

 i

Pro Expression
Blend 4

■ ■ ■

Andrew Troelsen

Pro Expression Blend 4

Copyright © 2011 by Andrew Troelsen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3377-0

ISBN-13 (electronic): 978-1-4302-3378-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Andy Olsen
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom
Welsh

Coordinating Editor: Debra Kelly
Copy Editor: Bill McManus
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

To the next little Troel

 ■ CONTENTS

 iv

Contents at a Glance

■ Contents ... v

■ About the Author .. xiv

■ About the Technical Reviewer ... xv

■ Acknowledgments .. xvi

■ Introduction ... xvii

■ Chapter 1: Learning the Core Blend IDE ... 1�

■ Chapter 2: Vector Graphics and Object Resources 33�

■ Chapter 3: The Animation Editor .. 87�

■ Chapter 4: Controls, Layouts, and Behaviors 119�

■ Chapter 5: Styles, Templates, and UserControls 163�

■ Chapter 6: Blend Data Binding Techniques .. 221�

■ Chapter 7: Designing for Windows Phone 7 .. 273�

■ Chapter 8: Prototyping with SketchFlow .. 311�

■ Index ... 347

 ■ CONTENTS

 v

Contents

■ Contents at a Glance .. iv

■ About the Author .. xiv

■ About the Technical Reviewer ... xv

■ Acknowledgments .. xvi

■ Introduction ... xvii

■ Chapter 1: Learning the Core Blend IDE ... 1�

The Microsoft Expression Family .. 1�

The Role of Expression Web .. 2�

The Role of Expression Encoder .. 2�

The Role of Expression Design .. 2�

The Role of Expression Blend ... 3�

The Expression Blend Project Templates .. 5�

WPF Project Templates ... 6�

Silverlight Project Templates .. 7�

Windows Phone Project Templates ... 8�

A Guided Tour of the Core Blend IDE ... 8�

Loading a Blend Sample Project ... 9�

The Artboard and Artboard Controls ... 10�

The Objects and Timeline Panel .. 15�

The Properties Panel ... 16�

The Project Panel .. 19�

The Integrated Code Editor ... 20�

The Results Panel ... 21�

The Tools Panel ... 22�

 ■ CONTENTS

 vi

Handling and Implementing Events .. 28�

Customizing the Options of the Blend IDE ... 30�

Creating a Custom Workspace Layout .. 30�

The Expression Blend Documentation System ... 31�

Summary ... 32�

■ Chapter 2: Vector Graphics and Object Resources 33�

The Realm of Vector Graphics ... 33�

Use of Graphical Data Is Pervasive ... 34�

Exploring the Core Drawing Tools ... 34�

Working with the Pencil Tool .. 35�

Working with the Pen Tool .. 36�

Working with the Rectangle, Ellipse, and Line Tools .. 38�

Working with the Shapes Section of the Assets Library ... 39�

Modifying a Shape Using the Appearance Editor .. 40�

Coloring a Shape Using the Brushes Editor .. 42�

Combining Geometries and Extracting Paths .. 47�

Converting a Shape to a Path .. 49�

Interacting with Shapes .. 50�

Handling Events .. 50�

Configuring “Pens” ... 52�

Defining Pen Caps ... 52�

Defining a Dash Pattern .. 53�

Revisiting Visual Effects .. 54�

Tweaking a Visual Effect ... 55�

The Role of Expression Design .. 56�

Preparing and Exporting a Sample Image ... 56�

Creating a New Silverlight Application .. 60�

Applying 2D Graphical Transformation ... 64�

Building the Initial UI ... 64�

Applying Transformations at Design Time .. 66�

 ■ CONTENTS

 vii

Applying Transformations in Code .. 68�

Applying 3D Graphical Transformation ... 69�

An Introduction to WPF 3D Graphics ... 69�

An Introduction to Silverlight 3D Graphics .. 79�

The Role of Object Resources ... 81�

Summary ... 86�

■ Chapter 3: The Animation Editor .. 87�

Defining the Role of Animation Services ... 87�

The Scope of Animation Services ... 88�

The Blend Animation Workspace .. 88�

Creating a New Storyboard ... 89�

Managing Existing Storyboards .. 90�

Adding Keyframes ... 91�

Capturing Object Property Changes .. 92�

Testing Your Animation ... 94�

Viewing the Animation Markup ... 94�

Configuring Storyboard Properties .. 94�

Zooming the Timeline Editor ... 96�

Interacting with Storyboards in Code .. 96�

Further Details of the Storyboard Class .. 97�

WPF-Specific Animation Techniques .. 98�

Working with WPF Motion Paths ... 98�

Controlling WPF Animations Using Triggers .. 102�

Understanding Animation Easing Effects .. 109�

Building the Initial Layout ... 110�

Creating the Initial Storyboards .. 111�

Applying Animation Easing Effects ... 111�

Working with the KeySpline Editor .. 113�

Executing the Storyboard at Runtime ... 114�

Learning More About Animation Easing Effects .. 114�

 ■ CONTENTS

 viii

Controlling Storyboards in XAML via Behavior Objects 115�

Modifying the SimpleBlendAnimations Example .. 115�

Adding the ControlStoryboardAction Behavior .. 116�

Summary ... 118�

■ Chapter 4: Controls, Layouts, and Behaviors 119�

A First Look at GUI Controls .. 119�

Locating Controls Within the IDE ... 120�

Configuring Controls via the Properties Panel .. 121�

Learning About Control Details ... 121�

Understanding the Control Content Model .. 123�

Creating Composite Content ... 124�

Handling Events for Controls with Composite Content ... 126�

Reusing Composite Content .. 127�

Understanding the Items Control Model ... 128�

Adding ListBoxItems ... 128�

Viewing the XAML ... 130�

Finding the Current Selection ... 131�

Working with the Tag Property ... 132�

Working with Layout Managers .. 132�

Additional Layout Types .. 134�

Changing the Layout Type ... 134�

Designing Nested Layouts ... 135�

Grouping and Ungrouping Selected UI Elements .. 136�

Repositioning a UI Element into a Layout Manager .. 137�

Building a User Interface with Blend .. 138�

Creating a Tabbed Layout System .. 138�

Working with the Grid ... 141�

Introducing the WPF Document API .. 147�

Creating a ToolBar Control .. 149�

Introducing Blend Behavior Objects .. 156�

 ■ CONTENTS

 ix

The MouseDragElementBehavior Object ... 159�

Summary ... 161�

■ Chapter 5: Styles, Templates, and UserControls 163�

The Role of Styles ... 163�

Creating a Simple Style by Hand ... 164�

Assigning a Control’s Style Property ... 165�

Overriding Style Settings .. 167�

Constraining a Style with TargetType ... 167�

Subclassing Existing Styles .. 168�

Defining Default Styles .. 169�

Managing Existing Styles Using the Blend IDE .. 170�

Creating New Styles Using Blend .. 172�

Creating a New Empty Style ... 172�

Working with WPF Simple Styles .. 175�

The Role of Control Templates in Styles ... 180�

Building a Custom Control Template by Hand ... 181�

Storing Templates as Resources .. 182�

Incorporating Visual Cues Using WPF Triggers ... 184�

Understanding the Role of {TemplateBinding} .. 186�

Understanding the Role of <ContentPresenter> ... 187�

Incorporating Templates into Styles ... 187�

Creating Control Templates Using Expression Blend 189�

Creating a Copy of a Default Template ... 189�

Creating a Stylized Template from a Graphic .. 193�

Building Templates Using the Silverlight API .. 204�

Working with the VSM via the States Panel .. 206�

Viewing the Generated XAML .. 207�

Establishing State Group Transition Timing .. 208�

Defining Transition Effects .. 209�

Configuring Individual Transitions .. 210�

A Brief Word Regarding Custom States .. 211�

 ■ CONTENTS

 x

Generating UserControls Using Blend ... 212�

Adding Visual States ... 215�

Transitioning States in Code ... 216�

Transitioning States in XAML .. 216�

VSM: Further Resources ... 218�

Summary ... 219�

■ Chapter 6: Blend Data Binding Techniques .. 221�

The Role of Data Binding ... 222�

Control-to-Control Data Binding .. 222�

Building the Example UI .. 222�

Creating New Data Bindings ... 224�

Viewing the Generated Markup ... 227�

Converting Data Types .. 227�

Creating a Custom Data Conversion Class .. 228�

Selecting a Conversion Class in Blend .. 229�

Understanding Data Binding Modalities .. 232�

Configuring Data Binding Options with Blend ... 233�

Configuring a Two-Way Data Bind .. 234�

Binding to Properties of Non-UI Objects ... 236�

Creating a Custom Collection of (Custom) Objects ... 236�

Defining an Object Data Source with the Data Panel .. 237�

Binding the Entire Collection to a ListBox ... 240�

Binding Individual Properties to ListBox Controls ... 243�

Binding the Collection to a DataGrid ... 243�

Manipulating the Collection at Runtime .. 245�

Working with Data Templates ... 246�

Editing a Data Template .. 247�

Styling Items in a Data Template .. 247�

Defining Composite UI Elements for a Data Template .. 248�

Creating Control Templates Containing Data Templates .. 251�

 ■ CONTENTS

 xi

Defining a WPF XML Data Source ... 255�

Adding an XML Data Source ... 256�

Binding XML Data to UI Elements via XPath .. 257�

Creating a List Details Data Binding ... 259�

Creating the User Interface ... 259�

Examining the Generated Markup ... 261�

Exploring the Role of Sample Data ... 262�

Inserting Sample Data into a Project .. 263�

Adding Additional Properties ... 264�

Modifying the Data Types and Values ... 265�

Binding Sample Data to the UI .. 266�

Learning More About Sample Data ... 268�

Data Binding: A Brief Word on Final Topics .. 269�

Binding to Relational Database Data ... 269�

The Role of Blend Databound Project Templates (MVVM) ... 270�

Summary ... 271�

■ Chapter 7: Designing for Windows Phone 7 .. 273�

Installing the Windows Phone 7 SDK .. 273�

Examining the New Bits .. 276�

Installing the Windows Phone 7 Documentation ... 278�

Viewing the New Blend Projects ... 281�

Viewing the New Visual Studio 2010 Projects .. 283�

Exploring the Windows Phone Application Project Type 284�

The Windows Phone Artboard ... 284�

The Windows Phone System Styles .. 286�

Creating a List-Details View with the Data Panel .. 287�

Creating an Interactive Graphic .. 288�

Creating a Custom Control Template .. 289�

Handling the Click Event ... 291�

Configuring the Emulator via the Device Panel ... 292�

 ■ CONTENTS

 xii

Exploring the Panorama Application Project Type .. 294�

Examining the Initial Tree of Objects .. 294�

Viewing the PanoramaItem Markup .. 295�

Changing the Panorama Background ... 296�

Adding a New PanoramaItem Object .. 299�

Exploring the Pivot Application Project Type .. 300�

Adding a New PivotItem .. 301�

Designing the Pivot GUI Layout ... 302�

Transforming the Grid ... 303�

Controlling the Storyboard in XAML .. 304�

Learning More About Windows Phone Development 306�

MSDN Windows Phone Sample Projects ... 306�

The App Hub Web Site .. 309�

Summary ... 310�

■ Chapter 8: Prototyping with SketchFlow .. 311�

The Role of Application Prototyping .. 311�

The Role of SketchFlow .. 312�

Examining a SketchFlow Prototype Sample ... 314�

Exploring the SketchFlow Map Panel .. 315�

Testing the Prototype with the SketchFlow Player ... 320�

Creating a Silverlight Prototype .. 326�

Examining the Project Files ... 327�

Creating a Component Screen .. 329�

Creating Additional Screens .. 332�

Replicating the Navigation GUI .. 334�

Using the NavigateToScreenAction Behavior .. 334�

Incorporating Prototype Interactivity ... 337�

Using the PlaySketchFlowAnimationAction Behavior ... 340�

Packaging a Prototype .. 341�

Moving a Prototype into Production .. 343�

 ■ CONTENTS

 xiii

Modifying the *csproj Files ... 343�

Updating the Root Project Assembly References .. 343�

Modifying the App.xaml.cs File ... 344�

Summary ... 346�

■ Index ... 347

 ■ CONTENTS

 xiv

About the Author

Andrew Troelsen fondly recalls his very first computer, an Atari 400
complete with a tape deck storage device and a black-and-white TV
serving as a monitor (which his parents permitted him to have in his
bedroom—thanks guys!). He also is grateful to the legacy Compute!
magazine, a B.A. degree in mathematical linguistics, and three years of
formal Sanskrit. All of these artifacts have greatly influenced his current
career.

Andrew is employed with Intertech (www.intertech.com), a .NET
and Java training and consulting center. He has authored a number of
books, including Developer’s Workshop to COM and ATL 3.0 (Wordware
Publishing, 2000), COM and .NET Interoperability (Apress, 2002), and
Pro C# 2010 and the .NET 4.0 Platform (Apress, 2010).

 xv

About the Technical Reviewer

Andy Olsen is a freelance consultant and trainer based in the UK. Andy has
been working with .NET since the days of the first beta, and has been
involved with WPF and Silverlight since they first landed on our desktops
(and in our browsers). Andy lives by the sea in Swansea with his wife, Jayne,
and children. Andy enjoys running along the seafront (with regular coffee
stops along the way), skiing, and following the Swans and Ospreys. Andy can
be reached at andyo@olsensoft.com.

 ■ INTRODUCTION

 xvi

Acknowledgments

I have been lucky to work with the staff of Apress for close to 10 years, and I can say that each
book I have written has benefited greatly due to their efforts.

Huge thanks to Andy Olsen, Ewan Buckingham, Debra Kelly, and the entire copy editing team
for helping transform my initial ramblings into a cohesive text. I am deeply grateful, and look
forward to working with all of you again in the future.

 xvii

Introduction

Confessions of an XAML Jockey
Perhaps my story sounds familiar...when I first started programming with Windows
Presentation Foundation (WPF), and later when I dove into Silverlight 2.0, I was one of “those”
programmers who figured I would build my applications by typing all of the necessary markup
by hand.1 After all, a copious amount of typing is part of the job description for any software
engineer. When I was defining layouts with grids, stack panels, and controls, life was good.
However, once I dove deeper and began working with animations, data templates, control
templates, and custom graphics, I soon realized just how unproductive my days were
becoming.

I knew of a Microsoft tool named Expression Blend, but as far as I was concerned, this was
a tool for graphical artists. I will admit to anybody that I am not a graphical artist by any stretch
of the imagination, and given this, I avoided Blend like the plague. In fact, I will also admit that I
was a tad put off by the Blend IDE early on. The designer looked nothing like Visual Studio, the
organization of the properties editor made no sense to me, and the earlier versions of Blend had
no code editors (which is thankfully no longer the case).

However, there was one fateful day that I decided to roll up my sleeves and give Expression
Blend a real, honest look. To my surprise, I liked it. The more time I spent learning the tool, the
more I liked it. These days, I cannot imagine working on a WPF, Silverlight, or Windows Phone 7
project without it...quite honestly, I’d feel like I was typing with one hand tied behind my back.

With my newfound understanding, I attempted to spread the word to fellow programmers;
however, I found that they were in the same boat that I was in initially. They felt that the Blend
IDE was too complex, and (they now would say) Visual Studio 2010 has solid support for XAML-
based development these days anyway...so why bother? Nowadays, when I hear this sort of
reaction, I concur that Visual Studio 2010 is a step in the right direction, but I quickly point out
that Blend dwarfs Visual Studio 2010 in terms of productivity. For example, with Expression
Blend, you can do the following:

• Generate a control template from a vector graphic with a single menu selection

• Author complex animations using an integrated editor

• Visually edit data templates

• Incorporate visual cues into a custom template using integrated graphical editors

• Build a “list-details” data view with two mouse operations

• Prototype a WPF or Silverlight application and record client feedback in real time2

1 You may recall that Visual Studio 2005 had no real support for WPF to begin with, beyond an experimental technology

preview designer surface.

2 Via SketchFlow, if you have a copy of Expression Studio Ultimate (see Chapter 8).

 ■ INTRODUCTION

 xviii

Simply put, I wrote this book to help my fellow software engineers learn the ins and outs of
the Blend IDE. I honestly feel that this tool is a critical part of any production-level WPF,
Silverlight, or Windows Phone 7 development effort, and that once you are comfortable with
the tool, you will feel the same way. Of course, Visual Studio 2010 is also important and
downright mandatory when you need to debug your code (and test your code, expand code
snippets, etc.). As you will see, Expression Blend is intended to be a complement to your Visual
Studio 2010 IDE, not a replacement.

This Is Not a Programming Book…
All of the previous books I’ve written have been squarely focused on code, and lots of it. I have
always purposely authored technology books in such a way that I spent as little time as possible
talking about menu options of an IDE, wizards, and so forth. In my opinion, when you are
learning a new language or platform, you need to dive into the code and type away. Once you
are comfortable with the “raw code,” then the use of visual development tools is a welcomed
bonus.

In this book, I had to take the exact opposite approach (which I must admit was very
weird). This book is a book that does talk all about menu selections, integrated wizards, dialog
boxes, and IDE configuration choices. To be sure, screenshots, not code samples, are the crux
of this text.

In fact, if I were to scrape out all of the C# code found in this book, I bet I could capture it
on ten printed pages. Likewise, if I were to cut out all of the XAML code examples, I can’t image
it would be more than ten additional printed pages.

So, please be very aware that the mission of this book is not to cover all of the
programmatic details of building WPF, Silverlight, or Windows Phone 7 applications. I will not
be covering how to build custom dependency properties or bubbling routed events. I will not
dive into the details regarding which virtual methods to override when building a class that
extends UIElement.3 These topics (as well as many others), while important, are not the focus of
this text.

… and Graphical Artists Are Welcome!
Given that this book will not focus on complex code, this text is also intended to help graphical
artists learn how to use Expression Blend to construct professional UIs for a WPF, Silverlight, or
Windows Phone 7 project. As you will see, Blend can be used in conjunction with a related tool
named Expression Design. Using Design, you can build complex vector-based graphics and
export the image data into a format that can be used within Blend. This one-two punch
radically simplifies how programmers (and designers) can build interactive graphics.

If you are a graphical artist, you should find that the little C# code found in this book will be
quite manageable (and if you would rather not type it yourself, you can simply download the
solution projects from the Apress web site). On a final note, if you are a graphical artist by trade,
please don’t laugh too loudly when you view my primitive graphical renderings....

3 You may wish to consult the latest edition of my C# or VB books for such information, where you will find a number

of chapters devoted to WPF programming topics (many of which apply directly to Silverlight and Windows Phone 7).

 ■ INTRODUCTION

 xix

Chapter Overview
This book consists of eight chapters, which ideally will be read from beginning to end, as each
chapter builds on concepts from the previous chapters. Here is a quick rundown of what is
covered.

Chapter 1: Learning the Core Blend IDE
This chapter sets the foundation for the remainder of the book, by giving you a guided tour of
the core aspects of the Blend IDE. You will learn about the artboard, the integrated XAML and
code editors, and the role of several key “panels” such as the Objects and Timeline panel, the
Properties panel, the Tools panel, and so forth. You will also learn about the various project
types supported by Expression Blend and the role of the Assets library. To illustrate these
important concepts, you will examine and modify one of the intrinsic sample projects that ship
with Expression Blend.

Chapter 2: Vector Graphics and Object Resources
Experienced WPF and Silverlight developers know that graphics are a key part of any project. In
this chapter, you will learn how to use the intrinsic graphic design tools of Blend, including the
Pen and Pencil tools, the various “shape assets,” the Brushes editor, and other items of interest.
In addition, this chapter will explore how to use Blend to establish graphical transformations of
UI elements, how to create and manipulate 3D graphics, and how to define and package up
object resources, which are basically named blobs of XAML that you want to reuse throughout
your projects.

Chapter 3: The Animation Editor
Animations are also a key part of a WPF and Silverlight project, as you use them extensively
when building control templates, data templates, and other forms of “visual eye candy.” In this
chapter, you will learn about the integrated animation editor of Expression Blend. You will
learn how to define and configure storyboards and keyframes, control the pacing of an
animation, and apply various physical effects (spring, bounce, snap, etc.) to an animation cycle
using easing effects. You will also be given your first look at a Blend behavior object, which will
be further explored in Chapter 4.

Chapter 4: Controls, Layouts, and Behaviors
The goal of Chapter 4 is to illustrate a number of techniques used when working with UI
controls within the Blend IDE. You will explore the control content model, learn how to
customize ListBox controls with intricate list items, learn how to capture user input with the
InkCanvas control, and explore the role of the WPF Document API controls. As well, this chapter
will introduce the topic of behaviors. As you will see here (and in other chapters of the book), a
behavior object allows you to apply complex runtime functionality to a user interface element,
in a visual manner (with no code required).

 ■ INTRODUCTION

 xx

Chapter 5: Styles, Templates, and UserControls
When you are building WPF and Silverlight applications, the style mechanism allows you to
ensure that related UI elements have the same look and feel. This chapter begins by examining
how the Blend IDE can simplify the creation and management of styles. Next, you will learn
about the role of control templates, which take the style concept to the next level. As you will
see, when you define a custom control template, you can completely replace the default look
and feel of a control with your own set of rendering instructions. The chapter wraps up with a
quick look at using Blend to create new custom UserControl objects with the click of a mouse.

Chapter 6: Blend Data Binding Techniques
Chapter 6 walks you through the numerous tools of the Blend IDE that facilitate data binding
operations. You will learn how to configure control-to-control data bindings, how to bind to
collections of custom business objects, and how to bind to data contained in XML documents.
In addition, this chapter will illustrate how to use Expression Blend to create customized data
templates, which allow you to stylize how a data binding operation will be display within the
application.

Chapter 7: Designing for Windows Phone 7
While I was authoring this book, Microsoft formally unveiled its Windows Phone 7 family of
handheld devices and, with this, the official version of the Windows Phone 7 Software
Development Kit (SDK). In this chapter, you will learn how to download and install the
necessary tools to build Windows Phone 7 applications using Expression Blend (and Visual
Studio 2010). Then, you will explore several new topics, including the role of panorama and
pivot device displays, the Blend Device panel, and the integrated Windows Phone emulator. As
you will be happy to see, just about everything you learned during the first six chapters of this
book apply directly to the construction of Windows Phone 7 projects.

Chapter 8: Prototyping with SketchFlow
Ironically, the final chapter of this book addresses what is often the very first aspect of a new
development project! Specifically, Chapter 8 examines how to create WPF and Silverlight
prototypes using SketchFlow. As you will see, the SketchFlow component of Expression Studio
Ultimate Edition allows you to quickly mock up prototypes in real time, capturing stakeholder
feedback as you go. You will learn about the various SketchFlow-centric aspects of Blend,
including the Map panel, the Sketch Styles, the user annotation viewer, and the “mini”
animation editor. As well, this chapter illustrates how you can transform a SketchFlow
prototype into a real WPF or Silverlight project.

Obtaining the Sample Projects
Every chapter of this book will give you a chance to learn how to use the numerous features of
the Expression Blend IDE by building various sample projects. I really can’t stress enough how
important it is that you roll up your sleeves and create (and expand upon) these applications as
you read the text. To be sure, Blend is a product that is best learned by doing and not simply
reading a book and looking at various screenshots.

 ■ INTRODUCTION

 xxi

While this is true, you can download each sample project from the Apress web site. Simply
navigate to www.apress.com, click the Source Code link, and look up this title by name (in the
list) or by ISBN (using the Find Source Code search tool). Once you are on the home page for
Pro Expression Blend 4, you may download a self-extracting *.zip file. After you unzip the
contents, you will find that the projects have been partitioned on a chapter-by-chapter basis.

On a related note, be aware that you will find Source Code notes like the following in the
book’s chapters, which are your visual cue that the example under discussion may be loaded
into Expression Blend (or, for that matter, Visual Studio 2010) for further examination and
modification:

■ Source Code This is a Source Code note referring you to a specific directory in the *.zip archive!

To open a solution into Expression Blend, use the File ➤ Open Project/Solution menu
option, and navigate to the correct *.sln file within the correct subdirectory of the unzipped
archive.

Obtaining Updates for This Book
As you read through this text, you may find an occasional error (although I sure hope not). If this is
the case, my apologies. Being human, I am sure that a glitch or two may be present, despite my best
efforts. If this is the case, you can obtain the current errata list from the Apress web site (located once
again on the home page for this book) as well as information on how to notify me of any errors you
might find.

Contacting Me
If you have any questions regarding this book’s sample projects, are in need of clarification for a
given example, or simply wish to offer your thoughts regarding the Blend IDE, feel free to drop
me a line at the following e-mail address (to ensure your messages don’t end up in my junk mail
folder, please include “Blend Book” in the Subject line somewhere):

atroelsen@intertech.com

Please understand that I will do my best to get back to you in a timely fashion; however, like
yourself, I get busy from time to time. If I don’t respond within a week or two, do know I am not
trying to be a jerk or don’t care to talk to you. I’m just busy (or, if I’m lucky, on vacation
somewhere). So, then! Thanks for buying this text (or at least looking at it in the bookstore while
you try to decide if you will buy it). I hope you enjoy reading this book and putting your
newfound knowledge to good use.

 1

C H A P T E R 1
■ ■ ■

Learning the Core Blend IDE

The point of this first chapter is to examine the nuts and bolts of the Microsoft Expression Blend
integrated development environment (IDE). You will begin with a brief overview of each
member of the Microsoft Expression family of products, and see their place within a Windows
Presentation Foundation (WPF) and Silverlight development effort. Next, you will examine the
various project templates of Expression Blend, come to know the key workspace areas (the
artboard, the Objects and Timeline panel, the Properties panel, etc.), and understand the
interplay between Expression Blend and Microsoft Visual Studio 2010. The chapter concludes
with coverage of how to customize the layout of the IDE to suit your personal preferences.

The Microsoft Expression Family
The Microsoft Expression family of products was first demonstrated during the 2005
Professional Developers Conference (PDC), but it was not until 2007 that Microsoft released the
first edition of the tools to the world at large. The Expression product lineup is a set of
applications aimed at the professional graphical artist; however, it is increasingly common for
software developers to use the products as well.

At the time of this writing, the Expression family consists of four1 products (Expression
Web, Expression Encoder, Expression Design, and Expression Blend), which may be purchased
via the acquisition of Microsoft Expression Studio Ultimate. You’ll be happy to know that if you
or your company has an MSDN subscription, Expression Studio Ultimate is part of your current
package. If you do not have a valid MSDN subscription, you will be equally happy to know that
you can download a 60-day trial edition of Expression Studio Ultimate from the following web
site:2

www.microsoft.com/expression/try-it

Strictly speaking, this book only requires you to have access to a copy of Expression Blend.
However, if you wish to explore how to incorporate complex vector graphics into a WPF or
Silverlight application (see Chapter 2), I suggest that you install a copy of Expression Design. As

1 Or five products, if you include Expression Media, which has recently been acquired by Phase One A/S.
Expression Media is a commercial digital asset management (DAM) cataloging program for Microsoft
Windows and Mac OS X operating systems.

2 On a related note, the Microsoft Expression home page (www.microsoft.com/expression) provides
supporting links to a rich online community. You can find numerous video tutorials, case studies,
technology previews, and so forth. Take a moment to check out this site; it’s definitely worthy of a browser
bookmark.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 2

far as the other members of the Microsoft Expression family are concerned, we will not be
making use of them in this text. Nevertheless, you may want to explore them on your own, so
the following quick tour describes the high-level nature of each member of the Microsoft
Expression family.

The Role of Expression Web
Expression Web is a tool that allows you to visually create production-ready (and standards-
based) web sites. Even though this is a Microsoft web development tool, you are not limited to
the use of ASP.NET or ASP.NET AJAX (although support for the .NET platform within
Expression Web is excellent). If you wish, you can use the integrated page designers and source
code editors to construct web sites using PHP, HTML/XHTML, XML/XSLT, CSS, JavaScript, as
well as Adobe Flash and Windows Media components.

Expression Web also ships with a companion product named SuperPreview. This aspect of
Expression Web (greatly) simplifies the testing of your web site across several popular web
browsers (for both Windows and Mac). If you are a web-savvy developer, you know that
ensuring a web page renders and behaves properly across diverse environments is a constant
source of irritation. Using Expression Web and SuperPreview, you have a solid set of tools to
help with this endeavor.

The Role of Expression Encoder
Although we will not use Expression Encoder for this book, be aware that this tool provides a
platform to import, edit, and enhance video media, encoded in a wide variety of formats
including AVI, WMV, WMA, QuickTime MOV files (if installed), MPEG, VC-1, and H.264.

By way of an example, using Expression Encoder, you could create a professional training
video configured to stream within a Silverlight (or WPF) application. As well, Expression
Encoder can be used to create media that seamlessly integrates into a WPF/Silverlight
application via bookmarks and customizable skins.

The Role of Expression Design
Expression Design is a Microsoft tool that stands in direct competition with Adobe products
such as Illustrator and Photoshop (in fact, Expression Design, as well as Expression Blend, can
import file formats from each of these designer-centric applications). In a nutshell, Expression
Design is a tool that enables graphical artists to generate rich, vector-based graphics.

As you would expect, Expression Design allows a graphical designer to save their work in a
variety of standard image formats (PNG, JPEG, GIF, TIFF, etc.). In addition, and for our
purposes more interestingly, Expression Design also allows you to save your graphical data in
WPF or Silverlight XAML.

As you may know, the Extensible Application Markup Language (XAML) is an XML-based
grammar used to describe the state of a .NET object (graphically based or otherwise). For example,
the following markup describes the look and feel for the vector image shown in Figure 1–1. Notice
that we are able to create a pleasing drop shadow effect and a complex radial gradient brush
used to fill the interior of the circle using just a few lines of XAML:

<Ellipse x:Name="shadowCircle" HorizontalAlignment="Left"
 Height="117.5" Margin="99,58,0,0" Stroke="#FF0B17D6"
 VerticalAlignment="Top" Width="117.5"
 StrokeThickness="7">
 <Ellipse.Effect>
 <DropShadowEffect Color="#FFB7B8E0" BlurRadius="6"

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 3

 ShadowDepth="11"/>
 </Ellipse.Effect>
 <Ellipse.Fill>
 <RadialGradientBrush GradientOrigin="0.38,0.304">
 <GradientStop Color="#FF111EE0" Offset="0"/>
 <GradientStop Color="#FFC5C7E0" Offset="1"/>
 <GradientStop Color="#FF4750DA" Offset="0.526"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
</Ellipse>

Figure 1–1. The rendered output of the example XAML

By providing the ability to save a vector-based graphic as XAML, Expression Design makes
it very simple for a developer to incorporate professional-looking graphics into an existing
application, and interact with the data through code. For example, a graphical artist could
create a stylized 2D maze for an interactive video game. Once saved as XAML, this data can be
imported into an Expression Blend (or Visual Studio 2010) project and stylized further with
animations, hit-testing support, and other features. You’ll see how this is possible in Chapter 2.

The Role of Expression Blend
Now, as they say, on to the good stuff! Expression Blend is a key component for building a
production-level WPF or Silverlight application. This tool will generate a vast amount of the
XAML required by your programs. While you could author the same markup manually using
numerous development tools (ranging from Notepad to Visual Studio 2010), you will most
certainly suffer from massive hand cramps due to the verbose nature of XML-based grammars.

Well beyond the relatively simple XAML editing support provided by Visual Studio 2010,
Expression Blend supplies sophisticated tools to lay out and configure controls, author complex
animation sequences, create custom styles and templates, generate new UserControl3 classes
from existing vector graphics, visually design data templates, assign behaviors and visual states
to user interface (UI) elements, and perform a host of other useful operations.

As you progress through the book, you will learn a great deal about using Expression Blend
to build extremely expressive user interfaces for the Web (via Silverlight), the desktop (via WPF),
and Windows Phone 7 (using, surprise!, Silverlight).

3 A “user control” is a .NET class (with the associated XAML) that represents a chunk of reusable UI
elements. You’ll learn how to generate user controls via Expression Blend in Chapter 5.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 4

Expression Blend Is Typically Only One Side of the Coin
While Expression Blend does ship with a simple, lightweight C# and VB code editor (seen later
in this chapter), you most likely would not want to author all of your .NET code within this IDE
as it is fairly limited in scope (for example, no debugging support). As luck would have it, an
Expression Blend project has the exact same format as its Visual Studio counterpart. Thus, you
could begin a new project with Expression Blend and design a fitting UI, and then open the
same project in Visual Studio 2010 to implement complex code, interact with the debugger, and
so forth.

To be sure, a vast majority of your WPF/Silverlight applications will make use of each IDE
during the development cycle.4 You’ll examine the integrated code editor of Expression Blend
and see the interplay with Visual Studio 2010 later in this chapter.

The Role of SketchFlow
In addition to providing the tools required to build rich user interfaces, Expression Blend also
includes a suite of tools that enables you to rapidly prototype applications using SketchFlow.5
This aspect of Expression Blend allows you to quickly and effectively mock up and define the
flow of an application UI, screens layout, and application state transitions. Figure 1–2 shows a
SketchFlow project loaded within the Expression Blend IDE.

Figure 1–2. SketchFlow enables rapid prototyping of WPF and Silverlight applications.

4 An Expression Blend project is able to integrate within the Visual Studio Team Foundation source control
management system.

5 SketchFlow is only included with Expression Studio Ultimate Edition.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 5

Because SketchFlow is intended to be used during application prototyping, you can build
UI mock-ups without being concerned with lower-level details, and can quickly adapt your
prototypes in real time based on client feedback. This is made even easier given the freely
distributable SketchFlow player, which ensures your prototypes can be demonstrated
effectively to your client. Perhaps best of all, a SketchFlow project can become the starting point
for a “real” WPF or Silverlight application. You will learn how to work with this facet of
Expression Blend in Chapter 8.

The Expression Blend Project Templates
Now that you understand better the overall purpose of the members of the Microsoft
Expression family, we can turn our attention to the various types of projects supported by the
Expression Blend IDE. When you launch Expression Blend, you’ll be greeted by default with the
Blend Welcome Screen. Figure 1–3 shows the contents of the Help tab.

Figure 1–3. The Expression Blend Welcome Screen

As you can see, this Welcome Screen is divided into three tabs, Projects, Help, and Samples.
For the time being, select the Projects tab, and click the New Project option. Once you do, you’ll
be presented with the New Project dialog box, shown in Figure 1–4.6

6 Notice in Figure 1–4 that the mouse cursor is located over a vertical UI element that allows you to show or
hide the leftmost project template tree view.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 6

Figure 1–4. The Expression Blend New Project dialog box

Regardless of which project template you select, you will find that the New Project dialog
box allows you to specify a name and location for your new project, as well as select between a
C# or VB code base. Last but not least, you are able to configure your new project to target a
specific version of the .NET (for WPF projects) or Silverlight platform.

■ Note In this book, I will assume you are making use of C# as you work through the various examples. If you

would rather use VB, you should not have any difficulties mapping the minimal C# code into the syntax of VB.

WPF Project Templates
If you are interested in creating a new, rich desktop application for the Microsoft Windows
operating system, chances are you’ll be starting with a new WPF application. As of Blend 4, the
WPF node of the New Project dialog box provides four starter templates, each of which is
documented in Table 1–1.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 7

Table 1–1. WPF Project Templates of Expression Blend

WPF Project Template Meaning in Life

This template is for building a traditional desktop WPF executable.

This template is for creating reusable .NET class libraries that
contains custom WPF controls. You will learn about building
custom user controls (and styles/templates) in Chapter 5.

This template is also for building a traditional desktop application,
but it uses View and ViewModel objects (and the MVVM design
pattern) to provide loose coupling between your presentation and
data logic7.

This template allows you to prototype a new WPF desktop
application using SketchFlow (see Chapter 8).

Silverlight Project Templates
Table 1–2 documents the web-centric Silverlight project templates of Expression Blend, which
can be viewed by clicking the Silverlight node of the New Project dialog box. As you can see,
they are similar to their WPF counterparts.

Table 1–2. Silverlight Project Templates of Expression Blend

Silverlight Project Template Meaning in Life

This template is for creating a new Silverlight application and a
corresponding web site project that hosts it.

This template is for creating a new Silverlight application. You
will not get a full web site project with this option, but Blend
will autogenerate a simple HTML test page (Default.html)
when you run your project.

This template is also for creating a Silverlight application, but it
uses View and ViewModel objects (and the MVVM design
pattern) to provide loose coupling between your presentation
and data logic.

This template is for creating reusable .NET class libraries that
contain custom Silverlight controls. You will learn about
building custom user controls (and styles/templates) in
Chapter 5.

This template allows you to prototype a new Silverlight
application using SketchFlow (see Chapter 8).

7 Chapter 6 will briefly examine this project type; however, detailed coverage of the MVVM design pattern is
beyond the scope of this book.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 8

Now, the good news is that a majority of the Blend IDE will remain the same, regardless of
which of the project templates you select. Of course, always remember that WPF and Silverlight
are not perfect carbon copies of each other. While they are both forged from the same
technologies (XAML, a control content model, etc.), their codebases are not 100 percent
compatible.

By way of one simple example, the WPF API provides support for full 3D vector graphics,
whereas Silverlight ships with only simple (but still very useful) 3D perspective graphics. As
well, WPF supports a deeper (or as some would say, more complex) model to handle UI cues via
markup using triggers or the Visual State Manager (VSM), whereas Silverlight opts to deal with
UI cues in XAML using the VSM (almost) exclusively.

Windows Phone Project Templates
At the time of this writing, Microsoft is preparing to launch the Windows Phone 7 family of
mobile devices.8 As you might already know, the native development platform of Windows
Phone 7 is in fact Silverlight! Given this point, be aware that the Blend IDE (as well as Visual
Studio 2010) can be updated to support a variety of Windows Phone 7 project templates via a
free web download.

I’m sure that the next release of Expression Blend will ship with these templates
preinstalled. In any case, Chapter 7 will introduce you to the topic of using Blend to build UIs
for Windows Phone 7 devices, and at that time, I’ll show you how to download and install the
required SDK and project templates if they are not already on your development machine.

■ Note You will be happy to know that almost everything you will learn about using Blend to build a WPF or

Silverlight project applies directly to a Windows Phone 7 project.

A Guided Tour of the Core Blend IDE
You will begin to build your own Expression Blend projects beginning in Chapter 2. For the time
being, I will give you a tour of the key aspects of the IDE by loading one of the supplied sample
projects. I feel this will be helpful in that you will be able to see a “real” project as you learn the
lay of the land, and you will also have a much better idea of what sorts of applications you can
create with WPF and Silverlight.

Assuming the New Project dialog box is still open on your screen, press the Esc key on your
keyboard to return to the Blend Welcome Screen (if you already dismissed the New Project
dialog box, you can open the Welcome Screen once again using the Help ➤ Welcome Screen
menu option). In any case, click the Samples tab, shown in Figure 1–5, and notice you have a set
of built-in sample projects.

8 Consult www.microsoft.com/windowsphone for more information regarding Windows Phone 7.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 9

Figure 1–5. The Welcome Screen allows you to open a number of sample projects.

The exact list of sample projects you will see varies between different versions of
Expression Blend, so don’t be too alarmed if your list does not match Figure 1–5 to a tee. For
this portion of the chapter, I will be using the Silverlight ColorSwatchSL sample project;
however, you are free to load any project you wish to explore.

Loading a Blend Sample Project
Before we dive into the IDE, let me tell you how to run a Blend project so you can test how the
application is coming along. When you press the F5 key, or the Ctrl+F5 keyboard combination,
Blend will build and run your current project. If you are building a WPF application, the end
result will typically be that a new window appears on your desktop. On the other hand, if you
are building a new Silverlight application, you will find that your web browser will load up and
display the hosting web page.

Go ahead and run the ColorSwatchSL project now. Notice that as you move your mouse
over any of the colored strips, they pop forward via a custom animation. If you click any colored
strip, a “details” area springs into view using another animation sequence. Figure 1–6 shows a
possible test run.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 10

Figure 1–6. The running ColorSwatchSL application

Once you have finished testing the sample program, close your browser and return to
Expression Blend.

The Artboard and Artboard Controls
The “artboard,” located in the center of the IDE, is perhaps the most immediately useful aspect
of Expression Blend, in that you will use this visual designer to create the look and feel of any
WPF window or Silverlight user control. Figure 1–7 shows the artboard for the MainControl.xaml
file of the current sample project.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 11

Figure 1–7. The artboard allows you to visually design the UI of a WPF or Silverlight application.

Mounted on the lower left of the artboard is a set of controls (not surprisingly, called the
artboard controls; see Figure 1–8) that allows you to alter the general display of the designer
surface.

Figure 1–8. The artboard controls allow you to configure basic aspects of your artboard designer.

Here is a rundown of the functionality found within the artboard controls area (and a few
other important artboard tools).

Zooming the Artboard Display
Starting with the leftmost item in the artboard controls, we find a zoom control, which can be
used to scale the size of the designer surface. As you play around with this control, you’ll notice
it is a fancy combo box that allows you to type in a specific value, select from a predefined list of
values, and set the scale with the mouse by clicking and holding your left mouse button when

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 12

the cursor is within the scale value (much like a scrollbar thumb). You will find that the ability
to scale your current artboard is very useful when creating controls with custom content,
creating data binding templates, and building custom styles (among other tasks).

Showing and Hiding Rendering Effects
The next item in the artboard controls looks like a mathematical function notation (fx) and can
be used to turn off or on any “rendering effects” placed on a UI element on the designer. As you
will see later in this book, Expression Blend ships with a large number of predefined visual
effects (such as the drop shadow effect seen previously in Figure 1–1). As you are building rich
UIs, you may occasionally want to hide such visual effects at design time, to more easily
configure the basic UI. Given that this particular project is not making use of any visual effects,
clicking this button will appear to do nothing (however, we will add a visual effect a bit later in
this chapter).

Tweaking UI Positioning with Snap Grid
Next, we have three controls that allow you to set how the artboard should respond to item
placement. If you click the “Show snap grid” button, a positioning grid will be overlaid on the
designer surface. You can then toggle two related buttons on the artboard control, “Turn on
snapping to gridlines” and “Turn on snapping to snaplines.”

If snapping to gridlines is turned on, as you drag an object onto the artboard designer, the
object will snap (or pull) toward the closest horizontal and vertical gridlines. This can be useful
when you want to align a set of controls against a horizontal or vertical position.

The snapping to snaplines option is useful when you wish to ensure that two or more UI
items are positioned relative to each other in a meaningful way. For example, if you have
enabled snapping to snaplines, you could ensure that the text in two controls is positioned on
the same horizontal line. This feature also allows you to “snap” controls into cells of a grid
layout manager, or “snap” to a specified padding or margin value between related items.

Figure 1–9 shows an arbitrary example of working with the snap grid view and the snapping
to snaplines option. To try things out first-hand, simply select the Master list text area on the
designer and move it around the designer. Note how the designer behavior changes when you
toggle on and off the various “snap-centric” options.

Figure 1–9. The snap-centric artboard controls allow you to establish how content is positioned

within a layout manager.

Viewing Annotations
The final button on the artboard control area is used to view or hide Blend annotations. You can
think of annotations as a Blend programmer’s version of a sticky note. Using annotations, you

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 13

can add textual notes to your current design, which can be particularly useful during the
prototyping phase (see Chapter 8).

Currently, the ColorSwatchSL sample project does not have any annotations; go ahead and
add one using the Tools ➤ Create Annotation menu option. Once you do, you can type in any
sort of textual data (see Figure 1–10). After you have added a note or two, try toggling the
Annotations button to view the end result.

Figure 1–10. Blend annotations allow you to document notes within your current design.

Be aware that annotations are never visible when your program is running. Also, do know
that the annotations you add to a Blend project will not be shown on the Visual Studio 2010
WPF or Silverlight designers, although a determined programmer can see the raw XAML that
represents the annotation data. That’s right, even annotations are stored as XAML. For
example, the note shown in Figure 1–10 is realized as the following markup:

<Anno:AnnotationManager.Annotations>
 <Anno:Annotation AuthorInitials="AT" Author="Andrew Troelsen"
 Left="765.43" SerialNumber="1" Top="262.179"
 Timestamp="08/10/2010 15:30:55"
 Text="Trust me, if I can become comfortable working with Blend,
 anyone can do it!"/>
</Anno:AnnotationManager.Annotations>

On a final note, be aware that if you have a UI element selected on the designer before
adding a new annotation, the annotation will be “connected” to the selected element. This will
be useful when you want to make comments on (for example) a specific UI control or graphical
data item. If you do not have a particular item selected before adding an annotation (meaning
you have clicked an empty location on the artboard), it will serve as a “general” note that is not
tied to a given UI element.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 14

Viewing and Editing the Underlying XAML
If your primary role at your company is that of a graphical artist, you may not be terribly
interested in viewing the XAML that Expression Blend is creating on your behalf. However, if
you are a software developer who is making use of Blend, you’ll be happy to know that the
Blend IDE does provide a sophisticated XAML editor. Before you can view and modify this
markup, you need to toggle from the Design button to either the XAML or Split button, which
are all mounted on the upper-right area of your artboard (see Figure 1–11).

Figure 1–11. You can view your artboard data in design, XAML, or split mode.

Activate the Split view option. Once you do, you’ll see the integrated XAML editor appear
on the bottom of your artboard. As you can see in Figure 1–12, the XAML editor supports code
completion and IntelliSense and provides useful help information.

Figure 1–12. The Expression Blend XAML editor is quite feature rich.

That wraps up our look at the Expression Blend artboard. Next up, let’s examine ways to
view and configure the UI elements that populate the designer area.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 15

The Objects and Timeline Panel
The next important aspect of the Blend IDE to consider is the Objects and Timeline panel, which
is mounted on the left side of the IDE by default. This one panel serves two specific purposes.
First and foremost, this panel shows you a visual treelike representation of the XAML for a given
window or user control on the designer. The top node of the tree represents the entirety of the
window (via the <Window> element) or user control (via the <UserControl> element), while the
immediate child node represents the root layout manager, called LayoutRoot by default. Within
this layout manager, you will find any number of contained UI elements that represent your
current artistic vision (see Chapter 4 for details regarding layout managers and controls).

In Figure 1–13, notice that each node within the Objects and Timeline panel has an
“eyeball” icon to the right, and to the right of the eyeball, a small circle. The eyeball control can
be toggled to on or off, to show or hide aspects of your UI in the designer. This can be helpful
when you have a complex nested layout system and only wish to see a smaller collection of
controls. Understand that if you hide part of the UI, this is only realized on the Blend designer!
You will always see the full markup rendered when running your project.

The small circle to the right of any given eyeball provides a way to lock an object (and any
contained objects) in place, so that it cannot be edited on the visual designer. As you might
guess, this can be useful when you have created the “perfect” UI element and want to make
sure you do not accidentally alter it.

Figure 1–13. UI elements can be selectively hidden and locked.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 16

Selecting Objects for Editing
Beyond simply viewing a tree of markup in a visual manner, the nodes in the Objects and
Timeline panel provide a quick and easy way to select an item on the designer for editing. Take
a moment or two to click various nodes within the tree and see which part of the artboard is
selected for editing. Go ahead and do so now...I’ll wait...this is actually a very important aspect
of the panel and you will need to be comfortable using it.

Regarding the “Timeline” Aspect
Okay, that covers the “Objects” part of this panel, so what about the “Timeline” aspect? As it
turns out, the Objects and Timeline panel also allows you to create storyboard objects, which
contain animation instructions. Using this aspect of the panel, you can select a node in the tree
and modify it in various ways (change its location, color, etc.). While you are doing so, your
actions are recorded via the Expression Blend animation tools. The animation editor is very
sophisticated and will be fully examined in Chapter 3. Until that point, we will only use the
Objects and Timeline panel to view our markup, and select items for editing on the artboard.

The Properties Panel
Now that you understand how to select a UI element via the Objects and Timeline panel, you
are ready to examine the Properties panel, which is located on the right side of the IDE by
default. Similar to the Visual Studio 2010 Properties window, this aspect of the Blend IDE allows
you to modify the selected item in a variety of manners. On a related note, if you modify a
selected item on the artboard via your mouse (for example, relocating a control via a drag-and-
drop operation), the related properties on the Properties panel are updated in turn. In either
case, the underlying XAML is modified automatically by the IDE.

The Properties panel is broken up into various property categories, each of which can be
expanded or collapsed independently. Now, the exact categories you will find in the Properties
panel will change dynamically based on what you have currently selected on your designer.9
For example, if you select the entire window or user control, you will see a good number of
categories such as Brushes, Appearance, Layout, and Common Properties (among others).
Figure 1–14 shows the categories (most of which I have collapsed) in the Properties panel if you
select the topmost UserControl object within the Objects and Timeline panel.

9 Also be aware that the exact categories seen in the Properties panel will differ based on which type of
project you are working with (WPF, Silverlight, or Windows Phone 7).

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 17

Figure 1–14. The Properties panel allows you to change the characteristics of the currently

selected item.

Naming and Finding Objects
Take a moment to look at the very top of the Properties panel, and you will find a Name text
field. As you would suspect, this allows you to provide a value to the Name property of a given
XAML element, so that you are able to manipulate it in your code. Right below this, you will find
a very helpful Search text area, which will help you quickly locate a property by name (rather
than hunting manually in each property category). To test this searching aspect out first-hand,
begin to type in the value height. As you type, you will find all items that have a full or partial
match (see Figure 1–15). When you clear the Search area of all text, you’ll find that all property
categories reappear10.

10 Friendly reminder: always clear a search when you are finished. I can’t tell you how often I’d forget to do
so and wonder why the Properties panel was showing me incorrect choices for a selected item on the
artboard.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 18

Figure 1–15. The Properties panel can be easily searched.

An Overview of Property Categories
As you work through the chapters of this book, you will be exposed to a number of important
aspects of the Properties panel within the context of a given topic (graphics, layout and
controls, animation, etc.). However, to whet your appetite, Table 1–3 documents the nature of
some very common property categories, listed alphabetically.

Table 1–3. Common Categories of the Properties Panel

Blend Property Category Meaning in Life

Appearance This category controls general rendering settings, such as opacity,
visibility, and the application of graphical effects (blurs, drop
shadows, etc.).

Brushes This category provides access to the visual brush editor.

Common Properties This category contains properties common to most UI elements,
including tool tips, tab index values, and the location of a data
context (for data binding operations).

Layout This category is used to edit properties that configure a control’s
physical dimensions (height, width, margins, and so on).

Miscellaneous This category is basically the “everything else” section of the
Properties panel. Most importantly, this category allows you to
establish which style or template to apply to a selected item.

Text This category enables you to configure textual properties for a
selected item, such as font settings, paragraph settings, and
indentations.

Transform This category allows you to apply graphical transformations
(rotations, angles, offsets, etc.) to a selected item.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 19

Viewing Advanced Configuration Options
As you continue examining the Properties panel, you will notice that some of the categories
have an expandable area mounted on the bottom. When you click this area, the category will
expand to show you further (often times, more advanced or lesser used) properties of that
category. Consider for example the expanded version of the Text category shown in Figure 1–16.

Figure 1–16. Some categories provide expandable subsections.

Speaking of advanced settings, you may have also noticed that some properties (in any
given category) have a small square located to their extreme right side (see Figure 1–17). You
can click this small square, called the Advanced options button, to open yet another editor for
advanced settings for a single property. This is useful when you are working with data binding
operations and object resources, and will be examined in later chapters of this book.

Figure 1–17. Some properties support advanced subsettings.

That should be enough information to orient you to working with the Properties panel.
Again, you will be given many more details in the chapters ahead.

The Project Panel
The Project panel (located on the far left side of the IDE by default) will be very familiar to you if
you have experience with the Microsoft Visual Studio IDE. Each time you make a new
Expression Blend project, the tool will create a set of starter files (XAML files and code files) and
automatically reference a set of necessary .NET libraries (aka assemblies). As you are creating
your projects, you are free to insert additional types of files into your project and add references

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 20

to additional .NET libraries. Furthermore, you can add new folders to a given project to contain
related artifacts such as image files, sound clips, video files, and XML documents.

If you have loaded the ColorSwatchSL project, as I have, you will notice that your Project
panel actually contains two projects. The first project contains the code files and libraries for
the Silverlight application, while the second contains the files for the related hosting web page.
Just like Visual Studio, Expression Blend uses a solution/project metaphor. A single solution can
contain multiple projects, which collectively represent the application you are constructing.
Consider Figure 1–18, which shows items for both projects and also illustrates the process of
adding new items to a given project via a standard right-click mouse operation (we are not
really adding anything to either project right now; I just wanted to illustrate the insertion
operation).

Figure 1–18. The Project panel shows you a project-by-project and file-by-file breakdown of your

current solution.

The Integrated Code Editor
While XAML allows you to do some amazing things without ever writing a single line of C# or VB
code, your projects will eventually need some code to drive their functionality. Earlier editions
of the Expression Blend IDE did not ship with any sort of integrated code editor. Thus, if you
were to double-click a given C# (*.cs) or VB (*.vb) code file within the Projects panel, Blend
would automatically launch Visual Studio (or Notepad if Visual Studio was not installed).

Nowadays, Expression Blend does indeed have a useful code editor. To view this for
yourself, double-click the ListBoxItemSendToTop.cs code file (or any code file of your choosing)
found within the Project panel. The Blend code editor is useful when you wish to add some

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 21

simple “stub” code for event handlers or author some simple test code during development and
prototyping (as you will be doing for much of this book!).

As useful as this feature is, the Blend code editor is nowhere near as powerful as Visual
Studio (nor should it be). For example, Blend does not provide an integrated debugger. It has no
support for C# or VB code snippets, no support for code refactoring, and no support for the
visual construction of class hierarchies. On the plus side, the Blend code editor does indeed
support IntelliSense and code completion, as demonstrated in Figure 1–19.

Figure 1–19. The Blend code editor allows you to add code during program creation.

Although this book is not focused on the construction of full-blown WPF or Silverlight
applications, you will occasionally need to author code as you work through the examples to
come. The code you will write will not be terribly complicated, but if you find the need for more
assistance (such as an integrated debugger), don’t forget that Blend and Visual Studio use the
exact same solution/project format. You can very easily open a Blend project into Visual Studio
to set breakpoints and author more sophisticated code.

The Results Panel
As you are manually typing code or markup, you may of course author some incorrect
statements (misspell a keyword, forget to close an XAML element, use the wrong capitalization,
or what have you). If you attempt to run your Blend application (via F5 or Ctrl+F5), the Results
panel will show you a list of your current offences. If you double-click any error, Blend will open
the related file and position your mouse at the location of the offending line of code or markup.
Figure 1–20 shows my Results panel, identifying some errors I intentionally added to the
ColorSwatchSL project.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 22

Figure 1–20. The Results panel will show you the error of your ways...

The Tools Panel
Now, close the current code file (if you are following along) and make sure you have opened an
XAML file (such as MainWindow.xaml). By default, on the extreme left of the Blend IDE, you will
find a vertical strip of buttons that may remind you of the Visual Studio toolbox (if you have
background working with this product). This area is termed the Tools panel, and represents a
collection of common UI elements (controls, layout managers, simple geometries, and so on)
that you can select in order to build your user interfaces.

You will notice that some of the sections of the Tools panel have a small white triangle on
the lower right. This is an indication that if you click and hold the topmost item, you will see a
selection of related items. For example, in Figure 1–21, you can see that when I click and hold
on the Rectangle tool, the Ellipse and Line tool pop up as additional options (be aware that the
Tools panel looks slightly different depending on whether you are working on a WPF or
Silverlight project. Also note I have mounted my Tools panel to the top of my IDE, not the left-
hand side).

Figure 1–21. Some items on the Tools panel group related options.

As you work through the next few chapters, you will have a chance to work with a number
of different tool items, during examination of various topics. For the time being, I’d like to focus
on the following aspects of the Tools panel:

• The Selection and Direct Selection tools

• The Zoom and Pan tools

• The Assets library

Basically, we will be looking at the aspects of your Tools panel that are shown in Figure 1–
22; I blurred out the buttons that we will not examine, for the time being. The first tools of the
Tools panel we will examine are the selection tools. However, to understand the difference
between a “select” and “direct select,” we first need to add a bit of new content to the current
ColorSwatchSL sample project for illustrative purposes.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 23

Figure 1–22. We will examine these aspects of your Tools panel over the next few sections.

Adding Custom Content to the Sample Project
To begin adding custom content to the sample project, select the LayoutRoot node of the tree in
the Objects and Timeline panel, as you will be adding a new object on the main layout
manager. Next, locate the Pencil tool on your Tools panel, which can be found as a subitem
under the Pen tool (see Figure 1–23; you can also press the Y key as a hot key to select the Pencil
tool).

Figure 1–23. Select the Pencil tool from the Tools panel.

Use your mouse to draw a random, enclosed geometric shape somewhere on an open area of
the designer (any shape, size, and location will be fine). Ensure that your new geometric shape is
selected in the Objects and Timeline panel (it will be defined in the tree as a [Path] node), and
then use the Properties panel to give your new shape a proper name via the Name text field at the
top of the Properties panel (I called mine myPolygon). Finally, use the Brushes editor (located in the
Brushes properties category) to give your shape a solid color. To do so, just click the color editor
directly (Chapter 2 will examine the Brushes editor in detail). Figure 1–24 shows one possible
rendering.

Figure 1–24. A simple polygon rendered with the Pencil tool

We will interact with this object through code in just a bit, but for now, you’ll learn more
about the Tools panel itself.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 24

The Selection and Direct Selection Tools
The Tools panel contains two different tools for selecting an item on the artboard, specifically
the Selection tool and the Direct Selection tool.11 If you are like me, I am sure you are already
wondering why we have two tools to “select” an item. Well, if you are simply trying to select an
item on the artboard so that you can reposition it within your window or user control, or wish
to change the size of the item using the designer’s pull handles, you want to use a selection (i.e.,
the first, black pointer; press V as a shortcut to activate the Selection tool). Activate the
Selection tool now, and verify you can move and resize your custom graphical data around the
artboard.

In contrast, if you want to select the individual segments that constitute a geometric shape,
or if you want to edit complex internal content of a ContentControl derived class (see Chapter
3), you want a direct selection (i.e., the second, white pointer). Press the shortcut key for the
Direct Selection tool (the A key), and notice that you can now alter each segment of your
polygon (see Figure 1–25).

Figure 1–25. A direct selection allows you to edit segments of a path, or complex content of a

control.

Once you have modified your geometry, click the Selection tool again, to verify you can
now move your shape around the designer surface once again. Next, go back into Direct
Selection mode, change a segment, and return to Selection mode. Get used to this back and
forth toggle of Selection (V shortcut key) and Direct Selection (A shortcut key)—you’ll be doing
this a lot!

The Zoom and Pan Tools
Earlier in the chapter, you learned that you can use the mouse wheel to zoom the data in the
artboard. You also learned that the artboard control area provides an alternative method to
zoom the data on the artboard. Now for a third approach: the Zoom tool (Z is the shortcut key).

Select this item on the Tools panel (it’s the one that looks like a magnifying glass), and then
click anywhere on your artboard to zoom in. If you hold the Alt key while clicking, you will
zoom back out. Finally, if you double-click the Zoom tool on the Tools panel, the data in the
artboard will rescale to the original size as defined in the XAML definition.

11 I must admit, when I first started to work with Expression Blend, I spent far too much time trying to figure
out the difference between these two selection tools. It really drove me crazy!

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 25

The Pan tool (the one that looks like a hand) provides an alternative to using the Ctrl key
and mouse wheel combination, in that when you select this tool (H is the shortcut key), you can
click and drag your artboard around to position the area rendered in the artboard. The Pan tool
is most useful when you have zoomed deeply into some complex graphical data, and need to
move to a specific location to edit embedded content.

The Assets Library (and the Assets Panel)
The Blend Tools panel does not show you every single possible WPF or Silverlight control that
could be used to create a UI. When you are looking for additional UI elements, you will want to
use the Assets library, which you can open by clicking the final (rightmost) button in the Tools
panel (which looks like a double greater-than sign, >>). As shown in Figure 1–26, the Assets
library organizes its contents into several high-level categories.

Figure 1–26. The Assets library shows you a number of WPF and Silverlight assets.

Table 1–4 explains the overall role for each category.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 26

Table 1–4. Categories of the Blend Assets Library

Assets Library Category Meaning in Life

Project This category shows all of the custom assets that you have added to
your current application (image files, custom styles, sound files,
video files, etc.).

Controls This category displays all WPF/Silverlight UI controls that you can
use to build a user interface.

Styles This category shows you any custom styles that you have created for
the current project.

Behaviors This category contains behaviors, which are objects that allow you to
capture common events in your markup without the need to author
custom C# or VB code. You’ll learn about behaviors beginning in
Chapter 3.

Shapes This category contains prerendered geometries that you can add to a
program (hexagons, callouts, stars, etc.). They can help you add
standard shapes more quickly than when working with the Pen and
Pencil tools.

Effects This category contains effects, which allow you to alter the look and
feel of a UI element in various manners. Recall that the fx button of
the artboard controls area allows you to toggle effects on or off.

Media This category is similar to the Project category in that you can view
your custom project assets, but the Media category only shows
image, audio, or video files.

Categories This category groups all the assets of your current project by
subcategories. This allows you to quickly view (for example) all the
controls used by the project, all controls using data binding, and so
forth.

Locations This category shows you all the .NET libraries (assemblies) that
contain the various assets used by WPF and Silverlight projects.

Because working with assets is so common, the Blend IDE actually provides a second way
to view the exact same information, named the Assets panel (see Figure 1–27). Personally, I find
myself using the Assets panel more than the Assets library, as this area is always on the screen
and will not hide from view like the Assets library, but you should use whichever approach you
find most useful.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 27

Figure 1–27. The Assets panel is another way to locate items in the Assets library.

