSS will allow field boundaries and working direc-
tions to be altered to improve water management if necessary.

• Using average yield information gathered for each crop to re-examine crop
yield goals on the farm and ensure average nutrient application is suitable.
Yield monitors can help here, especially if historical records are missing or the
concurrent use of off-farm delivery and on-farm storage makes linking tonnages
to specific fields difficult.

• Employing vehicle navigation aids (guidance or autosteer) which offer immedi-
ate benefits through reducing the overlap during fertiliser, sowing and chemical
operations and providing improvements in soil structure. Autosteer systems can
be used to sow into the inter-row between last year’s stubble to reduce the
incidence of root diseases, etc.

Once any alterations are put in place to optimise the ‘average’ or uniform
agronomy on a farm, the aim should then be to test whether SSCM can be used
to further improve management decisions on the farm. This requires that within an
area:

• The amount and pattern of variability in yield and soil conditions can be
measured/estimated with a degree of accuracy.

• Reasons for the variability can be determined.
• The agronomic implications of the variability and its causes present a practical

opportunity to vary management.

The easiest way to start this process is to investigate areas of high, average and
low production within fields. The mapped data from a yield monitoring system (e.g.
Fig. 20.1e) makes it easy to identify these areas, and the extent, and provides the
locations to then perform:

• A complete soil profile examination and analysis.
• Crop observation for disease or pests.
• Assessment of the position in the landscape (slope, hill, hollow).
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Ensure that the uniform-rate management options being used suit the 
average production potential of the farm. Correct any general problems with 
traffic/water management, soil pH or sodicity, fertiliser applications or 
weed/pest management.

Use maps of variability in soil, crop yield or biomass to get a better idea of 
the amount and pattern of variability across the farm. Determine if the 
variability warrants further exploration and management.

Gain an understanding of what is causing the variability and its 
consequences for input management by analysing soil and/or crop samples 
taken at locations that cover the range of observed variability.

Use this information to identify any areas where yield potential is being 
restricted by soil factors that can be changed. Variable-rate lime, gypsum, 
subsoil management or irrigation are options to be considered.

The amount and pattern of any remaining yield variability is mainly due to 
natural variation in yield potential in combination with weather conditions. 
If sampling of the soil/crop has shown build up or deficiencies in nutrients 
in association with this variability, then consider developing variable-rate 
application (VRA) plans for fertiliser where agronomically viable.

Improve farm production records with spatial information, use data for 
marketing improvements and work on managing quality to attract 
premiums.

Fig. 20.2 General strategy to drive the incorporation of SSCM on a farm

The focus here isn’t on providing a map of the actual soil/disease/pest variability
as this would invariably involve extensive, expensive sampling and analysis. Rather,
the goal is that the information gathered from the site analyses should be used
with the available maps, local agronomic understanding and advice to determine
whether the amount, pattern and causes of variability, along with the extent of
production variability, warrant changing from a uniform application of inputs. With
this understanding that local variability should be seen as the driving factor, it is
possible to provide a general strategy to consider for the incorporation of SSCM on
any farm (Fig. 20.2).
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20.3 Developing VRA Strategies for SSCM

At present, VRA can be used to deal with spatial variability in crop production at
three different scales:

• Whole-field variability
• Variability between potential management classes
• Variability within potential management classes

20.3.1 Whole-Field Variability

Input rate changes are made across a continuous range to deal with continuous
variability in crop requirements. This requires that the variability in requirements
can be determined accurately at a fine scale across a field. This type of operation
may utilise map-based or real-time VRT. In the case of map-based applications, a
prescription map for VRA of inputs may be derived from a single attribute map or
the combination of a number of maps. Single maps of variability can be used directly
to formulate management plans when the variability and its impact on management
operations are obvious and directly linked. Options available at present include the
following:

• Topography maps can be used to realign working directions, field boundaries or
seedbed formation to improve water management (Webb et al. 2004).

• In broadacre irrigated fields, topography maps can be used to derive cut/fill maps
for levelling purposes (SRA 2015).

• Crop yield maps can be used to calculate nutrient removal and drive a VRA
replacement strategy. This is most suitable for the less variable, less mobile
phosphorus (Grove and Pena-Yewtukhiw 2007).

• Soil pH maps made from currently available real-time sensing systems can be
used to direct lime application (Lund et al. 2005).

As more on-the-go sensing systems are commercialised for mapping soil prop-
erties directly (e.g. soil nutrients and carbon), decision-making directly from single
maps may become more commonplace. At present, VRA application at the whole-
field scale using combinations of maps as a prescription is restricted to the
standardisation and combination of a number of seasons of crop yield data to provide
a continuous map of variation in the average nutrient removal.

Real-time VRA to treat continuous variability remains the domain of crop
reflectance sensing systems that identify the presence and vigour/health of plants.
Systems that calculate and prescribe nitrogen requirements, growth regulator and
agrochemical applications using the data from these sensing systems have all been
commercialised (Raun et al. 2005; Holland and Schepers 2013).
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Ultimately, it is the technical specifications of the application equipment that will
control the minimum treatment area and minimum incremental rate change in any
continuous VRA operation, specifically:

• The minimum independent section width of the application equipment
• The speed at which a rate change can be relayed to the equipment
• The time it takes for the equipment to change up and down rates
• The speed of travel

20.3.2 Potential Management Classes (PMC)

In defining PMC, fields are divided into areas (classes) that have shown differences
in production potential that may require different management treatments. The
variability of an attribute of interest is then described by the average value in each
class:

• A management class in SSCM is the total area for which a specific management
treatment can be identified. Management classes are distinguished from each
other based on the requirement for different management treatments.

• A management zone is an unbroken area to which a specific management class
treatment is applied.

• A management class may therefore be allocated to one or more management
zones within field or farm.

This approach may be regarded as a risk-averse compromise between uniform
management (single-rate application) and continuous management of whole field
variability. Essentially, the PMC should partition the variability within a field so
that:

• Within-class variability is reduced below whole field variability.
• Average within-class variability is significantly different between management

classes.
• A reduction in variability will also be expressed in important attributes that have

not been used to make the management classes.

The identification of the spatial boundaries of the classes and zones may be
determined using a wide range of initial information and methods. Examples of
the type of initial information range from hand drawn farmer ‘mud’ maps (Fleming
et al. 2000), yield data (Diker et al. 2004; Flowers et al. 2005), soil survey data
(Fridgen et al. 2000; Franzen et al. 2002; Dillon et al. 2005), reflectance imagery
(Stewart and McBratney 2001, Taylor et al. 2002), proximal soil sensors (Lund
et al. 2002) and combinations of these (Whelan et al. 2002; Koch et al. 2004;
Fleming et al. 2004; Schepers et al. 2005).

Equally, there have been many different approaches to define the shape and
number of management zones using the information that range from the simplistic to
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Fig. 20.3 PMC delineated using hard k-means multivariate clustering of the yield, soil and
elevation layers shown in Fig. 20.1. Here (a) 2 PMC and (b) 3 PMC

statistically complex. These include hand-drawn polygons on yield maps or imagery
(Fleming et al. 2000; Nehmdahl and Greve 2001), normalised yield classification
(Swindell 1997), supervised or unsupervised classification of imagery (Anderson
and Yang 1996; Stewart and McBratney 2001), spectral filters using fast Fourier
transformation (Zhang and Taylor 2001), hard k-means cluster analysis (Taylor et al.
2002; Whelan et al. 2002), fuzzy k-means cluster analysis (Lark and Stafford 1997;
Burrough and Swindell 1997) and multivariate hard k-zones (Shatar and McBratney
2001).

Determining the optimum data layers needed to delineate management zones for
a particular field without any a priori information is difficult. In general emphasis
should be given to sensors that record known or expected yield determining factors
and sensors that measure the final crop response if available (Taylor et al. 2007).

Figure 20.3 shows the result of combining the elevation, soil and yield data layers
from the field in Fig. 20.1 using a hard k-means clustering process to form potential
management classes. Using previously gathered maps of variability and statistical
processes takes the guesswork out of setting boundaries, but it is important to make
sure any maps that are used correctly reflect the variability in the field and don’t
have any problems in the patterns caused by poor past crop management, weather
damage or collection errors.

As can be seen from Table 20.1, when the number of management classes is
increased, the differences between the mean in each class for the properties used
in the classification process decrease. As these differences decrease, the potential
benefits of managing the classes differently are also reduced. So any decision
on the number of management classes to use should be made with consideration
to both maintaining an agronomically significant difference (Taylor et al. 2007)
and ensuring the pattern of variation is not overly broken up into very small
unmanageable zones.
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Table 20.1 The mean values in each identified PMC for the properties used in the multivariate
classification process when 2 and 3 PMC are defined

Number
of PMC PMC

Soil ECa
(mS/m)

Elevation
(metres)

Wheat
yield (t/ha)

Wheat
protein (%)

Gamma TC
(counts)

2 1 33.3 381.2 1.63 13.3 307.9
2 38.8 379.7 2.49 11.7 295.6
1 29.8 383.3 1.44 14.0 305.7

3 2 35.5 380.0 1.79 12.9 307.5
3 39.1 379.7 2.59 11.5 294.6

There is no set number of classes that should be identified. The decision is
influenced by the treatment to be applied, the range of variability in the identifiable
driver for the treatment and the importance to production of matching small
incremental changes in the driver with changes in the treatment. In practice, it is
most commonly one to three management classes that are identified so that:

• One – uniform treatment
• Two – a division between high and low
• Three – high, medium and low treatments are required

20.3.3 Variability Within PMC

Here the base-rate treatment requirements for each management class are identified
prior to the application operation, but the actual input rate is modified by a measure
of variability gathered during the operation within each zone/class.

This option is a mix of dealing with variability using PMC and continuous
whole-field treatment. It relies on using historical information and/or knowledge in
combination with real-time VRT. Real-time systems allow the operator to set base
rates, and some systems also provide the option of importing base-rate maps to be
combined with the data from the real-time sensor during application.

Given the above, it is possible to partition the practical VRA options into
four main categories based on the scale at which information on variability is
gathered/treated and the category of VRT equipment that is used (Table 20.2). The
categories are:

• Map-based management class operations
• Map-based whole field operations
• Real-time management class operations
• Real-time whole field operations
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Table 20.2 The four categories of VRA operations are defined by the scale at which information
on variability is gathered and the category of VRT equipment

VRT
equipment

Management class treatment of
variation Whole field treatment of variation

Map based A map of broad areas where different
management is required is used to
describe where rate changes will
occur

A map of variability across a whole
field is used to determine continuous
rate changes

Examples: Examples:

Nitrogen applied at three different
rates to three management classes

Phosphorus applied based on the
pattern of removal from previous
yield map/maps

Lime only applied in areas
previously identified as requiring pH
adjustment

Pre-emergent herbicides applied
based on a map of soil organic matter
content

Real-time
sensors

A map of broad areas where different
management is required is used to
describe where base rates will change.
Real-time sensors are then used to
measure variability within each
management class and vary
application around the base rates

Variability across the whole field is
sensed and used to control treatment
rates during application

Examples: Examples:

Base nitrogen rates are calculated
for each of three classes. A crop
reflectance sensor is then used during
application to measure variability in
crop condition within each class and
vary application up or down from the
base rate

Only green weeds, which are
detected in fallow using reflectance
sensors, are treated with herbicide

Maps of areas where
broad-spectrum herbicide is to be
applied are combined with reflectance
sensors to deliver specific action
chemicals to detected weeds

Crop reflectance sensors are used to
control nitrogen application rate
variation around a single base rate

Deciding on the applicability and category of VRA operations for a situation
can be done using a tree structure of questions that require only a positive or
negative answer. An example is shown in Fig. 20.4, where the decision begins with
the premise that variability in crop yield is the initial signal that VRA might be
warranted. Another model might begin with soil/landscape variability or variation
in crop reflectance.



608 B. Whelan

Uniform field 
management

Is crop yield variable?

Yes No

Uniform field 
management

Can the cause/s of variability 
be determined and understood

Yes

Can the cause/s of variability be managed?

Yes No

Can the cause/s be used to 
determine management classes?

Will the cause/s be used to 
determine management classes?

Determine management classes

YesYesNo

Is variability suited to 
continuously variable 
management?

Set yield goals

Apply models to 
predict continuously 
variable yield

Apply 
continuous VRA

Within a uniform rate of 
input be applied in each 
management class?

Apply different models to 
predict variable yield in 
each class

Apply VRA based on the 
average values in each 
management class

No Yes

No Yes

Apply continuous VRA 
based on identified class 
differences

No

No

Fig. 20.4 Basic decision tree for VRA management options based on a measure of crop yield
variability
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20.4 Examples of Data-Driven VRA Cropping Decisions
Using Maps of On-Farm Variability

20.4.1 Map-Based Whole-Field Variability

20.4.1.1 Nutrient Replacement

The amount of nutrient removed by a previous crop can be calculated using a yield
map and a formula relating the amount of nutrient exported per tonne of grain.
Using this process to prescribe fertiliser requirements for a following crop assumes
that the optimum yield has been achieved across the field and/or soil levels of the
target nutrient were at or above critical levels prior to sowing the previous crop.
Here, the wheat yield map for a 110 ha field (Fig. 20.5a) has been used to calculate
the amount of phosphorus removed using Eq. 20.1:

P removed.kg P=ha/ D wheat yield.t=ha/ � P content of wheat grain.kg P=t/ (20.1)

where the P content of wheat grain D 4 kg P/t.
The map produced (Fig. 20.5b) can be used as the basis for phosphorus

replacement rates in the field. However, it does not allow any margin for error in
the mapped yield nor the possibility that a base level of phosphorus may be required
in the initial stages of crop growth. Equation 20.2 includes a base rate of 5 kg P/t
to be applied over the whole field as part of the calculation of the total required
phosphorus application rate (Fig. 20.5c):

Fig. 20.5 Nutrient replacement calculation: (a) wheat yield map, (b) actual phosphorus removed,
(c) phosphorus removed plus a base rate of 5 kg P/ha
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Fig. 20.6 Maps for a 42 ha field: (a) Wheat yield map, (b) grain protein map and (c) nitrogen
removed (kg N/ha) calculated using the data from the two production maps

P removed.kg P=ha/ D wheat yield.t=ha/ � P content of wheat grain.kg P=t/ C 5.kg P/

(20.2)

For nitrogen in wheat, the same approach can be applied (Eq. 20.3):

N removed.kg N=ha/ D wheat yield.kg=ha/ � Protein.%/ � %N in wheat protein factor
(20.3)

where the %N in wheat D 17.5% (the factor D 0.00175).
Figure 20.6a shows the wheat yield map for a 42 ha field, and Fig. 20.6b shows

a grain protein map from the same season as gathered by an on-harvester protein
sensor. The result of combining this data with the yield data using Eq. 20.3 is shown
in Fig. 20.6c.

The maps in Figs. 20.5b, c and 20.6c can be used to calculate continuous VRA
maps for the application of phosphorus and nitrogen fertiliser products, respectively.

20.4.2 Variability Classified Into PMC

Here, a 75 ha field has been divided into three potential management classes using
fine-scale soil ECa, elevation and yield information. Soil sampling sites have been
located within each of the three zones (Fig. 20.7) in an attempt to explore causes for
the yield differences between the classes. Soil cores were taken at each site and the
samples divided into a topsoil (0–0.3 m) and subsoil (0.3–0.9 m) layer for analysis.
The results are shown in Tables 20.3 and 20.4.

Analysis of the topsoil (Table 20.3) shows that Class 1 has a higher CEC and
a lower sand fraction than Classes 2 and 3, but is lower yielding (Fig. 20.7). Of
note for management is that the soil nitrate is also substantially higher in Class 1.
An examination of the soil below 0.3 m (Table 20.4) shows that the CEC and clay
content of Class 1 are significantly lower than in the other Classes, and the soil
nitrate remains double.

The interpretation of these results is that the difference in the physical properties
of the subsoil, combined with the fact that the soil is on average 40% shallower
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Fig. 20.7 A 75 ha field divided into three potential management classes (PMC). Average yield
responses for the PMCs for sorghum and chickpea crops used in the multivariate classification
process are shown in the legend

in Class 1 (Table 20.4), conspires to restrict the quantity of available moisture in
the profile of Class 1 compared to Classes 2 and 3. This relative limitation in soil
moisture in Class 1 would limit crop yield during most seasons and therefore reduce
the nitrogen requirement. Under uniform fertiliser management, accumulation of
soil nitrogen reserves in the whole profile (as evident in nitrate and total N levels in
Tables 20.3 and 20.4) would then occur. While there is also some evidence for the
build-up of phosphorus in the topsoil of Class 1, from a management perspective
it is the manipulation of soil nitrogen that would bring the biggest benefit to the
profitability of the field.