Let’s take the Assets panel (or Assets library) out for a spin. First, use the Objects and
Timeline panel and ensure that the LayoutRoot object is selected in the tree. Now, select the
Star object in the Shapes category of the Assets panel, and draw a small star next to your
custom geometry (see Figure 1–28), and use the Properties panel to name your object myStar.

Figure 1–28. Adding a second geometry to the layout manager

Now, select your LayoutRoot object in the Objects and Timeline panel once again, and
locate the Ripple effect in the Assets panel (remember, you can type in the name of an item in
the Search area to quickly locate it). Drag the Ripple effect onto the LayoutRoot node using a
standard drag-and-drop mouse operation (see Figure 1–29).

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 28

Figure 1–29. Adding a “ripple effect” to the entire layout manager and all its child objects

Once you add this effect, the artboard shows a very different view of the UI layout (see
Figure 1–30)!

Figure 1–30. Showing or hiding visual effects

To be sure, you will use the Assets library as you work through this text, so don’t bother
trying to memorize each category. Next up, let’s see how we can use the integrated code editor
to add some interactivity.

Handling and Implementing Events
To wrap up our modification of the ColorSwatchSL sample project, locate the myPolygon object
in the Objects and Timeline panel. Next, go to the Properties panel and click the Events button

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 29

at the top of the editor (look for the button with the lightning bolt symbol; see Figure 1–31) to
open the Events editor.

Figure 1–31. You can handle events for objects via the Properties panel.

Once you have clicked the Events button, locate an event named MouseLeftButtonDown.
Type in the name of a method that will be called when the user clicks the left mouse button
within your custom polygon (myPolygonMouseDown is a good name; see Figure 1–32).

Figure 1–32. Entering the name for an event handler

Once you type in your name, press the Enter key on the keyboard. This will open the code
editor window. Update your code with the following logic, which will disable the visual effect on
the layout manager:

private void myPolygonMouseDown(object sender,
 System.Windows.Input.MouseButtonEventArgs e)
{
 // Remove the ripple visual effect.
 LayoutRoot.Effect = null;
}

Now, handle the LeftMouseButtonDown event on the star geometry using the same series of
steps, but this time call your method myStarMouseDown. Update the starter code with the
following:

private void myStarMouseDown(object sender,
 System.Windows.Input.MouseButtonEventArgs e)
{
 // Try adding a different effect!
 LayoutRoot.Effect =
 new System.Windows.Media.Effects.BlurEffect();
}

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 30

Next, run your application (press F5 or Ctrl+F5). When the application first runs, you will
find the “ripple” effect. However, if you click either of your two geometries, you can toggle
between no visual effects or a blur visual effect. Not bad for two lines of code! Of course, few of
your WPF or Silverlight applications will need to ripple or blur out the entire UI. You’ll see how
visual effects can help you build more useful projects later in the book.

■ Source Code The ColorSwatchSL_Modified project can be found under the Chapter 1 folder.

Customizing the Options of the Blend IDE
I’d like to point out a few ways in which you can customize the Blend IDE. First of all, the Tools
➤ Options menu can be used to establish general preferences for the Blend IDE, such as the
font to use in the code editor, the default settings for a new artboard, default names and initials
for annotations, and other basic settings. One setting in particular you may be interested in can
be found in the Workspace section of the Options dialog box, which allows you to pick between
a “light” or “dark” theme for the Blend IDE (see Figure 1–33).

Figure 1–33. The Options dialog box allows you to configure various IDE settings.

Creating a Custom Workspace Layout
Beyond tweaking options in the Options dialog box, also be aware that every panel of the Blend
IDE (Tools, Properties, Objects and Timeline, etc.) can be positioned anywhere within the IDE.
For example, if you want to have the Tools panel mounted on the top of the IDE (rather than on
the left side), all you need to do is position your mouse on the “grab area” above the selected

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 31

panel, and attach it to the top part of your IDE using a standard mouse drag-and-drop
operation (try to do that now).

Other panels don’t have a “grab area,” but they can also be repositioned by clicking and
dragging the tab of the panel. For example, click (and hold) the Properties tab of the Properties
panel and drag it to one of the sides of the IDE (or to another panel tab to integrate it within a
current set of tabs). Again, give it a try.

Once you have positioned your panels in a way that suits your fancy, you may wish to save
it as a custom workspace using the Window ➤ Save as New Workspace menu option. Once you
select this menu item, you can give your workspace a name (via the resulting dialog box) and
then find it from the list of workspaces under the Window ➤ Workspaces menu option (see
Figure 1–34).

Figure 1–34. Locating and loading a custom workspace

You’ll notice that the top two choices of the Window ➤ Workspaces menu option list the
two standard workspaces of Blend, Design and Animation. If you ever lose your way, and make
your IDE fantastically confusing, you can “roll back” to the out-of-the-box look and feel simply
by selecting the Design workspace.

The Expression Blend Documentation System
To wrap up this first chapter, I must point out that the Expression Blend product ships with a
dedicated User Guide, which you can access using the Help ➤ User Guide menu option. This
documentation system will be a very useful companion as you work through this text. For
example, in the User Guide, you can find a section that documents each and every keyboard
shortcut (highlighted in Figure 1–35), read tutorials on various aspects of the IDE, learn the
details of SketchFlow, and more.

CHAPTER 1 ■ LEARNING THE CORE BLEND IDE

 32

Figure 1–35. The Blend documentation is very useful, and should be consulted often!

I’ll point out various aspects of the help system throughout the book, but you should do
yourself a favor and take the time to dig into the Expression Blend documentation on your own.
You will thank yourself later!

Summary
That wraps up the introductory look at the Blend IDE. The point of this chapter was to get you
comfortable with the key components of the Blend IDE (as they say, the journey of a thousand
miles begins with a single step). First, you learned the role of each member of the Expression
line of produces (Web, Encoder, Design, and Blend). After that, we quickly moved into an initial
exploration of the Blend IDE through the use of a canned sample project.

The artboard panel is the primary designer area for any new WPF or Silverlight project.
Using the Tools panel, Assets library (or the related Assets panel), and Properties panel, you can
add UI elements to the root layout manager and configure them.

The Objects and Timeline panel is a very key aspect of working with the Blend IDE, in that
it shows you the underlying XAML markup in a familiar tree-like visual display. Recall that you
can select a node in the tree to quickly select it on the artboard for editing. Later in this book,
you will learn how you can use the Objects and Timeline panel to create sophisticated
animation sequences.

Blend has two integrated code editors. If you switch to the XAML editor, you can manually
type in markup to describe your UI, or simply tweak the XAML generated by the IDE. If you
double-click a C# or VB code file within the Projects panel, you can open the source code editor,
which can be very useful when you wish to add some simple starter code for generated event
handlers. Remember, however, that a majority of the C#/VB code will most likely be authored
using Visual Studio 2010, which has the exact same format as a Blend project.

In the next chapter, you will explore the role of interactive vector graphics, which will be a
key ingredient for any WPF or Silverlight application.

 33

C H A P T E R 2
■ ■ ■

Vector Graphics

and Object Resources

This chapter explores the various tools that Expression Blend provides to help you create
interactive, vector-based graphics. You will begin by learning about the core drawing tools of
the Blend IDE (Pen, Pencil, the Brushes editor, etc.). Along the way, you will also learn how to
stylize the “pen” used to render the border of a geometric rendering, how to apply visual effects,
and how to incorporate graphical data authored via Expression Design.

Next, you will explore various tools and techniques that allow you to work with graphical
transformations and 3D graphics within the Blend IDE. At this time, you will quickly notice that
WPF and Silverlight both support various degrees of 3D graphic processing, and you will
evaluate each option.

The chapter wraps up with a seemingly unrelated topic, that of object resources. As you will
see, object resources are named blobs of markup, which can be reused across applications. The
Blend IDE has a number of ways to manage your resources, edit existing resources, and create
new resources. While vector graphics are one of the most common types of object resource, as
you work through the remainder of this book, you will also learn how to capture other types of
graphical content (styles, templates, etc.) as reusable object resources.

The Realm of Vector Graphics
WPF and Silverlight applications render all graphical data using vector-based graphics. Use of
vector graphics is not limited to custom geometric patterns that you construct using the Pen or
Pencil tool, however. As it turns out, each of these APIs renders user interface controls (buttons,
text boxes, menus, grids full of data, etc.) and textual information using vector-based graphics
as well.

Vector graphics provide numerous benefits, the first of which is resolution independence.
When you build a WPF or Silverlight application, you can rest assured that the UI data (as well
as your custom graphical data) will be viewed clearly regardless of the size of the viewing
screen. For example, if your Silverlight application is running on a Windows Mobile 7 phone,
the UI will scale appropriately for the small screen. If this same Silverlight application is
running out of the browser on a user’s desktop, it will scale cleanly regardless of specific
monitor resolution settings.

Use of vector-based graphics for UI controls (and the layout managers that contain them)
is especially powerful. For example, you could define with just a few lines of markup a
StackPanel of controls that is rendered at a 45-degree angle, or upside down, or on a 3D plain.
As well, WPF and Silverlight both support numerous visual effects (drop shadows, swirls, blur

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 34

effects, etc.) that can be applied to vector-based data, with no fear of degrading the final
rendered output.

As you work through this chapter, you will see that Expression Blend supports a number of
tools to create, modify, and transform vector-based graphics. While many of your WPF and
Silverlight applications may only require the drawing tools Blend provides, you might need to
create highly detailed graphical data, which could be quite tedious if you were using Blend
alone. Thankfully, Expression Design (examined later in this chapter) provides a full set of
powerful graphical rendering tools, similar in scope to Adobe Illustrator. As you will see, it is
possible for a graphical artist to export Expression Design data as XAML and incorporate (and
interact with) the markup in a Blend (or Visual Studio 2010) project.

Use of Graphical Data Is Pervasive
If you are coming to WPF or Silverlight from a different UI framework, such as Windows Forms,
ASP.NET, or whatnot, you might wonder if you really will need to work with graphical data. For
example, you may think that a typical business application (full of menu systems, grids of data,
and custom dialog boxes) will not need too much graphical flare. While this might be somewhat
true, be very aware that the use of vector graphics runs deep in WPF and Silverlight, and will
pop up in unexpected places.

For example, understanding how to manipulate graphics is essential if you need to build a
custom style for a set of controls. You will also use graphics (and animations) if you intend to
create control templates, customize a data binding operation (via a data binding template), or
incorporate visual cues for your end user (such as a glowing effect for the active text entry area).
Furthermore, as you will see later in this book, Expression Blend provides a number of
techniques to generate custom controls on-the-fly using a vector graphic as a starting point.

So, although you may not need to define a random green circle (or what have you) too
often in your WPF and Silverlight applications, understanding how to manipulate graphical
data is the foundation for many real-world operations. To get the ball rolling, let’s see how we
can use Expression Blend to generate custom vector-based geometries using a set of core
drawing tools.

Exploring the Core Drawing Tools
The Blend IDE defines a set of five basic tools that allows you to create simple vector-based
geometries; specifically, this set includes the Pen, Pencil, Ellipse, Rectangle, and Line tools, all of
which you can find on your Tools panel (see Chapter 1). To illustrate these tools (and a number of
related topics, such as the Brushes editor), launch Expression Blend and create a new WPF
application or Silverlight application project named BlendDrawingTools. It really does not matter
which type of project you create, as these basic drawing tools work identically for WPF and
Silverlight projects. For this example, I will opt for a WPF application (see Figure 2–1).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 35

Figure 2–1. Creating a new WPF application project

Working with the Pencil Tool
In the previous chapter, you examined the Pen and Pencil tools from a high level. Recall that the
Pencil tool allows you to create a freehand line drawing. The Pen tool, on the other hand, allows
you to create arcs and a set of connected points. Locate these tools on your Tools panel (see
Figure 2–2) and select the Pencil tool (Y is the shortcut key for the Pencil tool).

Figure 2–2. The Pen and Pencil tools

Using the Pencil tool, draw a random geometry or two on the artboard by holding down the
left mouse button and moving your mouse cursor. You’ll notice that a pixel is rendered
wherever the Pencil tool is placed. You can use this tool to define a random unconnected
geometry, or to connect the starting and ending points to create a unique polygon.

Once you are finished drawing a few shapes of your liking, enable the Direct Selection tool
(A is the shortcut key). Recall from Chapter 1 that when you “direct select” a shape, you are able
to modify the individual points that represent the overall graphic (see Figure 2–3). In contrast,
recall that the Selection tool (V is the shortcut key) allows you to select an item as a whole to
reposition, resize, or transform the selected UI element.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 36

Figure 2–3. Recall that the Direct Selection tool allows you to modify path points of a geometry.

Working with the Pen Tool
Whereas working with the Pencil tool is quite straightforward, working with the Pen tool is
surprisingly more sophisticated. Select the Pen tool using the P shortcut key. The key difference
between the Pen and Pencil tools is that the Pen tool will not record pixel data with each mouse
movement. Rather, you use the Pen tool to create a set of connected line segments, each based
on a single mouse click.

To illustrate, find an empty area on your artboard and click five or six times with the Pen
tool. You’ll see that each click-point results in a new line segment. Once you have rendered a set
of line segments, you can use the Pen tool in a few additional ways to modify the path. For
example, if you hold down the Alt key while using the Pen tool, you can select (and hold) an
existing click-point and transform a line segment into an arc segment while moving your mouse
(again, with the Alt key pressed; try this out yourself, as shown in Figure 2–4).

Figure 2–4. Using the Pen tool + Alt allows you to change line segments to arcs.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 37

Also be aware that if you select the Pen tool and place the mouse cursor on top of an
existing click-point, the Pen cursor will change to show a small minus symbol. When you click a
point, it will be removed from the path. If you wish to add an additional click-point to a
geometry, simply click a given location of the current line segment.

The Pen tool responds to a number of other keystroke operations that allow you to further
modify a path. Look up the topic Pen tool, modifiers using the Index tab of the Expression Blend
User Guide for full details (see Figure 2–5).

Figure 2–5. The full set of Pen tool modifiers is documented in the Expression Blend User Guide.

The Result of Using the Pen and Pencil Tools
When you create new geometries using the Pen and Pencil tools, Blend captures your mouse
and keyboard operations to build a new Path object. WPF and Silverlight both provide a set of
classes that represent common geometric shapes; all of these classes are located within the
System.Windows.Shapes namespace. The Path class defines a property named Data, which
ultimately contains a collection of various “geometry objects,” which define the size and shape
of a given item. For example, WPF and Silverlight both provide classes such as
RectangleGeometry, EllipseGeometry, PathGeometry, and so forth.

However, if you view the underlying XAML for the Path objects Blend has created, you will
not find these expected geometry objects, but instead will find that the Data property is set to a
lengthy string value (containing several alphabetic tokens such as M, C, and Z) such as the
following:

<Path Data="M254,101 C297.83333,110.83333 330.5,191.50008 385.5,130.5
 440.5,69.499921 456.83333,142.5 492.5,148.5 419.5,159.83333
 229.5,236.5 273.5,182.5 317.5,128.5 242.83333,164.5 227.5,155.5 z"
 Fill="#FFF4F4F5" Margin="227.5,101,130.5,0"
 Stretch="Fill" Stroke="Black" Height="101.57"
 VerticalAlignment="Top"/>

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 38

This lengthy string is a very compact form for describing the geometry objects used to
render a Path object (often termed the “path mini-language”). Mercifully, you never need to
manually tinker with this string data. All you need to know is that within this terse string are a
number of rendering instructions that the Path object will use to render its output1.

■ Note When you export custom graphical data using Expression Design, the XAML does not use the path

modeling language, but instead uses the larger object model. Typically, this is exactly what you require, as the

geometry objects can be easily manipulated in code.

Working with the Rectangle, Ellipse, and Line Tools
While you could use the Pen and Pencil tools to create any sort of geometry, Blend does provide
a set of tools that generates some standard shapes. Using the Rectangle (M shortcut key), Ellipse
(L shortcut key), and Line (\ shortcut key) tools is very straightforward, but note the following
points of interest:

• If you hold the Alt key after selecting one of these drawing tools, the center point of the
geometry will be at the first point where you click, rather than the top-left corner.

• If you hold the Shift key when drawing with the Rectangle tool or Ellipse tool, the height
and width values will be identical.

• If you hold the Shift key when using the Line tool, the angle of the line will be
constrained to multiples of 15 degrees. This makes it easy to draw a perfectly straight
line at various angles.

Once you have rendered a geometry with any of these tools, you can use the Selection and
Direct Selection tools to modify its size and position. As well, if you place the mouse cursor just
outside of a given “pull point,” you can apply some simple transformations (skews and
rotations in particular). I’ll talk more about graphical transformations later in this chapter;
however, consider Figure 2–6, which illustrates how you can rotate a rendered Rectangle object
via the corner pull point.

Figure 2–6. The artboard allows you to apply various transformations to selected items.

1 If you are so interested, the .NET 4.0 SDK documentation describes the details of the path mini-language.
Simply do a search for path markup syntax.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 39

Working with the Shapes Section of the Assets Library
In addition to using the Rectangle, Line, and Ellipse tools to create the corresponding standard
shapes, you can use the Assets library’s (see Chapter 1) Shapes section,2 which defines a
number of useful preset geometries. As you can see in Figure 2–7, you can select various arrows,
callouts, and other common shapes (triangles, pentagons, etc.).

Figure 2–7. The Assets library provides a number of additional stock geometries.

By way of a simple test, select the Star tool within the Assets library. You will then find that
this tool appears in the “last selected” area of the Tools panel (see Figure 2–8).

■ Note Chapter 1 first introduced the role of the Assets library on your Tools panel (the >> icon). However,

allow me to repeat the previous point: When you select an item from the Assets library, the previously selected

item will appear directly after the >> icon. This is a handy way to nab an item of interest for further use.

Figure 2–8. Items selected in the Assets library appear in the “last selected” area of the Tools panel.

2 This is a new feature of Blend 4. Earlier versions of this tool did not contain a set of common shapes.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 40

When you use these additional shapes, you will indirectly add a reference to a new library
named Microsoft.Expression.Drawing.dll. This library defines some additional classes for
these specialized geometries. For example, the Star tool uses a class named RegularPolygon.
The various “callout” shapes are represented by the Callout class. Thus, if you were to add a
star and a rectangular callout to your artboard, you would find that the new items highlighted in
Figure 2–9 appear in the Objects and Timeline panel.

Figure 2–9. The shapes within the Assets library are represented by unique classes.

■ Note The Expression SDK assemblies can be referenced within a Visual Studio project as well via the .NET

tab of the Add References dialog box. Furthermore, the Expression Blend SDK assemblies will be deployed as

private assemblies by default, so your output directory will contain local copies of these libraries.

Modifying a Shape Using the Appearance Editor
All of the shapes we have examined so far (rectangle, star, line, etc.) can be selected and
configured using the Blend Properties panel. Of course, based on which item you select on the
artboard, you will see a set of unique properties. While this is true, the Properties panel does
have a few settings that are common to all geometries.

For example, let’s say you drew a shape using the Star tool. If you select this item on the
designer and locate the Appearance section of the Properties panel, you will see ways to
configure the stroke thickness to be used to render the border and the level of transparency (via
the Opacity property). For the star geometry, you will also see some specific properties such as
PointCount and InnerRadius (see Figure 2–10).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 41

Figure 2–10. The Appearance editor shows you a number of common, and object-specific,

properties.

If you were to select a rectangular callout object on the artboard, you would see that the
Appearance editor now shows various properties for this particular class (such as
CalloutStyle). Figure 2–11 shows customized star and callout objects after changing various
settings within the Appearance editor.

Figure 2–11. Some customized shapes

To be sure, the Appearance editor will change its contents based on which item you select
on the artboard. This is true for each editor within the Properties panel. As you work through
this text, you’ll see a number of settings you can tweak using the Properties panel; however, the
best advice I can give you is to select an item of interest on the artboard, and examine your
configuration options in the Properties panel first-hand.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 42

■ Note If you select multiple items on the artboard via a Shift+click operation, you will only see the common

properties of the selected items. This can be handy when you want (for example) to set identical height and

width values for multiple items.

Coloring a Shape Using the Brushes Editor
The Brushes editor of the Properties panel allows you to configure the colors to use when
drawing the border of a UI element as well as the color to use to fill the interior of a UI element.
This editor can be used for any UI element, including shapes, controls, layout managers, or an
entire WPF Window object or Silverlight UserControl object. Regardless of which type of item you
are configuring, the overall operations of the Brushes editor remain the same, so for this
example, let’s assume we are interested in modifying the colors used to render a hexagon added
to the artboard via the Shapes section of the Assets library.

Viewing Brush-Centric Properties
The topmost area of the Brushes editor will show a list of “brush-centric” properties for the item
selected on the artboard. In Figure 2–12, you can see that the hexagon (or, more specifically, the
underlying RegularPolygon object) supports three such properties, Fill, Stroke, and
OpacityMask. You can click any one of these properties to configure the related brush to be used.

Figure 2–12. The topmost area of the Brushes editor shows you brush-centric properties of the

selected item.

Selecting the No Brush Option
Directly below this area, you will find five selectable tabs (see Figure 2–13 for a visual), which
allow you to pick a general brush type. Starting at the left is the No brush option, which you can
use to configure a brush-centric property to use what is essentially a transparent brush. If you
select this option, the item selected on the artboard will show the elements beneath it in Z-
order.

Defining a Solid-Colored Brush
Next to the No brush option is the “Solid color brush” option, which allows you to set a single
solid color for the selected property using an intuitive color editor. Figure 2–13 illustrates using
this solid-colored brush editor to set the Fill property of the hexagon to a shade of aqua.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 43

Figure 2–13. Configuring a solid-colored brush

Be sure you take a moment or two to tinker with the various aspects of this solid-colored
brush editor. For example, the Color Eyedropper tool mounted on the lower right of the color
editor (see Figure 2–14) allows you to capture the color of any item you click, even items outside
of the Blend IDE! For example, let’s say you wanted to get the color of a given folder on your
Windows desktop. You could select the Color Eyedropper tool and then click the item of
interest directly on your desktop.

Figure 2–14. The Color Eyedropper tool allows you to pick up the color of any item you click.

Defining a Gradient Brush
The next brush type is a gradient brush. This allows you to define a brush that is composed of a set
of colors, which blend together to paint the surface. Select one of your shapes on the artboard,
and then pick the Fill property on the Brushes editor. From here, click the Gradient brush option
(see Figure 2–15).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 44

Figure 2–15. The gradient brush editor

By default, you will be given two gradient stops (which represent the first two colors; black
and white by default) for any gradient brush, both of which are represented by the thumb-slider
controls mounted on either end of the gradient stop editor. If you click either thumb, you can
change the color to use for that portion of the gradient using the color selector. As well, you can
move any thumb along the gradient stop editor to control the starting and stopping values of
the gradient. Consider Figure 2–16, which shows one possible configuration for these first two
gradients.

Figure 2–16. Configuring gradient stops

If you wish to add additional gradient stops, simply click anywhere within the gradient stop
editor. Figure 2–17 shows a gradient brush that now makes use of four gradient stops, each
configured to use a unique color.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 45

Figure 2–17. To add additional gradient stops, simply click in the gradient stop editor.

■ Note If you want to delete a gradient stop, click (and hold) the offending thumb and drag it off the gradient

stop editor.

Another aspect of the gradient stop editor to be aware of is that, mounted on the lower left,
you have two buttons that allow you to select a radial or linear gradient brush. As you would
guess, these buttons control whether the colors blend in a circular or linear manner. Directly
next to these buttons is a final button that allows you to reverse all existing gradient stops
(handy!). See Figure 2–18.

Figure 2–18. Additional options of the gradient brush editor

The last major aspect of the gradient brush editor is the Gradient tool mounted on your
Tools panel (G is the shortcut key). To illustrate, select a shape on the artboard (which has a
Fill property using a gradient brush) and then press the G key. At this point, you can control
the gradient origin, as well as reposition each gradient stop using the Gradient tool. Figure 2–19
shows the final version of my particular brush.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 46

Figure 2–19. The Gradient tool allows you to configure the origin of a gradient brush.

If you were to look at the XAML that represents your custom brush, you would find
something similar to the following (which shows a RadialGradientBrush based on my brush
configuration; if you are not using a radial brush, you’d find a LinearGradientBrush object
instead):

<RadialGradientBrush RadiusY="0.587" RadiusX="0.587"
 GradientOrigin="0.386,0.662">
 <GradientStop Color="#FFCE1DD8" Offset="0.458"/>
 <GradientStop Color="#FFB0BBE9" Offset="0.747"/>
 <GradientStop Color="#FF2B022D" Offset="0.153"/>
 <GradientStop Color="#FFDF8064" Offset="0.522"/>
</RadialGradientBrush>

Defining a Tile Brush
The last brush option we will examine at the moment is the Tile brush editor. This type of brush
allows you to paint an area based on image data located in a given external graphics file (*.bmp,
*tif, *.jpeg, and so on). Select another one of your geometric shapes (or render a new one on
the artboard), select it, and then click the Tile brush option. Now, set the ImageSource property
using the “Choose an image” button (see Figure 2–20).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 47

Figure 2–20. Selecting a source for the tile brush

At this point, you can use the resulting dialog box to navigate to the location of any image
file on your computer. Once you select an image file, it will automatically be added to your
project and the image data will be used to build your new brush. Figure 2–21 shows one of my
geometries that is filled based on the graphical data within a *.bmp file.

Figure 2–21. Tile brushes allow you to build a brush based on image data.

Great! At this point you (hopefully) feel confident building brushes to set various brush-
centric properties (Fill, Stroke, etc.) using the Blend IDE. Next up, you will examine some ways
to combine geometries to form new Path objects.ew Path objects.

Combining Geometries and Extracting Paths
Expression Blend provides a number of operations that allow you to create new Path objects by
combining existing shapes in a variety of ways. The first step to activating these tools is to select
multiple items on your artboard—more specifically, multiple items that in some way overlap.
Use the Selection tool to arrange two or more items on your artboard so that they do indeed
overlap. Now, perform a Shift+click operation to select each item.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 48

■ Note Blend will use the brush of the last item selected when generating the new Path object! Therefore,

make sure you select last the shape that has the brush you wish to use. Of course, you can always use the

Brushes editor to change the brush to use after combining items.

Next, right-click the selected items and navigate to the Combine menu. Here you will find a
number of useful operations, as shown in Figure 2–22.

Figure 2–22. The Combine menu allows you to create new Path objects based on existing

geometries.

Here is a breakdown of each Combine menu option:

• Unite: Combines all shapes or paths into one single object

• Divide: Cuts the shapes or paths based on where they intersect but leaves all the pieces
intact

• Intersect: Keeps the overlapping areas of the objects and removes the nonoverlapping
areas

• Subtract: Cuts all other selected shapes out of the last selected shape

• Exclude Overlap: Keeps the nonoverlapping areas and discards the overlapping areas

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 49

If you test each option, you’ll see that each operation is fairly intuitive. Take a moment or
two to try out each option, and don’t forget that Blend does support standard undo (Ctrl+Z) and
redo (Ctrl+Y) keyboard commands.

Converting a Shape to a Path
Expression Blend provides a second way to generate a new Path object, using the Convert to
Path option. This can be useful if you have created a geometry using the basic drawing tools
(such as the Ellipse, Rectangle, or some other specialized shape option selected from the Assets
library) and want to further modify its individual line segments.

For example, consider the star shape seen earlier in this chapter. If you were to view the
XAML, you would find something such as the following:

<ed:RegularPolygon Fill="#FF279111" InnerRadius="0.302"
 PointCount="15" Stretch="Fill" Stroke="Black"
 Margin="0,114,18,168"
 HorizontalAlignment="Right" Width="235"/>

Right-click this shape on the designer (or a similar shape on your artboard) and choose the
Path ➤ Convert to Path menu option. Once you do, the previous RegularPolygon will be
converted to a Path object such as the following:

<Path Data="M117.5,0.5 L124.7254,57.65331 L165.35032,7.4490627
L137.92686,61.669108 L204.92688,27.094695 L147.59633,69.006338
L229.38655,56.039988 L152.06187,78.396325 L234.50001,89.280037
L150.55135,88.215455 L219.38311,121.06734 L143.32595,96.765911
L186.64969,145.90558 L131.63501,102.56924 L141.95966,159.49999
L117.5,104.622 L93.040342,159.49999 L103.36499,102.56924
L48.350318,145.90558 L91.674053,96.765911 L15.616902,121.06734
L84.448655,88.215455 L0.49999996,89.280037 L82.938135,78.396325
L5.6134615,56.039988 L87.403677,69.006338 L30.073123,27.094695
L97.073147,61.669108 L69.649686,7.4490627 L110.27461,57.65331 z"
Fill="#FF279111" HorizontalAlignment="Right"
Margin="0,114.25,18.25,168.25" Stretch="Fill" Stroke="Black"
Width="234.5"/>

After the new Path object has been selected, you can perform a Direct Selection and modify
each aspect of the geometry (see Figure 2–23, which shows my greatly modified star shape).

Figure 2–23. Converting a shape to a path is useful when you need to modify line segments.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 50

■ Note This usage of Direct Selection would not have been possible when it was a regular polygon, because a

regular polygon doesn’t expose its individual path points for adjustment.

Interacting with Shapes
It is always important to remember that any shape you render on the artboard using Expression
Blend is a true object and can be interacted with in code. For example, shapes (rectangles,
paths, ellipses, lines, callouts, etc.) support a number of events that you can handle in your
programs to interact with the geometries in various ways.

The first step in interacting with shapes from code is to give them a name, using the Name
field on the Properties panel. If you are following along, try the following. Select each shape in
turn using the Selection tool, and then name each shape via the Properties panel. The exact
name you give each item is unimportant, but you should pick useful monikers such as
myCallout, myStar, and so on. Figure 2–24 shows the name (fancyShape) of one of my
geometries.

Figure 2–24. Naming objects is the first step in interacting with them.

When you give an object a name, you will find that the x:Name attribute is added to the
XAML definition of the item. For example:

<Path x:Name="fancyShape" ... />

Handling Events
Now, select any one of your shapes on the designer, and click the Events button of the
Properties panel, which you will find in the upper right (look for the lightning bolt icon). Find
the MouseEnter event and type in a method named InsideAShape (see Figure 2–25).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 51

Figure 2–25. Handling an event for a given item

As soon as you press the Enter key, the Blend IDE will generate an event handler in your
corresponding code file:

private void InsideAShape(object sender,
 System.Windows.Input.MouseEventArgs e)
{
 // TODO: Add event handler implementation here.
}

For this example, I have handled the MouseEnter for each one of my shapes in the current
project (a total of five—your number may differ), specifying the exact same method
(InsideAShape) each time. Because the same method will be called regardless of which shape
has been entered, you can use the first incoming parameter (an object named sender), to
determine which one of the geometries sent the event (meaning, which shape we are inside of).

If you are a programmer by trade, the following code should make sense. Here, I am casting
the incoming object to the UIElement parent class (all visual shapes and controls in
WPF/Silverlight inherit from the UIElement class), and then changing the Opacity property value
to 50 percent. 3 If you are not a programmer, simply type in what you see (and remember, C# is
a case-sensitive language!):

private void InsideAShape(object sender,
 System.Windows.Input.MouseEventArgs e)
{
 // Make the currently selected shape appear to be transparent.
 ((UIElement)sender).Opacity = .5;
}

If you run your application now (by pressing the F5 key), you should see that when you
move your mouse within the boundaries of any shape, it becomes semitransparent.

3 If you are using VB to build the current example, you will want to use the DirectCast statement, as
opposed to the C# casting operator.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 52

■ Note If you downloaded the code for this book from the Apress web site, you will find that I also handled the

MouseLeave event for each shape. Inside of the shared MouseLeave event handler, I reset the Opacity

property to the value 1.0. In this way, each shape “resets” when the mouse cursor leaves its border.

Configuring “Pens”
So far you have been using the Brushes editor to create customized brushes to fill the interior of
geometries via the Fill property. In addition, it is possible to configure the “pen” used to draw
the border of a given UI element. By default, when you draw a shape on the artboard, the
border will be rendered using a one-pixel thick, black-colored brush.

If you wish to change this default setting, the first option you have is to change the brush
used for the Stroke property by using the Brushes editor as previously described. You can also
change the StrokeThickness property found under the Appearance section of the Properties
panel. In addition, you have a number of “stroke-centric” properties that can be found under
the advanced options area of the Appearance editor (see Figure 2–26).

Figure 2–26. The Appearance editor has a number of properties that allow you to control how

borders and lines are to be rendered

Defining Pen Caps
While any UI element can be configured using these various stroke properties, some of them
(such as StrokeStartLineCap and StrokeEndLineCap) are only useful when you are rendering
lines. Using the Pen or Line tool, add a line to your current artboard and change the
StrokeThickness property to 10. Now, change the StrokeStartLineCap and StrokeEndLineCap
properties to use to one of the available “pen caps” (Flat, Square, Round, or Triangle). In Figure
2–27, you can see the effect of using a Round start line cap and Triangle end line cap.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 53

Figure 2–27. Pen caps allow you to control how to render the starting and ending portion of a

line.

■ Note Depending on the size of your line, you may need to zoom into the geometry to view the pen cap effect

(recall from Chapter 1 that you can use the mouse wheel, or the artboard controls, to zoom into or out from the

artboard).

Defining a Dash Pattern
Now, locate the StrokeDashArray property in the Appearance editor, which is currently set to
the value 1 0. This property allows you to control how the pen should be configured with regard
to any dash pattern. The first value (1) represents the length of a dash, while the second value
(0) represents the length of the gap. Thus, the value of 1 0 basically represents a solid line,
containing no gaps. If you were to change this value to 1 1, you would be able to define a
dashed line, as shown in Figure 2–28.

■ Note You can separate the numbers used to set the StrokeDashArray property with commas as you type in

the value (1, 1 as opposed to 1 1). Blend will strip out the comma once you press the Enter key in the property

editor.

Figure 2–28. A dashed line

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 54

The value assigned to the StrokeDashArray property need not be limited to one pair of
numbers. You can create more elaborate dash combinations by defining sets of pairs, each
member representing part of the dash operation. Consider the following StrokeDashArray value
for a new object drawn with the Line tool:

StrokeDashArray="0.5 1 2 1"

In this case, our line begins by drawing half of a dash, followed by a blank space, followed
by a double dash, followed by a single blank space. This pattern repeats for the remainder of the
line rendering, leaving us with the line shown in Figure 2–29.

Figure 2–29. A fancy dashed line

I’ll leave it in your hands to tinker with the remaining stroke-centric settings found in the
Appearance section of the Properties panel. If you need more information for a specific
property, consult the Expression Blend User Guide.

Revisiting Visual Effects
Chapter 1 had you apply a visual effect to a Blend sample application; however, I do want to
remind you that the Assets library (or Assets panel, which I find easier to use for drag-and-drop
operations) of Blend provides a number of built-in visual effects that you can add to any UI
element seen within the Objects and Timeline panel. Figure 2–30 shows the Effects section of
the Asset library.

Figure 2–30. Visual effects can be added to any UI element.

To apply a visual effect, you can either drag the item onto a given node of the Objects and
Timeline panel, or drag the item directly onto the target item on the artboard. Figure 2–31
shows my Objects and Timeline panel after applying various visual effects to some of my
geometries (I’ve highlighted the effects).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 55

Figure 2–31. Various visual effects

■ Note You can download many additional visual effects (and other items of interest) free of charge by visiting

the Microsoft Expression Gallery online (http://gallery.expression.microsoft.com).

Tweaking a Visual Effect
Once you have added a visual effect to a UI element, you can select it in the Objects and
Timeline panel and view any configurable properties. Each visual effect has its own set of
specific properties. If you take some time to experiment with these properties, you should not
have any problems creating some interesting graphical effects. By way of one example, Figure
2–32 shows the properties that can be set for the DropShadowEffect object.

Figure 2–32. Each visual effect can be configured using the Properties panel.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 56

You should be aware that a vast majority of the visual effects supported by Expression
Blend have been bundled into a .NET assembly named Microsoft.Expression.Effects.dll. If
you happen to create a new WPF or Silverlight project using Visual Studio 2010, do know that
you can manually reference this library using the Add References dialog box (you will find it
listed alphabetically under the .NET tab). Also, if you need to refer to these effects in code, you’ll
typically need to import the Microsoft.Expression.Media.Effects namespace.

■ Note Recall from Chapter 1 that the Blend artboard provides the “Turn off rendering of Effects” button to

disable visual effects during development. Look for the fx button on the lower left of the artboard controls.

That wraps up our examination of the core drawing tools of Expression Blend. Next up, we
examine how you can import graphical data created using Expression Design, and why you
might want to do so.

■ Source Code The BlendDrawingTools project can be found under the Chapter 2 subdirectory.

The Role of Expression Design
As useful as the Blend drawing tools are, it would be quite challenging for a graphical artist to
create a complex, vector-based image using the techniques we have just examined. As luck
would have it, Microsoft Expression Design can be used to create much more sophisticated
graphical data, which can then be exported into a variety of file formats, including XAML. If the
data has been exported as XAML, it can easily be imported into a WPF or Silverlight application.
At this point, you can manipulate the objects using the Objects and Timeline panel, using all of
the tricks you have seen thus far (apply visual effects, interact with the data in code, etc.).

■ Note Detailed coverage of Expression Design is beyond the scope of this book (and to be honest, outside of

my skill set). If you are interested in learning more about using Expression Design to create your own custom

graphics, consult the Expression Design User Guide using the Help menu.

Preparing and Exporting a Sample Image
To begin our next project, launch Expression Design. Now, if you happen to have some
graphical skills, you could draw a custom graphic for this example. However, if you are like
myself and are a bit artistically challenged, simply activate the Help ➤ Samples menu option.
Here, you will find a number of different *.design files you can load, such as bear_paper.design
(see Figure 2–33).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 57

Figure 2–33. The “teddy bear” sample graphic

■ Note If you do not have a copy of Expression Design, I’ve included the exported bear_paper.xaml file in

the Chapter 2 subdirectory.

Before we export this image data as an XAML file, let’s make a few adjustments to the
graphical data. Currently, it appears as if the entire image consists only of the face and one paw
of our furry friend. In reality, the graphical data you are seeing is a small viewport of a much
larger graphic.

To see this first-hand, press the Ctrl+A keyboard command to select all of the graphical
data in this *.design document. As you can see in Figure 2–34, the entire body of the teddy bear
has been defined outside of the current viewport. Also notice in Figure 2–34 that my mouse
cursor is hovering over the upper-right pull-point of the viewport boundary.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 58

Figure 2–34. The current viewport is hiding the full teddy bear image data.

Now, put your mouse cursor over the upper-right pull-point of the viewport, and reduce
the height and width by about 50 percent via the mouse (don’t worry about the exact reduction
of size; we just want a smaller image to export). Once you have done so, you can select the
image data with the mouse and move it back over the blue background. Once you are finished,
you should see something similar to Figure 2–35.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 59

Figure 2–35. The resized teddy bear graphic data

Now that the graphical data has been finalized, you can export the data using the File ➤
Export menu option. The Format drop-down list box offers a number of popular file formats,
but for this example we are interested in the XAML Silverlight 4/WPF Canvas option (see Figure
2–36), so select that.

Figure 2–36. Exporting the “teddy bear” sample graphic as XAML

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 60

Once you have selected the correct XAML file format, uncheck the “Always name objects”
option. Recall that when an element has an x:Name attribute, you can interact with the item in
code. However, this teddy bear will be described using a great number of XAML elements. If we
were to tell the tool to name every possible object, we would end up with a large number of
member variables added to our C# (or VB) code base, which we are not really going to use (and
this can increase the size of the final compiled application).

Also, make sure you select a location for this exported data (bear_paper.xaml) that will be
easy to find later (such as on your Windows desktop). All other options can be left to their
defaults.

When you are ready, click the Export All button, and, lo and behold, the teddy bear image
data is captured as XAML! You can close Expression Design at this point.

Creating a New Silverlight Application
Now we are ready to import this data into a WPF or Silverlight application. Again, you can pick either
project type. Here, I will create a new Silverlight application named InteractiveTeddyBear (see
Figure 2–37).

Figure 2–37. Creating a new Silverlight application with Expression Blend

Select the Silverlight UserControl in the Objects and Timeline panel, and then increase the
size of this object by a fair amount. The exact size does not matter, but I’ve set my Height and
Width properties to 800, using the Layout section of the Properties panel.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 61

Importing the Sample Data into a Blend Project
Now for the fun part! Activate the Project ➤ Add Existing Item menu option of Blend and, using
the resulting dialog box, navigate to the location of your bear_paper.xaml file (or the copy I’ve
provided in the Chapter 2 folder of your code download). Once you click the OK button, you’ll
find that this XAML file has been added to your project (which you can verify by examining the
Projects panel; see Chapter 1).

Double-click this file from the Projects panel, in order to view your image data within the
Blend IDE (be sure to click the Split view option of the artboard so you can also see the
underlying XAML; see Figure 2–38).

Figure 2–38. Our teddy bear XAML data in Expression Blend

Now, by viewing the Objects and Timeline panel of the bear_paper.xaml file, you will see
that each XAML element is present and accounted for. The goal here is to locate the left eyeball
and right inner ear of the bear and give each item a name. While you could manually hunt for
the correct objects (which would be very tedious), simply activate the Selection tool and click
these items. This will automatically highlight the correct node in the Objects and Timeline
panel. Select the left eyeball and use the Properties editor to name this object leftEye. Select a
portion of the right ear (whichever part you wish to select) and name it rightEar. Figure 2–39
shows the selected left eyeball.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 62

Figure 2–39. Locating objects via the Selection tool

Now, right-click the bear node in the Objects and Timeline panel and select the Copy menu
option (see Figure 2–40).

Figure 2–40. Copying the bear node to the clipboard

At this point you can close the bear_paper.xaml file. Switch back to the artboard for the
MainPage.xaml file, right-click the LayoutRoot object in the Objects and Timeline panel, and
paste in the clipboard content. You will now see that the bear object is located in your Grid as a
nested Canvas named bear!

■ Note You might find it more difficult than expected to resize or move the bear Canvas within the Grid. This is

because the original Expression Design sample data made use of numerous graphical layers arranged by Z-

order.

Interacting with the Bear
At this point, you can handle events for the leftEye and rightEar objects, just like you handled
events for the simple shapes in the previous example of this chapter: Select each object on the

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 63

designer in turn, activate the Events section of the Properties panel, and enter event handler
names as required. For the current example, handle the MouseLeftButtonDown event for each
object (leftEye and rightEar), specifying a unique method name each time.

Here is some simple C# code that will change the look and feel of each object once clicked
(if you don’t feel like typing all the code shown here, you could simply add a MessageBox.Show()
statement for each handler, and display a fitting message):

private void leftEye_MouseLeftButtonDown(object sender,
 System.Windows.Input.MouseButtonEventArgs e)
{
 // Change the color of the eye when clicked.
 leftEye.Fill = new SolidColorBrush(Colors.Red);
}

private void rightEar_MouseLeftButtonDown(object sender,
 System.Windows.Input.MouseButtonEventArgs e)
{
 // Blur the ear when clicked.
 System.Windows.Media.Effects.BlurEffect blur =
 new System.Windows.Media.Effects.BlurEffect();
 blur.Radius = 80;
 rightEar.Effect = blur;
}

Now, run your application (press the F5 key). Your Silverlight application will load into your web
browser. Go ahead and click the bear’s left eyeball. You will be happy to see the results, shown in
Figure 2–41.

Figure 2–41. Yikes! Poor bear…

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 64

So there you have it! You now understand the process of importing complex graphical data
created with Expression Design into an Expression Blend project, and more importantly, how to
interact with the graphical data in code.

Later in this book, you will examine how to use the animation editors of Expression Blend.
You might want to revisit this example at that time to do something even more interesting, such
as spinning the eyeball of the bear in a circle, shrinking the size of the ear, or what have you.

■ Source Code The InteractiveTeddyBear project can be found under the Chapter 2 subdirectory.

Applying 2D Graphical Transformation
Silverlight and WPF both support the ability to transform a UI element in a variety of ways. Each
API provides a number of common graphical transformations, including rotations, skews, flipping
operations, and scaling operations. Mind you, any object can be the target of a graphical
transformation. For example, you could define a complex layout of controls that can be radically
re-rendered based on user input (for example, rotate a set of controls based on mouse input).

As you work with the Blend IDE, you’ll find that transformations can be animated and
incorporated into custom templates to create some very slick visual effects. For the time being,
I’d like to walk you through a new example of how to work with the basic transformation tools
of Expression Blend.

Building the Initial UI
Begin by creating a new WPF application named Transformations (a Silverlight application
would also be fine, but I recommend creating a WPF project, as I will talk about a few options
that are not found within the Silverlight API). Now, to give you a somewhat interesting example,
the first task of this example is to define a nested layout system for the Window at hand. Again,
Chapter 4 will walk you through the details of building UIs with layout managers and controls,
so just stick it out for now.

First, split your initial grid into two rows by selecting the LayoutRoot node of the Objects
and Timeline panel and then clicking the outer blue grid editor to make a new row. The exact
size does not matter, but make the first row considerably smaller than the second. Next,
ensuring that your Grid object is still selected in the Objects and Timeline panel, locate the
StackPanel control within your Tools panel (see Figure 2–42).

Figure 2–42. The StackPanel control

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 65

Once you have selected this StackPanel, double-click the icon on the Tools panel to add
this to your Grid object and stretch it out to take up the entire space of the first row. Select your
new StackPanel in the Objects and Timeline panel. Now, locate the Button control in your Tools
panel (see Figure 2–43).

Figure 2–43. The Button control

Double-click the Button control three times. This should add three Button objects to the
nested StackPanel. Next, select all three Button controls in your Objects and Timeline panel (via a
standard Shift+click) and use the Properties panel to set a Width value of 100 (look in the Layout
section) and a bottom Margin value of 10 (also found in the Layout section; see Figure 2–44).

Figure 2–44. Configuring the Button controls

Now, select each Button one at a time (via a Selection operation) and change the Content
property (located in the Common Properties section of the Properties panel) to the values Skew,
Rotate, and Flip. As well, use the Name field of the Properties panel to given each button a
proper name, such as btnSkew, btnRotate, and btnFlip. Click the Events button (lightning bolt
icon) of the Properties panel and then handle the Click event for each Button.

■ Note Remember, you can also simply double-click in the text area for a given event to generate a default

event handler, which takes the form NameOfElement_NameOfEvent. Thus, if you handle the Click event for

btnFlip, the handler will be named btnFlip_Click.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 66

To finalize the UI, create a shape of your choosing (using any of the tools presented in this
chapter) from the Tools panel, and add it to the second row of the grid (remember, the Layout
section of the Properties panel contains properties that you can use to assign an item to a given
grid cell, but you can also drag an item into a grid cell via the mouse). Name your new UI
element myShape. Figure 2–45 shows the final layout.

Figure 2–45. Our WPF layout

■ Note Here, I am using a basic graphic as the target of our transformations to simplify the current example,

but remember, any UI element (including layout managers containing controls) can be transformed using the

techniques presented here.

Applying Transformations at Design Time
Before we add code to our event handlers, we’ll look at how to apply graphical transformations
at design time using the Blend Transform editor. Select your custom shape via a Selection
operation, and locate the Transform section of the Properties panel (see Figure 2–46).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 67

Figure 2–46. The Transform editor

Similar to the Brushes section, the Transform section provides a number of tabs to
configure various types of graphical transformation for the select item in the Objects and
Timeline panel. Table 2–1 describes each transformation option, listed in the order of
evaluating each tab from left to right.

Table 2–1. Blend Transformation Options

Transformation Option Meaning in Life

Translate Allows you to offset the location of an item on an X, Y position.

Rotate Allows you to rotate an item on a 360-degree angle.

Scale Allows you to grow or shrink an item on an X, Y position.

Skew Allows you to skew the bounding box containing the selected item on
an X, Y position.

Center Point When you rotate or flip an object, the item moves relative to a fixed
point, called the object’s center point. By default, an object’s center
point is located at the object’s center. This transformation allows you
to change an object’s center point in order to rotate or flip the object
around a different point.

Flip Flips a selected item based on an X or Y axis.

I suggest that you test each of these transformations using your custom shape as a target
(just press Ctrl+Z to undo the previous operation). Like many other aspects of the Blend
Properties panel, each transformation section has a unique set of configuration options, which
should become fairly understandable as you tinker. For example, the Skew transform editor
allows you to set the X and Y skew values using two slider controls, the Flip transform editor
allows you to flip on the X or Y axis, and so forth.

RenderTransform or LayoutTransform?
If you look at the Transform section of the Properties panel, you’ll notice that there is an
advanced settings area. If you expand this area, you will see a secondary transformation editor,
which looks more or less identical to what you have already seen. The distinction is that the
transformations in the top set are considered render transformations while the transformations
in the bottom set are considered layout transformations (see Figure 2–47).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 68

Figure 2–47. The Transform editor has two possible ways to apply a transformation.

■ Note Silverlight elements can only be transformed using the RenderTransform options. LayoutTransform

options are only valid in a WPF application.

While both transformation editors will ultimately change the way a selected item is
displayed on the screen, the difference is when the transformation is applied. The optimal way
to set a transformation is using render transformations. With this approach, transformations
are applied after an item has been rendered on the Window/UserControl, and typically offer
better performance.

As an alternative, LayoutTransform operations occur in memory during the layout process
and before any UI elements are realized on the screen. While this can hurt performance a tad,
the benefit of layout transformations is that the parent object (typically a layout manager) can
alter the transformation for child objects dynamically (possibly affecting the Z-order).

Applying Transformations in Code
The implementation of each Click event handler will be more or less the same. We will
configure a transformation object and assign it to the myShape object. Thus, when you run the
application, you can click a button to see the result of the applied transformation. Here is the
complete code for each event handler (notice I am setting the LayoutTransform property, so the
shape data remains positioned relative to the parent container):

private void btnFlip_Click(object sender,
 System.Windows.RoutedEventArgs e)
{
 myShape.LayoutTransform = new ScaleTransform(-1, 1);
}

private void btnRotate_Click(object sender,
 System.Windows.RoutedEventArgs e)
{
 myShape.LayoutTransform = new RotateTransform(180);
}

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 69

private void btnSkew_Click(object sender,
 System.Windows.RoutedEventArgs e)
{
 myShape.LayoutTransform = new SkewTransform(40, -20);
}

When you run this program (press F5), you will be able to dynamically change the layout of
the custom shape with the click of a button. So far, so good! The next section examines a much
more grandiose type of graphical transformation, that of 3D space.

■ Source Code The Transformations project can be found under the Chapter 2 subdirectory.

Applying 3D Graphical Transformation
Both of the example projects that you have created so far in this chapter have made use of 2D
graphical data. Expression Blend also defines a dedicated set of tools that allows you to create,
manipulate, and import 3D graphics. However, the way Blend handles 3D graphics will differ
quite a bit based on whether you have created a WPF application or a Silverlight application.
Recall that WPF is a technology that is limited to the Windows OS, and because of this, the API
is able to leverage OS-specific graphical services such as Microsoft DirectX. Given this, WPF is
able to support a full-fledged 3D framework. Silverlight, on the other hand, is a cross-platform,
browser-centric API. Thus, the Silverlight API is unable to support a full 3D framework, but
rather makes use of a lighterweight alternative termed perspective 3D graphics.

Because each API has different levels of 3D support, Expression Blend provides unique 3D-
centric tools for each framework. Therefore, the next example will introduce the basic ins and
outs of working with 3D graphics within the context of a WPF project. You’ll examine
Silverlight’s 3D support a bit later in this chapter.

■ Note You are free to skip over this section if you are interested exclusively in Silverlight development, but I do

hope you will at least open the sample solution for each project so that you can see the possibilities.

An Introduction to WPF 3D Graphics
Expression Blend does not have any way to generate a full-blown 3D model using integrated
drawing tools. However, it does provide ways to import a 3D object model generated through
dedicated (third party) tools. Before I describe one such tool (ZAM 3D), we will begin with an
example that illustrates how we can map a 2D image into a 3D plane, and then manipulate it on
the artboard as well as through code.

■ Note A comprehensive examination of 3D modeling is well beyond the scope of this book. If you have not

worked with 3D graphics before, the following pages will give you a very good idea about what is possible to do

using Expression Blend and WPF. If you require a deeper understanding of the topic, navigate to

www.msdn.com and search the term WPF 3D. You will find numerous links for further study.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 70

Mapping a 2D Image to a 3D Plane
Begin by creating a new WPF application named Wpf3DExample. Your next task is simple: find
an image file on your computer that you wish to map to a 3D coordinate system. Once you have
found a fitting image, open your Projects panel, right-click your project, and select the Add
Existing Item menu option. Use the resulting dialog box to navigate to your image. Once you
are done, you will see that a copy of the file has been placed into your project (see Figure 2–48;
note that if you hover over an image file, Blend gives you a small thumbnail view of the
graphical data4).

Figure 2–48. Adding an image file to your WPF project

■ Note If you add a very large image file to your project, Blend will recommend that you embed the image data

into your compiled executable. For this example, it does not matter either way.

Now, via a standard mouse drag-and-drop operation5, drag your image file node from the tree
view in the Projects panel onto your artboard. Resize the image so that it takes up
about half of the upper part of the WPF widow. Before moving on, take a peek at the
generated XAML; you see that the IDE automatically added an Image control, which has
a Source property set to a value pointing to the image data file (or, alternatively, the
location of the embedded image data):

4 The image you see here is a picture of the “CoCoLoCo.” This adult beverage packed quite the punch. Once
you finish this project and rotate the image in a 3D plane, you will have a good idea of how I felt after I
finished drinking it.

5 The Silverlight Image control only supports JPEG or PNG file formats.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 71

<Image Height="481" Margin="79.215,0,-284.215,-464"
 Source="pack://siteoforigin:,,,/CoCoLoCo.tif"
 Stretch="Fill" VerticalAlignment="Bottom"/>

■ Note The odd value assigned to the Source property is a special syntax used to locate an embedded image

resource. If the image data was not embedded into the executable, you would simply see

Source="CoCoLoCo.tif".

Select the Image control in the Objects and Timeline panel, and then activate the Tools ➤
Make 3D Image menu option of the Blend IDE. Although there will not appear to be any
changes on the designer itself, if you look at the generated XAML, you will find that your once
simple Image control has been completely transformed into a rather complex Viewport3D object,
part of which is a new ImageBrush object that was constructed based on the initial image file.
Here is a breakdown of the core items.

The Elements of Viewport3D
The amount of XAML to represent a Viewport3D object is quite large, so I won’t show it here.
However, if you examine the Objects and Timeline panel, you can see that this Viewport3D
object consists of four subelements, specifically Camera, ModelContainer, AmbientContainer, and
DirectionalContainer. Expand the Camera node, select the [PerspectiveCamera] subnode, and
use the Properties panel to name this object my3DCamera. Figure 2–49 shows the result of the
renaming operation (with all subnodes selected).

Figure 2–49. The Viewport3D element enables 3D mapping of data.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 72

Each aspect of the Viewport3D object allows you to control various aspects of how the data
will be rendered in 3D space (location, lighting, etc.). You’ll be introduced to each aspect over
the next few pages. Table 2–2 provides a quick breakdown of each component to get you
started.

Table 2–2. Viewport3D Subelements

Viewport3D Subelement Meaning in Life

Camera Provides a way to control the location of the camera’s viewing
location, as well as the location point of the image being viewed

ModelContainer Shows the raw 3D model that is being used to display the 3D view
port

AmbientContainer Allows you to add, remove, and manage “materials” that control how
the 3D viewport will render lighting effects on the front and back of
the image

DirectionalContainer Allows you to add, remove, and manage additional “materials” that
control the direction of an external light source projected on your 3D
image

Transforming the 3D Viewport with the Camera Orbit Tool
Once you select your Viewport3D object in the Objects and Timeline panel, you can activate the
Camera Orbit tool on the Tools panel (see Figure 2–50).

Figure 2–50. The Camera Orbit tool allows you to transform a 3D viewport via the mouse.

Once you click this tool, you can place your mouse cursor over any selected Viewport3D
object and change the X, Y, and Z axes for the item in question (just click and hold the left
mouse button while you move your mouse cursor; see Figure 2–51).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 73

Figure 2–51. Changing a 3D viewport via the Camera Orbit tool

Changing Camera Settings Using the Properties Panel
Using the Camera Orbit tool is useful when you want to quickly transform data in a 3D space
using rough measurements. If you require a higher level of precision, you can use the Camera
section of the Properties panel. To locate the Camera section, you must first select the Camera
node of a Viewport3D node using your Objects and Timeline panel (remember, we named this
object my3DCamera). Once you select this item, the Camera section presents itself in the
Properties panel (see Figure 2–52).

Figure 2–52. The Camera section of the Properties panel

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 74

As you play around with these settings, you’ll see that you can change the same general
settings that you can change using the Camera Orbit tool (viewport location, camera location,
and look direction). As well, this editor allows you to pick between two types of cameras,
specifically a perspective camera or an orthographic camera.

By default, the camera for a new Viewport3D object will be a perspective camera, which
works just like a normal camera you would use to take pictures: as the object gets farther from
the camera, it appears smaller and smaller. Your other choice, the orthographic camera, will not
render view port data at a smaller scale as the camera moves farther away from the object. This
can be useful if you want to transform an image on a 3D space while retaining the general
height and width of the original viewing area.

■ Note To see the differences between these two camera choices, toggle between your options and use the

Camera Orbit tool at design time. This will clearly illustrate what the printed page cannot!

There are some other settings in the Camera editor that you might want to explore at your
leisure (controlling the field of view of a perspective camera, controlling clipping locations,
etc.), but I won’t cover them here. Do know, however, that the remaining settings will change
based on your selected camera type.

Changing the 3D Viewport Using the Artboard Tools
In addition to the Camera Orbit tool and the Camera editor, you can also activate a 3D
positioning tool directly on the artboard. To activate this tool, locate and select the Model node
under the ModelContainer node (see Figure 2–53).

Figure 2–53. The ModelContainer node allows you to activate the artboard 3D editor.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 75

At this point, you will see the 3D location tool appear on the artboard. Using the mouse,
you can freely rotate the view port on an X, Y, or Z axis using the various grab handles. To get a
rotation, grab hold of the red, green, or blue arcs (representing rotations around each axis; see
Figure 2–54).

Figure 2–54. Changing the view port via the artboard

Changing 3D Lighting Effects Using the Light Editors
The final components of the Viewport3D node (AmbientContainer and DirectionalContainer)
allow you to control how your view port will render itself based on various lighting effects. The
role of ambient light is to cast light on the view port as if it is coming from all directions; it can
be used to light all parts of objects evenly. If you select the current Ambient node via the Objects
and Timeline panel (see Figure 2–55), a Light section will open on the Properties panel. By
default, the ambient light is a neutral gray, but you can change this via the built-in color editor,
as shown in Figure 2–56.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 76

Figure 2–55. Ambient lighting is applied in a uniform manner.

Figure 2–56. Changing ambient light settings

If you select the Directional subnode in the DirectionalContainer node (also visible in
Figure 2–55), you can change the location of the light source. Notice in Figure 2–57 that the
Direction settings can be changed collectively by clicking the “directional icon” and dragging
your mouse cursor.

Figure 2–57. Changing the light location

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 77

That wraps up your introductory look at the general ways to configure a 3D view port using
Expression Blend. To complete this current example, let’s add a bit of code to control the
camera.

Controlling the Camera in Code
In the code download for this book, you can open the provided Wpf3DExample project into
Blend to save yourself some time (and possibly confusion) since we really have not talked about
manipulating controls in the Blend IDE (but we will, starting in the next chapter). Essentially,
I’ve added three Slider controls (and a few descriptive Label controls) to the main Window,
which allow the user to change the X, Y, and Z positions of the camera location.

■ Note Be sure to view the XAML definitions for each Slider control in the solution code to see some valid

minimum and maximum ranges for each axis.

Within the C# code file, I’ve defined three private member variables named xVal, yVal, and
zVal, all of type double. As well, I’ve handled the ValueChanged event of each Slider control.
Within the event handlers, I simply update the correct X, Y, or Z value and call a private helper
function named ChangeCamera(). For example:

private void sliderXChange_ValueChanged(object sender,
 System.Windows.RoutedPropertyChangedEventArgs<double> e)
{
 // Change the X look direction.
 xVal = e.NewValue;
 ChangeCamera();
}

The ChangeCamera() method sets the Position and LookDirection properties of the
perspective camera object, which I suggested you name my3DCamera:

private void ChangeCamera()
{
 this.my3DCamera.Position = new
 System.Windows.Media.Media3D.Point3D(-xVal, -yVal, -zVal);
 this.my3DCamera.LookDirection = new
 System.Windows.Media.Media3D.Vector3D(xVal, yVal, zVal);
}

If you run the sample code, you will find that my image of the CoCoLoCo drink (yikes!)
spins and twirls as you move each slider. Figure 2–58 shows the final application in action.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 78

Figure 2–58. Driving the camera in code!

A Brief Word on ZAM 3D
The ability to map 2D images into a 3D space is really quite impressive. However, the
techniques we have seen so far cannot be considered “true” 3D, in that the 2D image data does
not have full 3D renderings. For example, you may have noticed that the image data does not
show a full rotation of the image as you flip to the “back side” when you flip the camera a full
180 degrees.

As mentioned, Expression Blend does not have any internal support to build full-blown 3D
models. Fortunately, other, third-party tools do provide such functionality. One popular tool is
named ZAM 3D.6 This product allows you to create full-blown 3D graphics, apply numerous
effects to the graphical data, and export it as XAML. This XAML (as you would guess) can then
be imported into a WPF Blend application, after which you can use the same 3D tools we have
just examined to manipulate the image at design time and drive it through code. Figure 2–59
shows a simple 3D ring created with ZAM 3D and imported into a new WPF Blend application.

6 You can download an evaluation copy of ZAM 3D from http://www.erain.com.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 79

Figure 2–59. Blend can manipulate full 3D object models (it just cannot create them).

I won’t be examining how to use ZAM 3D here (that would require a dedicated book!). But
if you are interested in learning more, again, I encourage you to download the free trial edition
of the tool and take a look.

■ Source Code The Wpf3DExample project can be found under the Chapter 2 subdirectory.

An Introduction to Silverlight 3D Graphics
The Silverlight API also has support for manipulation of 3D data, and produces very similar
results as those found in our WPF example where we mapped a 2D image to a 3D plane.
However, Silverlight does not currently offer full-blown 3D support (as WPF does), but rather
opts for a more lightweight 3D perspective framework.7

Specifically, rather than working with Viewport3D elements and the assorted camera and
lighting objects, any Silverlight object that derives from the UIElement base class can change its
X, Y, and Z positioning via the Projection property. This property may be set to a
PlaneProjection object, which is a very lightweight version of Viewport3D. In its simplest form,
the PlaneProjection object can be configured with RotationX, RotationY, and RotationZ
properties. It is also possible to control the center point of the rotation (via CenterOfRotationX,
CenterOfRotationY, and CenterOfRotationZ properties) as well as global and local offsets.

As you would hope, the Blend IDE provides an editor in the Properties panel that will fully
configure a PlaneProjection object and connect it to a UIElement. To illustrate, open the

7 This is not to say that Silverlight cannot be used to build very exotic 3D renderings. If you want to see what
can be done, be sure to open the Zune3D sample project that ships with Blend 4. However, be aware that
much of the functionality of this example is driven by a considerable amount of code, not XAML, and
therefore is a bit out of scope for this book.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 80

Silverlight3DExample project located in the Chapter 2 subdirectory of this book’s
downloadable code. As you might suspect, this project moves the CoCoLoCo adult beverage
image to the Web. Because of some differences between the WPF and Silverlight APIs, the
image data has been saved to a *.png file, as the Silverlight Image control only supports JPEG
and PNG file formats. Beyond that, the layout of the UserControl mimics what we created in the
WPF version of this project.

If you select the Image control on the artboard, you will see that the Transform section of
the Properties panel supports a Projection subsection (see Figure 2–60). This area can be used
to set the Projection property of any selected item on the artboard.

Figure 2–60. In Silverlight, the Projection editor is used to map 2D data to a 3D plane.

Like other range-centric controls of the Properties panel, you can use your mouse to adjust
the values for the X, Y, and Z projection settings (just click and hold on a range control and
move your mouse). Again, rather than seeing a Viewport3D, you will see XAML such as the
following:

<Image x:Name="imgCoCoLoCo" Margin="162,18,162,185"
 Source="/CoCoLoCo.png" Stretch="Fill">
 <Image.Projection>
 <PlaneProjection RotationX="46"
 RotationY="12" RotationZ="-29"/>
 </Image.Projection>
</Image

Driving a Projection in Code
The code representing this Silverlight UserControl is somewhat similar to the previous WPF
example. We are still defining three double member variables to represent the current X, Y, and
Z values controlled by the Slider objects, and each ValueChanged event handler is still calling
the ChangeCamera() helper function. This time, however, the implementation configures a
PlaneProjection object and sets the Projection property of the Image control (imgCoCoLoCo):

private void ChangeCamera()
{
 PlaneProjection pp = new PlaneProjection();
 pp.RotationX = xVal;
 pp.RotationY = yVal;
 pp.RotationZ = zVal;

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 81

 if(imgCoCoLoCo != null)
 this.imgCoCoLoCo.Projection = pp;
}

If you run this project within the Blend IDE, you’ll once again be able to spin and rotate the
image data, this time from a hosting web browser.

■ Source Code The Silverlight3DExample project can be found under the Chapter 2 subdirectory.

The Role of Object Resources
To wrap up your look at the graphical capabilities of Expression Blend, I’ll close this chapter
with our first look at the role of object resources. When you are using Blend to generate visual
assets (custom brushes, styles, control templates, etc.), you are bound to run into a situation
where you want to reuse a particular item. Say, for example, you have created “the perfect
gradient brush,” which took a good amount of tinkering time. It would be quite painful if you
needed to re-create the same actions on the Brushes editor to generate the XAML once again.
Worse, you might decide that you need a brush you created a few weeks back, and have
forgotten exactly how you manipulated the Brushes editor in the first place. True, you could
copy and paste the markup between projects, but this is cumbersome at best.

Thankfully, both WPF and Silverlight support the concept of an object resource, also known
simply as a resource. Essentially, a resource is a named blob of XAML that is stored in your
current project. When UI elements want to refer to this named blob, they can select it by this
assigned name. Expression Blend has a number of tools that allow you to define, manage, and
reuse resources. In this example, I’ll show you how to manage a custom brush object; you’ll see
other types of resources (styles, etc.) in upcoming chapters. The good news is that regardless of
the type of resource, Blend provides a consistent designer experience.

Creating Resources in Blend
To keep things as modular as possible, let’s create a new WPF application named
BlendResources (however, you could use any of this chapter’s examples as a starting point).
Render a geometric shape on your current artboard via the Pencil tool, and set the Fill
property to a custom, complex, gradient brush of your choosing. Once you are done, look to the
right of the Fill property (or any of the brush-centric properties) in the Brushes editor. You’ll
notice a small square icon, which, as you might recall from Chapter 1, is the Advanced options
button and provides some advanced settings when clicked. Once you click this button, you will
see a menu option named Convert to New Resource (see Figure 2–61).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 82

Figure 2–61. Extracting a Brush resource

When you select this option, you will be presented with a dialog box asking you for a few
important bits of input. First and foremost, you need to give your object resource a fitting
name, which I’ll assume is myBrush. Next, you need to specify a location for the resource to
reside. You have three choices, which are described in Table 2–3.

Table 2–3. Blend Resource Location Options

Resource Location Meaning in Life

Application The resources will be moved into the App.xaml file of your project. This
will allow any part of a WPF or Silverlight project to use the resource.

This document The resource can be reused within the current WPF Window/Silverlight
UserControl, but nowhere else. This can be helpful if you have a
complex layout system (using nested layout managers) and want all
subcomponents to use a given object resource.

Resource Dictionary This allows you to create a new XAML file, termed a resource dictionary,
that contains nothing but object resources. This is a great choice when
you are building resources to be used across projects, as new Blend
projects can simply add the XAML file.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 83

For this example, we will package up myBrush in a new resource dictionary named
MyResources.xaml. Click the New button to generate this file. Figure 2–62 shows the final
settings for the current resource extraction.

Figure 2–62. Creating a new resource dictionary with Blend

Once you are done, you’ll see that your new XAML file has been added to the project, and
that your App.xaml file has been modified to merge in the external file resources. Verify each of
these points using the Projects panel. Also, if you examine the markup of the shape that used to
contain the custom brush, you will now see that an XAML markup extension is used to refer to
the resource by name. For example:8

<Path ... Fill="{DynamicResource myBrush}"/>

Managing Existing Resources
Once a resource has been extracted, you have a few ways to modify it after the fact. Because our
resource happens to be a brush, you can go to the final tab of the Brushes editor (Brush
Resources) to see all brush-based object resources in your project. If you click any resource
icon, you will open a corresponding brush editor to change the resource at design time (see
Figure 2–63).

8 In WPF Blend projects, the {DynamicResource} markup extension is used by default. This ensures that if the
resource changes in code, all UI elements using the resource are automatically updated. However,
Silverlight projects use the {StaticResource} markup extension (which is also supported in WPF), which
does not automatically reapply runtime changes.

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 84

Figure 2–63. Modifying an existing resource

The second way to view and modify resources in your application is to use the Resources
panel, which you should find on the right side of the Blend IDE, next to the Properties panel.
The usefulness of this panel is that you not only see each resource by name, but can also see the
location in which it has been stored (in a Window, in a resource dictionary, and so forth). As
before, you can select a resource for editing (see Figure 2–64).

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 85

Figure 2–64. The Resources panel

Applying Resources to New UI Elements
The last point to be made for now about object resources is that when you want to reuse a given
item, you can simply pick the named resource using the appropriate editor. Again, since this
example is using a brush-based resource, you can simply pick myBrush from the Brushes editor
when setting a brush-centric property. If you were to add a new UI element to your artboard
(for example, a Button control), you could switch to the Brush Resources tab of the Brushes
editor. Figure 2–65 shows how to set the Background property of a Button control to use our
custom brush object.

Figure 2–65. Applying an existing resource

CHAPTER 2 ■ VECTOR GRAPHICS AND OBJECT RESOURCES

 86

That wraps up our exploration of how the Blend IDE can be used to work with vector
graphics and object resources. You’ll certainly see other tricks for manipulating graphical data
in chapters to come, but you now should feel much more confident with the basics. Moreover,
upcoming chapters will illustrate additional ways to capture object resources for further reuse;
but at this point you are in good shape.

■ Source Code The BlendResources project can be found under the Chapter 2 subdirectory.

Summary
The point of this chapter was to examine a number of techniques supported by Expression
Blend to help you create and manage vector-based graphics. We began by examining several
core drawing tools (Pen, Pencil, etc.) as well as the Shapes section of the Assets library. As you
have seen, the colors used to draw borders and interiors of these geometric shapes can be
customized using the integrated Brushes editor and various visual effects. You also were shown
how complex, vector-based art can be generated using Expression Design, exported as XAML,
and imported into a Blend project.

We then examined a number of tools used to apply 2D and 3D transformations to UI
elements. Both WPF and Silverlight projects use the same editors when applying 2D
transformations such as flipping, rotating, and skewing data. However, 3D transformations
differ quite a bit between these two APIs. WPF provides a comprehensive 3D programming
model that enables you to manipulate cameras, lighting, and additional layers (which we did
not directly examine here). Silverlight provides plane projections to provide a similar (but more
lightweight) visual effect.

The chapter wrapped up with your first look at object resources. Remember that Blend
provides a number of tools that allow you to easily reuse, modify, and apply graphical assets.
You’ll see additional examples of extracting graphical assets in chapters to come.

 87

C H A P T E R 3
■ ■ ■

The Animation Editor

In this chapter, you will learn about the animation tools of Expression Blend. If you have ever
tried to author an animation sequence in XAML manually using Visual Studio, you know how
cumbersome the process can be.1 Thankfully, Blend ships with a very sophisticated animation
editor that allows you to easily capture object state changes using a simple timeline metaphor.
As you work through this chapter, you will see that animations are represented via storyboards
that contain individual keyframes. Each keyframe is responsible for changing the value of a
specified target property on a target object.

Once you understand how to use the core animation tools, you will then be exposed to the
role of animation easing effects. In a nutshell, easing effects make it easy to integrate physics
into an animation, including bouncing, snapping, and elastic effects. On a related note, Blend
provides the KeySpline editor, which allows you more precision when changing interpolation
values (a.k.a. speed effects) when a given keyframe is approached or exited.

You’ll wrap up the chapter by previewing a topic explored in more detail in Chapter 4,
specifically the role of behaviors. Here, you will learn about the ControlStoryboardAction
behavior, which allows you to interact with a storyboard entirely in markup.

Defining the Role of Animation Services
In Chapter 2, I opened by commenting on the fact that understanding how to work with
graphics is a key aspect of WPF and Silverlight development (even if you don’t think this will be
the case). In a similar manner, I’d like to point out the fact that animation services are also
going to be very important when building real-world, production-level WPF/Silverlight
applications. Despite what you may be thinking, use of animation services in no way ties you to
the act of building a video game or rich multimedia application (although animation services
obviously will be helpful in these cases).

In the world of WPF and Silverlight, an “animation” is nothing more than changing the
value of an object property over a period of time. For example, if you wanted to have a control
change its background color from bright green to dark green over five seconds, you could use a
brush animation. Likewise, if you wanted to have a custom graphic orbit around a fixed
geometric line, you could use a path animation. As you work through this chapter (and other
chapters of the book), you will discover that just about any property you see in the Blend
Properties panel can be the target of animation services.

1 If you have ever attempted to build animations using other frameworks, you will be amazed at how simple
building animations is via WPF and Silverlight. The need to manually create threads, erase and redraw
images, create offscreen buffers, and calculate “dirty rectangles” no longer exists in a great number of cases.

CHAPTER 3 ■ THE ANIMATION EDITOR

 88

The Scope of Animation Services
Animations, much like graphics, will pop up in some unexpected places. As you will see in
Chapter 5, one of the most common uses of animations is to incorporate visual cues into a
custom style or control template. For example, using animations, you can easily define how a
custom control should look when the mouse enters, leaves, or clicks its surface. You could
define additional animations that control how the control looks when it receives focus, loses
focus, or whatnot.

Animations can also be used to cleanly and smoothly transition between values. By way of
another example, you might be building a WPF Window, and use an animation to rotate a layout
manager (with all contained controls) into a 3D plane. You could add a “page flip” animation to
a Silverlight project to provide the illusion of turning pages of a book when viewing photos. And
if you do happen to be building a video game, animations can be used to move walls of a maze,
flash “Game Over” on the screen, and so forth. To be sure, the use of animation services is
commonplace in WPF and Silverlight projects, and the Blend IDE makes capturing such visual
effects very simple.

The Blend Animation Workspace
In Chapter 1, you learned about the Objects and Timeline panel, which allows you to select an
object on the artboard for editing. As it turns out, this same panel is the entry point for the
Blend animation editor. To begin learning how to create animations using the Blend IDE, let’s
create a new Silverlight application project2 named SimpleBlendAnimations.

The first step in creating an animation with Blend is to pick the object (or objects) that will
be the target of the animation logic. Currently, our new Silverlight application consists of only a
Grid named LayoutRoot and the UserControl itself. While we could animate aspects of these
objects, let’s get a bit more granular and add a new object onto the artboard. You are free to add
any type of object you wish (a Button, a Rectangle, a custom path created with the Pen or Pencil
tool, etc.), but for this example, I’ll assume you have created a simple Ellipse object (named
myCircle) that has the Fill property set to a solid color of your choice (see Chapter 2 for details
on working with the Blend Brushes editor).

When you are using the animation tools of Blend, you will most likely want to change to the
Animation workspace layout, which you can activate via the Window ➤ Workspaces menu
option or via the F6 key. Press the F6 key now. You should see that the IDE rearranges a number
of panels such that the Objects and Timeline panel is now positioned along the bottom of the
IDE (see Figure 3–1).

2 The WPF API supports some additional animation features that Silverlight does not support. The
techniques shown in this first example work identically regardless of which API you are using.

CHAPTER 3 ■ THE ANIMATION EDITOR

 89

Figure 3–1. The Animation workspace layout

■ Note The F6 key allows you to toggle between the standard Design workspace and the Animation

workspace.

Creating a New Storyboard
WPF and Silverlight animations are captured in XAML using a storyboard. Thus, when you wish
to create a new animation sequence, you begin by creating a new storyboard using the Objects
and Timeline panel. To do so, click the “New” button (which looks like a plus sign), as shown in
Figure 3–2 (at this point, it does not matter which object is selected in the objects tree).

Figure 3–2. Creating a new storyboard

CHAPTER 3 ■ THE ANIMATION EDITOR

 90

As soon as you click this button, you will be prompted to give your storyboard a unique
name, which I will assume is AnimateCircle for this example (see Figure 3–3). Be aware that the
name you give your storyboard is important, as you will use this name to control the animation
in code, as well as via XAML.

Figure 3–3. Naming a storyboard

Also be aware that Blend will store your new animation storyboard as a resource (see
Chapter 2) within the current Silverlight UserControl or WPF Window. Thus, if you open the
XAML viewer of the artboard, you will see the markup shown in Figure 3–4.

Figure 3–4. Storyboards are stored as document-level resources.

■ Note Unlike a typical object resource (see Chapter 2), storyboards are tightly coupled to the object they are

animating. Therefore, it makes no sense to create an application-level storyboard. If you need to reuse an

animation sequence, typically you will package up your storyboards in a dedicated custom style, template, or

UserControl, and then reuse the contained animations. You’ll learn about these topics in Chapter 5.

Managing Existing Storyboards
Once you create a new storyboard object (such as AnimateCircle), you will find it listed in the
drop-down list mounted at the top of the Objects and Timeline panel. Given that it is not
uncommon for a single Window or UserControl to have a good number of storyboards (each
responsible for animating various objects), always remember that you can select a specific
storyboard for editing by using this aspect of the Objects and Timeline panel.

CHAPTER 3 ■ THE ANIMATION EDITOR

 91

On a related note, also know that you can search for a storyboard by name, using the
Search option (just like you can do with the Assets library and Properties panel) of the same
“open a storyboard” drop-down list box. See Figure 3–5.

Figure 3–5. Individual storyboards can be selected via the drop-down list box.

On a final introductory note, you can easily rename, copy, or delete a storyboard by right-
clicking the currently selected storyboard and using the resulting context menu, as shown in
Figure 3–6 (note the Reverse option, which will flip-flop the keyframes in an animation—very
useful!).

Figure 3–6. You can manage existing storyboards using the Objects and Timeline panel.

Adding Keyframes
Once you have created a new storyboard (or selected an existing storyboard for editing), you are
ready to add any number of keyframes to the timeline editor. If you examine the current
timeline editor, you will see a yellow line on the zero-second marker. This yellow line represents
the current location of time within a given storyboard. Directly above this yellow line, you will
see an icon which (at least to me) looks like a gray egg with a plus sign to its right. In reality, this
is not an “Add an egg” button, but the Record Keyframe button, which, when clicked, adds a
new keyframe to the current time location.

When you add a keyframe, you will want to be mindful of the object currently selected in
the Objects and Timeline panel. The reason is that it is possible for a single storyboard to
control animations for a set of objects on the artboard, and therefore you can have multiple

CHAPTER 3 ■ THE ANIMATION EDITOR

 92

keyframes on the same unit of time. For this example, make sure you select your Ellipse, and
click the Record Keyframe button to add a new keyframe at the zero-second marker. Figure 3–7
shows the end result.

Figure 3–7. Adding keyframes to your timeline

Once you have added a keyframe, you’ll notice that the artboard is now surrounded by a
red border. At the upper left of the artboard, you’ll also notice a small control has appeared that
allows you to toggle on or off the recording of an animation sequence (see Figure 3–8).

Figure 3–8. You can toggle animation recordings on or off using the artboard.

■ Note Individual keyframes can be relocated on the timeline editor using standard mouse drag operations.

Thus, if you added a keyframe at the three-second marker, but would rather it be at the six-second marker, you

can easily move the keyframe. Also note you can delete (or copy) a keyframe via a standard right-click mouse

operation.

Capturing Object Property Changes
Once you have added the first keyframe (which, by the way, does not need to be at time slice
zero; the first keyframe could be at any position of time based on what you are attempting to

CHAPTER 3 ■ THE ANIMATION EDITOR

 93

do), you will then need to add at least one additional keyframe that collectively captures a
segment of time in which a given animation will take place. To advance the timeline, you can
either click the little triangular “hat” at the top of the yellow timeline marker and drag it via the
mouse, or click directly on the timeline editor at a given location of time using the mouse. Using
whichever technique you wish, add a second keyframe at the two-second marker (i.e., click that
gray egg icon again), as shown in Figure 3–9.

Figure 3–9. Defining a two-second time slice

Now for the interesting part. Ensure that you have selected your Ellipse on the artboard,
and use the Properties panel and artboard to make a few state changes. By way of a few
suggestions, you might want to select the Ellipse and move it to a new location on the artboard
(you’ll see a small dashed line appear showing you the distance of the object movement). You
might also want to change the Fill property of the Ellipse to a new color via the Brushes editor
or change the Height and Width properties via the Layout section of the Properties panel. Go
ahead and make three or four changes to your Ellipse. Figure 3–10 shows how my circle looks
once the two-second marker has been reached.

Figure 3–10. My Ellipse at the two-second marker (your circle will likely differ!)

CHAPTER 3 ■ THE ANIMATION EDITOR

 94

Testing Your Animation
At this point, you can test your animation by clicking the Play button of the timeline tool area
(see Figure 3–11). You will see that your circle changes from its first state to its final state in a
smooth manner over the course of two seconds.

Figure 3–11. Use the Play button to test your storyboard.

Much like a digital media player, these tools allow you to step between the previous and
next frames on the animation and advance to the first or last frame of the storyboard. Take a
minute to play with these options, and be aware that you can also move to unique positions in
the storyboard by moving the yellow timeline via its “hat” or simply by clicking directly on the
timeline editor.

Viewing the Animation Markup
Before moving on, be sure to take a moment to view the underlying XAML that was generated
by the Blend IDE. As you can see, your <Storyboard> element has been populated with a
number of new subelements that control how the Ellipse object will be animated. I won’t dive
into all the particulars, but you can see that a given animation object (such as
ColorAnimationUsingKeyFrames) knows which property on which object to change via the
TargetProperty and TargetName properties, and knows at which time to apply the changes via
the KeyTime property:

<ColorAnimationUsingKeyFrames
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 Storyboard.TargetName="myCircle">
 <EasingColorKeyFrame KeyTime="0" Value="#FF1010F1"/>
 <EasingColorKeyFrame KeyTime="0:0:2" Value="#FFF110DE"/>
</ColorAnimationUsingKeyFrames>

Configuring Storyboard Properties
If you select a storyboard object from the Objects and Timeline panel, via the drop-down list
box (see Figure 3–5 for a reminder of where this is located), you will be able to configure the
storyboard itself via the Properties panel.3 In Figure 3–12, you’ll notice that a storyboard can be

3 It is also possible to configure individual keyframes. You’ll learn how to do so later in this chapter when we
examine the role of animation easing effects.

CHAPTER 3 ■ THE ANIMATION EDITOR

 95

configured with auto-reverse behaviors. If you were to check this AutoReverse check box, your
total animation would now take four seconds, which is two seconds in each direction.

Figure 3–12. Enabling auto-reverse behaviors on a storyboard

Also note that you can configure a repeat behavior, the setting for which provides four
preset options (1x, 2x, 3x, and Forever, where “x” stand for “times”). You are free to enter any
possible number of iterations, however! Simply type in the number of times you would like the
animation to repeat followed by the letter x. Thus, if you wanted to perform the animation five
times, you would enter 5x into the RepeatBehavior property text area.

You can also enter into the RepeatBehavior property text area a numerical value that
specifies an amount of time the animation should perform, rather than the number of full
iterations. If you want to specify a unit of time, you enter a value that breaks down to the
following general format (note the use of dot and colon separators):

days.hours:minutes:seconds.fractionalSeconds

Specifying a value for days or fractionalSeconds is optional. In many cases, you will
typically create a value that uses the following general template:

hours:minutes:seconds

For example, if you wanted your animation to run for 15 seconds and then stop completely
(regardless of whether the animation has cycled through all keyframes), you would enter the
value 00:00:15 into the RepeatBehavior property text area, as shown in Figure 3–13.

Figure 3–13. Specifying a unit of time for an animation to cycle

CHAPTER 3 ■ THE ANIMATION EDITOR

 96

Zooming the Timeline Editor
Before we look at some ways to interact with our storyboards in code, I should point out one
other detail of the Blend animation editor. On the extreme lower left of the animation editor,
you will see a timeline zoom editor (set to 100% by default). By default, the timeline editor
shows you values that correspond to individual seconds. If you need to get more granular and
place keyframes on a smaller unit of measurement (fractions of a second) or a more granular
amount of time, you can change this value as required. In Figure 3–14, I’ve set my timeline
zoom scale to 750%, where I can break things down to fractions of a second.

Figure 3–14. Zooming in on the units of time

■ Note Reenter the value 100% into the timeline zoom editor to return to the default view (one second at a

time).

Interacting with Storyboards in Code
When you use Blend to build an animation and you do so within a Silverlight application, the
IDE will not automatically add any logic to start your storyboard when your application runs. In
stark contrast, a WPF application will automatically run storyboard animations when the main
window loads into memory (this, of course, can be changed after the fact). You’ll examine how
to change this default WPF behavior a bit later in this chapter; for the current example, let’s see
how we can start our animation via code (you’ll see how to control a storyboard in markup later
in the chapter when we examine the ControlStoryboardAction behavior object).

First of all, we need to decide what user action will start the animation. This action could be
clicking a button, accessing a menu option, clicking the circle itself, pressing a keyboard key, or
entering any other sort of input you specify. For our purposes, let’s assume that the animation
will start if the user clicks a Button control. Using the Tools panel, locate the Button control
object (don’t forget, you can also search for controls in the Assets library/Assets panel).

■ Note You can change the text of a selected Button by setting the Content property located in the Common

Properties section of the Properties panel.

CHAPTER 3 ■ THE ANIMATION EDITOR

 97

Once you have added a Button to your artboard, name your UI element btnStartAnimation
using the Properties panel. Next, also using the Properties panel, click the Events button4 and
locate the Click event for the selected Button. Once you do, double-click the text area to the
right of the Click event name. At this point, you will find the following empty event handler:

private void btnStartAnimation_Click(object sender,
 System.Windows.RoutedEventArgs e)
{
 // TODO: Add event handler implementation here.
}

Recall that the Blend IDE will automatically store storyboard elements as an object
resource, located in the resource dictionary of the related WPF Window or Silverlight
UserControl. Given this point, your first coding task is to find your storyboard object from your
resource collection (via the key name you defined when you first created your storyboard;
AnimateCircle if you were following my suggestion). Once you find this object, simply call the
Begin() method. Here is the completed code5:

private void btnStartAnimation_Click(object sender,
 System.Windows.RoutedEventArgs e)
{
 Storyboard animCircle;
 animCircle = (Storyboard)this.Resources["AnimateCircle"];
 animCircle.Begin();
}

With this, you can run your application, click the Button, and see your animation execute!

Further Details of the Storyboard Class
As you would guess, the Storyboard class defines much more functionality than a single Begin()
method. For example, this class provides Pause() and Stop() methods, as well as a number of
properties to control the same sort of repeating and auto-reverse settings we examined via the
Properties panel. If you are interested in seeing the full details of the Storyboard class, consult
the .NET Framework 4.0 SDK/Silverlight SDK documentation.

■ Note The solution code for this example includes a few additional button objects that further control the

storyboard. I’m sure you’ll find that the code is very straightforward.

Sweet! This wraps up our first look at working with animations in the Blend IDE. There are
still a number of interesting topics yet to explore, so once you feel comfortable with the basic
tools you have examined thus far, move on to the next part of the chapter.

4 Chapter 2 illustrated the process of handing events for a given object using the Properties panel (recall the
“lightning bolt” button?).

5 The code file that uses the Storyboard class will need to import the System.Windows.Media.Animation
namespace (which will typically already be added by the IDE).

CHAPTER 3 ■ THE ANIMATION EDITOR

 98

■ Source Code The SimpleBlendAnimations project can be found under the Chapter 3 subdirectory.

WPF-Specific Animation Techniques
The Windows Presentation Foundation API supports a few useful animation techniques that
the current version of Silverlight (unfortunately) does not support. The first of these techniques
is the use of motion paths, which allow you to easily move UI elements around a Path object
created with the Pen or Pencil tool. While it is certainly possible to achieve the same end result
in a Silverlight application, it does require a bit more elbow grease.

The second WPF-specific animation technique is the use of triggers to interact with a
storyboard. In WPF, a trigger represents once possible way to respond to an event condition in
XAML. For example, using triggers, it is possible to author markup that is on the lookout for
various mouse events (mouse over, mouse down, mouse up, etc.), focus events, keyboard
events, and so on. You can author additional markup that will start a particular storyboard
when these events occur. As you may know, WPF’s trigger framework was the original way in
which a developer could incorporate visual cues into custom templates (to redefine the UI for
controls and shapes).

While Silverlight has very limited support for triggers, the same general spirit comes
through via use of the Visual State Manager (VSM). In fact, the VSM was so well received by the
programming community that WPF has incorporated its own VSM into the API as of .NET 4.0.
Given this, a WPF developer now has two choices when incorporating visual cues into custom
templates (triggers or the VSM). You will learn about how to use triggers and the VSM to build
custom templates in Chapter 5. Until then, we will focus on triggers as a way to control
independent storyboard objects, but first, let’s check out the role of WPF motion paths.

■ Note As shown at the conclusion of this chapter, the ControlStoryboardAction behavior object also

makes it possible to manipulate animations in markup using WPF or Silverlight.

Working with WPF Motion Paths
Blend provides the very useful ability to automatically generate a WPF storyboard that will
move a selected object around a predefined path. You could use motion paths to easily move a
custom graphic along the peaks of a line chart (showing company profits, hopefully, rather than
losses), or perhaps move an Image control containing an automobile icon that moves along the
calculated path for a GPS software application.

Creating a motion path is very easy when using Blend. To illustrate, create a new WPF
application project named WPFMotionPathApp. Now, just like when you are building a custom
storyboard object, your first task is to establish the objects you wish to travel across the path.
Any object can be used to move across a motion path, so I suggest creating a few different UI
elements, such as one Ellipse, one Button, and one Rectangle. Go ahead and create three UI
elements of your choice and place them anywhere on the artboard. Also, make sure to give each
of your objects a fitting name using the Name property text area of the Properties panel (I’ve
called my objects circleOne, btnClickMe, and myRect).

Once you have defined a set of objects that will be the target of the path animations, you
next need to make the paths. You can use any of the Shape controls of the Assets library, or

CHAPTER 3 ■ THE ANIMATION EDITOR

 99

make some arbitrary geometric paths using the Pen and Pencil tools. Create three unique
geometric shapes on your artboard (again, be creative…location, size, and dimension really do
not matter). To keep your artboard orderly, however, be sure you give each path a fitting name
(I’ve picked the names myStar, myPolygon, and myArc).

For each of your geometric shapes (which would be the star, polygon, and arc in my
example), I also recommend that you set the Fill property to the No Brush setting of the
Brushes editor, and change the StrokeThickness property (in the Appearance section) to be
somewhere in the ballpark of 2 or 3 (these settings will help you see the path). Figure 3–15
shows my current WPF Window.

Figure 3–15. Three UI objects to animate, and three paths to define the animation path

Using your Objects and Timeline panel, select the first path you wish to convert into a
motion path (I’ll be picking the “star path”). Right-click this tree node and select Path ➤
Convert to Motion Path (see Figure 3–16).

CHAPTER 3 ■ THE ANIMATION EDITOR

 100

Figure 3–16. Converting a path to a motion path

Once you select this option, you will be presented with a dialog box in which you can select
the object, or objects, that will move along the path you are converting. For this example, pick
one of your target objects, such as the circle (see Figure 3–17).

Figure 3–17. Selecting an object to move along the motion path

CHAPTER 3 ■ THE ANIMATION EDITOR

 101

As soon as you have selected the target object, a new storyboard object is created, named
Storyboard1 (you can see it directly at the top of the Objects and Timeline panel). Use the
rename operation, explained earlier in this chapter, to change this to the name MoveShapes.
Notice that once the storyboard has been created, you can use any of the tricks shown earlier in
this chapter to tweak the storyboard properties (auto-reverse, duration, etc.). As well, you can
change the starting and ending points for each keyframe time slice. To do so, simply drag a
given keyframe to a new unit of time. Tweak your animation sequence so that it begins at the
zero-second marker and ends at the five-second marker (thus, it will take approximately five
seconds for the circle to orbit around the path of the star object).

Repeat this general pattern to move the second and third target objects (the Button and
Rectangle in my example) around the circumference of your other remaining paths. Feel free to
change the starting and ending times for each of your animations. Figure 3–18 shows that the
entire amount of time taken for this animation is eight seconds, but that each target object (the
circle, button, and rectangle) starts and stops at different moments.

Figure 3–18. Animating each target object on the paths

Just to make this example a tad more interesting, use the Properties panel to handle the
Click event of the Button object. In your implementation, display an informative message box:

private void btnClickMe_Click(object sender,
 System.Windows.RoutedEventArgs e)
{
 MessageBox.Show("You clicked me!");
}

Run your program by pressing F5 (or Ctrl+F5). You will see your three objects automatically
follow the predefined paths (see if you are quick enough to click the Button object while it is
moving). Note that unlike our Silverlight example, the animation starts as soon as the main
Window loads into memory. The reason for this behavior is that, by default, any storyboard
created within the scope of a WPF application will automatically start when the Window is
loaded, thanks to the following XAML in MainWindow.xaml:

<Window.Triggers>
 <EventTrigger RoutedEvent="FrameworkElement.Loaded">
 <BeginStoryboard x:Name="MoveShapes_BeginStoryboard"
 Storyboard="{StaticResource MoveShapes}"/>
 </EventTrigger>
</Window.Triggers>

CHAPTER 3 ■ THE ANIMATION EDITOR

 102

Locate this markup using the XAML editor of your artboard. As you can see, this markup
describes a WPF trigger, which, as you may recall, is a way to intercept an event condition
without needing to author C# or VB code. Here, the trigger is testing to see when the Loaded
event fires for the Window object6. When this occurs, the <BeginStoryboard> element will be
processed, which will then execute the MoveShapes animation.

While this default WPF animation trigger is useful when you want to quickly see how an
animation will behave at runtime, it should be clear that not all animations should occur upon
the loading of a window. You might rather start an animation only when the user selects a given
menu option, clicks a given button, or what have you. While you could certainly manually
handle events and then start a storyboard in code, the WPF trigger framework provides a “code
free” alternative. Next up, let’s examine the WPF trigger-centric tools of the Blend IDE.

■ Source Code The WPFMotionPathApp project can be found under the Chapter 3 subdirectory.

Controlling WPF Animations Using Triggers
I’ve already defined the role of a WPF trigger (a way to respond to event conditions in markup),
and you have already seen an example of a simple trigger. To see further details of the WPF
trigger framework, let’s make a fresh WPF application project, appropriately called
WPFAnimationTriggerApp.

For this example, we will create a new storyboard that will spin a Button object in a full
rotation. First, add a new Button named btnMyButton to your artboard and change the Content
property to a fitting value. Next, create a new storyboard named SpinButtonAnimation
(remember, you do this by clicking the + icon in the Objects and Timeline panel). Define a one-
second time slice (beginning at the zero-second marker) by adding two keyframes that affect
the selected control (see Figure 3–19).

Figure 3–19. The initial storyboard

Now, select the Button on your artboard, and rotate this object in a 360-degree rotation
using the mouse. Recall that you can apply a number of transformations directly on the
artboard; in this case, place your mouse cursor just outside one of the corners and move the
control while pressing and holding the left mouse button (see Figure 3–20).

6 The Window class extends the FrameworkElement parent class.

CHAPTER 3 ■ THE ANIMATION EDITOR

 103

Figure 3–20. Spinning the Button control

Once again, if you run the application, you should see the Button control spin in a full circle
when the application starts, given the autogenerated trigger. Before we investigate how to
change this default behavior, take a moment to view the full XAML the IDE has generated thus
far. Here is an edited, and annotated, version of what you should be seeing in the XAML editor:

<Window ... >
 <!-- Recall! Storyboard objects are
 bundled as object resources -->
 <Window.Resources>
 <Storyboard x:Key="SpinButtonAnimation">
 ...
 </Storyboard>
 </Window.Resources>

 <!-- This trigger will start the SpinButtonAnimation
 when the Window loads into memory -->
 <Window.Triggers>
 <EventTrigger RoutedEvent="FrameworkElement.Loaded">
 <BeginStoryboard x:Name="SpinButtonAnimation_BeginStoryboard"
 Storyboard="{StaticResource SpinButtonAnimation}"/>
 </EventTrigger>
 </Window.Triggers>

 <Grid x:Name="LayoutRoot">
 <!-- This button is the target of the animation -->
 <Button x:Name="btnMyButton" ... >
 ...
 <Button/>
 </Grid>
</Window>

Adding a Trigger with the Triggers Panel
Switch back to Design view (if you have not done so already, by pressing the F6 key), and locate
the Triggers panel of the Blend IDE, which will be located close to the Assets panel (the Blend
Windows menu provides a way to show or hide any panel of the IDE). As you can see in Figure
3–21, the Triggers panel shows you the one and only trigger for this Window, specifically a trigger
that will start the SpinButtonAnimation storyboard when the window is loaded.

CHAPTER 3 ■ THE ANIMATION EDITOR

 104

Figure 3–21. The Triggers panel allows you to start storyboards when event conditions occur.

The upper area of the Triggers panel provides three selectable buttons that allow you to
interact with the following two types of WPF triggers:

• Event trigger: This type of trigger is used to interact with an animation timeline when a
given event (such as a mouse Click event) occurs. Event triggers can be set on any
object on an artboard.

• Property trigger: This type of trigger is useful when creating a custom style or template
(see Chapter 5). Basically, this mechanism allows you to change a property value based
on the change of another property value.

The +Event button allows you to add a new event trigger, the +Property button allows you
to start a storyboard when a property on the selected object changes, and the –Trigger button
deletes the currently selected trigger from the editor and markup. This chapter will not examine
the role of property triggers, so we will ignore the +Property button for the time being (more
information on triggers is provided in Chapter 5).

If you look at the current trigger configuration in Figure 3–21, you can see that the trigger is
monitoring the Window.Loaded event (note the lightning bolt symbol next to the event name).
Below the list of current triggers, you can see a handful of drop-down list boxes, which can be
used to construct a simple, human-readable sentence that corresponds to what will happen
when the trigger fires. The general template of this sentence breaks down as so:

When objectName.eventOnObject is raised storyboardName.storyboardAction

Currently, the sentence essentially reads “When Window.Loaded is raised, begin the
SpinButtonAnimation storyboard.” Let’s delete this current trigger completely by selecting the
Window.Loaded trigger and then clicking the –Trigger button.

Now, let’s add a new trigger that will begin the SpinButtonAnimation storyboard if the
button itself is clicked. First, click the +Event button. Next, using the When drop-down list box
(currently displaying Window), select your Button object by name. Then, select the Click event
from the “is raised” drop-down list box, as shown in Figure 3–22.

CHAPTER 3 ■ THE ANIMATION EDITOR

 105

Figure 3–22. Defining a Click event trigger for the Button object

■ Note If you do not see the object you are looking to configure within the Triggers panel, make sure it is the

selected node in the Objects and Timeline panel! By default, the Triggers panel shows you only options for the

topmost Window and the currently selected item.

Once you have picked the object and event condition, click the + button at the very end of
the trigger definition. This displays an additional part of the Triggers UI, where you can select
any storyboard on the current document. Pick your SpinButtonAnimation storyboard, and then
elect to start the animation sequence. (Note the additional options beyond starting the
storyboard, as shown in Figure 3–23; they are the same core options as you would find if driving
a storyboard in code.)

CHAPTER 3 ■ THE ANIMATION EDITOR

 106

Figure 3–23. Starting a storyboard based on a trigger condition

If you run your program (press F5 or Ctrl+F5), you will find that the button will spin only
after you click within it. As well, if you examine the generated XAML, you will find that the
trigger now looks something like so:

<Window.Triggers>
 <EventTrigger RoutedEvent="ButtonBase.Click"
 SourceName="btnMyButton">
 <BeginStoryboard
 Storyboard="{StaticResource SpinButtonAnimation}"/>
 </EventTrigger>
</Window.Triggers>

Building a Menu System with Blend
To further illustrate how to use event triggers, we will now extend the current example to make
use of a simple menu system to control the storyboard animation sequence. First of all, delete
the current Button.Click trigger completely. Next, select your SpinButtonAnimation storyboard
within the Objects and Timeline panel, and then use the Properties panel to set the
RepeatBehavior property to Forever.

Now, use your Assets panel to locate a control named Menu, and double-click this item to
add an instance to your artboard. Use the Properties panel to name your Menu control
mainMenuSystem. Use the mouse to resize the Menu object so that it expands the full width of the
window. Next, right-click the Menu control on the artboard and select the Add MenuItem option
(see Figure 3–24).

CHAPTER 3 ■ THE ANIMATION EDITOR

 107

Figure 3–24. Adding a MenuItem to a Menu control

Select your new MenuItem control, locate the Header property in the Properties panel
(searching for an item is the fastest way to locate an item, but to give you a hint, you will find
the Header property in the Common Properties section), and set its value to File. Also, name
this item mnuFile.

■ Note The menu editor of Blend is similar to that of Visual Studio. You can right-click any MenuItem object on

the artboard to add submenus and add separator bars (see the options shown in Figure 3–24). As well, when

you select any MenuItem on the Objects and Timeline panel, you can configure any number of properties and

handle any number of events.

Select the mnuFile object on the artboard once again, and right-click to add three submenu
items. For purposes of this example, name the Header properties of these menu items Play!,
Stop!, and Pause! (and name the menu items accordingly, mnuPlay, mnuStop, and mnuPause).
Once you are done, your menu system should look like that shown in Figure 3–25.

CHAPTER 3 ■ THE ANIMATION EDITOR

 108

Figure 3–25. Building a menu system with Blend

Notice the nested nature of each menu component within the Objects and Timeline panel,
a shown in Figure 3–26. Now that we have the basic menu system in place, we are ready to
capture some event triggers.

Figure 3–26. The menu system as realized in the Objects and Timeline panel

Assigning Triggers to Menu Items
Select the mnuPlay object in your Objects and Timeline panel and then click the +Event button
of the Triggers panel. Use the Triggers editor to start the SpinButtonAnimation storyboard when
the Play menu is clicked. Replicate the previous steps to stop and pause the same storyboard
when the user selects the File ➤ Stop! and File ➤ Pause! menu options. Figure 3–27 shows your
final set of triggers.

CHAPTER 3 ■ THE ANIMATION EDITOR

 109

Figure 3–27. Connecting an event trigger to a menu option

Now, run your application! You should find that you can use menu options to control your
storyboard object. Take a moment to appreciate that all of this interactivity has been created
without authoring a lick of C# (or VB) code (very cool indeed).

■ Note If you are interested, take a moment to view the generated XAML. You will find that the

<Window.Triggers> collection now has multiple <EventTrigger> elements, which manipulate various

options of the related storyboard.

You could certainly add additional menu items to capture the remaining event conditions
of the storyboard object (such as Resume), or better yet, add additional UI elements to build
brand new triggers for additional storyboards. I’ll leave it to the interested reader to extend this
example with some more triggers, target objects, and storyboards as they see fit.

■ Source Code The WPFAnimationTriggerApp project can be found under the Chapter 3 subdirectory.

Understanding Animation Easing Effects
At this point in the chapter, I hope you feel (more?) comfortable with the following core
animation topics and techniques:

• The overall role of WPF and Silverlight animations (changing a property value over
time)

• The role of a storyboard object (connecting objects, properties changes, and time
segments)

• How to use the Objects and Timeline panel to create a new storyboard and set of
keyframes

CHAPTER 3 ■ THE ANIMATION EDITOR

 110

• How to use the artboard to change property values when in timeline animation edit
mode

• How to control a storyboard in code

• How to control a storyboard using WPF triggers

While understanding these topics and techniques is a great step in the right direction, allow
me to mention a few additional topics regarding creating animation sequences with Blend.
Specifically, you will now examine how to use the animation editors to incorporate easing
effects into an animation. Simply put, easing effects provide a way to configure various physical
constraints as time moves between two adjacent keyframes. Using easing effects, you can inject
effects that allow you to build storyboards that make objects bounce, spring effects, and so on.

Building the Initial Layout
To get started, create a new Silverlight application project named AnimationEasingEffects.7
Much like the other examples thus far in this chapter, our initial goals are to define a set of
objects to be animated and then define a set of storyboards to animate them. If you are
following along, begin by drawing three UI elements on your artboard (anything will do; I’ll be
using a circle, triangle, and polygon shape created with the Pencil tool) and giving them fitting
names using the Properties panel.

This time, be sure that each of these objects is located on the extreme upper portion of your
artboard, as we will apply various easing effects to “drop” them to the bottom of the screen.
Next, use the Pencil tool to draw a “landing zone” area on the bottom of the Silverlight
application. Figure 3–28 shows my current layout system.

Figure 3–28. Objects…get ready to drop!

7 WPF projects created with Blend also support animation easing tools, so the following techniques apply
equally to desktop programs created with Windows Presentation Foundation.

CHAPTER 3 ■ THE ANIMATION EDITOR

 111

Creating the Initial Storyboards
Your next task is to create three unique storyboards named DropAndBounceBall,
RubberbandTriangle, and HoverAndCrashPoly. Begin with the DropAndBounceBall storyboard.
This animation sequence will capture the movement of the Ellipse object as it moves from its
starting point to the landing zone. Using the techniques shown over the course of this chapter,
configure the DropAndBounceBall storyboard to capture this movement over the course of four
seconds (simply move the Ellipse object to the new location when in recording mode).

Next, create and configure the RubberbandTriangle and HoverAndCrashPoly storyboards in a
very similar manner. Over the course of approximately four seconds, move the remaining two
objects from their starting location to the bottom part of the landing zone (again, while in
recording mode).

Once you are done, test each of your animation sequences by first selecting the storyboard
by name in the Objects and Timeline panel and then clicking the Play button. Once you are
happy with the initial results, press on to the next section of this chapter, where we will apply a
few easing effects.

Applying Animation Easing Effects
Select the DropAndBounceBall storyboard in the Objects and Timeline panel, and then click on
the existing “egg” icon representing the final keyframe of the animation sequence. Much like an
object to the artboard, when you click directly on a given keyframe in the animation editor, a
number of configurable properties appear in the Properties panel.8 Once you click a keyframe,
you will see an Easing section appear, with the EasingFunction button selected by default.
Currently, this keyframe has no easing effects applied, as shown in Figure 3–29.

Figure 3–29. Configuring a keyframe for easing effects

Each keyframe can be configured using a variety of built-in animation easing effects, all of
which can be selected using the EasingFunction drop-down list box. Each type of easing effect
is partitioned into three categories (see Figure 3–30):

8 Be aware that you can also give individual keyframes a name, via the Name property. This allows you to
drive a keyframe and its features in code.

CHAPTER 3 ■ THE ANIMATION EDITOR

 112

• The options in the In column will apply the chosen effect to the beginning part of the
keyframe.

• The options in the Out column will apply the chosen effect to the ending part of the
selected keyframe.

• The options in the InOut column will apply the effect to both the beginning and ending
parts of the selected keyframe.

If you open the EasingFunction drop-down list box, you will see a great number of intrinsic
easing functions. For the selected keyframe of the DropAndBounceBall storyboard, select the
Bounce Out effect, as shown in Figure 3–30.

Figure 3–30. Various easing effects

Once you pick a given easing effect, you can further configure it using the Properties panel.
Consider Figure 3–31, which shows how you can configure the number of, and aggressiveness
(“Bounciness”) of, each bounce.

Figure 3–31. Configuring properties for an easing effect

CHAPTER 3 ■ THE ANIMATION EDITOR

 113

After ensuring your DropAndBounceBall storyboard is selected in the Objects and Timeline
panel, test this easing effect via the Play button. Continue to experiment with this Bounce Out
effect (and, ideally, try a few additional effects for exploratory purposes).

Select your second storyboard (RubberbandTriangle in this example) and then click the final
keyframe of the time slice. This time, try the Elastic In easing effect, which has some interesting
values set for the Oscillations and Springiness properties (see Figure 3–32).

Figure 3–32. Configuring the Elastic In easing effect

Again, test your results using the Play button of the Objects and Timeline panel.

Working with the KeySpline Editor
The benefit of the built-in animation easing effects is that they provide a way to quickly
incorporate common physical properties into an animation sequence. If you require a finer
level of control, you can use the KeySpline editor. To illustrate, select your final storyboard
object from the Objects and Timeline panel, and click its final keyframe. This time, click the
KeySpline button. Here, you will find an editor that allows you to configure the speed ratio as a
given keyframe is approached. Using this editor, you can change the x1, x2, y1, and y2 values
using either the individual slider controls or by clicking and dragging a given yellow control
point. In general:

• The steeper the line, the faster the change in value at that point.

• When the graph is a straight line from the lower-left corner to the upper-right corner,
the interpolation is linear in time.

Figure 3–33 shows a spline configuration that will cause the final target object to hover at
the midway point, then crash into the landing zone.

Figure 3–33. Using the KeySpline editor to capture a “crash” effect

CHAPTER 3 ■ THE ANIMATION EDITOR

 114

Executing the Storyboard at Runtime
Recall that, unlike a WPF application, Silverlight storyboard objects are not automatically
configured to start when the application launches.

Let’s complete this project by handling the MouseLeftButtonDown event for each of the
animated objects. To do so, select the objects one at a time in the Objects and Timeline panel,
click the Events button of the Properties panel, and double-click the text area for the
MouseLeftButtonDown event. Once you have created all three of the event handlers, start the
correct storyboard; for example:

private void ellipse_MouseLeftButtonDown(object sender,
 System.Windows.Input.MouseButtonEventArgs e)
{
 Storyboard sb =
 (Storyboard)this.Resources["DropAndBounceBall"];
 sb.Begin();
}

When you run your Silverlight application now, you can click any of the three shapes (at
any time) to start the animations. Remember, you do not have to wait for an animation to
complete before starting another—you can run multiple animations at the same time.

■ Source Code The AnimationEasingEffects project can be found under the Chapter 3 subdirectory.

Learning More About Animation Easing Effects
Now, as I hope you agree, it would be tedious for me to attempt to describe with the written
word how to configure each and every animation easing effect. Not only would the end result
be impossible to show on a static printed page, but the number of configuration settings for
each easing effect is quite expansive. At this point, I think you should be in good shape to
examine on your own time further details of configuring an animation with various effects. If
you are interested in more information, please look up the topic “Change animation
interpolation between keyframes” within the Expression Blend User Guide (see Figure 3–34).

CHAPTER 3 ■ THE ANIMATION EDITOR

 115

Figure 3–34. Consult the Expression Blend User Guide for more information on easing effects.

Controlling Storyboards in XAML via Behavior Objects
To conclude our study of Blend animations, I’d like to mention one final topic that will be more
deeply examined in Chapter 4, specifically the role of behaviors. In a nutshell, a behavior object
allows you to apply complex runtime logic to a UI element, without the need to author any
procedural code.

As you will see in Chapter 4, numerous behavior objects exist that allow a UI element to be
moved with the mouse, call methods on objects, and so forth. Here, I would like to point out
that the ControlStoryboardAction behavior object provides a way to start, stop, and pause in
XAML (in a way that does not tie you to the WPF trigger framework).

Modifying the SimpleBlendAnimations Example
To illustrate, reopen your SimpleBlendAnimations project in the Blend IDE (that was the first
example of the chapter) and save a copy of the entire project using File ➤ Save Copy of Project (I
named my copy SimpleBlendAnimations_Behavior). Once you have done so, make sure the
new copy is currently open in the Blend IDE.

Now, open the XAML editor for your MainPage.xaml file and locate the definition of the
“Start Animation!” button. You should see that it has a Click handler value, which looks
something like so:

<Button x:Name="btnStartAnimation" Content="Start Animation!" ...
 Click="btnStartAnimation_Click"/>

CHAPTER 3 ■ THE ANIMATION EDITOR

 116

Delete this Click handler value completely from the XAML definition, so that your markup
looks like so (your exact properties may differ based on how you configured the object):

<Button x:Name="btnStartAnimation" Content="Start Animation!"
 HorizontalAlignment="Left" Margin="8,8,0,0"
 VerticalAlignment="Top" Width="124"/>

Next, open your C# code file and completely delete the Click handler logic that contains
the code that programmatically started your storyboard (in other words, delete all traces of the
btnStartAnimation_Click() method). For a sanity check, build and run your project and ensure
you compile cleanly.

Adding the ControlStoryboardAction Behavior
Now, switch to the artboard designer for your MainPage.xaml file, open the Assets panel, select the
Behaviors category, and locate the ControlStoryboardAction object, as shown in Figure 3–35.

Figure 3–35. The ControlStoryboardAction behavior

Drag this behavior object onto the Button on your artboard (see Figure 3–36). As an
alternative, you could also drag the behavior object onto the correct node in the Objects and
Timeline panel.

Figure 3–36. Behaviors can be dragged onto the artboard.

CHAPTER 3 ■ THE ANIMATION EDITOR

 117

Select this new node in your Objects and Timeline panel (you will see it beneath the Button
node), and examine the Trigger section of the Properties panel (see Figure 3–37). Notice that the
SourceObject property is set to your Button, based on the previous drag-and-drop operation.
This property specifies which object on the artboard will interact with the behavior. Also notice
the EventName property is automatically set to Click, which you can change via the drop-down
list box.

Figure 3–37. SourceName and EventName are used to configure how the object triggers the

behavior.

All you need to do to finish configuring this particular behavior is to pick a storyboard
object to manipulate, and then specify which action should occur when the event trigger
occurs. In Figure 3–38, you can see that when my button is clicked, the AnimateCircle
storyboard will play.

Figure 3–38. The fully configured ControlStoryboardAction behavior

Now, run your program! You should be able to start your animation without any C# code or
custom event handlers. If you examine the generated markup, you will see the XAML that has
been generated:

<Button x:Name="btnStartAnimation" Content="Start Animation!"
 HorizontalAlignment="Left" Margin="8,8,0,0"
 VerticalAlignment="Top" Width="124">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="Click">
 <ei:ControlStoryboardAction
 Storyboard="{StaticResource AnimateCircle}"/>

CHAPTER 3 ■ THE ANIMATION EDITOR

 118

 </i:EventTrigger>
 </i:Interaction.Triggers>
</Button>

If you’d like to, add some additional Button controls to your artboard and define new
ControlStoryboardAction objects to pause, stop, or resume your animation cycle.

■ Source Code The SimpleBlendAnimations_Behavior project can be found under the Chapter 3

subdirectory.

Summary
This chapter illustrated how to use the Blend animation editor, which allows you to create WPF
and Silverlight storyboard objects. Recall that a storyboard contains a set of keyframes, which
collectively change the values of an object’s properties over time. After examining the various
aspects of the Animation workspace, you then learned how to interact with storyboards in code.
Here you learned that once you obtain the correct resource, you are able to control the
animation using the Storyboard class.

Next, you learned about some WPF-specific animation topics, beginning with the role of
motion paths, which allow you to move a target object around a predefined path. You then took
your first look at the WPF trigger architecture. As you saw, triggers provide a way to interact
with property changes and events in markup, oftentimes for the purpose of controlling a
storyboard (you’ll see more information about triggers in upcoming chapters).

The chapter wrapped up with a tour of animation easing effects and a brief introduction to
behavior objects. Using the built-in easing effect objects, you can very easily (and very quickly)
apply various physical properties to your animations such as bounce effects, spring effects, and
so on. If you require a finer level of control, you can also tweak keyframe timing using the Blend
KeySpline editor. As well, using the ControlStoryboardAction object, you can manipulate
animations entirely in markup, without being tied to the WPF trigger framework.

 119

C H A P T E R 4
■ ■ ■

Controls, Layouts,

and Behaviors

Unless you intend to build a UI entirely composed of interactive geometries, the chances are
very good that your WPF or Silverlight applications will require the use of various controls. As
expected, the WPF and Silverlight APIs both ship with a set of intrinsic controls that allows you
to gather user input and respond to user actions. In this chapter, you will learn how to use the
Expression Blend IDE to configure UIs consisting of controls arranged in various layout
managers. As you will see, the WPF and Silverlight frameworks both ship with a collection of
layout objects, including Grid, StackPanel, and Canvas (among others), all of which can be
configured via the Blend artboard.

Once you feel comfortable using Blend to lay out graphical user interfaces (GUIs), you will
then be introduced to the role of behaviors. As introduced in Chapter 4, you learned that
behaviors allow you to incorporate a number of advanced features into an application, without
the need to author procedural code. For example, there are behavior objects that enable items
to be moved via the mouse, control animation storyboards (as you saw in the previous chapter),
change property values (or call methods) based on defined conditions, and so on.

■ Note This chapter will expose you to a “sane subset” of controls and behaviors. However, you will see

additional examples throughout the remainder of this book.

A First Look at GUI Controls
If you have created GUIs using any sort of graphical designer in the past (such as a Java Swing
editor, web page designer, or Visual Studio’s GUI creation tools), you won’t be surprised when I
tell you that Blend allows you to configure common controls such as Button, ListBox, ComboBox,
MenuItem, DataGrid, ProgressBar, and so forth to build a UI for your projects.

WPF and Silverlight both ship with a control library, but the WPF API provides a greater
number of options. By way of one example, WPF ships with a set of controls that comprises the

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 120

Document API. As shown later in this chapter, this API enables a WPF application to incorporate
PDF-style text formatting using the XML Paper Specification (XPS).1

Although each API ships with an independent set of controls, by and large, a given control
can be configured in a similar (if not identical) manner when you are using the Blend IDE.
Therefore, regardless of whether you are using the WPF Button or the Silverlight Button, the
Blend Properties panel will show you the same general set of configuration options even though
the controls are from different classes in different libraries.

■ Note The Blend Tools panel and Assets library always show you the “correct” components based on your

selected project type (WPF or Silverlight [or Windows Phone 7; see Chapter 7]).

Locating Controls Within the IDE
When you want to add a GUI control to the artboard, you could hunt for a given item on your
Tools panel. However, remember that the Tools panel shows you only a selection of commonly
used UI controls, grouped by category. If you take a moment to examine your options, you’ll see
that the Tools panel has groups for layout managers, text controls (Label, TextBox, etc.), and
basic user input controls (Button, Slider, ListBox, and so on). See Figure 4–1.

Figure 4–1. The Tools panel provides quick access to common UI controls.

■ Note Remember, you can interact with items in a Blend panel only when the artboard is in design or split

mode (i.e., not in the full-screen XAML editor).

1 In a nutshell, XPS is a Microsoft alternative to the Adobe PDF file format.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 121

When you want to see the full set of UI controls, access the Assets panel (or the Assets
library, located on your Tools panel). Here you can see all possible controls by looking under
the All section of the Controls category. Figure 4–2 shows some of the options you will find for a
WPF application project.

Figure 4–2. The Controls category of the Assets library shows all controls based on your API of

choice.

Configuring Controls via the Properties Panel
Regardless of how you locate and select a UI control, you can then draw an instance of the
component on your artboard, just like you would draw a geometric shape (see Chapter 2). Once
you perform a selection operation on the component (recall that V is the shortcut key), you can
configure the item using the Properties panel, handle events (via the Events button of the
Properties panel), and so on. Since you’ve already worked with these aspects of the Properties
panel, I won’t bother to re-describe the basics; however, this chapter will show you a few more
exotic (and not as intuitive) aspects of working with the Properties panel.

Learning About Control Details
Given the nature of this book, the goal of this chapter is not to talk about the functionality of
every single WPF or Silverlight control, but rather to help you understand how to use the Blend
IDE to configure the look and feel of controls generally. If you are a programmer by trade, you
are certainly aware of the role of the .NET Framework 4.0 SDK documentation and Silverlight
SDK documentation. Both of these guides are available online, and can be installed on your
local machine via the Visual Studio 2010 Help Library Manager.2

2 Launch this tool by navigating to Windows Start ➤ All Programs ➤ Microsoft Visual Studio 2010 ➤ Visual
Studio Tools ➤ Manage Help Settings. Here, you can download and install documentation for a number of
APIs (including Silverlight and Windows Phone 7).

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 122

If you want to see full details of WPF controls but do not have a local installation of the help
system, the Expression Blend User Guide provides a section named “Controls, properties, and
events reference,” which contains links to the WPF and Silverlight online documentation.
Assuming you have the Blend User Guide open, you will find this topic under the References
folder, as shown in Figure 4–3.

Figure 4–3. The Blend User Guide provides links to WPF and Silverlight control documentation.

From here, you can click the provided links to navigate to the documentation system for
your controls of choice. Figure 4–4 shows the web page that opens if you click the Silverlight
System.Windows.Controls Namespace link.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 123

Figure 4–4. Accessing the online Silverlight control documentation

In this chapter (and the chapters to come), you will see details of various controls, but you
should make sure to consult the documentation for full details.

Understanding the Control Content Model
The first project of this chapter focuses on one particular aspect of WPF and Silverlight controls
that deserves special mention, specifically the control content model. Under the APIs in this
model, the term “content” refers to what is used to fill the interior of a GUI control. For
example, a typical Button control has a blurb of text data as content (such as OK, Cancel,
Submit, or whatnot).

While some GUI controls might need nothing more than a simple blob of text, WPF and
Silverlight allow you to define much more complex content.3 For example, you could define a
Button control that defines an animated arrow and a blob of text as content. When you wish to
define complex internal content, the Blend IDE provides the tools to do so; however, how you

3 A control that supports the control content model must derive from the ContentControl base class.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 124

do so may not be immediately obvious. To learn the ropes, begin by creating a new WPF
application project named BlendControlContent.4

Now, using the Tools panel or Assets library, locate the Button control and place one
instance on top of the artboard designer for the main Window. Once you select the control, the
Properties panel provides a Content text area (under the Common Properties section), which
allows you to supply a simple textual value (see Figure 4–5).

Figure 4–5. Simple control content can be set via the Properties panel.

Clearly, this simple input area cannot be used to define more complex content such as
embedded graphics, animations, or whatnot. When you want to add composite content to a
control, your first step is to add a layout manager to the selected GUI control. This layout
manger, in turn, will contain the set of individual elements that represents the content as a
whole.

Creating Composite Content
You will learn about the details of working with layout managers a bit later in this chapter, but
for the time being, locate the StackPanel control in the Assets library (remember, you can
quickly locate a given item of interest using the Search area). Once you have located it, double-
click this layout manger to add it to the Window. Drag this StackPanel over the Button control and
press the Alt key (see Figure 4–6). This will place the StackPanel within the scope of the Button
control and will be used to hold the new, composite content.

Figure 4–6. Composite content is contained within a layout manager

4 The techniques shown in this example would be identical for a Silverlight project.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 125

■ Note When you are building composite content, you may find it helpful to zoom into the control you are

editing using the Blend artboard controls or your mouse wheel (see Chapter 1).