Having found the major driver/drivers for the spatial variability between the PMC
in the field, there are three general options for determining input rate changes based
upon either:

• Maintenance of a nutrient balance to achieve a uniform yield goal
• Modifying yield goals between classes
• Rate response experiments across classes
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Table 20.3 Soil test results for the 0–0.3 m soil layer at the sample sites in Fig. 20.7

Soil attribute Class 1 (red) Class 2 (green) Class 3 (blue) Field mean

pH (CaCl) 7.6 7.2 7.8 7.5
O.C. (%C) 0.9 0.8 0.6 0.8
N03

� (mg/kg) 30.4 19.3 10.6 20.1
P (mg/kg) 5.3 6.3 2.7 4.8
K (mmol(C)/kg) 60 90 50 70
Ca (mmol(C)/kg) 626 405 513 515
Mg (mmol(C)/kg) 132 183 221 179
Na (mmol(C)/kg) 20 50 10 60
Total N (mg/kg) 1026 1079 658 921
CEC (mmol(C)/kg) 770 600 750 700
Ca/Mg 4.8 2.2 2.3 3.0
ESP % 0.25 0.92 1.35 0.84
Sand % 10 16 12 13
Silt % 15 13 13 14
Clay % 75 71 75 74
E.C. (mS) 163 138 136 145

Table 20.4 Soil test results for the 0.3–0.9 m soil layer at the sample sites in Fig. 20.7

Soil attribute Class 1 (red) Class 2 (green) Class 3 (blue) Field mean

pH (CaCl) 7.7 7.8 8.0 7.8
O.C. (%C) 0.8 0.7 0.6 0.7
N03

� (mg/kg) 14.7 11.9 5.6 10.7
P (mg/kg) 3.7 3.0 2.5 3.1
K (mmol(C)/kg) 4.2 6.5 4.8 5
Ca (mmol(C)/kg) 421 389 470 427
Mg (mmol(C)/kg) 95 215 249 186
Na (mmol(C)/kg) 30 21 27 17
Total N (mg/kg) 887 687 532 702
CEC (mmol(C)/kg) 523 634 748 635
Ca/Mg 5.2 1.8 1.9 3.0
ESP % 0.7 3.2 3.6 2.5
Sand % 18 15 11 15
Silt % 17 11 11 13
Clay % 65 74 78 72
E.C. (mS) 126 162 155 148
Soil depth (m) 0.68 1.17 1.24 1.03
Profile avail. H20 at sampling (mm) 68 108 128 101
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20.4.2.1 Maintenance of a Nutrient Balance to Achieve a Uniform
Yield Goal

This option involves establishing a yield goal for a field or area, calculating the
nutrient requirements for the goal, estimating the quantity of nutrient already
available in the soil and determining the additional amount required to achieve
the goal. Using this traditional agronomic technique for calculating nutrition
requirements provides a simple method for including the information obtained from
investigative sampling within PMC into input rate decisions. Equation 20.4 can be
used to calculate nitrogen requirements for wheat crops:

N required.kg N=ha/ D yield goal.kg=ha/ � protein goal.%/

� %N in wheat protein factor � efficiency factor
(20.4)

where the %N in wheat D 17.5% (the factor D 0.00175) and the efficiency of uptake
factor D 2.

According to Eq. 20.4, to achieve a yield goal of 4.5 t/ha at 13% protein would
require 205 kg N/ha to be available to a wheat crop during the growing season.
Applying the 4.5 t/ha yield goal uniformly across the field in Fig. 20.7, and using the
soil nitrogen information in Tables 20.3 and 20.4 as sampling information prior to
sowing a wheat crop, the nitrogen nutrient balance requirements can be calculated.

First, the nitrogen values from the 0–30 to 30–60 cm soil samples are used to
calculate the average amount of nitrogen in kg/ha that is resident in the soil profile.
Table 20.5 shows the results of these calculations for each PMC and the overall
average for the field. The overall average is the estimate that would be traditionally
used to calculate the uniform-rate fertiliser requirement for the field. In this instance
the field average of 165 kg N/ha resident in the soil would suggest the addition of
a further 40 kg N/ha is required across the field to complete the yield goal nitrogen
balance (Table 20.5). In this conservative approach, no additional contribution of
nitrogen from mineralisation in the soil over the growing season is included.

However, because the soil sampling has been done in classes, the class average
resident nitrogen can be used to calculate the additional nitrogen required to
complete the yield goal nitrogen balance in each Class. The results (Table 20.5)
suggest that very different amounts of fertiliser would be required within each PMC.
Applying the uniform treatment rate would over-fertilise Class 1 and 2 and under
fertilise Class 3. A total of 2.7 t of urea would be wasted by the uniform application,
and the substantial under-fertilisation in Class 3 would result in yield and protein
losses in an average or better season. Varying the fertiliser rates to achieve the 205 kg
N/ha for the 4.5 t/h yield goal in each class (Table 20.5) would be a more profitable
and less environmentally risky management decision.
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Table 20.5 Available nitrogen in the soil and the calculated nitrogen requirements for three PMC
in Fig. 20.7

Class 1 (29 ha)
Class 2
(13 ha)

Class 3
(33 ha)

Field average
(75 ha)

Average available N in the
soil (kg N/ha)

238 172 86 165

Uniform N application (kg
N/ha)

40 40 40 40

Actual N required to obtain
205 kg N/ha in soil (kg
N/ha)

0 33 118

Consequence of uniform N
application

2.5 t urea waste 197 kg urea
waste

66% under
fertilised

Comparison between uniform application based on the average available soil nitrogen content and
variable-rate treatment based on actual available soil nitrogen in each PMC

20.4.2.2 Modifying Yield Goals Between Classes

Just sampling and then modifying fertiliser rates to reach an even ‘mass balance’
across a field does not acknowledge that in many cases the yield potential is
different between the management classes. Following directed sampling to identify
the local factors impacting on yield variability, new yield goals can be assigned to
the different potential management classes. This can be achieved by combining the
information on the differences in the soil/landscape properties between classes with
local agronomic advice on yield potential. Alternatively, the relative yield potentials
can be assessed using the yield differences shown in the previous crop yield maps.
Either way, local experience should be included to set a maximum yield goal for
the highest performing class, and the yield goals for the other class/classes should
decrease on a percentage basis.

Table 20.6 contains average sorghum yield data figures for two seasons for the
whole field and each PMC in Fig. 20.7. The yield of Class 1 is between 20% and
29% (average 25%) less than Class 3, and the yield of Class 3 is between 3% and
8% (average 7%) less than Class 3. Once management is convinced that there are no
amelioration questions remaining and that the yield differences are repeating over
seasons, they could give consideration to reducing the yield goal and the input rates
in Classes 1 and 2. There are a number of options available:

• Set a yield goal for highest yielding Class based on local advice and
reduce the yield goal of the other Classes (1 and 2 here) by either the
minimum/average/maximum percentage difference seen over the seasons. The
most risk-averse option is to reduce the yield goal by the minimum percentage.
A further option with three PMC is to set the yield goal for the middle class
based on local calculations and, respectively, vary the goals up and own for the
other classes.
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Table 20.6 Sorghum yield differences for two seasons between potential management classes in
Fig. 20.7

Average sorghum yield (t/ha)
Class Season 1 Season 2 Combined

C1 (29 ha) 4.7 4.1 4.4
C2 (13 ha) 5.7 5.3 5.5
C3 (33 ha) 5.9 5.8 5.9
Whole field 5.4 5.1 5.3
% difference of lower yielding classes from class 3 C1 D 20 C1 D 29 C1 D 25

C2 D 3 C2 D 8 C2 D 7

• Set yield goals based on the actual maximum yields obtained in each class.
• Set yield goals based on the actual averages obtained in each class.

20.4.2.3 Rate Response Experiments Across Classes

Setting up some basic experiments across a field can provide a more comprehensive
understanding of the actual response to different application rates. Where PMC have
been identified, field-scale experiments can be established to estimate the response
in each PMC to a single input. It is best to keep these types of experiments to
testing changes in a single input or practice. It is preferable to increase the number
of different rates in the experiment, rather than include additional variables at this
scale.

The design of the experiments should consider application equipment capability
and width, incorporation of the management class pattern and a desire to minimise
the area/financial impact of the experiment. These types of experiments can be run
using whole field treatment strips (Lawes and Bramley 2012), but where variable-
rate technology is available, the application of small strip experiments is possible
(Whelan et al. 2012). An example of the physical layout for these two designs in
a field is shown in Fig. 20.8. The use of small strips allows correct independent
replication, more flexibility in location and greater coverage of the conditions in
the field and often results in less area being subjected to potential yield-reducing
treatments.

The majority of the field should be treated with the control application (i.e.
traditional best practice), while the alternative treatments could include multiples
of the traditional application rate (e.g. 0.25, 0.5, 1.5, 2). More than one alternative
treatment rate is preferable; otherwise, the best that can be hoped for is a decision
that one treatment is preferable to another. At least two alternative treatments can
help provide information to decide the ‘best’ treatment rate.
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Fig. 20.8 A 79 ha field divided into two potential management classes (PMC) showing two
general options for rate response experiments. (a) Whole-field strips and (b) small strips

The information from the experiment will be greatest when there is a good size
difference between the treatment rates. Where possible a zero rate treatment should
be included to help show the full scale of response. It is especially important where
the experiment is testing whether a reduction in input rate is viable. Obviously
placing zero rates in the field can cause some trepidation, but keeping the size of
the treatments small can help ease such concern. With these designs, data from the
whole field can be used to produce a response function for each class, and this can be
interpreted using seasonally specific marginal rate analysis to determine the optimal
treatment rate for each class (Fig. 20.9). Further detail on the practical application
of SSCM can be found in Whelan and Taylor (2013).
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(a) (b)

Fig. 20.9 (a) Actual yield response to applied nitrogen fertiliser from the application of the trial
design in Fig. 20.8b where the uniform field application was 60 kg N/ha and (b) a marginal rate
analysis (optimised where MC D MR) shows that Class 1 application optimum D 109 kg N/ha
and Class 2 application optimum D 39 kg N/ha.

20.5 Data-Driven Cropping Decisions Using On-Farm
and Off-Farm Data

The development and application of SSCM in cropping enterprises has been in
parallel with an increase in the volume and sources of data. Long before the
term ‘big data’ was dragged from the literature on digital data storage (Bryson
et al. 1999), through the filter of business management analysts, to the present
day, agriculture has been working on ideas for using ‘big data’ through the PA
philosophy.

The data streams that have been discussed in this chapter come from diverse
sources (mainly on-farm from a specific farm or field), with variable volumes,
structures and scales. They have been integrated and analysed to varying degrees
by PA practitioners using a range of decision support processes (see Fountas
et al. 2015 for a review of Farm Management Information Systems) with the goal
of improving decisions for SSCM. The current decision/action process at the farm
level is generalised in Fig. 20.10.

The future should see this on-farm data, along with an increase in the sources,
volumes, scales and structures of off-farm data (from other local/regional farms and
non-farm domains) employed in improving SSCM. A schematic for this improved
data-driven decision process is shown in Fig. 20.11, where on-farm data from a
local region is aggregated and combined with off-farm data from the public domain
(e.g. weather, remote sensing, predicted soil properties) for input into analysis and
decision-making back on-farm. The process of data aggregation and storage may
move to a cloud (or localised server)-based operation (Fig. 20.12) with research into
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Fig. 20.10 A generalisation of the current data-driven decision/action process involving on-farm
data

Fig. 20.11 A schematic of the data-driven decision/action process where on-farm data from a local
region is aggregated and combined with off-farm data from the public domain

Fig. 20.12 A schematic of the data-driven decision/action process where data aggregation, storage
and analysis move to a cloud (or localised server)-based operation

system design for agricultural operations underway (e.g. Kaloxylos et al. 2014). It
is also feasible that the data and analyses in this process may be incorporated in a
commercial sense (e.g. as a cooperative or other business entity) and made available
for off-farm use (Fig. 20.13). The potential benefits from such a development
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Fig. 20.13 A schematic of the data-driven decision/action process where the data storage and
analysis incorporated in a commercial sense (e.g. as a cooperative or other business entity) and
also made available for off-farm use

range from direct revenue from data exchange to improvements in supply chain
response which would extend advantage to the whole-farm businesses involved and
potentially the supply/value chain.

In practice, it will be critically important to identify and draw data from
relevant sources into analytical models containing environmental, crop and farm
business components that will then feed results into, or drive, key management and
operational decisions.

The practical components in such a process, with respect to SSCM outcomes,
may eventually include:

• Data generation and capture (historic and real-time). These may include
information on production yield and quality, aerial/proximal in-season sensing
(crop, disease, pest, soil, environment), economics, markets, distribution and
consumption.

• Data dormitories. Cloud-based (or local subsidiary) stores of farm and off-farm
data at multiple scales (production, environment, financial, markets).

• Data-driven decisions. Alternative options for crop management, variable-rate
application and farm logistics based on the assessment of probabilistic outcomes
from data-driven models of causal relationships enabled by the new combination
of machine learning and mechanistic modelling approaches. These decisions may
eventually be whole-business and/or whole value chain considerate.

The analytical tools would ideally contain the capability of autonomously
adapting decision functions and providing farmers/agronomists with alternative
management responses as the input data changes across space and/or time. However,
this novel integration and analysis of relevant data from diverse domains, sources
and scales to improve decision management at a fine scale should be aimed
at augmenting the agronomist – not automating the agronomist – unless the
decision/action process is decisive enough to warrant such an approach.
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So the development of SSCM should continue with an increasing sensitivity of
decisions at the within-field scale to the whole farm business outcomes, including
impacts on off-farm linkages. New techniques from the field of pedometrics that
enable the fine-scale description of the 3D variation in soil over space and time
(especially soil moisture and nutrients) will bring the next shift in the financial and
environmental optimisation of crop management.
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Chapter 21
Variograms of Soil Properties for Agricultural
and Environmental Applications

Stacey Paterson, Alex. B. McBratney, Budiman Minasny,
and Matthew J. Pringle

“Think left and think right and think low and think high. Oh,
the things you can think up if only you try”!

DR Suess

21.1 Geostatistics and Precision Agriculture

The previous chapter describes how precision agriculture can be used to improve
farm management to achieve economic and environmental benefits. Short-range
differences in soil attributes mean that spatially differentiated management can
create economic or environmental benefits. Effective precision agriculture requires
accurate soil mapping at subfield scales so that management practices can be
modified. Improvements in farming technology, for instance, GPS-controlled farm
equipment, decrease the difficulty and cost associated with spatially differentiated
management. This improves the ease of implementation and makes high-resolution
soil maps more valuable.

A key challenge for geostatistics in precision agriculture is the detection of
soil variability at important subfield scales and the systematic incorporation of this
variability into accurate field scale soil maps.
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21.2 Soil Survey, the Variogram and Kriging

Soil attributes are typically difficult and expensive to observe. As a result, soil
attribute maps made for the purpose of precision agriculture are typically created
from point observations which represent a small proportion of the area to be
mapped. Estimates of soil attributes in unknown areas are based on the observations
and an expectation of the regions between them. This process of predicting attributes
in unobserved areas is known as kriging (explained in more detail in Chap. 10).
Assumptions about spatial variability are typically derived from the variogram,
which links spatial separation distance to expectations about variability. Chapters
10 and 11 explain the variogram, its uses and the different methods of calculating
the variogram in more detail.

The variogram is sometimes called the ‘cornerstone of geostatistics’. Accurate
estimation of the variogram is critical to the production of accurate soil maps.
Because of the hidden nature of most soil attributes, we can usually only directly
observe a small proportion of an area of interest. In Chap. 10, the distinction between
the experimental or empirical variogram and the model variogram is described in
some detail. The empirical variogram plots the average variance against separation
distance for a number of distinct lags. The model variogram uses the information
from the empirical variogram to estimate the expected variability at all lags. The
purpose of the model variogram is to estimate the true underlying spatial variation
at a level of detail that allows useful predictions.

Interpolation of results into unobserved points depends on the spatial structure
estimated by the variogram. The closer the estimated variogram to the underlying
spatial structure, the more accurate the subsequent interpolation. In general, a
variogram computed from samples with finer spacing and more observations will
estimate the underlying spatial structure more accurately than a variogram computed
from samples with coarser spacing. Finer spacing allows the detection of spatial
structure across more scales. The extent to which this is true will depend on the
interaction of the spacing with the underlying spatial structure. For example, if
there is no spatial relationship between points more than 5 m apart, then decreasing
spacing from 50 m of separation distance to 10 m will not improve the variogram.
We pause here to explain some key components of the variogram and how they are
affected by survey design.

21.3 Key Components of the Variogram

While the variogram can take many forms (see Chap. 10, Sect. 10.1.1, for detail
on some commonly used models), there are three components which are typically
considered the most important indicators of spatial structure. Shown in the stylised
diagram in Fig. 21.1 and subsequently described, these components are the nugget,
the sill and the range. The estimation of each of these parameters depends strongly
on the sampling design.

http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_11
http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_10
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Fig. 21.1 Stylised diagram, showing the three most important indicators of spatial structure, the
nugget, the sill and the range

21.3.1 Nugget

In principle the nugget effect captures nonspatial variation: measurement error;
random variation. However, in practice the nugget will also capture spatial variation
that occurs at scales less than the smallest sampling interval. If the sampling interval
is wider than an important scale of spatial variation, then this will increase the
nugget. Aliquotting (pooling of samples) will decrease the nugget. A larger support
(area over which the sample is taken) will also decrease the nugget.

21.3.2 Total Sill

The total sill is defined as the maximum variability that can be expected for a
particular soil property. Beyond a certain separation distance (the range, see below),
the expected variability will not increase past the value of the total sill (or in
some cases will increase only very slowly and slightly past the sill). Only bounded
variogram models have a sill. The total sill is more likely to be affected by the
number of samples and the wider separation distance than the minimum sampling
spacing. When modelling spatial variability at a field scale, it is unlikely that the
maximum variability of the soil will be reached. However, unbounded models are
rarely fit. In the context of precision agriculture, we can think of the total sill as
being the maximum variability within this particular context or a local maximum.
If we extended the sampling to a regional level, it is likely we would reach another
magnitude of variability.
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21.3.3 Partial Sill

The distance between the nugget and the sill is known as the partial sill. The partial
sill is the component of variation that can be spatially attributed. In Fig. 21.1, the
semivariance increases linearly with distance at short separation distances. As the
separation distance increases, the rate of increase in the semivariance decreases,
before eventually reaching a plateau as the semivariance reaches the total sill. This
pattern is commonly found in variogram models (see Chap. 10 for more detail on
the functional forms). Accurately determining the change in variability between
the nugget and the sill requires sufficiently dense sampling at appropriate scales
of variability.

21.3.4 Range

Like the lag and the sill, the range estimated by the theoretical variogram will
be strongly affected by the sampling design. As the lag increases, the confidence
intervals widen (Oliver and Webster 2014) which can make it difficult to accurately
fit a variogram at lags approaching the full extent. Precision agriculture surveys are
typically conducted over areas from a few hectares to a few hundred hectares. This
precludes them from capturing landscape or continental scale variability. Despite
this, the majority of variogram fits from precision agriculture studies are bounded.
The modelled range and sill can be thought of as the ‘local sill’ associated with
the ‘local range’ associated with the particular extent and spacing of that survey.
It is very likely that if the extent of the survey was increased, another degree of
variability would be found. It is critical to consider the potential effect of both the
extent and the spacing on the range when considering precision agriculture studies
and how their findings may inform your own work.