At this point, you will likely want to resize the embedded layout manger to take up the
interior of the control (via a Selection operation; the black arrow on the Tools panel or the V
shortcut key). Also, for this example, we want the StackPanel to position its data in a horizontal
position rather than in the default, vertical position. Change the Orientation property for your
StackPanel to Horizontal using the Properties panel.

If you now examine the Objects and Timeline panel, you can select the Button control’s
layout manager (i.e., the StackPanel) and then add any number of additional components. Go
ahead and add a geometry of your choosing (such as an ellipse, star, or arrow) and a Label
control to your layout manager. Figure 4–7 shows one possibility.

Figure 4–7. A Button control with a StackPanel (and its children) as content

You can now select each component for editing. As shown in Figure 4–8, I used the
Properties panel to change some basic settings of the Label (font sizes via the Text section, text
positioning via the Layout section, and assigning the value “OK!” to the Content property). As
well, I’ve configured some custom brushes for the border and interior colors of the star shape.

More interestingly, I’ve defined an animation that will change the color of the star over a
one-second interval as long as the Button object is in memory (in other words, the AutoReverse
property has been selected, and the RepeatBehavior property has been set to Forever). I won’t
reiterate every aspect of working with the Blend animation editor here (see Chapter 3 for full
details); however, recall the basic steps of creating a new animation storyboard:

• Create a new storyboard using the Objects and Timeline panel.

• Add keyframes to the storyboard using the Record Keyframe button (the “gray egg”
icon).

• Change property settings on a selected UI element to record state changes.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 126

Figure 4–8. A fancy button

Handling Events for Controls with Composite
Content
Be aware that when you build a control with composite content, you can handle events for any
of the subcomponents if you wish. For example, you could handle the MouseDown event on the
star component (which is a RegularPolygon object) and the Click event for the Button itself. In
this way, you can capture not only the act of “clicking the button,” but also the acts of clicking
(or what have you) the individual pieces of composite content. Here are some event handlers
for the situation just presented that will change the caption of the Window based on where the
user clicks:5

private void regularPolygon_MouseDown(object sender,
 System.Windows.Input.MouseButtonEventArgs e)
{
 this.Title = "You clicked on the star!"

 // Stop the mouse event from bubbling to the button.
 e.Handled = true;
}

private void Button_Click(object sender, System.Windows.RoutedEventArgs e)
{
 this.Title = "You clicked on the Button!";
}

Notice that when the user clicks the star shape, I am preventing the event from “bubbling”
through the tree of XAML by setting the Handled property of the incoming event arguments to
true. If this were not done, the mouse event would first be handled by the star and then the
button. In any case, run your application (via the F5 key) and verify your control can receive
mouse input as expected.

5 Recall from Chapter 2 that the Events button of the Properties panel (the button with the lightning bolt
icon) allows you to generate event handlers for the currently selected item on the artboard.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 127

Reusing Composite Content
If you view the generated XAML, you will find that the Button has been defined as expected; the
StackPanel is the direct content, and the StackPanel contains two items. For example:

<Button Height="65" Margin="147,73,153,0" VerticalAlignment="Top"
 Click="Button_Click">
 <StackPanel Height="57" Width="174" Orientation="Horizontal">
 <ed:RegularPolygon x:Name="regularPolygon" Fill="#FFE3EF0D" Height="56"
 InnerRadius="0.47211" PointCount="5" Stretch="Fill" Stroke="Black"
 HorizontalAlignment="Left" Width="71" StrokeThickness="3"
 MouseDown="regularPolygon_MouseDown"/>
 <Label Content="OK!" HorizontalAlignment="Center"
 VerticalAlignment="Center"
 FontSize="32" FontStyle="Italic"/>
 </StackPanel>
</Button>

However, as you recall from Chapter 3, when you create an animation, the Blend IDE adds
the storyboard as a named resource of the Window or UserControl. If you examine the animation
markup, you’ll see that the objects of your custom button are mentioned directly by name, as in
the case of my regularPolygon object that represents the star of the complex content:

<Window.Resources>
 <Storyboard x:Key="AnimateStar" AutoReverse="True" RepeatBehavior="Forever">
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 Storyboard.TargetName="regularPolygon">
 <EasingColorKeyFrame KeyTime="0" Value="#FFE3EF0D"/>
 <EasingColorKeyFrame KeyTime="0:0:1" Value="#FF2620F1"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
</Window.Resources>

In a similar way, the markup for our Window defines a trigger to start the animation
sequence. In a nutshell, as things now stand, our custom button is rather disjointed. This brings
up the question, what if you want three fancy star buttons?

Currently, this Button is tightly coupled to this specific Window and cannot be easily reused.
While you could copy and paste the Button to reuse the complex content, the animation is
forever connected to the star object of the original button.

In Chapter 5, you will learn about the process of building custom UserControl objects,
custom templates, and custom styles. As you will see, it is more common (and more useful) to
define a control with complex content as a unique style or UserControl, as this makes it possible
to easily reuse your creation.

Until that point, just remember that a majority of WPF and Silverlight controls support
composite content. Using Blend, you can generate such content by embedding a layout
manager within its boundaries and populate the container with related components. Next up,
let’s examine a related concept, that of the items control model.

■ Source Code The BlendControlContent project can be found under the Chapter 4 subdirectory.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 128

Understanding the Items Control Model
A number of WPF and Silverlight controls have the capability to contain a list of items within
their interior (such as the ListBox or ComboBox). Similar to a true “content control,” controls
such as the ListBox can contain either a simple batch of string data or more complex,
composite list items. In a very general sense, you can regard this list of custom items as the
“content” of the control; however, more specifically, such controls use the items control model.6

To illustrate, let’s make a fancy ListBox control within a brand new WPF application
named (appropriately enough) FancyListBox. Begin by adding a ListBox to your artboard, and
use the Properties panel to name this control customListBox. Next, add a Label control (named
currentSelection) to your artboard, somewhere below the ListBox. This Label will be used to
display the value of the currently selected item, and we will configure this UI element in just a
bit.

Adding ListBoxItems
When you wish to add items to a ListBox control, one approach is to right-click the control on
your artboard and select the Add ListBoxItem menu option (a ComboBox control would show an
Add ComboBoxItem menu selection). If you take this approach, you add a new ListBoxItem
that contains simple text (which can be configured after the fact). Using this approach, add a
single ListBoxItem object to your ListBox control (see Figure 4–9).

Figure 4–9. Adding new items to an items control

Now, using your mouse, select and stretch your new ListBoxItem to take up about one-half
the height of the ListBox (see Figure 4–10).

6 Such controls extend the ItemsControl parent class.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 129

Figure 4–10. Resizing a ListBoxItem

Make sure that your ListBoxItem is currently selected in the Objects and Timeline panel,
and add a StackPanel to this control, much like you added a StackPanel to the “fancy button”
you created earlier. Once you have done so, select this StackPanel in the Objects and Timeline
panel, locate the Orientation property in the Properties panel (via the Search area), and set this
property to the value Horizontal. At this point, you will want to resize the new StackPanel so
that it fits within the containing ListBoxItem. Take a moment to position things to your liking.

Now for the really interesting part. Select the StackPanel in your Objects and Timeline
panel, and then add an Ellipse control and a Label control using standard Blend techniques
(the Tools panel, the Assets library, etc.). Once you are done, the Objects and Timeline panel
should look like Figure 4–11.

Figure 4–11. A ListBoxItem with composite “content”

Use your Properties panel and mouse to resize these new controls as you see fit. Likewise,
set the Fill property of the Ellipse to the color red, and set the Content property of the Label to
(you guessed it) the value Red!. Figure 4–12 shows the current layout.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 130

Figure 4–12. Our composite ListBoxItem

Now, select the ListBoxItem within the Objects and Timeline panel, right-click, and select
the Copy menu option. Next, select the ListBox itself (again within the Objects and Timeline
panel), right-click, and select Paste. Repeat these steps three times total, so that your ListBox
has a set of four ListBoxItem objects. Use the Properties panel to set the Fill property of the
new Ellipse controls to a unique set of colors and to set the Content property of the new Label
controls to a unique set of corresponding names. Figure 4–13 shows my final design.

Figure 4–13. The final fancy ListBox

Viewing the XAML
If you switch to the XAML editor, you will find that your ListBox control does indeed contain
four ListBoxItem objects. However, instead of having a simple text value, they contain
composite UI elements. For example:

<ListBoxItem Height="41.96" Width="180">
 <StackPanel Height="41.96" Width="180" Orientation="Horizontal">
 <Ellipse Fill="#FF48D416" Stroke="Black" Width="62"/>
 <Label Content="Green!" Width="78.993" HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 </StackPanel>
</ListBoxItem>

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 131

Finding the Current Selection
Regardless of what a ListBoxItem contains (a simple text value or a StackPanel of elements), you
can find which ListBox member has been selected by using the SelectedIndex property of the
ListBox, which returns a zero-based value (0 is the first item, 1 is the second item, and so on).

Select your ListBox in the Objects and Timeline panel, and then click the Events button of
the Properties panel to handle the ListBox’s SelectionChanged event, as shown in Figure 4–14
(remember, you can simply double-click the text area next to an event to autogenerate an event
handler in your code file).

Figure 4–14. Handling the SelectionChanged event of the ListBox

Now, implement this handler to display the current selection on the currentSelection
Label control:

private void customListBox_SelectionChanged(object sender,
 System.Windows.Controls.SelectionChangedEventArgs e)
{
 this.currentSelection.Content =
 string.Format("You Picked Item Number: {0}",
 this.customListBox.SelectedIndex);
}

Run your program, and notice that you can select any of your custom items as expected (see
Figure 4–15).

Figure 4–15. The fancy ListBox in action

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 132

Working with the Tag Property
At this point, you are able to discover the currently selected item as a numerical value. However, it
might be interesting if you could somehow discover the related color (red, green, etc.) based on a
selected item. As it turns out, you can, by using a data template, but that topic will not be
examined until Chapter 6. As a simple (and handy) alternative, let’s make use of the Tag property.

Select the ListBoxItem that contains the red Ellipse from the Objects and Timeline panel.
Once you have done so, search the Properties panel for the Tag property (you’ll find it under the
advanced properties area of the Common Properties section). Set the Tag property for this
ListBoxItem to the value Red. Repeat this process for the remaining ListBoxItem objects, setting
the Tag property accordingly; for example:

<ListBoxItem Height="41.96" Width="180" Tag="Green">
 ...
</ListBoxItem>

You can now update your existing SelectionChanged event handler to extract the value of
the Tag property of the selected ListBoxItem control, and then use that value to set the Content
property of the Label control:

private void customListBox_SelectionChanged(object sender,
 System.Windows.Controls.SelectionChangedEventArgs e)
{
 string selectedColor =
 ((ListBoxItem)this.customListBox.SelectedItem).Tag.ToString();

 this.currentSelection.Content = string.Format("You Picked the Color: {0}",
 selectedColor);
}

So, as you have seen, WPF and Silverlight both radically simplify the process of customizing
the interiors of controls. Using just a few lines of markup, you can populate a control with just
about any sort of custom, composite data. And, as you have also seen, composite data needs to
be arranged within a layout system. Given this point, let’s switch gears a bit and examine some
details of the various layout managers we have at our disposal.

■ Source Code The FancyListBox project can be found under the Chapter 4 subdirectory.

Working with Layout Managers
As you have seen over the initial chapters of this book, when you create a new WPF or
Silverlight project using Expression Blend, you are automatically given a Grid object as your
default layout manager. Recall that this Grid object is named LayoutRoot (although you are free
to change this if you so choose, by changing the value of the Name property). For example, if you
create a new WPF application, Blend generates the following XAML by default:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="WPFLayoutManagers.MainWindow"
 x:Name="Window"
 Title="MainWindow"
 Width="640" Height="480">

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 133

 <Grid x:Name="LayoutRoot"/>
</Window>

While the Grid is a reasonable default for a number of WPF (or Silverlight) applications,
other layout options exist. As it turns out, the WPF API provides more choices than the
Silverlight API insofar as layout managers are concerned. However, in practice, this should
seldom be an issue. Remember that a Silverlight application typically is deployed as a smaller
part of a larger web page, and typically does not change its default size within the hosting
browser. Given this, Silverlight does not ship with layout managers that dynamically reposition
UI elements based on size.

In contrast, WPF applications are most often designed such that the Window objects can be
maximized, minimized, and resized at the whim of the user. For this reason, the WPF API
provides a number of additional options that allow for dynamic layouts. Table 4–1 lists and
describes the core layout managers and identifies which APIs support them.

Table 4–1. The Core WPF and Silverlight Layout Managers

Layout

Manager

WPF

Support?

Silverlight

Support?

Meaning in Life

Canvas X X Allows you to arrange child objects using
absolute X, Y positioning. This layout manager is
ideal for holding complex graphical data.

DockPanel X X Allows you to dock child objects to a specified
edge of the container (top, left, bottom, or right).

Grid X X Allows you to define a set of cells (based on rows
and columns) to position child objects.

ScrollViewer X Allows you to enable scrolling of the elements
that it contains. This layout manager can wrap
only a single UI element, which will almost
always be another layout manager.

StackPanel X X Allows you to arrange child objects in a single
vertical or horizontal line.

UniformGrid X Arranges child elements within equal (uniform)
grid regions (for example, imagine a Tic-Tac-Toe
playing board, with symmetrical cells).

ViewBox X Scales all its child elements much like a zoom
control. Like the ScrollViewer, the ViewBox will
almost always wrap a secondary layout manager.

WrapPanel X Allows you to arrange child objects in a
sequential position from left to right. If it runs
out of room at the far-right edge of the panel, the
remaining controls wrap to the next line, and so
on from left to right, top to bottom.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 134

Additional Layout Types
Beyond the core layout mangers identified in Table 4–1, both WPF and Silverlight ship with a
Border class and a TabControl class. As their names imply, Border allows you to define a visual
outline (and optional background) around a related child layout system, while TabControl
allows you to arrange a set of UI elements into independent tabbed panels. You will work with
the TabControl and Border classes later in this chapter.

In addition, the WPF API provides the BulletDecorator control, which allows you to
“connect” two related UI elements (typically a graphic and a blurb of text) to quickly create a
customized bulleted list. The benefit of grouping this related content into a BulletDecorator
(rather than directly into a bare-bones stand-alone StackPanel) is that the BulletDecorator
supplies properties to independently (and easily) interact with the bullet image (via the Bullet
property). Here is a simple example of connecting *.jpg image data to textual data in a
TextBlock:

<BulletDecorator Background="#FF001BFF" Height="53">
 <BulletDecorator.Bullet>
 <Image Source="apple.jpg" Height="60" Width="60"/>
 </BulletDecorator.Bullet>
 <TextBlock Width="257" TextWrapping="Wrap"
 HorizontalAlignment="Center"
 Foreground ="#FF849DB8"
 FontSize="35"
 VerticalAlignment="Center">
 <Run Text="Yum! Apples!"/>
 </TextBlock>
 </BulletDecorator>

In any case, when working with any sort of layout manager (including a simple
BulletDecorator), be aware that you can typically create a suitable layout system using a wide
variety of techniques. For example, you can enable “canvas mode” on a Grid object to gain
absolute positioning of content, based on the size and margin settings of contained UI
elements. In contrast, the same layout could be created using a collection of nested StackPanel
objects arranged in different orientations.

To be sure, you should take time to experiment with each container and test the final
results by resizing (and possibly repositioning) the containers at runtime. In just a few pages,
you will work with a number of these layout managers in the context of a larger Blend
application; until then, allow me to point out a few basic tricks of the trade.

Changing the Layout Type
Once you have created a new WPF or Silverlight project using Blend, you can change the type of
any layout manager simply by right-clicking the node within the Objects and Timeline panel
and selecting Change Layout Type.

■ Note If you change layout managers that currently contain controls, be aware that the controls will follow the

rules of the container! For example, if you have items positioned in a Grid and then switch to a StackPanel, all

your items will be stacked on top of each other.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 135

Figure 4–16 shows the layout options for a WPF application (a corresponding Silverlight
project would show slightly fewer options).

Figure 4–16. Changing the layout manager via the Objects and Timeline panel

Designing Nested Layouts
Be aware that it is very common for a WPF or Silverlight application to use a nested layout
system. For example, you could split your initial Grid object into two columns, mount a vertical
StackPanel within the leftmost column, and mount a Canvas in the rightmost column (to create
a layout system for a simple painting program, perhaps).

When you wish to add child layout mangers under a parent layout manager, select the parent
node within the Objects and Timeline panel, select the child to add via the Layout section of the
Tools panel, and then double-click the item. You have no need to do so right now, but Figure 4–17
illustrates the process.

Figure 4–17. The Tools panel allows you to select and add child layout objects.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 136

Grouping and Ungrouping Selected UI Elements
Blend makes it very simple to select a set of UI elements on the artboard and group those
elements into a new, nested layout manager that is positioned in the parent. For example,
assume you have a Grid object that contains three Button objects, which you have arranged
within the Grid to sit side by side of each other. Once you select each object on the artboard (via
a Shift+click), you can right-click your selection and select the Group Into menu option, as
shown in Figure 4–18.

Figure 4–18. Grouping selected objects into a layout manager

■ Note You can also select multiple UI elements in the Objects and Timeline panel and activate the Group Into

menu option.

Assuming you grouped three Button objects into a StackPanel, you will find the
configuration shown in Figure 4–19 in the Objects and Timeline panel (note that the new
StackPanel can be independently selected for configuration within the Properties panel).

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 137

Figure 4–19. A simple nested layout system

Also be aware that you can select a layout manager on the artboard (or via the Objects and
Timeline panel) and activate the Ungroup menu option via a standard right-click. This
operation will remove the child layout manager from the tree of XAML and place the orphaned
UI elements into the immediate parent container.

Repositioning a UI Element into a Layout Manager
When you have a nested layout system for a given WPF Window or Silverlight UserControl, you
will occasionally need to relocate an item. For the current example, assume that after you
grouped the Button controls into a new StackPanel, you decide that the rightmost Button really
should be positioned in the parent Grid. One way to make this change is to select said Button on
the artboard, drag it outside of the current container to the desired outermost container, and
then press Alt (similar to what you did when creating composite content earlier in this chapter;
see Figure 4–20).

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 138

Figure 4–20. Relocating a UI element into a parent container

It is also possible to drag and drop UI elements into (and from) a layout manager directly
via the Objects and Timeline panel. This is always useful to remember, given that when you add
a new item from the Tools panel to the artboard, it will be contained in the currently selected
layout manager. Thus, if you accidentally selected the incorrect layout manager before adding a
child, you can simply drag the node to the correct home (see Figure 4–21).

Figure 4–21. You can also relocate UI elements via the Objects and Timeline panel.

Building a User Interface with Blend
Now that you have a better understanding of the role of layout managers and the control
content model and items control model, let’s build a new example program that illustrates
various aspects of the Blend IDE. Here, I will be choosing a WPF application; however, many of
the techniques shown here would work in a similar (if not identical) manner for Silverlight
projects. If you are following along, create a new WPF application project named
WpfControlsApp.

Creating a Tabbed Layout System
In this project, you will create a tabbed layout system, where each tab will illustrate the use of a
particular set of controls, layout managers, and APIs. The first step, therefore, is to locate the
TabControl component within the Assets library via the Search function (see Figure 4–22).

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 139

Figure 4–22. Locating the TabControl

■ Note For the remainder of this chapter, I assume that you use the Search area to locate a given UI control,

and therefore I do not show you additional screenshots of a control in the Assets library.

Once you have located the TabControl component, select it from your Tools panel and
draw an instance of this control so that it takes up a majority of the initial Grid. You’ll notice
that, by default, the TabControl defines two initial TabItem objects, each of which represents a
specific tab on the control. You’ll also notice that these TabItem objects are mounted on the
upper portion of the owning TabControl. If you wish to change the placement of the tabs, you
may do so by setting the TabStripPlacement property, which you will find in the Common
Properties section of the Properties panel for the selected TabControl (not the individual
TabItem objects; see Figure 4–23).

Figure 4–23. Defining the location of your TabItem objects

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 140

■ Note For the remainder of this chapter, I also assume that you use the Search area of the Properties panel to

quickly locate a property under examination. I’ll still show a few relevant screenshots where necessary, but by

and large, I’ll leave it in your capable hands to locate a property (or event) by name via a search.

Now, locate your Objects and Timeline panel. Notice that each TabItem is a child of the
owning TabControl object. More interesting, notice that each TabItem has its own dedicated
layout manager, specifically a Grid object.7 Furthermore, each TabItem has a Header element
that allows you to set the text (or complex content) for a given tab. Figure 4–24 shows the
unmodified layout thus far.

Figure 4–24. Each TabItem has a dedicated layout manager.

For this example, we will add one additional tab to the TabControl. To do so, simply right-
click the TabControl node of the Objects and Timeline panel and select the Add TabItem menu
option. At this point, change the Header property for each of the TabItem objects to the following
textual values:

• Fun with Ink

• Documents API

• Behaviors!

7 This is an example of the headered control model, which is similar to the content and items control models
introduced earlier in this chapter.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 141

■ Note When attempting to change the text of a header, you won’t get too far if you try to select the Header

item in the Objects and Timeline panel, as Header is a property of TabItem, not a selectable item. Thus, use

the Properties panel to change the text.

Be very aware that when you select any TabItem object on the artboard, you have activated
that tab for editing, and can begin dragging and dropping controls to the root layout manager
(of course, you can get to the same end result by selecting a TabItem on the Objects and
Timeline panel as well). Finally, set the Name property of your TabControl to myTabControl, and
set the Name property for each TabItem object to tabInk, tabDocs, and tabBehaviors, respectively.

Working with the Grid
Our first tab will display a UI that will capture user input using the Ink API, which is supported
by both WPF and Silverlight (although their programming model is a bit different). This
particular API is very useful if you are building programs that will run on a touch-screen
computing device and you want to capture input via a stylus or finger. As it turns out, this same
API can capture graphical strokes via standard mouse input, which we will do here. The Grid
layout manager will be used to contain each of the UI elements for this tab. The Grid object can
be configured to work in two modes:

• Grid layout mode: This is the default mode. In this mode, you can create a set of rows
and columns, and place components within the cells. If you resize cells using the
column and row dividers, the contained objects change in size to preserve the values
set on the Margin properties (described in just a moment).

• Canvas layout mode: This option provides an editing experience that is just like editing
inside a Canvas panel, where items are positioned exactly where you place them,
regardless of where they are positioned in the grid cells.

If you are using the default, Grid layout mode, you can place child objects in a cell and then
set (directly or indirectly) the Margin property on the object in the Grid. Every UI element in a
Grid can set four margin values, which control its top, left, bottom, and right position in a cell.
Each of these margin values can be edited via the Layout section of the Properties panel. This
default behavior can be very useful when you place a UI element into a grid cell such that it fills
the entire space of the cell and you want to make sure this UI element grows (or shrinks) when
you resize the cell.

Canvas layout mode is very different in that child objects of the grid are positioned based
on absolute positioning. If you resize any rows or columns, the child objects do not
automatically change size (but the Margin properties are still updated). I’d guess most of the
time you will be happy with the default, Grid layout mode, but you can easily switch between
the modes by clicking the toggle in the extreme upper left of the selected grid editor (see Figure
4–25).

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 142

Figure 4–25. You can toggle between Grid layout mode and Canvas layout mode.

Defining Grid Rows and Columns
The Blend IDE makes it simple to add rows and columns to a selected Grid object. To begin,
activate the Grid object within the “Fun with Ink” tab using the Objects and Timeline panel.
Next, using your artboard, divide this Grid into two rows, where the top row takes up about
one-fourth of the UI. To do so, simply position your mouse cursor on an outer edge of the Grid
and click the mouse button (see Figure 4–26; note the mouse cursor on the left side of the grid
editor).

Figure 4–26. Carving the grid into two rows

You can add any number of rows or columns using this technique, and once you have done
so, you can reposition them by dragging a given separator with the mouse. Add a few additional
rows and columns now, and experiment with how you can change the size of each cell. Once
you have done so, undo your operations (via Ctrl+Z) until you are once again back to a Grid
with two rows.

■ Note You can also populate a grid with columns and rows via the ColumnDefinitions and

RowDefinitions properties, which are located under the advanced properties area of the Layout section.

Adding Items to Grid Cells
After you have defined the rows and columns for a given grid, you can then place UI elements
(including any geometric shapes) into the cells. Remember, when you are in Grid layout mode
(the default operation for a Grid), the child items will be placed in a cell based in part on the

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 143

Margin settings. More specifically, the child’s position within a grid is based on the following
settings:

• Alignment Settings: Determine what position an object takes in relation to the parent
object.

• Margin Settings: Determine the amount of empty space around the control, between
the outside of the child object and the boundaries of the grid cell.

• Width and Height: Fixed values measured in pixels (device-independent units that are
approximately 1/96 inch). You can set these properties to Auto so that child objects will
automatically resize depending on the sizing of the parent panel.

The printed page really does not do justice to viewing how these settings configure child
items, so let’s add an InkCanvas control (named myInkArea) to the bottom row of the Grid.
Locate this component in the Assets library and double-click it. By default, any item added to a
grid via a double-click will be added to the first row and column. Select this object and drag it
into the second row, and stretch it out so that it takes up the entire row (see Figure 4–27).

Figure 4–27. Adding an item to a grid row

Recall from Chapter 1 that the artboard displays red “snaplines” to allow you to easily see
when an item takes up the real estate of its container. Because the InkCanvas has been snapped
to each side of this row, you will see that if you resize the row (or the entire Grid), the InkCanvas
will grow or shrink accordingly (give it a try now). This would be true for any item added to a
grid cell in this manner.

Before you add components to the upper row of the grid layout, take a look at the Layout
section of the Properties panel for the selected InkCanvas, as shown in Figure 4–28. Notice that
the Layout section allows you to control margins, height, and width (which are now set to Auto,

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 144

as we have snapped to our parent), and also allows you to manually specify in which row and
column to place the item (assuming the item is indeed in a Grid). Take a few minutes to tinker
with these settings, and notice how the InkCanvas’s layout changes (and then press Ctrl+Z so
that you are back to the original design).

Figure 4–28. The Layout section allows you to position an item in the parent layout manager.

Creating a Grid Splitter
Many Grid objects are designed to be invisible at runtime, meaning the user will never see the
sets of rows and columns (however, if you do want to show these gridlines, you can set the
ShowGridLines property to true). Even if the end user cannot see every row and column of a
Grid layout manager, it is very common for a grid to supply visible splitters that allow the user to
resize rows and columns.

To illustrate how to add this functionality to the current layout, locate the GridSplitter
control within the Assets library and then select it for use. Now, the trick here is that when you
draw an instance of the GridSplitter on your artboard, you want to snap it on to the row or
column you wish to make resizable. In Figure 4–29, notice that I have made a slightly thicker
GridSplitter with a blue background (and that I also set the Background color of the InkCanvas
to a light shade of orange).

Figure 4–29. Adding a GridSplitter to the Grid object

If you were to run the application right now, you would find that you can draw on top of
the ink area with the mouse, and also resize the rows of the grid using your grid splitter. When

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 145

you do so, the InkCanvas object will grow in height (not bad for a few lines of markup; see Figure
4–30).

Figure 4–30. The resizable InkCanvas area

Adding a Nested StackPanel
To complete this first tab, we will add a few controls to the upper area of the Grid that will allow
the user to change the color of ink and the size of the ink pen. Add a StackPanel to the upper
row of the Grid and, once again, snap it to all four sides so that it fills the entire area. Set the
Orientation property of this StackPanel to Horizontal, and then add three Button controls
(named btnRed, btnGreen, and btnBlue) and one TextBox control (named txtPenSize) with a
Label control holding some descriptive text. Figure 4–31 shows a possible layout (I added some
spacing between each control by changing the Margin property values for each item in the
StackPanel).

Figure 4–31. A nested StackPanel of controls

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 146

To simplify how we will change colors, make sure that the Content property for each Button
is a textual value representing a known solid color (here, Red, Green, and Blue). Handle the Click
event for each Button control, using the Properties panel, and specify a method named
ChangeColor each time. Implement this method as so:

private void ChangeColor(object sender, System.Windows.RoutedEventArgs e)
{
 // Get the string value in the Button which was clicked.
 string colorToUse = ((Button)sender).Content.ToString();

 // Now set the color by converting the string to
 // solid color.
 this.myInkArea.DefaultDrawingAttributes.Color =
 (Color)ColorConverter.ConvertFromString(colorToUse);
}

To complete this first tab, handle the LostFocus event of your TextBox. Within the
implementation of this method, use the value in the TextBox to set the height and width of the
pen:

private void txtPenSize_LostFocus(object sender,
 System.Windows.RoutedEventArgs e)
{
 try
 {
 // Change the height and width of the pen
 // based on the data in the text box.
 this.myInkArea.DefaultDrawingAttributes.Height =
 int.Parse(txtPenSize.Text);
 this.myInkArea.DefaultDrawingAttributes.Width =
 int.Parse(txtPenSize.Text);
 }
 catch
 {
 this.Title = "Bad Pen Size Value!";
 }
}

Now, run your program! You should be able to set the pen’s size and color to render out
strokes (see Figure 4–32).

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 147

Figure 4–32. Rendering data on the InkCanvas

That wraps up the first of our three tabs. At this point, hopefully, you feel more comfortable
configuring Grid objects and StackPanel objects and populating containers with controls. At the
same time, you learned a bit about the WPF Ink programming model.8 Next up, let’s examine
some more-elaborate editing tools you may encounter.

Introducing the WPF Document API9
The first tab of this example uses controls that are simple to configure. Even if you were to add
custom content, the Blend IDE makes things fairly straightforward. However, there are a
number of controls that require much more sophisticated editors, as they expose internal
collections of other objects. It would be quite impractical to attempt to show every editor of
every control, so the next tab will work with the WPF Document API, which will serve as a good
example.

When you need to display simple blurbs of text, the WPF Label, TextBox, TextBlock, and
PasswordBox controls fit the bill. While they are certainly useful, some WPF applications require
the use of sophisticated, highly formatted text data, similar to what one might find in an Adobe
PDF file. The WPF Document API provides such functionality; however, it does not use the PDF
file format, but rather uses the XML Paper Specification (XPS) format.

Using the Document API, you can construct a print-ready document using a number of
classes from the System.Windows.Documents namespace. Here you will find a number of types

8 The Ink API is much more feature rich than shown in this simple example. If you are interested in
exploring this topic in greater detail, consult the .NET Framework/Silverlight documentation.

9 Remember, the Silverlight API does not support a similar “documents” API.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 148

that represent pieces of a rich XPS document, such as List, Paragraph, Section, Table,
LineBreak, Figure, Floater, and Span.

Block Elements and Inline Elements
Formally speaking, the items you add to an XPS document belong to one of two broad
categories. First we have block elements. Examples of block elements include List, Paragraph,
BlockUIContainer, Section, and Table. Classes from this category are used to group together
other content (e.g., a list containing paragraph data, a paragraph containing subparagraphs for
different text formatting, and so on).

The second category, inline elements, includes elements that are nested within another
block item (or possibly another inline element inside of a block element). Some common inline
elements include Run, Span, LineBreak, Figure, and Floater.

As you can tell, these classes have been named using terms that you might encounter when
building a rich document with a professional editor. Like any other WPF control, these classes
can be configured in XAML or via code. Therefore, you could declare an empty <Paragraph>
element that is populated at runtime (you’ll see how to do such tasks in this example).

Document Layout Managers
Unlike what you might be thinking, you do not simply place inline and block elements directly
into a panel container such as a Grid. Rather, you need to wrap them in a <FlowDocument>
element or a <FixedDocument> element.

Items in a FlowDocument are ideal when you wish to have your end user change the way the
data is presented on the computer screen, by zooming text or changing how it is presented (a
single long page, a pair of columns, etc.). FixedDocument is better used for true print-ready
(WYSIWYG), unchangeable document data.

For our example, we will concern ourselves only with the FlowDocument container. Once you
have inserted inline and block items into your FlowDocument, it is placed in one of four
specialized XPS-aware layout managers, listed in Table 4–2.

Table 4–2. XPS Control Layout Managers

Panel Control Meaning in Life

FlowDocumentReader Displays data in a FlowDocument and adds support for zooming,
searching, and layout of content in various forms.

FlowDocumentScrollViewer Displays data in a FlowDocument, but the data is presented as a
single document viewed with scrollbars. This container does not
support zooming, searching, or alternative layout modes.

RichTextBox Displays data in a FlowDocument, and adds support for user editing.

FlowDocumentPageViewer Displays a document page by page, only one page at a time. Data
can also be zoomed, but not searched.

The most feature-rich way to display a FlowDocument is to wrap it within a
FlowDocumentReader manager. When you do, the user can alter the layout, search for words in
the document, and zoom the data using the provided zoom UI. The one limitation of this

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 149

container (as well as FlowDocumentScrollViewer and FlowDocumentPageViewer) is that the data
they display is read-only. However, if you do want to allow the end user to enter new
information into the FlowDocument, you can wrap it in a RichTextBox control.

Creating a ToolBar Control
Click the Documents API tab of your TabItem via the Blend artboard to activate this tab for
editing. You should already have a default Grid control as the direct child of the TabItem control;
however, change it to a StackPanel using the Objects and Timeline panel (recall, you can right-
click any layout manager node and select the Change Layout Type menu option).

The first item in this StackPanel will be a custom ToolBar control that has two Button
controls. Locate the ToolBar control in the Assets library and add one instance to the selected
StackPanel. The WPF ToolBar control can be configured to contain any number of controls.
When you want to add a control via the Blend IDE, you may do so by locating the Items
property and clicking the “...” button, as indicated in Figure 4–33.

Figure 4–33. Populating a ToolBar

From the resulting dialog box, click the “Add another item” button (located at the bottom) to
launch a second dialog box in which you can find a control by name. This same “Add another item”
button has a drop-down list that shows some of the more common options (see Figure 4–34).

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 150

Figure 4–34. Adding objects to a control’s Items collection

Use this editor to add two Button controls. Once you have done so, you will notice that each
item can be selected and edited within this dialog box (see Figure 4–35).

Figure 4–35. Editing objects in a control’s Items collection

Feel free to tinker with the settings of each Button control, but for this example, set the
Content properties to the values shown in the following XAML:

<Button BorderBrush="Green" Content="Save Doc"/>
<Button BorderBrush="Green" Content="Load Doc"/>

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 151

Switch back to the designer, open the Assets library, and locate the FlowDocumentReader
control. Place it into your StackPanel, rename it to myDocumentReader, and stretch it out over the
surface of your StackPanel. At this point, your layout should look similar to Figure 4–36.

Figure 4–36. The layout of the Documents API tab

Select your FlowDocumentReader control in the Objects and Timeline panel and locate the
Miscellaneous category of the Properties panel. Click the New button next to the Document
property. Once you do, your XAML will be updated with an empty <FlowDocument>:

<FlowDocumentReader x:Name="myDocumentReader" Height="269.4">
 <FlowDocument/>
</FlowDocumentReader>

At this point, we can add document classes (again, such as List, Paragraph, Section, Table,
LineBreak, Figure, Floater, and Span) to the element. Let’s do this very thing next.

Populating a FlowDocument
As soon as you add a new document to a document container, the Document property in the
Properties panel becomes expandable and displays a ton of new properties that allow you to
build the design of your document. For our example, the only property we are concerned with
is the Blocks (Collection) property (see Figure 4–37).

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 152

Figure 4–37. A FlowDocument can be populated using the Blocks (Collection) property.

Click its corresponding … button, and, using the “Add another item” button of the
resulting dialog box, insert a List, Paragraph, and Section (see Figure 4–38).

Figure 4–38. Adding blocks

You can edit each of these using the Blocks editor. Furthermore, a given block can contain
related subblocks. For example, if you select your Section, you can add a Paragraph subblock. I

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 153

configured my Section with a specific background color, foreground color, and font size, and
inserted a sub Paragraph (see Figure 4–39).

Figure 4–39. Configuring blocks

Go ahead and configure your Section as you wish, but leave the List and original Paragraph
empty, as we will drive them through code. Here is one possible configuration of the
FlowDocument within the FlowDocumentReader:

<FlowDocumentReader x:Name="myDocumentReader"
 Height="339.4" Margin="0,0,8,0">
 <FlowDocument>
 <Section Foreground = "Yellow" Background = "Black">
 <Paragraph FontSize = "20">
 Here are some fun facts about the WPF Document API!
 </Paragraph>
 </Section>
 <List />
 <Paragraph />
 </FlowDocument>
</FlowDocumentReader>

If you run your program now (remember, just press the F5 key), you should already be able
to zoom your document (using the lower-right slider bar), search for a keyword (using the
lower-left Search editor), and display the data in one of three manners (using the layout
buttons). In Figure 4–40, notice I searched for the text “WPF” and zoomed my document in a
larger scale.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 154

Figure 4–40. Manipulating our FlowDocument with the FlowDocumentReader

Before moving to the next step, you might want to edit your XAML to use a different
FlowDocument container, such as the FlowDocumentScrollViewer or a RichTextBox, rather than
the FlowDocumentReader. Once you have done so, run the application again and notice the
different ways the document data is handled. Be sure to roll back to the FlowDocumentReader
type when you are done.

Populating a FlowDocument Using Code
Although this book is focused on Blend as a tool, it is important to know that all document
elements can be driven through code. Now, let’s build our List block and the remaining
Paragraph block in code. The ability to populate documents in code is certainly important, as
you may need to populate a FlowDocument based on user input, external files, database
information, or what have you. Before we do so, use the XAML editor of Blend to give the List
and Paragraph elements proper names, so we can access them in code:

<List x:Name="listOfFunFacts"/>
<Paragraph x:Name="paraBodyText"/>

In your code file, define a new method named PopulateDocument(). This method will first
add a set of new ListItems to the List, each of which will have a Paragraph with a single Run.
Then, this helper method will dynamically build a formatted paragraph, using three separate
Run objects. Here is the code (which you are free to copy and paste from the downloadable
solution):

private void PopulateDocument()
{
 // Add some data to the List item.
 this.listOfFunFacts.FontSize = 14;

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 155

 this.listOfFunFacts.MarkerStyle = TextMarkerStyle.Circle;
 this.listOfFunFacts.ListItems.Add(new ListItem(new
 Paragraph(new Run("Fixed documents are for WYSIWYG print ready docs!"))));
 this.listOfFunFacts.ListItems.Add(new ListItem(
 new Paragraph(new Run("The API supports tables and embedded figures!"))));
 this.listOfFunFacts.ListItems.Add(new ListItem(
 new Paragraph(new Run("By default Flow documents are read only!"))));
 this.listOfFunFacts.ListItems.Add(new ListItem(
 new Paragraph(new Run
 ("BlockUIContainer allows you to embed WPF controls"))));

 // Now add some data to the Paragraph.
 // First part of sentence.
 Run prefix = new Run("This paragraph was generated ");

 // Middle of paragraph.
 Bold b = new Bold();
 Run infix = new Run("dynamically");
 infix.Foreground = Brushes.Red;
 infix.FontSize = 30;
 b.Inlines.Add(infix);

 // Last part of paragraph.
 Run suffix = new Run(" at runtime!");

 // Now add each piece to the collection of inline elements
 // of the Paragraph.
 this.paraBodyText.Inlines.Add(prefix);
 this.paraBodyText.Inlines.Add(infix);
 this.paraBodyText.Inlines.Add(suffix);
}

Make sure you call this method from your window’s constructor:

public MainWindow()
{
 this.InitializeComponent();

 // Insert code required on object creation below this point.
 PopulateDocument();
}

Once you add this code, you can run the application and see your new dynamically
generated document content.

Saving and Loading Document Data
So far, so good. However, we still need to address the two buttons on our toolbar for the
Documents API tab. Use the Properties panel to handle the Click event for each Button object,
specifying a unique method name each time. In your Window’s code file, import the following
two .NET namespaces, which will give you access to the file I/O objects as well as the
XamlReader and XamlWriter objects (which we will need to save and load the document data):

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 156

using System.IO;
using System.Windows.Markup;

Now, to save the document data, all you need to do is create an XAML file to store the
document’s contents. The Document property of the FlowDocumentReader gives you the markup
that represents the data itself:

private void btnSaveDoc_Click(object sender,
 System.Windows.RoutedEventArgs e)
{
 using(FileStream fStream =
 File.Open("documentData.xaml", FileMode.Create))
 {
 XamlWriter.Save(this.myDocumentReader.Document, fStream);
 }
}

Loading document data is also very simple; just reverse the basic operation:

private void btnLoadDoc_Click(object sender, System.Windows.RoutedEventArgs e)
{
 using(FileStream fStream = File.Open("documentData.xaml", FileMode.Open))
 {
 try
 {
 FlowDocument doc = XamlReader.Load(fStream) as FlowDocument;
 this.myDocumentReader.Document = doc;
 }
 catch(Exception ex) {MessageBox.Show(ex.Message, "Error Loading Doc!");}
 }
}

If you run the application and click the Save button, the XAML document will be saved
under the \bin\Debug directory of the project. If you click the Load button, the same data will be
read and will be used to populate your document with the saved data.

Great! That wraps up tab two, and your introductory look at the WPF Document API. To
wrap up the current chapter, our final tab will introduce you to the role of behavior objects.f
behavior objects.

Introducing Blend Behavior Objects
Any Silverlight or WPF application will be a rich combination of XAML (look and feel) and code
(application functionality). The exact sort of code you author will differ greatly based on the
type of project under construction. You may need to author code to communicate with a
remote WCF service,10 read data from a relational database, generate dynamic content at
runtime, or whatnot. While it is true that a core code base for an application is sure to be
unique, there are a number of common situations that tend to be part of many graphically
intensive applications.

For example, many WPF and Silverlight programs need to allow the user to relocate an item
via a drag-and-drop operation, or maybe you need to play sound files based on various
situations (menu item selection, clicking an element, etc.). Perhaps you are creating a UI that
uses data binding operations (see Chapter 6) and you want different storyboard animations to
execute when the data source is updated. While you could author custom C# or VB code to

10 Windows Communication Foundation (WCF) is a .NET API that allows you to make remote method calls
using a variety of different protocols (HTTP, TCP, named pipes, etc.).

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 157

account for such situations, the Blend SDK provides a variety of out-out-of-the-box behavior
objects that take care of such commonplace coding tasks.

A behavior object is nothing more than a component that can be added to a tree of XAML
and that manipulates another, related UI element. Internally, behaviors are true classes defined
in a .NET library, and therefore any behavior can also be driven in code.11

A majority of these built-in behaviors are bundled in the
Microsoft.Expression.Interactivity.dll library, and a reference to this library is
automatically added to your Blend projects when you use them (if you wish to work with
behavior objects within Visual Studio 2010, you will need to reference this library manually).
Table 4–3 documents some (but not all) behaviors that ship with the Blend SDK, grouped by
related functionality.

Table 4–3. Sample of Behaviors Provided by the Blend SDK

Behavior Object Meaning in Life

FluidMoveBehavior This behavior (which works in conjunction with a few related
objects) allows you to control animations and transition effects
(termed fluid behaviors) between UI objects.

ControlStoryboardAction This behavior (shown in Chapter 3) allows you to start, stop, or
pause a storyboard animation without the need to author
procedural code.

CallMethodAction
ChangePropertyAction
InvokeCommandAction

These behaviors allow you to change an object’s property, call a
method on an object, or trigger a command12 via XAML.

GoToStateAction This behavior allows you to transition to a new state defined via the
Visual State Manager. This is common when building custom
templates (see Chapter 5).

PlaySoundAction This behavior allows you to define a sound clip to play under
various conditions.

DataStateBahavior
SetDataStoreValueAction

These behaviors allow you to control how visual states are applied
when a data binding operation occurs. You’ll examine data binding
techniques in Chapter 6.

MouseDragElementBehavior This behavior allows the user to move an element within the
containing layout manager.

ActivateStateAction
NavigateToScreenAction
NavigateBackAction
NavigateForwardAction

These (and other) behaviors allow you to define a navigational
structure when building a Blend SketchFlow prototype (see Chapter 8).

11 It is also possible to create custom behavior classes; however, that topic is outside the scope of this text.

12 Command objects are classes that implement the ICommand interface, and can be used to incorporate
common user commands (such as copy, cut, paste) into an application without authoring a ton of code.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 158

Remember that each of these behavior objects maps to a class type, and therefore each
behavior supports a number of properties, methods, and events, many of which can be
configured with the Properties panel just like a UI control. You will see various behaviors at
work throughout the rest of this book; however, you should know that each behavior object is
fully described within the Expression Blend SDK for WPF User Guide help system, which can be
launched via the Expression Blend Help menu.

■ Note Remember, the Blend SDK for WPF User Guide help system is different from the Blend User Guide

help system!

Once you have opened this help system, you will find details on each of the intrinsic
behaviors, and examples on how to configure them (see Figure 4–41).

Figure 4–41. All behaviors are documented in the Blend SDK for WPF User Guide.

Like other components, you can locate behavior objects within the Blend IDE by using the
Assets library. Figure 4–42 shows the Behaviors category of this panel.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 159

Figure 4–42. Behavior objects can be found within the Assets library.

The MouseDragElementBehavior Object
To complete our example application, and illustrate how useful behaviors can be, open the
third tab on the Blend artboard for editing. Next, render on the designer a geometry of your
choosing (I’ll be using the hexagon shape, located in the Shapes category of the Assets library)
and set up any basic property settings (colors, etc.). Next, select the MouseDragElementBehavior
component in the Assets library and drag it onto your rendered shape.

■ Note As a friendly reminder, the Assets library icon (>>) on the Tools panel will disappear once you make a

selection, and the selected item will appear at the bottom of the Tools panel. As mentioned earlier in this book, I

prefer using the Assets panel, as it can be selected and will remain on the screen. The Assets panel makes

working with behavior objects much easier (as you typically drag and drop behaviors on the artboard).

As the name implies, this behavior object can be used to easily enable drag-and-drop
functionality for an element in your application without the need to handle a set of mouse
events, calculate hit testing, or author complex code to reposition the item in the parent
container. If you examine the Objects and Timeline panel, you should see that the
MouseDragElementBehavior component is a child of the target geometry.

Select this behavior node, and then examine the Properties panel. This particular behavior
object has a single setting, named ConstrainToParentBounds. When this property is checked, the
behavior object will automatically make sure that the item cannot be dragged outside of the
bounds of the parent layout manager (see Figure 4–43).

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 160

Figure 4–43. Each behavior object supports its own unique configuration properties.

Now, run your program, and verify you can move your shape around the grid. I am sure
you can imagine how useful this behavior could be in a wide variety of projects. You might
build a Silverlight shopping cart application and use this behavior to enable the user to drag
items to a checkout graphic. You could also use it when building an interactive video game,
multimedia application, or what have you.

There is one caveat with this particular behavior object: it cannot be applied to objects that
support a Click event. Therefore, if you want to allow the user to drag and drop a UI control
(such as a Button), you have a bit of extra work to do. Specifically, you need to wrap the UI
control into a Border object, and then apply the MouseDragElementBehavior component to the
Border, not the child control.

To test this first-hand, add a Button to your artboard, and then right-click the element to
group it in a Border container (see Figure 4–44). Use the Properties panel to change the
BorderThickness property to the value of 3 on all four sides, and pick a unique color for the
BorderBrush property. Once you add a new MouseDragElementBehavior component to the
Border, you will be able to move the Button around the grid at runtime (see Figure 4–45).

Figure 4–44. Dragging “clickable” objects requires that you wrap them in a Border control.

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 161

I also configured my Border control to use a hand icon when the mouse cursor is over the
control, to give the user a clear signal that the contained Button control can be relocated (if you
wish to do so, just set the Cursor property to one of the available options).

Figure 4–45. Relocating UI elements—no code required!

■ Source Code The WpfControlsApp project can be found under the Chapter 4 subdirectory.

That wraps up your examination of leveraging Blend to build control layout systems and
incorporating controls and behavior objects into your applications. You will see other behavior
objects (and controls) at work in the remaining chapters; at this point, I hope you feel more
comfortable navigating the Expression Blend IDE when designing GUIs.

Summary
This chapter opened by examining two WPF and Silverlight programming models, specifically
the control content model and the items control model. As you learned, both of these models
allow you to create UI elements that have customized internal data.

During the first few examples, you were introduced to a few layout managers. The next part
of the chapter took a deeper look at how the Blend IDE can facilitate the construction of
complicated content layout using numerous layout tools. For example, recall that the artboard
can be used to construct a Grid object with various rows and columns. As well, you learned
various ways that Blend allows you to group selected items into new layout managers, learned

CHAPTER 4 ■ CONTROLS, LAYOUTS, AND BEHAVIORS

 162

how to change managers via the Objects and Timeline panel, and learned the role of the
GridSplitter to boot.

The remainder of this chapter had you construct a WPF application that illustrated not only
a number of new controls (TabControl and friends), but also a handful of useful APIs, including
the Ink API, which allows you to capture mouse, stylus, or touch input, and the WPF Document
API, which allows you to construct very sophisticated print-ready documents, similar to an
Adobe PDF document.

Last but certainly not least, you took your first look at behavior objects. Recall that these
elements allow you to quickly incorporate common runtime behaviors into your programs with
little or no procedural code. Here, we looked at the MouseDragElementBehavior object; you will
see additional behaviors in the chapters to come.

 163

C H A P T E R 5
■ ■ ■

Styles, Templates,

and UserControls

In the previous chapter you learned how to create a user interface via Expression Blend and the
WPF and/or Silverlight control libraries. The point of this chapter is to explore a collection of
interconnected topics that allows you to deeply customize how these controls render their final
visual output. The first part of this chapter will examine the WPF and Silverlight style
mechanism. As you may know, styles serve the same general purpose as a web-centric
cascading style sheet, in that both techniques provide a way to ensure that all instances of a
given control (a Button, a TextBox, etc.) share the same property settings (fonts, colors, sizes,
and so forth).

The next topic examined in this chapter is the role of control templates. As you will see,
every WPF and Silverlight control contains a default set of rendering instructions (termed the
default template) that will be used to render its out-of-the-box output. However, you are free to
modify or completely replace this default template with a custom set of rendering instructions.
Using templates, you can radically change the way a control is rendered, and you can do so
without the need to author any procedural code. Along the way, you will learn how to use
triggers and the Visual State Manager (VSM) to define how a template should change its
appearance when various visual states occur (for example, when it gets focus, when the mouse
is over its boundaries, when it is clicked, etc.).

The chapter wraps up by examining the role of custom UserControl classes, which allow
you to build new custom WPF and Silverlight controls that are based on existing UI elements.
Not too surprisingly, custom UserControl classes also typically use styles, templates, triggers,
and the VSM to complete their implementation.

■ Note Building styles, templates, and UserControls requires that you are comfortable with a number of

topics, including graphics, animations, and logical resources. See Chapters 2 and 3 for details on these topics.

The Role of Styles
When you are building the UI of a WPF or Silverlight application, commonly you’ll want a
family of controls to have a shared look and feel. For example, you may wish to ensure that all
Button objects have the same height, width, background color, and font size for their textual

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 164

content. If all UI elements are located on a single container (such as a Window or UserControl),
you could quickly establish a common look and feel by selecting each control on the artboard
(via a standard Ctrl+click operation) and then using the Properties panel to assign the various
UI settings to all selected items.

While you could set each Button’s individual properties to identical values using this
technique, this approach certainly makes it difficult to implement changes down the road, as
you would need to reset the same batch of properties on multiple objects for every change.1 The
shortcomings of this approach are very evident when some properties have been set to complex
objects (such as a custom brush). Consider for example how painful life would be if you needed
to replicate the following settings for ten different Button controls in a multi-windowed WPF
application:

<!-- Yuck. Too much markup to repeat! -->
<Button Content="OK" Width="100" Height="30"
 FontFamily="Arial Rounded MT Bold" FontSize="16">
 <Button.Background>
 <LinearGradientBrush EndPoint="0,1" StartPoint="0,0">
 <GradientStop Color="#FFF3F3F3" Offset="0"/>
 <GradientStop Color="#FFEBEBEB" Offset="0.5"/>
 <GradientStop Color="#FFDDDDDD" Offset="0.5"/>
 <GradientStop Color="#FF3620CE" Offset="1"/>
 </LinearGradientBrush>
 </Button.Background>
</Button>

Thankfully, WPF and Silverlight both offer a simple way to constrain the look and feel of
related controls, by using styles. Simply put, a style is an object that maintains a collection of
property/value pairs. Programmatically speaking, an individual style is represented using the
System.Windows.Style class. This class has a property named Setters, which exposes a strongly
typed collection of Setter objects. It is the Setter objects that allow you to define the
property/value pairs.

In addition to the Setters collection, the Style class also defines a few other important
members that allow you to restrict where a style can be applied and even create a new style
based on an existing style (think of that as “style inheritance”). Now, as you would hope, the
Blend IDE does provide a way to help automate the creation (and editing) of styles. However,
before examining how to use these helpful shortcuts, let’s briefly examine how a basic style
could be constructed manually.

Creating a Simple Style by Hand
If you’d like to follow along, launch Expression Blend and create a new WPF application project
named WpfStyleByHand.2 While you could embed a style directly within a control, in almost
every case, a Style object will be packaged as an object resource (see Chapter 2). Like any object
resource, you can package it at the Window (or UserControl) level, the application level (in
App.xaml), as well as within a dedicated resource dictionary (which is great because it makes the
Style objects easily accessible throughout multiple projects).

1 Additionally, this Blend IDE trick does little to help you when the controls you are trying to set are located
in multiple locations (for example, five different WPF Window objects) within a project.

2 The markup for this example would be similar, but not identical, for a Silverlight application. Be aware
that XAML used for WPF and Silverlight styles is not 100 percent identical. Thankfully, when you are
building styles using the Blend editors, the IDE will generate the proper XAML based on your API of choice.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 165

Recall that the ultimate goal is to define a Style object that fills (at minimum) the Setters
collection with a set of property/value pairs. Let’s build a style that captures the basic font
characteristics of a control in our application. Open your App.xaml file, and define the following
style (identified by the key, BasicControlStyle) using the Blend XAML editor:3

<Application
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="WpfStyleByHand.App"
 StartupUri="MainWindow.xaml">

 <!-- This is a very simple style which can be applied
 to any control. -->
 <Application.Resources>
 <Style x:Key ="BasicControlStyle">
 <Setter Property = "Control.FontSize" Value ="14"/>
 <Setter Property = "Control.Height" Value = "40"/>
 <Setter Property = "Control.Cursor" Value = "Hand"/>
 </Style>
 </Application.Resources>
</Application>

Notice that this style adds three Setter objects to the internal Setters collection. Here, our
style ensures that a control that adopts this look and feel will have a font size of 14, a height of
40, and display a hand icon if the mouse cursor is within the control’s boundaries. Next, let’s
apply this style to a few controls on the artboard.

Assigning a Control’s Style Property
First, open the artboard for your initial Window and place a Label control and a Button control
anywhere within the Grid layout manager. Make sure you set the Content property of each
control to a unique textual value, something such as the following:

<Grid x:Name="LayoutRoot">
 <Button Content="My Button" ... />
 <Label Content="Some Simple Text" ... />
</Grid>

Next, select both controls on the artboard via a Ctrl+click operation, and search the
Properties panel for the Style property located under the Miscellaneous category (remember,
you can always use the Search area of the Properties panel to quickly find a property or event).
Once you have found the Style property, click the Advanced options button (the small square
to the right of the property text area) and locate your application-level resource, specifically
BasicControlStyle (see Figure 5–1).

3 If you are creating this example with Silverlight, your opening <Style> declaration must add the
TargetType="Control" attribute. See the section “Constraining a Style with TargetType” later in this
chapter for more details.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 166

Figure 5–1. The Style property is located under the Miscellaneous category of the Properties panel.

Once you have selected BasicControlStyle, you should see that both controls on the
artboard are updated accordingly. If you run the application, you will also notice the mouse
cursor will change to a Hand cursor when it is within the boundaries of either control.
Furthermore, if you examine the generated markup, you will see that the Style property has
been set to your custom style via the {DynamicResource}4 markup extension (a Silverlight
application would use {StaticResource}):

<Grid x:Name="LayoutRoot">
 <Button Content="My Button" ...
 Style="{DynamicResource BasicControlStyle}"/>
 <Label Content="Some Simple Text" ...
 Style="{DynamicResource BasicControlStyle}"/>
</Grid>

Also take a moment to view the Style property within the Properties panel. You’ll notice
this property is now surrounded with a green bounding box (see Figure 5–2). By convention, all
properties that have been assigned to a named object resource (such as a custom style) will be
marked in this manner, serving as a useful visual reminder during the development process.

4 The {DynamicResource} markup extension ensures that if the resource changes at runtime, the objects
using the resource are automatically updated. Also recall that {DynamicResource} is only supported under
WPF.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 167

Figure 5–2. Properties bound to object resources are outlined by a green border.

Overriding Style Settings
Currently, we have a Button and a Label that have both opted to use the constraints enforced by
our style. Of course, if you want a control to apply a style and then change some of the defined
settings, that is fine. For example, you can update your Button to use the Help cursor (rather
than the Hand cursor defined in the style):

<Button Content="My Button" Cursor="Help" ...
 Style="{DynamicResource BasicControlStyle}"/>

The point to be aware of here is that styles are processed before the individual property
settings of the control using the style, so controls can “override” settings on a case-by-case
basis.

Constraining a Style with TargetType
Currently, our style is defined in such a way that any control can adopt it by setting the Style
property. This is due to the fact that each property specified in a <Style> element has been
qualified by the Control class;5 for example:

<Setter Property = "Control.Height" Value = "40"/>

For a style that defines dozens of settings, this approach would entail a good amount of
repeated markup. One way to clean up this style a bit is to use the TargetType attribute. When
you add this attribute to the start tag of a Style’s element, you can mark exactly once where it
can be applied. Consider the following reworking of BasicControlStyle:

<Style x:Key ="BasicControlStyle" TargetType="Control">
 <Setter Property = "FontSize" Value ="14"/>
 <Setter Property = "Height" Value = "40"/>
 <Setter Property = "Cursor" Value = "Hand"/>
</Style>

■ Note Silverlight styles must always be created using the TargetType attribute. Only WPF allows you to

prefix the class name to the property being specified in a <Setter> element.

5 The Control class is a common parent for all GUI controls. This is true for both WPF and Silverlight
applications.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 168

This is somewhat helpful, but we still have a style that can apply to any control. Use of the
TargetType attribute is more useful when you truly wish to define a style that can be applied
only to a particular type of control. To illustrate, add the following new style (named
BigGreenButton) to the application’s resource dictionary:

<!-- This style can only be applied to Button controls -->
<Style x:Key ="BigGreenButton" TargetType="Button">
 <Setter Property = "FontSize" Value ="20"/>
 <Setter Property = "Height" Value = "100"/>
 <Setter Property = "Width" Value = "100"/>
 <Setter Property = "Background" Value = "DarkGreen"/>
 <Setter Property = "Foreground" Value = "Yellow"/>
</Style>

This style will work only on Button controls (or a subclass of Button),6 and if you apply it on
an incompatible element, you will get markup and compiler errors. However, if the Button uses
this new style as follows, we would see the output shown in Figure 5–3.

<Button Content="Button!" ...
 Style="{DynamicResource BigGreenButton}"/>

Figure 5–3. A slightly more interesting style for Button controls

■ Note When you are building a style for a specific target type, you needn’t be concerned if you assign a value

to a property that is not supported by the target. If the target type does not support a given property, it is ignored.

Subclassing Existing Styles
It is also possible to build new styles using an existing style as a starting point, via the BasedOn
attribute. The style you are extending must have been given a proper x:Key in the dictionary, as
the derived style will reference it by name using the {StaticResource} markup extension.

6 If you want a style that applies to all kinds of buttons (i.e., Button, ToggleButton, RepeatButton, etc.),
you can set TargetType to "ButtonBase".

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 169

■ Note The BasedOn property cannot be set using the {DynamicResource} markup extension. You must use

{StaticResource} for both WPF and Silverlight projects when creating a derived style.

Here is a new style, TiltButton, based on BigGreenButton, that rotates the Button element
by 20 degrees using a <RotateTransform> element:

<!-- This style is based on BigGreenButton -->
<Style x:Key ="TiltButton" TargetType="Button"
 BasedOn = "{StaticResource BigGreenButton}">
 <Setter Property = "Foreground" Value = "White"/>
 <Setter Property = "RenderTransform">
 <Setter.Value>
 <RotateTransform Angle = "20"/>
 </Setter.Value>
 </Setter>
</Style>

Assuming you had defined this new style in your App.xaml file, you would find the output
shown in Figure 5–4 when a Button control uses this style.

Figure 5–4. An even more interesting style for Button controls

Defining Default Styles
So far, so good. However, now assume you need to ensure that all TextBox controls within a
given project must have the same look and feel. Also assume that you have defined a TextBox
style as an application-level resource, so all windows in the program have access to it. While
this is a step in the right direction, if you have numerous windows, with numerous TextBox
controls, you will need to set the Style property numerous times!

WPF and Silverlight styles can be implicitly applied to all controls within a given XAML
scope. To create such a style, you must use the TargetType property, but you omit assigning to
the Style resource an x:Key value. This “unnamed style” will now apply to all controls that are
of the correct type. Here is another application-level style that will apply automatically to all
TextBox controls in the current application:

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 170

<!-- The default style for all text boxes -->
<Style TargetType="TextBox">
 <Setter Property = "FontSize" Value ="14"/>
 <Setter Property = "Width" Value = "100"/>
 <Setter Property = "Height" Value = "30"/>
 <Setter Property = "BorderThickness" Value = "5"/>
 <Setter Property = "BorderBrush" Value = "Red"/>
 <Setter Property = "FontStyle" Value = "Italic"/>
</Style>

Now, because we have defined this style without an x:Key value and have packaged it up in
the application level, the Blend IDE automatically knows this is the default look and feel for any
TextBox you add to the artboard. Give it a try. You’ll see that the style is automatically applied
with no effort on your part. In fact, if you take a minute to examine the generated markup,
you’ll see no trace of the Style property being set on the TextBox objects (after all, it is the
default style).

■ Note If you want to define a control that does not receive the default style of the project, use the XAML editor

to set the Style property to the string value "{x:Null}". This XAML markup extension basically informs the

runtime to completely ignore any default style floating around your project, and to render the object as defined.

As well, you can simply assign a different, keyed style to the control of interest.

As you might imagine, you could package up a full set of custom styles in a dedicated
resource dictionary to define the default property settings for a large number of controls. If you
make sure none of these resources has been named via the x:Key attribute, it becomes very easy
to make sure new WPF or Silverlight projects automatically set controls to the desired styles.
Just add the XAML file to your project, merge it into your application scope (see Chapter 2), and
you are good to go!

Managing Existing Styles Using the Blend IDE
Before wrapping up this first example, open the Resources panel of the Blend IDE. You will
notice that all of your styles are listed, just like any other custom object resource you happen to
define. Figure 5–5 shows the application-level resources for the current example.

Figure 5–5. Styles are listed under the Resources panel.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 171

If you click the Edit Resource button to the right of a given style, you will launch an
integrated editor for the selected style. Once you have opened the editor for a given style, you
are free to use the Properties panel to modify the style’s property settings. Figure 5–6 shows the
editor for the TiltButton style, which has been modified to use a purple background and a
Width value of 200 via the Properties panel.

Figure 5–6. Existing styles can be opened for editing using the Blend IDE.

On a related note, if you view the Styles category of your Assets library, you’ll see that your
custom styles (minus any default styles defined in your project) are listed here as well (see
Figure 5–7). If you drag one of these items onto your artboard, you’ll automatically generate a
control that has the Style property value set to the related resource.

Figure 5–7. You can drag styles from the Assets library to quickly define a styled control.

Sweet! Now that you have a better idea of how styles operate, let’s see how the Blend IDE
can aid in the creation of styles.

■ Source Code The WpfStyleByHand project can be found under the Chapter 5 subdirectory.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 172

Creating New Styles Using Blend
For the next example, we will create a few styles using the Blend IDE, and you will learn some
more advanced style techniques to boot. Here, we will use a WPF application once again, only
because the last part of this example (see the section “Working with WPF Simple Styles”) will
examine a few techniques not supported by Silverlight. If Silverlight is your primary API of
interest, I still recommend you read over this section entirely, as you will find a number of IDE
techniques common to both platforms.

In any case, create a new WPF application project named WpfStylesWithBlend. Building a
custom style with Blend typically begins by placing an instance of the to-be-styled control on
your artboard. You could pick from the Assets library any control you wish to tinker with, but
for this example, I recommend you pick a simple control such as the Button. If you pick a more
exotic control (such as the Calendar control or TreeView control), the generated style starter
markup could be quite verbose.

Creating a New Empty Style
Select your control (which, again, I’ll assume is a Button type for this example) on your artboard
or, if you choose, via the Objects and Timeline panel. Next, choose Object ➤ Edit Style (see
Figure 5–8).

Figure 5–8. The Object menu is your starting point to create styles with Blend.

The Object ➤ Edit Style menu provides three primary options, which may or may not be
enabled depending on how the control you are working with is currently defined in XAML. In a
nutshell, your choices break down as so:

• Edit Current: If this option is enabled, you can edit the style currently applied to the
selected item. This menu option is disabled if the selected control does not have the
Style property currently set.

• Edit a Copy: This option allows you to get a copy of the currently applied style that
captures the current properties of the selected item.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 173

• Create Empty: This option creates a blank style, where TargetType is assigned based on
the selected item.

■ Note You will also find the Apply Resource option enabled under the Object ➤ Edit Style menu if your project

contains existing style resources. This is another way you can apply styles to selected items on the artboard.

Since the Button we are operating on does not have a custom style currently set, our only
available options are Edit a Copy and Create Empty. For now, select Create Empty. Once you do
so, you will be presented with a dialog box that allows you to give your style a name, or specify
that you want to make a default, unkeyed style, by selecting the “Apply to all” option. As well,
you are asked where you want to store your new object resource. For this example, create a
custom style named firstButtonStyle, stored at the application level (see Figure 5–9).

Figure 5–9. Creating a new named style based on a Button object

Once you click the OK button, a new designer appears for your style, which at this point
looks exactly like an unstyled Button control (see Figure 5–10).

Figure 5–10. Styles can be edited via the Blend artboard and Properties panel.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 174

■ Note Recall that you can always open a style for editing by locating it in your Resources panel and clicking

the Edit resource button to the right of the style.

Your goal is to use the Properties panel to set various properties on the style, just like you
would do if you were setting properties for a particular control instance on a Window or
UserControl. For example, you can use the Brushes editor, the transformation tools, padding
and margin editors, and so forth. Moreover, you could build a style that incorporates
animations (which you will do a bit later in this chapter), uses data binding templates (see
Chapter 6), and uses other items of interest.

■ Note You might recall from Chapter 1 that the content on the artboard can be zoomed in using the mouse

wheel, as well as via the artboard controls. When you are building intricate styles and templates, this will be very

handy.

While you are free to explore the options to your liking, I’ve opted to keep this example
simple. Basically, I’ve edited the original starter markup, which looked like so (recall this was
defined as an application-level resource, so the markup is placed in App.xaml):

<Style x:Key="firstButtonStyle" TargetType="{x:Type Button}"/>

Figure 5–11 shows how I have updated firstButtonStyle using various aspects of the
Properties panel. Don’t worry about making your style look exactly like the control you see here
(for example, you might not have the same fonts installed on your machine). Just take some
time and have a bit of fun, making changes to your style as you see fit.

Figure 5–11. A custom button style created with the Blend style editor

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 175

Once you have finished creating your style, take a moment to view the generated XAML.
Based on how complex your edits were, you could find a good deal of markup. Even my version
of firstButtonStyle (which is not quite ready for mass commercial distribution) yielded the
following XAML based on my settings:

<Style x:Key="firstButtonStyle" TargetType="{x:Type Button}">
 <Setter Property="Background" Value="#FF154BD0"/>
 <Setter Property="BorderBrush" Value="#FFE20C0C"/>
 <Setter Property="FontSize" Value="24"/>
 <Setter Property="FontFamily" Value="Showcard Gothic"/>
 <Setter Property="Foreground">
 <Setter.Value>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF26D096" Offset="0"/>
 <GradientStop Color="#FFEFE710" Offset="1"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property="BorderThickness" Value="5"/>
 <Setter Property="Height" Value="50"/>
 <Setter Property="Width" Value="140"/>
 <Setter Property="FontStyle" Value="Italic"/>
</Style>

At this point, you should find that the original control back on the initial Window has
automatically taken on the updated look and feel (if this is not the case, make sure you have
saved your edits). If you want to add more Button controls that have the same style, simply drag
the style of interest onto your artboard from the Styles category of your Assets library (as shown
earlier, in Figure 5–7). Figure 5–12 shows our main Window object, which now contains a series
of Button objects all using firstButtonStyle.

Figure 5–12. Multiple Button objects with the same style

Working with WPF Simple Styles
So far, you have learned how you can select a control on the artboard and generate an empty
style (or a copy of a style) for editing. In some cases, this approach will be perfect; however,
consider how you would proceed if you had a brand new WPF project and needed to define
custom styles for 20 different controls. For example, maybe you want to make a “theme” for
your application, where each control takes on the look of the current season (a winter theme,
summer theme, etc.). As you might imagine, it would be tedious to drag each control onto the
artboard to extract a style copy.

Thankfully, for WPF projects created with Expression Blend, you can use a full set of Simple
Styles, which can be the starting point for your application’s UI. When you insert Simple Styles

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 176

into your WPF project, the IDE inserts a number of new object resources that you can edit to
your heart’s content. This approach can greatly simplify the construction of styles, as the
generated markup includes numerous important settings that are required for the control to
operate as expected.

To illustrate, open the Assets library (or Assets panel) and expand the Styles category. You’ll
notice a section named Simple Styles (see Figure 5–13).

Figure 5–13. WPF Simple Styles are located in the Assets library.

Select one of these Simple Styles (I’ll be using SimpleSlider) and drag it to your artboard.
Once you do, select the object and resize it so that it displays horizontally over a majority of the
window. At this point, your SimpleSlider looks like any other Slider control (see Figure 5–14).

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 177

Figure 5–14. At first glance, a WPF Simple Style looks like a “normal” control.

However, if you examine the markup, you will see that the Style property has been set to
use the SimpleSlider style:

<Slider Margin="128,0,129.507,55" Style="{DynamicResource SimpleSlider}"
 VerticalAlignment="Bottom"/>

Open the Resources panel of your project. The first thing you will notice is that your
App.xaml resource section has a new Linked To node, which specifies a connection to a new
XAML file named Simple Styles.xaml (see Figure 5–15).

Figure 5–15. The Linked To node denotes that an external XAML file has been merged into an

application.

In terms of XAML, this Linked In node is due to the merging of the external XAML file into
the application’s resource container. If you open the App.xaml file using the markup editor, you
will find the following has been added:

<ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Simple Styles.xaml"/>
</ResourceDictionary.MergedDictionaries>

More importantly, if you return to the Resources panel (make sure your artboard is the
active window in the IDE, or the Resources panel will be empty), you can expand the Simple
Styles.xaml resource set and see that each of the core WPF controls has been replicated. As
well, this file defines a number of additional resources, such as the default brushes used to
paint aspects of the controls (backgrounds, foregrounds, etc.). Notice in Figure 5–16 that these
default brushes can be edited using the integrated Brushes editor.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 178

Figure 5–16. Simple Styles.xaml defines styles and related resources for each core WPF control.

Here I have changed NormalBrush to a shade of red, and lo and behold, the thumb of the
Slider control is repainted accordingly, as shown in Figure 5–17.

Figure 5–17. Changing the brushes of Simple Styles.xaml will alter the controls using the style.

And, of course, if you open a given style for editing using the Resources panel, you can
modify the simple resource even further. Figure 5–18 shows the SimpleSlider opened for
editing.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 179

Figure 5–18. Simple Styles can be edited like any other style.

■ Note As you might guess, there are many online resources that allow developers and graphical artists to

share WPF and Silverlight styles. One of my favorite web sites is www.wpfstyles.com. It provides access to

dozens of free styles that you can download and use within your projects—very helpful for the artistically

challenged (such as myself)!

Viewing Simple Style Markup
Open your Simple Styles.xaml file for viewing using the XAML editor, and take a moment to
examine the markup. By way of an example, locate the SimpleSliderThumb style. Notice that it
contains an embedded <ControlTemplate> element, which itself defines a number of other
oddities, including a set of triggers. Here is some partial markup:

<Style x:Key="SimpleSliderThumb" d:IsControlPart="True"
 TargetType="{x:Type Thumb}">
...
 <ControlTemplate TargetType="{x:Type Thumb}">
 <Grid>
 <Ellipse x:Name="Ellipse" Fill="{DynamicResource NormalBrush}"
 Stroke="{DynamicResource NormalBorderBrush}"
 StrokeThickness="1"/>
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="Fill" Value="{DynamicResource MouseOverBrush}"
 TargetName="Ellipse"/>
 </Trigger>
...
 </ControlTemplate.Triggers>
...

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 180

</Style>

As you can see, these default Simple Styles are more complex than first meets the eye! To
fully understand what is going on with this markup, we next need to examine the role of control
templates. Before we do, however, let me point out that the Expression Blend User Guide
provides an entire section discussing how to add common modifications to the WPF Simple
Styles. Look up the topic “Styling tips for WPF Simple Styles.” As you can see in Figure 5–19, the
help system describes how you could (for example) customize the thumb of the SimpleSlider
style.

Figure 5–19. The Blend User Guide provides numerous tutorials on how to customize WPF

Simple Styles.

■ Source Code The WpfStylesWithBlend project can be found under the Chapter 5 subdirectory.

The Role of Control Templates in Styles
A very basic style is really just a container for common settings for a given control type. While
styles can be useful when you want the style to simply tweak a handful of properties (colors,
font sizes, etc.) of the target control type, the overall rendering of the control remains as is.
Thus, no matter how you stylize a Button, it still looks like a basic rectangle (or maybe a square
if you resize it correctly).

Sometimes, you might want to build a style that not only changes a few common settings of
the target control, but also redefines the shape of the control itself. For example, what if you
wanted a round button style? Or perhaps you have used the Pen or Pencil tool to render an
arbitrary polygon, and wish to use this as the starting point for a new style for a particular
control type?

When you want to create a style that has the power to reshape how the control renders its
defining geometry, you must define a style that contains an embedded control template, which
is represented in XAML using the <ControlTemplate> element. Within this element, you can
define the new control’s look and feel, use layout managers for content, and perform other
common operations.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 181

■ Note While a template is most often part of a larger style, it is possible to define a <ControlTemplate> as a

stand-alone object resource. You can make controls adopt a given template by setting their Template property.

You’ll see this approach in action in the next example.

By default, every WPF and Silverlight control renders its look and feel using its associated
default template. For example, the default template for a Button contains instructions used to
render the default rectangular display we all know and love (the same general idea holds true
for any WPF or Silverlight control). These default templates are packaged up as embedded
XAML resources within the WPF and Silverlight libraries, and therefore cannot be directly
changed. However, as you will see, Blend provides several mechanisms to extract a copy of a
default template for editing.

In addition to defining various instructions regarding how a control should render its
overall appearance, a template also contains instructions regarding how a control should
respond to user interactions and other state changes. By way of a few examples, the default
template of a Button control describes how it should look when it receives focus, when the
mouse clicks within its boundaries, when it is disabled, and so on.

When you define a new template (or modify an existing template), you typically will be
required to supply custom XAML elements that describe how your control will respond to these
same state changes. As you will see over the next several pages, a WPF template can define
visual cues using either of two approaches: triggers or the Visual State Manager (VSM).
Silverlight templates, however, are restricted to the use of the VSM. As you will also see,
Expression Blend has built-in editors to work with each approach.

■ Note The VSM was first introduced with the Silverlight API and is used to incorporate visual cues for a

Silverlight template. Historically, WPF programmers use a similar approach, via triggers. However, with the

release of .NET 4.0, WPF has been updated to support the VSM as well, thereby giving WPF programmers two

ways to add visual cues. You’ll see examples of each approach in the pages to come.

Building a Custom Control Template by Hand
Before we examine the various ways Blend can facilitate the construction of custom templates,
I’d like to show you how to build a simple template by hand. I really can’t think of a better
approach to understanding the nuts and bolts of template creation. Once you have completed
the next example, you’ll create additional templates using the tools of the Blend IDE.

Create a new WPF application project named WpfTemplatesByHand. Once you have done
so, add a single Button to the artboard of your initial Window. Currently, this Button is rendered
using the associated default template, which, as you’ll recall, is an embedded resource within a
given WPF (or Silverlight) library. When you define your own template, you are essentially
replacing this default set of instructions with your own creation.

To begin creating your template, open the XAML editor of your initial Window and update
the definition of the <Button> element to specify a new, embedded template,7 which we will

7 Over the course of this example, we will move the template into the application’s resource dictionary.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 182

modify and improve upon as we proceed. Note that I’ve assigned to the Height and Width
properties the value 100 and deleted the Content property of the Button. The remaining
attributes in the opening <Button> definition can remain as is:

<Button Width="100" Height="100" ... >
 <Button.Template>
 <ControlTemplate>
 <Grid x:Name="controlLayout">
 <Ellipse x:Name="buttonSurface" Fill = "LightBlue"/>
 <Label x:Name="buttonCaption" VerticalAlignment = "Center"
 HorizontalAlignment = "Center"
 FontWeight = "Bold" FontSize = "20" Content = "OK!"/>
 </Grid>
 </ControlTemplate>
 </Button.Template>
</Button>

Here, we have defined a template that consists of a named Grid control containing a
named Ellipse and a Label. Because our Grid has no defined rows or columns, each child
stacks on top of the previous control, allowing us to easily center the content using the
VerticalAlignment and HorizontalAlignment properties. Also notice that the entire
<ControlTemplate> is assigned to the Template property of the Button, via the <Button.Template>
scope.

To further test our template, handle the Click event for the Button using the Properties
panel (remember, the lightening bolt icon is used to select the events for a selected item). In the
generated event handler, add some code to display a simple message box:

private void Button_Click(object sender, System.Windows.RoutedEventArgs e)
{
 MessageBox.Show("You clicked the button!");
}

If you run your application, you will notice that the Click event fires only when the mouse
cursor is within the bounds of the Ellipse (i.e., not in the corners around the edges of the
Ellipse). This is a great feature of the WPF and Silverlight template architecture, because we do
not need to recalculate hit testing, bounds checking, or any other low-level detail. So, if your
template uses a Path object to render some oddball geometry, you can rest assured that the
mouse hit-testing details are relative to the shape of the control, not the larger bounding
rectangle.

Storing Templates as Resources
Currently, our template is embedded within a specific Button control, which limits our reuse
options. Ideally, we would place our template into a resource dictionary so that we can reuse
our “round button template” between projects or, at minimum, move it into the application
resource container for reuse within this project. Let’s move the local Button resource to the
application level. First, locate the Template property for your Button in the Blend Properties
panel. Next, open the advanced settings menu (by clicking the white square to the right of the
property text area) and select Convert to New Resource, as shown in Figure 5–20.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 183

Figure 5–20. Extracting a local resource

In the resulting dialog box, define a new template named RoundButtonTemplate that is
stored as an application resource. At this point, you will find the following data in your App.xaml
file:

<Application
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="WpfButtonTemplate.App"
 StartupUri="MainWindow.xaml">
 <Application.Resources>
 <ControlTemplate x:Key="RoundButtonTemplate"
 TargetType="Button">
 <Grid x:Name="controlLayout">
 <Ellipse x:Name="buttonSurface" Fill = "LightBlue"/>
 <Label x:Name="buttonCaption" VerticalAlignment = "Center"
 HorizontalAlignment = "Center"
 FontWeight = "Bold" FontSize = "20" Content = "OK!"/>
 </Grid>
 </ControlTemplate>
 </Application.Resources>
</Application>

Also note that the original Button has been modified by setting the Template property to
your custom named resource:

<Button HorizontalAlignment="Left" Margin="44,30,0,0"
 VerticalAlignment="Top" Width="100" Height="100"
 Click="Button_Click"
 Template="{DynamicResource RoundButtonTemplate}"/>

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 184

Because this resource is now available for the entire application, we can define any number
of round buttons. Go ahead and add two additional Button controls to your Window’s artboard.
Then, using the Properties panel, set the Template property of each to the RoundButtonTemplate
resource (see Figure 5–21).

Figure 5–21. Setting the Template property

Figure 5–22 shows the end result.

Figure 5–22. Three Button objects using the same template

Incorporating Visual Cues Using WPF Triggers
When you define a custom template, all the visual cues of the default template are removed as
well. Recall that a default template contains markup instructions that inform the control how to
look when certain UI events occur, such as when it receives focus, when it is clicked with the

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 185

mouse, when it is enabled (or disabled), and so on. Users are quite accustomed to these sorts of
visual cues, as they give the control somewhat of a tactile response.

Our RoundButtonTemplate does not define any such markup, so the look of the control is
identical regardless of the mouse activity, focusing, and so forth. Ideally, our control should
look slightly different when clicked (maybe via a color change or reduction in size) to let the
user know the visual state has changed.

When WPF was first released, the way to add such visual cues was to add to the template
any number of triggers that typically would change values of object properties or start a
storyboard animation (or both) when the trigger condition was true.

To illustrate this approach, update your RoundButtonTemplate as shown here, which will
change the background color of the control to blue and the foreground color to yellow when the
mouse cursor is over the surface:

<ControlTemplate x:Key="RoundButtonTemplate" TargetType="Button" >
 <Grid x:Name="controlLayout">
 <Ellipse x:Name="buttonSurface" Fill="LightBlue" />
 <Label x:Name="buttonCaption" Content="OK!" FontSize="20"
 FontWeight="Bold" HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>

 <ControlTemplate.Triggers>
 <Trigger Property = "IsMouseOver" Value = "True">
 <Setter TargetName = "buttonSurface"
 Property = "Fill" Value = "Blue"/>
 <Setter TargetName = "buttonCaption" Property = "Foreground"
 Value = "Yellow"/>
 </Trigger>
 </ControlTemplate.Triggers>

</ControlTemplate>

If you run the program yet again, you should find that the color does toggle based on
whether or not the mouse cursor is within the control’s boundary. Notice that this particular
<Trigger> element is defined such that when the IsMouseOver property is set to True, two target
elements (buttonSurface and buttonCaption) are specified (via TargetName) and changed
accordingly. Don’t stress out too much over this XAML. Most WPF programmers are in
agreement that manually authoring triggers is no fun at all. I’ll show you in just a bit how Blend
can generate trigger logic using the Triggers panel.

Here is another trigger, which will shrink the size of the Grid (and therefore all child
elements) when the control is clicked via the mouse. Add this to your
<ControlTemplate.Triggers> collection, and then run your application to test it.

<Trigger Property = "IsPressed" Value="True">
 <Setter TargetName="controlLayout"
 Property="RenderTransformOrigin" Value="0.5,0.5"/>
 <Setter TargetName="controlLayout" Property="RenderTransform">
 <Setter.Value>
 <ScaleTransform ScaleX="0.8" ScaleY="0.8"/>
 </Setter.Value>
 </Setter>
</Trigger>

So at this point, we have a custom template with a few visual cues incorporated using WPF
triggers. In an upcoming example, you will learn about an alternative way to incorporate visual
cues, using the Visual State Manager. Before we get to that point, however, let’s talk about the
role of the {TemplateBinding} markup extension and the <ContentPresenter> element.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 186

Understanding the Role of {TemplateBinding}
Because our template can be applied only to Button controls, it stands to reason that we could
set properties on the <Button> element that will cause the template to render itself in a unique
manner. For example, the Fill property of the Ellipse currently is hard-coded to be blue, while
the Content property of the Label is always set to the string value "OK!". Of course, we might
want buttons of different colors and textual values, so we might try to define the following
buttons in our main Window:

<Grid x:Name="LayoutRoot">
 <Button Background="Red" Content="Howdy!" ...
 Template="{DynamicResource RoundButtonTemplate}"/>
 <Button Background="LightGreen" Content="Cancel!" ...
 Template="{DynamicResource RoundButtonTemplate}" />
 <Button Background="Yellow" Content="Format" ...
 Template="{DynamicResource RoundButtonTemplate}"/>
</Grid>

However, regardless of the fact that each Button is defined to use unique Background and
Content values, we still end up with three blue buttons that contain the text OK!. The problem is
that the properties of the control using the template (the Button objects) have properties that do
not match identically the properties on the template (such as the Fill property of the Ellipse).
As well, although the Label does have a Content property, the value defined in the <Button>
scope is not automatically routed to the internal child of the template.

We can solve these issues by using the {TemplateBinding} markup extension when we build
our template. This allows us to capture property settings defined by the control using our
template, and use them to set values in the template itself. Here is a reworked version of
RoundButtonTemplate, which now uses this markup extension to map the Background property of
the Button to the Fill property of the Ellipse, as well as to make sure the Content property of
the Button is indeed passed to the Content property of the Label:

<ControlTemplate x:Key="RoundButtonTemplate" TargetType="Button" >
 <Grid x:Name="controlLayout">
 <Ellipse x:Name="buttonSurface"
 Fill="{TemplateBinding Background}"/>
 <Label x:Name="buttonCaption"
 Content="{TemplateBinding Content}"
 FontSize="20" FontWeight="Bold"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
...
</ControlTemplate>

With this update, we can now create buttons of various colors and textual values (see
Figure 5–23).

Figure 5–23. Template bindings allow values to pass through to the internal controls.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 187

Understanding the Role of <ContentPresenter>
When we designed our template, we used a Label to display the textual value of the control. Like
the Button, the Label supports a Content property. Therefore, given our use of
{TemplateBinding}, we could define a Button that contains complex content, beyond that of a
simple string. For example, the following markup results in the control shown in Figure 5–24:

<Button Width="100" Height="100" Background="Yellow"
 Template="{StaticResource RoundButtonTemplate}"
 HorizontalAlignment="Left" ...
>
 <ListBox Height="50" Width="75">
 <ListBoxItem Content="Hello"/>
 <ListBoxItem Content="Hello"/>
 <ListBoxItem Content="Hello"/>
 </ListBox>
</Button>

Figure 5–24. A Button with composite content, used by the current template

For this particular control, things work just as hoped. However, what if you need to pass in
complex content to a template member that does not have a Content property? When you wish
to define a generalized “content display area” in a template, you can use the
<ContentPresenter> class as opposed to a specific type of control (Label or TextBlock).

Although we have no need to do so for this example, here is some markup that illustrates
how we could build a custom template that uses <ContentPresenter> to show the value of the
Content property of the control using the template:

<!-- This button template will display whatever is set
 to the Content of the hosting button -->
<ControlTemplate x:Key="NewRoundButton" TargetType="Button">
 <Grid>
 <Ellipse Fill="{TemplateBinding Background}"/>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 </Grid>
</ControlTemplate>

Incorporating Templates into Styles
Currently, our template simply defines a custom look and feel that a Button control could
adopt. However, the process of establishing the basic properties of the control (content, font
size, font weight, etc.) is the responsibility of the Button itself:

<!-- Currently the Button must set basic property values,
 not the template -->
<Button Content="Yo!" Foreground ="Black" FontSize ="20"

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 188

 FontWeight ="Bold"
 Template ="{StaticResource RoundButtonTemplate}"
 Height="100" Width="100"/>

If you wish to, you can embed your template within a larger style. By doing so, you can
assign values to various properties of the target type, as well as define a custom look and feel.
Here is the final version of our template, which is now embedded within a style. Note that we
have removed the x:Key attribute in the <ControlTemplate> element but have added (and
renamed) our style to RoundButtonStyle in the <Style> scope:

<!-- A style containing a template -->
<Style x:Key ="RoundButtonStyle" TargetType ="Button">
 <Setter Property ="Foreground" Value ="Black"/>
 <Setter Property ="FontSize" Value ="14"/>
 <Setter Property ="FontWeight" Value ="Bold"/>
 <Setter Property="Width" Value="100"/>
 <Setter Property="Height" Value="100"/>
 <!-- Here is our template! -->
 <Setter Property ="Template">
 <Setter.Value>
 <ControlTemplate TargetType ="Button">
 <Grid x:Name="controlLayout">
 <Ellipse x:Name="buttonSurface"
 Fill="{TemplateBinding Background}"/>
 <Label x:Name="buttonCaption"
 Content ="{TemplateBinding Content}"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property = "IsMouseOver" Value = "True">
 <Setter TargetName = "buttonSurface" Property = "Fill"
 Value = "Blue"/>
 <Setter TargetName = "buttonCaption"
 Property = "Foreground" Value = "Yellow"/>
 </Trigger>
 <Trigger Property = "IsPressed" Value="True">
 <Setter TargetName="controlLayout"
 Property="RenderTransformOrigin" Value="0.5,0.5"/>
 <Setter TargetName="controlLayout"
 Property="RenderTransform">
 <Setter.Value>
 <ScaleTransform ScaleX="0.8" ScaleY="0.8"/>
 </Setter.Value>
 </Setter>
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

With this update, we can now create Button controls by setting the Style property as
before:

<Button Background="Red" Content="Howdy!"
 Style="{StaticResource RoundButtonStyle}"/>

While the rendering and behavior of the button is identical before this update, the benefit
of nesting templates within styles is that you are able to provide a canned set of values for

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 189

common properties. That wraps up our look at how to build a template from the ground up.
Next, let’s turn our attention to building templates via the tools of Expression Blend.

■ Source Code The WpfTemplatesByHand project can be found under the Chapter 5 subdirectory.

Creating Control Templates Using Expression Blend
Even though our “round button template” is quite simple, it did require a healthy dose of
XAML. To be sure, if you were to create large-scale templates that contain complex brushes,
animations, and so forth, you would be sure to experience cramps in your fingers due to the
copious amounts of typing. Thankfully, Expression Blend has a number of features that simplify
the process of working with the control templates.

Creating a Copy of a Default Template
The first way you can use Blend to ease the construction of custom templates is to extract a
copy of the default template and modify its appearance as you see fit. While this approach does
provide the greatest level of customization, it is also the most complex, as all the low-level
details of a template are directly in view. Before I show you some very useful (and easier)
alternative approaches, let’s examine the basics of modifying a default template.

■ Note I do not recommend taking this approach to template construction unless you are well versed in WPF

and Silverlight template internals. If you are not careful, you can very easily delete parts of the template copy

that are required for the control to work properly!

Create a new WPF application project called WpfTemplatesWithBlend, and place a single
Button control (to keep things somewhat simple) on the artboard of the initial Window.

■ Note This example assumes you are using WPF. If you are using Silverlight, the generated XAML will be

quite different, but the basic template editing techniques will be the same.

Right-click this UI element and select Edit Template ➤ Edit a Copy, as shown in Figure 5–25.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 190

Figure 5–25. Making a copy of a control’s default template

Once you select this menu option, you will be presented with the Create Template
Resource dialog box, which is similar to the Create Style Resource dialog box shown in Figure 5–
9 earlier in the chapter. Name your new style rawButtonTemplate and save it as an application-
level resource.

Examining Style Properties of a Default Template
Open the XAML editor for your App.xaml file and notice that your <Style> element establishes a
number of default values for common UI properties such as Background, BorderBrush, Padding,
and so forth. However, the values assigned to these properties are not hard-coded values, but
rather are discovered at runtime based on a number of predefined resources, some of which
have also been defined in your application’s resource container, others of which are based on
system settings. Consider the following partial definition of the rawButtonTemplate style:

<Style x:Key="rawButtonTemplate" TargetType="{x:Type Button}">
 <Setter Property="FocusVisualStyle"
 Value="{StaticResource ButtonFocusVisual}"/>
 <Setter Property="Background"
 Value="{StaticResource ButtonNormalBackground}"/>
 <Setter Property="BorderBrush"
 Value="{StaticResource ButtonNormalBorder}"/>
 <Setter Property="BorderThickness" Value="1"/>
 <Setter Property="Foreground"
 Value="{DynamicResource
 {x:Static SystemColors.ControlTextBrushKey}}"/>
 <Setter Property="HorizontalContentAlignment" Value="Center"/>

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 191

 <Setter Property="VerticalContentAlignment" Value="Center"/>
 <Setter Property="Padding" Value="1"/>
...
</Style>

If you want to change any of these basic property settings, you can do so by using the Blend
artboard. After ensuring that you have switched back to design mode for your template, use the
breadcrumbs navigation area on the upper left to select the “Style” aspect of the template being
edited, as shown in Figure 5–26.

Figure 5–26. Selecting the style properties of a default template for editing

Once you have done so, you can use the Properties panel as expected to change values of
the selected properties, just like you would when modifying a simple style that does not contain
any control template aspects.

Examining the Template Itself
In addition to the simple property settings just discussed, your style also contains a
<ControlTemplate> element, which defines a number of subelements. First, you will find an
element that associates the default template to the official “Microsoft Button Theme,” named
ButtonChrome:

<ControlTemplate TargetType="{x:Type Button}">
 <Microsoft_Windows_Themes:ButtonChrome x:Name="Chrome"
 BorderBrush="{TemplateBinding BorderBrush}"
 Background="{TemplateBinding Background}"
 RenderMouseOver="{TemplateBinding IsMouseOver}"
 RenderPressed="{TemplateBinding IsPressed}"
 RenderDefaulted="{TemplateBinding IsDefaulted}"
 SnapsToDevicePixels="true">
 <ContentPresenter
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 Margin="{TemplateBinding Padding}"
 RecognizesAccessKey="True"
 SnapsToDevicePixels="{TemplateBinding SnapsToDevicePixels}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}"/>
 </Microsoft_Windows_Themes:ButtonChrome>
...
</ControlTemplate>

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 192

Notice that a number of these property values are assigned to a value returned from the
{TemplateBinding} markup extension. As shown in the previous example, this particular XAML
token is very useful when building templates because it provides a way for you to map property
values that have been set on the control using the style to properties used within the style itself.
Also note that the template is once again using <ContentPresenter> to allow the style to use
arbitrary content.

The default button template also defines a set of WPF triggers. At first glance, the triggers in
the following template don't appear to do much, but in fact they map back to additional
embedded resources within the WPF libraries to obtain their full details:

<ControlTemplate.Triggers>
 <Trigger Property="IsKeyboardFocused" Value="true">
 <Setter Property="RenderDefaulted" TargetName="Chrome" Value="true"/>
 </Trigger>
 <Trigger Property="ToggleButton.IsChecked" Value="true">
 <Setter Property="RenderPressed" TargetName="Chrome" Value="true"/>
 </Trigger>
 <Trigger Property="IsEnabled" Value="false">
 <Setter Property="Foreground" Value="#ADADAD"/>
 </Trigger>
</ControlTemplate.Triggers>

■ Note You will also see that this template copy has some empty markup for the .NET 4.0 Visual State

Manager. You’ll come to know the role of this aspect of template building later in the chapter.

Using Tools to Edit a Template Copy
Now that you better understand the structure of a default template, let’s look at how to use Blend
to edit various aspects of it. You’ve already learned that you can click the Style area of the style
breadcrumbs navigation area to change basic style properties. However, when you want to drill
into the template details (including <ContentPresenter>), you will need to select an item via the
Objects and Timeline panel (or by directly selecting an item on the artboard). In Figure 5–27, you
can see that each individual aspect of the <ControlTemplate> can be selected for editing.

Figure 5–27. The Objects and Timeline panel allows you to select a template part for editing.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 193

For this example, don’t bother to change settings for this copy of the Button template. The
reason is that this template has too many hard-coded settings that tether the control to the
default Microsoft look and feel. While you could charge ahead and modify each aspect of the
Microsoft default, it would be a fairly complex undertaking (don’t worry, a simpler alternative
will be shown in just a moment).

On a related note, the Triggers panel of the Blend IDE can be used to add, remove, or
modify a given WPF trigger. Figure 5–28 shows the current trigger settings for our copy of the
button template. Again, don’t be too concerned with all of the details at this point, as the next
example will show you a much simpler way to craft a custom template via Blend.

Figure 5–28. The Triggers panel allows you to change triggers for a template copy.

■ Source Code The WpfTemplatesWithBlend project can be found under the Chapter 5 subdirectory.

Creating a Stylized Template from a Graphic
As I am sure you picked up in the preceding discussion, it is my opinion that attempting to
modify a copy of an existing control template is a tedious process (even when you are using
Expression Blend). Thankfully, there is a much simpler alternative, using the Tools ➤ Make Into
Control menu option. The idea behind this menu option is premised on the fact that a majority
of custom templates are based on an existing graphic.

For example, let’s say that you have used the tools of Blend to create a “perfect” graphic (or
have imported a graphic from Expression Design; see Chapter 2). You may wish to use this
graphic as a starting point for a new template for a WPF (or Silverlight) control. Once you have
done so, you can then add unique triggers to your style to incorporate visual cues. The benefit
of this approach (as opposed to editing a copy of an existing template) is that you have a “clean
slate” and will not bump into the numerous default settings of the Microsoft look and feel. Let’s
see how we could do this very thing.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 194

Creating the Initial Graphic
First up, create a new WPF application project named StyleTemplateFromGraphic. Next,
create a custom geometry using either the Expression Blend drawing tools (the Pen or Pencil) or
one of the predefined geometries found in the Shapes category of the Assets library. In Figure 5–
29, you can see I’ve opted to use the Star shape, with a PointCount property value of 8.

Figure 5–29. The initial graphic, which will be transformed into a control template

Before moving on, take a moment to examine the generated XAML. Depending on which
type of geometry you constructed (and which approach you took to construct it), you will find a
particular blob of markup. My geometry ended up being defined as so:

<ed:RegularPolygon Fill="#FF5050B4" HorizontalAlignment="Left"
 Height="113" InnerRadius="0.47211" Margin="20,18,0,0" PointCount="8"
 Stretch="Fill" Stroke="Black" VerticalAlignment="Top" Width="126"/>

Extracting the Stylized Template
Select your geometry on the artboard and choose Tools ➤ Make Into Control.8 Alternatively,
you can right-click the geometry and choose Make Into Control, as shown in Figure 5–30.

8 Make sure you don’t select Tools ➤ Make Into UserControl, as this is for a very different operation,
discussed in the section “Generating UserControls Using Blend” later in this chapter.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 195

Figure 5–30. Activating the Make Into Control option of the Blend IDE

At this point you will be presented with a dialog box that allows you to select a name for
your new stylized template, the location for your new resource, and, most importantly, the
control target. For this example, let’s define a new application-level resource named
starButtonStyle that targets the Button type (see Figure 5–31).

Figure 5–31. Creating a new Button template based on the Star geometry

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 196

When you click the OK button, Blend responds by opening the new style for editing (see
Figure 5–32).

Figure 5–32. The extracted stylized template

If you examine the generated XAML, it should look quite familiar, given your work earlier in
this chapter where you created a control template by hand. Here is the XAML generated based
on my geometry (stored in App.xaml):

<Style x:Key="starButtonStyle" TargetType="{x:Type Button}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <ed:RegularPolygon Fill="#FF5050B4" InnerRadius="0.47211"
 PointCount="8" Stretch="Fill" Stroke="Black"/>
 <ContentPresenter HorizontalAlignment=
 "{TemplateBinding HorizontalContentAlignment}"
 RecognizesAccessKey="True"
 SnapsToDevicePixels=
 "{TemplateBinding SnapsToDevicePixels}"
 VerticalAlignment=
 "{TemplateBinding VerticalContentAlignment}"/>
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property="IsFocused" Value="True"/>
 <Trigger Property="IsDefaulted" Value="True"/>
 <Trigger Property="IsMouseOver" Value="True"/>
 <Trigger Property="IsPressed" Value="True"/>
 <Trigger Property="IsEnabled" Value="False"/>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 197

Notice that your new style has the TargetType property set to the selected target control
(Button). As you can also see, a <ControlTemplate> has been generated that uses the
<ContentPresenter> element, as well as a set of empty WPF triggers (which we will populate in
just a moment). Also take a moment to examine how the XAML of the original geometry has
been updated to (surprise, surprise) a new <Button> element that uses your new style! Upon
examining your MainWindow.xaml file, you should see markup such as the following:

<Button Content="Button" HorizontalAlignment="Left" Height="113"
 Margin="20,18,0,0" Style="{DynamicResource starButtonStyle}"
 VerticalAlignment="Top" Width="126"/>

Not bad for a few mouse clicks, eh? At this point, you can handle any event you wish on the
Button, edit additional properties, and so forth.

Building a ListBox Stylized Template
Before we add some interactivity to our template, let’s define one additional template for a
second geometry. Open the artboard for your initial Window, and draw a secondary shape of
your choosing. In Figure 5–33, you can see I’ve used the Pencil tool to define a slightly “wiggly”
rectangle.

Figure 5–33. A second geometry, created via the Pencil tool

Select this new item, and activate the Make Into Control menu option once again. This
time, however, define an application-level style named wigglyListBoxStyle that targets the
ListBox control (see Figure 5–34).

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 198

Figure 5–34. Targeting the ListBox control

This template uses the <ItemsPresenter> element, rather than <ContentPresenter>, given
the fact that ListBox controls (typically) have a set of individual items that can be viewed via
scrollbars. Here is a partial snapshot of the generated XAML:

<Style x:Key="wigglyListBoxStyle" TargetType="{x:Type ListBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}">
 ...
 <ScrollViewer>
 <ItemsPresenter/>
 </ScrollViewer>
 ...
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Before we add items to the newly defined ListBox control back on the artboard of the main
window, let’s update the <ItemsPresenter> element to ensure that each ListItem will be aligned
to the center. To do so, ensure you have opened the designer for your new wigglyListBoxStyle,
and then select <ItemsPresenter> within your Objects and Timeline panel (see Figure 5–35).

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 199

Figure 5–35. Selecting the ItemsPresenter for editing

Next, use your Properties panel to set the HorizontalAlignment and VerticalAlignment
properties to Center (see Figure 5–36).

Figure 5–36. Centering items in the ItemsPresenter

At this point, save your changes, and then populate the ListBox control on the artboard of
the initial Window with a few ListBoxItem objects. Recall from Chapter 4 that you can use the
Items editor (by clicking the “...” button) in the Common Properties section of the Properties
panel, or simply type in XAML such as the following (I’ve added a few additional settings to the
ListBox itself to increase the font size of each ListBoxItem):

<ListBox HorizontalAlignment="Left" Height="162.101"
 Margin="29.823,27,0,0"
 Style="{DynamicResource wigglyListBoxStyle}"
 VerticalAlignment="Top" Width="125.177"
 FontSize="16" FontStyle="Italic">
 <ListBoxItem Content="Item One"/>
 <ListBoxItem Content="Item Two"/>
 <ListBoxItem Content="Item Three"/>
</ListBox>

Now, run your application. Sure enough, you have just defined a unique template for the
ListBox control! In Figure 5–37, notice that you can select each individual ListBoxItem as
expected.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 200

Figure 5–37. Our custom templates in action

You can (and should) take some time to experiment with other graphic-to-control
transformations. Using the techniques demonstrated here, you can quickly generate custom
templates for any number of controls. Furthermore, you can edit and enhance the extracted
template (and the containing style) in numerous ways to define some very unique UI elements.

I’ll allow you to tinker with your templates (and create new, additional templates) as you
see fit. Once you are done, move on to the next section to learn how to add some interactivity to
a control template via WPF triggers.

Adding Interactivity via WPF Property Triggers
Currently, our templates are static images that do not change appearance when the user
interacts with them (e.g., places the mouse cursor within the geometry, clicks the template, and
so on). Earlier in this chapter, you manually added a handful of WPF triggers to a template to
account for such interactivity. Now let’s see how Blend can simplify the process. Using the
Resources tab, open your starButtonStyle for editing, as shown in Figure 5–38.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 201

Figure 5–38. Selecting a style for editing

Next, use the breadcrumbs editor on the upper left of the style editor to select the current
internal control template (see Figure 5–39).

Figure 5–39. Using the breadcrumbs editor to select the internal style template

With the template selected, you can now activate the Triggers panel of the Blend IDE
(remember, if you can’t find a given panel, you can use the Window menu of the IDE to show or
hide the given panel). As you can see in Figure 5–40, the starButtonStyle has empty triggers for
five WPF properties, specifically IsFocused, IsDefaulted, IsMouseOver, IsPressed, and
IsEnabled.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 202

Figure 5–40. Empty template triggers, begging for interactivity

Your goal is to use the Triggers panel to define how your template should look when each
property is True (recall, these properties are set internally by the control when the
corresponding event fires). Select the IsMouseOver property. As soon as you do so, you will
notice that your template artboard is in recording mode, just as if you were using the animation
editor (see Chapter 3).

Now, use the Properties panel to make a few changes to your template that will occur when
the mouse cursor is over the control. By way of a suggestion, select the geometry object within
the Objects and Timeline panel and change the Fill property to a different color. Once you are
done, you can exit recording mode by clicking the red stop button located on the upper left of
the artboard or via the red stop button by the trigger you are modifying in the Triggers panel. In
any case, when you are done, your Triggers panel will look something like Figure 5–41.

Figure 5–41. Changing the Fill color of the geometry when IsMouseOver is True

If you examine the generated XAML, you will find the template’s triggers collection is
updated as so:

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 203

<ControlTemplate.Triggers>
 <Trigger Property="IsFocused" Value="True"/>
 <Trigger Property="IsDefaulted" Value="True"/>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="Fill" TargetName="regularPolygon"
 Value="#FFFDFF11"/>
 </Trigger>
 <Trigger Property="IsPressed" Value="True"/>
 <Trigger Property="IsEnabled" Value="False"/>
</ControlTemplate.Triggers>

Now, use this same general technique to change some aspect of the defining geometry
when the IsPressed property is True. I’ve updated my template in such a way that when
IsPressed is True, the size of the control will be reduced by a small amount (I used the Scale tab
of the Transform section of the Properties panel to do so). Here is the resulting XAML:

<ControlTemplate.Triggers>
...
 <Trigger Property="IsPressed" Value="True">
 <Setter Property="RenderTransform" TargetName="regularPolygon">
 <Setter.Value>
 <TransformGroup>
 <ScaleTransform ScaleX="0.9" ScaleY="0.9"/>
 <SkewTransform/>
 <RotateTransform/>
 <TranslateTransform/>
 </TransformGroup>
 </Setter.Value>
 </Setter>
 </Trigger>
 <Trigger Property="IsEnabled" Value="False"/>
</ControlTemplate.Triggers>

You could use the Triggers panel to add some additional state changes to the remaining
properties (IsDefaulted, IsEnabled, and IsFocused), but I think you get the general idea. At this
point, run your program, move your mouse cursor over your star button, and click the control.
You should see that your state changes take effect!

WPF Triggers: Further Resources
Over the course of this chapter, you have been given a taste of how to use the integrated
Triggers panel of Expression Blend to incorporate visual cues into a custom template. To be
sure, many of your custom WPF control templates will make liberal use of this editor. However,
it is time to switch gears and introduce the role of the Visual State Manager, which is positioned
to be the preferred way to account for visual cues via markup (and is your only choice under the
Silverlight API), so if you are interested in learning more about WPF triggers or simply wish to
work through some additional template tutorials, look up the topic “Styling a control that
supports templates” in the Expression Blend User Guide (see Figure 5–42). There you will find
more details on the WPF trigger framework.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 204

Figure 5–42. The Expression Blend User Guide provides numerous tutorials regarding WPF

triggers.

■ Source Code The StyleTemplateFromGraphic project can be found under the Chapter 5 subdirectory.

Building Templates Using the Silverlight API
As mentioned a few times already in this chapter, the Silverlight API has very limited support for
traditional WPF-style triggers, but it can achieve the same end result using the Visual State
Manager (VSM). As well, recall that as of .NET 4.0 the WPF API has incorporated its own version
of the Silverlight VSM, and therefore both APIs now support a unified manner to add visual cues
to custom templates and styles. Given this, for the next example, let’s create a custom template
using the Silverlight API (but keep in mind that WPF projects can use the same techniques
shown next).

We will basically re-create the “round button template” example shown earlier, but this
time we will use the VSM rather than WPF triggers. To start, create a new Silverlight application
project named SLControlTemplate. Next, draw a custom shape on your artboard using the Pen
or Pencil tool or add a shape from the Shapes category of the Assets library (again, I’ll be using a
simple Ellipse component, specifically an Ellipse with a green background). Right-click this
geometry and, once again, select the Make Into Control menu option (see Figure 5–43).

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 205

Figure 5–43. Silverlight projects also support the Make Into Control option.

In the resulting dialog box, define a new application-level resource named
SilverlightRoundButtonTemplate that targets the Button control. Once you click OK, you will
once again find a designer for a new stylized template for a round button, which you can
modify using the Properties panel, breadcrumbs editor, and the Objects and Timeline panel
(just like the other examples in this chapter; see Figure 5–44 for a reminder).

Figure 5–44. The new Silverlight template, ready for editing

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 206

However, if you take a look at the generated XAML, you will not see any set of default
triggers. When you want to add visual cues to a Silverlight template, you need to do so using the
States panel.

Working with the VSM via the States Panel
Like the WPF Triggers panel, the States panel can be used to add visual state changes to a given
template, but, for better or worse, it requires you to use a completely different approach.
Assuming the artboard for your Silverlight template is the active Blend window, open the States
panel and notice the default settings, shown in Figure 5–45.

Figure 5–45. The States panel of Expression Blend

By default, an empty template is devoid of any visual states. However, once you open the
States panel, Blend suggests a handful of common “visual states” (Normal, MouseOver, Pressed,
Disabled, Unfocused, and Focused) arranged into two “visual state groups,” named CommonStates
and FocusStates.9 As you will see later, it is possible to add additional groups with custom states
as well.

Consider these default states and groups “freebees,” in that the WPF and Silverlight
controls automatically know how to transition into these states when the underlying action
occurs. In other words, if the user literally clicks the control, it will transition into the Pressed
state with no effort on your part. When the control is not focused, and has no mouse activity, it
will automatically transition to the Normal state, and so on.

Let’s add some animation markup that will occur when the control transitions to the
MouseOver state. To begin, select the MouseOver state within the States panel. You’ll notice that
you are automatically placed into recording mode. Thus, just like when you are building an
animation (see Chapter 3), you are free to make any sort of property changes using the
Properties panel, and the IDE will capture your changes. For the MouseOver state, simply change
the Fill value of the Ellipse to a darker shade (see Figure 5–46).

9 WPF and Silverlight controls have been written to support a number of common states arranged in
common groups. This is a good thing, as you can rest assured that a majority of controls support identically
named states you can edit.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 207

Figure 5–46. Recording changes that will happen when the mouse cursor is over the ellipse

Now, select the Pressed state within the States editor. Apply a graphical transformation to the
Ellipse so that the size of the control shrinks by some amount. Use the Transform section of the
Properties panel to do so (recall, the Scale tab allows you to apply scaling transformations; see
Figure 5–47).

Figure 5–47. Applying a transformation to the ellipse when it has been pressed

Once you are done, exit recording mode by clicking the red animation button on the upper
left of your artboard (see Chapter 3 for details of working with the animation editor). Now, run
your application and test your changes. You should see that the control transitions to new
visual states when you interact with the Button using the mouse! However, what exactly took
place? We’ll look at that next.

Viewing the Generated XAML
If you open your App.xaml file for viewing within the XAML editor, you will see that your <Style>
has been updated with a number of new instructions that establish the various visual state
changes you have made. Notice in the following markup that the entirety of the VSM logic is

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 208

wrapped within a <VisualStateManager.VisualStateGroups> scope. Within this scope, we find
that each of the default groups and states is present and accounted for, many of which are
empty. If a given state has no rendering instructions, the control renders its appearance using
the current settings of the control.

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal"/>
 <VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimation Duration="0" To="#FF2C741E"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 Storyboard.TargetName="ellipse" d:IsOptimized="True"/>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Pressed">
 <Storyboard>
 <DoubleAnimation Duration="0" To="0.85"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).(CompositeTransform.ScaleX)"
 Storyboard.TargetName="ellipse" d:IsOptimized="True"/>
 <DoubleAnimation Duration="0" To="0.85"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).(CompositeTransform.ScaleY)"
 Storyboard.TargetName="ellipse" d:IsOptimized="True"/>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Disabled"/>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Establishing State Group Transition Timing
By default, when a state is encountered, the associated <Storyboard> executes immediately. If
you like, you can define a new transition time value for all states in a given group by changing
the default transition time value. Again, by default, the default transition time value is zero
seconds. In Figure 5–48, you can see I’ve changed the default transition time for states in the
CommonStates group to two seconds.

Figure 5–48. Changing the default transition time for a state group

If you run and test your program once again, you’ll see the that state transitions happen at
a much slower rate (as you might agree, too slow!). Feel free to change this value as you see fit.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 209

Defining Transition Effects
In the States panel, notice that each state group has a small button with the letters fx and a
small arrow beneath fx. This option allows you to define a graphical effect that will be applied
when a given transition occurs. Click this button for the CommonStates default transition and
notice the options for the CommonStates group. As you can see in Figure 5–49, I’ve added a
Smooth Swirl Grid effect.

Figure 5–49. Adding a transition effect

■ Note If your transition time is set to 0, you will not see the transition effect animate. You must have a

transition time of at least 1 to see the result of any transition effect.

Also be aware that once you select a given transition effect, you can edit its individual
settings by clicking the fx button once again (see Figure 5–50).

Figure 5–50. Editing a transition effect

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 210

It is also worth pointing out that a given group can be configured to use the same
animation easing effects examined in Chapter 3. Simply use the choices exposed by clicking the
easing function icon (a box with a line through it) next to the fx button, as shown in Figure 5–51.

Figure 5–51. Adding animation easing effects

I certainly encourage you to take a few minutes to play around with how your states
transition based on various settings, as the printed page really can’t do this justice.10

Configuring Individual Transitions
When you are changing transition times and effects for a given group of states, the assumption
is that these settings will be applied to all states within the group. Thus, if you set up a bounce
effect for a group, this “bounce” will occur regardless of which state you are currently in and
which state you are about to transition to. In many cases, this is just what you require. However,
the States panel provides you some ways to get much more granular.

Select the Focused state from the FocusedStates group for editing. Notice that this state (or
any state for that matter) has an icon that looks like an arrow pointing to the right (with a little +
sign next to it). If you click this option, which is formally called the Add Transition button, a set
of state transition editors appears. In Figure 5–52, you can see that (if you choose) you can
control unique transition effects when you move from the current state to the Focused state, the

10 I must say, I’ve spent more time than I would like to admit tinkering with these settings.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 211

Focused state to an Unfocused state, and the Focused state back to any other state (don’t bother
to set any transitions just yet).

■ Note The star-shaped icon in the Add Transition editor symbolizes “any state.”

Figure 5–52. The Add Transition option allows you to define unique storyboards for specific state

transitions.

As soon as you specify a unique state-to-state transition, a separate editor appears for that
specific transition, offering the same basic options as you find when configuring a state group.
As you can see in Figure 5–53, a unique transition from the MouseOver state to the Normal state
has been specified. Here, I’ve added an Elastic Out effect that will happen when the mouse
cursor is over my control and then leaves.

Figure 5–53. A bounce effect added to a unique transition

A Brief Word Regarding Custom States
In addition to the default “freebee” states we have been examining, it is certainly possible to
define a unique set of control-specific states. You might wish to do so when you want your
templates to behave in various ways based on custom events you have written, or based on
arbitrary input events not captured by the default groups.

For example, assume that you want your template to appear a specific way when the user
Shift+clicks the control. You could achieve this by using some “custom” state groups. To

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 212

illustrate how we can work with the VSM in this manner, we will move on to the final major
topic of this chapter, that of creating custom UserControls.

■ Source Code The SLControlTemplate project can be found under the Chapter 5 subdirectory.

Generating UserControls Using Blend
To wrap up this chapter, I’ll explain how the Blend IDE can simplify the construction of full-
blown UserControl classes. As you may know, WPF and Silverlight both support the concept of
a user control, which is a class that encapsulates a collection of related UI elements. In contrast
to a control template, which is applied to a given control to make it look and behave a certain
way, a custom UserControl is a brand new UI element that you create by aggregating existing
controls.

If this were a book focused on building feature-rich custom WPF or Silverlight controls, I’d
be launching into a discussion of some fairly dense topics, such as dependency properties and
the routed event architecture. However, given that this book is focused squarely on the use of
the Blend IDE, I will not go down that road here. Rather, I’ll show you how the Blend IDE can
facilitate the creation of a new UserControl class that supports some unique visual states.

Much like the Make Into Control menu option, Blend supplies a Make Into UserControl
menu option, which you can select once you have selected an item on the artboard. Again, in
many cases, a custom UserControl begins life from a custom graphic. So, for the final example
of this chapter, begin by creating a new WPF (or Silverlight, if you wish) application project
named BlendUserControl.

■ Note I am selecting WPF at this point to give you an example of working with the VSM from within that

context.

Draw a graphic on your artboard, and then right-click the item to activate the Make Into
UserControl menu option (see Figure 5–54).

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 213

Figure 5–54. Creating a new UserControl

Using the resulting dialog box, give your control a fitting name (I called mine
BubbleThoughtsControl; see Figure 5–55).

Figure 5–55. Naming your new UserControl

Click the OK button, and locate your Projects panel. You can see that the Blend IDE
automatically added a new XAML file, and a related code file, for the new UserControl (see
Figure 5–56).

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 214

Figure 5–56. The new XAML and code files for your UserControl

■ Note Here, we generated a new UserControl based on a single graphic. However, many UserControls

are based on a collection of existing objects. If you select multiple UI elements on your artboard and select the

Make Into UserControl menu option, the IDE will group all selected items into a new layout manager and place

them in a UserControl class.

If you examine the markup of the original main Window, you will see that your graphic has
been replaced with an instance of the new UserControl:11

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:BlendUserControl"
 x:Class="BlendUserControl.MainWindow"
 x:Name="Window"
 Title="MainWindow"
 Width="640" Height="480">

 <Grid x:Name="LayoutRoot">
 <local:BubbleThoughtsControl HorizontalAlignment="Left" Height="107"
 Margin="42,39,0,0" VerticalAlignment="Top" Width="233"/>
 </Grid>
</Window>

■ Note If you notice a slightly transparent yellow warning sign over the window’s copy of the UserControl,

don’t worry. This is just Blend’s way of letting you know you should rebuild your project.

11 If you have previously created UserControls by hand, also note that Blend was kind enough to pick a
custom xmlns that maps to your new class!

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 215

Adding Visual States
Given the fact that this is a brand new control, we do not have any “freebee” visual states that
are granted to us by default. Therefore, if you want to use the VSM, you need to define custom
groups, define custom states, and then determine when the transitions will occur.

■ Note Of course, if you wanted to, you could use the WPF trigger framework if you are building a WPF

UserControl; however, here I’ll focus on the VSM.

Ensure that the artboard for your new UserControl is active in the IDE (i.e., open
BubbleThoughtsControl.xaml, or whatever you named your control, in the designer) and open
the States panel, which should currently be empty. Click the “Add state group” button (see
Figure 5–57).

Figure 5–57. Adding a new state group to your custom UserControl

Once you have done so, name the group MyMouseStates by selecting the default name and
typing in your unique name. Notice that, just like the CommonStates and FocusedStates groups
described earlier, your custom state group can be assigned default transition times and effects.
Click the Add state button (see Figure 5–58).

Figure 5–58. Adding a state to your group

Name this new state MouseOverState. You will notice that you are automatically placed into
recording mode for this state, so go ahead and make some sort of changes to the UI using the
Properties panel (and don’t forget to leverage the Objects and Timeline panel if you need to
quickly select aspects of the control). To keep it simple, I’d again suggest simply changing the
color of the UI in some way.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 216

Add a second (and final) state to your MyMouseStates group named MouseDownState. Once
you have done so, make some sort of custom changes to the UI via the Properties panel (apply a
transformation, for example). Figure 5–59 shows my final set of states, where I changed the
default transition time to one second for my custom group.

Figure 5–59. The final group of custom states

Transitioning States in Code
If you were to run your project now, you might be surprised to find that none of your states
seem to activate, regardless of how you interact with the control with your mouse. Again, this is
because you have not yet told the control when to transition! To do so, you can take either of
two approaches, the first of which is to programmatically force a state transition using the static
GoToState() method of the VisualStateManager class (the other will be examined in the next
section).

Ensure that the editor for your UserControl is open in the Blend IDE, and click the Events
button of the Properties panel (the lightening bolt button). Handle the MouseDown event as
normal, and then add the following code to the generated event handler:

private void callout_MouseDown(object sender,
 System.Windows.Input.MouseButtonEventArgs e)
{
 // Move to a new state!
 VisualStateManager.GoToState(this, "MouseDownState", true);
}

The first argument of the GoToState() method represents which control has the state
groups, and typically is the UserControl itself. The second argument is the name of the state to
transition to, while the final Boolean value is used to specify whether you wish to use any
defined state transition timing values. Now, run your program, click the control, and you
should see your first transition take place!

Transitioning States in XAML
It is possible to transition states without adding any procedural code, by using the
GoToStateAction behavior. This can be very useful when you are building custom templates that
you want to apply across numerous projects, and don’t want the baggage of a full-blown
UserControl. Use the Assets library to locate this behavior (see Figure 5–60).

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 217

Figure 5–60. The GoToStateAction allows you to transition states using markup.

Drag the behavior directly onto the UserControl (you may drop it either on the artboard or
on the tree of markup shown by the Objects and Timeline panel). Once you are done, you will
see the set of objects shown in Figure 5–61.

Figure 5–61. The GoToStateAction behavior, ready for configuration

Select this element, and use the Properties panel (make sure you are not still in the Events
area) to configure the behavior. The Trigger section allows you to pick which event will be
monitored, which for this example we will assume is the MouseEnter event. The Common
Properties section allows you to pick the custom state to transition to (MouseOverState in this
example). Figure 5–62 shows the final configuration of this GoToStateAction behavior object.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 218

Figure 5–62. The GoToStateAction behavior configured for transition

Now run your project once again, and verify that your second state transitions when the
mouse cursor is over the control.

VSM: Further Resources
Your examination of styles and templates ala Blend is complete. To be sure, there are other
aspects of these topics that you will want to explore, but you should feel (much) more
comfortable with the core operations at this point. If you are interested in learning more about
the Visual State Manager, be sure you look up the topic “Define different visual states and
transition times for a user control” within the Blend User Guide (see Figure 5–63).

Figure 5–63. The Blend documentation has further details of the VSM and UserControl creation.

CHAPTER 5 ■ STYLES, TEMPLATES, AND USERCONTROLS

 219

■ Source Code The BlendUserControl project can be found under the Chapter 5 subdirectory.

Summary
This chapter covered a number of topics, all of which focused on the process of customizing the
look and behavior of a WPF or Silverlight control. You began by examining the role of styles. As
you learned, styles allow you to ensure that a family of related controls (specified via the
TargetType attribute) has the same set of property settings. You also learned about a number of
tools supplied by the Blend IDE that can simplify the creation (and application) of your styles.

Next, you learned about the role of control templates. Recall that a template provides a way
for you to completely restyle how a control renders its visual display. At this time, you learned
how to use Blend to extract a copy of a control’s default template. Even more interesting, this
part of the chapter also showed you how the IDE provides a very simple way to generate a
template from an existing graphic.