21.4 Soil Survey Design: Capturing Spatial Variability

The task of ensuring that a soil survey captures the necessary scales of variability
is not a trivial one. The expense of a soil survey, and the commonly destructive
nature of soil sampling, creates a pressure to reduce the number of sampling points
as much as possible. However, if sampling is insufficient or too sparse (relative
to the underlying spatial structure), it will compromise the variogram and thus the
accuracy of the maps which are calculated from it. It is noted in Chap. 11 that one
of the chief difficulties associated with the design of a soil survey for estimating a

http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_11
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variogram is that the underlying spatial structure is unknown at the time the survey
is designed. If the underlying spatial structure of a soil attribute is known, we can
design a soil survey sufficiently to create a map at a particular level of detail.

Where budget allows it, the best practice is to undertake a preliminary soil survey
to estimate important scales of variation before a more comprehensive soil survey
is designed. This survey should be nested in its design to increase the chances of
capturing important scales of variability (Pettitt and McBratney 1993; Webster and
Oliver 2001). However, a preliminary survey will rarely be economically feasible.
If it is not possible to conduct a preliminary survey, a soil survey design is likely
to benefit from the consultation of alternative sources of information about soil
variability, such as existing literature or covariates.

Budget or practical pressures may be sufficient to impede the collection of
sufficient data to reliably calculate an empirical variogram. A stable variogram
calculated from classical geostatistical methods (as described in Chap. 10) requires
around 100 observations. More modern methods (as described in Chap. 11) typically
require around 50. It is not possible to estimate spatial variability at distances less
than the minimum separation distance. In cases where there are few or widely
spread soil observations, alternative sources of information may be useful for the
calculation of a variogram for kriging.

The expense of gathering soil observations creates a need for cheaper sources of
information about soil variability, either to assist in the planning of a soil survey
or to use in the process of kriging itself. Many authors have identified sources and
strategies for the production of this information.

21.5 Variograms from the Precision Agriculture Literature

Variograms calculated for the same soil attribute may be a useful source of informa-
tion. However, variograms calculated for the same property can vary significantly
for a number of reasons that should be carefully considered. As outlined in Chap. 12,
parent material, soil type, land use and climate will all have an effect on soil spatial
variability. Consideration of these factors will be important in the selection of a
variogram. Unfortunately, knowledge about soil spatial variability does not extend
to the quantification of which of these factors are most important for determining
spatial variability of different soil attributes.

The underlying variability of soil attributes might be different for the reasons
mentioned above. In addition, the methods used to detect soil variability might
create differences in the shape of the variogram. Different projects may focus on
detecting variability at different scales for management or budget reasons. Even
if the soil type is similar between two studies, the spatial variability might not be
measured in a way that provides useful information.

http://dx.doi.org/10.1007/978-3-319-63439-5_10
http://dx.doi.org/10.1007/978-3-319-63439-5_11
http://dx.doi.org/10.1007/978-3-319-63439-5_12
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It is also very important that the statistical methods used are assessed critically,
before results are used or duplicated. There are a number of variograms included
in Tables 21.1, 21.2, 21.3, 21.4, 21.5, 21.6, 21.7 and 21.8 which appear to use
insufficient sample numbers for variogram estimation. There are several variograms
which appear to assign spatial structure at a magnitude that appears to be meaning-
less relative to the units (i.e. total sill of less than 1% for the soil texture fraction).1

These results have been included for completeness, but we wish to draw the readers’
attention to the fact that some of the variograms included in this collection may have
issues associated with them.

We describe below some key trends we have noted in the compilation of soil
variograms and include a graphical summary of the variograms we have compiled.
Variograms from McBratney and Pringle (1999) are included as well as those we
have collected from the intervening period. Summary details and references for
each variogram are given in Tables 21.1, 21.2, 21.3, 21.4, 21.5, 21.6, 21.7 and 21.8.
We encourage the reader to consult each source directly for more detail about the
sampling design and process.

Variograms for the same soil attribute from existing literature can be a
useful source of information about field scale soil. It is important to exercise
caution when consulting this literature, as variograms have been created
from different soil types, for different purposes and possibly with important
methodological limitations.

21.5.1 Field Scale Soil Variograms: Key Trends

21.5.1.1 Variogram Forms

Across all soil properties, a number of functional forms were fit to variograms. For
each soil property, at least one study found no spatial structure (i.e. pure nugget) to
be the best fit. This suggests that either the spatial structure occurs at scales finer
than those surveyed or that the variability in the property in question is less than
the experimental error. Spherical and exponential variograms were commonly used.
Some papers described the functional form as ‘experimental’. These models were
fit with an exponential model.

1In some cases the magnitude of the nugget and partial sill is extremely small compared to the
magnitude of the standard deviation. This may suggest that the data has been transformed in some
way before the variogram has been fit. We have reported the results as in the original article. These
results should be interpreted with particular caution.
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21.5.1.2 Total Sill

Between studies the total sill (nugget plus partial sill) changes by several orders of
magnitude for each property. As expected, this variability is the least pronounced for
bounded properties (pH, OM %, sand % and clay %) and much more pronounced
for micronutrients, which vary by around three to five orders of magnitude.

Variability in total sill is similar to that observed by McBratney and Pringle
(1999). Inspection of the summary tables (Tables 21.1, 21.2, 21.3, 21.4, 21.5, 21.6,
21.7 and 21.8) indicates that for the majority of soil properties, the range in the total
sill is similar for the variograms collected by McBratney and Pringle (1999) and
the more recently collected properties. The maximum variability reached within
1 km has remained within an order of magnitude for all properties. For soil pH,
organic carbon and potassium, the maximum variability found in the more recent
literature search is two to three times greater than the maximum variability found in
the literature reviewed by McBratney and Pringle (1999). The other properties have
a very similar maximum.

21.5.1.3 Nugget

Like McBratney and Pringle (1999), we find wide variability (several orders of
magnitude) in the nugget parameter. McBratney and Pringle (1999) suggest that
this variability is largely due to the strong effect of sampling design on the nugget.
A variogram can only model the spatial structure that is detectable by the sampling
design. In general, the wider the spacing, the more spatial variability will be
attributed to the nugget component of the model. If the survey spacing is wider
than the spatial structure, the variogram will appear as a pure nugget model. A
wider support and the use of aliquotting will reduce the ‘noise’ in the data and
decrease the nugget. It has been often proposed, and is quite likely, that the majority
of soil properties would have more than one layer of soil structure. The differences in
estimated nugget likely reflect both the underlying differences in spatial structure at
the field scale and the capacity of different survey designs to capture this variability.

21.5.1.4 Range

Like the lag and the sill, the range estimated by the theoretical variogram will be
strongly affected by the sampling design. As the lag increases, the confidence inter-
val around the variance increases (Oliver and Webster 2014). Precision agriculture
surveys are typically conducted over areas from a few hectares to a few hundred
hectares which limits the extent of spatial variability they can capture. Despite
this, the majority of variograms fit from precision agriculture studies are bounded.
The modelled range and sill can be thought of as the ‘local sill’ and ‘local range’
associated with the particular extent and spacing of that survey. It is very likely that
if the extent of the survey was increased, another degree of variability would be
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found. It is critical to consider the potential effect of both the extent and the spacing
on the range when considering precision agriculture studies and how their findings
may inform your own work.

21.5.2 Field Scale Soil Variograms: Methodological
Differences

21.5.2.1 Survey Design

Another substantial difference between the survey designs was whether or not
aliquott ing was used. This is particularly significant when comparing these spatial
studies because some studies model the range at distances that other studies were
combining soil at. This is typically done for samples taken within 1 m of each other.
This practice is likely to reduce the nugget (or white noise) and also to reduce any
short-term spatial trends which might be occurring.

There is significant variation in the survey design which may influence the
mapping of spatial variability. Nested designs are better placed to capture spatial
trends across a variety of scales than designs with even spacing; however, because
of the additional costs associated with these, they are less common.

21.5.2.2 Model Fitting Process

Oliver and Webster (2014) wrote an explanatory piece of work, describing the best
methods for soil scientists to model variograms for kriging. They also described
common mistakes made by soil scientists when calculating variograms. The major-
ity of papers we assess do not follow all of Oliver and Webster’s recommendations
for reporting methods. This makes it difficult to assess how well a fitted variogram
captures underlying spatial variability. Few papers report summary statistics for a
variety of models, and few papers present variogram clouds to illustrate the utility
of the fit. This does not necessarily mean that the fitted models are not accurate, but
it does make it difficult to assess the model.

Another point worth considering is the possibility that trends are being overfitted.
Perhaps some of the models presented in this chapter would have been better
represented by a nugget. These issues around model quality are not new, but a degree
of caution is required when interpreting the results.

The more recent literature has included studies which have found much lower
values for the total sill for several soil attributes. For clay the lowest value found for
the total sill is two orders of magnitude lower than the lowest value reported by Petit
and McBratney. Sand is one order of magnitude lower. Some modelled variograms
occur over a very tiny range of variability relative to the magnitude of the property
they are measuring. Whether it is necessary or feasible to model a spatial structure
of less than 1% for soil texture properties is questionable.
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21.5.2.3 Measurement Methods

The properties we have included here are commonly measured soil properties with
known agronomic implications. However, measurement of these properties is rarely
simple or consistent. Differences in measurement methods and differences in which
component of the property is being measured will influence both the shape and
magnitude of the variogram.

pH is an extremely commonly measured property. However, within the studies
we have assessed, there are differences in the solution, the dilution rate and the
equipment used to measure the pH. This problem becomes more complex when
considering more difficult-to-measure properties such as potassium and phosphorus.
Different studies have used different extractants to target different fractions for these
nutrients.

The variogram is affected by the distribution of the property it is being calculated
for. The variograms calculated for potassium and phosphorus show the greatest
differences in total sill. We expect that this is because the target of the measurements
varies as well as the measurement method used.

Some articles were found which estimated total carbon or inorganic carbon.
However, there were relatively few such studies, so we have not included them here.
We have included studies which measured organic matter as a proxy for organic
carbon. We converted these using the van Bemmelen factor (1.724). Pribyl (2010)
illustrates that an accurate conversion factor for different soils can vary from 1.4
to 2.5. Error in the conversion will be small relative to the overall spread of the
variograms.

21.5.3 Field Scale Soil Variograms: A Compilation

Figures 21.2, 21.3, 21.4, 21.5, 21.6, 21.7, 21.8. and 21.9. provide a visual compi-
lation of field scale variograms for each of the soil properties initially examined
by McBratney and Pringle (1999). We include both the original variograms used
by McBratney and Pringle and variograms published since then. We only include
variograms which were calculated from untransformed data and which were based
on physical observations (i.e. not from remotely observed data). The black bold
lines represent the average variogram (Sect. 21.7). Tables 21.1, 21.2, 21.3, 21.4,
21.5, 21.6, 21.7 and 21.8 correspond to each figure and include reference details
and key parameters for each variogram. Because of the wide range of values of
the source variograms, the scales used in the figures cannot include all of them, and
some low sill variograms have not been included. We include the details in the tables
for completeness, but suspect that they are unlikely to provide useful information.
The figures affected and the number of source variograms not included are pH 1,
carbon 3, total nitrogen 1 and potassium 2.
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Fig. 21.2 Compilation of field scale variograms for clay. The bold black line represents the
average variogram. Summary details and references for each variogram (a–ag) are given in Table
21.1

21.6 Estimation of the Variogram from Proportional
Variograms

McBratney and Pringle (1999) observe a strong relationship between mean squared
and variance for several soil properties and develop a method for estimating a
‘proportional variogram’. This method has the advantage of capturing the much
higher levels of variability that tend to occur when the mean values of the property
are extreme. Similar to McBratney and Pringle (1999), we find that some soil
properties (phosphorus, nitrogen, potassium and carbon) appear to have a strong
linear relationship between the mean and the standard deviation. This could imply
that the calculation of a proportional variogram would be useful for these properties.
However, closer interrogation reveals that this relationship is largely driven by high
leverage points. It is not possible to fit a robust curve to link the mean and standard
deviation. Proportional variograms are based on the relationship between the mean
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Fig. 21.3 Compilation of field scale variograms for sand. The bold black line represents the
average variogram. Summary details and references for each variogram (a–r) are given in Table
21.2

and the variance. Because we cannot be confident about this relationship, it is not
prudent to calculate proportional variograms.

We advise against the use of proportional variograms as an estimate for
variability and as such do not update McBratney and Pringle’s (1999) estimates
of proportional variograms.

21.7 Estimation of the Variogram from Average Variograms

McBratney and Pringle (1999) calculate average variograms for seven soil proper-
ties. These average variograms are calculated from the sample of variograms they
compile. The fourth root transform of each approximated by the spherical model is
taken and then backtransformed. Exponential or spherical models are fitted.
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Fig. 21.4 Compilation of field scale variograms for pH. The bold black line represents the average
variogram. Summary details and references for each variogram (a–ag) are given in Table 21.3

McBratney and Pringle (1999) note the broad spread of variability in the
variograms they collected and suggest that this might make the ‘average’ variograms
less useful. Despite this, they suggest that the average variogram is a useful starting
point where no other information is available. Kerry and Oliver (2003) find evidence
that average variograms can be useful for prediction when parent material and soil
forming factors are similar, but emphasise that they do not expect a global average
variogram to provide much useful information.

We do not believe a global average provides useful information for predictive
purposes. However, as McBratney and Pringle (1999) suggested, the average
variogram does provide a useful reference for those interested in soil variability.
We produce average variograms for illustrative purposes (by averaging the fourth
root transform of each variogram at finely spaced intervals and then plotting the
backtransformed values), but we do not fit these with a functional form.

As suggested by McBratney and Pringle (1999) and illustrated by Kerry and
Oliver (2004), the concept of the average variogram has the most use for prediction
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Fig. 21.5 Compilation of field scale variograms for carbon The bold black line represents the
average variogram. Summary details and references for each variogram (a–al) are given in Table
21.4

when it is calculated from a select subset of existing variograms. The diversity of
climate regimes, soil types and land use for which field scale variograms have been
calculated means that discretion is essential in the selection process. Differences
in sampling regime, soil measurement protocols and geostatistical methods add
another layer of complexity that needs to be navigated in appropriate selection. We
discuss these issues further in the next section.

We advise against the use of the ‘global average’ variogram as an estimate
of local soil variability. Instead, where suitable variograms are available, an
average of variograms with similar conditions is taken. Discretion and expert
knowledge will need to be used in this selection process. The process outlined
by McBratney and Pringle (1999) for calculation of an average variogram can be
followed.
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Fig. 21.6 Compilation of field scale variograms for available nitrogen. The bold black line
represents the average variogram. Summary details and references for each variogram (a–m) are
given in Table 21.5

21.8 Ancillary Information

Kerry and Oliver have written several papers investigating the potential of using
cheaper more densely available ancillary information to supplement expensive and
sometimes sparse soil survey data. In 2004, they compared the spatial structure of
a number of ancillary data sources to the spatial structure of a number of fixed soil
properties. They found that variograms calculated from aerial colour photographs
of 3.4 m ‘sampling density’ can estimate range with sufficient accuracy to helpfully
guide sampling density of the soil survey. Kerry and Oliver (2008) paper extends the
use of ancillary information to kriging. They suggest that the primary requirement
for using data is that the ancillary variogram has a similar sill-to-nugget ratio to the
property being studied.
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Fig. 21.7 Compilation of field scale variograms for total nitrogen. The bold black line represents
the average variogram. Summary details and references for each variogram (a–h) are given in
Table 21.6

Where it is available, ancillary information can be a useful source of
information. Care must be taken in the selection of appropriate ancillary
information. It may be useful to consult a range of ancillary variables.

21.9 Expert Knowledge

Truong et al. (2013) propose the use of expert knowledge as a means to estimate the
variogram when there are not enough observations to calculate a reliable variogram
using geostatistics. They point to an increasing realisation from other disciplines that
experts’ knowledge provides a useful source of information that can be incorporated
into statistical models. Truong et al. (2013) also suggest that expert knowledge may
be useful when there is no data available or even when the available data for some
reason are unreliable or unsuitable.
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Fig. 21.8 Compilation of field scale variograms for phosphorus. The bold black line represents
the average variogram. Summary details and references for each variogram (a–ab) are given in
Table 21.7

Truong et al. (2013) propose a strict methodology for eliciting knowledge from
experts in order to construct a variogram. Their methods are designed to avoid bias.
This process is still in the prototype stage. Currently, those seeking to supplement
data with expert knowledge will not be able to avoid some bias. However, in many
cases, subjective expert knowledge may be the best available option.

Even when there are data available, a degree of subjectivity will be required to
assess the usefulness and representativeness of these data. Where possible, it will
obviously be preferred that these subjective decisions are informed by those with
expertise in the area of interest (geographical or topical).

We strongly encourage the use of expert knowledge in the selection of
appropriate datasets for the modelling of spatial variability. Where datasets
are unavailable or deemed inappropriate, it may be necessary to rely entirely
on expert knowledge to estimate the variogram. Eventually, it may be possible
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Fig. 21.9 Compilation of field scale variograms for potassium. The bold black line represents
the average variogram. Summary details and references for each variogram (a–ad) are given in
Table 21.8

to elicit expert knowledge using a formal process such as that described by
Truong et al. (2013).

21.10 Quick Variograms

There may be situations when ancillary information, variograms from literature or
even expert knowledge are unavailable or unreliable. In these cases, we would like
to propose the following sampling approach that can be used to estimate a rough
variogram at very low cost. The method proposed will necessarily be imprecise, but
is a better alternative than not having any information. We anticipate that this method
would be particularly useful in cases where alternative sources of information are
available but unreliable.
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Fig. 21.10 Sampling approach for estimating a ‘rough’ variogram. Here, it is shown that sampling
is recommended in eight locations (four widely spaced points, each with a closely spaced pair, i.e.
A-B, C-D, E-F and G-H)

We suggest sampling in eight locations (four widely spaced points, each with a
closely spaced pair as per the diagram shown in Fig. 21.10). Obviously, the sampling
design will be affected by the shape of the field. We advise that sampling occurs as
close to the boundaries as possible while avoiding the edge effect.

In Fig. 21.10, one can calculate four bin sizes.