When you create templates, you are also very likely to add back “visual cues” to give the
end user some level of interactivity. As shown in this chapter, WPF projects can add such
interactivity using the original trigger framework, whereas Silverlight projects use an alternative
mechanism termed the Visual State Manager (VSM). As of .NET 4.0, WPF has a VSM
implementation as well.

We wrapped things up by examining the role of custom UserControl classes, which provide
a way to build new controls by aggregating existing controls. Here, you learned how you can
extract a new UserControl from an existing set of UI elements, and then define custom states
(and transitions) using the VSM.

 221

C H A P T E R 6
■ ■ ■

Blend Data Binding Techniques

The Blend IDE has a number of tools that allow you to connect data values (from a variety of
sources) to user interface components. Formally speaking, this process is termed data binding
and is supported in both the WPF and Silverlight1 APIs (although each API has slightly differing
levels of data binding support). In this chapter, you will examine a number of Expression Blend
data binding techniques, and some related coding techniques as well.

You’ll begin by examining the concept of control-to-control data binding operations. As the
name suggests, this approach to data binding allows you to connect the value of a source
control property to the value of a destination control property in your application. During this
discussion, you will also learn the distinction between one-way and two-way data binding
operations and learn how to convert data values as they pass between the source and
destination by authoring custom conversion classes.

Next up, you will learn how to bind values from non-UI objects (such as business objects in
your program, or XML documents) to properties of GUI objects. Here, you will learn about the
Blend Data panel and see a number of ways in which you can visually connect the values of
class properties to UI elements.

This chapter will also examine the role of data templates. Similar to a control template (see
Chapter 5), a data template allows you to define a custom set of rendering instructions to be
used during a data binding operation, complete with nested layout mangers, graphical objects,
and animations.

To wrap things up, you’ll examine how to create new custom stores of data using Blend,
and learn the role of Blend sample data, which you can insert into a WPF or Silverlight
application. Not only can sample data help you further investigate various Blend data binding
techniques using a well-defined set of starter data (and code), but it can also serve as useful
placeholder data during the prototyping process.2

■ Note Although Blend offers a rich data binding framework, a number of scenarios require authoring a fair

amount of procedural code, which is beyond the mission of this text. However, I’ll point you to some useful

resources at the conclusion of this chapter if you wish to explore the topic of code-centric data binding in greater

detail.

1 And as you will see in Chapter 7, the Windows Phone 7 programming model also supports data binding.

2 See Chapter 8.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 222

The Role of Data Binding
GUI controls are often the target of various data binding operations. Simply put, data binding is
the act of connecting a control’s properties to other data values. By doing so, you can simplify
your coding efforts, as the UI will automatically display the current state of the properties that
they are connected to. Consider the following examples:

• You could bind the value of a Boolean class property to a CheckBox.

• You could fill a DataGrid object with data contained in a custom collection.

• You could populate a ListBox with values from an XML document.

When employing data binding, you must be aware of the distinction between the source
and the destination (also termed the target) of the binding operation. As you might expect, the
source of a data binding operation refers to where the data is coming from (an object property,
an XML node, etc.), while the destination (or target) refers to a property of a UI element (a
CheckBox, TextBox, and so on) that will receive and use the source data. To clarify this important
distinction, the previous bulleted list could be refined as so:

• A Boolean source value could be bound to the IsChecked destination property of a
CheckBox control.

• A destination DataGrid object could be filled with data from a custom collection source.

• A destination ListBox object could be filled with data from a source XML document
based on an XPath statement.

Truth be told, using the data binding infrastructure is always optional. If a developer were
to create his or her own data binding logic, the connection between two object properties
would typically involve handling various events and authoring procedural code to connect the
source and destination. For example, if you had a ScrollBar on a Window that needed to display
its value on a Label, you might handle the ScrollBar’s ValueChanged event and update the
Label’s Content property accordingly.

In many cases, WPF and Silverlight data binding allows you to establish these connections
entirely through XAML. While this is true to a large extent, there are certainly times when you
will need to author some additional procedural code as well (as you will see).

Control-to-Control Data Binding
To begin examining how Blend can be used to establish data binding operations, our first
example will illustrate how you can bind the value of one control property to the value of a
second control property (i.e., control-to-control data binding). This technique can be very
useful when you want to ensure that a control refreshes its value based on a user selection.

Building the Example UI
Fire up Expression Blend and create a new WPF application project3 named
ControlToControlBinding. For this example, let’s assume that your Window maintains two

3 The techniques shown in this example would be more or less identical for a Silverlight application project,
so select a Silverlight application project if it tickles your fancy.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 223

StackPanel objects (both of which have the Orientation property set to Horizontal), each of
which contains a Slider control and a Label control. These StackPanel objects are grouped in a
larger StackPanel control, giving you a “stack of stack panels.” Use the Assets panel and
artboard to create the UI shown in Figure 6–1 (note the Content property value of each Label;
you will configure the Slider objects in just a moment).

Figure 6–1. The initial user interface

■ Note Friendly reminder! Recall from Chapter 4 that you can right-click a set of controls selected on the

artboard and group them into a new layout manager by using the Group Into menu option. As well, don’t forget

that you can perform basic Copy/Paste operations on the artboard (or the Objects and Timeline panel).

Behind the scenes, the Blend IDE generates XAML that looks something like the following
(your exact markup may differ based on additional settings you made on the objects):

<StackPanel HorizontalAlignment="Left" Margin="28,40,0,0"
 Orientation="Vertical"
 VerticalAlignment="Top" Width="248">
 <StackPanel Height="33" Orientation="Horizontal"
 d:LayoutOverrides="Width">
 <Label Content="Height" Width="61"/>
 <Slider Width="187"/>
 </StackPanel>
 <StackPanel Height="33" Orientation="Horizontal"
 d:LayoutOverrides="Width">
 <Label Content="Width" Width="61"/>
 <Slider Width="187"/>
 </StackPanel>
</StackPanel>

Select each Slider control on the artboard (via a Ctrl+click operation), and then use the
Properties panel to set the Maximum property to the value 200 and the Minimum property to the
value 10 (you can find these properties in the Common Properties section of the Properties
panel; and don’t forget the Search feature). You should now find that each Slider control has
been defined using markup such as so:

<Slider Width="187" Maximum="200" Minimum="10"/>

These Slider controls will be used to change the size of a different UI element on your
artboard via a data binding operation. To complete the initial user interface, draw a graphic of
your choosing on your artboard, such that it is part of the LayoutRoot Grid object. I chose to use

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 224

the triangle geometry found within the Shapes category of the Assets library, as shown in Figure
6–2.

Figure 6–2. The final user interface

Creating New Data Bindings
When you want to use Blend to bind values from one control property to another control
property, your first step is to select the control that will be the target (a.k.a. the destination) of
the data binding operation (the triangle in this example). Select this UI element on your
artboard now, and then locate the Height property in the Layout section of the Properties panel.
Once you have done so, click the Advanced options button (the small square icon) to the right
of the Height property text area (see Figure 6–3).

Figure 6–3. Activating the advanced options of the Height property

From the menu that opens, shown in Figure 6–4, select the Data Binding menu option.4

4 You can also configure data binding operations using the Element Property Binding menu option, as
shown later in this chapter.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 225

Figure 6–4. Activating the Data Binding menu option

You will be presented with the Create Data Binding dialog box, shown in Figure 6–5. As you
can see, this dialog box has the following three tabs on the top, which allow you to configure
three different types of data sources. In a nutshell, your options break down as follows:

• Data Field: This tab can be used to select a .NET object or XML document data5 as the
source of data.

• Element Property: This tab allows you to select a UI object property as the source of
data.

• Data Context: This tab allows you to select from a data context already defined in your
application as the source of data. As clarified later in this chapter, a data context allows
a parent container (such as a layout manager) to define a data source that all child
elements can use free of charge.

You will examine each of these data binding concepts as you progress through the chapter,
but for the time being, select the middle, Element Property tab. As just mentioned, this tab is
where you can “connect” a source object’s property value to the destination you selected on the
artboard. Using the tree view on the left, locate and select the first Slider object, as shown in
Figure 6–5. Then, using the tree view on the right, select the Value property.

5 As examined in more detail later in this chapter, the Silverlight API has little support for XML data binding
operations. Therefore, the +XML button on the Data Field tab is disabled for Silverlight projects.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 226

Figure 6–5. Connecting the Height property of the triangle to the Value property of the Slider

■ Note For this example, I did not bother to give fitting names to my UI elements, in which case Blend provides

default names such as slider, slider1, and so forth.

Click the OK button, and repeat the process just explained to bind the Width property of
your shape to the Value property of the second Slider control. Then, if you run your
application, you should find that you can change the size of the shape by moving the sliders!
Not bad for a few mouse clicks. You might want to change the Minimum and Maximum values of
each Slider object and observe the new behavior.

Back in Expression Blend, if you select the shape geometry and examine the Properties
panel, you will see that the Height and Width properties are each surrounded by a yellow
bounding box, as shown in Figure 6–6. This is Blend’s visual cue that these properties are being
set by a data binding operation.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 227

Figure 6–6. The bound properties appear in yellow bounding boxes.

Viewing the Generated Markup
If you open the XAML editor, you can see what the Create Data Binding wizard has done on
your behalf, as shown next. Notice how your destination object (the geometrical shape) makes
use of an XAML markup extension named {Binding}. The markup extension has two key
components. First, we find the name of the source property (the Value property of the Slider
objects). Second, we have the ElementName attribute, which specifies the name of the source
object (the two Slider objects).

<ed:RegularPolygon Fill="#FFAD0BAF" HorizontalAlignment="Right"
 InnerRadius="1" Margin="0,55,80,123" PointCount="3"
 Stretch="Fill" Stroke="Black"
 Width="{Binding Value, ElementName=slider1}"
 Height="{Binding Value, ElementName=slider}"/>

Essentially, this markup states “the Width property will be assigned to the Value property of
the slider1 object, while the Height property will be assigned to the Value property of the
slider object.”

Converting Data Types
The current example works just fine, as the underlying data type of the Slider’s Value property
is compatible with the underlying data type of the Height and Width properties (all properties
operate on a numeric value, specifically a double data type).

However, what if you want to connect properties that are in some way incompatible, and
want to transform the values? For example, what if you want to change the color of your
geometric shape based on the position of a third Slider control? When you think about this for
a moment, the problem becomes clear: the Value property of the Slider is a numeric (double)
value, but the Fill property of the geometry requires a brush object! When you want to convert
a value to a new data type, you can do so by authoring a custom class to handle the conversion,
and then register this class in the markup.

Add a new Slider control and a new Label control to your artboard (where you place these
new items is up to you). Set the Content property of the Label to the value Shade and configure
the Slider object so that it has a maximum value of 255 and a minimum value of 0. As well,
make sure the SmallChange property of the Slider has been set to the value of 1. Once you are
done, the new controls should look something like so (note I’ve once again arranged my
controls in a new horizontal StackPanel):

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 228

<StackPanel Height="33" Orientation="Horizontal"
 d:LayoutOverrides="Width">
 <Label Content="Shade" Width="61"/>
 <Slider x:Name="slider2" Width="187"
 Maximum="255" SmallChange="1"/>
</StackPanel>

Creating a Custom Data Conversion Class
Before we configure the new binding, we need to author a custom class that will be consulted
during the data binding operation. Insert a new C# class into your project using the Project ➤
Add New Item menu option of the Blend IDE. In the resulting New Item dialog box, add a new
class named DoubleToSolidBrushConverter.cs (see Figure 6–7).

■ Note This part of the example assumes you are comfortable with C# programming. If this is not the case, you

may wish to examine the provided solution code for this project as you read this section.

Figure 6–7. Inserting a new C# code file into the Blend project

A “converter class” must implement a specific .NET interface named IValueConverter. This
interface defines two methods, Convert() and ConvertBack(). The Convert() method is called
during one-way data binding operations, while ConvertBack() is called for two-way data
binding operations (more information on data binding modes is presented in just a bit). While
both methods must be accounted for in your class, you can return null from either method if a
given data conversion is unnecessary. For this example, we are only concerned with a one-way
data binding operation, so update your class as so:

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 229

public class DoubleToSolidBrushConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 double currValue = (double)value;
 byte valueAsByte = (byte)currValue;

 Color color = new Color();
 color.A = 255;
 color.G = valueAsByte;
 return new SolidColorBrush(color);
 }

 public object ConvertBack(object value, Type targetType,
 object parameter,
 System.Globalization.CultureInfo culture)
 { return null; }
}

Recall, the goal of the Convert() method is to transform the incoming double value sent by
the Slider into a custom brush object. As you can see, we are able to nab the incoming original
source value (a double) via the object parameter. We then cast this value into a byte data type
(which is expected by the new Color object), and use this new value to configure a
SolidColorBrush object set to a given shade of green (based on setting the G [green] property of
the SolidColorBrush object).

■ Note Before proceeding with this example project, rebuild the source code using Project ➤ Build Project. If

you do not build your application, you will not be able to locate your custom class in the step to follow.

Selecting a Conversion Class in Blend
Now that we have this class in place, we can refer to it when establishing the data binding
operation in XAML. Open MainWindow.xaml in the Blend designer and select the geometry object
(the triangle) on the artboard once again, but this time, click the Advanced options button (the
small square icon) for the Fill property (located in the Brushes section of the Properties panel).
Once you have done so, activate the Data Binding menu option as you did earlier in this
example when configuring the Height and Width properties, and select the Element Property tab
as before.

Next, select the new Slider control from the tree of elements on the left of the Create Data
Binding dialog box, and attempt to look for the Value property within the tree on the right. You
might be surprised that it appears to be missing! This is because, by default, the Element
Property tab of the Create Data Binding dialog box will show you only compatible data types.
Use the Show drop-down list box on the bottom of the dialog box to pick the All Properties
setting. At this point, pick the Value property (see Figure 6–8).

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 230

Figure 6–8. You need to select All Properties to view a seemingly incompatible property.

We can use this same dialog box to specify our custom conversion class. To do so, expand the
advanced properties area at the bottom of the dialog box, and click the “Add new value converter”
button (Figure 6–9 shows only the relevant [bottom] portion of the larger dialog box).

Figure 6–9. You can specify converter classes using the advanced properties area.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 231

Once you click this button, you should find your custom DoubleToSolidBrushConverter
class listed, as shown in Figure 6–10. (If you can’t find your class in this dialog box, you most
likely forgot to build your project; see the previous Note.)

Figure 6–10. Selecting your custom conversion class

Now, run your program! You should see that the color of your geometry changes when you
move the thumb of your new slider (see Figure 6–11).

Figure 6–11. Converting a double to a solid color brush

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 232

Viewing the Generated Markup
If you examine the generated markup, you will see that your custom conversion class has been
declared as a Window-level object resource:

<Window.Resources>
 <local:DoubleToSolidBrushConverter
 x:Key="DoubleToSolidBrushConverter"/>
</Window.Resources>

The local: prefix shown here was generated by Blend when you selected your conversion
class. As you may know, when you want to describe a custom class in XAML, you must define an
XML namespace that maps to the .NET namespace that defines the custom class. If you view
the opening <Window> tag of this example, you’ll see that local: maps to the root .NET
namespace of this project:

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 ...
 xmlns:local="clr-namespace:ControlToControlBinding"
 ...
>

In any case, this resource is referenced by the Converter attribute of the {Binding} markup
extension of the shape geometry (be aware that I broke the full markup extension across
multiple lines for readability, which you should not do in your project):

<ed:RegularPolygon Fill="{Binding Value,
 Converter={StaticResource DoubleToSolidBrushConverter},
 ElementName=slider2}"
 ...
/>

So far, so good! Next, let’s examine the role of data binding modes.

Understanding Data Binding Modalities
Data binding operations support a Mode attribute, which allows you to define how the source
and destination are kept in sync during the life of the application. By way of example, you may
wish to ensure that the destination is updated when the source changes, but not vice versa. Or,
perhaps you do want to make sure that if the destination changes, the source is updated
automatically. Specifically, the Mode attribute can be set to any of the values shown here:

• OneWay: When the source changes, the destination is updated.

• TwoWay: When the source changes, the destination is updated, and if the destination
changes, the source is updated.

• OneWayToSource:6 This is sort of a “reverse” OneWay setting. If the destination is changed,
the source is updated, but not vice versa.

• OneTime: The destination is updated with the source value when the application starts,
and then all binding logic is forgotten.

6 The OneWayToSource mode value is not supported in Silverlight.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 233

Let’s examine some of the more common data binding modes.

Configuring Data Binding Options with Blend
To illustrate some common Mode options, add a few final controls to your current artboard;
specifically, add a final Label control (with the Content property set to Change Number), a final
Slider control (all the default settings are fine), and a final TextBox named myTextBox (again, the
default settings are fine).

Now let’s bind the Value property of the new Slider to the new TextBox’s Text property;
however, this time we will use an alternative approach to using the Data Binding menu
option/Create Data Binding dialog box to do so. First, select the TextBox on your artboard, and
locate the Text property in the Properties panel. Once you have done so, click the Advanced
options button and then select the Element Property Binding option (see Figure 6–12).

Figure 6–12. The Element Property Binding option is an alternative way to define a data binding.

Once you select this menu option, you’ll notice that your mouse cursor has changed its
display, looking somewhat like a bull’s-eye symbol, as shown in Figure 6–13. This icon signifies
that you can now click an artboard control that represents the source of the data binding
operation. Go ahead and click the new Slider control.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 234

Figure 6–13. Selecting the Slider as the target for the Element Property Binding operation

Once you have done so, you can select the Value property using the drop-down list box in
the resulting dialog box. As well, open the advanced settings area (via the downward arrow icon
on the bottom of the dialog box), and notice you have a set of binding modes to pick from;
select the OneWay option for the time being (see Figure 6–14).

Figure 6–14. Setting a one-way binding mode

Configuring a Two-Way Data Bind
If you run your application, you will be able to verify that the text area updates when the
Slider’s thumb is repositioned. However, try typing into the text area a value that is within the
range of the final Slider control (say, the value 100). You should not see the Slider’s thumb
change position, as a one-way data binding operation only updates the destination based on
the source, not the other way around. If, however, we reconfigure the binding as a two-way data
binding operation, you can indeed change the thumb’s position when you enter new data into
the text area.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 235

When you want to tweak the settings for any of your data bindings, locate a currently
configured property (the Text property in this example), click the Advanced options button, and
select the Data Binding menu option as usual. From here, you can elect to set TwoWay binding
mode, as well as define when the source property should be updated. Notice in Figure 6–15 that
I opted to update the Slider when the TextBox loses focus.

Figure 6–15. Configuring a two-way binding mode

Now, you should be able to verify that if you type a value into the text area, the slider
changes position when the TextBox loses focus (such as when you tab off the control). If you
check out the modified XAML, you’ll find that the TextBox control’s Text property has been
configured as follows (note the Mode attribute in particular):

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 236

<TextBox ...
 Text="{Binding Value, ElementName=slider3, Mode=TwoWay,
 UpdateSourceTrigger=LostFocus}"/>

■ Note When you run this program, you’ll notice that the text area displays the underlying floating-point number

of the Value property. If you wanted to display only whole numbers, you would need to build (and register) a

second data conversion class. See if you can create and register a new class to solve the problem (the solution

for this project provides the required code and markup).

I won’t go into the details of the OneTime and OneWayToSource options (as they are less
commonly used), so check out the .NET Framework documentation for further details if you are
interested. In any case, that wraps up our first data binding example. At this point, I hope you
feel comfortable establishing bindings between related control properties. Next up, let’s see
how to connect properties from non-UI objects to control elements.

■ Source Code The ControlToControlBinding project can be found under the Chapter 6 subdirectory.

Binding to Properties of Non-UI Objects
The previous example illustrated a few ways to connect UI property values to other UI property
values via control-to-control data binding. While this is certainly useful, there are many
situations where you might wish to bind property values from non-UI objects to a graphical user
interface.

For example, you might have a collection of business objects that needs to be shown in a
DataGrid control. Maybe you are building an application that needs to display data within an
XML document in a set of ListBox controls. To begin understanding how Blend can be used to
connect to non-UI properties, our next example will illustrate how to build a collection of
custom object property values for various UI elements.

Creating a Custom Collection of (Custom) Objects
Create a brand new WPF (or Silverlight) application project named CollectionDataContext.
Insert a new class named PurchaseOrder using the Project ➤ Add New Item menu option.
Update this class to support a handful of properties (of your choice) and a custom constructor
to set these values. Here is one possible example:

public class PurchaseOrder
{
 public PurchaseOrder(){}
 public PurchaseOrder(int amt, double cost, string desc)
 {
 Amount = amt;

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 237

 TotalCost = cost;
 Description = desc;
 }

 public int Amount { get; set; }
 public double TotalCost{ get; set; }
 public string Description{ get; set; }
}

While you could use Blend to connect the values of these three properties to a UI object
based on a single instance of the PurchaseOrder class, you will most likely want to bind a
collection of these objects to UI elements.

Thus, define a second class named PurchaseOrders (note the plural name of this new class).
You can add this class to the same C# code file if you wish, or add another new class to your
project using Project ➤ Add New Item.

Update this class to extend the ObservableCollection7 class, which can be very useful when
working with data binding operations, given that this class will automatically “refresh” bindings
when the contents change (e.g., items are added, removed, or changed). Finally, ensure that
when your collection comes to life, a few objects will be added to the collection upon startup (I
have paid homage to my personal four-legged friends who are upon me at this time):

public class PurchaseOrders :
 System.Collections.ObjectModel.ObservableCollection<PurchaseOrder>
{
 public PurchaseOrders()
 {
 // Add a few items upon startup.
 this.Add(new PurchaseOrder(5, 50.00, "Mikko's Cat Nip Treat"));
 this.Add(new PurchaseOrder(5, 50.00, "Saku's Best Dog Bone"));
 this.Add(new PurchaseOrder(1, 2.50, "Extra Bland Tofu"));
 }
}

Now that we have a custom collection of business objects, we can construct a user interface
that will display the data of each member of the collection (remember, what we are really doing
is mapping the properties of the individual PurchaseOrder objects in the collection to UI
element properties). For example, we could bind each PurchaseOrder object property to a set of
drop-down list boxes. We could map the entire collection onto a DataGrid. Whichever way you
wish to go, the Blend IDE simplifies matters by enabling you to use the Data panel.

Defining an Object Data Source with the Data Panel
When you want to use Blend to bind to a custom non-UI object (such as our PurchaseOrders
collection), your first step is to use the Data panel to establish a new object data source. Locate
and open the Data panel (mounted on the right side of the IDE by default), click the “Create
data source” button, and, from the drop-down list, pick Create Object Data Source, as shown in
Figure 6–16.

7 ObservableCollection is in the System.Collections.ObjectModel namespace.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 238

Figure 6–16. The Data panel allows you to establish data sources for the current project.

At this point, you are presented with a new dialog box, where you can select from a large
variety of .NET object types, including any custom classes that are part of your current
application.

■ Note If you do not see your custom class, you have forgotten to build your project!

In Figure 6–17, notice I have collapsed all nodes of the standard libraries for readability; the
key here is that the correct assembly (named the same as your project) will show you your
custom classes. This being said, pick the PurchaseOrders collection, and notice that the
suggested name of your new data source (on the upper portion of the current dialog box) is
PurchaseOrdersDataSource (which is fine, but feel free to rename it if you wish).

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 239

Figure 6–17. Selecting our PurchaseOrders collection

Once you click the OK button, examine the contents of your Data panel, shown in Figure 6–
18, and you will see that your new object data source is displayed, showing you the properties of
the subobject in the collection.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 240

Figure 6–18. The Data panel shows you each data source used within your current application.

If you now examine the markup of your initial Window (or, if you are using a Silverlight
project, your initial UserControl), you’ll notice that the IDE has defined a new object resource
(see Chapter 2) that maps to your custom collection object:

<Window.Resources>
 <local:PurchaseOrders x:Key="PurchaseOrdersDataSource"
 d:IsDataSource="True"/>
</Window.Resources>

This resource will be used throughout the data binding operation.

Binding the Entire Collection to a ListBox
At this point, we can define a UI that will display the property values yielded from the object
data source. Simply put, once you have established a data source via the Data panel, each
aspect of the displayed tree can be dragged to the artboard to generate a new UI control that is
automatically bound to the data store.

If you examine the top-left area of the Data panel, you will notice two buttons. The leftmost
button (selected by default) activates List mode of the currently selected data source. When
your data source is configured in List mode, you can drag a given property or object from the
Data panel and it will be displayed in a new ListBox control. The button to the right configures
the data source to work in Details mode, which will be examined later in the chapter.

Assuming you are in the default List mode, if you were to select the PurchaseOrders node in
the Data panel and drop it onto your artboard, you would find that a single ListBox control is
added, which shows all properties for each object in the collection. If you were to try this
yourself, you’d see a UI similar to that shown in Figure 6–19.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 241

Figure 6–19. A single ListBox containing all object data

At first glance, it might not seem very useful to bind an entire collection of objects to a
single ListBox, given that each list entry shows each object property value one after the other.
While it is true that the currently displayed UI is not very helpful, WPF and Silverlight both
support the ability to build data templates that can stylize how a data binding should be
displayed in the destination control.

For example, we could create a data template such that we don’t simply see stacks of string
data, but also see additional bits of descriptive text, graphics, animations, or what have you.
Essentially, anything you would do when building a control template (see Chapter 5) can be
done within a data binding operation. More details about data templates are coming in a
moment. Until then, let’s solidify the role of a data context.

Examining the Role of the Data Context
If you open the XAML editor, you will notice that the <Grid> layout manager (LayoutRoot) has a
new DataContext attribute, which is assigned a binding expression that binds it to the name of
the Window-level object resource, PurchaseOrdersDataSource. When a layout manager sets the
DataContext attribute, any child element is able to use this source of the data (which is our
PurchaseOrders object) during a data binding operation:

<Grid x:Name="LayoutRoot" DataContext="{Binding Source=
 {StaticResource PurchaseOrdersDataSource}}">
 ...
</Grid>

You will also notice that the ListBox in the <Grid> sets two properties of interest,
ItemsSource and ItemTemplate. The ItemsSource property may appear to be odd, in that it has

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 242

only an empty {Binding} markup extension. This simply marks the source of ListBox data as
the result of a data binding operation, which is truly defined by the related data template
(described next):

<ListBox ItemTemplate="{DynamicResource PurchaseOrderTemplate}"
 ItemsSource="{Binding}"
 ...
/>

A First Look at Data Template Markup
The resource identified by the ItemTemplate property is a new object resource that was put in
place when you dragged and dropped the PurchaseOrders node from the Data panel onto the
artboard. Again, you will learn more about data templates (and how to customize them) later in
this chapter, so don’t worry too much about details just yet.

<DataTemplate x:Key="PurchaseOrderTemplate">
 <StackPanel>
 <TextBlock Text="{Binding Amount}"/>
 <TextBlock Text="{Binding Description}"/>
 <TextBlock Text="{Binding TotalCost}"/>
 </StackPanel>
</DataTemplate>

Viewing the Bound Data Context
Last but not least, if you view the Data panel once again, you’ll notice that the lower portion of
the window shows a new data context node (see Figure 6–20). Essentially, the upper portion of
the Data panel simply lists the full set of data sources that could be used, whereas the lower
portion shows which data sources are currently in use (a.k.a the data contexts).

Figure 6–20. The Data panel shows “live” data contexts.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 243

Quick Project Cleanup
Now that you have a better feel for what the IDE generates if you drop an entire collection onto
the artboard, press Ctrl+Z so that your Window definition is back to a default look and feel. Once
you are done, verify that your markup no longer has the ListBox control, but does maintain the
object data source:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="CollectionDataContext.MainWindow"
 x:Name="Window"
 Title=" MainWindow"
 Width="640" Height="480">

 <Window.Resources>
 <local:PurchaseOrders x:Key="PurchaseOrdersDataSource"
 d:IsDataSource="True"/>
 </Window.Resources>

 <Grid x:Name="LayoutRoot"/>
</Window>

Binding Individual Properties to ListBox Controls
If you were to drag an individual property from the Data panel to the artboard, there would be a
new ListBox (assuming you are in the default List mode of the Data Panel) that displays the
selected property value of the data source. For example, let’s say that you want to define three
ListBox controls that will hold the property values for each PurchaseOrder object in your
collection. To achieve this via Blend, select the Amount property in the Data panel and drag it
onto the artboard for your current Window. You’ll see that when you drag over a single property,
the IDE automatically generates a new ListBox. Figure 6–21 shows my artboard after I dragged
the Amount, Description, and TotalCost properties onto it (and resized the current Window and
Grid objects a tad).

Figure 6–21. Three ListBox controls bound to custom object properties

Binding the Collection to a DataGrid
At this point, you have seen that if you drag a property (or the entire collection) from the Data
panel to the artboard, the IDE will display data in related ListBox controls by default. Other UI

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 244

controls can also be the drop target of the Data panel, of course, provided that you add the
control first.

To illustrate, locate the DataGrid control within your Assets library, and draw one on your
Window, somewhere below the current ListBox controls. Next, select the PurchaseOrders node in
your Data panel (not the individual properties beneath this node) and drag it onto the new
DataGrid object. Once you do, you’ll see that the content of your collection is automatically
displayed, as shown in Figure 6–22.

Figure 6–22. Binding the entire collection to a UI DataGrid

If you examine the generated markup, you’ll see that the DataGrid is still leveraging the data
context defined by LayoutRoot, this time mapping object properties to individual
<DataGridTextColumn> elements:

<Grid x:Name="LayoutRoot" DataContext="{Binding
 Source={StaticResource PurchaseOrdersDataSource}}">
...
 <DataGrid Margin="8,112,8,120" AutoGenerateColumns="False"
 ItemsSource="{Binding}">
 <DataGrid.Columns>
 <DataGridTextColumn Binding="{Binding Amount}" Header="Amount"/>
 <DataGridTextColumn Binding="{Binding Description}"
 Header="Description"/>
 <DataGridTextColumn Binding="{Binding TotalCost}"
 Header="TotalCost"/>
 </DataGrid.Columns>
 </DataGrid>
</Grid>

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 245

Manipulating the Collection at Runtime
Recall that our custom PurchaseOrders collection extended a parent class named
ObservableCollection. This collection has the unique ability to refresh UI data bindings if the
contents of the collection change (items are added, removed, or updated). To wrap up the first
example, add a new Button control to your Window’s artboard and handle the Click event via the
properties window.

Now recall that when you first defined your object data source, the IDE added to your main
Window an object resource named PurchaseOrdersDataSource that maps to an instance of your
PurchaseOrders collection. When the application is run, the collection object is created using
the default constructor.8 So, if you want to gain access to this same class instance, you simply
have to locate the item by key name in your resource container. Consider the following Click
event hander that will add a new PurchaseOrder object to the collection:

private void btnAddNewObject_Click(object sender,
 System.Windows.RoutedEventArgs e)
{
 // First, get our object resource.
 PurchaseOrders myOrders =
 (PurchaseOrders)this.Resources["PurchaseOrdersDataSource"];

 // Now, generate some random values for the numerical properties.
 Random r = new Random();
 int amount = r.Next(50);
 double cost = r.NextDouble();

 // Finally, add the new random test item.
 myOrders.Add(new PurchaseOrder(amount, cost, "TEST ITEM!"));
}

Here, for simplicity, I am generating some random data to account for the cost and amount
of a test item, but I am sure you can extend this project with some new text entry controls to
gather unique values if you wish. In any case, if you run your application and click your Button
control a few times, you will see that the ListBox and DataGrid objects automatically update!
See Figure 6–23.

8 In markup, it is only possible to call the default constructor of any object.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 246

Figure 6–23. Adding, and rebinding, new orders

That wraps up the current example. Next up, let’s examine the role of data templates.

■ Source Code The CollectionDataContext project can be found under the Chapter 6 subdirectory.

Working with Data Templates
Our next example will reuse our current PurchaseOrder and PurchaseOrders classes to illustrate
how Blend can facilitate the creation of custom data templates. Create a new WPF application
project named FunWithDataTemplates, and then use Project ➤ Add Existing Item to copy over
the C# file (or files) that contains your business object and custom collection.

After ensuring that you have built your project, create a new object data source connection
to your PurchaseOrders object, as you did in the previous example, and drag the PurchaseOrders
node from the Data panel onto the Window’s artboard. At this point, you should see the same
display as shown previously in Figure 6–19. Recall that the IDE generated a default data
template (as a Window resource in MainWindow.xaml) that is used by the ListBox to display each
property value in a simple, unstyled TextBlock:

<DataTemplate x:Key="PurchaseOrderTemplate">
 <StackPanel>
 <TextBlock Text="{Binding Amount}"/>
 <TextBlock Text="{Binding Description}"/>
 <TextBlock Text="{Binding TotalCost}"/>
 </StackPanel>
</DataTemplate>

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 247

Editing a Data Template
When you want to modify this default data template, you first need to open the Resources panel
and locate the template by name, as shown in Figure 6–24. Once you have done so, open it for
editing by clicking the Edit resource button.

Figure 6–24. Locating a data template in the Resources panel

Locate the Objects and Timeline panel and select the first TextBlock (see Figure 6–25).

Figure 6–25. Selecting the first TextBlock in the data template for editing

Styling Items in a Data Template
At this point, you are free to use the Properties panel to change any settings you wish in order to
style how the Amount property will be displayed in the TextBlock. By way of a few suggestions,
change the Foreground property to a new color value, and maybe tinker with the font settings
using the Text section of the Properties panel. Here is how I configured my first TextBlock:

<TextBlock Text="{Binding Amount}" Foreground="#FFE91616"
 FontWeight="Bold" FontSize="18.667"/>

Now, if you run your program, you will see that each Amount property looks somewhat more
interesting (see Figure 6–26).

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 248

Figure 6–26. Our first attempt at styling our data template

Defining Composite UI Elements for a Data Template
Adding a bit of color is fine, but the underlying object properties are still rather nondescript
(what does this large, red 5 mean exactly?). Return to the Objects and Timeline panel for your
data template, and select the first TextBlock once again. Right-click this node, and group this
item into a new nested StackPanel by selecting Group Into ➤ StackPanel.

Once you have done so, set the Orientation property of this new StackPanel to Horizontal.
Finally, add a new Label control above the existing TextBlock (remember, you can drag and
drop tree nodes to new locations). Once you are done, the Objects and Timeline panel tree
should look like Figure 6–27.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 249

Figure 6–27. The first item in the template is now a nested StackPanel.

Before moving on, set the Content property of your Label control to Amount. If you examine
the editor for the data template, you will notice that everything is very small in size, so use the
artboard controls on the lower left (or the mouse wheel) to zoom way into the designer. You will
see that your new nested layout manager and its control are not positioned correctly. To tidy
things up, set the Width property of your new Label to 70.

Use this same general process to add a bit of flair to the remaining two TextBlock controls
in the data template. Again, you will most likely need to group each in a nested layout manager
(again, using the Group Into menu option of the Objects and Timeline panel), and then add a
few new items of your choosing.

Figure 6–28 shows my final Objects and Timeline panel (and a portion of the zoomed-in
artboard) for each part of my template. Notice that I have reordered the nested StackPanel
objects so the amount and cost are listed before the product description. Also notice I have
added a small graphic to “point to” the product description.

Figure 6–28. The final data template layout

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 250

The underlying XAML looks like so (yours will most certainly differ to some level, but you
see the general idea):

<DataTemplate x:Key="PurchaseOrderTemplate">
 <StackPanel>
 <StackPanel Orientation="Horizontal" >
 <Label Width="70" Content="Amount" BorderBrush="#FF309914"
 FontWeight="Bold" FontStyle="Italic"/>
 <TextBlock Text="{Binding Amount}" Foreground="#FFE91616"
 FontWeight="Bold" FontSize="18.667"
 d:LayoutOverrides="Width"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal" >
 <Label Width="70" Content="Cost" FontWeight="Bold"
 FontStyle="Italic"/>
 <TextBlock Text="{Binding TotalCost}" Foreground="#FF1031E7"
 FontWeight="Bold" FontSize="18.667"
 d:LayoutOverrides="Width"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <ed:BlockArrow Fill="#FF5A5AC2" Height="11" Orientation="Right"
 Stroke="#FF1030E4" Width="15"
 StrokeThickness="2"/>
 <TextBlock Text="{Binding Description}"
 d:LayoutOverrides="Width"
 Foreground="#FFAD11DE"/>
 </StackPanel>
 </StackPanel>
</DataTemplate>

An important point to note is that when you are editing any data template, you can return
to the Window (or UserControl) designer by clicking the “Return scope to Window/UserControl”
button in the Objects and Timeline panel, as shown in Figure 6–29.

Figure 6–29. Returning to the window designer from the data template designer

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 251

Return to the artboard, and you will see the results of your tinkering (see Figure 6–30). If
you run the application, you will see that, sure enough, you can select a given item in your
stylized list box data display.

Figure 6–30. Our final data template display

Creating Control Templates Containing Data
Templates
To wrap up our customized data template, I’d like to point out that you are free to create control
templates (see Chapter 5) that contain embedded data templates. Why might you want to do
this? Well, suppose you want to ensure that when the user selects one of the items in the
ListBox, the selected StackPanel of data changes in some manner (such as a bounce animation
or what have you). Furthermore, suppose you want to have a number of these ListBox controls
on the same window.

■ Note In this section, you will be using the States panel, which was examined in Chapter 5. Refer to the

section “Working with the VSM via the States Panel” for a quick refresher if required.

If you are attempting to add interactivity to a data template, one easy way to do so is to
right-click the control that is currently using your data template (the ListBox control in our

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 252

example) and, under the Edit Additional Templates menu option, opt to edit a copy of the
“generated item container” (see Figure 6–31).

Figure 6–31. Editing a copy of our ListBox’s item container template

Essentially, this IDE option generates a new ListBox style that allows you to define how the
<ContentPresenter> will display its data under various conditions (when an item is selected,
unselected, receives mouse events, and many other possible notifications). Activate this menu
option now, and in the Create Style Resource dialog box, name your style myListStyle and save
it as a Window-level resource (see Figure 6–32).

Figure 6–32. Naming and storing the new style resource

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 253

Adding Interactivity to the Template
Examine your Objects and Timeline panel and notice that you can see the internal
<ContentPresenter>. Select this node in the tree. Recall that our goal is to add some interactivity
to the control template, and therefore we need to work with triggers or the Visual State Manager
(VSM) as explained in Chapter 5. Here, we will opt for the use of the VSM.

Open the States panel and you will notice that a number of default visual states are already
listed. Pick the Selected state from the list, as shown in Figure 6–33, to activate the state editor.

Figure 6–33. Viewing the intrinsic visual states of the ListBox template

Now that you have selected the Selected state (pardon the redundancy!), you can make any
changes you wish to the <ContentPresenter>. I chose to reduce the X and Y scaling to 0.85 using
the Scale tab (setting the X and Y values to 0.85) of the Transform section, as shown in Figure 6–34.

Figure 6–34. Shrinking the size of the selected list item

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 254

Next, I added a bounce effect. To do so, begin by adding a new transition into the Selected
state in the States panel, as shown in Figure 6–35.

Figure 6–35. Adding a new state transition

Next, use the related animation easing editor to add a bounce effect of your liking, as
shown in Figure 6–36.

Figure 6–36. Adding a bounce effect when transitioning to the Selected state

Last but not least, make sure you set a proper time duration for the animation to occur, as
the default value of zero basically means you will not see the animation effect at all! As you can
see in Figure 6–37, I set a value of one second.

Figure 6–37. Setting a time duration for the effect

Now, run your application and select items in your list. You should see a nice bouncing
effect for the whole set of composite items defined by your data template. How useful is a
bouncing composite list item? Well, I’ll let you be the judge of that.

In any case, this example has illustrated a number of interesting ways to customize how a
data binding operation looks and feels. As I am sure you’ve guessed, data templates can be
styled in a large number of ways. I hope this example has helped you become comfortable with
the nuts and bolts of using the Blend IDE to customize the look of your data binding operations.

■ Source Code The FunWithDataTemplates project can be found under the Chapter 6 subdirectory.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 255

Defining a WPF XML Data Source
If you are a .NET developer, you are well aware that the platform supports various ways to
programmatically manipulate XML data, such as the original System.Xml namespace as well as
the LINQ to XML API. If your WPF or Silverlight applications need to modify XML data at
runtime (add new elements, delete elements, update elements, etc.), then you will most
certainly need to drop down to procedural code. However, the Blend IDE also provides a way to
bind UI elements to data that is contained in an XML document, by using the XML Data Source
option of the Data panel.

■ Note Unfortunately, the ability to bind XML data to UI elements via an XML data source is available only for

WPF applications. Of course, it is certainly possible to manipulate XML data in a Silverlight program, but to do

so, you will need to rely on procedural code. Look up the topic “XML Data” within the Silverlight documentation

for information and code examples regarding XML data and Silverlight applications.

Given that direct XML document data binding is only available under WPF, create a new
WPF application project named WpfXmlDataBinding. If you have an XML document you
would like to manipulate, you are free to use that specific *.xml file; however, for this example, I
will assume you are using the following I636.150nventory.xml file (which is included in the
code download for the current example of this chapter):

<?xml version="1.0" encoding="utf-8"?>
<Inventory>
 <Product ProductID ="0">
 <Cost>5.00</Cost>
 <Description>
 Eight Times the sugar and twice the caffeine
 </Description>
 <Name>Super Spazz Soda Pop</Name>
 <HotItem>true</HotItem>
 </Product>
 <Product ProductID ="1">
 <Cost>10.00</Cost>
 <Description>A soothing night time cookie</Description>
 <Name>Sleepy Time Cookies</Name>
 <HotItem>true</HotItem>
 </Product>
 <Product ProductID ="2">
 <Cost>15.00</Cost>
 <Description>It's Tofu, what can you say?</Description>
 <Name>Joe's Tofu</Name>
 <HotItem>false</HotItem>
 </Product>
</Inventory>

Insert this file (or your custom XML file) into your current project using Project ➤ Add
Existing Item. Once you have done so, you should see this file within the Projects panel.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 256

■ Note It is not mandatory to include an XML data file in your project in order to bind to it with the Data panel,

but this does make it easy to open the file within Blend for editing.

Adding an XML Data Source
First open MainWindow.xaml in the artboard designer, and then locate the Data panel and opt to
add a new XML data source, as shown in Figure 6–38.

Figure 6–38. Adding a new XML data source

In the resulting Create XML Data Source dialog box, shown in Figure 6–39, browse to
whichever XML document you wish to use (again, here I am assuming the Inventory.xml file).
Name your new XML data source InventoryXmlDataStore and store the object resource in the
current document.

Figure 6–39. Mapping to your XML document

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 257

Click the OK button. At this point, your Data panel should look something like what you see
in Figure 6–40.

Figure 6–40. The XML data source

If you examine the XAML data located in MainWindow.xaml, you will notice that a new
resource of type XmlDataProvider has been defined:

<Window.Resources>
 <XmlDataProvider x:Key="InventoryDataSource"
 Source="\Inventory.xml"
 d:IsDataSource="True"/>
</Window.Resources>

Binding XML Data to UI Elements via XPath
Now that we have established our XML data source, we can drag and drop the nodes from the
Data panel onto the artboard, just like we did when we created an object data source. Thus, if
you drag the entire Product node to the artboard, the IDE will generate a ListBox that displays
all data for each XML element. Notice that the ItemsSource property has been bound to the
<Products> node using an XPath expression:

<ListBox HorizontalAlignment="Left"
 ItemTemplate="{DynamicResource ProductTemplate}"
 ItemsSource="{Binding XPath=/Inventory/Product}"
 Margin="89,65,0,77" Width="200"/>

As well, the generated template (specified by the ItemTemplate property) uses some
additional XPath expressions to connect the various attributes and subnodes of the <Product>
node:

<DataTemplate x:Key="ProductTemplate">
 <StackPanel>

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 258

 <TextBlock Text="{Binding XPath=@ProductID}"/>
 <TextBlock Text="{Binding XPath=Cost}"/>
 <TextBlock Text="{Binding XPath=Description}"/>
 <CheckBox IsChecked="{Binding XPath=HotItem}"/>
 <TextBlock Text="{Binding XPath=Name}"/>
 </StackPanel>
</DataTemplate>

Again, similar to when you are working with an object data source, you can also drag
individual attributes (such as ProductID) or subnodes (Cost, Description, etc.) directly to the
artboard to generate ListBox controls that display only that subset of data. Thus, if you drag the
HotItem node to the artboard, the IDE will generate a new ListBox control using a new related
data template:

<!-- The ListBox -->
<ListBox HorizontalAlignment="Right"
 ItemTemplate="{DynamicResource ProductTemplate1}"
 ItemsSource="{Binding XPath=/Inventory/Product}"
 Margin="0,78,54,64" Width="200"/>

<!-- The data template-->
<DataTemplate x:Key="ProductTemplate1">
 <StackPanel>
 <CheckBox IsChecked="{Binding XPath=HotItem}"/>
 </StackPanel>
</DataTemplate>

To be sure, you will want to modify these data templates using the techniques examined
earlier in the chapter. In any case, as you can see, the general process of working with an XML
data source is very similar to working with an object data source, so you should be in good
shape.

■ Note The Blend User Guide includes an interesting tutorial that illustrates how to use the XML data source to

bind to an RSS feed. Look up the topic “Try it: Create an RSS news reader” if you are interested.

Before we move on to the final major topic of this chapter (creating new data stores and
sample data), the next example illustrates a second way you can use the Data panel. As you will
see, it is possible to quickly build a “list details” display by enabling the Details mode feature of
the Data panel.

■ Source Code The WpfXmlDataBinding project can be found under the Chapter 6 subdirectory.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 259

Creating a List Details Data Binding
Our data binding examples thus far showed how data items in the Data panel will map to new
ListBox controls. However, right next to the List Mode button is a Details Mode button (see
Figure 6–41) that will place the data source into Details mode.

Figure 6–41. The Data panel can toggle between List mode and Details mode.

When you select Details mode, you will find that when you drag individual properties from
the Data panel to the artboard, the data value is captured within a TextBlock control (rather
than a ListBox). As well, if you drag a parent node to the artboard, the IDE will generate markup
that allows you to cycle through the “details” of a selected item (a full example of doing so is
provided in just a moment).

To illustrate this aspect of the Data panel, create a new WPF (or Silverlight) application
project named ListDetailsDataBinding. Next, add to your project the C# file that contains your
PurchaseOrder and PurchaseOrders classes, build your project, and then use the Data panel to
define a new object data source that maps to your custom PurchaseOrders class.

Creating the User Interface
Ensure that you are still in the default List mode of the Data panel, and drag the Description
node to the artboard to generate a ListBox that shows you the text description of each item (I’ve
also added a Label control to describe the contents of this control). Click the Details Mode
button of the Data panel and select all three properties (Amount, Description, and TotalCost)
using a standard Shift+click operation (see Figure 6–42).

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 260

Figure 6–42. Selecting multiple items from the Data panel in Details mode

Once these items are selected, drag them to the artboard. At this point, your artboard
should look something like that shown in Figure 6–43.

Figure 6–43. Our list-details UI

Because you have dragged and dropped multiple items from the Data panel, the IDE
generated a Grid object that contains a set of related TextBlock controls. If you examine the
Objects and Timeline panel, you will see the tree of UI elements shown in Figure 6–44.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 261

Figure 6–44. Dragging multiple items from the Data panel to the artboard results in a Grid of

controls.

Now, run your project! You will see that when you click any item in the ListBox, the full
details of the selected item are shown in the details area (the Grid of TextBlock controls). Not
too shabby, eh? Of course, you are free to change the layout of the items in the sub-Grid, modify
the related data templates, and what have you. I’ll allow you to modify the generated UI markup
as you see fit, but let’s take a look at the data binding markup.

Examining the Generated Markup
When you dragged the initial Description node from the Data panel, the IDE generated basic
markup that established a data context for the root Grid object that maps to your custom
collection. As well, the ListBox control uses a simple data template to display the values from
the Description properties. Here is the relevant markup before you added additional items in
Details mode:

<Window
... >
 <Window.Resources>
 <CollectionDataContext:PurchaseOrders
 x:Key="PurchaseOrdersDataSource" d:IsDataSource="True"/>
 <DataTemplate x:Key="PurchaseOrderTemplate">
 <StackPanel>
 <TextBlock Text="{Binding Description}"/>
 </StackPanel>
 </DataTemplate>
 </Window.Resources>

 <Grid x:Name="LayoutRoot" DataContext="{Binding Source=
 {StaticResource PurchaseOrdersDataSource}}">
 <ListBox HorizontalAlignment="Left"
 ItemTemplate="{DynamicResource PurchaseOrderTemplate}"
 ItemsSource="{Binding}" ... />

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 262

 </Grid>
</Window>

Once you added the remaining detail items, the sub-Grid defined its own data context that
binds to the SelectedItem property of the ListBox. Each of the contained TextBlock controls
uses the expected {Binding} markup extension to connect to a given object property from the
collection (note that Blend automatically named each item, as we did not explicitly set the Name
property). Here is some partial markup:

<Grid DataContext="{Binding SelectedItem, ElementName=listBox}"
 Margin="257,53.92,36,0"
 d:DataContext="{Binding [0]}" Height="97" VerticalAlignment="Top">
 <TextBlock HorizontalAlignment="Left" VerticalAlignment="Top"
 Width="100" Text="Amount"/>
 <TextBlock Text="{Binding Amount}" HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Width="150" Margin="104,0,0,0"/>
...
</Grid>

■ Note The second DataContext property (marked with a d tag prefix) is used by the Blend designer surface,

and is not required for the data binding operation to perform its work.

Figure 6–45 shows my final application in action.

Figure 6–45. A list-details data binding operation

■ Source Code The ListDetailsDataBinding project is included under the Chapter 6 subdirectory.

Exploring the Role of Sample Data
Many of the examples thus far in this chapter have used a customized collection of
PurchaseOrder objects, which we manually created using the C# code editor. As it turns out, it is

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 263

not uncommon for a developer to need to work with some temporary data during the
construction of the user interface. For example, perhaps the real data will come from a
relational database...which is currently being constructed by your friendly DBA. Or, perhaps the
exact business objects to be used by the program are currently little more than a collection of
UML class diagrams.

When you are building a WPF or Silverlight application with Blend, you can elect to insert
what is known as sample data. As the name suggests, this provides a way for you to visualize the
UI even when the live data is unavailable. As well, Blend sample data can be useful during the
process of learning more about data binding techniques in general.

■ Note Sample data is also useful when you are using SketchFlow to prototype your applications. You’ll learn

about SketchFlow prototyping in Chapter 8.

Inserting Sample Data into a Project
Create a new WPF or Silverlight application project named FunWithSampleData.9 Open the
Data panel and elect to insert sample data into your project (see Figure 6–46). Leave all the
settings in the resulting dialog box at their defaults.

Figure 6–46. Inserting sample data

At this point, your Data panel has been populated with a number of testing items,
including a custom collection (which extends ObservableCollection) and a few default
properties (named Property1 and Property2). Double-click the current Collection node and
rename this to PersonCollection. Likewise, rename your first two properties to FirstName and
LastName (which is currently a Boolean value, but we will change this in a moment). Figure 6–47
shows the Data panel after these adjustments.

9 Unlike most other projects in this book, I did not supply a solution for this project, as it is little more than a
“create and examine” example.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 264

Figure 6–47. Renaming the initial items

Adding Additional Properties
You can add additional properties to your data store using the New Property button. If you click
the drop-down arrow, you will see you the four choices shown in Figure 6–48.

Figure 6–48. Adding additional properties

The first three choices break down as so (the fourth is discussed a bit later):

• Add Simple Property: Use this option to add a String, Number, Boolean, or Image
property. By default, a String property is added, but this can be changed after creation.

• Add Complex Property: Use this option to create a property that can contain child
properties (in other words, a new class with custom properties).

• Add Collection Property: Use this option to create a new class extending
ObservableCollection.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 265

Add a new “simple property” named Picture, which will automatically default to a String
data property.

Modifying the Data Types and Values
Once you have added properties, you can further configure their data types. The first approach
is to change properties values by clicking the embedded property drop-down editor. Figure 6–
49 shows how we can change the Picture property to an Image. Do know that the Image
property can be configured to select a specific image file (such as pictures of various people),
but don’t bother; the IDE will use some sample images by default.

Figure 6–49. Modifying individual property settings

In addition, you can configure all property data types if you click the “Edit sample values”
button, as shown in Figure 6–50.

Figure 6–50. Editing all property values

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 266

Use the resulting Edit Sample Values dialog box to change the LastName property from a
Boolean value to a String data type, as shown in Figure 6–51. Notice that each property is being
set to a set of default string data and image files (after all, this is in fact sample data). Also note
that you can change how many test records you wish to have generated.

Figure 6–51. The Edit Sample Values dialog box

Binding Sample Data to the UI
At this point in the chapter, I am sure you know the next step. You can drag and drop elements
from the Data panel onto the artboard. Make sure you double-check whether the Data panel is
in List mode or Details mode, as inserting sample data defaults to Details mode. In Figure 6–52,
you can see the end result of dragging the PersonCollection node on to a DataGrid control
(while the Data panel was in List mode).

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 267

Figure 6–52. Visualizing the sample data on a DataGrid

Also note that you have the option to convert your sample data from a flat list of objects to
a hierarchal format (see Figure 6–53).

Figure 6–53. Converting sample data to a hierarchal format

Figure 6–54 illustrates the same data (which is now in a hierarchal format) bound to a new
TreeView control.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 268

Figure 6–54. Displaying hierarchal data in a TreeView

Learning More About Sample Data
If the topic of sample data is of interest to you, and I suspect it will be during the prototyping
phase of new WPF or Silverlight projects,10 be aware that the Blend User Guide has a whole
section on the topic, which builds upon the topics examined here. Look up “Creating sample
data” for more information (see Figure 6–55).

10 See Chapter 8 for details of using SketchFlow during application prototyping.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 269

Figure 6–55. More details regarding Blend sample data can be found here.

Data Binding: A Brief Word on Final Topics
Over the course of this chapter, you have learned a number of data binding techniques,
including how to bind control properties to other control properties; bind to custom
collections; construct data templates; configure list-detail displays; and work with sample data.
To be sure, there are other data binding–centric topics that I have not covered. Here is a
rundown of a few items you may wish to explore yourself.

Binding to Relational Database Data
Perhaps the most common location for an application’s data is a relational database. As you
may know, the .NET platform provides a very comprehensive data access API named ADO.NET.
Using this programming model, you can manipulate relational database tables in a variety of
ways (the connected layer, the disconnected layer, the Entity Framework, and so forth).

Typically, data access logic is bundled into a dedicated .NET library, and referenced by the
external applications (a WPF Window, a custom WCF service, or what have you). When you are
referencing a data access library from a Blend project, you can create a new object data source
that will invoke specific methods on the data objects to fetch data. The result set is then bound
to a UI element via the Data panel.

I will not walk you through the process of building a Blend UI that uses data access
libraries, as this would require building a database and authoring a good deal of procedural C#
code. If you would like to learn more about using ADO.NET to build a data library (and how to
leverage it in your Blend projects), look up the topic “Try it: Display data from a sample SQL
database” in the Blend User Guide (see Figure 6–56). Here you will find a detailed tutorial that
will walk you through the process.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 270

Figure 6–56. More details regarding database access can be found here.

The Role of Blend Databound Project Templates
(MVVM)
I also want to briefly point out that Blend WPF and Silverlight projects (as well as Windows
Phone 7 projects, provided you have installed the necessary templates [see Chapter 7]) can be
created to make use of a very popular design pattern termed Model-View-ViewModel (MVVM).
This design pattern helps you build applications in which the UI layer and business logic layer
are as loosely coupled as possible. If you select a Databound project template, your starter code
will follow the MVVM design pattern. Figure 6–57 shows the Silverlight Databound project type
within the Blend New Project dialog box.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 271

Figure 6–57. The Blend Databound projects follow the MVVM design pattern.

While learning MVVM is certainly a good idea for any WPF or Silverlight programmer, this
topic is way outside the mission of this text. As you may know, working with MVVM can entail
using a number of more advanced programming techniques. If you are interested in learning
more about MVVM, my first bit of advice is to create a new Blend Databound project and
examine the generated starter code.

I also recommend that you read the very useful MSDN magazine article titled “WPF Apps
with the Model-View-ViewModel Design Pattern”11 (the same techniques would work with a
Silverlight project). This article will give you a solid understanding of why MVVM is so popular,
and explain the overall architecture. Do be aware, however, that this particular article is
targeted toward experienced .NET programmers.

Summary
This chapter examined a number of ways in which Blend can help you connect data source
values to user interface elements. It began by investigating the role of control-to-control data
binding. You learned how to use the Create Data Binding dialog box, learned how to build (and
register) custom data conversion classes, and learned about the role of one-way and two-way
data binding operations.

Next, you learned how you can use the Blend Data panel to create object data sources.
Here, you created a custom collection of objects, which were bound to various UI elements.
You then learned how to customize the way a data binding operation will be displayed using
custom data templates. As shown, you can build a custom data template using many of the
same techniques you use when building a custom control template.

11 See http://msdn.microsoft.com/en-us/magazine/dd419663.aspx.

CHAPTER 6 ■ BLEND DATA BINDING TECHNIQUES

 272

I wrapped things up with a quick preview of Blend sample data. This feature of the IDE allows
you to define and use “mock” data as a simple placeholder for the “real” data that may not be
available when constructing your UI. Last but not least, I pointed out from a high level a few
final topics that are important (MVVM, for example) but outside the scope of this text.

 273

C H A P T E R 7
■ ■ ■

Designing for Windows Phone 7

At the time of this writing, Windows Phone 7 is Microsoft’s latest handheld device, which stands
as a direct competitor to Apple’s iPhone platform (as well as other popular handhelds). From a
.NET programmer’s point of view, building applications for Windows Phone 7 is a very enticing
proposition, as the native toolkit is in fact based on Silverlight!1 Given this fact, you can build a
Windows Phone 7 application using C#, VB, XAML, Visual Studio 2010, Expression Blend, and
the same general programming model as you would use when building a WPF or web-centric
Silverlight application.

The first topic of this chapter illustrates how to install the necessary Windows Phone 7 SDK,
which will update Visual Studio 2010 and Expression Blend 4 with the necessary libraries,
templates, and IDE extensions. Once your machine has been configured with the correct
development bits, you will be given a guided tour of the new project types and the new aspects
of the Blend IDE that enable application development for the Windows Phone 7 platform.

Given that a vast majority of topics covered in Chapters 1 through 6 of this book apply
directly to Windows Phone 7 development, the remainder of this chapter will have you create
and modify each of the primary Windows Phone project types (simple, panorama, and pivot),
which will illustrate various aspects of Windows Phone 7 development.

■ Note While Windows Phone 7 uses essentially the same programming model as Silverlight proper, you will

need to learn about a number of phone-centric programming techniques to complete the puzzle (such as the

navigation framework, how to interface with the handheld device, and so on). Given that the mission of this book

is to teach you how to use the Blend IDE to design UIs (rather than to teach you how to implement complete

software solutions), I will keep the coding techniques to a minimum. However, I will point you to a number of

useful online resources at the conclusion of this chapter so that you can explore the topic further on your own.

Installing the Windows Phone 7 SDK
Microsoft’s Windows Phone 7 device was released to the world after the release of Expression
Blend 4 (as well as Visual Studio 2010). Therefore, if you want to create Windows Phone 7
projects, you must download and install the free Software Development Kit (SDK; formally

1 Formally termed Silverlight for Windows Phone.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 274

called the Windows Phone Developer Tools). Although there are many locations on the Web
from which you can download and install the SDK, perhaps the simplest approach is to access
the download area of the Expression Blend home page. Open a web browser and navigate to the
following URL:

http://www.microsoft.com/expression/windowsphone

In Figure 7–1, you can see the design of this web page at the time of writing, which could be
changed in the future. In any case, locate and click the “Download the Developer Tools” link.

Figure 7–1. The Windows Phone 7 SDK can be freely downloaded from the Expression Blend web site.

Next, you will be asked to download a small executable program that will begin the
installation process (see Figure 7–2). Click the Run button to proceed.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 275

Figure 7–2. Running the initial installer

■ Note If you get an error informing you that the installer cannot run in Compatibility mode, download the

installer once again, but this time save the application to your desktop. Next, right-click the executable and select

the “Run as Administrator” menu option.

Once this installer is downloaded, click the Run button (once again) from the new dialog
box that springs up, and this will start the formal installation process. After you accept the
license agreement, click the Install Now button (see Figure 7–3) to install the full set of Windows
Phone 7 development tools.

Figure 7–3. Installing the Windows Phone 7 SDK

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 276

The entire setup process can take awhile; go grab a snack and pop back in half an hour or
so (perhaps longer depending on your Internet connection speed). You might be asked to
reboot your machine, so make sure you do so if so prompted (I’ll be waiting...).

■ Note I recommend that you perform a standard Windows Update on your machine after installing the

Windows Phone 7 SDK. I needed to download a number of service packs after installation.

Examining the New Bits
Once the installation process is complete, your development machine will have a number of
new tools and templates that you can use. However, exactly what is installed will be based on
your current machine configuration. The Windows Phone 7 installer is smart enough to install
only the bits you currently do not have installed. If you had a completely new machine (with no
trace of Visual Studio, Blend, or the .NET/Silverlight platforms), you would end up with the
following items:

• Visual Studio 2010 Express

• Microsoft .NET Framework version 4.0

• The latest version of Silverlight

• The Windows Phone 7 emulator

• A free “Windows Phone 7” version of Expression Blend2

• Microsoft XNA Game Studio 4.0

Note that if you currently have Visual Studio 2010 on your development machine, the
installer will not bother to add a copy of Visual Studio 2010 Express, but will update your
installation with new Windows Phone 7 project templates. On a related note, if you already
have Expression Blend, you will not get the free “Windows Phone 7 Only” version of Blend, but
your existing Blend installation will be updated with the Windows Phone 7 project templates.

You will also find that the Windows Phone 7 emulator is installed under the Windows Start
button as well; however, you won’t typically need to activate this directly. When you are
building a Windows Phone 7 project with Expression Blend or Visual Studio 2010, the emulator
launches automatically to host your application.

The Role of Microsoft XNA Game Studio 4.0
If you click the Windows Start button, you will find a new folder for Microsoft XNA Game Studio
4.0. Essentially, XNA Game Studio 4.0 is a programming environment that allows you to use
Visual Studio (not Expression Blend!) to create games for Windows Phone, the Xbox 360
console, and Windows-based computers. XNA Game Studio includes the XNA Framework,
which is a set of managed libraries (a.k.a. .NET assemblies) designed for game development

2 Microsoft has been kind enough to build a special (and free) version of Expression Blend that exclusively
targets Windows Phone 7 projects (called, appropriately, Expression Blend for Windows Phone). Again,
understand that this free version will not allow you to build WPF- or Silverlight-proper applications.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 277

based on Microsoft .NET Framework, as well as a number of Visual Studio 2010 project
templates.

Now, be very aware that you can certainly build video games for Windows Phone 7 (as well
as Silverlight/WPF applications in general) without using XNA Game Studio. It is completely
possible to create games using nothing more than the .NET 4.0/Silverlight APIs and the tools
and techniques you have learned over the course of this book. However, XNA Game Studio
provides you with additional, more powerful libraries to build much more sophisticated video
game software.

Although this book will not directly address XNA Game Studio, the following web site will
be very useful if you are interested in exploring this platform further. Here you will find
numerous tutorials regarding game development, including articles on artificial intelligence
(AI) algorithms, incorporating physics into your games (collision detection, chase camera
angles, etc.), and numerous other topics.

http://create.msdn.com/en-us/education/roadmap

On a final note about XNA Game Studio, once you have installed the Windows Phone 7
SDK, you will find a new set of Visual Studio 2010 project templates at your disposal. As you can
see in Figure 7–4, you can target a variety a platforms (Xbox 360, Windows Phone 7, or the
Windows OS itself).

Figure 7–4. XNA Game Studio includes a number of new Visual Studio project templates.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 278

Installing the Windows Phone 7 Documentation
If you intend to dive deeply into the Windows Phone 7 programming model, I recommend that
you update your local .NET Framework 4.0 documentation help system to fetch the Windows
Phone 7 documentation. Assuming you have previously installed Visual Studio 2010,3 use the
Windows Start button to navigate to All Programs ➤ Microsoft Visual Studio 2010 ➤ Visual
Studio Tools, and from there, open the Manage Help Settings tool. At this point, you can elect to
install local help documentation4 (see Figure 7–5).

Figure 7–5. Preparing to install the Windows Phone 7 SDK documentation

Last but not least, you can now opt to install any part of the .NET help system (including
Windows Phone 7 or Silverlight help; see Figure 7–6).

3 If you do not want to install the documentation locally, you can view the same help system online at
http://msdn.microsoft.com.

4 If you have not installed the .NET Framework 4.0 documentation locally, you can use the Manage Help
Settings tool to do so.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 279

Figure 7–6. Installing the Windows Phone 7 SDK documentation

■ Note It is a good idea to run the Manage Help Settings tool every few weeks or so, as it will detect any

updates to the documentation and allow you to download the freshest information.

After the SDK documentation has been installed, you can launch your local .NET
documentation and search for the topic “Silverlight for Windows Phone,” as shown in Figure 7–7.

Figure 7–7. The Silverlight for Windows Phone portal

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 280

A Survey of Key Windows Phone 7 Namespaces
Although this chapter will not focus on the programming-specific aspects of Windows Phone 7
development, I do at least want to provide a roadmap regarding some of the new APIs you will
encounter. Recall that when you build a Windows Phone 7 application, you are in fact building
a Silverlight program. Therefore, if you have programmed Silverlight (or WPF) applications in
the past, you will feel right at home.

This being said, the Windows Phone 7 SDK does include a handful of new .NET assemblies
(such as Microsoft.Phone.dll and Microsoft.Phone.Interop.dll) that define a number of new
.NET namespaces. Table 7–1 provides a brief overview of some (but not all) of these phone-
centric namespaces. Be sure to consult the .NET Framework 4.0 documentation for full details.5

Table 7–1. A Survey of Core Windows Phone 7 Namespaces

Windows Phone Namespace Meaning in Life

Microsoft.Devices Defines a small number of types that allow you to program
directly against the Windows Phone 7 device itself. For
example, there are types that allow you to make the device
vibrate, gather information regarding which version of the
platform is on the device, and so forth.

Microsoft.Devices.Radio Provides programmatic access to the FM Radio aspect of
the handheld device.

MicrosoftDevices.Sensors Provides access to APIs to access the accelerometer.

Microsoft.Phone.Controls Defines a number of phone-centric controls, including the
types to build panorama and pivot displays. You’ll learn
about these navigation models later in the chapter.

Microsoft.Phone.Notification Allows your Windows Phone 7 applications to receive data
sent via the Microsoft Push Notification Service.

Microsoft.Phone.Tasks Defines a number of types that allow you to interact with
key services of the handheld device, including the
integrated camera, e-mail program, and telephone service.

5 At the conclusion of this chapter, I’ll point you to some online resources where you can download
Windows Phone 7 sample projects that use these new assemblies and namespaces.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 281

Viewing the New Blend Projects
Launch Blend and choose File ➤ New Project; you should find in the New Project dialog box a
new Windows Phone node, shown in Figure 7–8, that defines a variety of project types.

Figure 7–8. The Blend Windows Phone project templates

Table 7–2 documents these new project templates of Expression Blend. As you can see,
they are similar (but not identical) to their WPF and Silverlight counterparts.

Table 7–2. Windows Phone Project Templates of Expression Blend

Windows Phone Project Template Meaning in Life

This is a simple project template for creating a Silverlight
for Windows Phone application.

This template is also for creating a Silverlight for Windows
Phone application, but it uses View and ViewModel objects
to provide loose coupling between your presentation and
data logic (see Chapter 6).

This template uses the Panorama control to create a
panorama-style application (more information is provided
later in the chapter).

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 282

Windows Phone Project Template Meaning in Life

This template uses the Pivot control to create a tabbed-
style application (more information is provided later in the
chapter).

This template is for creating custom controls that can be
reused across other Windows Phone applications.

You’ll learn more about these different types of project templates as you progress through
the chapter, but in a nutshell, a panorama-style application allows you to build a long,
horizontal canvas of UI elements, which can be smoothly panned within the view port of the
phone, whereas a pivot-style application allows the end user to “flip” between a set of related
UI pages, similar to the act of flipping pages in a book (typically with much more animation,
however).

The Updated Blend User Guide
On a related note, be aware that once you install the Windows Phone 7 SDK, your local
Expression Blend User Guide is updated with a new set of related tutorials and walkthroughs, as
shown in Figure 7–9.

Figure 7–9. The updated Blend User Guide

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 283

Consider What You Already Know...
You may be surprised that this new part of the Blend User Guide is quite sparse. This is actually
good news! As mentioned earlier, a vast majority of what you have already learned in this book
applies directly to Windows Phone 7 development. For example, when building a Windows
Phone 7 application, you will still be able to use Expression Blend to

• Create and interact with vector graphics (see Chapter 2)

• Package up and use object resources (see Chapter 2)

• Work with animations and easing effects (see Chapter 3)

• Build UIs with controls, layout managers, and behaviors (see Chapter 4)

• Create styles, templates, and UserControls (see Chapter 5)

• Use the Data panel to bind to data, and create custom data templates (see Chapter 6)

Remember, one of the biggest benefits of building software for Windows Phone 7 is that the
underlying API is based on the exiting Silverlight platform (which in turn is based on WPF
technologies). In fact, the Silverlight for Windows Phone documentation contains a specific
topic regarding how to port an existing Silverlight application to the Windows Phone 7
platform. Search for the topic “Porting Silverlight-Based Applications to Windows Phone” if you
are interested.6

Viewing the New Visual Studio 2010 Projects
Even though this chapter will not require you to use Visual Studio 2010, allow me to quickly
point out that if you access the Visual Studio 2010 File ➤ New Project menu option, you will see
a new Silverlight for Windows Phone 7 node under your programming language of choice (see
Figure 7–10).

6 On a related note, look up the topic “Differences Between Silverlight and Silverlight for Windows Phone.”
As you will see, there are a number of important differences to be mindful of, as these two toolkits are not
100 percent identical.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 284

Figure 7–10. The Visual Studio 2010 Windows Phone 7 project templates

As you can see, these are the same Windows Phone 7 project template types as found in
Expression Blend. Just like a WPF or Silverlight-proper application, you are free to start a new
Windows Phone 7 project using either Expression Blend or Visual Studio 2010, and then open
the code base into either tool as you see fit.7

Exploring the Windows Phone Application Project Type
Now that you have configured your development machine with the necessary programming
tools, let’s take things out for a test drive and create a new Windows Phone Application project
type using Expression Blend. Select this project type in the New Project dialog box, and name
your project FirstPhoneApp.

The Windows Phone Artboard
The first thing you will notice is that the artboard automatically displays a “phone page” that
contains the application UI you are constructing, an example of which is shown in Figure 7–11.8

7 In this chapter, I’ll focus only on the Expression Blend project templates; however, be sure you take a
moment to create a new sample project via Visual Studio 2010.

8 In the Silverlight for Windows Phone 7 SDK, each phone display page is of type PhoneApplicationPage,
which is a member of the Microsoft.Controls.Phone namespace.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 285

Figure 7–11. The Windows Phone artboard

If you examine the Objects and Timeline panel, you will notice that (like a WPF or
Silverlight project), your main layout manager is a Grid object named LayoutRoot. This Grid is
carved into two rows, the first of which contains a StackPanel (named TitlePanel) to hold the
basic display text on the top, and the second of which contains a sub-Grid object (named
ContentPanel), where you can design your UI. The initial markup for this layout system looks
like so:

<!--LayoutRoot is the root grid where all page content is placed-->
<Grid x:Name="LayoutRoot" Background="Transparent">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 286

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION"
 Style="{StaticResource PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0"
 Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>

 <!--ContentPanel - place additional content here-->
 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"/>
</Grid>

The Windows Phone System Styles
If you examine the definition of the TextBlock objects closely, you can see they automatically
use a few Windows Phone 7 styles (PhoneTextNormalStyle and PhoneTextTitle1Style). As you
learned in Chapter 5, WPF ships with a set of Simple Styles that can be used as a starting point
for customization. In a similar manner, a Windows Phone application can (and typically
should, according to UI best practices) use a set of built-in System Styles. You can view these
default styles in the Assets library/Assets panel, as shown in Figure 7–12.

Figure 7–12. The Windows Phone System Styles

When you are designing your UI, you can connect these styles to controls using the
Properties panel, as already explained in Chapter 5. Or, more simply, select a style from the
System Styles category of the Assets library and drop it on your artboard (go ahead and try to
drag a few style objects onto the ContentPanel Grid object and see the end result, but delete the
items once you are finished).

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 287

Creating a List-Details View with the Data Panel
At this point you can use just about any number of techniques shown in this book to create
your user interface. Here, we will build an example application that uses a variety of techniques,
including working with the Data panel, creating a custom template, and building a simple
animation.9

First, we want to import the PurchaseOrder and PurchaseOrders classes created in Chapter
6, by using Project ➤ Add Existing Item.10 Once you have done so, build your project (via Project
➤ Build Project) and then use the Data panel to create a new object data source that connects to
your custom PurchaseOrders collection. Recall from Chapter 6 that you can create a new object
data source as follows:

1. Click the “Create data source” drop-down button on the Data panel.

2. Select the Create Object Data Source option.

3. Select the class (PurchaseOrders in our example) from the resulting dialog box.

Once you have established your object data source, drag the Description node in the Data
panel to the second Grid object (named ContentPanel by default). Next, click the Details Mode
button located in the upper-left corner of the Data panel, and then select each node under
PurchaseOrders from the Data panel and drag your selection to the artboard to create a list-
details relationship.

Once you are done, the artboard should look similar to Figure 7–13. Feel free to resize,
reposition, or configure any of your items (via the Properties panel) as you so choose. Here, I’ve
changed the Background property of the ContentPanel Grid, and tinkered with the position of my
various UI elements.

9 Because these topics have been examined in detail in previous chapters, here I will only give high-level
instructions. Please consult the appropriate section of this text for more details.

10 Recall we used these classes as a source for various data binding operations.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 288

Figure 7–13. Leveraging the data binding engine

Creating an Interactive Graphic
Windows Phone 7 projects also support the capability to create interactive graphics; however,
your choice of default shapes is somewhat limited. You still can use the Pen and Pencil tools
(see Chapter 2) to create freeform data. As well, you can still select from the Rectangle, Line, and
Ellipse tools to render basic geometries.11

Here, add a new Canvas layout manager to your ContentPanel Grid object. Remember, you
can either drag and drop items from the Assets panel (but not via the Assets library) to the
Objects and Timeline panel, or select the item and draw it on the artboard via the mouse.12

Draw an Ellipse in your new Canvas, and add a new MouseDragElementBehavior object to
the Ellipse. To do so, locate this behavior within your Assets panel (under the Behaviors
category), select it, and drag it on top of the Ellipse currently on your artboard.

11 See Chapter 2 for details on working with the graphics tools of Expression Blend.

12 See Chapter 4 for details on working with layout managers and controls in the Blend IDE.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 289

Next, select this new MouseDragElementBehavior object in your Objects and Timeline panel,
and then check the ConstrainToParentBounds property located in the Properties panel (see
Figure 7–14).

Figure 7–14. Configuring the MouseDragElementBehavior

At this point, you can run your application (via F5 or Ctrl+F5). As you can see, the Windows
Phone 7 emulator will launch automatically and host your application! You should be able to
interact with your graphic via the mouse, and view the details for each list item.

Creating a Custom Control Template
The final concept we will leverage in this application project is the “control template from
graphic” trick you learned about in Chapter 5. Be sure to refer to the section “Creating a Stylized
Template from a Graphic” in Chapter 5 for full details. Here is a quick refresher to prime the
pump.

First, use the Pen tool to create a geometric shape on the lower portion of the ContentPanel
Grid object, and then right-click the item and choose Make Into Control (see Figure 7–15).

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 290

Figure 7–15. Defining a new template from an existing graphic

In the resulting Make Into Control dialog box, shown in Figure 7–16, select the Button
control type, name it (I named mine TriangleButton), and elect to store this new object
resource at the application level.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 291

Figure 7–16. The TriangleButton template

At this point, your template is displayed within the IDE using the template designer. Recall
you are free to change UI properties, add interactivity using the Visual State Manager and States
panel (again, see Chapter 5 for details), and so forth. Take a few moments to tinker with this
template, and once you are satisfied, rebuild your project via Project ➤ Build Project.

■ Note In the downloadable solution for this example, I added a visual state to my template. Specifically, when

clicked, the template shrinks by a tiny amount via a graphical transformation. As well, I added a BounceOut

easing function to make the template a bit more visually interesting.

Handling the Click Event
The last step for the current project is to handle the Click event for your newly generated Button
control (which was at one point a simple triangle graphic). Use the Events button of the
Properties panel to handle this event, and then author the following event handler logic:

private void Button_Click(object sender,
 System.Windows.RoutedEventArgs e)
{
 MessageBox.Show("Yippy! My phone app rocks!");
}

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 292

Configuring the Emulator via the Device Panel
Before we run our application, open the MainPage.xaml file into the Blend artboard. Take a
moment to open the Windows Phone 7 Device panel, via the Window menu of the Blend IDE
(see Figure 7–17).

Figure 7–17. Opening the Device panel

This (new) area of the Blend IDE, shown in Figure 7–18, allows you to configure a number
of settings regarding how your Windows Phone 7 application should be handled when the
project is executed. By default, the IDE uses the Windows Phone 7 emulator that was installed
with the SDK, but you can also connect to a physical compatible device if you happen to own
one. As well, you can use the Device panel to change the display orientation and color theme.

Figure 7–18. The Device panel allows you to control how your project launches.

So, with just a few lines of markup (and one line of C# custom code), we have created a
simple illustrative phone project that uses data binding, vector graphics, mouse activity, and a
custom control template. Figure 7–19 shows the application you’ve just created running in the
emulator (you can see that I changed the text of the TextBlock controls in the TitlePanel layout
manager).

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 293

■ Note If you position your mouse cursor over the upper-right portion of the emulator, a set of emulator controls

appears. You can use these controls to change the orientation of the emulator, zoom the display, and close the

emulator itself.

Figure 7–19. Your first Windows Phone 7 application

■ Source Code The FirstPhoneApp project can be found under the Chapter 7 subdirectory.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 294

Exploring the Panorama Application Project Type
The previous example used the simplest of all Windows Phone 7 templates, the Windows Phone
Application project type. By default, this type of application consists of a single UI display page,
which you can compose to your liking. Of course, this single page could consist of a layout
manager that displays dynamic content (via a set of custom UserControl objects), but generally
speaking, all of the UI content is constrained within the device screen.

As an alternative, the Windows Phone 7 platform also provides the Windows Phone
Panorama Application project type. Panoramic applications offer a unique way to view the UI
content of your application, by using a long, horizontal display that extends beyond the
confines of the device screen.

When the user uses their finger (for a real phone; you’ll use the mouse to achieve a similar
effect), the view port will smoothly scroll to the next part of the larger graphic using layered
animations, which smoothly pan at different speeds, similar to parallax effects. Figure 7–20
captures the idea behind a panorama display. Notice that the entire display area is quite larger
than the view port of the Windows Phone 7 device screen.

Figure 7–20. A panorama display allows the user to scroll between related views.

To understand the building blocks of a Windows Phone 7 panorama display, let’s modify
the starter code generated by the Blend IDE. Using the File ➤ New Project menu option, create
a new Windows Phone Panorama application project named PanoramaDemoApp.

Examining the Initial Tree of Objects
Take a look at the Objects and Timeline panel and notice that your LayoutRoot Grid object
defines a single child object of type Panorama. This object is responsible for smoothly transiting
between its set of PanoramaItem objects, of which there are currently two, each of which
contains a single ListBox (see Figure 7–21).

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 295

Figure 7–21. The initial tree of objects

Now, run your application (press F5 or Ctrl+F5). Once the emulator loads, you can use your
mouse to “swipe” to the left or right to smoothly scroll the device view port and see the data in
each PanoramaItem object. Close the emulator once you have experimented for a moment or
two.

Viewing the PanoramaItem Markup
Back in Blend, open the XAML editor for your MainPage.xaml artboard, and notice that each
PanoramaItem object has been configured to pull data from a related data template; for example:

<!--Panorama item one-->
<controls:PanoramaItem Header="first item">
 <!--Double line list with text wrapping-->
 <ListBox ItemsSource="{Binding Items}" Margin="0,0,-12,0">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="0,0,0,17" Width="432">
 <TextBlock Text="{Binding LineOne}" TextWrapping="Wrap"
 Style="{StaticResource PhoneTextExtraLargeStyle}" />
 <TextBlock Text="{Binding LineTwo}" TextWrapping="Wrap"
 Margin="12,-6,12,0"
 Style="{StaticResource PhoneTextSubtleStyle}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</controls:PanoramaItem>

■ Note These data templates are pulling hard-coded data from the application’s ViewModel class. Check out

the MainViewModel.cs file located in the ViewModels folder of your project if you are interested.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 296

Each PanoramaItem object is contained within a single Panorama control that is responsible
for the scrolling animation and the task of displaying the correct UI content in the device
screen. In addition to maintaining the PanoramaItem objects, the Panorama control also
establishes which image file to use as the background. By default, new Windows Phone
Panorama application projects use a sample file added to your project named
PanoramaBackground.png. As you can see, an ImageBrush object (see Chapter 2) is used to paint
the surface background:

<!--Panorama control-->
<controls:Panorama Title="my application">
 <controls:Panorama.Background>
 <ImageBrush ImageSource="PanoramaBackground.png"/>
 </controls:Panorama.Background>

 <!--PanoramaItem controls listed here -->
 ...
</controls:Panorama>

Changing the Panorama Background
Now, let’s change the default background image with a custom image file. Select the Panorama
object in the Objects and Timeline panel, and locate the Background property. Figure 7–22
shows the current property value.

Figure 7–22. The initial image data for the Panorama object

Before we can change this background, we need a custom graphic. If you are following
along, open a digital image file of your choosing into the Windows Paint application, which you
can start by choosing Start ➤ All Programs ➤ Accessories ➤ Paint in Windows. Once you have
done so, resize the image to 1024 � 768 pixels in size (which is the size of the original image) by
clicking the Resize and Skew button (or simply press the Ctrl+W keyboard shortcut; see Figure
7–23).

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 297

Figure 7–23. Configuring a custom graphic using the Windows Paint program

Save this modified image as a PNG file to a convenient location on your computer’s hard
drive, via a standard Save operation. Return to Expression Blend, and change the Background
property of the Panorama control to specify your custom graphic, by clicking the ellipsis button
next to the ImageSource property text area, as shown in Figure 7–24.

Figure 7–24. Choosing an image for the Panorama object

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 298

■ Note The IDE will recommend that you embed the image data into the current application as a binary

resource. For this example, your choice does not matter.

Now, run your program once again, and you will see your graphic scrolling in the
background, thanks to the Panorama object (see Figure 7–25).

Figure 7–25. A custom background image!

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 299

Adding a New PanoramaItem Object
The final modification we will make to this project is to add a third PanoramaItem to the
collection maintained by the Panorama parent node. The simplest way to do so is to right-click
the Panorama object in the Objects and Timeline panel and select the Add PanoramaItem menu
option, as shown in Figure 7–26.

Figure 7–26. Adding a new PanoramaItem object

As soon as you activate this menu option, the artboard displays the new PanoramaItem
object, to which you can add any number of controls, graphics, or what have you. The default
XAML is shown here:

<controls:PanoramaItem Header="item4">
 <Grid/>
</controls:PanoramaItem>

For this sample application, you might want to change just the Header property of the
PanoramaItem object (via the Properties panel) and perhaps add a new control or graphic to the
Grid layout manager (really, anything will do here; you just need something to test). I opted for
a single Button control and handled the Click event to show a message box via
MessageBox.Show(). Now, run your program once again, and you should be able to scroll
smoothly between each of your PanoramaItem objects, while your custom graphic passes in the
background.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 300

■ Source Code The PanoramaDemoApp project can be found under the Chapter 7 subdirectory.

Exploring the Pivot Application Project Type
Another standard navigation system provided by the Windows Phone 7 SDK is termed a pivot
application. Essentially, this flavor of application is a fancy tab-control system, where the user
can switch between different (related) views of information either by clicking the styled tab at
the top of the device screen, or via input gestures such as a horizontal pan (tap and drag to the
left or right) or a horizontal flick of the finger (tap and quickly swipe your finger to the left or
right).

Under this programming model, the root layout manager (a Grid) maintains a Pivot object,
which is responsible for maintaining the pages of data, each represented by a PivotItem object.
When you create a new Windows Phone Pivot application using the Blend New Project dialog
box (I named my project PivotDemoApp), the initial tree of objects looks like the example
shown in Figure 7–27.

Figure 7–27. The initial tree of objects for a new pivot application

The Grid object of each PivotItem maintains a ListBox control that displays hard-coded
test data, similar to what you examined in the previous panorama project. Thus, the
unmodified artboard for your MainPage.xaml file looks like what you see in Figure 7–28.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 301

Figure 7–28. The initial pivot application artboard

Adding a New PivotItem
Like the PanoramaItem object, each PivotItem can be configure using the Properties panel. For
example, the Header property can be used to change the display of each tab. If you wish to
modify the starter code, you might begin by selecting each PivotItem in your Objects and
Timeline panel and changing the Header property accordingly. As well, feel free to delete the
ListBox controls in each sub Grid to build any sort of UI you wish (using any of the techniques
shown in this text).

If you want to add a new PivotItem, simply right-click the Pivot node in the Objects and
Timeline panel and select Add PivotItem (see Figure 7–29).

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 302

Figure 7–29. Adding a new PivotItem

Designing the Pivot GUI Layout
At this point, you are free to design your UI in any way you choose. For my new Pivot object,
I’ve created a simple “smiley face” graphic using the Ellipse and Pen tools. I then grouped all of
these items into a new Grid layout manager by selecting (via a Shift+right-click) each part of the
graphic on the artboard and activating the Group Info menu option, as shown in Figure 7–30.

Figure 7–30. Designing the layout of the new page of data

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 303

Once you have grouped your items, name the new Grid object mrHappyGrid by using the
Properties panel; we will interact with this layout manager using the ControlStoryboardAction
behavior in just a moment. As you can also see in Figure 7–30, I added a simple TextBlock
control to the parent Grid that displays some basic informational text (specifically, “This is just
a test....only a test”).

Transforming the Grid
Let’s use the Blend Animation editor to create a new storyboard object to transform our layout
manager and the contained graphics. Chapter 3 provides detailed information regarding the
Blend animation editor, but here is a brief overview of the steps I took for the current example
(of course, feel free to animate your Grid in any way you choose):

1. Click the New Storyboard button in the Objects and Timeline panel and name the
storyboard FlipHappyDude.

2. Select the mrHappyGrid layout manager in the Objects and Timeline panel.

3. Using the animation timeline, add two keyframes, at the zero-second marker and two-
second marker (using the “gray egg” button).

4. Locate the Transform section of the Properties panel and change the X and Y values of
the Rotation Projection transformation to the value 360 (see Figure 7–31).

5. Select the last keyframe in the animation editor and use the Properties panel to apply an
easing effect. (I’ve opted for an Elastic Out effect, as shown in Figure 7–32, but you can
apply whatever you like.)

Figure 7–31. The storyboard will transform the Grid object using a transformation.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 304

Figure 7–32. The final keyframe of the storyboard will use an animation easing effect.

Click the Play button of the Objects and Timeline animation editor to test the
transformation of your Grid and the contained graphical data. Once you are happy with the
results, move to the next section.

Controlling the Storyboard in XAML
While we could author code to start our storyboard, let’s leverage one of Expression Blend’s
built-in behavior objects. Locate the ControlStoryboardAction behavior13 within your Assets
panel (see Figure 7–33) and drag this item onto the mrHappyGrid object found in your Objects
and Timeline panel.

Figure 7–33. Adding a new ControlStoryboardAction behavior to the mrHappyGrid

13 This behavior was first examined in detail in Chapter 3.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 305

Select the new ControlStoryboardAction node in the Objects and Timeline panel, and use
the Properties panel to click the “Artboard element picker” tool of the SourceName property (see
Figure 7–34).

Figure 7–34. Use the artboard element picker to select the element that will interact with the storyboard.

Next, click one part of your graphic (I’m clicking the left eyeball). Pick an initiating event
via the EventName property and fitting values for the ControlStoryboardOption and Storyboard
properties. In Figure 7–35, you can see that I have configured my behavior to start the
FlipHappyDude storyboard when the left mouse button clicks in the proper Ellipse object.

Figure 7–35. The fully configured ControlStoryboardAction behavior

And there you have it! If you run your program, you can click the header of your new tab (or
slide the pages via the mouse), click the left eyeball of your happy dude, and see the result of
your animation.

■ Source Code The PivotDemoApp project can be found under the Chapter 7 subdirectory.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 306

Learning More About Windows Phone Development
Although the examples shown in this chapter were quite simple, collectively they illustrated a
number of useful Blend (and Silverlight) programming techniques. While this is true, I am sure
you would like to see some more real-world samples, which of course entails real-world code
and, sadly, is outside the scope of this text. However, to wrap up this chapter, allow me to point
out a few useful online resources you might wish to consult to learn more about building
Silverlight applications for Windows Phone 7.

MSDN Windows Phone Sample Projects
MSDN online (http://msdn.microsoft.com) is your first stop to learn more about Windows
Phone 7 development. Once you navigate to this main page, you will find a graphical link to the
online development portal; simply click the phone icon (see Figure 7–36).

Figure 7–36. MSDN online is your entry point to Windows Phone 7 development.

Scroll down to the bottom of the resulting the web page and click the link to the Windows
Phone Development MSDN web portal (see Figure 7–37).

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 307

Figure 7–37. Linking to the Windows Phone Development MSDN online documentation

As shown in Figure 7–38, by clicking the Code Samples link, you will find a number of
sample projects to download, which you can then load into either Expression Blend or Visual
Studio 2010.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 308

Figure 7–38. Sample projects!

In the code download folder for this text, I’ve included one illustrative sample project from
this site, the Weather Forecast Sample project. If you open and run this project, you’ll see that
the Windows Phone emulator fires up and allows you to check out the weather conditions in a
variety of cities, via an XML web service (I modified the starter code, to show the current
weather in my fair city of Minneapolis, Minnesota; Figure 7–39).

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 309

Figure 7–39. Quite warm for this time of year, thank you very much!

■ Source Code The modified Weather Forecast Sample project (WeatherForecast) can be found under the

Chapter 7 subdirectory.

The App Hub Web Site
Another useful web site for Windows Phone 7 (and XNA Game Studio for that matter)
development is the App Hub site, located at http://create.msdn.com. Here, you will find a very
rich community of independent developers who are interested in creating, uploading, and
(hopefully) profiting from Windows Phone 7 and Xbox 360 applications. You can create a
custom profile, and for a modest price ($99 USD each year), you can post applications to
Windows Phone Marketplace or Xbox LIVE Marketplace. In addition, this site provides even
more sample projects, online video tutorials, and various promotional events. Figure 7–40
shows the home page for the App Hub web site.

CHAPTER 7 ■ DESIGNING FOR WINDOWS PHONE 7

 310

Figure 7–40. The App Hub site is another useful Windows Phone 7 site.

Well, that should leave you in a good position for further exploration if you are interested.
With this, you are ready to move onto the final chapter of this book and learn about the role of
SketchFlow. As you are about to see, the Expression Blend IDE has a whole other set of tools
that enables rapid prototyping of WPF and Silverlight applications.

Summary
This chapter was rather short and sweet, given that the process of using Blend to construct user
interfaces for a Windows Phone 7 device is just about identical to the process of building UIs for
a WPF or Silverlight application. Nevertheless, this chapter did point out a few important
aspects of developing for this handheld device.

After you were shown how to install the necessary Windows Phone 7 SDK, you examined
the various project templates provided by Expression Blend. The first example had you
construct a simple Windows Phone application project, where you were able to use the same
data binding, animation, and control template techniques illustrated in previous chapters.

You then learned about two standard Windows Phone 7 application navigational schemes,
specifically a panorama application and a pivot application. You created each of these project
types, and modified the default markup and code (just a bit) to get a taste of building these
particular UIs. The chapter wrapped up by pointing out a few useful online resources, where
you are free to dive into numerous aspects of programming a full-featured Windows Phone 7
application.

 311

C H A P T E R 8
■ ■ ■

Prototyping with SketchFlow

The Ultimate edition of Expression Studio ships with a component of the Blend IDE that is
called SketchFlow. This aspect of Blend allows you to generate interactive prototypes for WPF-
and Silverlight-based projects. This chapter begins with a brief introduction to the role of
prototypes in the context of a software development life cycle. You then will learn the key
aspects of designing with SketchFlow by dissecting an Expression Blend sample application.

The reminder of this chapter will walk you through the process of creating a working
prototype for a typical online shopping application using Silverlight.1 You will learn how to
work with various SketchFlow-specific tools (such as the Map panel), see how you can generate
project requirements from a SketchFlow prototype, and discover how you can use the
prototype as the starting point for the envisioned production software.

■ Note Remember, SketchFlow is available only in Expression Studio Ultimate Edition. Thankfully, the free 60-

day trial edition of Expression Studio Ultimate also includes the SketchFlow prototyping environment.

The Role of Application Prototyping
Every once in a while, a software developer may have the chance to build a small-scale
application, such as a simple in-house configuration tool, or maybe a personal pet project such
as a video game, digital media organizer, or contact manager. Such projects are often created by
a single individual and typically do not require any sort of formal vision statement, data
dictionary, requirements document, or other artifacts. Rather, a programmer might dive right
in using the “code and fix” model of software development (e.g., just start hacking away and fix
errors as they come up).

Thankfully, most programmers (and management teams) understand just how important a
formal software development project life cycle truly is when attempting to create a large-scale
coding effort. For example, many companies use the Rational Unified Process (RUP) model,
which formalizes key iterative phases that a software project typically goes through during the
development effort. RUP (and many other software development methodologies) encourages the
early use of application prototyping to mock up how the finished product might look and feel.

1 As you might suspect, the process of working with SketchFlow to prototype a WPF application is more or
less identical to that of prototyping a Silverlight application.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 312

Building application prototypes is a great way to get feedback from the client and user base
regarding how the user interface should be laid out and how well they like basic functionality of
the software. Over the years, developers have whipped together prototypes using various tools,
including the GUI designers of Visual Studio. While this is all well and good, application
prototyping has a few “hidden dangers,” some of which you may have experienced first-hand.
For example:

• The client might easily consider the prototype to be the “real” software, as the UI often
very closely resembles a functional user interface on the surface.

• Prototypes are often discarded once client feedback has been obtained. This requires
developers to essentially re-create the same UI in a new production-level project.

• Many prototyping tools have neither a way to incorporate client feedback directly into
the project itself nor a way to generate formal documentation from these initial design
notes.

• If a client wanted to make their own modifications to the prototype, they not only
would need the prototyping tool installed on their machine, but would also need to be
comfortable using the tool itself.2

Ideally, there would be a tool that could be used to build a UI that clearly shows the user
that this is an initial crack at a working solution, rather than a feature-complete product. As
well, this tool would enable clients to directly embed their personal comments into the project,
and enable developers to use this data when generating documentation. Even better, the tool
would enable the client to view and interact with the prototype, even if they do not own a copy
of the prototyping tool used to create it. Fortunately, the Expression Blend IDE provides these
very features (as well as many other features) via SketchFlow.

The Role of SketchFlow
As the name suggests, SketchFlow is a set of tools that allows a development team, and the
software stakeholders, to rough out a software prototype for WPF- and Silverlight-based
applications.

When you create a WPF or Silverlight SketchFlow project, you will be happy to see that you
can construct the UI using the same tools and techniques you’ve learned over the course of this
book. For example, you can add controls to the artboard via the Assets library, configure their
look and feel via the Properties panel, incorporate graphics and animations into the prototype,
and whatnot.

What makes SketchFlow unique is that it also provides some additional tools that allow you
to map out and iterate the flow of an application UI and the transition from one “application
state” to another. For example, using the SketchFlow Map panel, you can quickly create a set of
UI layouts that will be displayed as an end user activates menu items, or advances through a
wizard-like layout via Next and Previous buttons. As well, you can easily change the sequence of
these transitions as you elicit feedback from the client.

In addition to mapping out your application’s UI flow, Microsoft has intentionally designed
the default style of each control for a SketchFlow project to look simple and generic, to clearly
denote that this is a prototype rather than the final software product. Using the intrinsic Sketch
Styles, Sketch Shapes, and Mockup Controls (all of which can be found in the Assets library),
you can design a UI that will help focus the user on the overall flow and layout of your

2 And if this tool happens to be Visual Studio, I am sure you can image how intimidating this IDE would be
to a nontechnical individual.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 313

prototype, rather than on minutia-level details such as font sizes, background and foreground
colors, and so forth. Figure 8–1 shows a WPF Window constructed using several of these
SketchFlow styles and Mockup Controls.

Figure 8–1. SketchFlow styles are intentionally simple, to help keep your client focused on the big picture.

Another excellent aspect of SketchFlow is that it is built in such a way that client feedback
can be gathered and recorded while you are in the process of building and demonstrating the
prototype. While you can certainly use Expression Blend annotations to do so (see Chapter 1),
the SketchFlow Player provides a more powerful and interactive way to record user feedback.
Clients can test multiple scenarios and provide comments for the development team by
annotating their experience as they navigate the prototype. You’ll see this tool in action a bit
later in this chapter.

■ Note The SketchFlow Player is freely distributable and does not require a full installation of Expression Blend

on the client machine. Furthermore, the SketchFlow Player is able to host WPF desktop prototypes as well as

Silverlight web-centric prototypes.

As you work through this chapter, you will also see that a SketchFlow prototype can be
used as a starting point for the “real” application you intend to develop. Thus, instead of
throwing away your prototype, you can replace the SketchFlow styles as you see fit, scrape out
all user feedback into a dedicated Microsoft Word document, and start to elaborate the details
of your software project. Always remember that SketchFlow prototypes are not just simple

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 314

drawings, but are fully functioning WPF or Silverlight applications. If you make the necessary
modifications, you can convert your prototype into a production project and continue to build
out the final application.

■ Note Although not covered in this chapter, be aware that the SketchFlow Player can be configured to

automatically upload client and developer annotations to a named SharePoint server. This can be very useful

when you wish to store important data in a centralized location. Search for the topic “Publish to SharePoint” in

the Blend User Guide for more information.

Examining a SketchFlow Prototype Sample
Now that you have a better idea of what you can do with SketchFlow, let’s look at this tool in
action. However, we will not be building a custom prototype just yet. Rather, I’d like to offer a
guided tour of some key SketchFlow tools via one of the built-in sample projects. In this way,
you can see SketchFlow working in the context of a larger, real-world example. To begin, launch
Expression Blend and choose Help ➤ Welcome Screen. Click the Samples tab, and select the
PCGamingSketch sample project3 (see Figure 8–2).

3 I encourage you to explore each of the SketchFlow example projects (which have the word “Mockup” or
“Sketch” in their name) while reading this chapter. They showcase the usefulness of this technology quite
well.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 315

Figure 8–2. Blend ships with several SketchFlow sample projects.

Exploring the SketchFlow Map Panel
Once the sample project has loaded, you will notice a new aspect of the Blend IDE, the
SketchFlow Map panel, which can be found docked below the artboard. Figure 8–3 shows the
content of the Map panel for the PCGamingSketch application.

Figure 8–3. The SketchFlow Map panel

The SketchFlow Map panel is a graphic editor in which you can define the structure, flow,
navigation, and composition of an application. Unlike the artboard (which allows you to focus
on the UI content for a given Window or UserControl), the SketchFlow Map panel allows you to
focus on the overall structure of the application.

Each node in the SketchFlow Map panel represents a specific “screen” in your prototype,
which typically correlates to a specific Window or UserControl. In the PCGamingSketch project,

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 316

note that the set of leftmost nodes are named MouseWheel, Internal Page, Refined, and Version
Approved.

Collectively, these nodes represent a set of screens that shows the final approved UI of the
initial GUI mockups for the application.4 If you double-click any of these nodes (or any node in
the SketchFlow map for that matter), you will open the related screen within the artboard for
viewing. Figure 8–4 shows the screen representing the Version Approved node.

Figure 8–4. Each node in the SketchFlow map represents a screen in your prototype.

If you were to open the Refined node (see Figure 8–5), you would find a formal UI layout
constructed using the expected Silverlight layout managers (such as the Grid and Canvas) and
numerous UI controls (TextBlock, custom components, etc.) and Blend behaviors.

4 Most of these screens, however, were not created via the SketchFlow control set. Rather, the screens use
several Image controls used to hold *.png and *.jpg files that were created in a dedicated graphics tool
such as Expression Design or Adobe Illustrator.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 317

Figure 8–5. SketchFlow prototypes can contain screens created with “real” components.

Notice that the nodes under discussion in the SketchFlow Map panel shown in Figure 8–3
are connected using directional arrows. For example, the Version Approved node has three
outbound arrows that connect to the three leftmost nodes. These relationships represent the
basic flow of the UI, and can be tested using the SketchFlow Player’s navigation editor (you will
see how to do so later in the chapter).

As well, you can use various navigation behaviors to quickly model this flow via user
interactions (button clicks, menu selections, etc.). Best of all, these navigational relationships
can be changed on-the-fly using the Blend IDE. You will learn how to use the navigation editors
as you progress through this chapter.

The Role of the Start Node
Note that the Start node in Figure 8–3 has a specific green arrow icon on the upper left of the
node (shown in detail in Figure 8–6). When you create a new SketchFlow application, you will
automatically be provided with an initial screen node marked in this manner, which represents
the initial screen to show upon prototype startup.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 318

Figure 8–6. The Start node is marked with a green arrow icon.

If you wish to change the startup node, you simply need to right-click any node and select
the “Set as Start” menu option. Once you have done so, the green arrow icon moves to the
selected node. By way of example, assign the Version Approved node to be the startup item (see
Figure 8–7), but be sure to reset the Start node as the startup node before moving on.

Figure 8–7. Changing the Start node

Color Coding
You can assign a unique color to each node, which can be useful when you wish to identify
visually a set of related nodes. A node’s color has no impact on the runtime behavior of your
prototype; however, by default, the color blue represents a Navigation screen and the color
green represents what is termed a Component screen. As explained later in this chapter,
Component screens allow you to define a chunk of repeatable UI content (such as a navigation
menu) that will be displayed on multiple Navigation screens.

You can change the color of any node by hovering your mouse cursor over it to expose the
node editing tray, as shown in Figure 8–8, and then using the integrated color editor on the far
right.

Figure 8–8. Each node can be assigned an arbitrary color.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 319

Creating and Connecting Nodes
The node editor can also be used to create new connected nodes (and the related screen),
connect the current node to an existing screen, and create a new Component screen (again,
more details regarding Component screens are provided later in the chapter). If you hover your
mouse cursor over any node, you will see that each of these options is mapped to a specific
button (see Figure 8–9).

Figure 8–9. The node editor can be used to create and connect nodes.

■ Note It is possible for two nodes to navigate to each other in a bidirectional manner, as is the case for the

Version 2 and Detail Page nodes on the SketchFlow Map panel shown earlier in Figure 8–3.

As you are adding and connecting nodes via the Map panel, you will certainly need to
change the UI flow during the prototyping process. To do so, simply click either end of the
arrow on the connection line and relocate it accordingly. When doing so, be mindful of the fact
that the “circle end” of a connection represents a screen that is navigated from, while the
“arrow end” of a connection represents a screen navigated to.

■ Note On a related note, you can right-click any connection line and choose Delete to delete it completely.

Assigning Transition Styles
Once you have a set of connected nodes, you have the option of assigning transition effects,
which can provide a bit of eye candy to the prototyping effort. Before we execute this prototype,
right-click the connection between the Start and Version 1 nodes and select a transition style
of your liking (see Figure 8–10). Repeat the process for the other three outbound connections of
the Start node.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 320

Figure 8–10. You can assign various transition effects to any screen navigation.

Testing the Prototype with the SketchFlow Player
Let’s test the prototype using the SketchFlow Player by pressing Ctrl+F5 (or F5). Since
PCGamingSketch is a Silverlight prototype, the Player will load into your browser, at which
point the node marked as Start will appear as the active screen.

Navigating Screens
The left side of the Player UI consists of two key areas. On the top, you find the navigation pane,
which can be used to display screens based on the connections and transitions you created
back on the SketchFlow Map panel. Recall that from the Start screen, the user can navigate to
four outbound screens (Version 1, Version 2, Version 3, and Approved Version). If you wish,
you can also click the Map button to view a read-only display of this same map, as shown in
Figure 8–11.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 321

Figure 8–11. The SketchFlow Player in action

Take a few moments to explore by clicking each screen link in the Navigate panel or,
alternatively, by clicking a node in the SketchFlow map.

■ Note You can click the Home button located above the Navigate panel to return to the prototype’s Start

screen.

Once you are on a given screen, you may notice that the Navigate panel displays some
transition behaviors or animation sequences that can be started when clicked. These effects
were added to the screen using various SketchFlow behavior objects and custom animations,
using the Blend IDE. Figure 8–12 shows the transitions found on the Version 2 screen.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 322

Figure 8–12. Screens that use behaviors and animations can be triggered using the Navigate panel.

■ Note Any animation or behavior can also be executed by clicking the portion of a screen that uses it (as

defined in the prototype). For example, if you click the Version 2 node, you can use the vertical Games or

Hardware area of the Version 2 screen to see the same animation sequence.

Adding Feedback to the Prototype
Remember, the main purpose of the SketchFlow Player is to provide a way for clients to provide
useful feedback on the prototype. To facilitate this, clients can use the My Feedback panel
mounted on the lower left of the Player, shown in Figure 8–13. Here, a client can enter textual
input, as well as select from a set of drawing tools (ink, highlighting, and eraser) to draw and
annotate portions of a screen. Furthermore, when the client selects the ink or highlight tool,
they have various options to configure the size and color of the visual annotation. Notice in
Figure 8–13 my large orange arrow, and how it is possible to dock and undock the SketchFlow
Player tool panel.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 323

Figure 8–13. Providing textual and graphical feedback

Exporting Prototype Feedback
Client feedback is recorded automatically, and you can leave both text and ink feedback on
each screen throughout the prototype. When you have finished adding feedback, you can save
the feedback via the Folder button on the My Feedback panel. For this example, use the text
and graphics tools to author some basic feedback on a few screens, similar to what you saw in
Figure 8–13. Once you have done so, elect to export your feedback (see Figure 8–14) as a file
named MyFeedback,5 saved to your Windows desktop (or wherever you choose).

5 Prototype feedback files are saved with a *.feedback file extension. Not surprisingly, this file contains an
XML description of the data.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 324

Figure 8–14. Exporting feedback to an external file

Importing Client Feedback into Blend
To view feedback back within the Blend IDE, you first must activate the SketchFlow Feedback
option, located under the Window menu (see Figure 8–15).

Figure 8–15. Client feedback can be viewed in Blend, once you enable the option.

Once you have done so, the SketchFlow Feedback panel becomes active within the IDE. To
add the XML data to this viewer (and thus on the artboard for a given page), click the plus
button, click Add (see Figure 8–16), and locate the exported file.

Figure 8–16. You can add *.feedback files via the SketchFlow Feedback panel.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 325

At this point, you will see rendered feedback appear on the artboard. The SketchFlow Map
panel will display a light-bulb icon for each screen that contains client input. Figure 8–17
illustrates this, and also shows that the user text annotations can be seen using the SketchFlow
Feedback panel (docked on the left side of this particular screenshot).

Figure 8–17. Viewing client feedback within a Blend project

Generating Microsoft Word Documentation
Before we turn our attention to creating a prototype from the ground up, I’d like to point out
that the Blend SketchFlow IDE also provides a way to generate a Microsoft Word document that
captures each screen and stakeholder annotation in the prototype. As you might guess, this
document can serve as a beginning template for the product documentation. Generating this
documentation is no more complex than choosing File ➤ Export to Microsoft Word (see Figure
8–18).

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 326

Figure 8–18. Exporting a SketchFlow prototype to Microsoft Word

SketchFlow ships with its own Microsoft Word template; however, as you can see in Figure
8–19, you are free to specify a custom template, as well as configure a few additional options
(most importantly, including stakeholder feedback).

Figure 8–19. Configuring export options

Once you have exported the data, flesh out the full description as you see fit.

■ Source Code The modified PCGamingSketch project can be found under the Chapter 8 subdirectory.

Creating a Silverlight Prototype
Let’s create a custom SketchFlow prototype application that models some typical screens one
might see in an online sales application. Begin by creating a new Silverlight SketchFlow
application project named OnlineStoreApp from the New Project dialog box (see Figure 8–20).

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 327

Figure 8–20. Creating a new Silverlight SketchFlow application project

Upon creation, you will see that you are provided with a single screen (named Screen 1)
configured as the prototype startup screen. Using the SketchFlow Map panel, rename this
initial screen to MainScreen by right-clicking the map node and selecting the Rename option
(see Figure 8–21).

Figure 8–21. Renaming screen nodes

Examining the Project Files
A SketchFlow project is organized a bit differently than a typical WPF or Silverlight application.
Activate your Projects panel and notice that your Solution contains two related projects, as
shown in Figure 8–22. The first project (named OnlineStoreApp) contains the overall
application logic represented by the App.xaml and App.xaml.cs source files. In addition, this
project references several Expression Blend SketchFlow assemblies (all prefixed with
Microsoft.Expression).

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 328

Figure 8–22. The first project contains the core application logic.

The second project (named OnlineStoreAppScreens) references the same prototyping
assemblies, and will be the location for each screen you add to your application via the Map
panel. Currently, you can see your MainScreen present and accounted for. In addition, this
project will define a few additional items of interest:

• SketchStyles.xaml: This XAML file contains styles for the SketchFlow UI elements.

• Sketch.Flow: This XML document contains data that is read by the Map panel to display
nodes and their connections. You typically do not need to directly edit this file as it will
be updated automatically when working with the SketchFlow IDE.

• Fonts folder: This folder stores a few SketchFlow font types used by the supplied styles.

Figure 8–23 shows the breakdown of this second project.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 329

Figure 8–23. The second project stores screens, styles, fonts, and mapping data.

The SketchFlow styles will be applied automatically when you use the prototyping controls
in your Assets library. However, if you are curious, you can view each of these styles by
examining the Resources panel. As described in Chapter 2, you can double-click any of these
resources to edit and modify their appearance; however, for this example I’ll assume you will
not be doing so.

Creating a Component Screen
When building a WPF or Silverlight application, a common practice is to create a navigation
system that is common to a set of related Window/UserControl objects. This navigation system
could be a traditional menu system, or you could create a custom navigation scheme consisting
of animated graphics, a tree-like navigation system, or what have you.

SketchFlow Component screens allow you to define such a navigation scheme, which can
then be connected to any screen that requires the navigation UI. Internally, a Component
screen is a custom UserControl object (for both WPF- and Silverlight-based projects) that is
added to the layout manager of the item making use of it. This is certainly a useful approach,
because if you wish to change the look and feel of your navigation system, you only need to
change the Component screen UI, and the remaining nodes will be refreshed upon the next
build.

■ Note Component screens are not limited to navigation systems. You can use Component screens to model

any sort of repeatable UI content (footers on the bottom of a window, a set of common input controls, or what

have you).

To begin, hover your mouse cursor over the MainScreen node to open the node configuration
tool, and click the “Create and insert a Component screen” button (see Figure 8–24).

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 330

Figure 8–24. Creating a new Component screen

Once you have done so, rename the new node to NavSystem and drag it away from the
MainScreen node for readability purposes. Notice that Component screen nodes are green in
color by default, and use a green connection arrow that points from the Component screen
node to the screen that uses it (see Figure 8–25).

Figure 8–25. The Component screen is connected to your main screen.

If you were to view the artboard for the MainScreen node, you would see that the navigation
system is present on the designer. If you view the underlying XAML, shown next, you can see
that the UserControl that represents this navigation system has been added to the root layout
manager (your exact markup may differ from what you see here, based on how you positioned
your items):

<Grid x:Name="LayoutRoot" Background="White">
 <local:NavSystem HorizontalAlignment="Left" VerticalAlignment="Top"
 d:IsPrototypingComposition="True" Margin="83,8,0,0"/>
</Grid>

Now, ensure that the artboard for your NavSystem screen is active in the IDE. Using the
Assets library, locate the Sketch Styles section under the Styles category. Here, you will find
each of the prototyping controls typically used in a SketchFlow project. While you are free to
use any control in your prototype, recall that one benefit of these SketchFlow styled controls is
that they clearly inform the client that this is a working prototype, not a production-ready UI.
Figure 8–26 shows these styled components (all of which have a –Sketch suffix).

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 331

Figure 8–26. The Sketch Styles controls

Also notice that the Styles category of the Assets library provides a set of styled shapes
(Ellipse, Rectangle, etc.) that also support this prototype look and feel. Because these styles
have been set to be the default,6 they will automatically be used when you select an item on the
Tools panel. This all being the case, use the Tools panel (or Assets library) to build a navigation
system (in the NavSystem screen, remember) consisting of three colored geometries of your
liking. In Figure 8–27, you can see I’ve opted to arrange some star-shaped geometries and some
informational TextBox controls.

Figure 8–27. A simple navigation system

The goal is to allow the user to navigate to any of three specific screens by clicking the
corresponding star shape. While you could handle various mouse events and code for such
situations, the Blend IDE can automate this process using various SketchFlow behaviors. Before

6 See Chapter 5 for details on setting a default style.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 332

we build these additional screens, complete your MainScreen by adding a simple blurb of
descriptive text via the TextBlock control (see Figure 8–28).

Figure 8–28. The completed MainScreen layout

Creating Additional Screens
Using the Map panel, create two new screens by right-clicking any blank area and selecting the
Create a Screen menu option (see Figure 8–29). Rename these screens to ViewCart and
Checkout when you are finished.

Figure 8–29. Two currently unconnected screens

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 333

For the ViewCart screen, add some descriptive text, a placeholder graphic (I just used a
large gray square) for the shopping cart, and a Button control. Figure 8–30 shows a possible
layout.

Figure 8–30. The layout of the ViewCart screen

The Checkout screen, shown in Figure 8–31, is equally simple.

Figure 8–31. The layout of the Checkout screen

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 334

Replicating the Navigation GUI
Now that the ViewCart and Checkout screens are stubbed out, we can add the navigation GUI to
each layout manager. To do so, we can use the Map panel once again. When you wish to
connect a Component screen to a new node, use your mouse to drag the entire Component
screen node on top of the screen that will make use of it. Once you are done, you should find
that your prototype map looks similar to Figure 8–32.

Figure 8–32. The updated prototype map

■ Note Of course, now that each screen contains the navigation system, you will certainly want to tweak the

size and layout of your existing components on the Checkout and ViewCart screens.

Using the NavigateToScreenAction Behavior
We now need to account for the fact that the correct screen must launch when the user clicks a
given star graphic. The simplest way to do so is to leverage some unique context menus of the
artboard. Open the artboard for your NavSystem component and right-click the star that will
take the user to the main screen. From there, use the “Navigate to” menu to select the
MainScreen option (see Figure 8–33). Repeat this process to map the remaining star graphics to
their respective screens.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 335

Figure 8–33. Connecting elements to a navigation action

So, what exactly did the IDE do based on these actions? If you look at the XAML for your
NavSystem component, you will see that the navigation logic is handled by a SketchFlow
behavior object named NavigateToScreenAction. For example, here is the markup for the first
star graphic:

<ed:RegularPolygon ed:GeometryEffect.GeometryEffect="Sketch"
 InnerRadius="0.47211" PointCount="5" Stretch="Fill"
 Stroke="{StaticResource BaseBorder-Sketch}"
 StrokeThickness="2"
 UseLayoutRounding="False" Height="120" Fill="#FFCE8585">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="MouseLeftButtonDown">
 <pi:NavigateToScreenAction
 TargetScreen="OnlineStoreAppScreens.Screen_1"/>
 </i:EventTrigger>
 </i:Interaction.Triggers>
</ed:RegularPolygon>

You could also connect elements to navigation actions by manually adding a SketchFlow
behavior from the Assets library (located under the Behaviors section of the SketchFlow
category), and then configuring it with the Blend Properties window.

On a related note, like any element on the artboard, you can locate these behaviors from
the Objects and Timeline panel and then change the settings. For example, consider Figure 8–
34, which shows you how the NavigateToScreenAction behavior was configured by default. Here
you can see that the MouseLeftButtonDown trigger is the instigating event; however, you are free
to change these default settings as you see fit.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 336

Figure 8–34. You can use the Properties panel to configure any SketchFlow behavior.

■ Note Details of each of the SketchFlow behaviors can be found within the Blend User Guide. Simply look up

the topic “Working with SketchFlow Behaviors.” Not too surprisingly, SketchFlow behaviors work similarly (if not

identically) to the behavior objects you have used throughout this text.

In any case, at this point you will find that your Map panel not only shows that each screen
is using the Component screen, but also shows the navigation connection lines (see Figure 8–
35).

Figure 8–35. The final navigation map

Now, launch your prototype by pressing the F5 key! You should find that you can navigate
between each screen by using the SketchFlow Player Navigate panel and by clicking a given star
graphic (see Figure 8–36).

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 337

Figure 8–36. Our prototype in action

Incorporating Prototype Interactivity
The SketchFlow IDE provides a lightweight version of the Blend animation editor (described in
Chapter 3) that you can use to incorporate interactivity into a given prototype. You can
certainly use the full-blown animation editor for a prototype created with SketchFlow, but the
SketchFlow Animation panel is tightly integrated into the prototyping environment and is
therefore somewhat easier to use.

For our example, let’s add some interactivity to the Checkout screen. Begin by opening the
Checkout artboard and adding a Block Arrow Up - Sketch shape to the existing layout (see
Figure 8–37), which will represent (in exaggerated terms) the mouse cursor of the user.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 338

Figure 8–37. Adding a mock mouse cursor

Next, locate the SketchFlow Animation panel, which is mounted (by default) at the top of
the designer (see Figure 8–38).

Figure 8–38. The SketchFlow Animation panel

Click the + button (also shown in Figure 8–38) to create a new SketchFlow animation
storyboard. Once you have done so, you are free to rename this animation storyboard to a more
fitting description (such as “AnimateArrow”) via the drop-down list at the bottom of the
SketchFlow Animation panel.

In any case, similar to the full-blown Blend animation editor (see Chapter 3), the
lightweight SketchFlow Animation panel is based on changing the properties of UI elements in
a keyframe-by-keyframe manner. To add new keyframes to the animation sequence, select a
given keyframe in the SketchFlow Animation panel and click the + button (or use the – button
to delete the selected keyframe) located in the upper right of a selected keyframe (see Figure 8–
39).

Figure 8–39. Adding new keyframes

Add three keyframes to your current storyboard. The general idea here is that you can
select any keyframe in the SketchFlow Animation panel and make changes to the storyboard as
you see fit. As you make changes to the artboard of a selected keyframe, the data will be
recorded, again, much like the full-blown Blend animation editor.

In Figure 8–40, you can see I have added three keyframes to this animation. The first
keyframe simply captures the default screen state with the mock mouse cursor in the default
position. Now, if you select the second keyframe, you can relocate the mock mouse cursor over

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 339

the Button control. Next, select the third and final keyframe, which changes the Button’s
background color to signify the idea of clicking the button.

Figure 8–40. Changing the “mouse icon” across three frames

In you wish to get even fancier with your animation prototype, you can also configure a
given keyframe with animation easing effects (bounce, spring, etc.) and transitions (fade, wave,
and so forth). If you wish to add an easing effect to a given keyframe, click the button pointed to
in Figure 8–41.

Figure 8–41. Each keyframe can be configured using easing functions.

On a related note, if you wish to add a transition for a given keyframe, click the fx button
pointed to in Figure 8–42.

Figure 8–42. Each keyframe can also be configured using transitions.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 340

Using the PlaySketchFlowAnimationAction Behavior
After you have tinkered with various animation effects, run the prototype once again. If you
navigate to the Checkout screen, you will be able to play your animation via the Navigate panel
(see Figure 8–43).

Figure 8–43. Playing your prototype animation

If you would like to start this animation (or any animation) via user input, you can use the
PlaySketchFlowAnimationAction behavior, located within the SketchFlow ➤ Behaviors section
of your Assets library. Select this element, and drag it to the Objects and Timeline panel,
specifically on top of the [UserControl] tree node for the Checkout screen (see Figure 8–44).

Figure 8–44. Adding a PlaySketchFlowAnimationAction element

Next, select this element and use your Properties panel to configure a trigger for the Loaded
event that starts the animation in question (see Figure 8–45). If you run your prototype and
navigate to the Checkout screen, you should now see your animation start automatically.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 341

Figure 8–45. Configuring the PlaySketchFlowAnimationAction element

So there you have it! You have completed your simple prototype using various aspects of
the SketchFlow IDE. To be sure, our example prototype is much simpler than you would find in
a real-world software project, but you now should feel comfortable with the overall process of
generating prototypes with SketchFlow, capturing user comments, exporting these comments
to a dedicated Microsoft Word document, and managing the SketchFlow Map panel.

■ Note Try to add some user comments to your prototype, as you did when examining the PCGamingSketch

sample project earlier in this chapter. As well, try to generate a Word document based on your prototype (again,

as you did earlier in the chapter).

To complete this chapter, I’d like to close by examining the following topics:

• How to package a prototype to use the standalone SketchFlow Player

• How to use your prototype as the starting point for a production application

■ Source Code The OnelineStoreApp project can be found under the Chapter 8 subdirectory.

Packaging a Prototype
As you were working through this chapter, you saw that when you run your SketchFlow
prototype using the Blend IDE, the SketchFlow Player launches automatically. However, what
are you to do when you want to ship the prototype to an interested stakeholder who does not
have a copy of Expression Blend? Thankfully, it is possible to create a standalone player that can
be sent to a client, by choosing File ➤ Package SketchFlow Project (see Figure 8–46).

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 342

Figure 8–46. Packaging your prototype to use the standalone SketchFlow Player

Once you activate this menu option, simply specify a location and name for the generated
player. Since we have created a Silverlight SketchFlow prototype, our generated file set consists
of an HTML file and an XAP binary (as well as an ASP.NET web page). The client can simply
double-click the HTML file to view the prototype in their browser (see Figure 8–47).

Figure 8–47. The generated file set

■ Note If you were to package a WPF SketchFlow prototype, you would end up with an executable file (*.exe).

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 343

Moving a Prototype into Production
Once you have gathered and documented client feedback, modified your prototype
accordingly, and received any necessary sign-off, you can convert your SketchFlow prototype to
a “real” Silverlight or WPF project. The first step is to save a copy of the current prototype via
the File ➤ Save Copy of Project menu option.

Now, assuming you are operating on a copy of the current prototype, be aware that there is
no automatic “Convert prototype to Production” button in the Blend IDE. When you wish to
strip out the prototyping-centric aspects of the code base, you must do so manually. While the
Blend User Guide provides step-by-step details of how to convert Silverlight and WPF
prototypes to a production body of code, I’ll describe the process here.