Close spacing (proxy for nugget): four pairs A-B, C-D, E-F, G-H
Maximum spacing (proxy for sill): eight pairs (A-G, A-H, B-G, B-H, C-E, C-F, D-E,

D-F)
Intermediate spacing 1: eight pairs A-C, A-D, B-C, B-D, E-G, E-H, F-G, F-H
Intermediate spacing 2: eight pairs A-E, A-F, B-E, B-F, C-G, C-H, D-G, D-H

The close spacing (the close pairs) can be used as a proxy for the nugget, and the
maximum spacing (the diagonals) can be used as a proxy for the total sill.

If the nugget and the sill are similar, we can assume that the appropriate model
is the nugget model.
If the nugget and the sill are different, we will need to estimate the range and
select a model for the variability.

There is no obvious proxy for the range that can be calculated from a small
number of data points.

The two intermediate spacings may be useful to indicate where the range should
occur. If they are similar to the total sill, then the range should be less than the
intermediate spacings. If they are smaller than the total sill, then the range should
be greater than the intermediate spacings.

We suggest that the intermediate spacings be used to determine the limits of
where the range could occur. The range should then be taken as the halfway point
between the limits.
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For example, if the smallest intermediate bin has a variance similar to the sill,
then we should set the range to be equal to the halfway point between the nugget
and the smaller intermediate bin. If both of the intermediate bins have variances
smaller than the sill, we should set the range to be equal to halfway between the
total sill and the intermediate bin.

Modelling a range larger than the maximum separation distance is always
unlikely in variograms, because of the tendency of models to break down beyond
half of the field extent. We do not think that unbounded models (i.e. ranges greater
than the maximum separation distance) are necessary to consider here.

Quick variograms are not able to provide a precise estimation of soil
variability. Their primary and important advantage is that they are calculated
from data for the property of interest in the location of interest. Quick
variograms provide a useful source of information when either (i) there are no
other sources of information available or (ii) for checking alternative sources
of information against a reference point.

21.11 Recommendations

• Where it is economically and practically feasible, the best practice for estimating
variograms is to conduct a preliminary survey and then a comprehensive field
survey at the spatial scales of interest.

• Where resources for field survey are limited, it is desirable to find a variogram
for the same property which has been calculated for a similar soil type. This
variogram may be useful as a source of information for survey design. It may
also be possible to use this variogram for kriging. Due to the large variability in
soil variograms calculated for each soil property, it is critical to use discretion in
this selection process.

• If more than one existing variogram from a similar soil type is identified, the
information from both should be used. An averaging process may be a useful
way to combine this information. Alternatively, they could be used separately to
provide a range of predictions.

• Ancillary information (such as that from aerial photographs) should be consid-
ered to estimate variograms for soil properties. It can be used for survey planning
and for kriging. Care must be taken to ensure that these variograms have a similar
nugget-to-sill ratio to the property of interest. If available, it is preferred to use
information from soil survey over ancillary information.

• If it is not possible to find a variogram for a similar area, other options are
available. For example, expert knowledge could be consulted. Consultation of
expert knowledge may occur in a formal process-based manner or in a more
informal way.

• Quick field surveys, with limited sampling, may provide a cost-effective way
to estimate rough variograms where other information is unavailable. These
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methods may also be useful when it is desirable to supplement information with
observations directly from the field.

• Variograms are useful for designing detailed sampling surveys for agricultural
and environmental purposes.
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Chapter 22
Broad-Scale Soil Monitoring Schemes

Dominique Arrouays, Ben P. Marchant, Nicolas P. A. Saby,
Jeroen Meersmans, Thomas G. Orton, Manuel P. Martin, Pat H. Bellamy,
R. M. Lark, and Mark Kibblewhite

“Land, then, is not merely soil; it is a fountain of energy
flowing through a circuit of soils, plants and animals”.

Aldo Leopold, A Sand County Almanac, 1949

22.1 Introduction

Soil resources provide many important ecosystem goods and services. However,
they are at risk from a variety of threats operating over a broad range of scales.
Political awareness that soil is threatened by increasing pressures has been rising
for several years (European Commission 2006). Indeed, the demand for soil infor-
mation is increasing continuously (Richer de Forges and Arrouays 2010). Although
rates of soil degradation are often slow and only detectable over long timescales,
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they are often irreversible. Therefore, monitoring soil quality and condition is
essential in order to detect adverse changes in their status at an early stage.

Soil monitoring is the systematic determination of soil properties so as to record
their temporal and spatial variations (FAO/ECE 1994). In a recent review, Morvan
et al. (2008) defined a soil monitoring network (SMN) as a set of sites/areas where
changes in soil characteristics are documented through periodic assessment of an
extended set of soil properties. According to this definition, national frameworks
for soil monitoring exist in numerous countries and in most member states of
the European Union. However, while some countries have achieved uniformity in
methodology and coverage, this is far from common even among national systems
(Arrouays et al. 2008a; Morvan et al. 2008; van Wesemael et al. 2011). In addition
to achieving harmonisation, there are many generic issues that must be addressed
by scientists when establishing and operating SMNs, including the requirement
for these to be effective for different soil systems. Of particular importance is
the requirement for SMNs to detect change in soil over relevant spatial and
temporal scales with adequate precision and statistical power (Arrouays et al. 2008b;
Desaules et al. 2010; van Wesemael et al. 2011).

In this chapter, we present some of these generic issues including the design and
implementation of soil sampling in space and time, the development of statistical
techniques that are general enough to describe the complicated patterns of spatial
and temporal variations of soil properties and harmonisation issues.

22.2 Soil Monitoring Objectives

In a review of European SMNs, Arrouays et al. (1998) stressed that their establish-
ment may have several objectives:

1. Determination of the current characteristics and properties of soils as well as their
environmental stresses, which can be considered as an initial assessment of the
soil status, often called “baseline” values, although the term “baseline” may be
reserved for some assessment of soil state without the impact of human activities,
inferred, perhaps, from nearby soils under climax vegetation

2. Long-term and/or early determination of changes in soils as a consequence of
location-, stress- and use-specific factors, through periodic investigations

3. Assessment of the sensitivity of soils to changes and prediction of their future
development;

4. Development and validation of models for the simulation of ecosystem responses
and the use of these to estimate responses to actual or predicted changes and
stresses and to make regional assessments in concert with survey data

5. Establishment of reference sites for calibration of environmental measurements
6. Generation of information about soil trends, to inform future national policies to

protect soils from degradation and pollution, including the identification of new
threats to soil quality/condition and tests of the effectiveness of existing policies
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de Gruijter et al. (2006) grouped the objectives of SMNs into three broad
categories that have implications when developing the options for the design of a
SMN:

1. Status/ambient monitoring to characterise or quantify the status of soil and
follow how its properties change over time, such as topsoil carbon content under
different land uses

2. Trend/effect monitoring to assess the possible effects of pressures or drivers on
soils to determine not only status but also whether a change was caused by a
specific event or process

3. Regulatory/compliance monitoring to determine whether soils are failing to meet
set standards or targets

22.3 General Considerations About SMN Design
and Construction

The choice of design for a SMN is crucial, especially when assessing large areas and
several properties that are driven by numerous controlling factors of various origins
and scales.

22.3.1 Establishing a SMN

Several reviews have highlighted large differences between existing networks
(Arrouays et al. 1998; Morvan et al. 2008; Saby et al. 2008b; van Wesemael
et al. 2011). The geographical coverage of SMNs is very diverse between and
within countries. Three broad approaches to the establishment of SMNs can be
distinguished, including:

1. The design and construction of purpose-built SMNs
2. Resampling of the soil at sites where measurements have previously been made

for other purposes
3. Compilation and analysis of soil data that have previously been collected in other

soil analysis exercises or experiments

Purpose-built SMNs have been adopted by many countries (e.g. France, UK,
Denmark, Austria, Switzerland, Germany) although in most cases the sites have,
as yet, been sampled only once and hence remain inventories until sampling is
repeated. The sampling design is critical when establishing new SMNs. There are
continuing and extensive discussion about the choice between probability sampling,
which permits design-based analyses free of any statistical model, and model-based
sampling schemes, commonly regular grids with some supplementary points, which
are analysed by model-based statistical methods (Brus and de Gruijter 1993, 1997;
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de Gruijter et al. 2006). The probability designs include a random component in
the selection of sampling locations, whereas the purposive designs select sampling
locations such that a specified objective is best served (see Chap. 11). Often the
purposive design consists of a regular grid since this ensures that the study region
is evenly sampled. This design choice controls the types of statistical analyses that
can be performed. Probability designs are generally used to answer questions about
behaviour across the whole study area or within a restricted number of subareas
using design-based analyses. This means that inferences from the data are based
upon the probability that particular locations are included in the design. Designs
other than probability designs require model-based analyses (see Chap. 11) where
statistical models of the variation of the property are estimated. If these models truly
reflect the variation of the property, it is possible to make localised predictions and
maps and to quantify the uncertainty associated with these maps.

The decision about the scale over which results should be reported presents issues
in itself. To some extent it should be controlled by the scale at which policymakers
require information (see Chaps. 23 and 17). However, some effects may only be
observable at particular spatial scales. For example, Wang et al. (2010) demonstrated
that effects of climate on soil organic carbon (SOC), which were evident at the
provincial scale, were less evident at smaller spatial scales.

Discussions are still ongoing in Europe about the effectiveness of stratified
random sampling compared to purposive sampling on a grid. Previous simulations
have shown that a 16 � 16 km grid is representative of most soil-type/land cover
combinations at European and national scales (Arrouays et al. 2001; Van-Camp
et al. 2004; Morvan et al. 2008). In a report about the design and implementation
of a future SMN for the UK, Black et al. (2008) provided an extensive review of
the advantages, limitations and relative performances of these sampling options.
This study compared two purposive designs (grid and optimised grid) and two
probability designs (stratified random and stratified cluster random sampling). The
stratified random scheme was found to be the most suitable option for some of
the specific questions being addressed, particularly in terms of the assessment of
status and changes in SOC. In a review of ten national SMNs focused on SOC
changes, van Wesemael et al. (2011) showed that most of these SMNs (seven out
of ten) are based on stratified random sampling. Indeed, several studies dedicated to
sampling schemes for SOC monitoring have pointed out that a stratified sampling
design would be more efficient (Walter et al. 2003; Goidts et al. 2009b; Viaud
et al. 2010; Meersmans et al. 2011). In view of these studies, there appears to be
a consensus that stratified designs should be selected if the aim of the SMN is to
determine the average status and change of soil properties over large regions and if
the spatial patterns of factors which control the variation of all of the soil properties
are known. Major soil groups and land use categories are often suitable factors for
the stratification of the design.

However, grid-based surveys have the advantage of achieving good spatial
coverage, with proportional representation of the regions of interest. Overall, the
grid-based sampling scheme should be more flexible for incorporating unknown
future requirements such as the impact of new pressures and monitoring of new

http://dx.doi.org/10.1007/978-3-319-63439-5_11
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soil quality indicators and indicators for which spatial patterns are not yet known.
Also, grid-based designs will in general be more appropriate if a key objective is to
produce maps of status or change.

A further consideration is how the design of different phases of a SMN should
relate to each other. With reference to probability sampling, de Gruijter et al. (2006)
classified designs according to whether they are static and all sampling takes place
at a fixed set of locations or whether the set of locations changes for each phase
of the survey. Rotational designs are a compromise where only a proportion of the
locations from the previous phase are resampled and new locations are selected for
the remainder of the observations. de Gruijter et al. (2006) defined synchronous
designs as those where multiple observations are made at the same time. There
are trade-offs between these different classes of design. If locations are resampled,
then the temporal variation at these sites will be well understood, but the spatial
resolution of estimates can be improved if the locations change and more sites are
visited. If the measurement approach is destructive or alters the soil properties at
the site, then it might not be possible to revisit a particular location. Also static
designs mean that any bias in the initial sample design persists throughout the
life of the SMN. Static designs might be required if it is expensive to move and
reinstall monitoring devices such as the lysimeters used by Brus et al. (2010). This
SMN used a nonsynchronous design because the aim was to estimate the space-
time means of the measured indicators. Other surveys favour synchronous designs
because estimates of the indicators are required on different dates or because they
lead to simple estimators (Brus and Knotters 2008). The aim of model-based surveys
is often to produce a series of maps of soil indicators on different dates, and these are
most easily predicted from synchronous designs (Marchant et al. 2009). However,
the number of samples and the time taken to travel between them might mean it
is not practical to use truly synchronous designs for national-scale SMNs; it may
take more than 1 year to complete the sampling as in the National Soil Inventory of
England and Wales (Bellamy et al. 2005).

Regardless of the choice between probability-based and purposive approaches,
it is important to estimate, prior to implementation of the scheme, how many
measurements will be sufficient to predict status and change of key soil properties
with the precision required by policymakers (e.g. Black et al. 2008). The expected
errors from a particular purposive sample design can only be determined if the
variogram of the status and/or change of each indicator is known. The variogram
(Webster and Oliver 2007) is a function which describes the variance and spatial
correlation of a property (see Chaps. 10 and 21). It is the model in much model-
based analysis of soil data. It is unlikely that the variograms are known exactly
prior to monitoring, but approximate variograms can be estimated from previous
surveys of similar indicators in similar circumstances. This approach has been used
to design both probabilistic (Brus and Noij 2008) and purposive (Marchant et al.
2009) sample schemes. Often the required precision of a SMN is unclear because
neither the rate of change of an indicator nor the implications of changes are known
prior to sampling. In a recent study, Lark (2009) emphasised that the current status of
a particular indicator and the rate of change of that indicator are different variables,

http://dx.doi.org/10.1007/978-3-319-63439-5_10
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and so their variability may differ. Some plausible statistical models of change
in the soil were examined, and their implications for sampling to estimate mean
change in large regions were considered. These results show that taking account of
knowledge of soil processes may improve the design of the SMN. Some authors
recommend adapting (or calculating) the sampling time interval to make sure that
the observed changes will be significantly higher than the differences that might
be due to sampling and other methodological issues (Smith 2004; Bellamy et al.
2005; Saby et al. 2008b), while others (e.g. Desaules et al. 2010) argue that given
these uncertainties, reducing the time interval increases the power of the scheme to
observe short-term and potentially important changes in the observed trends.

Finally, it should be stressed that resources for SMN establishment and operation
are always limited to some extent, and this affects the actual choice of sampling
strategy and places a premium on identifying an optimal scheme taking account of
the monitoring objectives and a requirement for resource efficiency. Considering
this limitation, Black et al. (2008) choose to test the design of a UK SMN on
SOC status and changes, as these properties are involved in processes controlling
a large number of threats to soil (e.g. decline in soil organic matter, erosion, soil
biodiversity, compaction, fate of contaminants). Similarly, Yu et al. (2011) assessed
the sampling required to detect a change of 1.52 g kg�1 in SOC under various
types of land management in South China. Chapter 23 gives a relevant example
of designing a cost-effective monitoring scheme for farm-scale soil carbon auditing.

Resampling inventory sites from past soil mapping surveys allows immediate
estimates of change and reduces the opportunity cost of establishing a SMN, as
the baseline sampling exercise is already completed. This strategy has been used
extensively in Belgium for monitoring SOC (Arrouays et al. 1996; Sleutel et al.
2007; Goidts et al. 2009a, b; Meersmans et al. 2009, 2011). It supports a focus
on the change in SOC stock at the point scale. Although Goidts et al. (2009a)
resampled within a radius of 11 m of the original site of the Belgian National
Soil Survey (1947–1974), the source of error related to imprecise resampling of
each location was quite large (i.e. relative RMSE ranging between 12% and 31%)
due to large variability in SOC concentration, bulk density, stone content and
sampling depth at very fine spatial scales (i.e. variability within the same field).
Consequently, given the response time of SOC to changes in management or land
use (i.e. in the order of decades), most soil inventories are probably not old enough,
and/or the rates of SOC changes at individual sites are too small to be detected
by resampling. Nevertheless, the latter study shows that uncertainty because of
positioning error was considerably lower when studying SOC stock changes for
homogeneous landscape units (characterised by same land use, agricultural region
and soil type) due to the fact that multiple locations (9–47) were sampled at this
aggregated level (i.e. relative RMSE ranging between 1% and 11%). Indeed, other
studies have been able to detect significant temporal changes when conducting SOC
stock comparisons for areas rather than individual monitoring sites. For example,
Meersmans et al. (2009) studied changes in the vertical heterogeneity of SOC by
resampling soil profile pits from the National Soil Survey and comparing modelled
depth distribution of SOC from both time periods within homogenous land use-soil-

http://dx.doi.org/10.1007/978-3-319-63439-5_23
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type combinations in North Belgium. Moreover, Sleutel et al. (2007) related average
SOC stock evolution between 1990 and 2000 by municipality (from 190,000 SOC
measurements) to agricultural variables (e.g. manure application, crop rotation, land
use change) in order to derive the main factors explaining the overall SOC change
over time in Flanders (North Belgium). Recently, Meersmans et al. (2011) identified
an overall countrywide significant increase under grassland and a decrease under
cropland after modelling the spatial distribution of SOC in all agricultural soils over
all of Belgium in 1960 using the initial sites from the National Soil Survey and data
for 629 locations resampled in 2006.

Analysing the results from existing soil measurement exercises, such as oper-
ational soil testing by farmers or fertiliser suppliers, is one potential option for
detecting large temporal trends in soil characteristics. Pre-existing data, such as
historic soil testing results, have often been used to assess temporal changes at
national and regional levels, e.g. for phosphorus by Skinner and Todd (1998) in
England and Wales, Cahoon and Ensign (2004) in eastern North Carolina (USA),
Wheeler et al. (2004) in New Zealand, Lemercier et al. (2008) in France and
Reijneveld et al. (2010) in the Netherlands and for carbon, Saby et al. (2008a) in
France and Reijneveld et al. (2009) in the Netherlands. These studies assessed the
change in soil test results with respect to land uses, cropping regimes and soil types.
A spatial analysis of a soil test database performed by Baxter et al. (2006) in England
and Wales contributed to designing future sampling approaches for monitoring soil
properties at the national scale.

The conclusions drawn using these kinds of data may be subject to several
sources of bias that are inherent in a noncontrolled sampling strategy. The farmers’
agronomic concerns for soil testing may have induced skews accentuating the
proportion of extreme values, especially for trace element contents. Indeed, farmers
are likely to require trace element soil testing when they suspect a crop or
animal deficiency or toxicity. Moreover, possible biases may arise from changes
in sampling resolution in space and time.

In deciding upon the monitoring approach to be used in SMN, managers
must weigh the efficiency of purpose-built designs against the reduced costs and
immediacy of change estimates from the other types of designs. The benefits of the
purpose-built design might be strongly felt if the SMN has a long lifetime and is
to be resampled on several occasions. If soil monitoring is required to quantify an
immediate threat in the short term, then the use of existing soil observations becomes
more important. If the resampling of an existing inventory is being proposed, then
the suitability of the inventory design for soil monitoring must be assessed. If
the initial inventory was a non-probability survey, then it will not be possible to
apply design-based analyses to the SMN. Model-based analyses will require that
the design of the inventory is adequate to estimate a model of the spatial variation
in the change of key properties and to predict this change across the study region.
The data from existing soil measurement exercises should only be used if they are
considered to be representative of the underlying variability of the soil.
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22.3.2 Within-Site Sampling

Site area and number of subsamples. When planning sampling in a site where a
soil indicator is expected to change, it is necessary to know how many samples
should be taken to demonstrate a given change and after how long this change
will be detectable. At the site level, numerous studies have addressed these issues
(Hungate et al. 1996; Garten and Wullscheleger 1999; Conen et al. 2003, 2004;
Saby and Arrouays 2004; Smith 2004). Arrouays et al. (2008a) reviewed within-site
variability using data from the literature. One hundred and twenty references were
collected, providing information about the short-range variability of soil indicators,
for sites having areas ranging from 1 m2 to 20 ha. The data were used to derive
quantitative estimates of the mean variances, standard deviations and coefficients
of variation for all available parameters. They examined the possible relationships
between within-site variability and site area and/or mean values, and they found a
strong relationship between the within-site variability of some parameters and the
size of the site area. A marked relative increase in variability was observed for sites
having areas >1 ha. This was particularly the case for some trace elements which
are known to exhibit large spatial variations over quite short distances (Pb, Cd, Zn
and Cu). In view of the increase in variability with site area and its implications
for the number of samples that should be collected, they recommended using site
areas not exceeding 1 ha to keep the number of subsamples practically feasible. If
the aim of the SMN is to report the mean of an indicator over large scales such as
soil-landscape units, then within-site variability is less important provided that the
effect of this variability on the overall error of the mean is controlled, perhaps by
forming a soil sample for analysis by aggregation of aliquots from across the site.

Due to resource constraints, most of the national monitoring sites are sampled
using composite sampling, i.e. taking subsamples and bulking them. However, as
has been stressed, studies of the subsampling error of monitoring sites are crucial
for the interpretation of results and changes. In a study of results from the Swiss
soil monitoring network (NABO), Desaules et al. (2010) showed that no certified
trends can be stated after three measurement campaigns over a period of 10 years.
Moreover, these authors stressed that the only way to detect reliable signals and
trends earlier is to improve the overall measurement quality (precision and bias)
and to shorten the sampling time interval.

Sampling depth. In their review of European SMNs, Arrouays et al. (2008a) and
Morvan et al. (2008) showed that fixed-depth increments are predominantly used
for core sampling (in more than 70% of the SMNs). This sampling method ensures
standardisation between sites. It is also the most relevant for some anthropogenic
characteristics (e.g. anthropogenic heavy metals, radionuclides, organo-chemicals)
and for properties showing a strong gradient near the soil surface where the soil is
often sampled over smaller increments.

Pedogenic horizons are often sampled in soil pits, outside the monitoring site, but
close to it. This method of sampling is relevant for some parameters (e.g. particle-
size distribution, water retention properties, mineralogy). It is also the most relevant
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unit to link SMN observations to geographical soil information systems derived
from soil mapping activities.

For nearly all the SMNs, the organic layers at the soil surface are sampled
separately from the underlying organo-mineral soil, and this is our recommendation.

For organo-mineral layers, we recommend adoption of systematic depths in
order to avoid subjectivity in sampling, harmonise sampling protocols and facilitate
comparisons between SMNs.

The best practice would be to sample both by depth increments in the site and
by pedogenetic horizons in soil pits, outside the monitoring area, but close to it.
Arrouays et al. (2008a) examined, for each European SMN, the depths to which
indicators are measured or can be calculated which were highly variable amongst
SMNs.

Another way to compare vertical sampling is to calculate for each SMN the
maximal depth to which sampling is realised. About 90% of the SMNs provided
information down to 20 cm, whereas nearly 65% of the SMNs reached at least
30 cm.

It is very difficult to recommend sampling depths which should be adopted for
all SMNs. Moreover, there may be good reasons for accepting a particular depth
in a particular SMN, and changing systematic depths for a national SMN might, in
some cases, make it very difficult to use the data from previous campaigns to assess
changes. For example, it is not possible to compare data for indicators based on
a 0–15 cm sampling depth with that for the same indicators based on a 0–30 cm
resampling depth. One way to harmonise reporting at the international level could
be to report the results on the basis of an equivalent mineral mass (Ellert and Bettany
1995). However, this would require the determination of bulk density at all sites and
at each sampling date. General considerations about using soil depth functions or
horizons and classes are given in Chap. 9.

22.3.3 Resampling the SMN

One objective when resampling should be to replicate as closely as possible
the original sampling methodology and location. This requires that the original
methodology is documented completely, but even when this is done, it is likely
that variation in detailed procedures will occur, for example, due to differences in
practice between different operators. This extends to laboratory testing as well as
field sampling. While the availability of global position system (GPS), especially if
this incorporates a ground station, means that the longitude and latitude for sampling
locations can be precisely recorded and repeat sampling can be exactly located, this
does not extend to altitude, and very often the soil surface has been altered and
sometimes eroded leading to uncertainty in the equivalence of sampling exercises.
Deviation from sampling and analytical protocols and location errors are likely to
be confounded with those arising from actual spatial and temporal variation in the
indicator being monitored. When making in situ measurements, it is possible in

http://dx.doi.org/10.1007/978-3-319-63439-5_9
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principle to resample a specific location and the soil within it, but where a sample
is extracted for laboratory testing, this is clearly impossible. In the latter case, it is
essential to establish an adequate sampling scheme that can be applied rigorously at
each sampling location, for example, by establishing a grid and removing samples
from randomly determined locations at each sampling exercise.

22.4 Statistical Inference Issues

22.4.1 Design-Based or Geostatistical Methods

The variation of soil properties is very complex since soil is affected by many
processes acting over different spatial and temporal scales. Local factors such
as geological anomalies or anthropogenic pollution can distort and disguise the
underlying relationships of interest. Therefore statistical analyses are required to test
the significance of relationships and to determine the uncertainty associated with
estimates and predictions. We described previously how some SMNs such as the
Countryside Survey of Great Britain (Firbank et al. 2003) are based on probability
sampling, whereas others such as the French National Soil Monitoring Network are
based on purposive designs.

There are different statistical methods associated with these different types of
designs. Design-based analyses which are reviewed by Barnett (2002) and de
Gruijter et al. (2006) are associated with probability designs. These are well-
established statistical techniques which can estimate summary statistics such as
the mean, median or probability density function (PDF) of a soil property across
the entire study region or a portion of it. They can be used to understand the
underlying behaviour in the region and test hypotheses about the effect of particular
factors or threats. An estimation variance is also calculated that quantifies the
uncertainty associated with these estimates. Design-based methods can account for
different stratifications of the data, compare different temporal phases of SMNs
and determine whether a soil property has changed significantly between phases.
Kravchenko and Robertson (2011) stressed the importance of performing power
analyses prior to sampling to predict the sampling requirements and post sampling
to determine if observed changes are significant and exactly what can be inferred
from the absence of a significant change.

Soil monitoring networks based on purposive designs are generally analysed
by geostatistical techniques which can be used to make local predictions and
quantify uncertainties at any site of interest (see Chaps. 10, 11 and 14). Many of
the geostatistical methodologies commonly used today can be directly attributed
to Matheron (1965) and his analyses of the spatial variation of ore bodies. These
methodologies are based on a statistical model known as the variogram which is
fit to available data and describes the pattern of spatial variation of the observed
variable (see Chap. 21). The fitted variogram is used in kriging (Krige 1966; Chap.

http://dx.doi.org/10.1007/978-3-319-63439-5_10
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10) to predict the variable across the region and to calculate a measure of the
uncertainty associated with the predictions, known as the kriging variance. These
methodologies, which are introduced in an accessible manner by Webster and Oliver
(2007), rely upon a number of assumptions about the statistical distribution of the
soil indicator and the regularity of its variation. Brus and de Gruijter (1997) consider
this a disadvantage of geostatistical methods since the inferences made from them
will be invalid when these assumptions are not appropriate. In contrast, design-based
methods do not fit models to the data but instead base inferences on the sample
design and the probability that a point is included in the sample. The development
of techniques to analyse SMNs which are sampled spatially by probability designs
but temporally by non-probability designs is an active area of research (Brus et al.
2010).

A major challenge associated with geostatistical techniques, but not design-based
techniques, is to ensure that the model of variation is appropriate everywhere in
the study region. In the remainder of this section, we focus upon this challenge in
various circumstances that might not be consistent with the standard geostatistical
model.

22.4.2 Generalising the Geostatistical Model

Often the variation of a soil property is sufficiently consistent with the assumptions
of standard geostatistical models for the methods of Matheron (1965) to produce
adequate results. However in general the variation of soil indicators is much
more complex. Therefore, since the 1960s, many methods have been proposed to
generalise the geostatistical model so that, for example, the expectation (Lark et al.
2006b) or variance (Marchant et al. 2009) of the indicator can vary according to
covariates such as soil type. Furthermore, in some situations, the kriging variance
does not give a sufficiently complete description of the uncertainty associated with
the SMN, and model-based geostatistical methods have been introduced to predict
the entire PDF of the soil indicator at each site (see Chap. 11). Then the PDF can be
interrogated to answer specific questions such as “What is the probability that the
concentration of the soil indicator exceeds the regulatory threshold?” or “What is
the probability that the concentration of the soil indicator has increased?”

The geostatistical analysis of national-scale SMNs can be particularly challeng-
ing. The vast area covered by these surveys means that the observed variation is the
combined effect of processes acting over disparate spatial scales. The number of
observations means that efficient computational methods are required to ensure that
the statistical analysis is tractable.

http://dx.doi.org/10.1007/978-3-319-63439-5_11
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22.4.3 Extreme Observations

Isolated geological anomalies or pollution can lead to outliers or extreme values
amongst SMN observations. Outliers are not consistent with standard geostatistical
models and can lead to the underlying uncertainty in the SMN being overestimated.
Standard kriging methods can exaggerate the spatial extent of hotspots around
outliers. In studies of trace elements, this can mean that excessive remediation is
conducted or the areas of potential deficiencies are missed. This issue was addressed
by Marchant et al. (2010) in a study of cadmium variation across France. They used
robust geostatistical methods which reduced the influence of outliers when they
fitted their models of variation. These models were used to identify outliers which
were censored prior to kriging (Hawkins and Cressie 1984). Their methodology
separated variation into geological, diffuse and anomalous components and meant
that underlying relationships could be investigated. When these methods were
applied to a wider group of trace elements (Saby et al. 2011), soil experts were
able to identify processes contributing to variation at each scale. Figure 22.1 shows
how the variation of lead across France is divided between these scales.

Robust methodologies are not appropriate for compliance monitoring where
the risk of extreme values must be included and a model that can accommodate
them is required. Marchant et al. (2011a) demonstrated that copula-based methods
can accommodate general statistical distributions including the extreme value
distribution. The PDF of the indicator of interest can be calculated at any site in
the study region, and any relevant measure, such as the probability of exceeding
a threshold, can be determined. They used this model to map the probability of
cadmium exceeding a regulatory threshold of 0.8 mg kg�1 within France (Fig. 22.2).

Fig. 22.1 Components of lead variation at the geological (a), diffuse (b) and anomalous localised
(c) spatial scales estimated by robust geostatistical methods (Figure reprinted from Arrouays D,
Marchant BP, Saby NPA, Meersmans J, Orton TG, Martin MP, Bellamy PH, Lark RM, Kibble-
white M (2012) Generic issues on broad-scale soil monitoring schemes: A review. Pedosphere
22(4):456–469)
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Fig. 22.2 Map of probability that regulatory cadmium threshold of 0.8 mg kg�1 is exceeded
and (inset) PDF (probability density function) for cadmium at specified sites. Predictions are
derived from a copula-based model (Figure reprinted from Arrouays D, Marchant BP, Saby NPA,
Meersmans J, Orton TG, Martin MP, Bellamy PH, Lark RM, Kibblewhite M (2012) Generic issues
on broad-scale soil monitoring schemes: A review. Pedosphere 22(4):456–469)

22.4.4 Different Sources of Uncertainty

Geostatistical methods can be used to quantify the uncertainty that results from
the prediction of spatial maps based on observed data. However, the data obtained
from a SMN includes other sources of uncertainty (see Chap. 14). In the field,
there may be errors in locating observation sites. In the laboratory, there may
be measurement error; for some trace elements, many observed values might be
less than the detection limit, meaning that the value cannot be distinguished from
zero. Our discussion focuses on continuous data such as concentrations of elements
in the soil, but noncontinuous types of data such as radioactive emission counts
require that the uncertainty is expressed in a different manner. Also, there can be
errors in estimating spatial models. All of these components of uncertainty should
be understood if we are to fully appreciate the total uncertainty of a predicted
map (see Sect. 14.4.5). Rawlins et al. (2009) considered the relative influence of
errors from different sources and strategies that do exist to isolate these different
uncertainties. In large-scale SMNs that include many observations, the effects of
these uncertainties might well be negligible. However, it is prudent to confirm that
this is the case.

22.4.5 Location Uncertainty

Cressie and Kornak (2003) reviewed methods that account for location errors and
suggested novel kriging equations which included such errors. Area-to-point kriging
(Kyriakidis 2004) can be used to incorporate the uncertainty that results from data
that are averaged over geographical units of varying sizes. The method is based on
the assumption that the covariance between any two areal data units is the average
of point-to-point covariances between the two units; this assumption allows a point-

http://dx.doi.org/10.1007/978-3-319-63439-5_14
http://dx.doi.org/10.1007/978-3-319-63439-5_14
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to-point covariance function to be fitted to represent the variation of the areal data,
which can then be used to calculate the area-to-point kriging predictions.

22.4.6 Measurement Error and Detection Limit Data

Laboratory errors can be estimated if repeated measurements are made at a
small number of sites in a survey (Marchant et al. 2011b). Orton et al. (2009)
used information from such repeated measurements to define a simple Gaussian
measurement error model, and this was combined with the effects of the micro-
scale field variation (which was assumed to be Gaussian on a log scale) using a
Bayesian hierarchical modelling approach (Banerjee et al. 2004).

When laboratory measurements are reported as being less than a detection
limit (DL), it is important to consider how they should be included in a spatial
analysis. Commonly, measurements below the DL are incorporated in the analysis
by replacing them with some function of the limit (e.g. DL/2). Although this
approach is simple and allows analysis through the standard variogram estimation
and kriging methods, Helsel (2006) observed that it can lead to biased estimates of
the mean and variance. De Oliveira (2005) and Fridley and Dixon (2007) used data
augmentation in the Bayesian framework to incorporate DL data in geostatistical
prediction, in which the DL data were replaced by sampled values below the DL
using a Markov chain Monte Carlo method, and their uncertainty and effect on
variogram estimation and prediction were determined.

22.4.7 Other Forms of Data

Noncontinuous soil indicators, such as emission counts of radioactive material from
the soil, or the presence or absence of some bacteria can be observed in SMNs. In
such cases, interest will typically lie in a nonmeasurable quantity: the underlying
true quantity of the radioactive contaminant in the soil or the probability of the
presence of bacteria at each location. Although we can proceed with analysis as
if the measured quantity were our primary focus (e.g. by indicator kriging for
binary data), uncertainty in such cases can be more appropriately described by
some statistical description of the data-generating mechanism: count-type data can
often be described well by a Poisson distribution, and binary data might be better
described by the binomial distribution. For describing uncertainty resulting from
such data, the generalised linear mixed model (LMM, Diggle and Ribeiro 2007)
and Bayesian hierarchical modelling approaches (Banerjee et al. 2004) provide
powerful expansions of the classical kriging methods (see Sects. 11.3 and 11.4);
they provide more flexible statistical representations of the data than the classical
approaches, so that the processes that gave rise to the measurements can be more

http://dx.doi.org/10.1007/978-3-319-63439-5_11
http://dx.doi.org/10.1007/978-3-319-63439-5_11
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accurately modelled. These general methods seem to offer significant opportunities
for representing uncertainty in geostatistical analyses of these types of SMN data.

22.4.8 Uncertainty in Estimating Spatial Models

Parameters in spatial models can usually be separated into two sets: those that repre-
sent the expected value or a trend for the primary variable and those that represent its
variance and correlation in space/time. Since Matheron’s work (Matheron 1965), the
uncertainty about trend parameters has been accounted for through the ordinary or
universal kriging methodologies. For the variance parameters, the kriging methods
have adopted a plug-in approach: first, the parameters are estimated, and then the
estimated values plugged into the kriging equations to calculate the prediction
and associated kriging variance. Hence the uncertainty of the estimated spatial
model is ignored. Marchant and Lark (2004) used the Fisher information matrix to
further include variance parameter uncertainty in the resulting spatial predictions
in a maximum likelihood framework. Bayesian methods also incorporate fully
the effects of variance parameter uncertainty through Markov chain Monte Carlo
methods (Minasny et al. 2011) (see Sect. 14.4.2).