■ Note The process of converting a WPF prototype is a tad different from the process of converting a Silverlight

prototype. Look up the topic “Convert into a production project” within the Blend User Guide for details.

Modifying the *csproj Files
The first step you must take to transform a prototype to a production application is to modify
the *.csproj file of the project in your solution that contains your App.xaml and App.xaml.cs
files. For the current example, this would be the OnlineStoreApp.csproj file. Open this file in a
simple text editor, and completely delete the following XML elements:7

<ExpressionBlendPrototypingEnabled>
 False
</ExpressionBlendPrototypingEnabled>
<ExpressionBlendPrototypeHarness>
 True
</ExpressionBlendPrototypeHarness>

Once you have done so, save and close the file. Next, open the *.csproj file for the
secondary project of your solution that contains the prototype screens (in this example, that
would be OnlineStoreAppScreens.csproj). Locate and delete these same two lines of XML, and
once again save the file when you are finished.

Updating the Root Project Assembly References
Open your modified solution back into the Blend IDE, and use the Projects tab to delete the
Microsoft.Expression.Prototyping.Runtime.dll assembly (see Figure 8–48).

7 I would have to guess that forthcoming versions of Expression Blend and Visual Studio will change the
underlying schema of the C# project file. Here I am assuming you are using Blend 4/Visual Studio 2010, so
consult the Blend User Guide if this is not the case.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 344

Figure 8–48. Deleting the SketchFlow runtime library

Next, using the Project ➤ Add Reference menu option of the Blend IDE, add a reference to
the Silverlight 4.0 System.Windows.Controls.Navigation.dll assembly, located by default under
the C:\Program Files\Microsoft SDKs\Silverlight\v4.0\Libraries\Client folder.

■ Note If you are using a 64-bit version of Windows, use Program Files(x86) in your path rather than Program

Files.

As you might be guessing, delete the Microsoft.Expression.Prototyping.Runtime.dll
assembly and add the System.Windows.Controls.Navigation.dll assembly for the secondary
project (again, OnlineStoreAppScreens.csproj in this example) as well.

Modifying the App.xaml.cs File
Open your App.xaml.cs file for editing. You’ll notice an assembly-level attribute at the top of
your code file right before the declaration of the App class type. Comment out this line
completely:

[assembly: Microsoft.Expression.Prototyping.Services.SketchFlowLibraries
 ("OnlineStoreApp.Screens")]

As well, locate the current implementation of the Startup event handler. Delete (or
comment out) the current line of code, and replace it with the following, substituting the name
of the XAML file (Screen_1.xaml) with whichever XAML resource you wish to display upon
startup. As well, change the name of the project (/OnlineStoreApp.Screens) with the name of
the project containing the individual screens.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 345

private void Application_Startup(object sender, StartupEventArgs e)
{
 // Comment out the current line!
 // this.RootVisual = new
 // Microsoft.Expression.Prototyping.Workspace.PlayerWindow();

 // Add this code statement, but update the XAML file name!
 this.RootVisual = new Frame()
 {
 Source = new
 Uri("/OnlineStoreApp.Screens;component/Screen_1.xaml",
 UriKind.Relative)
 };
}

■ Note The name to specify after the / of the Uri string is the same name that was passed into the

SketchFlowLibraries attribute you commented out.

At this point, your project will no longer use the SketchFlow Player. Thus, if you run the
Silverlight application, it will load into a browser just like a typical XAP file would do. The only
other bit of cleanup you might wish to do is to swap out the SketchFlow styles with your own;
however, I’ll leave that detail to you! Figure 8–49 shows the final result of our transformation.

Figure 8–49. Our XAP file

■ Source Code The OnlineStoreApp_Production project can be found under the Chapter 8 subdirectory.

CHAPTER 8 ■ PROTOTYPING WITH SKETCHFLOW

 346

Summary
The final chapter of this book explored the role of SketchFlow in the software development life
cycle. As mentioned at the opening of this chapter, the process of creating application
prototypes is a very common task during the process of gathering user requirements.
Expression Blend allows you to build interactive prototypes for WPF and Silverlight applications
that can be modified and extended on-the-fly, ideally when you are working with the software
stakeholders directly.

As you have seen, a SketchFlow solution consists of two projects, one of which contains all
of the screens (e.g., Window and UserControl objects) that can be strung together using the Map
panel. Recall that a Component screen allows you to build a custom UserControl that can be
incorporated into any number of additional screens. In our examples, we used Component
screens to model a simple navigation system; however, you can use Component screens for any
sort of repeatable UI. This chapter also examined the “micro” animation editor of a SketchFlow
solution, as well as a number of useful behaviors that can simplify the prototyping process.

You also learned how to use the SketchFlow Player to capture user feedback. Last but
certainly not least, this chapter also illustrated how a SketchFlow solution can be used as a
starting point for formal requirements documentation as well as starter code for the production
application.

 347

Index
■ ■ ■

■ Special Characters and
Numbers

+Event button, 104
+Property button, 104
2D graphical transformations, 64–69

applying
in code, 68–69
at design time, 66–68

building initial UI, 64–66
2D images, mapping to 3D planes, 70–71
3D graphical transformations, 69–81

in Silverlight, 79–81
in WPF, 69–79

controlling camera in code, 77
mapping 2D images to 3D planes,

70–71
using light editors, 75–77
using properties panel, 73–74
Viewport3D object in, 71–75
ZAM 3D tool, 78–79

3D planes, mapping 2D images to, 70–71

■ A
ActivateStateAction behavior object, 157
Add Collection Property option, 264
Add Complex Property option, 264
Add New Item menu option, 228
Add new value converter button, 230
Add PanoramaItem option, 299
Add PivotItem option, 301
Add Simple Property option, 264

advanced configuration options, viewing
of, 19

Advanced options button
Brushes editor, 81
Properties panel, 224, 233

AI (artificial intelligence) algorithms, 277
Alignment Settings, 143
All Properties setting, Create Data Binding

dialog box, 229
Ambient node, 75
AmbientContainer, 75
Amount property, 243, 247, 259
AnimateCircle storyboard, 90, 97, 117
animating layout, for Pivot Application

Project, 303–304
AnimationEasingEffects project, 110
animations, 87–118

and behavior objects in XAML, 115–118
ControlStoryboardAction behavior

object, 116–118
SimpleBlendAnimations example,

115–116
in code, 96–98
effects in, 109–114

applying, 111–113
executing at runtime, 114
initial layout, 110
initial storyboards, 111
KeySpline editor, 113

with Objects and Timeline panel, 16
services for, 87–88
testing, 94
viewing markup for, 94

■ INDEX

 348

workspace layout for, 88–96
adding keyframes, 91–92
capturing object property changes,

92–93
creating storyboards, 89–90
managing storyboards, 90–91
storyboard properties, 94–95
testing animations, 94
viewing markup for, 94
zooming timeline editor, 96

WPF specific techniques, 98–109
motion paths, 98–102
using triggers, 102–109

annotations, viewing of, 12–13
App class type, 344
App Hub web site, resources for Windows

Phone 7 development, 309–310
Appearance category, 18
Appearance editor, modifying shapes

using, 40–41
Application location, 82
Approved Version screen, 320
App.xaml.cs files, modifying, 344–346
artboard, 93, 284–285
artboard controls, 11
Artboard element picker tool, 305
artboard tools, changing Viewport3D

object using, 74–75
artboard visual designer, 10–14

annotations on, viewing, 12–13
rendering effects, 12
UI positioning with snap grid, 12
XAML from, 14
zooming in, 11–12

ASP.NET framework, 34
ASP.NET web page, 342
assembly references, updating, 343–344
Assets library, 25–28

Shapes section, 39–40
Tools panel, 22, 121

Assets panel, 28, 54
AutoReverse check box, Properties panel,

95
AutoReverse property, 125

■ B
Background color, 144
Background property, 85, 186, 287, 296–297
Background value, 186
backgrounds, for Panorama Application

Project, 296–298
BasedOn attribute, 168
BasicControlStyle, 165–167
bear Canvas, 62
bear_paper.design file, 56
bear_paper.xaml data, 60
bear_paper.xaml file, 57, 61–62
Begin() method, 97
<BeginStoryboard> element, 102
behavior objects, 156–162

MouseDragElementBehavior object,
159–162

in XAML, 115–118
ControlStoryboardAction behavior

object, 116–118
SimpleBlendAnimations example,

115–116
behaviors, 87
Behaviors category, 26
BigGreenButton style, 168
binDebug directory, 156
Binding markup extension, 227, 232, 242
Blend Animation editor, 303
Blend New Project dialog box, 270, 300
Blend Panorama Application Project. See

Panorama Application Project
Blend Pivot Application Project. See Pivot

Application Project
Blend Projects Templates, for Windows

Phone 7, 280–283
Blend Properties panel, 182
Blend User Guide, for Windows Phone 7

SDK, 282–283
Blend Welcome Screen, 5, 8
Blend Windows Phone Application Project.

See Windows Phone Application
Project

Blend Windows Phone project templates,
281

BlendControlContent project, 124
Block Arrow Up - Sketch shape, 337
block elements, 148

■ INDEX

 349

Blocks (Collection) property, 151
Border class, 134
Border container, 160
Border control, 161
Border object, 160
BorderBrush property, 160
BorderThickness property, 160
Bounce Out effect, 112
BounceOut function, 291
bound data contexts, viewing, 242
brush animation, 87
brush-centric properties, 42
brush options

Gradient, 43–46
No brush, 42
Solid-color, 42–43
Tile, 46–47

Brushes category, 18
Brushes editor, 42–47

brush-centric properties, 42
Gradient brush option, 43–46
No brush option, 42
Solid-color brush option, 42–43
Tile brush option, 46–47

btnClickMe object, 98
btnFlip buttton, 65
btnMyButton, artboard, 102
btnRotate button, 65
btnSkew button, 65
btnStartAnimation UI element, 97
btnStartAnimation_Click() method, 116
BubbleThoughtsControl, 213, 215
BulletDecorator control, 134
<Button> element, 181, 186, 197
Button node, 117
Button objects, 65, 101, 104, 125, 136, 163,

186
Button template, 193
Button type, 172, 195
buttonCaption element, 185
ButtonChrome, 191
Button.Click trigger, 106
Button's background color, 339
buttonSurface element, 185
<Button.Template> scope, 182

byte data type, 229

■ C
C alphabetic token, 37
C# code file, 60, 77
C# code snippets, 21
C# (*.cs) code file, 20
Calendar control, 172
CallMethodAction behavior object, 157
Callout class, 40
CalloutStyle class, 41
camera

controlling in code, 77
using properties panel for, 73–74

Camera Orbit tool, 72–73
Canvas layout mode, 141
Canvas panel, 141
Canvas Silverlight layout manager, 316
Categories category, 26
cells, adding items to in Grid object,

142–144
Center Point option, 67
CenterOfRotationX property, 79
CenterOfRotationY property, 79
CenterOfRotationZ property, 79
ChangeCamera() method, 77
ChangeColor method, 146
ChangePropertyAction behavior object,

157
CheckBox control, 222
Checkout artboard, 337
Checkout screen, 332–334, 337, 340
circleOne object, 98
cleanup, of projects, 243
Click event, 65, 68, 97, 101, 117, 126, 160,

182, 245, 299
Click handler logic, 116
Click handler value, 115–116
code editors, integrated, 20–21
code files, 19
Code Samples link, 307
Collection node, 263
CollectionDataContext project, 236, 246
collections

binding
to DataGrid controls, 243–244

■ INDEX

 350

to ListBox controls, 240–243
creating custom, 236–237
manipulating at runtime, 245–246

color coding, of nodes, 318
Color Eyedropper tool, 43
ColorSwatchSL application, 10
ColorSwatchSL project, 9, 13, 20–22, 28
columns, defining in Grid object, 142
Combine menu, 48
Common Properties category, 18
CommonStates group, 209, 215
Component screen, 319, 329–332, 334
Component screen button, 329
Component screen nodes, 330
composite content

creating, 124–125
handling events with, 126
reusing, 127

configuration options, viewing, 19
ConstrainToParentBounds property, 159,

289
Content properties, 65, 102, 129–130, 150,

165, 186, 223, 227, 233
Content value, 186
ContentControl derived class, 24
ContentPanel Grid object, 286–289
<ContentPresenter> class, 187
Control class, 167
control content model, and composite

content, 123–127
creating, 124–125
handling events with, 126
reusing, 127

control templates
containing data templates, 251–254
creating, 189–203

copying default templates, 189–193
creating templates from graphics,

193–203
role of in styles, 180–189

<ContentPresenter> class, 187
creating, 181–182
incorporating templates, 187–189
incorporating visual cues using

WPF triggers, 184–185

storing templates as resources,
182–184

TemplateBinding markup
extension, 186

in Windows Phone Application Project,
from graphics, 289–291

control-to-control data binding, 222–227
creating new, 224–226
example UI, 222–224
viewing generated markup, 227

Controls category, 26
ControlStoryboardAction, 87, 96, 98,

115–118, 157, 305
ControlStoryboardOption property, 305
<ControlTemplate> element, 179–180, 188,

191–192, 197
<ControlTemplate.Triggers> collection,

185
ControlToControlBinding project, 222
Convert() method, 228–229
Convert to Motion Path option, Path

menu, 99
Convert to New Resource option, Blend

Properties panel, 182
ConvertBack() method, 228
Converter attribute, 232
converting data types

conversion classes, 229–232
creating, 228–229
viewing generated markup, 232

overview, 227–228
Copy menu option, 62
core namespaces, for Windows Phone 7,

280
Create a Screen menu option, Map panel,

332
Create Annotation menu option, Tools

menu, 13
Create Data Binding dialog box, 225, 229
Create data source button, 237
Create Empty option, 173
Ctrl+W keyboard shortcut, 296
currentSelection Label control, 131
Cursor property, 161
custom collections, creating, 236–237
custom content, adding to sample project,

23

■ INDEX

 351

custom states, 211–212
custom templates, creating, 181–182
customListBox control, 128

■ D
data binding, 221–272

control-to-control, 222–227
creating new data bindings,

224–226
example UI, 222–224
viewing generated markup, 227

converting data types, 227–232
creating custom conversion classes,

228–229
selecting conversion classes,

229–232
data templates, 246–254

composite UI elements for, 248–251
control templates containing,

251–254
editing, 247
styling items in, 247

Databound project templates, 270–272
ListDetailsDataBinding project,

259–262
creating UI, 259–261
viewing generated markup, 261–262

modalities, 232–236
data binding options, 233–234
two-way data binds, 234–236

to non-UI objects, 236–246
collections, 240–244
creating custom collections,

236–237
and Data panel, 237–240
properties, 243
at runtime, 245–246

for relational database data, 269–270
role of, 222
sample data for, 262–269

adding properties, 264–265
binding to UI, 266–268
inserting into project, 263
modifying types and values,

265–266

WPF XML data source, 255–258
adding, 256–257
and XPath expressions, 257–258

Data Binding menu option, 224
Data Context attribute, 241–243

data template markup, 242
quick project cleanup, 243
viewing bound data context, 242

Data Context tab, 225
Data Field tab, 225
Data panel

defining data sources with, 237–240
in Windows Phone Application Project,

287
Data property, 37
data templates, 246–254

composite UI elements for, 248–251
control templates containing, 251–254
editing, 247
markup for, 242
styling items in, 247

data types
converting, 227–232

creating custom conversion classes,
228–229

selecting conversion classes,
229–232

modifying, 265–266
data values, modifying, 265–266
databases, data binding for relational,

269–270
Databound project template, 270–272
DataContext attribute, 241
DataContext property, 262
DataGrid control, 236–237, 243–244, 266
<DataGridTextColumn> element, 244
DataStateBahavior behavior object, 157
days.hours:minutes:seconds.fractionalSec

onds format, 95
default templates, copying, 189–193

examining, 191–192
style properties, 190–191
using tools to edit, 192–193

Default.html test page, 7
Description node, 259, 261, 287
Description property, 243, 259, 261

■ INDEX

 352

design patterns, MVVM, 270–272
Design tool, 2–3
Design workspace, 31
destination control property, 221
Detail Page node, 319
Details Mode button, 259, 287
Details mode, Data panel, 240, 258–259,

261, 266
Device panel, 292
Direct Selection tool, 24, 35–36
Directional subnode, DirectionalContainer

node, 76
DirectionalContainer, 75
display, zooming of, 11–12
Divide option, Combine menu option, 48
DockPanel, 133
Document APIs

overview, 147–148
WPF

block elements, 148
document layout managers,

148–149
document layout managers, 148–149
Document property, 151
documentation

generating, 325–326
for Windows Phone 7 SDK, 278–280

documentation system, 31–32
double data type, 227
double member variables, 80
DoubleToSolidBrushConverter class, 228,

231
Download the Developer Tools link, 274
drawing tools, 34–47

Appearance editor, 40–41
Brushes editor, 42–47
Ellipse Tool, 38
Line Tool, 38
Pen, 36–38
Pencil, 35
Rectangle Tool, 38
Shapes section, 39–40

DropAndBounceBall storyboard, Objects
and Timeline panel, 111–113

DropShadowEffect object, 55
DynamicResource markup extension, 166

■ E
easing effects, 87
EasingFunction button, 111
EasingFunction drop-down list box, 111
Edit a Copy option, 172
Edit Additional Templates menu option,

252
Edit Current option, 172
Edit resource button, 247
Edit sample values button, 265
Edit Sample Values dialog box, 266
effects

in animations, 109–114
applying, 111–113
executing at runtime, 114
initial layout, 110
initial storyboards, 111
KeySpline editor, 113

transition, defining, 209–210
Effects category, 26
Elastic Out effect, 303
Element Property Binding option, 233
Element Property tab, Create Data Binding

dialog box, 225, 229
ElementName attribute, 227
Ellipse component, 204
Ellipse controls, 129–130
Ellipse element, 98
Ellipse from the Objects and Timeline

panel, 132
Ellipse object, 92–94, 111, 288, 305
Ellipse style shape, 331
Ellipse Tool, 22, 34, 38, 49, 302
EllipseGeometry class, 37
ellipsis button, 297
emulators

Windows Phone 7, 276
for Windows Phone Application

Project, configuring with Device
panel, 292

Encoder tool, 2
event handling, with composite content,

126
Event trigger, 104
EventName property, 117, 305
Events button, Properties panel, 28, 97, 114

■ INDEX

 353

Events editor, 28–30
events, handling in Windows Phone

Application Project, 291
<EventTrigger> elements, 94, 109
Exclude Overlap option, Combine menu

option, 48
Export All button, 60
Export menu option, File menu, 59
Export to Microsoft Word option, File

menu, 325
Expression Blend web site, 274
Expression Blend Welcome Screen, 5
Expression Design, 56–64

exporting images from, 56–60
for Silverlight applications, 60–64

event handling, 62–64
importing data, 61–62

Extensible Application Markup Language.
See XAML

Extensible Markup Language data sources.
See XML data sources

■ F
fancyShape name object, 50
Fill object, 42
Fill property, 42–43, 45, 47, 81, 93, 129, 186,

202, 229
Fill value, 206
finding objects, in Properties panel, 17
firstButtonStyle, 173–175
FirstName property, 263
<FixedDocument> element, 148
Flip value, 65
FlipHappyDude storyboard, 305
FlowDocument, 148, 154
FlowDocument containers, 151–155
<FlowDocument> element, 148
FlowDocumentPageViewer, 148–149
FlowDocumentReader, 148, 151, 153–154
FlowDocumentScrollViewer, 148–149
FluidMoveBehavior behavior object, 157
Focused states group, 210, 215
Folder button, My Feedback panel, 323
Fonts folder, 328
Foreground property, 247
Format drop-down list box, 59

FunWithDataTemplates project, 246, 254
FunWithSampleData project, 263
fx button, 339

■ G
Geometries, 47–50
GoToState() method, 216
GoToStateAction behavior object, 157,

216–217
Gradient brush option, 43–46
graphical user interface. See GUI
graphics

templates from, 193–203
adding interactivity, 200–203
creating initial graphics, 194
extracting, 194–197
ListBox control, 197–200
WPF triggers, 203

in Windows Phone Application Project
control templates from, 289–291
interactive, 288–289

gray egg button, 303
Grid control, 182
Grid layout manager, 165, 241
Grid layout mode, 141
Grid object, 141–147

adding items to cells, 142–144
adding nested StackPanel objects,

145–147
creating splitters, 144–145
defining rows and columns, 142

Grid Silverlight layout manager, 316
grids, for Pivot Application Project,

transforming, 303–304
GridSplitter control, creating, 144–145
Group Info option, 302
GUI (graphical user interface)

controls, 119–123
details of, 121–123
locating, 120–121
with Properties panel, 121

replicating navigation, 334

■ H
Handled property, 126

■ INDEX

 354

handling events, in Windows Phone
Application Project, 291

Header element, 140
Header properties, 93, 107, 140, 301
Height property, 224, 226–227, 229
Help tab, Expression Blend Welcome

Screen, 5
Horizontal value, 129
HorizontalAlignment property, Properties

panel, 182, 199
HotItem node, 258
hours:minutes:seconds format, 95
HoverAndCrashPoly storyboard, 111
HTML file, 342

■ I, J
IDE (integrated development

environment), 1–32
artboard visual designer, 10–14

annotations, 12–13
rendering effects, 12
UI positioning with snap grid, 12
XAML from, 14
zooming in, 11–12

code editor in, 20–21
documentation in, 31–32
Events editor, 28–30
Microsoft Expression products, 1–5

Design tool, 2–3
Encoder tool, 2
SketchFlow tool, 4–5
Web tool, 2

Objects and Timeline panel, 15–16
options for, 30–31
Project panel, 19–20
Properties panel, 16–19

categories of, 18
finding objects in, 17
naming objects in, 17
options for, 19

Results panel, 21
sample project, 9–10
templates for, 5–8

Silverlight, 7–8
Windows Phone, 8
WPF, 6–7

Tools panel, 22–28
adding custom content, 23
Assets library, 25–28
Assets panel, 25–28
Direct Selection tool, 24
Pan tool, 24–25
Selection tool, 24
Zoom tool, 24–25

Image control, 70–71, 80, 98
ImageBrush object, 71, 296
images, exporting, 56–60
ImageSource property, 46, 297
incoming object, 51
InkCanvas control, 143–145
inline elements, 148
InnerRadius property, 40
InsideAShape method, 50–51
Install Now button, Windows Phone 7 SDK,

275
integrated code editor, 20–21
integrated development environment. See

IDE
interactive graphics, in Windows Phone

Application Project, 288–289
interactivity, adding to control templates,

253–254
Internal Page node, 316
Intersect option, Combine menu option,

48
Inventory.xml file, 255–256
InvokeCommandAction behavior object,

157
IsChecked property, CheckBox control, 222
IsMouseOver property, 185, 202
IsPressed property, 203
items control model, 128–132

adding ListBoxItem objects, 128–130
finding current selection, 131
Tag property, 132
viewing XAML, 130

Items editor, 199
<ItemsPresenter> element, 198
ItemsSource property, 241, 257
ItemTemplate property, 241–242, 257
IValueConverter interface, 228

■ INDEX

 355

■ K
keyframes

adding, 91–92
SketchFlow Animation panel, 338

KeySpline editor, 113

■ L
Label controls, 77, 120, 128–129, 145, 227,

233, 248–249, 259
LastName property, 263, 266
Layout category, 18
layout manager, 132–138

Border class, 134
BulletDecorator control, 134
changing type, 134–135
document, 148–149
nested, 135
TabControl class, 134
and UI elements

grouping of, 136–137
repositioning of, 137–138
ungrouping of, 136–137

Layout section, Properties panel, 93
layout systems, creating tabbed, 138–141
LayoutRoot Grid object, 88, 285, 294
LayoutRoot node, 23, 27, 64
LayoutRoot object, 27, 62
Layouts, 302–304
LayoutTransform options, 67–68
LayoutTransform property, 68
leftEye object, 62
LeftMouseButtonDown event, 29
lighting effects, changing using light

editors, 75–77
Line Tool, 22, 34, 38
LinearGradientBrush object, 46
Linked In node, 177
Linked To node, 177
List block, 154
List Mode button, 259
List mode, Data panel, 240, 243, 266
ListBox controls, 197–200

binding collections to, 240–243
binding properties to, 243
Tool panel, 120

ListBox member, 131
ListBoxItem objects, 128–130, 132, 199
ListBoxItemSendToTop.cs code file, 20
ListBox's SelectionChanged event, 131
ListDetailsDataBinding project, 259–262

creating UI, 259–261
viewing generated markup, 261–262

Loaded even, 340
Loaded event, 102
Locations category, 26
LookDirection property, 77

■ M
M alphabetic token, 37
MainControl.xaml file, 10
mainMenuSystem, 106
MainPage.xaml file, 62, 115–116, 292, 295,

300
MainScreen node, 329–330
MainScreen option, 334
MainViewModel.cs file, 295
MainWindow.xaml file, 22, 101, 197, 229,

246, 256–257
Make Into Control dialog box, 290
Make Into Control option, 289
Manage Help Settings tool, 278–279
Margin properties, 141, 145
Margin Settings, 143
Margin value, 65
markup

for data templates, 242
for PanoramaItem objects, 295–296
viewing generated, 227–232, 261–262

markup extensions, 186
Maximum property, 223
Media category, 26
Menu control, Assets panel, 106
menu items, assigning triggers to, 108–109
Menu object, 106
menu system, 106–108
MenuItem control, 107
MessageBox.Show() method, 63, 299
Microsoft Expression products, 1–5

Design tool, 2–3
Encoder tool, 2

■ INDEX

 356

SketchFlow tool, 4–5
Web tool, 2

Microsoft Word, generating
documentation, 325–326

Microsoft XNA Game Studio 4.0-and
Windows Phone 7 SDK, 276–277

Microsoft.Devices namespace, 280
Microsoft.Devices.Radio namespace, 280
MicrosoftDevices.Sensors namespace, 280
Microsoft.Expression.Drawing.dll library,

40
Microsoft.Expression.Effects.dll .NET

assembly named, 56
Microsoft.Expression.Interactivity.dll

library, 157
Microsoft.Expression.Media.Effects

namespace, 56
Microsoft.Expression.Prototyping.Runtime

.dll assembly, 343–344
Microsoft.Phone.Controls namespace, 280
Microsoft.Phone.dll assembly, 280
Microsoft.Phone.Interop.dll assembly, 280
Microsoft.Phone.Notification namespace,

280
Microsoft.Phone.Tasks namespace, 280
Minimum property, 223
Miscellaneous category, 18
mnuFile item, 107
mnuPause menu item, 107
mnuPlay menu item, 107
mnuPlay object,Objects and Timeline

panel, 108
mnuStop menu item, 107
Mode attribute, 232, 235
Model node, 74
Model-View-ViewModel (MVVM) design

pattern, data binding for, 270–272
ModelContainer node, 74
motion paths, 98–102
MouseDown event, 126, 216
MouseDownState, 216
MouseDragElementBehavior object, 157,

159–162, 288–289
MouseEnter event, 50–51, 217
MouseLeave event, 52
MouseLeftButtonDown event, 29, 63, 114,

335

MouseOverState, 211, 215
MouseWheel node, 316
MoveShapes animation, 102
MoveShapes storyboard object, 101
mrHappyGrid object, 303–304
MSDN Windows Phone sample projects,

resources for Windows Phone 7
development, 306–309

MVVM (Model-View-ViewModel) design
pattern, data binding for, 270–272

my3DCamera object, 77
myBrush file, 83, 85
myCallout name object, 50
myDocumentReader, 151
MyFeedback file, 323
myInkArea, 143
myListStyle style, 252
myPolygon object, 23, 28
myPolygonMouseDown method, 29
myRect object, 98
MyResources.xaml file, 83
myShape object, 68
myStar name object, 50
myStarMouseDown method, 29
myTabControl,, 141

■ N
Name property, 17, 132, 141
Name property text area, Properties panel,

98
namespaces, for Windows Phone 7, 280
naming objects, in Properties panel, 17
Navigate panel, 321, 340
NavigateBackAction behavior object, 157
NavigateForwardAction behavior object,

157
NavigateToScreenAction behavior, 157,

334–336
NavigateToScreenAction object, 335
navigation framework, 273
NavSystem component, 334–335
NavSystem node, 330
NavSystem screen, 330–331
nested layout managers, designing, 135
nested StackPanel objects, adding, 145–147
.NET class libraries, 7, 20

■ INDEX

 357

.NET code, 4

.NET object, 2

.NET tab, Add References dialog box, 40
New Item dialog box, 228
New Project dialog box, 5–8, 280, 284, 326
New Project option, Projects tab, 5
New Storyboard button, 303
No brush option, 42
nodes

connecting, 319
Start, 317–318

Normal state, 211

■ O
object parameter, 229
object resources, 81–86

applying to UI elements, 85–86
managing, 83–84

Objects and Timeline animation editor,
304

Objects and Timeline panel, 15–16
objects, in Panorama Application Project,

294–295
ObservableCollection class, 237, 245,

263–264
OneTime option, 236
OneWay option, 234
OneWayToSource option, 236
OnlineStoreApp, 326–327
OnlineStoreApp_Production project, 345
OnlineStoreAppScreens project, 328, 344
OnlineStoreAppScreens.csproj file,

343–344
Opacity property, 40, 51–52
OpacityMask object, 42
options, 30–31
Options dialog box, 30
Orientation property

Properties panel, 125, 129, 145
StackPanel control, 248

orthographic camera, 74
Oscillations property, 113

■ P, Q
Package SketchFlow Project, File menu,

341

packaging prototypes, 341–342
Pan tool, 22, 24–25
Panorama Application Project, 294–299

backgrounds for, 296–298
objects in, 294–295
PanoramaItem objects in

creating new, 299
markup for, 295–296

Panorama control, 281, 296
Panorama node, 299
panorama-style application, 282
Panorama type, 294
PanoramaBackground.png file, 296
PanoramaItem objects

creating new, 299
markup for, 295–296

Paragraph block, 152, 154
<Paragraph> element, 148
path animation, 87
Path class, 37
Path object, extracting, 47–50
PathGeometry class, 37
PCGamingSketch project, 314–315
PDC (Professional Developers

Conference), 1
Pen tool, 23, 34, 36–38, 289, 302
Pencil tool, 23, 34–35
PersonCollection node, 263, 266
perspective camera, 74
phone page, 284
PhoneTextNormalStyle, 286
PhoneTextTitle1Style, 286
Picture property, 265
Pivot Application Project, 300–305

animating layout for, 303–304
controlling Storyboard for in XAML,

304–305
creating new PivotItem object for, 301
designing layout for, 302–303
transforming grid, 303–304

Pivot control, 281
Pivot node, 301
Pivot object, 300
PivotItem object, 300–301
PlaneProjection object, 79–80
Play button, 94, 304

■ INDEX

 358

PlaySketchFlowAnimationAction behavior,
340–341

PlaySoundAction behavior object, 157
PointCount property, 40, 194
Position property, 77
positioning UI, with snap grid, 12
Product node, 257
<Products> node, 257
Professional Developers Conference

(PDC), 1
Program Files, 344
Project category, 26
Project panel, 19–20
project templates

Blend Windows Phone, 281
Databound, 270–272
Windows Phone 7, 276

Projection property, 79–80
Projects panel, 61, 255
Projects tab, Expression Blend Welcome

Screen, 5
properties

adding, 264–265
binding to ListBox controls, 243
changing, 92–93

Properties panel, 16–19
categories of, 18
changing camera settings using, 73–74
configuring GUI controls with, 121
finding objects in, 17
naming objects in, 17
options for, 19

Properties tab, Properties panel, 31
property triggers, adding interactivity with,

200–203
Property1 property, 263
Property2 property, 263
prototypes

feedback for
adding to, 322
exporting, 323
importing client, 324–325

incorporating interactivity, 337–339
moving into production, 343–346

modifying App.xaml.cs files,
344–346

modifying *csproj files, 343
updating assembly references,

343–344
packaging, 341–342
for Silverlight, 326–341

Component screens, 329–332
creating screens, 332–333
incorporating interactivity into,

337–339
NavigateToScreenAction behavior,

334–336
PlaySketchFlowAnimationAction

behavior, 340–341
project files for, 327–329
replicating navigation GUI, 334

testing, 320–326
adding feedback to, 322
exporting feedback, 323
generating Microsoft Word

documentation, 325–326
importing client feedback, 324–325
navigating screens, 320–322

PurchaseOrder class, 236–237, 246, 259,
287

PurchaseOrders class, 237, 246, 259, 287
PurchaseOrders collection, 237–238, 245
PurchaseOrders node, 240, 242, 244, 246

■ R
RadialGradientBrush object, 46
Rational Unified Process (RUP), 311
raw XAML, 13
rawButtonTemplate style, 190
Record Keyframe button, 91–92
Rectangle element, 98
Rectangle object, 38, 101
Rectangle style shape, 331
Rectangle Tool, 22, 34, 38, 49
RectangleGeometry class, 37
Refined node, 316
RegularPolygon class, 40, 42
regularPolygon object, 126–127
RegularPolygon shape, 49
relational database data, data binding for,

269–270
rendering effects, hiding and showing, 12

■ INDEX

 359

RenderTransform options, 67–68
RepeatBehavior property, 95, 106, 125
Resize and Skew button, 296
Resource Dictionary location, 82
resources

applying to UI elements, 85–86
managing, 83–84
storing templates as, 182–184
for Windows Phone 7 development

App Hub web site, 309–310
MSDN Windows Phone sample

projects, 306–309
Resources panel, 329
Results panel, 21
Return scope to Window/UserControl

button, 250
RichTextBox control, 148–149
rightEar object, 62
Ripple effect, Asset panel, 27–28
Rotate option, 67
Rotate value, 65
<RotateTransform> element, 169
RotationX property, 79
RotationY property, 79
RotationZ property, 79
RoundButtonTemplate, 183–186
rows, defining in Grid object, 142
RubberbandTriangle storyboard, 111, 113
Run as Administrator option, 275
Run button, Windows Phone 7 SDK, 274
RUP (Rational Unified Process), 311

■ S
sample project, 9–10, 23
Samples tab, 5, 8
Scale option, 67
Scale tab, Transform section, 253
scope, of animation services, 88
Screen1_.xaml file, 344
ScrollViewer, 133
SDK assemblies, 40
SDK (Software Development Kit), for

Windows Phone 7, 273–284
Blend Projects Templates in, 280–283
Blend User Guide in, 282–283
documentation for, 278–280

and Microsoft XNA Game Studio 4.0,
276–277

tools included in, 276–277
Visual Studio 2010 Project Template in,

283–284
Selected state, 253–254
SelectedIndex property, 131
SelectedItem property, ListBox control, 262
selecting objects, in Objects and Timeline

panel, 16
Selection tool, 22, 24, 62
sender object, 51
SetDataStoreValueAction behavior object,

157
Setter objects, 164–165
Setters collection, 164
shapes

coloring, 42–47
brush-centric properties, 42
Gradient brush option, 43–46
No brush option, 42
Solid-color brush option, 42–43
Tile brush option, 46–47

converting to Path objects, 49–50
modifying using Appearance editor,

40–41
Shapes category, 26
Shapes section, of Assets library, 39–40
Silverlight 3D graphics, 79–81
Silverlight API, 204–212

configuring transitions, 210–211
custom states, 211–212
defining transition effects, 209–210
establishing state group transition

timing, 208
viewing generated XAML, 207–208
VSM via States panel, 206–207

Silverlight applications, 3–5, 11, 21, 33–34,
56, 63

Silverlight Button, 120
Silverlight control, 25
Silverlight Databound project type, 270
Silverlight for Windows Phone 7 node, 283
Silverlight for Windows Phone portal, 279
Silverlight Image control, 80
Silverlight project template, 7–8

■ INDEX

 360

Silverlight projects, 22, 34, 56
Silverlight proper, 273
Silverlight System.Windows.Controls

Namespace link, 122
Silverlight UserControl, 42, 80, 90, 97, 137
Silverlight3DExample project, 80
SilverlightRoundButtonTemplate

application-level resource, 205
Simple Styles, 175–180
Simple Styles.xaml file, 177
SimpleBlendAnimations example, 115–116
SimpleSlider style, 176–177
single property, 19
Sketch suffix, 330
SketchFlow, 4–5, 311–346

and application prototyping, 311–314
packaging prototypes, 341–342
prototype sample using, 314–326
Silverlight prototypes in, 326–341

Component screens, 329–332
creating screens, 332–333
incorporating prototype

interactivity, 337–339
project files for, 327–329
replicating navigation GUI, 334
using NavigateToScreenAction

behavior, 334–336
using

PlaySketchFlowAnimationAction
behavior, 340–341

SketchFlow Animation panel, 338
SketchFlow Feedback option, Window

menu, 324
SketchFlow Feedback panel, 324–325
Sketch.Flow file, 328
SketchFlow Map panel, 315–319

assigning transition styles, 319
color coding, 318
connecting nodes, 319
creating nodes, 319
Start node, 317–318

SketchFlow Player, testing prototypes with,
320–326

adding feedback to, 322
exporting feedback, 323
generating Microsoft Word

documentation, 325–326

importing client feedback, 324–325
navigating screens, 320–322

SketchFlowLibraries attribute, 345
SketchStyles.xaml file, 328
Skew option, 67
Skew value, 65
SLControlTemplate project, 204
Slider control, 77, 120, 176, 178, 223,

226–227, 229, 233–234
Slider objects, 80
SmallChange property, Slider control, 227
snap grid, UI positioning with, 12
Software Development Kit, for Windows

Phone 7. See SDK, for Windows
Phone 7

Solid-color brush option, 42–43
source control property, 221
Source property, 70–71
SourceName property, 305
SourceObject property, 117
SpinButtonAnimation storyboard,

102–106, 108
splitters, creating, 144–145
Springiness property, 113
StackPanel controls, 33, 64–65, 223, 248
StackPanel objects, adding nested, 145–147
Star object, 27
Star tool, 39
starButtonStyle, 195, 200
Start node, 317–319
Start screen, 320–321
Startup event handler, 344
state group transition timing, establishing,

208
states

adding visual, 215–216
custom, 211–212
transitioning

in code, 216
in XAML, 216–218

States panel, 206–207, 254
StaticResource markup extension, 166, 168
Storyboard class, 97–98
<Storyboard> element, 208
storyboard objects, 16
Storyboard property, 305

■ INDEX

 361

Storyboard1 storyboard object, 101
storyboards, 87

controlling in XAML, 115–118
ControlStoryboardAction behavior

object, 116–118
SimpleBlendAnimations example,

115–116
creating, 89–90
executing at runtime, 114
initial, 111
interacting with in code, 96–98
managing, 90–91
properties for, 94–95

String data type, 266
Stroke object, 42
Stroke property, 47, 52
StrokeEndLineCap property, 52
StrokeStartLineCap property, 52
StrokeThickness property, 52, 99
Style class, 164
Style property, 165–166, 190–191
<Style> scope, 188
styles

assigning Style property, 165–166
constraining, with TargetType

attribute, 167–168
creating, 164–165, 172–180

empty styles, 172–175
WPF Simple Styles, 175–180

default, 169–170
empty, 172–175
managing, 170–171
overriding settings for, 167
role of control templates in, 180–189

<ContentPresenter> class, 187
building custom templates by hand,

181–182
incorporating templates, 187–189
incorporating visual cues using

WPF triggers, 184–185
storing templates as resources,

182–184
TemplateBinding markup

extension, 186
subclassing existing, 168–169

Styles category, 26

styling items, in data templates, 247
stylized templates, creating from graphics,

193–203
adding interactivity, 200–203
creating initial graphics, 194
extracting, 194–197
ListBox control, 197–200
WPF triggers, 203

Subtract option, Combine menu option, 48
SuperPreview, 2
System Styles, for Windows Phone

Application Project, 286
System.Collections.ObjectModel

namespace, 237
System.Windows.Controls.Navigation.dll

assembly, 344
System.Windows.Documents namespace,

147
System.Windows.Shapes namespace, 37
System.Windows.Style class, 164
System.Xml namespace, 255

■ T
tabbed layout systems, creating, 138–141
tabBehaviors, 141
TabControl class, 134, 139–140
TabControl component, 138–139
TabControl node, Objects and Timeline

panel, 140
TabControl object, 140
tabDocs, 141
tabInk, 141
TabItem objects, 139–141
TabStripPlacement property, 139
Tag property, 132
TargetType attribute, 167–168
TargetType property, 197
Template property, 182–184
TemplateBinding markup extension,

185–187, 192
templates, 5–8

control
creating, 189–203
role of in styles, 180–189

incorporating, 187–189
Silverlight, 7–8

■ INDEX

 362

storing as resources, 182–184
using Silverlight API, 204–212

configuring transitions, 210–211
custom states, 211–212
establishing state group transition

timing, 208
transition effects, 209–210
viewing generated XAML, 207–208
VSM via States panel, 206–207

Windows Phone, 8
WPF, 6–7

Text category, 18–19
Text property, TextBox control, 233, 235
TextBlock controls, 248–249, 259–262, 292,

303, 332
TextBlock UI control, 316
TextBox control, 120, 169–170, 235, 331
This document location, 82
Tile brush option, 46–47
TiltButton style, 171
timeline editor, zooming, 96
Timeline panel, 23, 27–28
TitlePanel layout manager, 292
ToolBar controls, 149–156

loading document data, 155–156
populating FlowDocument containers,

151–155
saving document data, 155–156

Tools panel, 22–28
adding custom content, 23
Assets library, 28
Assets panel, 25–28
Direct Selection tool, 24
Pan tool, 24–25
Selection tool, 24
Zoom tool, 24–25

TotalCost property, 243, 259
Transform category, 18
Transform section, 253, 303
transformations

applying at design time, 66–68
LayoutTransform options, 67–68
RenderTransform options, 67–68

applying in code, 68–69
Transformations WPF application, 64

transforming grid, for Pivot Application
Project, 303–304

transition styles, assigning, 319
transitions

configuring, 210–211
effects for, 209–210
establishing state group timing, 208
of states

in code, 216
in XAML, 216–218

Translate option, 67
TreeView control, 267
<Trigger> element, 185
triggers

controlling animations using, 102–109
adding, 103–106
assigning to menu items, 108–109
menu system example, 106–108

WPF
property, 200–203
visual cues using, 184–185

Triggers panel, 103–106, 203
two-way data binds, configuring, 234–236
TwoWay binding mode, 235

■ U
UI element

applying resources to, 85–86
grouping of, 136–137
repositioning of, 137–138
ungrouping of, 136–137

UI (user interface), 138–156
binding sample data to, 266–268
binding to elements, via XPath

expressions, 257–258
composite elements for data templates,

248–251
creating, 259–261
example of, 222–224
Grid object for, 141–147

adding items to cells, 142–144
adding nested StackPanel objects,

145–147
creating splitters, 144–145
defining rows and columns, 142

positioning, with snap grid, 12

■ INDEX

 363

tabbed layout systems, creating,
138–141

ToolBar controls for, 149–156
loading document data, 155–156
populating FlowDocument

containers, 151–154
saving document data, 155–156

WPF Document API, 147–149
block elements, 148
document layout managers,

148–149
inline elements, 148

UIElement base class, 51, 79
UniformGrid, 133
Unite option, Combine menu option, 48
Uri string, 345
User Guide menu option, Help tab, 31
user interface. See UI
UserControl, 3, 80, 88, 163, 213, 216–217,

315, 329–330
<UserControl> element, 15
UserControl objects, 16, 127
[UserControl] tree node, 340
UserControls, generating, 212–219

adding visual states, 215–216
transitioning states, 216–218
VSM, 218–219

■ V
Value property, 225–227, 229, 233–234, 236
ValueChanged event, 77, 80
VB code, 21, 60
VB (*.vb) code file, 20
vector graphics, 33–86

2D graphical transformation, 64–69
applying, 66–69
building initial UI, 64–66

3D graphical transformation, 69–81
in Silverlight, 79–81
in WPF, 69–79

combining geometries, 47–50
drawing tools, 34–47

Appearance editor, 40–41
Brushes editor, 42–47
Ellipse Tool, 38
Line Tool, 38

Pen, 36–38
Pencil, 35–38
Rectangle Tool, 38
Shapes section of Assets library,

39–40
Expression Design, 56–64

exporting images, 56–60
for Silverlight applications, 60–64

and Path objects, 47–50
Shape objects, 50–51
stroke for, 52–54

dash patterns, 53–54
end caps, 52–53

Version 1 node, 319
Version 1 screen, 320
Version 2 node, 319, 322
Version 2 screen, 320–322
Version 3 screen, 320
Version Approved node, 316–318
VerticalAlignment property, Properties

panel, 182, 199
View object, 7
ViewBox, 133
ViewCart screen, 332–334
ViewModel class, 7, 295
ViewModels folder, 295
Viewport3D elements, 79
Viewport3D node, 75
Viewport3D object

changing using artboard tools, 75
elements of, 71–72
transforming with Camera Orbit tool,

72
visual cues, 88
visual effects, hiding and showing, 12
Visual State Manager and States panel, 291
Visual State Manager (VSM), 8, 206–207,

253
visual states, adding, 215–216
Visual Studio 2010 Project Template, for

Windows Phone 7, 283–284
VisualStateManager class, 216
VSM (Visual State Manager), 8, 206–207,

253

■ INDEX

 364

■ W
Weather Forecast Sample project, 308
Web tool, 2
Welcome Screen menu option, Help tab, 8
Width property, 93, 226–227, 229, 249
Width value, 65, 171
wigglyListBoxStyle, 197–198
Window objects, 102, 133, 175
<Window> tag, 232
Window/UserControl, 68, 329
Window.Loaded event, 104
Window.Loaded trigger, 104
Window's artboard, 184
Window's code file, 155
Windows Forms framework, 34
Windows Phone 7, 273–310

Blend Panorama Application Project
for, 294–299

backgrounds for, 296–298
objects in, 294–295
PanoramaItem objects in, 295–299

Blend Pivot Application Project for,
300–305

animating layout for, 303–304
controlling Storyboard for in XAML,

304–305
creating new PivotItem object for,

301
designing layout for, 302–303
transforming grid, 303–304

Blend Windows Phone Application
Project for, 284–292

artboard for, 284–285
configuring emulator for, 292
creating control template from

graphic, 289–291
Data panel in, 287
handling click events, 291
interactive graphics in, 288–289
System Styles for, 286

core namespaces for, 280
resources for

App Hub web site, 309–310
MSDN Windows Phone sample

projects, 306–309

SDK for, 273–284
Blend Project Templates in, 280–283
Blend User Guide in, 282–283
documentation for, 278–280
and Microsoft XNA Game Studio

4.0, 276–277
tools included in, 276–277
Visual Studio 2010 Project Template

in, 283–284
Windows Phone 7 emulator, 276
Windows Phone Application Project,

284–292
artboard for, 284–285
configuring emulator for, with Device

panel, 292
creating control template from graphic,

289–291
Data panel in, 287
handling click events, 291
interactive graphics in, 288–289
System Styles for, 286

Windows Phone Application template, 281
Windows Phone Control Library template,

281
Windows Phone Databound Application

template, 281
Windows Phone Developer Tools, 274
Windows Phone Development MSDN web

portal, 306
Windows Phone Marketplace, 309
Windows Phone node, 280
Windows Phone Panorama Application

project type, 294
Windows Phone Panorama Application

template, 281
Windows Phone Pivot Application

template, 281
Windows Phone project template, 8
Windows Presentation Foundation. See

WPF
Windows Start button, 276, 278
Windows Update, performing, 276
<Window.Triggers> collection, 109
workspace layout

for animations, 88–96
adding keyframes, 91–92

■ INDEX

 365

capturing object property changes,
92–93

creating storyboards, 89–90
managing storyboards, 90–91
storyboard properties, 94–95
testing animations, 94
viewing markup for, 94
zooming timeline editor, 96

customizing, 30–31
Workspaces menu option, Window, 31, 88
WPF 3D graphics, 69–79

camera settings for
changing with properties panel,

73–74
controlling in code, 74–77

changing lighting effects using light
editors, 75–77

mapping 2D images to 3D planes,
70–71

Viewport3D object
changing using artboard tools,

74–75
elements of, 71–72
transforming with Camera Orbit

tool, 72
WPF project template, 6–7
WPF Window/Silverlight UserControl, 82
WPF (Windows Presentation Foundation),

98–109
controlling animations using triggers,

102–109
adding, 103–106
assigning to menu items, 108–109
menu system example, 106–108

Document API, 147–149
block elements, 148
document layout managers,

148–149
inline elements, 148

motion paths in, 98–102
Simple Styles for, 175–180
triggers, adding interactivity with,

200–203
visual cues, using triggers, 184–185
XML data source, defining, 255–258

adding XML data source, 256–257

binding to UI elements via XPath
expressions, 257–258

Wpf3DExample application, 70
Wpf3DExample project, 77
WpfControlsApp WPF application project,

138
WPFMotionPathApp WPF application

project, 98
WpfStyleByHand project, 164
WpfStylesWithBlend project, 172
WpfTemplatesByHand project, 181
WpfXmlDataBinding project, 255, 258
WrapPanel, 133
www.microsoft.com/expression/try-it

Key attribute, 168, 170, 188
Key value, 169–170
Name attribute, 50, 60

■ X
XAML elements, 17, 21, 60
XAML (Extensible Application Markup

Language)
controlling storyboards in, 115–118

ControlStoryboardAction behavior
object, 116–118

SimpleBlendAnimations example,
115–116

editing, 14
transitioning states in, 216–218
viewing, 14, 130
viewing generated, 207–208

XAML files, 19, 22, 57, 60–61
XAML formats, 56
XAML Silverlight 4/WPF Canvas option, 59
XamlReader object, 155
XamlWriter object, 155
XAP binary, 342
XAP file, 345
Xbox LIVE Marketplace, 309
XML-based grammars, 3
XML Data Source option, Data panel, 255
XML (Extensible Markup Language) data

sources
adding, 256–257
for WPF, defining, 255–258

■ INDEX

 366

XmlDataProvider resource type, 257
XPath expressions, binding to UI elements

via, 257–258
xVal variable, 77

■ Y
yVal variable, 77

■ Z
Z alphabetic token, 37

ZAM 3D tool, 78–79
Zoom tool, 22, 24–25
zooming

display, 11–12
timeline editor, 96
zVal variable, 77

	Title Page

	Copyright Page

	Contents at a Glance
	Table of Contents

	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Confessions of an XAML Jockey
	This Is Not a Programming Book…
	… and Graphical Artists Are Welcome!

	Chapter Overview
	Chapter 1: Learning the Core Blend IDE
	Chapter 2: Vector Graphics and Object Resources
	Chapter 3: The Animation Editor
	Chapter 4: Controls, Layouts, and Behaviors
	Chapter 5: Styles, Templates, and UserControls
	Chapter 6: Blend Data Binding Techniques
	Chapter 7: Designing for Windows Phone 7
	Chapter 8: Prototyping with SketchFlow

	Obtaining the Sample Projects
	Obtaining Updates for This Book
	Contacting Me

	CHAPTER 1 Learning the Core Blend IDE
	The Microsoft Expression Family
	The Role of Expression Web
	The Role of Expression Encoder
	The Role of Expression Design
	The Role of Expression Blend
	Expression Blend Is Typically Only One Side of the Coin
	The Role of SketchFlow

	The Expression Blend Project Templates
	WPF Project Templates
	Silverlight Project Templates
	Windows Phone Project Templates

	A Guided Tour of the Core Blend IDE
	Loading a Blend Sample Project
	The Artboard and Artboard Controls
	Zooming the Artboard Display
	Showing and Hiding Rendering Effects
	Tweaking UI Positioning with Snap Grid
	Viewing Annotations
	Viewing and Editing the Underlying XAML

	The Objects and Timeline Panel
	Selecting Objects for Editing
	Regarding the “Timeline” Aspect

	The Properties Panel
	Naming and Finding Objects
	An Overview of Property Categories
	Viewing Advanced Configuration Options

	The Project Panel
	The Integrated Code Editor
	The Results Panel
	The Tools Panel
	Adding Custom Content to the Sample Project
	The Selection and Direct Selection Tools
	The Zoom and Pan Tools
	The Assets Library (and the Assets Panel)

	Handling and Implementing Events

	Customizing the Options of the Blend IDE
	Creating a Custom Workspace Layout

	The Expression Blend Documentation System
	Summary

	CHAPTER 2 Vector Graphics and Object Resources
	The Realm of Vector Graphics
	Use of Graphical Data Is Pervasive

	Exploring the Core Drawing Tools
	Working with the Pencil Tool
	Working with the Pen Tool
	The Result of Using the Pen and Pencil Tools

	Working with the Rectangle, Ellipse, and Line Tools
	Working with the Shapes Section of the Assets Library
	Modifying a Shape Using the Appearance Editor
	Coloring a Shape Using the Brushes Editor
	Viewing Brush-Centric Properties
	Selecting the No Brush Option
	Defining a Solid-Colored Brush
	Defining a Gradient Brush
	Defining a Tile Brush

	Combining Geometries and Extracting Paths
	Converting a Shape to a Path

	Interacting with Shapes
	Handling Events

	Configuring “Pens”
	Defining Pen Caps
	Defining a Dash Pattern

	Revisiting Visual Effects
	Tweaking a Visual Effect

	The Role of Expression Design
	Preparing and Exporting a Sample Image
	Creating a New Silverlight Application
	Importing the Sample Data into a Blend Project
	Interacting with the Bear

	Applying 2D Graphical Transformation
	Building the Initial UI
	Applying Transformations at Design Time
	RenderTransform or LayoutTransform?

	Applying Transformations in Code

	Applying 3D Graphical Transformation
	An Introduction to WPF 3D Graphics
	Mapping a 2D Image to a 3D Plane
	The Elements of Viewport3D
	Transforming the 3D Viewport with the Camera Orbit Tool
	Changing Camera Settings Using the Properties Panel
	Changing the 3D Viewport Using the Artboard Tools
	Changing 3D Lighting Effects Using the Light Editors
	Controlling the Camera in Code
	A Brief Word on ZAM 3D

	An Introduction to Silverlight 3D Graphics
	Driving a Projection in Code

	The Role of Object Resources
	Creating Resources in Blend
	Managing Existing Resources
	Applying Resources to New UI Elements

	Summary

	CHAPTER 3 The Animation Editor
	Defining the Role of Animation Services
	The Scope of Animation Services

	The Blend Animation Workspace
	Creating a New Storyboard
	Managing Existing Storyboards
	Adding Keyframes
	Capturing Object Property Changes
	Testing Your Animation
	Viewing the Animation Markup
	Configuring Storyboard Properties
	Zooming the Timeline Editor

	Interacting with Storyboards in Code
	Further Details of the Storyboard Class

	WPF-Specific Animation Techniques
	Working with WPF Motion Paths
	Controlling WPF Animations Using Triggers
	Adding a Trigger with the Triggers Panel
	Building a Menu System with Blend
	Assigning Triggers to Menu Items

	Understanding Animation Easing Effects
	Building the Initial Layout
	Creating the Initial Storyboards
	Applying Animation Easing Effects
	Working with the KeySpline Editor
	Executing the Storyboard at Runtime
	Learning More About Animation Easing Effects

	Controlling Storyboards in XAML via Behavior Objects
	Modifying the SimpleBlendAnimations Example
	Adding the ControlStoryboardAction Behavior

	Summary

	CHAPTER 4 Controls, Layouts, and Behaviors
	A First Look at GUI Controls
	Locating Controls Within the IDE
	Configuring Controls via the Properties Panel
	Learning About Control Details

	Understanding the Control Content Model
	Creating Composite Content
	Handling Events for Controls with Composite Content
	Reusing Composite Content

	Understanding the Items Control Model
	Adding ListBoxItems
	Viewing the XAML
	Finding the Current Selection
	Working with the Tag Property

	Working with Layout Managers
	Additional Layout Types
	Changing the Layout Type
	Designing Nested Layouts
	Grouping and Ungrouping Selected UI Elements
	Repositioning a UI Element into a Layout Manager

	Building a User Interface with Blend
	Creating a Tabbed Layout System
	Working with the Grid
	Defining Grid Rows and Columns
	Adding Items to Grid Cells
	Creating a Grid Splitter
	Adding a Nested StackPanel

	Introducing the WPF Document API9
	Block Elements and Inline Elements
	Document Layout Managers

	Creating a ToolBar Control
	Populating a FlowDocument
	Populating a FlowDocument Using Code
	Saving and Loading Document Data

	Introducing Blend Behavior Objects
	The MouseDragElementBehavior Object

	Summary

	CHAPTER 5 Styles, Templates, and UserControls
	The Role of Styles
	Creating a Simple Style by Hand
	Assigning a Control’s Style Property
	Overriding Style Settings
	Constraining a Style with TargetType
	Subclassing Existing Styles
	Defining Default Styles
	Managing Existing Styles Using the Blend IDE

	Creating New Styles Using Blend
	Creating a New Empty Style
	Working with WPF Simple Styles
	Viewing Simple Style Markup

	The Role of Control Templates in Styles
	Building a Custom Control Template by Hand
	Storing Templates as Resources
	Incorporating Visual Cues Using WPF Triggers
	Understanding the Role of {TemplateBinding}
	Understanding the Role of <ContentPresenter>
	Incorporating Templates into Styles

	Creating Control Templates Using Expression Blend
	Creating a Copy of a Default Template
	Examining Style Properties of a Default Template
	Examining the Template Itself
	Using Tools to Edit a Template Copy

	Creating a Stylized Template from a Graphic
	Creating the Initial Graphic
	Extracting the Stylized Template
	Building a ListBox Stylized Template
	Adding Interactivity via WPF Property Triggers
	WPF Triggers: Further Resources

	Building Templates Using the Silverlight API
	Working with the VSM via the States Panel
	Viewing the Generated XAML
	Establishing State Group Transition Timing
	Defining Transition Effects
	Configuring Individual Transitions
	A Brief Word Regarding Custom States

	Generating UserControls Using Blend
	Adding Visual States
	Transitioning States in Code
	Transitioning States in XAML
	VSM: Further Resources

	Summary

	CHAPTER 6 Blend Data Binding Techniques
	The Role of Data Binding
	Control-to-Control Data Binding
	Building the Example UI
	Creating New Data Bindings
	Viewing the Generated Markup

	Converting Data Types
	Creating a Custom Data Conversion Class
	Selecting a Conversion Class in Blend
	Viewing the Generated Markup

	Understanding Data Binding Modalities
	Configuring Data Binding Options with Blend
	Configuring a Two-Way Data Bind

	Binding to Properties of Non-UI Objects
	Creating a Custom Collection of (Custom) Objects
	Defining an Object Data Source with the Data Panel
	Binding the Entire Collection to a ListBox
	Examining the Role of the Data Context
	Viewing the Bound Data Context
	Quick Project Cleanup

	Binding Individual Properties to ListBox Controls
	Binding the Collection to a DataGrid
	Manipulating the Collection at Runtime

	Working with Data Templates
	Editing a Data Template
	Styling Items in a Data Template
	Defining Composite UI Elements for a Data Template
	Creating Control Templates Containing Data Templates
	Adding Interactivity to the Template

	Defining a WPF XML Data Source
	Adding an XML Data Source
	Binding XML Data to UI Elements via XPath

	Creating a List Details Data Binding
	Creating the User Interface
	Examining the Generated Markup

	Exploring the Role of Sample Data
	Inserting Sample Data into a Project
	Adding Additional Properties
	Modifying the Data Types and Values
	Binding Sample Data to the UI
	Learning More About Sample Data

	Data Binding: A Brief Word on Final Topics
	Binding to Relational Database Data
	The Role of Blend Databound Project Templates (MVVM)

	Summary

	CHAPTER 7 Designing for Windows Phone 7
	Installing the Windows Phone 7 SDK
	Examining the New Bits
	The Role of Microsoft XNA Game Studio 4.0

	Installing the Windows Phone 7 Documentation
	A Survey of Key Windows Phone 7 Namespaces

	Viewing the New Blend Projects
	The Updated Blend User Guide
	Consider What You Already Know...

	Viewing the New Visual Studio 2010 Projects

	Exploring the Windows Phone Application Project Type
	The Windows Phone Artboard
	The Windows Phone System Styles
	Creating a List-Details View with the Data Panel
	Creating an Interactive Graphic
	Creating a Custom Control Template
	Handling the Click Event
	Configuring the Emulator via the Device Panel

	Exploring the Panorama Application Project Type
	Examining the Initial Tree of Objects
	Viewing the PanoramaItem Markup
	Changing the Panorama Background
	Adding a New PanoramaItem Object

	Exploring the Pivot Application Project Type
	Adding a New PivotItem
	Designing the Pivot GUI Layout
	Transforming the Grid
	Controlling the Storyboard in XAML

	Learning More About Windows Phone Development
	MSDN Windows Phone Sample Projects
	The App Hub Web Site

	Summary

	CHAPTER 8 Prototyping with SketchFlow
	The Role of Application Prototyping
	The Role of SketchFlow

	Examining a SketchFlow Prototype Sample
	Exploring the SketchFlow Map Panel
	The Role of the Start Node
	Color Coding
	Creating and Connecting Nodes
	Assigning Transition Styles

	Testing the Prototype with the SketchFlow Player
	Navigating Screens
	Adding Feedback to the Prototype
	Exporting Prototype Feedback
	Importing Client Feedback into Blend
	Generating Microsoft Word Documentation

	Creating a Silverlight Prototype
	Examining the Project Files
	Creating a Component Screen
	Creating Additional Screens
	Replicating the Navigation GUI
	Using the NavigateToScreenAction Behavior
	Incorporating Prototype Interactivity
	Using the PlaySketchFlowAnimationAction Behavior

	Packaging a Prototype
	Moving a Prototype into Production
	Modifying the *csproj Files
	Updating the Root Project Assembly References
	Modifying the App.xaml.cs File

	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