22.4.9 Inclusion of Temporal Variation

After more than one phase of a SMN has been completed, the model of variation
must be modified to quantify temporal variation in addition to spatial variation.
Then kriging algorithms can be used to map the change in indicators across
the study region. Different spatio-temporal models have been applied in existing
monitoring surveys. De Cesare et al. (2001) reviewed the use of space-time
covariance models. Papritz and Flühler (1994) suggested that different phases of
a survey can be treated as coregionalised variables, and Lark et al. (2006a) used
robustly estimated coregionalisation models to determine the sampling requirements
for mapping change in metals in the part of eastern England. Bellamy et al. (2005)
included the rate of change of SOC as a parameter in their model of variation.
The challenge is to determine the most appropriate model for a particular SMN.
It is important to validate the model once it has been fitted so deficiencies can be
identified and strategies introduced to rectify them. For example, in a monitoring
survey of phosphorus enrichment in the Florida Everglades, Marchant et al. (2009)
identified that phosphorus was more variable in parts of the study region adjacent to
pumping stations which input agricultural runoff. They used remotely sensed data
of dominant vegetation to automatically identify these regions and adjusted their
model to accommodate the larger variability.

http://dx.doi.org/10.1007/978-3-319-63439-5_14
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22.5 Laboratory Testing Methods

The question of which soil measurement methods to recommend is complex.
Most countries have long-established SMNs and use specific testing methods.
Changing these methods to a different one would impede data comparison with
previous results, unless parallel analyses are performed, using both national and
new reference methods. An important example relates to the assessment of global
SOC stocks or changes. The analytical methods may often be different in space
or time. For example, modern analytical methods such as dry combustion might
be used instead of the more common Walkley and Black method (Meersmans et
al. 2009). Therefore correction factors are needed to avoid methodological bias
when comparing SOC data from sampling campaigns using different analytical
procedures (e.g. Jolivet et al. 1998; Lettens et al. 2007; Meersmans et al. 2009).

Arrouays et al. (2008a) reported information on soil testing techniques gathered
by partners from all the European member states. They found that, in some cases, the
applied test procedures were not sufficiently detailed; the information provided was
often very vague, even after several requests, with partners reporting only the type
of extract or equipment used. Nevertheless, for SMNs for which this information
was available, the testing methods showed numerous differences, indicating that the
use of international standards (when they exist) is far from common. Indeed, as
numerous international standards for soil analysis are still lacking, standardisation
will be one of the main issues in setting up a SMN at an international level. Clearly,
there is a widespread need for agreeing testing methods and ensuring that these are
validated and conducted to produce data of known and documented quality.

As a minimum, for each testing method employed, the following is essential:
a fully documented procedure with details of calibration methods that ensure
traceability to international standards; data on the repeatability (within-batch error)
and reproducibility (between-batch error) of the method, based on repeated analysis
of standard samples (preferably certified reference materials); and a testing method
detection limit, based on an agreed multiple of the standard error for whole
procedure blanks. In addition, to support continuing quality assurance procedures,
repeated analysis is required of standard samples included within each batch and
analysis of the results using statistical process control charts. Participation in inter-
laboratory proficiency exercises is critical. Although using a single laboratory to
test all samples ensures consistency in the quality of results, it does not guarantee
adequate quality, and in this case, as when several laboratories are participating in
testing, it is imperative that inter-laboratory comparisons are conducted to support
and demonstrate sufficient inter-comparability between laboratories.

Except for those parameters for which a consensus exists, the question of
testing method harmonisation remains a very difficult issue. For several parameters,
combining several techniques, on all samples or on a subset of samples, from
archives can be a useful option to harmonise data obtained using different or
inadequately validated testing methods. This can allow samplestaken in previous
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campaigns to be used to detect changes and to establish pedotransfer functions
for prediction of non-measured indicators (e.g. estimation of bulk density based
on texture and organic matter content).

Generally, the main cost in soil monitoring is from sampling in the field,
and adding more indicator measurements has a relatively low opportunity cost
depending on the complexity of the testing procedure.

22.6 Archiving Samples

Soils are monitored through long-term networks that require long-term commitment
from researchers and from funding agencies. In numerous countries, soils are
monitored on the basis of national schemes. Despite these enormous efforts to
characterise soils, it is striking that in the European Union, for instance, about 40%
of the monitoring programmes do not archive soil samples that are collected and
analysed (Arrouays et al. 2008a; Morvan et al. 2008). However there are very good
reasons to retain samples.

We do not know what we will be interested in the future. When the Broadbalk
experiment was established in 1843 at Rothamsted, UK, researchers were certainly
not aware that their decision to carefully archive samples taken from the experi-
mental plots would enable monitoring a posteriori of the levels of polychlorinated
biphenyls in the environment (Alcock et al. 1993).

New analytical techniques will arise in the future. These will be more precise
and/or will allow the use of new tracers of environmental or biogeochemical
processes. A number of substances which cannot be detected using current testing
methods will become quantifiable. Progresses in microbiology and molecular tools
already enabled soil DNA libraries to be built to explore the micro-biodiversity and
its long-term changes in relation to global change or other pressures (Dequiedt et
al. 2009, 2011; Gardi et al. 2009; Ranjard et al. 2010; Bru et al. 2011). Techniques
and standards for soil analyses are evolving continuously. Thus it is good practice to
retain soil samples so that they can be tested in the future. However, archiving sam-
ples raises some scientific and technical issues concerning the effects of changes in
sample properties with time: effect of drying (temperature) and ageing on numerous
soil properties, e.g. volatilisation of persistent organic pollutants (Garmouma and
Poissant 2004), changes in trace element speciation and bioaccessibility (Martens
and Suarez 1997; Martinez et al. 2003; Furman et al. 2007), changes in pH
(Prodromou and Pavlatou-Ve 1998), changes in phosphorus solubility (Styles and
Coxon 2006) and changes in microbial communities identification (e.g. Clark and
Hirsch 2008; Tzeneva et al. 2009).
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22.7 Harmonisation Issues

The uniformity of methodologies and the scope of actual monitoring networks
are variable between national systems. A recent review identified the differences
between existing systems and described options for harmonising soil monitoring
in the member states and some neighbouring countries of the European Union
(Morvan et al. 2008). The present geographical coverage is uneven between and
within countries (Morvan et al. 2008; Saby et al. 2008b). The most serious
barrier identified, which limits the harmonisation of data from existing SMNs,
is the wide variety of soil testing methods that have been employed historically.
Harmonisation can be defined as the minimisation of systematic differences between
different sources of environmental measures (Keune et al. 1991). There are some
opportunities for harmonising data obtained using different testing methods, for
example, by regression analysis, but these are limited. Recently, Baume et al. (2011)
proposed a universal kriging approach that is able to deal with the issue of merging
data from different monitoring networks. The establishment of benchmark sites
devoted to harmonisation and inter-calibration has been advocated as a technical
solution by many authors (e.g. Theocharopoulos et al. 2001; Wagner et al. 2001;
Van-Camp et al. 2004; Kibblewhite et al. 2008; Morvan et al. 2008; Gardi et al.
2009). Cathcart et al. (2008) have recently set up 43 benchmark sites in Alberta,
Canada, to monitor agricultural soil quality, and the sites were selected to be
representative of a number of soil chemical and physical properties across the
region. However, at present, few studies have addressed crucial scientific issues
such as how many calibration sites are necessary and how to choose them (Louis
et al. 2014).

22.8 Conclusions

Numerous scientific challenges arise when designing a SMN, especially when
assessing large areas and several properties that are driven by numerous controlling
factors of various origins and scales.

Three broad approaches to the establishment of SMNs can be distinguished,
including:

1. The design and construction of purpose-built SMNs
2. Resampling of the soil at sites where measurements have previously been made

for other purposes
3. Compilation and analysis of soil data that have previously been collected in other

soil analysis exercises or experiments

It is essential to establish an adequate sampling protocol that can be applied
rigorously at each sampling location and time. The organic layers at the soil
surface should be sampled separately from the underlying organo-mineral soil, and
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organo-mineral soils can be sampled both by depth increments in the site and by
pedogenic horizons in soil pits, outside the monitoring area, but close to it. Different
statistical methods should be associated with the different types of sampling design.
Several studies propose new statistical methods that account for different sources of
uncertainty (e.g. location errors, measurement error and detection limit, estimation
of spatial model). Except for those parameters for which a consensus exists, the
question of testing method harmonisation remains a very difficult issue. For several
parameters, combining several techniques, on all samples or on a subset of samples,
from archives can be a useful option to harmonise data obtained using different
or inadequately validated testing methods. The establishment of benchmark sites
devoted to harmonisation and inter-calibration has been advocated as a technical
solution. However, no one has addressed crucial scientific issues such as how many
calibration sites are necessary and how to locate them.
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Chapter 23
Farm-Scale Soil Carbon Auditing

Jaap J. de Gruijter, Alex. B. McBratney, Budiman Minasny, Ichsani Wheeler,
Brendan P. Malone, and Uta Stockmann

“You have been weighed,
you have been measured,
and you have been
found wanting”.

Adhemar (A Knights Tale, 2001)

23.1 Introduction

The soil system is recognized as a significant terrestrial sink of carbon. Estimates
for the top meter of soil in the world range between 1,200 and 2,500 petagrams
for organic C (Batjes 1996; Lal 2004). The reliable assessment and monitoring
of soil carbon stocks is of key importance for soil conservation and in mitigation
strategies for increased atmospheric carbon (Stockmann et al. 2013). Carbon credits
are the heart of a cap-and-trade scheme, by offering a way to quantify carbon
sequestered from the atmosphere; carbon credits gain a monetary value to offset

This chapter is a reprint from an original paper published in the journal: Geoderma. Changes from
the original article include its formatting, and the addition of cross-references to other chapters of
this book and some minor textural changes.

Citation of the original paper: de Gruijter, J., McBratney, A.B., Minasny, B., Wheeler,
I., Malone, B., Stockmann, U., 2016. Farm-scale soil carbon auditing. Geoderma 265,
120–130.

J.J. de Gruijter (�)
Alterra, Wageningen University and Research Centre, PO Box 32, NL-6700 AA Wageningen,
The Netherlands
e-mail: jjdegr@kpnmail.nl

A.B. McBratney • B. Minasny • I. Wheeler • B.P. Malone • U. Stockmann
Sydney Institute of Agriculture & School of Life and Environmental Sciences,
The University of Sydney, Sydney, NSW 2006, Australia

© Elsevier B.V. 2018. All Rights Reserved.
A.B. McBratney et al. (eds.), Pedometrics, Progress in Soil Science,
DOI 10.1007/978-3-319-63439-5_23

693

mailto:jjdegr@kpnmail.nl


694 J.J. de Gruijter et al.

a given amount of carbon dioxide releases (Paustian et al. 2009). The agricultural
industry worldwide has the capacity to capture and store carbon emissions in soil
(Paustian et al. 2000). However, there is still a debate on how soil can benefit for
the offsets in the carbon economy because there is no good and efficient way of
measuring soil carbon storage with appropriate statistical confidence (Post et al.
2001; Smith 2004b). A scheme that can measure and monitor soil carbon storage on
a farm, which is crucial to the participation of the agricultural sector in the carbon
economy, is essential.

There is a win-win position for increased carbon storage in soil. Soil organic
carbon (SOC) provides benefits of enhanced soil fertility through improved soil
structure, by promoting the agents and mechanisms of aggregation, and increased
cation exchange capacity (Stockmann et al. 2013). Studies of Australian soil
systems have shown that conversion of forested and grassland areas into cultivated
agriculture has led to an overall decline in SOC stock in those soils (Dalal and
Chan 2001; Luo et al. 2010). Conservation tillage, reforestation, and sustainable
development practices are recognized methods to promote carbon storage. One
mechanism that can facilitate the effective management of the soil carbon is to treat
it as a tradeable resource or commodity. A monetary value has been assigned to
carbon, in all its states and forms, which can allow for the trading and offsetting
of carbon budgets. The development of carbon credit markets accessible to the
private sector would allow for incentives such as government payments, tax credits,
and/or emission trading, which can aid in overcoming farmer reluctance to adopting
management strategies that increase soil carbon (Rosenberg and Izaurralde 2001).

There are two distinct approaches recognized to establish SOC stock with Tier 3
method (IPCC, 2006) including process-based models and inventory measurement
systems. The choice between each approach depends largely on applicability to
the situation, data availability, and cost-effectiveness. When considering the costs
and low sequestration rates, process-based models may be favored (Conant and
Paustian 2002; Smith 2004b); however, it is also challenging considering the diverse
combinations of climate, soil type, and managements (Rabotyagov 2010). It is
inevitable that not all combinations will be covered or parameterized and support
for emerging managements will have a temporal lag in incorporation as data over
time is required. Added to this, there are several other reasons to also develop Tier
3 direct measurement methods including:

(1) providing an independent verification tool applicable to emerging manage-
ments at the farm scale; (2) encompassing adaptive land management through
independence from established management assumptions; (3) provision of site-
specific feedback to landholders as well as data generation for wider purposes;
(4) continual improvement of sample design efficiency through time.

One of the biggest problems in direct measurement of soil carbon is the expense
of verification as we are dealing with the inherent variability of soil in the landscape
(Allen et al. 2010; Smith 2004b), as discussed in Section E of this book. The amount
of carbon stored in the soil per unit of land area is highly variable and depends on
annual inputs, soil type, and the degradation rate of the soil C (Jandl et al. 2013).
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Current methods for measuring, mapping, and quantifying soil carbon within an
area are expensive and inefficient (Miklos et al. 2010). Furthermore, it is still not
established how we can monitor changes in soil carbon efficiently and effectively
with sufficient statistical confidence. A scheme that recognizes the whole farm as a
system that can store carbon is crucial to the agricultural industry, particularly in the
carbon economy. The applicability of direct measurement will likely expand with
more efficient sampling and increasing analytical volumes through time.

Typically, repeat direct measurement of soil C for trend assessment has been
carried out by revisiting intensively sampled plots (Bowman et al. 2002; Chappell
et al. 2013) largely to reduce short-range variability and maximize change detection
from repeat visits (Lark 2009). However, the optimal sample design for trend
assessment of soil C due to management differences and establishing the soil C
status of an area are two different objectives (de Gruijter et al. 2006; Lark 2009).

Traditionally, soil carbon stock inventory has been based on performing direct
measurement of soil C content for a number of sampling sites within an area, then
extrapolating the data to the desired extent. In Australia, the standard sampling
unit for soil organic carbon is recommended as a 25 � 25m square (McKenzie
et al. 2000). The NSW Department of Environment, Climate Change and Water
(DECCW) proposed that for a given unit of land, a 25� 25m subarea is chosen and
divided into 10 � 10 equal sized quadrats. Ten samples are chosen at random from
these 100 quadrats and the carbon concentration and soil bulk density estimated to a
fixed depth of usually 50 cm. At some later date, the process is repeated in the same
subarea. The difference in carbon content is calculated. The quadrat method has two
drawbacks. First, the sampling area (i.e., the subarea) is known, which potentially
can lead to dishonest practices where carbon may be deliberately sequestered in the
known sampling area. More importantly, the extrapolation of the average carbon
content from the smaller subarea to the larger unit of land under sequestration
management leads to a large sampling variance resulting in an uncertain estimate
of the change in carbon content (Singh et al. 2012).

Such limitations inherent with conventional methods of soil C stock assessment
have prompted the development of new technologies that provide alternative meth-
ods of data acquisition, as will be discussed further in Chap. 13. Technologies such
as remote sensing hyperspectral imagery (Denis et al. 2014; Stevens et al. 2010)
and proximal sensing (Cremers et al. 2001; Gomez et al. 2008) have been proposed
for estimating surface carbon content over large areas. However, such imagery
only provides measurement on or near the soil surface; moreover the high cost
of acquiring such data and the need for laboratory calibration limit its application
in a routine auditing process. As discussed in Chaps. 5 and 7, field near-infrared
spectroscopy can give estimates of carbon; however sampling is also required, and
infrared estimation is based on calibration to standard analytical techniques (Stevens
et al. 2010). Field prediction of SOC using NIR is still too uncertain, with a standard
error of prediction ranging from 1.3 to 5.8 g/kg (Bellon-Maurel and McBratney
2011). In addition, correction of soil moisture from field-acquired spectra can also
reduce the prediction accuracy (Ge et al. 2014). See Sect. 5.4.2.1 for further detail on
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this too. A precise and cost-effective means of carbon storage measurement needs
to be developed urgently in order to be able to credit farmers and landholders for
their beneficial inputs in improving both our air and soil. This chapter will review
various aspects on soil carbon auditing along with a case study on a farm in New
South Wales, Australia.

23.2 Sampling Objective

Before designing an effective auditing scheme, the primary step needed is detailing
the objectives in statistical terms (de Gruijter et al. 2006). Generally there has been
not enough effort put into this part in order to design a cost-effective scheme. Most
effort is directed into finding a cheaper analytical measurement for soil carbon;
however, soil sampling is the largest cost in this activity. As a comparison, the
analytical cost of total C by dry combustion is A$10 per sample, while sampling
cost is on average A$100 per soil profile. Thus, a careful definition of the sampling
objectives will allow effective and efficient sampling design and auditing process.
The details of the objective that must be clearly defined in this work are (de Gruijter
et al. 2006, p.29):

1. Target universe: boundaries of the universe in space and in time.
In our case, the target universe in space is a farm, and along the time axis,

the universe spans 3–7 years; the auditor will monitor the target variable at a
particular time and repeat the same measure after 3–7 years to establish the
change in the measure.

2. Target variable: the soil property to be measured on the sampling units.
We take as target variable the soil organic carbon stock, in ton per ha, denoted

by C. The C stock is measured to a fixed depth (up to a maximum depth of 1 m)
or better to a fixed cumulative mass of soil, which deals with compaction/tillage
issues (Wendt and Hauser 2013).

3. Target parameter: the statistic to be estimated from the sample data.
In our case, the target parameter is the change in mean C stock between time

t1 and t2, defined as

� WD Ct1 � Ct2 ; (23.1)

where Ct is the spatially averaged C stock at time t, defined as

Ct WD
1

A

Z

x2A
Ct.x/dx; (23.2)

where Ct.x/ is C stock up to 1 m, or to a fixed cumulative mass of soil, at location
x at time t, A is the project area (the farm), and A is the surface area of the farm
in ha.
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In this study, we discretize the area by superimposing a fine grid, with N
grid points serving as sampling units. The mean C stock is then redefined as the
average over the grid points:

Ct WD
1

N

N
X

iD1

Ci;t (23.3)

where Ci;t is the measured C stock at the ith grid point at time t.

23.3 Major Design Decisions

Three major design decisions are to be made: the sampling approach, the type of
sampling design, and whether to bulk samples or not.

23.3.1 Sampling Approach

As repeated many times in the literature and discussed in Sect. 11.6, there are
two primary approaches in sampling: design-based and model-based. Their ideal
applications are for global estimates of a target variable and mapping the target
variable, respectively (Brus and de Gruijter 1997). The design-based approach
is therefore the most appropriate for C stock auditing. It implies that sampling
locations are selected by probability sampling and that inference (e.g., estimation)
is based on the sampling design used to select the sampling locations. A strong
advantage in the context of carbon auditing is that there is no need to make model
assumptions, which always remain questionable.

23.3.2 Type of Sampling Design

The simplest method in probability sampling is by simple random sampling (SRS):
a fixed number of sample points are drawn at random and independently from each
other within the target area. However, the efficiency of SRS can often be markedly
improved by stratified simple random sampling (StSRS). This divides an area into
subareas called strata, and SRS is applied in each stratum.

Appropriate stratification and allocation of sample sizes to the strata will usually
lead to higher precision and lower cost of estimation (Cochran 1977). For a single
sampling round, the precision can be expressed as the sampling variance of the
estimated mean:

V.ONz/ D

H
X

hD1




Nh

N

�2 S2h
nh
; (23.4)
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where H is the number of strata, Nh is the size (number of grid points) of stratum h,
Sh is the standard deviation of z in stratum h, and nh is the sample size allocated to
stratum h.

Given a stratification and a total sample size n, optimal allocation of sample sizes
to the strata, in the sense of minimal sampling variance of the mean, can be realized
by so-called Neyman allocation (Dalenius and Hodges 1959; Cochran 1977). The
optimal sample size for stratum h is then given by:

n0
h D n

NhSh
PH

hD1 NhSh

: (23.5)

The change in total soil carbon between time t1 and t2, �, can be estimated as
the difference between the estimates at time t1 and t2:

b� D bCt1 �bCt1 : (23.6)

If measurement is based on sampling at the same locations in both rounds, then
the variance of the estimated difference is given by

V.b�/ D V.bCt1 �bCt1 / D V.bCt1 /C V.bCt2 / � 2�

q

V.bCt1 /V.
bCt2 / ; (23.7)

where � is the temporal autocorrelation coefficient of the measurements at t1 and
t2. However, to avoid the risk of fraudulent practices, it is prudent to sample at
the second round at random locations that are selected independently from the first
round. This is what we propose to do. So in our case, the covariance term in (23.7)
equals zero, so

V.b�/ D V.bCt1 /C V.bCt2 / : (23.8)

Clearly, the certainty thus achieved may have a price. No advantage is taken
from a possibly positive temporal autocorrelation, which would render a higher
precision. On the other hand, improving the stratification for the second round by
using new prior information (at least the first round sample data) will reduce V.b�/.
This advantage would be lost if the sample sites are revisited, because then the
stratification must be kept as it is.

23.3.3 Method of Measurement

There are various methods to determine the C stock of a core sample, each having its
own pros and cons in terms of costs and accuracy. The choice has consequences for
the cost-effectiveness of the monitoring scheme as a whole and should be considered
in relation with the decision on bulking (Sect. 23.3.4).
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The C stock of a core is usually measured indirectly, by taking subsamples
and measuring their water content and C concentration. The C stock is then
calculated from C concentration (kg/kg) � bulk density (kg/m3) � depth of core (m).
Clearly, subsampling errors add to the analytical errors, thus increasing the total
measurement error. To address this problem, Pallasser et al. (2015) developed a
carbon determination system for whole soil cores. Their method seems promising
for routine application in soil carbon auditing. It has the additional advantage of a
direct measurement of both C stock and C concentration.

23.3.4 Sample Compositing

Stratified random sampling allows sample bulking or compositing in order to reduce
laboratory costs. Soil materials sampled at the locations (aliquots) during a sampling
round can be bulked and mixed thoroughly to form a composite or bulk sample.
Each composite is formed by bulking a random selection of a pre-chosen number
of aliquots, either within or across strata. Bulking is a common practice in sampling
for soil testing. The basic assumption is that soil carbon is additive, and analyzing a
bulk sample gives the same result as averaging the values of the individual aliquots
(de Gruijter et al. 2006). Bulking across evenly sized strata has been successfully
applied in estimation of mean soil P concentration in the Netherlands (Brus and Noij
2008) and was proposed for probability sampling in C stock estimation (Chappell
et al. 2013).

The one and only advantage of compositing is cost reduction; however, there
are four disadvantages. First, the cost reduction is due to a smaller number of
measurements, which increases the contribution of measurement errors to the total
estimation error of the mean. Second, sample sizes (total and within strata) can no
longer be chosen freely, as there have to be multiples of 2, 3, or higher factors,
depending on how many aliquots are bulked. (For instance, with compositing across
ten strata, the sample size has to be a multiple of ten). This implies that the sampling
variance cannot be minimized as effectively as in non-composite sampling. Third,
as composites are larger than single aliquots, mixing and/or subsampling error will
generally have a larger effect on the total estimation error than in non-composite
sampling. Fourth, updating the prediction field using data from the first sampling
round will be problematic because the geographical coordinates of the sample
points are related only with averages over points. Local compositing (i.e., using
an aggregate sample support) is a different matter and may be advantageous where
there is substantial local variability (Lark 2012).

We carried out a preliminary analysis (not reported here) on the cost-
effectiveness of compositing in our circumstances, based on assumed values of
sampling costs, measurement costs, measurement and mixing error, and spatial
variability of SOC. Our temporary conclusion is that the advantage of compositing
will not outweigh its disadvantages for monitoring SOC at farm scale.
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23.4 Stratification Methods

There are various ways to stratify a farm, which includes compact geographical
stratification, stratification by ancillary variables, or stratification by a map of
predictions of the target variable. A novel method is stratification by a map of
predictions with uncertainties.

23.4.1 Compact Geographical Stratification

Compact geographical stratification works best when no information on the farm
is available. It is just stratification on the basis of spatial coordinates to ensure
that the target area is fully covered spatially. Typically a farm is represented by a
regular grid. The spatial coordinates of the grid points can be stratified into compact
geographical strata by minimizing the within strata sum of squared distances:

OMSSD D

N
X

iD1

H
X

hD1

d2ih ; (23.9)

where dih is the Euclidean distance between location i (xi, yi) and the mean of
stratum h (bh, ch):

d2ih D .xi � bh/
2 C .yi � ch/

2 : (23.10)

The assumption is that the variable is spatially correlated so that the variation
within each subregion is smaller than the global variation. An example of the
compact geographical stratification for a farm is given in Fig. 23.1.

23.4.2 Stratification by Ancillary Variables

In most situations, ancillary variables will be available for the farm. Here, we can
recognize the readily (and cheaply) available information: digital elevation models
and aerial photography or satellite imagery. The second option is to survey the
area using proximal soil sensors, such as electromagnetic induction and gamma
radiometrics. Land use is particularly important in auditing soil carbon and needs to
be incorporated in the stratification. We can perform k-means or fuzzy k-means
clustering (McBratney and de Gruijter 1992) of the ancillary variables to come
up with the strata. Miklos et al. (2010) utilized radiometric surveys to stratify the
study area (farm) to estimate soil carbon stock. Similarly, Simbahan et al. (2006)
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Fig. 23.1 Compact geographical stratification of the case-study farm (Reprinted from de Gruijter
J, McBratney AB, Minasny B, Wheeler I, Malone B, Stockmann U (2016) Farmscale soil carbon
auditing. Geoderma 265, 120–130)

used ancillary variables to target sampling for digital soil mapping. However, both
of these studies used model-based sampling strategy for the purpose of mapping
soil carbon stock. In addition, collection of high-resolution ancillary variables
using proximal soil sensing is expensive and would not be feasible for C stock
auditing. k-means clustering minimizes the mean squared distance between the grid
of ancillary multivariables and their nearest centroid. The clusters are represented
by their centroids or means. In k-means the objective function is

OKM D

N
X

iD1

H
X

hD1

d2ih : (23.11)

This is similar to (23.9), except that d here is the component of a distance matrix,
calculated as

d2ih D .xi � ch/
0A.xi � ch/ ; (23.12)

where ch is the class center (centroid) of class h and A is the distance norm matrix,
which can be the inverse of variance-covariance matrix of X0 or called Mahalanobis
distance. An example in Fig. 23.2 shows the farm stratified in 12 clusters based on
ancillary variables: elevation and total gamma radiometric counts for the farm in
the case study. The assumption is that the selected ancillary variables are known to
control the distribution of soil carbon, and the weights of these variables are equal.
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Fig. 23.2 Stratification by k-means clustering of ancillary variables of the case-study farm
(Reprinted from de Gruijter J, McBratney AB, Minasny B, Wheeler I, Malone B, Stockmann U
(2016) Farmscale soil carbon auditing. Geoderma 265, 120–130)

23.4.3 Stratification by a Map of Predictions

SOC prediction fields generated from digital soil mapping (as outlined in Chap. 12
of this book) can be used as a source of univariate information for stratification
(McBratney et al. 2011; Wheeler et al. 2012; Wheeler 2014). This approach uses the
available quantitative knowledge, the relationships between the covariates (ancillary
variables) and soil carbon, the knowledge being embodied in the model used to
generate the spatial distribution of estimated carbon content. Effective stratification
involves locating stratum boundaries along its target variable distribution and
allocation of sample sizes to each stratum in a manner that increases the efficiency
of the survey leading to higher precision or lower costs (de Gruijter et al. 2006).

An approximate solution to the problem is provided by the cumulative square
root of the frequency (cum-root-f) method of Dalenius and Hodges (1959). To deal
with the frequency distribution of skewed variables, the geometric stratification
method (Gunning and Horgan 2004) or the method of Lavallee and Hidiroglou
(1988) can be used to determine optimal stratum boundaries. This method attempts
to minimize the sampling variance of the mean V.ONz/. However, a disadvantage is that
it assumes implicitly that the predictions have only negligible errors. An example in
Fig. 23.3 shows the farm stratified in 12 strata by the cum-root-f method.
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Fig. 23.3 Stratification of the carbon map of the case-study farm (Reprinted from de Gruijter J,
McBratney AB, Minasny B, Wheeler I, Malone B, Stockmann U (2016) Farmscale soil carbon
auditing. Geoderma 265, 120–130)

23.4.4 Stratification by a Map of Predictions with Uncertainties

The cum-root-f method and its variants on the one hand and the compact geographic
stratification method on the other hand represent two extreme solutions in the sense
that they assume errorless predictions and absence of useful prediction, respectively.
Realizing the limitations of the current methods, de Gruijter et al. (2015) proposed
a new stratification method (Ospats), which uses a raster of predicted values with
associated error variances. By taking prediction errors into account, this method
can produce stratifications that represent transitions between the two extremes.
The resulting stratification is optimized by minimizing the expected sampling
variance, assuming optimal (Neyman) allocation of sample sizes to strata. This is
implemented by minimizing:

O D

H
X

hD1

8

<

:

Nh�1
X

iD1

Nh
X

jDiC1

d2ij

9

=

;

1=2

; (23.13)

where d2ij here is the squared difference between the true values of the target variable
C, which are unknown. However, d2ij can be predicted using the predictions and
their error variances. The prediction of d2ij is obtained by taking its expectation,

conditional on eC1 � � �eCN :

D2
ij WD E� .d

2
ijj
eCi W i D 1; : : : ;N/ ; (23.14)
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which can be written out as

D2
ij D .eCi �eCj/

2 C V.ei/C V.ej/ � 2Cov.ei; ej/ ; (23.15)

where eCi is the prediction of Ci, with prediction error ei.
The objective function O is minimized by an iterative reallocation algorithm

similar to those for k-means, except that here mutual distances are taken between
grid points instead of distances between grid points and centroids. See de Gruijter
et al. (2015) for further details.

The value of O resulting after minimization can be used to predict the sampling
variance of the estimated mean under Neyman allocation, for a given total sample
size n (cf. formula 18 in de Gruijter et al. (2015)):

eV.bC/ D
O
2

n
; (23.16)

where O D O=N.

23.5 Optimization Criterion

The total sample size is usually determined, either as the maximum affordable or via
a targeted minimum detectable difference (MDD, the smallest detectable difference
between means when the variation, significance level, statistical power, and sample
size are specified) based on a prior estimate of the spatial variability of SOC (Garten
and Wullschleger 1999; Saby et al. 2008; Singh et al. 2012; Smith 2004a). As a step
toward further rationalization, we follow a value of information (VOI) approach, not
a statistical one. The sample size will be determined so as to maximize the expected
profit for the farmer, by financial quantification of the value of the sample data and
the costs to collect the data. The VOI approach to decide rationally on the level
of research investment is generally considered as superior to more or less arbitrary
statistical criteria such as variance, power, or MDD. See Morgan et al. (1990) for a
discussion of the VOI approach.

In the early 1970s, many quantitative studies have been devoted to the relation
between quality and production costs of soil maps, notably by Philip Beckett
and co-workers (Beckett and Burrough 1971). However, the problem is often too
complex to apply the VOI approach, mainly because the financial consequences of
differences in data quality are hard to quantify. This is probably the reason why the
VOI approach has found little application in soil survey so far. See Bie and Ulph
(1972) for an early application and more recently Giasson et al. (2000) and Knotters
et al. (2010). As explained below, we can apply the VOI approach here, because we
can quantify the value of sample data before they are collected.
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The data value (DV) of a set of SOC sample data depends on the precision of
the estimated sequestration b�. This is because the farmer will not be able to trade
his sequestration on the basis of b� alone, without accounting for uncertainty of the
estimate. Therefore, we wish to determine a tradeable amount of sequestration tp,
such that there is large probability � (say 95%) that the future sequestration will
amount to tp or more. To that order, we define tp as the lower boundary of a one-
sided prediction interval around the predicted difference in estimated mean carbon

contents, b� D bCt1 �bCt1 :

tp WD b� � Z�

q

eV.bCt1 /CeV.bCt2 / ; (23.17)

where Z� is the � quantile of the standard normal distribution.
Of course, after the second round, tp will be calculated from the sample data as

the lower boundary of the one-sided confidence interval:

tp D b� � t˛;�

q

bV.bCt1 /CbV.bCt2 / ; (23.18)

where t˛;� is the .1 � ˛/ quantile of the Student distribution with ˛ D � and � D

n1 � H1 C n2 � H2 degrees of freedom (from both rounds).
Optimized stratification by Ospats and value of information as optimization

criterion are core elements of the auditing process that we propose. The process
as a whole is schematically presented in Table 23.1.

23.6 Optimization of the First Sampling Round Design

Using Ospats means that, for a given number of strata, the resulting stratification
is optimized for any sample size, assuming optimal (Neyman) allocation of sample
sizes to the strata. Thus, there are two design parameters left that are still to be
optimized: the number of strata and the total sample size for that number.

First we optimize the sample size for a given number of strata. To do this, we need
to make an assumption about the sampling variance from the second round relative
to the first round, because the data value DV depends on the sum of these variances;
see (23.17). For simplicity we assume that both variances will be equal. (This will
happen, for instance, when the same stratification and the same sample size are used
for both rounds, and the spatial variances within the strata do not change.) Under
this assumption, (23.17) simplifies to

tp D b� � Z�

q

2eV.bCt/ ; (23.19)

where eV.bCt/ follows from (23.16) and depends now only on n.
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Table 23.1 Schematic overview of the auditing procedure

Step Action

1 Preparation:

1a Delineate the area

1b Superimpose a grid with predictions and error variances

1c Determine cost per grid point and carbon offset price

2 Optimize design for the first sampling round:

2a Choose allowed minimum sample size within strata (e.g., 3)

2b Choose a feasible range of strata numbers

2c For each strata number in the range, calculate stratification (Ospats),

total sample size (Eq. 23.21), and sample sizes within strata (Eq. 23.5)

2d Select the design with the largest strata number that still fulfills the

condition of step 2a

2e Draw a stratified random sample according to the design from step 2d

3 Execute the first sampling round:

3a Collect samples at the locations from step 2e, and take laboratory

measurements to determine the carbon stock for each location

3b Estimate the total carbon stock (Eq. 23.6) and its variance (Eq. 23.8)

4 Optimize design for the second sampling round:

4a Update the predictions and error variances using the sample data

from the first round

4b Repeat step 2

5 Execute the second sampling round: repeat step 3

6 Finish: calculate the confidence interval for the total amount of

sequestered carbon (Eq. 23.18)

We define the expected financial gain (G) as the data value DV minus the data
costs DC, so G WD DV � DC. In order to maximize G, we need a cost function
for DC. We assume that a simple linear function for the variable costs of field
and laboratory work suffices here, so DC D f � n, where f is the average cost of
obtaining the data per grid point. (The average traveling time between sample sites
will decrease with increasing sample size. However, we expect that this will have
only a minor effect, at least at farm scale.)

For the data value, we have DV D CP �A � tp, where CP is the price of sequestered
carbon per mass unit and A is the surface area of the farm. So we wish to find the
optimal sample size n0 that maximizes G, using (23.19) and (23.16):

G D DV � DC D CP � A � tp � f � n

D CP

	

A � b� � A � Z�

q

2eV.bCt/

�

� f � n

D CP � A � b� � CP � A � Z� � O

r

2

n
� f � n (23.20)
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Equating the derivative dG=dn to zero, renders

n0 D

 

CP � A � Z� � O

f
p
2

!2=3

; (23.21)

a real which should be rounded to the nearest integer. The optimal sample sizes
for the strata follow by imputing n0 in (23.5) and rounding to the nearest integer.
Note that the underlying assumption here is that tp will not exceed the sequestration
capacity of the farm during the contract period, or a possible limit set in advance by
the auditor or a regulator.

To see how, for a given number of strata, the gain changes with increasing sample
size, we cannot use G as in (23.20) because that depends on b�, which is unknown
before sampling. Therefore, we use an incremental gain, relative to n D 1:

Ginc.n/ WD G.n/ � G.1/ : (23.22)

Applying (23.20), this boils down to

Ginc.n/ D CP � A � Z� � O
p
2

 

1 �

r

1

n

!

� f .n � 1/ : (23.23)

As G.1/ is negligible, Ginc.n/ is practically equal to G.n/.
Having analyzed above how the sample size can be optimized given the number

of strata, we turn now to the optimization of the number of strata itself, where
we assume that for each possible number of strata, the optimal sample size will
be chosen. Here, we have the inconvenience that (23.23) cannot be used for
gain comparisons between design alternatives with different numbers of strata, as
O differs between stratifications. To enable these comparisons, we redefine the
incremental gain as a function of H, relative to H D 1 (i.e., no stratification) while
standardizing the sample size on the optimal size for the given number of strata, n0

H:

Ginc.H/ WD G.H; n0
H/ � G.1; n0

1/ ; (23.24)

where G.H; n0
H/ is the gain with H strata and the optimal sample size for H. Again

applying (23.20), this boils down to

Ginc.H/ D CP � A � Z�
p
2

 

O1

s

1

n0
1

� OH

s

1

n0
H

!

C f .n0
1 � n0

H/ ; (23.25)

where OH is the value of O for the Ospats stratification with H strata. (Note that O1

follows from (23.13) without the need for iteration.)
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23.7 Optimization of the Second Sampling Round Design

Optimization of the sampling design for the second round is similar to the first
round, with one exception. The sample data from the first round are used to estimate
the mean carbon content and the variance of that estimate. So the predicted sampling

variance eV.bCt1 / in the trading point equation (23.17) is replaced by the estimated

sampling variance bV.bCt1 /. So (23.17) is updated as

tp WD b� � Z�

q

bV.bCt1 /CeV.bCt2 / ; (23.26)

where the first variance is a fixed quantity and the second is the result of optimizing
H and n. As these variances cannot be assumed equal as for the first round, the gain
equation (23.20) is updated as

G D DV � DC D CP � A � tp � f � n2

D CP � A

	

b� � Z�

q

V1 CeV.bCt2 /

�

� f � n2

D CP � A � b� � CP � A � Z�

s

V1 C
O
2

2

n2
� f � n2 (23.27)

where n2 is the sample size in the second round, O2 is the objective function
value from the Ospats stratification used for the second round, and V1 is shorthand

for bV.bCt1 /.
The optimal sample size is again found by equating the derivative of G with

respect to n2 to zero:

G0 D
CP � A � Z� � O

2

2

2n22

q

V1 C O
2

2=n2

� f D 0 (23.28)

which can be solved numerically by evaluation of G0 for a range of n2.
Equation (23.25) for the incremental gain as function of H is updated as:

Ginc.H/ D CP � A � Z�


q

V1 C O
2

1=n0
1 �

q

V1 C O
2

H=n0
H

�

C f .n0
1 � n0

H/ (23.29)

23.8 Case Study

A study was performed at the University of Sydney E. J. Holtsbaum Agricultural
Research property also known as the Nowley farm, located in North West Slopes
and Plains of NSW, with an area of 23 km2. Due to budget constraints, we could only
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Fig. 23.4 Prediction and prediction variance of C stock in topsoil of Nowley farm (Reprinted from
de Gruijter J, McBratney AB, Minasny B, Wheeler I, Malone B, Stockmann U (2016) Farmscale
soil carbon auditing. Geoderma 265, 120–130)

afford to take 50 samples. Within this limitation, we wanted to maximize the number
of strata, which led to ten strata with five samples in each. Although the first round
sampling design that we realized in this case study was predefined by the available
budget, we still can demonstrate our data value approach to optimization, because
this only needs a grid with predictions and a grid with associated uncertainties.

23.8.1 Optimizing the First Round Sampling

A digital map of C stock in the upper 7.5 cm was generated for the whole farm at
a grid spacing of 10 � 10m, along with its uncertainty (Fig. 23.4). The map was
made using stepwise multiple linear regression, with covariates: elevation, terrain
wetness index, gamma radiometric K, gamma radiometrics Th, and Landsat bands
2, 4, and 5.

C D 4:34C 0:09 � Elevation � 4:56 � GammaK C 1:22 � GammaTh

�1:62 � LSBand2C 0:17 � LSBand4C 0:37 � LSBand5

�1:1 � WetnessIndex (23.30)

The model was calibrated with data from 80 samples collected in 2014 in the
same area. Model residuals showed no spatial autocorrelation. Leave-one-out cross
validation gives RMSE = 5.1 and R2 D 0:42.
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Fig. 23.5 Stratification based on predictions and error variances in Fig. 23.4 (Reprinted from de
Gruijter J, McBratney AB, Minasny B, Wheeler I, Malone B, Stockmann U (2016) Farmscale soil
carbon auditing. Geoderma 265, 120–130)

As indicated above, in this case study, we used sample data to calibrate a
prediction model, which was then used to generate a carbon map. However, we
expect that in practice our optimization system will be bootstrapped directly from a
carbon map, so that there will be no need to collect data. Carbon maps at reasonably
high resolution are becoming available. These have associated uncertainty and could
be downscaled if necessary, for instance, Soil and Landscape Grid of Australia
(Grundy et al. 2015) (http://www.clw.csiro.au/aclep/soilandlandscapegrid). See also
Fig. 9 in Kidd et al. (2015) and Fig. 5 in Liddicoat et al. (2015).

The map of C stock and its uncertainty were used for stratifications with Ospats.
Figure 23.5 shows the Ospats stratification with ten strata. Because of the current
computational limit of the Ospats algorithm on grid size, the maps were coarse-
gridded to 30 � 30m. The resulting 25,955 grid data were used to optimize the
number of strata, the total sample size, and the allocation of sample sizes to the
strata.

In order to demonstrate the data value approach to optimization of the sample
size for a given number of strata, we used the following parameters:

• Carbon offset price: CP D A$ 2:7 per Mg CO2 D A$ 10 Mg�1 C
• Cost of obtaining data per grid point: f D A$ 120
• Surface area of the farm: A D 2;336 ha
• Number of grid points: N D 25;955

• 95% quantile of the standard normal distribution: Z� D 1:645

• Objective function value resulting from Ospats: depends on the number of strata.
For instance, in the first round as realized (Sect. 23.8.2), we used ten strata,
resulting in O D 6:33 Mg � ha�1

http://www.clw.csiro.au/aclep/soilandlandscapegrid


23 Farm-Scale Soil Carbon Auditing 711

Fig. 23.6 Predicted gain
[A$] as a function of first
round sample size, using
Ospats stratification with ten
strata (see Fig. 23.5)
(Reprinted from de Gruijter J,
McBratney AB, Minasny B,
Wheeler I, Malone B,
Stockmann U (2016)
Farmscale soil carbon
auditing. Geoderma 265,
120–130)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
x 105

Sample size

P
re

di
ct

ed
 g

ai
n 

(A
S

)

Table 23.2 Statistics of C sample data from Nowley farm, based on the Ospats stratification with
ten strata and five samples per stratum

Relative St. error St. error Optimal
Strat. size Mean estimated predicted sample size

1 7.52 11.56 0.83 3.34 11

2 9.01 11.27 1.27 3.08 12

3 12.48 11.70 1.16 2.64 15

4 16.10 13.37 1.44 2.55 18

5 7.63 10.98 1.25 2.99 10

6 15.98 17.06 2.13 2.75 20

7 12.16 14.35 2.01 2.68 15

8 7.89 16.72 1.24 2.93 10

9 7.46 28.12 4.00 2.85 10

10 3.75 25.19 2.54 3.34 6

Farm 100.00 14.82 0.62 0.90 127

The optimal sample size, assuming Neyman allocation, follows from (23.21) and
turns out to be 127. To see how the gain varies with sample size, we calculated
the incremental gain Ginc using (23.23) for a range of sample sizes; see Fig. 23.6.
The figure shows that the net return from sampling investments declines somewhat
beyond n D 127, but the curve is surprisingly flat between n D 50 and 250.
Table 23.2 shows the Neyman allocation for n D 127. The variation of the allocated
sample sizes is largely due to the variation in surface areas between the strata, as
their standard deviations are fairly even.

To optimize the number of strata, we maximize the predicted gain, under the
condition that none of the sample sizes in the strata as determined by Neyman
allocation is smaller than a pre-chosen minimum. The bare minimum is 2, to enable
estimation of the sampling variance. However, in view of the possible loss of a
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Fig. 23.7 Optimal total
sample size (upper line),
maximum sample size per
stratum (middle line), and
minimum sample size per
stratum (lower line) as a
function of first round stratum
number (Reprinted from de
Gruijter J, McBratney AB,
Minasny B, Wheeler I,
Malone B, Stockmann U
(2016) Farmscale soil carbon
auditing. Geoderma 265,
120–130)
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Fig. 23.8 Predicted
incremental gain as a function
of first round stratum number
(Reprinted from de Gruijter J,
McBratney AB, Minasny B,
Wheeler I, Malone B,
Stockmann U (2016)
Farmscale soil carbon
auditing. Geoderma 265,
120–130)
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sample, it is prudent to maintain a higher minimum, for instance, 3 or 4. So, for
a range of possible stratum numbers, we calculate both the predicted incremental
gain and the minimum sample size per stratum, given the optimal total sample
size. Figure 23.7 shows how the optimal total sample size and the maximum and
minimum allocated sample sizes change with increasing stratum number.

To optimize the number of strata, we applied (23.25) to a range of stratum
numbers. See Fig. 23.8 for the predicted incremental gain as function of H, relative
to H D 1 (no stratification). This figure shows that the more strata, the higher gain
is predicted, although at an ever slower rate. For instance, using 12 strata instead of
10 renders an increase of A$ 970. It appears that 12 is the highest number of strata
whereby all strata receive at least 3 samples via Neyman allocation. So in this case,
12 turns out to be the optimal number of strata under the condition that 3 is the
allowed minimum.
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23.8.2 Realization of the First Round Sampling

Ospats was used to stratify the farm into ten strata (Fig. 23.5), and five sample points
were selected at random from each stratum. The survey was conducted in 2015, with
locations determined using a GPS. Topsoil samples were collected at each location
using a core with a diameter of 72 mm and height of 75 mm. Subsamples were air-
dried and ground, and C concentration was determined using a vario MAX CN
analyzer. C stock was then calculated as C concentration times bulk density times
core height.

The statistics of the sample data are given in Table 23.2. The estimated mean
carbon stock for the farm is 15.17 Mg � ha�1, with an estimated standard error of
0.62 Mg � ha�1. The standard error predicted by Ospats is 0.90 Mg � ha�1. Ideally,
if both the estimate and the prediction were errorless, they should have been equal,
but both figures have their uncertainty.

The data can also be used to estimate the sampling variance when simple random
sampling (SRS) would have been applied with the same sample size. The spatial
variance of the area S2.C/ was estimated by:

bS2.C/ D
cC2 �

�

bC
�2

CbV
�

bC
�

(23.31)

cf. Equation 7.16 in de Gruijter et al. (2006). Divided by the sample size (50), this
yielded a sampling variance for SRS of 0.752. The relative efficiency as compared
to SRS equals 1.96, which is equivalent to 98 samples if it was conducted by SRS.

In conclusion, the Ospats stratification based on the available digital map of C
stock was very efficient.

23.8.3 Optimizing the Second Round Sampling

Given the methods of optimal stratification and allocation, respectively, Ospats
and Neyman, the remaining design parameters to be optimized are the number of
strata H and the total sample size n. To update the stratification for the second
round, one may improve the predictions by more advanced modeling and by
using more predictive prior information. In this case, we calculated an updated
carbon map using a multiple linear regression model (like for the first round), now
predicting C content from elevation, gamma radiometric K, terrain wetness index,
and weathering index. This model was calibrated with the sample data collected in
2014 (80) and 2015 (50). Again, the residuals showed no spatial autocorrelation. See
Fig. 23.9 for the updated maps of predictions and prediction variances. The updated
Ospats stratification with ten strata is displayed in Fig. 23.10.

To find the optimal sample size for ten strata, we used the gain formula (23.27),
V1 D 0:3844 as the variance estimated from the sample data, and O2 D 1:0942

resulting from the updated stratification. The gain as function of the sample size is
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Fig. 23.9 Updated prediction and prediction variance of C stock in topsoil of Nowley farm
(Reprinted from de Gruijter J, McBratney AB, Minasny B, Wheeler I, Malone B, Stockmann U
(2016) Farmscale soil carbon auditing. Geoderma 265, 120–130)

Fig. 23.10 Updated stratification based on predictions and error variances in Fig. 23.9 (Reprinted
from de Gruijter J, McBratney AB, Minasny B, Wheeler I, Malone B, Stockmann U (2016)
Farmscale soil carbon auditing. Geoderma 265, 120–130)

shown in Fig. 23.11. It appears that the optimal sample size is only 15, implying
that 10 strata is too many under the condition that each stratum receives at least 3
samples. Therefore, we determined the optimal sample size and Neyman allocation
for a range of lower stratum numbers; see Fig. 23.12. This led to a maximum of 6
strata and a sample size of 22.
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Fig. 23.11 Predicted gain [A$] as a function of second round sample size, using Ospats
stratification with ten strata (see Fig. 23.10) (Reprinted from de Gruijter J, McBratney AB, Minasny
B, Wheeler I, Malone B, Stockmann U (2016) Farmscale soil carbon auditing. Geoderma 265,
120–130)

Fig. 23.12 Total sample size
(upper line), maximum
sample size per stratum
(middle line), and minimum
sample size per stratum
(lower line), optimized for the
second sampling round, as
function of stratum number
(Reprinted from de Gruijter J,
McBratney AB, Minasny B,
Wheeler I, Malone B,
Stockmann U (2016)
Farmscale soil carbon
auditing. Geoderma 265,
120–130)
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The reason why only 6 instead of 10 strata and 22 samples instead of 50 suffice
for the second round is that updating the carbon map with the first round sample
data has enabled an even more efficient stratification than in the first round. This is
shown in Fig. 23.13, presenting O as a function of stratum number for both rounds.
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Fig. 23.13 Objective
function O of stratifications
for first round (upper line)
and second round (lower line)
as function of stratum number
(Reprinted from de Gruijter J,
McBratney AB, Minasny B,
Wheeler I, Malone B,
Stockmann U (2016)
Farmscale soil carbon
auditing. Geoderma 265,
120–130)
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23.9 Discussion

The method devised contains two novel elements. First, a new method (Ospats) for
optimal stratification (de Gruijter et al. 2015) is used here for soil carbon auditing. It
facilitates effective exploitation of all relevant prior information about soil carbon in
the project area, as condensed in a carbon map with associated uncertainty. Second,
we developed a data value technique to optimize the number of strata as well as
the sample size, which is novel in the context of carbon auditing. The optimization
criterion of our technique, i.e., the predicted financial gain from a demonstrated
amount of sequestration, should lead to decisions on sampling that are more rational
than via general statistical criteria.

The information needed to start the optimization process, i.e., optimization for
the first sampling round, is a carbon map with associated uncertainty. As carbon
maps at reasonably high resolution are becoming available, prior data collection in
the field will not be necessary. For instance, soil and landscape grids of Australia
have associated uncertainty and could be downscaled if necessary.

The method is intended for auditing, not for monitoring nor management. For the
latter purposes, there is generally no need for the restriction not to return to the same
sites in subsequent sampling rounds. Efficiency of long-term monitoring may well
profit from returning to (part of) the sites; see Brus and de Gruijter (2013). Also,
the intended usage of monitoring results is usually complex, which makes the data
value approach unfeasible.

As shown by the case study, updating the map with first round sample data may
improve the resulting stratification considerably and hence reduce sampling costs.
However, this updating option does not exist if the sample sites are revisited, because
then the stratification too must stay unchanged.
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In the case study, only the top 7.5 cm was sampled. This is shallower than usual
in soil carbon auditing, but it is enough to demonstrate the method, as this can be
applied likewise in projects involving deeper sampling.

The method has the following limitations and underlying assumptions:

1. The data value approach as devised here does only account for the costs that vary
with the sample size, i.e., the costs of taking samples and laboratory analysis.
Costs of travel to the farm and office work (administration, GIS, and computing)
are not accounted for. This means that the gain predictions as calculated by the
method can only serve to optimize a sampling design, not to decide on starting
an audited sequestration project.

2. The gain predictions may be hypothetical because underlying assumptions are
that the amount of carbon that will be sequestered by the farm does not reach a
physical limit and that there is no regulatory set bound to it. However, if necessary
the method can be easily adapted to account for a known limit.

3. The optimality of stratifications calculated by Ospats is only warranted as far
as the uncertainty of the predictions is correctly quantified. At present we do
not known how sensitive the stratification quality is for misrepresentation of the
uncertainty.

4. Two sources of error are disregarded in this study: error in locating the sampling
sites in the field and measurement errors in the laboratory. We expect that the
disturbing effects of these error sources on the optimization will be moderate in
general.

23.10 Conclusions

In this chapter, we presented a novel method for soil carbon auditing, which uses
prior information in the form of a carbon map with associated uncertainty. The
method is based on stratified random sampling and design-based inference about
the amount of sequestered carbon. Stratification, total sample size, and sample sizes
per stratum are mathematically optimized in conjunction. The criterion used is the
expected financial gain (excluding fixed costs) for the farmer. This is maximized by
a data value technique on the basis of assumptions about the costs of sampling and
measurement and the price of sequestered carbon, given a required level of certainty
about the amount of sequestered carbon.

An application on an Australia farm has shown that soil carbon changes across
farms and regions can be audited effectively using the proposed stratification method
and data value technique. The stratification method implies that strata will be created
that are typically of unequal size and spatially non-contiguous. The former means
that also the optimized sample sizes per stratum are unequal, and as a consequence,
sample bulking across strata is unfeasible.
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Updating the initial carbon map with sample data from the first round may
considerably improve the efficiency of the stratification for the second round. As this
stratification differs from the initial one, returning to the same sampling sites is
unfeasible for design-based inference. Another reason not to return to the same sites
is that it is not recommendable for auditing purposes, in order to avoid possible
fraudulent practices and disturbance of sites.

Future research may focus on sensitivity of the auditing method for incorrect
quantification of the uncertainty of the initial carbon map. Other research issues
are the effects of spatial location error and measurement error on the optimization
process and how these error sources could be accounted for.
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